code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
# This script creates a super tiny model that is useful inside tests, when we just want to test that # the machinery works, without needing to the check the quality of the outcomes. # # This version creates a tiny vocab first, and then a tiny model - so the outcome is truly tiny - # all files ~60KB. As compared to taking a full-size model, reducing to the minimum its layers and # emb dimensions, but keeping the full vocab + merges files, leading to ~3MB in total for all files. # The latter is done by `fsmt-make-super-tiny-model.py`. # # It will be used then as "stas/tiny-wmt19-en-ru" from pathlib import Path import json import tempfile from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE :Optional[Any] = 'tiny-wmt19-en-ru' # Build # borrowed from a test SCREAMING_SNAKE_CASE :Union[str, Any] = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'w</w>', 'r</w>', 't</w>', 'lo', 'low', 'er</w>', 'low</w>', 'lowest</w>', 'newer</w>', 'wider</w>', '<unk>', ] SCREAMING_SNAKE_CASE :Optional[Any] = dict(zip(vocab, range(len(vocab)))) SCREAMING_SNAKE_CASE :Tuple = ['l o 123', 'lo w 1456', 'e r</w> 1789', ''] with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE :Optional[int] = Path(tmpdirname) SCREAMING_SNAKE_CASE :Optional[int] = build_dir / VOCAB_FILES_NAMES['src_vocab_file'] SCREAMING_SNAKE_CASE :Any = build_dir / VOCAB_FILES_NAMES['tgt_vocab_file'] SCREAMING_SNAKE_CASE :str = build_dir / VOCAB_FILES_NAMES['merges_file'] with open(src_vocab_file, 'w') as fp: fp.write(json.dumps(vocab_tokens)) with open(tgt_vocab_file, 'w') as fp: fp.write(json.dumps(vocab_tokens)) with open(merges_file, 'w') as fp: fp.write('\n'.join(merges)) SCREAMING_SNAKE_CASE :Tuple = FSMTTokenizer( langs=['en', 'ru'], src_vocab_size=len(vocab), tgt_vocab_size=len(vocab), src_vocab_file=src_vocab_file, tgt_vocab_file=tgt_vocab_file, merges_file=merges_file, ) SCREAMING_SNAKE_CASE :List[str] = FSMTConfig( langs=['ru', 'en'], src_vocab_size=1000, tgt_vocab_size=1000, d_model=4, encoder_layers=1, decoder_layers=1, encoder_ffn_dim=4, decoder_ffn_dim=4, encoder_attention_heads=1, decoder_attention_heads=1, ) SCREAMING_SNAKE_CASE :Tuple = FSMTForConditionalGeneration(config) print(f'''num of params {tiny_model.num_parameters()}''') # Test SCREAMING_SNAKE_CASE :List[str] = tokenizer(['Making tiny model'], return_tensors='pt') SCREAMING_SNAKE_CASE :str = tiny_model(**batch) print('test output:', len(outputs.logits[0])) # Save tiny_model.half() # makes it smaller tiny_model.save_pretrained(mname_tiny) tokenizer.save_pretrained(mname_tiny) print(f'''Generated {mname_tiny}''') # Upload # transformers-cli upload tiny-wmt19-en-ru
15
'''simple docstring''' from __future__ import annotations def __a(SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float ): '''simple docstring''' if days_between_payments <= 0: raise ValueError("days_between_payments must be > 0" ) if daily_interest_rate < 0: raise ValueError("daily_interest_rate must be >= 0" ) if principal <= 0: raise ValueError("principal must be > 0" ) return principal * daily_interest_rate * days_between_payments def __a(SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float , ): '''simple docstring''' if number_of_compounding_periods <= 0: raise ValueError("number_of_compounding_periods must be > 0" ) if nominal_annual_interest_rate_percentage < 0: raise ValueError("nominal_annual_interest_rate_percentage must be >= 0" ) if principal <= 0: raise ValueError("principal must be > 0" ) return principal * ( (1 + nominal_annual_interest_rate_percentage) ** number_of_compounding_periods - 1 ) def __a(SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float , ): '''simple docstring''' if number_of_years <= 0: raise ValueError("number_of_years must be > 0" ) if nominal_annual_percentage_rate < 0: raise ValueError("nominal_annual_percentage_rate must be >= 0" ) if principal <= 0: raise ValueError("principal must be > 0" ) return compound_interest( SCREAMING_SNAKE_CASE_ , nominal_annual_percentage_rate / 365 , number_of_years * 365 ) if __name__ == "__main__": import doctest doctest.testmod()
158
0
"""simple docstring""" import warnings from ...utils import logging from .image_processing_perceiver import PerceiverImageProcessor A__ : str = logging.get_logger(__name__) class lowercase__ ( snake_case__ ): def __init__( self : Optional[Any] , *snake_case__ : int , **snake_case__ : Any ): warnings.warn( "The class PerceiverFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use PerceiverImageProcessor instead." , snake_case__ , ) super().__init__(*snake_case__ , **snake_case__ )
351
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import _LazyModule A__ : Tuple = {'tokenization_byt5': ['ByT5Tokenizer']} if TYPE_CHECKING: from .tokenization_byta import ByTaTokenizer else: import sys A__ : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
209
0
from __future__ import annotations from collections.abc import Iterator from typing import Generic, TypeVar UpperCamelCase__ = TypeVar("""T""") class a__ ( Generic[T] ): def __init__( self , _A ): """simple docstring""" __lowerCAmelCase = data __lowerCAmelCase = None def __str__( self ): """simple docstring""" return f"""{self.data}""" class a__ ( Generic[T] ): def __init__( self ): """simple docstring""" __lowerCAmelCase = None def __iter__( self ): """simple docstring""" __lowerCAmelCase = self.top while node: yield node.data __lowerCAmelCase = node.next def __str__( self ): """simple docstring""" return "->".join([str(_A ) for item in self] ) def __len__( self ): """simple docstring""" return len(tuple(iter(self ) ) ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" return self.top is None def __SCREAMING_SNAKE_CASE( self , _A ): """simple docstring""" __lowerCAmelCase = Node(_A ) if not self.is_empty(): __lowerCAmelCase = self.top __lowerCAmelCase = node def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" if self.is_empty(): raise IndexError("pop from empty stack" ) assert isinstance(self.top , _A ) __lowerCAmelCase = self.top __lowerCAmelCase = self.top.next return pop_node.data def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" if self.is_empty(): raise IndexError("peek from empty stack" ) assert self.top is not None return self.top.data def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = None if __name__ == "__main__": from doctest import testmod testmod()
92
'''simple docstring''' import enum import warnings from .. import MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING from ..utils import add_end_docstrings, is_tf_available from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf class lowercase_ ( enum.Enum ): __UpperCAmelCase = 0 __UpperCAmelCase = 1 __UpperCAmelCase = 2 @add_end_docstrings(a__ ) class lowercase_ ( a__ ): __UpperCAmelCase = '\n In 1991, the remains of Russian Tsar Nicholas II and his family (except for Alexei and Maria) are discovered. The\n voice of Nicholas\'s young son, Tsarevich Alexei Nikolaevich, narrates the remainder of the story. 1883 Western\n Siberia, a young Grigori Rasputin is asked by his father and a group of men to perform magic. Rasputin has a vision\n and denounces one of the men as a horse thief. Although his father initially slaps him for making such an\n accusation, Rasputin watches as the man is chased outside and beaten. Twenty years later, Rasputin sees a vision of\n the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous, with people, even a bishop,\n begging for his blessing. <eod> </s> <eos>\n ' def __init__( self , *a , **a ): super().__init__(*a , **a ) self.check_model_type( TF_MODEL_FOR_CAUSAL_LM_MAPPING if self.framework == "tf" else MODEL_FOR_CAUSAL_LM_MAPPING ) if "prefix" not in self._preprocess_params: # This is very specific. The logic is quite complex and needs to be done # as a "default". # It also defines both some preprocess_kwargs and generate_kwargs # which is why we cannot put them in their respective methods. UpperCamelCase__ = None if self.model.config.prefix is not None: UpperCamelCase__ = self.model.config.prefix if prefix is None and self.model.__class__.__name__ in [ "XLNetLMHeadModel", "TransfoXLLMHeadModel", "TFXLNetLMHeadModel", "TFTransfoXLLMHeadModel", ]: # For XLNet and TransformerXL we add an article to the prompt to give more state to the model. UpperCamelCase__ = self.XL_PREFIX if prefix is not None: # Recalculate some generate_kwargs linked to prefix. UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = self._sanitize_parameters(prefix=a , **self._forward_params ) UpperCamelCase__ = {**self._preprocess_params, **preprocess_params} UpperCamelCase__ = {**self._forward_params, **forward_params} def __a ( self , a=None , a=None , a=None , a=None , a=None , a=None , a=None , a=None , **a , ): UpperCamelCase__ = {} if prefix is not None: UpperCamelCase__ = prefix if prefix: UpperCamelCase__ = self.tokenizer( a , padding=a , add_special_tokens=a , return_tensors=self.framework ) UpperCamelCase__ = prefix_inputs["input_ids"].shape[-1] if handle_long_generation is not None: if handle_long_generation not in {"hole"}: raise ValueError( f'''{handle_long_generation} is not a valid value for `handle_long_generation` parameter expected''' " [None, 'hole']" ) UpperCamelCase__ = handle_long_generation preprocess_params.update(a ) UpperCamelCase__ = generate_kwargs UpperCamelCase__ = {} if return_full_text is not None and return_type is None: if return_text is not None: raise ValueError("`return_text` is mutually exclusive with `return_full_text`" ) if return_tensors is not None: raise ValueError("`return_full_text` is mutually exclusive with `return_tensors`" ) UpperCamelCase__ = ReturnType.FULL_TEXT if return_full_text else ReturnType.NEW_TEXT if return_tensors is not None and return_type is None: if return_text is not None: raise ValueError("`return_text` is mutually exclusive with `return_tensors`" ) UpperCamelCase__ = ReturnType.TENSORS if return_type is not None: UpperCamelCase__ = return_type if clean_up_tokenization_spaces is not None: UpperCamelCase__ = clean_up_tokenization_spaces if stop_sequence is not None: UpperCamelCase__ = self.tokenizer.encode(a , add_special_tokens=a ) if len(a ) > 1: warnings.warn( "Stopping on a multiple token sequence is not yet supported on transformers. The first token of" " the stop sequence will be used as the stop sequence string in the interim." ) UpperCamelCase__ = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def __a ( self , *a , **a ): # Parse arguments if self.model.__class__.__name__ in ["TransfoXLLMHeadModel"]: kwargs.update({"add_space_before_punct_symbol": True} ) return super()._parse_and_tokenize(*a , **a ) def __call__( self , a , **a ): return super().__call__(a , **a ) def __a ( self , a , a="" , a=None , **a ): UpperCamelCase__ = self.tokenizer( prefix + prompt_text , padding=a , add_special_tokens=a , return_tensors=self.framework ) UpperCamelCase__ = prompt_text if handle_long_generation == "hole": UpperCamelCase__ = inputs["input_ids"].shape[-1] if "max_new_tokens" in generate_kwargs: UpperCamelCase__ = generate_kwargs["max_new_tokens"] else: UpperCamelCase__ = generate_kwargs.get("max_length" , self.model.config.max_length ) - cur_len if new_tokens < 0: raise ValueError("We cannot infer how many new tokens are expected" ) if cur_len + new_tokens > self.tokenizer.model_max_length: UpperCamelCase__ = self.tokenizer.model_max_length - new_tokens if keep_length <= 0: raise ValueError( "We cannot use `hole` to handle this generation the number of desired tokens exceeds the" " models max length" ) UpperCamelCase__ = inputs["input_ids"][:, -keep_length:] if "attention_mask" in inputs: UpperCamelCase__ = inputs["attention_mask"][:, -keep_length:] return inputs def __a ( self , a , **a ): UpperCamelCase__ = model_inputs["input_ids"] UpperCamelCase__ = model_inputs.get("attention_mask" , a ) # Allow empty prompts if input_ids.shape[1] == 0: UpperCamelCase__ = None UpperCamelCase__ = None UpperCamelCase__ = 1 else: UpperCamelCase__ = input_ids.shape[0] UpperCamelCase__ = model_inputs.pop("prompt_text" ) # If there is a prefix, we may need to adjust the generation length. Do so without permanently modifying # generate_kwargs, as some of the parameterization may come from the initialization of the pipeline. UpperCamelCase__ = generate_kwargs.pop("prefix_length" , 0 ) if prefix_length > 0: UpperCamelCase__ = "max_new_tokens" in generate_kwargs or ( "generation_config" in generate_kwargs and generate_kwargs["generation_config"].max_new_tokens is not None ) if not has_max_new_tokens: UpperCamelCase__ = generate_kwargs.get("max_length" ) or self.model.config.max_length generate_kwargs["max_length"] += prefix_length UpperCamelCase__ = "min_new_tokens" in generate_kwargs or ( "generation_config" in generate_kwargs and generate_kwargs["generation_config"].min_new_tokens is not None ) if not has_min_new_tokens and "min_length" in generate_kwargs: generate_kwargs["min_length"] += prefix_length # BS x SL UpperCamelCase__ = self.model.generate(input_ids=a , attention_mask=a , **a ) UpperCamelCase__ = generated_sequence.shape[0] if self.framework == "pt": UpperCamelCase__ = generated_sequence.reshape(a , out_b // in_b , *generated_sequence.shape[1:] ) elif self.framework == "tf": UpperCamelCase__ = tf.reshape(a , (in_b, out_b // in_b, *generated_sequence.shape[1:]) ) return {"generated_sequence": generated_sequence, "input_ids": input_ids, "prompt_text": prompt_text} def __a ( self , a , a=ReturnType.FULL_TEXT , a=True ): UpperCamelCase__ = model_outputs["generated_sequence"][0] UpperCamelCase__ = model_outputs["input_ids"] UpperCamelCase__ = model_outputs["prompt_text"] UpperCamelCase__ = generated_sequence.numpy().tolist() UpperCamelCase__ = [] for sequence in generated_sequence: if return_type == ReturnType.TENSORS: UpperCamelCase__ = {"generated_token_ids": sequence} elif return_type in {ReturnType.NEW_TEXT, ReturnType.FULL_TEXT}: # Decode text UpperCamelCase__ = self.tokenizer.decode( a , skip_special_tokens=a , clean_up_tokenization_spaces=a , ) # Remove PADDING prompt of the sequence if XLNet or Transfo-XL model is used if input_ids is None: UpperCamelCase__ = 0 else: UpperCamelCase__ = len( self.tokenizer.decode( input_ids[0] , skip_special_tokens=a , clean_up_tokenization_spaces=a , ) ) if return_type == ReturnType.FULL_TEXT: UpperCamelCase__ = prompt_text + text[prompt_length:] else: UpperCamelCase__ = text[prompt_length:] UpperCamelCase__ = {"generated_text": all_text} records.append(a ) return records
80
0
import gc import random import unittest import numpy as np import torch from diffusers import ( DDIMScheduler, KandinskyVaaControlnetPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , unittest.TestCase ): __lowerCAmelCase : Union[str, Any] = KandinskyVaaControlnetPipeline __lowerCAmelCase : Any = ['image_embeds', 'negative_image_embeds', 'hint'] __lowerCAmelCase : str = ['image_embeds', 'negative_image_embeds', 'hint'] __lowerCAmelCase : List[Any] = [ 'generator', 'height', 'width', 'latents', 'guidance_scale', 'num_inference_steps', 'return_dict', 'guidance_scale', 'num_images_per_prompt', 'output_type', 'return_dict', ] __lowerCAmelCase : List[str] = False @property def SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: '''simple docstring''' return 32 @property def SCREAMING_SNAKE_CASE ( self ) -> Any: '''simple docstring''' return 32 @property def SCREAMING_SNAKE_CASE ( self ) -> List[str]: '''simple docstring''' return self.time_input_dim @property def SCREAMING_SNAKE_CASE ( self ) -> Tuple: '''simple docstring''' return self.time_input_dim * 4 @property def SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: '''simple docstring''' return 100 @property def SCREAMING_SNAKE_CASE ( self ) -> List[Any]: '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase : Optional[Any] = { """in_channels""": 8, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """image_hint""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } UpperCAmelCase : Dict = UNetaDConditionModel(**lowercase__ ) return model @property def SCREAMING_SNAKE_CASE ( self ) -> int: '''simple docstring''' return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase : Any = VQModel(**self.dummy_movq_kwargs ) return model def SCREAMING_SNAKE_CASE ( self ) -> Tuple: '''simple docstring''' UpperCAmelCase : Union[str, Any] = self.dummy_unet UpperCAmelCase : List[Any] = self.dummy_movq UpperCAmelCase : List[Any] = DDIMScheduler( num_train_timesteps=1000 , beta_schedule="""linear""" , beta_start=0.0_0085 , beta_end=0.012 , clip_sample=lowercase__ , set_alpha_to_one=lowercase__ , steps_offset=1 , prediction_type="""epsilon""" , thresholding=lowercase__ , ) UpperCAmelCase : str = { """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=0 ) -> List[str]: '''simple docstring''' UpperCAmelCase : str = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(lowercase__ ) ).to(lowercase__ ) UpperCAmelCase : Dict = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( lowercase__ ) # create hint UpperCAmelCase : Tuple = floats_tensor((1, 3, 64, 64) , rng=random.Random(lowercase__ ) ).to(lowercase__ ) if str(lowercase__ ).startswith("""mps""" ): UpperCAmelCase : Dict = torch.manual_seed(lowercase__ ) else: UpperCAmelCase : str = torch.Generator(device=lowercase__ ).manual_seed(lowercase__ ) UpperCAmelCase : Optional[Any] = { """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """hint""": hint, """generator""": generator, """height""": 64, """width""": 64, """guidance_scale""": 4.0, """num_inference_steps""": 2, """output_type""": """np""", } return inputs def SCREAMING_SNAKE_CASE ( self ) -> int: '''simple docstring''' UpperCAmelCase : Dict = """cpu""" UpperCAmelCase : Tuple = self.get_dummy_components() UpperCAmelCase : int = self.pipeline_class(**lowercase__ ) UpperCAmelCase : Optional[int] = pipe.to(lowercase__ ) pipe.set_progress_bar_config(disable=lowercase__ ) UpperCAmelCase : Optional[Any] = pipe(**self.get_dummy_inputs(lowercase__ ) ) UpperCAmelCase : Any = output.images UpperCAmelCase : Any = pipe( **self.get_dummy_inputs(lowercase__ ) , return_dict=lowercase__ , )[0] UpperCAmelCase : Dict = image[0, -3:, -3:, -1] UpperCAmelCase : int = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase : Optional[Any] = np.array( [0.695_9826, 0.86_8279, 0.755_8092, 0.6876_9467, 0.8580_5804, 0.6597_7496, 0.4488_5302, 0.595_9111, 0.425_1595] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F" expected_slice {expected_slice}, but got {image_slice.flatten()}" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" @slow @require_torch_gpu class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self ) -> Any: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE ( self ) -> str: '''simple docstring''' UpperCAmelCase : Dict = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/kandinskyv22_controlnet_robotcat_fp16.npy""" ) UpperCAmelCase : str = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/hint_image_cat.png""" ) UpperCAmelCase : str = torch.from_numpy(np.array(lowercase__ ) ).float() / 255.0 UpperCAmelCase : List[str] = hint.permute(2 , 0 , 1 ).unsqueeze(0 ) UpperCAmelCase : List[Any] = KandinskyVaaPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(lowercase__ ) UpperCAmelCase : Any = KandinskyVaaControlnetPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-controlnet-depth""" , torch_dtype=torch.floataa ) UpperCAmelCase : List[Any] = pipeline.to(lowercase__ ) pipeline.set_progress_bar_config(disable=lowercase__ ) UpperCAmelCase : str = """A robot, 4k photo""" UpperCAmelCase : Tuple = torch.Generator(device="""cuda""" ).manual_seed(0 ) UpperCAmelCase , UpperCAmelCase : int = pipe_prior( lowercase__ , generator=lowercase__ , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() UpperCAmelCase : Optional[int] = torch.Generator(device="""cuda""" ).manual_seed(0 ) UpperCAmelCase : Optional[Any] = pipeline( image_embeds=lowercase__ , negative_image_embeds=lowercase__ , hint=lowercase__ , generator=lowercase__ , num_inference_steps=100 , output_type="""np""" , ) UpperCAmelCase : str = output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(lowercase__ , lowercase__ )
358
"""simple docstring""" import enum import os from hashlib import shaaaa from typing import Optional from .. import config from .logging import get_logger A: List[Any] = get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( enum.Enum ): __lowerCAmelCase : Dict = 'all_checks' __lowerCAmelCase : int = 'basic_checks' __lowerCAmelCase : Optional[Any] = 'no_checks' class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ): pass class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ): pass class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ): pass class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ): pass def _snake_case ( UpperCamelCase : Optional[dict] , UpperCamelCase : dict , UpperCamelCase : int=None ): if expected_checksums is None: logger.info("""Unable to verify checksums.""" ) return if len(set(UpperCamelCase ) - set(UpperCamelCase ) ) > 0: raise ExpectedMoreDownloadedFiles(str(set(UpperCamelCase ) - set(UpperCamelCase ) ) ) if len(set(UpperCamelCase ) - set(UpperCamelCase ) ) > 0: raise UnexpectedDownloadedFile(str(set(UpperCamelCase ) - set(UpperCamelCase ) ) ) UpperCAmelCase : Tuple = [url for url in expected_checksums if expected_checksums[url] != recorded_checksums[url]] UpperCAmelCase : Union[str, Any] = """ for """ + verification_name if verification_name is not None else """""" if len(UpperCamelCase ) > 0: raise NonMatchingChecksumError( F"Checksums didn't match{for_verification_name}:\n" F"{bad_urls}\n" """Set `verification_mode='no_checks'` to skip checksums verification and ignore this error""" ) logger.info("""All the checksums matched successfully""" + for_verification_name ) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ): pass class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ): pass class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ): pass class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ): pass def _snake_case ( UpperCamelCase : Optional[dict] , UpperCamelCase : dict ): if expected_splits is None: logger.info("""Unable to verify splits sizes.""" ) return if len(set(UpperCamelCase ) - set(UpperCamelCase ) ) > 0: raise ExpectedMoreSplits(str(set(UpperCamelCase ) - set(UpperCamelCase ) ) ) if len(set(UpperCamelCase ) - set(UpperCamelCase ) ) > 0: raise UnexpectedSplits(str(set(UpperCamelCase ) - set(UpperCamelCase ) ) ) UpperCAmelCase : List[str] = [ {"""expected""": expected_splits[name], """recorded""": recorded_splits[name]} for name in expected_splits if expected_splits[name].num_examples != recorded_splits[name].num_examples ] if len(UpperCamelCase ) > 0: raise NonMatchingSplitsSizesError(str(UpperCamelCase ) ) logger.info("""All the splits matched successfully.""" ) def _snake_case ( UpperCamelCase : str , UpperCamelCase : bool = True ): if record_checksum: UpperCAmelCase : Dict = shaaaa() with open(UpperCamelCase , """rb""" ) as f: for chunk in iter(lambda: f.read(1 << 20 ) , B"""""" ): m.update(UpperCamelCase ) UpperCAmelCase : Any = m.hexdigest() else: UpperCAmelCase : Dict = None return {"num_bytes": os.path.getsize(UpperCamelCase ), "checksum": checksum} def _snake_case ( UpperCamelCase : Union[str, Any] ): if dataset_size and config.IN_MEMORY_MAX_SIZE: return dataset_size < config.IN_MEMORY_MAX_SIZE else: return False
76
0
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES, BertTokenizer from transformers.testing_utils import require_tokenizers, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor, ViTImageProcessor @require_tokenizers @require_vision class snake_case__ ( unittest.TestCase ): def a__ ( self ): __a = tempfile.mkdtemp() # fmt: off __a = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest"] # fmt: on __a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) __a = { "do_resize": True, "size": {"height": 18, "width": 18}, "do_normalize": True, "image_mean": [0.5, 0.5, 0.5], "image_std": [0.5, 0.5, 0.5], } __a = os.path.join(self.tmpdirname , lowerCamelCase ) with open(self.image_processor_file , "w" , encoding="utf-8" ) as fp: json.dump(lowerCamelCase , lowerCamelCase ) def a__ ( self , **lowerCamelCase ): return BertTokenizer.from_pretrained(self.tmpdirname , **lowerCamelCase ) def a__ ( self , **lowerCamelCase ): return ViTImageProcessor.from_pretrained(self.tmpdirname , **lowerCamelCase ) def a__ ( self ): shutil.rmtree(self.tmpdirname ) def a__ ( self ): __a = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] __a = [Image.fromarray(np.moveaxis(lowerCamelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def a__ ( self ): __a = self.get_tokenizer() __a = self.get_image_processor() __a = VisionTextDualEncoderProcessor(tokenizer=lowerCamelCase , image_processor=lowerCamelCase ) processor.save_pretrained(self.tmpdirname ) __a = VisionTextDualEncoderProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , lowerCamelCase ) def a__ ( self ): __a = VisionTextDualEncoderProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __a = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) __a = self.get_image_processor(do_normalize=lowerCamelCase , padding_value=1.0 ) __a = VisionTextDualEncoderProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=lowerCamelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , lowerCamelCase ) def a__ ( self ): __a = self.get_image_processor() __a = self.get_tokenizer() __a = VisionTextDualEncoderProcessor(tokenizer=lowerCamelCase , image_processor=lowerCamelCase ) __a = self.prepare_image_inputs() __a = image_processor(lowerCamelCase , return_tensors="np" ) __a = processor(images=lowerCamelCase , return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def a__ ( self ): __a = self.get_image_processor() __a = self.get_tokenizer() __a = VisionTextDualEncoderProcessor(tokenizer=lowerCamelCase , image_processor=lowerCamelCase ) __a = "lower newer" __a = processor(text=lowerCamelCase ) __a = tokenizer(lowerCamelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def a__ ( self ): __a = self.get_image_processor() __a = self.get_tokenizer() __a = VisionTextDualEncoderProcessor(tokenizer=lowerCamelCase , image_processor=lowerCamelCase ) __a = "lower newer" __a = self.prepare_image_inputs() __a = processor(text=lowerCamelCase , images=lowerCamelCase ) self.assertListEqual(list(inputs.keys() ) , ["input_ids", "token_type_ids", "attention_mask", "pixel_values"] ) # test if it raises when no input is passed with self.assertRaises(lowerCamelCase ): processor() def a__ ( self ): __a = self.get_image_processor() __a = self.get_tokenizer() __a = VisionTextDualEncoderProcessor(tokenizer=lowerCamelCase , image_processor=lowerCamelCase ) __a = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __a = processor.batch_decode(lowerCamelCase ) __a = tokenizer.batch_decode(lowerCamelCase ) self.assertListEqual(lowerCamelCase , lowerCamelCase ) def a__ ( self ): __a = self.get_image_processor() __a = self.get_tokenizer() __a = VisionTextDualEncoderProcessor(tokenizer=lowerCamelCase , image_processor=lowerCamelCase ) __a = "lower newer" __a = self.prepare_image_inputs() __a = processor(text=lowerCamelCase , images=lowerCamelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
261
"""simple docstring""" import unittest from transformers import BertGenerationConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import BertGenerationDecoder, BertGenerationEncoder class snake_case__ : def __init__( self , lowerCamelCase , lowerCamelCase=13 , lowerCamelCase=7 , lowerCamelCase=True , lowerCamelCase=True , lowerCamelCase=99 , lowerCamelCase=32 , lowerCamelCase=5 , lowerCamelCase=4 , lowerCamelCase=37 , lowerCamelCase="gelu" , lowerCamelCase=0.1 , lowerCamelCase=0.1 , lowerCamelCase=50 , lowerCamelCase=0.02 , lowerCamelCase=True , lowerCamelCase=None , ): __a = parent __a = batch_size __a = seq_length __a = is_training __a = use_input_mask __a = vocab_size __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = intermediate_size __a = hidden_act __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = max_position_embeddings __a = initializer_range __a = use_labels __a = scope def a__ ( self ): __a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __a = None if self.use_input_mask: __a = random_attention_mask([self.batch_size, self.seq_length] ) if self.use_labels: __a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __a = self.get_config() return config, input_ids, input_mask, token_labels def a__ ( self ): return BertGenerationConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , is_decoder=lowerCamelCase , initializer_range=self.initializer_range , ) def a__ ( self ): ( ( __a ) , ( __a ) , ( __a ) , ( __a ) , ) = self.prepare_config_and_inputs() __a = True __a = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __a = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, input_mask, token_labels, encoder_hidden_states, encoder_attention_mask, ) def a__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , **lowerCamelCase , ): __a = BertGenerationEncoder(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __a = model(lowerCamelCase , attention_mask=lowerCamelCase ) __a = model(lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , **lowerCamelCase , ): __a = True __a = BertGenerationEncoder(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __a = model( lowerCamelCase , attention_mask=lowerCamelCase , encoder_hidden_states=lowerCamelCase , encoder_attention_mask=lowerCamelCase , ) __a = model( lowerCamelCase , attention_mask=lowerCamelCase , encoder_hidden_states=lowerCamelCase , ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , **lowerCamelCase , ): __a = True __a = True __a = BertGenerationDecoder(config=lowerCamelCase ).to(lowerCamelCase ).eval() # first forward pass __a = model( lowerCamelCase , attention_mask=lowerCamelCase , encoder_hidden_states=lowerCamelCase , encoder_attention_mask=lowerCamelCase , use_cache=lowerCamelCase , ) __a = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids __a = ids_tensor((self.batch_size, 3) , config.vocab_size ) __a = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and __a = torch.cat([input_ids, next_tokens] , dim=-1 ) __a = torch.cat([input_mask, next_mask] , dim=-1 ) __a = model( lowerCamelCase , attention_mask=lowerCamelCase , encoder_hidden_states=lowerCamelCase , encoder_attention_mask=lowerCamelCase , output_hidden_states=lowerCamelCase , )["hidden_states"][0] __a = model( lowerCamelCase , attention_mask=lowerCamelCase , encoder_hidden_states=lowerCamelCase , encoder_attention_mask=lowerCamelCase , past_key_values=lowerCamelCase , output_hidden_states=lowerCamelCase , )["hidden_states"][0] # select random slice __a = ids_tensor((1,) , output_from_past.shape[-1] ).item() __a = output_from_no_past[:, -3:, random_slice_idx].detach() __a = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowerCamelCase , lowerCamelCase , atol=1E-3 ) ) def a__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , *lowerCamelCase , ): __a = BertGenerationDecoder(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __a = model(lowerCamelCase , attention_mask=lowerCamelCase , labels=lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def a__ ( self ): __a , __a , __a , __a = self.prepare_config_and_inputs() __a = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class snake_case__ ( snake_case_, snake_case_, snake_case_, unittest.TestCase ): _snake_case : Union[str, Any] = (BertGenerationEncoder, BertGenerationDecoder) if is_torch_available() else () _snake_case : Any = (BertGenerationDecoder,) if is_torch_available() else () _snake_case : Union[str, Any] = ( {"""feature-extraction""": BertGenerationEncoder, """text-generation""": BertGenerationDecoder} if is_torch_available() else {} ) def a__ ( self ): __a = BertGenerationEncoderTester(self ) __a = ConfigTester(self , config_class=lowerCamelCase , hidden_size=37 ) def a__ ( self ): self.config_tester.run_common_tests() def a__ ( self ): __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase ) def a__ ( self ): __a , __a , __a , __a = self.model_tester.prepare_config_and_inputs() __a = "bert" self.model_tester.create_and_check_model(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) def a__ ( self ): __a = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*lowerCamelCase ) def a__ ( self ): __a = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_decoder_model_past_large_inputs(*lowerCamelCase ) def a__ ( self ): # This regression test was failing with PyTorch < 1.3 ( ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ) = self.model_tester.prepare_config_and_inputs_for_decoder() __a = None self.model_tester.create_and_check_model_as_decoder( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ) def a__ ( self ): __a = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_for_causal_lm(*lowerCamelCase ) @slow def a__ ( self ): __a = BertGenerationEncoder.from_pretrained("google/bert_for_seq_generation_L-24_bbc_encoder" ) self.assertIsNotNone(lowerCamelCase ) @require_torch class snake_case__ ( unittest.TestCase ): @slow def a__ ( self ): __a = BertGenerationEncoder.from_pretrained("google/bert_for_seq_generation_L-24_bbc_encoder" ) __a = torch.tensor([[101, 7592, 1010, 2026, 3899, 2003, 10140, 102]] ) with torch.no_grad(): __a = model(lowerCamelCase )[0] __a = torch.Size([1, 8, 1024] ) self.assertEqual(output.shape , lowerCamelCase ) __a = torch.tensor( [[[0.1775, 0.0083, -0.0321], [1.6002, 0.1287, 0.3912], [2.1473, 0.5791, 0.6066]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , lowerCamelCase , atol=1E-4 ) ) @require_torch class snake_case__ ( unittest.TestCase ): @slow def a__ ( self ): __a = BertGenerationDecoder.from_pretrained("google/bert_for_seq_generation_L-24_bbc_encoder" ) __a = torch.tensor([[101, 7592, 1010, 2026, 3899, 2003, 10140, 102]] ) with torch.no_grad(): __a = model(lowerCamelCase )[0] __a = torch.Size([1, 8, 50358] ) self.assertEqual(output.shape , lowerCamelCase ) __a = torch.tensor( [[[-0.5788, -2.5994, -3.7054], [0.0438, 4.7997, 1.8795], [1.5862, 6.6409, 4.4638]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , lowerCamelCase , atol=1E-4 ) )
261
1
"""simple docstring""" import gc import random import unittest import torch from diffusers import ( IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ) from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference from . import IFPipelineTesterMixin @skip_mps class _UpperCAmelCase ( __snake_case, __snake_case, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =IFPipeline lowerCamelCase__ =TEXT_TO_IMAGE_PARAMS - {'width', 'height', 'latents'} lowerCamelCase__ =TEXT_TO_IMAGE_BATCH_PARAMS lowerCamelCase__ =PipelineTesterMixin.required_optional_params - {'latents'} def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self._get_dummy_components() def SCREAMING_SNAKE_CASE (self , a_ , a_=0 ): '''simple docstring''' if str(a_ ).startswith('''mps''' ): __snake_case : Any = torch.manual_seed(a_ ) else: __snake_case : Optional[int] = torch.Generator(device=a_ ).manual_seed(a_ ) __snake_case : List[str] = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' self._test_save_load_optional_components() @unittest.skipIf(torch_device != '''cuda''' , reason='''float16 requires CUDA''' ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' super().test_save_load_floataa(expected_max_diff=1E-1 ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' self._test_save_load_local() def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' self._test_inference_batch_single_identical( expected_max_diff=1E-2 , ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) @slow @require_torch_gpu class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[Any] = IFPipeline.from_pretrained('''DeepFloyd/IF-I-XL-v1.0''' , variant='''fp16''' , torch_dtype=torch.floataa ) __snake_case : str = IFSuperResolutionPipeline.from_pretrained( '''DeepFloyd/IF-II-L-v1.0''' , variant='''fp16''' , torch_dtype=torch.floataa , text_encoder=a_ , tokenizer=a_ ) # pre compute text embeddings and remove T5 to save memory pipe_a.text_encoder.to('''cuda''' ) __snake_case , __snake_case : Any = pipe_a.encode_prompt('''anime turtle''' , device='''cuda''' ) del pipe_a.tokenizer del pipe_a.text_encoder gc.collect() __snake_case : List[str] = None __snake_case : Tuple = None pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if(a_ , a_ , a_ , a_ ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # img2img __snake_case : Optional[Any] = IFImgaImgPipeline(**pipe_a.components ) __snake_case : Optional[Any] = IFImgaImgSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_imgaimg(a_ , a_ , a_ , a_ ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # inpainting __snake_case : Any = IFInpaintingPipeline(**pipe_a.components ) __snake_case : Dict = IFInpaintingSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_inpainting(a_ , a_ , a_ , a_ ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ ): '''simple docstring''' _start_torch_memory_measurement() __snake_case : Tuple = torch.Generator(device='''cpu''' ).manual_seed(0 ) __snake_case : Optional[Any] = pipe_a( prompt_embeds=a_ , negative_prompt_embeds=a_ , num_inference_steps=2 , generator=a_ , output_type='''np''' , ) __snake_case : List[str] = output.images[0] assert image.shape == (64, 64, 3) __snake_case : Any = torch.cuda.max_memory_allocated() assert mem_bytes < 13 * 10**9 __snake_case : int = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy''' ) assert_mean_pixel_difference(a_ , a_ ) # pipeline 2 _start_torch_memory_measurement() __snake_case : Union[str, Any] = torch.Generator(device='''cpu''' ).manual_seed(0 ) __snake_case : Tuple = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(a_ ) __snake_case : Union[str, Any] = pipe_a( prompt_embeds=a_ , negative_prompt_embeds=a_ , image=a_ , generator=a_ , num_inference_steps=2 , output_type='''np''' , ) __snake_case : List[Any] = output.images[0] assert image.shape == (2_56, 2_56, 3) __snake_case : List[str] = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 __snake_case : int = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy''' ) assert_mean_pixel_difference(a_ , a_ ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ ): '''simple docstring''' _start_torch_memory_measurement() __snake_case : Tuple = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(a_ ) __snake_case : Union[str, Any] = torch.Generator(device='''cpu''' ).manual_seed(0 ) __snake_case : List[str] = pipe_a( prompt_embeds=a_ , negative_prompt_embeds=a_ , image=a_ , num_inference_steps=2 , generator=a_ , output_type='''np''' , ) __snake_case : List[str] = output.images[0] assert image.shape == (64, 64, 3) __snake_case : Optional[int] = torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 __snake_case : Optional[Any] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy''' ) assert_mean_pixel_difference(a_ , a_ ) # pipeline 2 _start_torch_memory_measurement() __snake_case : List[Any] = torch.Generator(device='''cpu''' ).manual_seed(0 ) __snake_case : Any = floats_tensor((1, 3, 2_56, 2_56) , rng=random.Random(0 ) ).to(a_ ) __snake_case : Tuple = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(a_ ) __snake_case : Dict = pipe_a( prompt_embeds=a_ , negative_prompt_embeds=a_ , image=a_ , original_image=a_ , generator=a_ , num_inference_steps=2 , output_type='''np''' , ) __snake_case : Optional[int] = output.images[0] assert image.shape == (2_56, 2_56, 3) __snake_case : Tuple = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 __snake_case : Optional[int] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy''' ) assert_mean_pixel_difference(a_ , a_ ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ ): '''simple docstring''' _start_torch_memory_measurement() __snake_case : str = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(a_ ) __snake_case : List[Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(1 ) ).to(a_ ) __snake_case : Optional[int] = torch.Generator(device='''cpu''' ).manual_seed(0 ) __snake_case : Union[str, Any] = pipe_a( prompt_embeds=a_ , negative_prompt_embeds=a_ , image=a_ , mask_image=a_ , num_inference_steps=2 , generator=a_ , output_type='''np''' , ) __snake_case : List[str] = output.images[0] assert image.shape == (64, 64, 3) __snake_case : Optional[Any] = torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 __snake_case : Optional[Any] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy''' ) assert_mean_pixel_difference(a_ , a_ ) # pipeline 2 _start_torch_memory_measurement() __snake_case : str = torch.Generator(device='''cpu''' ).manual_seed(0 ) __snake_case : int = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(a_ ) __snake_case : Optional[Any] = floats_tensor((1, 3, 2_56, 2_56) , rng=random.Random(0 ) ).to(a_ ) __snake_case : Tuple = floats_tensor((1, 3, 2_56, 2_56) , rng=random.Random(1 ) ).to(a_ ) __snake_case : Tuple = pipe_a( prompt_embeds=a_ , negative_prompt_embeds=a_ , image=a_ , mask_image=a_ , original_image=a_ , generator=a_ , num_inference_steps=2 , output_type='''np''' , ) __snake_case : Any = output.images[0] assert image.shape == (2_56, 2_56, 3) __snake_case : str = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 __snake_case : str = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy''' ) assert_mean_pixel_difference(a_ , a_ ) def lowercase ( ) ->Optional[Any]: """simple docstring""" torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats()
24
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: SCREAMING_SNAKE_CASE : Optional[int] = None SCREAMING_SNAKE_CASE : Any = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : int = {"""vocab_file""": """sentencepiece.bpe.model""", """tokenizer_file""": """tokenizer.json"""} SCREAMING_SNAKE_CASE : List[Any] = { """vocab_file""": { """facebook/mbart-large-en-ro""": ( """https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model""" ), """facebook/mbart-large-cc25""": ( """https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model""" ), }, """tokenizer_file""": { """facebook/mbart-large-en-ro""": """https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json""", """facebook/mbart-large-cc25""": """https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json""", }, } SCREAMING_SNAKE_CASE : Tuple = { """facebook/mbart-large-en-ro""": 1024, """facebook/mbart-large-cc25""": 1024, } # fmt: off SCREAMING_SNAKE_CASE : List[Any] = ["""ar_AR""", """cs_CZ""", """de_DE""", """en_XX""", """es_XX""", """et_EE""", """fi_FI""", """fr_XX""", """gu_IN""", """hi_IN""", """it_IT""", """ja_XX""", """kk_KZ""", """ko_KR""", """lt_LT""", """lv_LV""", """my_MM""", """ne_NP""", """nl_XX""", """ro_RO""", """ru_RU""", """si_LK""", """tr_TR""", """vi_VN""", """zh_CN"""] class _UpperCAmelCase ( __snake_case ): '''simple docstring''' lowerCamelCase__ =VOCAB_FILES_NAMES lowerCamelCase__ =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ =PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ =['input_ids', 'attention_mask'] lowerCamelCase__ =MBartTokenizer lowerCamelCase__ =[] lowerCamelCase__ =[] def __init__(self , a_=None , a_=None , a_="<s>" , a_="</s>" , a_="</s>" , a_="<s>" , a_="<unk>" , a_="<pad>" , a_="<mask>" , a_=None , a_=None , a_=None , **a_ , ): '''simple docstring''' __snake_case : Optional[int] = AddedToken(a_ , lstrip=a_ , rstrip=a_ ) if isinstance(a_ , a_ ) else mask_token super().__init__( vocab_file=a_ , tokenizer_file=a_ , bos_token=a_ , eos_token=a_ , sep_token=a_ , cls_token=a_ , unk_token=a_ , pad_token=a_ , mask_token=a_ , src_lang=a_ , tgt_lang=a_ , additional_special_tokens=a_ , **a_ , ) __snake_case : Tuple = vocab_file __snake_case : Optional[Any] = False if not self.vocab_file else True __snake_case : Dict = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'''additional_special_tokens''': _additional_special_tokens} ) __snake_case : Optional[int] = { lang_code: self.convert_tokens_to_ids(a_ ) for lang_code in FAIRSEQ_LANGUAGE_CODES } __snake_case : List[Any] = src_lang if src_lang is not None else '''en_XX''' __snake_case : Any = self.convert_tokens_to_ids(self._src_lang ) __snake_case : Dict = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self._src_lang @src_lang.setter def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' __snake_case : Tuple = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def SCREAMING_SNAKE_CASE (self , a_ , a_ = None ): '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def SCREAMING_SNAKE_CASE (self , a_ , a_ = None ): '''simple docstring''' __snake_case : Tuple = [self.sep_token_id] __snake_case : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , **a_ ): '''simple docstring''' if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) __snake_case : Optional[int] = src_lang __snake_case : Tuple = self(a_ , add_special_tokens=a_ , return_tensors=a_ , **a_ ) __snake_case : Union[str, Any] = self.convert_tokens_to_ids(a_ ) __snake_case : int = tgt_lang_id return inputs def SCREAMING_SNAKE_CASE (self , a_ , a_ = "en_XX" , a_ = None , a_ = "ro_RO" , **a_ , ): '''simple docstring''' __snake_case : int = src_lang __snake_case : List[Any] = tgt_lang return super().prepare_seqaseq_batch(a_ , a_ , **a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self.set_src_lang_special_tokens(self.src_lang ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self.set_tgt_lang_special_tokens(self.tgt_lang ) def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' __snake_case : int = self.convert_tokens_to_ids(a_ ) __snake_case : List[Any] = [] __snake_case : Any = [self.eos_token_id, self.cur_lang_code] __snake_case : List[str] = self.convert_ids_to_tokens(self.prefix_tokens ) __snake_case : Dict = self.convert_ids_to_tokens(self.suffix_tokens ) __snake_case : Any = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' __snake_case : int = self.convert_tokens_to_ids(a_ ) __snake_case : Optional[Any] = [] __snake_case : Dict = [self.eos_token_id, self.cur_lang_code] __snake_case : str = self.convert_ids_to_tokens(self.prefix_tokens ) __snake_case : Any = self.convert_ids_to_tokens(self.suffix_tokens ) __snake_case : Tuple = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def SCREAMING_SNAKE_CASE (self , a_ , a_ = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(a_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory.""" ) return __snake_case : Optional[Any] = os.path.join( a_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(a_ ): copyfile(self.vocab_file , a_ ) return (out_vocab_file,)
24
1
'''simple docstring''' import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class _a ( __a ): __a : Optional[Any] = (DEISMultistepScheduler,) __a : Any = (("""num_inference_steps""", 25),) def A ( self : Any , **lowercase : Optional[int] ): '''simple docstring''' UpperCAmelCase = { '''num_train_timesteps''': 1_000, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''solver_order''': 2, } config.update(**lowercase ) return config def A ( self : Union[str, Any] , lowercase : Optional[Any]=0 , **lowercase : Union[str, Any] ): '''simple docstring''' UpperCAmelCase = dict(self.forward_default_kwargs ) UpperCAmelCase = kwargs.pop('''num_inference_steps''' , lowercase ) UpperCAmelCase = self.dummy_sample UpperCAmelCase = 0.1 * sample UpperCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: UpperCAmelCase = self.get_scheduler_config(**lowercase ) UpperCAmelCase = scheduler_class(**lowercase ) scheduler.set_timesteps(lowercase ) # copy over dummy past residuals UpperCAmelCase = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowercase ) UpperCAmelCase = scheduler_class.from_pretrained(lowercase ) new_scheduler.set_timesteps(lowercase ) # copy over dummy past residuals UpperCAmelCase = dummy_past_residuals[: new_scheduler.config.solver_order] UpperCAmelCase , UpperCAmelCase = sample, sample for t in range(lowercase , time_step + scheduler.config.solver_order + 1 ): UpperCAmelCase = scheduler.step(lowercase , lowercase , lowercase , **lowercase ).prev_sample UpperCAmelCase = new_scheduler.step(lowercase , lowercase , lowercase , **lowercase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def A ( self : int ): '''simple docstring''' pass def A ( self : str , lowercase : Any=0 , **lowercase : Tuple ): '''simple docstring''' UpperCAmelCase = dict(self.forward_default_kwargs ) UpperCAmelCase = kwargs.pop('''num_inference_steps''' , lowercase ) UpperCAmelCase = self.dummy_sample UpperCAmelCase = 0.1 * sample UpperCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: UpperCAmelCase = self.get_scheduler_config() UpperCAmelCase = scheduler_class(**lowercase ) scheduler.set_timesteps(lowercase ) # copy over dummy past residuals (must be after setting timesteps) UpperCAmelCase = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowercase ) UpperCAmelCase = scheduler_class.from_pretrained(lowercase ) # copy over dummy past residuals new_scheduler.set_timesteps(lowercase ) # copy over dummy past residual (must be after setting timesteps) UpperCAmelCase = dummy_past_residuals[: new_scheduler.config.solver_order] UpperCAmelCase = scheduler.step(lowercase , lowercase , lowercase , **lowercase ).prev_sample UpperCAmelCase = new_scheduler.step(lowercase , lowercase , lowercase , **lowercase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def A ( self : Any , lowercase : List[str]=None , **lowercase : List[Any] ): '''simple docstring''' if scheduler is None: UpperCAmelCase = self.scheduler_classes[0] UpperCAmelCase = self.get_scheduler_config(**lowercase ) UpperCAmelCase = scheduler_class(**lowercase ) UpperCAmelCase = self.scheduler_classes[0] UpperCAmelCase = self.get_scheduler_config(**lowercase ) UpperCAmelCase = scheduler_class(**lowercase ) UpperCAmelCase = 10 UpperCAmelCase = self.dummy_model() UpperCAmelCase = self.dummy_sample_deter scheduler.set_timesteps(lowercase ) for i, t in enumerate(scheduler.timesteps ): UpperCAmelCase = model(lowercase , lowercase ) UpperCAmelCase = scheduler.step(lowercase , lowercase , lowercase ).prev_sample return sample def A ( self : List[str] ): '''simple docstring''' UpperCAmelCase = dict(self.forward_default_kwargs ) UpperCAmelCase = kwargs.pop('''num_inference_steps''' , lowercase ) for scheduler_class in self.scheduler_classes: UpperCAmelCase = self.get_scheduler_config() UpperCAmelCase = scheduler_class(**lowercase ) UpperCAmelCase = self.dummy_sample UpperCAmelCase = 0.1 * sample if num_inference_steps is not None and hasattr(lowercase , '''set_timesteps''' ): scheduler.set_timesteps(lowercase ) elif num_inference_steps is not None and not hasattr(lowercase , '''set_timesteps''' ): UpperCAmelCase = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) UpperCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.10] UpperCAmelCase = dummy_past_residuals[: scheduler.config.solver_order] UpperCAmelCase = scheduler.timesteps[5] UpperCAmelCase = scheduler.timesteps[6] UpperCAmelCase = scheduler.step(lowercase , lowercase , lowercase , **lowercase ).prev_sample UpperCAmelCase = scheduler.step(lowercase , lowercase , lowercase , **lowercase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def A ( self : str ): '''simple docstring''' UpperCAmelCase = DEISMultistepScheduler(**self.get_scheduler_config() ) UpperCAmelCase = self.full_loop(scheduler=lowercase ) UpperCAmelCase = torch.mean(torch.abs(lowercase ) ) assert abs(result_mean.item() - 0.2_3916 ) < 1E-3 UpperCAmelCase = DPMSolverSinglestepScheduler.from_config(scheduler.config ) UpperCAmelCase = DPMSolverMultistepScheduler.from_config(scheduler.config ) UpperCAmelCase = UniPCMultistepScheduler.from_config(scheduler.config ) UpperCAmelCase = DEISMultistepScheduler.from_config(scheduler.config ) UpperCAmelCase = self.full_loop(scheduler=lowercase ) UpperCAmelCase = torch.mean(torch.abs(lowercase ) ) assert abs(result_mean.item() - 0.2_3916 ) < 1E-3 def A ( self : Dict ): '''simple docstring''' for timesteps in [25, 50, 100, 999, 1_000]: self.check_over_configs(num_train_timesteps=lowercase ) def A ( self : int ): '''simple docstring''' self.check_over_configs(thresholding=lowercase ) for order in [1, 2, 3]: for solver_type in ["logrho"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=lowercase , prediction_type=lowercase , sample_max_value=lowercase , algorithm_type='''deis''' , solver_order=lowercase , solver_type=lowercase , ) def A ( self : Optional[int] ): '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowercase ) def A ( self : Tuple ): '''simple docstring''' for algorithm_type in ["deis"]: for solver_type in ["logrho"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=lowercase , solver_type=lowercase , prediction_type=lowercase , algorithm_type=lowercase , ) UpperCAmelCase = self.full_loop( solver_order=lowercase , solver_type=lowercase , prediction_type=lowercase , algorithm_type=lowercase , ) assert not torch.isnan(lowercase ).any(), "Samples have nan numbers" def A ( self : int ): '''simple docstring''' self.check_over_configs(lower_order_final=lowercase ) self.check_over_configs(lower_order_final=lowercase ) def A ( self : List[Any] ): '''simple docstring''' for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1_000]: self.check_over_forward(num_inference_steps=lowercase , time_step=0 ) def A ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase = self.full_loop() UpperCAmelCase = torch.mean(torch.abs(lowercase ) ) assert abs(result_mean.item() - 0.2_3916 ) < 1E-3 def A ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase = self.full_loop(prediction_type='''v_prediction''' ) UpperCAmelCase = torch.mean(torch.abs(lowercase ) ) assert abs(result_mean.item() - 0.091 ) < 1E-3 def A ( self : List[str] ): '''simple docstring''' UpperCAmelCase = self.scheduler_classes[0] UpperCAmelCase = self.get_scheduler_config(thresholding=lowercase , dynamic_thresholding_ratio=0 ) UpperCAmelCase = scheduler_class(**lowercase ) UpperCAmelCase = 10 UpperCAmelCase = self.dummy_model() UpperCAmelCase = self.dummy_sample_deter.half() scheduler.set_timesteps(lowercase ) for i, t in enumerate(scheduler.timesteps ): UpperCAmelCase = model(lowercase , lowercase ) UpperCAmelCase = scheduler.step(lowercase , lowercase , lowercase ).prev_sample assert sample.dtype == torch.floataa
34
"""simple docstring""" import pytest import datasets # Import fixture modules as plugins __A : int = ["tests.fixtures.files", "tests.fixtures.hub", "tests.fixtures.fsspec"] def lowercase ( _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : Union[str, Any] ): '''simple docstring''' for item in items: if any(marker in item.keywords for marker in ['''integration''', '''unit'''] ): continue item.add_marker(pytest.mark.unit ) def lowercase ( _SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' config.addinivalue_line('''markers''' , '''torchaudio_latest: mark test to run with torchaudio>=0.12''' ) @pytest.fixture(autouse=_SCREAMING_SNAKE_CASE ) def lowercase ( _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' _UpperCAmelCase = tmp_path_factory.getbasetemp() / '''cache''' _UpperCAmelCase = test_hf_cache_home / '''datasets''' _UpperCAmelCase = test_hf_cache_home / '''metrics''' _UpperCAmelCase = test_hf_cache_home / '''modules''' monkeypatch.setattr('''datasets.config.HF_DATASETS_CACHE''' , str(_SCREAMING_SNAKE_CASE ) ) monkeypatch.setattr('''datasets.config.HF_METRICS_CACHE''' , str(_SCREAMING_SNAKE_CASE ) ) monkeypatch.setattr('''datasets.config.HF_MODULES_CACHE''' , str(_SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = test_hf_datasets_cache / '''downloads''' monkeypatch.setattr('''datasets.config.DOWNLOADED_DATASETS_PATH''' , str(_SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = test_hf_datasets_cache / '''downloads''' / '''extracted''' monkeypatch.setattr('''datasets.config.EXTRACTED_DATASETS_PATH''' , str(_SCREAMING_SNAKE_CASE ) ) @pytest.fixture(autouse=_SCREAMING_SNAKE_CASE , scope='''session''' ) def lowercase ( ): '''simple docstring''' datasets.disable_progress_bar() @pytest.fixture(autouse=_SCREAMING_SNAKE_CASE ) def lowercase ( _SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' monkeypatch.setattr('''datasets.config.HF_UPDATE_DOWNLOAD_COUNTS''' , _SCREAMING_SNAKE_CASE ) @pytest.fixture def lowercase ( _SCREAMING_SNAKE_CASE : Union[str, Any] ): '''simple docstring''' monkeypatch.setattr('''sqlalchemy.util.deprecations.SILENCE_UBER_WARNING''' , _SCREAMING_SNAKE_CASE )
260
0
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { "google/fnet-base": "https://huggingface.co/google/fnet-base/resolve/main/config.json", "google/fnet-large": "https://huggingface.co/google/fnet-large/resolve/main/config.json" # See all FNet models at https://huggingface.co/models?filter=fnet } class lowercase_ ( lowercase ): '''simple docstring''' __snake_case = '''fnet''' def __init__( self : Tuple , __UpperCAmelCase : Optional[int]=32_000 , __UpperCAmelCase : Tuple=768 , __UpperCAmelCase : Any=12 , __UpperCAmelCase : str=3_072 , __UpperCAmelCase : Optional[int]="gelu_new" , __UpperCAmelCase : List[str]=0.1 , __UpperCAmelCase : List[Any]=512 , __UpperCAmelCase : List[str]=4 , __UpperCAmelCase : int=0.02 , __UpperCAmelCase : str=1e-1_2 , __UpperCAmelCase : str=False , __UpperCAmelCase : Optional[int]=512 , __UpperCAmelCase : Dict=3 , __UpperCAmelCase : Optional[int]=1 , __UpperCAmelCase : List[str]=2 , **__UpperCAmelCase : str , ) ->List[Any]: """simple docstring""" super().__init__(pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , **__UpperCAmelCase ) a = vocab_size a = max_position_embeddings a = hidden_size a = num_hidden_layers a = intermediate_size a = hidden_act a = hidden_dropout_prob a = initializer_range a = type_vocab_size a = layer_norm_eps a = use_tpu_fourier_optimizations a = tpu_short_seq_length
26
import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all feature extractors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...feature_extraction_utils import FeatureExtractionMixin from ...utils import CONFIG_NAME, FEATURE_EXTRACTOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = OrderedDict( [ ("audio-spectrogram-transformer", "ASTFeatureExtractor"), ("beit", "BeitFeatureExtractor"), ("chinese_clip", "ChineseCLIPFeatureExtractor"), ("clap", "ClapFeatureExtractor"), ("clip", "CLIPFeatureExtractor"), ("clipseg", "ViTFeatureExtractor"), ("conditional_detr", "ConditionalDetrFeatureExtractor"), ("convnext", "ConvNextFeatureExtractor"), ("cvt", "ConvNextFeatureExtractor"), ("data2vec-audio", "Wav2Vec2FeatureExtractor"), ("data2vec-vision", "BeitFeatureExtractor"), ("deformable_detr", "DeformableDetrFeatureExtractor"), ("deit", "DeiTFeatureExtractor"), ("detr", "DetrFeatureExtractor"), ("dinat", "ViTFeatureExtractor"), ("donut-swin", "DonutFeatureExtractor"), ("dpt", "DPTFeatureExtractor"), ("encodec", "EncodecFeatureExtractor"), ("flava", "FlavaFeatureExtractor"), ("glpn", "GLPNFeatureExtractor"), ("groupvit", "CLIPFeatureExtractor"), ("hubert", "Wav2Vec2FeatureExtractor"), ("imagegpt", "ImageGPTFeatureExtractor"), ("layoutlmv2", "LayoutLMv2FeatureExtractor"), ("layoutlmv3", "LayoutLMv3FeatureExtractor"), ("levit", "LevitFeatureExtractor"), ("maskformer", "MaskFormerFeatureExtractor"), ("mctct", "MCTCTFeatureExtractor"), ("mobilenet_v1", "MobileNetV1FeatureExtractor"), ("mobilenet_v2", "MobileNetV2FeatureExtractor"), ("mobilevit", "MobileViTFeatureExtractor"), ("nat", "ViTFeatureExtractor"), ("owlvit", "OwlViTFeatureExtractor"), ("perceiver", "PerceiverFeatureExtractor"), ("poolformer", "PoolFormerFeatureExtractor"), ("regnet", "ConvNextFeatureExtractor"), ("resnet", "ConvNextFeatureExtractor"), ("segformer", "SegformerFeatureExtractor"), ("sew", "Wav2Vec2FeatureExtractor"), ("sew-d", "Wav2Vec2FeatureExtractor"), ("speech_to_text", "Speech2TextFeatureExtractor"), ("speecht5", "SpeechT5FeatureExtractor"), ("swiftformer", "ViTFeatureExtractor"), ("swin", "ViTFeatureExtractor"), ("swinv2", "ViTFeatureExtractor"), ("table-transformer", "DetrFeatureExtractor"), ("timesformer", "VideoMAEFeatureExtractor"), ("tvlt", "TvltFeatureExtractor"), ("unispeech", "Wav2Vec2FeatureExtractor"), ("unispeech-sat", "Wav2Vec2FeatureExtractor"), ("van", "ConvNextFeatureExtractor"), ("videomae", "VideoMAEFeatureExtractor"), ("vilt", "ViltFeatureExtractor"), ("vit", "ViTFeatureExtractor"), ("vit_mae", "ViTFeatureExtractor"), ("vit_msn", "ViTFeatureExtractor"), ("wav2vec2", "Wav2Vec2FeatureExtractor"), ("wav2vec2-conformer", "Wav2Vec2FeatureExtractor"), ("wavlm", "Wav2Vec2FeatureExtractor"), ("whisper", "WhisperFeatureExtractor"), ("xclip", "CLIPFeatureExtractor"), ("yolos", "YolosFeatureExtractor"), ] ) UpperCAmelCase__ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FEATURE_EXTRACTOR_MAPPING_NAMES) def _a ( a :str ) -> Any: for module_name, extractors in FEATURE_EXTRACTOR_MAPPING_NAMES.items(): if class_name in extractors: a = model_type_to_module_name(a ) a = importlib.import_module(F""".{module_name}""" , '''transformers.models''' ) try: return getattr(a , a ) except AttributeError: continue for _, extractor in FEATURE_EXTRACTOR_MAPPING._extra_content.items(): if getattr(a , '''__name__''' , a ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. a = importlib.import_module('''transformers''' ) if hasattr(a , a ): return getattr(a , a ) return None def _a ( a :Union[str, os.PathLike] , a :Optional[Union[str, os.PathLike]] = None , a :bool = False , a :bool = False , a :Optional[Dict[str, str]] = None , a :Optional[Union[bool, str]] = None , a :Optional[str] = None , a :bool = False , **a :int , ) -> Tuple: a = get_file_from_repo( a , a , cache_dir=a , force_download=a , resume_download=a , proxies=a , use_auth_token=a , revision=a , local_files_only=a , ) if resolved_config_file is None: logger.info( '''Could not locate the feature extractor configuration file, will try to use the model config instead.''' ) return {} with open(a , encoding='''utf-8''' ) as reader: return json.load(a ) class lowercase_ : '''simple docstring''' def __init__( self : Tuple ) ->int: """simple docstring""" raise EnvironmentError( '''AutoFeatureExtractor is designed to be instantiated ''' '''using the `AutoFeatureExtractor.from_pretrained(pretrained_model_name_or_path)` method.''' ) @classmethod @replace_list_option_in_docstrings(__UpperCAmelCase ) def __lowerCAmelCase ( cls : int , __UpperCAmelCase : Optional[Any] , **__UpperCAmelCase : Dict ) ->List[Any]: """simple docstring""" a = kwargs.pop('''config''' , __UpperCAmelCase ) a = kwargs.pop('''trust_remote_code''' , __UpperCAmelCase ) a = True a , a = FeatureExtractionMixin.get_feature_extractor_dict(__UpperCAmelCase , **__UpperCAmelCase ) a = config_dict.get('''feature_extractor_type''' , __UpperCAmelCase ) a = None if "AutoFeatureExtractor" in config_dict.get('''auto_map''' , {} ): a = config_dict['''auto_map''']['''AutoFeatureExtractor'''] # If we don't find the feature extractor class in the feature extractor config, let's try the model config. if feature_extractor_class is None and feature_extractor_auto_map is None: if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): a = AutoConfig.from_pretrained(__UpperCAmelCase , **__UpperCAmelCase ) # It could be in `config.feature_extractor_type`` a = getattr(__UpperCAmelCase , '''feature_extractor_type''' , __UpperCAmelCase ) if hasattr(__UpperCAmelCase , '''auto_map''' ) and "AutoFeatureExtractor" in config.auto_map: a = config.auto_map['''AutoFeatureExtractor'''] if feature_extractor_class is not None: a = feature_extractor_class_from_name(__UpperCAmelCase ) a = feature_extractor_auto_map is not None a = feature_extractor_class is not None or type(__UpperCAmelCase ) in FEATURE_EXTRACTOR_MAPPING a = resolve_trust_remote_code( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) if has_remote_code and trust_remote_code: a = get_class_from_dynamic_module( __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ) a = kwargs.pop('''code_revision''' , __UpperCAmelCase ) if os.path.isdir(__UpperCAmelCase ): feature_extractor_class.register_for_auto_class() return feature_extractor_class.from_dict(__UpperCAmelCase , **__UpperCAmelCase ) elif feature_extractor_class is not None: return feature_extractor_class.from_dict(__UpperCAmelCase , **__UpperCAmelCase ) # Last try: we use the FEATURE_EXTRACTOR_MAPPING. elif type(__UpperCAmelCase ) in FEATURE_EXTRACTOR_MAPPING: a = FEATURE_EXTRACTOR_MAPPING[type(__UpperCAmelCase )] return feature_extractor_class.from_dict(__UpperCAmelCase , **__UpperCAmelCase ) raise ValueError( F"""Unrecognized feature extractor in {pretrained_model_name_or_path}. Should have a """ F"""`feature_extractor_type` key in its {FEATURE_EXTRACTOR_NAME} of {CONFIG_NAME}, or one of the following """ F"""`model_type` keys in its {CONFIG_NAME}: {', '.join(c for c in FEATURE_EXTRACTOR_MAPPING_NAMES.keys() )}""" ) @staticmethod def __lowerCAmelCase ( __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Tuple ) ->Optional[int]: """simple docstring""" FEATURE_EXTRACTOR_MAPPING.register(__UpperCAmelCase , __UpperCAmelCase )
26
1
'''simple docstring''' import inspect import unittest from transformers import DecisionTransformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import DecisionTransformerModel from transformers.models.decision_transformer.modeling_decision_transformer import ( DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) class a_ : def __init__( self : Dict , lowercase : Tuple , lowercase : str=13 , lowercase : Optional[int]=7 , lowercase : str=6 , lowercase : Union[str, Any]=17 , lowercase : Optional[Any]=23 , lowercase : List[str]=11 , lowercase : List[str]=True , ): """simple docstring""" lowercase_ :Optional[Any] = parent lowercase_ :int = batch_size lowercase_ :List[str] = seq_length lowercase_ :int = act_dim lowercase_ :Optional[int] = state_dim lowercase_ :int = hidden_size lowercase_ :Optional[Any] = max_length lowercase_ :List[str] = is_training def lowercase__ ( self : Tuple ): """simple docstring""" lowercase_ :str = floats_tensor((self.batch_size, self.seq_length, self.state_dim) ) lowercase_ :Tuple = floats_tensor((self.batch_size, self.seq_length, self.act_dim) ) lowercase_ :Tuple = floats_tensor((self.batch_size, self.seq_length, 1) ) lowercase_ :Optional[Any] = floats_tensor((self.batch_size, self.seq_length, 1) ) lowercase_ :str = ids_tensor((self.batch_size, self.seq_length) , vocab_size=1_000 ) lowercase_ :int = random_attention_mask((self.batch_size, self.seq_length) ) lowercase_ :str = self.get_config() return ( config, states, actions, rewards, returns_to_go, timesteps, attention_mask, ) def lowercase__ ( self : Optional[int] ): """simple docstring""" return DecisionTransformerConfig( batch_size=self.batch_size , seq_length=self.seq_length , act_dim=self.act_dim , state_dim=self.state_dim , hidden_size=self.hidden_size , max_length=self.max_length , ) def lowercase__ ( self : Dict , lowercase : Optional[Any] , lowercase : Optional[Any] , lowercase : Any , lowercase : Tuple , lowercase : str , lowercase : List[Any] , lowercase : str , ): """simple docstring""" lowercase_ :Tuple = DecisionTransformerModel(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() lowercase_ :Optional[int] = model(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) self.parent.assertEqual(result.state_preds.shape , states.shape ) self.parent.assertEqual(result.action_preds.shape , actions.shape ) self.parent.assertEqual(result.return_preds.shape , returns_to_go.shape ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length * 3, self.hidden_size) ) # seq length *3 as there are 3 modelities: states, returns and actions def lowercase__ ( self : Optional[Any] ): """simple docstring""" lowercase_ :Tuple = self.prepare_config_and_inputs() ( ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ) :Any = config_and_inputs lowercase_ :int = { "states": states, "actions": actions, "rewards": rewards, "returns_to_go": returns_to_go, "timesteps": timesteps, "attention_mask": attention_mask, } return config, inputs_dict @require_torch class a_ ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): __A = (DecisionTransformerModel,) if is_torch_available() else () __A = () __A = {"feature-extraction": DecisionTransformerModel} if is_torch_available() else {} # Ignoring of a failing test from GenerationTesterMixin, as the model does not use inputs_ids __A = False # Ignoring of a failing tests from ModelTesterMixin, as the model does not implement these features __A = False __A = False __A = False __A = False __A = False __A = False __A = False __A = False __A = False def lowercase__ ( self : Dict ): """simple docstring""" lowercase_ :Optional[Any] = DecisionTransformerModelTester(self ) lowercase_ :Optional[Any] = ConfigTester(self , config_class=__lowerCAmelCase , hidden_size=37 ) def lowercase__ ( self : Dict ): """simple docstring""" self.config_tester.run_common_tests() def lowercase__ ( self : Any ): """simple docstring""" lowercase_ :Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCAmelCase ) @slow def lowercase__ ( self : int ): """simple docstring""" for model_name in DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase_ :Tuple = DecisionTransformerModel.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) def lowercase__ ( self : Tuple ): """simple docstring""" lowercase_ , lowercase_ :List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ :int = model_class(__lowerCAmelCase ) lowercase_ :List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase_ :Tuple = [*signature.parameters.keys()] lowercase_ :str = [ "states", "actions", "rewards", "returns_to_go", "timesteps", "attention_mask", ] self.assertListEqual(arg_names[: len(__lowerCAmelCase )] , __lowerCAmelCase ) @require_torch class a_ ( unittest.TestCase ): @slow def lowercase__ ( self : Union[str, Any] ): """simple docstring""" lowercase_ :List[str] = 2 # number of steps of autoregressive prediction we will perform lowercase_ :List[str] = 10 # defined by the RL environment, may be normalized lowercase_ :Union[str, Any] = DecisionTransformerModel.from_pretrained("edbeeching/decision-transformer-gym-hopper-expert" ) lowercase_ :List[Any] = model.to(__lowerCAmelCase ) lowercase_ :List[str] = model.config torch.manual_seed(0 ) lowercase_ :Tuple = torch.randn(1 , 1 , config.state_dim ).to(device=__lowerCAmelCase , dtype=torch.floataa ) # env.reset() lowercase_ :Tuple = torch.tensor( [[0.24_27_93, -0.28_69_30_74, 0.8_74_26_13], [0.67_81_52_74, -0.08_10_10_85, -0.12_95_21_47]] , device=__lowerCAmelCase ) lowercase_ :List[str] = torch.tensor(__lowerCAmelCase , device=__lowerCAmelCase , dtype=torch.floataa ).reshape(1 , 1 , 1 ) lowercase_ :Tuple = state lowercase_ :Optional[Any] = torch.zeros(1 , 0 , config.act_dim , device=__lowerCAmelCase , dtype=torch.floataa ) lowercase_ :Tuple = torch.zeros(1 , 0 , device=__lowerCAmelCase , dtype=torch.floataa ) lowercase_ :Union[str, Any] = torch.tensor(0 , device=__lowerCAmelCase , dtype=torch.long ).reshape(1 , 1 ) for step in range(__lowerCAmelCase ): lowercase_ :List[Any] = torch.cat([actions, torch.zeros(1 , 1 , config.act_dim , device=__lowerCAmelCase )] , dim=1 ) lowercase_ :Dict = torch.cat([rewards, torch.zeros(1 , 1 , device=__lowerCAmelCase )] , dim=1 ) lowercase_ :List[str] = torch.ones(1 , states.shape[1] ).to(dtype=torch.long , device=states.device ) with torch.no_grad(): lowercase_ , lowercase_ , lowercase_ :Any = model( states=__lowerCAmelCase , actions=__lowerCAmelCase , rewards=__lowerCAmelCase , returns_to_go=__lowerCAmelCase , timesteps=__lowerCAmelCase , attention_mask=__lowerCAmelCase , return_dict=__lowerCAmelCase , ) self.assertEqual(action_pred.shape , actions.shape ) self.assertTrue(torch.allclose(action_pred[0, -1] , expected_outputs[step] , atol=1e-4 ) ) lowercase_ , lowercase_ , lowercase_ , lowercase_ :int = ( # env.step(action) torch.randn(1 , 1 , config.state_dim ).to(device=__lowerCAmelCase , dtype=torch.floataa ), 1.0, False, {}, ) lowercase_ :str = action_pred[0, -1] lowercase_ :Tuple = torch.cat([states, state] , dim=1 ) lowercase_ :int = returns_to_go[0, -1] - reward lowercase_ :Optional[Any] = torch.cat([returns_to_go, pred_return.reshape(1 , 1 , 1 )] , dim=1 ) lowercase_ :Optional[Any] = torch.cat( [timesteps, torch.ones((1, 1) , device=__lowerCAmelCase , dtype=torch.long ) * (step + 1)] , dim=1 )
223
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_xlnet import XLNetTokenizer else: _a = None _a = logging.get_logger(__name__) _a = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} _a = { "vocab_file": { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model", }, "tokenizer_file": { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/tokenizer.json", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/tokenizer.json", }, } _a = { "xlnet-base-cased": None, "xlnet-large-cased": None, } _a = "▁" # Segments (not really needed) _a = 0 _a = 1 _a = 2 _a = 3 _a = 4 class __A ( lowerCAmelCase ): '''simple docstring''' lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = """left""" lowerCAmelCase_ = XLNetTokenizer def __init__( self , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=False , __lowerCAmelCase=True , __lowerCAmelCase=False , __lowerCAmelCase="<s>" , __lowerCAmelCase="</s>" , __lowerCAmelCase="<unk>" , __lowerCAmelCase="<sep>" , __lowerCAmelCase="<pad>" , __lowerCAmelCase="<cls>" , __lowerCAmelCase="<mask>" , __lowerCAmelCase=["<eop>", "<eod>"] , **__lowerCAmelCase , ): '''simple docstring''' lowerCamelCase__ = AddedToken(__lowerCAmelCase , lstrip=__lowerCAmelCase , rstrip=__lowerCAmelCase ) if isinstance(__lowerCAmelCase , __lowerCAmelCase ) else mask_token super().__init__( vocab_file=__lowerCAmelCase , tokenizer_file=__lowerCAmelCase , do_lower_case=__lowerCAmelCase , remove_space=__lowerCAmelCase , keep_accents=__lowerCAmelCase , bos_token=__lowerCAmelCase , eos_token=__lowerCAmelCase , unk_token=__lowerCAmelCase , sep_token=__lowerCAmelCase , pad_token=__lowerCAmelCase , cls_token=__lowerCAmelCase , mask_token=__lowerCAmelCase , additional_special_tokens=__lowerCAmelCase , **__lowerCAmelCase , ) lowerCamelCase__ = 3 lowerCamelCase__ = do_lower_case lowerCamelCase__ = remove_space lowerCamelCase__ = keep_accents lowerCamelCase__ = vocab_file lowerCamelCase__ = False if not self.vocab_file else True def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase = None ): '''simple docstring''' lowerCamelCase__ = [self.sep_token_id] lowerCamelCase__ = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase = None ): '''simple docstring''' lowerCamelCase__ = [self.sep_token_id] lowerCamelCase__ = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(__lowerCAmelCase ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return lowerCamelCase__ = os.path.join( __lowerCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowerCAmelCase ): copyfile(self.vocab_file , __lowerCAmelCase ) return (out_vocab_file,)
209
0
"""simple docstring""" import gc import unittest from diffusers import FlaxStableDiffusionInpaintPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class __A ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase ( self : str ) -> Optional[Any]: """simple docstring""" super().tearDown() gc.collect() def UpperCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ : int = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''' ) lowercase__ : str = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' ) lowercase__ : int = '''xvjiarui/stable-diffusion-2-inpainting''' lowercase__ : Optional[Any] = FlaxStableDiffusionInpaintPipeline.from_pretrained(_snake_case ,safety_checker=_snake_case ) lowercase__ : int = '''Face of a yellow cat, high resolution, sitting on a park bench''' lowercase__ : Tuple = jax.random.PRNGKey(0 ) lowercase__ : Optional[Any] = 50 lowercase__ : List[Any] = jax.device_count() lowercase__ : Dict = num_samples * [prompt] lowercase__ : int = num_samples * [init_image] lowercase__ : List[str] = num_samples * [mask_image] lowercase__ : Optional[Any] = pipeline.prepare_inputs(_snake_case ,_snake_case ,_snake_case ) # shard inputs and rng lowercase__ : Any = replicate(_snake_case ) lowercase__ : Tuple = jax.random.split(_snake_case ,jax.device_count() ) lowercase__ : str = shard(_snake_case ) lowercase__ : Tuple = shard(_snake_case ) lowercase__ : Union[str, Any] = shard(_snake_case ) lowercase__ : Optional[Any] = pipeline( _snake_case ,_snake_case ,_snake_case ,_snake_case ,_snake_case ,_snake_case ,jit=_snake_case ) lowercase__ : Union[str, Any] = output.images.reshape(_snake_case ,512 ,512 ,3 ) lowercase__ : Any = images[0, 253:256, 253:256, -1] lowercase__ : str = jnp.asarray(jax.device_get(image_slice.flatten() ) ) lowercase__ : List[Any] = jnp.array( [0.361_1307, 0.3764_9736, 0.375_7408, 0.3821_3953, 0.3929_5167, 0.384_1631, 0.4155_4978, 0.413_7475, 0.421_7084] ) print(f"""output_slice: {output_slice}""" ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
371
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase_ = { 'configuration_roberta': ['ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RobertaConfig', 'RobertaOnnxConfig'], 'tokenization_roberta': ['RobertaTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['RobertaTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'RobertaForCausalLM', 'RobertaForMaskedLM', 'RobertaForMultipleChoice', 'RobertaForQuestionAnswering', 'RobertaForSequenceClassification', 'RobertaForTokenClassification', 'RobertaModel', 'RobertaPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFRobertaForCausalLM', 'TFRobertaForMaskedLM', 'TFRobertaForMultipleChoice', 'TFRobertaForQuestionAnswering', 'TFRobertaForSequenceClassification', 'TFRobertaForTokenClassification', 'TFRobertaMainLayer', 'TFRobertaModel', 'TFRobertaPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'FlaxRobertaForCausalLM', 'FlaxRobertaForMaskedLM', 'FlaxRobertaForMultipleChoice', 'FlaxRobertaForQuestionAnswering', 'FlaxRobertaForSequenceClassification', 'FlaxRobertaForTokenClassification', 'FlaxRobertaModel', 'FlaxRobertaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_roberta import ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaConfig, RobertaOnnxConfig from .tokenization_roberta import RobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roberta_fast import RobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta import ( ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaForCausalLM, RobertaForMaskedLM, RobertaForMultipleChoice, RobertaForQuestionAnswering, RobertaForSequenceClassification, RobertaForTokenClassification, RobertaModel, RobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta import ( TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForMultipleChoice, TFRobertaForQuestionAnswering, TFRobertaForSequenceClassification, TFRobertaForTokenClassification, TFRobertaMainLayer, TFRobertaModel, TFRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, FlaxRobertaPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
302
0
from math import factorial def SCREAMING_SNAKE_CASE ( _UpperCAmelCase = 100 ) -> int: return sum(map(_UpperCAmelCase , str(factorial(_UpperCAmelCase ) ) ) ) if __name__ == "__main__": print(solution(int(input("""Enter the Number: """).strip())))
50
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import tensorflow as tf from transformers import AutoTokenizer, TFAutoModelForSeqaSeqLM @require_tf @require_sentencepiece @require_tokenizers class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @slow def __UpperCamelCase ( self : str ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = TFAutoModelForSeqaSeqLM.from_pretrained("google/mt5-small" ) SCREAMING_SNAKE_CASE : List[str] = AutoTokenizer.from_pretrained("google/mt5-small" ) SCREAMING_SNAKE_CASE : Tuple = tokenizer("Hello there" , return_tensors="tf" ).input_ids SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer("Hi I am" , return_tensors="tf" ).input_ids SCREAMING_SNAKE_CASE : str = model(a , labels=a ).loss SCREAMING_SNAKE_CASE : Any = -tf.math.reduce_mean(a ).numpy() SCREAMING_SNAKE_CASE : Union[str, Any] = -21.22_8168 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 2e-4 )
76
0
import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class A ( _lowerCAmelCase ): UpperCamelCase_ : Tuple =(UnCLIPScheduler,) def _A (self , **lowerCAmelCase ): __lowercase= { 'num_train_timesteps': 1_0_0_0, 'variance_type': 'fixed_small_log', 'clip_sample': True, 'clip_sample_range': 1.0, 'prediction_type': 'epsilon', } config.update(**_lowercase ) return config def _A (self ): for timesteps in [1, 5, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=_lowercase ) def _A (self ): for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=_lowercase ) def _A (self ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=_lowercase ) def _A (self ): for clip_sample_range in [1, 5, 1_0, 2_0]: self.check_over_configs(clip_sample_range=_lowercase ) def _A (self ): for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=_lowercase ) def _A (self ): for time_step in [0, 5_0_0, 9_9_9]: for prev_timestep in [None, 5, 1_0_0, 2_5_0, 5_0_0, 7_5_0]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=_lowercase , prev_timestep=_lowercase ) def _A (self ): __lowercase= self.scheduler_classes[0] __lowercase= self.get_scheduler_config(variance_type='fixed_small_log' ) __lowercase= scheduler_class(**_lowercase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0000E-10 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(4_8_7 ) - 0.0_54_96_25 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(9_9_9 ) - 0.9_99_49_87 ) ) < 1E-5 def _A (self ): __lowercase= self.scheduler_classes[0] __lowercase= self.get_scheduler_config(variance_type='learned_range' ) __lowercase= scheduler_class(**_lowercase ) __lowercase= 0.5 assert scheduler._get_variance(1 , predicted_variance=_lowercase ) - -10.1_71_27_90 < 1E-5 assert scheduler._get_variance(4_8_7 , predicted_variance=_lowercase ) - -5.7_99_80_52 < 1E-5 assert scheduler._get_variance(9_9_9 , predicted_variance=_lowercase ) - -0.0_01_00_11 < 1E-5 def _A (self ): __lowercase= self.scheduler_classes[0] __lowercase= self.get_scheduler_config() __lowercase= scheduler_class(**_lowercase ) __lowercase= scheduler.timesteps __lowercase= self.dummy_model() __lowercase= self.dummy_sample_deter __lowercase= torch.manual_seed(0 ) for i, t in enumerate(_lowercase ): # 1. predict noise residual __lowercase= model(_lowercase , _lowercase ) # 2. predict previous mean of sample x_t-1 __lowercase= scheduler.step(_lowercase , _lowercase , _lowercase , generator=_lowercase ).prev_sample __lowercase= pred_prev_sample __lowercase= torch.sum(torch.abs(_lowercase ) ) __lowercase= torch.mean(torch.abs(_lowercase ) ) assert abs(result_sum.item() - 2_52.2_68_24_95 ) < 1E-2 assert abs(result_mean.item() - 0.3_28_47_43 ) < 1E-3 def _A (self ): __lowercase= self.scheduler_classes[0] __lowercase= self.get_scheduler_config() __lowercase= scheduler_class(**_lowercase ) scheduler.set_timesteps(2_5 ) __lowercase= scheduler.timesteps __lowercase= self.dummy_model() __lowercase= self.dummy_sample_deter __lowercase= torch.manual_seed(0 ) for i, t in enumerate(_lowercase ): # 1. predict noise residual __lowercase= model(_lowercase , _lowercase ) if i + 1 == timesteps.shape[0]: __lowercase= None else: __lowercase= timesteps[i + 1] # 2. predict previous mean of sample x_t-1 __lowercase= scheduler.step( _lowercase , _lowercase , _lowercase , prev_timestep=_lowercase , generator=_lowercase ).prev_sample __lowercase= pred_prev_sample __lowercase= torch.sum(torch.abs(_lowercase ) ) __lowercase= torch.mean(torch.abs(_lowercase ) ) assert abs(result_sum.item() - 2_58.2_04_49_83 ) < 1E-2 assert abs(result_mean.item() - 0.3_36_20_38 ) < 1E-3 def _A (self ): pass def _A (self ): pass
370
import inspect import unittest from math import floor from transformers import CvtConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import CvtForImageClassification, CvtModel from transformers.models.cvt.modeling_cvt import CVT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class A ( A_ ): def _A (self ): __lowercase= self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(lowerCAmelCase , 'embed_dim' ) ) self.parent.assertTrue(hasattr(lowerCAmelCase , 'num_heads' ) ) class A : def __init__(self , lowerCAmelCase , lowerCAmelCase=1_3 , lowerCAmelCase=6_4 , lowerCAmelCase=3 , lowerCAmelCase=[1_6, 4_8, 9_6] , lowerCAmelCase=[1, 3, 6] , lowerCAmelCase=[1, 2, 1_0] , lowerCAmelCase=[7, 3, 3] , lowerCAmelCase=[4, 2, 2] , lowerCAmelCase=[2, 1, 1] , lowerCAmelCase=[2, 2, 2] , lowerCAmelCase=[False, False, True] , lowerCAmelCase=[0.0, 0.0, 0.0] , lowerCAmelCase=0.02 , lowerCAmelCase=1E-12 , lowerCAmelCase=True , lowerCAmelCase=True , lowerCAmelCase=2 , ): __lowercase= parent __lowercase= batch_size __lowercase= image_size __lowercase= patch_sizes __lowercase= patch_stride __lowercase= patch_padding __lowercase= is_training __lowercase= use_labels __lowercase= num_labels __lowercase= num_channels __lowercase= embed_dim __lowercase= num_heads __lowercase= stride_kv __lowercase= depth __lowercase= cls_token __lowercase= attention_drop_rate __lowercase= initializer_range __lowercase= layer_norm_eps def _A (self ): __lowercase= floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase= None if self.use_labels: __lowercase= ids_tensor([self.batch_size] , self.num_labels ) __lowercase= self.get_config() return config, pixel_values, labels def _A (self ): return CvtConfig( image_size=self.image_size , num_labels=self.num_labels , num_channels=self.num_channels , embed_dim=self.embed_dim , num_heads=self.num_heads , patch_sizes=self.patch_sizes , patch_padding=self.patch_padding , patch_stride=self.patch_stride , stride_kv=self.stride_kv , depth=self.depth , cls_token=self.cls_token , attention_drop_rate=self.attention_drop_rate , initializer_range=self.initializer_range , ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): __lowercase= CvtModel(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowercase= model(lowerCAmelCase ) __lowercase= (self.image_size, self.image_size) __lowercase, __lowercase= image_size[0], image_size[1] for i in range(len(self.depth ) ): __lowercase= floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) __lowercase= floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dim[-1], height, width) ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): __lowercase= self.num_labels __lowercase= CvtForImageClassification(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowercase= model(lowerCAmelCase , labels=lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _A (self ): __lowercase= self.prepare_config_and_inputs() __lowercase, __lowercase, __lowercase= config_and_inputs __lowercase= {'pixel_values': pixel_values} return config, inputs_dict @require_torch class A ( A_ , A_ , unittest.TestCase ): UpperCamelCase_ : Optional[int] =(CvtModel, CvtForImageClassification) if is_torch_available() else () UpperCamelCase_ : List[str] =( {'''feature-extraction''': CvtModel, '''image-classification''': CvtForImageClassification} if is_torch_available() else {} ) UpperCamelCase_ : str =False UpperCamelCase_ : List[Any] =False UpperCamelCase_ : Any =False UpperCamelCase_ : Union[str, Any] =False UpperCamelCase_ : Tuple =False def _A (self ): __lowercase= CvtModelTester(self ) __lowercase= ConfigTester(self , config_class=lowerCAmelCase , has_text_modality=lowerCAmelCase , hidden_size=3_7 ) def _A (self ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _A (self ): return @unittest.skip(reason='Cvt does not output attentions' ) def _A (self ): pass @unittest.skip(reason='Cvt does not use inputs_embeds' ) def _A (self ): pass @unittest.skip(reason='Cvt does not support input and output embeddings' ) def _A (self ): pass def _A (self ): __lowercase, __lowercase= self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase= model_class(lowerCAmelCase ) __lowercase= inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase= [*signature.parameters.keys()] __lowercase= ['pixel_values'] self.assertListEqual(arg_names[:1] , lowerCAmelCase ) def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase ) def _A (self ): def check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): __lowercase= model_class(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() with torch.no_grad(): __lowercase= model(**self._prepare_for_class(lowerCAmelCase , lowerCAmelCase ) ) __lowercase= outputs.hidden_states __lowercase= len(self.model_tester.depth ) self.assertEqual(len(lowerCAmelCase ) , lowerCAmelCase ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.embed_dim[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) __lowercase, __lowercase= self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase= True check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowercase= True check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def _A (self ): pass @slow def _A (self ): for model_name in CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase= CvtModel.from_pretrained(lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) def _lowerCamelCase( ) -> Optional[int]: '''simple docstring''' __lowercase= Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class A ( unittest.TestCase ): @cached_property def _A (self ): return AutoImageProcessor.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def _A (self ): __lowercase= CvtForImageClassification.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(lowerCAmelCase ) __lowercase= self.default_image_processor __lowercase= prepare_img() __lowercase= image_processor(images=lowerCAmelCase , return_tensors='pt' ).to(lowerCAmelCase ) # forward pass with torch.no_grad(): __lowercase= model(**lowerCAmelCase ) # verify the logits __lowercase= torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase ) __lowercase= torch.tensor([0.92_85, 0.90_15, -0.31_50] ).to(lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase , atol=1E-4 ) )
