code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
'''simple docstring''' from collections import defaultdict from typing import Optional from ..image_utils import load_image from ..utils import ( add_end_docstrings, is_torch_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_MASK_GENERATION_MAPPING UpperCamelCase__ : Dict = logging.get_logger(__name__) @add_end_docstrings(_SCREAMING_SNAKE_CASE ) class _UpperCamelCase ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : Union[str, Any] , **lowerCAmelCase__ : str ): """simple docstring""" super().__init__(**lowerCAmelCase__ ) requires_backends(self , """vision""" ) requires_backends(self , """torch""" ) if self.framework != "pt": raise ValueError(F"The {self.__class__} is only available in PyTorch." ) self.check_model_type(lowerCAmelCase__ ) def UpperCamelCase__ ( self : Union[str, Any] , **lowerCAmelCase__ : Optional[int] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = {} __SCREAMING_SNAKE_CASE : Dict = {} __SCREAMING_SNAKE_CASE : Optional[int] = {} # preprocess args if "points_per_batch" in kwargs: __SCREAMING_SNAKE_CASE : Optional[int] = kwargs["""points_per_batch"""] if "points_per_crop" in kwargs: __SCREAMING_SNAKE_CASE : List[Any] = kwargs["""points_per_crop"""] if "crops_n_layers" in kwargs: __SCREAMING_SNAKE_CASE : Dict = kwargs["""crops_n_layers"""] if "crop_overlap_ratio" in kwargs: __SCREAMING_SNAKE_CASE : str = kwargs["""crop_overlap_ratio"""] if "crop_n_points_downscale_factor" in kwargs: __SCREAMING_SNAKE_CASE : Union[str, Any] = kwargs["""crop_n_points_downscale_factor"""] # postprocess args if "pred_iou_thresh" in kwargs: __SCREAMING_SNAKE_CASE : Union[str, Any] = kwargs["""pred_iou_thresh"""] if "stability_score_offset" in kwargs: __SCREAMING_SNAKE_CASE : List[str] = kwargs["""stability_score_offset"""] if "mask_threshold" in kwargs: __SCREAMING_SNAKE_CASE : Dict = kwargs["""mask_threshold"""] if "stability_score_thresh" in kwargs: __SCREAMING_SNAKE_CASE : List[Any] = kwargs["""stability_score_thresh"""] if "crops_nms_thresh" in kwargs: __SCREAMING_SNAKE_CASE : List[Any] = kwargs["""crops_nms_thresh"""] if "output_rle_mask" in kwargs: __SCREAMING_SNAKE_CASE : int = kwargs["""output_rle_mask"""] if "output_bboxes_mask" in kwargs: __SCREAMING_SNAKE_CASE : List[str] = kwargs["""output_bboxes_mask"""] return preprocess_kwargs, forward_params, postprocess_kwargs def __call__( self : List[Any] , lowerCAmelCase__ : int , *lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Optional[Any]=None , lowerCAmelCase__ : int=None , **lowerCAmelCase__ : Dict ): """simple docstring""" return super().__call__(lowerCAmelCase__ , *lowerCAmelCase__ , num_workers=lowerCAmelCase__ , batch_size=lowerCAmelCase__ , **lowerCAmelCase__ ) def UpperCamelCase__ ( self : List[str] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Dict=6_4 , lowerCAmelCase__ : int = 0 , lowerCAmelCase__ : float = 5_1_2 / 1_5_0_0 , lowerCAmelCase__ : Optional[int] = 3_2 , lowerCAmelCase__ : Optional[int] = 1 , ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = load_image(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Any = self.image_processor.size["""longest_edge"""] __SCREAMING_SNAKE_CASE : Dict = self.image_processor.generate_crop_boxes( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : int = self.image_processor(images=lowerCAmelCase__ , return_tensors="""pt""" ) with self.device_placement(): if self.framework == "pt": __SCREAMING_SNAKE_CASE : List[Any] = self.get_inference_context() with inference_context(): __SCREAMING_SNAKE_CASE : List[str] = self._ensure_tensor_on_device(lowerCAmelCase__ , device=self.device ) __SCREAMING_SNAKE_CASE : int = self.model.get_image_embeddings(model_inputs.pop("""pixel_values""" ) ) __SCREAMING_SNAKE_CASE : Optional[Any] = image_embeddings __SCREAMING_SNAKE_CASE : Optional[Any] = grid_points.shape[1] __SCREAMING_SNAKE_CASE : Optional[int] = points_per_batch if points_per_batch is not None else n_points if points_per_batch <= 0: raise ValueError( """Cannot have points_per_batch<=0. Must be >=1 to returned batched outputs. """ """To return all points at once, set points_per_batch to None""" ) for i in range(0 , lowerCAmelCase__ , lowerCAmelCase__ ): __SCREAMING_SNAKE_CASE : List[Any] = grid_points[:, i : i + points_per_batch, :, :] __SCREAMING_SNAKE_CASE : List[str] = input_labels[:, i : i + points_per_batch] __SCREAMING_SNAKE_CASE : Any = i == n_points - points_per_batch yield { "input_points": batched_points, "input_labels": labels, "input_boxes": crop_boxes, "is_last": is_last, **model_inputs, } def UpperCamelCase__ ( self : Tuple , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Optional[int]=0.88 , lowerCAmelCase__ : int=0.95 , lowerCAmelCase__ : str=0 , lowerCAmelCase__ : List[str]=1 , ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = model_inputs.pop("""input_boxes""" ) __SCREAMING_SNAKE_CASE : Any = model_inputs.pop("""is_last""" ) __SCREAMING_SNAKE_CASE : int = model_inputs.pop("""original_sizes""" ).tolist() __SCREAMING_SNAKE_CASE : List[Any] = model_inputs.pop("""reshaped_input_sizes""" ).tolist() __SCREAMING_SNAKE_CASE : Any = self.model(**lowerCAmelCase__ ) # post processing happens here in order to avoid CPU GPU copies of ALL the masks __SCREAMING_SNAKE_CASE : str = model_outputs["""pred_masks"""] __SCREAMING_SNAKE_CASE : Dict = self.image_processor.post_process_masks( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , binarize=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[Any] = model_outputs["""iou_scores"""] __SCREAMING_SNAKE_CASE : Any = self.image_processor.filter_masks( masks[0] , iou_scores[0] , original_sizes[0] , input_boxes[0] , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ) return { "masks": masks, "is_last": is_last, "boxes": boxes, "iou_scores": iou_scores, } def UpperCamelCase__ ( self : Union[str, Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[Any]=False , lowerCAmelCase__ : int=False , lowerCAmelCase__ : Tuple=0.7 , ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = [] __SCREAMING_SNAKE_CASE : Optional[int] = [] __SCREAMING_SNAKE_CASE : str = [] for model_output in model_outputs: all_scores.append(model_output.pop("""iou_scores""" ) ) all_masks.extend(model_output.pop("""masks""" ) ) all_boxes.append(model_output.pop("""boxes""" ) ) __SCREAMING_SNAKE_CASE : Union[str, Any] = torch.cat(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Union[str, Any] = torch.cat(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = self.image_processor.post_process_for_mask_generation( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = defaultdict(lowerCAmelCase__ ) for output in model_outputs: for k, v in output.items(): extra[k].append(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[Any] = {} if output_rle_mask: __SCREAMING_SNAKE_CASE : List[Any] = rle_mask if output_bboxes_mask: __SCREAMING_SNAKE_CASE : Any = bounding_boxes return {"masks": output_masks, "scores": iou_scores, **optional, **extra}
112
'''simple docstring''' from math import ceil def UpperCamelCase_ ( A__ : int = 10_01 ): '''simple docstring''' lowerCAmelCase_ : List[Any] = 1 for i in range(1 , int(ceil(n / 2.0 ) ) ): lowerCAmelCase_ : int = 2 * i + 1 lowerCAmelCase_ : Tuple = 2 * i lowerCAmelCase_ : Tuple = total + 4 * odd**2 - 6 * even return total if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution()) else: try: __A : str = int(sys.argv[1]) print(solution(n)) except ValueError: print("Invalid entry - please enter a number")
120
0
'''simple docstring''' def _lowerCamelCase ( lowercase : Optional[Any] ) -> Optional[int]: if number > 0: raise ValueError("input must be a negative integer" ) _a = len(bin(lowercase__ )[3:] ) _a = bin(abs(lowercase__ ) - (1 << binary_number_length) )[3:] _a = ( ( '1' + '0' * (binary_number_length - len(lowercase__ )) + twos_complement_number ) if number < 0 else '0' ) return "0b" + twos_complement_number if __name__ == "__main__": import doctest doctest.testmod()
362
'''simple docstring''' def _lowerCamelCase ( lowercase : int , lowercase : list ) -> Union[str, Any]: _enforce_args(lowercase , lowercase ) if n == 0: return 0 _a = float("-inf" ) for i in range(1 , n + 1 ): _a = max( lowercase , prices[i - 1] + naive_cut_rod_recursive(n - i , lowercase ) ) return max_revue def _lowerCamelCase ( lowercase : int , lowercase : list ) -> Tuple: _enforce_args(lowercase , lowercase ) _a = [float("-inf" ) for _ in range(n + 1 )] return _top_down_cut_rod_recursive(lowercase , lowercase , lowercase ) def _lowerCamelCase ( lowercase : int , lowercase : list , lowercase : list ) -> List[str]: if max_rev[n] >= 0: return max_rev[n] elif n == 0: return 0 else: _a = float("-inf" ) for i in range(1 , n + 1 ): _a = max( lowercase , prices[i - 1] + _top_down_cut_rod_recursive(n - i , lowercase , lowercase ) , ) _a = max_revenue return max_rev[n] def _lowerCamelCase ( lowercase : int , lowercase : list ) -> Any: _enforce_args(lowercase , lowercase ) # length(max_rev) = n + 1, to accommodate for the revenue obtainable from a rod of # length 0. _a = [float("-inf" ) for _ in range(n + 1 )] _a = 0 for i in range(1 , n + 1 ): _a = max_rev[i] for j in range(1 , i + 1 ): _a = max(lowercase , prices[j - 1] + max_rev[i - j] ) _a = max_revenue_i return max_rev[n] def _lowerCamelCase ( lowercase : int , lowercase : list ) -> Dict: if n < 0: _a = F'n must be greater than or equal to 0. Got n = {n}' raise ValueError(lowercase ) if n > len(lowercase ): _a = ( "Each integral piece of rod must have a corresponding price. " F'Got n = {n} but length of prices = {len(lowercase )}' ) raise ValueError(lowercase ) def _lowerCamelCase ( ) -> Any: _a = [6, 10, 12, 15, 20, 23] _a = len(lowercase ) # the best revenue comes from cutting the rod into 6 pieces, each # of length 1 resulting in a revenue of 6 * 6 = 36. _a = 36 _a = top_down_cut_rod(lowercase , lowercase ) _a = bottom_up_cut_rod(lowercase , lowercase ) _a = naive_cut_rod_recursive(lowercase , lowercase ) assert expected_max_revenue == max_rev_top_down assert max_rev_top_down == max_rev_bottom_up assert max_rev_bottom_up == max_rev_naive if __name__ == "__main__": main()
346
0
from typing import List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = { 'huggingface/autoformer-tourism-monthly': 'https://huggingface.co/huggingface/autoformer-tourism-monthly/resolve/main/config.json', } class A ( UpperCAmelCase_ ): __UpperCAmelCase : Optional[Any] = 'autoformer' __UpperCAmelCase : Optional[int] = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', 'num_hidden_layers': 'encoder_layers', } def __init__(self : List[str] , __UpperCAmelCase : Optional[int] = None , __UpperCAmelCase : Optional[int] = None , __UpperCAmelCase : str = "student_t" , __UpperCAmelCase : str = "nll" , __UpperCAmelCase : int = 1 , __UpperCAmelCase : List[int] = [1, 2, 3, 4, 5, 6, 7] , __UpperCAmelCase : bool = True , __UpperCAmelCase : int = 0 , __UpperCAmelCase : int = 0 , __UpperCAmelCase : int = 0 , __UpperCAmelCase : int = 0 , __UpperCAmelCase : Optional[List[int]] = None , __UpperCAmelCase : Optional[List[int]] = None , __UpperCAmelCase : int = 6_4 , __UpperCAmelCase : int = 2 , __UpperCAmelCase : int = 2 , __UpperCAmelCase : int = 2 , __UpperCAmelCase : int = 2 , __UpperCAmelCase : int = 3_2 , __UpperCAmelCase : int = 3_2 , __UpperCAmelCase : str = "gelu" , __UpperCAmelCase : float = 0.1 , __UpperCAmelCase : float = 0.1 , __UpperCAmelCase : float = 0.1 , __UpperCAmelCase : float = 0.1 , __UpperCAmelCase : float = 0.1 , __UpperCAmelCase : int = 1_0_0 , __UpperCAmelCase : float = 0.02 , __UpperCAmelCase : bool = True , __UpperCAmelCase : int=True , __UpperCAmelCase : int = 1_0 , __UpperCAmelCase : int = 2_5 , __UpperCAmelCase : int = 3 , **__UpperCAmelCase : str , ) -> int: """simple docstring""" UpperCAmelCase__ = prediction_length UpperCAmelCase__ = context_length if context_length is not None else prediction_length UpperCAmelCase__ = distribution_output UpperCAmelCase__ = loss UpperCAmelCase__ = input_size UpperCAmelCase__ = num_time_features UpperCAmelCase__ = lags_sequence UpperCAmelCase__ = scaling UpperCAmelCase__ = num_dynamic_real_features UpperCAmelCase__ = num_static_real_features UpperCAmelCase__ = num_static_categorical_features if cardinality is not None and num_static_categorical_features > 0: if len(__UpperCAmelCase ) != num_static_categorical_features: raise ValueError( "The cardinality should be a list of the same length as `num_static_categorical_features`" ) UpperCAmelCase__ = cardinality else: UpperCAmelCase__ = [0] if embedding_dimension is not None and num_static_categorical_features > 0: if len(__UpperCAmelCase ) != num_static_categorical_features: raise ValueError( "The embedding dimension should be a list of the same length as `num_static_categorical_features`" ) UpperCAmelCase__ = embedding_dimension else: UpperCAmelCase__ = [min(5_0 , (cat + 1) // 2 ) for cat in self.cardinality] UpperCAmelCase__ = num_parallel_samples # Transformer architecture configuration UpperCAmelCase__ = input_size * len(self.lags_sequence ) + self._number_of_features UpperCAmelCase__ = d_model UpperCAmelCase__ = encoder_attention_heads UpperCAmelCase__ = decoder_attention_heads UpperCAmelCase__ = encoder_ffn_dim UpperCAmelCase__ = decoder_ffn_dim UpperCAmelCase__ = encoder_layers UpperCAmelCase__ = decoder_layers UpperCAmelCase__ = dropout UpperCAmelCase__ = attention_dropout UpperCAmelCase__ = activation_dropout UpperCAmelCase__ = encoder_layerdrop UpperCAmelCase__ = decoder_layerdrop UpperCAmelCase__ = activation_function UpperCAmelCase__ = init_std UpperCAmelCase__ = use_cache # Autoformer UpperCAmelCase__ = label_length UpperCAmelCase__ = moving_average UpperCAmelCase__ = autocorrelation_factor super().__init__(is_encoder_decoder=__UpperCAmelCase , **__UpperCAmelCase ) @property def lowercase_ (self : List[str] ) -> int: """simple docstring""" return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
65
import argparse import torch from torch import nn from transformers import MBartConfig, MBartForConditionalGeneration def lowerCAmelCase_ ( __A ) -> Dict: '''simple docstring''' UpperCAmelCase__ = [ "encoder.version", "decoder.version", "model.encoder.version", "model.decoder.version", "_float_tensor", "decoder.output_projection.weight", ] for k in ignore_keys: state_dict.pop(__A, __A ) def lowerCAmelCase_ ( __A ) -> Optional[int]: '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ = emb.weight.shape UpperCAmelCase__ = nn.Linear(__A, __A, bias=__A ) UpperCAmelCase__ = emb.weight.data return lin_layer def lowerCAmelCase_ ( __A, __A="facebook/mbart-large-en-ro", __A=False, __A=False ) -> Tuple: '''simple docstring''' UpperCAmelCase__ = torch.load(__A, map_location="cpu" )["model"] remove_ignore_keys_(__A ) UpperCAmelCase__ = state_dict["encoder.embed_tokens.weight"].shape[0] UpperCAmelCase__ = MBartConfig.from_pretrained(__A, vocab_size=__A ) if mbart_aa and finetuned: UpperCAmelCase__ = "relu" UpperCAmelCase__ = state_dict["decoder.embed_tokens.weight"] UpperCAmelCase__ = MBartForConditionalGeneration(__A ) model.model.load_state_dict(__A ) if finetuned: UpperCAmelCase__ = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": UpperCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( 'fairseq_path', type=str, help='bart.large, bart.large.cnn or a path to a model.pt on local filesystem.' ) parser.add_argument('pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument( '--hf_config', default='facebook/mbart-large-cc25', type=str, help='Which huggingface architecture to use: mbart-large', ) parser.add_argument('--mbart_50', action='store_true', help='whether the model is mMART-50 checkpoint') parser.add_argument('--finetuned', action='store_true', help='whether the model is a fine-tuned checkpoint') UpperCamelCase__ = parser.parse_args() UpperCamelCase__ = convert_fairseq_mbart_checkpoint_from_disk( args.fairseq_path, hf_config_path=args.hf_config, finetuned=args.finetuned, mbart_aa=args.mbart_aa ) model.save_pretrained(args.pytorch_dump_folder_path)
65
1