304
0
import unittest import numpy as np from transformers.testing_utils import require_flax, require_tf, require_torch from transformers.utils import ( expand_dims, flatten_dict, is_flax_available, is_tf_available, is_torch_available, reshape, squeeze, transpose, ) if is_flax_available(): import jax.numpy as jnp if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def a (self : List[Any] ): """simple docstring""" __snake_case = { '''task_specific_params''': { '''summarization''': {'''length_penalty''': 1.0, '''max_length''': 128, '''min_length''': 12, '''num_beams''': 4}, '''summarization_cnn''': {'''length_penalty''': 2.0, '''max_length''': 142, '''min_length''': 56, '''num_beams''': 4}, '''summarization_xsum''': {'''length_penalty''': 1.0, '''max_length''': 62, '''min_length''': 11, '''num_beams''': 6}, } } __snake_case = { '''task_specific_params.summarization.length_penalty''': 1.0, '''task_specific_params.summarization.max_length''': 128, '''task_specific_params.summarization.min_length''': 12, '''task_specific_params.summarization.num_beams''': 4, '''task_specific_params.summarization_cnn.length_penalty''': 2.0, '''task_specific_params.summarization_cnn.max_length''': 142, '''task_specific_params.summarization_cnn.min_length''': 56, '''task_specific_params.summarization_cnn.num_beams''': 4, '''task_specific_params.summarization_xsum.length_penalty''': 1.0, '''task_specific_params.summarization_xsum.max_length''': 62, '''task_specific_params.summarization_xsum.min_length''': 11, '''task_specific_params.summarization_xsum.num_beams''': 6, } self.assertEqual(flatten_dict(a__ ) , a__ ) def a (self : Dict ): """simple docstring""" __snake_case = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(transpose(a__ ) , x.transpose() ) ) __snake_case = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(transpose(a__ , axes=(1, 2, 0) ) , x.transpose((1, 2, 0) ) ) ) @require_torch def a (self : Optional[Any] ): """simple docstring""" __snake_case = np.random.randn(3 , 4 ) __snake_case = torch.tensor(a__ ) self.assertTrue(np.allclose(transpose(a__ ) , transpose(a__ ).numpy() ) ) __snake_case = np.random.randn(3 , 4 , 5 ) __snake_case = torch.tensor(a__ ) self.assertTrue(np.allclose(transpose(a__ , axes=(1, 2, 0) ) , transpose(a__ , axes=(1, 2, 0) ).numpy() ) ) @require_tf def a (self : Any ): """simple docstring""" __snake_case = np.random.randn(3 , 4 ) __snake_case = tf.constant(a__ ) self.assertTrue(np.allclose(transpose(a__ ) , transpose(a__ ).numpy() ) ) __snake_case = np.random.randn(3 , 4 , 5 ) __snake_case = tf.constant(a__ ) self.assertTrue(np.allclose(transpose(a__ , axes=(1, 2, 0) ) , transpose(a__ , axes=(1, 2, 0) ).numpy() ) ) @require_flax def a (self : Any ): """simple docstring""" __snake_case = np.random.randn(3 , 4 ) __snake_case = jnp.array(a__ ) self.assertTrue(np.allclose(transpose(a__ ) , np.asarray(transpose(a__ ) ) ) ) __snake_case = np.random.randn(3 , 4 , 5 ) __snake_case = jnp.array(a__ ) self.assertTrue(np.allclose(transpose(a__ , axes=(1, 2, 0) ) , np.asarray(transpose(a__ , axes=(1, 2, 0) ) ) ) ) def a (self : List[str] ): """simple docstring""" __snake_case = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(reshape(a__ , (4, 3) ) , np.reshape(a__ , (4, 3) ) ) ) __snake_case = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(reshape(a__ , (12, 5) ) , np.reshape(a__ , (12, 5) ) ) ) @require_torch def a (self : Dict ): """simple docstring""" __snake_case = np.random.randn(3 , 4 ) __snake_case = torch.tensor(a__ ) self.assertTrue(np.allclose(reshape(a__ , (4, 3) ) , reshape(a__ , (4, 3) ).numpy() ) ) __snake_case = np.random.randn(3 , 4 , 5 ) __snake_case = torch.tensor(a__ ) self.assertTrue(np.allclose(reshape(a__ , (12, 5) ) , reshape(a__ , (12, 5) ).numpy() ) ) @require_tf def a (self : Optional[int] ): """simple docstring""" __snake_case = np.random.randn(3 , 4 ) __snake_case = tf.constant(a__ ) self.assertTrue(np.allclose(reshape(a__ , (4, 3) ) , reshape(a__ , (4, 3) ).numpy() ) ) __snake_case = np.random.randn(3 , 4 , 5 ) __snake_case = tf.constant(a__ ) self.assertTrue(np.allclose(reshape(a__ , (12, 5) ) , reshape(a__ , (12, 5) ).numpy() ) ) @require_flax def a (self : Optional[int] ): """simple docstring""" __snake_case = np.random.randn(3 , 4 ) __snake_case = jnp.array(a__ ) self.assertTrue(np.allclose(reshape(a__ , (4, 3) ) , np.asarray(reshape(a__ , (4, 3) ) ) ) ) __snake_case = np.random.randn(3 , 4 , 5 ) __snake_case = jnp.array(a__ ) self.assertTrue(np.allclose(reshape(a__ , (12, 5) ) , np.asarray(reshape(a__ , (12, 5) ) ) ) ) def a (self : Any ): """simple docstring""" __snake_case = np.random.randn(1 , 3 , 4 ) self.assertTrue(np.allclose(squeeze(a__ ) , np.squeeze(a__ ) ) ) __snake_case = np.random.randn(1 , 4 , 1 , 5 ) self.assertTrue(np.allclose(squeeze(a__ , axis=2 ) , np.squeeze(a__ , axis=2 ) ) ) @require_torch def a (self : Tuple ): """simple docstring""" __snake_case = np.random.randn(1 , 3 , 4 ) __snake_case = torch.tensor(a__ ) self.assertTrue(np.allclose(squeeze(a__ ) , squeeze(a__ ).numpy() ) ) __snake_case = np.random.randn(1 , 4 , 1 , 5 ) __snake_case = torch.tensor(a__ ) self.assertTrue(np.allclose(squeeze(a__ , axis=2 ) , squeeze(a__ , axis=2 ).numpy() ) ) @require_tf def a (self : Union[str, Any] ): """simple docstring""" __snake_case = np.random.randn(1 , 3 , 4 ) __snake_case = tf.constant(a__ ) self.assertTrue(np.allclose(squeeze(a__ ) , squeeze(a__ ).numpy() ) ) __snake_case = np.random.randn(1 , 4 , 1 , 5 ) __snake_case = tf.constant(a__ ) self.assertTrue(np.allclose(squeeze(a__ , axis=2 ) , squeeze(a__ , axis=2 ).numpy() ) ) @require_flax def a (self : List[str] ): """simple docstring""" __snake_case = np.random.randn(1 , 3 , 4 ) __snake_case = jnp.array(a__ ) self.assertTrue(np.allclose(squeeze(a__ ) , np.asarray(squeeze(a__ ) ) ) ) __snake_case = np.random.randn(1 , 4 , 1 , 5 ) __snake_case = jnp.array(a__ ) self.assertTrue(np.allclose(squeeze(a__ , axis=2 ) , np.asarray(squeeze(a__ , axis=2 ) ) ) ) def a (self : Tuple ): """simple docstring""" __snake_case = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(expand_dims(a__ , axis=1 ) , np.expand_dims(a__ , axis=1 ) ) ) @require_torch def a (self : Union[str, Any] ): """simple docstring""" __snake_case = np.random.randn(3 , 4 ) __snake_case = torch.tensor(a__ ) self.assertTrue(np.allclose(expand_dims(a__ , axis=1 ) , expand_dims(a__ , axis=1 ).numpy() ) ) @require_tf def a (self : Any ): """simple docstring""" __snake_case = np.random.randn(3 , 4 ) __snake_case = tf.constant(a__ ) self.assertTrue(np.allclose(expand_dims(a__ , axis=1 ) , expand_dims(a__ , axis=1 ).numpy() ) ) @require_flax def a (self : int ): """simple docstring""" __snake_case = np.random.randn(3 , 4 ) __snake_case = jnp.array(a__ ) self.assertTrue(np.allclose(expand_dims(a__ , axis=1 ) , np.asarray(expand_dims(a__ , axis=1 ) ) ) )
24
import logging import os from dataclasses import dataclass from typing import List, Optional, Union import tqdm from filelock import FileLock from transformers import ( BartTokenizer, BartTokenizerFast, DataProcessor, PreTrainedTokenizer, RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, is_tf_available, is_torch_available, ) snake_case_ = logging.getLogger(__name__) @dataclass(frozen=_UpperCAmelCase ) class SCREAMING_SNAKE_CASE__ : A_ : str A_ : str A_ : Optional[str] = None A_ : Optional[str] = None A_ : Optional[str] = None @dataclass(frozen=_UpperCAmelCase ) class SCREAMING_SNAKE_CASE__ : A_ : List[int] A_ : Optional[List[int]] = None A_ : Optional[List[int]] = None A_ : Optional[Union[int, float]] = None A_ : Optional[int] = None if is_torch_available(): import torch from torch.utils.data import Dataset class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): A_ : List[InputFeatures] def __init__(self : int , a__ : str , a__ : PreTrainedTokenizer , a__ : str , a__ : Optional[int] = None , a__ : List[Any]=False , a__ : bool = False , ): """simple docstring""" __snake_case = hans_processors[task]() __snake_case = os.path.join( a__ , '''cached_{}_{}_{}_{}'''.format( '''dev''' if evaluate else '''train''' , tokenizer.__class__.__name__ , str(a__ ) , a__ , ) , ) __snake_case = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) __snake_case , __snake_case = label_list[2], label_list[1] __snake_case = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. __snake_case = cached_features_file + '''.lock''' with FileLock(a__ ): if os.path.exists(a__ ) and not overwrite_cache: logger.info(f"""Loading features from cached file {cached_features_file}""" ) __snake_case = torch.load(a__ ) else: logger.info(f"""Creating features from dataset file at {data_dir}""" ) __snake_case = ( processor.get_dev_examples(a__ ) if evaluate else processor.get_train_examples(a__ ) ) logger.info('''Training examples: %s''' , len(a__ ) ) __snake_case = hans_convert_examples_to_features(a__ , a__ , a__ , a__ ) logger.info('''Saving features into cached file %s''' , a__ ) torch.save(self.features , a__ ) def __len__(self : int ): """simple docstring""" return len(self.features ) def __getitem__(self : Dict , a__ : List[Any] ): """simple docstring""" return self.features[i] def a (self : List[Any] ): """simple docstring""" return self.label_list if is_tf_available(): import tensorflow as tf class SCREAMING_SNAKE_CASE__ : A_ : List[InputFeatures] def __init__(self : Tuple , a__ : str , a__ : PreTrainedTokenizer , a__ : str , a__ : Optional[int] = 128 , a__ : Any=False , a__ : bool = False , ): """simple docstring""" __snake_case = hans_processors[task]() __snake_case = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) __snake_case , __snake_case = label_list[2], label_list[1] __snake_case = label_list __snake_case = processor.get_dev_examples(a__ ) if evaluate else processor.get_train_examples(a__ ) __snake_case = hans_convert_examples_to_features(a__ , a__ , a__ , a__ ) def gen(): for ex_index, ex in tqdm.tqdm(enumerate(self.features ) , desc='''convert examples to features''' ): if ex_index % 1_0000 == 0: logger.info('''Writing example %d of %d''' % (ex_index, len(a__ )) ) yield ( { "example_id": 0, "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label, ) __snake_case = tf.data.Dataset.from_generator( a__ , ( { '''example_id''': tf.intaa, '''input_ids''': tf.intaa, '''attention_mask''': tf.intaa, '''token_type_ids''': tf.intaa, }, tf.intaa, ) , ( { '''example_id''': tf.TensorShape([] ), '''input_ids''': tf.TensorShape([None, None] ), '''attention_mask''': tf.TensorShape([None, None] ), '''token_type_ids''': tf.TensorShape([None, None] ), }, tf.TensorShape([] ), ) , ) def a (self : Union[str, Any] ): """simple docstring""" return self.dataset def __len__(self : Dict ): """simple docstring""" return len(self.features ) def __getitem__(self : Any , a__ : Dict ): """simple docstring""" return self.features[i] def a (self : str ): """simple docstring""" return self.label_list class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): def a (self : Dict , a__ : Dict ): """simple docstring""" return self._create_examples(self._read_tsv(os.path.join(a__ , '''heuristics_train_set.txt''' ) ) , '''train''' ) def a (self : Optional[int] , a__ : Tuple ): """simple docstring""" return self._create_examples(self._read_tsv(os.path.join(a__ , '''heuristics_evaluation_set.txt''' ) ) , '''dev''' ) def a (self : int ): """simple docstring""" return ["contradiction", "entailment", "neutral"] def a (self : Any , a__ : Optional[int] , a__ : List[Any] ): """simple docstring""" __snake_case = [] for i, line in enumerate(a__ ): if i == 0: continue __snake_case = '''%s-%s''' % (set_type, line[0]) __snake_case = line[5] __snake_case = line[6] __snake_case = line[7][2:] if line[7].startswith('''ex''' ) else line[7] __snake_case = line[0] examples.append(InputExample(guid=a__ , text_a=a__ , text_b=a__ , label=a__ , pairID=a__ ) ) return examples def lowerCamelCase__ ( snake_case_ : List[InputExample] , snake_case_ : List[str] , snake_case_ : int , snake_case_ : PreTrainedTokenizer , ) -> List[str]: __snake_case = {label: i for i, label in enumerate(snake_case_ )} __snake_case = [] for ex_index, example in tqdm.tqdm(enumerate(snake_case_ ) , desc='''convert examples to features''' ): if ex_index % 1_0000 == 0: logger.info('''Writing example %d''' % (ex_index) ) __snake_case = tokenizer( example.text_a , example.text_b , add_special_tokens=snake_case_ , max_length=snake_case_ , padding='''max_length''' , truncation=snake_case_ , return_overflowing_tokens=snake_case_ , ) __snake_case = label_map[example.label] if example.label in label_map else 0 __snake_case = int(example.pairID ) features.append(InputFeatures(**snake_case_ , label=snake_case_ , pairID=snake_case_ ) ) for i, example in enumerate(examples[:5] ): logger.info('''*** Example ***''' ) logger.info(f"""guid: {example}""" ) logger.info(f"""features: {features[i]}""" ) return features snake_case_ = { 'hans': 3, } snake_case_ = { 'hans': HansProcessor, }
24
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE_ = { 'configuration_luke': ['LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LukeConfig'], 'tokenization_luke': ['LukeTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = [ 'LUKE_PRETRAINED_MODEL_ARCHIVE_LIST', 'LukeForEntityClassification', 'LukeForEntityPairClassification', 'LukeForEntitySpanClassification', 'LukeForMultipleChoice', 'LukeForQuestionAnswering', 'LukeForSequenceClassification', 'LukeForTokenClassification', 'LukeForMaskedLM', 'LukeModel', 'LukePreTrainedModel', ] if TYPE_CHECKING: from .configuration_luke import LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP, LukeConfig from .tokenization_luke import LukeTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_luke import ( LUKE_PRETRAINED_MODEL_ARCHIVE_LIST, LukeForEntityClassification, LukeForEntityPairClassification, LukeForEntitySpanClassification, LukeForMaskedLM, LukeForMultipleChoice, LukeForQuestionAnswering, LukeForSequenceClassification, LukeForTokenClassification, LukeModel, LukePreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
352
from __future__ import annotations from random import choice def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Any ) -> Optional[int]: return choice(lowerCAmelCase ) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: list[int] , lowerCAmelCase: int ) -> int: _UpperCAmelCase : List[Any] = random_pivot(lowerCAmelCase ) # partition based on pivot # linear time _UpperCAmelCase : List[str] = [e for e in lst if e < pivot] _UpperCAmelCase : Any = [e for e in lst if e > pivot] # if we get lucky, pivot might be the element we want. # we can easily see this: # small (elements smaller than k) # + pivot (kth element) # + big (elements larger than k) if len(lowerCAmelCase ) == k - 1: return pivot # pivot is in elements bigger than k elif len(lowerCAmelCase ) < k - 1: return kth_number(lowerCAmelCase , k - len(lowerCAmelCase ) - 1 ) # pivot is in elements smaller than k else: return kth_number(lowerCAmelCase , lowerCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod()
189
0
import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm _snake_case = re.compile("[^A-Za-z_0-9]") # parameters used in DuplicationIndex _snake_case = 10 _snake_case = 256 def lowerCAmelCase_ ( snake_case_ ): if len(snake_case_ ) < MIN_NUM_TOKENS: return None _A : Tuple = MinHash(num_perm=snake_case_ ) for token in set(snake_case_ ): min_hash.update(token.encode() ) return min_hash def lowerCAmelCase_ ( snake_case_ ): return {t for t in NON_ALPHA.split(snake_case_ ) if len(t.strip() ) > 0} class lowercase : def __init__( self , *, _a = 0.85 , ) -> List[Any]: _A : Any = duplication_jaccard_threshold _A : int = NUM_PERM _A : List[str] = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm ) _A : str = defaultdict(_a ) def a__ ( self , _a , _a ) -> None: _A : Any = self._index.query(_a ) if code_key in self._index.keys: print(F'''Duplicate key {code_key}''' ) return self._index.insert(_a , _a ) if len(_a ) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(_a ) break else: self._duplicate_clusters[close_duplicates[0]].add(_a ) def a__ ( self ) -> List[List[Dict]]: _A : List[Any] = [] for base, duplicates in self._duplicate_clusters.items(): _A : Dict = [base] + list(_a ) # reformat the cluster to be a list of dict _A : Tuple = [{"""base_index""": el[0], """repo_name""": el[1], """path""": el[2]} for el in cluster] duplicate_clusters.append(_a ) return duplicate_clusters def a__ ( self , _a ) -> None: _A : str = self.get_duplicate_clusters() with open(_a , """w""" ) as f: json.dump(_a , _a ) def lowerCAmelCase_ ( snake_case_ ): _A , _A : Tuple = element _A : Any = get_min_hash([t for t in NON_ALPHA.split(data["""content"""] ) if len(t.strip() ) > 0] ) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def lowerCAmelCase_ ( snake_case_ ): with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash,ThreadedIterator(snake_case_,max_queue_size=10000 ),chunksize=100,): if data is not None: yield data def lowerCAmelCase_ ( snake_case_,snake_case_ ): _A : int = DuplicationIndex(duplication_jaccard_threshold=snake_case_ ) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(snake_case_ ) ),max_queue_size=100 ) ): di.add(snake_case_,snake_case_ ) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def lowerCAmelCase_ ( snake_case_,snake_case_ ): _A : Any = get_tokens(snake_case_ ) _A : Dict = get_tokens(snake_case_ ) return len(tokensa & tokensa ) / len(tokensa | tokensa ) _snake_case = None def lowerCAmelCase_ ( snake_case_,snake_case_ ): _A : Optional[Any] = [] for elementa in cluster: _A : List[str] = _shared_dataset[elementa["""base_index"""]]["""content"""] for elementa in extremes: _A : Union[str, Any] = _shared_dataset[elementa["""base_index"""]]["""content"""] if jaccard_similarity(snake_case_,snake_case_ ) >= jaccard_threshold: elementa["copies"] += 1 break else: _A : int = 1 extremes.append(snake_case_ ) return extremes def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ): global _shared_dataset _A : Any = dataset _A : List[Any] = [] _A : Optional[int] = partial(_find_cluster_extremes_shared,jaccard_threshold=snake_case_ ) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( snake_case_,snake_case_,),total=len(snake_case_ ),): extremes_list.append(snake_case_ ) return extremes_list def lowerCAmelCase_ ( snake_case_,snake_case_ = 0.85 ): _A : List[Any] = make_duplicate_clusters(snake_case_,snake_case_ ) _A : str = {x["""base_index"""] for cluster in duplicate_clusters for x in cluster} _A : List[str] = {} _A : Optional[Any] = find_extremes(snake_case_,snake_case_,snake_case_ ) for extremes in extremes_clusters: for element in extremes: _A : int = element _A : Union[str, Any] = duplicate_indices - set(extreme_dict.keys() ) _A : int = dataset.filter(lambda snake_case_,snake_case_ : idx not in remove_indices,with_indices=snake_case_ ) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: _A : int = element["""base_index"""] in extreme_dict if element["is_extreme"]: _A : Any = extreme_dict[element["""base_index"""]]["""copies"""] print(f'''Original dataset size: {len(snake_case_ )}''' ) print(f'''Number of duplicate clusters: {len(snake_case_ )}''' ) print(f'''Files in duplicate cluster: {len(snake_case_ )}''' ) print(f'''Unique files in duplicate cluster: {len(snake_case_ )}''' ) print(f'''Filtered dataset size: {len(snake_case_ )}''' ) return ds_filter, duplicate_clusters
26
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL import torch from transformers import CLIPImageProcessor, CLIPVisionModel from ...models import PriorTransformer from ...pipelines import DiffusionPipeline from ...schedulers import HeunDiscreteScheduler from ...utils import ( BaseOutput, is_accelerate_available, logging, randn_tensor, replace_example_docstring, ) from .renderer import ShapERenderer _snake_case = logging.get_logger(__name__) # pylint: disable=invalid-name _snake_case = "\n Examples:\n ```py\n >>> from PIL import Image\n >>> import torch\n >>> from diffusers import DiffusionPipeline\n >>> from diffusers.utils import export_to_gif, load_image\n\n >>> device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n\n >>> repo = \"openai/shap-e-img2img\"\n >>> pipe = DiffusionPipeline.from_pretrained(repo, torch_dtype=torch.float16)\n >>> pipe = pipe.to(device)\n\n >>> guidance_scale = 3.0\n >>> image_url = \"https://hf.co/datasets/diffusers/docs-images/resolve/main/shap-e/corgi.png\"\n >>> image = load_image(image_url).convert(\"RGB\")\n\n >>> images = pipe(\n ... image,\n ... guidance_scale=guidance_scale,\n ... num_inference_steps=64,\n ... frame_size=256,\n ... ).images\n\n >>> gif_path = export_to_gif(images[0], \"corgi_3d.gif\")\n ```\n" @dataclass class lowercase ( UpperCamelCase__ ): _a = 42 class lowercase ( UpperCamelCase__ ): def __init__( self , _a , _a , _a , _a , _a , ) -> List[Any]: super().__init__() self.register_modules( prior=_a , image_encoder=_a , image_processor=_a , scheduler=_a , renderer=_a , ) def a__ ( self , _a , _a , _a , _a , _a , _a ) -> str: if latents is None: _A : str = randn_tensor(_a , generator=_a , device=_a , dtype=_a ) else: if latents.shape != shape: raise ValueError(F'''Unexpected latents shape, got {latents.shape}, expected {shape}''' ) _A : Union[str, Any] = latents.to(_a ) _A : int = latents * scheduler.init_noise_sigma return latents def a__ ( self , _a=0 ) -> Optional[Any]: if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("""Please install accelerate via `pip install accelerate`""" ) _A : str = torch.device(F'''cuda:{gpu_id}''' ) _A : Any = [self.image_encoder, self.prior] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(_a , _a ) @property def a__ ( self ) -> List[Any]: if self.device != torch.device("""meta""" ) or not hasattr(self.image_encoder , """_hf_hook""" ): return self.device for module in self.image_encoder.modules(): if ( hasattr(_a , """_hf_hook""" ) and hasattr(module._hf_hook , """execution_device""" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device def a__ ( self , _a , _a , _a , _a , ) -> Tuple: if isinstance(_a , _a ) and isinstance(image[0] , torch.Tensor ): _A : int = torch.cat(_a , axis=0 ) if image[0].ndim == 4 else torch.stack(_a , axis=0 ) if not isinstance(_a , torch.Tensor ): _A : Dict = self.image_processor(_a , return_tensors="""pt""" ).pixel_values[0].unsqueeze(0 ) _A : int = image.to(dtype=self.image_encoder.dtype , device=_a ) _A : List[Any] = self.image_encoder(_a )["""last_hidden_state"""] _A : List[Any] = image_embeds[:, 1:, :].contiguous() # batch_size, dim, 256 _A : Dict = image_embeds.repeat_interleave(_a , dim=0 ) if do_classifier_free_guidance: _A : str = torch.zeros_like(_a ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes _A : List[str] = torch.cat([negative_image_embeds, image_embeds] ) return image_embeds @torch.no_grad() @replace_example_docstring(_a ) def __call__( self , _a , _a = 1 , _a = 25 , _a = None , _a = None , _a = 4.0 , _a = 64 , _a = "pil" , _a = True , ) -> Union[str, Any]: if isinstance(_a , PIL.Image.Image ): _A : List[Any] = 1 elif isinstance(_a , torch.Tensor ): _A : Any = image.shape[0] elif isinstance(_a , _a ) and isinstance(image[0] , (torch.Tensor, PIL.Image.Image) ): _A : Union[str, Any] = len(_a ) else: raise ValueError( F'''`image` has to be of type `PIL.Image.Image`, `torch.Tensor`, `List[PIL.Image.Image]` or `List[torch.Tensor]` but is {type(_a )}''' ) _A : Optional[int] = self._execution_device _A : Tuple = batch_size * num_images_per_prompt _A : List[Any] = guidance_scale > 1.0 _A : Optional[Any] = self._encode_image(_a , _a , _a , _a ) # prior self.scheduler.set_timesteps(_a , device=_a ) _A : Optional[int] = self.scheduler.timesteps _A : List[str] = self.prior.config.num_embeddings _A : int = self.prior.config.embedding_dim _A : Optional[Any] = self.prepare_latents( (batch_size, num_embeddings * embedding_dim) , image_embeds.dtype , _a , _a , _a , self.scheduler , ) # YiYi notes: for testing only to match ldm, we can directly create a latents with desired shape: batch_size, num_embeddings, embedding_dim _A : List[Any] = latents.reshape(latents.shape[0] , _a , _a ) for i, t in enumerate(self.progress_bar(_a ) ): # expand the latents if we are doing classifier free guidance _A : List[str] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _A : int = self.scheduler.scale_model_input(_a , _a ) _A : Tuple = self.prior( _a , timestep=_a , proj_embedding=_a , ).predicted_image_embedding # remove the variance _A , _A : Optional[Any] = noise_pred.split( scaled_model_input.shape[2] , dim=2 ) # batch_size, num_embeddings, embedding_dim if do_classifier_free_guidance is not None: _A , _A : Dict = noise_pred.chunk(2 ) _A : Tuple = noise_pred_uncond + guidance_scale * (noise_pred - noise_pred_uncond) _A : int = self.scheduler.step( _a , timestep=_a , sample=_a , ).prev_sample if output_type == "latent": return ShapEPipelineOutput(images=_a ) _A : List[str] = [] for i, latent in enumerate(_a ): print() _A : List[str] = self.renderer.decode( latent[None, :] , _a , size=_a , ray_batch_size=4096 , n_coarse_samples=64 , n_fine_samples=128 , ) images.append(_a ) _A : List[Any] = torch.stack(_a ) if output_type not in ["np", "pil"]: raise ValueError(F'''Only the output types `pil` and `np` are supported not output_type={output_type}''' ) _A : List[str] = images.cpu().numpy() if output_type == "pil": _A : List[Any] = [self.numpy_to_pil(_a ) for image in images] # Offload last model to CPU if hasattr(self , """final_offload_hook""" ) and self.final_offload_hook is not None: self.final_offload_hook.offload() if not return_dict: return (images,) return ShapEPipelineOutput(images=_a )
26
1
import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def _lowerCAmelCase ( self ) -> Optional[Any]: snake_case_ : int = "| <pad> <unk> <s> </s> a b c d e f g h i j k".split() snake_case_ : str = dict(zip(_SCREAMING_SNAKE_CASE , range(len(_SCREAMING_SNAKE_CASE ) ) ) ) snake_case_ : int = { "unk_token": "<unk>", "bos_token": "<s>", "eos_token": "</s>", } snake_case_ : str = { "feature_size": 1, "padding_value": 0.0, "sampling_rate": 1_6000, "return_attention_mask": False, "do_normalize": True, } snake_case_ : int = tempfile.mkdtemp() snake_case_ : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) snake_case_ : str = os.path.join(self.tmpdirname , _SCREAMING_SNAKE_CASE ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(_SCREAMING_SNAKE_CASE ) + "\n" ) with open(self.feature_extraction_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(_SCREAMING_SNAKE_CASE ) + "\n" ) # load decoder from hub snake_case_ : Optional[int] = "hf-internal-testing/ngram-beam-search-decoder" def _lowerCAmelCase ( self , **_SCREAMING_SNAKE_CASE ) -> Optional[int]: snake_case_ : List[str] = self.add_kwargs_tokens_map.copy() kwargs.update(_SCREAMING_SNAKE_CASE ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **_SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( self , **_SCREAMING_SNAKE_CASE ) -> Any: return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **_SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( self , **_SCREAMING_SNAKE_CASE ) -> Dict: return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **_SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( self ) -> Dict: shutil.rmtree(self.tmpdirname ) def _lowerCAmelCase ( self ) -> Optional[Any]: snake_case_ : Optional[int] = self.get_tokenizer() snake_case_ : Optional[int] = self.get_feature_extractor() snake_case_ : List[Any] = self.get_decoder() snake_case_ : List[Any] = WavaVecaProcessorWithLM(tokenizer=_SCREAMING_SNAKE_CASE , feature_extractor=_SCREAMING_SNAKE_CASE , decoder=_SCREAMING_SNAKE_CASE ) processor.save_pretrained(self.tmpdirname ) snake_case_ : Dict = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , _SCREAMING_SNAKE_CASE ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , _SCREAMING_SNAKE_CASE ) # decoder self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , ) self.assertIsInstance(processor.decoder , _SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( self ) -> Optional[Any]: snake_case_ : int = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match snake_case_ : List[str] = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha , 5.0 ) self.assertEqual(processor.language_model.beta , 3.0 ) self.assertEqual(processor.language_model.score_boundary , -7.0 ) self.assertEqual(processor.language_model.unk_score_offset , 3 ) def _lowerCAmelCase ( self ) -> Any: snake_case_ : Optional[Any] = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(["xx"] ) with self.assertRaisesRegex(_SCREAMING_SNAKE_CASE , "include" ): WavaVecaProcessorWithLM( tokenizer=_SCREAMING_SNAKE_CASE , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) def _lowerCAmelCase ( self ) -> Optional[Any]: snake_case_ : Tuple = self.get_feature_extractor() snake_case_ : List[Any] = self.get_tokenizer() snake_case_ : str = self.get_decoder() snake_case_ : int = WavaVecaProcessorWithLM(tokenizer=_SCREAMING_SNAKE_CASE , feature_extractor=_SCREAMING_SNAKE_CASE , decoder=_SCREAMING_SNAKE_CASE ) snake_case_ : int = floats_list((3, 1000) ) snake_case_ : Union[str, Any] = feature_extractor(_SCREAMING_SNAKE_CASE , return_tensors="np" ) snake_case_ : List[str] = processor(_SCREAMING_SNAKE_CASE , return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def _lowerCAmelCase ( self ) -> Optional[Any]: snake_case_ : Optional[Any] = self.get_feature_extractor() snake_case_ : Dict = self.get_tokenizer() snake_case_ : Dict = self.get_decoder() snake_case_ : Dict = WavaVecaProcessorWithLM(tokenizer=_SCREAMING_SNAKE_CASE , feature_extractor=_SCREAMING_SNAKE_CASE , decoder=_SCREAMING_SNAKE_CASE ) snake_case_ : int = "This is a test string" snake_case_ : Dict = processor(text=_SCREAMING_SNAKE_CASE ) snake_case_ : List[Any] = tokenizer(_SCREAMING_SNAKE_CASE ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE=(2, 10, 16) , _SCREAMING_SNAKE_CASE=77 ) -> Dict: np.random.seed(_SCREAMING_SNAKE_CASE ) return np.random.rand(*_SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( self ) -> Tuple: snake_case_ : List[Any] = self.get_feature_extractor() snake_case_ : List[str] = self.get_tokenizer() snake_case_ : Dict = self.get_decoder() snake_case_ : int = WavaVecaProcessorWithLM(tokenizer=_SCREAMING_SNAKE_CASE , feature_extractor=_SCREAMING_SNAKE_CASE , decoder=_SCREAMING_SNAKE_CASE ) snake_case_ : str = self._get_dummy_logits(shape=(10, 16) , seed=13 ) snake_case_ : Tuple = processor.decode(_SCREAMING_SNAKE_CASE ) snake_case_ : Union[str, Any] = decoder.decode_beams(_SCREAMING_SNAKE_CASE )[0] self.assertEqual(decoded_decoder[0] , decoded_processor.text ) self.assertEqual("</s> <s> </s>" , decoded_processor.text ) self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score ) @parameterized.expand([[None], ["fork"], ["spawn"]] ) def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE ) -> Optional[Any]: snake_case_ : Tuple = self.get_feature_extractor() snake_case_ : Any = self.get_tokenizer() snake_case_ : List[str] = self.get_decoder() snake_case_ : str = WavaVecaProcessorWithLM(tokenizer=_SCREAMING_SNAKE_CASE , feature_extractor=_SCREAMING_SNAKE_CASE , decoder=_SCREAMING_SNAKE_CASE ) snake_case_ : int = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: snake_case_ : Any = processor.batch_decode(_SCREAMING_SNAKE_CASE ) else: with get_context(_SCREAMING_SNAKE_CASE ).Pool() as pool: snake_case_ : Union[str, Any] = processor.batch_decode(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) snake_case_ : Union[str, Any] = list(_SCREAMING_SNAKE_CASE ) with get_context("fork" ).Pool() as p: snake_case_ : List[Any] = decoder.decode_beams_batch(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) snake_case_ , snake_case_ , snake_case_ : Dict = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(_SCREAMING_SNAKE_CASE , decoded_processor.text ) self.assertListEqual(["<s> <s> </s>", "<s> <s> <s>"] , decoded_processor.text ) self.assertListEqual(_SCREAMING_SNAKE_CASE , decoded_processor.logit_score ) self.assertListEqual(_SCREAMING_SNAKE_CASE , decoded_processor.lm_score ) def _lowerCAmelCase ( self ) -> Optional[int]: snake_case_ : int = self.get_feature_extractor() snake_case_ : Any = self.get_tokenizer() snake_case_ : List[Any] = self.get_decoder() snake_case_ : str = WavaVecaProcessorWithLM(tokenizer=_SCREAMING_SNAKE_CASE , feature_extractor=_SCREAMING_SNAKE_CASE , decoder=_SCREAMING_SNAKE_CASE ) snake_case_ : List[str] = self._get_dummy_logits() snake_case_ : int = 15 snake_case_ : Optional[int] = -20.0 snake_case_ : Any = -4.0 snake_case_ : Optional[int] = processor.batch_decode( _SCREAMING_SNAKE_CASE , beam_width=_SCREAMING_SNAKE_CASE , beam_prune_logp=_SCREAMING_SNAKE_CASE , token_min_logp=_SCREAMING_SNAKE_CASE , ) snake_case_ : List[str] = decoded_processor_out.text snake_case_ : Tuple = list(_SCREAMING_SNAKE_CASE ) with get_context("fork" ).Pool() as pool: snake_case_ : Any = decoder.decode_beams_batch( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , beam_width=_SCREAMING_SNAKE_CASE , beam_prune_logp=_SCREAMING_SNAKE_CASE , token_min_logp=_SCREAMING_SNAKE_CASE , ) snake_case_ : Optional[Any] = [d[0][0] for d in decoded_decoder_out] snake_case_ : List[str] = [d[0][2] for d in decoded_decoder_out] snake_case_ : Dict = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) self.assertListEqual(["</s> <s> <s>", "<s> <s> <s>"] , _SCREAMING_SNAKE_CASE ) self.assertTrue(np.array_equal(_SCREAMING_SNAKE_CASE , decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-20.054, -18.447] , _SCREAMING_SNAKE_CASE , atol=1e-3 ) ) self.assertTrue(np.array_equal(_SCREAMING_SNAKE_CASE , decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-15.554, -13.9474] , _SCREAMING_SNAKE_CASE , atol=1e-3 ) ) def _lowerCAmelCase ( self ) -> Any: snake_case_ : int = self.get_feature_extractor() snake_case_ : int = self.get_tokenizer() snake_case_ : Any = self.get_decoder() snake_case_ : List[Any] = WavaVecaProcessorWithLM(tokenizer=_SCREAMING_SNAKE_CASE , feature_extractor=_SCREAMING_SNAKE_CASE , decoder=_SCREAMING_SNAKE_CASE ) snake_case_ : Union[str, Any] = self._get_dummy_logits() snake_case_ : int = 2.0 snake_case_ : Optional[int] = 5.0 snake_case_ : Dict = -20.0 snake_case_ : Dict = True snake_case_ : Union[str, Any] = processor.batch_decode( _SCREAMING_SNAKE_CASE , alpha=_SCREAMING_SNAKE_CASE , beta=_SCREAMING_SNAKE_CASE , unk_score_offset=_SCREAMING_SNAKE_CASE , lm_score_boundary=_SCREAMING_SNAKE_CASE , ) snake_case_ : Dict = decoded_processor_out.text snake_case_ : int = list(_SCREAMING_SNAKE_CASE ) decoder.reset_params( alpha=_SCREAMING_SNAKE_CASE , beta=_SCREAMING_SNAKE_CASE , unk_score_offset=_SCREAMING_SNAKE_CASE , lm_score_boundary=_SCREAMING_SNAKE_CASE , ) with get_context("fork" ).Pool() as pool: snake_case_ : str = decoder.decode_beams_batch( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) snake_case_ : int = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) self.assertListEqual(["<s> </s> <s> </s> </s>", "</s> </s> <s> </s> </s>"] , _SCREAMING_SNAKE_CASE ) snake_case_ : int = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha , 2.0 ) self.assertEqual(lm_model.beta , 5.0 ) self.assertEqual(lm_model.unk_score_offset , -20.0 ) self.assertEqual(lm_model.score_boundary , _SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( self ) -> List[Any]: snake_case_ : List[Any] = WavaVecaProcessorWithLM.from_pretrained("hf-internal-testing/processor_with_lm" ) snake_case_ : str = processor.decoder.model_container[processor.decoder._model_key] snake_case_ : Union[str, Any] = Path(language_model._kenlm_model.path.decode("utf-8" ) ).parent.parent.absolute() snake_case_ : int = os.listdir(_SCREAMING_SNAKE_CASE ) snake_case_ : str = ["alphabet.json", "language_model"] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( self ) -> int: snake_case_ : Union[str, Any] = snapshot_download("hf-internal-testing/processor_with_lm" ) snake_case_ : int = WavaVecaProcessorWithLM.from_pretrained(_SCREAMING_SNAKE_CASE ) snake_case_ : Union[str, Any] = processor.decoder.model_container[processor.decoder._model_key] snake_case_ : int = Path(language_model._kenlm_model.path.decode("utf-8" ) ).parent.parent.absolute() snake_case_ : Any = os.listdir(_SCREAMING_SNAKE_CASE ) snake_case_ : Optional[Any] = os.listdir(_SCREAMING_SNAKE_CASE ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( self ) -> List[Any]: snake_case_ : List[Any] = WavaVecaProcessorWithLM.from_pretrained("hf-internal-testing/processor_with_lm" ) snake_case_ : List[str] = AutoProcessor.from_pretrained("hf-internal-testing/processor_with_lm" ) snake_case_ : int = floats_list((3, 1000) ) snake_case_ : List[str] = processor_wavaveca(_SCREAMING_SNAKE_CASE , return_tensors="np" ) snake_case_ : Optional[int] = processor_auto(_SCREAMING_SNAKE_CASE , return_tensors="np" ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1e-2 ) snake_case_ : Optional[int] = self._get_dummy_logits() snake_case_ : Optional[int] = processor_wavaveca.batch_decode(_SCREAMING_SNAKE_CASE ) snake_case_ : Optional[Any] = processor_auto.batch_decode(_SCREAMING_SNAKE_CASE ) self.assertListEqual(decoded_wavaveca.text , decoded_auto.text ) def _lowerCAmelCase ( self ) -> Optional[Any]: snake_case_ : int = self.get_feature_extractor() snake_case_ : Optional[int] = self.get_tokenizer() snake_case_ : List[Any] = self.get_decoder() snake_case_ : str = WavaVecaProcessorWithLM(tokenizer=_SCREAMING_SNAKE_CASE , feature_extractor=_SCREAMING_SNAKE_CASE , decoder=_SCREAMING_SNAKE_CASE ) self.assertListEqual( processor.model_input_names , feature_extractor.model_input_names , msg="`processor` and `feature_extractor` model input names do not match" , ) @staticmethod def _lowerCAmelCase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[str]: snake_case_ : Optional[int] = [d[key] for d in offsets] return retrieved_list def _lowerCAmelCase ( self ) -> Union[str, Any]: snake_case_ : Dict = WavaVecaProcessorWithLM.from_pretrained("hf-internal-testing/processor_with_lm" ) snake_case_ : Optional[Any] = self._get_dummy_logits()[0] snake_case_ : int = processor.decode(_SCREAMING_SNAKE_CASE , output_word_offsets=_SCREAMING_SNAKE_CASE ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue("text" in outputs ) self.assertTrue("word_offsets" in outputs ) self.assertTrue(isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) self.assertEqual(" ".join(self.get_from_offsets(outputs["word_offsets"] , "word" ) ) , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs["word_offsets"] , "word" ) , ["<s>", "<s>", "</s>"] ) self.assertListEqual(self.get_from_offsets(outputs["word_offsets"] , "start_offset" ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs["word_offsets"] , "end_offset" ) , [1, 3, 5] ) def _lowerCAmelCase ( self ) -> List[Any]: snake_case_ : Dict = WavaVecaProcessorWithLM.from_pretrained("hf-internal-testing/processor_with_lm" ) snake_case_ : List[str] = self._get_dummy_logits() snake_case_ : Optional[Any] = processor.batch_decode(_SCREAMING_SNAKE_CASE , output_word_offsets=_SCREAMING_SNAKE_CASE ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue("text" in outputs ) self.assertTrue("word_offsets" in outputs ) self.assertTrue(isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) self.assertListEqual( [" ".join(self.get_from_offsets(_SCREAMING_SNAKE_CASE , "word" ) ) for o in outputs["word_offsets"]] , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs["word_offsets"][0] , "word" ) , ["<s>", "<s>", "</s>"] ) self.assertListEqual(self.get_from_offsets(outputs["word_offsets"][0] , "start_offset" ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs["word_offsets"][0] , "end_offset" ) , [1, 3, 5] ) @slow @require_torch @require_torchaudio def _lowerCAmelCase ( self ) -> List[str]: import torch snake_case_ : str = load_dataset("common_voice" , "en" , split="train" , streaming=_SCREAMING_SNAKE_CASE ) snake_case_ : int = ds.cast_column("audio" , datasets.Audio(sampling_rate=1_6000 ) ) snake_case_ : Dict = iter(_SCREAMING_SNAKE_CASE ) snake_case_ : Optional[Any] = next(_SCREAMING_SNAKE_CASE ) snake_case_ : Tuple = AutoProcessor.from_pretrained("patrickvonplaten/wav2vec2-base-100h-with-lm" ) snake_case_ : int = WavaVecaForCTC.from_pretrained("patrickvonplaten/wav2vec2-base-100h-with-lm" ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train snake_case_ : List[str] = processor(sample["audio"]["array"] , return_tensors="pt" ).input_values with torch.no_grad(): snake_case_ : int = model(_SCREAMING_SNAKE_CASE ).logits.cpu().numpy() snake_case_ : Optional[Any] = processor.decode(logits[0] , output_word_offsets=_SCREAMING_SNAKE_CASE ) snake_case_ : List[Any] = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate snake_case_ : List[str] = [ { "start_time": d["start_offset"] * time_offset, "end_time": d["end_offset"] * time_offset, "word": d["word"], } for d in output["word_offsets"] ] snake_case_ : int = "WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL" # output words self.assertEqual(" ".join(self.get_from_offsets(_SCREAMING_SNAKE_CASE , "word" ) ) , _SCREAMING_SNAKE_CASE ) self.assertEqual(" ".join(self.get_from_offsets(_SCREAMING_SNAKE_CASE , "word" ) ) , output.text ) # output times snake_case_ : int = torch.tensor(self.get_from_offsets(_SCREAMING_SNAKE_CASE , "start_time" ) ) snake_case_ : Optional[Any] = torch.tensor(self.get_from_offsets(_SCREAMING_SNAKE_CASE , "end_time" ) ) # fmt: off snake_case_ : int = torch.tensor([1.4199, 1.6599, 2.2599, 3.0, 3.24, 3.5999, 3.7999, 4.0999, 4.26, 4.94, 5.28, 5.6599, 5.78, 5.94, 6.32, 6.5399, 6.6599] ) snake_case_ : List[str] = torch.tensor([1.5399, 1.8999, 2.9, 3.16, 3.5399, 3.72, 4.0199, 4.1799, 4.76, 5.1599, 5.5599, 5.6999, 5.86, 6.1999, 6.38, 6.6199, 6.94] ) # fmt: on self.assertTrue(torch.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , atol=0.01 ) ) self.assertTrue(torch.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , atol=0.01 ) )
36
def lowerCAmelCase__ ( _a : float , _a : float ): if density <= 0: raise ValueError("Impossible fluid density" ) if bulk_modulus <= 0: raise ValueError("Impossible bulk modulus" ) return (bulk_modulus / density) ** 0.5 if __name__ == "__main__": import doctest doctest.testmod()
36
1
import os import shutil import sys import tempfile import unittest from pathlib import Path import pytest import transformers from transformers import ( BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoTokenizer, BertConfig, BertTokenizer, BertTokenizerFast, CTRLTokenizer, GPTaTokenizer, GPTaTokenizerFast, PreTrainedTokenizerFast, RobertaTokenizer, RobertaTokenizerFast, is_tokenizers_available, ) from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.auto.tokenization_auto import ( TOKENIZER_MAPPING, get_tokenizer_config, tokenizer_class_from_name, ) from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import ( DUMMY_DIFF_TOKENIZER_IDENTIFIER, DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tokenizers, slow, ) sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class lowerCAmelCase__ ( unittest.TestCase): '''simple docstring''' def _lowerCamelCase ( self) -> Union[str, Any]: _A : Dict = 0 @slow def _lowerCamelCase ( self) -> Dict: for model_name in (x for x in BERT_PRETRAINED_CONFIG_ARCHIVE_MAP.keys() if "japanese" not in x): _A : Tuple = AutoTokenizer.from_pretrained(__lowercase) self.assertIsNotNone(__lowercase) self.assertIsInstance(__lowercase , (BertTokenizer, BertTokenizerFast)) self.assertGreater(len(__lowercase) , 0) for model_name in GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP.keys(): _A : str = AutoTokenizer.from_pretrained(__lowercase) self.assertIsNotNone(__lowercase) self.assertIsInstance(__lowercase , (GPTaTokenizer, GPTaTokenizerFast)) self.assertGreater(len(__lowercase) , 0) def _lowerCamelCase ( self) -> Any: _A : Union[str, Any] = AutoTokenizer.from_pretrained(__lowercase) self.assertIsInstance(__lowercase , (BertTokenizer, BertTokenizerFast)) self.assertEqual(tokenizer.vocab_size , 1_2) def _lowerCamelCase ( self) -> int: _A : str = AutoTokenizer.from_pretrained(__lowercase) self.assertIsInstance(__lowercase , (RobertaTokenizer, RobertaTokenizerFast)) self.assertEqual(tokenizer.vocab_size , 2_0) def _lowerCamelCase ( self) -> List[str]: _A : Optional[int] = AutoConfig.from_pretrained(__lowercase) self.assertIsInstance(__lowercase , __lowercase) # Check that tokenizer_type ≠ model_type _A : Dict = AutoTokenizer.from_pretrained(__lowercase , config=__lowercase) self.assertIsInstance(__lowercase , (BertTokenizer, BertTokenizerFast)) self.assertEqual(tokenizer.vocab_size , 1_2) def _lowerCamelCase ( self) -> Optional[Any]: with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy("./tests/fixtures/vocab.txt" , os.path.join(__lowercase , "vocab.txt")) _A : int = AutoTokenizer.from_pretrained(__lowercase , tokenizer_type="bert" , use_fast=__lowercase) self.assertIsInstance(__lowercase , __lowercase) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy("./tests/fixtures/vocab.json" , os.path.join(__lowercase , "vocab.json")) shutil.copy("./tests/fixtures/merges.txt" , os.path.join(__lowercase , "merges.txt")) _A : Dict = AutoTokenizer.from_pretrained(__lowercase , tokenizer_type="gpt2" , use_fast=__lowercase) self.assertIsInstance(__lowercase , __lowercase) @require_tokenizers def _lowerCamelCase ( self) -> Any: with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy("./tests/fixtures/vocab.txt" , os.path.join(__lowercase , "vocab.txt")) _A : Tuple = AutoTokenizer.from_pretrained(__lowercase , tokenizer_type="bert") self.assertIsInstance(__lowercase , __lowercase) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy("./tests/fixtures/vocab.json" , os.path.join(__lowercase , "vocab.json")) shutil.copy("./tests/fixtures/merges.txt" , os.path.join(__lowercase , "merges.txt")) _A : List[str] = AutoTokenizer.from_pretrained(__lowercase , tokenizer_type="gpt2") self.assertIsInstance(__lowercase , __lowercase) def _lowerCamelCase ( self) -> Optional[Any]: with pytest.raises(__lowercase): AutoTokenizer.from_pretrained("./" , tokenizer_type="xxx") @require_tokenizers def _lowerCamelCase ( self) -> List[Any]: for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: _A : int = tokenizer_class.from_pretrained("wietsedv/bert-base-dutch-cased") self.assertIsInstance(__lowercase , (BertTokenizer, BertTokenizerFast)) if isinstance(__lowercase , __lowercase): self.assertEqual(tokenizer.basic_tokenizer.do_lower_case , __lowercase) else: self.assertEqual(tokenizer.do_lower_case , __lowercase) self.assertEqual(tokenizer.model_max_length , 5_1_2) @require_tokenizers def _lowerCamelCase ( self) -> Union[str, Any]: for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: with self.assertRaisesRegex( __lowercase , "julien-c/herlolip-not-exists is not a local folder and is not a valid model identifier" , ): _A : Union[str, Any] = tokenizer_class.from_pretrained("julien-c/herlolip-not-exists") def _lowerCamelCase ( self) -> Optional[Any]: _A : List[Any] = TOKENIZER_MAPPING.values() _A : Optional[int] = [] for slow_tok, fast_tok in tokenizers: if slow_tok is not None: tokenizer_names.append(slow_tok.__name__) if fast_tok is not None: tokenizer_names.append(fast_tok.__name__) for tokenizer_name in tokenizer_names: # must find the right class tokenizer_class_from_name(__lowercase) @require_tokenizers def _lowerCamelCase ( self) -> List[str]: self.assertIsInstance(AutoTokenizer.from_pretrained("bert-base-cased" , use_fast=__lowercase) , __lowercase) self.assertIsInstance(AutoTokenizer.from_pretrained("bert-base-cased") , __lowercase) @require_tokenizers def _lowerCamelCase ( self) -> List[Any]: _A : Optional[int] = AutoTokenizer.from_pretrained("distilbert-base-uncased" , do_lower_case=__lowercase) _A : Any = "Hello, world. How are you?" _A : Tuple = tokenizer.tokenize(__lowercase) self.assertEqual("[UNK]" , tokens[0]) _A : Any = AutoTokenizer.from_pretrained("microsoft/mpnet-base" , do_lower_case=__lowercase) _A : int = tokenizer.tokenize(__lowercase) self.assertEqual("[UNK]" , tokens[0]) @require_tokenizers def _lowerCamelCase ( self) -> Optional[int]: _A : List[str] = AutoTokenizer.from_pretrained("robot-test/dummy-tokenizer-fast-with-model-config") self.assertEqual(type(__lowercase) , __lowercase) self.assertEqual(tokenizer.model_max_length , 5_1_2) self.assertEqual(tokenizer.vocab_size , 3_0_0_0_0) self.assertEqual(tokenizer.unk_token , "[UNK]") self.assertEqual(tokenizer.padding_side , "right") self.assertEqual(tokenizer.truncation_side , "right") def _lowerCamelCase ( self) -> str: _A : List[str] = AutoTokenizer.from_pretrained(__lowercase) self.assertIsInstance(__lowercase , (BertTokenizer, BertTokenizerFast)) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__lowercase) _A : Optional[int] = AutoTokenizer.from_pretrained(__lowercase) self.assertIsInstance(__lowercase , tokenizer.__class__) self.assertEqual(tokenizera.vocab_size , 1_2) def _lowerCamelCase ( self) -> str: _A : str = AutoTokenizer.from_pretrained("ctrl") # There is no fast CTRL so this always gives us a slow tokenizer. self.assertIsInstance(__lowercase , __lowercase) def _lowerCamelCase ( self) -> Tuple: _A : List[Any] = get_tokenizer_config("bert-base-cased") _A : Optional[int] = config.pop("_commit_hash" , __lowercase) # If we ever update bert-base-cased tokenizer config, this dict here will need to be updated. self.assertEqual(__lowercase , {"do_lower_case": False}) # This model does not have a tokenizer_config so we get back an empty dict. _A : List[str] = get_tokenizer_config(__lowercase) self.assertDictEqual(__lowercase , {}) # A tokenizer saved with `save_pretrained` always creates a tokenizer config. _A : List[Any] = AutoTokenizer.from_pretrained(__lowercase) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__lowercase) _A : Optional[int] = get_tokenizer_config(__lowercase) # Check the class of the tokenizer was properly saved (note that it always saves the slow class). self.assertEqual(config["tokenizer_class"] , "BertTokenizer") def _lowerCamelCase ( self) -> Dict: try: AutoConfig.register("custom" , __lowercase) AutoTokenizer.register(__lowercase , slow_tokenizer_class=__lowercase) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__lowercase): AutoTokenizer.register(__lowercase , slow_tokenizer_class=__lowercase) _A : List[Any] = CustomTokenizer.from_pretrained(__lowercase) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__lowercase) _A : Tuple = AutoTokenizer.from_pretrained(__lowercase) self.assertIsInstance(__lowercase , __lowercase) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] @require_tokenizers def _lowerCamelCase ( self) -> Union[str, Any]: try: AutoConfig.register("custom" , __lowercase) # Can register in two steps AutoTokenizer.register(__lowercase , slow_tokenizer_class=__lowercase) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, None)) AutoTokenizer.register(__lowercase , fast_tokenizer_class=__lowercase) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast)) del TOKENIZER_MAPPING._extra_content[CustomConfig] # Can register in one step AutoTokenizer.register( __lowercase , slow_tokenizer_class=__lowercase , fast_tokenizer_class=__lowercase) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast)) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__lowercase): AutoTokenizer.register(__lowercase , fast_tokenizer_class=__lowercase) # We pass through a bert tokenizer fast cause there is no converter slow to fast for our new toknizer # and that model does not have a tokenizer.json with tempfile.TemporaryDirectory() as tmp_dir: _A : int = BertTokenizerFast.from_pretrained(__lowercase) bert_tokenizer.save_pretrained(__lowercase) _A : List[Any] = CustomTokenizerFast.from_pretrained(__lowercase) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__lowercase) _A : str = AutoTokenizer.from_pretrained(__lowercase) self.assertIsInstance(__lowercase , __lowercase) _A : Union[str, Any] = AutoTokenizer.from_pretrained(__lowercase , use_fast=__lowercase) self.assertIsInstance(__lowercase , __lowercase) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def _lowerCamelCase ( self) -> Dict: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(__lowercase): _A : Tuple = AutoTokenizer.from_pretrained("hf-internal-testing/test_dynamic_tokenizer") # If remote code is disabled, we can't load this config. with self.assertRaises(__lowercase): _A : Union[str, Any] = AutoTokenizer.from_pretrained( "hf-internal-testing/test_dynamic_tokenizer" , trust_remote_code=__lowercase) _A : Optional[Any] = AutoTokenizer.from_pretrained("hf-internal-testing/test_dynamic_tokenizer" , trust_remote_code=__lowercase) self.assertTrue(tokenizer.special_attribute_present) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__lowercase) _A : int = AutoTokenizer.from_pretrained(__lowercase , trust_remote_code=__lowercase) self.assertTrue(reloaded_tokenizer.special_attribute_present) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizerFast") self.assertEqual(reloaded_tokenizer.__class__.__name__ , "NewTokenizerFast") # Test we can also load the slow version _A : Union[str, Any] = AutoTokenizer.from_pretrained( "hf-internal-testing/test_dynamic_tokenizer" , trust_remote_code=__lowercase , use_fast=__lowercase) self.assertTrue(tokenizer.special_attribute_present) self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizer") # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__lowercase) _A : str = AutoTokenizer.from_pretrained(__lowercase , trust_remote_code=__lowercase , use_fast=__lowercase) self.assertEqual(reloaded_tokenizer.__class__.__name__ , "NewTokenizer") self.assertTrue(reloaded_tokenizer.special_attribute_present) else: self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizer") self.assertEqual(reloaded_tokenizer.__class__.__name__ , "NewTokenizer") @require_tokenizers def _lowerCamelCase ( self) -> Dict: class lowerCAmelCase__ ( lowerCamelCase__): '''simple docstring''' __SCREAMING_SNAKE_CASE = False class lowerCAmelCase__ ( lowerCamelCase__): '''simple docstring''' __SCREAMING_SNAKE_CASE = NewTokenizer __SCREAMING_SNAKE_CASE = False try: AutoConfig.register("custom" , __lowercase) AutoTokenizer.register(__lowercase , slow_tokenizer_class=__lowercase) AutoTokenizer.register(__lowercase , fast_tokenizer_class=__lowercase) # If remote code is not set, the default is to use local _A : List[Any] = AutoTokenizer.from_pretrained("hf-internal-testing/test_dynamic_tokenizer") self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizerFast") self.assertFalse(tokenizer.special_attribute_present) _A : int = AutoTokenizer.from_pretrained("hf-internal-testing/test_dynamic_tokenizer" , use_fast=__lowercase) self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizer") self.assertFalse(tokenizer.special_attribute_present) # If remote code is disabled, we load the local one. _A : Dict = AutoTokenizer.from_pretrained( "hf-internal-testing/test_dynamic_tokenizer" , trust_remote_code=__lowercase) self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizerFast") self.assertFalse(tokenizer.special_attribute_present) _A : Union[str, Any] = AutoTokenizer.from_pretrained( "hf-internal-testing/test_dynamic_tokenizer" , trust_remote_code=__lowercase , use_fast=__lowercase) self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizer") self.assertFalse(tokenizer.special_attribute_present) # If remote is enabled, we load from the Hub _A : Tuple = AutoTokenizer.from_pretrained( "hf-internal-testing/test_dynamic_tokenizer" , trust_remote_code=__lowercase) self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizerFast") self.assertTrue(tokenizer.special_attribute_present) _A : List[Any] = AutoTokenizer.from_pretrained( "hf-internal-testing/test_dynamic_tokenizer" , trust_remote_code=__lowercase , use_fast=__lowercase) self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizer") self.assertTrue(tokenizer.special_attribute_present) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def _lowerCamelCase ( self) -> Union[str, Any]: _A : Dict = AutoTokenizer.from_pretrained( "hf-internal-testing/test_dynamic_tokenizer_legacy" , trust_remote_code=__lowercase) self.assertTrue(tokenizer.special_attribute_present) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizerFast") # Test we can also load the slow version _A : Optional[Any] = AutoTokenizer.from_pretrained( "hf-internal-testing/test_dynamic_tokenizer_legacy" , trust_remote_code=__lowercase , use_fast=__lowercase) self.assertTrue(tokenizer.special_attribute_present) self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizer") else: self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizer") def _lowerCamelCase ( self) -> List[Any]: with self.assertRaisesRegex( __lowercase , "bert-base is not a local folder and is not a valid model identifier"): _A : str = AutoTokenizer.from_pretrained("bert-base") def _lowerCamelCase ( self) -> Dict: with self.assertRaisesRegex( __lowercase , r"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)"): _A : Dict = AutoTokenizer.from_pretrained(__lowercase , revision="aaaaaa") def _lowerCamelCase ( self) -> Dict: _A : Dict = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-bert") with RequestCounter() as counter: _A : int = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-bert") self.assertEqual(counter.get_request_count , 0) self.assertEqual(counter.head_request_count , 1) self.assertEqual(counter.other_request_count , 0)
11
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_albert import AlbertTokenizer else: lowerCamelCase__ = None lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = {"""vocab_file""": """spiece.model""", """tokenizer_file""": """tokenizer.json"""} lowerCamelCase__ = { """vocab_file""": { """albert-base-v1""": """https://huggingface.co/albert-base-v1/resolve/main/spiece.model""", """albert-large-v1""": """https://huggingface.co/albert-large-v1/resolve/main/spiece.model""", """albert-xlarge-v1""": """https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model""", """albert-xxlarge-v1""": """https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model""", """albert-base-v2""": """https://huggingface.co/albert-base-v2/resolve/main/spiece.model""", """albert-large-v2""": """https://huggingface.co/albert-large-v2/resolve/main/spiece.model""", """albert-xlarge-v2""": """https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model""", """albert-xxlarge-v2""": """https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model""", }, """tokenizer_file""": { """albert-base-v1""": """https://huggingface.co/albert-base-v1/resolve/main/tokenizer.json""", """albert-large-v1""": """https://huggingface.co/albert-large-v1/resolve/main/tokenizer.json""", """albert-xlarge-v1""": """https://huggingface.co/albert-xlarge-v1/resolve/main/tokenizer.json""", """albert-xxlarge-v1""": """https://huggingface.co/albert-xxlarge-v1/resolve/main/tokenizer.json""", """albert-base-v2""": """https://huggingface.co/albert-base-v2/resolve/main/tokenizer.json""", """albert-large-v2""": """https://huggingface.co/albert-large-v2/resolve/main/tokenizer.json""", """albert-xlarge-v2""": """https://huggingface.co/albert-xlarge-v2/resolve/main/tokenizer.json""", """albert-xxlarge-v2""": """https://huggingface.co/albert-xxlarge-v2/resolve/main/tokenizer.json""", }, } lowerCamelCase__ = { """albert-base-v1""": 512, """albert-large-v1""": 512, """albert-xlarge-v1""": 512, """albert-xxlarge-v1""": 512, """albert-base-v2""": 512, """albert-large-v2""": 512, """albert-xlarge-v2""": 512, """albert-xxlarge-v2""": 512, } lowerCamelCase__ = """▁""" class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ): __lowerCamelCase : List[Any] =VOCAB_FILES_NAMES __lowerCamelCase : Union[str, Any] =PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase : List[str] =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCamelCase : Any =AlbertTokenizer def __init__( self : Tuple , __lowercase : Union[str, Any]=None , __lowercase : Optional[int]=None , __lowercase : int=True , __lowercase : Dict=True , __lowercase : str=False , __lowercase : str="[CLS]" , __lowercase : List[Any]="[SEP]" , __lowercase : Any="<unk>" , __lowercase : List[Any]="[SEP]" , __lowercase : List[Any]="<pad>" , __lowercase : Optional[Any]="[CLS]" , __lowercase : List[str]="[MASK]" , **__lowercase : str , ): '''simple docstring''' # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. __a = ( AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase , normalized=__lowercase ) if isinstance(__lowercase , __lowercase ) else mask_token ) super().__init__( __lowercase , tokenizer_file=__lowercase , do_lower_case=__lowercase , remove_space=__lowercase , keep_accents=__lowercase , bos_token=__lowercase , eos_token=__lowercase , unk_token=__lowercase , sep_token=__lowercase , pad_token=__lowercase , cls_token=__lowercase , mask_token=__lowercase , **__lowercase , ) __a = do_lower_case __a = remove_space __a = keep_accents __a = vocab_file __a = False if not self.vocab_file else True def UpperCamelCase_ ( self : Dict , __lowercase : List[int] , __lowercase : Optional[List[int]] = None ): '''simple docstring''' __a = [self.sep_token_id] __a = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def UpperCamelCase_ ( self : str , __lowercase : List[int] , __lowercase : Optional[List[int]] = None ): '''simple docstring''' __a = [self.sep_token_id] __a = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase_ ( self : Tuple , __lowercase : str , __lowercase : Optional[str] = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(__lowercase ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return __a = os.path.join( __lowercase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowercase ): copyfile(self.vocab_file , __lowercase ) return (out_vocab_file,)
302
0
"""simple docstring""" import collections import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_flax_cross_test, require_flax, require_torch, require_vision, slow, torch_device, ) from transformers.utils import is_flax_available, is_torch_available, is_vision_available from ...test_modeling_flax_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_flax_bert import FlaxBertModelTester from ..clip.test_modeling_flax_clip import FlaxCLIPVisionModelTester from ..vit.test_modeling_flax_vit import FlaxViTModelTester if is_flax_available(): from transformers import ( FlaxBertModel, FlaxCLIPVisionModel, FlaxVisionTextDualEncoderModel, FlaxViTModel, VisionTextDualEncoderConfig, VisionTextDualEncoderProcessor, ) from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) if is_torch_available(): import torch from transformers import VisionTextDualEncoderModel if is_vision_available(): from PIL import Image def _UpperCAmelCase ( __lowerCamelCase : List[str] ) -> int: if isinstance(__UpperCAmelCase , collections.abc.Iterable ): return x return (x, x) @require_flax class lowerCAmelCase__ : def lowercase ( self : int , _lowerCamelCase : Any , _lowerCamelCase : Any ): pass def lowercase ( self : List[Any] ): pass def lowercase ( self : Any ): pass def lowercase ( self : List[str] , _lowerCamelCase : np.ndarray , _lowerCamelCase : np.ndarray , _lowerCamelCase : float ): _snake_case = np.abs((a - b) ).max() self.assertLessEqual(lowercase_ , lowercase_ , f'''Difference between torch and flax is {diff} (>= {tol}).''' ) def lowercase ( self : List[str] , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : List[Any] , _lowerCamelCase : Tuple=None , **_lowerCamelCase : Dict ): _snake_case = VisionTextDualEncoderConfig.from_vision_text_configs(lowercase_ , lowercase_ ) _snake_case = FlaxVisionTextDualEncoderModel(lowercase_ ) _snake_case = model(input_ids=lowercase_ , pixel_values=lowercase_ , attention_mask=lowercase_ ) self.assertEqual(output['''text_embeds'''].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output['''image_embeds'''].shape , (pixel_values.shape[0], config.projection_dim) ) def lowercase ( self : Any , _lowerCamelCase : Any , _lowerCamelCase : Dict , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Dict=None , **_lowerCamelCase : str ): _snake_case , _snake_case = self.get_vision_text_model(lowercase_ , lowercase_ ) _snake_case = {'''vision_model''': vision_model, '''text_model''': text_model} _snake_case = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowercase_ ) _snake_case = model(input_ids=lowercase_ , pixel_values=lowercase_ , attention_mask=lowercase_ ) self.assertEqual(output['''text_embeds'''].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output['''image_embeds'''].shape , (pixel_values.shape[0], model.config.projection_dim) ) def lowercase ( self : Optional[Any] , _lowerCamelCase : int , _lowerCamelCase : str , _lowerCamelCase : List[str] , _lowerCamelCase : Optional[int] , _lowerCamelCase : List[Any]=None , **_lowerCamelCase : Union[str, Any] ): _snake_case , _snake_case = self.get_vision_text_model(lowercase_ , lowercase_ ) _snake_case = {'''vision_model''': vision_model, '''text_model''': text_model} _snake_case = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowercase_ ) _snake_case = model(input_ids=lowercase_ , pixel_values=lowercase_ , attention_mask=lowercase_ ) _snake_case = output[0] with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowercase_ ) _snake_case = FlaxVisionTextDualEncoderModel.from_pretrained(lowercase_ ) _snake_case = model(input_ids=lowercase_ , pixel_values=lowercase_ , attention_mask=lowercase_ ) _snake_case = after_output[0] _snake_case = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(lowercase_ , 1e-3 ) def lowercase ( self : Dict , _lowerCamelCase : List[Any] , _lowerCamelCase : Tuple , _lowerCamelCase : Any , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Tuple=None , **_lowerCamelCase : Optional[Any] ): _snake_case , _snake_case = self.get_vision_text_model(lowercase_ , lowercase_ ) _snake_case = {'''vision_model''': vision_model, '''text_model''': text_model} _snake_case = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowercase_ ) _snake_case = model( input_ids=lowercase_ , pixel_values=lowercase_ , attention_mask=lowercase_ , output_attentions=lowercase_ ) _snake_case = output.vision_model_output.attentions self.assertEqual(len(lowercase_ ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) _snake_case = to_atuple(vision_model.config.image_size ) _snake_case = to_atuple(vision_model.config.patch_size ) _snake_case = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) _snake_case = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) _snake_case = output.text_model_output.attentions self.assertEqual(len(lowercase_ ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def lowercase ( self : Dict , _lowerCamelCase : Optional[Any] , _lowerCamelCase : str , _lowerCamelCase : str ): pt_model.to(lowercase_ ) pt_model.eval() # prepare inputs _snake_case = inputs_dict _snake_case = {k: torch.tensor(v.tolist() ) for k, v in flax_inputs.items()} with torch.no_grad(): _snake_case = pt_model(**lowercase_ ).to_tuple() _snake_case = fx_model(**lowercase_ ).to_tuple() self.assertEqual(len(lowercase_ ) , len(lowercase_ ) , '''Output lengths differ between Flax and PyTorch''' ) for fx_output, pt_output in zip(fx_outputs[:4] , pt_outputs[:4] ): self.assert_almost_equals(lowercase_ , pt_output.numpy() , 4e-2 ) # PT -> Flax with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(lowercase_ ) _snake_case = FlaxVisionTextDualEncoderModel.from_pretrained(lowercase_ , from_pt=lowercase_ ) _snake_case = fx_model_loaded(**lowercase_ ).to_tuple() self.assertEqual(len(lowercase_ ) , len(lowercase_ ) , '''Output lengths differ between Flax and PyTorch''' ) for fx_output_loaded, pt_output in zip(fx_outputs_loaded[:4] , pt_outputs[:4] ): self.assert_almost_equals(lowercase_ , pt_output.numpy() , 4e-2 ) # Flax -> PT with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(lowercase_ ) _snake_case = VisionTextDualEncoderModel.from_pretrained(lowercase_ , from_flax=lowercase_ ) pt_model_loaded.to(lowercase_ ) pt_model_loaded.eval() with torch.no_grad(): _snake_case = pt_model_loaded(**lowercase_ ).to_tuple() self.assertEqual(len(lowercase_ ) , len(lowercase_ ) , '''Output lengths differ between Flax and PyTorch''' ) for fx_output, pt_output_loaded in zip(fx_outputs[:4] , pt_outputs_loaded[:4] ): self.assert_almost_equals(lowercase_ , pt_output_loaded.numpy() , 4e-2 ) def lowercase ( self : Tuple , _lowerCamelCase : Dict , _lowerCamelCase : Any , _lowerCamelCase : Any ): _snake_case = VisionTextDualEncoderConfig.from_vision_text_configs(lowercase_ , lowercase_ ) _snake_case = VisionTextDualEncoderModel(lowercase_ ) _snake_case = FlaxVisionTextDualEncoderModel(lowercase_ ) _snake_case = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , lowercase_ ) _snake_case = fx_state self.check_pt_flax_equivalence(lowercase_ , lowercase_ , lowercase_ ) def lowercase ( self : List[str] , _lowerCamelCase : str , _lowerCamelCase : Dict , _lowerCamelCase : List[Any] ): _snake_case = VisionTextDualEncoderConfig.from_vision_text_configs(lowercase_ , lowercase_ ) _snake_case = VisionTextDualEncoderModel(lowercase_ ) _snake_case = FlaxVisionTextDualEncoderModel(lowercase_ ) _snake_case = load_flax_weights_in_pytorch_model(lowercase_ , fx_model.params ) self.check_pt_flax_equivalence(lowercase_ , lowercase_ , lowercase_ ) def lowercase ( self : Any ): _snake_case = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**lowercase_ ) def lowercase ( self : Tuple ): _snake_case = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**lowercase_ ) def lowercase ( self : Optional[int] ): _snake_case = self.prepare_config_and_inputs() self.check_save_load(**lowercase_ ) def lowercase ( self : List[Any] ): _snake_case = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**lowercase_ ) @is_pt_flax_cross_test def lowercase ( self : Optional[Any] ): _snake_case = self.prepare_config_and_inputs() _snake_case = config_inputs_dict.pop('''vision_config''' ) _snake_case = config_inputs_dict.pop('''text_config''' ) _snake_case = config_inputs_dict self.check_equivalence_pt_to_flax(lowercase_ , lowercase_ , lowercase_ ) self.check_equivalence_flax_to_pt(lowercase_ , lowercase_ , lowercase_ ) @slow def lowercase ( self : List[str] ): _snake_case , _snake_case = self.get_pretrained_model_and_inputs() _snake_case = model_a(**lowercase_ ) _snake_case = outputs[0] with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(lowercase_ ) _snake_case = FlaxVisionTextDualEncoderModel.from_pretrained(lowercase_ ) _snake_case = model_a(**lowercase_ ) _snake_case = after_outputs[0] _snake_case = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(lowercase_ , 1e-5 ) @require_flax class lowerCAmelCase__ ( _lowerCamelCase , unittest.TestCase ): def lowercase ( self : Any ): _snake_case = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( '''hf-internal-testing/tiny-random-vit''' , '''hf-internal-testing/tiny-bert''' , vision_from_pt=lowercase_ , text_from_pt=lowercase_ , ) _snake_case = 13 _snake_case = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) _snake_case = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) _snake_case = random_attention_mask([batch_size, 4] ) _snake_case = {'''pixel_values''': pixel_values, '''input_ids''': input_ids, '''attention_mask''': attention_mask} return model, inputs def lowercase ( self : Dict , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Optional[int] ): _snake_case = FlaxViTModel(lowercase_ ) _snake_case = FlaxBertModel(lowercase_ ) return vision_model, text_model def lowercase ( self : Dict ): _snake_case = FlaxViTModelTester(self ) _snake_case = FlaxBertModelTester(self ) _snake_case = vit_model_tester.prepare_config_and_inputs() _snake_case = bert_model_tester.prepare_config_and_inputs() _snake_case , _snake_case = vision_config_and_inputs _snake_case , _snake_case , _snake_case , _snake_case = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_torch class lowerCAmelCase__ ( _lowerCamelCase , unittest.TestCase ): def lowercase ( self : List[str] ): _snake_case = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( '''hf-internal-testing/tiny-random-clip''' , '''hf-internal-testing/tiny-bert''' , vision_from_pt=lowercase_ , text_from_pt=lowercase_ , ) _snake_case = 13 _snake_case = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) _snake_case = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) _snake_case = random_attention_mask([batch_size, 4] ) _snake_case = {'''pixel_values''': pixel_values, '''input_ids''': input_ids, '''attention_mask''': attention_mask} return model, inputs def lowercase ( self : Dict , _lowerCamelCase : Optional[int] , _lowerCamelCase : List[Any] ): _snake_case = FlaxCLIPVisionModel(lowercase_ ) _snake_case = FlaxBertModel(lowercase_ ) return vision_model, text_model def lowercase ( self : Tuple ): _snake_case = FlaxCLIPVisionModelTester(self ) _snake_case = FlaxBertModelTester(self ) _snake_case = clip_model_tester.prepare_config_and_inputs() _snake_case = bert_model_tester.prepare_config_and_inputs() _snake_case , _snake_case = vision_config_and_inputs _snake_case , _snake_case , _snake_case , _snake_case = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_flax @require_vision class lowerCAmelCase__ ( unittest.TestCase ): @slow def lowercase ( self : Optional[Any] ): _snake_case = FlaxVisionTextDualEncoderModel.from_pretrained('''clip-italian/clip-italian''' , logit_scale_init_value=1.0 ) _snake_case = VisionTextDualEncoderProcessor.from_pretrained('''clip-italian/clip-italian''' ) _snake_case = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) _snake_case = processor( text=['''una foto di un gatto''', '''una foto di un cane'''] , images=lowercase_ , padding=lowercase_ , return_tensors='''np''' ) _snake_case = model(**lowercase_ ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) _snake_case = np.array([[1.2_2_8_4_7_2_7, 0.3_1_0_4_1_2_2]] ) self.assertTrue(np.allclose(outputs.logits_per_image , lowercase_ , atol=1e-3 ) )
355
"""simple docstring""" def _UpperCAmelCase ( __lowerCamelCase : float , __lowerCamelCase : float ) -> float: if mass < 0: raise ValueError('''The mass of a body cannot be negative''' ) return 0.5 * mass * abs(__lowerCamelCase ) * abs(__lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
40
0
'''simple docstring''' import argparse import shlex import runhouse as rh if __name__ == "__main__": # Refer to https://runhouse-docs.readthedocs-hosted.com/en/latest/api/python/cluster.html#hardware-setup for cloud access # setup instructions, if using on-demand hardware # If user passes --user <user> --host <host> --key_path <key_path> <example> <args>, fill them in as BYO cluster # If user passes --instance <instance> --provider <provider> <example> <args>, fill them in as on-demand cluster # Throw an error if user passes both BYO and on-demand cluster args # Otherwise, use default values lowerCamelCase_ = argparse.ArgumentParser() parser.add_argument('''--user''', type=str, default='''ubuntu''') parser.add_argument('''--host''', type=str, default='''localhost''') parser.add_argument('''--key_path''', type=str, default=None) parser.add_argument('''--instance''', type=str, default='''V100:1''') parser.add_argument('''--provider''', type=str, default='''cheapest''') parser.add_argument('''--use_spot''', type=bool, default=False) parser.add_argument('''--example''', type=str, default='''pytorch/text-generation/run_generation.py''') lowerCamelCase_ , lowerCamelCase_ = parser.parse_known_args() if args.host != "localhost": if args.instance != "V100:1" or args.provider != "cheapest": raise ValueError('''Cannot specify both BYO and on-demand cluster args''') lowerCamelCase_ = rh.cluster( name='''rh-cluster''', ips=[args.host], ssh_creds={'''ssh_user''': args.user, '''ssh_private_key''': args.key_path} ) else: lowerCamelCase_ = rh.cluster( name='''rh-cluster''', instance_type=args.instance, provider=args.provider, use_spot=args.use_spot ) lowerCamelCase_ = args.example.rsplit('''/''', 1)[0] # Set up remote environment cluster.install_packages(['''pip:./''']) # Installs transformers from local source # Note transformers is copied into the home directory on the remote machine, so we can install from there cluster.run([F"""pip install -r transformers/examples/{example_dir}/requirements.txt"""]) cluster.run(['''pip install torch --upgrade --extra-index-url https://download.pytorch.org/whl/cu117''']) # Run example. You can bypass the CLI wrapper and paste your own code here. cluster.run([F"""python transformers/examples/{args.example} {" ".join(shlex.quote(arg) for arg in unknown)}"""]) # Alternatively, we can just import and run a training function (especially if there's no wrapper CLI): # from my_script... import train # reqs = ['pip:./', 'torch', 'datasets', 'accelerate', 'evaluate', 'tqdm', 'scipy', 'scikit-learn', 'tensorboard'] # launch_train_gpu = rh.function(fn=train, # system=gpu, # reqs=reqs, # name='train_bert_glue') # # We can pass in arguments just like we would to a function: # launch_train_gpu(num_epochs = 3, lr = 2e-5, seed = 42, batch_size = 16 # stream_logs=True)
79
'''simple docstring''' import inspect import unittest from math import floor from transformers import CvtConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import CvtForImageClassification, CvtModel from transformers.models.cvt.modeling_cvt import CVT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class snake_case__ ( UpperCamelCase): def A ( self : List[str] ) -> List[Any]: UpperCAmelCase_ : int = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_A , '''embed_dim''' ) ) self.parent.assertTrue(hasattr(_A , '''num_heads''' ) ) class snake_case__ : def __init__( self : List[Any] , _A : List[str] , _A : Optional[Any]=13 , _A : List[str]=64 , _A : Tuple=3 , _A : int=[16, 48, 96] , _A : int=[1, 3, 6] , _A : Union[str, Any]=[1, 2, 10] , _A : List[Any]=[7, 3, 3] , _A : Optional[Any]=[4, 2, 2] , _A : List[Any]=[2, 1, 1] , _A : Union[str, Any]=[2, 2, 2] , _A : Tuple=[False, False, True] , _A : str=[0.0, 0.0, 0.0] , _A : List[Any]=0.02 , _A : int=1e-12 , _A : Optional[int]=True , _A : List[str]=True , _A : Union[str, Any]=2 , ) -> List[Any]: UpperCAmelCase_ : int = parent UpperCAmelCase_ : List[Any] = batch_size UpperCAmelCase_ : Any = image_size UpperCAmelCase_ : Tuple = patch_sizes UpperCAmelCase_ : int = patch_stride UpperCAmelCase_ : Any = patch_padding UpperCAmelCase_ : List[Any] = is_training UpperCAmelCase_ : Union[str, Any] = use_labels UpperCAmelCase_ : Union[str, Any] = num_labels UpperCAmelCase_ : List[str] = num_channels UpperCAmelCase_ : int = embed_dim UpperCAmelCase_ : Optional[int] = num_heads UpperCAmelCase_ : Tuple = stride_kv UpperCAmelCase_ : Optional[Any] = depth UpperCAmelCase_ : Dict = cls_token UpperCAmelCase_ : Dict = attention_drop_rate UpperCAmelCase_ : Any = initializer_range UpperCAmelCase_ : List[str] = layer_norm_eps def A ( self : int ) -> List[str]: UpperCAmelCase_ : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ : Union[str, Any] = None if self.use_labels: UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size] , self.num_labels ) UpperCAmelCase_ : List[str] = self.get_config() return config, pixel_values, labels def A ( self : List[str] ) -> int: return CvtConfig( image_size=self.image_size , num_labels=self.num_labels , num_channels=self.num_channels , embed_dim=self.embed_dim , num_heads=self.num_heads , patch_sizes=self.patch_sizes , patch_padding=self.patch_padding , patch_stride=self.patch_stride , stride_kv=self.stride_kv , depth=self.depth , cls_token=self.cls_token , attention_drop_rate=self.attention_drop_rate , initializer_range=self.initializer_range , ) def A ( self : Dict , _A : List[Any] , _A : Tuple , _A : Optional[Any] ) -> List[str]: UpperCAmelCase_ : List[Any] = CvtModel(config=_A ) model.to(_A ) model.eval() UpperCAmelCase_ : Tuple = model(_A ) UpperCAmelCase_ : List[str] = (self.image_size, self.image_size) UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = image_size[0], image_size[1] for i in range(len(self.depth ) ): UpperCAmelCase_ : int = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) UpperCAmelCase_ : Optional[Any] = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dim[-1], height, width) ) def A ( self : Any , _A : int , _A : str , _A : Union[str, Any] ) -> Optional[int]: UpperCAmelCase_ : str = self.num_labels UpperCAmelCase_ : str = CvtForImageClassification(_A ) model.to(_A ) model.eval() UpperCAmelCase_ : int = model(_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A ( self : Dict ) -> Any: UpperCAmelCase_ : Union[str, Any] = self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Tuple = config_and_inputs UpperCAmelCase_ : Optional[int] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class snake_case__ ( UpperCamelCase , UpperCamelCase , unittest.TestCase): a_ = (CvtModel, CvtForImageClassification) if is_torch_available() else () a_ = ( {"feature-extraction": CvtModel, "image-classification": CvtForImageClassification} if is_torch_available() else {} ) a_ = False a_ = False a_ = False a_ = False a_ = False def A ( self : int ) -> List[str]: UpperCAmelCase_ : Optional[int] = CvtModelTester(self ) UpperCAmelCase_ : List[Any] = ConfigTester(self , config_class=_A , has_text_modality=_A , hidden_size=37 ) def A ( self : Any ) -> Dict: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def A ( self : int ) -> List[str]: return @unittest.skip(reason='''Cvt does not output attentions''' ) def A ( self : Optional[int] ) -> Optional[int]: pass @unittest.skip(reason='''Cvt does not use inputs_embeds''' ) def A ( self : Any ) -> Optional[Any]: pass @unittest.skip(reason='''Cvt does not support input and output embeddings''' ) def A ( self : List[Any] ) -> Any: pass def A ( self : int ) -> str: UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ : Tuple = model_class(_A ) UpperCAmelCase_ : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ : Tuple = [*signature.parameters.keys()] UpperCAmelCase_ : str = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _A ) def A ( self : Tuple ) -> int: UpperCAmelCase_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def A ( self : Dict ) -> List[str]: def check_hidden_states_output(_A : Dict , _A : str , _A : int ): UpperCAmelCase_ : str = model_class(_A ) model.to(_A ) model.eval() with torch.no_grad(): UpperCAmelCase_ : Union[str, Any] = model(**self._prepare_for_class(_A , _A ) ) UpperCAmelCase_ : Optional[Any] = outputs.hidden_states UpperCAmelCase_ : Any = len(self.model_tester.depth ) self.assertEqual(len(_A ) , _A ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.embed_dim[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ : Optional[Any] = True check_hidden_states_output(_A , _A , _A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase_ : Dict = True check_hidden_states_output(_A , _A , _A ) def A ( self : Union[str, Any] ) -> List[str]: UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_A ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def A ( self : List[Any] ) -> Optional[Any]: pass @slow def A ( self : Optional[int] ) -> int: for model_name in CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : Optional[Any] = CvtModel.from_pretrained(_A ) self.assertIsNotNone(_A ) def __UpperCAmelCase ( ) -> str: UpperCAmelCase_ : List[Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class snake_case__ ( unittest.TestCase): @cached_property def A ( self : Union[str, Any] ) -> Union[str, Any]: return AutoImageProcessor.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def A ( self : str ) -> str: UpperCAmelCase_ : str = CvtForImageClassification.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(_A ) UpperCAmelCase_ : Optional[int] = self.default_image_processor UpperCAmelCase_ : List[str] = prepare_img() UpperCAmelCase_ : List[Any] = image_processor(images=_A , return_tensors='''pt''' ).to(_A ) # forward pass with torch.no_grad(): UpperCAmelCase_ : Any = model(**_A ) # verify the logits UpperCAmelCase_ : Tuple = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , _A ) UpperCAmelCase_ : Union[str, Any] = torch.tensor([0.9_285, 0.9_015, -0.3_150] ).to(_A ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _A , atol=1e-4 ) )
304
0
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __A : List[str] = logging.get_logger(__name__) __A : Dict = { 'microsoft/focalnet-tiny': 'https://huggingface.co/microsoft/focalnet-tiny/resolve/main/config.json', } class _SCREAMING_SNAKE_CASE ( lowerCAmelCase__ , lowerCAmelCase__): _UpperCamelCase:Optional[int] = "focalnet" def __init__( self , _SCREAMING_SNAKE_CASE=224 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=96 , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=[192, 384, 768, 768] , _SCREAMING_SNAKE_CASE=[2, 2, 6, 2] , _SCREAMING_SNAKE_CASE=[2, 2, 2, 2] , _SCREAMING_SNAKE_CASE=[3, 3, 3, 3] , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=4.0 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=1E-4 , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=0.0_2 , _SCREAMING_SNAKE_CASE=1E-5 , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , **_SCREAMING_SNAKE_CASE , )-> Any: super().__init__(**_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =image_size lowerCamelCase_ =patch_size lowerCamelCase_ =num_channels lowerCamelCase_ =embed_dim lowerCamelCase_ =use_conv_embed lowerCamelCase_ =hidden_sizes lowerCamelCase_ =depths lowerCamelCase_ =focal_levels lowerCamelCase_ =focal_windows lowerCamelCase_ =hidden_act lowerCamelCase_ =mlp_ratio lowerCamelCase_ =hidden_dropout_prob lowerCamelCase_ =drop_path_rate lowerCamelCase_ =use_layerscale lowerCamelCase_ =layerscale_value lowerCamelCase_ =use_post_layernorm lowerCamelCase_ =use_post_layernorm_in_modulation lowerCamelCase_ =normalize_modulator lowerCamelCase_ =initializer_range lowerCamelCase_ =layer_norm_eps lowerCamelCase_ =encoder_stride lowerCamelCase_ =["""stem"""] + [f'stage{idx}' for idx in range(1 , len(self.depths ) + 1 )] lowerCamelCase_ , lowerCamelCase_ =get_aligned_output_features_output_indices( out_features=_SCREAMING_SNAKE_CASE , out_indices=_SCREAMING_SNAKE_CASE , stage_names=self.stage_names )
367
import numpy as np import pandas as pd from sklearn.preprocessing import MinMaxScaler from tensorflow.keras.layers import LSTM, Dense from tensorflow.keras.models import Sequential if __name__ == "__main__": __A : Optional[int] = pd.read_csv('sample_data.csv', header=None) __A : Optional[Any] = df.shape[:1][0] # If you're using some other dataset input the target column __A : Tuple = df.iloc[:, 1:2] __A : Tuple = actual_data.values.reshape(len_data, 1) __A : str = MinMaxScaler().fit_transform(actual_data) __A : List[str] = 10 __A : Any = 5 __A : Optional[Any] = 20 __A : List[str] = len_data - periods * look_back __A : str = actual_data[:division] __A : int = actual_data[division - look_back :] __A, __A : List[str] = [], [] __A, __A : Union[str, Any] = [], [] for i in range(0, len(train_data) - forward_days - look_back + 1): train_x.append(train_data[i : i + look_back]) train_y.append(train_data[i + look_back : i + look_back + forward_days]) for i in range(0, len(test_data) - forward_days - look_back + 1): test_x.append(test_data[i : i + look_back]) test_y.append(test_data[i + look_back : i + look_back + forward_days]) __A : List[Any] = np.array(train_x) __A : Tuple = np.array(test_x) __A : Any = np.array([list(i.ravel()) for i in train_y]) __A : List[Any] = np.array([list(i.ravel()) for i in test_y]) __A : Union[str, Any] = Sequential() model.add(LSTM(1_28, input_shape=(look_back, 1), return_sequences=True)) model.add(LSTM(64, input_shape=(1_28, 1))) model.add(Dense(forward_days)) model.compile(loss='mean_squared_error', optimizer='adam') __A : Tuple = model.fit( x_train, y_train, epochs=1_50, verbose=1, shuffle=True, batch_size=4 ) __A : Optional[int] = model.predict(x_test)
49
0
from abc import ABC, abstractmethod from typing import Optional, Union from .. import Dataset, DatasetDict, Features, IterableDataset, IterableDatasetDict, NamedSplit from ..utils.typing import NestedDataStructureLike, PathLike class _a ( A__ ): def __init__( self: List[Any] , UpperCamelCase_: Optional[NestedDataStructureLike[PathLike]] = None , UpperCamelCase_: Optional[NamedSplit] = None , UpperCamelCase_: Optional[Features] = None , UpperCamelCase_: str = None , UpperCamelCase_: bool = False , UpperCamelCase_: bool = False , UpperCamelCase_: Optional[int] = None , **UpperCamelCase_: str , ) -> Union[str, Any]: """simple docstring""" lowercase__ = path_or_paths lowercase__ = split if split or isinstance(UpperCamelCase_ , UpperCamelCase_ ) else "train" lowercase__ = features lowercase__ = cache_dir lowercase__ = keep_in_memory lowercase__ = streaming lowercase__ = num_proc lowercase__ = kwargs @abstractmethod def lowerCamelCase_ ( self: Any ) -> Any: """simple docstring""" pass class _a ( A__ ): def __init__( self: str , UpperCamelCase_: Optional[Features] = None , UpperCamelCase_: str = None , UpperCamelCase_: bool = False , UpperCamelCase_: bool = False , UpperCamelCase_: Optional[int] = None , **UpperCamelCase_: List[str] , ) -> str: """simple docstring""" lowercase__ = features lowercase__ = cache_dir lowercase__ = keep_in_memory lowercase__ = streaming lowercase__ = num_proc lowercase__ = kwargs @abstractmethod def lowerCamelCase_ ( self: Optional[int] ) -> Any: """simple docstring""" pass
110
from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, flip_channel_order, get_resize_output_image_size, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, is_vision_available, logging if is_vision_available(): import PIL if is_torch_available(): import torch lowerCamelCase : Any =logging.get_logger(__name__) class __a ( A__ ): _lowerCAmelCase : List[str] = ['''pixel_values'''] def __init__( self : List[str] , SCREAMING_SNAKE_CASE : bool = True , SCREAMING_SNAKE_CASE : Dict[str, int] = None , SCREAMING_SNAKE_CASE : PILImageResampling = PILImageResampling.BILINEAR , SCREAMING_SNAKE_CASE : bool = True , SCREAMING_SNAKE_CASE : Union[int, float] = 1 / 2_55 , SCREAMING_SNAKE_CASE : bool = True , SCREAMING_SNAKE_CASE : Dict[str, int] = None , SCREAMING_SNAKE_CASE : bool = True , **SCREAMING_SNAKE_CASE : Tuple , ): '''simple docstring''' super().__init__(**SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[str] = size if size is not None else {"shortest_edge": 2_24} UpperCamelCase__ : Any = get_size_dict(SCREAMING_SNAKE_CASE , default_to_square=SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[Any] = crop_size if crop_size is not None else {"height": 2_56, "width": 2_56} UpperCamelCase__ : int = get_size_dict(SCREAMING_SNAKE_CASE , param_name="crop_size" ) UpperCamelCase__ : Dict = do_resize UpperCamelCase__ : List[str] = size UpperCamelCase__ : int = resample UpperCamelCase__ : Optional[int] = do_rescale UpperCamelCase__ : List[Any] = rescale_factor UpperCamelCase__ : Union[str, Any] = do_center_crop UpperCamelCase__ : int = crop_size UpperCamelCase__ : Optional[int] = do_flip_channel_order def __lowercase ( self : Optional[Any] , SCREAMING_SNAKE_CASE : np.ndarray , SCREAMING_SNAKE_CASE : Dict[str, int] , SCREAMING_SNAKE_CASE : PILImageResampling = PIL.Image.BILINEAR , SCREAMING_SNAKE_CASE : Optional[Union[str, ChannelDimension]] = None , **SCREAMING_SNAKE_CASE : Optional[Any] , ): '''simple docstring''' UpperCamelCase__ : Union[str, Any] = get_size_dict(SCREAMING_SNAKE_CASE , default_to_square=SCREAMING_SNAKE_CASE ) if "shortest_edge" not in size: raise ValueError(F'The `size` dictionary must contain the key `shortest_edge`. Got {size.keys()}' ) UpperCamelCase__ : Any = get_resize_output_image_size(SCREAMING_SNAKE_CASE , size=size["shortest_edge"] , default_to_square=SCREAMING_SNAKE_CASE ) return resize(SCREAMING_SNAKE_CASE , size=SCREAMING_SNAKE_CASE , resample=SCREAMING_SNAKE_CASE , data_format=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) def __lowercase ( self : Optional[int] , SCREAMING_SNAKE_CASE : np.ndarray , SCREAMING_SNAKE_CASE : Dict[str, int] , SCREAMING_SNAKE_CASE : Optional[Union[str, ChannelDimension]] = None , **SCREAMING_SNAKE_CASE : Optional[Any] , ): '''simple docstring''' UpperCamelCase__ : List[Any] = get_size_dict(SCREAMING_SNAKE_CASE ) if "height" not in size or "width" not in size: raise ValueError(F'The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}' ) return center_crop(SCREAMING_SNAKE_CASE , size=(size["height"], size["width"]) , data_format=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) def __lowercase ( self : int , SCREAMING_SNAKE_CASE : np.ndarray , SCREAMING_SNAKE_CASE : Union[int, float] , SCREAMING_SNAKE_CASE : Optional[Union[str, ChannelDimension]] = None , **SCREAMING_SNAKE_CASE : Union[str, Any] , ): '''simple docstring''' return rescale(SCREAMING_SNAKE_CASE , scale=SCREAMING_SNAKE_CASE , data_format=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) def __lowercase ( self : Optional[int] , SCREAMING_SNAKE_CASE : np.ndarray , SCREAMING_SNAKE_CASE : Optional[Union[str, ChannelDimension]] = None ): '''simple docstring''' return flip_channel_order(SCREAMING_SNAKE_CASE , data_format=SCREAMING_SNAKE_CASE ) def __lowercase ( self : Optional[Any] , SCREAMING_SNAKE_CASE : ImageInput , SCREAMING_SNAKE_CASE : bool = None , SCREAMING_SNAKE_CASE : Dict[str, int] = None , SCREAMING_SNAKE_CASE : PILImageResampling = None , SCREAMING_SNAKE_CASE : bool = None , SCREAMING_SNAKE_CASE : float = None , SCREAMING_SNAKE_CASE : bool = None , SCREAMING_SNAKE_CASE : Dict[str, int] = None , SCREAMING_SNAKE_CASE : bool = None , SCREAMING_SNAKE_CASE : Optional[Union[str, TensorType]] = None , SCREAMING_SNAKE_CASE : ChannelDimension = ChannelDimension.FIRST , **SCREAMING_SNAKE_CASE : Dict , ): '''simple docstring''' UpperCamelCase__ : List[str] = do_resize if do_resize is not None else self.do_resize UpperCamelCase__ : List[str] = resample if resample is not None else self.resample UpperCamelCase__ : Any = do_rescale if do_rescale is not None else self.do_rescale UpperCamelCase__ : Tuple = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCamelCase__ : Dict = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCamelCase__ : Any = ( do_flip_channel_order if do_flip_channel_order is not None else self.do_flip_channel_order ) UpperCamelCase__ : Optional[int] = size if size is not None else self.size UpperCamelCase__ : List[str] = get_size_dict(SCREAMING_SNAKE_CASE , default_to_square=SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Any = crop_size if crop_size is not None else self.crop_size UpperCamelCase__ : Union[str, Any] = get_size_dict(SCREAMING_SNAKE_CASE , param_name="crop_size" ) UpperCamelCase__ : int = make_list_of_images(SCREAMING_SNAKE_CASE ) if not valid_images(SCREAMING_SNAKE_CASE ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) # All transformations expect numpy arrays. UpperCamelCase__ : Tuple = [to_numpy_array(SCREAMING_SNAKE_CASE ) for image in images] if do_resize: UpperCamelCase__ : Optional[int] = [self.resize(image=SCREAMING_SNAKE_CASE , size=SCREAMING_SNAKE_CASE , resample=SCREAMING_SNAKE_CASE ) for image in images] if do_center_crop: UpperCamelCase__ : Any = [self.center_crop(image=SCREAMING_SNAKE_CASE , size=SCREAMING_SNAKE_CASE ) for image in images] if do_rescale: UpperCamelCase__ : str = [self.rescale(image=SCREAMING_SNAKE_CASE , scale=SCREAMING_SNAKE_CASE ) for image in images] # the pretrained checkpoints assume images are BGR, not RGB if do_flip_channel_order: UpperCamelCase__ : Any = [self.flip_channel_order(image=SCREAMING_SNAKE_CASE ) for image in images] UpperCamelCase__ : Optional[int] = [to_channel_dimension_format(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for image in images] UpperCamelCase__ : Optional[int] = {"pixel_values": images} return BatchFeature(data=SCREAMING_SNAKE_CASE , tensor_type=SCREAMING_SNAKE_CASE ) def __lowercase ( self : Dict , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : List[Tuple] = None ): '''simple docstring''' UpperCamelCase__ : Optional[int] = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(SCREAMING_SNAKE_CASE ) != len(SCREAMING_SNAKE_CASE ): raise ValueError( "Make sure that you pass in as many target sizes as the batch dimension of the logits" ) if is_torch_tensor(SCREAMING_SNAKE_CASE ): UpperCamelCase__ : Optional[Any] = target_sizes.numpy() UpperCamelCase__ : Any = [] for idx in range(len(SCREAMING_SNAKE_CASE ) ): UpperCamelCase__ : Optional[Any] = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode="bilinear" , align_corners=SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[str] = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(SCREAMING_SNAKE_CASE ) else: UpperCamelCase__ : List[str] = logits.argmax(dim=1 ) UpperCamelCase__ : Dict = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
189
0
'''simple docstring''' from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_OBJECT_DETECTION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING lowercase__ = logging.get_logger(__name__) lowercase__ = Dict[str, Any] lowercase__ = List[Prediction] @add_end_docstrings(__SCREAMING_SNAKE_CASE ) class snake_case__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" def __init__( self : str , *UpperCamelCase__ : List[str] , **UpperCamelCase__ : Any ) -> str: """simple docstring""" super().__init__(*_snake_case , **_snake_case ) if self.framework == "tf": raise ValueError(f'The {self.__class__} is only available in PyTorch.' ) requires_backends(self , '''vision''' ) self.check_model_type( dict(MODEL_FOR_OBJECT_DETECTION_MAPPING.items() + MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING.items() ) ) def lowerCAmelCase ( self : int , **UpperCamelCase__ : Tuple ) -> List[Any]: """simple docstring""" snake_case : Optional[int] = {} if "threshold" in kwargs: snake_case : List[Any] = kwargs['''threshold'''] return {}, {}, postprocess_kwargs def __call__( self : Optional[int] , *UpperCamelCase__ : List[Any] , **UpperCamelCase__ : str ) -> Optional[Any]: """simple docstring""" return super().__call__(*_snake_case , **_snake_case ) def lowerCAmelCase ( self : Dict , UpperCamelCase__ : Dict ) -> int: """simple docstring""" snake_case : Optional[int] = load_image(_snake_case ) snake_case : Any = torch.IntTensor([[image.height, image.width]] ) snake_case : Optional[Any] = self.image_processor(images=[image] , return_tensors='''pt''' ) if self.tokenizer is not None: snake_case : Optional[Any] = self.tokenizer(text=inputs['''words'''] , boxes=inputs['''boxes'''] , return_tensors='''pt''' ) snake_case : List[Any] = target_size return inputs def lowerCAmelCase ( self : int , UpperCamelCase__ : Tuple ) -> List[str]: """simple docstring""" snake_case : Optional[int] = model_inputs.pop('''target_size''' ) snake_case : Dict = self.model(**_snake_case ) snake_case : Optional[int] = outputs.__class__({'''target_size''': target_size, **outputs} ) if self.tokenizer is not None: snake_case : Union[str, Any] = model_inputs['''bbox'''] return model_outputs def lowerCAmelCase ( self : str , UpperCamelCase__ : Any , UpperCamelCase__ : List[str]=0.9 ) -> Optional[int]: """simple docstring""" snake_case : str = model_outputs['''target_size'''] if self.tokenizer is not None: # This is a LayoutLMForTokenClassification variant. # The OCR got the boxes and the model classified the words. snake_case ,snake_case : List[Any] = target_size[0].tolist() def unnormalize(UpperCamelCase__ : Optional[int] ): return self._get_bounding_box( torch.Tensor( [ (width * bbox[0] / 1000), (height * bbox[1] / 1000), (width * bbox[2] / 1000), (height * bbox[3] / 1000), ] ) ) snake_case ,snake_case : Optional[int] = model_outputs['''logits'''].squeeze(0 ).softmax(dim=-1 ).max(dim=-1 ) snake_case : Tuple = [self.model.config.idalabel[prediction] for prediction in classes.tolist()] snake_case : Dict = [unnormalize(_snake_case ) for bbox in model_outputs['''bbox'''].squeeze(0 )] snake_case : Tuple = ['''score''', '''label''', '''box'''] snake_case : Any = [dict(zip(_snake_case , _snake_case ) ) for vals in zip(scores.tolist() , _snake_case , _snake_case ) if vals[0] > threshold] else: # This is a regular ForObjectDetectionModel snake_case : Tuple = self.image_processor.post_process_object_detection(_snake_case , _snake_case , _snake_case ) snake_case : Optional[int] = raw_annotations[0] snake_case : Optional[int] = raw_annotation['''scores'''] snake_case : Dict = raw_annotation['''labels'''] snake_case : Tuple = raw_annotation['''boxes'''] snake_case : Tuple = scores.tolist() snake_case : List[Any] = [self.model.config.idalabel[label.item()] for label in labels] snake_case : int = [self._get_bounding_box(_snake_case ) for box in boxes] # {"scores": [...], ...} --> [{"score":x, ...}, ...] snake_case : Dict = ['''score''', '''label''', '''box'''] snake_case : Dict = [ dict(zip(_snake_case , _snake_case ) ) for vals in zip(raw_annotation['''scores'''] , raw_annotation['''labels'''] , raw_annotation['''boxes'''] ) ] return annotation def lowerCAmelCase ( self : Union[str, Any] , UpperCamelCase__ : "torch.Tensor" ) -> Union[str, Any]: """simple docstring""" if self.framework != "pt": raise ValueError('''The ObjectDetectionPipeline is only available in PyTorch.''' ) snake_case ,snake_case ,snake_case ,snake_case : str = box.int().tolist() snake_case : Optional[int] = { '''xmin''': xmin, '''ymin''': ymin, '''xmax''': xmax, '''ymax''': ymax, } return bbox
357
'''simple docstring''' class snake_case__ : """simple docstring""" def __init__( self : List[Any] , UpperCamelCase__ : list[int] ) -> None: """simple docstring""" snake_case : List[Any] = len(UpperCamelCase__ ) snake_case : Tuple = [0] * len_array if len_array > 0: snake_case : List[str] = array[0] for i in range(1 , UpperCamelCase__ ): snake_case : Tuple = self.prefix_sum[i - 1] + array[i] def lowerCAmelCase ( self : str , UpperCamelCase__ : int , UpperCamelCase__ : int ) -> int: """simple docstring""" if start == 0: return self.prefix_sum[end] return self.prefix_sum[end] - self.prefix_sum[start - 1] def lowerCAmelCase ( self : str , UpperCamelCase__ : int ) -> bool: """simple docstring""" snake_case : int = {0} for sum_item in self.prefix_sum: if sum_item - target_sum in sums: return True sums.add(UpperCamelCase__ ) return False if __name__ == "__main__": import doctest doctest.testmod()
83
0
_snake_case = { "Pillow": "Pillow", "accelerate": "accelerate>=0.11.0", "compel": "compel==0.1.8", "black": "black~=23.1", "datasets": "datasets", "filelock": "filelock", "flax": "flax>=0.4.1", "hf-doc-builder": "hf-doc-builder>=0.3.0", "huggingface-hub": "huggingface-hub>=0.13.2", "requests-mock": "requests-mock==1.10.0", "importlib_metadata": "importlib_metadata", "invisible-watermark": "invisible-watermark", "isort": "isort>=5.5.4", "jax": "jax>=0.2.8,!=0.3.2", "jaxlib": "jaxlib>=0.1.65", "Jinja2": "Jinja2", "k-diffusion": "k-diffusion>=0.0.12", "torchsde": "torchsde", "note_seq": "note_seq", "librosa": "librosa", "numpy": "numpy", "omegaconf": "omegaconf", "parameterized": "parameterized", "protobuf": "protobuf>=3.20.3,<4", "pytest": "pytest", "pytest-timeout": "pytest-timeout", "pytest-xdist": "pytest-xdist", "ruff": "ruff>=0.0.241", "safetensors": "safetensors", "sentencepiece": "sentencepiece>=0.1.91,!=0.1.92", "scipy": "scipy", "onnx": "onnx", "regex": "regex!=2019.12.17", "requests": "requests", "tensorboard": "tensorboard", "torch": "torch>=1.4", "torchvision": "torchvision", "transformers": "transformers>=4.25.1", "urllib3": "urllib3<=2.0.0", }
36
import pytest from datasets.utils.sharding import _distribute_shards, _number_of_shards_in_gen_kwargs, _split_gen_kwargs @pytest.mark.parametrize( "kwargs, expected" , [ ({"num_shards": 0, "max_num_jobs": 1}, []), ({"num_shards": 10, "max_num_jobs": 1}, [range(10 )]), ({"num_shards": 10, "max_num_jobs": 10}, [range(_lowerCamelCase , i + 1 ) for i in range(10 )]), ({"num_shards": 1, "max_num_jobs": 10}, [range(1 )]), ({"num_shards": 10, "max_num_jobs": 3}, [range(0 , 4 ), range(4 , 7 ), range(7 , 10 )]), ({"num_shards": 3, "max_num_jobs": 10}, [range(0 , 1 ), range(1 , 2 ), range(2 , 3 )]), ] , ) def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[Any] = _distribute_shards(**_lowerCamelCase ) assert out == expected @pytest.mark.parametrize( "gen_kwargs, max_num_jobs, expected" , [ ({"foo": 0}, 10, [{"foo": 0}]), ({"shards": [0, 1, 2, 3]}, 1, [{"shards": [0, 1, 2, 3]}]), ({"shards": [0, 1, 2, 3]}, 4, [{"shards": [0]}, {"shards": [1]}, {"shards": [2]}, {"shards": [3]}]), ({"shards": [0, 1]}, 4, [{"shards": [0]}, {"shards": [1]}]), ({"shards": [0, 1, 2, 3]}, 2, [{"shards": [0, 1]}, {"shards": [2, 3]}]), ] , ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Optional[int] = _split_gen_kwargs(_lowerCamelCase , _lowerCamelCase ) assert out == expected @pytest.mark.parametrize( "gen_kwargs, expected" , [ ({"foo": 0}, 1), ({"shards": [0]}, 1), ({"shards": [0, 1, 2, 3]}, 4), ({"shards": [0, 1, 2, 3], "foo": 0}, 4), ({"shards": [0, 1, 2, 3], "other": (0, 1)}, 4), ({"shards": [0, 1, 2, 3], "shards2": [0, 1]}, RuntimeError), ] , ) def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if expected is RuntimeError: with pytest.raises(_lowerCamelCase ): _number_of_shards_in_gen_kwargs(_lowerCamelCase ) else: _lowerCAmelCase : Optional[int] = _number_of_shards_in_gen_kwargs(_lowerCamelCase ) assert out == expected
36
1
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowercase = logging.get_logger(__name__) class __lowercase ( A, A ): '''simple docstring''' _A : Any = '''maskformer-swin''' _A : Union[str, Any] = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self : Optional[int] , _a : List[Any]=224 , _a : Dict=4 , _a : List[Any]=3 , _a : List[str]=96 , _a : Any=[2, 2, 6, 2] , _a : Tuple=[3, 6, 12, 24] , _a : Union[str, Any]=7 , _a : int=4.0 , _a : Tuple=True , _a : Tuple=0.0 , _a : List[str]=0.0 , _a : Optional[int]=0.1 , _a : Dict="gelu" , _a : Tuple=False , _a : Dict=0.02 , _a : Union[str, Any]=1E-5 , _a : str=None , _a : Dict=None , **_a : int , ): super().__init__(**_a ) UpperCamelCase__ = image_size UpperCamelCase__ = patch_size UpperCamelCase__ = num_channels UpperCamelCase__ = embed_dim UpperCamelCase__ = depths UpperCamelCase__ = len(_a ) UpperCamelCase__ = num_heads UpperCamelCase__ = window_size UpperCamelCase__ = mlp_ratio UpperCamelCase__ = qkv_bias UpperCamelCase__ = hidden_dropout_prob UpperCamelCase__ = attention_probs_dropout_prob UpperCamelCase__ = drop_path_rate UpperCamelCase__ = hidden_act UpperCamelCase__ = use_absolute_embeddings UpperCamelCase__ = layer_norm_eps UpperCamelCase__ = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model UpperCamelCase__ = int(embed_dim * 2 ** (len(_a ) - 1) ) UpperCamelCase__ = ['''stem'''] + [F"""stage{idx}""" for idx in range(1 , len(_a ) + 1 )] UpperCamelCase__ , UpperCamelCase__ = get_aligned_output_features_output_indices( out_features=_a , out_indices=_a , stage_names=self.stage_names )
35
import argparse from pathlib import Path from typing import Dict, OrderedDict, Tuple import torch from audiocraft.models import MusicGen from transformers import ( AutoFeatureExtractor, AutoTokenizer, EncodecModel, MusicgenDecoderConfig, MusicgenForConditionalGeneration, MusicgenProcessor, TaEncoderModel, ) from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM from transformers.utils import logging logging.set_verbosity_info() lowercase = logging.get_logger(__name__) lowercase = ["""model.decoder.embed_positions.weights"""] def lowerCamelCase_ ( UpperCamelCase__ : Any ): '''simple docstring''' if "emb" in name: UpperCamelCase__ = name.replace('''emb''', '''model.decoder.embed_tokens''' ) if "transformer" in name: UpperCamelCase__ = name.replace('''transformer''', '''model.decoder''' ) if "cross_attention" in name: UpperCamelCase__ = name.replace('''cross_attention''', '''encoder_attn''' ) if "linear1" in name: UpperCamelCase__ = name.replace('''linear1''', '''fc1''' ) if "linear2" in name: UpperCamelCase__ = name.replace('''linear2''', '''fc2''' ) if "norm1" in name: UpperCamelCase__ = name.replace('''norm1''', '''self_attn_layer_norm''' ) if "norm_cross" in name: UpperCamelCase__ = name.replace('''norm_cross''', '''encoder_attn_layer_norm''' ) if "norm2" in name: UpperCamelCase__ = name.replace('''norm2''', '''final_layer_norm''' ) if "out_norm" in name: UpperCamelCase__ = name.replace('''out_norm''', '''model.decoder.layer_norm''' ) if "linears" in name: UpperCamelCase__ = name.replace('''linears''', '''lm_heads''' ) if "condition_provider.conditioners.description.output_proj" in name: UpperCamelCase__ = name.replace('''condition_provider.conditioners.description.output_proj''', '''enc_to_dec_proj''' ) return name def lowerCamelCase_ ( UpperCamelCase__ : OrderedDict, UpperCamelCase__ : int ): '''simple docstring''' UpperCamelCase__ = list(state_dict.keys() ) UpperCamelCase__ = {} for key in keys: UpperCamelCase__ = state_dict.pop(UpperCamelCase__ ) UpperCamelCase__ = rename_keys(UpperCamelCase__ ) if "in_proj_weight" in key: # split fused qkv proj UpperCamelCase__ = val[:hidden_size, :] UpperCamelCase__ = val[hidden_size : 2 * hidden_size, :] UpperCamelCase__ = val[-hidden_size:, :] elif "enc_to_dec_proj" in key: UpperCamelCase__ = val else: UpperCamelCase__ = val return state_dict, enc_dec_proj_state_dict def lowerCamelCase_ ( UpperCamelCase__ : str ): '''simple docstring''' if checkpoint == "small": # default config values UpperCamelCase__ = 1024 UpperCamelCase__ = 24 UpperCamelCase__ = 16 elif checkpoint == "medium": UpperCamelCase__ = 1536 UpperCamelCase__ = 48 UpperCamelCase__ = 24 elif checkpoint == "large": UpperCamelCase__ = 2048 UpperCamelCase__ = 48 UpperCamelCase__ = 32 else: raise ValueError(F"""Checkpoint should be one of `['small', 'medium', 'large']`, got {checkpoint}.""" ) UpperCamelCase__ = MusicgenDecoderConfig( hidden_size=UpperCamelCase__, ffn_dim=hidden_size * 4, num_hidden_layers=UpperCamelCase__, num_attention_heads=UpperCamelCase__, ) return config @torch.no_grad() def lowerCamelCase_ ( UpperCamelCase__ : int, UpperCamelCase__ : Any=None, UpperCamelCase__ : Optional[Any]=None, UpperCamelCase__ : List[Any]="cpu" ): '''simple docstring''' UpperCamelCase__ = MusicGen.get_pretrained(UpperCamelCase__, device=UpperCamelCase__ ) UpperCamelCase__ = decoder_config_from_checkpoint(UpperCamelCase__ ) UpperCamelCase__ = fairseq_model.lm.state_dict() UpperCamelCase__ , UpperCamelCase__ = rename_state_dict( UpperCamelCase__, hidden_size=decoder_config.hidden_size ) UpperCamelCase__ = TaEncoderModel.from_pretrained('''t5-base''' ) UpperCamelCase__ = EncodecModel.from_pretrained('''facebook/encodec_32khz''' ) UpperCamelCase__ = MusicgenForCausalLM(UpperCamelCase__ ).eval() # load all decoder weights - expect that we'll be missing embeddings and enc-dec projection UpperCamelCase__ , UpperCamelCase__ = decoder.load_state_dict(UpperCamelCase__, strict=UpperCamelCase__ ) for key in missing_keys.copy(): if key.startswith(('''text_encoder''', '''audio_encoder''') ) or key in EXPECTED_MISSING_KEYS: missing_keys.remove(UpperCamelCase__ ) if len(UpperCamelCase__ ) > 0: raise ValueError(F"""Missing key(s) in state_dict: {missing_keys}""" ) if len(UpperCamelCase__ ) > 0: raise ValueError(F"""Unexpected key(s) in state_dict: {unexpected_keys}""" ) # init the composite model UpperCamelCase__ = MusicgenForConditionalGeneration(text_encoder=UpperCamelCase__, audio_encoder=UpperCamelCase__, decoder=UpperCamelCase__ ) # load the pre-trained enc-dec projection (from the decoder state dict) model.enc_to_dec_proj.load_state_dict(UpperCamelCase__ ) # check we can do a forward pass UpperCamelCase__ = torch.arange(0, 8, dtype=torch.long ).reshape(2, -1 ) UpperCamelCase__ = input_ids.reshape(2 * 4, -1 ) with torch.no_grad(): UpperCamelCase__ = model(input_ids=UpperCamelCase__, decoder_input_ids=UpperCamelCase__ ).logits if logits.shape != (8, 1, 2048): raise ValueError('''Incorrect shape for logits''' ) # now construct the processor UpperCamelCase__ = AutoTokenizer.from_pretrained('''t5-base''' ) UpperCamelCase__ = AutoFeatureExtractor.from_pretrained('''facebook/encodec_32khz''', padding_side='''left''' ) UpperCamelCase__ = MusicgenProcessor(feature_extractor=UpperCamelCase__, tokenizer=UpperCamelCase__ ) # set the appropriate bos/pad token ids UpperCamelCase__ = 2048 UpperCamelCase__ = 2048 # set other default generation config params UpperCamelCase__ = int(30 * audio_encoder.config.frame_rate ) UpperCamelCase__ = True UpperCamelCase__ = 3.0 if pytorch_dump_folder is not None: Path(UpperCamelCase__ ).mkdir(exist_ok=UpperCamelCase__ ) logger.info(F"""Saving model {checkpoint} to {pytorch_dump_folder}""" ) model.save_pretrained(UpperCamelCase__ ) processor.save_pretrained(UpperCamelCase__ ) if repo_id: logger.info(F"""Pushing model {checkpoint} to {repo_id}""" ) model.push_to_hub(UpperCamelCase__ ) processor.push_to_hub(UpperCamelCase__ ) if __name__ == "__main__": lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint""", default="""small""", type=str, help="""Checkpoint size of the MusicGen model you'd like to convert. Can be one of: `['small', 'medium', 'large']`.""", ) parser.add_argument( """--pytorch_dump_folder""", required=True, default=None, type=str, help="""Path to the output PyTorch model directory.""", ) parser.add_argument( """--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub.""" ) parser.add_argument( """--device""", default="""cpu""", type=str, help="""Torch device to run the conversion, either cpu or cuda.""" ) lowercase = parser.parse_args() convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
35
1
import fire from utils import calculate_rouge, save_json def A ( a_ ,a_ ,a_=None ,**a_ ) -> Tuple: __UpperCamelCase : Dict =[x.strip() for x in open(a_ ).readlines()] __UpperCamelCase : str =[x.strip() for x in open(a_ ).readlines()][: len(a_ )] __UpperCamelCase : Union[str, Any] =calculate_rouge(a_ ,a_ ,**a_ ) if save_path is not None: save_json(a_ ,a_ ,indent=a_ ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
71
"""simple docstring""" import itertools from dataclasses import dataclass from typing import List, Optional import pyarrow as pa import pyarrow.parquet as pq import datasets from datasets.table import table_cast __lowercase = datasets.utils.logging.get_logger(__name__) @dataclass class _A ( datasets.BuilderConfig ): """simple docstring""" UpperCAmelCase : int = 1_0_0_0_0 UpperCAmelCase : Optional[List[str]] = None UpperCAmelCase : Optional[datasets.Features] = None class _A ( datasets.ArrowBasedBuilder ): """simple docstring""" UpperCAmelCase : str = ParquetConfig def __snake_case ( self : Tuple): return datasets.DatasetInfo(features=self.config.features) def __snake_case ( self : List[Any] , __UpperCAmelCase : str): if not self.config.data_files: raise ValueError(f'''At least one data file must be specified, but got data_files={self.config.data_files}''') a : str = dl_manager.download_and_extract(self.config.data_files) if isinstance(__UpperCAmelCase , (str, list, tuple)): a : Dict = data_files if isinstance(__UpperCAmelCase , __UpperCAmelCase): a : str = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive a : List[Any] = [dl_manager.iter_files(__UpperCAmelCase) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"files": files})] a : Dict = [] for split_name, files in data_files.items(): if isinstance(__UpperCAmelCase , __UpperCAmelCase): a : Optional[int] = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive a : Tuple = [dl_manager.iter_files(__UpperCAmelCase) for file in files] # Infer features is they are stoed in the arrow schema if self.info.features is None: for file in itertools.chain.from_iterable(__UpperCAmelCase): with open(__UpperCAmelCase , "rb") as f: a : Tuple = datasets.Features.from_arrow_schema(pq.read_schema(__UpperCAmelCase)) break splits.append(datasets.SplitGenerator(name=__UpperCAmelCase , gen_kwargs={"files": files})) return splits def __snake_case ( self : List[str] , __UpperCAmelCase : pa.Table): if self.info.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example a : Optional[int] = table_cast(__UpperCAmelCase , self.info.features.arrow_schema) return pa_table def __snake_case ( self : Union[str, Any] , __UpperCAmelCase : int): a : Tuple = self.info.features.arrow_schema if self.info.features is not None else None if self.info.features is not None and self.config.columns is not None: if sorted(field.name for field in schema) != sorted(self.config.columns): raise ValueError( f'''Tried to load parquet data with columns \'{self.config.columns}\' with mismatching features \'{self.info.features}\'''') for file_idx, file in enumerate(itertools.chain.from_iterable(__UpperCAmelCase)): with open(__UpperCAmelCase , "rb") as f: a : Tuple = pq.ParquetFile(__UpperCAmelCase) try: for batch_idx, record_batch in enumerate( parquet_file.iter_batches(batch_size=self.config.batch_size , columns=self.config.columns)): a : Optional[Any] = pa.Table.from_batches([record_batch]) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield f'''{file_idx}_{batch_idx}''', self._cast_table(__UpperCAmelCase) except ValueError as e: logger.error(f'''Failed to read file \'{file}\' with error {type(__UpperCAmelCase)}: {e}''') raise
40
0
'''simple docstring''' import contextlib import copy import random from typing import Any, Dict, Iterable, Optional, Union import numpy as np import torch from .utils import deprecate, is_transformers_available if is_transformers_available(): import transformers def _UpperCAmelCase ( _UpperCamelCase : int ) -> str: random.seed(_UpperCamelCase ) np.random.seed(_UpperCamelCase ) torch.manual_seed(_UpperCamelCase ) torch.cuda.manual_seed_all(_UpperCamelCase ) # ^^ safe to call this function even if cuda is not available class __UpperCAmelCase : def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 0.9_999 , _SCREAMING_SNAKE_CASE = 0.0 , _SCREAMING_SNAKE_CASE = 0 , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = 1.0 , _SCREAMING_SNAKE_CASE = 2 / 3 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , ) -> Optional[Any]: if isinstance(_SCREAMING_SNAKE_CASE , torch.nn.Module ): A_ = ( '''Passing a `torch.nn.Module` to `ExponentialMovingAverage` is deprecated. ''' '''Please pass the parameters of the module instead.''' ) deprecate( '''passing a `torch.nn.Module` to `ExponentialMovingAverage`''' , '''1.0.0''' , _SCREAMING_SNAKE_CASE , standard_warn=_SCREAMING_SNAKE_CASE , ) A_ = parameters.parameters() # set use_ema_warmup to True if a torch.nn.Module is passed for backwards compatibility A_ = True if kwargs.get('''max_value''' , _SCREAMING_SNAKE_CASE ) is not None: A_ = '''The `max_value` argument is deprecated. Please use `decay` instead.''' deprecate('''max_value''' , '''1.0.0''' , _SCREAMING_SNAKE_CASE , standard_warn=_SCREAMING_SNAKE_CASE ) A_ = kwargs['''max_value'''] if kwargs.get('''min_value''' , _SCREAMING_SNAKE_CASE ) is not None: A_ = '''The `min_value` argument is deprecated. Please use `min_decay` instead.''' deprecate('''min_value''' , '''1.0.0''' , _SCREAMING_SNAKE_CASE , standard_warn=_SCREAMING_SNAKE_CASE ) A_ = kwargs['''min_value'''] A_ = list(_SCREAMING_SNAKE_CASE ) A_ = [p.clone().detach() for p in parameters] if kwargs.get('''device''' , _SCREAMING_SNAKE_CASE ) is not None: A_ = '''The `device` argument is deprecated. Please use `to` instead.''' deprecate('''device''' , '''1.0.0''' , _SCREAMING_SNAKE_CASE , standard_warn=_SCREAMING_SNAKE_CASE ) self.to(device=kwargs['''device'''] ) A_ = None A_ = decay A_ = min_decay A_ = update_after_step A_ = use_ema_warmup A_ = inv_gamma A_ = power A_ = 0 A_ = None # set in `step()` A_ = model_cls A_ = model_config @classmethod def __A ( cls , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> "EMAModel": A_ ,A_ = model_cls.load_config(_SCREAMING_SNAKE_CASE , return_unused_kwargs=_SCREAMING_SNAKE_CASE ) A_ = model_cls.from_pretrained(_SCREAMING_SNAKE_CASE ) A_ = cls(model.parameters() , model_cls=_SCREAMING_SNAKE_CASE , model_config=model.config ) ema_model.load_state_dict(_SCREAMING_SNAKE_CASE ) return ema_model def __A ( self , _SCREAMING_SNAKE_CASE ) -> int: if self.model_cls is None: raise ValueError('''`save_pretrained` can only be used if `model_cls` was defined at __init__.''' ) if self.model_config is None: raise ValueError('''`save_pretrained` can only be used if `model_config` was defined at __init__.''' ) A_ = self.model_cls.from_config(self.model_config ) A_ = self.state_dict() state_dict.pop('''shadow_params''' , _SCREAMING_SNAKE_CASE ) model.register_to_config(**_SCREAMING_SNAKE_CASE ) self.copy_to(model.parameters() ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) def __A ( self , _SCREAMING_SNAKE_CASE ) -> float: A_ = max(0 , optimization_step - self.update_after_step - 1 ) if step <= 0: return 0.0 if self.use_ema_warmup: A_ = 1 - (1 + step / self.inv_gamma) ** -self.power else: A_ = (1 + step) / (10 + step) A_ = min(_SCREAMING_SNAKE_CASE , self.decay ) # make sure decay is not smaller than min_decay A_ = max(_SCREAMING_SNAKE_CASE , self.min_decay ) return cur_decay_value @torch.no_grad() def __A ( self , _SCREAMING_SNAKE_CASE ) -> Tuple: if isinstance(_SCREAMING_SNAKE_CASE , torch.nn.Module ): A_ = ( '''Passing a `torch.nn.Module` to `ExponentialMovingAverage.step` is deprecated. ''' '''Please pass the parameters of the module instead.''' ) deprecate( '''passing a `torch.nn.Module` to `ExponentialMovingAverage.step`''' , '''1.0.0''' , _SCREAMING_SNAKE_CASE , standard_warn=_SCREAMING_SNAKE_CASE , ) A_ = parameters.parameters() A_ = list(_SCREAMING_SNAKE_CASE ) self.optimization_step += 1 # Compute the decay factor for the exponential moving average. A_ = self.get_decay(self.optimization_step ) A_ = decay A_ = 1 - decay A_ = contextlib.nullcontext if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): import deepspeed for s_param, param in zip(self.shadow_params , _SCREAMING_SNAKE_CASE ): if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): A_ = deepspeed.zero.GatheredParameters(_SCREAMING_SNAKE_CASE , modifier_rank=_SCREAMING_SNAKE_CASE ) with context_manager(): if param.requires_grad: s_param.sub_(one_minus_decay * (s_param - param) ) else: s_param.copy_(_SCREAMING_SNAKE_CASE ) def __A ( self , _SCREAMING_SNAKE_CASE ) -> None: A_ = list(_SCREAMING_SNAKE_CASE ) for s_param, param in zip(self.shadow_params , _SCREAMING_SNAKE_CASE ): param.data.copy_(s_param.to(param.device ).data ) def __A ( self , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None ) -> None: A_ = [ p.to(device=_SCREAMING_SNAKE_CASE , dtype=_SCREAMING_SNAKE_CASE ) if p.is_floating_point() else p.to(device=_SCREAMING_SNAKE_CASE ) for p in self.shadow_params ] def __A ( self ) -> dict: return { "decay": self.decay, "min_decay": self.min_decay, "optimization_step": self.optimization_step, "update_after_step": self.update_after_step, "use_ema_warmup": self.use_ema_warmup, "inv_gamma": self.inv_gamma, "power": self.power, "shadow_params": self.shadow_params, } def __A ( self , _SCREAMING_SNAKE_CASE ) -> None: A_ = [param.detach().cpu().clone() for param in parameters] def __A ( self , _SCREAMING_SNAKE_CASE ) -> None: if self.temp_stored_params is None: raise RuntimeError('''This ExponentialMovingAverage has no `store()`ed weights ''' '''to `restore()`''' ) for c_param, param in zip(self.temp_stored_params , _SCREAMING_SNAKE_CASE ): param.data.copy_(c_param.data ) # Better memory-wise. A_ = None def __A ( self , _SCREAMING_SNAKE_CASE ) -> None: A_ = copy.deepcopy(_SCREAMING_SNAKE_CASE ) A_ = state_dict.get('''decay''' , self.decay ) if self.decay < 0.0 or self.decay > 1.0: raise ValueError('''Decay must be between 0 and 1''' ) A_ = state_dict.get('''min_decay''' , self.min_decay ) if not isinstance(self.min_decay , _SCREAMING_SNAKE_CASE ): raise ValueError('''Invalid min_decay''' ) A_ = state_dict.get('''optimization_step''' , self.optimization_step ) if not isinstance(self.optimization_step , _SCREAMING_SNAKE_CASE ): raise ValueError('''Invalid optimization_step''' ) A_ = state_dict.get('''update_after_step''' , self.update_after_step ) if not isinstance(self.update_after_step , _SCREAMING_SNAKE_CASE ): raise ValueError('''Invalid update_after_step''' ) A_ = state_dict.get('''use_ema_warmup''' , self.use_ema_warmup ) if not isinstance(self.use_ema_warmup , _SCREAMING_SNAKE_CASE ): raise ValueError('''Invalid use_ema_warmup''' ) A_ = state_dict.get('''inv_gamma''' , self.inv_gamma ) if not isinstance(self.inv_gamma , (float, int) ): raise ValueError('''Invalid inv_gamma''' ) A_ = state_dict.get('''power''' , self.power ) if not isinstance(self.power , (float, int) ): raise ValueError('''Invalid power''' ) A_ = state_dict.get('''shadow_params''' , _SCREAMING_SNAKE_CASE ) if shadow_params is not None: A_ = shadow_params if not isinstance(self.shadow_params , _SCREAMING_SNAKE_CASE ): raise ValueError('''shadow_params must be a list''' ) if not all(isinstance(_SCREAMING_SNAKE_CASE , torch.Tensor ) for p in self.shadow_params ): raise ValueError('''shadow_params must all be Tensors''' )
365
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case : List[str] = logging.get_logger(__name__) __snake_case : Union[str, Any] = { 'alibaba-damo/mgp-str-base': 'https://huggingface.co/alibaba-damo/mgp-str-base/resolve/main/config.json', } class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' __lowercase : Optional[int] = 'mgp-str' def __init__( self , _SCREAMING_SNAKE_CASE=[32, 128] , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=27 , _SCREAMING_SNAKE_CASE=38 , _SCREAMING_SNAKE_CASE=5_0257 , _SCREAMING_SNAKE_CASE=3_0522 , _SCREAMING_SNAKE_CASE=768 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=4.0 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=1E-5 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=0.02 , **_SCREAMING_SNAKE_CASE , ) -> List[Any]: super().__init__(**_SCREAMING_SNAKE_CASE ) A_ = image_size A_ = patch_size A_ = num_channels A_ = max_token_length A_ = num_character_labels A_ = num_bpe_labels A_ = num_wordpiece_labels A_ = hidden_size A_ = num_hidden_layers A_ = num_attention_heads A_ = mlp_ratio A_ = distilled A_ = layer_norm_eps A_ = drop_rate A_ = qkv_bias A_ = attn_drop_rate A_ = drop_path_rate A_ = output_aa_attentions A_ = initializer_range
18
0
import argparse from transformers import BigBirdConfig, BigBirdForPreTraining, BigBirdForQuestionAnswering, load_tf_weights_in_big_bird from transformers.utils import logging logging.set_verbosity_info() def lowercase_ ( _A : Optional[int] , _A : Any , _A : List[Any] , _A : Any ): """simple docstring""" lowerCamelCase__ : Any = BigBirdConfig.from_json_file(_UpperCAmelCase ) print(F"Building PyTorch model from configuration: {config}" ) if is_trivia_qa: lowerCamelCase__ : List[str] = BigBirdForQuestionAnswering(_UpperCAmelCase ) else: lowerCamelCase__ : Tuple = BigBirdForPreTraining(_UpperCAmelCase ) # Load weights from tf checkpoint load_tf_weights_in_big_bird(_UpperCAmelCase , _UpperCAmelCase , is_trivia_qa=_UpperCAmelCase ) # Save pytorch-model print(F"Save PyTorch model to {pytorch_dump_path}" ) model.save_pretrained(_UpperCAmelCase ) if __name__ == "__main__": A : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--big_bird_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained BERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--is_trivia_qa", action="store_true", help="Whether to convert a model with a trivia_qa head." ) A : Any = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.big_bird_config_file, args.pytorch_dump_path, args.is_trivia_qa )
184
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_convbert import ConvBertTokenizer __snake_case :str = logging.get_logger(__name__) __snake_case :int = {'''vocab_file''': '''vocab.txt'''} __snake_case :List[Any] = { '''vocab_file''': { '''YituTech/conv-bert-base''': '''https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt''', '''YituTech/conv-bert-medium-small''': ( '''https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt''' ), '''YituTech/conv-bert-small''': '''https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt''', } } __snake_case :List[str] = { '''YituTech/conv-bert-base''': 512, '''YituTech/conv-bert-medium-small''': 512, '''YituTech/conv-bert-small''': 512, } __snake_case :Optional[int] = { '''YituTech/conv-bert-base''': {'''do_lower_case''': True}, '''YituTech/conv-bert-medium-small''': {'''do_lower_case''': True}, '''YituTech/conv-bert-small''': {'''do_lower_case''': True}, } class _A ( __UpperCAmelCase ): UpperCamelCase__ : Optional[int] = VOCAB_FILES_NAMES UpperCamelCase__ : str = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase__ : Optional[Any] = PRETRAINED_INIT_CONFIGURATION UpperCamelCase__ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase__ : int = ConvBertTokenizer def __init__( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[Any]=None , __SCREAMING_SNAKE_CASE : Dict=None , __SCREAMING_SNAKE_CASE : Tuple=True , __SCREAMING_SNAKE_CASE : Optional[int]="[UNK]" , __SCREAMING_SNAKE_CASE : int="[SEP]" , __SCREAMING_SNAKE_CASE : List[Any]="[PAD]" , __SCREAMING_SNAKE_CASE : int="[CLS]" , __SCREAMING_SNAKE_CASE : Optional[int]="[MASK]" , __SCREAMING_SNAKE_CASE : Optional[int]=True , __SCREAMING_SNAKE_CASE : Union[str, Any]=None , **__SCREAMING_SNAKE_CASE : Dict , ): '''simple docstring''' super().__init__( __SCREAMING_SNAKE_CASE , tokenizer_file=__SCREAMING_SNAKE_CASE , do_lower_case=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , sep_token=__SCREAMING_SNAKE_CASE , pad_token=__SCREAMING_SNAKE_CASE , cls_token=__SCREAMING_SNAKE_CASE , mask_token=__SCREAMING_SNAKE_CASE , tokenize_chinese_chars=__SCREAMING_SNAKE_CASE , strip_accents=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) __a = json.loads(self.backend_tokenizer.normalizer.__getstate__()) if ( normalizer_state.get('''lowercase''' , __SCREAMING_SNAKE_CASE) != do_lower_case or normalizer_state.get('''strip_accents''' , __SCREAMING_SNAKE_CASE) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , __SCREAMING_SNAKE_CASE) != tokenize_chinese_chars ): __a = getattr(__SCREAMING_SNAKE_CASE , normalizer_state.pop('''type''')) __a = do_lower_case __a = strip_accents __a = tokenize_chinese_chars __a = normalizer_class(**__SCREAMING_SNAKE_CASE) __a = do_lower_case def _lowerCamelCase ( self : int , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Any=None): '''simple docstring''' __a = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _lowerCamelCase ( self : str , __SCREAMING_SNAKE_CASE : List[int] , __SCREAMING_SNAKE_CASE : Optional[List[int]] = None): '''simple docstring''' __a = [self.sep_token_id] __a = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] def _lowerCamelCase ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[str] = None): '''simple docstring''' __a = self._tokenizer.model.save(__SCREAMING_SNAKE_CASE , name=__SCREAMING_SNAKE_CASE) return tuple(__SCREAMING_SNAKE_CASE)
49
0
"""simple docstring""" import argparse from collections import OrderedDict from pathlib import Path import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision.transforms import functional as F from transformers import DetrImageProcessor, TableTransformerConfig, TableTransformerForObjectDetection from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase : str = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) _lowerCAmelCase : str = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F"""transformer.encoder.layers.{i}.self_attn.out_proj.weight""", F"""encoder.layers.{i}.self_attn.out_proj.weight""") ) rename_keys.append( (F"""transformer.encoder.layers.{i}.self_attn.out_proj.bias""", F"""encoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.linear1.weight""", F"""encoder.layers.{i}.fc1.weight""")) rename_keys.append((F"""transformer.encoder.layers.{i}.linear1.bias""", F"""encoder.layers.{i}.fc1.bias""")) rename_keys.append((F"""transformer.encoder.layers.{i}.linear2.weight""", F"""encoder.layers.{i}.fc2.weight""")) rename_keys.append((F"""transformer.encoder.layers.{i}.linear2.bias""", F"""encoder.layers.{i}.fc2.bias""")) rename_keys.append( (F"""transformer.encoder.layers.{i}.norm1.weight""", F"""encoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.norm1.bias""", F"""encoder.layers.{i}.self_attn_layer_norm.bias""")) rename_keys.append((F"""transformer.encoder.layers.{i}.norm2.weight""", F"""encoder.layers.{i}.final_layer_norm.weight""")) rename_keys.append((F"""transformer.encoder.layers.{i}.norm2.bias""", F"""encoder.layers.{i}.final_layer_norm.bias""")) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (F"""transformer.decoder.layers.{i}.self_attn.out_proj.weight""", F"""decoder.layers.{i}.self_attn.out_proj.weight""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.self_attn.out_proj.bias""", F"""decoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append( ( F"""transformer.decoder.layers.{i}.multihead_attn.out_proj.weight""", F"""decoder.layers.{i}.encoder_attn.out_proj.weight""", ) ) rename_keys.append( ( F"""transformer.decoder.layers.{i}.multihead_attn.out_proj.bias""", F"""decoder.layers.{i}.encoder_attn.out_proj.bias""", ) ) rename_keys.append((F"""transformer.decoder.layers.{i}.linear1.weight""", F"""decoder.layers.{i}.fc1.weight""")) rename_keys.append((F"""transformer.decoder.layers.{i}.linear1.bias""", F"""decoder.layers.{i}.fc1.bias""")) rename_keys.append((F"""transformer.decoder.layers.{i}.linear2.weight""", F"""decoder.layers.{i}.fc2.weight""")) rename_keys.append((F"""transformer.decoder.layers.{i}.linear2.bias""", F"""decoder.layers.{i}.fc2.bias""")) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm1.weight""", F"""decoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.norm1.bias""", F"""decoder.layers.{i}.self_attn_layer_norm.bias""")) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm2.weight""", F"""decoder.layers.{i}.encoder_attn_layer_norm.weight""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm2.bias""", F"""decoder.layers.{i}.encoder_attn_layer_norm.bias""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.norm3.weight""", F"""decoder.layers.{i}.final_layer_norm.weight""")) rename_keys.append((F"""transformer.decoder.layers.{i}.norm3.bias""", F"""decoder.layers.{i}.final_layer_norm.bias""")) # convolutional projection + query embeddings + layernorm of encoder + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ("""input_proj.weight""", """input_projection.weight"""), ("""input_proj.bias""", """input_projection.bias"""), ("""query_embed.weight""", """query_position_embeddings.weight"""), ("""transformer.encoder.norm.weight""", """encoder.layernorm.weight"""), ("""transformer.encoder.norm.bias""", """encoder.layernorm.bias"""), ("""transformer.decoder.norm.weight""", """decoder.layernorm.weight"""), ("""transformer.decoder.norm.bias""", """decoder.layernorm.bias"""), ("""class_embed.weight""", """class_labels_classifier.weight"""), ("""class_embed.bias""", """class_labels_classifier.bias"""), ("""bbox_embed.layers.0.weight""", """bbox_predictor.layers.0.weight"""), ("""bbox_embed.layers.0.bias""", """bbox_predictor.layers.0.bias"""), ("""bbox_embed.layers.1.weight""", """bbox_predictor.layers.1.weight"""), ("""bbox_embed.layers.1.bias""", """bbox_predictor.layers.1.bias"""), ("""bbox_embed.layers.2.weight""", """bbox_predictor.layers.2.weight"""), ("""bbox_embed.layers.2.bias""", """bbox_predictor.layers.2.bias"""), ] ) def SCREAMING_SNAKE_CASE__ ( snake_case : List[Any] , snake_case : Optional[int] , snake_case : List[Any] )-> Any: '''simple docstring''' UpperCAmelCase__ : int = state_dict.pop(snake_case ) UpperCAmelCase__ : str = val def SCREAMING_SNAKE_CASE__ ( snake_case : List[Any] )-> Optional[Any]: '''simple docstring''' UpperCAmelCase__ : Dict = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: UpperCAmelCase__ : Any = key.replace("backbone.0.body" , "backbone.conv_encoder.model" ) UpperCAmelCase__ : Dict = value else: UpperCAmelCase__ : int = value return new_state_dict def SCREAMING_SNAKE_CASE__ ( snake_case : Optional[Any] )-> List[str]: '''simple docstring''' UpperCAmelCase__ : Optional[int] = "" # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) UpperCAmelCase__ : Optional[int] = state_dict.pop(f'{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight' ) UpperCAmelCase__ : str = state_dict.pop(f'{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase__ : Optional[int] = in_proj_weight[:256, :] UpperCAmelCase__ : int = in_proj_bias[:256] UpperCAmelCase__ : List[str] = in_proj_weight[256:512, :] UpperCAmelCase__ : List[Any] = in_proj_bias[256:512] UpperCAmelCase__ : Optional[int] = in_proj_weight[-256:, :] UpperCAmelCase__ : str = in_proj_bias[-256:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention UpperCAmelCase__ : Tuple = state_dict.pop(f'{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight' ) UpperCAmelCase__ : Union[str, Any] = state_dict.pop(f'{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase__ : Dict = in_proj_weight[:256, :] UpperCAmelCase__ : Tuple = in_proj_bias[:256] UpperCAmelCase__ : Union[str, Any] = in_proj_weight[256:512, :] UpperCAmelCase__ : Optional[Any] = in_proj_bias[256:512] UpperCAmelCase__ : List[Any] = in_proj_weight[-256:, :] UpperCAmelCase__ : List[Any] = in_proj_bias[-256:] # read in weights + bias of input projection layer of cross-attention UpperCAmelCase__ : Dict = state_dict.pop( f'{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight' ) UpperCAmelCase__ : Dict = state_dict.pop(f'{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias' ) # next, add query, keys and values (in that order) of cross-attention to the state dict UpperCAmelCase__ : List[str] = in_proj_weight_cross_attn[:256, :] UpperCAmelCase__ : str = in_proj_bias_cross_attn[:256] UpperCAmelCase__ : Tuple = in_proj_weight_cross_attn[256:512, :] UpperCAmelCase__ : List[Any] = in_proj_bias_cross_attn[256:512] UpperCAmelCase__ : int = in_proj_weight_cross_attn[-256:, :] UpperCAmelCase__ : Optional[Any] = in_proj_bias_cross_attn[-256:] def SCREAMING_SNAKE_CASE__ ( snake_case : Any , snake_case : str )-> List[str]: '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = image.size UpperCAmelCase__ : Tuple = max(snake_case , snake_case ) UpperCAmelCase__ : List[Any] = 800 if "detection" in checkpoint_url else 1000 UpperCAmelCase__ : List[str] = target_max_size / current_max_size UpperCAmelCase__ : Dict = image.resize((int(round(scale * width ) ), int(round(scale * height ) )) ) return resized_image def SCREAMING_SNAKE_CASE__ ( snake_case : int )-> Optional[int]: '''simple docstring''' UpperCAmelCase__ : List[Any] = F.to_tensor(snake_case ) UpperCAmelCase__ : List[Any] = F.normalize(snake_case , mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ) return image @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( snake_case : Optional[int] , snake_case : Any , snake_case : Optional[int] )-> Any: '''simple docstring''' logger.info("Converting model..." ) # load original state dict UpperCAmelCase__ : Optional[int] = torch.hub.load_state_dict_from_url(snake_case , map_location="cpu" ) # rename keys for src, dest in rename_keys: rename_key(snake_case , snake_case , snake_case ) UpperCAmelCase__ : str = rename_backbone_keys(snake_case ) # query, key and value matrices need special treatment read_in_q_k_v(snake_case ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them UpperCAmelCase__ : Dict = "model." for key in state_dict.copy().keys(): if not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ): UpperCAmelCase__ : Optional[Any] = state_dict.pop(snake_case ) UpperCAmelCase__ : List[str] = val # create HuggingFace model and load state dict UpperCAmelCase__ : Optional[int] = TableTransformerConfig( backbone="resnet18" , mask_loss_coefficient=1 , dice_loss_coefficient=1 , ce_loss_coefficient=1 , bbox_loss_coefficient=5 , giou_loss_coefficient=2 , eos_coefficient=0.4 , class_cost=1 , bbox_cost=5 , giou_cost=2 , ) if "detection" in checkpoint_url: UpperCAmelCase__ : List[Any] = 15 UpperCAmelCase__ : Any = 2 UpperCAmelCase__ : Dict = {0: "table", 1: "table rotated"} UpperCAmelCase__ : Dict = idalabel UpperCAmelCase__ : List[str] = {v: k for k, v in idalabel.items()} else: UpperCAmelCase__ : Any = 125 UpperCAmelCase__ : Dict = 6 UpperCAmelCase__ : int = { 0: "table", 1: "table column", 2: "table row", 3: "table column header", 4: "table projected row header", 5: "table spanning cell", } UpperCAmelCase__ : str = idalabel UpperCAmelCase__ : Union[str, Any] = {v: k for k, v in idalabel.items()} UpperCAmelCase__ : Any = DetrImageProcessor( format="coco_detection" , max_size=800 if "detection" in checkpoint_url else 1000 ) UpperCAmelCase__ : Optional[Any] = TableTransformerForObjectDetection(snake_case ) model.load_state_dict(snake_case ) model.eval() # verify our conversion UpperCAmelCase__ : Optional[Any] = "example_pdf.png" if "detection" in checkpoint_url else "example_table.png" UpperCAmelCase__ : str = hf_hub_download(repo_id="nielsr/example-pdf" , repo_type="dataset" , filename=snake_case ) UpperCAmelCase__ : Optional[Any] = Image.open(snake_case ).convert("RGB" ) UpperCAmelCase__ : Optional[Any] = normalize(resize(snake_case , snake_case ) ).unsqueeze(0 ) UpperCAmelCase__ : str = model(snake_case ) if "detection" in checkpoint_url: UpperCAmelCase__ : Optional[Any] = (1, 15, 3) UpperCAmelCase__ : List[Any] = torch.tensor( [[-6.7897, -16.9985, 6.7937], [-8.0186, -22.2192, 6.9677], [-7.3117, -21.0708, 7.4055]] ) UpperCAmelCase__ : int = torch.tensor([[0.4867, 0.1767, 0.6732], [0.6718, 0.4479, 0.3830], [0.4716, 0.1760, 0.6364]] ) else: UpperCAmelCase__ : List[str] = (1, 125, 7) UpperCAmelCase__ : List[Any] = torch.tensor( [[-18.1430, -8.3214, 4.8274], [-18.4685, -7.1361, -4.2667], [-26.3693, -9.3429, -4.9962]] ) UpperCAmelCase__ : List[Any] = torch.tensor([[0.4983, 0.5595, 0.9440], [0.4916, 0.6315, 0.5954], [0.6108, 0.8637, 0.1135]] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, :3, :3] , snake_case , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , snake_case , atol=1E-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(f'Saving PyTorch model and image processor to {pytorch_dump_folder_path}...' ) Path(snake_case ).mkdir(exist_ok=snake_case ) model.save_pretrained(snake_case ) image_processor.save_pretrained(snake_case ) if push_to_hub: # Push model to HF hub logger.info("Pushing model to the hub..." ) UpperCAmelCase__ : List[Any] = ( "microsoft/table-transformer-detection" if "detection" in checkpoint_url else "microsoft/table-transformer-structure-recognition" ) model.push_to_hub(snake_case ) image_processor.push_to_hub(snake_case ) if __name__ == "__main__": _lowerCAmelCase : Optional[int] = argparse.ArgumentParser() parser.add_argument( """--checkpoint_url""", default="""https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth""", type=str, choices=[ """https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth""", """https://pubtables1m.blob.core.windows.net/model/pubtables1m_structure_detr_r18.pth""", ], help="""URL of the Table Transformer checkpoint you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) _lowerCAmelCase : Dict = parser.parse_args() convert_table_transformer_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
298
"""simple docstring""" from typing import List from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : Dict = logging.get_logger(__name__) _lowerCAmelCase : Union[str, Any] = { """snap-research/efficientformer-l1-300""": ( """https://huggingface.co/snap-research/efficientformer-l1-300/resolve/main/config.json""" ), } class lowerCAmelCase__ ( __magic_name__ ): SCREAMING_SNAKE_CASE_ ='''efficientformer''' def __init__( self : List[Any] , snake_case__ : List[int] = [3, 2, 6, 4] , snake_case__ : List[int] = [4_8, 9_6, 2_2_4, 4_4_8] , snake_case__ : List[bool] = [True, True, True, True] , snake_case__ : int = 4_4_8 , snake_case__ : int = 3_2 , snake_case__ : int = 4 , snake_case__ : int = 7 , snake_case__ : int = 5 , snake_case__ : int = 8 , snake_case__ : int = 4 , snake_case__ : float = 0.0 , snake_case__ : int = 1_6 , snake_case__ : int = 3 , snake_case__ : int = 3 , snake_case__ : int = 3 , snake_case__ : int = 2 , snake_case__ : int = 1 , snake_case__ : float = 0.0 , snake_case__ : int = 1 , snake_case__ : bool = True , snake_case__ : bool = True , snake_case__ : float = 1e-5 , snake_case__ : str = "gelu" , snake_case__ : float = 0.02 , snake_case__ : float = 1e-12 , snake_case__ : int = 2_2_4 , snake_case__ : float = 1e-05 , **snake_case__ : str , ): '''simple docstring''' super().__init__(**snake_case__ ) UpperCAmelCase__ : int = hidden_act UpperCAmelCase__ : Optional[int] = hidden_dropout_prob UpperCAmelCase__ : List[str] = hidden_sizes UpperCAmelCase__ : Union[str, Any] = num_hidden_layers UpperCAmelCase__ : int = num_attention_heads UpperCAmelCase__ : List[Any] = initializer_range UpperCAmelCase__ : List[Any] = layer_norm_eps UpperCAmelCase__ : Optional[int] = patch_size UpperCAmelCase__ : Tuple = num_channels UpperCAmelCase__ : Optional[int] = depths UpperCAmelCase__ : Union[str, Any] = mlp_expansion_ratio UpperCAmelCase__ : Dict = downsamples UpperCAmelCase__ : Any = dim UpperCAmelCase__ : str = key_dim UpperCAmelCase__ : List[Any] = attention_ratio UpperCAmelCase__ : Optional[Any] = resolution UpperCAmelCase__ : Optional[Any] = pool_size UpperCAmelCase__ : Any = downsample_patch_size UpperCAmelCase__ : int = downsample_stride UpperCAmelCase__ : Dict = downsample_pad UpperCAmelCase__ : List[Any] = drop_path_rate UpperCAmelCase__ : Optional[Any] = num_metaad_blocks UpperCAmelCase__ : List[str] = distillation UpperCAmelCase__ : Dict = use_layer_scale UpperCAmelCase__ : List[Any] = layer_scale_init_value UpperCAmelCase__ : Optional[Any] = image_size UpperCAmelCase__ : Optional[int] = batch_norm_eps
298
1
UpperCAmelCase__ = {0: [2, 3], 1: [0], 2: [1], 3: [4], 4: []} UpperCAmelCase__ = {0: [1, 2, 3], 1: [2], 2: [0], 3: [4], 4: [5], 5: [3]} def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case ) -> list[int]: """simple docstring""" _lowercase =True _lowercase =[] for neighbour in graph[vert]: if not visited[neighbour]: order += topology_sort(__snake_case , __snake_case , __snake_case ) order.append(__snake_case ) return order def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case ) -> list[int]: """simple docstring""" _lowercase =True _lowercase =[vert] for neighbour in reversed_graph[vert]: if not visited[neighbour]: component += find_components(__snake_case , __snake_case , __snake_case ) return component def UpperCAmelCase_ ( __snake_case ) -> list[list[int]]: """simple docstring""" _lowercase =len(__snake_case ) * [False] _lowercase ={vert: [] for vert in range(len(__snake_case ) )} for vert, neighbours in graph.items(): for neighbour in neighbours: reversed_graph[neighbour].append(__snake_case ) _lowercase =[] for i, was_visited in enumerate(__snake_case ): if not was_visited: order += topology_sort(__snake_case , __snake_case , __snake_case ) _lowercase =[] _lowercase =len(__snake_case ) * [False] for i in range(len(__snake_case ) ): _lowercase =order[len(__snake_case ) - i - 1] if not visited[vert]: _lowercase =find_components(__snake_case , __snake_case , __snake_case ) components_list.append(__snake_case ) return components_list
5
'''simple docstring''' def A__ ( UpperCAmelCase_ ): if num < 0: return False _UpperCamelCase : int = num _UpperCamelCase : int = 0 while num > 0: _UpperCamelCase : str = rev_num * 1_0 + (num % 1_0) num //= 1_0 return num_copy == rev_num if __name__ == "__main__": import doctest doctest.testmod()
83
0
"""simple docstring""" import argparse import glob import logging import os import sys import time from collections import defaultdict from pathlib import Path from typing import Dict, List, Tuple import numpy as np import pytorch_lightning as pl import torch from callbacks import SeqaSeqLoggingCallback, get_checkpoint_callback, get_early_stopping_callback from torch import nn from torch.utils.data import DataLoader from transformers import MBartTokenizer, TaForConditionalGeneration from transformers.models.bart.modeling_bart import shift_tokens_right from utils import ( ROUGE_KEYS, LegacySeqaSeqDataset, SeqaSeqDataset, assert_all_frozen, calculate_bleu, calculate_rouge, check_output_dir, flatten_list, freeze_embeds, freeze_params, get_git_info, label_smoothed_nll_loss, lmap, pickle_save, save_git_info, save_json, use_task_specific_params, ) # need the parent dir module sys.path.insert(2, str(Path(__file__).resolve().parents[1])) from lightning_base import BaseTransformer, add_generic_args, generic_train # noqa _lowerCAmelCase :Dict = logging.getLogger(__name__) class _UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' a__ ='''summarization''' a__ =['''loss'''] a__ =ROUGE_KEYS a__ ='''rouge2''' def __init__( self , A , **A ) -> List[str]: if hparams.sortish_sampler and hparams.gpus > 1: _UpperCAmelCase : Tuple = False elif hparams.max_tokens_per_batch is not None: if hparams.gpus > 1: raise NotImplementedError('''Dynamic Batch size does not work for multi-gpu training''' ) if hparams.sortish_sampler: raise ValueError('''--sortish_sampler and --max_tokens_per_batch may not be used simultaneously''' ) super().__init__(UpperCamelCase__ , num_labels=UpperCamelCase__ , mode=self.mode , **UpperCamelCase__ ) use_task_specific_params(self.model , '''summarization''' ) save_git_info(self.hparams.output_dir ) _UpperCAmelCase : str = Path(self.output_dir ) / '''metrics.json''' _UpperCAmelCase : int = Path(self.output_dir ) / '''hparams.pkl''' pickle_save(self.hparams , self.hparams_save_path ) _UpperCAmelCase : Tuple = 0 _UpperCAmelCase : Dict = defaultdict(UpperCamelCase__ ) _UpperCAmelCase : Union[str, Any] = self.config.model_type _UpperCAmelCase : Optional[Any] = self.config.tgt_vocab_size if self.model_type == '''fsmt''' else self.config.vocab_size _UpperCAmelCase : dict = { "data_dir": self.hparams.data_dir, "max_source_length": self.hparams.max_source_length, "prefix": self.model.config.prefix or "", } _UpperCAmelCase : Dict = { '''train''': self.hparams.n_train, '''val''': self.hparams.n_val, '''test''': self.hparams.n_test, } _UpperCAmelCase : Optional[Any] = {k: v if v >= 0 else None for k, v in n_observations_per_split.items()} _UpperCAmelCase : str = { '''train''': self.hparams.max_target_length, '''val''': self.hparams.val_max_target_length, '''test''': self.hparams.test_max_target_length, } assert self.target_lens["train"] <= self.target_lens["val"], f'target_lens: {self.target_lens}' assert self.target_lens["train"] <= self.target_lens["test"], f'target_lens: {self.target_lens}' if self.hparams.freeze_embeds: freeze_embeds(self.model ) if self.hparams.freeze_encoder: freeze_params(self.model.get_encoder() ) assert_all_frozen(self.model.get_encoder() ) _UpperCAmelCase : int = get_git_info()['''repo_sha'''] _UpperCAmelCase : Optional[Any] = hparams.num_workers _UpperCAmelCase : Dict = None # default to config if self.model.config.decoder_start_token_id is None and isinstance(self.tokenizer , UpperCamelCase__ ): _UpperCAmelCase : List[Any] = self.tokenizer.lang_code_to_id[hparams.tgt_lang] _UpperCAmelCase : List[str] = self.decoder_start_token_id _UpperCAmelCase : str = ( SeqaSeqDataset if hasattr(self.tokenizer , '''prepare_seq2seq_batch''' ) else LegacySeqaSeqDataset ) _UpperCAmelCase : Union[str, Any] = False _UpperCAmelCase : Any = self.model.config.num_beams if self.hparams.eval_beams is None else self.hparams.eval_beams if self.hparams.eval_max_gen_length is not None: _UpperCAmelCase : Any = self.hparams.eval_max_gen_length else: _UpperCAmelCase : List[str] = self.model.config.max_length _UpperCAmelCase : List[Any] = self.default_val_metric if self.hparams.val_metric is None else self.hparams.val_metric def __lowerCAmelCase ( self , A ) -> Dict[str, List[str]]: _UpperCAmelCase : List[str] = { k: self.tokenizer.batch_decode(v.tolist() ) if '''mask''' not in k else v.shape for k, v in batch.items() } save_json(UpperCamelCase__ , Path(self.output_dir ) / '''text_batch.json''' ) save_json({k: v.tolist() for k, v in batch.items()} , Path(self.output_dir ) / '''tok_batch.json''' ) _UpperCAmelCase : Dict = True return readable_batch def __lowerCAmelCase ( self , A , **A ) -> Tuple: return self.model(UpperCamelCase__ , **UpperCamelCase__ ) def __lowerCAmelCase ( self , A ) -> Any: _UpperCAmelCase : Tuple = self.tokenizer.batch_decode( UpperCamelCase__ , skip_special_tokens=UpperCamelCase__ , clean_up_tokenization_spaces=UpperCamelCase__ ) return lmap(str.strip , UpperCamelCase__ ) def __lowerCAmelCase ( self , A ) -> Tuple: _UpperCAmelCase : Any = self.tokenizer.pad_token_id _UpperCAmelCase : Optional[int] = batch['''input_ids'''], batch['''attention_mask'''] _UpperCAmelCase : Optional[int] = batch['''labels'''] if isinstance(self.model , UpperCamelCase__ ): _UpperCAmelCase : Optional[Any] = self.model._shift_right(UpperCamelCase__ ) else: _UpperCAmelCase : Dict = shift_tokens_right(UpperCamelCase__ , UpperCamelCase__ ) if not self.already_saved_batch: # This would be slightly better if it only happened on rank zero _UpperCAmelCase : Any = decoder_input_ids self.save_readable_batch(UpperCamelCase__ ) _UpperCAmelCase : str = self(UpperCamelCase__ , attention_mask=UpperCamelCase__ , decoder_input_ids=UpperCamelCase__ , use_cache=UpperCamelCase__ ) _UpperCAmelCase : str = outputs['''logits'''] if self.hparams.label_smoothing == 0: # Same behavior as modeling_bart.py, besides ignoring pad_token_id _UpperCAmelCase : List[Any] = nn.CrossEntropyLoss(ignore_index=UpperCamelCase__ ) assert lm_logits.shape[-1] == self.vocab_size _UpperCAmelCase : Tuple = ce_loss_fct(lm_logits.view(-1 , lm_logits.shape[-1] ) , tgt_ids.view(-1 ) ) else: _UpperCAmelCase : Union[str, Any] = nn.functional.log_softmax(UpperCamelCase__ , dim=-1 ) _UpperCAmelCase : Tuple = label_smoothed_nll_loss( UpperCamelCase__ , UpperCamelCase__ , self.hparams.label_smoothing , ignore_index=UpperCamelCase__ ) return (loss,) @property def __lowerCAmelCase ( self ) -> int: return self.tokenizer.pad_token_id def __lowerCAmelCase ( self , A , A ) -> Dict: _UpperCAmelCase : int = self._step(UpperCamelCase__ ) _UpperCAmelCase : List[Any] = dict(zip(self.loss_names , UpperCamelCase__ ) ) # tokens per batch _UpperCAmelCase : int = batch['''input_ids'''].ne(self.pad ).sum() + batch['''labels'''].ne(self.pad ).sum() _UpperCAmelCase : Dict = batch['''input_ids'''].shape[0] _UpperCAmelCase : Tuple = batch['''input_ids'''].eq(self.pad ).sum() _UpperCAmelCase : Optional[int] = batch['''input_ids'''].eq(self.pad ).float().mean() # TODO(SS): make a wandb summary metric for this return {"loss": loss_tensors[0], "log": logs} def __lowerCAmelCase ( self , A , A ) -> Dict: return self._generative_step(UpperCamelCase__ ) def __lowerCAmelCase ( self , A , A="val" ) -> Dict: self.step_count += 1 _UpperCAmelCase : Dict = {k: torch.stack([x[k] for x in outputs] ).mean() for k in self.loss_names} _UpperCAmelCase : Optional[int] = losses['''loss'''] _UpperCAmelCase : str = { k: np.array([x[k] for x in outputs] ).mean() for k in self.metric_names + ['''gen_time''', '''gen_len'''] } _UpperCAmelCase : List[str] = ( generative_metrics[self.val_metric] if self.val_metric in generative_metrics else losses[self.val_metric] ) _UpperCAmelCase : torch.FloatTensor = torch.tensor(UpperCamelCase__ ).type_as(UpperCamelCase__ ) generative_metrics.update({k: v.item() for k, v in losses.items()} ) losses.update(UpperCamelCase__ ) _UpperCAmelCase : Union[str, Any] = {f'{prefix}_avg_{k}': x for k, x in losses.items()} _UpperCAmelCase : Dict = self.step_count self.metrics[prefix].append(UpperCamelCase__ ) # callback writes this to self.metrics_save_path _UpperCAmelCase : List[str] = flatten_list([x['''preds'''] for x in outputs] ) return { "log": all_metrics, "preds": preds, f'{prefix}_loss': loss, f'{prefix}_{self.val_metric}': metric_tensor, } def __lowerCAmelCase ( self , A , A ) -> Dict: return calculate_rouge(UpperCamelCase__ , UpperCamelCase__ ) def __lowerCAmelCase ( self , A ) -> dict: _UpperCAmelCase : Dict = time.time() # parser.add_argument('--eval_max_gen_length', type=int, default=None, help='never generate more than n tokens') _UpperCAmelCase : Optional[int] = self.model.generate( batch['''input_ids'''] , attention_mask=batch['''attention_mask'''] , use_cache=UpperCamelCase__ , decoder_start_token_id=self.decoder_start_token_id , num_beams=self.eval_beams , max_length=self.eval_max_length , ) _UpperCAmelCase : Union[str, Any] = (time.time() - ta) / batch['''input_ids'''].shape[0] _UpperCAmelCase : List[str] = self.ids_to_clean_text(UpperCamelCase__ ) _UpperCAmelCase : List[str] = self.ids_to_clean_text(batch['''labels'''] ) _UpperCAmelCase : str = self._step(UpperCamelCase__ ) _UpperCAmelCase : Optional[int] = dict(zip(self.loss_names , UpperCamelCase__ ) ) _UpperCAmelCase : Dict = self.calc_generative_metrics(UpperCamelCase__ , UpperCamelCase__ ) _UpperCAmelCase : Dict = np.mean(lmap(UpperCamelCase__ , UpperCamelCase__ ) ) base_metrics.update(gen_time=UpperCamelCase__ , gen_len=UpperCamelCase__ , preds=UpperCamelCase__ , target=UpperCamelCase__ , **UpperCamelCase__ ) return base_metrics def __lowerCAmelCase ( self , A , A ) -> Union[str, Any]: return self._generative_step(UpperCamelCase__ ) def __lowerCAmelCase ( self , A ) -> Optional[Any]: return self.validation_epoch_end(UpperCamelCase__ , prefix='''test''' ) def __lowerCAmelCase ( self , A ) -> SeqaSeqDataset: _UpperCAmelCase : str = self.n_obs[type_path] _UpperCAmelCase : Tuple = self.target_lens[type_path] _UpperCAmelCase : Any = self.dataset_class( self.tokenizer , type_path=UpperCamelCase__ , n_obs=UpperCamelCase__ , max_target_length=UpperCamelCase__ , **self.dataset_kwargs , ) return dataset def __lowerCAmelCase ( self , A , A , A = False ) -> DataLoader: _UpperCAmelCase : Tuple = self.get_dataset(UpperCamelCase__ ) if self.hparams.sortish_sampler and type_path != "test" and type_path != "val": _UpperCAmelCase : Dict = dataset.make_sortish_sampler(UpperCamelCase__ , distributed=self.hparams.gpus > 1 ) return DataLoader( UpperCamelCase__ , batch_size=UpperCamelCase__ , collate_fn=dataset.collate_fn , shuffle=UpperCamelCase__ , num_workers=self.num_workers , sampler=UpperCamelCase__ , ) elif self.hparams.max_tokens_per_batch is not None and type_path != "test" and type_path != "val": _UpperCAmelCase : Union[str, Any] = dataset.make_dynamic_sampler( self.hparams.max_tokens_per_batch , distributed=self.hparams.gpus > 1 ) return DataLoader( UpperCamelCase__ , batch_sampler=UpperCamelCase__ , collate_fn=dataset.collate_fn , num_workers=self.num_workers , ) else: return DataLoader( UpperCamelCase__ , batch_size=UpperCamelCase__ , collate_fn=dataset.collate_fn , shuffle=UpperCamelCase__ , num_workers=self.num_workers , sampler=UpperCamelCase__ , ) def __lowerCAmelCase ( self ) -> DataLoader: _UpperCAmelCase : List[Any] = self.get_dataloader('''train''' , batch_size=self.hparams.train_batch_size , shuffle=UpperCamelCase__ ) return dataloader def __lowerCAmelCase ( self ) -> DataLoader: return self.get_dataloader('''val''' , batch_size=self.hparams.eval_batch_size ) def __lowerCAmelCase ( self ) -> DataLoader: return self.get_dataloader('''test''' , batch_size=self.hparams.eval_batch_size ) @staticmethod def __lowerCAmelCase ( A , A ) -> Tuple: BaseTransformer.add_model_specific_args(UpperCamelCase__ , UpperCamelCase__ ) add_generic_args(UpperCamelCase__ , UpperCamelCase__ ) parser.add_argument( '''--max_source_length''' , default=1_0_2_4 , type=UpperCamelCase__ , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--max_target_length''' , default=5_6 , type=UpperCamelCase__ , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--val_max_target_length''' , default=1_4_2 , type=UpperCamelCase__ , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--test_max_target_length''' , default=1_4_2 , type=UpperCamelCase__ , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument('''--freeze_encoder''' , action='''store_true''' ) parser.add_argument('''--freeze_embeds''' , action='''store_true''' ) parser.add_argument('''--sortish_sampler''' , action='''store_true''' , default=UpperCamelCase__ ) parser.add_argument('''--overwrite_output_dir''' , action='''store_true''' , default=UpperCamelCase__ ) parser.add_argument('''--max_tokens_per_batch''' , type=UpperCamelCase__ , default=UpperCamelCase__ ) parser.add_argument('''--logger_name''' , type=UpperCamelCase__ , choices=['''default''', '''wandb''', '''wandb_shared'''] , default='''default''' ) parser.add_argument('''--n_train''' , type=UpperCamelCase__ , default=-1 , required=UpperCamelCase__ , help='''# examples. -1 means use all.''' ) parser.add_argument('''--n_val''' , type=UpperCamelCase__ , default=5_0_0 , required=UpperCamelCase__ , help='''# examples. -1 means use all.''' ) parser.add_argument('''--n_test''' , type=UpperCamelCase__ , default=-1 , required=UpperCamelCase__ , help='''# examples. -1 means use all.''' ) parser.add_argument( '''--task''' , type=UpperCamelCase__ , default='''summarization''' , required=UpperCamelCase__ , help='''# examples. -1 means use all.''' ) parser.add_argument('''--label_smoothing''' , type=UpperCamelCase__ , default=0.0 , required=UpperCamelCase__ ) parser.add_argument('''--src_lang''' , type=UpperCamelCase__ , default='''''' , required=UpperCamelCase__ ) parser.add_argument('''--tgt_lang''' , type=UpperCamelCase__ , default='''''' , required=UpperCamelCase__ ) parser.add_argument('''--eval_beams''' , type=UpperCamelCase__ , default=UpperCamelCase__ , required=UpperCamelCase__ ) parser.add_argument( '''--val_metric''' , type=UpperCamelCase__ , default=UpperCamelCase__ , required=UpperCamelCase__ , choices=['''bleu''', '''rouge2''', '''loss''', None] ) parser.add_argument('''--eval_max_gen_length''' , type=UpperCamelCase__ , default=UpperCamelCase__ , help='''never generate more than n tokens''' ) parser.add_argument('''--save_top_k''' , type=UpperCamelCase__ , default=1 , required=UpperCamelCase__ , help='''How many checkpoints to save''' ) parser.add_argument( '''--early_stopping_patience''' , type=UpperCamelCase__ , default=-1 , required=UpperCamelCase__ , help=( '''-1 means never early stop. early_stopping_patience is measured in validation checks, not epochs. So''' ''' val_check_interval will effect it.''' ) , ) return parser class _UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' a__ ='''translation''' a__ =['''loss'''] a__ =['''bleu'''] a__ ='''bleu''' def __init__( self , A , **A ) -> Optional[Any]: super().__init__(UpperCamelCase__ , **UpperCamelCase__ ) _UpperCAmelCase : int = hparams.src_lang _UpperCAmelCase : List[str] = hparams.tgt_lang def __lowerCAmelCase ( self , A , A ) -> dict: return calculate_bleu(UpperCamelCase__ , UpperCamelCase__ ) def lowerCamelCase_ (UpperCamelCase__ : int , UpperCamelCase__ : str=None ): Path(args.output_dir ).mkdir(exist_ok=SCREAMING_SNAKE_CASE__ ) check_output_dir(SCREAMING_SNAKE_CASE__ , expected_items=3 ) if model is None: if "summarization" in args.task: _UpperCAmelCase : SummarizationModule = SummarizationModule(SCREAMING_SNAKE_CASE__ ) else: _UpperCAmelCase : SummarizationModule = TranslationModule(SCREAMING_SNAKE_CASE__ ) _UpperCAmelCase : List[str] = Path(args.data_dir ).name if ( args.logger_name == "default" or args.fast_dev_run or str(args.output_dir ).startswith('''/tmp''' ) or str(args.output_dir ).startswith('''/var''' ) ): _UpperCAmelCase : List[Any] = True # don't pollute wandb logs unnecessarily elif args.logger_name == "wandb": from pytorch_lightning.loggers import WandbLogger _UpperCAmelCase : List[Any] = os.environ.get('''WANDB_PROJECT''' , SCREAMING_SNAKE_CASE__ ) _UpperCAmelCase : Any = WandbLogger(name=model.output_dir.name , project=SCREAMING_SNAKE_CASE__ ) elif args.logger_name == "wandb_shared": from pytorch_lightning.loggers import WandbLogger _UpperCAmelCase : Tuple = WandbLogger(name=model.output_dir.name , project=F'hf_{dataset}' ) if args.early_stopping_patience >= 0: _UpperCAmelCase : Union[str, Any] = get_early_stopping_callback(model.val_metric , args.early_stopping_patience ) else: _UpperCAmelCase : List[Any] = False _UpperCAmelCase : Dict = args.val_metric == '''loss''' _UpperCAmelCase : pl.Trainer = generic_train( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , logging_callback=SeqaSeqLoggingCallback() , checkpoint_callback=get_checkpoint_callback( args.output_dir , model.val_metric , args.save_top_k , SCREAMING_SNAKE_CASE__ ) , early_stopping_callback=SCREAMING_SNAKE_CASE__ , logger=SCREAMING_SNAKE_CASE__ , ) pickle_save(model.hparams , model.output_dir / '''hparams.pkl''' ) if not args.do_predict: return model _UpperCAmelCase : Tuple = '''''' _UpperCAmelCase : Union[str, Any] = sorted(glob.glob(os.path.join(args.output_dir , '''*.ckpt''' ) , recursive=SCREAMING_SNAKE_CASE__ ) ) if checkpoints: _UpperCAmelCase : int = checkpoints[-1] _UpperCAmelCase : int = checkpoints[-1] trainer.logger.log_hyperparams(model.hparams ) # test() without a model tests using the best checkpoint automatically trainer.test() return model if __name__ == "__main__": _lowerCAmelCase :List[str] = argparse.ArgumentParser() _lowerCAmelCase :Any = pl.Trainer.add_argparse_args(parser) _lowerCAmelCase :Optional[int] = SummarizationModule.add_model_specific_args(parser, os.getcwd()) _lowerCAmelCase :Optional[int] = parser.parse_args() main(args)
366
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __lowerCAmelCase ( self ) -> Dict: # For consistency across different places the DisjunctiveConstraint is called, # dc.token_ids is a list of integers. It is also initialized only by integers. _UpperCAmelCase : List[str] = [[1, 2, 4], [1, 2, 3, 4]] _UpperCAmelCase : List[str] = DisjunctiveConstraint(A ) self.assertTrue(isinstance(dc.token_ids , A ) ) with self.assertRaises(A ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(A ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def __lowerCAmelCase ( self ) -> List[Any]: # We can't have constraints that are complete subsets of another. This leads to a preverse # interpretation of "constraint fulfillment": does generating [1,2,3] fulfill the constraint? # It would mean that it generated [1,2] which fulfills it, but it's in the middle of potentially # fulfilling [1,2,3,4]. If we believe that [1,2,3] does fulfill the constraint, then the algorithm # will necessarily never reach [1,2,3,4], giving users a false sense of control (better to just not allow it). _UpperCAmelCase : Optional[int] = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(A ): DisjunctiveConstraint(A ) # fails here def __lowerCAmelCase ( self ) -> Tuple: _UpperCAmelCase : Optional[Any] = [[1, 2, 3], [1, 2, 4]] _UpperCAmelCase : Optional[int] = DisjunctiveConstraint(A ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Tuple = dc.update(1 ) _UpperCAmelCase : Dict = stepped is True and completed is False and reset is False self.assertTrue(A ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Optional[int] = dc.update(2 ) _UpperCAmelCase : Any = stepped is True and completed is False and reset is False self.assertTrue(A ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Any = dc.update(3 ) _UpperCAmelCase : Optional[int] = stepped is True and completed is True and reset is False self.assertTrue(A ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def __lowerCAmelCase ( self ) -> Optional[int]: _UpperCAmelCase : Tuple = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] _UpperCAmelCase : Any = DisjunctiveConstraint(A ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Optional[int] = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Optional[int] = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Any = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Optional[int] = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Union[str, Any] = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : List[Any] = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Optional[int] = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
68
0
'''simple docstring''' import argparse import os from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_task_guides.py __a = "src/transformers" __a = "docs/source/en/tasks" def __snake_case( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Optional[Any]: with open(_lowerCAmelCase , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: snake_case__ : str = f.readlines() # Find the start prompt. snake_case__ : int = 0 while not lines[start_index].startswith(_lowerCAmelCase ): start_index += 1 start_index += 1 snake_case__ : str = start_index while not lines[end_index].startswith(_lowerCAmelCase ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # This is to make sure the transformers module imported is the one in the repo. __a = direct_transformers_import(TRANSFORMERS_PATH) __a = { "asr.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_CTC_MAPPING_NAMES, "audio_classification.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES, "language_modeling.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES, "image_classification.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES, "masked_language_modeling.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_MASKED_LM_MAPPING_NAMES, "multiple_choice.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES, "object_detection.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES, "question_answering.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES, "semantic_segmentation.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES, "sequence_classification.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES, "summarization.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, "token_classification.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES, "translation.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, "video_classification.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES, "document_question_answering.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES, "monocular_depth_estimation.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES, } # This list contains model types used in some task guides that are not in `CONFIG_MAPPING_NAMES` (therefore not in any # `MODEL_MAPPING_NAMES` or any `MODEL_FOR_XXX_MAPPING_NAMES`). __a = { "summarization.md": ("nllb",), "translation.md": ("nllb",), } def __snake_case( _lowerCAmelCase ) -> Dict: snake_case__ : Tuple = TASK_GUIDE_TO_MODELS[task_guide] snake_case__ : Optional[int] = SPECIAL_TASK_GUIDE_TO_MODEL_TYPES.get(_lowerCAmelCase , set() ) snake_case__ : List[str] = { code: name for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if (code in model_maping_names or code in special_model_types) } return ", ".join([f"[{name}](../model_doc/{code})" for code, name in model_names.items()] ) + "\n" def __snake_case( _lowerCAmelCase , _lowerCAmelCase=False ) -> Optional[Any]: snake_case__ , snake_case__ , snake_case__ , snake_case__ : Tuple = _find_text_in_file( filename=os.path.join(_lowerCAmelCase , _lowerCAmelCase ) , start_prompt="""<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->""" , end_prompt="""<!--End of the generated tip-->""" , ) snake_case__ : str = get_model_list_for_task(_lowerCAmelCase ) if current_list != new_list: if overwrite: with open(os.path.join(_lowerCAmelCase , _lowerCAmelCase ) , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.writelines(lines[:start_index] + [new_list] + lines[end_index:] ) else: raise ValueError( f"The list of models that can be used in the {task_guide} guide needs an update. Run `make fix-copies`" """ to fix this.""" ) if __name__ == "__main__": __a = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") __a = parser.parse_args() for task_guide in TASK_GUIDE_TO_MODELS.keys(): check_model_list_for_task(task_guide, args.fix_and_overwrite)