'''simple docstring''' import unittest from transformers import AutoTokenizer, FalconConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, ) class SCREAMING_SNAKE_CASE__ : def __init__( self , A_ , A_=3 , A_=7 , A_=True , A_=True , A_=False , A_=True , A_=99 , A_=32 , A_=5 , A_=4 , A_=37 , A_="gelu" , A_=0.1 , A_=0.1 , A_=512 , A_=16 , A_=2 , A_=0.02 , A_=3 , A_=4 , A_=None , )-> Dict: '''simple docstring''' UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = seq_length UpperCamelCase = is_training UpperCamelCase = use_input_mask UpperCamelCase = use_token_type_ids UpperCamelCase = use_labels UpperCamelCase = vocab_size UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = intermediate_size UpperCamelCase = hidden_act UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = max_position_embeddings UpperCamelCase = type_vocab_size UpperCamelCase = type_sequence_label_size UpperCamelCase = initializer_range UpperCamelCase = num_labels UpperCamelCase = num_choices UpperCamelCase = scope def UpperCAmelCase_ ( self )-> str: '''simple docstring''' UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase = None if self.use_input_mask: UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase = None UpperCamelCase = None UpperCamelCase = None UpperCamelCase = None if self.use_labels: UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase = ids_tensor([self.batch_size] , self.num_choices ) UpperCamelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase_ ( self )-> List[Any]: '''simple docstring''' return FalconConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=A_ , initializer_range=self.initializer_range , pad_token_id=1 , new_decoder_architecture=A_ , ) def UpperCAmelCase_ ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ )-> Tuple: '''simple docstring''' UpperCamelCase = FalconModel(config=A_ ) model.to(A_ ) model.eval() UpperCamelCase = model(A_ , attention_mask=A_ ) UpperCamelCase = model(A_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase_ ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , )-> List[str]: '''simple docstring''' UpperCamelCase = True UpperCamelCase = FalconModel(A_ ) model.to(A_ ) model.eval() UpperCamelCase = model( A_ , attention_mask=A_ , encoder_hidden_states=A_ , encoder_attention_mask=A_ , ) UpperCamelCase = model( A_ , attention_mask=A_ , encoder_hidden_states=A_ , ) UpperCamelCase = model(A_ , attention_mask=A_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase_ ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , )-> Union[str, Any]: '''simple docstring''' UpperCamelCase = FalconForCausalLM(config=A_ ) model.to(A_ ) model.eval() UpperCamelCase = model(A_ , attention_mask=A_ , labels=A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase_ ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , )-> List[Any]: '''simple docstring''' UpperCamelCase = True UpperCamelCase = True UpperCamelCase = FalconForCausalLM(config=A_ ) model.to(A_ ) model.eval() # first forward pass UpperCamelCase = model( A_ , attention_mask=A_ , encoder_hidden_states=A_ , encoder_attention_mask=A_ , use_cache=A_ , ) UpperCamelCase = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids UpperCamelCase = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCamelCase = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and UpperCamelCase = torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCamelCase = torch.cat([input_mask, next_mask] , dim=-1 ) UpperCamelCase = model( A_ , attention_mask=A_ , encoder_hidden_states=A_ , encoder_attention_mask=A_ , output_hidden_states=A_ , )['hidden_states'][0] UpperCamelCase = model( A_ , attention_mask=A_ , encoder_hidden_states=A_ , encoder_attention_mask=A_ , past_key_values=A_ , output_hidden_states=A_ , )['hidden_states'][0] # select random slice UpperCamelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCamelCase = output_from_no_past[:, -3:, random_slice_idx].detach() UpperCamelCase = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(A_ , A_ , atol=1e-3 ) ) def UpperCAmelCase_ ( self )-> Any: '''simple docstring''' UpperCamelCase = self.prepare_config_and_inputs() ( ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ) = config_and_inputs UpperCamelCase = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( snake_case_ , snake_case_ , snake_case_ , unittest.TestCase): lowerCAmelCase_ = ( ( FalconModel, FalconForCausalLM, FalconForSequenceClassification, FalconForTokenClassification, FalconForQuestionAnswering, ) if is_torch_available() else () ) lowerCAmelCase_ = (FalconForCausalLM,) if is_torch_available() else () lowerCAmelCase_ = ( { """feature-extraction""": FalconModel, """text-classification""": FalconForSequenceClassification, """text-generation""": FalconForCausalLM, """question-answering""": FalconForQuestionAnswering, """token-classification""": FalconForTokenClassification, """zero-shot""": FalconForSequenceClassification, } if is_torch_available() else {} ) lowerCAmelCase_ = False lowerCAmelCase_ = False def UpperCAmelCase_ ( self )-> str: '''simple docstring''' UpperCamelCase = FalconModelTester(self ) UpperCamelCase = ConfigTester(self , config_class=A_ , hidden_size=37 ) def UpperCAmelCase_ ( self )-> Optional[Any]: '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase_ ( self )-> Optional[int]: '''simple docstring''' UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def UpperCAmelCase_ ( self )-> Optional[Any]: '''simple docstring''' UpperCamelCase , *UpperCamelCase = self.model_tester.prepare_config_and_inputs() for alibi in [True, False]: UpperCamelCase = alibi self.model_tester.create_and_check_model(A_ , *A_ ) def UpperCAmelCase_ ( self )-> List[Any]: '''simple docstring''' UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase = 3 UpperCamelCase = input_dict['input_ids'] UpperCamelCase = input_ids.ne(1 ).to(A_ ) UpperCamelCase = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) UpperCamelCase = FalconForSequenceClassification(A_ ) model.to(A_ ) model.eval() UpperCamelCase = model(A_ , attention_mask=A_ , labels=A_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCAmelCase_ ( self )-> List[Any]: '''simple docstring''' UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase = 3 UpperCamelCase = 'single_label_classification' UpperCamelCase = input_dict['input_ids'] UpperCamelCase = input_ids.ne(1 ).to(A_ ) UpperCamelCase = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) UpperCamelCase = FalconForSequenceClassification(A_ ) model.to(A_ ) model.eval() UpperCamelCase = model(A_ , attention_mask=A_ , labels=A_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCAmelCase_ ( self )-> int: '''simple docstring''' UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase = input_dict['input_ids'] UpperCamelCase = FalconForCausalLM(A_ ) model.to(A_ ) model.eval() UpperCamelCase = model(A_ , use_cache=A_ ) UpperCamelCase = input_ids.shape[0] UpperCamelCase = model._convert_to_rw_cache(result.past_key_values ) UpperCamelCase = model._convert_cache_to_standard_format(A_ , A_ ) for layer in range(len(A_ ) ): for tensor_idx in range(2 ): self.assertTrue(rw_cache[layer][tensor_idx].ndim == 3 ) self.assertTrue(result.past_key_values[layer][tensor_idx].ndim == 4 ) self.assertTrue( torch.all(result.past_key_values[layer][tensor_idx] == standard_cache[layer][tensor_idx] ) ) def UpperCAmelCase_ ( self )-> Dict: '''simple docstring''' UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase = 3 UpperCamelCase = 'multi_label_classification' UpperCamelCase = input_dict['input_ids'] UpperCamelCase = input_ids.ne(1 ).to(A_ ) UpperCamelCase = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) UpperCamelCase = FalconForSequenceClassification(A_ ) model.to(A_ ) model.eval() UpperCamelCase = model(A_ , attention_mask=A_ , labels=A_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCAmelCase_ ( self )-> Dict: '''simple docstring''' for model_class in self.all_generative_model_classes: UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() # If it doesn't support cache, pass the test if not hasattr(A_ , 'use_cache' ): return UpperCamelCase = model_class(A_ ).to(A_ ) if "use_cache" not in inputs: UpperCamelCase = True UpperCamelCase = model(**A_ ) # If "past_key_values" is not returned, pass the test (e.g. RWKV uses a different cache name and format) if "past_key_values" not in outputs: return UpperCamelCase = ( getattr(A_ , 'decoder_layers' , A_ ) or getattr(A_ , 'num_decoder_layers' , A_ ) or config.num_hidden_layers ) UpperCamelCase = getattr(A_ , 'num_kv_heads' , config.num_attention_heads ) UpperCamelCase = getattr(A_ , 'd_model' , config.hidden_size ) UpperCamelCase = embed_dim // num_attention_heads UpperCamelCase = outputs['past_key_values'] self.assertEqual(len(A_ ) , A_ ) UpperCamelCase , UpperCamelCase = inputs['input_ids'].shape for i in range(A_ ): if config.new_decoder_architecture: UpperCamelCase = config.num_attention_heads elif config.multi_query: UpperCamelCase = 1 self.assertEqual(len(past_kv[0] ) , 2 ) # K V for the decoder = 2 self.assertEqual( past_kv[i][0].shape , (batch_size, num_attention_heads, seq_length, per_head_embed_dim) ) self.assertEqual( past_kv[i][1].shape , (batch_size, num_attention_heads, seq_length, per_head_embed_dim) ) @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase): @slow def UpperCAmelCase_ ( self )-> List[Any]: '''simple docstring''' UpperCamelCase = AutoTokenizer.from_pretrained('Rocketknight1/falcon-rw-1b' ) UpperCamelCase = FalconForCausalLM.from_pretrained('Rocketknight1/falcon-rw-1b' ) model.eval() model.to(A_ ) UpperCamelCase = tokenizer('My favorite food is' , return_tensors='pt' ).to(A_ ) UpperCamelCase = ( 'My favorite food is pizza. I love it so much that I have a pizza party every year for my birthday.' ) UpperCamelCase = model.generate(**A_ , do_sample=A_ , max_new_tokens=19 ) UpperCamelCase = tokenizer.batch_decode(A_ )[0] self.assertEqual(A_ , A_ ) @slow def UpperCAmelCase_ ( self )-> int: '''simple docstring''' for repo in ["Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b"]: UpperCamelCase = AutoTokenizer.from_pretrained(A_ ) UpperCamelCase = FalconForCausalLM.from_pretrained(A_ ) model.eval() model.to(A_ ) UpperCamelCase = tokenizer('My favorite food is' , return_tensors='pt' ).to(A_ ) # We just test that these run without errors - the models are randomly initialized # and so the actual text outputs will be garbage model.generate(**A_ , do_sample=A_ , max_new_tokens=4 ) model.generate(**A_ , do_sample=A_ , max_new_tokens=4 ) model.generate(**A_ , num_beams=2 , max_new_tokens=4 ) @slow def UpperCAmelCase_ ( self )-> List[str]: '''simple docstring''' with torch.no_grad(): for repo in [ "Rocketknight1/falcon-rw-1b", "Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b", ]: UpperCamelCase = AutoTokenizer.from_pretrained(A_ ) UpperCamelCase = FalconForCausalLM.from_pretrained(A_ ) model.eval() model.to(device=A_ ) UpperCamelCase = tokenizer('My favorite food is' , return_tensors='pt' ).to(A_ ) # Test results are the same with and without cache UpperCamelCase = model.generate(**A_ , do_sample=A_ , max_new_tokens=20 , use_cache=A_ ) UpperCamelCase = model.generate(**A_ , do_sample=A_ , max_new_tokens=20 , use_cache=A_ ) self.assertTrue((outputs_cache - outputs_no_cache).sum().item() == 0 )
251
'''simple docstring''' import torch import torch.nn as nn from transformers.modeling_utils import ModuleUtilsMixin from transformers.models.ta.modeling_ta import TaBlock, TaConfig, TaLayerNorm from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class SCREAMING_SNAKE_CASE__ ( snake_case_ , snake_case_ , snake_case_): @register_to_config def __init__( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ = False , )-> Optional[Any]: '''simple docstring''' super().__init__() UpperCamelCase = nn.Embedding(A_ , A_ ) UpperCamelCase = nn.Embedding(A_ , A_ ) UpperCamelCase = False UpperCamelCase = nn.Dropout(p=A_ ) UpperCamelCase = TaConfig( vocab_size=A_ , d_model=A_ , num_heads=A_ , d_kv=A_ , d_ff=A_ , dropout_rate=A_ , feed_forward_proj=A_ , is_decoder=A_ , is_encoder_decoder=A_ , ) UpperCamelCase = nn.ModuleList() for lyr_num in range(A_ ): UpperCamelCase = TaBlock(A_ ) self.encoders.append(A_ ) UpperCamelCase = TaLayerNorm(A_ ) UpperCamelCase = nn.Dropout(p=A_ ) def UpperCAmelCase_ ( self , A_ , A_ )-> Tuple: '''simple docstring''' UpperCamelCase = self.token_embedder(A_ ) UpperCamelCase = encoder_input_tokens.shape[1] UpperCamelCase = torch.arange(A_ , device=encoder_input_tokens.device ) x += self.position_encoding(A_ ) UpperCamelCase = self.dropout_pre(A_ ) # inverted the attention mask UpperCamelCase = encoder_input_tokens.size() UpperCamelCase = self.get_extended_attention_mask(A_ , A_ ) for lyr in self.encoders: UpperCamelCase = lyr(A_ , A_ )[0] UpperCamelCase = self.layer_norm(A_ ) return self.dropout_post(A_ ), encoder_inputs_mask
251
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available UpperCamelCase_ = {"""configuration_speech_encoder_decoder""": ["""SpeechEncoderDecoderConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = ["""SpeechEncoderDecoderModel"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = ["""FlaxSpeechEncoderDecoderModel"""] if TYPE_CHECKING: from .configuration_speech_encoder_decoder import SpeechEncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_encoder_decoder import SpeechEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_speech_encoder_decoder import FlaxSpeechEncoderDecoderModel else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
309
import sacrebleu as scb from packaging import version from sacrebleu import TER import datasets UpperCamelCase = '''\ @inproceedings{snover-etal-2006-study, title = "A Study of Translation Edit Rate with Targeted Human Annotation", author = "Snover, Matthew and Dorr, Bonnie and Schwartz, Rich and Micciulla, Linnea and Makhoul, John", booktitle = "Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers", month = aug # " 8-12", year = "2006", address = "Cambridge, Massachusetts, USA", publisher = "Association for Machine Translation in the Americas", url = "https://aclanthology.org/2006.amta-papers.25", pages = "223--231", } @inproceedings{post-2018-call, title = "A Call for Clarity in Reporting {BLEU} Scores", author = "Post, Matt", booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers", month = oct, year = "2018", address = "Belgium, Brussels", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/W18-6319", pages = "186--191", } ''' UpperCamelCase = '''\ TER (Translation Edit Rate, also called Translation Error Rate) is a metric to quantify the edit operations that a hypothesis requires to match a reference translation. We use the implementation that is already present in sacrebleu (https://github.com/mjpost/sacreBLEU#ter), which in turn is inspired by the TERCOM implementation, which can be found here: https://github.com/jhclark/tercom. The implementation here is slightly different from sacrebleu in terms of the required input format. The length of the references and hypotheses lists need to be the same, so you may need to transpose your references compared to sacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534 See the README.md file at https://github.com/mjpost/sacreBLEU#ter for more information. ''' UpperCamelCase = ''' Produces TER scores alongside the number of edits and reference length. Args: predictions (list of str): The system stream (a sequence of segments). references (list of list of str): A list of one or more reference streams (each a sequence of segments). normalized (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`. ignore_punct (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`. support_zh_ja_chars (boolean): If `True`, tokenization/normalization supports processing of Chinese characters, as well as Japanese Kanji, Hiragana, Katakana, and Phonetic Extensions of Katakana. Only applies if `normalized = True`. Defaults to `False`. case_sensitive (boolean): If `False`, makes all predictions and references lowercase to ignore differences in case. Defaults to `False`. Returns: \'score\' (float): TER score (num_edits / sum_ref_lengths * 100) \'num_edits\' (int): The cumulative number of edits \'ref_length\' (float): The cumulative average reference length Examples: Example 1: >>> predictions = ["does this sentence match??", ... "what about this sentence?", ... "What did the TER metric user say to the developer?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"], ... ["Your jokes are...", "...TERrible"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... case_sensitive=True) >>> print(results) {\'score\': 150.0, \'num_edits\': 15, \'ref_length\': 10.0} Example 2: >>> predictions = ["does this sentence match??", ... "what about this sentence?