35
'''simple docstring''' import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def __snake_case( _lowerCAmelCase ) -> Optional[int]: snake_case__ : int = FileLock(str(tmpdir / """foo.lock""" ) ) snake_case__ : Dict = FileLock(str(tmpdir / """foo.lock""" ) ) snake_case__ : List[str] = 0.01 with locka.acquire(): with pytest.raises(_lowerCAmelCase ): snake_case__ : str = time.time() locka.acquire(_lowerCAmelCase ) assert time.time() - _start > timeout def __snake_case( _lowerCAmelCase ) -> Tuple: snake_case__ : Dict = """a""" * 1_000 + """.lock""" snake_case__ : int = FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith(""".lock""" ) assert not locka._lock_file.endswith(_lowerCAmelCase ) assert len(os.path.basename(locka._lock_file ) ) <= 255 snake_case__ : Dict = FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(_lowerCAmelCase ): locka.acquire(0 )
35
1
import warnings from ...utils import logging from .image_processing_owlvit import OwlViTImageProcessor _snake_case : Union[str, Any] = logging.get_logger(__name__) class A ( _a ): def __init__( self : Dict , *lowerCAmelCase_ : List[Any] , **lowerCAmelCase_ : Optional[Any] ) -> None: """simple docstring""" warnings.warn( '''The class OwlViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use OwlViTImageProcessor instead.''' , lowerCAmelCase_ , ) super().__init__(*lowerCAmelCase_ , **lowerCAmelCase_ )
354
'''simple docstring''' from .configuration_bert_masked import MaskedBertConfig from .modeling_bert_masked import ( MaskedBertForMultipleChoice, MaskedBertForQuestionAnswering, MaskedBertForSequenceClassification, MaskedBertForTokenClassification, MaskedBertModel, ) from .modules import *
179
0
from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class __snake_case ( A__ ): @slow @require_torch def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' UpperCAmelCase : int =EncoderDecoderModel.from_encoder_decoder_pretrained('''prajjwal1/bert-tiny''' , '''prajjwal1/bert-tiny''' ) UpperCAmelCase : Dict =BertTokenizer.from_pretrained('''bert-base-uncased''' ) UpperCAmelCase : Union[str, Any] =bertabert.config.encoder.vocab_size UpperCAmelCase : Optional[Any] =tokenizer.sep_token_id UpperCAmelCase : Dict =tokenizer.cls_token_id UpperCAmelCase : Optional[Any] =128 UpperCAmelCase : Optional[int] =datasets.load_dataset('''cnn_dailymail''' , '''3.0.0''' , split='''train[:1%]''' ) UpperCAmelCase : Any =datasets.load_dataset('''cnn_dailymail''' , '''3.0.0''' , split='''validation[:1%]''' ) UpperCAmelCase : Tuple =train_dataset.select(range(32 ) ) UpperCAmelCase : int =val_dataset.select(range(16 ) ) UpperCAmelCase : List[str] =4 def _map_to_encoder_decoder_inputs(snake_case__ ): # Tokenizer will automatically set [BOS] <text> [EOS] UpperCAmelCase : List[Any] =tokenizer(batch['''article'''] , padding='''max_length''' , truncation=_A , max_length=512 ) UpperCAmelCase : List[Any] =tokenizer(batch['''highlights'''] , padding='''max_length''' , truncation=_A , max_length=128 ) UpperCAmelCase : Optional[Any] =inputs.input_ids UpperCAmelCase : List[Any] =inputs.attention_mask UpperCAmelCase : Dict =outputs.input_ids UpperCAmelCase : Optional[int] =outputs.input_ids.copy() UpperCAmelCase : Union[str, Any] =[ [-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch["labels"] ] UpperCAmelCase : List[str] =outputs.attention_mask assert all(len(_A ) == 512 for x in inputs.input_ids ) assert all(len(_A ) == 128 for x in outputs.input_ids ) return batch def _compute_metrics(snake_case__ ): UpperCAmelCase : Union[str, Any] =pred.label_ids UpperCAmelCase : str =pred.predictions # all unnecessary tokens are removed UpperCAmelCase : List[str] =tokenizer.batch_decode(_A , skip_special_tokens=_A ) UpperCAmelCase : List[Any] =tokenizer.batch_decode(_A , skip_special_tokens=_A ) UpperCAmelCase : Any =sum([int(pred_str[i] == label_str[i] ) for i in range(len(_A ) )] ) / len(_A ) return {"accuracy": accuracy} # map train dataset UpperCAmelCase : int =train_dataset.map( _map_to_encoder_decoder_inputs , batched=_A , batch_size=_A , remove_columns=['''article''', '''highlights'''] , ) train_dataset.set_format( type='''torch''' , columns=['''input_ids''', '''attention_mask''', '''decoder_input_ids''', '''decoder_attention_mask''', '''labels'''] , ) # same for validation dataset UpperCAmelCase : Optional[int] =val_dataset.map( _map_to_encoder_decoder_inputs , batched=_A , batch_size=_A , remove_columns=['''article''', '''highlights'''] , ) val_dataset.set_format( type='''torch''' , columns=['''input_ids''', '''attention_mask''', '''decoder_input_ids''', '''decoder_attention_mask''', '''labels'''] , ) UpperCAmelCase : Tuple =self.get_auto_remove_tmp_dir() UpperCAmelCase : List[Any] =SeqaSeqTrainingArguments( output_dir=_A , per_device_train_batch_size=_A , per_device_eval_batch_size=_A , predict_with_generate=_A , evaluation_strategy='''steps''' , do_train=_A , do_eval=_A , warmup_steps=0 , eval_steps=2 , logging_steps=2 , ) # instantiate trainer UpperCAmelCase : Union[str, Any] =SeqaSeqTrainer( model=_A , args=_A , compute_metrics=_compute_metrics , train_dataset=_A , eval_dataset=_A , tokenizer=_A , ) # start training trainer.train()
348
from collections.abc import Sequence from queue import Queue class a__ : def __init__( self : int,_A : List[Any],_A : Optional[Any],_A : Optional[int],_A : int=None,_A : List[str]=None ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = start SCREAMING_SNAKE_CASE_ : List[str] = end SCREAMING_SNAKE_CASE_ : Tuple = val SCREAMING_SNAKE_CASE_ : List[str] = (start + end) // 2 SCREAMING_SNAKE_CASE_ : Optional[int] = left SCREAMING_SNAKE_CASE_ : str = right def __repr__( self : Tuple ): """simple docstring""" return F'SegmentTreeNode(start={self.start}, end={self.end}, val={self.val})' class a__ : def __init__( self : Any,_A : Sequence,_A : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = collection SCREAMING_SNAKE_CASE_ : Optional[int] = function if self.collection: SCREAMING_SNAKE_CASE_ : List[str] = self._build_tree(0,len(_A ) - 1 ) def __UpperCamelCase ( self : int,_A : Any,_A : List[Any] ): """simple docstring""" self._update_tree(self.root,_A,_A ) def __UpperCamelCase ( self : str,_A : Any,_A : List[Any] ): """simple docstring""" return self._query_range(self.root,_A,_A ) def __UpperCamelCase ( self : Any,_A : Optional[int],_A : int ): """simple docstring""" if start == end: return SegmentTreeNode(_A,_A,self.collection[start] ) SCREAMING_SNAKE_CASE_ : List[Any] = (start + end) // 2 SCREAMING_SNAKE_CASE_ : Union[str, Any] = self._build_tree(_A,_A ) SCREAMING_SNAKE_CASE_ : Optional[int] = self._build_tree(mid + 1,_A ) return SegmentTreeNode(_A,_A,self.fn(left.val,right.val ),_A,_A ) def __UpperCamelCase ( self : int,_A : int,_A : Tuple,_A : Dict ): """simple docstring""" if node.start == i and node.end == i: SCREAMING_SNAKE_CASE_ : Union[str, Any] = val return if i <= node.mid: self._update_tree(node.left,_A,_A ) else: self._update_tree(node.right,_A,_A ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.fn(node.left.val,node.right.val ) def __UpperCamelCase ( self : str,_A : List[str],_A : Optional[int],_A : Optional[Any] ): """simple docstring""" if node.start == i and node.end == j: return node.val if i <= node.mid: if j <= node.mid: # range in left child tree return self._query_range(node.left,_A,_A ) else: # range in left child tree and right child tree return self.fn( self._query_range(node.left,_A,node.mid ),self._query_range(node.right,node.mid + 1,_A ),) else: # range in right child tree return self._query_range(node.right,_A,_A ) def __UpperCamelCase ( self : Optional[Any] ): """simple docstring""" if self.root is not None: SCREAMING_SNAKE_CASE_ : int = Queue() queue.put(self.root ) while not queue.empty(): SCREAMING_SNAKE_CASE_ : Tuple = queue.get() yield node if node.left is not None: queue.put(node.left ) if node.right is not None: queue.put(node.right ) if __name__ == "__main__": import operator for fn in [operator.add, max, min]: print('''*''' * 50) __lowerCamelCase : int = SegmentTree([2, 1, 5, 3, 4], fn) for node in arr.traverse(): print(node) print() arr.update(1, 5) for node in arr.traverse(): print(node) print() print(arr.query_range(3, 4)) # 7 print(arr.query_range(2, 2)) # 5 print(arr.query_range(1, 3)) # 13 print()
18
0
'''simple docstring''' import random def lowercase__ ( __UpperCamelCase )-> bool: UpperCamelCase = num - 1 UpperCamelCase = 0 while s % 2 == 0: UpperCamelCase = s // 2 t += 1 for _ in range(5 ): UpperCamelCase = random.randrange(2 , num - 1 ) UpperCamelCase = pow(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) if v != 1: UpperCamelCase = 0 while v != (num - 1): if i == t - 1: return False else: UpperCamelCase = i + 1 UpperCamelCase = (v**2) % num return True def lowercase__ ( __UpperCamelCase )-> bool: if num < 2: return False UpperCamelCase = [ 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997, ] if num in low_primes: return True for prime in low_primes: if (num % prime) == 0: return False return rabin_miller(__UpperCamelCase ) def lowercase__ ( __UpperCamelCase = 1024 )-> int: while True: UpperCamelCase = random.randrange(2 ** (keysize - 1) , 2 ** (keysize) ) if is_prime_low_num(__UpperCamelCase ): return num if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = generate_large_prime() print(('Prime number:', num)) print(('is_prime_low_num:', is_prime_low_num(num)))
352
'''simple docstring''' import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import List import timm import torch import torch.nn as nn from huggingface_hub import hf_hub_download from torch import Tensor from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE__ = logging.get_logger() @dataclass class a_ : lowercase = 42 lowercase = field(default_factory=lowerCamelCase ) lowercase = field(default_factory=lowerCamelCase ) def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" UpperCamelCase = len(list(m.modules() ) ) == 1 or isinstance(_SCREAMING_SNAKE_CASE , nn.Convad ) or isinstance(_SCREAMING_SNAKE_CASE , nn.BatchNormad ) if has_not_submodules: self.traced.append(_SCREAMING_SNAKE_CASE ) def __call__( self , _SCREAMING_SNAKE_CASE ) -> Any: """simple docstring""" for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(_SCREAMING_SNAKE_CASE ) [x.remove() for x in self.handles] return self @property def A__ ( self ) -> Tuple: """simple docstring""" return list(filter(lambda _SCREAMING_SNAKE_CASE : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class a_ : lowercase = 42 lowercase = 42 lowercase = 0 lowercase = field(default_factory=lowerCamelCase ) lowercase = field(default_factory=lowerCamelCase ) def __call__( self , _SCREAMING_SNAKE_CASE ) -> List[Any]: """simple docstring""" UpperCamelCase = Tracker(self.dest )(_SCREAMING_SNAKE_CASE ).parametrized UpperCamelCase = Tracker(self.src )(_SCREAMING_SNAKE_CASE ).parametrized UpperCamelCase = list(filter(lambda _SCREAMING_SNAKE_CASE : type(_SCREAMING_SNAKE_CASE ) not in self.src_skip , _SCREAMING_SNAKE_CASE ) ) UpperCamelCase = list(filter(lambda _SCREAMING_SNAKE_CASE : type(_SCREAMING_SNAKE_CASE ) not in self.dest_skip , _SCREAMING_SNAKE_CASE ) ) if len(_SCREAMING_SNAKE_CASE ) != len(_SCREAMING_SNAKE_CASE ): raise Exception( F"Numbers of operations are different. Source module has {len(_SCREAMING_SNAKE_CASE )} operations while" F" destination module has {len(_SCREAMING_SNAKE_CASE )}." ) for dest_m, src_m in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(F"Transfered from={src_m} to={dest_m}" ) def lowercase__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = True )-> Optional[Any]: print(F"Converting {name}..." ) with torch.no_grad(): UpperCamelCase = timm.create_model(__UpperCamelCase , pretrained=__UpperCamelCase ).eval() UpperCamelCase = ResNetForImageClassification(__UpperCamelCase ).eval() UpperCamelCase = ModuleTransfer(src=__UpperCamelCase , dest=__UpperCamelCase ) UpperCamelCase = torch.randn((1, 3, 224, 224) ) module_transfer(__UpperCamelCase ) assert torch.allclose(from_model(__UpperCamelCase ) , our_model(__UpperCamelCase ).logits ), "The model logits don't match the original one." UpperCamelCase = F"resnet{'-'.join(name.split('resnet' ) )}" print(__UpperCamelCase ) if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message="""Add model""" , use_temp_dir=__UpperCamelCase , ) # we can use the convnext one UpperCamelCase = AutoImageProcessor.from_pretrained("""facebook/convnext-base-224-22k-1k""" ) image_processor.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message="""Add image processor""" , use_temp_dir=__UpperCamelCase , ) print(F"Pushed {checkpoint_name}" ) def lowercase__ ( __UpperCamelCase , __UpperCamelCase = None , __UpperCamelCase = True )-> str: UpperCamelCase = """imagenet-1k-id2label.json""" UpperCamelCase = 1000 UpperCamelCase = (1, num_labels) UpperCamelCase = """huggingface/label-files""" UpperCamelCase = num_labels UpperCamelCase = json.load(open(hf_hub_download(__UpperCamelCase , __UpperCamelCase , repo_type="""dataset""" ) , """r""" ) ) UpperCamelCase = {int(__UpperCamelCase ): v for k, v in idalabel.items()} UpperCamelCase = idalabel UpperCamelCase = {v: k for k, v in idalabel.items()} UpperCamelCase = partial(__UpperCamelCase , num_labels=__UpperCamelCase , idalabel=__UpperCamelCase , labelaid=__UpperCamelCase ) UpperCamelCase = { """resnet18""": ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[64, 128, 256, 512] , layer_type="""basic""" ), """resnet26""": ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[256, 512, 1024, 2048] , layer_type="""bottleneck""" ), """resnet34""": ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[64, 128, 256, 512] , layer_type="""basic""" ), """resnet50""": ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type="""bottleneck""" ), """resnet101""": ImageNetPreTrainedConfig( depths=[3, 4, 23, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type="""bottleneck""" ), """resnet152""": ImageNetPreTrainedConfig( depths=[3, 8, 36, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type="""bottleneck""" ), } if model_name: convert_weight_and_push(__UpperCamelCase , names_to_config[model_name] , __UpperCamelCase , __UpperCamelCase ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) return config, expected_shape if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default=None, type=str, help=( 'The name of the model you wish to convert, it must be one of the supported resnet* architecture,' ' currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=Path, required=True, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', default=True, type=bool, required=False, help='If True, push model and image processor to the hub.', ) SCREAMING_SNAKE_CASE__ = parser.parse_args() SCREAMING_SNAKE_CASE__ = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
183
0
'''simple docstring''' from ...utils import logging from ..ta.modeling_tf_ta import TFTaEncoderModel, TFTaForConditionalGeneration, TFTaModel from .configuration_mta import MTaConfig _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = '''T5Config''' class A ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' A = "mt5" A = MTaConfig class A ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' A = "mt5" A = MTaConfig class A ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' A = "mt5" A = MTaConfig
298
'''simple docstring''' import unittest from transformers import TrOCRConfig from transformers.testing_utils import is_torch_available, require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM @require_torch class A : '''simple docstring''' def __init__(self , _UpperCAmelCase , _UpperCAmelCase=9_9 , _UpperCAmelCase=1_3 , _UpperCAmelCase=1_6 , _UpperCAmelCase=7 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=True , _UpperCAmelCase=2 , _UpperCAmelCase=3_2 , _UpperCAmelCase=4 , _UpperCAmelCase=4 , _UpperCAmelCase=3_0 , _UpperCAmelCase=0 , _UpperCAmelCase=1 , _UpperCAmelCase=2 , _UpperCAmelCase=None , ) -> int: __UpperCamelCase : List[str] = parent __UpperCamelCase : str = batch_size __UpperCamelCase : str = decoder_seq_length # For common tests __UpperCamelCase : Optional[int] = self.decoder_seq_length __UpperCamelCase : Any = is_training __UpperCamelCase : Tuple = use_attention_mask __UpperCamelCase : Optional[int] = use_labels __UpperCamelCase : Dict = vocab_size __UpperCamelCase : Optional[int] = d_model __UpperCamelCase : Union[str, Any] = d_model __UpperCamelCase : int = decoder_layers __UpperCamelCase : Dict = decoder_layers __UpperCamelCase : str = decoder_ffn_dim __UpperCamelCase : Optional[Any] = decoder_attention_heads __UpperCamelCase : Optional[Any] = decoder_attention_heads __UpperCamelCase : List[Any] = eos_token_id __UpperCamelCase : int = bos_token_id __UpperCamelCase : Tuple = pad_token_id __UpperCamelCase : Tuple = decoder_start_token_id __UpperCamelCase : Dict = use_cache __UpperCamelCase : Optional[Any] = max_position_embeddings __UpperCamelCase : int = None __UpperCamelCase : Optional[int] = decoder_seq_length __UpperCamelCase : Optional[int] = 2 __UpperCamelCase : Optional[int] = 1 def a_ (self ) -> List[Any]: __UpperCamelCase : Optional[Any] = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) __UpperCamelCase : int = None if self.use_attention_mask: __UpperCamelCase : List[str] = ids_tensor([self.batch_size, self.decoder_seq_length] , vocab_size=2 ) __UpperCamelCase : List[str] = None if self.use_labels: __UpperCamelCase : int = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) __UpperCamelCase : Optional[Any] = TrOCRConfig( vocab_size=self.vocab_size , d_model=self.d_model , decoder_layers=self.decoder_layers , decoder_ffn_dim=self.decoder_ffn_dim , decoder_attention_heads=self.decoder_attention_heads , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , use_cache=self.use_cache , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , max_position_embeddings=self.max_position_embeddings , ) return (config, input_ids, attention_mask, lm_labels) def a_ (self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ) -> Optional[Any]: __UpperCamelCase : List[Any] = True __UpperCamelCase : Optional[Any] = TrOCRDecoder(config=_UpperCAmelCase ).to(_UpperCAmelCase ).eval() __UpperCamelCase : Optional[Any] = input_ids[:2] input_ids[input_ids == 0] += 1 # first forward pass __UpperCamelCase : str = model(_UpperCAmelCase , use_cache=_UpperCAmelCase ) __UpperCamelCase : List[Any] = model(_UpperCAmelCase ) __UpperCamelCase : Optional[int] = model(_UpperCAmelCase , use_cache=_UpperCAmelCase ) self.parent.assertTrue(len(_UpperCAmelCase ) == len(_UpperCAmelCase ) ) self.parent.assertTrue(len(_UpperCAmelCase ) == len(_UpperCAmelCase ) + 1 ) __UpperCamelCase : List[Any] = outputs["past_key_values"] # create hypothetical next token and extent to next_input_ids __UpperCamelCase : Optional[int] = ids_tensor((2, 1) , config.vocab_size - 1 ) + 1 # append to next input_ids and __UpperCamelCase : str = torch.cat([input_ids, next_tokens] , dim=-1 ) __UpperCamelCase : Tuple = model(_UpperCAmelCase )["last_hidden_state"] __UpperCamelCase : Any = model(_UpperCAmelCase , past_key_values=_UpperCAmelCase )["last_hidden_state"] # select random slice __UpperCamelCase : Optional[int] = ids_tensor((1,) , output_from_past.shape[-1] ).item() __UpperCamelCase : Dict = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() __UpperCamelCase : Optional[int] = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice assert torch.allclose(_UpperCAmelCase , _UpperCAmelCase , atol=1E-3 ) def a_ (self ) -> Optional[Any]: __UpperCamelCase : List[str] = self.prepare_config_and_inputs() __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase : Any = config_and_inputs __UpperCamelCase : str = {"input_ids": input_ids, "attention_mask": attention_mask} return config, inputs_dict @require_torch class A ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): '''simple docstring''' A = (TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else () A = (TrOCRForCausalLM,) if is_torch_available() else () A = {"text-generation": TrOCRForCausalLM} if is_torch_available() else {} A = True A = False def a_ (self ) -> List[str]: __UpperCamelCase : Optional[int] = TrOCRStandaloneDecoderModelTester(self , is_training=_UpperCAmelCase ) __UpperCamelCase : Dict = ConfigTester(self , config_class=_UpperCAmelCase ) def a_ (self ) -> Dict: pass def a_ (self ) -> Optional[int]: pass def a_ (self ) -> Optional[Any]: pass def a_ (self ) -> Dict: self.config_tester.run_common_tests() def a_ (self ) -> List[Any]: __UpperCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past(*_UpperCAmelCase ) def a_ (self ) -> Any: return @unittest.skip("The model doesn't support left padding" ) # and it's not used enough to be worth fixing :) def a_ (self ) -> Tuple: pass
298
1
"""simple docstring""" import math def snake_case__ ( __lowerCamelCase : Union[str, Any] ): """simple docstring""" assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or not number % 2: # Negatives, 0, 1 and all even numbers are not primes return False lowerCamelCase__ : Union[str, Any] =range(3 , int(math.sqrt(lowerCAmelCase__ ) + 1 ) , 2 ) return not any(not number % i for i in odd_numbers ) def snake_case__ ( __lowerCamelCase : List[str] , __lowerCamelCase : int=1 , **__lowerCamelCase : Tuple ): """simple docstring""" lowerCamelCase__ : int =factor * value lowerCamelCase__ : Optional[int] =value while not is_prime(lowerCAmelCase__ ): value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1 if value == first_value_val: return next_prime(value + 1 , **lowerCAmelCase__ ) return value
359
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) _lowercase : Any = { "configuration_trocr": ["TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP", "TrOCRConfig"], "processing_trocr": ["TrOCRProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : List[Any] = [ "TROCR_PRETRAINED_MODEL_ARCHIVE_LIST", "TrOCRForCausalLM", "TrOCRPreTrainedModel", ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys _lowercase : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
272
0
"""simple docstring""" from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(""">=""", """4.25.0""")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, ) else: from .modeling_text_unet import UNetFlatConditionModel from .pipeline_versatile_diffusion import VersatileDiffusionPipeline from .pipeline_versatile_diffusion_dual_guided import VersatileDiffusionDualGuidedPipeline from .pipeline_versatile_diffusion_image_variation import VersatileDiffusionImageVariationPipeline from .pipeline_versatile_diffusion_text_to_image import VersatileDiffusionTextToImagePipeline
81
import warnings from functools import wraps from typing import Callable def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Callable ) -> Callable: '''simple docstring''' @wraps(SCREAMING_SNAKE_CASE_ ) def _inner_fn(*SCREAMING_SNAKE_CASE_: int , **SCREAMING_SNAKE_CASE_: Union[str, Any] ): warnings.warn( (F'\'{fn.__name__}\' is experimental and might be subject to breaking changes in the future.') , SCREAMING_SNAKE_CASE_ , ) return fn(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) return _inner_fn
68
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) _lowerCamelCase : Union[str, Any] = {'configuration_deit': ['DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'DeiTConfig', 'DeiTOnnxConfig']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Union[str, Any] = ['DeiTFeatureExtractor'] _lowerCamelCase : List[str] = ['DeiTImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : int = [ 'DEIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'DeiTForImageClassification', 'DeiTForImageClassificationWithTeacher', 'DeiTForMaskedImageModeling', 'DeiTModel', 'DeiTPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Any = [ 'TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFDeiTForImageClassification', 'TFDeiTForImageClassificationWithTeacher', 'TFDeiTForMaskedImageModeling', 'TFDeiTModel', 'TFDeiTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig, DeiTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_deit import DeiTFeatureExtractor from .image_processing_deit import DeiTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deit import ( DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, DeiTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deit import ( TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, TFDeiTPreTrainedModel, ) else: import sys _lowerCamelCase : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
359
'''simple docstring''' def __a ( UpperCAmelCase , UpperCAmelCase ) ->Tuple: """simple docstring""" if b == 0: return 1 if (b % 2) == 0: return actual_power(UpperCAmelCase , int(b / 2 ) ) * actual_power(UpperCAmelCase , int(b / 2 ) ) else: return a * actual_power(UpperCAmelCase , int(b / 2 ) ) * actual_power(UpperCAmelCase , int(b / 2 ) ) def __a ( UpperCAmelCase , UpperCAmelCase ) ->float: """simple docstring""" if b < 0: return 1 / actual_power(UpperCAmelCase , UpperCAmelCase ) return actual_power(UpperCAmelCase , UpperCAmelCase ) if __name__ == "__main__": print(power(-2, -3))
337
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase_ = { "configuration_swinv2": ["SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP", "Swinv2Config"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ "SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST", "Swinv2ForImageClassification", "Swinv2ForMaskedImageModeling", "Swinv2Model", "Swinv2PreTrainedModel", ] if TYPE_CHECKING: from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swinva import ( SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST, SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel, SwinvaPreTrainedModel, ) else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
251
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { """bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/config.json""", """bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/config.json""", """bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/config.json""", """bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/config.json""", """bert-base-multilingual-uncased""": """https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json""", """bert-base-multilingual-cased""": """https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json""", """bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/config.json""", """bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/config.json""", """bert-large-uncased-whole-word-masking""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json""" ), """bert-large-cased-whole-word-masking""": ( """https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json""" ), """bert-large-uncased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json""" ), """bert-large-cased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json""" ), """bert-base-cased-finetuned-mrpc""": """https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json""", """bert-base-german-dbmdz-cased""": """https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json""", """bert-base-german-dbmdz-uncased""": """https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json""", """cl-tohoku/bert-base-japanese""": """https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json""", """cl-tohoku/bert-base-japanese-whole-word-masking""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json""" ), """cl-tohoku/bert-base-japanese-char""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json""" ), """cl-tohoku/bert-base-japanese-char-whole-word-masking""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json""" ), """TurkuNLP/bert-base-finnish-cased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json""" ), """TurkuNLP/bert-base-finnish-uncased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json""" ), """wietsedv/bert-base-dutch-cased""": """https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json""", # See all BERT models at https://huggingface.co/models?filter=bert } class __snake_case ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = """bert""" def __init__( self , __lowerCamelCase=3_0522 , __lowerCamelCase=768 , __lowerCamelCase=12 , __lowerCamelCase=12 , __lowerCamelCase=3072 , __lowerCamelCase="gelu" , __lowerCamelCase=0.1 , __lowerCamelCase=0.1 , __lowerCamelCase=512 , __lowerCamelCase=2 , __lowerCamelCase=0.0_2 , __lowerCamelCase=1e-1_2 , __lowerCamelCase=0 , __lowerCamelCase="absolute" , __lowerCamelCase=True , __lowerCamelCase=None , **__lowerCamelCase , ): '''simple docstring''' super().__init__(pad_token_id=__lowerCamelCase , **__lowerCamelCase ) __A : Dict = vocab_size __A : Any = hidden_size __A : str = num_hidden_layers __A : int = num_attention_heads __A : Optional[int] = hidden_act __A : List[Any] = intermediate_size __A : Tuple = hidden_dropout_prob __A : Optional[int] = attention_probs_dropout_prob __A : Optional[int] = max_position_embeddings __A : Optional[Any] = type_vocab_size __A : Optional[Any] = initializer_range __A : Dict = layer_norm_eps __A : Any = position_embedding_type __A : Optional[int] = use_cache __A : str = classifier_dropout class __snake_case ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" @property def UpperCamelCase__( self ): '''simple docstring''' if self.task == "multiple-choice": __A : str = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __A : Tuple = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ] )
179
0
"""simple docstring""" import logging import os import threading import time try: import warnings except ImportError: __SCREAMING_SNAKE_CASE : List[str] = None try: import msvcrt except ImportError: __SCREAMING_SNAKE_CASE : Optional[Any] = None try: import fcntl except ImportError: __SCREAMING_SNAKE_CASE : Union[str, Any] = None # Backward compatibility # ------------------------------------------------ try: TimeoutError except NameError: __SCREAMING_SNAKE_CASE : Dict = OSError # Data # ------------------------------------------------ __SCREAMING_SNAKE_CASE : Union[str, Any] = [ '''Timeout''', '''BaseFileLock''', '''WindowsFileLock''', '''UnixFileLock''', '''SoftFileLock''', '''FileLock''', ] __SCREAMING_SNAKE_CASE : Dict = '''3.0.12''' __SCREAMING_SNAKE_CASE : Optional[Any] = None def lowerCAmelCase_( ) -> int: global _logger _lowerCamelCase = _logger or logging.getLogger(__name__ ) return _logger class lowerCamelCase_( A__ ): '''simple docstring''' def __init__( self , lowerCamelCase__ ): _lowerCamelCase = lock_file return None def __str__( self ): _lowerCamelCase = F"""The file lock '{self.lock_file}' could not be acquired.""" return temp class lowerCamelCase_: '''simple docstring''' def __init__( self , lowerCamelCase__ ): _lowerCamelCase = lock return None def __enter__( self ): return self.lock def __exit__( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): self.lock.release() return None class lowerCamelCase_: '''simple docstring''' def __init__( self , lowerCamelCase__ , lowerCamelCase__=-1 , lowerCamelCase__=None ): _lowerCamelCase = max_filename_length if max_filename_length is not None else 2_5_5 # Hash the filename if it's too long _lowerCamelCase = self.hash_filename_if_too_long(lowerCamelCase__ , lowerCamelCase__ ) # The path to the lock file. _lowerCamelCase = lock_file # The file descriptor for the *_lock_file* as it is returned by the # os.open() function. # This file lock is only NOT None, if the object currently holds the # lock. _lowerCamelCase = None # The default timeout value. _lowerCamelCase = timeout # We use this lock primarily for the lock counter. _lowerCamelCase = threading.Lock() # The lock counter is used for implementing the nested locking # mechanism. Whenever the lock is acquired, the counter is increased and # the lock is only released, when this value is 0 again. _lowerCamelCase = 0 return None @property def snake_case__ ( self ): return self._lock_file @property def snake_case__ ( self ): return self._timeout @timeout.setter def snake_case__ ( self , lowerCamelCase__ ): _lowerCamelCase = float(lowerCamelCase__ ) return None def snake_case__ ( self ): raise NotImplementedError() def snake_case__ ( self ): raise NotImplementedError() @property def snake_case__ ( self ): return self._lock_file_fd is not None def snake_case__ ( self , lowerCamelCase__=None , lowerCamelCase__=0.0_5 ): # Use the default timeout, if no timeout is provided. if timeout is None: _lowerCamelCase = self.timeout # Increment the number right at the beginning. # We can still undo it, if something fails. with self._thread_lock: self._lock_counter += 1 _lowerCamelCase = id(self ) _lowerCamelCase = self._lock_file _lowerCamelCase = time.time() try: while True: with self._thread_lock: if not self.is_locked: logger().debug(F"""Attempting to acquire lock {lock_id} on {lock_filename}""" ) self._acquire() if self.is_locked: logger().debug(F"""Lock {lock_id} acquired on {lock_filename}""" ) break elif timeout >= 0 and time.time() - start_time > timeout: logger().debug(F"""Timeout on acquiring lock {lock_id} on {lock_filename}""" ) raise Timeout(self._lock_file ) else: logger().debug( F"""Lock {lock_id} not acquired on {lock_filename}, waiting {poll_intervall} seconds ...""" ) time.sleep(lowerCamelCase__ ) except: # noqa # Something did go wrong, so decrement the counter. with self._thread_lock: _lowerCamelCase = max(0 , self._lock_counter - 1 ) raise return _Acquire_ReturnProxy(lock=self ) def snake_case__ ( self , lowerCamelCase__=False ): with self._thread_lock: if self.is_locked: self._lock_counter -= 1 if self._lock_counter == 0 or force: _lowerCamelCase = id(self ) _lowerCamelCase = self._lock_file logger().debug(F"""Attempting to release lock {lock_id} on {lock_filename}""" ) self._release() _lowerCamelCase = 0 logger().debug(F"""Lock {lock_id} released on {lock_filename}""" ) return None def __enter__( self ): self.acquire() return self def __exit__( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): self.release() return None def __del__( self ): self.release(force=lowerCamelCase__ ) return None def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ ): _lowerCamelCase = os.path.basename(lowerCamelCase__ ) if len(lowerCamelCase__ ) > max_length and max_length > 0: _lowerCamelCase = os.path.dirname(lowerCamelCase__ ) _lowerCamelCase = str(hash(lowerCamelCase__ ) ) _lowerCamelCase = filename[: max_length - len(lowerCamelCase__ ) - 8] + '''...''' + hashed_filename + '''.lock''' return os.path.join(lowerCamelCase__ , lowerCamelCase__ ) else: return path class lowerCamelCase_( A__ ): '''simple docstring''' def __init__( self , lowerCamelCase__ , lowerCamelCase__=-1 , lowerCamelCase__=None ): from .file_utils import relative_to_absolute_path super().__init__(lowerCamelCase__ , timeout=lowerCamelCase__ , max_filename_length=lowerCamelCase__ ) _lowerCamelCase = '''\\\\?\\''' + relative_to_absolute_path(self.lock_file ) def snake_case__ ( self ): _lowerCamelCase = os.O_RDWR | os.O_CREAT | os.O_TRUNC try: _lowerCamelCase = os.open(self._lock_file , lowerCamelCase__ ) except OSError: pass else: try: msvcrt.locking(lowerCamelCase__ , msvcrt.LK_NBLCK , 1 ) except OSError: os.close(lowerCamelCase__ ) else: _lowerCamelCase = fd return None def snake_case__ ( self ): _lowerCamelCase = self._lock_file_fd _lowerCamelCase = None msvcrt.locking(lowerCamelCase__ , msvcrt.LK_UNLCK , 1 ) os.close(lowerCamelCase__ ) try: os.remove(self._lock_file ) # Probably another instance of the application # that acquired the file lock. except OSError: pass return None class lowerCamelCase_( A__ ): '''simple docstring''' def __init__( self , lowerCamelCase__ , lowerCamelCase__=-1 , lowerCamelCase__=None ): _lowerCamelCase = os.statvfs(os.path.dirname(lowerCamelCase__ ) ).f_namemax super().__init__(lowerCamelCase__ , timeout=lowerCamelCase__ , max_filename_length=lowerCamelCase__ ) def snake_case__ ( self ): _lowerCamelCase = os.O_RDWR | os.O_CREAT | os.O_TRUNC _lowerCamelCase = os.open(self._lock_file , lowerCamelCase__ ) try: fcntl.flock(lowerCamelCase__ , fcntl.LOCK_EX | fcntl.LOCK_NB ) except OSError: os.close(lowerCamelCase__ ) else: _lowerCamelCase = fd return None def snake_case__ ( self ): # Do not remove the lockfile: # # https://github.com/benediktschmitt/py-filelock/issues/31 # https://stackoverflow.com/questions/17708885/flock-removing-locked-file-without-race-condition _lowerCamelCase = self._lock_file_fd _lowerCamelCase = None fcntl.flock(lowerCamelCase__ , fcntl.LOCK_UN ) os.close(lowerCamelCase__ ) return None class lowerCamelCase_( A__ ): '''simple docstring''' def snake_case__ ( self ): _lowerCamelCase = os.O_WRONLY | os.O_CREAT | os.O_EXCL | os.O_TRUNC try: _lowerCamelCase = os.open(self._lock_file , lowerCamelCase__ ) except OSError: pass else: _lowerCamelCase = fd return None def snake_case__ ( self ): os.close(self._lock_file_fd ) _lowerCamelCase = None try: os.remove(self._lock_file ) # The file is already deleted and that's what we want. except OSError: pass return None __SCREAMING_SNAKE_CASE : List[str] = None if msvcrt: __SCREAMING_SNAKE_CASE : Optional[int] = WindowsFileLock elif fcntl: __SCREAMING_SNAKE_CASE : List[str] = UnixFileLock else: __SCREAMING_SNAKE_CASE : Any = SoftFileLock if warnings is not None: warnings.warn('''only soft file lock is available''')
73
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __SCREAMING_SNAKE_CASE : Optional[Any] = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : Optional[int] = { '''microsoft/trocr-base-handwritten''': ( '''https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json''' ), # See all TrOCR models at https://huggingface.co/models?filter=trocr } class lowerCamelCase_( A__ ): '''simple docstring''' lowercase__ : Optional[Any] = 'trocr' lowercase__ : Union[str, Any] = ['past_key_values'] lowercase__ : str = { 'num_attention_heads': 'decoder_attention_heads', 'hidden_size': 'd_model', 'num_hidden_layers': 'decoder_layers', } def __init__( self , lowerCamelCase__=5_0_2_6_5 , lowerCamelCase__=1_0_2_4 , lowerCamelCase__=1_2 , lowerCamelCase__=1_6 , lowerCamelCase__=4_0_9_6 , lowerCamelCase__="gelu" , lowerCamelCase__=5_1_2 , lowerCamelCase__=0.1 , lowerCamelCase__=0.0 , lowerCamelCase__=0.0 , lowerCamelCase__=2 , lowerCamelCase__=0.0_2 , lowerCamelCase__=0.0 , lowerCamelCase__=True , lowerCamelCase__=False , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=1 , lowerCamelCase__=0 , lowerCamelCase__=2 , **lowerCamelCase__ , ): _lowerCamelCase = vocab_size _lowerCamelCase = d_model _lowerCamelCase = decoder_layers _lowerCamelCase = decoder_attention_heads _lowerCamelCase = decoder_ffn_dim _lowerCamelCase = activation_function _lowerCamelCase = max_position_embeddings _lowerCamelCase = dropout _lowerCamelCase = attention_dropout _lowerCamelCase = activation_dropout _lowerCamelCase = init_std _lowerCamelCase = decoder_layerdrop _lowerCamelCase = use_cache _lowerCamelCase = scale_embedding _lowerCamelCase = use_learned_position_embeddings _lowerCamelCase = layernorm_embedding super().__init__( pad_token_id=lowerCamelCase__ , bos_token_id=lowerCamelCase__ , eos_token_id=lowerCamelCase__ , decoder_start_token_id=lowerCamelCase__ , **lowerCamelCase__ , )
73
1
'''simple docstring''' import argparse import hashlib # hashlib is only used inside the Test class import struct class __UpperCAmelCase : def __init__( self , lowerCAmelCase_ ): """simple docstring""" _snake_case = data _snake_case = [0X6_7_4_5_2_3_0_1, 0XE_F_C_D_A_B_8_9, 0X9_8_B_A_D_C_F_E, 0X1_0_3_2_5_4_7_6, 0XC_3_D_2_E_1_F_0] @staticmethod def lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" return ((n << b) | (n >> (32 - b))) & 0XF_F_F_F_F_F_F_F def lowerCamelCase ( self ): """simple docstring""" _snake_case = B'\x80' + B'\x00' * (63 - (len(self.data ) + 8) % 64) _snake_case = self.data + padding + struct.pack('>Q' , 8 * len(self.data ) ) return padded_data def lowerCamelCase ( self ): """simple docstring""" return [ self.padded_data[i : i + 64] for i in range(0 , len(self.padded_data ) , 64 ) ] def lowerCamelCase ( self , lowerCAmelCase_ ): """simple docstring""" _snake_case = list(struct.unpack('>16L' , lowerCAmelCase_ ) ) + [0] * 64 for i in range(16 , 80 ): _snake_case = self.rotate((w[i - 3] ^ w[i - 8] ^ w[i - 14] ^ w[i - 16]) , 1 ) return w def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.padding() _snake_case = self.split_blocks() for block in self.blocks: _snake_case = self.expand_block(lowerCAmelCase_ ) _snake_case , _snake_case , _snake_case , _snake_case , _snake_case = self.h for i in range(0 , 80 ): if 0 <= i < 20: _snake_case = (b & c) | ((~b) & d) _snake_case = 0X5_A_8_2_7_9_9_9 elif 20 <= i < 40: _snake_case = b ^ c ^ d _snake_case = 0X6_E_D_9_E_B_A_1 elif 40 <= i < 60: _snake_case = (b & c) | (b & d) | (c & d) _snake_case = 0X8_F_1_B_B_C_D_C elif 60 <= i < 80: _snake_case = b ^ c ^ d _snake_case = 0XC_A_6_2_C_1_D_6 _snake_case , _snake_case , _snake_case , _snake_case , _snake_case = ( self.rotate(lowerCAmelCase_ , 5 ) + f + e + k + expanded_block[i] & 0XF_F_F_F_F_F_F_F, a, self.rotate(lowerCAmelCase_ , 30 ), c, d, ) _snake_case = ( self.h[0] + a & 0XF_F_F_F_F_F_F_F, self.h[1] + b & 0XF_F_F_F_F_F_F_F, self.h[2] + c & 0XF_F_F_F_F_F_F_F, self.h[3] + d & 0XF_F_F_F_F_F_F_F, self.h[4] + e & 0XF_F_F_F_F_F_F_F, ) return ("{:08x}" * 5).format(*self.h ) def SCREAMING_SNAKE_CASE__ ( ) -> Optional[Any]: _snake_case = b'Test String' assert SHAaHash(__A ).final_hash() == hashlib.shaa(__A ).hexdigest() # noqa: S324 def SCREAMING_SNAKE_CASE__ ( ) -> Any: _snake_case = argparse.ArgumentParser(description='Process some strings or files' ) parser.add_argument( '--string' , dest='input_string' , default='Hello World!! Welcome to Cryptography' , help='Hash the string' , ) parser.add_argument('--file' , dest='input_file' , help='Hash contents of a file' ) _snake_case = parser.parse_args() _snake_case = args.input_string # In any case hash input should be a bytestring if args.input_file: with open(args.input_file , 'rb' ) as f: _snake_case = f.read() else: _snake_case = bytes(__A , 'utf-8' ) print(SHAaHash(__A ).final_hash() ) if __name__ == "__main__": main() import doctest doctest.testmod()
42
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_lxmert import LxmertTokenizer _SCREAMING_SNAKE_CASE : Union[str, Any] = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} _SCREAMING_SNAKE_CASE : Union[str, Any] = { '''vocab_file''': { '''unc-nlp/lxmert-base-uncased''': '''https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/vocab.txt''', }, '''tokenizer_file''': { '''unc-nlp/lxmert-base-uncased''': ( '''https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/tokenizer.json''' ), }, } _SCREAMING_SNAKE_CASE : Any = { '''unc-nlp/lxmert-base-uncased''': 512, } _SCREAMING_SNAKE_CASE : int = { '''unc-nlp/lxmert-base-uncased''': {'''do_lower_case''': True}, } class a ( __snake_case ): SCREAMING_SNAKE_CASE : int = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE : Any = PRETRAINED_INIT_CONFIGURATION SCREAMING_SNAKE_CASE : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE : Optional[Any] = LxmertTokenizer def __init__( self : str , __SCREAMING_SNAKE_CASE : Optional[Any]=None , __SCREAMING_SNAKE_CASE : Optional[Any]=None , __SCREAMING_SNAKE_CASE : str=True , __SCREAMING_SNAKE_CASE : List[Any]="[UNK]" , __SCREAMING_SNAKE_CASE : int="[SEP]" , __SCREAMING_SNAKE_CASE : int="[PAD]" , __SCREAMING_SNAKE_CASE : List[Any]="[CLS]" , __SCREAMING_SNAKE_CASE : Any="[MASK]" , __SCREAMING_SNAKE_CASE : List[str]=True , __SCREAMING_SNAKE_CASE : List[str]=None , **__SCREAMING_SNAKE_CASE : Any , ) -> Any: super().__init__( __SCREAMING_SNAKE_CASE , tokenizer_file=__SCREAMING_SNAKE_CASE , do_lower_case=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , sep_token=__SCREAMING_SNAKE_CASE , pad_token=__SCREAMING_SNAKE_CASE , cls_token=__SCREAMING_SNAKE_CASE , mask_token=__SCREAMING_SNAKE_CASE , tokenize_chinese_chars=__SCREAMING_SNAKE_CASE , strip_accents=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) lowerCamelCase_ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , __SCREAMING_SNAKE_CASE ) != do_lower_case or normalizer_state.get('strip_accents' , __SCREAMING_SNAKE_CASE ) != strip_accents or normalizer_state.get('handle_chinese_chars' , __SCREAMING_SNAKE_CASE ) != tokenize_chinese_chars ): lowerCamelCase_ = getattr(__SCREAMING_SNAKE_CASE , normalizer_state.pop('type' ) ) lowerCamelCase_ = do_lower_case lowerCamelCase_ = strip_accents lowerCamelCase_ = tokenize_chinese_chars lowerCamelCase_ = normalizer_class(**__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = do_lower_case def UpperCamelCase ( self : Tuple , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Tuple=None ) -> Dict: lowerCamelCase_ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCamelCase ( self : str , __SCREAMING_SNAKE_CASE : List[int] , __SCREAMING_SNAKE_CASE : Optional[List[int]] = None ) -> List[int]: lowerCamelCase_ = [self.sep_token_id] lowerCamelCase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase ( self : List[str] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[str] = None ) -> Tuple[str]: lowerCamelCase_ = self._tokenizer.model.save(__SCREAMING_SNAKE_CASE , name=__SCREAMING_SNAKE_CASE ) return tuple(__SCREAMING_SNAKE_CASE )
183
0
"""simple docstring""" import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Image from .base import TaskTemplate @dataclass(frozen=snake_case_ ) class _lowerCAmelCase ( snake_case_ ): __UpperCAmelCase : str = field(default='''image-classification''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) __UpperCAmelCase : ClassVar[Features] = Features({'''image''': Image()} ) __UpperCAmelCase : ClassVar[Features] = Features({'''labels''': ClassLabel} ) __UpperCAmelCase : str = "image" __UpperCAmelCase : str = "labels" def lowerCamelCase ( self , UpperCamelCase__ ) -> int: '''simple docstring''' if self.label_column not in features: raise ValueError(F'Column {self.label_column} is not present in features.' ) if not isinstance(features[self.label_column] , UpperCamelCase__ ): raise ValueError(F'Column {self.label_column} is not a ClassLabel.' ) snake_case : Union[str, Any] = copy.deepcopy(self ) snake_case : Union[str, Any] = self.label_schema.copy() snake_case : int = features[self.label_column] snake_case : List[Any] = label_schema return task_template @property def lowerCamelCase ( self ) -> Dict[str, str]: '''simple docstring''' return { self.image_column: "image", self.label_column: "labels", }
112
"""simple docstring""" import string def __lowerCAmelCase ( lowercase : str ) -> str: """simple docstring""" snake_case : List[str] = "" for i in sequence: snake_case : Optional[Any] = ord(lowercase ) if 65 <= extract <= 90: output += chr(155 - extract ) elif 97 <= extract <= 122: output += chr(219 - extract ) else: output += i return output def __lowerCAmelCase ( lowercase : str ) -> str: """simple docstring""" snake_case : Dict = string.ascii_letters snake_case : List[Any] = string.ascii_lowercase[::-1] + string.ascii_uppercase[::-1] return "".join( letters_reversed[letters.index(lowercase )] if c in letters else c for c in sequence ) def __lowerCAmelCase ( ) -> None: """simple docstring""" from timeit import timeit print("Running performance benchmarks..." ) snake_case : Optional[int] = "from string import printable ; from __main__ import atbash, atbash_slow" print(F'> atbash_slow(): {timeit("atbash_slow(printable)" , setup=lowercase )} seconds' ) print(F'> atbash(): {timeit("atbash(printable)" , setup=lowercase )} seconds' ) if __name__ == "__main__": for example in ("ABCDEFGH", "123GGjj", "testStringtest", "with space"): print(F'''{example} encrypted in atbash: {atbash(example)}''') benchmark()
112
1
from typing import Any import numpy as np def lowerCamelCase_ ( UpperCamelCase__ : np.ndarray ) -> bool: """simple docstring""" return np.array_equal(UpperCamelCase__ , matrix.conjugate().T ) def lowerCamelCase_ ( UpperCamelCase__ : np.ndarray , UpperCamelCase__ : np.ndarray ) -> Any: """simple docstring""" __lowerCamelCase = v.conjugate().T __lowerCamelCase = v_star.dot(UpperCamelCase__ ) assert isinstance(UpperCamelCase__ , np.ndarray ) return (v_star_dot.dot(UpperCamelCase__ )) / (v_star.dot(UpperCamelCase__ )) def lowerCamelCase_ ( ) -> None: """simple docstring""" __lowerCamelCase = np.array([[2, 2 + 1j, 4], [2 - 1j, 3, 1j], [4, -1j, 1]] ) __lowerCamelCase = np.array([[1], [2], [3]] ) assert is_hermitian(UpperCamelCase__ ), F"""{a} is not hermitian.""" print(rayleigh_quotient(UpperCamelCase__ , UpperCamelCase__ ) ) __lowerCamelCase = np.array([[1, 2, 4], [2, 3, -1], [4, -1, 1]] ) assert is_hermitian(UpperCamelCase__ ), F"""{a} is not hermitian.""" assert rayleigh_quotient(UpperCamelCase__ , UpperCamelCase__ ) == float(3 ) if __name__ == "__main__": import doctest doctest.testmod() tests()
90
'''simple docstring''' from __future__ import annotations from typing import Dict from ...configuration_utils import PretrainedConfig __lowercase = { '''susnato/ernie-m-base_pytorch''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/config.json''', '''susnato/ernie-m-large_pytorch''': '''https://huggingface.co/susnato/ernie-m-large_pytorch/blob/main/config.json''', } class a__( lowerCAmelCase__ ): '''simple docstring''' UpperCAmelCase_ : List[str] = '''ernie_m''' UpperCAmelCase_ : Dict[str, str] = {"dropout": "classifier_dropout", "num_classes": "num_labels"} def __init__( self , __lowerCAmelCase = 250002 , __lowerCAmelCase = 768 , __lowerCAmelCase = 12 , __lowerCAmelCase = 12 , __lowerCAmelCase = 3072 , __lowerCAmelCase = "gelu" , __lowerCAmelCase = 0.1 , __lowerCAmelCase = 0.1 , __lowerCAmelCase = 514 , __lowerCAmelCase = 0.02 , __lowerCAmelCase = 1 , __lowerCAmelCase = 1E-0_5 , __lowerCAmelCase=None , __lowerCAmelCase=False , __lowerCAmelCase=0.0 , **__lowerCAmelCase , ): """simple docstring""" super().__init__(pad_token_id=__lowerCAmelCase , **__lowerCAmelCase) lowerCAmelCase = vocab_size lowerCAmelCase = hidden_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_act lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = max_position_embeddings lowerCAmelCase = initializer_range lowerCAmelCase = layer_norm_eps lowerCAmelCase = classifier_dropout lowerCAmelCase = is_decoder lowerCAmelCase = act_dropout
272
0
import ast import os import re import shutil import tempfile import unittest from unittest import mock import torch from accelerate.test_utils.examples import compare_against_test from accelerate.test_utils.testing import TempDirTestCase, require_trackers, run_command, slow from accelerate.utils import write_basic_config # DataLoaders built from `test_samples/MRPC` for quick testing # Should mock `{script_name}.get_dataloaders` via: # @mock.patch("{script_name}.get_dataloaders", mocked_dataloaders) _snake_case = [ '''cross_validation.py''', '''gradient_accumulation.py''', '''local_sgd.py''', '''multi_process_metrics.py''', '''memory.py''', '''automatic_gradient_accumulation.py''', '''fsdp_with_peak_mem_tracking.py''', '''deepspeed_with_config_support.py''', '''megatron_lm_gpt_pretraining.py''', ] class _snake_case ( unittest.TestCase ): def _lowerCamelCase ( self: Any , __lowerCamelCase: str , __lowerCamelCase: bool , __lowerCamelCase: str = None , __lowerCamelCase: list = None ) -> str: __UpperCAmelCase : List[str] = None __UpperCAmelCase : Any = os.path.abspath(os.path.join("examples" , "by_feature" ) ) __UpperCAmelCase : List[Any] = os.path.abspath("examples" ) for item in os.listdir(__lowerCamelCase ): if item not in EXCLUDE_EXAMPLES: __UpperCAmelCase : List[Any] = os.path.join(__lowerCamelCase , __lowerCamelCase ) if os.path.isfile(__lowerCamelCase ) and ".py" in item_path: with self.subTest( tested_script=__lowerCamelCase , feature_script=__lowerCamelCase , tested_section="main()" if parser_only else "training_function()" , ): __UpperCAmelCase : List[Any] = compare_against_test( os.path.join(__lowerCamelCase , __lowerCamelCase ) , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) __UpperCAmelCase : Union[str, Any] = "\n".join(__lowerCamelCase ) if special_strings is not None: for string in special_strings: __UpperCAmelCase : Dict = diff.replace(__lowerCamelCase , "" ) self.assertEqual(__lowerCamelCase , "" ) def _lowerCamelCase ( self: List[Any] ) -> Optional[Any]: self.one_complete_example("complete_nlp_example.py" , __lowerCamelCase ) self.one_complete_example("complete_nlp_example.py" , __lowerCamelCase ) def _lowerCamelCase ( self: str ) -> int: __UpperCAmelCase : Union[str, Any] = os.path.abspath(os.path.join("examples" , "cv_example.py" ) ) __UpperCAmelCase : List[str] = [ " " * 16 + "{\n\n", " " * 20 + "\"accuracy\": eval_metric[\"accuracy\"],\n\n", " " * 20 + "\"f1\": eval_metric[\"f1\"],\n\n", " " * 20 + "\"train_loss\": total_loss.item() / len(train_dataloader),\n\n", " " * 20 + "\"epoch\": epoch,\n\n", " " * 16 + "},\n\n", " " * 16 + "step=epoch,\n", " " * 12, " " * 8 + "for step, batch in enumerate(active_dataloader):\n", ] self.one_complete_example("complete_cv_example.py" , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) self.one_complete_example("complete_cv_example.py" , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) @mock.patch.dict(os.environ , {"TESTING_MOCKED_DATALOADERS": "1"} ) class _snake_case ( _lowercase ): lowerCamelCase__: Dict = False @classmethod def _lowerCamelCase ( cls: Tuple ) -> Any: super().setUpClass() __UpperCAmelCase : Optional[Any] = tempfile.mkdtemp() __UpperCAmelCase : str = os.path.join(cls._tmpdir , "default_config.yml" ) write_basic_config(save_location=cls.configPath ) __UpperCAmelCase : Any = ["accelerate", "launch", "--config_file", cls.configPath] @classmethod def _lowerCamelCase ( cls: Tuple ) -> Dict: super().tearDownClass() shutil.rmtree(cls._tmpdir ) def _lowerCamelCase ( self: Union[str, Any] ) -> Any: __UpperCAmelCase : Tuple = f''' examples/by_feature/checkpointing.py --checkpointing_steps epoch --output_dir {self.tmpdir} '''.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , "epoch_0" ) ) ) def _lowerCamelCase ( self: List[Any] ) -> Optional[int]: __UpperCAmelCase : Optional[Any] = f''' examples/by_feature/checkpointing.py --checkpointing_steps 1 --output_dir {self.tmpdir} '''.split() __UpperCAmelCase : Optional[Any] = run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , "step_2" ) ) ) def _lowerCamelCase ( self: Optional[int] ) -> Tuple: __UpperCAmelCase : Union[str, Any] = f''' examples/by_feature/checkpointing.py --resume_from_checkpoint {os.path.join(self.tmpdir , 'epoch_0' )} '''.split() __UpperCAmelCase : Union[str, Any] = run_command(self._launch_args + testargs , return_stdout=__lowerCamelCase ) self.assertNotIn("epoch 0:" , __lowerCamelCase ) self.assertIn("epoch 1:" , __lowerCamelCase ) def _lowerCamelCase ( self: Optional[int] ) -> Union[str, Any]: __UpperCAmelCase : Dict = f''' examples/by_feature/checkpointing.py --resume_from_checkpoint {os.path.join(self.tmpdir , 'step_2' )} '''.split() __UpperCAmelCase : Any = run_command(self._launch_args + testargs , return_stdout=__lowerCamelCase ) if torch.cuda.is_available(): __UpperCAmelCase : Dict = torch.cuda.device_count() else: __UpperCAmelCase : int = 1 if num_processes > 1: self.assertNotIn("epoch 0:" , __lowerCamelCase ) self.assertIn("epoch 1:" , __lowerCamelCase ) else: self.assertIn("epoch 0:" , __lowerCamelCase ) self.assertIn("epoch 1:" , __lowerCamelCase ) @slow def _lowerCamelCase ( self: Optional[Any] ) -> int: __UpperCAmelCase : Optional[Any] = "\n examples/by_feature/cross_validation.py\n --num_folds 2\n ".split() with mock.patch.dict(os.environ , {"TESTING_MOCKED_DATALOADERS": "0"} ): __UpperCAmelCase : Union[str, Any] = run_command(self._launch_args + testargs , return_stdout=__lowerCamelCase ) __UpperCAmelCase : Dict = re.findall("({.+})" , __lowerCamelCase ) __UpperCAmelCase : Any = [r for r in results if "accuracy" in r][-1] __UpperCAmelCase : Any = ast.literal_eval(__lowerCamelCase ) self.assertGreaterEqual(results["accuracy"] , 0.75 ) def _lowerCamelCase ( self: int ) -> List[Any]: __UpperCAmelCase : Any = ["examples/by_feature/multi_process_metrics.py"] run_command(self._launch_args + testargs ) @require_trackers @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def _lowerCamelCase ( self: Any ) -> int: with tempfile.TemporaryDirectory() as tmpdir: __UpperCAmelCase : int = f''' examples/by_feature/tracking.py --with_tracking --project_dir {tmpdir} '''.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(__lowerCamelCase , "tracking" ) ) ) def _lowerCamelCase ( self: Any ) -> Optional[int]: __UpperCAmelCase : int = ["examples/by_feature/gradient_accumulation.py"] run_command(self._launch_args + testargs ) def _lowerCamelCase ( self: Any ) -> List[str]: __UpperCAmelCase : List[Any] = ["examples/by_feature/local_sgd.py"] run_command(self._launch_args + testargs )
370
from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { '''weiweishi/roc-bert-base-zh''': '''https://huggingface.co/weiweishi/roc-bert-base-zh/resolve/main/config.json''', } class _snake_case ( _lowercase ): lowerCamelCase__: Dict = "roc_bert" def __init__( self: int , __lowerCamelCase: Union[str, Any]=3_05_22 , __lowerCamelCase: int=7_68 , __lowerCamelCase: Any=12 , __lowerCamelCase: int=12 , __lowerCamelCase: Union[str, Any]=30_72 , __lowerCamelCase: Union[str, Any]="gelu" , __lowerCamelCase: Optional[int]=0.1 , __lowerCamelCase: str=0.1 , __lowerCamelCase: Any=5_12 , __lowerCamelCase: Union[str, Any]=2 , __lowerCamelCase: str=0.02 , __lowerCamelCase: int=1e-12 , __lowerCamelCase: str=True , __lowerCamelCase: int=0 , __lowerCamelCase: List[str]="absolute" , __lowerCamelCase: List[Any]=None , __lowerCamelCase: Optional[int]=True , __lowerCamelCase: List[str]=True , __lowerCamelCase: Dict=7_68 , __lowerCamelCase: Optional[int]=9_10 , __lowerCamelCase: Union[str, Any]=5_12 , __lowerCamelCase: int=2_48_58 , __lowerCamelCase: Optional[int]=True , **__lowerCamelCase: Any , ) -> List[Any]: __UpperCAmelCase : str = vocab_size __UpperCAmelCase : Dict = max_position_embeddings __UpperCAmelCase : Optional[Any] = hidden_size __UpperCAmelCase : Optional[int] = num_hidden_layers __UpperCAmelCase : Union[str, Any] = num_attention_heads __UpperCAmelCase : List[str] = intermediate_size __UpperCAmelCase : List[Any] = hidden_act __UpperCAmelCase : List[str] = hidden_dropout_prob __UpperCAmelCase : Optional[int] = attention_probs_dropout_prob __UpperCAmelCase : Union[str, Any] = initializer_range __UpperCAmelCase : Optional[Any] = type_vocab_size __UpperCAmelCase : List[Any] = layer_norm_eps __UpperCAmelCase : Optional[int] = use_cache __UpperCAmelCase : Optional[Any] = enable_pronunciation __UpperCAmelCase : Any = enable_shape __UpperCAmelCase : Union[str, Any] = pronunciation_embed_dim __UpperCAmelCase : Optional[Any] = pronunciation_vocab_size __UpperCAmelCase : Optional[Any] = shape_embed_dim __UpperCAmelCase : List[Any] = shape_vocab_size __UpperCAmelCase : int = concat_input __UpperCAmelCase : int = position_embedding_type __UpperCAmelCase : Optional[int] = classifier_dropout super().__init__(pad_token_id=__lowerCamelCase , **__lowerCamelCase )
342
0
"""simple docstring""" def lowercase_ ( _lowerCamelCase: List[Any] ) -> list: '''simple docstring''' for i in range(len(_UpperCamelCase ) - 1 , 0 , -1 ): __lowerCamelCase : Optional[Any] = False for j in range(_UpperCamelCase , 0 , -1 ): if unsorted[j] < unsorted[j - 1]: __lowerCamelCase : Dict = unsorted[j - 1], unsorted[j] __lowerCamelCase : Any = True for j in range(_UpperCamelCase ): if unsorted[j] > unsorted[j + 1]: __lowerCamelCase : Union[str, Any] = unsorted[j + 1], unsorted[j] __lowerCamelCase : Any = True if not swapped: break return unsorted if __name__ == "__main__": import doctest doctest.testmod() __A = input('''Enter numbers separated by a comma:\n''').strip() __A = [int(item) for item in user_input.split(''',''')] print(F"""{cocktail_shaker_sort(unsorted) = }""")
135
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __a = logging.get_logger(__name__) __a = { '''hustvl/yolos-small''': '''https://huggingface.co/hustvl/yolos-small/resolve/main/config.json''', # See all YOLOS models at https://huggingface.co/models?filter=yolos } class __SCREAMING_SNAKE_CASE ( A__ ): A : Any = 'yolos' def __init__( self , SCREAMING_SNAKE_CASE__=768 , SCREAMING_SNAKE_CASE__=12 , SCREAMING_SNAKE_CASE__=12 , SCREAMING_SNAKE_CASE__=3072 , SCREAMING_SNAKE_CASE__="gelu" , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__=0.02 , SCREAMING_SNAKE_CASE__=1E-12 , SCREAMING_SNAKE_CASE__=[512, 864] , SCREAMING_SNAKE_CASE__=16 , SCREAMING_SNAKE_CASE__=3 , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=100 , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=1 , SCREAMING_SNAKE_CASE__=5 , SCREAMING_SNAKE_CASE__=2 , SCREAMING_SNAKE_CASE__=5 , SCREAMING_SNAKE_CASE__=2 , SCREAMING_SNAKE_CASE__=0.1 , **SCREAMING_SNAKE_CASE__ , ): super().__init__(**SCREAMING_SNAKE_CASE__ ) lowercase : Union[str, Any] = hidden_size lowercase : int = num_hidden_layers lowercase : str = num_attention_heads lowercase : str = intermediate_size lowercase : Dict = hidden_act lowercase : int = hidden_dropout_prob lowercase : Optional[Any] = attention_probs_dropout_prob lowercase : List[Any] = initializer_range lowercase : Optional[int] = layer_norm_eps lowercase : str = image_size lowercase : Dict = patch_size lowercase : str = num_channels lowercase : Optional[int] = qkv_bias lowercase : List[str] = num_detection_tokens lowercase : List[str] = use_mid_position_embeddings lowercase : Dict = auxiliary_loss # Hungarian matcher lowercase : Optional[Any] = class_cost lowercase : Any = bbox_cost lowercase : int = giou_cost # Loss coefficients lowercase : Dict = bbox_loss_coefficient lowercase : Optional[Any] = giou_loss_coefficient lowercase : Tuple = eos_coefficient class __SCREAMING_SNAKE_CASE ( A__ ): A : List[str] = version.parse('1.11' ) @property def __lowerCamelCase ( self ): return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def __lowerCamelCase ( self ): return 1E-4 @property def __lowerCamelCase ( self ): return 12
337
0
import csv from collections import defaultdict from dataclasses import dataclass, field from typing import List, Optional import matplotlib.pyplot as plt import numpy as np from matplotlib.ticker import ScalarFormatter from transformers import HfArgumentParser def _lowerCamelCase( lowercase__=None , lowercase__=None ) -> Optional[Any]: '''simple docstring''' return field(default_factory=lambda: default , metadata=lowercase__ ) @dataclass class A : UpperCamelCase_ : str =field( metadata={'''help''': '''The csv file to plot.'''} , ) UpperCamelCase_ : bool =field( default=A_ , metadata={'''help''': '''Whether to plot along batch size or sequence length. Defaults to sequence length.'''} , ) UpperCamelCase_ : bool =field( default=A_ , metadata={'''help''': '''Whether the csv file has time results or memory results. Defaults to memory results.'''} , ) UpperCamelCase_ : bool =field( default=A_ , metadata={'''help''': '''Disable logarithmic scale when plotting'''} , ) UpperCamelCase_ : bool =field( default=A_ , metadata={ '''help''': '''Whether the csv file has training results or inference results. Defaults to inference results.''' } , ) UpperCamelCase_ : Optional[str] =field( default=A_ , metadata={'''help''': '''Filename under which the plot will be saved. If unused no plot is saved.'''} , ) UpperCamelCase_ : Optional[List[str]] =list_field( default=A_ , metadata={'''help''': '''List of model names that are used instead of the ones in the csv file.'''} ) def _lowerCamelCase( lowercase__ ) -> int: '''simple docstring''' try: int(lowercase__ ) return True except ValueError: return False def _lowerCamelCase( lowercase__ ) -> Optional[Any]: '''simple docstring''' try: float(lowercase__ ) return True except ValueError: return False class A : def __init__(self , lowerCAmelCase ): __lowercase= args __lowercase= defaultdict(lambda: {"bsz": [], "seq_len": [], "result": {}} ) with open(self.args.csv_file , newline='' ) as csv_file: __lowercase= csv.DictReader(lowerCAmelCase ) for row in reader: __lowercase= row['model'] self.result_dict[model_name]["bsz"].append(int(row['batch_size'] ) ) self.result_dict[model_name]["seq_len"].append(int(row['sequence_length'] ) ) if can_convert_to_int(row['result'] ): # value is not None __lowercase= int(row['result'] ) elif can_convert_to_float(row['result'] ): # value is not None __lowercase= float(row['result'] ) def _A (self ): __lowercase, __lowercase= plt.subplots() __lowercase= 'Time usage' if self.args.is_time else 'Memory usage' __lowercase= title_str + ' for training' if self.args.is_train else title_str + ' for inference' if not self.args.no_log_scale: # set logarithm scales ax.set_xscale('log' ) ax.set_yscale('log' ) for axis in [ax.xaxis, ax.yaxis]: axis.set_major_formatter(ScalarFormatter() ) for model_name_idx, model_name in enumerate(self.result_dict.keys() ): __lowercase= sorted(set(self.result_dict[model_name]['bsz'] ) ) __lowercase= sorted(set(self.result_dict[model_name]['seq_len'] ) ) __lowercase= self.result_dict[model_name]['result'] ((__lowercase), (__lowercase))= ( (batch_sizes, sequence_lengths) if self.args.plot_along_batch else (sequence_lengths, batch_sizes) ) __lowercase= ( model_name if self.args.short_model_names is None else self.args.short_model_names[model_name_idx] ) for inner_loop_value in inner_loop_array: if self.args.plot_along_batch: __lowercase= np.asarray( [results[(x, inner_loop_value)] for x in x_axis_array if (x, inner_loop_value) in results] , dtype=lowerCAmelCase , ) else: __lowercase= np.asarray( [results[(inner_loop_value, x)] for x in x_axis_array if (inner_loop_value, x) in results] , dtype=np.floataa , ) ((__lowercase), (__lowercase))= ( ('batch_size', 'len') if self.args.plot_along_batch else ('in #tokens', 'bsz') ) __lowercase= np.asarray(lowerCAmelCase , lowerCAmelCase )[: len(lowerCAmelCase )] plt.scatter( lowerCAmelCase , lowerCAmelCase , label=f'{label_model_name} - {inner_loop_label}: {inner_loop_value}' ) plt.plot(lowerCAmelCase , lowerCAmelCase , '--' ) title_str += f' {label_model_name} vs.' __lowercase= title_str[:-4] __lowercase= 'Time in s' if self.args.is_time else 'Memory in MB' # plot plt.title(lowerCAmelCase ) plt.xlabel(lowerCAmelCase ) plt.ylabel(lowerCAmelCase ) plt.legend() if self.args.figure_png_file is not None: plt.savefig(self.args.figure_png_file ) else: plt.show() def _lowerCamelCase( ) -> Tuple: '''simple docstring''' __lowercase= HfArgumentParser(lowercase__ ) __lowercase= parser.parse_args_into_dataclasses()[0] __lowercase= Plot(args=lowercase__ ) plot.plot() if __name__ == "__main__": main()
351
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig lowerCAmelCase = { '''albert-base-v1''': '''https://huggingface.co/albert-base-v1/resolve/main/config.json''', '''albert-large-v1''': '''https://huggingface.co/albert-large-v1/resolve/main/config.json''', '''albert-xlarge-v1''': '''https://huggingface.co/albert-xlarge-v1/resolve/main/config.json''', '''albert-xxlarge-v1''': '''https://huggingface.co/albert-xxlarge-v1/resolve/main/config.json''', '''albert-base-v2''': '''https://huggingface.co/albert-base-v2/resolve/main/config.json''', '''albert-large-v2''': '''https://huggingface.co/albert-large-v2/resolve/main/config.json''', '''albert-xlarge-v2''': '''https://huggingface.co/albert-xlarge-v2/resolve/main/config.json''', '''albert-xxlarge-v2''': '''https://huggingface.co/albert-xxlarge-v2/resolve/main/config.json''', } class A ( A_ ): UpperCamelCase_ : Optional[int] ='''albert''' def __init__(self , lowerCAmelCase=3_0_0_0_0 , lowerCAmelCase=1_2_8 , lowerCAmelCase=4_0_9_6 , lowerCAmelCase=1_2 , lowerCAmelCase=1 , lowerCAmelCase=6_4 , lowerCAmelCase=1_6_3_8_4 , lowerCAmelCase=1 , lowerCAmelCase="gelu_new" , lowerCAmelCase=0 , lowerCAmelCase=0 , lowerCAmelCase=5_1_2 , lowerCAmelCase=2 , lowerCAmelCase=0.02 , lowerCAmelCase=1E-12 , lowerCAmelCase=0.1 , lowerCAmelCase="absolute" , lowerCAmelCase=0 , lowerCAmelCase=2 , lowerCAmelCase=3 , **lowerCAmelCase , ): super().__init__(pad_token_id=lowerCAmelCase , bos_token_id=lowerCAmelCase , eos_token_id=lowerCAmelCase , **lowerCAmelCase ) __lowercase= vocab_size __lowercase= embedding_size __lowercase= hidden_size __lowercase= num_hidden_layers __lowercase= num_hidden_groups __lowercase= num_attention_heads __lowercase= inner_group_num __lowercase= hidden_act __lowercase= intermediate_size __lowercase= hidden_dropout_prob __lowercase= attention_probs_dropout_prob __lowercase= max_position_embeddings __lowercase= type_vocab_size __lowercase= initializer_range __lowercase= layer_norm_eps __lowercase= classifier_dropout_prob __lowercase= position_embedding_type class A ( A_ ): @property def _A (self ): if self.task == "multiple-choice": __lowercase= {0: 'batch', 1: 'choice', 2: 'sequence'} else: __lowercase= {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ] )
304
0
import pyarrow.parquet as pq import pytest from datasets import Audio, Dataset, DatasetDict, Features, NamedSplit, Sequence, Value, config from datasets.features.image import Image from datasets.io.parquet import ParquetDatasetReader, ParquetDatasetWriter, get_writer_batch_size from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ ) -> Any: assert isinstance(lowerCamelCase__ , lowerCamelCase__ ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('keep_in_memory' , [False, True] ) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Any: __lowerCamelCase : str = tmp_path / 'cache' __lowerCamelCase : Dict = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __lowerCamelCase : Tuple = ParquetDatasetReader(lowerCamelCase__ , cache_dir=lowerCamelCase__ , keep_in_memory=lowerCamelCase__ ).read() _check_parquet_dataset(lowerCamelCase__ , lowerCamelCase__ ) @pytest.mark.parametrize( 'features' , [ None, {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}, {'col_1': 'string', 'col_2': 'string', 'col_3': 'string'}, {'col_1': 'int32', 'col_2': 'int32', 'col_3': 'int32'}, {'col_1': 'float32', 'col_2': 'float32', 'col_3': 'float32'}, ] , ) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Any: __lowerCamelCase : Union[str, Any] = tmp_path / 'cache' __lowerCamelCase : Dict = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} __lowerCamelCase : Union[str, Any] = features.copy() if features else default_expected_features __lowerCamelCase : Union[str, Any] = ( Features({feature: Value(lowerCamelCase__ ) for feature, dtype in features.items()} ) if features is not None else None ) __lowerCamelCase : Dict = ParquetDatasetReader(lowerCamelCase__ , features=lowerCamelCase__ , cache_dir=lowerCamelCase__ ).read() _check_parquet_dataset(lowerCamelCase__ , lowerCamelCase__ ) @pytest.mark.parametrize('split' , [None, NamedSplit('train' ), 'train', 'test'] ) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> str: __lowerCamelCase : Union[str, Any] = tmp_path / 'cache' __lowerCamelCase : Optional[int] = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} __lowerCamelCase : Tuple = ParquetDatasetReader(lowerCamelCase__ , cache_dir=lowerCamelCase__ , split=lowerCamelCase__ ).read() _check_parquet_dataset(lowerCamelCase__ , lowerCamelCase__ ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('path_type' , [str, list] ) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Dict: if issubclass(lowerCamelCase__ , lowerCamelCase__ ): __lowerCamelCase : Optional[int] = parquet_path elif issubclass(lowerCamelCase__ , lowerCamelCase__ ): __lowerCamelCase : Dict = [parquet_path] __lowerCamelCase : List[Any] = tmp_path / 'cache' __lowerCamelCase : Any = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} __lowerCamelCase : Dict = ParquetDatasetReader(lowerCamelCase__ , cache_dir=lowerCamelCase__ ).read() _check_parquet_dataset(lowerCamelCase__ , lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=("train",) ) -> List[str]: assert isinstance(lowerCamelCase__ , lowerCamelCase__ ) for split in splits: __lowerCamelCase : Dict = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('keep_in_memory' , [False, True] ) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Optional[Any]: __lowerCamelCase : Union[str, Any] = tmp_path / 'cache' __lowerCamelCase : int = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __lowerCamelCase : List[str] = ParquetDatasetReader( {'train': parquet_path} , cache_dir=lowerCamelCase__ , keep_in_memory=lowerCamelCase__ ).read() _check_parquet_datasetdict(lowerCamelCase__ , lowerCamelCase__ ) @pytest.mark.parametrize( 'features' , [ None, {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}, {'col_1': 'string', 'col_2': 'string', 'col_3': 'string'}, {'col_1': 'int32', 'col_2': 'int32', 'col_3': 'int32'}, {'col_1': 'float32', 'col_2': 'float32', 'col_3': 'float32'}, ] , ) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Dict: __lowerCamelCase : Tuple = tmp_path / 'cache' __lowerCamelCase : List[Any] = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} __lowerCamelCase : List[str] = features.copy() if features else default_expected_features __lowerCamelCase : str = ( Features({feature: Value(lowerCamelCase__ ) for feature, dtype in features.items()} ) if features is not None else None ) __lowerCamelCase : Union[str, Any] = ParquetDatasetReader({'train': parquet_path} , features=lowerCamelCase__ , cache_dir=lowerCamelCase__ ).read() _check_parquet_datasetdict(lowerCamelCase__ , lowerCamelCase__ ) @pytest.mark.parametrize('split' , [None, NamedSplit('train' ), 'train', 'test'] ) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Union[str, Any]: if split: __lowerCamelCase : List[str] = {split: parquet_path} else: __lowerCamelCase : List[str] = 'train' __lowerCamelCase : List[Any] = {'train': parquet_path, 'test': parquet_path} __lowerCamelCase : Tuple = tmp_path / 'cache' __lowerCamelCase : Any = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} __lowerCamelCase : Optional[Any] = ParquetDatasetReader(lowerCamelCase__ , cache_dir=lowerCamelCase__ ).read() _check_parquet_datasetdict(lowerCamelCase__ , lowerCamelCase__ , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ ) -> Dict: __lowerCamelCase : Union[str, Any] = ParquetDatasetWriter(lowerCamelCase__ , tmp_path / 'foo.parquet' ) assert writer.write() > 0 __lowerCamelCase : Union[str, Any] = pq.ParquetFile(tmp_path / 'foo.parquet' ) __lowerCamelCase : List[str] = pf.read() assert dataset.data.table == output_table def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ ) -> List[Any]: __lowerCamelCase : List[str] = str(shared_datadir / 'test_image_rgb.jpg' ) __lowerCamelCase : Optional[int] = {'image': [image_path]} __lowerCamelCase : int = Features({'image': Image()} ) __lowerCamelCase : Union[str, Any] = Dataset.from_dict(lowerCamelCase__ , features=lowerCamelCase__ ) __lowerCamelCase : Any = ParquetDatasetWriter(lowerCamelCase__ , tmp_path / 'foo.parquet' ) assert writer.write() > 0 __lowerCamelCase : int = Dataset.from_parquet(str(tmp_path / 'foo.parquet' ) ) assert dataset.features == reloaded_dataset.features __lowerCamelCase : Dict = ParquetDatasetReader(str(tmp_path / 'foo.parquet' ) , streaming=lowerCamelCase__ ).read() assert dataset.features == reloaded_iterable_dataset.features @pytest.mark.parametrize( 'feature, expected' , [ (Features({'foo': Value('int32' )} ), None), (Features({'image': Image(), 'foo': Value('int32' )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS), (Features({'nested': Sequence(Audio() )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS), ] , ) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ ) -> List[str]: assert get_writer_batch_size(lowerCamelCase__ ) == expected
73
import numpy as np from scipy.spatial.distance import cdist from sklearn.metrics import fa_score import datasets a ="""\ @inproceedings{kakwani2020indicnlpsuite, title={{IndicNLPSuite: Monolingual Corpora, Evaluation Benchmarks and Pre-trained Multilingual Language Models for Indian Languages}}, author={Divyanshu Kakwani and Anoop Kunchukuttan and Satish Golla and Gokul N.C. and Avik Bhattacharyya and Mitesh M. Khapra and Pratyush Kumar}, year={2020}, booktitle={Findings of EMNLP}, } """ a ="""\ IndicGLUE is a natural language understanding benchmark for Indian languages. It contains a wide variety of tasks and covers 11 major Indian languages - as, bn, gu, hi, kn, ml, mr, or, pa, ta, te. """ a =""" Compute IndicGLUE evaluation metric associated to each IndicGLUE dataset. Args: predictions: list of predictions to score (as int64), except for 'cvit-mkb-clsr' where each prediction is a vector (of float32). references: list of ground truth labels corresponding to the predictions (as int64), except for 'cvit-mkb-clsr' where each reference is a vector (of float32). Returns: depending on the IndicGLUE subset, one or several of: \"accuracy\": Accuracy \"f1\": F1 score \"precision\": Precision@10 Examples: >>> indic_glue_metric = datasets.load_metric('indic_glue', 'wnli') # 'wnli' or any of [\"copa\", \"sna\", \"csqa\", \"wstp\", \"inltkh\", \"bbca\", \"iitp-mr\", \"iitp-pr\", \"actsa-sc\", \"md\"] >>> references = [0, 1] >>> predictions = [0, 1] >>> results = indic_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'accuracy': 1.0} >>> indic_glue_metric = datasets.load_metric('indic_glue', 'wiki-ner') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = indic_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'accuracy': 1.0, 'f1': 1.0} >>> indic_glue_metric = datasets.load_metric('indic_glue', 'cvit-mkb-clsr') >>> references = [[0.5, 0.5, 0.5], [0.1, 0.2, 0.3]] >>> predictions = [[0.5, 0.5, 0.5], [0.1, 0.2, 0.3]] >>> results = indic_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'precision@10': 1.0} """ def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ ) -> List[str]: return float((preds == labels).mean() ) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ ) -> List[str]: __lowerCamelCase : Optional[Any] = simple_accuracy(lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase : Tuple = float(fa_score(y_true=lowerCamelCase__ , y_pred=lowerCamelCase__ ) ) return { "accuracy": acc, "f1": fa, } def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ ) -> Optional[Any]: __lowerCamelCase : Any = np.array(lowerCamelCase__ ) __lowerCamelCase : List[Any] = np.array(lowerCamelCase__ ) __lowerCamelCase : Any = en_sentvecs.shape[0] # mean centering __lowerCamelCase : Union[str, Any] = en_sentvecs - np.mean(lowerCamelCase__ , axis=0 ) __lowerCamelCase : Dict = in_sentvecs - np.mean(lowerCamelCase__ , axis=0 ) __lowerCamelCase : Optional[int] = cdist(lowerCamelCase__ , lowerCamelCase__ , 'cosine' ) __lowerCamelCase : Optional[Any] = np.array(range(lowerCamelCase__ ) ) __lowerCamelCase : Dict = sim.argsort(axis=1 )[:, :1_0] __lowerCamelCase : Optional[int] = np.any(preds == actual[:, None] , axis=1 ) return float(matches.mean() ) @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A_ ( datasets.Metric ): def lowerCAmelCase ( self : Optional[Any]): if self.config_name not in [ "wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", "cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", "wiki-ner", ]: raise KeyError( 'You should supply a configuration name selected in ' '["wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", ' '"cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", ' '"wiki-ner"]') return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { 'predictions': datasets.Value('int64') if self.config_name != 'cvit-mkb-clsr' else datasets.Sequence(datasets.Value('float32')), 'references': datasets.Value('int64') if self.config_name != 'cvit-mkb-clsr' else datasets.Sequence(datasets.Value('float32')), }) ,codebase_urls=[] ,reference_urls=[] ,format='numpy' if self.config_name != 'cvit-mkb-clsr' else None ,) def lowerCAmelCase ( self : Any ,SCREAMING_SNAKE_CASE__ : Tuple ,SCREAMING_SNAKE_CASE__ : Optional[Any]): if self.config_name == "cvit-mkb-clsr": return {"precision@10": precision_at_aa(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__)} elif self.config_name in ["wiki-ner"]: return acc_and_fa(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) elif self.config_name in [ "wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", "iitp-mr", "iitp-pr", "actsa-sc", "md", ]: return {"accuracy": simple_accuracy(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__)} else: raise KeyError( 'You should supply a configuration name selected in ' '["wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", ' '"cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", ' '"wiki-ner"]')
73
1
"""simple docstring""" from __future__ import annotations def __UpperCAmelCase ( lowercase ): # This function is recursive """simple docstring""" _UpperCAmelCase = len(lowercase ) # If the array contains only one element, we return it (it's the stop condition of # recursion) if array_length <= 1: return array # Else _UpperCAmelCase = array[0] _UpperCAmelCase = False _UpperCAmelCase = 1 _UpperCAmelCase = [] while not is_found and i < array_length: if array[i] < pivot: _UpperCAmelCase = True _UpperCAmelCase = [element for element in array[i:] if element >= array[i]] _UpperCAmelCase = longest_subsequence(lowercase ) if len(lowercase ) > len(lowercase ): _UpperCAmelCase = temp_array else: i += 1 _UpperCAmelCase = [element for element in array[1:] if element >= pivot] _UpperCAmelCase = [pivot, *longest_subsequence(lowercase )] if len(lowercase ) > len(lowercase ): return temp_array else: return longest_subseq if __name__ == "__main__": import doctest doctest.testmod()
359
"""simple docstring""" import os import pytest from attr import dataclass UpperCAmelCase__ = """us-east-1""" # defaults region @dataclass class a : _snake_case : str _snake_case : Tuple = 'arn:aws:iam::558105141721:role/sagemaker_execution_role' _snake_case : List[Any] = { 'task_name': 'mnli', 'per_device_train_batch_size': 16, 'per_device_eval_batch_size': 16, 'do_train': True, 'do_eval': True, 'do_predict': True, 'output_dir': '/opt/ml/model', 'overwrite_output_dir': True, 'max_steps': 5_00, 'save_steps': 55_00, } _snake_case : Optional[Any] = {**hyperparameters, 'max_steps': 10_00} @property def lowerCAmelCase_ ( self : Optional[Any] ): if self.framework == "pytorch": return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"eval_accuracy.*=\D*(.*?)$"}, {"Name": "eval_loss", "Regex": r"eval_loss.*=\D*(.*?)$"}, ] else: return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"loss.*=\D*(.*?)]?$"}, {"Name": "eval_loss", "Regex": r"sparse_categorical_accuracy.*=\D*(.*?)]?$"}, ] @property def lowerCAmelCase_ ( self : Dict ): return f'''{self.framework}-transfromers-test''' @property def lowerCAmelCase_ ( self : Union[str, Any] ): return f'''./tests/sagemaker/scripts/{self.framework}''' @property def lowerCAmelCase_ ( self : Dict ): if self.framework == "pytorch": return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-pytorch-training:1.7.1-transformers4.6.1-gpu-py36-cu110-ubuntu18.04" else: return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-tensorflow-training:2.4.1-transformers4.6.1-gpu-py37-cu110-ubuntu18.04" @pytest.fixture(scope="""class""" ) def __UpperCAmelCase ( lowercase ): """simple docstring""" _UpperCAmelCase = SageMakerTestEnvironment(framework=request.cls.framework )
30
0