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... case_sensitive=True) >>> print(results) {\'score\': 62.5, \'num_edits\': 5, \'ref_length\': 8.0} Example 3: >>> predictions = ["does this sentence match??", ... "what about this sentence?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... normalized=True, ... case_sensitive=True) >>> print(results) {\'score\': 57.14285714285714, \'num_edits\': 6, \'ref_length\': 10.5} Example 4: >>> predictions = ["does this sentence match??", ... "what about this sentence?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... ignore_punct=True, ... case_sensitive=False) >>> print(results) {\'score\': 0.0, \'num_edits\': 0, \'ref_length\': 8.0} Example 5: >>> predictions = ["does this sentence match??", ... "what about this sentence?", ... "What did the TER metric user say to the developer?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"], ... ["Your jokes are...", "...TERrible"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... ignore_punct=True, ... case_sensitive=False) >>> print(results) {\'score\': 100.0, \'num_edits\': 10, \'ref_length\': 10.0} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class snake_case_ ( datasets.Metric ): def __UpperCamelCase ( self : Union[str, Any] ) -> Tuple: if version.parse(scb.__version__ ) < version.parse("1.4.12" ): raise ImportWarning( "To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n" "You can install it with `pip install \"sacrebleu>=1.4.12\"`." ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="http://www.cs.umd.edu/~snover/tercom/" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Sequence(datasets.Value("string" , id="sequence" ) , id="references" ), } ) , codebase_urls=["https://github.com/mjpost/sacreBLEU#ter"] , reference_urls=[ "https://github.com/jhclark/tercom", ] , ) def __UpperCamelCase ( self : Optional[Any] , lowercase_ : str , lowercase_ : Optional[int] , lowercase_ : bool = False , lowercase_ : bool = False , lowercase_ : bool = False , lowercase_ : bool = False , ) -> Any: lowercase__ : Optional[int] = len(references[0] ) if any(len(lowercase_ ) != references_per_prediction for refs in references ): raise ValueError("Sacrebleu requires the same number of references for each prediction" ) lowercase__ : Union[str, Any] = [[refs[i] for refs in references] for i in range(lowercase_ )] lowercase__ : str = TER( normalized=lowercase_ , no_punct=lowercase_ , asian_support=lowercase_ , case_sensitive=lowercase_ , ) lowercase__ : List[str] = sb_ter.corpus_score(lowercase_ , lowercase_ ) return {"score": output.score, "num_edits": output.num_edits, "ref_length": output.ref_length}
87
0
from typing import Dict, List, Optional, Tuple, Union import torch from ...models import AutoencoderKL, TransformeraDModel from ...schedulers import KarrasDiffusionSchedulers from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class UpperCAmelCase__ ( A__ ): """simple docstring""" def __init__( self : List[Any] , __lowerCamelCase : TransformeraDModel , __lowerCamelCase : AutoencoderKL , __lowerCamelCase : KarrasDiffusionSchedulers , __lowerCamelCase : Optional[Dict[int, str]] = None , ) -> str: super().__init__() self.register_modules(transformer=__lowerCamelCase , vae=__lowerCamelCase , scheduler=__lowerCamelCase ) # create a imagenet -> id dictionary for easier use SCREAMING_SNAKE_CASE__ = {} if idalabel is not None: for key, value in idalabel.items(): for label in value.split(''',''' ): SCREAMING_SNAKE_CASE__ = int(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = dict(sorted(self.labels.items() ) ) def lowercase_ ( self : Tuple , __lowerCamelCase : Union[str, List[str]] ) -> List[int]: if not isinstance(__lowerCamelCase , __lowerCamelCase ): SCREAMING_SNAKE_CASE__ = list(__lowerCamelCase ) for l in label: if l not in self.labels: raise ValueError( f'''{l} does not exist. Please make sure to select one of the following labels: \n {self.labels}.''' ) return [self.labels[l] for l in label] @torch.no_grad() def __call__( self : Optional[int] , __lowerCamelCase : List[int] , __lowerCamelCase : float = 4.0 , __lowerCamelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , __lowerCamelCase : int = 50 , __lowerCamelCase : Optional[str] = "pil" , __lowerCamelCase : bool = True , ) -> Union[ImagePipelineOutput, Tuple]: SCREAMING_SNAKE_CASE__ = len(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = self.transformer.config.sample_size SCREAMING_SNAKE_CASE__ = self.transformer.config.in_channels SCREAMING_SNAKE_CASE__ = randn_tensor( shape=(batch_size, latent_channels, latent_size, latent_size) , generator=__lowerCamelCase , device=self.device , dtype=self.transformer.dtype , ) SCREAMING_SNAKE_CASE__ = torch.cat([latents] * 2 ) if guidance_scale > 1 else latents SCREAMING_SNAKE_CASE__ = torch.tensor(__lowerCamelCase , device=self.device ).reshape(-1 ) SCREAMING_SNAKE_CASE__ = torch.tensor([1000] * batch_size , device=self.device ) SCREAMING_SNAKE_CASE__ = torch.cat([class_labels, class_null] , 0 ) if guidance_scale > 1 else class_labels # set step values self.scheduler.set_timesteps(__lowerCamelCase ) for t in self.progress_bar(self.scheduler.timesteps ): if guidance_scale > 1: SCREAMING_SNAKE_CASE__ = latent_model_input[: len(__lowerCamelCase ) // 2] SCREAMING_SNAKE_CASE__ = torch.cat([half, half] , dim=0 ) SCREAMING_SNAKE_CASE__ = self.scheduler.scale_model_input(__lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE__ = t if not torch.is_tensor(__lowerCamelCase ): # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can # This would be a good case for the `match` statement (Python 3.10+) SCREAMING_SNAKE_CASE__ = latent_model_input.device.type == '''mps''' if isinstance(__lowerCamelCase , __lowerCamelCase ): SCREAMING_SNAKE_CASE__ = torch.floataa if is_mps else torch.floataa else: SCREAMING_SNAKE_CASE__ = torch.intaa if is_mps else torch.intaa SCREAMING_SNAKE_CASE__ = torch.tensor([timesteps] , dtype=__lowerCamelCase , device=latent_model_input.device ) elif len(timesteps.shape ) == 0: SCREAMING_SNAKE_CASE__ = timesteps[None].to(latent_model_input.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML SCREAMING_SNAKE_CASE__ = timesteps.expand(latent_model_input.shape[0] ) # predict noise model_output SCREAMING_SNAKE_CASE__ = self.transformer( __lowerCamelCase , timestep=__lowerCamelCase , class_labels=__lowerCamelCase ).sample # perform guidance if guidance_scale > 1: SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = noise_pred[:, :latent_channels], noise_pred[:, latent_channels:] SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = torch.split(__lowerCamelCase , len(__lowerCamelCase ) // 2 , dim=0 ) SCREAMING_SNAKE_CASE__ = uncond_eps + guidance_scale * (cond_eps - uncond_eps) SCREAMING_SNAKE_CASE__ = torch.cat([half_eps, half_eps] , dim=0 ) SCREAMING_SNAKE_CASE__ = torch.cat([eps, rest] , dim=1 ) # learned sigma if self.transformer.config.out_channels // 2 == latent_channels: SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = torch.split(__lowerCamelCase , __lowerCamelCase , dim=1 ) else: SCREAMING_SNAKE_CASE__ = noise_pred # compute previous image: x_t -> x_t-1 SCREAMING_SNAKE_CASE__ = self.scheduler.step(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ).prev_sample if guidance_scale > 1: SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = latent_model_input.chunk(2 , dim=0 ) else: SCREAMING_SNAKE_CASE__ = latent_model_input SCREAMING_SNAKE_CASE__ = 1 / self.vae.config.scaling_factor * latents SCREAMING_SNAKE_CASE__ = self.vae.decode(__lowerCamelCase ).sample SCREAMING_SNAKE_CASE__ = (samples / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 SCREAMING_SNAKE_CASE__ = samples.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": SCREAMING_SNAKE_CASE__ = self.numpy_to_pil(__lowerCamelCase ) if not return_dict: return (samples,) return ImagePipelineOutput(images=__lowerCamelCase )
218
from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE : Any = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : Optional[Any] = { '''google/vivit-b-16x2-kinetics400''': ( '''https://huggingface.co/google/vivit-b-16x2-kinetics400/resolve/main/config.json''' ), # See all Vivit models at https://huggingface.co/models?filter=vivit } class UpperCAmelCase__ ( A__ ): """simple docstring""" a = "vivit" def __init__( self : str , __lowerCamelCase : List[Any]=224 , __lowerCamelCase : Optional[int]=32 , __lowerCamelCase : Tuple=[2, 16, 16] , __lowerCamelCase : Union[str, Any]=3 , __lowerCamelCase : Optional[Any]=768 , __lowerCamelCase : Any=12 , __lowerCamelCase : Optional[Any]=12 , __lowerCamelCase : List[str]=3072 , __lowerCamelCase : Any="gelu_fast" , __lowerCamelCase : Union[str, Any]=0.0 , __lowerCamelCase : int=0.0 , __lowerCamelCase : str=0.02 , __lowerCamelCase : Any=1e-06 , __lowerCamelCase : Dict=True , **__lowerCamelCase : Any , ) -> List[str]: SCREAMING_SNAKE_CASE__ = hidden_size SCREAMING_SNAKE_CASE__ = num_hidden_layers SCREAMING_SNAKE_CASE__ = num_attention_heads SCREAMING_SNAKE_CASE__ = intermediate_size SCREAMING_SNAKE_CASE__ = hidden_act SCREAMING_SNAKE_CASE__ = hidden_dropout_prob SCREAMING_SNAKE_CASE__ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = layer_norm_eps SCREAMING_SNAKE_CASE__ = image_size SCREAMING_SNAKE_CASE__ = num_frames SCREAMING_SNAKE_CASE__ = tubelet_size SCREAMING_SNAKE_CASE__ = num_channels SCREAMING_SNAKE_CASE__ = qkv_bias super().__init__(**__lowerCamelCase )
218
1
'''simple docstring''' from math import isclose, sqrt def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , UpperCamelCase ): """simple docstring""" lowerCAmelCase__ : List[str] = point_y / 4 / point_x lowerCAmelCase__ : Optional[Any] = 2 * normal_gradient / (1 + normal_gradient * normal_gradient) lowerCAmelCase__ : Tuple = (1 - normal_gradient * normal_gradient) / ( 1 + normal_gradient * normal_gradient ) lowerCAmelCase__ : Tuple = (sa - ca * incoming_gradient) / (ca + sa * incoming_gradient) # to find the next point, solve the simultaeneous equations: # y^2 + 4x^2 = 100 # y - b = m * (x - a) # ==> A x^2 + B x + C = 0 lowerCAmelCase__ : Tuple = outgoing_gradient**2 + 4 lowerCAmelCase__ : int = 2 * outgoing_gradient * (point_y - outgoing_gradient * point_x) lowerCAmelCase__ : Optional[Any] = (point_y - outgoing_gradient * point_x) ** 2 - 100 lowerCAmelCase__ : int = ( -linear_term - sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) lowerCAmelCase__ : str = ( -linear_term + sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) # two solutions, one of which is our input point lowerCAmelCase__ : Tuple = x_minus if isclose(_lowerCAmelCase , _lowerCAmelCase ) else x_plus lowerCAmelCase__ : List[Any] = point_y + outgoing_gradient * (next_x - point_x) return next_x, next_y, outgoing_gradient def _SCREAMING_SNAKE_CASE ( UpperCamelCase = 1.4 , UpperCamelCase = -9.6 ): """simple docstring""" lowerCAmelCase__ : int = 0 lowerCAmelCase__ : float = first_x_coord lowerCAmelCase__ : float = first_y_coord lowerCAmelCase__ : float = (10.1 - point_y) / (0.0 - point_x) while not (-0.01 <= point_x <= 0.01 and point_y > 0): lowerCAmelCase__ : Optional[Any] = next_point(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) num_reflections += 1 return num_reflections if __name__ == "__main__": print(F"""{solution() = }""")
37
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase : List[str] = logging.get_logger(__name__) _lowerCAmelCase : Optional[Any] = { '''facebook/data2vec-vision-base-ft''': ( '''https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json''' ), } class __magic_name__ ( lowerCamelCase__ ): """simple docstring""" __UpperCamelCase = '''data2vec-vision''' def __init__( self :int , snake_case :Optional[int]=768 , snake_case :Any=12 , snake_case :Any=12 , snake_case :Tuple=3_072 , snake_case :Any="gelu" , snake_case :Tuple=0.0 , snake_case :int=0.0 , snake_case :Any=0.02 , snake_case :str=1e-12 , snake_case :List[str]=224 , snake_case :Dict=16 , snake_case :int=3 , snake_case :int=False , snake_case :str=False , snake_case :List[Any]=False , snake_case :Optional[Any]=False , snake_case :Tuple=0.1 , snake_case :Optional[Any]=0.1 , snake_case :Any=True , snake_case :Optional[Any]=[3, 5, 7, 11] , snake_case :Dict=[1, 2, 3, 6] , snake_case :int=True , snake_case :List[Any]=0.4 , snake_case :Any=256 , snake_case :Union[str, Any]=1 , snake_case :Union[str, Any]=False , snake_case :Any=255 , **snake_case :int , ): '''simple docstring''' super().__init__(**snake_case ) A_ : Dict = hidden_size A_ : Tuple = num_hidden_layers A_ : List[str] = num_attention_heads A_ : Any = intermediate_size A_ : Optional[Any] = hidden_act A_ : Any = hidden_dropout_prob A_ : List[str] = attention_probs_dropout_prob A_ : Optional[Any] = initializer_range A_ : List[str] = layer_norm_eps A_ : str = image_size A_ : Optional[int] = patch_size A_ : int = num_channels A_ : Optional[Any] = use_mask_token A_ : Optional[Any] = use_absolute_position_embeddings A_ : Optional[int] = use_relative_position_bias A_ : Dict = use_shared_relative_position_bias A_ : Any = layer_scale_init_value A_ : Optional[Any] = drop_path_rate A_ : Dict = use_mean_pooling # decode head attributes (semantic segmentation) A_ : Tuple = out_indices A_ : Optional[Any] = pool_scales # auxiliary head attributes (semantic segmentation) A_ : str = use_auxiliary_head A_ : List[Any] = auxiliary_loss_weight A_ : List[str] = auxiliary_channels A_ : Dict = auxiliary_num_convs A_ : List[str] = auxiliary_concat_input A_ : Optional[int] = semantic_loss_ignore_index class __magic_name__ ( lowerCamelCase__ ): """simple docstring""" __UpperCamelCase = version.parse('''1.11''' ) @property def SCREAMING_SNAKE_CASE ( self :Union[str, Any] ): '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def SCREAMING_SNAKE_CASE ( self :Tuple ): '''simple docstring''' return 1e-4
300
0
"""simple docstring""" import subprocess import sys from transformers import BertConfig, BertModel, BertTokenizer, pipeline from transformers.testing_utils import TestCasePlus, require_torch class UpperCamelCase ( lowercase ): @require_torch def _lowercase (self : Union[str, Any]) -> Optional[Any]: # this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before # `transformers` is loaded, and it's too late for inside pytest - so we are changing it # while running an external program # python one-liner segments # this must be loaded before socket.socket is monkey-patched __snake_case : Any = '\nfrom transformers import BertConfig, BertModel, BertTokenizer, pipeline\n ' __snake_case : Tuple = '\nmname = "hf-internal-testing/tiny-random-bert"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nBertTokenizer.from_pretrained(mname)\npipe = pipeline(task="fill-mask", model=mname)\nprint("success")\n ' __snake_case : int = '\nimport socket\ndef offline_socket(*args, **kwargs): raise RuntimeError("Offline mode is enabled, we shouldn\'t access internet")\nsocket.socket = offline_socket\n ' # Force fetching the files so that we can use the cache __snake_case : int = 'hf-internal-testing/tiny-random-bert' BertConfig.from_pretrained(_A) BertModel.from_pretrained(_A) BertTokenizer.from_pretrained(_A) pipeline(task='fill-mask' , model=_A) # baseline - just load from_pretrained with normal network __snake_case : Union[str, Any] = [sys.executable, '-c', '\n'.join([load, run, mock])] # should succeed __snake_case : Union[str, Any] = self.get_env() # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files __snake_case : str = '1' __snake_case : Union[str, Any] = subprocess.run(_A , env=_A , check=_A , capture_output=_A) self.assertEqual(result.returncode , 0 , result.stderr) self.assertIn('success' , result.stdout.decode()) @require_torch def _lowercase (self : Union[str, Any]) -> Union[str, Any]: # python one-liner segments # this must be loaded before socket.socket is monkey-patched __snake_case : Optional[Any] = '\nfrom transformers import BertConfig, BertModel, BertTokenizer, pipeline\n ' __snake_case : Optional[Any] = '\nmname = "hf-internal-testing/tiny-random-bert"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nBertTokenizer.from_pretrained(mname)\npipe = pipeline(task="fill-mask", model=mname)\nprint("success")\n ' __snake_case : Union[str, Any] = '\nimport socket\ndef offline_socket(*args, **kwargs): raise socket.error("Faking flaky internet")\nsocket.socket = offline_socket\n ' # Force fetching the files so that we can use the cache __snake_case : str = 