'''simple docstring''' import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def lowerCAmelCase_ ( _lowerCamelCase: Any , _lowerCamelCase: Dict , _lowerCamelCase: Optional[Any] , _lowerCamelCase: Optional[int] , _lowerCamelCase: Any ): # Load configuration defined in the metadata file with open(_lowerCamelCase ) as metadata_file: __SCREAMING_SNAKE_CASE : List[str] = json.load(_lowerCamelCase ) __SCREAMING_SNAKE_CASE : Optional[Any] = LukeConfig(use_entity_aware_attention=_lowerCamelCase , **metadata["""model_config"""] ) # Load in the weights from the checkpoint_path __SCREAMING_SNAKE_CASE : Dict = torch.load(_lowerCamelCase , map_location="""cpu""" )["""module"""] # Load the entity vocab file __SCREAMING_SNAKE_CASE : str = load_original_entity_vocab(_lowerCamelCase ) # add an entry for [MASK2] __SCREAMING_SNAKE_CASE : Optional[int] = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 __SCREAMING_SNAKE_CASE : Optional[Any] = XLMRobertaTokenizer.from_pretrained(metadata["""model_config"""]["""bert_model_name"""] ) # Add special tokens to the token vocabulary for downstream tasks __SCREAMING_SNAKE_CASE : Union[str, Any] = AddedToken("""<ent>""" , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase ) __SCREAMING_SNAKE_CASE : Tuple = AddedToken("""<ent2>""" , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase ) tokenizer.add_special_tokens({"""additional_special_tokens""": [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(F"Saving tokenizer to {pytorch_dump_folder_path}" ) tokenizer.save_pretrained(_lowerCamelCase ) with open(os.path.join(_lowerCamelCase , """tokenizer_config.json""" ) , """r""" ) as f: __SCREAMING_SNAKE_CASE : Tuple = json.load(_lowerCamelCase ) __SCREAMING_SNAKE_CASE : str = """MLukeTokenizer""" with open(os.path.join(_lowerCamelCase , """tokenizer_config.json""" ) , """w""" ) as f: json.dump(_lowerCamelCase , _lowerCamelCase ) with open(os.path.join(_lowerCamelCase , MLukeTokenizer.vocab_files_names["""entity_vocab_file"""] ) , """w""" ) as f: json.dump(_lowerCamelCase , _lowerCamelCase ) __SCREAMING_SNAKE_CASE : str = MLukeTokenizer.from_pretrained(_lowerCamelCase ) # Initialize the embeddings of the special tokens __SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer.convert_tokens_to_ids(["""@"""] )[0] __SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer.convert_tokens_to_ids(["""#"""] )[0] __SCREAMING_SNAKE_CASE : List[str] = state_dict["""embeddings.word_embeddings.weight"""] __SCREAMING_SNAKE_CASE : Dict = word_emb[ent_init_index].unsqueeze(0 ) __SCREAMING_SNAKE_CASE : Dict = word_emb[enta_init_index].unsqueeze(0 ) __SCREAMING_SNAKE_CASE : Optional[int] = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: __SCREAMING_SNAKE_CASE : List[str] = state_dict[bias_name] __SCREAMING_SNAKE_CASE : Optional[Any] = decoder_bias[ent_init_index].unsqueeze(0 ) __SCREAMING_SNAKE_CASE : Union[str, Any] = decoder_bias[enta_init_index].unsqueeze(0 ) __SCREAMING_SNAKE_CASE : Any = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: __SCREAMING_SNAKE_CASE : int = F"encoder.layer.{layer_index}.attention.self." __SCREAMING_SNAKE_CASE : int = state_dict[prefix + matrix_name] __SCREAMING_SNAKE_CASE : List[str] = state_dict[prefix + matrix_name] __SCREAMING_SNAKE_CASE : List[str] = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks __SCREAMING_SNAKE_CASE : Optional[Any] = state_dict["""entity_embeddings.entity_embeddings.weight"""] __SCREAMING_SNAKE_CASE : Tuple = entity_emb[entity_vocab["""[MASK]"""]].unsqueeze(0 ) __SCREAMING_SNAKE_CASE : Union[str, Any] = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' __SCREAMING_SNAKE_CASE : int = state_dict["""entity_predictions.bias"""] __SCREAMING_SNAKE_CASE : str = entity_prediction_bias[entity_vocab["""[MASK]"""]].unsqueeze(0 ) __SCREAMING_SNAKE_CASE : Optional[int] = torch.cat([entity_prediction_bias, entity_mask_bias] ) __SCREAMING_SNAKE_CASE : List[str] = LukeForMaskedLM(config=_lowerCamelCase ).eval() state_dict.pop("""entity_predictions.decoder.weight""" ) state_dict.pop("""lm_head.decoder.weight""" ) state_dict.pop("""lm_head.decoder.bias""" ) __SCREAMING_SNAKE_CASE : Optional[Any] = OrderedDict() for key, value in state_dict.items(): if not (key.startswith("""lm_head""" ) or key.startswith("""entity_predictions""" )): __SCREAMING_SNAKE_CASE : int = state_dict[key] else: __SCREAMING_SNAKE_CASE : Tuple = state_dict[key] __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Optional[Any] = model.load_state_dict(_lowerCamelCase , strict=_lowerCamelCase ) if set(_lowerCamelCase ) != {"luke.embeddings.position_ids"}: raise ValueError(F"Unexpected unexpected_keys: {unexpected_keys}" ) if set(_lowerCamelCase ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(F"Unexpected missing_keys: {missing_keys}" ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs __SCREAMING_SNAKE_CASE : Dict = MLukeTokenizer.from_pretrained(_lowerCamelCase , task="""entity_classification""" ) __SCREAMING_SNAKE_CASE : List[Any] = """ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan).""" __SCREAMING_SNAKE_CASE : Tuple = (0, 9) __SCREAMING_SNAKE_CASE : Any = tokenizer(_lowerCamelCase , entity_spans=[span] , return_tensors="""pt""" ) __SCREAMING_SNAKE_CASE : Optional[Any] = model(**_lowerCamelCase ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base __SCREAMING_SNAKE_CASE : Optional[Any] = torch.Size((1, 33, 7_68) ) __SCREAMING_SNAKE_CASE : Dict = torch.tensor([[0.08_92, 0.05_96, -0.28_19], [0.01_34, 0.11_99, 0.05_73], [-0.01_69, 0.09_27, 0.06_44]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( F"Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}" ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , _lowerCamelCase , atol=1E-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base __SCREAMING_SNAKE_CASE : List[Any] = torch.Size((1, 1, 7_68) ) __SCREAMING_SNAKE_CASE : Any = torch.tensor([[-0.14_82, 0.06_09, 0.03_22]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( F"Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is" F" {expected_shape}" ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , _lowerCamelCase , atol=1E-4 ): raise ValueError # Verify masked word/entity prediction __SCREAMING_SNAKE_CASE : List[str] = MLukeTokenizer.from_pretrained(_lowerCamelCase ) __SCREAMING_SNAKE_CASE : Dict = """Tokyo is the capital of <mask>.""" __SCREAMING_SNAKE_CASE : str = (24, 30) __SCREAMING_SNAKE_CASE : str = tokenizer(_lowerCamelCase , entity_spans=[span] , return_tensors="""pt""" ) __SCREAMING_SNAKE_CASE : List[Any] = model(**_lowerCamelCase ) __SCREAMING_SNAKE_CASE : Optional[Any] = encoding["""input_ids"""][0].tolist() __SCREAMING_SNAKE_CASE : Dict = input_ids.index(tokenizer.convert_tokens_to_ids("""<mask>""" ) ) __SCREAMING_SNAKE_CASE : Dict = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(_lowerCamelCase ) __SCREAMING_SNAKE_CASE : Optional[int] = outputs.entity_logits[0][0].argmax().item() __SCREAMING_SNAKE_CASE : Any = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith("""en:""" )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print("""Saving PyTorch model to {}""".format(_lowerCamelCase ) ) model.save_pretrained(_lowerCamelCase ) def lowerCAmelCase_ ( _lowerCamelCase: Optional[Any] ): __SCREAMING_SNAKE_CASE : Optional[int] = ["""[MASK]""", """[PAD]""", """[UNK]"""] __SCREAMING_SNAKE_CASE : Optional[int] = [json.loads(_lowerCamelCase ) for line in open(_lowerCamelCase )] __SCREAMING_SNAKE_CASE : Optional[int] = {} for entry in data: __SCREAMING_SNAKE_CASE : Tuple = entry["""id"""] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: __SCREAMING_SNAKE_CASE : Union[str, Any] = entity_id break __SCREAMING_SNAKE_CASE : str = F"{language}:{entity_name}" __SCREAMING_SNAKE_CASE : Union[str, Any] = entity_id return new_mapping if __name__ == "__main__": UpperCamelCase__ : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument('''--checkpoint_path''', type=str, help='''Path to a pytorch_model.bin file.''') parser.add_argument( '''--metadata_path''', default=None, type=str, help='''Path to a metadata.json file, defining the configuration.''' ) parser.add_argument( '''--entity_vocab_path''', default=None, type=str, help='''Path to an entity_vocab.tsv file, containing the entity vocabulary.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to where to dump the output PyTorch model.''' ) parser.add_argument( '''--model_size''', default='''base''', type=str, choices=['''base''', '''large'''], help='''Size of the model to be converted.''' ) UpperCamelCase__ : Optional[int] = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
112
'''simple docstring''' import string def lowerCAmelCase_ ( _lowerCamelCase: str ): __SCREAMING_SNAKE_CASE : Dict = """""" for i in sequence: __SCREAMING_SNAKE_CASE : Any = ord(_lowerCamelCase ) if 65 <= extract <= 90: output += chr(1_55 - extract ) elif 97 <= extract <= 1_22: output += chr(2_19 - extract ) else: output += i return output def lowerCAmelCase_ ( _lowerCamelCase: str ): __SCREAMING_SNAKE_CASE : Optional[Any] = string.ascii_letters __SCREAMING_SNAKE_CASE : Union[str, Any] = string.ascii_lowercase[::-1] + string.ascii_uppercase[::-1] return "".join( letters_reversed[letters.index(_lowerCamelCase )] if c in letters else c for c in sequence ) def lowerCAmelCase_ ( ): from timeit import timeit print("""Running performance benchmarks...""" ) __SCREAMING_SNAKE_CASE : Union[str, Any] = """from string import printable ; from __main__ import atbash, atbash_slow""" print(F"> atbash_slow(): {timeit('atbash_slow(printable)' , setup=_lowerCamelCase )} seconds" ) print(F"> atbash(): {timeit('atbash(printable)' , setup=_lowerCamelCase )} seconds" ) if __name__ == "__main__": for example in ("ABCDEFGH", "123GGjj", "testStringtest", "with space"): print(f"{example} encrypted in atbash: {atbash(example)}") benchmark()
112
1
from __future__ import annotations class A__ : """simple docstring""" def __init__( self , __snake_case ): snake_case = TypeError( '''Matrices must be formed from a list of zero or more lists containing at ''' '''least one and the same number of values, each of which must be of type ''' '''int or float.''' ) if len(_a ) != 0: snake_case = len(rows[0] ) if cols == 0: raise error for row in rows: if len(_a ) != cols: raise error for value in row: if not isinstance(_a , (int, float) ): raise error snake_case = rows else: snake_case = [] def a_ ( self ): return [[row[i] for row in self.rows] for i in range(len(self.rows[0] ) )] @property def a_ ( self ): return len(self.rows ) @property def a_ ( self ): return len(self.rows[0] ) @property def a_ ( self ): return (self.num_rows, self.num_columns) @property def a_ ( self ): return self.order[0] == self.order[1] def a_ ( self ): snake_case = [ [0 if column_num != row_num else 1 for column_num in range(self.num_rows )] for row_num in range(self.num_rows ) ] return Matrix(_a ) def a_ ( self ): if not self.is_square: return 0 if self.order == (0, 0): return 1 if self.order == (1, 1): return int(self.rows[0][0] ) if self.order == (2, 2): return int( (self.rows[0][0] * self.rows[1][1]) - (self.rows[0][1] * self.rows[1][0]) ) else: return sum( self.rows[0][column] * self.cofactors().rows[0][column] for column in range(self.num_columns ) ) def a_ ( self ): return bool(self.determinant() ) def a_ ( self , __snake_case , __snake_case ): snake_case = [ [ self.rows[other_row][other_column] for other_column in range(self.num_columns ) if other_column != column ] for other_row in range(self.num_rows ) if other_row != row ] return Matrix(_a ).determinant() def a_ ( self , __snake_case , __snake_case ): if (row + column) % 2 == 0: return self.get_minor(_a , _a ) return -1 * self.get_minor(_a , _a ) def a_ ( self ): return Matrix( [ [self.get_minor(_a , _a ) for column in range(self.num_columns )] for row in range(self.num_rows ) ] ) def a_ ( self ): return Matrix( [ [ self.minors().rows[row][column] if (row + column) % 2 == 0 else self.minors().rows[row][column] * -1 for column in range(self.minors().num_columns ) ] for row in range(self.minors().num_rows ) ] ) def a_ ( self ): snake_case = [ [self.cofactors().rows[column][row] for column in range(self.num_columns )] for row in range(self.num_rows ) ] return Matrix(_a ) def a_ ( self ): snake_case = self.determinant() if not determinant: raise TypeError('''Only matrices with a non-zero determinant have an inverse''' ) return self.adjugate() * (1 / determinant) def __repr__( self ): return str(self.rows ) def __str__( self ): if self.num_rows == 0: return "[]" if self.num_rows == 1: return "[[" + ". ".join(str(self.rows[0] ) ) + "]]" return ( "[" + "\n ".join( [ '''[''' + '''. '''.join([str(_a ) for value in row] ) + '''.]''' for row in self.rows ] ) + "]" ) def a_ ( self , __snake_case , __snake_case = None ): snake_case = TypeError('''Row must be a list containing all ints and/or floats''' ) if not isinstance(_a , _a ): raise type_error for value in row: if not isinstance(_a , (int, float) ): raise type_error if len(_a ) != self.num_columns: raise ValueError( '''Row must be equal in length to the other rows in the matrix''' ) if position is None: self.rows.append(_a ) else: snake_case = self.rows[0:position] + [row] + self.rows[position:] def a_ ( self , __snake_case , __snake_case = None ): snake_case = TypeError( '''Column must be a list containing all ints and/or floats''' ) if not isinstance(_a , _a ): raise type_error for value in column: if not isinstance(_a , (int, float) ): raise type_error if len(_a ) != self.num_rows: raise ValueError( '''Column must be equal in length to the other columns in the matrix''' ) if position is None: snake_case = [self.rows[i] + [column[i]] for i in range(self.num_rows )] else: snake_case = [ self.rows[i][0:position] + [column[i]] + self.rows[i][position:] for i in range(self.num_rows ) ] def __eq__( self , __snake_case ): if not isinstance(_a , _a ): return NotImplemented return self.rows == other.rows def __ne__( self , __snake_case ): return not self == other def __neg__( self ): return self * -1 def __add__( self , __snake_case ): if self.order != other.order: raise ValueError('''Addition requires matrices of the same order''' ) return Matrix( [ [self.rows[i][j] + other.rows[i][j] for j in range(self.num_columns )] for i in range(self.num_rows ) ] ) def __sub__( self , __snake_case ): if self.order != other.order: raise ValueError('''Subtraction requires matrices of the same order''' ) return Matrix( [ [self.rows[i][j] - other.rows[i][j] for j in range(self.num_columns )] for i in range(self.num_rows ) ] ) def __mul__( self , __snake_case ): if isinstance(_a , (int, float) ): return Matrix( [[int(element * other ) for element in row] for row in self.rows] ) elif isinstance(_a , _a ): if self.num_columns != other.num_rows: raise ValueError( '''The number of columns in the first matrix must ''' '''be equal to the number of rows in the second''' ) return Matrix( [ [Matrix.dot_product(_a , _a ) for column in other.columns()] for row in self.rows ] ) else: raise TypeError( '''A Matrix can only be multiplied by an int, float, or another matrix''' ) def __pow__( self , __snake_case ): if not isinstance(_a , _a ): raise TypeError('''A Matrix can only be raised to the power of an int''' ) if not self.is_square: raise ValueError('''Only square matrices can be raised to a power''' ) if other == 0: return self.identity() if other < 0: if self.is_invertable(): return self.inverse() ** (-other) raise ValueError( '''Only invertable matrices can be raised to a negative power''' ) snake_case = self for _ in range(other - 1 ): result *= self return result @classmethod def a_ ( cls , __snake_case , __snake_case ): return sum(row[i] * column[i] for i in range(len(_a ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
370
import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import ( DiffusionPipeline, UnCLIPImageVariationPipeline, UnCLIPScheduler, UNetaDConditionModel, UNetaDModel, ) from diffusers.pipelines.unclip.text_proj import UnCLIPTextProjModel from diffusers.utils import floats_tensor, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, load_image, require_torch_gpu, skip_mps from ..pipeline_params import IMAGE_VARIATION_BATCH_PARAMS, IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class A__ ( snake_case__ , unittest.TestCase ): """simple docstring""" __magic_name__ = UnCLIPImageVariationPipeline __magic_name__ = IMAGE_VARIATION_PARAMS - {'height', 'width', 'guidance_scale'} __magic_name__ = IMAGE_VARIATION_BATCH_PARAMS __magic_name__ = [ 'generator', 'return_dict', 'decoder_num_inference_steps', 'super_res_num_inference_steps', ] __magic_name__ = False @property def a_ ( self ): return 3_2 @property def a_ ( self ): return 3_2 @property def a_ ( self ): return self.time_input_dim @property def a_ ( self ): return self.time_input_dim * 4 @property def a_ ( self ): return 1_0_0 @property def a_ ( self ): snake_case = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) return tokenizer @property def a_ ( self ): torch.manual_seed(0 ) snake_case = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) return CLIPTextModelWithProjection(__snake_case ) @property def a_ ( self ): torch.manual_seed(0 ) snake_case = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , num_hidden_layers=5 , num_attention_heads=4 , image_size=3_2 , intermediate_size=3_7 , patch_size=1 , ) return CLIPVisionModelWithProjection(__snake_case ) @property def a_ ( self ): torch.manual_seed(0 ) snake_case = { '''clip_embeddings_dim''': self.text_embedder_hidden_size, '''time_embed_dim''': self.time_embed_dim, '''cross_attention_dim''': self.cross_attention_dim, } snake_case = UnCLIPTextProjModel(**__snake_case ) return model @property def a_ ( self ): torch.manual_seed(0 ) snake_case = { '''sample_size''': 3_2, # RGB in channels '''in_channels''': 3, # Out channels is double in channels because predicts mean and variance '''out_channels''': 6, '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': '''identity''', } snake_case = UNetaDConditionModel(**__snake_case ) return model @property def a_ ( self ): return { "sample_size": 6_4, "layers_per_block": 1, "down_block_types": ("ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D"), "up_block_types": ("ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D"), "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "in_channels": 6, "out_channels": 3, } @property def a_ ( self ): torch.manual_seed(0 ) snake_case = UNetaDModel(**self.dummy_super_res_kwargs ) return model @property def a_ ( self ): # seeded differently to get different unet than `self.dummy_super_res_first` torch.manual_seed(1 ) snake_case = UNetaDModel(**self.dummy_super_res_kwargs ) return model def a_ ( self ): snake_case = self.dummy_decoder snake_case = self.dummy_text_proj snake_case = self.dummy_text_encoder snake_case = self.dummy_tokenizer snake_case = self.dummy_super_res_first snake_case = self.dummy_super_res_last snake_case = UnCLIPScheduler( variance_type='''learned_range''' , prediction_type='''epsilon''' , num_train_timesteps=1_0_0_0 , ) snake_case = UnCLIPScheduler( variance_type='''fixed_small_log''' , prediction_type='''epsilon''' , num_train_timesteps=1_0_0_0 , ) snake_case = CLIPImageProcessor(crop_size=3_2 , size=3_2 ) snake_case = self.dummy_image_encoder return { "decoder": decoder, "text_encoder": text_encoder, "tokenizer": tokenizer, "text_proj": text_proj, "feature_extractor": feature_extractor, "image_encoder": image_encoder, "super_res_first": super_res_first, "super_res_last": super_res_last, "decoder_scheduler": decoder_scheduler, "super_res_scheduler": super_res_scheduler, } def a_ ( self , __snake_case , __snake_case=0 , __snake_case=True ): snake_case = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(__snake_case ) ).to(__snake_case ) if str(__snake_case ).startswith('''mps''' ): snake_case = torch.manual_seed(__snake_case ) else: snake_case = torch.Generator(device=__snake_case ).manual_seed(__snake_case ) if pil_image: snake_case = input_image * 0.5 + 0.5 snake_case = input_image.clamp(0 , 1 ) snake_case = input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() snake_case = DiffusionPipeline.numpy_to_pil(__snake_case )[0] return { "image": input_image, "generator": generator, "decoder_num_inference_steps": 2, "super_res_num_inference_steps": 2, "output_type": "np", } def a_ ( self ): snake_case = '''cpu''' snake_case = self.get_dummy_components() snake_case = self.pipeline_class(**__snake_case ) snake_case = pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) snake_case = self.get_dummy_inputs(__snake_case , pil_image=__snake_case ) snake_case = pipe(**__snake_case ) snake_case = output.images snake_case = self.get_dummy_inputs(__snake_case , pil_image=__snake_case ) snake_case = pipe( **__snake_case , return_dict=__snake_case , )[0] snake_case = image[0, -3:, -3:, -1] snake_case = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) snake_case = np.array( [ 0.9997, 0.0002, 0.9997, 0.9997, 0.9969, 0.0023, 0.9997, 0.9969, 0.9970, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def a_ ( self ): snake_case = '''cpu''' snake_case = self.get_dummy_components() snake_case = self.pipeline_class(**__snake_case ) snake_case = pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) snake_case = self.get_dummy_inputs(__snake_case , pil_image=__snake_case ) snake_case = pipe(**__snake_case ) snake_case = output.images snake_case = self.get_dummy_inputs(__snake_case , pil_image=__snake_case ) snake_case = pipe( **__snake_case , return_dict=__snake_case , )[0] snake_case = image[0, -3:, -3:, -1] snake_case = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) snake_case = np.array([0.9997, 0.0003, 0.9997, 0.9997, 0.9970, 0.0024, 0.9997, 0.9971, 0.9971] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def a_ ( self ): snake_case = '''cpu''' snake_case = self.get_dummy_components() snake_case = self.pipeline_class(**__snake_case ) snake_case = pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) snake_case = self.get_dummy_inputs(__snake_case , pil_image=__snake_case ) snake_case = [ pipeline_inputs['''image'''], pipeline_inputs['''image'''], ] snake_case = pipe(**__snake_case ) snake_case = output.images snake_case = self.get_dummy_inputs(__snake_case , pil_image=__snake_case ) snake_case = [ tuple_pipeline_inputs['''image'''], tuple_pipeline_inputs['''image'''], ] snake_case = pipe( **__snake_case , return_dict=__snake_case , )[0] snake_case = image[0, -3:, -3:, -1] snake_case = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (2, 6_4, 6_4, 3) snake_case = np.array( [ 0.9997, 0.9989, 0.0008, 0.0021, 0.9960, 0.0018, 0.0014, 0.0002, 0.9933, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def a_ ( self ): snake_case = torch.device('''cpu''' ) class A__ : """simple docstring""" __magic_name__ = 1 snake_case = self.get_dummy_components() snake_case = self.pipeline_class(**__snake_case ) snake_case = pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) snake_case = torch.Generator(device=__snake_case ).manual_seed(0 ) snake_case = pipe.decoder.dtype snake_case = 1 snake_case = ( batch_size, pipe.decoder.config.in_channels, pipe.decoder.config.sample_size, pipe.decoder.config.sample_size, ) snake_case = pipe.prepare_latents( __snake_case , dtype=__snake_case , device=__snake_case , generator=__snake_case , latents=__snake_case , scheduler=DummyScheduler() ) snake_case = ( batch_size, pipe.super_res_first.config.in_channels // 2, pipe.super_res_first.config.sample_size, pipe.super_res_first.config.sample_size, ) snake_case = pipe.prepare_latents( __snake_case , dtype=__snake_case , device=__snake_case , generator=__snake_case , latents=__snake_case , scheduler=DummyScheduler() ) snake_case = self.get_dummy_inputs(__snake_case , pil_image=__snake_case ) snake_case = pipe( **__snake_case , decoder_latents=__snake_case , super_res_latents=__snake_case ).images snake_case = self.get_dummy_inputs(__snake_case , pil_image=__snake_case ) # Don't pass image, instead pass embedding snake_case = pipeline_inputs.pop('''image''' ) snake_case = pipe.image_encoder(__snake_case ).image_embeds snake_case = pipe( **__snake_case , decoder_latents=__snake_case , super_res_latents=__snake_case , image_embeddings=__snake_case , ).images # make sure passing text embeddings manually is identical assert np.abs(img_out_a - img_out_a ).max() < 1E-4 @skip_mps def a_ ( self ): snake_case = torch_device == '''cpu''' # Check is relaxed because there is not a torch 2.0 sliced attention added kv processor snake_case = 1E-2 self._test_attention_slicing_forward_pass( test_max_difference=__snake_case , expected_max_diff=__snake_case ) @skip_mps def a_ ( self ): snake_case = torch_device == '''cpu''' snake_case = True snake_case = [ '''decoder_num_inference_steps''', '''super_res_num_inference_steps''', ] self._test_inference_batch_single_identical( test_max_difference=__snake_case , relax_max_difference=__snake_case , additional_params_copy_to_batched_inputs=__snake_case , ) def a_ ( self ): snake_case = [ '''decoder_num_inference_steps''', '''super_res_num_inference_steps''', ] if torch_device == "mps": # TODO: MPS errors with larger batch sizes snake_case = [2, 3] self._test_inference_batch_consistent( batch_sizes=__snake_case , additional_params_copy_to_batched_inputs=__snake_case , ) else: self._test_inference_batch_consistent( additional_params_copy_to_batched_inputs=__snake_case ) @skip_mps def a_ ( self ): return super().test_dict_tuple_outputs_equivalent() @skip_mps def a_ ( self ): return super().test_save_load_local() @skip_mps def a_ ( self ): return super().test_save_load_optional_components() @slow @require_torch_gpu class A__ ( unittest.TestCase ): """simple docstring""" def a_ ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def a_ ( self ): snake_case = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/unclip/cat.png''' ) snake_case = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/unclip/karlo_v1_alpha_cat_variation_fp16.npy''' ) snake_case = UnCLIPImageVariationPipeline.from_pretrained( '''kakaobrain/karlo-v1-alpha-image-variations''' , torch_dtype=torch.floataa ) snake_case = pipeline.to(__snake_case ) pipeline.set_progress_bar_config(disable=__snake_case ) snake_case = torch.Generator(device='''cpu''' ).manual_seed(0 ) snake_case = pipeline( __snake_case , generator=__snake_case , output_type='''np''' , ) snake_case = output.images[0] assert image.shape == (2_5_6, 2_5_6, 3) assert_mean_pixel_difference(__snake_case , __snake_case , 1_5 )
213
0
import argparse import logging import sys from unittest.mock import patch import run_glue_deebert from transformers.testing_utils import TestCasePlus, get_gpu_count, require_torch_non_multi_gpu, slow logging.basicConfig(level=logging.DEBUG) _UpperCAmelCase : Union[str, Any] = logging.getLogger() def __lowerCamelCase ( ): '''simple docstring''' snake_case_ = argparse.ArgumentParser() parser.add_argument('-f' ) snake_case_ = parser.parse_args() return args.f class lowercase ( _lowerCAmelCase ): def a ( self ): snake_case_ = logging.StreamHandler(sys.stdout ) logger.addHandler(lowerCAmelCase__ ) def a ( self , snake_case ): snake_case_ = get_gpu_count() if n_gpu > 1: pass # XXX: doesn't quite work with n_gpu > 1 https://github.com/huggingface/transformers/issues/10560 # script = f"{self.examples_dir_str}/research_projects/deebert/run_glue_deebert.py" # distributed_args = f"-m torch.distributed.launch --nproc_per_node={n_gpu} {script}".split() # cmd = [sys.executable] + distributed_args + args # execute_subprocess_async(cmd, env=self.get_env()) # XXX: test the results - need to save them first into .json file else: args.insert(0 , 'run_glue_deebert.py' ) with patch.object(lowerCAmelCase__ , 'argv' , lowerCAmelCase__ ): snake_case_ = run_glue_deebert.main() for value in result.values(): self.assertGreaterEqual(lowerCAmelCase__ , 0.6_66 ) @slow @require_torch_non_multi_gpu def a ( self ): snake_case_ = """ --model_type roberta --model_name_or_path roberta-base --task_name MRPC --do_train --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --max_seq_length 128 --per_gpu_eval_batch_size=1 --per_gpu_train_batch_size=8 --learning_rate 2e-4 --num_train_epochs 3 --overwrite_output_dir --seed 42 --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --save_steps 0 --overwrite_cache --eval_after_first_stage """.split() self.run_and_check(lowerCAmelCase__ ) snake_case_ = """ --model_type roberta --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --task_name MRPC --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --max_seq_length 128 --eval_each_highway --eval_highway --overwrite_cache --per_gpu_eval_batch_size=1 """.split() self.run_and_check(lowerCAmelCase__ ) snake_case_ = """ --model_type roberta --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --task_name MRPC --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --max_seq_length 128 --early_exit_entropy 0.1 --eval_highway --overwrite_cache --per_gpu_eval_batch_size=1 """.split() self.run_and_check(lowerCAmelCase__ )
285
import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class snake_case__ ( unittest.TestCase ): def __magic_name__ ( self ) -> str: __magic_name__ : Tuple = """ylacombe/bark-small""" __magic_name__ : List[str] = tempfile.mkdtemp() __magic_name__ : Optional[Any] = """en_speaker_1""" __magic_name__ : Union[str, Any] = """This is a test string""" __magic_name__ : Optional[int] = """speaker_embeddings_path.json""" __magic_name__ : Any = """speaker_embeddings""" def __magic_name__ ( self , **lowerCAmelCase__ ) -> List[Any]: return AutoTokenizer.from_pretrained(self.checkpoint , **lowerCAmelCase__ ) def __magic_name__ ( self ) -> Optional[Any]: shutil.rmtree(self.tmpdirname ) def __magic_name__ ( self ) -> Tuple: __magic_name__ : Optional[Any] = self.get_tokenizer() __magic_name__ : int = BarkProcessor(tokenizer=lowerCAmelCase__ ) processor.save_pretrained(self.tmpdirname ) __magic_name__ : Union[str, Any] = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) @slow def __magic_name__ ( self ) -> Optional[int]: __magic_name__ : Optional[int] = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) __magic_name__ : Optional[Any] = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) __magic_name__ : str = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token="""(BOS)""" , eos_token="""(EOS)""" , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) def __magic_name__ ( self ) -> Any: __magic_name__ : List[str] = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) __magic_name__ : Union[str, Any] = 35 __magic_name__ : List[Any] = 2 __magic_name__ : Dict = 8 __magic_name__ : Tuple = { """semantic_prompt""": np.ones(lowerCAmelCase__ ), """coarse_prompt""": np.ones((nb_codebooks_coarse, seq_len) ), """fine_prompt""": np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset __magic_name__ : Optional[int] = processor(text=self.input_string , voice_preset=lowerCAmelCase__ ) __magic_name__ : Union[str, Any] = inputs["""history_prompt"""] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(lowerCAmelCase__ , np.array([] ) ).tolist() ) # test loading voice preset from npz file __magic_name__ : Dict = os.path.join(self.tmpdirname , """file.npz""" ) np.savez(lowerCAmelCase__ , **lowerCAmelCase__ ) __magic_name__ : Optional[Any] = processor(text=self.input_string , voice_preset=lowerCAmelCase__ ) __magic_name__ : List[Any] = inputs["""history_prompt"""] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(lowerCAmelCase__ , np.array([] ) ).tolist() ) # test loading voice preset from the hub __magic_name__ : Tuple = processor(text=self.input_string , voice_preset=self.voice_preset ) def __magic_name__ ( self ) -> Optional[Any]: __magic_name__ : str = self.get_tokenizer() __magic_name__ : Dict = BarkProcessor(tokenizer=lowerCAmelCase__ ) __magic_name__ : Optional[Any] = processor(text=self.input_string ) __magic_name__ : List[Any] = tokenizer( self.input_string , padding="""max_length""" , max_length=2_56 , add_special_tokens=lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , return_token_type_ids=lowerCAmelCase__ , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
342
0
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ : int = logging.get_logger(__name__) lowerCamelCase__ : List[str] = { 'vinvino02/glpn-kitti': 'https://huggingface.co/vinvino02/glpn-kitti/resolve/main/config.json', # See all GLPN models at https://huggingface.co/models?filter=glpn } class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = "glpn" def __init__( self : Dict , _lowerCAmelCase : Optional[int]=3 , _lowerCAmelCase : Optional[Any]=4 , _lowerCAmelCase : Dict=[2, 2, 2, 2] , _lowerCAmelCase : int=[8, 4, 2, 1] , _lowerCAmelCase : List[Any]=[32, 64, 160, 256] , _lowerCAmelCase : Union[str, Any]=[7, 3, 3, 3] , _lowerCAmelCase : List[str]=[4, 2, 2, 2] , _lowerCAmelCase : Tuple=[1, 2, 5, 8] , _lowerCAmelCase : List[str]=[4, 4, 4, 4] , _lowerCAmelCase : int="gelu" , _lowerCAmelCase : List[Any]=0.0 , _lowerCAmelCase : List[Any]=0.0 , _lowerCAmelCase : Tuple=0.02 , _lowerCAmelCase : Optional[Any]=0.1 , _lowerCAmelCase : Dict=1E-6 , _lowerCAmelCase : List[Any]=64 , _lowerCAmelCase : List[Any]=10 , _lowerCAmelCase : Optional[int]=-1 , **_lowerCAmelCase : Tuple , ): super().__init__(**_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = num_channels SCREAMING_SNAKE_CASE_ = num_encoder_blocks SCREAMING_SNAKE_CASE_ = depths SCREAMING_SNAKE_CASE_ = sr_ratios SCREAMING_SNAKE_CASE_ = hidden_sizes SCREAMING_SNAKE_CASE_ = patch_sizes SCREAMING_SNAKE_CASE_ = strides SCREAMING_SNAKE_CASE_ = mlp_ratios SCREAMING_SNAKE_CASE_ = num_attention_heads SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = hidden_dropout_prob SCREAMING_SNAKE_CASE_ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ = initializer_range SCREAMING_SNAKE_CASE_ = drop_path_rate SCREAMING_SNAKE_CASE_ = layer_norm_eps SCREAMING_SNAKE_CASE_ = decoder_hidden_size SCREAMING_SNAKE_CASE_ = max_depth SCREAMING_SNAKE_CASE_ = head_in_index
353
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' def __init__( self : str , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Any=7 , _lowerCAmelCase : Tuple=3 , _lowerCAmelCase : List[str]=18 , _lowerCAmelCase : Any=30 , _lowerCAmelCase : List[Any]=400 , _lowerCAmelCase : Dict=True , _lowerCAmelCase : Tuple=None , _lowerCAmelCase : Tuple=True , _lowerCAmelCase : Union[str, Any]=None , _lowerCAmelCase : Tuple=True , _lowerCAmelCase : List[Any]=[0.5, 0.5, 0.5] , _lowerCAmelCase : Union[str, Any]=[0.5, 0.5, 0.5] , ): SCREAMING_SNAKE_CASE_ = size if size is not None else {'shortest_edge': 18} SCREAMING_SNAKE_CASE_ = crop_size if crop_size is not None else {'height': 18, 'width': 18} SCREAMING_SNAKE_CASE_ = parent SCREAMING_SNAKE_CASE_ = batch_size SCREAMING_SNAKE_CASE_ = num_channels SCREAMING_SNAKE_CASE_ = image_size SCREAMING_SNAKE_CASE_ = min_resolution SCREAMING_SNAKE_CASE_ = max_resolution SCREAMING_SNAKE_CASE_ = do_resize SCREAMING_SNAKE_CASE_ = size SCREAMING_SNAKE_CASE_ = do_center_crop SCREAMING_SNAKE_CASE_ = crop_size SCREAMING_SNAKE_CASE_ = do_normalize SCREAMING_SNAKE_CASE_ = image_mean SCREAMING_SNAKE_CASE_ = image_std def lowerCAmelCase_ ( self : List[Any] ): return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "do_center_crop": self.do_center_crop, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase_ = LevitImageProcessor if is_vision_available() else None def lowerCAmelCase_ ( self : List[str] ): SCREAMING_SNAKE_CASE_ = LevitImageProcessingTester(self ) @property def lowerCAmelCase_ ( self : Dict ): return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase_ ( self : str ): SCREAMING_SNAKE_CASE_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowerCAmelCase , 'image_mean' ) ) self.assertTrue(hasattr(_lowerCAmelCase , 'image_std' ) ) self.assertTrue(hasattr(_lowerCAmelCase , 'do_normalize' ) ) self.assertTrue(hasattr(_lowerCAmelCase , 'do_resize' ) ) self.assertTrue(hasattr(_lowerCAmelCase , 'do_center_crop' ) ) self.assertTrue(hasattr(_lowerCAmelCase , 'size' ) ) def lowerCAmelCase_ ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE_ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 18} ) self.assertEqual(image_processor.crop_size , {'height': 18, 'width': 18} ) SCREAMING_SNAKE_CASE_ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'shortest_edge': 42} ) self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84} ) def lowerCAmelCase_ ( self : Dict ): pass def lowerCAmelCase_ ( self : int ): # Initialize image_processing SCREAMING_SNAKE_CASE_ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images SCREAMING_SNAKE_CASE_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(_lowerCAmelCase , Image.Image ) # Test not batched input SCREAMING_SNAKE_CASE_ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched SCREAMING_SNAKE_CASE_ = image_processing(_lowerCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def lowerCAmelCase_ ( self : str ): # Initialize image_processing SCREAMING_SNAKE_CASE_ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors SCREAMING_SNAKE_CASE_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase , numpify=_lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(_lowerCAmelCase , np.ndarray ) # Test not batched input SCREAMING_SNAKE_CASE_ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched SCREAMING_SNAKE_CASE_ = image_processing(_lowerCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def lowerCAmelCase_ ( self : Tuple ): # Initialize image_processing SCREAMING_SNAKE_CASE_ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors SCREAMING_SNAKE_CASE_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase , torchify=_lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(_lowerCAmelCase , torch.Tensor ) # Test not batched input SCREAMING_SNAKE_CASE_ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched SCREAMING_SNAKE_CASE_ = image_processing(_lowerCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , )
210
0
'''simple docstring''' from __future__ import annotations import numpy as np def lowercase_ ( _lowercase ) -> Tuple: '''simple docstring''' return np.maximum(0 , _lowercase ) if __name__ == "__main__": print(np.array(relu([-1, 0, 5]))) # --> [0, 0, 5]
318
'''simple docstring''' import argparse import collections import os import re import tempfile import pandas as pd from datasets import Dataset from huggingface_hub import hf_hub_download, upload_folder from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/update_metadata.py _UpperCamelCase : Optional[int] = 'src/transformers' # This is to make sure the transformers module imported is the one in the repo. _UpperCamelCase : List[str] = direct_transformers_import(TRANSFORMERS_PATH) # Regexes that match TF/Flax/PT model names. _UpperCamelCase : Tuple = re.compile(R'TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') _UpperCamelCase : str = re.compile(R'Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. _UpperCamelCase : Optional[int] = re.compile(R'(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') # Fill this with tuples (pipeline_tag, model_mapping, auto_model) _UpperCamelCase : List[str] = [ ('pretraining', 'MODEL_FOR_PRETRAINING_MAPPING_NAMES', 'AutoModelForPreTraining'), ('feature-extraction', 'MODEL_MAPPING_NAMES', 'AutoModel'), ('audio-classification', 'MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForAudioClassification'), ('text-generation', 'MODEL_FOR_CAUSAL_LM_MAPPING_NAMES', 'AutoModelForCausalLM'), ('automatic-speech-recognition', 'MODEL_FOR_CTC_MAPPING_NAMES', 'AutoModelForCTC'), ('image-classification', 'MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForImageClassification'), ('image-segmentation', 'MODEL_FOR_IMAGE_SEGMENTATION_MAPPING_NAMES', 'AutoModelForImageSegmentation'), ('fill-mask', 'MODEL_FOR_MASKED_LM_MAPPING_NAMES', 'AutoModelForMaskedLM'), ('object-detection', 'MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES', 'AutoModelForObjectDetection'), ( 'zero-shot-object-detection', 'MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING_NAMES', 'AutoModelForZeroShotObjectDetection', ), ('question-answering', 'MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForQuestionAnswering'), ('text2text-generation', 'MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES', 'AutoModelForSeq2SeqLM'), ('text-classification', 'MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForSequenceClassification'), ('automatic-speech-recognition', 'MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES', 'AutoModelForSpeechSeq2Seq'), ( 'table-question-answering', 'MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForTableQuestionAnswering', ), ('token-classification', 'MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForTokenClassification'), ('multiple-choice', 'MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES', 'AutoModelForMultipleChoice'), ( 'next-sentence-prediction', 'MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES', 'AutoModelForNextSentencePrediction', ), ( 'audio-frame-classification', 'MODEL_FOR_AUDIO_FRAME_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForAudioFrameClassification', ), ('audio-xvector', 'MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES', 'AutoModelForAudioXVector'), ( 'document-question-answering', 'MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForDocumentQuestionAnswering', ), ( 'visual-question-answering', 'MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForVisualQuestionAnswering', ), ('image-to-text', 'MODEL_FOR_FOR_VISION_2_SEQ_MAPPING_NAMES', 'AutoModelForVision2Seq'), ( 'zero-shot-image-classification', 'MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForZeroShotImageClassification', ), ('depth-estimation', 'MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES', 'AutoModelForDepthEstimation'), ('video-classification', 'MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForVideoClassification'), ('mask-generation', 'MODEL_FOR_MASK_GENERATION_MAPPING_NAMES', 'AutoModelForMaskGeneration'), ] def __UpperCAmelCase ( A : Optional[int] ) -> int: UpperCAmelCase_ : Dict = re.finditer('''.+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)''' , A ) return [m.group(0 ) for m in matches] def __UpperCAmelCase ( ) -> str: UpperCAmelCase_ : Optional[int] = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES UpperCAmelCase_ : Optional[Any] = { config.replace('''Config''' , '''''' ): model_type for model_type, config in config_maping_names.items() } # Dictionaries flagging if each model prefix has a backend in PT/TF/Flax. UpperCAmelCase_ : Dict = collections.defaultdict(A ) UpperCAmelCase_ : str = collections.defaultdict(A ) UpperCAmelCase_ : int = collections.defaultdict(A ) # Let's lookup through all transformers object (once) and find if models are supported by a given backend. for attr_name in dir(A ): UpperCAmelCase_ : int = None if _re_tf_models.match(A ) is not None: UpperCAmelCase_ : Optional[Any] = tf_models UpperCAmelCase_ : Optional[int] = _re_tf_models.match(A ).groups()[0] elif _re_flax_models.match(A ) is not None: UpperCAmelCase_ : int = flax_models UpperCAmelCase_ : Any = _re_flax_models.match(A ).groups()[0] elif _re_pt_models.match(A ) is not None: UpperCAmelCase_ : Union[str, Any] = pt_models UpperCAmelCase_ : List[Any] = _re_pt_models.match(A ).groups()[0] if lookup_dict is not None: while len(A ) > 0: if attr_name in model_prefix_to_model_type: UpperCAmelCase_ : Optional[int] = True break # Try again after removing the last word in the name UpperCAmelCase_ : List[Any] = ''''''.join(camel_case_split(A )[:-1] ) UpperCAmelCase_ : Tuple = set(list(pt_models.keys() ) + list(tf_models.keys() ) + list(flax_models.keys() ) ) UpperCAmelCase_ : List[Any] = list(A ) all_models.sort() UpperCAmelCase_ : Dict = {'''model_type''': all_models} UpperCAmelCase_ : Tuple = [pt_models[t] for t in all_models] UpperCAmelCase_ : Dict = [tf_models[t] for t in all_models] UpperCAmelCase_ : Optional[int] = [flax_models[t] for t in all_models] # Now let's use the auto-mapping names to make sure UpperCAmelCase_ : int = {} for t in all_models: if t in transformers_module.models.auto.processing_auto.PROCESSOR_MAPPING_NAMES: UpperCAmelCase_ : Any = '''AutoProcessor''' elif t in transformers_module.models.auto.tokenization_auto.TOKENIZER_MAPPING_NAMES: UpperCAmelCase_ : Union[str, Any] = '''AutoTokenizer''' elif t in transformers_module.models.auto.feature_extraction_auto.FEATURE_EXTRACTOR_MAPPING_NAMES: UpperCAmelCase_ : int = '''AutoFeatureExtractor''' else: # Default to AutoTokenizer if a model has nothing, for backward compatibility. UpperCAmelCase_ : Dict = '''AutoTokenizer''' UpperCAmelCase_ : str = [processors[t] for t in all_models] return pd.DataFrame(A ) def __UpperCAmelCase ( A : Optional[int] ) -> str: UpperCAmelCase_ : int = [ transformers_module.models.auto.modeling_auto, transformers_module.models.auto.modeling_tf_auto, transformers_module.models.auto.modeling_flax_auto, ] for pipeline_tag, model_mapping, auto_class in PIPELINE_TAGS_AND_AUTO_MODELS: UpperCAmelCase_ : Tuple = [model_mapping, F"TF_{model_mapping}", F"FLAX_{model_mapping}"] UpperCAmelCase_ : Tuple = [auto_class, F"TF_{auto_class}", F"Flax_{auto_class}"] # Loop through all three frameworks for module, cls, mapping in zip(A , A , A ): # The type of pipeline may not exist in this framework if not hasattr(A , A ): continue # First extract all model_names UpperCAmelCase_ : List[str] = [] for name in getattr(A , A ).values(): if isinstance(A , A ): model_names.append(A ) else: model_names.extend(list(A ) ) # Add pipeline tag and auto model class for those models table.update({model_name: (pipeline_tag, cls) for model_name in model_names} ) return table def __UpperCAmelCase ( A : int , A : Any ) -> Tuple: UpperCAmelCase_ : Tuple = get_frameworks_table() UpperCAmelCase_ : Any = Dataset.from_pandas(A ) UpperCAmelCase_ : str = hf_hub_download( '''huggingface/transformers-metadata''' , '''pipeline_tags.json''' , repo_type='''dataset''' , token=A ) UpperCAmelCase_ : Union[str, Any] = Dataset.from_json(A ) UpperCAmelCase_ : Optional[int] = { tags_dataset[i]['''model_class''']: (tags_dataset[i]['''pipeline_tag'''], tags_dataset[i]['''auto_class''']) for i in range(len(A ) ) } UpperCAmelCase_ : str = update_pipeline_and_auto_class_table(A ) # Sort the model classes to avoid some nondeterministic updates to create false update commits. UpperCAmelCase_ : Union[str, Any] = sorted(table.keys() ) UpperCAmelCase_ : Optional[Any] = pd.DataFrame( { '''model_class''': model_classes, '''pipeline_tag''': [table[m][0] for m in model_classes], '''auto_class''': [table[m][1] for m in model_classes], } ) UpperCAmelCase_ : Dict = Dataset.from_pandas(A ) with tempfile.TemporaryDirectory() as tmp_dir: frameworks_dataset.to_json(os.path.join(A , '''frameworks.json''' ) ) tags_dataset.to_json(os.path.join(A , '''pipeline_tags.json''' ) ) if commit_sha is not None: UpperCAmelCase_ : List[str] = ( F"Update with commit {commit_sha}\n\nSee: " F"https://github.com/huggingface/transformers/commit/{commit_sha}" ) else: UpperCAmelCase_ : int = '''Update''' upload_folder( repo_id='''huggingface/transformers-metadata''' , folder_path=A , repo_type='''dataset''' , token=A , commit_message=A , ) def __UpperCAmelCase ( ) -> int: UpperCAmelCase_ : str = {tag: cls for tag, _, cls in PIPELINE_TAGS_AND_AUTO_MODELS} UpperCAmelCase_ : List[str] = transformers_module.pipelines.SUPPORTED_TASKS UpperCAmelCase_ : List[str] = [] for key in pipeline_tasks: if key not in in_table: UpperCAmelCase_ : Optional[Any] = pipeline_tasks[key]['''pt'''] if isinstance(A , (list, tuple) ): UpperCAmelCase_ : Dict = model[0] UpperCAmelCase_ : Any = model.__name__ if model not in in_table.values(): missing.append(A ) if len(A ) > 0: UpperCAmelCase_ : List[Any] = ''', '''.join(A ) raise ValueError( '''The following pipeline tags are not present in the `PIPELINE_TAGS_AND_AUTO_MODELS` constant inside ''' F"`utils/update_metadata.py`: {msg}. Please add them!" ) if __name__ == "__main__": _UpperCamelCase : int = argparse.ArgumentParser() parser.add_argument('--token', type=str, help='The token to use to push to the transformers-metadata dataset.') parser.add_argument('--commit_sha', type=str, help='The sha of the commit going with this update.') parser.add_argument('--check-only', action='store_true', help='Activate to just check all pipelines are present.') _UpperCamelCase : Tuple = parser.parse_args() if args.check_only: check_pipeline_tags() else: update_metadata(args.token, args.commit_sha)
304
0
from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging A_ : Dict = logging.get_logger(__name__) A_ : Tuple = { 'Salesforce/codegen-350M-nl': 'https://huggingface.co/Salesforce/codegen-350M-nl/resolve/main/config.json', 'Salesforce/codegen-350M-multi': 'https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/config.json', 'Salesforce/codegen-350M-mono': 'https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/config.json', 'Salesforce/codegen-2B-nl': 'https://huggingface.co/Salesforce/codegen-2B-nl/resolve/main/config.json', 'Salesforce/codegen-2B-multi': 'https://huggingface.co/Salesforce/codegen-2B-multi/resolve/main/config.json', 'Salesforce/codegen-2B-mono': 'https://huggingface.co/Salesforce/codegen-2B-mono/resolve/main/config.json', 'Salesforce/codegen-6B-nl': 'https://huggingface.co/Salesforce/codegen-6B-nl/resolve/main/config.json', 'Salesforce/codegen-6B-multi': 'https://huggingface.co/Salesforce/codegen-6B-multi/resolve/main/config.json', 'Salesforce/codegen-6B-mono': 'https://huggingface.co/Salesforce/codegen-6B-mono/resolve/main/config.json', 'Salesforce/codegen-16B-nl': 'https://huggingface.co/Salesforce/codegen-16B-nl/resolve/main/config.json', 'Salesforce/codegen-16B-multi': 'https://huggingface.co/Salesforce/codegen-16B-multi/resolve/main/config.json', 'Salesforce/codegen-16B-mono': 'https://huggingface.co/Salesforce/codegen-16B-mono/resolve/main/config.json', } class _a (__magic_name__ ): '''simple docstring''' UpperCAmelCase__: Optional[int] = '''codegen''' UpperCAmelCase__: Union[str, Any] = { '''max_position_embeddings''': '''n_positions''', '''hidden_size''': '''n_embd''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self , A__=5_0400 , A__=2048 , A__=2048 , A__=4096 , A__=28 , A__=16 , A__=64 , A__=None , A__="gelu_new" , A__=0.0 , A__=0.0 , A__=0.0 , A__=1e-5 , A__=0.0_2 , A__=True , A__=5_0256 , A__=5_0256 , A__=False , **A__ , ): A__ : str = vocab_size A__ : Optional[int] = n_ctx A__ : Optional[Any] = n_positions A__ : Dict = n_embd A__ : List[str] = n_layer A__ : Dict = n_head A__ : Tuple = n_inner A__ : Union[str, Any] = rotary_dim A__ : Optional[Any] = activation_function A__ : Union[str, Any] = resid_pdrop A__ : str = embd_pdrop A__ : List[str] = attn_pdrop A__ : Tuple = layer_norm_epsilon A__ : Optional[Any] = initializer_range A__ : Optional[int] = use_cache A__ : Tuple = bos_token_id A__ : List[Any] = eos_token_id super().__init__( bos_token_id=A__ , eos_token_id=A__ , tie_word_embeddings=A__ , **A__ ) class _a (__magic_name__ ): '''simple docstring''' def __init__( self , A__ , A__ = "default" , A__ = None , A__ = False , ): super().__init__(A__ , task=A__ , patching_specs=A__ , use_past=A__ ) if not getattr(self._config , """pad_token_id""" , A__ ): # TODO: how to do that better? A__ : Tuple = 0 @property def __A ( self ): A__ : Optional[int] = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} ) if self.use_past: self.fill_with_past_key_values_(A__ , direction="""inputs""" ) A__ : List[str] = {0: """batch""", 1: """past_sequence + sequence"""} else: A__ : Optional[int] = {0: """batch""", 1: """sequence"""} return common_inputs @property def __A ( self ): return self._config.n_layer @property def __A ( self ): return self._config.n_head def __A ( self , A__ , A__ = -1 , A__ = -1 , A__ = False , A__ = None , ): A__ : Any = super(A__ , self ).generate_dummy_inputs( A__ , batch_size=A__ , seq_length=A__ , is_pair=A__ , framework=A__ ) # We need to order the input in the way they appears in the forward() A__ : List[Any] = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch A__ , A__ : Optional[int] = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values A__ : Union[str, Any] = seqlen + 2 A__ : Tuple = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) A__ : str = [ (torch.zeros(A__ ), torch.zeros(A__ )) for _ in range(self.num_layers ) ] A__ : int = common_inputs["""attention_mask"""] if self.use_past: A__ : Any = ordered_inputs["""attention_mask"""].dtype A__ : Optional[int] = torch.cat( [ordered_inputs["""attention_mask"""], torch.ones(A__ , A__ , dtype=A__ )] , dim=1 ) return ordered_inputs @property def __A ( self ): return 13
141
from __future__ import annotations def UpperCamelCase (lowercase_: list[int] , lowercase_: list[int] , lowercase_: int ) -> tuple[float, list[float]]: A__ : Tuple = list(range(len(lowercase_ ) ) ) A__ : Union[str, Any] = [v / w for v, w in zip(lowercase_ , lowercase_ )] index.sort(key=lambda lowercase_ : ratio[i] , reverse=lowercase_ ) A__ : float = 0 A__ : list[float] = [0] * len(lowercase_ ) for i in index: if weight[i] <= capacity: A__ : Optional[int] = 1 max_value += value[i] capacity -= weight[i] else: A__ : Union[str, Any] = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
141
1
from __future__ import annotations from collections.abc import Callable def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = 100 , ): snake_case_ = x_start snake_case_ = fnc(SCREAMING_SNAKE_CASE__ ) snake_case_ = 0.0 for _ in range(SCREAMING_SNAKE_CASE__ ): # Approximates small segments of curve as linear and solve # for trapezoidal area snake_case_ = (x_end - x_start) / steps + xa snake_case_ = fnc(SCREAMING_SNAKE_CASE__ ) area += abs(fxa + fxa ) * (xa - xa) / 2 # Increment step snake_case_ = xa snake_case_ = fxa return area if __name__ == "__main__": def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): return x**3 + x**2 print('''f(x) = x^3 + x^2''') print('''The area between the curve, x = -5, x = 5 and the x axis is:''') lowerCAmelCase_ = 10 while i <= 10_00_00: print(f"""with {i} steps: {trapezoidal_area(f, -5, 5, i)}""") i *= 10
8
import argparse import math import os import torch from neural_compressor.utils.pytorch import load from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, StableDiffusionPipeline, UNetaDConditionModel def a ( ): '''simple docstring''' lowercase_ = argparse.ArgumentParser() parser.add_argument( '''-m''' , '''--pretrained_model_name_or_path''' , type=snake_case__ , default=snake_case__ , required=snake_case__ , help='''Path to pretrained model or model identifier from huggingface.co/models.''' , ) parser.add_argument( '''-c''' , '''--caption''' , type=snake_case__ , default='''robotic cat with wings''' , help='''Text used to generate images.''' , ) parser.add_argument( '''-n''' , '''--images_num''' , type=snake_case__ , default=4 , help='''How much images to generate.''' , ) parser.add_argument( '''-s''' , '''--seed''' , type=snake_case__ , default=42 , help='''Seed for random process.''' , ) parser.add_argument( '''-ci''' , '''--cuda_id''' , type=snake_case__ , default=0 , help='''cuda_id.''' , ) lowercase_ = parser.parse_args() return args def a ( snake_case__: Optional[Any] , snake_case__: Tuple , snake_case__: Union[str, Any] ): '''simple docstring''' if not len(snake_case__ ) == rows * cols: raise ValueError('''The specified number of rows and columns are not correct.''' ) lowercase_ , lowercase_ = imgs[0].size lowercase_ = Image.new('''RGB''' , size=(cols * w, rows * h) ) lowercase_ , lowercase_ = grid.size for i, img in enumerate(snake_case__ ): grid.paste(snake_case__ , box=(i % cols * w, i // cols * h) ) return grid def a ( snake_case__: Tuple , snake_case__: Union[str, Any]="robotic cat with wings" , snake_case__: Union[str, Any]=7.5 , snake_case__: List[str]=50 , snake_case__: List[Any]=1 , snake_case__: Optional[int]=42 , ): '''simple docstring''' lowercase_ = torch.Generator(pipeline.device ).manual_seed(snake_case__ ) lowercase_ = pipeline( snake_case__ , guidance_scale=snake_case__ , num_inference_steps=snake_case__ , generator=snake_case__ , num_images_per_prompt=snake_case__ , ).images lowercase_ = int(math.sqrt(snake_case__ ) ) lowercase_ = image_grid(snake_case__ , rows=_rows , cols=num_images_per_prompt // _rows ) return grid, images __a = parse_args() # Load models and create wrapper for stable diffusion __a = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder='tokenizer') __a = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='text_encoder') __a = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder='vae') __a = UNetaDConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='unet') __a = StableDiffusionPipeline.from_pretrained( args.pretrained_model_name_or_path, text_encoder=text_encoder, vae=vae, unet=unet, tokenizer=tokenizer ) __a = lambda images, clip_input: (images, False) if os.path.exists(os.path.join(args.pretrained_model_name_or_path, 'best_model.pt')): __a = load(args.pretrained_model_name_or_path, model=unet) unet.eval() setattr(pipeline, 'unet', unet) else: __a = unet.to(torch.device('cuda', args.cuda_id)) __a = pipeline.to(unet.device) __a , __a = generate_images(pipeline, prompt=args.caption, num_images_per_prompt=args.images_num, seed=args.seed) grid.save(os.path.join(args.pretrained_model_name_or_path, '{}.png'.format('_'.join(args.caption.split())))) __a = os.path.join(args.pretrained_model_name_or_path, '_'.join(args.caption.split())) os.makedirs(dirname, exist_ok=True) for idx, image in enumerate(images): image.save(os.path.join(dirname, '{}.png'.format(idx + 1)))
30
0
"""simple docstring""" import shutil import tempfile import unittest from unittest.mock import patch from transformers import ( DefaultFlowCallback, IntervalStrategy, PrinterCallback, ProgressCallback, Trainer, TrainerCallback, TrainingArguments, is_torch_available, ) from transformers.testing_utils import require_torch if is_torch_available(): from transformers.trainer import DEFAULT_CALLBACKS from .test_trainer import RegressionDataset, RegressionModelConfig, RegressionPreTrainedModel class lowerCamelCase_ ( _a ): def __init__( self : Optional[Any] ): '''simple docstring''' a = [] def SCREAMING_SNAKE_CASE_ ( self : Dict ,__lowerCamelCase : Dict ,__lowerCamelCase : Optional[Any] ,__lowerCamelCase : int ,**__lowerCamelCase : Tuple ): '''simple docstring''' self.events.append('''on_init_end''' ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ,__lowerCamelCase : int ,__lowerCamelCase : Tuple ,__lowerCamelCase : Dict ,**__lowerCamelCase : Optional[Any] ): '''simple docstring''' self.events.append('''on_train_begin''' ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ,__lowerCamelCase : List[Any] ,__lowerCamelCase : Optional[Any] ,__lowerCamelCase : Optional[Any] ,**__lowerCamelCase : Optional[int] ): '''simple docstring''' self.events.append('''on_train_end''' ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ,__lowerCamelCase : Tuple ,__lowerCamelCase : Optional[int] ,__lowerCamelCase : List[Any] ,**__lowerCamelCase : Union[str, Any] ): '''simple docstring''' self.events.append('''on_epoch_begin''' ) def SCREAMING_SNAKE_CASE_ ( self : str ,__lowerCamelCase : Optional[int] ,__lowerCamelCase : Optional[Any] ,__lowerCamelCase : Union[str, Any] ,**__lowerCamelCase : List[Any] ): '''simple docstring''' self.events.append('''on_epoch_end''' ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] ,__lowerCamelCase : Any ,__lowerCamelCase : Optional[Any] ,__lowerCamelCase : List[str] ,**__lowerCamelCase : Optional[Any] ): '''simple docstring''' self.events.append('''on_step_begin''' ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ,__lowerCamelCase : int ,__lowerCamelCase : List[str] ,__lowerCamelCase : Union[str, Any] ,**__lowerCamelCase : Optional[Any] ): '''simple docstring''' self.events.append('''on_step_end''' ) def SCREAMING_SNAKE_CASE_ ( self : int ,__lowerCamelCase : Any ,__lowerCamelCase : Union[str, Any] ,__lowerCamelCase : Union[str, Any] ,**__lowerCamelCase : List[str] ): '''simple docstring''' self.events.append('''on_evaluate''' ) def SCREAMING_SNAKE_CASE_ ( self : Tuple ,__lowerCamelCase : Union[str, Any] ,__lowerCamelCase : str ,__lowerCamelCase : Dict ,**__lowerCamelCase : Any ): '''simple docstring''' self.events.append('''on_predict''' ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ,__lowerCamelCase : Optional[Any] ,__lowerCamelCase : str ,__lowerCamelCase : Optional[Any] ,**__lowerCamelCase : Optional[int] ): '''simple docstring''' self.events.append('''on_save''' ) def SCREAMING_SNAKE_CASE_ ( self : Any ,__lowerCamelCase : Tuple ,__lowerCamelCase : List[str] ,__lowerCamelCase : Optional[Any] ,**__lowerCamelCase : Any ): '''simple docstring''' self.events.append('''on_log''' ) def SCREAMING_SNAKE_CASE_ ( self : Dict ,__lowerCamelCase : Optional[Any] ,__lowerCamelCase : List[Any] ,__lowerCamelCase : List[Any] ,**__lowerCamelCase : Union[str, Any] ): '''simple docstring''' self.events.append('''on_prediction_step''' ) @require_torch class lowerCamelCase_ ( unittest.TestCase ): def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): '''simple docstring''' a = tempfile.mkdtemp() def SCREAMING_SNAKE_CASE_ ( self : List[str] ): '''simple docstring''' shutil.rmtree(self.output_dir ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ,__lowerCamelCase : List[Any]=0 ,__lowerCamelCase : Optional[Any]=0 ,__lowerCamelCase : str=64 ,__lowerCamelCase : int=64 ,__lowerCamelCase : Tuple=None ,__lowerCamelCase : Optional[Any]=False ,**__lowerCamelCase : List[str] ): '''simple docstring''' a = RegressionDataset(length=__lowerCamelCase ) a = RegressionDataset(length=__lowerCamelCase ) a = RegressionModelConfig(a=__lowerCamelCase ,b=__lowerCamelCase ) a = RegressionPreTrainedModel(__lowerCamelCase ) a = TrainingArguments(self.output_dir ,disable_tqdm=__lowerCamelCase ,report_to=[] ,**__lowerCamelCase ) return Trainer( __lowerCamelCase ,__lowerCamelCase ,train_dataset=__lowerCamelCase ,eval_dataset=__lowerCamelCase ,callbacks=__lowerCamelCase ,) def SCREAMING_SNAKE_CASE_ ( self : int ,__lowerCamelCase : List[str] ,__lowerCamelCase : Dict ): '''simple docstring''' self.assertEqual(len(__lowerCamelCase ) ,len(__lowerCamelCase ) ) # Order doesn't matter a = sorted(__lowerCamelCase ,key=lambda __lowerCamelCase : cb.__name__ if isinstance(__lowerCamelCase ,__lowerCamelCase ) else cb.__class__.__name__ ) a = sorted(__lowerCamelCase ,key=lambda __lowerCamelCase : cb.__name__ if isinstance(__lowerCamelCase ,__lowerCamelCase ) else cb.__class__.__name__ ) for cba, cba in zip(__lowerCamelCase ,__lowerCamelCase ): if isinstance(__lowerCamelCase ,__lowerCamelCase ) and isinstance(__lowerCamelCase ,__lowerCamelCase ): self.assertEqual(__lowerCamelCase ,__lowerCamelCase ) elif isinstance(__lowerCamelCase ,__lowerCamelCase ) and not isinstance(__lowerCamelCase ,__lowerCamelCase ): self.assertEqual(__lowerCamelCase ,cba.__class__ ) elif not isinstance(__lowerCamelCase ,__lowerCamelCase ) and isinstance(__lowerCamelCase ,__lowerCamelCase ): self.assertEqual(cba.__class__ ,__lowerCamelCase ) else: self.assertEqual(__lowerCamelCase ,__lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ,__lowerCamelCase : Tuple ): '''simple docstring''' a = ['on_init_end', 'on_train_begin'] a = 0 a = len(trainer.get_eval_dataloader() ) a = ['on_prediction_step'] * len(trainer.get_eval_dataloader() ) + ['on_log', 'on_evaluate'] for _ in range(trainer.state.num_train_epochs ): expected_events.append('''on_epoch_begin''' ) for _ in range(__lowerCamelCase ): step += 1 expected_events += ["on_step_begin", "on_step_end"] if step % trainer.args.logging_steps == 0: expected_events.append('''on_log''' ) if trainer.args.evaluation_strategy == IntervalStrategy.STEPS and step % trainer.args.eval_steps == 0: expected_events += evaluation_events.copy() if step % trainer.args.save_steps == 0: expected_events.append('''on_save''' ) expected_events.append('''on_epoch_end''' ) if trainer.args.evaluation_strategy == IntervalStrategy.EPOCH: expected_events += evaluation_events.copy() expected_events += ["on_log", "on_train_end"] return expected_events def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): '''simple docstring''' a = self.get_trainer() a = DEFAULT_CALLBACKS.copy() + [ProgressCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks ,__lowerCamelCase ) # Callbacks passed at init are added to the default callbacks a = self.get_trainer(callbacks=[MyTestTrainerCallback] ) expected_callbacks.append(__lowerCamelCase ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,__lowerCamelCase ) # TrainingArguments.disable_tqdm controls if use ProgressCallback or PrinterCallback a = self.get_trainer(disable_tqdm=__lowerCamelCase ) a = DEFAULT_CALLBACKS.copy() + [PrinterCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks ,__lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self : Tuple ): '''simple docstring''' a = DEFAULT_CALLBACKS.copy() + [ProgressCallback] a = self.get_trainer() # We can add, pop, or remove by class name trainer.remove_callback(__lowerCamelCase ) expected_callbacks.remove(__lowerCamelCase ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,__lowerCamelCase ) a = self.get_trainer() a = trainer.pop_callback(__lowerCamelCase ) self.assertEqual(cb.__class__ ,__lowerCamelCase ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,__lowerCamelCase ) trainer.add_callback(__lowerCamelCase ) expected_callbacks.insert(0 ,__lowerCamelCase ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,__lowerCamelCase ) # We can also add, pop, or remove by instance a = self.get_trainer() a = trainer.callback_handler.callbacks[0] trainer.remove_callback(__lowerCamelCase ) expected_callbacks.remove(__lowerCamelCase ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,__lowerCamelCase ) a = self.get_trainer() a = trainer.callback_handler.callbacks[0] a = trainer.pop_callback(__lowerCamelCase ) self.assertEqual(__lowerCamelCase ,__lowerCamelCase ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,__lowerCamelCase ) trainer.add_callback(__lowerCamelCase ) expected_callbacks.insert(0 ,__lowerCamelCase ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,__lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self : str ): '''simple docstring''' import warnings # XXX: for now ignore scatter_gather warnings in this test since it's not relevant to what's being tested warnings.simplefilter(action='''ignore''' ,category=__lowerCamelCase ) a = self.get_trainer(callbacks=[MyTestTrainerCallback] ) trainer.train() a = trainer.callback_handler.callbacks[-2].events self.assertEqual(__lowerCamelCase ,self.get_expected_events(__lowerCamelCase ) ) # Independent log/save/eval a = self.get_trainer(callbacks=[MyTestTrainerCallback] ,logging_steps=5 ) trainer.train() a = trainer.callback_handler.callbacks[-2].events self.assertEqual(__lowerCamelCase ,self.get_expected_events(__lowerCamelCase ) ) a = self.get_trainer(callbacks=[MyTestTrainerCallback] ,save_steps=5 ) trainer.train() a = trainer.callback_handler.callbacks[-2].events self.assertEqual(__lowerCamelCase ,self.get_expected_events(__lowerCamelCase ) ) a = self.get_trainer(callbacks=[MyTestTrainerCallback] ,eval_steps=5 ,evaluation_strategy='''steps''' ) trainer.train() a = trainer.callback_handler.callbacks[-2].events self.assertEqual(__lowerCamelCase ,self.get_expected_events(__lowerCamelCase ) ) a = self.get_trainer(callbacks=[MyTestTrainerCallback] ,evaluation_strategy='''epoch''' ) trainer.train() a = trainer.callback_handler.callbacks[-2].events self.assertEqual(__lowerCamelCase ,self.get_expected_events(__lowerCamelCase ) ) # A bit of everything a = self.get_trainer( callbacks=[MyTestTrainerCallback] ,logging_steps=3 ,save_steps=10 ,eval_steps=5 ,evaluation_strategy='''steps''' ,) trainer.train() a = trainer.callback_handler.callbacks[-2].events self.assertEqual(__lowerCamelCase ,self.get_expected_events(__lowerCamelCase ) ) # warning should be emitted for duplicated callbacks with patch('''transformers.trainer_callback.logger.warning''' ) as warn_mock: a = self.get_trainer( callbacks=[MyTestTrainerCallback, MyTestTrainerCallback] ,) assert str(__lowerCamelCase ) in warn_mock.call_args[0][0]
368
from __future__ import annotations from collections.abc import Sequence from typing import Literal def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> str | Literal[False]: """simple docstring""" a = list(snake_case_ ) a = list(snake_case_ ) a = 0 for i in range(len(snake_case_ ) ): if lista[i] != lista[i]: count += 1 a = '''_''' if count > 1: return False else: return "".join(snake_case_ ) def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> list[str]: """simple docstring""" a = [] while True: a = ['''$'''] * len(snake_case_ ) a = [] for i in range(len(snake_case_ ) ): for j in range(i + 1, len(snake_case_ ) ): a = compare_string(binary[i], binary[j] ) if k is False: a = '''*''' a = '''*''' temp.append('''X''' ) for i in range(len(snake_case_ ) ): if checka[i] == "$": pi.append(binary[i] ) if len(snake_case_ ) == 0: return pi a = list(set(snake_case_ ) ) def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> list[str]: """simple docstring""" a = [] for minterm in minterms: a = '''''' for _ in range(snake_case_ ): a = str(minterm % 2 ) + string minterm //= 2 temp.append(snake_case_ ) return temp def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_ ) -> bool: """simple docstring""" a = list(snake_case_ ) a = list(snake_case_ ) a = 0 for i in range(len(snake_case_ ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> list[str]: """simple docstring""" a = [] a = [0] * len(snake_case_ ) for i in range(len(chart[0] ) ): a = 0 a = -1 for j in range(len(snake_case_ ) ): if chart[j][i] == 1: count += 1 a = j if count == 1: a = 1 for i in range(len(snake_case_ ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(snake_case_ ) ): a = 0 temp.append(prime_implicants[i] ) while True: a = 0 a = -1 a = 0 for i in range(len(snake_case_ ) ): a = chart[i].count(1 ) if count_n > max_n: a = count_n a = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(snake_case_ ) ): a = 0 def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> list[list[int]]: """simple docstring""" a = [[0 for x in range(len(snake_case_ ) )] for x in range(len(snake_case_ ) )] for i in range(len(snake_case_ ) ): a = prime_implicants[i].count('''_''' ) for j in range(len(snake_case_ ) ): if is_for_table(prime_implicants[i], binary[j], snake_case_ ): a = 1 return chart def SCREAMING_SNAKE_CASE__ ( ) -> None: """simple docstring""" a = int(input('''Enter the no. of variables\n''' ) ) a = [ float(snake_case_ ) for x in input( '''Enter the decimal representation of Minterms \'Spaces Separated\'\n''' ).split() ] a = decimal_to_binary(snake_case_, snake_case_ ) a = check(snake_case_ ) print('''Prime Implicants are:''' ) print(snake_case_ ) a = prime_implicant_chart(snake_case_, snake_case_ ) a = selection(snake_case_, snake_case_ ) print('''Essential Prime Implicants are:''' ) print(snake_case_ ) if __name__ == "__main__": import doctest doctest.testmod() main()
330
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) _lowerCAmelCase = { '''configuration_convnext''': ['''CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ConvNextConfig''', '''ConvNextOnnxConfig'''] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = ['''ConvNextFeatureExtractor'''] _lowerCAmelCase = ['''ConvNextImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = [ '''CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ConvNextForImageClassification''', '''ConvNextModel''', '''ConvNextPreTrainedModel''', '''ConvNextBackbone''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = [ '''TFConvNextForImageClassification''', '''TFConvNextModel''', '''TFConvNextPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_convnext import CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvNextConfig, ConvNextOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_convnext import ConvNextFeatureExtractor from .image_processing_convnext import ConvNextImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convnext import ( CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvNextBackbone, ConvNextForImageClassification, ConvNextModel, ConvNextPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convnext import TFConvNextForImageClassification, TFConvNextModel, TFConvNextPreTrainedModel else: import sys _lowerCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
37
"""simple docstring""" __SCREAMING_SNAKE_CASE ={} def lowercase__( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int ): # if we are absent twice, or late 3 consecutive days, # no further prize strings are possible if late == 3 or absent == 2: return 0 # if we have no days left, and have not failed any other rules, # we have a prize string if days == 0: return 1 # No easy solution, so now we need to do the recursive calculation # First, check if the combination is already in the cache, and # if yes, return the stored value from there since we already # know the number of possible prize strings from this point on lowercase_ : Any = (days, absent, late) if key in cache: return cache[key] # now we calculate the three possible ways that can unfold from # this point on, depending on our attendance today # 1) if we are late (but not absent), the "absent" counter stays as # it is, but the "late" counter increases by one lowercase_ : Optional[int] = _calculate(days - 1 , __SCREAMING_SNAKE_CASE , late + 1 ) # 2) if we are absent, the "absent" counter increases by 1, and the # "late" counter resets to 0 lowercase_ : Any = _calculate(days - 1 , absent + 1 , 0 ) # 3) if we are on time, this resets the "late" counter and keeps the # absent counter lowercase_ : Dict = _calculate(days - 1 , __SCREAMING_SNAKE_CASE , 0 ) lowercase_ : str = state_late + state_absent + state_ontime lowercase_ : Tuple = prizestrings return prizestrings def lowercase__( __SCREAMING_SNAKE_CASE : int = 30 ): return _calculate(__SCREAMING_SNAKE_CASE , absent=0 , late=0 ) if __name__ == "__main__": print(solution())
213
0
"""simple docstring""" from __future__ import annotations def _lowerCamelCase( a , a , a , a ): __a = [] __a , __a = input_list[low:mid], input_list[mid : high + 1] while left and right: result.append((left if left[0] <= right[0] else right).pop(0 ) ) __a = result + left + right return input_list def _lowerCamelCase( a ): if len(a ) <= 1: return input_list __a = list(a ) # iteration for two-way merging __a = 2 while p <= len(a ): # getting low, high and middle value for merge-sort of single list for i in range(0 , len(a ) , a ): __a = i __a = i + p - 1 __a = (low + high + 1) // 2 __a = merge(a , a , a , a ) # final merge of last two parts if p * 2 >= len(a ): __a = i __a = merge(a , 0 , a , len(a ) - 1 ) break p *= 2 return input_list if __name__ == "__main__": SCREAMING_SNAKE_CASE__:Optional[int] = input("""Enter numbers separated by a comma:\n""").strip() if user_input == "": SCREAMING_SNAKE_CASE__:List[str] = [] else: SCREAMING_SNAKE_CASE__:Union[str, Any] = [int(item.strip()) for item in user_input.split(""",""")] print(iter_merge_sort(unsorted))
268
"""simple docstring""" import contextlib from multiprocessing import Pool, RLock from tqdm.auto import tqdm from ..utils import experimental, logging SCREAMING_SNAKE_CASE__:Union[str, Any] = logging.get_logger(__name__) class snake_case__ : _snake_case : List[str] = None @experimental def _lowerCamelCase( a , a , a , a , a , a , a ): if ParallelBackendConfig.backend_name is None: return _map_with_multiprocessing_pool( a , a , a , a , a , a , a ) return _map_with_joblib(a , a , a , a , a , a , a ) def _lowerCamelCase( a , a , a , a , a , a , a ): __a = num_proc if num_proc <= len(a ) else len(a ) __a = [] # We organize the splits ourselve (contiguous splits) for index in range(a ): __a = len(a ) // num_proc __a = len(a ) % num_proc __a = div * index + min(a , a ) __a = start + div + (1 if index < mod else 0) split_kwds.append((function, iterable[start:end], types, index, disable_tqdm, desc) ) if len(a ) != sum(len(i[1] ) for i in split_kwds ): raise ValueError( F"Error dividing inputs iterable among processes. " F"Total number of objects {len(a )}, " F"length: {sum(len(i[1] ) for i in split_kwds )}" ) logger.info( F"Spawning {num_proc} processes for {len(a )} objects in slices of {[len(i[1] ) for i in split_kwds]}" ) __a , __a = None, None if not disable_tqdm: __a , __a = (RLock(),), tqdm.set_lock with Pool(a , initargs=a , initializer=a ) as pool: __a = pool.map(a , a ) logger.info(F"Finished {num_proc} processes" ) __a = [obj for proc_res in mapped for obj in proc_res] logger.info(F"Unpacked {len(a )} objects" ) return mapped def _lowerCamelCase( a , a , a , a , a , a , a ): # progress bar is not yet supported for _map_with_joblib, because tqdm couldn't accurately be applied to joblib, # and it requires monkey-patching joblib internal classes which is subject to change import joblib with joblib.parallel_backend(ParallelBackendConfig.backend_name , n_jobs=a ): return joblib.Parallel()( joblib.delayed(a )((function, obj, types, None, True, None) ) for obj in iterable ) @experimental @contextlib.contextmanager def _lowerCamelCase( a ): __a = backend_name if backend_name == "spark": from joblibspark import register_spark register_spark() # TODO: call create_cache_and_write_probe if "download" in steps # TODO: raise NotImplementedError when Dataset.map etc is called try: yield finally: __a = None
268
1
import heapq as hq import math from collections.abc import Iterator class __A : """simple docstring""" def __init__( self , lowerCamelCase__ ): """simple docstring""" __UpperCamelCase : List[str] =str(id_ ) __UpperCamelCase : int =None __UpperCamelCase : Tuple =None __UpperCamelCase : Union[str, Any] =[] __UpperCamelCase : int ={} # {vertex:distance} def __lt__( self , lowerCamelCase__ ): """simple docstring""" return self.key < other.key def __repr__( self ): """simple docstring""" return self.id def __lowercase ( self , lowerCamelCase__ ): """simple docstring""" self.neighbors.append(lowerCAmelCase__ ) def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" __UpperCamelCase : str =weight def A ( a_ ,a_ ,a_ ,a_ ) -> List[Any]: graph[a - 1].add_neighbor(graph[b - 1] ) graph[b - 1].add_neighbor(graph[a - 1] ) # add the edges: graph[a - 1].add_edge(graph[b - 1] ,a_ ) graph[b - 1].add_edge(graph[a - 1] ,a_ ) def A ( a_ ,a_ ) -> int: __UpperCamelCase : int =[] for u in graph: __UpperCamelCase : Optional[int] =math.inf __UpperCamelCase : List[str] =None __UpperCamelCase : List[str] =0 __UpperCamelCase : str =graph[:] while q: __UpperCamelCase : Any =min(a_ ) q.remove(a_ ) for v in u.neighbors: if (v in q) and (u.edges[v.id] < v.key): __UpperCamelCase : Optional[int] =u __UpperCamelCase : List[Any] =u.edges[v.id] for i in range(1 ,len(a_ ) ): a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) ) return a def A ( a_ ,a_ ) -> Any: for u in graph: __UpperCamelCase : Union[str, Any] =math.inf __UpperCamelCase : Union[str, Any] =None __UpperCamelCase : str =0 __UpperCamelCase : Dict =list(a_ ) hq.heapify(a_ ) while h: __UpperCamelCase : int =hq.heappop(a_ ) for v in u.neighbors: if (v in h) and (u.edges[v.id] < v.key): __UpperCamelCase : Optional[Any] =u __UpperCamelCase : Union[str, Any] =u.edges[v.id] hq.heapify(a_ ) for i in range(1 ,len(a_ ) ): yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) def A ( ) -> int: pass if __name__ == "__main__": import doctest doctest.testmod()
71
import csv import tweepy # Twitter API credentials __a : Union[str, Any] = """""" __a : Union[str, Any] = """""" __a : Union[str, Any] = """""" __a : List[Any] = """""" def UpperCAmelCase ( lowercase ): """simple docstring""" __lowercase = tweepy.OAuthHandler(lowercase , lowercase ) auth.set_access_token(lowercase , lowercase ) __lowercase = tweepy.API(lowercase ) # initialize a list to hold all the tweepy Tweets __lowercase = [] # make initial request for most recent tweets (200 is the maximum allowed count) __lowercase = api.user_timeline(screen_name=lowercase , count=200 ) # save most recent tweets alltweets.extend(lowercase ) # save the id of the oldest tweet less one __lowercase = alltweets[-1].id - 1 # keep grabbing tweets until there are no tweets left to grab while len(lowercase ) > 0: print(F"getting tweets before {oldest}" ) # all subsequent requests use the max_id param to prevent duplicates __lowercase = api.user_timeline( screen_name=lowercase , count=200 , max_id=lowercase ) # save most recent tweets alltweets.extend(lowercase ) # update the id of the oldest tweet less one __lowercase = alltweets[-1].id - 1 print(F"...{len(lowercase )} tweets downloaded so far" ) # transform the tweepy tweets into a 2D array that will populate the csv __lowercase = [[tweet.id_str, tweet.created_at, tweet.text] for tweet in alltweets] # write the csv with open(F"new_{screen_name}_tweets.csv" , '''w''' ) as f: __lowercase = csv.writer(lowercase ) writer.writerow(['''id''', '''created_at''', '''text'''] ) writer.writerows(lowercase ) if __name__ == "__main__": # pass in the username of the account you want to download get_all_tweets("""FirePing32""")
210
0
"""simple docstring""" import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConformerConfig, WavaVecaConformerForCTC, WavaVecaConformerForPreTraining, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() _lowerCAmelCase : Tuple = logging.get_logger(__name__) _lowerCAmelCase : Tuple = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.linear_k""": """encoder.layers.*.self_attn.linear_k""", """self_attn.linear_v""": """encoder.layers.*.self_attn.linear_v""", """self_attn.linear_q""": """encoder.layers.*.self_attn.linear_q""", """self_attn.pos_bias_u""": """encoder.layers.*.self_attn.pos_bias_u""", """self_attn.pos_bias_v""": """encoder.layers.*.self_attn.pos_bias_v""", """self_attn.linear_out""": """encoder.layers.*.self_attn.linear_out""", """self_attn.linear_pos""": """encoder.layers.*.self_attn.linear_pos""", """self_attn.rotary_emb""": """encoder.embed_positions""", """self_attn_layer_norm""": """encoder.layers.*.self_attn_layer_norm""", """conv_module.pointwise_conv1""": """encoder.layers.*.conv_module.pointwise_conv1""", """conv_module.pointwise_conv2""": """encoder.layers.*.conv_module.pointwise_conv2""", """conv_module.depthwise_conv""": """encoder.layers.*.conv_module.depthwise_conv""", """conv_module.batch_norm""": """encoder.layers.*.conv_module.batch_norm""", """conv_module.layer_norm""": """encoder.layers.*.conv_module.layer_norm""", """ffn1.w_1""": """encoder.layers.*.ffn1.intermediate_dense""", """ffn1.w_2""": """encoder.layers.*.ffn1.output_dense""", """ffn1.layer_norm""": """encoder.layers.*.ffn1_layer_norm""", """ffn2.w_1""": """encoder.layers.*.ffn2.intermediate_dense""", """ffn2.w_2""": """encoder.layers.*.ffn2.output_dense""", """ffn2.layer_norm""": """encoder.layers.*.ffn2_layer_norm""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """mask_emb""": """masked_spec_embed""", } _lowerCAmelCase : Any = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", ] def SCREAMING_SNAKE_CASE__ ( snake_case : Any , snake_case : str , snake_case : str , snake_case : Any , snake_case : Any )-> str: '''simple docstring''' for attribute in key.split("." ): UpperCAmelCase__ : int = getattr(snake_case , snake_case ) if weight_type is not None: UpperCAmelCase__ : List[Any] = getattr(snake_case , snake_case ).shape else: UpperCAmelCase__ : Dict = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": UpperCAmelCase__ : List[Any] = value elif weight_type == "weight_g": UpperCAmelCase__ : str = value elif weight_type == "weight_v": UpperCAmelCase__ : int = value elif weight_type == "bias": UpperCAmelCase__ : Optional[int] = value elif weight_type == "running_mean": UpperCAmelCase__ : Dict = value elif weight_type == "running_var": UpperCAmelCase__ : Tuple = value elif weight_type == "num_batches_tracked": UpperCAmelCase__ : Any = value elif weight_type == "inv_freq": UpperCAmelCase__ : Any = value else: UpperCAmelCase__ : Dict = value logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def SCREAMING_SNAKE_CASE__ ( snake_case : List[str] , snake_case : Any , snake_case : Optional[int] )-> Optional[int]: '''simple docstring''' UpperCAmelCase__ : Tuple = [] UpperCAmelCase__ : Union[str, Any] = fairseq_model.state_dict() UpperCAmelCase__ : Optional[int] = hf_model.wavaveca_conformer.feature_extractor for name, value in fairseq_dict.items(): UpperCAmelCase__ : Dict = False if "conv_layers" in name: load_conv_layer( snake_case , snake_case , snake_case , snake_case , hf_model.config.feat_extract_norm == "group" , ) UpperCAmelCase__ : List[str] = True else: for key, mapped_key in MAPPING.items(): UpperCAmelCase__ : Optional[int] = "wav2vec2_conformer." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: UpperCAmelCase__ : str = True if "*" in mapped_key: UpperCAmelCase__ : str = name.split(snake_case )[0].split("." )[-2] UpperCAmelCase__ : Optional[Any] = mapped_key.replace("*" , snake_case ) if "pos_bias_u" in name: UpperCAmelCase__ : Dict = None elif "pos_bias_v" in name: UpperCAmelCase__ : Any = None elif "weight_g" in name: UpperCAmelCase__ : Optional[Any] = "weight_g" elif "weight_v" in name: UpperCAmelCase__ : Optional[Any] = "weight_v" elif "bias" in name: UpperCAmelCase__ : int = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj UpperCAmelCase__ : List[Any] = "weight" elif "running_mean" in name: UpperCAmelCase__ : Optional[Any] = "running_mean" elif "inv_freq" in name: UpperCAmelCase__ : Dict = "inv_freq" elif "running_var" in name: UpperCAmelCase__ : List[str] = "running_var" elif "num_batches_tracked" in name: UpperCAmelCase__ : List[Any] = "num_batches_tracked" else: UpperCAmelCase__ : Any = None set_recursively(snake_case , snake_case , snake_case , snake_case , snake_case ) continue if not is_used: unused_weights.append(snake_case ) logger.warning(f'Unused weights: {unused_weights}' ) def SCREAMING_SNAKE_CASE__ ( snake_case : Optional[int] , snake_case : Optional[int] , snake_case : Any , snake_case : Tuple , snake_case : List[str] )-> Dict: '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = full_name.split("conv_layers." )[-1] UpperCAmelCase__ : int = name.split("." ) UpperCAmelCase__ : Tuple = int(items[0] ) UpperCAmelCase__ : List[str] = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) UpperCAmelCase__ : int = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) UpperCAmelCase__ : Dict = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.' ) UpperCAmelCase__ : Tuple = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.' ) UpperCAmelCase__ : Optional[int] = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(snake_case ) @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( snake_case : Union[str, Any] , snake_case : Optional[int] , snake_case : Union[str, Any]=None , snake_case : Tuple=None , snake_case : str=True )-> str: '''simple docstring''' if config_path is not None: UpperCAmelCase__ : Any = WavaVecaConformerConfig.from_pretrained(snake_case , hidden_act="swish" ) else: UpperCAmelCase__ : List[str] = WavaVecaConformerConfig() if "rope" in checkpoint_path: UpperCAmelCase__ : int = "rotary" if is_finetuned: if dict_path: UpperCAmelCase__ : str = Dictionary.load(snake_case ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq UpperCAmelCase__ : Optional[int] = target_dict.pad_index UpperCAmelCase__ : str = target_dict.bos_index UpperCAmelCase__ : Tuple = target_dict.eos_index UpperCAmelCase__ : str = len(target_dict.symbols ) UpperCAmelCase__ : Dict = os.path.join(snake_case , "vocab.json" ) if not os.path.isdir(snake_case ): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(snake_case ) ) return os.makedirs(snake_case , exist_ok=snake_case ) UpperCAmelCase__ : Union[str, Any] = target_dict.indices # fairseq has the <pad> and <s> switched UpperCAmelCase__ : Tuple = 0 UpperCAmelCase__ : int = 1 with open(snake_case , "w" , encoding="utf-8" ) as vocab_handle: json.dump(snake_case , snake_case ) UpperCAmelCase__ : Tuple = WavaVecaCTCTokenizer( snake_case , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="|" , do_lower_case=snake_case , ) UpperCAmelCase__ : int = True if config.feat_extract_norm == "layer" else False UpperCAmelCase__ : Dict = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=snake_case , return_attention_mask=snake_case , ) UpperCAmelCase__ : Any = WavaVecaProcessor(feature_extractor=snake_case , tokenizer=snake_case ) processor.save_pretrained(snake_case ) UpperCAmelCase__ : str = WavaVecaConformerForCTC(snake_case ) else: UpperCAmelCase__ : List[Any] = WavaVecaConformerForPreTraining(snake_case ) if is_finetuned: UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) else: UpperCAmelCase__ : Optional[Any] = argparse.Namespace(task="audio_pretraining" ) UpperCAmelCase__ : Any = fairseq.tasks.setup_task(snake_case ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Any = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=snake_case ) UpperCAmelCase__ : Union[str, Any] = model[0].eval() recursively_load_weights(snake_case , snake_case , not is_finetuned ) hf_wavavec.save_pretrained(snake_case ) if __name__ == "__main__": _lowerCAmelCase : Optional[Any] = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) _lowerCAmelCase : List[Any] = parser.parse_args() convert_wavaveca_conformer_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
298
"""simple docstring""" import gc import random import unittest import torch from diffusers import ( IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ) from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference from . import IFPipelineTesterMixin @skip_mps class lowerCAmelCase__ ( __magic_name__ , __magic_name__ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ =IFPipeline SCREAMING_SNAKE_CASE_ =TEXT_TO_IMAGE_PARAMS - {'''width''', '''height''', '''latents'''} SCREAMING_SNAKE_CASE_ =TEXT_TO_IMAGE_BATCH_PARAMS SCREAMING_SNAKE_CASE_ =PipelineTesterMixin.required_optional_params - {'''latents'''} def __a ( self : Dict ): '''simple docstring''' return self._get_dummy_components() def __a ( self : Any , snake_case__ : Dict , snake_case__ : Optional[Any]=0 ): '''simple docstring''' if str(snake_case__ ).startswith("mps" ): UpperCAmelCase__ : str = torch.manual_seed(snake_case__ ) else: UpperCAmelCase__ : Optional[int] = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) UpperCAmelCase__ : Tuple = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs def __a ( self : Tuple ): '''simple docstring''' self._test_save_load_optional_components() @unittest.skipIf(torch_device != "cuda" , reason="float16 requires CUDA" ) def __a ( self : Tuple ): '''simple docstring''' # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1 ) def __a ( self : Dict ): '''simple docstring''' self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def __a ( self : int ): '''simple docstring''' self._test_save_load_local() def __a ( self : Any ): '''simple docstring''' self._test_inference_batch_single_identical( expected_max_diff=1e-2 , ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def __a ( self : Optional[Any] ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) @slow @require_torch_gpu class lowerCAmelCase__ ( unittest.TestCase ): def __a ( self : str ): '''simple docstring''' # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __a ( self : Tuple ): '''simple docstring''' # if UpperCAmelCase__ : Any = IFPipeline.from_pretrained("DeepFloyd/IF-I-XL-v1.0" , variant="fp16" , torch_dtype=torch.floataa ) UpperCAmelCase__ : Union[str, Any] = IFSuperResolutionPipeline.from_pretrained( "DeepFloyd/IF-II-L-v1.0" , variant="fp16" , torch_dtype=torch.floataa , text_encoder=snake_case__ , tokenizer=snake_case__ ) # pre compute text embeddings and remove T5 to save memory pipe_a.text_encoder.to("cuda" ) UpperCAmelCase__ , UpperCAmelCase__ : Any = pipe_a.encode_prompt("anime turtle" , device="cuda" ) del pipe_a.tokenizer del pipe_a.text_encoder gc.collect() UpperCAmelCase__ : Tuple = None UpperCAmelCase__ : List[Any] = None pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # img2img UpperCAmelCase__ : List[str] = IFImgaImgPipeline(**pipe_a.components ) UpperCAmelCase__ : List[str] = IFImgaImgSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_imgaimg(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # inpainting UpperCAmelCase__ : List[str] = IFInpaintingPipeline(**pipe_a.components ) UpperCAmelCase__ : List[str] = IFInpaintingSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_inpainting(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) def __a ( self : List[str] , snake_case__ : Tuple , snake_case__ : List[Any] , snake_case__ : List[str] , snake_case__ : List[Any] ): '''simple docstring''' # pipeline 1 _start_torch_memory_measurement() UpperCAmelCase__ : List[str] = torch.Generator(device="cpu" ).manual_seed(0 ) UpperCAmelCase__ : Dict = pipe_a( prompt_embeds=snake_case__ , negative_prompt_embeds=snake_case__ , num_inference_steps=2 , generator=snake_case__ , output_type="np" , ) UpperCAmelCase__ : List[Any] = output.images[0] assert image.shape == (6_4, 6_4, 3) UpperCAmelCase__ : Optional[Any] = torch.cuda.max_memory_allocated() assert mem_bytes < 1_3 * 1_0**9 UpperCAmelCase__ : str = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy" ) assert_mean_pixel_difference(snake_case__ , snake_case__ ) # pipeline 2 _start_torch_memory_measurement() UpperCAmelCase__ : Optional[int] = torch.Generator(device="cpu" ).manual_seed(0 ) UpperCAmelCase__ : Dict = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0 ) ).to(snake_case__ ) UpperCAmelCase__ : str = pipe_a( prompt_embeds=snake_case__ , negative_prompt_embeds=snake_case__ , image=snake_case__ , generator=snake_case__ , num_inference_steps=2 , output_type="np" , ) UpperCAmelCase__ : Union[str, Any] = output.images[0] assert image.shape == (2_5_6, 2_5_6, 3) UpperCAmelCase__ : List[str] = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 1_0**9 UpperCAmelCase__ : Dict = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy" ) assert_mean_pixel_difference(snake_case__ , snake_case__ ) def __a ( self : Optional[Any] , snake_case__ : Optional[int] , snake_case__ : Any , snake_case__ : Optional[Any] , snake_case__ : List[str] ): '''simple docstring''' # pipeline 1 _start_torch_memory_measurement() UpperCAmelCase__ : List[str] = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0 ) ).to(snake_case__ ) UpperCAmelCase__ : int = torch.Generator(device="cpu" ).manual_seed(0 ) UpperCAmelCase__ : Tuple = pipe_a( prompt_embeds=snake_case__ , negative_prompt_embeds=snake_case__ , image=snake_case__ , num_inference_steps=2 , generator=snake_case__ , output_type="np" , ) UpperCAmelCase__ : str = output.images[0] assert image.shape == (6_4, 6_4, 3) UpperCAmelCase__ : Optional[Any] = torch.cuda.max_memory_allocated() assert mem_bytes < 1_0 * 1_0**9 UpperCAmelCase__ : List[str] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy" ) assert_mean_pixel_difference(snake_case__ , snake_case__ ) # pipeline 2 _start_torch_memory_measurement() UpperCAmelCase__ : int = torch.Generator(device="cpu" ).manual_seed(0 ) UpperCAmelCase__ : Optional[int] = floats_tensor((1, 3, 2_5_6, 2_5_6) , rng=random.Random(0 ) ).to(snake_case__ ) UpperCAmelCase__ : Tuple = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0 ) ).to(snake_case__ ) UpperCAmelCase__ : Dict = pipe_a( prompt_embeds=snake_case__ , negative_prompt_embeds=snake_case__ , image=snake_case__ , original_image=snake_case__ , generator=snake_case__ , num_inference_steps=2 , output_type="np" , ) UpperCAmelCase__ : Optional[Any] = output.images[0] assert image.shape == (2_5_6, 2_5_6, 3) UpperCAmelCase__ : Dict = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 1_0**9 UpperCAmelCase__ : str = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy" ) assert_mean_pixel_difference(snake_case__ , snake_case__ ) def __a ( self : Union[str, Any] , snake_case__ : List[str] , snake_case__ : int , snake_case__ : int , snake_case__ : Optional[int] ): '''simple docstring''' # pipeline 1 _start_torch_memory_measurement() UpperCAmelCase__ : str = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0 ) ).to(snake_case__ ) UpperCAmelCase__ : Dict = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(1 ) ).to(snake_case__ ) UpperCAmelCase__ : Optional[int] = torch.Generator(device="cpu" ).manual_seed(0 ) UpperCAmelCase__ : int = pipe_a( prompt_embeds=snake_case__ , negative_prompt_embeds=snake_case__ , image=snake_case__ , mask_image=snake_case__ , num_inference_steps=2 , generator=snake_case__ , output_type="np" , ) UpperCAmelCase__ : int = output.images[0] assert image.shape == (6_4, 6_4, 3) UpperCAmelCase__ : Union[str, Any] = torch.cuda.max_memory_allocated() assert mem_bytes < 1_0 * 1_0**9 UpperCAmelCase__ : int = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy" ) assert_mean_pixel_difference(snake_case__ , snake_case__ ) # pipeline 2 _start_torch_memory_measurement() UpperCAmelCase__ : int = torch.Generator(device="cpu" ).manual_seed(0 ) UpperCAmelCase__ : Optional[Any] = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0 ) ).to(snake_case__ ) UpperCAmelCase__ : Optional[int] = floats_tensor((1, 3, 2_5_6, 2_5_6) , rng=random.Random(0 ) ).to(snake_case__ ) UpperCAmelCase__ : List[Any] = floats_tensor((1, 3, 2_5_6, 2_5_6) , rng=random.Random(1 ) ).to(snake_case__ ) UpperCAmelCase__ : Union[str, Any] = pipe_a( prompt_embeds=snake_case__ , negative_prompt_embeds=snake_case__ , image=snake_case__ , mask_image=snake_case__ , original_image=snake_case__ , generator=snake_case__ , num_inference_steps=2 , output_type="np" , ) UpperCAmelCase__ : Tuple = output.images[0] assert image.shape == (2_5_6, 2_5_6, 3) UpperCAmelCase__ : List[str] = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 1_0**9 UpperCAmelCase__ : List[Any] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy" ) assert_mean_pixel_difference(snake_case__ , snake_case__ ) def SCREAMING_SNAKE_CASE__ ( )-> Any: '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats()
298
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase = {'''configuration_fnet''': ['''FNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''FNetConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = ['''FNetTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = ['''FNetTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = [ '''FNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FNetForMaskedLM''', '''FNetForMultipleChoice''', '''FNetForNextSentencePrediction''', '''FNetForPreTraining''', '''FNetForQuestionAnswering''', '''FNetForSequenceClassification''', '''FNetForTokenClassification''', '''FNetLayer''', '''FNetModel''', '''FNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet import FNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet_fast import FNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_fnet import ( FNET_PRETRAINED_MODEL_ARCHIVE_LIST, FNetForMaskedLM, FNetForMultipleChoice, FNetForNextSentencePrediction, FNetForPreTraining, FNetForQuestionAnswering, FNetForSequenceClassification, FNetForTokenClassification, FNetLayer, FNetModel, FNetPreTrainedModel, ) else: import sys UpperCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
141
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_realm import RealmTokenizer UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} UpperCAmelCase = { '''vocab_file''': { '''google/realm-cc-news-pretrained-embedder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/vocab.txt''' ), '''google/realm-cc-news-pretrained-encoder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/vocab.txt''' ), '''google/realm-cc-news-pretrained-scorer''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/vocab.txt''' ), '''google/realm-cc-news-pretrained-openqa''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/vocab.txt''' ), '''google/realm-orqa-nq-openqa''': '''https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/vocab.txt''', '''google/realm-orqa-nq-reader''': '''https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/vocab.txt''', '''google/realm-orqa-wq-openqa''': '''https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/vocab.txt''', '''google/realm-orqa-wq-reader''': '''https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/vocab.txt''', }, '''tokenizer_file''': { '''google/realm-cc-news-pretrained-embedder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/tokenizer.jsont''' ), '''google/realm-cc-news-pretrained-encoder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/tokenizer.json''' ), '''google/realm-cc-news-pretrained-scorer''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/tokenizer.json''' ), '''google/realm-cc-news-pretrained-openqa''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/tokenizer.json''' ), '''google/realm-orqa-nq-openqa''': ( '''https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/tokenizer.json''' ), '''google/realm-orqa-nq-reader''': ( '''https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/tokenizer.json''' ), '''google/realm-orqa-wq-openqa''': ( '''https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/tokenizer.json''' ), '''google/realm-orqa-wq-reader''': ( '''https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/tokenizer.json''' ), }, } UpperCAmelCase = { '''google/realm-cc-news-pretrained-embedder''': 512, '''google/realm-cc-news-pretrained-encoder''': 512, '''google/realm-cc-news-pretrained-scorer''': 512, '''google/realm-cc-news-pretrained-openqa''': 512, '''google/realm-orqa-nq-openqa''': 512, '''google/realm-orqa-nq-reader''': 512, '''google/realm-orqa-wq-openqa''': 512, '''google/realm-orqa-wq-reader''': 512, } UpperCAmelCase = { '''google/realm-cc-news-pretrained-embedder''': {'''do_lower_case''': True}, '''google/realm-cc-news-pretrained-encoder''': {'''do_lower_case''': True}, '''google/realm-cc-news-pretrained-scorer''': {'''do_lower_case''': True}, '''google/realm-cc-news-pretrained-openqa''': {'''do_lower_case''': True}, '''google/realm-orqa-nq-openqa''': {'''do_lower_case''': True}, '''google/realm-orqa-nq-reader''': {'''do_lower_case''': True}, '''google/realm-orqa-wq-openqa''': {'''do_lower_case''': True}, '''google/realm-orqa-wq-reader''': {'''do_lower_case''': True}, } class lowerCAmelCase ( A ): lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = PRETRAINED_INIT_CONFIGURATION lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = RealmTokenizer def __init__( self : int , __lowercase : Union[str, Any]=None , __lowercase : int=None , __lowercase : List[Any]=True , __lowercase : Any="[UNK]" , __lowercase : Union[str, Any]="[SEP]" , __lowercase : Union[str, Any]="[PAD]" , __lowercase : Tuple="[CLS]" , __lowercase : List[Any]="[MASK]" , __lowercase : Tuple=True , __lowercase : Union[str, Any]=None , **__lowercase : int , ): """simple docstring""" super().__init__( __lowercase , tokenizer_file=__lowercase , do_lower_case=__lowercase , unk_token=__lowercase , sep_token=__lowercase , pad_token=__lowercase , cls_token=__lowercase , mask_token=__lowercase , tokenize_chinese_chars=__lowercase , strip_accents=__lowercase , **__lowercase , ) __lowercase =json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , __lowercase ) != do_lower_case or normalizer_state.get('strip_accents' , __lowercase ) != strip_accents or normalizer_state.get('handle_chinese_chars' , __lowercase ) != tokenize_chinese_chars ): __lowercase =getattr(__lowercase , normalizer_state.pop('type' ) ) __lowercase =do_lower_case __lowercase =strip_accents __lowercase =tokenize_chinese_chars __lowercase =normalizer_class(**__lowercase ) __lowercase =do_lower_case def snake_case ( self : List[str] , __lowercase : Optional[Any] , **__lowercase : Any ): """simple docstring""" __lowercase =PaddingStrategy.MAX_LENGTH __lowercase =text __lowercase =kwargs.pop('text_pair' , __lowercase ) __lowercase =kwargs.pop('return_tensors' , __lowercase ) __lowercase ={ 'input_ids': [], 'attention_mask': [], 'token_type_ids': [], } for idx, candidate_text in enumerate(__lowercase ): if batch_text_pair is not None: __lowercase =batch_text_pair[idx] else: __lowercase =None __lowercase =super().__call__(__lowercase , __lowercase , return_tensors=__lowercase , **__lowercase ) __lowercase =encoded_candidates.get('input_ids' ) __lowercase =encoded_candidates.get('attention_mask' ) __lowercase =encoded_candidates.get('token_type_ids' ) if encoded_input_ids is not None: output_data["input_ids"].append(__lowercase ) if encoded_attention_mask is not None: output_data["attention_mask"].append(__lowercase ) if encoded_token_type_ids is not None: output_data["token_type_ids"].append(__lowercase ) __lowercase ={key: item for key, item in output_data.items() if len(__lowercase ) != 0} return BatchEncoding(__lowercase , tensor_type=__lowercase ) def snake_case ( self : List[str] , __lowercase : Tuple , __lowercase : Optional[int]=None ): """simple docstring""" __lowercase =[self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def snake_case ( self : List[str] , __lowercase : List[int] , __lowercase : Optional[List[int]] = None ): """simple docstring""" __lowercase =[self.sep_token_id] __lowercase =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def snake_case ( self : Dict , __lowercase : str , __lowercase : Optional[str] = None ): """simple docstring""" __lowercase =self._tokenizer.model.save(__lowercase , name=__lowercase ) return tuple(__lowercase )
141
1
from sklearn.metrics import fa_score, matthews_corrcoef import datasets from .record_evaluation import evaluate as evaluate_record a_ = '\\n@article{wang2019superglue,\n title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems},\n author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R},\n journal={arXiv preprint arXiv:1905.00537},\n year={2019}\n}\n' a_ = '\\nSuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after\nGLUE with a new set of more difficult language understanding tasks, improved\nresources, and a new public leaderboard.\n' a_ = '\nCompute SuperGLUE evaluation metric associated to each SuperGLUE dataset.\nArgs:\n predictions: list of predictions to score. Depending on the SuperGlUE subset:\n - for \'record\': list of question-answer dictionaries with the following keys:\n - \'idx\': index of the question as specified by the dataset\n - \'prediction_text\': the predicted answer text\n - for \'multirc\': list of question-answer dictionaries with the following keys:\n - \'idx\': index of the question-answer pair as specified by the dataset\n - \'prediction\': the predicted answer label\n - otherwise: list of predicted labels\n references: list of reference labels. Depending on the SuperGLUE subset:\n - for \'record\': list of question-answers dictionaries with the following keys:\n - \'idx\': index of the question as specified by the dataset\n - \'answers\': list of possible answers\n - otherwise: list of reference labels\nReturns: depending on the SuperGLUE subset:\n - for \'record\':\n - \'exact_match\': Exact match between answer and gold answer\n - \'f1\': F1 score\n - for \'multirc\':\n - \'exact_match\': Exact match between answer and gold answer\n - \'f1_m\': Per-question macro-F1 score\n - \'f1_a\': Average F1 score over all answers\n - for \'axb\':\n \'matthews_correlation\': Matthew Correlation\n - for \'cb\':\n - \'accuracy\': Accuracy\n - \'f1\': F1 score\n - for all others:\n - \'accuracy\': Accuracy\nExamples:\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'copa\') # any of [\"copa\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"boolq\", \"axg\"]\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0}\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'cb\')\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0, \'f1\': 1.0}\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'record\')\n >>> predictions = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'prediction_text\': \'answer\'}]\n >>> references = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'answers\': [\'answer\', \'another_answer\']}]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'exact_match\': 1.0, \'f1\': 1.0}\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'multirc\')\n >>> predictions = [{\'idx\': {\'answer\': 0, \'paragraph\': 0, \'question\': 0}, \'prediction\': 0}, {\'idx\': {\'answer\': 1, \'paragraph\': 2, \'question\': 3}, \'prediction\': 1}]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'exact_match\': 1.0, \'f1_m\': 1.0, \'f1_a\': 1.0}\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'axb\')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'matthews_correlation\': 1.0}\n' def __lowercase ( lowerCamelCase : List[str] , lowerCamelCase : Any ): return float((preds == labels).mean() ) def __lowercase ( lowerCamelCase : Optional[int] , lowerCamelCase : Dict , lowerCamelCase : Union[str, Any]="binary" ): UpperCamelCase_ : Optional[Any] = simple_accuracy(lowerCamelCase , lowerCamelCase ) UpperCamelCase_ : Union[str, Any] = float(fa_score(y_true=lowerCamelCase , y_pred=lowerCamelCase , average=lowerCamelCase ) ) return { "accuracy": acc, "f1": fa, } def __lowercase ( lowerCamelCase : Dict , lowerCamelCase : str ): UpperCamelCase_ : str = {} for id_pred, label in zip(lowerCamelCase , lowerCamelCase ): UpperCamelCase_ : int = F"{id_pred['idx']['paragraph']}-{id_pred['idx']['question']}" UpperCamelCase_ : Union[str, Any] = id_pred['prediction'] if question_id in question_map: question_map[question_id].append((pred, label) ) else: UpperCamelCase_ : str = [(pred, label)] UpperCamelCase_, UpperCamelCase_ : Dict = [], [] for question, preds_labels in question_map.items(): UpperCamelCase_, UpperCamelCase_ : Tuple = zip(*lowerCamelCase ) UpperCamelCase_ : List[Any] = fa_score(y_true=lowerCamelCase , y_pred=lowerCamelCase , average='macro' ) fas.append(lowerCamelCase ) UpperCamelCase_ : Optional[int] = int(sum(pred == label for pred, label in preds_labels ) == len(lowerCamelCase ) ) ems.append(lowerCamelCase ) UpperCamelCase_ : Dict = float(sum(lowerCamelCase ) / len(lowerCamelCase ) ) UpperCamelCase_ : Any = sum(lowerCamelCase ) / len(lowerCamelCase ) UpperCamelCase_ : List[str] = float(fa_score(y_true=lowerCamelCase , y_pred=[id_pred['prediction'] for id_pred in ids_preds] ) ) return {"exact_match": em, "f1_m": fa_m, "f1_a": fa_a} @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _lowercase ( datasets.Metric ): def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> int: """simple docstring""" if self.config_name not in [ "boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg", ]: raise KeyError( 'You should supply a configuration name selected in ' '["boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg",]' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , codebase_urls=[] , reference_urls=[] , format='numpy' if not self.config_name == 'record' and not self.config_name == 'multirc' else None , ) def SCREAMING_SNAKE_CASE__ ( self : str ) -> List[str]: """simple docstring""" if self.config_name == "record": return { "predictions": { "idx": { "passage": datasets.Value('int64' ), "query": datasets.Value('int64' ), }, "prediction_text": datasets.Value('string' ), }, "references": { "idx": { "passage": datasets.Value('int64' ), "query": datasets.Value('int64' ), }, "answers": datasets.Sequence(datasets.Value('string' ) ), }, } elif self.config_name == "multirc": return { "predictions": { "idx": { "answer": datasets.Value('int64' ), "paragraph": datasets.Value('int64' ), "question": datasets.Value('int64' ), }, "prediction": datasets.Value('int64' ), }, "references": datasets.Value('int64' ), } else: return { "predictions": datasets.Value('int64' ), "references": datasets.Value('int64' ), } def SCREAMING_SNAKE_CASE__ ( self : int , snake_case : List[Any] , snake_case : Optional[int] ) -> Union[str, Any]: """simple docstring""" if self.config_name == "axb": return {"matthews_correlation": matthews_corrcoef(UpperCAmelCase__ , UpperCAmelCase__ )} elif self.config_name == "cb": return acc_and_fa(UpperCAmelCase__ , UpperCAmelCase__ , fa_avg='macro' ) elif self.config_name == "record": UpperCamelCase_ : Tuple = [ { 'qas': [ {'id': ref['idx']['query'], 'answers': [{'text': ans} for ans in ref['answers']]} for ref in references ] } ] UpperCamelCase_ : Optional[Any] = {pred['idx']['query']: pred['prediction_text'] for pred in predictions} return evaluate_record(UpperCAmelCase__ , UpperCAmelCase__ )[0] elif self.config_name == "multirc": return evaluate_multirc(UpperCAmelCase__ , UpperCAmelCase__ ) elif self.config_name in ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]: return {"accuracy": simple_accuracy(UpperCAmelCase__ , UpperCAmelCase__ )} else: raise KeyError( 'You should supply a configuration name selected in ' '["boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg",]' )
360
a_ = [ 'DownloadConfig', 'DownloadManager', 'DownloadMode', 'StreamingDownloadManager', ] from .download_config import DownloadConfig from .download_manager import DownloadManager, DownloadMode from .streaming_download_manager import StreamingDownloadManager
50
0
from collections.abc import Callable import numpy as np def lowerCamelCase__ ( _a , _a , _a , _a , _a): SCREAMING_SNAKE_CASE : Dict = int(np.ceil((x_end - xa) / step_size)) SCREAMING_SNAKE_CASE : Tuple = np.zeros((n + 1,)) SCREAMING_SNAKE_CASE : int = ya SCREAMING_SNAKE_CASE : int = xa for k in range(_a): SCREAMING_SNAKE_CASE : Any = y[k] + step_size * ode_func(_a , y[k]) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
76
import random import unittest from torch.utils.data import BatchSampler, DataLoader, IterableDataset from accelerate import Accelerator from accelerate.data_loader import ( BatchSamplerShard, DataLoaderDispatcher, DataLoaderShard, IterableDatasetShard, SkipBatchSampler, SkipDataLoader, skip_first_batches, ) class __lowerCAmelCase ( lowerCAmelCase__ ): def __init__( self , __UpperCAmelCase=0.01 , __UpperCAmelCase=1000 ): '''simple docstring''' __lowerCamelCase = p_stop __lowerCamelCase = max_length def __iter__( self ): '''simple docstring''' __lowerCamelCase = 0 __lowerCamelCase = False while not stop and count < self.max_length: yield count count += 1 __lowerCamelCase = random.random() < self.p_stop class __lowerCAmelCase ( unittest.TestCase ): def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=False , __UpperCAmelCase=True ): '''simple docstring''' __lowerCamelCase = [ BatchSamplerShard(__UpperCAmelCase , 2 , __UpperCAmelCase , split_batches=__UpperCAmelCase , even_batches=__UpperCAmelCase ) for i in range(2 ) ] __lowerCamelCase = [list(__UpperCAmelCase ) for batch_sampler_shard in batch_sampler_shards] if not split_batches: self.assertListEqual([len(__UpperCAmelCase ) for shard in batch_sampler_shards] , [len(__UpperCAmelCase ) for e in expected] ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' # Check the shards when the dataset is a round multiple of total batch size. __lowerCamelCase = BatchSampler(range(24 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(24 ) , batch_size=3 , drop_last=__UpperCAmelCase ) # Expected shouldn't change self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. __lowerCamelCase = BatchSampler(range(21 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [0, 1, 2]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(21 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. __lowerCamelCase = BatchSampler(range(22 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 0, 1]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(22 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. __lowerCamelCase = BatchSampler(range(20 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 0]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [1, 2, 3]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(20 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase ) # Check the shards when the dataset is very small. __lowerCamelCase = BatchSampler(range(2 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [[[0, 1, 0]], [[1, 0, 1]]] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(2 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [[], []] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' # Check the shards when the dataset is a round multiple of batch size. __lowerCamelCase = BatchSampler(range(24 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(24 ) , batch_size=4 , drop_last=__UpperCAmelCase ) # Expected shouldn't change self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size. __lowerCamelCase = BatchSampler(range(22 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [0, 1]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(22 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. __lowerCamelCase = BatchSampler(range(21 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 0]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [1, 2]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(21 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase ) # Check the shards when the dataset is very small. __lowerCamelCase = BatchSampler(range(2 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [[[0, 1]], [[0, 1]]] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(2 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [[], []] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' # Check the shards when the dataset is a round multiple of total batch size. __lowerCamelCase = BatchSampler(range(24 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , even_batches=__UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(24 ) , batch_size=3 , drop_last=__UpperCAmelCase ) # Expected shouldn't change self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , even_batches=__UpperCAmelCase ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. __lowerCamelCase = BatchSampler(range(21 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , even_batches=__UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(21 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , even_batches=__UpperCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. __lowerCamelCase = BatchSampler(range(22 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , even_batches=__UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(22 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , even_batches=__UpperCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. __lowerCamelCase = BatchSampler(range(20 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , even_batches=__UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(20 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , even_batches=__UpperCAmelCase ) # Check the shards when the dataset is very small. __lowerCamelCase = BatchSampler(range(2 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [[[0, 1]], []] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , even_batches=__UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(2 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [[], []] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , even_batches=__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' # Check the shards when the dataset is a round multiple of batch size. __lowerCamelCase = BatchSampler(range(24 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase , even_batches=__UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(24 ) , batch_size=4 , drop_last=__UpperCAmelCase ) # Expected shouldn't change self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase , even_batches=__UpperCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size. __lowerCamelCase = BatchSampler(range(22 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase , even_batches=__UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(22 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase , even_batches=__UpperCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. __lowerCamelCase = BatchSampler(range(21 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase , even_batches=__UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(21 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase , even_batches=__UpperCAmelCase ) # Check the shards when the dataset is very small. __lowerCamelCase = BatchSampler(range(2 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [[[0, 1]], []] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase , even_batches=__UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(2 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [[], []] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase , even_batches=__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 10, 11], [12, 13]] __lowerCamelCase = [BatchSamplerShard(__UpperCAmelCase , 2 , __UpperCAmelCase , even_batches=__UpperCAmelCase ) for i in range(2 )] self.assertEqual(len(batch_sampler_shards[0] ) , 3 ) self.assertEqual(len(batch_sampler_shards[1] ) , 2 ) self.assertListEqual(list(batch_sampler_shards[0] ) , [[0, 1, 2], [5, 6, 7, 8], [12, 13]] ) self.assertListEqual(list(batch_sampler_shards[1] ) , [[3, 4], [9, 10, 11]] ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=False , __UpperCAmelCase=2 , __UpperCAmelCase=False ): '''simple docstring''' random.seed(__UpperCAmelCase ) __lowerCamelCase = list(__UpperCAmelCase ) __lowerCamelCase = [ IterableDatasetShard( __UpperCAmelCase , batch_size=__UpperCAmelCase , drop_last=__UpperCAmelCase , num_processes=__UpperCAmelCase , process_index=__UpperCAmelCase , split_batches=__UpperCAmelCase , ) for i in range(__UpperCAmelCase ) ] __lowerCamelCase = [] for iterable_dataset_shard in iterable_dataset_shards: # Since our random iterable dataset will be... random... we need to use a seed to get reproducible results. random.seed(__UpperCAmelCase ) iterable_dataset_lists.append(list(__UpperCAmelCase ) ) __lowerCamelCase = batch_size // num_processes if split_batches else batch_size # All iterable dataset shard should have the same length, a round multiple of shard_batch_size __lowerCamelCase = iterable_dataset_lists[0] for l in iterable_dataset_lists[1:]: self.assertEqual(len(__UpperCAmelCase ) , len(__UpperCAmelCase ) ) self.assertTrue(len(__UpperCAmelCase ) % shard_batch_size == 0 ) __lowerCamelCase = [] for idx in range(0 , len(__UpperCAmelCase ) , __UpperCAmelCase ): for l in iterable_dataset_lists: observed += l[idx : idx + shard_batch_size] if not drop_last: while len(__UpperCAmelCase ) < len(__UpperCAmelCase ): reference += reference self.assertListEqual(__UpperCAmelCase , reference[: len(__UpperCAmelCase )] ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = 42 __lowerCamelCase = RandomIterableDataset() self.check_iterable_dataset_shards(__UpperCAmelCase , __UpperCAmelCase , batch_size=4 , drop_last=__UpperCAmelCase , split_batches=__UpperCAmelCase ) self.check_iterable_dataset_shards(__UpperCAmelCase , __UpperCAmelCase , batch_size=4 , drop_last=__UpperCAmelCase , split_batches=__UpperCAmelCase ) self.check_iterable_dataset_shards(__UpperCAmelCase , __UpperCAmelCase , batch_size=4 , drop_last=__UpperCAmelCase , split_batches=__UpperCAmelCase ) self.check_iterable_dataset_shards(__UpperCAmelCase , __UpperCAmelCase , batch_size=4 , drop_last=__UpperCAmelCase , split_batches=__UpperCAmelCase ) # Edge case with a very small dataset __lowerCamelCase = RandomIterableDataset(max_length=2 ) self.check_iterable_dataset_shards(__UpperCAmelCase , __UpperCAmelCase , batch_size=4 , drop_last=__UpperCAmelCase , split_batches=__UpperCAmelCase ) self.check_iterable_dataset_shards(__UpperCAmelCase , __UpperCAmelCase , batch_size=4 , drop_last=__UpperCAmelCase , split_batches=__UpperCAmelCase ) self.check_iterable_dataset_shards(__UpperCAmelCase , __UpperCAmelCase , batch_size=4 , drop_last=__UpperCAmelCase , split_batches=__UpperCAmelCase ) self.check_iterable_dataset_shards(__UpperCAmelCase , __UpperCAmelCase , batch_size=4 , drop_last=__UpperCAmelCase , split_batches=__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = BatchSampler(range(16 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __lowerCamelCase = SkipBatchSampler(__UpperCAmelCase , 2 ) self.assertListEqual(list(__UpperCAmelCase ) , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = SkipDataLoader(list(range(16 ) ) , batch_size=4 , skip_batches=2 ) self.assertListEqual([t.tolist() for t in dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = DataLoader(list(range(16 ) ) , batch_size=4 ) __lowerCamelCase = skip_first_batches(__UpperCAmelCase , num_batches=2 ) self.assertListEqual([t.tolist() for t in new_dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = DataLoaderShard(list(range(16 ) ) , batch_size=4 ) for idx, _ in enumerate(__UpperCAmelCase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(__UpperCAmelCase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) def lowerCamelCase ( self ): '''simple docstring''' Accelerator() __lowerCamelCase = DataLoaderDispatcher(range(16 ) , batch_size=4 ) for idx, _ in enumerate(__UpperCAmelCase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(__UpperCAmelCase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
330
0
from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable lowercase : Any = {'''configuration_gpt_neox''': ['''GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GPTNeoXConfig''']} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Optional[Any] = ['''GPTNeoXTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : List[str] = [ '''GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GPTNeoXForCausalLM''', '''GPTNeoXForQuestionAnswering''', '''GPTNeoXForSequenceClassification''', '''GPTNeoXForTokenClassification''', '''GPTNeoXLayer''', '''GPTNeoXModel''', '''GPTNeoXPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_gpt_neox import GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_neox_fast import GPTNeoXTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neox import ( GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXLayer, GPTNeoXModel, GPTNeoXPreTrainedModel, ) else: import sys lowercase : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
357
import json import os import unittest from transformers import DebertaTokenizer, DebertaTokenizerFast from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class UpperCAmelCase_ ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): '''simple docstring''' A : Union[str, Any] = DebertaTokenizer A : List[Any] = True A : Dict = DebertaTokenizerFast def _lowerCAmelCase ( self ) -> Tuple: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt snake_case_ : Union[str, Any] = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "[UNK]", ] snake_case_ : Optional[Any] = dict(zip(_SCREAMING_SNAKE_CASE , range(len(_SCREAMING_SNAKE_CASE ) ) ) ) snake_case_ : Dict = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] snake_case_ : Optional[int] = {"unk_token": "[UNK]"} snake_case_ : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) snake_case_ : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(_SCREAMING_SNAKE_CASE ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(_SCREAMING_SNAKE_CASE ) ) def _lowerCAmelCase ( self , **_SCREAMING_SNAKE_CASE ) -> int: kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **_SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE ) -> Optional[int]: snake_case_ : int = "lower newer" snake_case_ : Dict = "lower newer" return input_text, output_text def _lowerCAmelCase ( self ) -> str: snake_case_ : Tuple = self.get_tokenizer() snake_case_ : str = "lower newer" snake_case_ : int = ["l", "o", "w", "er", "\u0120", "n", "e", "w", "er"] snake_case_ : str = tokenizer.tokenize(_SCREAMING_SNAKE_CASE ) self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) snake_case_ : Dict = tokens + [tokenizer.unk_token] snake_case_ : int = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( self ) -> Optional[Any]: snake_case_ : List[str] = self.get_tokenizer() snake_case_ : str = tokenizer("Hello" , "World" ) snake_case_ : List[Any] = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] self.assertListEqual(tokd["token_type_ids"] , _SCREAMING_SNAKE_CASE ) @slow def _lowerCAmelCase ( self ) -> List[Any]: snake_case_ : str = self.tokenizer_class.from_pretrained("microsoft/deberta-base" ) snake_case_ : Optional[int] = tokenizer.encode("sequence builders" , add_special_tokens=_SCREAMING_SNAKE_CASE ) snake_case_ : int = tokenizer.encode("multi-sequence build" , add_special_tokens=_SCREAMING_SNAKE_CASE ) snake_case_ : Optional[int] = tokenizer.encode( "sequence builders" , add_special_tokens=_SCREAMING_SNAKE_CASE , add_prefix_space=_SCREAMING_SNAKE_CASE ) snake_case_ : str = tokenizer.encode( "sequence builders" , "multi-sequence build" , add_special_tokens=_SCREAMING_SNAKE_CASE , add_prefix_space=_SCREAMING_SNAKE_CASE ) snake_case_ : str = tokenizer.build_inputs_with_special_tokens(_SCREAMING_SNAKE_CASE ) snake_case_ : List[str] = tokenizer.build_inputs_with_special_tokens(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode @slow def _lowerCAmelCase ( self ) -> Tuple: snake_case_ : Optional[Any] = [self.tokenizer_class] if self.test_rust_tokenizer: tokenizer_classes.append(self.rust_tokenizer_class ) for tokenizer_class in tokenizer_classes: snake_case_ : str = tokenizer_class.from_pretrained("microsoft/deberta-base" ) snake_case_ : int = [ "ALBERT: A Lite BERT for Self-supervised Learning of Language Representations", "ALBERT incorporates two parameter reduction techniques", "The first one is a factorized embedding parameterization. By decomposing the large vocabulary" " embedding matrix into two small matrices, we separate the size of the hidden layers from the size of" " vocabulary embedding.", ] snake_case_ : Any = tokenizer(_SCREAMING_SNAKE_CASE , padding=_SCREAMING_SNAKE_CASE ) snake_case_ : Union[str, Any] = [tokenizer.decode(_SCREAMING_SNAKE_CASE , skip_special_tokens=_SCREAMING_SNAKE_CASE ) for seq in encoding["input_ids"]] # fmt: off snake_case_ : List[Any] = { "input_ids": [ [1, 2118, 1_1126, 565, 35, 83, 2_5191, 163, 1_8854, 13, 1_2156, 12, 1_6101, 2_5376, 1_3807, 9, 2_2205, 2_7893, 1635, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 2118, 1_1126, 565, 2_4536, 80, 4_3797, 4878, 7373, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 133, 78, 65, 16, 10, 3724, 1538, 3_3183, 1_1303, 4_3797, 1938, 4, 870, 2_4165, 2_9105, 5, 739, 3_2644, 3_3183, 1_1303, 3_6173, 88, 80, 650, 7821, 4_5940, 6, 52, 2559, 5, 1836, 9, 5, 7397, 1_3171, 31, 5, 1836, 9, 3_2644, 3_3183, 1_1303, 4, 2] ], "token_type_ids": [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ], "attention_mask": [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ] } # fmt: on snake_case_ : List[str] = [ "ALBERT: A Lite BERT for Self-supervised Learning of Language Representations", "ALBERT incorporates two parameter reduction techniques", "The first one is a factorized embedding parameterization. By decomposing the large vocabulary" " embedding matrix into two small matrices, we separate the size of the hidden layers from the size of" " vocabulary embedding.", ] self.assertDictEqual(encoding.data , _SCREAMING_SNAKE_CASE ) for expected, decoded in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): self.assertEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
36
0
"""simple docstring""" # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from accelerate import PartialState from accelerate.utils.operations import broadcast, gather, gather_object, pad_across_processes, reduce def snake_case ( A__ ): return (torch.arange(state.num_processes ) + 1.0 + (state.num_processes * state.process_index)).to(state.device ) def snake_case ( A__ ): UpperCAmelCase_ : List[Any] = create_tensor(A__ ) UpperCAmelCase_ : str = gather(A__ ) assert gathered_tensor.tolist() == list(range(1 ,state.num_processes**2 + 1 ) ) def snake_case ( A__ ): UpperCAmelCase_ : List[Any] = [state.process_index] UpperCAmelCase_ : List[Any] = gather_object(A__ ) assert len(A__ ) == state.num_processes, F"""{gathered_obj}, {len(A__ )} != {state.num_processes}""" assert gathered_obj == list(range(state.num_processes ) ), F"""{gathered_obj} != {list(range(state.num_processes ) )}""" def snake_case ( A__ ): UpperCAmelCase_ : Optional[Any] = create_tensor(A__ ) UpperCAmelCase_ : Optional[Any] = broadcast(A__ ) assert broadcasted_tensor.shape == torch.Size([state.num_processes] ) assert broadcasted_tensor.tolist() == list(range(1 ,state.num_processes + 1 ) ) def snake_case ( A__ ): # We need to pad the tensor with one more element if we are the main process # to ensure that we can pad if state.is_main_process: UpperCAmelCase_ : Any = torch.arange(state.num_processes + 1 ).to(state.device ) else: UpperCAmelCase_ : List[str] = torch.arange(state.num_processes ).to(state.device ) UpperCAmelCase_ : Optional[Any] = pad_across_processes(A__ ) assert padded_tensor.shape == torch.Size([state.num_processes + 1] ) if not state.is_main_process: assert padded_tensor.tolist() == list(range(0 ,state.num_processes ) ) + [0] def snake_case ( A__ ): # For now runs on only two processes if state.num_processes != 2: return UpperCAmelCase_ : List[str] = create_tensor(A__ ) UpperCAmelCase_ : Tuple = reduce(A__ ,"sum" ) UpperCAmelCase_ : Optional[int] = torch.tensor([4.0, 6] ).to(state.device ) assert torch.allclose(A__ ,A__ ), F"""{reduced_tensor} != {truth_tensor}""" def snake_case ( A__ ): # For now runs on only two processes if state.num_processes != 2: return UpperCAmelCase_ : str = create_tensor(A__ ) UpperCAmelCase_ : Optional[int] = reduce(A__ ,"mean" ) UpperCAmelCase_ : List[str] = torch.tensor([2.0, 3] ).to(state.device ) assert torch.allclose(A__ ,A__ ), F"""{reduced_tensor} != {truth_tensor}""" def snake_case ( A__ ): # For xla_spawn (TPUs) main() def snake_case ( ): UpperCAmelCase_ : Dict = PartialState() state.print(F"""State: {state}""" ) state.print("testing gather" ) test_gather(A__ ) state.print("testing gather_object" ) test_gather_object(A__ ) state.print("testing broadcast" ) test_broadcast(A__ ) state.print("testing pad_across_processes" ) test_pad_across_processes(A__ ) state.print("testing reduce_sum" ) test_reduce_sum(A__ ) state.print("testing reduce_mean" ) test_reduce_mean(A__ ) if __name__ == "__main__": main()
268
"""simple docstring""" lowerCamelCase_ = [ (1000, '''M'''), (900, '''CM'''), (500, '''D'''), (400, '''CD'''), (100, '''C'''), (90, '''XC'''), (50, '''L'''), (40, '''XL'''), (10, '''X'''), (9, '''IX'''), (5, '''V'''), (4, '''IV'''), (1, '''I'''), ] def snake_case ( A__ ): UpperCAmelCase_ : List[str] = {"I": 1, "V": 5, "X": 10, "L": 50, "C": 1_00, "D": 5_00, "M": 10_00} UpperCAmelCase_ : Optional[Any] = 0 UpperCAmelCase_ : Tuple = 0 while place < len(A__ ): if (place + 1 < len(A__ )) and (vals[roman[place]] < vals[roman[place + 1]]): total += vals[roman[place + 1]] - vals[roman[place]] place += 2 else: total += vals[roman[place]] place += 1 return total def snake_case ( A__ ): UpperCAmelCase_ : Union[str, Any] = [] for arabic, roman in ROMAN: ((UpperCAmelCase_) , (UpperCAmelCase_)) : str = divmod(A__ ,A__ ) result.append(roman * factor ) if number == 0: break return "".join(A__ ) if __name__ == "__main__": import doctest doctest.testmod()
268
1
import itertools from dataclasses import dataclass from typing import List, Optional import pyarrow as pa import pyarrow.parquet as pq import datasets from datasets.table import table_cast UpperCamelCase = datasets.utils.logging.get_logger(__name__) @dataclass class _lowerCamelCase ( datasets.BuilderConfig ): """simple docstring""" snake_case = 10_000 snake_case = None snake_case = None class _lowerCamelCase ( datasets.ArrowBasedBuilder ): """simple docstring""" snake_case = ParquetConfig def _snake_case ( self )->Dict: '''simple docstring''' return datasets.DatasetInfo(features=self.config.features ) def _snake_case ( self , _SCREAMING_SNAKE_CASE )->Tuple: '''simple docstring''' if not self.config.data_files: raise ValueError(F'''At least one data file must be specified, but got data_files={self.config.data_files}''' ) A_ : int = dl_manager.download_and_extract(self.config.data_files ) if isinstance(_SCREAMING_SNAKE_CASE , (str, list, tuple) ): A_ : int = data_files if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): A_ : List[Any] = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive A_ : Any = [dl_manager.iter_files(_SCREAMING_SNAKE_CASE ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files} )] A_ : List[str] = [] for split_name, files in data_files.items(): if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): A_ : Tuple = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive A_ : List[Any] = [dl_manager.iter_files(_SCREAMING_SNAKE_CASE ) for file in files] # Infer features is they are stoed in the arrow schema if self.info.features is None: for file in itertools.chain.from_iterable(_SCREAMING_SNAKE_CASE ): with open(_SCREAMING_SNAKE_CASE , '''rb''' ) as f: A_ : Tuple = datasets.Features.from_arrow_schema(pq.read_schema(_SCREAMING_SNAKE_CASE ) ) break splits.append(datasets.SplitGenerator(name=_SCREAMING_SNAKE_CASE , gen_kwargs={'''files''': files} ) ) return splits def _snake_case ( self , _SCREAMING_SNAKE_CASE )->pa.Table: '''simple docstring''' if self.info.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example A_ : Dict = table_cast(_SCREAMING_SNAKE_CASE , self.info.features.arrow_schema ) return pa_table def _snake_case ( self , _SCREAMING_SNAKE_CASE )->List[Any]: '''simple docstring''' A_ : Optional[int] = self.info.features.arrow_schema if self.info.features is not None else None if self.info.features is not None and self.config.columns is not None: if sorted(field.name for field in schema ) != sorted(self.config.columns ): raise ValueError( F'''Tried to load parquet data with columns \'{self.config.columns}\' with mismatching features \'{self.info.features}\'''' ) for file_idx, file in enumerate(itertools.chain.from_iterable(_SCREAMING_SNAKE_CASE ) ): with open(_SCREAMING_SNAKE_CASE , '''rb''' ) as f: A_ : Union[str, Any] = pq.ParquetFile(_SCREAMING_SNAKE_CASE ) try: for batch_idx, record_batch in enumerate( parquet_file.iter_batches(batch_size=self.config.batch_size , columns=self.config.columns ) ): A_ : List[Any] = pa.Table.from_batches([record_batch] ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield F'''{file_idx}_{batch_idx}''', self._cast_table(_SCREAMING_SNAKE_CASE ) except ValueError as e: logger.error(F'''Failed to read file \'{file}\' with error {type(_SCREAMING_SNAKE_CASE )}: {e}''' ) raise
65
import importlib.util import os import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import ( is_accelerate_available, is_flax_available, is_safetensors_available, is_tf_available, is_torch_available, ) from . import BaseTransformersCLICommand def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ): return EnvironmentCommand() def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ): return EnvironmentCommand(args.accelerate_config_file ) class _lowerCamelCase ( UpperCamelCase ): """simple docstring""" @staticmethod def _snake_case ( _SCREAMING_SNAKE_CASE )->List[Any]: '''simple docstring''' A_ : str = parser.add_parser('''env''' ) download_parser.set_defaults(func=_SCREAMING_SNAKE_CASE ) download_parser.add_argument( '''--accelerate-config_file''' , default=_SCREAMING_SNAKE_CASE , help='''The accelerate config file to use for the default values in the launching script.''' , ) download_parser.set_defaults(func=_SCREAMING_SNAKE_CASE ) def __init__( self , _SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE )->None: '''simple docstring''' A_ : Optional[Any] = accelerate_config_file def _snake_case ( self )->Optional[int]: '''simple docstring''' A_ : Tuple = '''not installed''' if is_safetensors_available(): import safetensors A_ : Any = safetensors.__version__ elif importlib.util.find_spec('''safetensors''' ) is not None: import safetensors A_ : Optional[Any] = F'''{safetensors.__version__} but is ignored because of PyTorch version too old.''' A_ : Union[str, Any] = '''not installed''' A_ : List[Any] = '''not found''' if is_accelerate_available(): import accelerate from accelerate.commands.config import default_config_file, load_config_from_file A_ : int = accelerate.__version__ # Get the default from the config file. if self._accelerate_config_file is not None or os.path.isfile(_SCREAMING_SNAKE_CASE ): A_ : str = load_config_from_file(self._accelerate_config_file ).to_dict() A_ : List[Any] = ( '''\n'''.join([F'''\t- {prop}: {val}''' for prop, val in accelerate_config.items()] ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else F'''\t{accelerate_config}''' ) A_ : Optional[int] = '''not installed''' A_ : str = '''NA''' if is_torch_available(): import torch A_ : Tuple = torch.__version__ A_ : List[Any] = torch.cuda.is_available() A_ : int = '''not installed''' A_ : Any = '''NA''' if is_tf_available(): import tensorflow as tf A_ : str = tf.__version__ try: # deprecated in v2.1 A_ : List[str] = tf.test.is_gpu_available() except AttributeError: # returns list of devices, convert to bool A_ : Any = bool(tf.config.list_physical_devices('''GPU''' ) ) A_ : Union[str, Any] = '''not installed''' A_ : Tuple = '''not installed''' A_ : Tuple = '''not installed''' A_ : Union[str, Any] = '''NA''' if is_flax_available(): import flax import jax import jaxlib A_ : Tuple = flax.__version__ A_ : List[Any] = jax.__version__ A_ : List[Any] = jaxlib.__version__ A_ : Dict = jax.lib.xla_bridge.get_backend().platform A_ : Union[str, Any] = { '''`transformers` version''': version, '''Platform''': platform.platform(), '''Python version''': platform.python_version(), '''Huggingface_hub version''': huggingface_hub.__version__, '''Safetensors version''': F'''{safetensors_version}''', '''Accelerate version''': F'''{accelerate_version}''', '''Accelerate config''': F'''{accelerate_config_str}''', '''PyTorch version (GPU?)''': F'''{pt_version} ({pt_cuda_available})''', '''Tensorflow version (GPU?)''': F'''{tf_version} ({tf_cuda_available})''', '''Flax version (CPU?/GPU?/TPU?)''': F'''{flax_version} ({jax_backend})''', '''Jax version''': F'''{jax_version}''', '''JaxLib version''': F'''{jaxlib_version}''', '''Using GPU in script?''': '''<fill in>''', '''Using distributed or parallel set-up in script?''': '''<fill in>''', } print('''\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n''' ) print(self.format_dict(_SCREAMING_SNAKE_CASE ) ) return info @staticmethod def _snake_case ( _SCREAMING_SNAKE_CASE )->Dict: '''simple docstring''' return "\n".join([F'''- {prop}: {val}''' for prop, val in d.items()] ) + "\n"
65
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _lowerCAmelCase = { '''configuration_electra''': ['''ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ElectraConfig''', '''ElectraOnnxConfig'''], '''tokenization_electra''': ['''ElectraTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = ['''ElectraTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = [ '''ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ElectraForCausalLM''', '''ElectraForMaskedLM''', '''ElectraForMultipleChoice''', '''ElectraForPreTraining''', '''ElectraForQuestionAnswering''', '''ElectraForSequenceClassification''', '''ElectraForTokenClassification''', '''ElectraModel''', '''ElectraPreTrainedModel''', '''load_tf_weights_in_electra''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = [ '''TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFElectraForMaskedLM''', '''TFElectraForMultipleChoice''', '''TFElectraForPreTraining''', '''TFElectraForQuestionAnswering''', '''TFElectraForSequenceClassification''', '''TFElectraForTokenClassification''', '''TFElectraModel''', '''TFElectraPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = [ '''FlaxElectraForCausalLM''', '''FlaxElectraForMaskedLM''', '''FlaxElectraForMultipleChoice''', '''FlaxElectraForPreTraining''', '''FlaxElectraForQuestionAnswering''', '''FlaxElectraForSequenceClassification''', '''FlaxElectraForTokenClassification''', '''FlaxElectraModel''', '''FlaxElectraPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_electra import ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ElectraConfig, ElectraOnnxConfig from .tokenization_electra import ElectraTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_electra_fast import ElectraTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_electra import ( ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, ElectraForCausalLM, ElectraForMaskedLM, ElectraForMultipleChoice, ElectraForPreTraining, ElectraForQuestionAnswering, ElectraForSequenceClassification, ElectraForTokenClassification, ElectraModel, ElectraPreTrainedModel, load_tf_weights_in_electra, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_electra import ( TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, TFElectraForMaskedLM, TFElectraForMultipleChoice, TFElectraForPreTraining, TFElectraForQuestionAnswering, TFElectraForSequenceClassification, TFElectraForTokenClassification, TFElectraModel, TFElectraPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_electra import ( FlaxElectraForCausalLM, FlaxElectraForMaskedLM, FlaxElectraForMultipleChoice, FlaxElectraForPreTraining, FlaxElectraForQuestionAnswering, FlaxElectraForSequenceClassification, FlaxElectraForTokenClassification, FlaxElectraModel, FlaxElectraPreTrainedModel, ) else: import sys _lowerCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
298
'''simple docstring''' import argparse import os import gluonnlp as nlp import mxnet as mx import numpy as np import torch from gluonnlp.base import get_home_dir from gluonnlp.model.bert import BERTEncoder from gluonnlp.model.utils import _load_vocab from gluonnlp.vocab import Vocab from packaging import version from torch import nn from transformers import BertConfig, BertForMaskedLM, BertModel, RobertaTokenizer from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging if version.parse(nlp.__version__) != version.parse('''0.8.3'''): raise Exception('''requires gluonnlp == 0.8.3''') if version.parse(mx.__version__) != version.parse('''1.5.0'''): raise Exception('''requires mxnet == 1.5.0''') logging.set_verbosity_info() _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = '''The Nymphenburg Palace is a beautiful palace in Munich!''' def __lowerCAmelCase ( snake_case__ , snake_case__ ): __UpperCamelCase : List[Any] = { "attention_cell": "multi_head", "num_layers": 4, "units": 1_024, "hidden_size": 768, "max_length": 512, "num_heads": 8, "scaled": True, "dropout": 0.1, "use_residual": True, "embed_size": 1_024, "embed_dropout": 0.1, "word_embed": None, "layer_norm_eps": 1E-5, "token_type_vocab_size": 2, } __UpperCamelCase : Optional[int] = bort_4_8_768_1024_hparams # Let's construct the original Bort model here # Taken from official BERT implementation, see: # https://github.com/alexa/bort/blob/master/bort/bort.py __UpperCamelCase : Any = BERTEncoder( attention_cell=predefined_args["attention_cell"] , num_layers=predefined_args["num_layers"] , units=predefined_args["units"] , hidden_size=predefined_args["hidden_size"] , max_length=predefined_args["max_length"] , num_heads=predefined_args["num_heads"] , scaled=predefined_args["scaled"] , dropout=predefined_args["dropout"] , output_attention=snake_case__ , output_all_encodings=snake_case__ , use_residual=predefined_args["use_residual"] , activation=predefined_args.get("activation" , "gelu" ) , layer_norm_eps=predefined_args.get("layer_norm_eps" , snake_case__ ) , ) # Vocab information needs to be fetched first # It's the same as RoBERTa, so RobertaTokenizer can be used later __UpperCamelCase : str = "openwebtext_ccnews_stories_books_cased" # Specify download folder to Gluonnlp's vocab __UpperCamelCase : Tuple = os.path.join(get_home_dir() , "models" ) __UpperCamelCase : Union[str, Any] = _load_vocab(snake_case__ , snake_case__ , snake_case__ , cls=snake_case__ ) __UpperCamelCase : Union[str, Any] = nlp.model.BERTModel( snake_case__ , len(snake_case__ ) , units=predefined_args["units"] , embed_size=predefined_args["embed_size"] , embed_dropout=predefined_args["embed_dropout"] , word_embed=predefined_args["word_embed"] , use_pooler=snake_case__ , use_token_type_embed=snake_case__ , token_type_vocab_size=predefined_args["token_type_vocab_size"] , use_classifier=snake_case__ , use_decoder=snake_case__ , ) original_bort.load_parameters(snake_case__ , cast_dtype=snake_case__ , ignore_extra=snake_case__ ) __UpperCamelCase : int = original_bort._collect_params_with_prefix() # Build our config 🤗 __UpperCamelCase : Any = { "architectures": ["BertForMaskedLM"], "attention_probs_dropout_prob": predefined_args["dropout"], "hidden_act": "gelu", "hidden_dropout_prob": predefined_args["dropout"], "hidden_size": predefined_args["embed_size"], "initializer_range": 0.02, "intermediate_size": predefined_args["hidden_size"], "layer_norm_eps": predefined_args["layer_norm_eps"], "max_position_embeddings": predefined_args["max_length"], "model_type": "bort", "num_attention_heads": predefined_args["num_heads"], "num_hidden_layers": predefined_args["num_layers"], "pad_token_id": 1, # 2 = BERT, 1 = RoBERTa "type_vocab_size": 1, # 2 = BERT, 1 = RoBERTa "vocab_size": len(snake_case__ ), } __UpperCamelCase : List[str] = BertConfig.from_dict(snake_case__ ) __UpperCamelCase : str = BertForMaskedLM(snake_case__ ) hf_bort_model.eval() # Parameter mapping table (Gluonnlp to Transformers) # * denotes layer index # # | Gluon Parameter | Transformers Parameter # | -------------------------------------------------------------- | ---------------------- # | `encoder.layer_norm.beta` | `bert.embeddings.LayerNorm.bias` # | `encoder.layer_norm.gamma` | `bert.embeddings.LayerNorm.weight` # | `encoder.position_weight` | `bert.embeddings.position_embeddings.weight` # | `word_embed.0.weight` | `bert.embeddings.word_embeddings.weight` # | `encoder.transformer_cells.*.attention_cell.proj_key.bias` | `bert.encoder.layer.*.attention.self.key.bias` # | `encoder.transformer_cells.*.attention_cell.proj_key.weight` | `bert.encoder.layer.*.attention.self.key.weight` # | `encoder.transformer_cells.*.attention_cell.proj_query.bias` | `bert.encoder.layer.*.attention.self.query.bias` # | `encoder.transformer_cells.*.attention_cell.proj_query.weight` | `bert.encoder.layer.*.attention.self.query.weight` # | `encoder.transformer_cells.*.attention_cell.proj_value.bias` | `bert.encoder.layer.*.attention.self.value.bias` # | `encoder.transformer_cells.*.attention_cell.proj_value.weight` | `bert.encoder.layer.*.attention.self.value.weight` # | `encoder.transformer_cells.*.ffn.ffn_2.bias` | `bert.encoder.layer.*.attention.output.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_2.weight` | `bert.encoder.layer.*.attention.output.dense.weight` # | `encoder.transformer_cells.*.layer_norm.beta` | `bert.encoder.layer.*.attention.output.LayerNorm.bias` # | `encoder.transformer_cells.*.layer_norm.gamma` | `bert.encoder.layer.*.attention.output.LayerNorm.weight` # | `encoder.transformer_cells.*.ffn.ffn_1.bias` | `bert.encoder.layer.*.intermediate.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_1.weight` | `bert.encoder.layer.*.intermediate.dense.weight` # | `encoder.transformer_cells.*.ffn.layer_norm.beta` | `bert.encoder.layer.*.output.LayerNorm.bias` # | `encoder.transformer_cells.*.ffn.layer_norm.gamma` | `bert.encoder.layer.*.output.LayerNorm.weight` # | `encoder.transformer_cells.*.proj.bias` | `bert.encoder.layer.*.output.dense.bias` # | `encoder.transformer_cells.*.proj.weight` | `bert.encoder.layer.*.output.dense.weight` # Helper function to convert MXNET Arrays to PyTorch def to_torch(snake_case__ ) -> nn.Parameter: return nn.Parameter(torch.FloatTensor(mx_array.data().asnumpy() ) ) # Check param shapes and map new HF param back def check_and_map_params(snake_case__ , snake_case__ ): __UpperCamelCase : Any = hf_param.shape __UpperCamelCase : List[Any] = to_torch(params[gluon_param] ) __UpperCamelCase : Union[str, Any] = gluon_param.shape assert ( shape_hf == shape_gluon ), F"The gluon parameter {gluon_param} has shape {shape_gluon}, but expects shape {shape_hf} for Transformers" return gluon_param __UpperCamelCase : Tuple = check_and_map_params( hf_bort_model.bert.embeddings.word_embeddings.weight , "word_embed.0.weight" ) __UpperCamelCase : str = check_and_map_params( hf_bort_model.bert.embeddings.position_embeddings.weight , "encoder.position_weight" ) __UpperCamelCase : Optional[int] = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.bias , "encoder.layer_norm.beta" ) __UpperCamelCase : str = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.weight , "encoder.layer_norm.gamma" ) # Inspired by RoBERTa conversion script, we just zero them out (Bort does not use them) __UpperCamelCase : Any = torch.zeros_like( hf_bort_model.bert.embeddings.token_type_embeddings.weight.data ) for i in range(hf_bort_config.num_hidden_layers ): __UpperCamelCase : BertLayer = hf_bort_model.bert.encoder.layer[i] # self attention __UpperCamelCase : BertSelfAttention = layer.attention.self __UpperCamelCase : int = check_and_map_params( self_attn.key.bias.data , F"encoder.transformer_cells.{i}.attention_cell.proj_key.bias" ) __UpperCamelCase : List[str] = check_and_map_params( self_attn.key.weight.data , F"encoder.transformer_cells.{i}.attention_cell.proj_key.weight" ) __UpperCamelCase : str = check_and_map_params( self_attn.query.bias.data , F"encoder.transformer_cells.{i}.attention_cell.proj_query.bias" ) __UpperCamelCase : List[Any] = check_and_map_params( self_attn.query.weight.data , F"encoder.transformer_cells.{i}.attention_cell.proj_query.weight" ) __UpperCamelCase : List[str] = check_and_map_params( self_attn.value.bias.data , F"encoder.transformer_cells.{i}.attention_cell.proj_value.bias" ) __UpperCamelCase : Tuple = check_and_map_params( self_attn.value.weight.data , F"encoder.transformer_cells.{i}.attention_cell.proj_value.weight" ) # self attention output __UpperCamelCase : BertSelfOutput = layer.attention.output __UpperCamelCase : List[Any] = check_and_map_params( self_output.dense.bias , F"encoder.transformer_cells.{i}.proj.bias" ) __UpperCamelCase : List[Any] = check_and_map_params( self_output.dense.weight , F"encoder.transformer_cells.{i}.proj.weight" ) __UpperCamelCase : List[Any] = check_and_map_params( self_output.LayerNorm.bias , F"encoder.transformer_cells.{i}.layer_norm.beta" ) __UpperCamelCase : Optional[int] = check_and_map_params( self_output.LayerNorm.weight , F"encoder.transformer_cells.{i}.layer_norm.gamma" ) # intermediate __UpperCamelCase : BertIntermediate = layer.intermediate __UpperCamelCase : Dict = check_and_map_params( intermediate.dense.bias , F"encoder.transformer_cells.{i}.ffn.ffn_1.bias" ) __UpperCamelCase : List[Any] = check_and_map_params( intermediate.dense.weight , F"encoder.transformer_cells.{i}.ffn.ffn_1.weight" ) # output __UpperCamelCase : BertOutput = layer.output __UpperCamelCase : Dict = check_and_map_params( bert_output.dense.bias , F"encoder.transformer_cells.{i}.ffn.ffn_2.bias" ) __UpperCamelCase : Union[str, Any] = check_and_map_params( bert_output.dense.weight , F"encoder.transformer_cells.{i}.ffn.ffn_2.weight" ) __UpperCamelCase : List[str] = check_and_map_params( bert_output.LayerNorm.bias , F"encoder.transformer_cells.{i}.ffn.layer_norm.beta" ) __UpperCamelCase : int = check_and_map_params( bert_output.LayerNorm.weight , F"encoder.transformer_cells.{i}.ffn.layer_norm.gamma" ) # Save space and energy 🎄 hf_bort_model.half() # Compare output of both models __UpperCamelCase : Any = RobertaTokenizer.from_pretrained("roberta-base" ) __UpperCamelCase : int = tokenizer.encode_plus(snake_case__ )["input_ids"] # Get gluon output __UpperCamelCase : Dict = mx.nd.array([input_ids] ) __UpperCamelCase : Any = original_bort(inputs=snake_case__ , token_types=[] ) # Get Transformer output (save and reload model again) hf_bort_model.save_pretrained(snake_case__ ) __UpperCamelCase : Optional[Any] = BertModel.from_pretrained(snake_case__ ) hf_bort_model.eval() __UpperCamelCase : str = tokenizer.encode_plus(snake_case__ , return_tensors="pt" ) __UpperCamelCase : Dict = hf_bort_model(**snake_case__ )[0] __UpperCamelCase : List[Any] = output_gluon[0].asnumpy() __UpperCamelCase : Optional[int] = output_hf[0].detach().numpy() __UpperCamelCase : Dict = np.max(np.abs(hf_layer - gluon_layer ) ).item() __UpperCamelCase : List[Any] = np.allclose(snake_case__ , snake_case__ , atol=1E-3 ) if success: print("✔️ Both model do output the same tensors" ) else: print("❌ Both model do **NOT** output the same tensors" ) print("Absolute difference is:" , snake_case__ ) if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--bort_checkpoint_path''', default=None, type=str, required=True, help='''Path the official Bort params file.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) _lowerCAmelCase = parser.parse_args() convert_bort_checkpoint_to_pytorch(args.bort_checkpoint_path, args.pytorch_dump_folder_path)
298
1
import os import unittest from transformers.models.transfo_xl.tokenization_transfo_xl import VOCAB_FILES_NAMES, TransfoXLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class lowercase ( snake_case__ , unittest.TestCase): """simple docstring""" a__ : Tuple = TransfoXLTokenizer a__ : str = False a__ : Union[str, Any] = False def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Any: super().setUp() UpperCAmelCase_= [ """<unk>""", """[CLS]""", """[SEP]""", """want""", """unwanted""", """wa""", """un""", """running""", """,""", """low""", """l""", ] UpperCAmelCase_= os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) def _SCREAMING_SNAKE_CASE ( self : List[Any] , **__UpperCAmelCase : List[Any] ) -> Union[str, Any]: UpperCAmelCase_= True return TransfoXLTokenizer.from_pretrained(self.tmpdirname , **__UpperCAmelCase ) def _SCREAMING_SNAKE_CASE ( self : List[str] , __UpperCAmelCase : int ) -> List[Any]: UpperCAmelCase_= """<unk> UNwanted , running""" UpperCAmelCase_= """<unk> unwanted, running""" return input_text, output_text def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> List[str]: UpperCAmelCase_= TransfoXLTokenizer(vocab_file=self.vocab_file , lower_case=__UpperCAmelCase ) UpperCAmelCase_= tokenizer.tokenize("""<unk> UNwanted , running""" ) self.assertListEqual(__UpperCAmelCase , ["""<unk>""", """unwanted""", """,""", """running"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , [0, 4, 8, 7] ) def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[Any]: UpperCAmelCase_= TransfoXLTokenizer(lower_case=__UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo ! how \n Are yoU ? """ ) , ["""hello""", """!""", """how""", """are""", """you""", """?"""] ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Tuple: UpperCAmelCase_= TransfoXLTokenizer(lower_case=__UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo ! how \n Are yoU ? """ ) , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def _SCREAMING_SNAKE_CASE ( self : int ) -> Any: UpperCAmelCase_= TransfoXLTokenizer(lower_case=__UpperCAmelCase ) UpperCAmelCase_= """Hello (bracket) and side-scrolled [and] Henry's $5,000 with 3.34 m. What's up!?""" UpperCAmelCase_= [ """Hello""", """(""", """bracket""", """)""", """and""", """side""", """@-@""", """scrolled""", """[""", """and""", """]""", """Henry""", """'s""", """$""", """5""", """@,@""", """000""", """with""", """3""", """@.@""", """34""", """m""", """.""", """What""", """'s""", """up""", """!""", """?""", ] self.assertListEqual(tokenizer.tokenize(__UpperCAmelCase ) , __UpperCAmelCase ) self.assertEqual(tokenizer.convert_tokens_to_string(__UpperCAmelCase ) , __UpperCAmelCase ) def _SCREAMING_SNAKE_CASE ( self : Any ) -> str: UpperCAmelCase_= self.get_tokenizer() UpperCAmelCase_= len(__UpperCAmelCase ) tokenizer.add_tokens(["""new1""", """new2"""] ) tokenizer.move_added_token("""new1""" , 1 ) # Check that moved token is not copied (duplicate) self.assertEqual(len(__UpperCAmelCase ) , original_len + 2 ) # Check that token is moved to specified id self.assertEqual(tokenizer.encode("""new1""" ) , [1] ) self.assertEqual(tokenizer.decode([1] ) , """new1""" )
277
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BlipaProcessor, BlipImageProcessor, GPTaTokenizer, PreTrainedTokenizerFast @require_vision class lowercase ( unittest.TestCase): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> List[Any]: UpperCAmelCase_= tempfile.mkdtemp() UpperCAmelCase_= BlipImageProcessor() UpperCAmelCase_= GPTaTokenizer.from_pretrained("""hf-internal-testing/tiny-random-GPT2Model""" ) UpperCAmelCase_= BlipaProcessor(__UpperCAmelCase , __UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) def _SCREAMING_SNAKE_CASE ( self : List[Any] , **__UpperCAmelCase : Union[str, Any] ) -> int: return AutoProcessor.from_pretrained(self.tmpdirname , **__UpperCAmelCase ).tokenizer def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , **__UpperCAmelCase : str ) -> Optional[int]: return AutoProcessor.from_pretrained(self.tmpdirname , **__UpperCAmelCase ).image_processor def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[Any]: shutil.rmtree(self.tmpdirname ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Any: UpperCAmelCase_= [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] UpperCAmelCase_= [Image.fromarray(np.moveaxis(__UpperCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Dict: UpperCAmelCase_= BlipaProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) UpperCAmelCase_= self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) UpperCAmelCase_= self.get_image_processor(do_normalize=__UpperCAmelCase , padding_value=1.0 ) UpperCAmelCase_= BlipaProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=__UpperCAmelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __UpperCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __UpperCAmelCase ) def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[int]: UpperCAmelCase_= self.get_image_processor() UpperCAmelCase_= self.get_tokenizer() UpperCAmelCase_= BlipaProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) UpperCAmelCase_= self.prepare_image_inputs() UpperCAmelCase_= image_processor(__UpperCAmelCase , return_tensors="""np""" ) UpperCAmelCase_= processor(images=__UpperCAmelCase , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Any: UpperCAmelCase_= self.get_image_processor() UpperCAmelCase_= self.get_tokenizer() UpperCAmelCase_= BlipaProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) UpperCAmelCase_= """lower newer""" UpperCAmelCase_= processor(text=__UpperCAmelCase ) UpperCAmelCase_= tokenizer(__UpperCAmelCase , return_token_type_ids=__UpperCAmelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Dict: UpperCAmelCase_= self.get_image_processor() UpperCAmelCase_= self.get_tokenizer() UpperCAmelCase_= BlipaProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) UpperCAmelCase_= """lower newer""" UpperCAmelCase_= self.prepare_image_inputs() UpperCAmelCase_= processor(text=__UpperCAmelCase , images=__UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ["""pixel_values""", """input_ids""", """attention_mask"""] ) # test if it raises when no input is passed with pytest.raises(__UpperCAmelCase ): processor() def _SCREAMING_SNAKE_CASE ( self : str ) -> Any: UpperCAmelCase_= self.get_image_processor() UpperCAmelCase_= self.get_tokenizer() UpperCAmelCase_= BlipaProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) UpperCAmelCase_= [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] UpperCAmelCase_= processor.batch_decode(__UpperCAmelCase ) UpperCAmelCase_= tokenizer.batch_decode(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) def _SCREAMING_SNAKE_CASE ( self : Dict ) -> int: UpperCAmelCase_= self.get_image_processor() UpperCAmelCase_= self.get_tokenizer() UpperCAmelCase_= BlipaProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) UpperCAmelCase_= """lower newer""" UpperCAmelCase_= self.prepare_image_inputs() UpperCAmelCase_= processor(text=__UpperCAmelCase , images=__UpperCAmelCase ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) , ["""pixel_values""", """input_ids""", """attention_mask"""] )
277
1
'''simple docstring''' from __future__ import annotations class snake_case : """simple docstring""" def __init__( self : Optional[int] , __A : list[list[int]] ): __UpperCamelCase = TypeError( 'Matrices must be formed from a list of zero or more lists containing at ' 'least one and the same number of values, each of which must be of type ' 'int or float.' ) if len(__A ) != 0: __UpperCamelCase = len(rows[0] ) if cols == 0: raise error for row in rows: if len(__A ) != cols: raise error for value in row: if not isinstance(__A , (int, float) ): raise error __UpperCamelCase = rows else: __UpperCamelCase = [] def _lowerCamelCase ( self : int ): return [[row[i] for row in self.rows] for i in range(len(self.rows[0] ) )] @property def _lowerCamelCase ( self : str ): return len(self.rows ) @property def _lowerCamelCase ( self : Any ): return len(self.rows[0] ) @property def _lowerCamelCase ( self : Optional[Any] ): return (self.num_rows, self.num_columns) @property def _lowerCamelCase ( self : Dict ): return self.order[0] == self.order[1] def _lowerCamelCase ( self : Any ): __UpperCamelCase = [ [0 if column_num != row_num else 1 for column_num in range(self.num_rows )] for row_num in range(self.num_rows ) ] return Matrix(__A ) def _lowerCamelCase ( self : Any ): if not self.is_square: return 0 if self.order == (0, 0): return 1 if self.order == (1, 1): return int(self.rows[0][0] ) if self.order == (2, 2): return int( (self.rows[0][0] * self.rows[1][1]) - (self.rows[0][1] * self.rows[1][0]) ) else: return sum( self.rows[0][column] * self.cofactors().rows[0][column] for column in range(self.num_columns ) ) def _lowerCamelCase ( self : List[str] ): return bool(self.determinant() ) def _lowerCamelCase ( self : Dict , __A : int , __A : int ): __UpperCamelCase = [ [ self.rows[other_row][other_column] for other_column in range(self.num_columns ) if other_column != column ] for other_row in range(self.num_rows ) if other_row != row ] return Matrix(__A ).determinant() def _lowerCamelCase ( self : Dict , __A : int , __A : int ): if (row + column) % 2 == 0: return self.get_minor(__A , __A ) return -1 * self.get_minor(__A , __A ) def _lowerCamelCase ( self : List[str] ): return Matrix( [ [self.get_minor(__A , __A ) for column in range(self.num_columns )] for row in range(self.num_rows ) ] ) def _lowerCamelCase ( self : Union[str, Any] ): return Matrix( [ [ self.minors().rows[row][column] if (row + column) % 2 == 0 else self.minors().rows[row][column] * -1 for column in range(self.minors().num_columns ) ] for row in range(self.minors().num_rows ) ] ) def _lowerCamelCase ( self : List[str] ): __UpperCamelCase = [ [self.cofactors().rows[column][row] for column in range(self.num_columns )] for row in range(self.num_rows ) ] return Matrix(__A ) def _lowerCamelCase ( self : Dict ): __UpperCamelCase = self.determinant() if not determinant: raise TypeError('Only matrices with a non-zero determinant have an inverse' ) return self.adjugate() * (1 / determinant) def __repr__( self : Optional[Any] ): return str(self.rows ) def __str__( self : Union[str, Any] ): if self.num_rows == 0: return "[]" if self.num_rows == 1: return "[[" + ". ".join(str(self.rows[0] ) ) + "]]" return ( "[" + "\n ".join( [ '[' + '. '.join([str(__A ) for value in row] ) + '.]' for row in self.rows ] ) + "]" ) def _lowerCamelCase ( self : List[Any] , __A : list[int] , __A : int | None = None ): __UpperCamelCase = TypeError('Row must be a list containing all ints and/or floats' ) if not isinstance(__A , __A ): raise type_error for value in row: if not isinstance(__A , (int, float) ): raise type_error if len(__A ) != self.num_columns: raise ValueError( 'Row must be equal in length to the other rows in the matrix' ) if position is None: self.rows.append(__A ) else: __UpperCamelCase = self.rows[0:position] + [row] + self.rows[position:] def _lowerCamelCase ( self : Optional[Any] , __A : list[int] , __A : int | None = None ): __UpperCamelCase = TypeError( 'Column must be a list containing all ints and/or floats' ) if not isinstance(__A , __A ): raise type_error for value in column: if not isinstance(__A , (int, float) ): raise type_error if len(__A ) != self.num_rows: raise ValueError( 'Column must be equal in length to the other columns in the matrix' ) if position is None: __UpperCamelCase = [self.rows[i] + [column[i]] for i in range(self.num_rows )] else: __UpperCamelCase = [ self.rows[i][0:position] + [column[i]] + self.rows[i][position:] for i in range(self.num_rows ) ] def __eq__( self : Tuple , __A : object ): if not isinstance(__A , __A ): return NotImplemented return self.rows == other.rows def __ne__( self : Any , __A : object ): return not self == other def __neg__( self : List[Any] ): return self * -1 def __add__( self : List[str] , __A : Matrix ): if self.order != other.order: raise ValueError('Addition requires matrices of the same order' ) return Matrix( [ [self.rows[i][j] + other.rows[i][j] for j in range(self.num_columns )] for i in range(self.num_rows ) ] ) def __sub__( self : str , __A : Matrix ): if self.order != other.order: raise ValueError('Subtraction requires matrices of the same order' ) return Matrix( [ [self.rows[i][j] - other.rows[i][j] for j in range(self.num_columns )] for i in range(self.num_rows ) ] ) def __mul__( self : str , __A : Matrix | int | float ): if isinstance(__A , (int, float) ): return Matrix( [[int(element * other ) for element in row] for row in self.rows] ) elif isinstance(__A , __A ): if self.num_columns != other.num_rows: raise ValueError( 'The number of columns in the first matrix must ' 'be equal to the number of rows in the second' ) return Matrix( [ [Matrix.dot_product(__A , __A ) for column in other.columns()] for row in self.rows ] ) else: raise TypeError( 'A Matrix can only be multiplied by an int, float, or another matrix' ) def __pow__( self : Union[str, Any] , __A : int ): if not isinstance(__A , __A ): raise TypeError('A Matrix can only be raised to the power of an int' ) if not self.is_square: raise ValueError('Only square matrices can be raised to a power' ) if other == 0: return self.identity() if other < 0: if self.is_invertable(): return self.inverse() ** (-other) raise ValueError( 'Only invertable matrices can be raised to a negative power' ) __UpperCamelCase = self for _ in range(other - 1 ): result *= self return result @classmethod def _lowerCamelCase ( cls : Tuple , __A : list[int] , __A : list[int] ): return sum(row[i] * column[i] for i in range(len(__A ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
53
from __future__ import annotations def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase ) -> list[tuple[int, int]]: lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = position lowerCamelCase__ : Optional[Any] = [ (y + 1, x + 2), (y - 1, x + 2), (y + 1, x - 2), (y - 1, x - 2), (y + 2, x + 1), (y + 2, x - 1), (y - 2, x + 1), (y - 2, x - 1), ] lowerCamelCase__ : Dict = [] for position in positions: lowerCamelCase__ , lowerCamelCase__ : Optional[int] = position if 0 <= y_test < n and 0 <= x_test < n: permissible_positions.append(_UpperCAmelCase ) return permissible_positions def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> bool: return not any(elem == 0 for row in board for elem in row ) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> bool: if is_complete(_UpperCAmelCase ): return True for position in get_valid_pos(_UpperCAmelCase , len(_UpperCAmelCase ) ): lowerCamelCase__ , lowerCamelCase__ : Optional[int] = position if board[y][x] == 0: lowerCamelCase__ : List[Any] = curr + 1 if open_knight_tour_helper(_UpperCAmelCase , _UpperCAmelCase , curr + 1 ): return True lowerCamelCase__ : Optional[Any] = 0 return False def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> list[list[int]]: lowerCamelCase__ : Any = [[0 for i in range(_UpperCAmelCase )] for j in range(_UpperCAmelCase )] for i in range(_UpperCAmelCase ): for j in range(_UpperCAmelCase ): lowerCamelCase__ : Optional[int] = 1 if open_knight_tour_helper(_UpperCAmelCase , (i, j) , 1 ): return board lowerCamelCase__ : Optional[Any] = 0 lowerCamelCase__ : Any = F"""Open Kight Tour cannot be performed on a board of size {n}""" raise ValueError(_UpperCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod()
50
0
'''simple docstring''' from __future__ import annotations from collections import namedtuple def _snake_case ( A , A , A ) -> tuple: lowerCAmelCase__ = namedtuple('''result''' , '''name value''' ) if (voltage, current, power).count(0 ) != 1: raise ValueError('''Only one argument must be 0''' ) elif power < 0: raise ValueError( '''Power cannot be negative in any electrical/electronics system''' ) elif voltage == 0: return result('''voltage''' , power / current ) elif current == 0: return result('''current''' , power / voltage ) elif power == 0: return result('''power''' , float(round(abs(voltage * current ) , 2 ) ) ) else: raise ValueError('''Exactly one argument must be 0''' ) if __name__ == "__main__": import doctest doctest.testmod()
228
'''simple docstring''' def _snake_case ( A = 10 ) -> str: if not isinstance(A , A ) or n < 0: raise ValueError('''Invalid input''' ) lowerCAmelCase__ = 10**n lowerCAmelCase__ = 28433 * (pow(2 , 7830457 , A )) + 1 return str(number % modulus ) if __name__ == "__main__": from doctest import testmod testmod() print(f"""{solution(10) = }""")
228
1
"""simple docstring""" from __future__ import annotations from collections.abc import MutableSequence class UpperCamelCase_ : def __init__( self : List[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : Dict ) -> Any: if len(__a ) != degree + 1: raise ValueError( "The number of coefficients should be equal to the degree + 1." ) UpperCAmelCase_ : list[float] = list(__a ) UpperCAmelCase_ : Any = degree def __add__( self : Dict , lowerCAmelCase_ : Optional[int] ) -> Dict: if self.degree > polynomial_a.degree: UpperCAmelCase_ : Optional[Any] = self.coefficients[:] for i in range(polynomial_a.degree + 1 ): coefficients[i] += polynomial_a.coefficients[i] return Polynomial(self.degree , __a ) else: UpperCAmelCase_ : Union[str, Any] = polynomial_a.coefficients[:] for i in range(self.degree + 1 ): coefficients[i] += self.coefficients[i] return Polynomial(polynomial_a.degree , __a ) def __sub__( self : Dict , lowerCAmelCase_ : Dict ) -> List[Any]: return self + polynomial_a * Polynomial(0 , [-1] ) def __neg__( self : Dict ) -> Union[str, Any]: return Polynomial(self.degree , [-c for c in self.coefficients] ) def __mul__( self : Union[str, Any] , lowerCAmelCase_ : Optional[Any] ) -> List[str]: UpperCAmelCase_ : list[float] = [0] * (self.degree + polynomial_a.degree + 1) for i in range(self.degree + 1 ): for j in range(polynomial_a.degree + 1 ): coefficients[i + j] += ( self.coefficients[i] * polynomial_a.coefficients[j] ) return Polynomial(self.degree + polynomial_a.degree , __a ) def _SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase_ : Optional[Any] ) -> Optional[int]: UpperCAmelCase_ : int | float = 0 for i in range(self.degree + 1 ): result += self.coefficients[i] * (substitution**i) return result def __str__( self : List[str] ) -> Optional[int]: UpperCAmelCase_ : List[Any] = "" for i in range(self.degree , -1 , -1 ): if self.coefficients[i] == 0: continue elif self.coefficients[i] > 0: if polynomial: polynomial += " + " else: polynomial += " - " if i == 0: polynomial += str(abs(self.coefficients[i] ) ) elif i == 1: polynomial += str(abs(self.coefficients[i] ) ) + "x" else: polynomial += str(abs(self.coefficients[i] ) ) + "x^" + str(__a ) return polynomial def __repr__( self : Tuple ) -> Union[str, Any]: return self.__str__() def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> str: UpperCAmelCase_ : list[float] = [0] * self.degree for i in range(self.degree ): UpperCAmelCase_ : Optional[Any] = self.coefficients[i + 1] * (i + 1) return Polynomial(self.degree - 1 , __a ) def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase_ : Any = 0 ) -> List[Any]: UpperCAmelCase_ : list[float] = [0] * (self.degree + 2) UpperCAmelCase_ : Dict = constant for i in range(self.degree + 1 ): UpperCAmelCase_ : Tuple = self.coefficients[i] / (i + 1) return Polynomial(self.degree + 1 , __a ) def __eq__( self : int , lowerCAmelCase_ : Tuple ) -> Optional[Any]: if not isinstance(__a , __a ): return False if self.degree != polynomial_a.degree: return False for i in range(self.degree + 1 ): if self.coefficients[i] != polynomial_a.coefficients[i]: return False return True def __ne__( self : Optional[Any] , lowerCAmelCase_ : List[Any] ) -> Tuple: return not self.__eq__(__a )
268