'hf-internal-testing/tiny-random-bert' BertConfig.from_pretrained(_A) BertModel.from_pretrained(_A) BertTokenizer.from_pretrained(_A) pipeline(task='fill-mask' , model=_A) # baseline - just load from_pretrained with normal network __snake_case : Any = [sys.executable, '-c', '\n'.join([load, run, mock])] # should succeed __snake_case : int = self.get_env() __snake_case : Tuple = subprocess.run(_A , env=_A , check=_A , capture_output=_A) self.assertEqual(result.returncode , 0 , result.stderr) self.assertIn('success' , result.stdout.decode()) @require_torch def _lowercase (self : int) -> Any: # this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before # `transformers` is loaded, and it's too late for inside pytest - so we are changing it # while running an external program # python one-liner segments # this must be loaded before socket.socket is monkey-patched __snake_case : int = '\nfrom transformers import BertConfig, BertModel, BertTokenizer\n ' __snake_case : int = '\nmname = "hf-internal-testing/tiny-random-bert-sharded"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nprint("success")\n ' __snake_case : Optional[int] = '\nimport socket\ndef offline_socket(*args, **kwargs): raise ValueError("Offline mode is enabled")\nsocket.socket = offline_socket\n ' # baseline - just load from_pretrained with normal network __snake_case : Optional[Any] = [sys.executable, '-c', '\n'.join([load, run])] # should succeed __snake_case : Optional[int] = self.get_env() __snake_case : Dict = subprocess.run(_A , env=_A , check=_A , capture_output=_A) self.assertEqual(result.returncode , 0 , result.stderr) self.assertIn('success' , result.stdout.decode()) # next emulate no network __snake_case : Optional[Any] = [sys.executable, '-c', '\n'.join([load, mock, run])] # Doesn't fail anymore since the model is in the cache due to other tests, so commenting this. # env["TRANSFORMERS_OFFLINE"] = "0" # result = subprocess.run(cmd, env=env, check=False, capture_output=True) # self.assertEqual(result.returncode, 1, result.stderr) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files __snake_case : Union[str, Any] = '1' __snake_case : str = subprocess.run(_A , env=_A , check=_A , capture_output=_A) self.assertEqual(result.returncode , 0 , result.stderr) self.assertIn('success' , result.stdout.decode()) @require_torch def _lowercase (self : str) -> Dict: __snake_case : Dict = '\nfrom transformers import pipeline\n ' __snake_case : List[Any] = '\nmname = "hf-internal-testing/tiny-random-bert"\npipe = pipeline(model=mname)\n ' __snake_case : List[str] = '\nimport socket\ndef offline_socket(*args, **kwargs): raise socket.error("Offline mode is enabled")\nsocket.socket = offline_socket\n ' __snake_case : str = self.get_env() __snake_case : Tuple = '1' __snake_case : Tuple = [sys.executable, '-c', '\n'.join([load, mock, run])] __snake_case : Optional[Any] = subprocess.run(_A , env=_A , check=_A , capture_output=_A) self.assertEqual(result.returncode , 1 , result.stderr) self.assertIn( 'You cannot infer task automatically within `pipeline` when using offline mode' , result.stderr.decode().replace('\n' , '') , ) @require_torch def _lowercase (self : int) -> Optional[Any]: __snake_case : int = '\nfrom transformers import AutoModel\n ' __snake_case : str = '\nmname = "hf-internal-testing/test_dynamic_model"\nAutoModel.from_pretrained(mname, trust_remote_code=True)\nprint("success")\n ' # baseline - just load from_pretrained with normal network __snake_case : str = [sys.executable, '-c', '\n'.join([load, run])] # should succeed __snake_case : str = self.get_env() __snake_case : Dict = subprocess.run(_A , env=_A , check=_A , capture_output=_A) self.assertEqual(result.returncode , 0 , result.stderr) self.assertIn('success' , result.stdout.decode()) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files __snake_case : List[str] = '1' __snake_case : Optional[int] = subprocess.run(_A , env=_A , check=_A , capture_output=_A) self.assertEqual(result.returncode , 0 , result.stderr) self.assertIn('success' , result.stdout.decode())
95
"""simple docstring""" from __future__ import annotations from math import pow, sqrt def __UpperCAmelCase ( UpperCAmelCase_ : float , UpperCAmelCase_ : float , UpperCAmelCase_ : float ) -> dict[str, float]: '''simple docstring''' if (resistance, reactance, impedance).count(0 ) != 1: raise ValueError('One and only one argument must be 0' ) if resistance == 0: return {"resistance": sqrt(pow(UpperCAmelCase_ , 2 ) - pow(UpperCAmelCase_ , 2 ) )} elif reactance == 0: return {"reactance": sqrt(pow(UpperCAmelCase_ , 2 ) - pow(UpperCAmelCase_ , 2 ) )} elif impedance == 0: return {"impedance": sqrt(pow(UpperCAmelCase_ , 2 ) + pow(UpperCAmelCase_ , 2 ) )} else: raise ValueError('Exactly one argument must be 0' ) if __name__ == "__main__": import doctest doctest.testmod()
95
1
import numpy as np def lowerCamelCase__ ( A__ : np.ndarray , A__ : float ): '''simple docstring''' return np.where(vector > 0 , A__ , (alpha * (np.exp(A__ ) - 1)) ) if __name__ == "__main__": import doctest doctest.testmod()
12
'''simple docstring''' import datasets from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py UpperCAmelCase_ = '\\n@INPROCEEDINGS{Papineni02bleu:a,\n author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu},\n title = {BLEU: a Method for Automatic Evaluation of Machine Translation},\n booktitle = {},\n year = {2002},\n pages = {311--318}\n}\n@inproceedings{lin-och-2004-orange,\n title = "{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation",\n author = "Lin, Chin-Yew and\n Och, Franz Josef",\n booktitle = "{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics",\n month = "aug 23{--}aug 27",\n year = "2004",\n address = "Geneva, Switzerland",\n publisher = "COLING",\n url = "https://www.aclweb.org/anthology/C04-1072",\n pages = "501--507",\n}\n' UpperCAmelCase_ = '\\nBLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another.\nQuality is considered to be the correspondence between a machine\'s output and that of a human: "the closer a machine translation is to a professional human translation,\nthe better it is" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and\nremains one of the most popular automated and inexpensive metrics.\n\nScores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations.\nThose scores are then averaged over the whole corpus to reach an estimate of the translation\'s overall quality. Intelligibility or grammatical correctness\nare not taken into account[citation needed].\n\nBLEU\'s output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1\nrepresenting more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the\nreference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional\nreference translations will increase the BLEU score.\n' UpperCAmelCase_ = '\nComputes BLEU score of translated segments against one or more references.\nArgs:\n predictions: list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n max_order: Maximum n-gram order to use when computing BLEU score.\n smooth: Whether or not to apply Lin et al. 2004 smoothing.\nReturns:\n \'bleu\': bleu score,\n \'precisions\': geometric mean of n-gram precisions,\n \'brevity_penalty\': brevity penalty,\n \'length_ratio\': ratio of lengths,\n \'translation_length\': translation_length,\n \'reference_length\': reference_length\nExamples:\n\n >>> predictions = [\n ... ["hello", "there", "general", "kenobi"], # tokenized prediction of the first sample\n ... ["foo", "bar", "foobar"] # tokenized prediction of the second sample\n ... ]\n >>> references = [\n ... [["hello", "there", "general", "kenobi"], ["hello", "there", "!"]], # tokenized references for the first sample (2 references)\n ... [["foo", "bar", "foobar"]] # tokenized references for the second sample (1 reference)\n ... ]\n >>> bleu = datasets.load_metric("bleu")\n >>> results = bleu.compute(predictions=predictions, references=references)\n >>> print(results["bleu"])\n 1.0\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase_ ( datasets.Metric ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self : int ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Sequence(datasets.Value("""string""" , id="""token""" ) , id="""sequence""" ), """references""": datasets.Sequence( datasets.Sequence(datasets.Value("""string""" , id="""token""" ) , id="""sequence""" ) , id="""references""" ), } ) , codebase_urls=["""https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py"""] , reference_urls=[ """https://en.wikipedia.org/wiki/BLEU""", """https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213""", ] , ) def SCREAMING_SNAKE_CASE__ ( self : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[Any]=4 , _UpperCAmelCase : Union[str, Any]=False ): """simple docstring""" UpperCAmelCase__ = compute_bleu( reference_corpus=_UpperCAmelCase , translation_corpus=_UpperCAmelCase , max_order=_UpperCAmelCase , smooth=_UpperCAmelCase ) ((UpperCAmelCase__) , (UpperCAmelCase__) , (UpperCAmelCase__) , (UpperCAmelCase__) , (UpperCAmelCase__) , (UpperCAmelCase__)) = score return { "bleu": bleu, "precisions": precisions, "brevity_penalty": bp, "length_ratio": ratio, "translation_length": translation_length, "reference_length": reference_length, }
346
0
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor from .base import PipelineTool class lowercase__ ( __lowerCamelCase ): '''simple docstring''' a : Optional[int] = "openai/whisper-base" a : str = ( "This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the " "transcribed text." ) a : Optional[int] = "transcriber" a : Optional[int] = WhisperProcessor a : str = WhisperForConditionalGeneration a : Any = ["audio"] a : List[str] = ["text"] def UpperCamelCase__ ( self, __magic_name__ ) -> Dict: """simple docstring""" return self.pre_processor(__magic_name__, return_tensors='''pt''' ).input_features def UpperCamelCase__ ( self, __magic_name__ ) -> Any: """simple docstring""" return self.model.generate(inputs=__magic_name__ ) def UpperCamelCase__ ( self, __magic_name__ ) -> Any: """simple docstring""" return self.pre_processor.batch_decode(__magic_name__, skip_special_tokens=__magic_name__ )[0]
247
import qiskit def lowerCAmelCase_ ( __UpperCAmelCase: int , __UpperCAmelCase: int ) -> qiskit.result.counts.Counts: UpperCamelCase__ : Optional[Any] = qiskit.Aer.get_backend('''aer_simulator''' ) # Create a Quantum Circuit acting on the q register UpperCamelCase__ : str = qiskit.QuantumCircuit(__UpperCAmelCase , __UpperCAmelCase ) # Apply X (NOT) Gate to Qubits 0 & 1 circuit.x(0 ) circuit.x(1 ) # Map the quantum measurement to the classical bits circuit.measure([0, 1] , [0, 1] ) # Execute the circuit on the qasm simulator UpperCamelCase__ : Union[str, Any] = qiskit.execute(__UpperCAmelCase , __UpperCAmelCase , shots=1000 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(__UpperCAmelCase ) if __name__ == "__main__": UpperCAmelCase_ = single_qubit_measure(2, 2) print(F'''Total count for various states are: {counts}''')
247
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCamelCase_ = { "configuration_funnel": ["FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP", "FunnelConfig"], "convert_funnel_original_tf_checkpoint_to_pytorch": [], "tokenization_funnel": ["FunnelTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = ["FunnelTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ "FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST", "FunnelBaseModel", "FunnelForMaskedLM", "FunnelForMultipleChoice", "FunnelForPreTraining", "FunnelForQuestionAnswering", "FunnelForSequenceClassification", "FunnelForTokenClassification", "FunnelModel", "FunnelPreTrainedModel", "load_tf_weights_in_funnel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ "TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST", "TFFunnelBaseModel", "TFFunnelForMaskedLM", "TFFunnelForMultipleChoice", "TFFunnelForPreTraining", "TFFunnelForQuestionAnswering", "TFFunnelForSequenceClassification", "TFFunnelForTokenClassification", "TFFunnelModel", "TFFunnelPreTrainedModel", ] if TYPE_CHECKING: from .configuration_funnel import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP, FunnelConfig from .tokenization_funnel import FunnelTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_funnel_fast import FunnelTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_funnel import ( FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, FunnelBaseModel, FunnelForMaskedLM, FunnelForMultipleChoice, FunnelForPreTraining, FunnelForQuestionAnswering, FunnelForSequenceClassification, FunnelForTokenClassification, FunnelModel, FunnelPreTrainedModel, load_tf_weights_in_funnel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_funnel import ( TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, TFFunnelPreTrainedModel, ) else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
251
'''simple docstring''' import logging import math from functools import partial from typing import Any, Callable, Dict, Iterable, List, Optional, Sequence, Tuple, Union import torch from .tensor_utils import tensor_tree_map, tree_map def lowercase__( __UpperCamelCase: Union[dict, list, tuple, torch.Tensor] ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = [] if isinstance(__UpperCamelCase ,__UpperCamelCase ): for v in tree.values(): shapes.extend(_fetch_dims(__UpperCamelCase ) ) elif isinstance(__UpperCamelCase ,(list, tuple) ): for t in tree: shapes.extend(_fetch_dims(__UpperCamelCase ) ) elif isinstance(__UpperCamelCase ,torch.Tensor ): shapes.append(tree.shape ) else: raise ValueError('Not supported' ) return shapes @torch.jit.ignore def lowercase__( __UpperCamelCase: int ,__UpperCamelCase: Tuple[int, ...] ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = [] for d in reversed(__UpperCamelCase ): idx.append(flat_idx % d ) SCREAMING_SNAKE_CASE : Tuple = flat_idx // d return tuple(reversed(__UpperCamelCase ) ) @torch.jit.ignore def lowercase__( __UpperCamelCase: Sequence[int] ,__UpperCamelCase: Sequence[int] ,__UpperCamelCase: Sequence[int] ,__UpperCamelCase: Optional[Sequence[bool]] = None ,__UpperCamelCase: Optional[Sequence[bool]] = None ,): """simple docstring""" def reduce_edge_list(__UpperCamelCase: List[bool] ) -> None: SCREAMING_SNAKE_CASE : List[str] = True for i in range(len(__UpperCamelCase ) ): SCREAMING_SNAKE_CASE : Optional[Any] = -1 * (i + 1) l[reversed_idx] &= tally SCREAMING_SNAKE_CASE : str = l[reversed_idx] if start_edges is None: SCREAMING_SNAKE_CASE : int = [s == 0 for s in start] reduce_edge_list(__UpperCamelCase ) if end_edges is None: SCREAMING_SNAKE_CASE : Tuple = [e == (d - 1) for e, d in zip(__UpperCamelCase ,__UpperCamelCase )] reduce_edge_list(__UpperCamelCase ) # Base cases. Either start/end are empty and we're done, or the final, # one-dimensional tensor can be simply sliced if len(__UpperCamelCase ) == 0: return [()] elif len(__UpperCamelCase ) == 1: return [(slice(start[0] ,end[0] + 1 ),)] SCREAMING_SNAKE_CASE : List[Tuple[slice, ...]] = [] SCREAMING_SNAKE_CASE : List[slice] = [] # Dimensions common to start and end can be selected directly for s, e in zip(__UpperCamelCase ,__UpperCamelCase ): if s == e: path_list.append(slice(__UpperCamelCase ,s + 1 ) ) else: break SCREAMING_SNAKE_CASE : Tuple[slice, ...] = tuple(__UpperCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = len(__UpperCamelCase ) # start == end, and we're done if divergence_idx == len(__UpperCamelCase ): return [path] def upper() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None SCREAMING_SNAKE_CASE : List[str] = start[divergence_idx] return tuple( path + (slice(__UpperCamelCase ,sdi + 1 ),) + s for s in _get_minimal_slice_set( start[divergence_idx + 1 :] ,[d - 1 for d in dims[divergence_idx + 1 :]] ,dims[divergence_idx + 1 :] ,start_edges=start_edges[divergence_idx + 1 :] ,end_edges=[True for _ in end_edges[divergence_idx + 1 :]] ,) ) def lower() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None SCREAMING_SNAKE_CASE : List[Any] = end[divergence_idx] return tuple( path + (slice(__UpperCamelCase ,edi + 1 ),) + s for s in _get_minimal_slice_set( [0 for _ in start[divergence_idx + 1 :]] ,end[divergence_idx + 1 :] ,dims[divergence_idx + 1 :] ,start_edges=[True for _ in start_edges[divergence_idx + 1 :]] ,end_edges=end_edges[divergence_idx + 1 :] ,) ) # If both start and end are at the edges of the subtree rooted at # divergence_idx, we can just select the whole subtree at once if start_edges[divergence_idx] and end_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] ,end[divergence_idx] + 1 ),) ) # If just start is at the edge, we can grab almost all of the subtree, # treating only the ragged bottom edge as an edge case elif start_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] ,end[divergence_idx] ),) ) slices.extend(lower() ) # Analogous to the previous case, but the top is ragged this time elif end_edges[divergence_idx]: slices.extend(upper() ) slices.append(path + (slice(start[divergence_idx] + 1 ,end[divergence_idx] + 1 ),) ) # If both sides of the range are ragged, we need to handle both sides # separately. If there's contiguous meat in between them, we can index it # in one big chunk else: slices.extend(upper() ) SCREAMING_SNAKE_CASE : List[str] = end[divergence_idx] - start[divergence_idx] if middle_ground > 1: slices.append(path + (slice(start[divergence_idx] + 1 ,end[divergence_idx] ),) ) slices.extend(lower() ) return slices @torch.jit.ignore def lowercase__( __UpperCamelCase: torch.Tensor ,__UpperCamelCase: int ,__UpperCamelCase: int ,__UpperCamelCase: int ): """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = t.shape[:no_batch_dims] SCREAMING_SNAKE_CASE : str = list(_flat_idx_to_idx(__UpperCamelCase ,__UpperCamelCase ) ) # _get_minimal_slice_set is inclusive SCREAMING_SNAKE_CASE : int = list(_flat_idx_to_idx(flat_end - 1 ,__UpperCamelCase ) ) # Get an ordered list of slices to perform SCREAMING_SNAKE_CASE : str = _get_minimal_slice_set( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,) SCREAMING_SNAKE_CASE : Dict = [t[s] for s in slices] return torch.cat([s.view((-1,) + t.shape[no_batch_dims:] ) for s in sliced_tensors] ) def lowercase__( __UpperCamelCase: Callable ,__UpperCamelCase: Dict[str, Any] ,__UpperCamelCase: int ,__UpperCamelCase: int ,__UpperCamelCase: bool = False ,__UpperCamelCase: Any = None ,__UpperCamelCase: bool = False ,): """simple docstring""" if not (len(__UpperCamelCase ) > 0): raise ValueError('Must provide at least one input' ) SCREAMING_SNAKE_CASE : List[Any] = [shape[:no_batch_dims] for shape in _fetch_dims(__UpperCamelCase )] SCREAMING_SNAKE_CASE : Optional[int] = tuple([max(__UpperCamelCase ) for s in zip(*__UpperCamelCase )] ) def _prep_inputs(__UpperCamelCase: torch.Tensor ) -> torch.Tensor: if not low_mem: if not sum(t.shape[:no_batch_dims] ) == no_batch_dims: SCREAMING_SNAKE_CASE : str = t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) SCREAMING_SNAKE_CASE : str = t.reshape(-1 ,*t.shape[no_batch_dims:] ) else: SCREAMING_SNAKE_CASE : Union[str, Any] = t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) return t SCREAMING_SNAKE_CASE : Dict[str, Any] = tensor_tree_map(_prep_inputs ,__UpperCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = None if _out is not None: SCREAMING_SNAKE_CASE : Tuple = tensor_tree_map(lambda __UpperCamelCase : t.view([-1] + list(t.shape[no_batch_dims:] ) ) ,_out ) SCREAMING_SNAKE_CASE : List[Any] = 1 for d in orig_batch_dims: flat_batch_dim *= d SCREAMING_SNAKE_CASE : int = flat_batch_dim // chunk_size + (flat_batch_dim % chunk_size != 0) def _select_chunk(__UpperCamelCase: torch.Tensor ) -> torch.Tensor: return t[i : i + chunk_size] if t.shape[0] != 1 else t SCREAMING_SNAKE_CASE : Union[str, Any] = 0 SCREAMING_SNAKE_CASE : List[str] = prepped_outputs for _ in range(__UpperCamelCase ): # Chunk the input if not low_mem: SCREAMING_SNAKE_CASE : List[str] = _select_chunk else: SCREAMING_SNAKE_CASE : Union[str, Any] = partial( _chunk_slice ,flat_start=__UpperCamelCase ,flat_end=min(__UpperCamelCase ,i + chunk_size ) ,no_batch_dims=len(__UpperCamelCase ) ,) SCREAMING_SNAKE_CASE : Dict[str, Any] = tensor_tree_map(__UpperCamelCase ,__UpperCamelCase ) # Run the layer on the chunk SCREAMING_SNAKE_CASE : int = layer(**__UpperCamelCase ) # Allocate space for the output if out is None: SCREAMING_SNAKE_CASE : List[Any] = tensor_tree_map(lambda __UpperCamelCase : t.new_zeros((flat_batch_dim,) + t.shape[1:] ) ,__UpperCamelCase ) # Put the chunk in its pre-allocated space if isinstance(__UpperCamelCase ,__UpperCamelCase ): def assign(__UpperCamelCase: dict ,__UpperCamelCase: dict ) -> None: for k, v in da.items(): if isinstance(__UpperCamelCase ,__UpperCamelCase ): assign(__UpperCamelCase ,da[k] ) else: if _add_into_out: v[i : i + chunk_size] += da[k] else: SCREAMING_SNAKE_CASE : Union[str, Any] = da[k] assign(__UpperCamelCase ,__UpperCamelCase ) elif isinstance(__UpperCamelCase ,__UpperCamelCase ): for xa, xa in zip(__UpperCamelCase ,__UpperCamelCase ): if _add_into_out: xa[i : i + chunk_size] += xa else: SCREAMING_SNAKE_CASE : List[str] = xa elif isinstance(__UpperCamelCase ,torch.Tensor ): if _add_into_out: out[i : i + chunk_size] += output_chunk else: SCREAMING_SNAKE_CASE : Optional[int] = output_chunk else: raise ValueError('Not supported' ) i += chunk_size SCREAMING_SNAKE_CASE : Any = tensor_tree_map(lambda __UpperCamelCase : t.view(orig_batch_dims + t.shape[1:] ) ,__UpperCamelCase ) return out class _a : '''simple docstring''' def __init__( self, A = 512, ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = max_chunk_size SCREAMING_SNAKE_CASE : Optional[int] = None SCREAMING_SNAKE_CASE : Optional[tuple] = None def UpperCamelCase_ ( self, A, A, A ): '''simple docstring''' logging.info('Tuning chunk size...' ) if min_chunk_size >= self.max_chunk_size: return min_chunk_size SCREAMING_SNAKE_CASE : List[int] = [2**l for l in range(int(math.log(self.max_chunk_size, 2 ) ) + 1 )] SCREAMING_SNAKE_CASE : List[str] = [c for c in candidates if c > min_chunk_size] SCREAMING_SNAKE_CASE : Optional[int] = [min_chunk_size] + candidates candidates[-1] += 4 def test_chunk_size(A ) -> bool: try: with torch.no_grad(): fn(*A, chunk_size=A ) return True except RuntimeError: return False SCREAMING_SNAKE_CASE : Any = 0 SCREAMING_SNAKE_CASE : Union[str, Any] = len(A ) - 1 while i > min_viable_chunk_size_index: SCREAMING_SNAKE_CASE : Any = test_chunk_size(candidates[i] ) if not viable: SCREAMING_SNAKE_CASE : List[Any] = (min_viable_chunk_size_index + i) // 2 else: SCREAMING_SNAKE_CASE : Optional[Any] = i SCREAMING_SNAKE_CASE : List[Any] = (i + len(A ) - 1) // 2 return candidates[min_viable_chunk_size_index] def UpperCamelCase_ ( self, A, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = True for aa, aa in zip(A, A ): assert type(A ) == type(A ) if isinstance(A, (list, tuple) ): consistent &= self._compare_arg_caches(A, A ) elif isinstance(A, A ): SCREAMING_SNAKE_CASE : Optional[Any] = [v for _, v in sorted(aa.items(), key=lambda A : x[0] )] SCREAMING_SNAKE_CASE : Optional[int] = [v for _, v in sorted(aa.items(), key=lambda A : x[0] )] consistent &= self._compare_arg_caches(A, A ) else: consistent &= aa == aa return consistent def UpperCamelCase_ ( self, A, A, A, ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = True SCREAMING_SNAKE_CASE : tuple = tree_map(lambda A : a.shape if isinstance(A, torch.Tensor ) else a, A, A ) if self.cached_arg_data is not None: # If args have changed shape/value, we need to re-tune assert len(self.cached_arg_data ) == len(A ) SCREAMING_SNAKE_CASE : str = self._compare_arg_caches(self.cached_arg_data, A ) else: # Otherwise, we can reuse the precomputed value SCREAMING_SNAKE_CASE : Union[str, Any] = False if not consistent: SCREAMING_SNAKE_CASE : Any = self._determine_favorable_chunk_size( A, A, A, ) SCREAMING_SNAKE_CASE : Dict = arg_data assert self.cached_chunk_size is not None return self.cached_chunk_size
251
1
import random import unittest import torch from diffusers import IFInpaintingSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class A ( __lowercase , __lowercase , unittest.TestCase ): __UpperCAmelCase : Any = IFInpaintingSuperResolutionPipeline __UpperCAmelCase : Tuple = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'''width''', '''height'''} __UpperCAmelCase : str = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({'original_image'} ) __UpperCAmelCase : List[str] = PipelineTesterMixin.required_optional_params - {'''latents'''} def lowercase_ (self : Any ) -> Dict: """simple docstring""" return self._get_superresolution_dummy_components() def lowercase_ (self : List[str] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : List[str]=0 ) -> Tuple: """simple docstring""" if str(UpperCAmelCase__ ).startswith("mps" ): UpperCAmelCase__ = torch.manual_seed(UpperCAmelCase__ ) else: UpperCAmelCase__ = torch.Generator(device=UpperCAmelCase__ ).manual_seed(UpperCAmelCase__ ) UpperCAmelCase__ = floats_tensor((1, 3, 1_6, 1_6) , rng=random.Random(UpperCAmelCase__ ) ).to(UpperCAmelCase__ ) UpperCAmelCase__ = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(UpperCAmelCase__ ) ).to(UpperCAmelCase__ ) UpperCAmelCase__ = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(UpperCAmelCase__ ) ).to(UpperCAmelCase__ ) UpperCAmelCase__ = { "prompt": "A painting of a squirrel eating a burger", "image": image, "original_image": original_image, "mask_image": mask_image, "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def lowercase_ (self : Optional[Any] ) -> List[str]: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def lowercase_ (self : Dict ) -> Tuple: """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != "cuda" , reason="float16 requires CUDA" ) def lowercase_ (self : Any ) -> int: """simple docstring""" super().test_save_load_floataa(expected_max_diff=1E-1 ) def lowercase_ (self : List[Any] ) -> Dict: """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def lowercase_ (self : Union[str, Any] ) -> Any: """simple docstring""" self._test_save_load_local() def lowercase_ (self : Tuple ) -> str: """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
361
from __future__ import annotations def lowerCAmelCase_ ( __A ) -> bool: '''simple docstring''' UpperCAmelCase__ = str(__A ) return n == n[::-1] def lowerCAmelCase_ ( __A = 1_000_000 ) -> Optional[int]: '''simple docstring''' UpperCAmelCase__ = 0 for i in range(1, __A ): if is_palindrome(__A ) and is_palindrome(bin(__A ).split("b" )[1] ): total += i return total if __name__ == "__main__": print(solution(int(str(input().strip()))))
143
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _lowerCAmelCase : Dict = { "configuration_roberta_prelayernorm": [ "ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP", "RobertaPreLayerNormConfig", "RobertaPreLayerNormOnnxConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Dict = [ "ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST", "RobertaPreLayerNormForCausalLM", "RobertaPreLayerNormForMaskedLM", "RobertaPreLayerNormForMultipleChoice", "RobertaPreLayerNormForQuestionAnswering", "RobertaPreLayerNormForSequenceClassification", "RobertaPreLayerNormForTokenClassification", "RobertaPreLayerNormModel", "RobertaPreLayerNormPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Optional[int] = [ "TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST", "TFRobertaPreLayerNormForCausalLM", "TFRobertaPreLayerNormForMaskedLM", "TFRobertaPreLayerNormForMultipleChoice", "TFRobertaPreLayerNormForQuestionAnswering", "TFRobertaPreLayerNormForSequenceClassification", "TFRobertaPreLayerNormForTokenClassification", "TFRobertaPreLayerNormMainLayer", "TFRobertaPreLayerNormModel", "TFRobertaPreLayerNormPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : List[str] = [ "FlaxRobertaPreLayerNormForCausalLM", "FlaxRobertaPreLayerNormForMaskedLM", "FlaxRobertaPreLayerNormForMultipleChoice", "FlaxRobertaPreLayerNormForQuestionAnswering", "FlaxRobertaPreLayerNormForSequenceClassification", "FlaxRobertaPreLayerNormForTokenClassification", "FlaxRobertaPreLayerNormModel", "FlaxRobertaPreLayerNormPreTrainedModel", ] if TYPE_CHECKING: from .configuration_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaPreLayerNormConfig, RobertaPreLayerNormOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaPreLayerNormForCausalLM, RobertaPreLayerNormForMaskedLM, RobertaPreLayerNormForMultipleChoice, RobertaPreLayerNormForQuestionAnswering, RobertaPreLayerNormForSequenceClassification, RobertaPreLayerNormForTokenClassification, RobertaPreLayerNormModel, RobertaPreLayerNormPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta_prelayernorm import ( TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaPreLayerNormForCausalLM, TFRobertaPreLayerNormForMaskedLM, TFRobertaPreLayerNormForMultipleChoice, TFRobertaPreLayerNormForQuestionAnswering, TFRobertaPreLayerNormForSequenceClassification, TFRobertaPreLayerNormForTokenClassification, TFRobertaPreLayerNormMainLayer, TFRobertaPreLayerNormModel, TFRobertaPreLayerNormPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormPreTrainedModel, ) else: import sys _lowerCAmelCase : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
218
from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __magic_name__ ( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE = ['image_processor', 'tokenizer'] SCREAMING_SNAKE_CASE = 'BridgeTowerImageProcessor' SCREAMING_SNAKE_CASE = ('RobertaTokenizer', 'RobertaTokenizerFast') def __init__( self , __snake_case , __snake_case ) -> Optional[int]: '''simple docstring''' super().__init__(__snake_case , __snake_case ) def __call__( self , __snake_case , __snake_case = None , __snake_case = True , __snake_case = False , __snake_case = None , __snake_case = None , __snake_case = 0 , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = False , __snake_case = False , __snake_case = False , __snake_case = False , __snake_case = True , __snake_case = None , **__snake_case , ) -> BatchEncoding: '''simple docstring''' __a =self.tokenizer( text=__snake_case , add_special_tokens=__snake_case , padding=__snake_case , truncation=__snake_case , max_length=__snake_case , stride=__snake_case , pad_to_multiple_of=__snake_case , return_token_type_ids=__snake_case , return_attention_mask=__snake_case , return_overflowing_tokens=__snake_case , return_special_tokens_mask=__snake_case , return_offsets_mapping=__snake_case , return_length=__snake_case , verbose=__snake_case , return_tensors=__snake_case , **__snake_case , ) # add pixel_values + pixel_mask __a =self.image_processor( __snake_case , return_tensors=__snake_case , do_normalize=__snake_case , do_center_crop=__snake_case , **__snake_case ) encoding.update(__snake_case ) return encoding def __magic_name__ ( self , *__snake_case , **__snake_case ) -> str: '''simple docstring''' return self.tokenizer.batch_decode(*__snake_case , **__snake_case ) def __magic_name__ ( self , *__snake_case , **__snake_case ) -> Optional[Any]: '''simple docstring''' return self.tokenizer.decode(*__snake_case , **__snake_case ) @property def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' __a =self.tokenizer.model_input_names __a =self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
218
1
import argparse import os import torch from transformers.utils import WEIGHTS_NAME __lowerCamelCase = ['small', 'medium', 'large'] __lowerCamelCase = 'lm_head.decoder.weight' __lowerCamelCase = 'lm_head.weight' def UpperCamelCase ( __lowerCamelCase : str , __lowerCamelCase : str ): snake_case : Optional[int] = torch.load(snake_case_ ) snake_case : Union[str, Any] = d.pop(snake_case_ ) os.makedirs(snake_case_ , exist_ok=snake_case_ ) torch.save(snake_case_ , os.path.join(snake_case_ , snake_case_ ) ) if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() parser.add_argument("""--dialogpt_path""", default=""".""", type=str) __lowerCamelCase = parser.parse_args() for MODEL in DIALOGPT_MODELS: __lowerCamelCase = os.path.join(args.dialogpt_path, F'{MODEL}_ft.pkl') __lowerCamelCase = F'./DialoGPT-{MODEL}' convert_dialogpt_checkpoint( checkpoint_path, pytorch_dump_folder_path, )
367
from __future__ import annotations def UpperCamelCase ( __lowerCamelCase : list[int] ): snake_case : Optional[int] = len(__lowerCamelCase ) // 2 # choose the middle 3 elements snake_case : str = lst[m - 1 : m + 2] # if middle element is peak if three[1] > three[0] and three[1] > three[2]: return three[1] # if increasing, recurse on right elif three[0] < three[2]: if len(lst[:m] ) == 2: m -= 1 return peak(lst[m:] ) # decreasing else: if len(lst[:m] ) == 2: m += 1 return peak(lst[:m] ) if __name__ == "__main__": import doctest doctest.testmod()
10
0