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "facebook/wav2vec2-base-960h": "https://huggingface.co/facebook/wav2vec2-base-960h/resolve/main/config.json", # See all Wav2Vec2 models at https://huggingface.co/models?filter=wav2vec2 } class UpperCAmelCase_ ( a): lowerCamelCase__ = 'wav2vec2' def __init__( self, __a=32, __a=768, __a=12, __a=12, __a=3072, __a="gelu", __a=0.1, __a=0.1, __a=0.1, __a=0.0, __a=0.0, __a=0.1, __a=0.1, __a=0.02, __a=1E-5, __a="group", __a="gelu", __a=(512, 512, 512, 512, 512, 512, 512), __a=(5, 2, 2, 2, 2, 2, 2), __a=(10, 3, 3, 3, 3, 2, 2), __a=False, __a=128, __a=16, __a=False, __a=True, __a=0.05, __a=10, __a=2, __a=0.0, __a=10, __a=0, __a=320, __a=2, __a=0.1, __a=100, __a=256, __a=256, __a=0.1, __a="sum", __a=False, __a=False, __a=256, __a=(512, 512, 512, 512, 1500), __a=(5, 3, 3, 1, 1), __a=(1, 2, 3, 1, 1), __a=512, __a=0, __a=1, __a=2, __a=False, __a=3, __a=2, __a=3, __a=None, __a=None, **__a, ): '''simple docstring''' super().__init__(**__a, pad_token_id=__a, bos_token_id=__a, eos_token_id=__a) _lowerCAmelCase : str = hidden_size _lowerCAmelCase : Optional[int] = feat_extract_norm _lowerCAmelCase : Union[str, Any] = feat_extract_activation _lowerCAmelCase : Optional[Any] = list(__a) _lowerCAmelCase : List[str] = list(__a) _lowerCAmelCase : str = list(__a) _lowerCAmelCase : List[str] = conv_bias _lowerCAmelCase : str = num_conv_pos_embeddings _lowerCAmelCase : List[Any] = num_conv_pos_embedding_groups _lowerCAmelCase : str = len(self.conv_dim) _lowerCAmelCase : List[str] = num_hidden_layers _lowerCAmelCase : str = intermediate_size _lowerCAmelCase : Any = hidden_act _lowerCAmelCase : int = num_attention_heads _lowerCAmelCase : Optional[Any] = hidden_dropout _lowerCAmelCase : List[str] = attention_dropout _lowerCAmelCase : Tuple = activation_dropout _lowerCAmelCase : int = feat_proj_dropout _lowerCAmelCase : List[str] = final_dropout _lowerCAmelCase : int = layerdrop _lowerCAmelCase : int = layer_norm_eps _lowerCAmelCase : Union[str, Any] = initializer_range _lowerCAmelCase : str = vocab_size _lowerCAmelCase : Optional[Any] = do_stable_layer_norm _lowerCAmelCase : Any = use_weighted_layer_sum if ( (len(self.conv_stride) != self.num_feat_extract_layers) or (len(self.conv_kernel) != self.num_feat_extract_layers) or (len(self.conv_dim) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" f" {len(self.conv_dim)}`, `len(config.conv_stride) = {len(self.conv_stride)}`," f" `len(config.conv_kernel) = {len(self.conv_kernel)}`.") # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _lowerCAmelCase : str = apply_spec_augment _lowerCAmelCase : Optional[Any] = mask_time_prob _lowerCAmelCase : Optional[int] = mask_time_length _lowerCAmelCase : List[str] = mask_time_min_masks _lowerCAmelCase : Optional[int] = mask_feature_prob _lowerCAmelCase : Optional[int] = mask_feature_length _lowerCAmelCase : List[str] = mask_feature_min_masks # parameters for pretraining with codevector quantized representations _lowerCAmelCase : Union[str, Any] = num_codevectors_per_group _lowerCAmelCase : str = num_codevector_groups _lowerCAmelCase : Optional[int] = contrastive_logits_temperature _lowerCAmelCase : Optional[int] = feat_quantizer_dropout _lowerCAmelCase : Optional[int] = num_negatives _lowerCAmelCase : Union[str, Any] = codevector_dim _lowerCAmelCase : Any = proj_codevector_dim _lowerCAmelCase : Optional[int] = diversity_loss_weight # ctc loss _lowerCAmelCase : Tuple = ctc_loss_reduction _lowerCAmelCase : Tuple = ctc_zero_infinity # adapter _lowerCAmelCase : List[Any] = add_adapter _lowerCAmelCase : List[str] = adapter_kernel_size _lowerCAmelCase : str = adapter_stride _lowerCAmelCase : List[str] = num_adapter_layers _lowerCAmelCase : str = output_hidden_size or hidden_size _lowerCAmelCase : Tuple = adapter_attn_dim # SequenceClassification-specific parameter. Feel free to ignore for other classes. _lowerCAmelCase : str = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. _lowerCAmelCase : str = list(__a) _lowerCAmelCase : Union[str, Any] = list(__a) _lowerCAmelCase : List[str] = list(__a) _lowerCAmelCase : Tuple = xvector_output_dim @property def snake_case__ ( self): '''simple docstring''' return functools.reduce(operator.mul, self.conv_stride, 1)
36
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import _LazyModule __lowerCAmelCase = {"""tokenization_byt5""": ["""ByT5Tokenizer"""]} if TYPE_CHECKING: from .tokenization_byta import ByTaTokenizer else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
5
'''simple docstring''' def UpperCAmelCase_ (__a : int = 1_0**1_2 ): """simple docstring""" _a : List[str] = 1 _a : Optional[int] = 0 _a : Any = 1 _a : List[str] = 1 while numerator <= 2 * min_total - 1: prev_numerator += 2 * numerator numerator += 2 * prev_numerator prev_denominator += 2 * denominator denominator += 2 * prev_denominator return (denominator + 1) // 2 if __name__ == "__main__": print(f'''{solution() = }''')
5
1
import argparse import pickle import numpy as np import torch from torch import nn from transformers import ReformerConfig, ReformerModelWithLMHead from transformers.utils import logging logging.set_verbosity_info() def lowerCAmelCase_ ( __A, __A, __A=None ) -> List[str]: '''simple docstring''' assert torch_layer.weight.shape == weight.shape, f"""{torch_layer} layer.weight does not match""" UpperCAmelCase__ = nn.Parameter(__A ) if bias is not None: assert torch_layer.bias.shape == bias.shape, f"""{torch_layer} layer.bias does not match""" UpperCAmelCase__ = nn.Parameter(__A ) def lowerCAmelCase_ ( __A, __A, __A ) -> Dict: '''simple docstring''' UpperCAmelCase__ = np.asarray(weights[0] ) UpperCAmelCase__ = np.asarray(weights[1] ) UpperCAmelCase__ = np.asarray(weights[2] ) set_param( torch_layer.self_attention.query_key, torch.tensor(__A ).transpose(1, 2 ).contiguous().view(-1, __A ), ) set_param( torch_layer.self_attention.value, torch.tensor(__A ).transpose(1, 2 ).contiguous().view(-1, __A ), ) set_param( torch_layer.output.dense, torch.tensor(__A ).view(-1, __A ).contiguous().transpose(0, 1 ), ) def lowerCAmelCase_ ( __A, __A, __A ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase__ = np.asarray(weights[0] ) UpperCAmelCase__ = np.asarray(weights[1] ) UpperCAmelCase__ = np.asarray(weights[2] ) UpperCAmelCase__ = np.asarray(weights[3] ) set_param( torch_layer.self_attention.query, torch.tensor(__A ).transpose(1, 2 ).contiguous().view(-1, __A ), ) set_param( torch_layer.self_attention.key, torch.tensor(__A ).transpose(1, 2 ).contiguous().view(-1, __A ), ) set_param( torch_layer.self_attention.value, torch.tensor(__A ).transpose(1, 2 ).contiguous().view(-1, __A ), ) set_param( torch_layer.output.dense, torch.tensor(__A ).view(-1, __A ).contiguous().transpose(0, 1 ), ) def lowerCAmelCase_ ( __A, __A, __A ) -> Dict: '''simple docstring''' UpperCAmelCase__ = weights[0][0][0] UpperCAmelCase__ = np.asarray(layer_norm_a[0] ) UpperCAmelCase__ = np.asarray(layer_norm_a[1] ) set_param( torch_block.attention.layer_norm, torch.tensor(__A ), torch.tensor(__A ), ) # lsh weights + output UpperCAmelCase__ = weights[0][1] if len(__A ) < 4: set_layer_weights_in_torch_lsh(__A, torch_block.attention, __A ) else: set_layer_weights_in_torch_local(__A, torch_block.attention, __A ) # intermediate weighs UpperCAmelCase__ = weights[2][0][1][2] # Chunked Feed Forward if len(__A ) == 4: UpperCAmelCase__ = intermediate_weights[2] # layernorm 2 UpperCAmelCase__ = np.asarray(intermediate_weights[0][0] ) UpperCAmelCase__ = np.asarray(intermediate_weights[0][1] ) set_param( torch_block.feed_forward.layer_norm, torch.tensor(__A ), torch.tensor(__A ), ) # intermediate dense UpperCAmelCase__ = np.asarray(intermediate_weights[1][0] ) UpperCAmelCase__ = np.asarray(intermediate_weights[1][1] ) set_param( torch_block.feed_forward.dense.dense, torch.tensor(__A ).transpose(0, 1 ).contiguous(), torch.tensor(__A ), ) # intermediate out UpperCAmelCase__ = np.asarray(intermediate_weights[4][0] ) UpperCAmelCase__ = np.asarray(intermediate_weights[4][1] ) set_param( torch_block.feed_forward.output.dense, torch.tensor(__A ).transpose(0, 1 ).contiguous(), torch.tensor(__A ), ) def lowerCAmelCase_ ( __A, __A, __A ) -> str: '''simple docstring''' UpperCAmelCase__ = torch_model.reformer # word embeds UpperCAmelCase__ = np.asarray(weights[1] ) set_param( torch_model_reformer.embeddings.word_embeddings, torch.tensor(__A ), ) if isinstance(weights[3], __A ): UpperCAmelCase__ = torch_model_reformer.embeddings.position_embeddings for emb_idx in range(len(position_embeddings.weights ) ): UpperCAmelCase__ = np.asarray(weights[3][emb_idx][0] ) assert ( position_embeddings.weights[emb_idx].shape == emb_weights.shape ), f"""{position_embeddings[emb_idx]} emb does not match""" UpperCAmelCase__ = nn.Parameter(torch.tensor(__A ) ) UpperCAmelCase__ = weights[5] assert len(torch_model_reformer.encoder.layers ) * 4 == len( __A ), "HF and trax model do not have the same number of layers" for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers ): UpperCAmelCase__ = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)] set_block_weights_in_torch(__A, __A, __A ) # output layer norm UpperCAmelCase__ = np.asarray(weights[7][0] ) UpperCAmelCase__ = np.asarray(weights[7][1] ) set_param( torch_model_reformer.encoder.layer_norm, torch.tensor(__A ), torch.tensor(__A ), ) # output embeddings UpperCAmelCase__ = np.asarray(weights[9][0] ) UpperCAmelCase__ = np.asarray(weights[9][1] ) set_param( torch_model.lm_head.decoder, torch.tensor(__A ).transpose(0, 1 ).contiguous(), torch.tensor(__A ), ) def lowerCAmelCase_ ( __A, __A, __A ) -> str: '''simple docstring''' UpperCAmelCase__ = ReformerConfig.from_json_file(__A ) print(f"""Building PyTorch model from configuration: {config}""" ) UpperCAmelCase__ = ReformerModelWithLMHead(__A ) with open(__A, "rb" ) as f: UpperCAmelCase__ = pickle.load(__A )["weights"] set_model_weights_in_torch(__A, __A, config.hidden_size ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict(), __A ) if __name__ == "__main__": UpperCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--trax_model_pkl_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained Reformer model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) UpperCamelCase__ = parser.parse_args() convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
65
import asyncio import os import re import sys import tempfile import unittest from contextlib import contextmanager from copy import deepcopy from distutils.util import strtobool from enum import Enum from importlib.util import find_spec from pathlib import Path from unittest.mock import patch import pyarrow as pa import pytest import requests from packaging import version from datasets import config if config.PY_VERSION < version.parse('3.8'): import importlib_metadata else: import importlib.metadata as importlib_metadata def lowerCAmelCase_ ( __A, __A=False ) -> Any: '''simple docstring''' try: UpperCAmelCase__ = os.environ[key] except KeyError: # KEY isn't set, default to `default`. UpperCAmelCase__ = default else: # KEY is set, convert it to True or False. try: UpperCAmelCase__ = strtobool(__A ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(f"""If set, {key} must be yes or no.""" ) return _value UpperCamelCase__ = parse_flag_from_env('RUN_SLOW', default=False) UpperCamelCase__ = parse_flag_from_env('RUN_REMOTE', default=False) UpperCamelCase__ = parse_flag_from_env('RUN_LOCAL', default=True) UpperCamelCase__ = parse_flag_from_env('RUN_PACKAGED', default=True) # Compression UpperCamelCase__ = pytest.mark.skipif(not config.LZ4_AVAILABLE, reason='test requires lz4') UpperCamelCase__ = pytest.mark.skipif(not config.PY7ZR_AVAILABLE, reason='test requires py7zr') UpperCamelCase__ = pytest.mark.skipif(not config.ZSTANDARD_AVAILABLE, reason='test requires zstandard') # Audio UpperCamelCase__ = pytest.mark.skipif( # On Windows and OS X, soundfile installs sndfile find_spec('soundfile') is None or version.parse(importlib_metadata.version('soundfile')) < version.parse('0.12.0'), reason='test requires sndfile>=0.12.1: \'pip install \"soundfile>=0.12.1\"\'; ', ) # Beam UpperCamelCase__ = pytest.mark.skipif( not config.BEAM_AVAILABLE or config.DILL_VERSION >= version.parse('0.3.2'), reason='test requires apache-beam and a compatible dill version', ) # Dill-cloudpickle compatibility UpperCamelCase__ = pytest.mark.skipif( config.DILL_VERSION <= version.parse('0.3.2'), reason='test requires dill>0.3.2 for cloudpickle compatibility', ) # Windows UpperCamelCase__ = pytest.mark.skipif( sys.platform == 'win32', reason='test should not be run on Windows', ) def lowerCAmelCase_ ( __A ) -> Any: '''simple docstring''' try: import faiss # noqa except ImportError: UpperCAmelCase__ = unittest.skip("test requires faiss" )(__A ) return test_case def lowerCAmelCase_ ( __A ) -> Optional[Any]: '''simple docstring''' try: import regex # noqa except ImportError: UpperCAmelCase__ = unittest.skip("test requires regex" )(__A ) return test_case def lowerCAmelCase_ ( __A ) -> List[str]: '''simple docstring''' try: import elasticsearch # noqa except ImportError: UpperCAmelCase__ = unittest.skip("test requires elasticsearch" )(__A ) return test_case def lowerCAmelCase_ ( __A ) -> List[Any]: '''simple docstring''' try: import sqlalchemy # noqa except ImportError: UpperCAmelCase__ = unittest.skip("test requires sqlalchemy" )(__A ) return test_case def lowerCAmelCase_ ( __A ) -> List[str]: '''simple docstring''' if not config.TORCH_AVAILABLE: UpperCAmelCase__ = unittest.skip("test requires PyTorch" )(__A ) return test_case def lowerCAmelCase_ ( __A ) -> Union[str, Any]: '''simple docstring''' if not config.TF_AVAILABLE: UpperCAmelCase__ = unittest.skip("test requires TensorFlow" )(__A ) return test_case def lowerCAmelCase_ ( __A ) -> Any: '''simple docstring''' if not config.JAX_AVAILABLE: UpperCAmelCase__ = unittest.skip("test requires JAX" )(__A ) return test_case def lowerCAmelCase_ ( __A ) -> int: '''simple docstring''' if not config.PIL_AVAILABLE: UpperCAmelCase__ = unittest.skip("test requires Pillow" )(__A ) return test_case def lowerCAmelCase_ ( __A ) -> Tuple: '''simple docstring''' try: import transformers # noqa F401 except ImportError: return unittest.skip("test requires transformers" )(__A ) else: return test_case def lowerCAmelCase_ ( __A ) -> Dict: '''simple docstring''' try: import tiktoken # noqa F401 except ImportError: return unittest.skip("test requires tiktoken" )(__A ) else: return test_case def lowerCAmelCase_ ( __A ) -> Optional[Any]: '''simple docstring''' try: import spacy # noqa F401 except ImportError: return unittest.skip("test requires spacy" )(__A ) else: return test_case def lowerCAmelCase_ ( __A ) -> Optional[int]: '''simple docstring''' def _require_spacy_model(__A ): try: import spacy # noqa F401 spacy.load(__A ) except ImportError: return unittest.skip("test requires spacy" )(__A ) except OSError: return unittest.skip("test requires spacy model '{}'".format(__A ) )(__A ) else: return test_case return _require_spacy_model def lowerCAmelCase_ ( __A ) -> Optional[Any]: '''simple docstring''' try: import pyspark # noqa F401 except ImportError: return unittest.skip("test requires pyspark" )(__A ) else: return test_case def lowerCAmelCase_ ( __A ) -> Tuple: '''simple docstring''' try: import joblibspark # noqa F401 except ImportError: return unittest.skip("test requires joblibspark" )(__A ) else: return test_case def lowerCAmelCase_ ( __A ) -> Optional[int]: '''simple docstring''' if not _run_slow_tests or _run_slow_tests == 0: UpperCAmelCase__ = unittest.skip("test is slow" )(__A ) return test_case def lowerCAmelCase_ ( __A ) -> List[Any]: '''simple docstring''' if not _run_local_tests or _run_local_tests == 0: UpperCAmelCase__ = unittest.skip("test is local" )(__A ) return test_case def lowerCAmelCase_ ( __A ) -> Optional[Any]: '''simple docstring''' if not _run_packaged_tests or _run_packaged_tests == 0: UpperCAmelCase__ = unittest.skip("test is packaged" )(__A ) return test_case def lowerCAmelCase_ ( __A ) -> Any: '''simple docstring''' if not _run_remote_tests or _run_remote_tests == 0: UpperCAmelCase__ = unittest.skip("test requires remote" )(__A ) return test_case def lowerCAmelCase_ ( *__A ) -> Optional[int]: '''simple docstring''' def decorate(cls ): for name, fn in cls.__dict__.items(): if callable(__A ) and name.startswith("test" ): for decorator in decorators: UpperCAmelCase__ = decorator(__A ) setattr(cls, __A, __A ) return cls return decorate class A ( UpperCAmelCase_ ): pass class A ( UpperCAmelCase_ ): __UpperCAmelCase : Union[str, Any] = 0 __UpperCAmelCase : str = 1 __UpperCAmelCase : int = 2 @contextmanager def lowerCAmelCase_ ( __A=OfflineSimulationMode.CONNECTION_FAILS, __A=1e-16 ) -> List[str]: '''simple docstring''' UpperCAmelCase__ = requests.Session().request def timeout_request(__A, __A, __A, **__A ): # Change the url to an invalid url so that the connection hangs UpperCAmelCase__ = "https://10.255.255.1" if kwargs.get("timeout" ) is None: raise RequestWouldHangIndefinitelyError( f"""Tried a call to {url} in offline mode with no timeout set. Please set a timeout.""" ) UpperCAmelCase__ = timeout try: return online_request(__A, __A, **__A ) except Exception as e: # The following changes in the error are just here to make the offline timeout error prettier UpperCAmelCase__ = url UpperCAmelCase__ = e.args[0] UpperCAmelCase__ = (max_retry_error.args[0].replace("10.255.255.1", f"""OfflineMock[{url}]""" ),) UpperCAmelCase__ = (max_retry_error,) raise def raise_connection_error(__A, __A, **__A ): raise requests.ConnectionError("Offline mode is enabled.", request=__A ) if mode is OfflineSimulationMode.CONNECTION_FAILS: with patch("requests.Session.send", __A ): yield elif mode is OfflineSimulationMode.CONNECTION_TIMES_OUT: # inspired from https://stackoverflow.com/a/904609 with patch("requests.Session.request", __A ): yield elif mode is OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1: with patch("datasets.config.HF_DATASETS_OFFLINE", __A ): yield else: raise ValueError("Please use a value from the OfflineSimulationMode enum." ) @contextmanager def lowerCAmelCase_ ( *__A, **__A ) -> str: '''simple docstring''' UpperCAmelCase__ = str(Path().resolve() ) with tempfile.TemporaryDirectory(*__A, **__A ) as tmp_dir: try: os.chdir(__A ) yield finally: os.chdir(__A ) @contextmanager def lowerCAmelCase_ ( ) -> Optional[Any]: '''simple docstring''' import gc gc.collect() UpperCAmelCase__ = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory > 0, "Arrow memory didn't increase." @contextmanager def lowerCAmelCase_ ( ) -> List[str]: '''simple docstring''' import gc gc.collect() UpperCAmelCase__ = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory <= 0, "Arrow memory wasn't expected to increase." def lowerCAmelCase_ ( __A, __A ) -> List[str]: '''simple docstring''' return deepcopy(__A ).integers(0, 100, 10 ).tolist() == deepcopy(__A ).integers(0, 100, 10 ).tolist() def lowerCAmelCase_ ( __A ) -> Optional[int]: '''simple docstring''' import decorator from requests.exceptions import HTTPError def _wrapper(__A, *__A, **__A ): try: return func(*__A, **__A ) except HTTPError as err: if str(__A ).startswith("500" ) or str(__A ).startswith("502" ): pytest.xfail(str(__A ) ) raise err return decorator.decorator(_wrapper, __A ) class A : def __init__(self : Optional[Any] , __UpperCAmelCase : int , __UpperCAmelCase : int , __UpperCAmelCase : List[str] ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = returncode UpperCAmelCase__ = stdout UpperCAmelCase__ = stderr async def lowerCAmelCase_ ( __A, __A ) -> Optional[int]: '''simple docstring''' while True: UpperCAmelCase__ = await stream.readline() if line: callback(__A ) else: break async def lowerCAmelCase_ ( __A, __A=None, __A=None, __A=None, __A=False, __A=False ) -> _RunOutput: '''simple docstring''' if echo: print("\nRunning: ", " ".join(__A ) ) UpperCAmelCase__ = await asyncio.create_subprocess_exec( cmd[0], *cmd[1:], stdin=__A, stdout=asyncio.subprocess.PIPE, stderr=asyncio.subprocess.PIPE, env=__A, ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) UpperCAmelCase__ = [] UpperCAmelCase__ = [] def tee(__A, __A, __A, __A="" ): UpperCAmelCase__ = line.decode("utf-8" ).rstrip() sink.append(__A ) if not quiet: print(__A, __A, file=__A ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ _read_stream(p.stdout, lambda __A : tee(__A, __A, sys.stdout, label="stdout:" ) ), _read_stream(p.stderr, lambda __A : tee(__A, __A, sys.stderr, label="stderr:" ) ), ], timeout=__A, ) return _RunOutput(await p.wait(), __A, __A ) def lowerCAmelCase_ ( __A, __A=None, __A=None, __A=180, __A=False, __A=True ) -> _RunOutput: '''simple docstring''' UpperCAmelCase__ = asyncio.get_event_loop() UpperCAmelCase__ = loop.run_until_complete( _stream_subprocess(__A, env=__A, stdin=__A, timeout=__A, quiet=__A, echo=__A ) ) UpperCAmelCase__ = " ".join(__A ) if result.returncode > 0: UpperCAmelCase__ = "\n".join(result.stderr ) raise RuntimeError( f"""'{cmd_str}' failed with returncode {result.returncode}\n\n""" f"""The combined stderr from workers follows:\n{stderr}""" ) # check that the subprocess actually did run and produced some output, should the test rely on # the remote side to do the testing if not result.stdout and not result.stderr: raise RuntimeError(f"""'{cmd_str}' produced no output.""" ) return result def lowerCAmelCase_ ( ) -> Tuple: '''simple docstring''' UpperCAmelCase__ = os.environ.get("PYTEST_XDIST_WORKER", "gw0" ) UpperCAmelCase__ = re.sub(r"^gw", "", __A, 0, re.M ) return int(__A ) def lowerCAmelCase_ ( ) -> List[Any]: '''simple docstring''' UpperCAmelCase__ = 29_500 UpperCAmelCase__ = pytest_xdist_worker_id() return port + uniq_delta
65
1
'''simple docstring''' from typing import Optional, Tuple, Union import torch from einops import rearrange, reduce from diffusers import DDIMScheduler, DDPMScheduler, DiffusionPipeline, ImagePipelineOutput, UNetaDConditionModel from diffusers.schedulers.scheduling_ddim import DDIMSchedulerOutput from diffusers.schedulers.scheduling_ddpm import DDPMSchedulerOutput A_ : Dict = 8 def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_=BITS )-> Union[str, Any]: '''simple docstring''' _UpperCAmelCase : Dict = x.device _UpperCAmelCase : int = (x * 255).int().clamp(0 , 255 ) _UpperCAmelCase : Tuple = 2 ** torch.arange(bits - 1 , -1 , -1 , device=lowerCAmelCase_ ) _UpperCAmelCase : List[Any] = rearrange(lowerCAmelCase_ , """d -> d 1 1""" ) _UpperCAmelCase : List[Any] = rearrange(lowerCAmelCase_ , """b c h w -> b c 1 h w""" ) _UpperCAmelCase : Optional[Any] = ((x & mask) != 0).float() _UpperCAmelCase : int = rearrange(lowerCAmelCase_ , """b c d h w -> b (c d) h w""" ) _UpperCAmelCase : Tuple = bits * 2 - 1 return bits def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_=BITS )-> Union[str, Any]: '''simple docstring''' _UpperCAmelCase : List[str] = x.device _UpperCAmelCase : Optional[int] = (x > 0).int() _UpperCAmelCase : Any = 2 ** torch.arange(bits - 1 , -1 , -1 , device=lowerCAmelCase_ , dtype=torch.intaa ) _UpperCAmelCase : Tuple = rearrange(lowerCAmelCase_ , """d -> d 1 1""" ) _UpperCAmelCase : Dict = rearrange(lowerCAmelCase_ , """b (c d) h w -> b c d h w""" , d=8 ) _UpperCAmelCase : Optional[Any] = reduce(x * mask , """b c d h w -> b c h w""" , """sum""" ) return (dec / 255).clamp(0.0 , 1.0 ) def snake_case_ ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 0.0 , lowerCAmelCase_ = True , lowerCAmelCase_=None , lowerCAmelCase_ = True , )-> Union[DDIMSchedulerOutput, Tuple]: '''simple docstring''' if self.num_inference_steps is None: raise ValueError( """Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler""" ) # See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf # Ideally, read DDIM paper in-detail understanding # Notation (<variable name> -> <name in paper> # - pred_noise_t -> e_theta(x_t, t) # - pred_original_sample -> f_theta(x_t, t) or x_0 # - std_dev_t -> sigma_t # - eta -> η # - pred_sample_direction -> "direction pointing to x_t" # - pred_prev_sample -> "x_t-1" # 1. get previous step value (=t-1) _UpperCAmelCase : str = timestep - self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas _UpperCAmelCase : List[str] = self.alphas_cumprod[timestep] _UpperCAmelCase : List[Any] = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod _UpperCAmelCase : List[Any] = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _UpperCAmelCase : List[Any] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 # 4. Clip "predicted x_0" _UpperCAmelCase : List[Any] = self.bit_scale if self.config.clip_sample: _UpperCAmelCase : Union[str, Any] = torch.clamp(lowerCAmelCase_ , -scale , lowerCAmelCase_ ) # 5. compute variance: "sigma_t(η)" -> see formula (16) # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1) _UpperCAmelCase : Union[str, Any] = self._get_variance(lowerCAmelCase_ , lowerCAmelCase_ ) _UpperCAmelCase : int = eta * variance ** 0.5 if use_clipped_model_output: # the model_output is always re-derived from the clipped x_0 in Glide _UpperCAmelCase : str = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 # 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _UpperCAmelCase : Optional[int] = (1 - alpha_prod_t_prev - std_dev_t**2) ** 0.5 * model_output # 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _UpperCAmelCase : Any = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if eta > 0: # randn_like does not support generator https://github.com/pytorch/pytorch/issues/27072 _UpperCAmelCase : Dict = model_output.device if torch.is_tensor(lowerCAmelCase_ ) else """cpu""" _UpperCAmelCase : Union[str, Any] = torch.randn(model_output.shape , dtype=model_output.dtype , generator=lowerCAmelCase_ ).to(lowerCAmelCase_ ) _UpperCAmelCase : int = self._get_variance(lowerCAmelCase_ , lowerCAmelCase_ ) ** 0.5 * eta * noise _UpperCAmelCase : Tuple = prev_sample + variance if not return_dict: return (prev_sample,) return DDIMSchedulerOutput(prev_sample=lowerCAmelCase_ , pred_original_sample=lowerCAmelCase_ ) def snake_case_ ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_="epsilon" , lowerCAmelCase_=None , lowerCAmelCase_ = True , )-> Union[DDPMSchedulerOutput, Tuple]: '''simple docstring''' _UpperCAmelCase : Optional[Any] = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]: _UpperCAmelCase ,_UpperCAmelCase : Any = torch.split(lowerCAmelCase_ , sample.shape[1] , dim=1 ) else: _UpperCAmelCase : List[Any] = None # 1. compute alphas, betas _UpperCAmelCase : Union[str, Any] = self.alphas_cumprod[t] _UpperCAmelCase : int = self.alphas_cumprod[t - 1] if t > 0 else self.one _UpperCAmelCase : Tuple = 1 - alpha_prod_t _UpperCAmelCase : List[str] = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if prediction_type == "epsilon": _UpperCAmelCase : Optional[Any] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif prediction_type == "sample": _UpperCAmelCase : str = model_output else: raise ValueError(F'''Unsupported prediction_type {prediction_type}.''' ) # 3. Clip "predicted x_0" _UpperCAmelCase : int = self.bit_scale if self.config.clip_sample: _UpperCAmelCase : Any = torch.clamp(lowerCAmelCase_ , -scale , lowerCAmelCase_ ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf _UpperCAmelCase : Any = (alpha_prod_t_prev ** 0.5 * self.betas[t]) / beta_prod_t _UpperCAmelCase : int = self.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf _UpperCAmelCase : Any = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise _UpperCAmelCase : List[str] = 0 if t > 0: _UpperCAmelCase : List[Any] = torch.randn( model_output.size() , dtype=model_output.dtype , layout=model_output.layout , generator=lowerCAmelCase_ ).to(model_output.device ) _UpperCAmelCase : Tuple = (self._get_variance(lowerCAmelCase_ , predicted_variance=lowerCAmelCase_ ) ** 0.5) * noise _UpperCAmelCase : List[str] = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return DDPMSchedulerOutput(prev_sample=lowerCAmelCase_ , pred_original_sample=lowerCAmelCase_ ) class lowercase ( _lowerCamelCase ): """simple docstring""" def __init__( self ,a_ ,a_ ,a_ = 1.0 ,) -> Any: super().__init__() _UpperCAmelCase : List[Any] = bit_scale _UpperCAmelCase : Any = ( ddim_bit_scheduler_step if isinstance(a_ ,a_ ) else ddpm_bit_scheduler_step ) self.register_modules(unet=a_ ,scheduler=a_ ) @torch.no_grad() def __call__( self ,a_ = 256 ,a_ = 256 ,a_ = 50 ,a_ = None ,a_ = 1 ,a_ = "pil" ,a_ = True ,**a_ ,) -> Union[Tuple, ImagePipelineOutput]: _UpperCAmelCase : int = torch.randn( (batch_size, self.unet.config.in_channels, height, width) ,generator=a_ ,) _UpperCAmelCase : int = decimal_to_bits(a_ ) * self.bit_scale _UpperCAmelCase : int = latents.to(self.device ) self.scheduler.set_timesteps(a_ ) for t in self.progress_bar(self.scheduler.timesteps ): # predict the noise residual _UpperCAmelCase : Union[str, Any] = self.unet(a_ ,a_ ).sample # compute the previous noisy sample x_t -> x_t-1 _UpperCAmelCase : Optional[Any] = self.scheduler.step(a_ ,a_ ,a_ ).prev_sample _UpperCAmelCase : List[str] = bits_to_decimal(a_ ) if output_type == "pil": _UpperCAmelCase : List[str] = self.numpy_to_pil(a_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=a_ )
349
'''simple docstring''' import unittest from knapsack import greedy_knapsack as kp class lowercase ( unittest.TestCase ): """simple docstring""" def _snake_case ( self ) -> Optional[Any]: _UpperCAmelCase : Any = [10, 20, 30, 40, 50, 60] _UpperCAmelCase : Dict = [2, 4, 6, 8, 10, 12] _UpperCAmelCase : Optional[int] = 100 self.assertEqual(kp.calc_profit(a_ ,a_ ,a_ ) ,210 ) def _snake_case ( self ) -> Union[str, Any]: self.assertRaisesRegex(a_ ,"""max_weight must greater than zero.""" ) def _snake_case ( self ) -> Any: self.assertRaisesRegex(a_ ,"""Weight can not be negative.""" ) def _snake_case ( self ) -> Optional[Any]: self.assertRaisesRegex(a_ ,"""Profit can not be negative.""" ) def _snake_case ( self ) -> Dict: self.assertRaisesRegex(a_ ,"""max_weight must greater than zero.""" ) def _snake_case ( self ) -> Tuple: self.assertRaisesRegex( a_ ,"""The length of profit and weight must be same.""" ) if __name__ == "__main__": unittest.main()
349
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a_ :str = logging.get_logger(__name__) a_ :Dict = { "facebook/data2vec-text-base": "https://huggingface.co/data2vec/resolve/main/config.json", } class snake_case__ ( lowerCAmelCase_ ): """simple docstring""" _SCREAMING_SNAKE_CASE = """data2vec-text""" def __init__( self : str, _snake_case : Optional[int]=3_0_5_2_2, _snake_case : Optional[Any]=7_6_8, _snake_case : Any=1_2, _snake_case : str=1_2, _snake_case : str=3_0_7_2, _snake_case : List[Any]="gelu", _snake_case : Optional[int]=0.1, _snake_case : Tuple=0.1, _snake_case : Dict=5_1_2, _snake_case : Union[str, Any]=2, _snake_case : Optional[Any]=0.0_2, _snake_case : List[str]=1e-12, _snake_case : Dict=1, _snake_case : str=0, _snake_case : Optional[int]=2, _snake_case : int="absolute", _snake_case : Any=True, _snake_case : Any=None, **_snake_case : Union[str, Any], ) ->int: super().__init__(pad_token_id=_snake_case, bos_token_id=_snake_case, eos_token_id=_snake_case, **_snake_case ) snake_case__ : Tuple = vocab_size snake_case__ : int = hidden_size snake_case__ : str = num_hidden_layers snake_case__ : Optional[Any] = num_attention_heads snake_case__ : Tuple = hidden_act snake_case__ : Any = intermediate_size snake_case__ : Optional[int] = hidden_dropout_prob snake_case__ : int = attention_probs_dropout_prob snake_case__ : List[str] = max_position_embeddings snake_case__ : Optional[int] = type_vocab_size snake_case__ : List[Any] = initializer_range snake_case__ : Dict = layer_norm_eps snake_case__ : Union[str, Any] = position_embedding_type snake_case__ : Union[str, Any] = use_cache snake_case__ : Optional[int] = classifier_dropout class snake_case__ ( lowerCAmelCase_ ): """simple docstring""" @property def lowercase_ ( self : Optional[int] ) ->Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": snake_case__ : Optional[Any] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: snake_case__ : Any = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
277
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available a_ :int = { "configuration_longt5": ["LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP", "LongT5Config", "LongT5OnnxConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ :List[str] = [ "LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST", "LongT5EncoderModel", "LongT5ForConditionalGeneration", "LongT5Model", "LongT5PreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ :int = [ "FlaxLongT5ForConditionalGeneration", "FlaxLongT5Model", "FlaxLongT5PreTrainedModel", ] if TYPE_CHECKING: from .configuration_longta import LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP, LongTaConfig, LongTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longta import ( LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST, LongTaEncoderModel, LongTaForConditionalGeneration, LongTaModel, LongTaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_longta import ( FlaxLongTaForConditionalGeneration, FlaxLongTaModel, FlaxLongTaPreTrainedModel, ) else: import sys a_ :Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
277
1
from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_torch_available from ...utils import OptionalDependencyNotAvailable lowerCAmelCase : Optional[int] = { """configuration_gpt_neox_japanese""": ["""GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GPTNeoXJapaneseConfig"""], """tokenization_gpt_neox_japanese""": ["""GPTNeoXJapaneseTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : str = [ """GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST""", """GPTNeoXJapaneseForCausalLM""", """GPTNeoXJapaneseLayer""", """GPTNeoXJapaneseModel""", """GPTNeoXJapanesePreTrainedModel""", ] if TYPE_CHECKING: from .configuration_gpt_neox_japanese import GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXJapaneseConfig from .tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neox_japanese import ( GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseLayer, GPTNeoXJapaneseModel, GPTNeoXJapanesePreTrainedModel, ) else: import sys lowerCAmelCase : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
361
import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class __lowercase ( unittest.TestCase ): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self : int): SCREAMING_SNAKE_CASE_: str = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2") SCREAMING_SNAKE_CASE_: str = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = -1 SCREAMING_SNAKE_CASE_: Optional[int] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size).to(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Any = model.generate(lowerCAmelCase__ , max_new_tokens=10 , do_sample=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[str] = tokenizer.decode(greedy_ids[0]) with CaptureStdout() as cs: SCREAMING_SNAKE_CASE_: int = TextStreamer(lowerCAmelCase__) model.generate(lowerCAmelCase__ , max_new_tokens=10 , do_sample=lowerCAmelCase__ , streamer=lowerCAmelCase__) # The greedy text should be printed to stdout, except for the final "\n" in the streamer SCREAMING_SNAKE_CASE_: Union[str, Any] = cs.out[:-1] self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : int): SCREAMING_SNAKE_CASE_: List[Any] = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2") SCREAMING_SNAKE_CASE_: int = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = -1 SCREAMING_SNAKE_CASE_: int = ids_tensor((1, 5) , vocab_size=model.config.vocab_size).to(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = model.generate(lowerCAmelCase__ , max_new_tokens=10 , do_sample=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Tuple = tokenizer.decode(greedy_ids[0]) SCREAMING_SNAKE_CASE_: int = TextIteratorStreamer(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = {"input_ids": input_ids, "max_new_tokens": 10, "do_sample": False, "streamer": streamer} SCREAMING_SNAKE_CASE_: Tuple = Thread(target=model.generate , kwargs=lowerCAmelCase__) thread.start() SCREAMING_SNAKE_CASE_: Optional[Any] = "" for new_text in streamer: streamer_text += new_text self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Optional[int]): SCREAMING_SNAKE_CASE_: int = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2") SCREAMING_SNAKE_CASE_: int = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = -1 SCREAMING_SNAKE_CASE_: Optional[Any] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size).to(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Dict = model.generate(lowerCAmelCase__ , max_new_tokens=10 , do_sample=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Tuple = greedy_ids[:, input_ids.shape[1] :] SCREAMING_SNAKE_CASE_: Union[str, Any] = tokenizer.decode(new_greedy_ids[0]) with CaptureStdout() as cs: SCREAMING_SNAKE_CASE_: Dict = TextStreamer(lowerCAmelCase__ , skip_prompt=lowerCAmelCase__) model.generate(lowerCAmelCase__ , max_new_tokens=10 , do_sample=lowerCAmelCase__ , streamer=lowerCAmelCase__) # The greedy text should be printed to stdout, except for the final "\n" in the streamer SCREAMING_SNAKE_CASE_: Any = cs.out[:-1] self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Tuple): # Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested # with actual models -- the dummy models' tokenizers are not aligned with their models, and # `skip_special_tokens=True` has no effect on them SCREAMING_SNAKE_CASE_: Tuple = AutoTokenizer.from_pretrained("distilgpt2") SCREAMING_SNAKE_CASE_: List[str] = AutoModelForCausalLM.from_pretrained("distilgpt2").to(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = -1 SCREAMING_SNAKE_CASE_: List[str] = torch.ones((1, 5) , device=lowerCAmelCase__).long() * model.config.bos_token_id with CaptureStdout() as cs: SCREAMING_SNAKE_CASE_: Union[str, Any] = TextStreamer(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__) model.generate(lowerCAmelCase__ , max_new_tokens=1 , do_sample=lowerCAmelCase__ , streamer=lowerCAmelCase__) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token SCREAMING_SNAKE_CASE_: str = cs.out[:-1] # Remove the final "\n" SCREAMING_SNAKE_CASE_: Tuple = tokenizer(lowerCAmelCase__ , return_tensors="pt") self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1)) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): SCREAMING_SNAKE_CASE_: List[Any] = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2") SCREAMING_SNAKE_CASE_: List[str] = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Dict = -1 SCREAMING_SNAKE_CASE_: List[str] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size).to(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Any = TextIteratorStreamer(lowerCAmelCase__ , timeout=0.001) SCREAMING_SNAKE_CASE_: Any = {"input_ids": input_ids, "max_new_tokens": 10, "do_sample": False, "streamer": streamer} SCREAMING_SNAKE_CASE_: Optional[Any] = Thread(target=model.generate , kwargs=lowerCAmelCase__) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(lowerCAmelCase__): SCREAMING_SNAKE_CASE_: Tuple = "" for new_text in streamer: streamer_text += new_text
127
0
def __A ( __lowerCamelCase ) -> str: # noqa: E741 a = len(__lowerCamelCase ) a = 0 a = [0] * n a = [False] * n a = [False] * n def dfs(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): if parent == root: out_edge_count += 1 a = True a = at for to in l[at]: if to == parent: pass elif not visited[to]: a = dfs(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) a = min(low[at] , low[to] ) # AP found via bridge if at < low[to]: a = True # AP found via cycle if at == low[to]: a = True else: a = min(low[at] , __lowerCamelCase ) return out_edge_count for i in range(__lowerCamelCase ): if not visited[i]: a = 0 a = dfs(__lowerCamelCase , __lowerCamelCase , -1 , __lowerCamelCase ) a = out_edge_count > 1 for x in range(len(__lowerCamelCase ) ): if is_art[x] is True: print(__lowerCamelCase ) # Adjacency list of graph __UpperCamelCase : List[str] = { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], } compute_ap(data)
228
def __A ( __lowerCamelCase ) -> int: a = hex_num.strip() if not hex_num: raise ValueError("""No value was passed to the function""" ) a = hex_num[0] == """-""" if is_negative: a = hex_num[1:] try: a = int(__lowerCamelCase , 16 ) except ValueError: raise ValueError("""Invalid value was passed to the function""" ) a = """""" while int_num > 0: a = str(int_num % 2 ) + bin_str int_num >>= 1 return int(("""-""" + bin_str) if is_negative else bin_str ) if __name__ == "__main__": import doctest doctest.testmod()
228
1
def _A ( SCREAMING_SNAKE_CASE : str ): """simple docstring""" return credit_card_number.startswith(("34", "35", "37", "4", "5", "6") ) def _A ( SCREAMING_SNAKE_CASE : str ): """simple docstring""" a__ : int =credit_card_number a__ : str =0 a__ : Dict =len(SCREAMING_SNAKE_CASE ) - 2 for i in range(SCREAMING_SNAKE_CASE , -1 , -2 ): # double the value of every second digit a__ : str =int(cc_number[i] ) digit *= 2 # If doubling of a number results in a two digit number # i.e greater than 9(e.g., 6 × 2 = 12), # then add the digits of the product (e.g., 12: 1 + 2 = 3, 15: 1 + 5 = 6), # to get a single digit number. if digit > 9: digit %= 10 digit += 1 a__ : Any =cc_number[:i] + str(SCREAMING_SNAKE_CASE ) + cc_number[i + 1 :] total += digit # Sum up the remaining digits for i in range(len(SCREAMING_SNAKE_CASE ) - 1 , -1 , -2 ): total += int(cc_number[i] ) return total % 10 == 0 def _A ( SCREAMING_SNAKE_CASE : str ): """simple docstring""" a__ : Optional[Any] =f'''{credit_card_number} is an invalid credit card number because''' if not credit_card_number.isdigit(): print(f'''{error_message} it has nonnumerical characters.''' ) return False if not 13 <= len(SCREAMING_SNAKE_CASE ) <= 16: print(f'''{error_message} of its length.''' ) return False if not validate_initial_digits(SCREAMING_SNAKE_CASE ): print(f'''{error_message} of its first two digits.''' ) return False if not luhn_validation(SCREAMING_SNAKE_CASE ): print(f'''{error_message} it fails the Luhn check.''' ) return False print(f'''{credit_card_number} is a valid credit card number.''' ) return True if __name__ == "__main__": import doctest doctest.testmod() validate_credit_card_number("""4111111111111111""") validate_credit_card_number("""32323""")
148
from maths.prime_check import is_prime def _A ( SCREAMING_SNAKE_CASE : int ): """simple docstring""" if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): a__ : Dict =f'''Input value of [number={number}] must be an integer''' raise TypeError(SCREAMING_SNAKE_CASE ) if is_prime(SCREAMING_SNAKE_CASE ) and is_prime(number + 2 ): return number + 2 else: return -1 if __name__ == "__main__": import doctest doctest.testmod()
148
1
from typing import TYPE_CHECKING from ...utils import _LazyModule UpperCAmelCase__ = {'''tokenization_byt5''': ['''ByT5Tokenizer''']} if TYPE_CHECKING: from .tokenization_byta import ByTaTokenizer else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
5
UpperCAmelCase__ = { '''A''': '''.-''', '''B''': '''-...''', '''C''': '''-.-.''', '''D''': '''-..''', '''E''': '''.''', '''F''': '''..-.''', '''G''': '''--.''', '''H''': '''....''', '''I''': '''..''', '''J''': '''.---''', '''K''': '''-.-''', '''L''': '''.-..''', '''M''': '''--''', '''N''': '''-.''', '''O''': '''---''', '''P''': '''.--.''', '''Q''': '''--.-''', '''R''': '''.-.''', '''S''': '''...''', '''T''': '''-''', '''U''': '''..-''', '''V''': '''...-''', '''W''': '''.--''', '''X''': '''-..-''', '''Y''': '''-.--''', '''Z''': '''--..''', '''1''': '''.----''', '''2''': '''..---''', '''3''': '''...--''', '''4''': '''....-''', '''5''': '''.....''', '''6''': '''-....''', '''7''': '''--...''', '''8''': '''---..''', '''9''': '''----.''', '''0''': '''-----''', '''&''': '''.-...''', '''@''': '''.--.-.''', ''':''': '''---...''', ''',''': '''--..--''', '''.''': '''.-.-.-''', '''\'''': '''.----.''', '''"''': '''.-..-.''', '''?''': '''..--..''', '''/''': '''-..-.''', '''=''': '''-...-''', '''+''': '''.-.-.''', '''-''': '''-....-''', '''(''': '''-.--.''', ''')''': '''-.--.-''', '''!''': '''-.-.--''', ''' ''': '''/''' } # Exclamation mark is not in ITU-R recommendation # fmt: on UpperCAmelCase__ = {value: key for key, value in MORSE_CODE_DICT.items()} def UpperCAmelCase_ ( __snake_case ) -> str: """simple docstring""" return " ".join(MORSE_CODE_DICT[char] for char in message.upper() ) def UpperCAmelCase_ ( __snake_case ) -> str: """simple docstring""" return "".join(REVERSE_DICT[char] for char in message.split() ) def UpperCAmelCase_ ( ) -> None: """simple docstring""" _lowercase ='''Morse code here!''' print(__snake_case ) _lowercase =encrypt(__snake_case ) print(__snake_case ) _lowercase =decrypt(__snake_case ) print(__snake_case ) if __name__ == "__main__": main()
5
1
"""simple docstring""" from __future__ import annotations from random import choice def lowerCAmelCase__ ( _UpperCamelCase : Dict ) -> List[Any]: """simple docstring""" return choice(_UpperCamelCase ) def lowerCAmelCase__ ( _UpperCamelCase : list[int] , _UpperCamelCase : int ) -> int: """simple docstring""" snake_case = random_pivot(_UpperCamelCase ) # partition based on pivot # linear time snake_case = [e for e in lst if e < pivot] snake_case = [e for e in lst if e > pivot] # if we get lucky, pivot might be the element we want. # we can easily see this: # small (elements smaller than k) # + pivot (kth element) # + big (elements larger than k) if len(_UpperCamelCase ) == k - 1: return pivot # pivot is in elements bigger than k elif len(_UpperCamelCase ) < k - 1: return kth_number(_UpperCamelCase , k - len(_UpperCamelCase ) - 1 ) # pivot is in elements smaller than k else: return kth_number(_UpperCamelCase , _UpperCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
149
"""simple docstring""" import os def lowerCAmelCase__ ( _UpperCamelCase : str = "matrix.txt" ) -> int: """simple docstring""" with open(os.path.join(os.path.dirname(_UpperCamelCase ) , _UpperCamelCase ) ) as in_file: snake_case = in_file.read() snake_case = [[int(_UpperCamelCase ) for cell in row.split(',' )] for row in data.strip().splitlines()] snake_case = [[0 for cell in row] for row in grid] snake_case = len(grid[0] ) snake_case = [[0 for i in range(_UpperCamelCase )] for j in range(_UpperCamelCase )] snake_case = grid[0][0] for i in range(1 , _UpperCamelCase ): snake_case = grid[0][i] + dp[0][i - 1] for i in range(1 , _UpperCamelCase ): snake_case = grid[i][0] + dp[i - 1][0] for i in range(1 , _UpperCamelCase ): for j in range(1 , _UpperCamelCase ): snake_case = grid[i][j] + min(dp[i - 1][j] , dp[i][j - 1] ) return dp[-1][-1] if __name__ == "__main__": print(f"""{solution() = }""")
149
1
'''simple docstring''' from typing import Optional, Tuple, Union import torch from einops import rearrange, reduce from diffusers import DDIMScheduler, DDPMScheduler, DiffusionPipeline, ImagePipelineOutput, UNetaDConditionModel from diffusers.schedulers.scheduling_ddim import DDIMSchedulerOutput from diffusers.schedulers.scheduling_ddpm import DDPMSchedulerOutput a__ : List[Any] = 8 def _lowercase ( __A ,__A=BITS ): '''simple docstring''' __UpperCamelCase = x.device __UpperCamelCase = (x * 255).int().clamp(0 ,255 ) __UpperCamelCase = 2 ** torch.arange(bits - 1 ,-1 ,-1 ,device=__A ) __UpperCamelCase = rearrange(__A ,"""d -> d 1 1""" ) __UpperCamelCase = rearrange(__A ,"""b c h w -> b c 1 h w""" ) __UpperCamelCase = ((x & mask) != 0).float() __UpperCamelCase = rearrange(__A ,"""b c d h w -> b (c d) h w""" ) __UpperCamelCase = bits * 2 - 1 return bits def _lowercase ( __A ,__A=BITS ): '''simple docstring''' __UpperCamelCase = x.device __UpperCamelCase = (x > 0).int() __UpperCamelCase = 2 ** torch.arange(bits - 1 ,-1 ,-1 ,device=__A ,dtype=torch.intaa ) __UpperCamelCase = rearrange(__A ,"""d -> d 1 1""" ) __UpperCamelCase = rearrange(__A ,"""b (c d) h w -> b c d h w""" ,d=8 ) __UpperCamelCase = reduce(x * mask ,"""b c d h w -> b c h w""" ,"""sum""" ) return (dec / 255).clamp(0.0 ,1.0 ) def _lowercase ( self ,__A ,__A ,__A ,__A = 0.0 ,__A = True ,__A=None ,__A = True ,): '''simple docstring''' if self.num_inference_steps is None: raise ValueError( """Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler""" ) # See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf # Ideally, read DDIM paper in-detail understanding # Notation (<variable name> -> <name in paper> # - pred_noise_t -> e_theta(x_t, t) # - pred_original_sample -> f_theta(x_t, t) or x_0 # - std_dev_t -> sigma_t # - eta -> η # - pred_sample_direction -> "direction pointing to x_t" # - pred_prev_sample -> "x_t-1" # 1. get previous step value (=t-1) __UpperCamelCase = timestep - self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas __UpperCamelCase = self.alphas_cumprod[timestep] __UpperCamelCase = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod __UpperCamelCase = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf __UpperCamelCase = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 # 4. Clip "predicted x_0" __UpperCamelCase = self.bit_scale if self.config.clip_sample: __UpperCamelCase = torch.clamp(__A ,-scale ,__A ) # 5. compute variance: "sigma_t(η)" -> see formula (16) # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1) __UpperCamelCase = self._get_variance(__A ,__A ) __UpperCamelCase = eta * variance ** 0.5 if use_clipped_model_output: # the model_output is always re-derived from the clipped x_0 in Glide __UpperCamelCase = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 # 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf __UpperCamelCase = (1 - alpha_prod_t_prev - std_dev_t**2) ** 0.5 * model_output # 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf __UpperCamelCase = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if eta > 0: # randn_like does not support generator https://github.com/pytorch/pytorch/issues/27072 __UpperCamelCase = model_output.device if torch.is_tensor(__A ) else """cpu""" __UpperCamelCase = torch.randn(model_output.shape ,dtype=model_output.dtype ,generator=__A ).to(__A ) __UpperCamelCase = self._get_variance(__A ,__A ) ** 0.5 * eta * noise __UpperCamelCase = prev_sample + variance if not return_dict: return (prev_sample,) return DDIMSchedulerOutput(prev_sample=__A ,pred_original_sample=__A ) def _lowercase ( self ,__A ,__A ,__A ,__A="epsilon" ,__A=None ,__A = True ,): '''simple docstring''' __UpperCamelCase = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]: __UpperCamelCase , __UpperCamelCase = torch.split(__A ,sample.shape[1] ,dim=1 ) else: __UpperCamelCase = None # 1. compute alphas, betas __UpperCamelCase = self.alphas_cumprod[t] __UpperCamelCase = self.alphas_cumprod[t - 1] if t > 0 else self.one __UpperCamelCase = 1 - alpha_prod_t __UpperCamelCase = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if prediction_type == "epsilon": __UpperCamelCase = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif prediction_type == "sample": __UpperCamelCase = model_output else: raise ValueError(f"Unsupported prediction_type {prediction_type}." ) # 3. Clip "predicted x_0" __UpperCamelCase = self.bit_scale if self.config.clip_sample: __UpperCamelCase = torch.clamp(__A ,-scale ,__A ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __UpperCamelCase = (alpha_prod_t_prev ** 0.5 * self.betas[t]) / beta_prod_t __UpperCamelCase = self.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __UpperCamelCase = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise __UpperCamelCase = 0 if t > 0: __UpperCamelCase = torch.randn( model_output.size() ,dtype=model_output.dtype ,layout=model_output.layout ,generator=__A ).to(model_output.device ) __UpperCamelCase = (self._get_variance(__A ,predicted_variance=__A ) ** 0.5) * noise __UpperCamelCase = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return DDPMSchedulerOutput(prev_sample=__A ,pred_original_sample=__A ) class UpperCAmelCase__ ( UpperCAmelCase_): def __init__( self , lowercase , lowercase , lowercase = 1.0 , ) -> int: super().__init__() __UpperCamelCase = bit_scale __UpperCamelCase = ( ddim_bit_scheduler_step if isinstance(lowercase , lowercase ) else ddpm_bit_scheduler_step ) self.register_modules(unet=lowercase , scheduler=lowercase ) @torch.no_grad() def __call__( self , lowercase = 2_5_6 , lowercase = 2_5_6 , lowercase = 5_0 , lowercase = None , lowercase = 1 , lowercase = "pil" , lowercase = True , **lowercase , ) -> Union[Tuple, ImagePipelineOutput]: __UpperCamelCase = torch.randn( (batch_size, self.unet.config.in_channels, height, width) , generator=lowercase , ) __UpperCamelCase = decimal_to_bits(lowercase ) * self.bit_scale __UpperCamelCase = latents.to(self.device ) self.scheduler.set_timesteps(lowercase ) for t in self.progress_bar(self.scheduler.timesteps ): # predict the noise residual __UpperCamelCase = self.unet(lowercase , lowercase ).sample # compute the previous noisy sample x_t -> x_t-1 __UpperCamelCase = self.scheduler.step(lowercase , lowercase , lowercase ).prev_sample __UpperCamelCase = bits_to_decimal(lowercase ) if output_type == "pil": __UpperCamelCase = self.numpy_to_pil(lowercase ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowercase )
349
'''simple docstring''' import logging import random import ray from transformers import RagConfig, RagRetriever, RagTokenizer from transformers.models.rag.retrieval_rag import CustomHFIndex a__ : Optional[Any] = logging.getLogger(__name__) class UpperCAmelCase__ : def __init__( self ) -> Any: __UpperCamelCase = False def __lowerCamelCase ( self , lowercase , lowercase , lowercase , lowercase ) -> str: if not self.initialized: __UpperCamelCase = RagRetriever( lowercase , question_encoder_tokenizer=lowercase , generator_tokenizer=lowercase , index=lowercase , init_retrieval=lowercase , ) __UpperCamelCase = True def __lowerCamelCase ( self ) -> Optional[Any]: self.retriever.index.init_index() def __lowerCamelCase ( self , lowercase , lowercase ) -> Dict: __UpperCamelCase , __UpperCamelCase = self.retriever._main_retrieve(lowercase , lowercase ) return doc_ids, retrieved_doc_embeds class UpperCAmelCase__ ( UpperCAmelCase_): def __init__( self , lowercase , lowercase , lowercase , lowercase , lowercase=None ) -> List[Any]: if index is not None and index.is_initialized() and len(lowercase ) > 0: raise ValueError( """When using Ray for distributed fine-tuning, """ """you'll need to provide the paths instead, """ """as the dataset and the index are loaded """ """separately. More info in examples/rag/use_own_knowledge_dataset.py """ ) super().__init__( lowercase , question_encoder_tokenizer=lowercase , generator_tokenizer=lowercase , index=lowercase , init_retrieval=lowercase , ) __UpperCamelCase = retrieval_workers if len(self.retrieval_workers ) > 0: ray.get( [ worker.create_rag_retriever.remote(lowercase , lowercase , lowercase , lowercase ) for worker in self.retrieval_workers ] ) def __lowerCamelCase ( self ) -> Dict: logger.info("""initializing retrieval""" ) if len(self.retrieval_workers ) > 0: ray.get([worker.init_retrieval.remote() for worker in self.retrieval_workers] ) else: # Non-distributed training. Load index into this same process. self.index.init_index() def __lowerCamelCase ( self , lowercase , lowercase ) -> List[str]: if len(self.retrieval_workers ) > 0: # Select a random retrieval actor. __UpperCamelCase = self.retrieval_workers[random.randint(0 , len(self.retrieval_workers ) - 1 )] __UpperCamelCase , __UpperCamelCase = ray.get(random_worker.retrieve.remote(lowercase , lowercase ) ) else: __UpperCamelCase , __UpperCamelCase = self._main_retrieve(lowercase , lowercase ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(lowercase ) @classmethod def __lowerCamelCase ( cls , lowercase , lowercase=None , **lowercase ) -> Any: return super(lowercase , cls ).get_tokenizers(lowercase , lowercase , **lowercase ) @classmethod def __lowerCamelCase ( cls , lowercase , lowercase , lowercase=None , **lowercase ) -> int: __UpperCamelCase = kwargs.pop("""config""" , lowercase ) or RagConfig.from_pretrained(lowercase , **lowercase ) __UpperCamelCase = RagTokenizer.from_pretrained(lowercase , config=lowercase ) __UpperCamelCase = rag_tokenizer.question_encoder __UpperCamelCase = rag_tokenizer.generator if indexed_dataset is not None: __UpperCamelCase = """custom""" __UpperCamelCase = CustomHFIndex(config.retrieval_vector_size , lowercase ) else: __UpperCamelCase = cls._build_index(lowercase ) return cls( lowercase , question_encoder_tokenizer=lowercase , generator_tokenizer=lowercase , retrieval_workers=lowercase , index=lowercase , )
349
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) A_ = { '''configuration_falcon''': ['''FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''FalconConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ '''FALCON_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FalconForCausalLM''', '''FalconModel''', '''FalconPreTrainedModel''', '''FalconForSequenceClassification''', '''FalconForTokenClassification''', '''FalconForQuestionAnswering''', ] if TYPE_CHECKING: from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_falcon import ( FALCON_PRETRAINED_MODEL_ARCHIVE_LIST, FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, FalconPreTrainedModel, ) else: import sys A_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
296
"""simple docstring""" import os import unittest from tempfile import TemporaryDirectory import torch import torch.nn as nn from accelerate.utils import ( OffloadedWeightsLoader, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, ) class __SCREAMING_SNAKE_CASE ( nn.Module ): def __init__( self : List[Any] ): '''simple docstring''' super().__init__() A__ : int = nn.Linear(3 , 4 ) A__ : Union[str, Any] = nn.BatchNormad(4 ) A__ : Union[str, Any] = nn.Linear(4 , 5 ) def _UpperCamelCase ( self : str , snake_case : List[str] ): '''simple docstring''' return self.lineara(self.batchnorm(self.lineara(snake_case ) ) ) class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): def _UpperCamelCase ( self : str ): '''simple docstring''' A__ : int = ModelForTest() with TemporaryDirectory() as tmp_dir: offload_state_dict(snake_case , model.state_dict() ) A__ : List[str] = os.path.join(snake_case , """index.json""" ) self.assertTrue(os.path.isfile(snake_case ) ) # TODO: add tests on what is inside the index for key in ["linear1.weight", "linear1.bias", "linear2.weight", "linear2.bias"]: A__ : List[str] = os.path.join(snake_case , F'{key}.dat' ) self.assertTrue(os.path.isfile(snake_case ) ) # TODO: add tests on the fact weights are properly loaded def _UpperCamelCase ( self : int ): '''simple docstring''' A__ : Union[str, Any] = [torch.floataa, torch.floataa, torch.bfloataa] for dtype in dtypes: A__ : str = torch.randn(2 , 3 , dtype=snake_case ) with TemporaryDirectory() as tmp_dir: A__ : List[str] = offload_weight(snake_case , """weight""" , snake_case , {} ) A__ : Union[str, Any] = os.path.join(snake_case , """weight.dat""" ) self.assertTrue(os.path.isfile(snake_case ) ) self.assertDictEqual(snake_case , {"""weight""": {"""shape""": [2, 3], """dtype""": str(snake_case ).split(""".""" )[1]}} ) A__ : str = load_offloaded_weight(snake_case , index["""weight"""] ) self.assertTrue(torch.equal(snake_case , snake_case ) ) def _UpperCamelCase ( self : List[str] ): '''simple docstring''' A__ : str = ModelForTest() A__ : Union[str, Any] = model.state_dict() A__ : Optional[int] = {k: v for k, v in state_dict.items() if """linear2""" not in k} A__ : List[Any] = {k: v for k, v in state_dict.items() if """linear2""" in k} with TemporaryDirectory() as tmp_dir: offload_state_dict(snake_case , snake_case ) A__ : Dict = OffloadedWeightsLoader(state_dict=snake_case , save_folder=snake_case ) # Every key is there with the right value self.assertEqual(sorted(snake_case ) , sorted(state_dict.keys() ) ) for key, param in state_dict.items(): self.assertTrue(torch.allclose(snake_case , weight_map[key] ) ) A__ : int = {k: v for k, v in state_dict.items() if """weight""" in k} A__ : Tuple = {k: v for k, v in state_dict.items() if """weight""" not in k} with TemporaryDirectory() as tmp_dir: offload_state_dict(snake_case , snake_case ) A__ : Optional[Any] = OffloadedWeightsLoader(state_dict=snake_case , save_folder=snake_case ) # Every key is there with the right value self.assertEqual(sorted(snake_case ) , sorted(state_dict.keys() ) ) for key, param in state_dict.items(): self.assertTrue(torch.allclose(snake_case , weight_map[key] ) ) with TemporaryDirectory() as tmp_dir: offload_state_dict(snake_case , snake_case ) # Duplicates are removed A__ : int = OffloadedWeightsLoader(state_dict=snake_case , save_folder=snake_case ) # Every key is there with the right value self.assertEqual(sorted(snake_case ) , sorted(state_dict.keys() ) ) for key, param in state_dict.items(): self.assertTrue(torch.allclose(snake_case , weight_map[key] ) ) def _UpperCamelCase ( self : Tuple ): '''simple docstring''' A__ : List[str] = {"""a.1""": 0, """a.10""": 1, """a.2""": 2} A__ : str = extract_submodules_state_dict(snake_case , ["""a.1""", """a.2"""] ) self.assertDictEqual(snake_case , {"""a.1""": 0, """a.2""": 2} ) A__ : Dict = {"""a.1.a""": 0, """a.10.a""": 1, """a.2.a""": 2} A__ : int = extract_submodules_state_dict(snake_case , ["""a.1""", """a.2"""] ) self.assertDictEqual(snake_case , {"""a.1.a""": 0, """a.2.a""": 2} )
296
1
from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_torch_available from ...utils import OptionalDependencyNotAvailable lowercase__ :Dict = { "configuration_gpt_neox_japanese": ["GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTNeoXJapaneseConfig"], "tokenization_gpt_neox_japanese": ["GPTNeoXJapaneseTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ :List[str] = [ "GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST", "GPTNeoXJapaneseForCausalLM", "GPTNeoXJapaneseLayer", "GPTNeoXJapaneseModel", "GPTNeoXJapanesePreTrainedModel", ] if TYPE_CHECKING: from .configuration_gpt_neox_japanese import GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXJapaneseConfig from .tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neox_japanese import ( GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseLayer, GPTNeoXJapaneseModel, GPTNeoXJapanesePreTrainedModel, ) else: import sys lowercase__ :Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
101
import argparse import math import traceback import dateutil.parser as date_parser import requests def UpperCAmelCase__ (UpperCamelCase_ ): """simple docstring""" snake_case = {} snake_case = job['''started_at'''] snake_case = job['''completed_at'''] snake_case = date_parser.parse(UpperCamelCase_ ) snake_case = date_parser.parse(UpperCamelCase_ ) snake_case = round((end_datetime - start_datetime).total_seconds() / 60.0 ) snake_case = start snake_case = end snake_case = duration_in_min return job_info def UpperCAmelCase__ (UpperCamelCase_ ,UpperCamelCase_=None ): """simple docstring""" snake_case = None if token is not None: snake_case = {'''Accept''': '''application/vnd.github+json''', '''Authorization''': F'''Bearer {token}'''} snake_case = F'''https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100''' snake_case = requests.get(UpperCamelCase_ ,headers=UpperCamelCase_ ).json() snake_case = {} try: job_time.update({job['''name''']: extract_time_from_single_job(UpperCamelCase_ ) for job in result['''jobs''']} ) snake_case = math.ceil((result['''total_count'''] - 1_00) / 1_00 ) for i in range(UpperCamelCase_ ): snake_case = requests.get(url + F'''&page={i + 2}''' ,headers=UpperCamelCase_ ).json() job_time.update({job['''name''']: extract_time_from_single_job(UpperCamelCase_ ) for job in result['''jobs''']} ) return job_time except Exception: print(F'''Unknown error, could not fetch links:\n{traceback.format_exc()}''' ) return {} if __name__ == "__main__": _SCREAMING_SNAKE_CASE : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument("--workflow_run_id", type=str, required=True, help="A GitHub Actions workflow run id.") _SCREAMING_SNAKE_CASE : Union[str, Any] = parser.parse_args() _SCREAMING_SNAKE_CASE : int = get_job_time(args.workflow_run_id) _SCREAMING_SNAKE_CASE : Dict = dict(sorted(job_time.items(), key=lambda item: item[1]["duration"], reverse=True)) for k, v in job_time.items(): print(f'''{k}: {v['duration']}''')
127
0
'''simple docstring''' from collections import defaultdict from math import gcd def __lowercase ( __lowercase = 150_0000 ) -> int: '''simple docstring''' _A = defaultdict(__lowercase ) _A = 2 while 2 * euclid_m * (euclid_m + 1) <= limit: for euclid_n in range((euclid_m % 2) + 1 , __lowercase , 2 ): if gcd(__lowercase , __lowercase ) > 1: continue _A = 2 * euclid_m * (euclid_m + euclid_n) for perimeter in range(__lowercase , limit + 1 , __lowercase ): frequencies[perimeter] += 1 euclid_m += 1 return sum(1 for frequency in frequencies.values() if frequency == 1 ) if __name__ == "__main__": print(F"""{solution() = }""")
174
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) lowerCamelCase_ = { '''configuration_trocr''': ['''TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TrOCRConfig'''], '''processing_trocr''': ['''TrOCRProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = [ '''TROCR_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TrOCRForCausalLM''', '''TrOCRPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys lowerCamelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
174
1
"""simple docstring""" from __future__ import annotations import math def UpperCamelCase__ ( lowercase__ : int ): if num <= 0: snake_case : List[Any] = F'''{num}: Invalid input, please enter a positive integer.''' raise ValueError(lowercase__ ) snake_case : Union[str, Any] = [True] * (num + 1) snake_case : List[Any] = [] snake_case : List[Any] = 2 snake_case : Tuple = int(math.sqrt(lowercase__ ) ) while start <= end: # If start is a prime if sieve[start] is True: prime.append(lowercase__ ) # Set multiples of start be False for i in range(start * start , num + 1 , lowercase__ ): if sieve[i] is True: snake_case : Dict = False start += 1 for j in range(end + 1 , num + 1 ): if sieve[j] is True: prime.append(lowercase__ ) return prime if __name__ == "__main__": print(prime_sieve(int(input("Enter a positive integer: ").strip())))
148
"""simple docstring""" # DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from typing import Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import randn_tensor from .scheduling_utils import SchedulerMixin class lowerCamelCase__ ( lowerCamelCase_ , lowerCamelCase_ ): a__ : Tuple = 1 @register_to_config def __init__( self , SCREAMING_SNAKE_CASE=2_000 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=20 , SCREAMING_SNAKE_CASE=1E-3 ): """simple docstring""" snake_case : Optional[Any] = None snake_case : List[str] = None snake_case : Any = None def lowerCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None ): """simple docstring""" snake_case : Any = torch.linspace(1 , self.config.sampling_eps , SCREAMING_SNAKE_CASE , device=SCREAMING_SNAKE_CASE ) def lowerCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None ): """simple docstring""" if self.timesteps is None: raise ValueError( "`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler" ) # TODO(Patrick) better comments + non-PyTorch # postprocess model score snake_case : Any = ( -0.25 * t**2 * (self.config.beta_max - self.config.beta_min) - 0.5 * t * self.config.beta_min ) snake_case : Optional[int] = torch.sqrt(1.0 - torch.exp(2.0 * log_mean_coeff ) ) snake_case : List[str] = std.flatten() while len(std.shape ) < len(score.shape ): snake_case : Any = std.unsqueeze(-1 ) snake_case : Optional[Any] = -score / std # compute snake_case : int = -1.0 / len(self.timesteps ) snake_case : str = self.config.beta_min + t * (self.config.beta_max - self.config.beta_min) snake_case : str = beta_t.flatten() while len(beta_t.shape ) < len(x.shape ): snake_case : Union[str, Any] = beta_t.unsqueeze(-1 ) snake_case : Tuple = -0.5 * beta_t * x snake_case : Tuple = torch.sqrt(SCREAMING_SNAKE_CASE ) snake_case : List[str] = drift - diffusion**2 * score snake_case : List[str] = x + drift * dt # add noise snake_case : Optional[int] = randn_tensor(x.shape , layout=x.layout , generator=SCREAMING_SNAKE_CASE , device=x.device , dtype=x.dtype ) snake_case : Dict = x_mean + diffusion * math.sqrt(-dt ) * noise return x, x_mean def __len__( self ): """simple docstring""" return self.config.num_train_timesteps
148
1
import glob import os import random from string import ascii_lowercase, digits import cva import numpy as np # Parrameters SCREAMING_SNAKE_CASE_ = (7_2_0, 1_2_8_0) # Height, Width SCREAMING_SNAKE_CASE_ = (0.4, 0.6) # if height or width lower than this scale, drop it. SCREAMING_SNAKE_CASE_ = 1 / 1_0_0 SCREAMING_SNAKE_CASE_ = """""" SCREAMING_SNAKE_CASE_ = """""" SCREAMING_SNAKE_CASE_ = """""" SCREAMING_SNAKE_CASE_ = 2_5_0 def __lowercase ( ) -> None: '''simple docstring''' SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE = get_dataset(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for index in range(_SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE = random.sample(range(len(_SCREAMING_SNAKE_CASE ) ) , 4 ) SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE = update_image_and_anno( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , filter_scale=_SCREAMING_SNAKE_CASE , ) # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' SCREAMING_SNAKE_CASE = random_chars(32 ) SCREAMING_SNAKE_CASE = path.split(os.sep )[-1].rsplit(""".""" , 1 )[0] SCREAMING_SNAKE_CASE = F"""{OUTPUT_DIR}/{file_name}_MOSAIC_{letter_code}""" cva.imwrite(F"""{file_root}.jpg""" , _SCREAMING_SNAKE_CASE , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(F"""Succeeded {index+1}/{NUMBER_IMAGES} with {file_name}""" ) SCREAMING_SNAKE_CASE = [] for anno in new_annos: SCREAMING_SNAKE_CASE = anno[3] - anno[1] SCREAMING_SNAKE_CASE = anno[4] - anno[2] SCREAMING_SNAKE_CASE = anno[1] + width / 2 SCREAMING_SNAKE_CASE = anno[2] + height / 2 SCREAMING_SNAKE_CASE = F"""{anno[0]} {x_center} {y_center} {width} {height}""" annos_list.append(_SCREAMING_SNAKE_CASE ) with open(F"""{file_root}.txt""" , """w""" ) as outfile: outfile.write("""\n""".join(line for line in annos_list ) ) def __lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> tuple[list, list]: '''simple docstring''' SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = [] for label_file in glob.glob(os.path.join(_SCREAMING_SNAKE_CASE , """*.txt""" ) ): SCREAMING_SNAKE_CASE = label_file.split(os.sep )[-1].rsplit(""".""" , 1 )[0] with open(_SCREAMING_SNAKE_CASE ) as in_file: SCREAMING_SNAKE_CASE = in_file.readlines() SCREAMING_SNAKE_CASE = os.path.join(_SCREAMING_SNAKE_CASE , F"""{label_name}.jpg""" ) SCREAMING_SNAKE_CASE = [] for obj_list in obj_lists: SCREAMING_SNAKE_CASE = obj_list.rstrip("""\n""" ).split(""" """ ) SCREAMING_SNAKE_CASE = float(obj[1] ) - float(obj[3] ) / 2 SCREAMING_SNAKE_CASE = float(obj[2] ) - float(obj[4] ) / 2 SCREAMING_SNAKE_CASE = float(obj[1] ) + float(obj[3] ) / 2 SCREAMING_SNAKE_CASE = float(obj[2] ) + float(obj[4] ) / 2 boxes.append([int(obj[0] ), xmin, ymin, xmax, ymax] ) if not boxes: continue img_paths.append(_SCREAMING_SNAKE_CASE ) labels.append(_SCREAMING_SNAKE_CASE ) return img_paths, labels def __lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 0.0 , ) -> tuple[list, list, str]: '''simple docstring''' SCREAMING_SNAKE_CASE = np.zeros([output_size[0], output_size[1], 3] , dtype=np.uinta ) SCREAMING_SNAKE_CASE = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) SCREAMING_SNAKE_CASE = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) SCREAMING_SNAKE_CASE = int(scale_x * output_size[1] ) SCREAMING_SNAKE_CASE = int(scale_y * output_size[0] ) SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = [] for i, index in enumerate(_SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE = all_img_list[index] path_list.append(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE = all_annos[index] SCREAMING_SNAKE_CASE = cva.imread(_SCREAMING_SNAKE_CASE ) if i == 0: # top-left SCREAMING_SNAKE_CASE = cva.resize(_SCREAMING_SNAKE_CASE , (divid_point_x, divid_point_y) ) SCREAMING_SNAKE_CASE = img for bbox in img_annos: SCREAMING_SNAKE_CASE = bbox[1] * scale_x SCREAMING_SNAKE_CASE = bbox[2] * scale_y SCREAMING_SNAKE_CASE = bbox[3] * scale_x SCREAMING_SNAKE_CASE = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 1: # top-right SCREAMING_SNAKE_CASE = cva.resize(_SCREAMING_SNAKE_CASE , (output_size[1] - divid_point_x, divid_point_y) ) SCREAMING_SNAKE_CASE = img for bbox in img_annos: SCREAMING_SNAKE_CASE = scale_x + bbox[1] * (1 - scale_x) SCREAMING_SNAKE_CASE = bbox[2] * scale_y SCREAMING_SNAKE_CASE = scale_x + bbox[3] * (1 - scale_x) SCREAMING_SNAKE_CASE = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 2: # bottom-left SCREAMING_SNAKE_CASE = cva.resize(_SCREAMING_SNAKE_CASE , (divid_point_x, output_size[0] - divid_point_y) ) SCREAMING_SNAKE_CASE = img for bbox in img_annos: SCREAMING_SNAKE_CASE = bbox[1] * scale_x SCREAMING_SNAKE_CASE = scale_y + bbox[2] * (1 - scale_y) SCREAMING_SNAKE_CASE = bbox[3] * scale_x SCREAMING_SNAKE_CASE = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) else: # bottom-right SCREAMING_SNAKE_CASE = cva.resize( _SCREAMING_SNAKE_CASE , (output_size[1] - divid_point_x, output_size[0] - divid_point_y) ) SCREAMING_SNAKE_CASE = img for bbox in img_annos: SCREAMING_SNAKE_CASE = scale_x + bbox[1] * (1 - scale_x) SCREAMING_SNAKE_CASE = scale_y + bbox[2] * (1 - scale_y) SCREAMING_SNAKE_CASE = scale_x + bbox[3] * (1 - scale_x) SCREAMING_SNAKE_CASE = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) # Remove bounding box small than scale of filter if filter_scale > 0: SCREAMING_SNAKE_CASE = [ anno for anno in new_anno if filter_scale < (anno[3] - anno[1]) and filter_scale < (anno[4] - anno[2]) ] return output_img, new_anno, path_list[0] def __lowercase ( _SCREAMING_SNAKE_CASE ) -> str: '''simple docstring''' assert number_char > 1, "The number of character should greater than 1" SCREAMING_SNAKE_CASE = ascii_lowercase + digits return "".join(random.choice(_SCREAMING_SNAKE_CASE ) for _ in range(_SCREAMING_SNAKE_CASE ) ) if __name__ == "__main__": main() print("""DONE ✅""")
193
from typing import List, Optional, TypeVar from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .info import DatasetInfo from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets from .splits import NamedSplit from .utils import logging from .utils.py_utils import Literal SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = TypeVar("""DatasetType""", Dataset, IterableDataset) def __lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = "first_exhausted" , ) -> DatasetType: '''simple docstring''' from .arrow_dataset import Dataset from .iterable_dataset import IterableDataset if not datasets: raise ValueError("""Unable to interleave an empty list of datasets.""" ) for i, dataset in enumerate(_SCREAMING_SNAKE_CASE ): if not isinstance(_SCREAMING_SNAKE_CASE , (Dataset, IterableDataset) ): if isinstance(_SCREAMING_SNAKE_CASE , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( F"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} """ """is an empty dataset dictionary.""" ) raise ValueError( F"""Dataset at position {i} has at least one split: {list(_SCREAMING_SNAKE_CASE )}\n""" F"""Please pick one to interleave with the other datasets, for example: dataset['{next(iter(_SCREAMING_SNAKE_CASE ) )}']""" ) raise ValueError( F"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(_SCREAMING_SNAKE_CASE ).__name__}.""" ) if i == 0: SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE = ( (Dataset, IterableDataset) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else (IterableDataset, Dataset) ) elif not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise ValueError( F"""Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.""" ) if stopping_strategy not in ["first_exhausted", "all_exhausted"]: raise ValueError(F"""{stopping_strategy} is not supported. Please enter a valid stopping_strategy.""" ) if dataset_type is Dataset: return _interleave_map_style_datasets( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , info=_SCREAMING_SNAKE_CASE , split=_SCREAMING_SNAKE_CASE , stopping_strategy=_SCREAMING_SNAKE_CASE ) else: return _interleave_iterable_datasets( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , info=_SCREAMING_SNAKE_CASE , split=_SCREAMING_SNAKE_CASE , stopping_strategy=_SCREAMING_SNAKE_CASE ) def __lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 0 , ) -> DatasetType: '''simple docstring''' if not dsets: raise ValueError("""Unable to concatenate an empty list of datasets.""" ) for i, dataset in enumerate(_SCREAMING_SNAKE_CASE ): if not isinstance(_SCREAMING_SNAKE_CASE , (Dataset, IterableDataset) ): if isinstance(_SCREAMING_SNAKE_CASE , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( F"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} """ """is an empty dataset dictionary.""" ) raise ValueError( F"""Dataset at position {i} has at least one split: {list(_SCREAMING_SNAKE_CASE )}\n""" F"""Please pick one to interleave with the other datasets, for example: dataset['{next(iter(_SCREAMING_SNAKE_CASE ) )}']""" ) raise ValueError( F"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(_SCREAMING_SNAKE_CASE ).__name__}.""" ) if i == 0: SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE = ( (Dataset, IterableDataset) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else (IterableDataset, Dataset) ) elif not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise ValueError( F"""Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.""" ) if dataset_type is Dataset: return _concatenate_map_style_datasets(_SCREAMING_SNAKE_CASE , info=_SCREAMING_SNAKE_CASE , split=_SCREAMING_SNAKE_CASE , axis=_SCREAMING_SNAKE_CASE ) else: return _concatenate_iterable_datasets(_SCREAMING_SNAKE_CASE , info=_SCREAMING_SNAKE_CASE , split=_SCREAMING_SNAKE_CASE , axis=_SCREAMING_SNAKE_CASE )
193
1
import math import numpy as np import qiskit from qiskit import Aer, ClassicalRegister, QuantumCircuit, QuantumRegister, execute def lowerCAmelCase_ ( A_ = 3): if isinstance(A_ ,A_): raise TypeError("number of qubits must be a integer.") if number_of_qubits <= 0: raise ValueError("number of qubits must be > 0.") if math.floor(A_) != number_of_qubits: raise ValueError("number of qubits must be exact integer.") if number_of_qubits > 10: raise ValueError("number of qubits too large to simulate(>10).") UpperCamelCase__: Optional[Any] = QuantumRegister(A_ ,"qr") UpperCamelCase__: str = ClassicalRegister(A_ ,"cr") UpperCamelCase__: str = QuantumCircuit(A_ ,A_) UpperCamelCase__: Optional[Any] = number_of_qubits for i in range(A_): quantum_circuit.h(number_of_qubits - i - 1) counter -= 1 for j in range(A_): quantum_circuit.cp(np.pi / 2 ** (counter - j) ,A_ ,A_) for k in range(number_of_qubits // 2): quantum_circuit.swap(A_ ,number_of_qubits - k - 1) # measure all the qubits quantum_circuit.measure(A_ ,A_) # simulate with 10000 shots UpperCamelCase__: List[str] = Aer.get_backend("qasm_simulator") UpperCamelCase__: Optional[Any] = execute(A_ ,A_ ,shots=1_00_00) return job.result().get_counts(A_) if __name__ == "__main__": print( f"Total count for quantum fourier transform state is: \ {quantum_fourier_transform(3)}" )
149
def lowerCAmelCase_ ( A_ ,A_): if b == 0: return 1 if (b % 2) == 0: return actual_power(A_ ,int(b / 2)) * actual_power(A_ ,int(b / 2)) else: return a * actual_power(A_ ,int(b / 2)) * actual_power(A_ ,int(b / 2)) def lowerCAmelCase_ ( A_ ,A_): if b < 0: return 1 / actual_power(A_ ,A_) return actual_power(A_ ,A_) if __name__ == "__main__": print(power(-2, -3))
149
1
"""simple docstring""" import argparse import os import re UpperCAmelCase = '''src/diffusers''' # Pattern that looks at the indentation in a line. UpperCAmelCase = re.compile(r"""^(\s*)\S""") # Pattern that matches `"key":" and puts `key` in group 0. UpperCAmelCase = re.compile(r"""^\s*\"([^\"]+)\":""") # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. UpperCAmelCase = re.compile(r"""^\s*_import_structure\[\"([^\"]+)\"\]""") # Pattern that matches `"key",` and puts `key` in group 0. UpperCAmelCase = re.compile(r"""^\s*\"([^\"]+)\",\s*$""") # Pattern that matches any `[stuff]` and puts `stuff` in group 0. UpperCAmelCase = re.compile(r"""\[([^\]]+)\]""") def lowercase ( a__ : Dict ) -> List[Any]: _UpperCamelCase = _re_indent.search(a__ ) return "" if search is None else search.groups()[0] def lowercase ( a__ : int , a__ : List[str]="" , a__ : int=None , a__ : Any=None ) -> Optional[int]: _UpperCamelCase = 0 _UpperCamelCase = code.split('''\n''' ) if start_prompt is not None: while not lines[index].startswith(a__ ): index += 1 _UpperCamelCase = ['''\n'''.join(lines[:index] )] else: _UpperCamelCase = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). _UpperCamelCase = [lines[index]] index += 1 while index < len(a__ ) and (end_prompt is None or not lines[index].startswith(a__ )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(a__ ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ''' ''' ): current_block.append(lines[index] ) blocks.append('''\n'''.join(a__ ) ) if index < len(a__ ) - 1: _UpperCamelCase = [lines[index + 1]] index += 1 else: _UpperCamelCase = [] else: blocks.append('''\n'''.join(a__ ) ) _UpperCamelCase = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(a__ ) > 0: blocks.append('''\n'''.join(a__ ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(a__ ): blocks.append('''\n'''.join(lines[index:] ) ) return blocks def lowercase ( a__ : Union[str, Any] ) -> Tuple: def _inner(a__ : str ): return key(a__ ).lower().replace('''_''' , '''''' ) return _inner def lowercase ( a__ : Optional[Any] , a__ : Dict=None ) -> int: def noop(a__ : Optional[int] ): return x if key is None: _UpperCamelCase = noop # Constants are all uppercase, they go first. _UpperCamelCase = [obj for obj in objects if key(a__ ).isupper()] # Classes are not all uppercase but start with a capital, they go second. _UpperCamelCase = [obj for obj in objects if key(a__ )[0].isupper() and not key(a__ ).isupper()] # Functions begin with a lowercase, they go last. _UpperCamelCase = [obj for obj in objects if not key(a__ )[0].isupper()] _UpperCamelCase = ignore_underscore(a__ ) return sorted(a__ , key=a__ ) + sorted(a__ , key=a__ ) + sorted(a__ , key=a__ ) def lowercase ( a__ : List[str] ) -> Any: def _replace(a__ : List[str] ): _UpperCamelCase = match.groups()[0] if "," not in imports: return F'''[{imports}]''' _UpperCamelCase = [part.strip().replace('''"''' , '''''' ) for part in imports.split(''',''' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: _UpperCamelCase = keys[:-1] return "[" + ", ".join([F'''\"{k}\"''' for k in sort_objects(a__ )] ) + "]" _UpperCamelCase = import_statement.split('''\n''' ) if len(a__ ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. _UpperCamelCase = 2 if lines[1].strip() == '''[''' else 1 _UpperCamelCase = [(i, _re_strip_line.search(a__ ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] _UpperCamelCase = sort_objects(a__ , key=lambda a__ : x[1] ) _UpperCamelCase = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(a__ ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: _UpperCamelCase = _re_bracket_content.sub(_replace , lines[1] ) else: _UpperCamelCase = [part.strip().replace('''"''' , '''''' ) for part in lines[1].split(''',''' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: _UpperCamelCase = keys[:-1] _UpperCamelCase = get_indent(lines[1] ) + ''', '''.join([F'''\"{k}\"''' for k in sort_objects(a__ )] ) return "\n".join(a__ ) else: # Finally we have to deal with imports fitting on one line _UpperCamelCase = _re_bracket_content.sub(_replace , a__ ) return import_statement def lowercase ( a__ : Optional[Any] , a__ : List[Any]=True ) -> Optional[int]: with open(a__ , '''r''' ) as f: _UpperCamelCase = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 _UpperCamelCase = split_code_in_indented_blocks( a__ , start_prompt='''_import_structure = {''' , end_prompt='''if TYPE_CHECKING:''' ) # We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(a__ ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. _UpperCamelCase = main_blocks[block_idx] _UpperCamelCase = block.split('''\n''' ) # Get to the start of the imports. _UpperCamelCase = 0 while line_idx < len(a__ ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: _UpperCamelCase = len(a__ ) else: line_idx += 1 if line_idx >= len(a__ ): continue # Ignore beginning and last line: they don't contain anything. _UpperCamelCase = '''\n'''.join(block_lines[line_idx:-1] ) _UpperCamelCase = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. _UpperCamelCase = split_code_in_indented_blocks(a__ , indent_level=a__ ) # We have two categories of import key: list or _import_structure[key].append/extend _UpperCamelCase = _re_direct_key if '''_import_structure''' in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. _UpperCamelCase = [(pattern.search(a__ ).groups()[0] if pattern.search(a__ ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. _UpperCamelCase = [(i, key) for i, key in enumerate(a__ ) if key is not None] _UpperCamelCase = [x[0] for x in sorted(a__ , key=lambda a__ : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. _UpperCamelCase = 0 _UpperCamelCase = [] for i in range(len(a__ ) ): if keys[i] is None: reordered_blocks.append(internal_blocks[i] ) else: _UpperCamelCase = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reordered_blocks.append(a__ ) count += 1 # And we put our main block back together with its first and last line. _UpperCamelCase = '''\n'''.join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]] ) if code != "\n".join(a__ ): if check_only: return True else: print(F'''Overwriting {file}.''' ) with open(a__ , '''w''' ) as f: f.write('''\n'''.join(a__ ) ) def lowercase ( a__ : str=True ) -> Dict: _UpperCamelCase = [] for root, _, files in os.walk(a__ ): if "__init__.py" in files: _UpperCamelCase = sort_imports(os.path.join(a__ , '''__init__.py''' ) , check_only=a__ ) if result: _UpperCamelCase = [os.path.join(a__ , '''__init__.py''' )] if len(a__ ) > 0: raise ValueError(F'''Would overwrite {len(a__ )} files, run `make style`.''' ) if __name__ == "__main__": UpperCAmelCase = argparse.ArgumentParser() parser.add_argument("""--check_only""", action="""store_true""", help="""Whether to only check or fix style.""") UpperCAmelCase = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
369
"""simple docstring""" import unittest from transformers import ( MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TextaTextGenerationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, require_tf, require_torch from transformers.utils import is_torch_available from .test_pipelines_common import ANY if is_torch_available(): import torch @is_pipeline_test class UpperCAmelCase_ ( unittest.TestCase): snake_case__ = MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING snake_case__ = TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING def _UpperCamelCase ( self : Optional[Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Optional[int] ) -> int: _UpperCamelCase = TextaTextGenerationPipeline(model=__UpperCamelCase , tokenizer=__UpperCamelCase ) return generator, ["Something to write", "Something else"] def _UpperCamelCase ( self : Tuple , __UpperCamelCase : str , __UpperCamelCase : List[Any] ) -> Union[str, Any]: _UpperCamelCase = generator('''Something there''' ) self.assertEqual(__UpperCamelCase , [{'''generated_text''': ANY(__UpperCamelCase )}] ) # These are encoder decoder, they don't just append to incoming string self.assertFalse(outputs[0]['''generated_text'''].startswith('''Something there''' ) ) _UpperCamelCase = generator(['''This is great !''', '''Something else'''] , num_return_sequences=2 , do_sample=__UpperCamelCase ) self.assertEqual( __UpperCamelCase , [ [{'''generated_text''': ANY(__UpperCamelCase )}, {'''generated_text''': ANY(__UpperCamelCase )}], [{'''generated_text''': ANY(__UpperCamelCase )}, {'''generated_text''': ANY(__UpperCamelCase )}], ] , ) _UpperCamelCase = generator( ['''This is great !''', '''Something else'''] , num_return_sequences=2 , batch_size=2 , do_sample=__UpperCamelCase ) self.assertEqual( __UpperCamelCase , [ [{'''generated_text''': ANY(__UpperCamelCase )}, {'''generated_text''': ANY(__UpperCamelCase )}], [{'''generated_text''': ANY(__UpperCamelCase )}, {'''generated_text''': ANY(__UpperCamelCase )}], ] , ) with self.assertRaises(__UpperCamelCase ): generator(4 ) @require_torch def _UpperCamelCase ( self : List[str] ) -> List[str]: _UpperCamelCase = pipeline('''text2text-generation''' , model='''patrickvonplaten/t5-tiny-random''' , framework='''pt''' ) # do_sample=False necessary for reproducibility _UpperCamelCase = generator('''Something there''' , do_sample=__UpperCamelCase ) self.assertEqual(__UpperCamelCase , [{'''generated_text''': ''''''}] ) _UpperCamelCase = 3 _UpperCamelCase = generator( '''Something there''' , num_return_sequences=__UpperCamelCase , num_beams=__UpperCamelCase , ) _UpperCamelCase = [ {'''generated_text''': '''Beide Beide Beide Beide Beide Beide Beide Beide Beide'''}, {'''generated_text''': '''Beide Beide Beide Beide Beide Beide Beide Beide'''}, {'''generated_text''': ''''''}, ] self.assertEqual(__UpperCamelCase , __UpperCamelCase ) _UpperCamelCase = generator('''This is a test''' , do_sample=__UpperCamelCase , num_return_sequences=2 , return_tensors=__UpperCamelCase ) self.assertEqual( __UpperCamelCase , [ {'''generated_token_ids''': ANY(torch.Tensor )}, {'''generated_token_ids''': ANY(torch.Tensor )}, ] , ) _UpperCamelCase = generator.model.config.eos_token_id _UpperCamelCase = '''<pad>''' _UpperCamelCase = generator( ['''This is a test''', '''This is a second test'''] , do_sample=__UpperCamelCase , num_return_sequences=2 , batch_size=2 , return_tensors=__UpperCamelCase , ) self.assertEqual( __UpperCamelCase , [ [ {'''generated_token_ids''': ANY(torch.Tensor )}, {'''generated_token_ids''': ANY(torch.Tensor )}, ], [ {'''generated_token_ids''': ANY(torch.Tensor )}, {'''generated_token_ids''': ANY(torch.Tensor )}, ], ] , ) @require_tf def _UpperCamelCase ( self : Optional[Any] ) -> List[Any]: _UpperCamelCase = pipeline('''text2text-generation''' , model='''patrickvonplaten/t5-tiny-random''' , framework='''tf''' ) # do_sample=False necessary for reproducibility _UpperCamelCase = generator('''Something there''' , do_sample=__UpperCamelCase ) self.assertEqual(__UpperCamelCase , [{'''generated_text''': ''''''}] )
54
0
import tempfile import unittest import numpy as np import transformers from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax import jax.numpy as jnp from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel if is_torch_available(): import torch class UpperCamelCase__ : '''simple docstring''' def __init__( self : Tuple ,lowerCamelCase__ : Union[str, Any] ,lowerCamelCase__ : Optional[int]=14 ,lowerCamelCase__ : str=7 ,lowerCamelCase__ : List[Any]=True ,lowerCamelCase__ : List[Any]=True ,lowerCamelCase__ : str=False ,lowerCamelCase__ : List[str]=True ,lowerCamelCase__ : Any=99 ,lowerCamelCase__ : Tuple=32 ,lowerCamelCase__ : Optional[Any]=4 ,lowerCamelCase__ : Tuple=4 ,lowerCamelCase__ : str=4 ,lowerCamelCase__ : List[Any]=37 ,lowerCamelCase__ : Optional[int]="gelu" ,lowerCamelCase__ : Optional[int]=0.1 ,lowerCamelCase__ : Optional[int]=0.1 ,lowerCamelCase__ : List[Any]=512 ,lowerCamelCase__ : List[str]=0.02 ,) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = batch_size SCREAMING_SNAKE_CASE = seq_length SCREAMING_SNAKE_CASE = is_training SCREAMING_SNAKE_CASE = use_input_mask SCREAMING_SNAKE_CASE = use_token_type_ids SCREAMING_SNAKE_CASE = use_labels SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = rotary_dim SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = hidden_dropout_prob SCREAMING_SNAKE_CASE = attention_probs_dropout_prob SCREAMING_SNAKE_CASE = max_position_embeddings SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = vocab_size - 1 SCREAMING_SNAKE_CASE = vocab_size - 1 SCREAMING_SNAKE_CASE = vocab_size - 1 def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) SCREAMING_SNAKE_CASE = None if self.use_input_mask: SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE = GPTJConfig( vocab_size=self.vocab_size ,n_embd=self.hidden_size ,n_layer=self.num_hidden_layers ,n_head=self.num_attention_heads ,n_positions=self.max_position_embeddings ,use_cache=lowerCamelCase__ ,bos_token_id=self.bos_token_id ,eos_token_id=self.eos_token_id ,pad_token_id=self.pad_token_id ,rotary_dim=self.rotary_dim ,) return (config, input_ids, input_mask) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE = config_and_inputs SCREAMING_SNAKE_CASE = {"""input_ids""": input_ids, """attention_mask""": attention_mask} return config, inputs_dict def SCREAMING_SNAKE_CASE__ ( self : Tuple ,lowerCamelCase__ : Dict ,lowerCamelCase__ : List[str] ,lowerCamelCase__ : List[Any] ,lowerCamelCase__ : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = 20 SCREAMING_SNAKE_CASE = model_class_name(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = model.init_cache(input_ids.shape[0] ,lowerCamelCase__ ) SCREAMING_SNAKE_CASE = jnp.ones((input_ids.shape[0], max_decoder_length) ,dtype="""i4""" ) SCREAMING_SNAKE_CASE = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] ,(input_ids.shape[0], input_ids.shape[-1] - 1) ) SCREAMING_SNAKE_CASE = model( input_ids[:, :-1] ,attention_mask=lowerCamelCase__ ,past_key_values=lowerCamelCase__ ,position_ids=lowerCamelCase__ ,) SCREAMING_SNAKE_CASE = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] ,dtype="""i4""" ) SCREAMING_SNAKE_CASE = model( input_ids[:, -1:] ,attention_mask=lowerCamelCase__ ,past_key_values=outputs_cache.past_key_values ,position_ids=lowerCamelCase__ ,) SCREAMING_SNAKE_CASE = model(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 ,msg=F"""Max diff is {diff}""" ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ,lowerCamelCase__ : Optional[Any] ,lowerCamelCase__ : Any ,lowerCamelCase__ : List[str] ,lowerCamelCase__ : Optional[int] ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = 20 SCREAMING_SNAKE_CASE = model_class_name(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = jnp.concatenate( [attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]) )] ,axis=-1 ,) SCREAMING_SNAKE_CASE = model.init_cache(input_ids.shape[0] ,lowerCamelCase__ ) SCREAMING_SNAKE_CASE = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] ,(input_ids.shape[0], input_ids.shape[-1] - 1) ) SCREAMING_SNAKE_CASE = model( input_ids[:, :-1] ,attention_mask=lowerCamelCase__ ,past_key_values=lowerCamelCase__ ,position_ids=lowerCamelCase__ ,) SCREAMING_SNAKE_CASE = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] ,dtype="""i4""" ) SCREAMING_SNAKE_CASE = model( input_ids[:, -1:] ,past_key_values=outputs_cache.past_key_values ,attention_mask=lowerCamelCase__ ,position_ids=lowerCamelCase__ ,) SCREAMING_SNAKE_CASE = model(lowerCamelCase__ ,attention_mask=lowerCamelCase__ ) SCREAMING_SNAKE_CASE = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 ,msg=F"""Max diff is {diff}""" ) @require_flax class UpperCamelCase__ ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): '''simple docstring''' __snake_case : List[Any] = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else () __snake_case : List[str] = (FlaxGPTJForCausalLM,) if is_flax_available() else () def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE = FlaxGPTJModelTester(self ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] ) -> Any: '''simple docstring''' for model_class_name in self.all_model_classes: SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward(lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' for model_class_name in self.all_model_classes: SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward_with_attn_mask( lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ) @tooslow def SCREAMING_SNAKE_CASE__ ( self : str ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = GPTaTokenizer.from_pretrained("""gpt2""" ,pad_token="""<|endoftext|>""" ,padding_side="""left""" ) SCREAMING_SNAKE_CASE = tokenizer(["""Hello this is a long string""", """Hey"""] ,return_tensors="""np""" ,padding=lowerCamelCase__ ,truncation=lowerCamelCase__ ) SCREAMING_SNAKE_CASE = FlaxGPTJForCausalLM.from_pretrained("""EleutherAI/gpt-j-6B""" ) SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = model.config.eos_token_id SCREAMING_SNAKE_CASE = jax.jit(model.generate ) SCREAMING_SNAKE_CASE = jit_generate( inputs["""input_ids"""] ,attention_mask=inputs["""attention_mask"""] ,pad_token_id=tokenizer.pad_token_id ).sequences SCREAMING_SNAKE_CASE = tokenizer.batch_decode(lowerCamelCase__ ,skip_special_tokens=lowerCamelCase__ ) SCREAMING_SNAKE_CASE = [ """Hello this is a long string of text.\n\nI'm trying to get the text of the""", """Hey, I'm a little late to the party. I'm going to""", ] self.assertListEqual(lowerCamelCase__ ,lowerCamelCase__ ) @is_pt_flax_cross_test def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs SCREAMING_SNAKE_CASE = self._prepare_for_class(lowerCamelCase__ ,lowerCamelCase__ ) SCREAMING_SNAKE_CASE = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class SCREAMING_SNAKE_CASE = model_class.__name__[4:] # Skip the "Flax" at the beginning SCREAMING_SNAKE_CASE = getattr(lowerCamelCase__ ,lowerCamelCase__ ) SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE = pt_inputs["""input_ids"""].shape SCREAMING_SNAKE_CASE = np.random.randint(0 ,seq_length - 1 ,size=(batch_size,) ) for batch_idx, start_index in enumerate(lowerCamelCase__ ): SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = pt_model_class(lowerCamelCase__ ).eval() SCREAMING_SNAKE_CASE = model_class(lowerCamelCase__ ,dtype=jnp.floataa ) SCREAMING_SNAKE_CASE = convert_pytorch_state_dict_to_flax(pt_model.state_dict() ,lowerCamelCase__ ) SCREAMING_SNAKE_CASE = fx_state with torch.no_grad(): SCREAMING_SNAKE_CASE = pt_model(**lowerCamelCase__ ).to_tuple() SCREAMING_SNAKE_CASE = fx_model(**lowerCamelCase__ ).to_tuple() self.assertEqual(len(lowerCamelCase__ ) ,len(lowerCamelCase__ ) ,"""Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output in zip(lowerCamelCase__ ,lowerCamelCase__ ): self.assert_almost_equals(fx_output[:, -1] ,pt_output[:, -1].numpy() ,4e-2 ) with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = model_class.from_pretrained(lowerCamelCase__ ,from_pt=lowerCamelCase__ ) SCREAMING_SNAKE_CASE = fx_model_loaded(**lowerCamelCase__ ).to_tuple() self.assertEqual( len(lowerCamelCase__ ) ,len(lowerCamelCase__ ) ,"""Output lengths differ between Flax and PyTorch""" ) for fx_output_loaded, pt_output in zip(lowerCamelCase__ ,lowerCamelCase__ ): self.assert_almost_equals(fx_output_loaded[:, -1] ,pt_output[:, -1].numpy() ,4e-2 ) @is_pt_flax_cross_test def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs SCREAMING_SNAKE_CASE = self._prepare_for_class(lowerCamelCase__ ,lowerCamelCase__ ) SCREAMING_SNAKE_CASE = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class SCREAMING_SNAKE_CASE = model_class.__name__[4:] # Skip the "Flax" at the beginning SCREAMING_SNAKE_CASE = getattr(lowerCamelCase__ ,lowerCamelCase__ ) SCREAMING_SNAKE_CASE = pt_model_class(lowerCamelCase__ ).eval() SCREAMING_SNAKE_CASE = model_class(lowerCamelCase__ ,dtype=jnp.floataa ) SCREAMING_SNAKE_CASE = load_flax_weights_in_pytorch_model(lowerCamelCase__ ,fx_model.params ) SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE = pt_inputs["""input_ids"""].shape SCREAMING_SNAKE_CASE = np.random.randint(0 ,seq_length - 1 ,size=(batch_size,) ) for batch_idx, start_index in enumerate(lowerCamelCase__ ): SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = 1 # make sure weights are tied in PyTorch pt_model.tie_weights() with torch.no_grad(): SCREAMING_SNAKE_CASE = pt_model(**lowerCamelCase__ ).to_tuple() SCREAMING_SNAKE_CASE = fx_model(**lowerCamelCase__ ).to_tuple() self.assertEqual(len(lowerCamelCase__ ) ,len(lowerCamelCase__ ) ,"""Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output in zip(lowerCamelCase__ ,lowerCamelCase__ ): self.assert_almost_equals(fx_output[:, -1] ,pt_output[:, -1].numpy() ,4e-2 ) with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = pt_model_class.from_pretrained(lowerCamelCase__ ,from_flax=lowerCamelCase__ ) with torch.no_grad(): SCREAMING_SNAKE_CASE = pt_model_loaded(**lowerCamelCase__ ).to_tuple() self.assertEqual( len(lowerCamelCase__ ) ,len(lowerCamelCase__ ) ,"""Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output in zip(lowerCamelCase__ ,lowerCamelCase__ ): self.assert_almost_equals(fx_output[:, -1] ,pt_output[:, -1].numpy() ,4e-2 ) @tooslow def SCREAMING_SNAKE_CASE__ ( self : str ) -> str: '''simple docstring''' for model_class_name in self.all_model_classes: SCREAMING_SNAKE_CASE = model_class_name.from_pretrained("""EleutherAI/gpt-j-6B""" ) SCREAMING_SNAKE_CASE = model(np.ones((1, 1) ) ) self.assertIsNotNone(lowerCamelCase__ )
296
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE_ = { """configuration_llama""": ["""LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """LlamaConfig"""], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = ["""LlamaTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = ["""LlamaTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = [ """LlamaForCausalLM""", """LlamaModel""", """LlamaPreTrainedModel""", """LlamaForSequenceClassification""", ] if TYPE_CHECKING: from .configuration_llama import LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP, LlamaConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama import LlamaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama_fast import LlamaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_llama import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaPreTrainedModel else: import sys SCREAMING_SNAKE_CASE_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
296
1
from collections.abc import Generator def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = 0, 1 while True: UpperCAmelCase_ : Any = b, a + b yield b def lowerCamelCase__ ( _lowercase = 1000 ): '''simple docstring''' UpperCAmelCase_ : str = 1 UpperCAmelCase_ : Union[str, Any] = fibonacci_generator() while len(str(next(_lowercase ) ) ) < n: answer += 1 return answer + 1 if __name__ == "__main__": print(solution(int(str(input()).strip())))
362
import tempfile import torch from diffusers import IPNDMScheduler from .test_schedulers import SchedulerCommonTest class __a( _a ): """simple docstring""" lowerCAmelCase = (IPNDMScheduler,) lowerCAmelCase = (('''num_inference_steps''', 50),) def a__ ( self ,**_SCREAMING_SNAKE_CASE ) -> int: UpperCAmelCase_ : Tuple = {'''num_train_timesteps''': 1_000} config.update(**_SCREAMING_SNAKE_CASE ) return config def a__ ( self ,_SCREAMING_SNAKE_CASE=0 ,**_SCREAMING_SNAKE_CASE ) -> Union[str, Any]: UpperCAmelCase_ : Optional[int] = dict(self.forward_default_kwargs ) UpperCAmelCase_ : int = kwargs.pop('''num_inference_steps''' ,_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : str = self.dummy_sample UpperCAmelCase_ : Optional[Any] = 0.1 * sample UpperCAmelCase_ : Optional[int] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: UpperCAmelCase_ : Tuple = self.get_scheduler_config(**_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Optional[int] = scheduler_class(**_SCREAMING_SNAKE_CASE ) scheduler.set_timesteps(_SCREAMING_SNAKE_CASE ) # copy over dummy past residuals UpperCAmelCase_ : Optional[Any] = dummy_past_residuals[:] if time_step is None: UpperCAmelCase_ : Tuple = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : List[Any] = scheduler_class.from_pretrained(_SCREAMING_SNAKE_CASE ) new_scheduler.set_timesteps(_SCREAMING_SNAKE_CASE ) # copy over dummy past residuals UpperCAmelCase_ : Optional[int] = dummy_past_residuals[:] UpperCAmelCase_ : List[Any] = scheduler.step(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ).prev_sample UpperCAmelCase_ : str = new_scheduler.step(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" UpperCAmelCase_ : Union[str, Any] = scheduler.step(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ).prev_sample UpperCAmelCase_ : Optional[int] = new_scheduler.step(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def a__ ( self ) -> List[Any]: pass def a__ ( self ,_SCREAMING_SNAKE_CASE=0 ,**_SCREAMING_SNAKE_CASE ) -> List[Any]: UpperCAmelCase_ : List[str] = dict(self.forward_default_kwargs ) UpperCAmelCase_ : Tuple = kwargs.pop('''num_inference_steps''' ,_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : int = self.dummy_sample UpperCAmelCase_ : Tuple = 0.1 * sample UpperCAmelCase_ : int = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: UpperCAmelCase_ : str = self.get_scheduler_config() UpperCAmelCase_ : str = scheduler_class(**_SCREAMING_SNAKE_CASE ) scheduler.set_timesteps(_SCREAMING_SNAKE_CASE ) # copy over dummy past residuals (must be after setting timesteps) UpperCAmelCase_ : Tuple = dummy_past_residuals[:] if time_step is None: UpperCAmelCase_ : Dict = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Optional[int] = scheduler_class.from_pretrained(_SCREAMING_SNAKE_CASE ) # copy over dummy past residuals new_scheduler.set_timesteps(_SCREAMING_SNAKE_CASE ) # copy over dummy past residual (must be after setting timesteps) UpperCAmelCase_ : str = dummy_past_residuals[:] UpperCAmelCase_ : Tuple = scheduler.step(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ).prev_sample UpperCAmelCase_ : Optional[int] = new_scheduler.step(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" UpperCAmelCase_ : str = scheduler.step(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ).prev_sample UpperCAmelCase_ : List[str] = new_scheduler.step(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def a__ ( self ,**_SCREAMING_SNAKE_CASE ) -> List[Any]: UpperCAmelCase_ : Tuple = self.scheduler_classes[0] UpperCAmelCase_ : List[Any] = self.get_scheduler_config(**_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Tuple = scheduler_class(**_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Any = 10 UpperCAmelCase_ : Tuple = self.dummy_model() UpperCAmelCase_ : List[str] = self.dummy_sample_deter scheduler.set_timesteps(_SCREAMING_SNAKE_CASE ) for i, t in enumerate(scheduler.timesteps ): UpperCAmelCase_ : int = model(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Union[str, Any] = scheduler.step(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ).prev_sample for i, t in enumerate(scheduler.timesteps ): UpperCAmelCase_ : Optional[int] = model(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Dict = scheduler.step(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ).prev_sample return sample def a__ ( self ) -> str: UpperCAmelCase_ : List[Any] = dict(self.forward_default_kwargs ) UpperCAmelCase_ : Any = kwargs.pop('''num_inference_steps''' ,_SCREAMING_SNAKE_CASE ) for scheduler_class in self.scheduler_classes: UpperCAmelCase_ : int = self.get_scheduler_config() UpperCAmelCase_ : List[Any] = scheduler_class(**_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Optional[int] = self.dummy_sample UpperCAmelCase_ : List[Any] = 0.1 * sample if num_inference_steps is not None and hasattr(_SCREAMING_SNAKE_CASE ,'''set_timesteps''' ): scheduler.set_timesteps(_SCREAMING_SNAKE_CASE ) elif num_inference_steps is not None and not hasattr(_SCREAMING_SNAKE_CASE ,'''set_timesteps''' ): UpperCAmelCase_ : Union[str, Any] = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) UpperCAmelCase_ : str = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] UpperCAmelCase_ : int = dummy_past_residuals[:] UpperCAmelCase_ : List[Any] = scheduler.timesteps[5] UpperCAmelCase_ : Dict = scheduler.timesteps[6] UpperCAmelCase_ : List[Any] = scheduler.step(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ).prev_sample UpperCAmelCase_ : Dict = scheduler.step(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ).prev_sample self.assertEqual(output_a.shape ,sample.shape ) self.assertEqual(output_a.shape ,output_a.shape ) UpperCAmelCase_ : List[Any] = scheduler.step(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ).prev_sample UpperCAmelCase_ : Dict = scheduler.step(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ).prev_sample self.assertEqual(output_a.shape ,sample.shape ) self.assertEqual(output_a.shape ,output_a.shape ) def a__ ( self ) -> Any: for timesteps in [100, 1_000]: self.check_over_configs(num_train_timesteps=_SCREAMING_SNAKE_CASE ,time_step=_SCREAMING_SNAKE_CASE ) def a__ ( self ) -> Union[str, Any]: for t, num_inference_steps in zip([1, 5, 10] ,[10, 50, 100] ): self.check_over_forward(num_inference_steps=_SCREAMING_SNAKE_CASE ,time_step=_SCREAMING_SNAKE_CASE ) def a__ ( self ) -> Union[str, Any]: UpperCAmelCase_ : Optional[int] = self.full_loop() UpperCAmelCase_ : str = torch.mean(torch.abs(_SCREAMING_SNAKE_CASE ) ) assert abs(result_mean.item() - 2_540_529 ) < 10
235
0
'''simple docstring''' import os _UpperCAmelCase : int = {"""I""": 1, """V""": 5, """X""": 1_0, """L""": 5_0, """C""": 1_0_0, """D""": 5_0_0, """M""": 1_0_0_0} def __magic_name__( lowerCamelCase): __lowerCAmelCase = 0 __lowerCAmelCase = 0 while index < len(lowerCamelCase) - 1: __lowerCAmelCase = SYMBOLS[numerals[index]] __lowerCAmelCase = SYMBOLS[numerals[index + 1]] if current_value < next_value: total_value -= current_value else: total_value += current_value index += 1 total_value += SYMBOLS[numerals[index]] return total_value def __magic_name__( lowerCamelCase): __lowerCAmelCase = '''''' __lowerCAmelCase = num // 1_0_0_0 numerals += m_count * "M" num %= 1_0_0_0 __lowerCAmelCase = num // 1_0_0 if c_count == 9: numerals += "CM" c_count -= 9 elif c_count == 4: numerals += "CD" c_count -= 4 if c_count >= 5: numerals += "D" c_count -= 5 numerals += c_count * "C" num %= 1_0_0 __lowerCAmelCase = num // 1_0 if x_count == 9: numerals += "XC" x_count -= 9 elif x_count == 4: numerals += "XL" x_count -= 4 if x_count >= 5: numerals += "L" x_count -= 5 numerals += x_count * "X" num %= 1_0 if num == 9: numerals += "IX" num -= 9 elif num == 4: numerals += "IV" num -= 4 if num >= 5: numerals += "V" num -= 5 numerals += num * "I" return numerals def __magic_name__( lowerCamelCase = "/p089_roman.txt"): __lowerCAmelCase = 0 with open(os.path.dirname(lowerCamelCase) + roman_numerals_filename) as filea: __lowerCAmelCase = filea.readlines() for line in lines: __lowerCAmelCase = line.strip() __lowerCAmelCase = parse_roman_numerals(lowerCamelCase) __lowerCAmelCase = generate_roman_numerals(lowerCamelCase) savings += len(lowerCamelCase) - len(lowerCamelCase) return savings if __name__ == "__main__": print(f"""{solution() = }""")
174
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DiffusionPipeline, EulerDiscreteScheduler, StableDiffusionXLImgaImgPipeline, UNetaDConditionModel, ) from diffusers.utils import floats_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class a__ ( __A , __A , unittest.TestCase ): """simple docstring""" __UpperCamelCase : Union[str, Any] = StableDiffusionXLImgaImgPipeline __UpperCamelCase : str = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'height', 'width'} __UpperCamelCase : List[str] = PipelineTesterMixin.required_optional_params - {'latents'} __UpperCamelCase : List[str] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS __UpperCamelCase : Union[str, Any] = IMAGE_TO_IMAGE_IMAGE_PARAMS __UpperCamelCase : int = IMAGE_TO_IMAGE_IMAGE_PARAMS def _snake_case (self ): torch.manual_seed(0 ) __lowerCAmelCase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , attention_head_dim=(2, 4) , use_linear_projection=__lowercase , addition_embed_type='''text_time''' , addition_time_embed_dim=8 , transformer_layers_per_block=(1, 2) , projection_class_embeddings_input_dim=80 , cross_attention_dim=64 , ) __lowerCAmelCase = EulerDiscreteScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , steps_offset=1 , beta_schedule='''scaled_linear''' , timestep_spacing='''leading''' , ) torch.manual_seed(0 ) __lowerCAmelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=1_28 , ) torch.manual_seed(0 ) __lowerCAmelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act='''gelu''' , projection_dim=32 , ) __lowerCAmelCase = CLIPTextModel(__lowercase ) __lowerCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' , local_files_only=__lowercase ) __lowerCAmelCase = CLIPTextModelWithProjection(__lowercase ) __lowerCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' , local_files_only=__lowercase ) __lowerCAmelCase = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''text_encoder_2''': text_encoder_a, '''tokenizer_2''': tokenizer_a, # "safety_checker": None, # "feature_extractor": None, } return components def _snake_case (self , __lowercase , __lowercase=0 ): __lowerCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(__lowercase ) ).to(__lowercase ) __lowerCAmelCase = image / 2 + 0.5 if str(__lowercase ).startswith('''mps''' ): __lowerCAmelCase = torch.manual_seed(__lowercase ) else: __lowerCAmelCase = torch.Generator(device=__lowercase ).manual_seed(__lowercase ) __lowerCAmelCase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 5.0, '''output_type''': '''numpy''', '''strength''': 0.7_5, } return inputs def _snake_case (self ): __lowerCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator __lowerCAmelCase = self.get_dummy_components() __lowerCAmelCase = StableDiffusionXLImgaImgPipeline(**__lowercase ) __lowerCAmelCase = sd_pipe.to(__lowercase ) sd_pipe.set_progress_bar_config(disable=__lowercase ) __lowerCAmelCase = self.get_dummy_inputs(__lowercase ) __lowerCAmelCase = sd_pipe(**__lowercase ).images __lowerCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __lowerCAmelCase = np.array([0.4_6_5_6, 0.4_8_4_0, 0.4_4_3_9, 0.6_6_9_8, 0.5_5_7_4, 0.4_5_2_4, 0.5_7_9_9, 0.5_9_4_3, 0.5_1_6_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _snake_case (self ): super().test_attention_slicing_forward_pass(expected_max_diff=3e-3 ) def _snake_case (self ): super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) def _snake_case (self ): pass def _snake_case (self ): __lowerCAmelCase = self.get_dummy_components() __lowerCAmelCase = StableDiffusionXLImgaImgPipeline(**__lowercase ) __lowerCAmelCase = sd_pipe.to(__lowercase ) __lowerCAmelCase = sd_pipe.to(__lowercase ) sd_pipe.set_progress_bar_config(disable=__lowercase ) # forward without prompt embeds __lowerCAmelCase = self.get_dummy_inputs(__lowercase ) __lowerCAmelCase = 3 * ['''this is a negative prompt'''] __lowerCAmelCase = negative_prompt __lowerCAmelCase = 3 * [inputs['''prompt''']] __lowerCAmelCase = sd_pipe(**__lowercase ) __lowerCAmelCase = output.images[0, -3:, -3:, -1] # forward with prompt embeds __lowerCAmelCase = self.get_dummy_inputs(__lowercase ) __lowerCAmelCase = 3 * ['''this is a negative prompt'''] __lowerCAmelCase = 3 * [inputs.pop('''prompt''' )] ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ) = sd_pipe.encode_prompt(__lowercase , negative_prompt=__lowercase ) __lowerCAmelCase = sd_pipe( **__lowercase , prompt_embeds=__lowercase , negative_prompt_embeds=__lowercase , pooled_prompt_embeds=__lowercase , negative_pooled_prompt_embeds=__lowercase , ) __lowerCAmelCase = output.images[0, -3:, -3:, -1] # make sure that it's equal assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1e-4 @slow @require_torch_gpu class a__ ( unittest.TestCase ): """simple docstring""" def _snake_case (self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case (self , __lowercase , __lowercase="cpu" , __lowercase=torch.floataa , __lowercase=0 ): __lowerCAmelCase = torch.Generator(device=__lowercase ).manual_seed(__lowercase ) __lowerCAmelCase = np.random.RandomState(__lowercase ).standard_normal((1, 4, 64, 64) ) __lowerCAmelCase = torch.from_numpy(__lowercase ).to(device=__lowercase , dtype=__lowercase ) __lowerCAmelCase = { '''prompt''': '''a photograph of an astronaut riding a horse''', '''latents''': latents, '''generator''': generator, '''num_inference_steps''': 3, '''guidance_scale''': 7.5, '''output_type''': '''numpy''', } return inputs def _snake_case (self ): __lowerCAmelCase = DiffusionPipeline.from_pretrained('''stabilityai/stable-diffusion-2-base''' ) pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) __lowerCAmelCase = self.get_inputs(__lowercase ) __lowerCAmelCase = pipe(**__lowercase ).images __lowerCAmelCase = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_12, 5_12, 3) __lowerCAmelCase = np.array([0.4_9_4_9_3, 0.4_7_8_9_6, 0.4_0_7_9_8, 0.5_4_2_1_4, 0.5_3_2_1_2, 0.4_8_2_0_2, 0.4_7_6_5_6, 0.4_6_3_2_9, 0.4_8_5_0_6] ) assert np.abs(image_slice - expected_slice ).max() < 7e-3
174
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) __UpperCAmelCase = { '''configuration_owlvit''': [ '''OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''OwlViTConfig''', '''OwlViTOnnxConfig''', '''OwlViTTextConfig''', '''OwlViTVisionConfig''', ], '''processing_owlvit''': ['''OwlViTProcessor'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ['''OwlViTFeatureExtractor'''] __UpperCAmelCase = ['''OwlViTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ '''OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''OwlViTModel''', '''OwlViTPreTrainedModel''', '''OwlViTTextModel''', '''OwlViTVisionModel''', '''OwlViTForObjectDetection''', ] if TYPE_CHECKING: from .configuration_owlvit import ( OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, OwlViTConfig, OwlViTOnnxConfig, OwlViTTextConfig, OwlViTVisionConfig, ) from .processing_owlvit import OwlViTProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_owlvit import OwlViTFeatureExtractor from .image_processing_owlvit import OwlViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_owlvit import ( OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST, OwlViTForObjectDetection, OwlViTModel, OwlViTPreTrainedModel, OwlViTTextModel, OwlViTVisionModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
367
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class lowerCAmelCase_ ( a__ , unittest.TestCase ): UpperCAmelCase__ : Union[str, Any] = ShapEPipeline UpperCAmelCase__ : List[Any] = ["prompt"] UpperCAmelCase__ : List[str] = ["prompt"] UpperCAmelCase__ : int = [ "num_images_per_prompt", "num_inference_steps", "generator", "latents", "guidance_scale", "frame_size", "output_type", "return_dict", ] UpperCAmelCase__ : Union[str, Any] = False @property def snake_case_ ( self ) -> Union[str, Any]: return 32 @property def snake_case_ ( self ) -> List[str]: return 32 @property def snake_case_ ( self ) -> int: return self.time_input_dim * 4 @property def snake_case_ ( self ) -> Optional[int]: return 8 @property def snake_case_ ( self ) -> str: UpperCamelCase : Union[str, Any] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) return tokenizer @property def snake_case_ ( self ) -> Optional[Any]: torch.manual_seed(0 ) UpperCamelCase : Dict = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=self.text_embedder_hidden_size, projection_dim=self.text_embedder_hidden_size, intermediate_size=37, layer_norm_eps=1e-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, ) return CLIPTextModelWithProjection(SCREAMING_SNAKE_CASE_ ) @property def snake_case_ ( self ) -> Dict: torch.manual_seed(0 ) UpperCamelCase : int = { 'num_attention_heads': 2, 'attention_head_dim': 16, 'embedding_dim': self.time_input_dim, 'num_embeddings': 32, 'embedding_proj_dim': self.text_embedder_hidden_size, 'time_embed_dim': self.time_embed_dim, 'num_layers': 1, 'clip_embed_dim': self.time_input_dim * 2, 'additional_embeddings': 0, 'time_embed_act_fn': 'gelu', 'norm_in_type': 'layer', 'encoder_hid_proj_type': None, 'added_emb_type': None, } UpperCamelCase : Any = PriorTransformer(**SCREAMING_SNAKE_CASE_ ) return model @property def snake_case_ ( self ) -> Tuple: torch.manual_seed(0 ) UpperCamelCase : Any = { 'param_shapes': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), 'd_latent': self.time_input_dim, 'd_hidden': self.renderer_dim, 'n_output': 12, 'background': ( 0.1, 0.1, 0.1, ), } UpperCamelCase : Dict = ShapERenderer(**SCREAMING_SNAKE_CASE_ ) return model def snake_case_ ( self ) -> Tuple: UpperCamelCase : List[Any] = self.dummy_prior UpperCamelCase : int = self.dummy_text_encoder UpperCamelCase : Dict = self.dummy_tokenizer UpperCamelCase : List[str] = self.dummy_renderer UpperCamelCase : str = HeunDiscreteScheduler( beta_schedule='exp', num_train_timesteps=1024, prediction_type='sample', use_karras_sigmas=SCREAMING_SNAKE_CASE_, clip_sample=SCREAMING_SNAKE_CASE_, clip_sample_range=1.0, ) UpperCamelCase : List[str] = { 'prior': prior, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'renderer': renderer, 'scheduler': scheduler, } return components def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=0 ) -> Any: if str(SCREAMING_SNAKE_CASE_ ).startswith('mps' ): UpperCamelCase : Optional[int] = torch.manual_seed(SCREAMING_SNAKE_CASE_ ) else: UpperCamelCase : Any = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : str = { 'prompt': 'horse', 'generator': generator, 'num_inference_steps': 1, 'frame_size': 32, 'output_type': 'np', } return inputs def snake_case_ ( self ) -> int: UpperCamelCase : str = 'cpu' UpperCamelCase : Optional[int] = self.get_dummy_components() UpperCamelCase : int = self.pipeline_class(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[Any] = pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : str = pipe(**self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ ) ) UpperCamelCase : Optional[int] = output.images[0] UpperCamelCase : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) UpperCamelCase : List[str] = np.array( [ 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def snake_case_ ( self ) -> int: # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def snake_case_ ( self ) -> str: UpperCamelCase : str = torch_device == 'cpu' UpperCamelCase : Optional[int] = True self._test_inference_batch_single_identical( batch_size=2, test_max_difference=SCREAMING_SNAKE_CASE_, relax_max_difference=SCREAMING_SNAKE_CASE_, ) def snake_case_ ( self ) -> List[Any]: UpperCamelCase : List[Any] = self.get_dummy_components() UpperCamelCase : str = self.pipeline_class(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[int] = pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[Any] = 1 UpperCamelCase : Union[str, Any] = 2 UpperCamelCase : Union[str, Any] = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ ) for key in inputs.keys(): if key in self.batch_params: UpperCamelCase : List[Any] = batch_size * [inputs[key]] UpperCamelCase : int = pipe(**SCREAMING_SNAKE_CASE_, num_images_per_prompt=SCREAMING_SNAKE_CASE_ )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class lowerCAmelCase_ ( unittest.TestCase ): def snake_case_ ( self ) -> str: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case_ ( self ) -> Tuple: UpperCamelCase : Optional[int] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/shap_e/test_shap_e_np_out.npy' ) UpperCamelCase : Optional[int] = ShapEPipeline.from_pretrained('openai/shap-e' ) UpperCamelCase : Optional[int] = pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : str = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(0 ) UpperCamelCase : Dict = pipe( 'a shark', generator=SCREAMING_SNAKE_CASE_, guidance_scale=15.0, num_inference_steps=64, frame_size=64, output_type='np', ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ )
103
0
import numpy as np import torch from torch.nn import CrossEntropyLoss from transformers import AutoModelForCausalLM, AutoTokenizer import datasets from datasets import logging a__: Optional[int] = '\\n\n' a__: Tuple = '\nPerplexity (PPL) is one of the most common metrics for evaluating language models.\nIt is defined as the exponentiated average negative log-likelihood of a sequence.\n\nFor more information, see https://huggingface.co/docs/transformers/perplexity\n' a__: Optional[int] = '\nArgs:\n model_id (str): model used for calculating Perplexity\n NOTE: Perplexity can only be calculated for causal language models.\n This includes models such as gpt2, causal variations of bert,\n causal versions of t5, and more (the full list can be found\n in the AutoModelForCausalLM documentation here:\n https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM )\n\n input_texts (list of str): input text, each separate text snippet\n is one list entry.\n batch_size (int): the batch size to run texts through the model. Defaults to 16.\n add_start_token (bool): whether to add the start token to the texts,\n so the perplexity can include the probability of the first word. Defaults to True.\n device (str): device to run on, defaults to \'cuda\' when available\nReturns:\n perplexity: dictionary containing the perplexity scores for the texts\n in the input list, as well as the mean perplexity. If one of the input texts is\n longer than the max input length of the model, then it is truncated to the\n max length for the perplexity computation.\nExamples:\n Example 1:\n >>> perplexity = datasets.load_metric("perplexity")\n >>> input_texts = ["lorem ipsum", "Happy Birthday!", "Bienvenue"]\n >>> results = perplexity.compute(model_id=\'gpt2\',\n ... add_start_token=False,\n ... input_texts=input_texts) # doctest:+ELLIPSIS\n >>> print(list(results.keys()))\n [\'perplexities\', \'mean_perplexity\']\n >>> print(round(results["mean_perplexity"], 2))\n 78.22\n >>> print(round(results["perplexities"][0], 2))\n 11.11\n\n Example 2:\n >>> perplexity = datasets.load_metric("perplexity")\n >>> input_texts = datasets.load_dataset("wikitext",\n ... "wikitext-2-raw-v1",\n ... split="test")["text"][:50] # doctest:+ELLIPSIS\n [...]\n >>> input_texts = [s for s in input_texts if s!=\'\']\n >>> results = perplexity.compute(model_id=\'gpt2\',\n ... input_texts=input_texts) # doctest:+ELLIPSIS\n >>> print(list(results.keys()))\n [\'perplexities\', \'mean_perplexity\']\n >>> print(round(results["mean_perplexity"], 2))\n 60.35\n >>> print(round(results["perplexities"][0], 2))\n 81.12\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE__ ( datasets.Metric ): def UpperCamelCase ( self ): return datasets.MetricInfo( description=_DESCRIPTION,citation=_CITATION,inputs_description=_KWARGS_DESCRIPTION,features=datasets.Features( { '''input_texts''': datasets.Value('''string''' ), } ),reference_urls=['''https://huggingface.co/docs/transformers/perplexity'''],) def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase = 16,__lowerCamelCase = True,__lowerCamelCase=None ): if device is not None: assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu." if device == "gpu": A__ = '''cuda''' else: A__ = '''cuda''' if torch.cuda.is_available() else '''cpu''' A__ = AutoModelForCausalLM.from_pretrained(__lowerCamelCase ) A__ = model.to(__lowerCamelCase ) A__ = AutoTokenizer.from_pretrained(__lowerCamelCase ) # if batch_size > 1 (which generally leads to padding being required), and # if there is not an already assigned pad_token, assign an existing # special token to also be the padding token if tokenizer.pad_token is None and batch_size > 1: A__ = list(tokenizer.special_tokens_map_extended.values() ) # check that the model already has at least one special token defined assert ( len(__lowerCamelCase ) > 0 ), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1." # assign one of the special tokens to also be the pad token tokenizer.add_special_tokens({'''pad_token''': existing_special_tokens[0]} ) if add_start_token: # leave room for <BOS> token to be added: assert ( tokenizer.bos_token is not None ), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False" A__ = model.config.max_length - 1 else: A__ = model.config.max_length A__ = tokenizer( __lowerCamelCase,add_special_tokens=__lowerCamelCase,padding=__lowerCamelCase,truncation=__lowerCamelCase,max_length=__lowerCamelCase,return_tensors='''pt''',return_attention_mask=__lowerCamelCase,).to(__lowerCamelCase ) A__ = encodings['''input_ids'''] A__ = encodings['''attention_mask'''] # check that each input is long enough: if add_start_token: assert torch.all(torch.ge(attn_masks.sum(1 ),1 ) ), "Each input text must be at least one token long." else: assert torch.all( torch.ge(attn_masks.sum(1 ),2 ) ), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings." A__ = [] A__ = CrossEntropyLoss(reduction='''none''' ) for start_index in logging.tqdm(range(0,len(__lowerCamelCase ),__lowerCamelCase ) ): A__ = min(start_index + batch_size,len(__lowerCamelCase ) ) A__ = encoded_texts[start_index:end_index] A__ = attn_masks[start_index:end_index] if add_start_token: A__ = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0 ) ).to(__lowerCamelCase ) A__ = torch.cat([bos_tokens_tensor, encoded_batch],dim=1 ) A__ = torch.cat( [torch.ones(bos_tokens_tensor.size(),dtype=torch.intaa ).to(__lowerCamelCase ), attn_mask],dim=1 ) A__ = encoded_batch with torch.no_grad(): A__ = model(__lowerCamelCase,attention_mask=__lowerCamelCase ).logits A__ = out_logits[..., :-1, :].contiguous() A__ = labels[..., 1:].contiguous() A__ = attn_mask[..., 1:].contiguous() A__ = torch.expa( (loss_fct(shift_logits.transpose(1,2 ),__lowerCamelCase ) * shift_attention_mask_batch).sum(1 ) / shift_attention_mask_batch.sum(1 ) ) ppls += perplexity_batch.tolist() return {"perplexities": ppls, "mean_perplexity": np.mean(__lowerCamelCase )}
193
import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionTextToImagePipeline from diffusers.utils.testing_utils import nightly, require_torch_gpu, torch_device a__: List[str] = False class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): pass @nightly @require_torch_gpu class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def UpperCamelCase ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase ( self ): A__ = VersatileDiffusionTextToImagePipeline.from_pretrained('''shi-labs/versatile-diffusion''' ) # remove text_unet pipe.remove_unused_weights() pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) A__ = '''A painting of a squirrel eating a burger ''' A__ = torch.manual_seed(0 ) A__ = pipe( prompt=__lowerCamelCase,generator=__lowerCamelCase,guidance_scale=7.5,num_inference_steps=2,output_type='''numpy''' ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(__lowerCamelCase ) A__ = VersatileDiffusionTextToImagePipeline.from_pretrained(__lowerCamelCase ) pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) A__ = generator.manual_seed(0 ) A__ = pipe( prompt=__lowerCamelCase,generator=__lowerCamelCase,guidance_scale=7.5,num_inference_steps=2,output_type='''numpy''' ).images assert np.abs(image - new_image ).sum() < 1E-5, "Models don't have the same forward pass" def UpperCamelCase ( self ): A__ = VersatileDiffusionTextToImagePipeline.from_pretrained( '''shi-labs/versatile-diffusion''',torch_dtype=torch.floataa ) pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) A__ = '''A painting of a squirrel eating a burger ''' A__ = torch.manual_seed(0 ) A__ = pipe( prompt=__lowerCamelCase,generator=__lowerCamelCase,guidance_scale=7.5,num_inference_steps=50,output_type='''numpy''' ).images A__ = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) A__ = np.array([0.3367, 0.3169, 0.2656, 0.3870, 0.4790, 0.3796, 0.4009, 0.4878, 0.4778] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
193
1
"""simple docstring""" import dataclasses import re from dataclasses import dataclass from functools import total_ordering from typing import Optional, Union lowercase_ = re.compile(r"^(?P<major>\d+)" r"\.(?P<minor>\d+)" r"\.(?P<patch>\d+)$") @total_ordering @dataclass class __lowerCAmelCase : '''simple docstring''' __UpperCAmelCase : str __UpperCAmelCase : Optional[str] = None __UpperCAmelCase : Optional[Union[str, int]] = None __UpperCAmelCase : Optional[Union[str, int]] = None __UpperCAmelCase : Optional[Union[str, int]] = None def __UpperCAmelCase ( self ): __a , __a , __a = _str_to_version_tuple(self.version_str ) def __repr__( self ): return f'''{self.tuple[0]}.{self.tuple[1]}.{self.tuple[2]}''' @property def __UpperCAmelCase ( self ): return self.major, self.minor, self.patch def __UpperCAmelCase ( self , _a ): if isinstance(_a , _a ): return Version(_a ) elif isinstance(_a , _a ): return other raise TypeError(f'''{other} (type {type(_a )}) cannot be compared to version.''' ) def __eq__( self , _a ): try: __a = self._validate_operand(_a ) except (TypeError, ValueError): return False else: return self.tuple == other.tuple def __lt__( self , _a ): __a = self._validate_operand(_a ) return self.tuple < other.tuple def __hash__( self ): return hash(_version_tuple_to_str(self.tuple ) ) @classmethod def __UpperCAmelCase ( cls , _a ): __a = {f.name for f in dataclasses.fields(cls )} return cls(**{k: v for k, v in dic.items() if k in field_names} ) def __UpperCAmelCase ( self ): return self.version_str def lowercase ( lowerCAmelCase__ : Optional[Any] ) -> Tuple: __a = _VERSION_REG.match(lowerCAmelCase__ ) if not res: raise ValueError(f'''Invalid version \'{version_str}\'. Format should be x.y.z with {{x,y,z}} being digits.''' ) return tuple(int(lowerCAmelCase__ ) for v in [res.group('''major''' ), res.group('''minor''' ), res.group('''patch''' )] ) def lowercase ( lowerCAmelCase__ : str ) -> Optional[Any]: return ".".join(str(lowerCAmelCase__ ) for v in version_tuple )
369
"""simple docstring""" from transformers import DistilBertTokenizer, DistilBertTokenizerFast from transformers.testing_utils import require_tokenizers, slow from ..bert.test_tokenization_bert import BertTokenizationTest @require_tokenizers class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Dict = DistilBertTokenizer __UpperCAmelCase : Any = DistilBertTokenizerFast __UpperCAmelCase : int = True @slow def __UpperCAmelCase ( self ): __a = DistilBertTokenizer.from_pretrained('''distilbert-base-uncased''' ) __a = tokenizer.encode('''sequence builders''' , add_special_tokens=_a ) __a = tokenizer.encode('''multi-sequence build''' , add_special_tokens=_a ) __a = tokenizer.build_inputs_with_special_tokens(_a ) __a = tokenizer.build_inputs_with_special_tokens(_a , _a ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ]
11
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) _a = { 'configuration_mobilevit': ['MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MobileViTConfig', 'MobileViTOnnxConfig'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = ['MobileViTFeatureExtractor'] _a = ['MobileViTImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = [ 'MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'MobileViTForImageClassification', 'MobileViTForSemanticSegmentation', 'MobileViTModel', 'MobileViTPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = [ 'TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFMobileViTForImageClassification', 'TFMobileViTForSemanticSegmentation', 'TFMobileViTModel', 'TFMobileViTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mobilevit import MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileViTConfig, MobileViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilevit import MobileViTFeatureExtractor from .image_processing_mobilevit import MobileViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilevit import ( MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel, MobileViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilevit import ( TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileViTForImageClassification, TFMobileViTForSemanticSegmentation, TFMobileViTModel, TFMobileViTPreTrainedModel, ) else: import sys _a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
17
"""simple docstring""" # Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import subprocess from packaging.version import Version, parse from accelerate.commands.config.config_args import default_config_file, load_config_from_file a__ : Tuple = '''Run commands across TPU VMs for initial setup before running `accelerate launch`.''' def UpperCAmelCase__ (lowerCAmelCase_=None ): '''simple docstring''' if subparsers is not None: __SCREAMING_SNAKE_CASE = subparsers.add_parser("tpu-config" , description=_description ) else: __SCREAMING_SNAKE_CASE = argparse.ArgumentParser("Accelerate tpu-config command" , description=_description ) # Core arguments __SCREAMING_SNAKE_CASE = parser.add_argument_group( "Config Arguments" , "Arguments that can be configured through `accelerate config`." ) config_args.add_argument( "--config_file" , type=lowerCAmelCase_ , default=lowerCAmelCase_ , help="Path to the config file to use for accelerate." , ) config_args.add_argument( "--tpu_name" , default=lowerCAmelCase_ , help="The name of the TPU to use. If not specified, will use the TPU specified in the config file." , ) config_args.add_argument( "--tpu_zone" , default=lowerCAmelCase_ , help="The zone of the TPU to use. If not specified, will use the zone specified in the config file." , ) __SCREAMING_SNAKE_CASE = parser.add_argument_group("TPU Arguments" , "Arguments for options ran inside the TPU." ) pod_args.add_argument( "--use_alpha" , action="store_true" , help="Whether to use `gcloud alpha` when running the TPU training script instead of `gcloud`." , ) pod_args.add_argument( "--command_file" , default=lowerCAmelCase_ , help="The path to the file containing the commands to run on the pod on startup." , ) pod_args.add_argument( "--command" , action="append" , nargs="+" , help="A command to run on the pod. Can be passed multiple times." , ) pod_args.add_argument( "--install_accelerate" , action="store_true" , help="Whether to install accelerate on the pod. Defaults to False." , ) pod_args.add_argument( "--accelerate_version" , default="latest" , help="The version of accelerate to install on the pod. If not specified, will use the latest pypi version. Specify 'dev' to install from GitHub." , ) pod_args.add_argument( "--debug" , action="store_true" , help="If set, will print the command that would be run instead of running it." ) if subparsers is not None: parser.set_defaults(func=lowerCAmelCase_ ) return parser def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = None # Get the default from the config file if it exists. if args.config_file is not None or os.path.isfile(lowerCAmelCase_ ): __SCREAMING_SNAKE_CASE = load_config_from_file(args.config_file ) if not args.command_file and defaults.command_file is not None and not args.command: __SCREAMING_SNAKE_CASE = defaults.command_file if not args.command and defaults.commands is not None: __SCREAMING_SNAKE_CASE = defaults.commands if not args.tpu_name: __SCREAMING_SNAKE_CASE = defaults.tpu_name if not args.tpu_zone: __SCREAMING_SNAKE_CASE = defaults.tpu_zone if args.accelerate_version == "dev": __SCREAMING_SNAKE_CASE = "git+https://github.com/huggingface/accelerate.git" elif args.accelerate_version == "latest": __SCREAMING_SNAKE_CASE = "accelerate -U" elif isinstance(parse(args.accelerate_version ) , lowerCAmelCase_ ): __SCREAMING_SNAKE_CASE = f"""accelerate=={args.accelerate_version}""" if not args.command_file and not args.command: raise ValueError("You must specify either a command file or a command to run on the pod." ) if args.command_file: with open(args.command_file , "r" ) as f: __SCREAMING_SNAKE_CASE = [f.read().splitlines()] # To turn list of lists into list of strings if isinstance(args.command[0] , lowerCAmelCase_ ): __SCREAMING_SNAKE_CASE = [line for cmd in args.command for line in cmd] # Default to the shared folder and install accelerate __SCREAMING_SNAKE_CASE = ["cd /usr/share"] if args.install_accelerate: new_cmd += [f"""pip install {args.accelerate_version}"""] new_cmd += args.command __SCREAMING_SNAKE_CASE = "; ".join(lowerCAmelCase_ ) # Then send it to gcloud # Eventually try to use google-api-core to do this instead of subprocess __SCREAMING_SNAKE_CASE = ["gcloud"] if args.use_alpha: cmd += ["alpha"] cmd += [ "compute", "tpus", "tpu-vm", "ssh", args.tpu_name, "--zone", args.tpu_zone, "--command", args.command, "--worker", "all", ] if args.debug: print(f"""Running {' '.join(lowerCAmelCase_ )}""" ) return subprocess.run(lowerCAmelCase_ ) print("Successfully setup pod." ) def UpperCAmelCase__ (): '''simple docstring''' __SCREAMING_SNAKE_CASE = tpu_command_parser() __SCREAMING_SNAKE_CASE = parser.parse_args() tpu_command_launcher(lowerCAmelCase_ )
54
0
"""simple docstring""" from collections import defaultdict def UpperCAmelCase__ ( lowerCAmelCase__ :Optional[int] , lowerCAmelCase__ :Tuple ) -> bool: '''simple docstring''' lowercase = first_str.lower().strip() lowercase = second_str.lower().strip() # Remove whitespace lowercase = first_str.replace(""" """ , """""" ) lowercase = second_str.replace(""" """ , """""" ) # Strings of different lengths are not anagrams if len(lowerCamelCase_ ) != len(lowerCamelCase_ ): return False # Default values for count should be 0 lowercase = defaultdict(lowerCamelCase_ ) # For each character in input strings, # increment count in the corresponding for i in range(len(lowerCamelCase_ ) ): count[first_str[i]] += 1 count[second_str[i]] -= 1 return all(_count == 0 for _count in count.values() ) if __name__ == "__main__": from doctest import testmod testmod() __lowerCAmelCase : Optional[int] =input("""Enter the first string """).strip() __lowerCAmelCase : List[str] =input("""Enter the second string """).strip() __lowerCAmelCase : Optional[Any] =check_anagrams(input_a, input_b) print(F"""{input_a} and {input_b} are {'' if status else 'not '}anagrams.""")
367
"""simple docstring""" from __future__ import annotations import matplotlib.pyplot as plt # type: ignore import numpy # initial triangle of Koch snowflake __lowerCAmelCase : List[Any] =numpy.array([0, 0]) __lowerCAmelCase : List[str] =numpy.array([0.5, 0.866_0254]) __lowerCAmelCase : List[Any] =numpy.array([1, 0]) __lowerCAmelCase : int =[VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1] def UpperCAmelCase__ ( lowerCAmelCase__ :list[numpy.ndarray] , lowerCAmelCase__ :int ) -> list[numpy.ndarray]: '''simple docstring''' lowercase = initial_vectors for _ in range(lowerCAmelCase__ ): lowercase = iteration_step(lowerCAmelCase__ ) return vectors def UpperCAmelCase__ ( lowerCAmelCase__ :list[numpy.ndarray] ) -> list[numpy.ndarray]: '''simple docstring''' lowercase = [] for i, start_vector in enumerate(vectors[:-1] ): lowercase = vectors[i + 1] new_vectors.append(lowerCAmelCase__ ) lowercase = end_vector - start_vector new_vectors.append(start_vector + difference_vector / 3 ) new_vectors.append( start_vector + difference_vector / 3 + rotate(difference_vector / 3 , 6_0 ) ) new_vectors.append(start_vector + difference_vector * 2 / 3 ) new_vectors.append(vectors[-1] ) return new_vectors def UpperCAmelCase__ ( lowerCAmelCase__ :numpy.ndarray , lowerCAmelCase__ :float ) -> numpy.ndarray: '''simple docstring''' lowercase = numpy.radians(lowerCAmelCase__ ) lowercase , lowercase = numpy.cos(lowerCAmelCase__ ), numpy.sin(lowerCAmelCase__ ) lowercase = numpy.array(((c, -s), (s, c)) ) return numpy.dot(lowerCAmelCase__ , lowerCAmelCase__ ) def UpperCAmelCase__ ( lowerCAmelCase__ :list[numpy.ndarray] ) -> None: '''simple docstring''' lowercase = plt.gca() axes.set_aspect("""equal""" ) # matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all # y-coordinates as inputs, which are constructed from the vector-list using # zip() lowercase , lowercase = zip(*lowerCAmelCase__ ) plt.plot(lowerCAmelCase__ , lowerCAmelCase__ ) plt.show() if __name__ == "__main__": import doctest doctest.testmod() __lowerCAmelCase : Optional[int] =iterate(INITIAL_VECTORS, 5) plot(processed_vectors)
32
0
"""simple docstring""" import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import SegformerImageProcessor, SwinConfig, UperNetConfig, UperNetForSemanticSegmentation def _A ( UpperCamelCase_ : Optional[Any]) -> Union[str, Any]: '''simple docstring''' __lowercase = 384 __lowercase = 7 if "tiny" in model_name: __lowercase = 96 __lowercase = (2, 2, 6, 2) __lowercase = (3, 6, 12, 24) elif "small" in model_name: __lowercase = 96 __lowercase = (2, 2, 18, 2) __lowercase = (3, 6, 12, 24) elif "base" in model_name: __lowercase = 128 __lowercase = (2, 2, 18, 2) __lowercase = (4, 8, 16, 32) __lowercase = 12 __lowercase = 512 elif "large" in model_name: __lowercase = 192 __lowercase = (2, 2, 18, 2) __lowercase = (6, 12, 24, 48) __lowercase = 12 __lowercase = 768 # set label information __lowercase = 150 __lowercase = '''huggingface/label-files''' __lowercase = '''ade20k-id2label.json''' __lowercase = json.load(open(hf_hub_download(__a, __a, repo_type="dataset"), "r")) __lowercase = {int(__a): v for k, v in idalabel.items()} __lowercase = {v: k for k, v in idalabel.items()} __lowercase = SwinConfig( embed_dim=__a, depths=__a, num_heads=__a, window_size=__a, out_features=["stage1", "stage2", "stage3", "stage4"], ) __lowercase = UperNetConfig( backbone_config=__a, auxiliary_in_channels=__a, num_labels=__a, idalabel=__a, labelaid=__a, ) return config def _A ( UpperCamelCase_ : List[str]) -> Any: '''simple docstring''' __lowercase = [] # fmt: off # stem rename_keys.append(("backbone.patch_embed.projection.weight", "backbone.embeddings.patch_embeddings.projection.weight")) rename_keys.append(("backbone.patch_embed.projection.bias", "backbone.embeddings.patch_embeddings.projection.bias")) rename_keys.append(("backbone.patch_embed.norm.weight", "backbone.embeddings.norm.weight")) rename_keys.append(("backbone.patch_embed.norm.bias", "backbone.embeddings.norm.bias")) # stages for i in range(len(config.backbone_config.depths)): for j in range(config.backbone_config.depths[i]): rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.norm1.weight""", F"""backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.weight""")) rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.norm1.bias""", F"""backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.bias""")) rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_bias_table""", F"""backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table""")) rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_index""", F"""backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index""")) rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.weight""", F"""backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight""")) rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.bias""", F"""backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias""")) rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.norm2.weight""", F"""backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.weight""")) rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.norm2.bias""", F"""backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.bias""")) rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.weight""", F"""backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight""")) rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.bias""", F"""backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias""")) rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.ffn.layers.1.weight""", F"""backbone.encoder.layers.{i}.blocks.{j}.output.dense.weight""")) rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.ffn.layers.1.bias""", F"""backbone.encoder.layers.{i}.blocks.{j}.output.dense.bias""")) if i < 3: rename_keys.append((F"""backbone.stages.{i}.downsample.reduction.weight""", F"""backbone.encoder.layers.{i}.downsample.reduction.weight""")) rename_keys.append((F"""backbone.stages.{i}.downsample.norm.weight""", F"""backbone.encoder.layers.{i}.downsample.norm.weight""")) rename_keys.append((F"""backbone.stages.{i}.downsample.norm.bias""", F"""backbone.encoder.layers.{i}.downsample.norm.bias""")) rename_keys.append((F"""backbone.norm{i}.weight""", F"""backbone.hidden_states_norms.stage{i+1}.weight""")) rename_keys.append((F"""backbone.norm{i}.bias""", F"""backbone.hidden_states_norms.stage{i+1}.bias""")) # decode head rename_keys.extend( [ ("decode_head.conv_seg.weight", "decode_head.classifier.weight"), ("decode_head.conv_seg.bias", "decode_head.classifier.bias"), ("auxiliary_head.conv_seg.weight", "auxiliary_head.classifier.weight"), ("auxiliary_head.conv_seg.bias", "auxiliary_head.classifier.bias"), ]) # fmt: on return rename_keys def _A ( UpperCamelCase_ : Optional[Any], UpperCamelCase_ : Optional[int], UpperCamelCase_ : Tuple) -> Tuple: '''simple docstring''' __lowercase = dct.pop(__a) __lowercase = val def _A ( UpperCamelCase_ : Optional[int], UpperCamelCase_ : str) -> str: '''simple docstring''' __lowercase = [int(backbone_config.embed_dim * 2**i) for i in range(len(backbone_config.depths))] for i in range(len(backbone_config.depths)): __lowercase = num_features[i] for j in range(backbone_config.depths[i]): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) __lowercase = state_dict.pop(F"""backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.weight""") __lowercase = state_dict.pop(F"""backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.bias""") # next, add query, keys and values (in that order) to the state dict __lowercase = in_proj_weight[:dim, :] __lowercase = in_proj_bias[: dim] __lowercase = in_proj_weight[ dim : dim * 2, : ] __lowercase = in_proj_bias[ dim : dim * 2 ] __lowercase = in_proj_weight[ -dim :, : ] __lowercase = in_proj_bias[-dim :] # fmt: on def _A ( UpperCamelCase_ : Union[str, Any]) -> Optional[Any]: '''simple docstring''' __lowercase = x.shape __lowercase = x.reshape(__a, 4, in_channel // 4) __lowercase = x[:, [0, 2, 1, 3], :].transpose(1, 2).reshape(__a, __a) return x def _A ( UpperCamelCase_ : Optional[int]) -> Tuple: '''simple docstring''' __lowercase = x.shape __lowercase = x.reshape(__a, in_channel // 4, 4) __lowercase = x[:, :, [0, 2, 1, 3]].transpose(1, 2).reshape(__a, __a) return x def _A ( UpperCamelCase_ : List[str]) -> Tuple: '''simple docstring''' __lowercase = x.shape[0] __lowercase = x.reshape(4, in_channel // 4) __lowercase = x[[0, 2, 1, 3], :].transpose(0, 1).reshape(__a) return x def _A ( UpperCamelCase_ : int) -> Any: '''simple docstring''' __lowercase = x.shape[0] __lowercase = x.reshape(in_channel // 4, 4) __lowercase = x[:, [0, 2, 1, 3]].transpose(0, 1).reshape(__a) return x def _A ( UpperCamelCase_ : Union[str, Any], UpperCamelCase_ : Dict, UpperCamelCase_ : Union[str, Any]) -> List[str]: '''simple docstring''' __lowercase = { '''upernet-swin-tiny''': '''https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210531_112542-e380ad3e.pth''', '''upernet-swin-small''': '''https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192015-ee2fff1c.pth''', '''upernet-swin-base''': '''https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K_20210531_125459-429057bf.pth''', '''upernet-swin-large''': '''https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k_20220318_091743-9ba68901.pth''', } __lowercase = model_name_to_url[model_name] __lowercase = torch.hub.load_state_dict_from_url(__a, map_location="cpu", file_name=__a)[ '''state_dict''' ] for name, param in state_dict.items(): print(__a, param.shape) __lowercase = get_upernet_config(__a) __lowercase = UperNetForSemanticSegmentation(__a) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): __lowercase = state_dict.pop(__a) if "bn" in key: __lowercase = key.replace("bn", "batch_norm") __lowercase = val # rename keys __lowercase = create_rename_keys(__a) for src, dest in rename_keys: rename_key(__a, __a, __a) read_in_q_k_v(__a, config.backbone_config) # fix downsample parameters for key, value in state_dict.items(): if "downsample" in key: if "reduction" in key: __lowercase = reverse_correct_unfold_reduction_order(__a) if "norm" in key: __lowercase = reverse_correct_unfold_norm_order(__a) model.load_state_dict(__a) # verify on image __lowercase = '''https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg''' __lowercase = Image.open(requests.get(__a, stream=__a).raw).convert("RGB") __lowercase = SegformerImageProcessor() __lowercase = processor(__a, return_tensors="pt").pixel_values with torch.no_grad(): __lowercase = model(__a) __lowercase = outputs.logits print(logits.shape) print("First values of logits:", logits[0, 0, :3, :3]) # assert values if model_name == "upernet-swin-tiny": __lowercase = torch.tensor( [[-7.5_958, -7.5_958, -7.4_302], [-7.5_958, -7.5_958, -7.4_302], [-7.4_797, -7.4_797, -7.3_068]]) elif model_name == "upernet-swin-small": __lowercase = torch.tensor( [[-7.1_921, -7.1_921, -6.9_532], [-7.1_921, -7.1_921, -6.9_532], [-7.0_908, -7.0_908, -6.8_534]]) elif model_name == "upernet-swin-base": __lowercase = torch.tensor( [[-6.5_851, -6.5_851, -6.4_330], [-6.5_851, -6.5_851, -6.4_330], [-6.4_763, -6.4_763, -6.3_254]]) elif model_name == "upernet-swin-large": __lowercase = torch.tensor( [[-7.5_297, -7.5_297, -7.3_802], [-7.5_297, -7.5_297, -7.3_802], [-7.4_044, -7.4_044, -7.2_586]]) print("Logits:", outputs.logits[0, 0, :3, :3]) assert torch.allclose(outputs.logits[0, 0, :3, :3], __a, atol=1E-4) print("Looks ok!") if pytorch_dump_folder_path is not None: print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""") model.save_pretrained(__a) print(F"""Saving processor to {pytorch_dump_folder_path}""") processor.save_pretrained(__a) if push_to_hub: print(F"""Pushing model and processor for {model_name} to hub""") model.push_to_hub(F"""openmmlab/{model_name}""") processor.push_to_hub(F"""openmmlab/{model_name}""") if __name__ == "__main__": _a = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='upernet-swin-tiny', type=str, choices=[F"upernet-swin-{size}" for size in ['tiny', 'small', 'base', 'large']], help='Name of the Swin + UperNet model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) _a = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
17
import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging a__ = logging.get_logger(__name__) def __UpperCAmelCase ( __a : Dict ) -> Tuple: """simple docstring""" _a : Any = R'''\w+[.]\d+''' _a : Union[str, Any] = re.findall(__a ,__a ) for pat in pats: _a : int = key.replace(__a ,'''_'''.join(pat.split('''.''' ) ) ) return key def __UpperCAmelCase ( __a : List[str] ,__a : Union[str, Any] ,__a : Optional[int] ) -> Tuple: """simple docstring""" _a : Dict = pt_tuple_key[:-1] + ('''scale''',) if ( any('''norm''' in str_ for str_ in pt_tuple_key ) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): _a : Dict = pt_tuple_key[:-1] + ('''scale''',) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: _a : Optional[int] = pt_tuple_key[:-1] + ('''scale''',) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: _a : Union[str, Any] = pt_tuple_key[:-1] + ('''embedding''',) return renamed_pt_tuple_key, pt_tensor # conv layer _a : Tuple = pt_tuple_key[:-1] + ('''kernel''',) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: _a : List[str] = pt_tensor.transpose(2 ,3 ,1 ,0 ) return renamed_pt_tuple_key, pt_tensor # linear layer _a : Dict = pt_tuple_key[:-1] + ('''kernel''',) if pt_tuple_key[-1] == "weight": _a : Union[str, Any] = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight _a : Dict = pt_tuple_key[:-1] + ('''weight''',) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias _a : Union[str, Any] = pt_tuple_key[:-1] + ('''bias''',) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def __UpperCAmelCase ( __a : Dict ,__a : str ,__a : str=42 ) -> Optional[int]: """simple docstring""" _a : Tuple = {k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params _a : List[Any] = flax_model.init_weights(PRNGKey(__a ) ) _a : Optional[int] = flatten_dict(__a ) _a : Tuple = {} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): _a : List[str] = rename_key(__a ) _a : Optional[Any] = tuple(renamed_pt_key.split('''.''' ) ) # Correctly rename weight parameters _a , _a : List[str] = rename_key_and_reshape_tensor(__a ,__a ,__a ) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F"""PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape """ F"""{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) # also add unexpected weight so that warning is thrown _a : Dict = jnp.asarray(__a ) return unflatten_dict(__a )
235
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) lowerCAmelCase__ = { '''configuration_owlvit''': [ '''OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''OwlViTConfig''', '''OwlViTOnnxConfig''', '''OwlViTTextConfig''', '''OwlViTVisionConfig''', ], '''processing_owlvit''': ['''OwlViTProcessor'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ['''OwlViTFeatureExtractor'''] lowerCAmelCase__ = ['''OwlViTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''OwlViTModel''', '''OwlViTPreTrainedModel''', '''OwlViTTextModel''', '''OwlViTVisionModel''', '''OwlViTForObjectDetection''', ] if TYPE_CHECKING: from .configuration_owlvit import ( OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, OwlViTConfig, OwlViTOnnxConfig, OwlViTTextConfig, OwlViTVisionConfig, ) from .processing_owlvit import OwlViTProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_owlvit import OwlViTFeatureExtractor from .image_processing_owlvit import OwlViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_owlvit import ( OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST, OwlViTForObjectDetection, OwlViTModel, OwlViTPreTrainedModel, OwlViTTextModel, OwlViTVisionModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
52
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase__ = { '''configuration_timesformer''': ['''TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TimesformerConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TimesformerModel''', '''TimesformerForVideoClassification''', '''TimesformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_timesformer import TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimesformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timesformer import ( TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimesformerForVideoClassification, TimesformerModel, TimesformerPreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
52
1
"""simple docstring""" import math def __magic_name__ ( __snake_case : int ) -> List[str]: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__UpperCamelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def __magic_name__ ( __snake_case : float = 0.1 ) -> List[Any]: lowercase : Optional[Any] = 3 lowercase : List[str] = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ): primes += is_prime(__UpperCamelCase ) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
202
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() A__ : List[Any] = logging.get_logger(__name__) def UpperCamelCase( __UpperCamelCase : List[str] ): lowerCAmelCase_ : Any = DPTConfig(embedding_type='''hybrid''' ) if "large" in checkpoint_url: lowerCAmelCase_ : Any = 1024 lowerCAmelCase_ : Tuple = 4096 lowerCAmelCase_ : List[Any] = 24 lowerCAmelCase_ : int = 16 lowerCAmelCase_ : Tuple = [5, 11, 17, 23] lowerCAmelCase_ : Optional[Any] = [256, 512, 1024, 1024] lowerCAmelCase_ : str = (1, 384, 384) if "nyu" or "midas" in checkpoint_url: lowerCAmelCase_ : Union[str, Any] = 768 lowerCAmelCase_ : int = [1, 1, 1, 0.5] lowerCAmelCase_ : List[str] = [256, 512, 768, 768] lowerCAmelCase_ : int = 150 lowerCAmelCase_ : Any = 16 lowerCAmelCase_ : Any = (1, 384, 384) lowerCAmelCase_ : List[str] = False lowerCAmelCase_ : Union[str, Any] = '''project''' if "ade" in checkpoint_url: lowerCAmelCase_ : Any = True lowerCAmelCase_ : Any = 768 lowerCAmelCase_ : Optional[int] = [1, 1, 1, 0.5] lowerCAmelCase_ : Union[str, Any] = 150 lowerCAmelCase_ : Any = 16 lowerCAmelCase_ : Any = '''huggingface/label-files''' lowerCAmelCase_ : Any = '''ade20k-id2label.json''' lowerCAmelCase_ : str = json.load(open(cached_download(hf_hub_url(__UpperCamelCase ,__UpperCamelCase ,repo_type='''dataset''' ) ) ,'''r''' ) ) lowerCAmelCase_ : Optional[Any] = {int(__UpperCamelCase ): v for k, v in idalabel.items()} lowerCAmelCase_ : Optional[Any] = idalabel lowerCAmelCase_ : Optional[int] = {v: k for k, v in idalabel.items()} lowerCAmelCase_ : List[Any] = [1, 150, 480, 480] return config, expected_shape def UpperCamelCase( __UpperCamelCase : Optional[int] ): lowerCAmelCase_ : int = ['''pretrained.model.head.weight''', '''pretrained.model.head.bias'''] for k in ignore_keys: state_dict.pop(__UpperCamelCase ,__UpperCamelCase ) def UpperCamelCase( __UpperCamelCase : int ): if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): lowerCAmelCase_ : Dict = name.replace('''pretrained.model''' ,'''dpt.encoder''' ) if "pretrained.model" in name: lowerCAmelCase_ : List[Any] = name.replace('''pretrained.model''' ,'''dpt.embeddings''' ) if "patch_embed" in name: lowerCAmelCase_ : Optional[Any] = name.replace('''patch_embed''' ,'''''' ) if "pos_embed" in name: lowerCAmelCase_ : Dict = name.replace('''pos_embed''' ,'''position_embeddings''' ) if "attn.proj" in name: lowerCAmelCase_ : Any = name.replace('''attn.proj''' ,'''attention.output.dense''' ) if "proj" in name and "project" not in name: lowerCAmelCase_ : Tuple = name.replace('''proj''' ,'''projection''' ) if "blocks" in name: lowerCAmelCase_ : Optional[Any] = name.replace('''blocks''' ,'''layer''' ) if "mlp.fc1" in name: lowerCAmelCase_ : Optional[int] = name.replace('''mlp.fc1''' ,'''intermediate.dense''' ) if "mlp.fc2" in name: lowerCAmelCase_ : Union[str, Any] = name.replace('''mlp.fc2''' ,'''output.dense''' ) if "norm1" in name and "backbone" not in name: lowerCAmelCase_ : List[str] = name.replace('''norm1''' ,'''layernorm_before''' ) if "norm2" in name and "backbone" not in name: lowerCAmelCase_ : Optional[Any] = name.replace('''norm2''' ,'''layernorm_after''' ) if "scratch.output_conv" in name: lowerCAmelCase_ : Optional[int] = name.replace('''scratch.output_conv''' ,'''head''' ) if "scratch" in name: lowerCAmelCase_ : Dict = name.replace('''scratch''' ,'''neck''' ) if "layer1_rn" in name: lowerCAmelCase_ : Optional[int] = name.replace('''layer1_rn''' ,'''convs.0''' ) if "layer2_rn" in name: lowerCAmelCase_ : Union[str, Any] = name.replace('''layer2_rn''' ,'''convs.1''' ) if "layer3_rn" in name: lowerCAmelCase_ : List[Any] = name.replace('''layer3_rn''' ,'''convs.2''' ) if "layer4_rn" in name: lowerCAmelCase_ : Optional[int] = name.replace('''layer4_rn''' ,'''convs.3''' ) if "refinenet" in name: lowerCAmelCase_ : List[str] = int(name[len('''neck.refinenet''' ) : len('''neck.refinenet''' ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 lowerCAmelCase_ : Dict = name.replace(f"""refinenet{layer_idx}""" ,f"""fusion_stage.layers.{abs(layer_idx-4 )}""" ) if "out_conv" in name: lowerCAmelCase_ : int = name.replace('''out_conv''' ,'''projection''' ) if "resConfUnit1" in name: lowerCAmelCase_ : Dict = name.replace('''resConfUnit1''' ,'''residual_layer1''' ) if "resConfUnit2" in name: lowerCAmelCase_ : str = name.replace('''resConfUnit2''' ,'''residual_layer2''' ) if "conv1" in name: lowerCAmelCase_ : str = name.replace('''conv1''' ,'''convolution1''' ) if "conv2" in name: lowerCAmelCase_ : Optional[Any] = name.replace('''conv2''' ,'''convolution2''' ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: lowerCAmelCase_ : Dict = name.replace('''pretrained.act_postprocess1.0.project.0''' ,'''neck.reassemble_stage.readout_projects.0.0''' ) if "pretrained.act_postprocess2.0.project.0" in name: lowerCAmelCase_ : Optional[int] = name.replace('''pretrained.act_postprocess2.0.project.0''' ,'''neck.reassemble_stage.readout_projects.1.0''' ) if "pretrained.act_postprocess3.0.project.0" in name: lowerCAmelCase_ : Tuple = name.replace('''pretrained.act_postprocess3.0.project.0''' ,'''neck.reassemble_stage.readout_projects.2.0''' ) if "pretrained.act_postprocess4.0.project.0" in name: lowerCAmelCase_ : Dict = name.replace('''pretrained.act_postprocess4.0.project.0''' ,'''neck.reassemble_stage.readout_projects.3.0''' ) # resize blocks if "pretrained.act_postprocess1.3" in name: lowerCAmelCase_ : List[Any] = name.replace('''pretrained.act_postprocess1.3''' ,'''neck.reassemble_stage.layers.0.projection''' ) if "pretrained.act_postprocess1.4" in name: lowerCAmelCase_ : Dict = name.replace('''pretrained.act_postprocess1.4''' ,'''neck.reassemble_stage.layers.0.resize''' ) if "pretrained.act_postprocess2.3" in name: lowerCAmelCase_ : List[Any] = name.replace('''pretrained.act_postprocess2.3''' ,'''neck.reassemble_stage.layers.1.projection''' ) if "pretrained.act_postprocess2.4" in name: lowerCAmelCase_ : List[str] = name.replace('''pretrained.act_postprocess2.4''' ,'''neck.reassemble_stage.layers.1.resize''' ) if "pretrained.act_postprocess3.3" in name: lowerCAmelCase_ : Optional[Any] = name.replace('''pretrained.act_postprocess3.3''' ,'''neck.reassemble_stage.layers.2.projection''' ) if "pretrained.act_postprocess4.3" in name: lowerCAmelCase_ : List[str] = name.replace('''pretrained.act_postprocess4.3''' ,'''neck.reassemble_stage.layers.3.projection''' ) if "pretrained.act_postprocess4.4" in name: lowerCAmelCase_ : Optional[Any] = name.replace('''pretrained.act_postprocess4.4''' ,'''neck.reassemble_stage.layers.3.resize''' ) if "pretrained" in name: lowerCAmelCase_ : Tuple = name.replace('''pretrained''' ,'''dpt''' ) if "bn" in name: lowerCAmelCase_ : Dict = name.replace('''bn''' ,'''batch_norm''' ) if "head" in name: lowerCAmelCase_ : Any = name.replace('''head''' ,'''head.head''' ) if "encoder.norm" in name: lowerCAmelCase_ : Tuple = name.replace('''encoder.norm''' ,'''layernorm''' ) if "auxlayer" in name: lowerCAmelCase_ : Optional[int] = name.replace('''auxlayer''' ,'''auxiliary_head.head''' ) if "backbone" in name: lowerCAmelCase_ : List[Any] = name.replace('''backbone''' ,'''backbone.bit.encoder''' ) if ".." in name: lowerCAmelCase_ : List[Any] = name.replace('''..''' ,'''.''' ) if "stem.conv" in name: lowerCAmelCase_ : str = name.replace('''stem.conv''' ,'''bit.embedder.convolution''' ) if "blocks" in name: lowerCAmelCase_ : List[str] = name.replace('''blocks''' ,'''layers''' ) if "convolution" in name and "backbone" in name: lowerCAmelCase_ : Optional[int] = name.replace('''convolution''' ,'''conv''' ) if "layer" in name and "backbone" in name: lowerCAmelCase_ : Optional[int] = name.replace('''layer''' ,'''layers''' ) if "backbone.bit.encoder.bit" in name: lowerCAmelCase_ : Union[str, Any] = name.replace('''backbone.bit.encoder.bit''' ,'''backbone.bit''' ) if "embedder.conv" in name: lowerCAmelCase_ : str = name.replace('''embedder.conv''' ,'''embedder.convolution''' ) if "backbone.bit.encoder.stem.norm" in name: lowerCAmelCase_ : Dict = name.replace('''backbone.bit.encoder.stem.norm''' ,'''backbone.bit.embedder.norm''' ) return name def UpperCamelCase( __UpperCamelCase : Union[str, Any] ,__UpperCamelCase : List[str] ): for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCAmelCase_ : Dict = state_dict.pop(f"""dpt.encoder.layer.{i}.attn.qkv.weight""" ) lowerCAmelCase_ : Tuple = state_dict.pop(f"""dpt.encoder.layer.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict lowerCAmelCase_ : str = in_proj_weight[: config.hidden_size, :] lowerCAmelCase_ : str = in_proj_bias[: config.hidden_size] lowerCAmelCase_ : Optional[Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCAmelCase_ : int = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCAmelCase_ : Any = in_proj_weight[ -config.hidden_size :, : ] lowerCAmelCase_ : Dict = in_proj_bias[-config.hidden_size :] def UpperCamelCase( ): lowerCAmelCase_ : str = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowerCAmelCase_ : Dict = Image.open(requests.get(__UpperCamelCase ,stream=__UpperCamelCase ).raw ) return im @torch.no_grad() def UpperCamelCase( __UpperCamelCase : Optional[int] ,__UpperCamelCase : Dict ,__UpperCamelCase : Optional[int] ,__UpperCamelCase : Optional[int] ,__UpperCamelCase : str ): lowerCAmelCase_ , lowerCAmelCase_ : Any = get_dpt_config(__UpperCamelCase ) # load original state_dict from URL # state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu") lowerCAmelCase_ : List[str] = torch.load(__UpperCamelCase ,map_location='''cpu''' ) # remove certain keys remove_ignore_keys_(__UpperCamelCase ) # rename keys for key in state_dict.copy().keys(): lowerCAmelCase_ : Any = state_dict.pop(__UpperCamelCase ) lowerCAmelCase_ : Optional[Any] = val # read in qkv matrices read_in_q_k_v(__UpperCamelCase ,__UpperCamelCase ) # load HuggingFace model lowerCAmelCase_ : List[Any] = DPTForSemanticSegmentation(__UpperCamelCase ) if '''ade''' in checkpoint_url else DPTForDepthEstimation(__UpperCamelCase ) model.load_state_dict(__UpperCamelCase ) model.eval() # Check outputs on an image lowerCAmelCase_ : Tuple = 480 if '''ade''' in checkpoint_url else 384 lowerCAmelCase_ : Optional[int] = DPTImageProcessor(size=__UpperCamelCase ) lowerCAmelCase_ : Union[str, Any] = prepare_img() lowerCAmelCase_ : str = image_processor(__UpperCamelCase ,return_tensors='''pt''' ) # forward pass lowerCAmelCase_ : Tuple = model(**__UpperCamelCase ).logits if '''ade''' in checkpoint_url else model(**__UpperCamelCase ).predicted_depth if show_prediction: lowerCAmelCase_ : Optional[Any] = ( torch.nn.functional.interpolate( outputs.unsqueeze(1 ) ,size=(image.size[1], image.size[0]) ,mode='''bicubic''' ,align_corners=__UpperCamelCase ,) .squeeze() .cpu() .numpy() ) Image.fromarray((prediction / prediction.max()) * 255 ).show() if pytorch_dump_folder_path is not None: Path(__UpperCamelCase ).mkdir(exist_ok=__UpperCamelCase ) print(f"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(__UpperCamelCase ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(__UpperCamelCase ) if push_to_hub: model.push_to_hub('''ybelkada/dpt-hybrid-midas''' ) image_processor.push_to_hub('''ybelkada/dpt-hybrid-midas''' ) if __name__ == "__main__": A__ : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt''', type=str, help='''URL of the original DPT checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=False, help='''Path to the output PyTorch model directory.''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', ) parser.add_argument( '''--model_name''', default='''dpt-large''', type=str, help='''Name of the model, in case you\'re pushing to the hub.''', ) parser.add_argument( '''--show_prediction''', action='''store_true''', ) A__ : Union[str, Any] = parser.parse_args() convert_dpt_checkpoint( args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name, args.show_prediction )
103
0
"""simple docstring""" from sklearn.metrics import fa_score import datasets __A : Optional[Any] = '\nThe F1 score is the harmonic mean of the precision and recall. It can be computed with the equation:\nF1 = 2 * (precision * recall) / (precision + recall)\n' __A : Dict = '\nArgs:\n predictions (`list` of `int`): Predicted labels.\n references (`list` of `int`): Ground truth labels.\n labels (`list` of `int`): The set of labels to include when `average` is not set to `\'binary\'`, and the order of the labels if `average` is `None`. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class. Labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in `predictions` and `references` are used in sorted order. Defaults to None.\n pos_label (`int`): The class to be considered the positive class, in the case where `average` is set to `binary`. Defaults to 1.\n average (`string`): This parameter is required for multiclass/multilabel targets. If set to `None`, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `\'binary\'`.\n\n - \'binary\': Only report results for the class specified by `pos_label`. This is applicable only if the classes found in `predictions` and `references` are binary.\n - \'micro\': Calculate metrics globally by counting the total true positives, false negatives and false positives.\n - \'macro\': Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.\n - \'weighted\': Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `\'macro\'` to account for label imbalance. This option can result in an F-score that is not between precision and recall.\n - \'samples\': Calculate metrics for each instance, and find their average (only meaningful for multilabel classification).\n sample_weight (`list` of `float`): Sample weights Defaults to None.\n\nReturns:\n f1 (`float` or `array` of `float`): F1 score or list of f1 scores, depending on the value passed to `average`. Minimum possible value is 0. Maximum possible value is 1. Higher f1 scores are better.\n\nExamples:\n\n Example 1-A simple binary example\n >>> f1_metric = datasets.load_metric("f1")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0])\n >>> print(results)\n {\'f1\': 0.5}\n\n Example 2-The same simple binary example as in Example 1, but with `pos_label` set to `0`.\n >>> f1_metric = datasets.load_metric("f1")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], pos_label=0)\n >>> print(round(results[\'f1\'], 2))\n 0.67\n\n Example 3-The same simple binary example as in Example 1, but with `sample_weight` included.\n >>> f1_metric = datasets.load_metric("f1")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], sample_weight=[0.9, 0.5, 3.9, 1.2, 0.3])\n >>> print(round(results[\'f1\'], 2))\n 0.35\n\n Example 4-A multiclass example, with different values for the `average` input.\n >>> predictions = [0, 2, 1, 0, 0, 1]\n >>> references = [0, 1, 2, 0, 1, 2]\n >>> results = f1_metric.compute(predictions=predictions, references=references, average="macro")\n >>> print(round(results[\'f1\'], 2))\n 0.27\n >>> results = f1_metric.compute(predictions=predictions, references=references, average="micro")\n >>> print(round(results[\'f1\'], 2))\n 0.33\n >>> results = f1_metric.compute(predictions=predictions, references=references, average="weighted")\n >>> print(round(results[\'f1\'], 2))\n 0.27\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=None)\n >>> print(results)\n {\'f1\': array([0.8, 0. , 0. ])}\n' __A : Optional[int] = '\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __UpperCamelCase ( datasets.Metric ): def SCREAMING_SNAKE_CASE__ (self : Tuple): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("int32")), "references": datasets.Sequence(datasets.Value("int32")), } if self.config_name == "multilabel" else { "predictions": datasets.Value("int32"), "references": datasets.Value("int32"), }) , reference_urls=["https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html"] , ) def SCREAMING_SNAKE_CASE__ (self : List[Any] , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Tuple=None , __SCREAMING_SNAKE_CASE : Union[str, Any]=1 , __SCREAMING_SNAKE_CASE : Union[str, Any]="binary" , __SCREAMING_SNAKE_CASE : Any=None): A = fa_score( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE , pos_label=__SCREAMING_SNAKE_CASE , average=__SCREAMING_SNAKE_CASE , sample_weight=__SCREAMING_SNAKE_CASE) return {"f1": float(__SCREAMING_SNAKE_CASE) if score.size == 1 else score}
57
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A : str = { 'configuration_pegasus_x': ['PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PegasusXConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : int = [ 'PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST', 'PegasusXForConditionalGeneration', 'PegasusXModel', 'PegasusXPreTrainedModel', ] if TYPE_CHECKING: from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pegasus_x import ( PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST, PegasusXForConditionalGeneration, PegasusXModel, PegasusXPreTrainedModel, ) else: import sys __A : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
57
1