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DeformableDetrImageProcessor class __lowerCAmelCase ( unittest.TestCase): def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=7 , lowerCAmelCase__=3 , lowerCAmelCase__=3_0 , lowerCAmelCase__=4_0_0 , lowerCAmelCase__=True , lowerCAmelCase__=None , lowerCAmelCase__=True , lowerCAmelCase__=[0.5, 0.5, 0.5] , lowerCAmelCase__=[0.5, 0.5, 0.5] , lowerCAmelCase__=True , lowerCAmelCase__=1 / 2_5_5 , lowerCAmelCase__=True , ) -> str: '''simple docstring''' a__ : str =size if size is not None else {"shortest_edge": 1_8, "longest_edge": 1_3_3_3} a__ : Tuple =parent a__ : Any =batch_size a__ : int =num_channels a__ : List[str] =min_resolution a__ : Tuple =max_resolution a__ : Tuple =do_resize a__ : Dict =size a__ : List[str] =do_normalize a__ : Optional[Any] =image_mean a__ : Tuple =image_std a__ : Dict =do_rescale a__ : List[Any] =rescale_factor a__ : Optional[Any] =do_pad def _lowercase ( self ) -> Any: '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def _lowercase ( self , lowerCAmelCase__ , lowerCAmelCase__=False ) -> Any: '''simple docstring''' if not batched: a__ : Tuple =image_inputs[0] if isinstance(lowerCAmelCase__ , Image.Image ): a__ , a__ : Union[str, Any] =image.size else: a__ , a__ : Optional[int] =image.shape[1], image.shape[2] if w < h: a__ : Optional[int] =int(self.size["shortest_edge"] * h / w ) a__ : List[Any] =self.size["shortest_edge"] elif w > h: a__ : Dict =self.size["shortest_edge"] a__ : List[Any] =int(self.size["shortest_edge"] * w / h ) else: a__ : List[Any] =self.size["shortest_edge"] a__ : int =self.size["shortest_edge"] else: a__ : List[Any] =[] for image in image_inputs: a__ , a__ : Optional[int] =self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) a__ : Any =max(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : item[0] )[0] a__ : Union[str, Any] =max(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class __lowerCAmelCase ( UpperCamelCase__ , unittest.TestCase): _lowercase : Tuple = DeformableDetrImageProcessor if is_vision_available() else None def _lowercase ( self ) -> Tuple: '''simple docstring''' a__ : List[str] =DeformableDetrImageProcessingTester(self ) @property def _lowercase ( self ) -> Dict: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def _lowercase ( self ) -> Tuple: '''simple docstring''' a__ : Optional[Any] =self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase__ , "image_mean" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , "image_std" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , "do_normalize" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , "do_resize" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , "do_rescale" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , "do_pad" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , "size" ) ) def _lowercase ( self ) -> str: '''simple docstring''' a__ : Optional[int] =self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 1_8, "longest_edge": 1_3_3_3} ) self.assertEqual(image_processor.do_pad , lowerCAmelCase__ ) a__ : List[str] =self.image_processing_class.from_dict( self.image_processor_dict , size=4_2 , max_size=8_4 , pad_and_return_pixel_mask=lowerCAmelCase__ ) self.assertEqual(image_processor.size , {"shortest_edge": 4_2, "longest_edge": 8_4} ) self.assertEqual(image_processor.do_pad , lowerCAmelCase__ ) def _lowercase ( self ) -> Dict: '''simple docstring''' pass def _lowercase ( self ) -> Tuple: '''simple docstring''' a__ : Optional[int] =self.image_processing_class(**self.image_processor_dict ) # create random PIL images a__ : List[Any] =prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , Image.Image ) # Test not batched input a__ : List[Any] =image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values a__ , a__ : List[Any] =self.image_processor_tester.get_expected_values(lowerCAmelCase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched a__ , a__ : List[str] =self.image_processor_tester.get_expected_values(lowerCAmelCase__ , batched=lowerCAmelCase__ ) a__ : Optional[int] =image_processing(lowerCAmelCase__ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _lowercase ( self ) -> Optional[Any]: '''simple docstring''' a__ : List[Any] =self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors a__ : int =prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , numpify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , np.ndarray ) # Test not batched input a__ : Union[str, Any] =image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values a__ , a__ : Dict =self.image_processor_tester.get_expected_values(lowerCAmelCase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched a__ : Union[str, Any] =image_processing(lowerCAmelCase__ , return_tensors="pt" ).pixel_values a__ , a__ : List[str] =self.image_processor_tester.get_expected_values(lowerCAmelCase__ , batched=lowerCAmelCase__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _lowercase ( self ) -> int: '''simple docstring''' a__ : List[str] =self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors a__ : Union[str, Any] =prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , torchify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , torch.Tensor ) # Test not batched input a__ : int =image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values a__ , a__ : List[Any] =self.image_processor_tester.get_expected_values(lowerCAmelCase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched a__ : Union[str, Any] =image_processing(lowerCAmelCase__ , return_tensors="pt" ).pixel_values a__ , a__ : Tuple =self.image_processor_tester.get_expected_values(lowerCAmelCase__ , batched=lowerCAmelCase__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def _lowercase ( self ) -> Optional[int]: '''simple docstring''' a__ : int =Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt" , "r" ) as f: a__ : Optional[int] =json.loads(f.read() ) a__ : Any ={"image_id": 3_9_7_6_9, "annotations": target} # encode them a__ : Union[str, Any] =DeformableDetrImageProcessor() a__ : Tuple =image_processing(images=lowerCAmelCase__ , annotations=lowerCAmelCase__ , return_tensors="pt" ) # verify pixel values a__ : Tuple =torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding["pixel_values"].shape , lowerCAmelCase__ ) a__ : Any =torch.tensor([0.27_96, 0.31_38, 0.34_81] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , lowerCAmelCase__ , atol=1E-4 ) ) # verify area a__ : List[Any] =torch.tensor([58_87.96_00, 1_12_50.20_61, 48_93_53.84_38, 83_71_22.75_00, 14_79_67.51_56, 16_57_32.34_38] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , lowerCAmelCase__ ) ) # verify boxes a__ : Any =torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , lowerCAmelCase__ ) a__ : Optional[Any] =torch.tensor([0.55_03, 0.27_65, 0.06_04, 0.22_15] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , lowerCAmelCase__ , atol=1E-3 ) ) # verify image_id a__ : int =torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , lowerCAmelCase__ ) ) # verify is_crowd a__ : str =torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , lowerCAmelCase__ ) ) # verify class_labels a__ : List[str] =torch.tensor([7_5, 7_5, 6_3, 6_5, 1_7, 1_7] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , lowerCAmelCase__ ) ) # verify orig_size a__ : Optional[int] =torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , lowerCAmelCase__ ) ) # verify size a__ : int =torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , lowerCAmelCase__ ) ) @slow def _lowercase ( self ) -> List[str]: '''simple docstring''' a__ : List[str] =Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt" , "r" ) as f: a__ : int =json.loads(f.read() ) a__ : List[str] ={"file_name": "000000039769.png", "image_id": 3_9_7_6_9, "segments_info": target} a__ : List[Any] =pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic" ) # encode them a__ : Any =DeformableDetrImageProcessor(format="coco_panoptic" ) a__ : Optional[Any] =image_processing(images=lowerCAmelCase__ , annotations=lowerCAmelCase__ , masks_path=lowerCAmelCase__ , return_tensors="pt" ) # verify pixel values a__ : Union[str, Any] =torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding["pixel_values"].shape , lowerCAmelCase__ ) a__ : Union[str, Any] =torch.tensor([0.27_96, 0.31_38, 0.34_81] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , lowerCAmelCase__ , atol=1E-4 ) ) # verify area a__ : Dict =torch.tensor([14_79_79.68_75, 16_55_27.04_69, 48_46_38.59_38, 1_12_92.93_75, 58_79.65_62, 76_34.11_47] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , lowerCAmelCase__ ) ) # verify boxes a__ : Optional[int] =torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , lowerCAmelCase__ ) a__ : Any =torch.tensor([0.26_25, 0.54_37, 0.46_88, 0.86_25] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , lowerCAmelCase__ , atol=1E-3 ) ) # verify image_id a__ : int =torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , lowerCAmelCase__ ) ) # verify is_crowd a__ : List[str] =torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , lowerCAmelCase__ ) ) # verify class_labels a__ : Optional[Any] =torch.tensor([1_7, 1_7, 6_3, 7_5, 7_5, 9_3] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , lowerCAmelCase__ ) ) # verify masks a__ : int =8_2_2_8_7_3 self.assertEqual(encoding["labels"][0]["masks"].sum().item() , lowerCAmelCase__ ) # verify orig_size a__ : List[str] =torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , lowerCAmelCase__ ) ) # verify size a__ : int =torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , lowerCAmelCase__ ) )
95
import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionPipeline from diffusers.utils.testing_utils import load_image, nightly, require_torch_gpu, torch_device UpperCAmelCase : int = False class __lowerCAmelCase ( unittest.TestCase): pass @nightly @require_torch_gpu class __lowerCAmelCase ( unittest.TestCase): def _lowercase ( self ) -> Tuple: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowercase ( self ) -> Any: '''simple docstring''' a__ : str =VersatileDiffusionPipeline.from_pretrained("shi-labs/versatile-diffusion" , torch_dtype=torch.floataa ) pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) a__ : int =load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg" ) a__ : Optional[Any] =torch.manual_seed(0 ) a__ : Optional[Any] =pipe.dual_guided( prompt="first prompt" , image=lowerCAmelCase__ , text_to_image_strength=0.75 , generator=lowerCAmelCase__ , guidance_scale=7.5 , num_inference_steps=2 , output_type="numpy" , ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(lowerCAmelCase__ ) a__ : str =VersatileDiffusionPipeline.from_pretrained(lowerCAmelCase__ , torch_dtype=torch.floataa ) pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) a__ : Optional[Any] =generator.manual_seed(0 ) a__ : Tuple =pipe.dual_guided( prompt="first prompt" , image=lowerCAmelCase__ , text_to_image_strength=0.75 , generator=lowerCAmelCase__ , guidance_scale=7.5 , num_inference_steps=2 , output_type="numpy" , ).images assert np.abs(image - new_image ).sum() < 1E-5, "Models don't have the same forward pass" def _lowercase ( self ) -> Any: '''simple docstring''' a__ : str =VersatileDiffusionPipeline.from_pretrained("shi-labs/versatile-diffusion" , torch_dtype=torch.floataa ) pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) a__ : Optional[Any] ="cyberpunk 2077" a__ : int =load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg" ) a__ : Union[str, Any] =torch.manual_seed(0 ) a__ : Tuple =pipe.dual_guided( prompt=lowerCAmelCase__ , image=lowerCAmelCase__ , text_to_image_strength=0.75 , generator=lowerCAmelCase__ , guidance_scale=7.5 , num_inference_steps=5_0 , output_type="numpy" , ).images a__ : int =image[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) a__ : Any =np.array([0.14_48, 0.16_19, 0.17_41, 0.10_86, 0.11_47, 0.11_28, 0.11_99, 0.11_65, 0.10_01] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 a__ : str ="A painting of a squirrel eating a burger " a__ : Optional[int] =torch.manual_seed(0 ) a__ : str =pipe.text_to_image( prompt=lowerCAmelCase__ , generator=lowerCAmelCase__ , guidance_scale=7.5 , num_inference_steps=5_0 , output_type="numpy" ).images a__ : Any =image[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) a__ : Optional[int] =np.array([0.33_67, 0.31_69, 0.26_56, 0.38_70, 0.47_90, 0.37_96, 0.40_09, 0.48_78, 0.47_78] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 a__ : Optional[Any] =pipe.image_variation(lowerCAmelCase__ , generator=lowerCAmelCase__ , output_type="numpy" ).images a__ : Union[str, Any] =image[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) a__ : Any =np.array([0.30_76, 0.31_23, 0.32_84, 0.37_82, 0.37_70, 0.38_94, 0.42_97, 0.43_31, 0.44_56] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
95
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _A = { '''configuration_clipseg''': [ '''CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CLIPSegConfig''', '''CLIPSegTextConfig''', '''CLIPSegVisionConfig''', ], '''processing_clipseg''': ['''CLIPSegProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ '''CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CLIPSegModel''', '''CLIPSegPreTrainedModel''', '''CLIPSegTextModel''', '''CLIPSegVisionModel''', '''CLIPSegForImageSegmentation''', ] if TYPE_CHECKING: from .configuration_clipseg import ( CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPSegConfig, CLIPSegTextConfig, CLIPSegVisionConfig, ) from .processing_clipseg import CLIPSegProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clipseg import ( CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPSegForImageSegmentation, CLIPSegModel, CLIPSegPreTrainedModel, CLIPSegTextModel, CLIPSegVisionModel, ) else: import sys _A = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
364
import copy import os from typing import TYPE_CHECKING, List, Union if TYPE_CHECKING: pass from ...configuration_utils import PretrainedConfig from ...utils import logging _A = logging.get_logger(__name__) _A = { '''kakaobrain/align-base''': '''https://huggingface.co/kakaobrain/align-base/resolve/main/config.json''', } class lowercase_ ( __SCREAMING_SNAKE_CASE ): A__ : List[str] = """align_text_model""" def __init__( self , __UpperCamelCase=3_0_5_2_2 , __UpperCamelCase=7_6_8 , __UpperCamelCase=1_2 , __UpperCamelCase=1_2 , __UpperCamelCase=3_0_7_2 , __UpperCamelCase="gelu" , __UpperCamelCase=0.1 , __UpperCamelCase=0.1 , __UpperCamelCase=5_1_2 , __UpperCamelCase=2 , __UpperCamelCase=0.02 , __UpperCamelCase=1e-12 , __UpperCamelCase=0 , __UpperCamelCase="absolute" , __UpperCamelCase=True , **__UpperCamelCase , ): """simple docstring""" super().__init__(**__UpperCamelCase ) UpperCamelCase_ = vocab_size UpperCamelCase_ = hidden_size UpperCamelCase_ = num_hidden_layers UpperCamelCase_ = num_attention_heads UpperCamelCase_ = hidden_act UpperCamelCase_ = intermediate_size UpperCamelCase_ = hidden_dropout_prob UpperCamelCase_ = attention_probs_dropout_prob UpperCamelCase_ = max_position_embeddings UpperCamelCase_ = type_vocab_size UpperCamelCase_ = initializer_range UpperCamelCase_ = layer_norm_eps UpperCamelCase_ = position_embedding_type UpperCamelCase_ = use_cache UpperCamelCase_ = pad_token_id @classmethod def lowerCamelCase_ ( cls , __UpperCamelCase , **__UpperCamelCase ): """simple docstring""" cls._set_token_in_kwargs(__UpperCamelCase ) UpperCamelCase_ , UpperCamelCase_ = cls.get_config_dict(__UpperCamelCase , **__UpperCamelCase ) # get the text config dict if we are loading from AlignConfig if config_dict.get("""model_type""" ) == "align": UpperCamelCase_ = config_dict["""text_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__UpperCamelCase , **__UpperCamelCase ) class lowercase_ ( __SCREAMING_SNAKE_CASE ): A__ : Optional[int] = """align_vision_model""" def __init__( self , __UpperCamelCase = 3 , __UpperCamelCase = 6_0_0 , __UpperCamelCase = 2.0 , __UpperCamelCase = 3.1 , __UpperCamelCase = 8 , __UpperCamelCase = [3, 3, 5, 3, 5, 5, 3] , __UpperCamelCase = [3_2, 1_6, 2_4, 4_0, 8_0, 1_1_2, 1_9_2] , __UpperCamelCase = [1_6, 2_4, 4_0, 8_0, 1_1_2, 1_9_2, 3_2_0] , __UpperCamelCase = [] , __UpperCamelCase = [1, 2, 2, 2, 1, 2, 1] , __UpperCamelCase = [1, 2, 2, 3, 3, 4, 1] , __UpperCamelCase = [1, 6, 6, 6, 6, 6, 6] , __UpperCamelCase = 0.25 , __UpperCamelCase = "swish" , __UpperCamelCase = 2_5_6_0 , __UpperCamelCase = "mean" , __UpperCamelCase = 0.02 , __UpperCamelCase = 0.001 , __UpperCamelCase = 0.99 , __UpperCamelCase = 0.2 , **__UpperCamelCase , ): """simple docstring""" super().__init__(**__UpperCamelCase ) UpperCamelCase_ = num_channels UpperCamelCase_ = image_size UpperCamelCase_ = width_coefficient UpperCamelCase_ = depth_coefficient UpperCamelCase_ = depth_divisor UpperCamelCase_ = kernel_sizes UpperCamelCase_ = in_channels UpperCamelCase_ = out_channels UpperCamelCase_ = depthwise_padding UpperCamelCase_ = strides UpperCamelCase_ = num_block_repeats UpperCamelCase_ = expand_ratios UpperCamelCase_ = squeeze_expansion_ratio UpperCamelCase_ = hidden_act UpperCamelCase_ = hidden_dim UpperCamelCase_ = pooling_type UpperCamelCase_ = initializer_range UpperCamelCase_ = batch_norm_eps UpperCamelCase_ = batch_norm_momentum UpperCamelCase_ = drop_connect_rate UpperCamelCase_ = sum(__UpperCamelCase ) * 4 @classmethod def lowerCamelCase_ ( cls , __UpperCamelCase , **__UpperCamelCase ): """simple docstring""" cls._set_token_in_kwargs(__UpperCamelCase ) UpperCamelCase_ , UpperCamelCase_ = cls.get_config_dict(__UpperCamelCase , **__UpperCamelCase ) # get the vision config dict if we are loading from AlignConfig if config_dict.get("""model_type""" ) == "align": UpperCamelCase_ = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__UpperCamelCase , **__UpperCamelCase ) class lowercase_ ( __SCREAMING_SNAKE_CASE ): A__ : Tuple = """align""" A__ : int = True def __init__( self , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase=6_4_0 , __UpperCamelCase=1.0 , __UpperCamelCase=0.02 , **__UpperCamelCase , ): """simple docstring""" super().__init__(**__UpperCamelCase ) if text_config is None: UpperCamelCase_ = {} logger.info("""text_config is None. Initializing the AlignTextConfig with default values.""" ) if vision_config is None: UpperCamelCase_ = {} logger.info("""vision_config is None. Initializing the AlignVisionConfig with default values.""" ) UpperCamelCase_ = AlignTextConfig(**__UpperCamelCase ) UpperCamelCase_ = AlignVisionConfig(**__UpperCamelCase ) UpperCamelCase_ = projection_dim UpperCamelCase_ = temperature_init_value UpperCamelCase_ = initializer_range @classmethod def lowerCamelCase_ ( cls , __UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ): """simple docstring""" return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **__UpperCamelCase ) def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = copy.deepcopy(self.__dict__ ) UpperCamelCase_ = self.text_config.to_dict() UpperCamelCase_ = self.vision_config.to_dict() UpperCamelCase_ = self.__class__.model_type return output
261
0
"""simple docstring""" import torch def _SCREAMING_SNAKE_CASE ( ) -> Optional[int]: if torch.cuda.is_available(): A__ = torch.cuda.device_count() else: A__ = 0 print(f"""Successfully ran on {num_gpus} GPUs""" ) if __name__ == "__main__": main()
247
"""simple docstring""" import os import numpy import onnx def _SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Dict: A__ = a.name A__ = b.name A__ = "" A__ = "" A__ = a == b A__ = name_a A__ = name_b return res def _SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> Dict: for i, input_name in enumerate(node_proto.input ): if input_name == name: node_proto.input.insert(lowercase_ , lowercase_ ) node_proto.input.pop(i + 1 ) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g , lowercase_ , lowercase_ ) _graph_replace_input_with(node_proto.attribute[1].g , lowercase_ , lowercase_ ) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g , lowercase_ , lowercase_ ) def _SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> List[Any]: for n in graph_proto.node: _node_replace_input_with(lowercase_ , lowercase_ , lowercase_ ) def _SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> int: A__ = list(model.graph.initializer ) A__ = list(model_without_ext.graph.initializer ) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i A__ = inits[i].name A__ = inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i] ) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph , lowercase_ , lowercase_ ) def _SCREAMING_SNAKE_CASE ( lowercase_ ) -> str: A__ = os.path.dirname(lowercase_ ) A__ = os.path.basename(lowercase_ ) A__ = onnx.load(os.path.join(lowercase_ , lowercase_ ) ) A__ = list(model.graph.initializer ) A__ = set() A__ = {} A__ = [] A__ = 0 for i in range(len(lowercase_ ) ): if i in dup_set: continue for j in range(i + 1 , len(lowercase_ ) ): if j in dup_set: continue if _is_equal_tensor_proto(inits[i] , inits[j] ): dup_set.add(lowercase_ ) dup_set.add(lowercase_ ) A__ = inits[j].data_type A__ = numpy.prod(inits[j].dims ) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 11: mem_size *= 8 else: print("unexpected data type: " , lowercase_ ) total_reduced_size += mem_size A__ = inits[i].name A__ = inits[j].name if name_i in dup_map: dup_map[name_i].append(lowercase_ ) else: A__ = [name_j] ind_to_replace.append((j, i) ) print("total reduced size: " , total_reduced_size / 10_24 / 10_24 / 10_24 , "GB" ) A__ = sorted(lowercase_ ) _remove_dup_initializers_from_model(lowercase_ , lowercase_ , lowercase_ ) A__ = "optimized_" + model_file_name A__ = os.path.join(lowercase_ , lowercase_ ) onnx.save(lowercase_ , lowercase_ ) return new_model
247
1
'''simple docstring''' import gc import inspect import unittest import torch from parameterized import parameterized from diffusers import PriorTransformer from diffusers.utils import floats_tensor, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin enable_full_determinism() class __SCREAMING_SNAKE_CASE ( lowerCamelCase_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase_ :int = PriorTransformer lowerCamelCase_ :Optional[int] = """hidden_states""" @property def _UpperCamelCase ( self ): '''simple docstring''' UpperCAmelCase_ : str = 4 UpperCAmelCase_ : List[Any] = 8 UpperCAmelCase_ : int = 7 UpperCAmelCase_ : List[Any] = floats_tensor((batch_size, embedding_dim) ).to(lowerCAmelCase__ ) UpperCAmelCase_ : List[Any] = floats_tensor((batch_size, embedding_dim) ).to(lowerCAmelCase__ ) UpperCAmelCase_ : Optional[Any] = floats_tensor((batch_size, num_embeddings, embedding_dim) ).to(lowerCAmelCase__ ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } def _UpperCamelCase ( self , snake_case_=0 ): '''simple docstring''' torch.manual_seed(lowerCAmelCase__ ) UpperCAmelCase_ : Dict = 4 UpperCAmelCase_ : Tuple = 8 UpperCAmelCase_ : Any = 7 UpperCAmelCase_ : Dict = torch.randn((batch_size, embedding_dim) ).to(lowerCAmelCase__ ) UpperCAmelCase_ : Optional[Any] = torch.randn((batch_size, embedding_dim) ).to(lowerCAmelCase__ ) UpperCAmelCase_ : Optional[int] = torch.randn((batch_size, num_embeddings, embedding_dim) ).to(lowerCAmelCase__ ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } @property def _UpperCamelCase ( self ): '''simple docstring''' return (4, 8) @property def _UpperCamelCase ( self ): '''simple docstring''' return (4, 8) def _UpperCamelCase ( self ): '''simple docstring''' UpperCAmelCase_ : str = { 'num_attention_heads': 2, 'attention_head_dim': 4, 'num_layers': 2, 'embedding_dim': 8, 'num_embeddings': 7, 'additional_embeddings': 4, } UpperCAmelCase_ : Optional[Any] = self.dummy_input return init_dict, inputs_dict def _UpperCamelCase ( self ): '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ : str = PriorTransformer.from_pretrained( 'hf-internal-testing/prior-dummy' , output_loading_info=lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) self.assertEqual(len(loading_info['missing_keys'] ) , 0 ) model.to(lowerCAmelCase__ ) UpperCAmelCase_ : Union[str, Any] = model(**self.dummy_input )[0] assert hidden_states is not None, "Make sure output is not None" def _UpperCamelCase ( self ): '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ : Any = self.prepare_init_args_and_inputs_for_common() UpperCAmelCase_ : str = self.model_class(**lowerCAmelCase__ ) UpperCAmelCase_ : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ : Tuple = [*signature.parameters.keys()] UpperCAmelCase_ : Optional[Any] = ['hidden_states', 'timestep'] self.assertListEqual(arg_names[:2] , lowerCAmelCase__ ) def _UpperCamelCase ( self ): '''simple docstring''' UpperCAmelCase_ : List[str] = PriorTransformer.from_pretrained('hf-internal-testing/prior-dummy' ) UpperCAmelCase_ : Any = model.to(lowerCAmelCase__ ) if hasattr(lowerCAmelCase__ , 'set_default_attn_processor' ): model.set_default_attn_processor() UpperCAmelCase_ : Optional[Any] = self.get_dummy_seed_input() with torch.no_grad(): UpperCAmelCase_ : int = model(**lowerCAmelCase__ )[0] UpperCAmelCase_ : List[Any] = output[0, :5].flatten().cpu() print(lowerCAmelCase__ ) # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. UpperCAmelCase_ : Union[str, Any] = torch.tensor([-1.34_36, -0.28_70, 0.75_38, 0.43_68, -0.02_39] ) self.assertTrue(torch_all_close(lowerCAmelCase__ , lowerCAmelCase__ , rtol=1E-2 ) ) @slow class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def _UpperCamelCase ( self , snake_case_=1 , snake_case_=7_6_8 , snake_case_=7_7 , snake_case_=0 ): '''simple docstring''' torch.manual_seed(lowerCAmelCase__ ) UpperCAmelCase_ : Any = batch_size UpperCAmelCase_ : str = embedding_dim UpperCAmelCase_ : Dict = num_embeddings UpperCAmelCase_ : List[str] = torch.randn((batch_size, embedding_dim) ).to(lowerCAmelCase__ ) UpperCAmelCase_ : List[Any] = torch.randn((batch_size, embedding_dim) ).to(lowerCAmelCase__ ) UpperCAmelCase_ : Optional[int] = torch.randn((batch_size, num_embeddings, embedding_dim) ).to(lowerCAmelCase__ ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } def _UpperCamelCase ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @parameterized.expand( [ # fmt: off [1_3, [-0.58_61, 0.12_83, -0.09_31, 0.08_82, 0.44_76, 0.13_29, -0.04_98, 0.06_40]], [3_7, [-0.49_13, 0.01_10, -0.04_83, 0.05_41, 0.49_54, -0.01_70, 0.03_54, 0.16_51]], # fmt: on ] ) def _UpperCamelCase ( self , snake_case_ , snake_case_ ): '''simple docstring''' UpperCAmelCase_ : Tuple = PriorTransformer.from_pretrained('kandinsky-community/kandinsky-2-1-prior' , subfolder='prior' ) model.to(lowerCAmelCase__ ) UpperCAmelCase_ : int = self.get_dummy_seed_input(seed=lowerCAmelCase__ ) with torch.no_grad(): UpperCAmelCase_ : int = model(**lowerCAmelCase__ )[0] assert list(sample.shape ) == [1, 7_6_8] UpperCAmelCase_ : Optional[Any] = sample[0, :8].flatten().cpu() print(lowerCAmelCase__ ) UpperCAmelCase_ : int = torch.tensor(lowerCAmelCase__ ) assert torch_all_close(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-3 )
366
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig snake_case__ : Dict = { '''albert-base-v1''': '''https://huggingface.co/albert-base-v1/resolve/main/config.json''', '''albert-large-v1''': '''https://huggingface.co/albert-large-v1/resolve/main/config.json''', '''albert-xlarge-v1''': '''https://huggingface.co/albert-xlarge-v1/resolve/main/config.json''', '''albert-xxlarge-v1''': '''https://huggingface.co/albert-xxlarge-v1/resolve/main/config.json''', '''albert-base-v2''': '''https://huggingface.co/albert-base-v2/resolve/main/config.json''', '''albert-large-v2''': '''https://huggingface.co/albert-large-v2/resolve/main/config.json''', '''albert-xlarge-v2''': '''https://huggingface.co/albert-xlarge-v2/resolve/main/config.json''', '''albert-xxlarge-v2''': '''https://huggingface.co/albert-xxlarge-v2/resolve/main/config.json''', } class __SCREAMING_SNAKE_CASE ( lowerCamelCase_ ): '''simple docstring''' lowerCamelCase_ :str = '''albert''' def __init__( self , snake_case_=3_0_0_0_0 , snake_case_=1_2_8 , snake_case_=4_0_9_6 , snake_case_=1_2 , snake_case_=1 , snake_case_=6_4 , snake_case_=1_6_3_8_4 , snake_case_=1 , snake_case_="gelu_new" , snake_case_=0 , snake_case_=0 , snake_case_=5_1_2 , snake_case_=2 , snake_case_=0.02 , snake_case_=1E-12 , snake_case_=0.1 , snake_case_="absolute" , snake_case_=0 , snake_case_=2 , snake_case_=3 , **snake_case_ , ): '''simple docstring''' super().__init__(pad_token_id=snake_case_ , bos_token_id=snake_case_ , eos_token_id=snake_case_ , **snake_case_ ) UpperCAmelCase_ : List[Any] = vocab_size UpperCAmelCase_ : Dict = embedding_size UpperCAmelCase_ : str = hidden_size UpperCAmelCase_ : Any = num_hidden_layers UpperCAmelCase_ : Union[str, Any] = num_hidden_groups UpperCAmelCase_ : List[str] = num_attention_heads UpperCAmelCase_ : Any = inner_group_num UpperCAmelCase_ : Optional[int] = hidden_act UpperCAmelCase_ : Tuple = intermediate_size UpperCAmelCase_ : Any = hidden_dropout_prob UpperCAmelCase_ : List[str] = attention_probs_dropout_prob UpperCAmelCase_ : Union[str, Any] = max_position_embeddings UpperCAmelCase_ : Dict = type_vocab_size UpperCAmelCase_ : Union[str, Any] = initializer_range UpperCAmelCase_ : Optional[Any] = layer_norm_eps UpperCAmelCase_ : Dict = classifier_dropout_prob UpperCAmelCase_ : Tuple = position_embedding_type class __SCREAMING_SNAKE_CASE ( lowerCamelCase_ ): '''simple docstring''' @property def _UpperCamelCase ( self ): '''simple docstring''' if self.task == "multiple-choice": UpperCAmelCase_ : Optional[Any] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: UpperCAmelCase_ : List[Any] = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ] )
274
0
import warnings from ...utils import logging from .image_processing_videomae import VideoMAEImageProcessor __lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) class A__ ( __snake_case ): def __init__( self , *A_ , **A_ ): '''simple docstring''' warnings.warn( "The class VideoMAEFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use VideoMAEImageProcessor instead." , A_ , ) super().__init__(*A_ , **A_ )
52
from __future__ import annotations import unittest from transformers import DistilBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.distilbert.modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertModel, ) class __snake_case : def __init__( self , __UpperCamelCase , ) -> str: '''simple docstring''' snake_case__ : Optional[int] = parent snake_case__ : Union[str, Any] = 13 snake_case__ : int = 7 snake_case__ : str = True snake_case__ : Dict = True snake_case__ : Tuple = False snake_case__ : Union[str, Any] = True snake_case__ : Dict = 99 snake_case__ : Tuple = 32 snake_case__ : Optional[int] = 2 snake_case__ : Dict = 4 snake_case__ : Dict = 37 snake_case__ : Any = 'gelu' snake_case__ : Any = 0.1 snake_case__ : Any = 0.1 snake_case__ : List[Any] = 512 snake_case__ : Optional[Any] = 16 snake_case__ : Optional[int] = 2 snake_case__ : List[Any] = 0.0_2 snake_case__ : Tuple = 3 snake_case__ : Dict = 4 snake_case__ : Tuple = None def __a ( self ) -> Union[str, Any]: '''simple docstring''' snake_case__ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case__ : Optional[Any] = None if self.use_input_mask: snake_case__ : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) snake_case__ : Any = None snake_case__ : Union[str, Any] = None snake_case__ : Tuple = None if self.use_labels: snake_case__ : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case__ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case__ : List[str] = ids_tensor([self.batch_size] , self.num_choices ) snake_case__ : List[str] = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def __a ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> Dict: '''simple docstring''' snake_case__ : Optional[int] = TFDistilBertModel(config=__UpperCamelCase ) snake_case__ : Union[str, Any] = {'input_ids': input_ids, 'attention_mask': input_mask} snake_case__ : List[str] = model(__UpperCamelCase ) snake_case__ : Union[str, Any] = [input_ids, input_mask] snake_case__ : Optional[int] = model(__UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __a ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> List[Any]: '''simple docstring''' snake_case__ : str = TFDistilBertForMaskedLM(config=__UpperCamelCase ) snake_case__ : int = {'input_ids': input_ids, 'attention_mask': input_mask} snake_case__ : str = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __a ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> List[Any]: '''simple docstring''' snake_case__ : Dict = TFDistilBertForQuestionAnswering(config=__UpperCamelCase ) snake_case__ : Tuple = { 'input_ids': input_ids, 'attention_mask': input_mask, } snake_case__ : Optional[Any] = model(__UpperCamelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __a ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> Union[str, Any]: '''simple docstring''' snake_case__ : List[str] = self.num_labels snake_case__ : Tuple = TFDistilBertForSequenceClassification(__UpperCamelCase ) snake_case__ : Union[str, Any] = {'input_ids': input_ids, 'attention_mask': input_mask} snake_case__ : str = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __a ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> int: '''simple docstring''' snake_case__ : Optional[int] = self.num_choices snake_case__ : str = TFDistilBertForMultipleChoice(__UpperCamelCase ) snake_case__ : Dict = tf.tile(tf.expand_dims(__UpperCamelCase , 1 ) , (1, self.num_choices, 1) ) snake_case__ : Tuple = tf.tile(tf.expand_dims(__UpperCamelCase , 1 ) , (1, self.num_choices, 1) ) snake_case__ : Dict = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, } snake_case__ : Any = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __a ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> Union[str, Any]: '''simple docstring''' snake_case__ : Optional[int] = self.num_labels snake_case__ : Optional[int] = TFDistilBertForTokenClassification(__UpperCamelCase ) snake_case__ : List[Any] = {'input_ids': input_ids, 'attention_mask': input_mask} snake_case__ : str = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __a ( self ) -> Union[str, Any]: '''simple docstring''' snake_case__ : Optional[Any] = self.prepare_config_and_inputs() ((snake_case__) , (snake_case__) , (snake_case__) , (snake_case__) , (snake_case__) , (snake_case__)) : Tuple = config_and_inputs snake_case__ : List[str] = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class __snake_case ( _lowerCamelCase ,_lowerCamelCase ,unittest.TestCase ): __lowerCamelCase = ( ( TFDistilBertModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertForMultipleChoice, ) if is_tf_available() else None ) __lowerCamelCase = ( { """feature-extraction""": TFDistilBertModel, """fill-mask""": TFDistilBertForMaskedLM, """question-answering""": TFDistilBertForQuestionAnswering, """text-classification""": TFDistilBertForSequenceClassification, """token-classification""": TFDistilBertForTokenClassification, """zero-shot""": TFDistilBertForSequenceClassification, } if is_tf_available() else {} ) __lowerCamelCase = False __lowerCamelCase = False def __a ( self ) -> Tuple: '''simple docstring''' snake_case__ : Dict = TFDistilBertModelTester(self ) snake_case__ : Tuple = ConfigTester(self , config_class=__UpperCamelCase , dim=37 ) def __a ( self ) -> Optional[Any]: '''simple docstring''' self.config_tester.run_common_tests() def __a ( self ) -> Tuple: '''simple docstring''' snake_case__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*__UpperCamelCase ) def __a ( self ) -> Union[str, Any]: '''simple docstring''' snake_case__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*__UpperCamelCase ) def __a ( self ) -> List[str]: '''simple docstring''' snake_case__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*__UpperCamelCase ) def __a ( self ) -> Optional[Any]: '''simple docstring''' snake_case__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*__UpperCamelCase ) def __a ( self ) -> Union[str, Any]: '''simple docstring''' snake_case__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*__UpperCamelCase ) def __a ( self ) -> Optional[int]: '''simple docstring''' snake_case__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*__UpperCamelCase ) @slow def __a ( self ) -> Any: '''simple docstring''' for model_name in list(TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1] ): snake_case__ : Optional[Any] = TFDistilBertModel.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) @require_tf class __snake_case ( unittest.TestCase ): @slow def __a ( self ) -> Any: '''simple docstring''' snake_case__ : Optional[int] = TFDistilBertModel.from_pretrained('distilbert-base-uncased' ) snake_case__ : Any = tf.constant([[0, 1, 2, 3, 4, 5]] ) snake_case__ : Dict = model(__UpperCamelCase )[0] snake_case__ : Optional[int] = [1, 6, 768] self.assertEqual(output.shape , __UpperCamelCase ) snake_case__ : List[Any] = tf.constant( [ [ [0.1_9_2_6_1_8_8_5, -0.1_3_7_3_2_9_5_5, 0.4_1_1_9_7_9_9], [0.2_2_1_5_0_1_5_6, -0.0_7_4_2_2_6_6_1, 0.3_9_0_3_7_2_0_4], [0.2_2_7_5_6_0_1_8, -0.0_8_9_6_4_1_4, 0.3_7_0_1_4_6_7], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , __UpperCamelCase , atol=1E-4 )
143
0
'''simple docstring''' import torch def _UpperCAmelCase ( ) -> Tuple: if torch.cuda.is_available(): A_ = torch.cuda.device_count() else: A_ = 0 print(F'''Successfully ran on {num_gpus} GPUs''' ) if __name__ == "__main__": main()
351
'''simple docstring''' import tempfile import unittest import numpy as np from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import BertConfig, is_flax_available from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax if is_flax_available(): import os from flax.core.frozen_dict import unfreeze from flax.traverse_util import flatten_dict from transformers import FlaxBertModel __snake_case : str = '0.12' # assumed parallelism: 8 @require_flax @is_staging_test class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @classmethod def __A ( cls ) -> Dict: A_ = TOKEN HfFolder.save_token(_SCREAMING_SNAKE_CASE ) @classmethod def __A ( cls ) -> Optional[int]: try: delete_repo(token=cls._token , repo_id='''test-model-flax''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-model-flax-org''' ) except HTTPError: pass def __A ( self ) -> str: A_ = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) A_ = FlaxBertModel(_SCREAMING_SNAKE_CASE ) model.push_to_hub('''test-model-flax''' , use_auth_token=self._token ) A_ = FlaxBertModel.from_pretrained(F'''{USER}/test-model-flax''' ) A_ = flatten_dict(unfreeze(model.params ) ) A_ = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): A_ = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_SCREAMING_SNAKE_CASE , 1E-3 , msg=F'''{key} not identical''' ) # Reset repo delete_repo(token=self._token , repo_id='''test-model-flax''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(_SCREAMING_SNAKE_CASE , repo_id='''test-model-flax''' , push_to_hub=_SCREAMING_SNAKE_CASE , use_auth_token=self._token ) A_ = FlaxBertModel.from_pretrained(F'''{USER}/test-model-flax''' ) A_ = flatten_dict(unfreeze(model.params ) ) A_ = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): A_ = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_SCREAMING_SNAKE_CASE , 1E-3 , msg=F'''{key} not identical''' ) def __A ( self ) -> List[str]: A_ = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) A_ = FlaxBertModel(_SCREAMING_SNAKE_CASE ) model.push_to_hub('''valid_org/test-model-flax-org''' , use_auth_token=self._token ) A_ = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' ) A_ = flatten_dict(unfreeze(model.params ) ) A_ = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): A_ = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_SCREAMING_SNAKE_CASE , 1E-3 , msg=F'''{key} not identical''' ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-model-flax-org''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained( _SCREAMING_SNAKE_CASE , repo_id='''valid_org/test-model-flax-org''' , push_to_hub=_SCREAMING_SNAKE_CASE , use_auth_token=self._token ) A_ = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' ) A_ = flatten_dict(unfreeze(model.params ) ) A_ = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): A_ = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_SCREAMING_SNAKE_CASE , 1E-3 , msg=F'''{key} not identical''' ) def _UpperCAmelCase ( _UpperCamelCase : Union[str, Any], _UpperCamelCase : Tuple ) -> Dict: A_ = True A_ = flatten_dict(modela.params ) A_ = flatten_dict(modela.params ) for key in flat_params_a.keys(): if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1E-4: A_ = False return models_are_equal @require_flax class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __A ( self ) -> List[str]: A_ = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) A_ = FlaxBertModel(_SCREAMING_SNAKE_CASE ) A_ = '''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) with self.assertRaises(_SCREAMING_SNAKE_CASE ): A_ = FlaxBertModel.from_pretrained(_SCREAMING_SNAKE_CASE ) A_ = FlaxBertModel.from_pretrained(_SCREAMING_SNAKE_CASE , subfolder=_SCREAMING_SNAKE_CASE ) self.assertTrue(check_models_equal(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) def __A ( self ) -> List[Any]: A_ = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) A_ = FlaxBertModel(_SCREAMING_SNAKE_CASE ) A_ = '''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , max_shard_size='''10KB''' ) with self.assertRaises(_SCREAMING_SNAKE_CASE ): A_ = FlaxBertModel.from_pretrained(_SCREAMING_SNAKE_CASE ) A_ = FlaxBertModel.from_pretrained(_SCREAMING_SNAKE_CASE , subfolder=_SCREAMING_SNAKE_CASE ) self.assertTrue(check_models_equal(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) def __A ( self ) -> Dict: A_ = '''bert''' A_ = '''hf-internal-testing/tiny-random-bert-subfolder''' with self.assertRaises(_SCREAMING_SNAKE_CASE ): A_ = FlaxBertModel.from_pretrained(_SCREAMING_SNAKE_CASE ) A_ = FlaxBertModel.from_pretrained(_SCREAMING_SNAKE_CASE , subfolder=_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) def __A ( self ) -> Optional[Any]: A_ = '''bert''' A_ = '''hf-internal-testing/tiny-random-bert-sharded-subfolder''' with self.assertRaises(_SCREAMING_SNAKE_CASE ): A_ = FlaxBertModel.from_pretrained(_SCREAMING_SNAKE_CASE ) A_ = FlaxBertModel.from_pretrained(_SCREAMING_SNAKE_CASE , subfolder=_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE )
18
0
"""simple docstring""" from __future__ import annotations __UpperCamelCase : Dict = 1.6021e-19 # units = C def __SCREAMING_SNAKE_CASE ( A_ , A_ , A_ , ): if (conductivity, electron_conc, mobility).count(0 ) != 1: raise ValueError('''You cannot supply more or less than 2 values''' ) elif conductivity < 0: raise ValueError('''Conductivity cannot be negative''' ) elif electron_conc < 0: raise ValueError('''Electron concentration cannot be negative''' ) elif mobility < 0: raise ValueError('''mobility cannot be negative''' ) elif conductivity == 0: return ( "conductivity", mobility * electron_conc * ELECTRON_CHARGE, ) elif electron_conc == 0: return ( "electron_conc", conductivity / (mobility * ELECTRON_CHARGE), ) else: return ( "mobility", conductivity / (electron_conc * ELECTRON_CHARGE), ) if __name__ == "__main__": import doctest doctest.testmod()
106
from math import ceil, sqrt def lowerCAmelCase_ ( __a = 1000000 ) -> int: """simple docstring""" lowerCamelCase__: Optional[int] =0 for outer_width in range(3 , (limit // 4) + 2 ): if outer_width**2 > limit: lowerCamelCase__: Dict =max(ceil(sqrt(outer_width**2 - limit ) ) , 1 ) else: lowerCamelCase__: str =1 if (outer_width - hole_width_lower_bound) % 2: hole_width_lower_bound += 1 answer += (outer_width - hole_width_lower_bound - 2) // 2 + 1 return answer if __name__ == "__main__": print(f'{solution() = }')
10
0
from __future__ import annotations import collections import tempfile import unittest import numpy as np from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import is_tf_available, is_vision_available from ...test_modeling_tf_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_tf_bert import TFBertModelTester from ..clip.test_modeling_tf_clip import TFCLIPVisionModelTester from ..deit.test_modeling_tf_deit import TFDeiTModelTester from ..roberta.test_modeling_tf_roberta import TFRobertaModelTester from ..vit.test_modeling_tf_vit import TFViTModelTester if is_tf_available(): from transformers import ( TFBertModel, TFCLIPVisionModel, TFDeiTModel, TFRobertaModel, TFVisionTextDualEncoderModel, TFViTModel, VisionTextDualEncoderConfig, ) if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor def __lowercase ( __lowerCAmelCase : Optional[int] ): if isinstance(__lowerCAmelCase , collections.abc.Iterable ): return x return (x, x) @require_tf class snake_case_ : def lowerCamelCase__( self :str ,__snake_case :Union[str, Any] ,__snake_case :List[Any] ) -> Optional[int]: pass def lowerCamelCase__( self :List[str] ) -> str: pass def lowerCamelCase__( self :Dict ) -> Dict: pass def lowerCamelCase__( self :Any ,__snake_case :int ,__snake_case :Optional[Any] ,__snake_case :Optional[Any] ,__snake_case :Optional[Any] ,__snake_case :int=None ,**__snake_case :Optional[int] ) -> Any: a__ = VisionTextDualEncoderConfig.from_vision_text_configs(__snake_case ,__snake_case ) a__ = TFVisionTextDualEncoderModel(__snake_case ) a__ = model(input_ids=__snake_case ,pixel_values=__snake_case ,attention_mask=__snake_case ) self.assertEqual(output['text_embeds'].shape ,(input_ids.shape[0], config.projection_dim) ) self.assertEqual(output['image_embeds'].shape ,(pixel_values.shape[0], config.projection_dim) ) def lowerCamelCase__( self :Optional[int] ,__snake_case :List[str] ,__snake_case :Any ,__snake_case :Any ,__snake_case :Union[str, Any] ,__snake_case :Dict=None ,**__snake_case :Any ) -> Optional[int]: a__ , a__ = self.get_vision_text_model(__snake_case ,__snake_case ) a__ = TFVisionTextDualEncoderModel(vision_model=__snake_case ,text_model=__snake_case ) a__ = model(input_ids=__snake_case ,pixel_values=__snake_case ,attention_mask=__snake_case ) self.assertEqual(output['text_embeds'].shape ,(input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output['image_embeds'].shape ,(pixel_values.shape[0], model.config.projection_dim) ) def lowerCamelCase__( self :int ,__snake_case :Union[str, Any] ,__snake_case :Optional[Any] ,__snake_case :Tuple ,__snake_case :str ,__snake_case :Optional[Any]=None ,**__snake_case :Optional[int] ) -> Any: a__ , a__ = self.get_vision_text_model(__snake_case ,__snake_case ) a__ = {'vision_model': vision_model, 'text_model': text_model} a__ = TFVisionTextDualEncoderModel.from_vision_text_pretrained(**__snake_case ) a__ = model(input_ids=__snake_case ,pixel_values=__snake_case ,attention_mask=__snake_case ) self.assertEqual(output['text_embeds'].shape ,(input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output['image_embeds'].shape ,(pixel_values.shape[0], model.config.projection_dim) ) def lowerCamelCase__( self :Optional[int] ,__snake_case :List[Any] ,__snake_case :Tuple ,__snake_case :List[Any] ,__snake_case :int ,__snake_case :Union[str, Any]=None ,**__snake_case :Dict ) -> Union[str, Any]: a__ , a__ = self.get_vision_text_model(__snake_case ,__snake_case ) a__ = TFVisionTextDualEncoderModel(vision_model=__snake_case ,text_model=__snake_case ) a__ = model(input_ids=__snake_case ,pixel_values=__snake_case ,attention_mask=__snake_case ) a__ = output[0].numpy() with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__snake_case ) a__ = TFVisionTextDualEncoderModel.from_pretrained(__snake_case ) a__ = model(input_ids=__snake_case ,pixel_values=__snake_case ,attention_mask=__snake_case ) a__ = after_output[0].numpy() a__ = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(__snake_case ,1E-5 ) def lowerCamelCase__( self :Union[str, Any] ,__snake_case :Optional[int] ,__snake_case :Optional[Any] ,__snake_case :Dict ,__snake_case :Optional[Any] ,__snake_case :Tuple=None ,**__snake_case :Optional[int] ) -> List[Any]: a__ , a__ = self.get_vision_text_model(__snake_case ,__snake_case ) a__ = TFVisionTextDualEncoderModel(vision_model=__snake_case ,text_model=__snake_case ) a__ = model( input_ids=__snake_case ,pixel_values=__snake_case ,attention_mask=__snake_case ,output_attentions=__snake_case ) a__ = output.vision_model_output.attentions self.assertEqual(len(__snake_case ) ,vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) a__ = to_atuple(vision_model.config.image_size ) a__ = to_atuple(vision_model.config.patch_size ) a__ = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) a__ = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] ,(vision_config.num_attention_heads, seq_len, seq_len) ) a__ = output.text_model_output.attentions self.assertEqual(len(__snake_case ) ,text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] ,(text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) ,) def lowerCamelCase__( self :List[str] ,__snake_case :np.ndarray ,__snake_case :np.ndarray ,__snake_case :float ) -> int: a__ = np.abs((a - b) ).max() self.assertLessEqual(__snake_case ,__snake_case ,F'Difference between torch and flax is {diff} (>= {tol}).' ) def lowerCamelCase__( self :Optional[int] ) -> str: a__ = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_model(**__snake_case ) def lowerCamelCase__( self :str ) -> List[Any]: a__ = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**__snake_case ) def lowerCamelCase__( self :List[str] ) -> Any: a__ = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**__snake_case ) def lowerCamelCase__( self :int ) -> str: a__ = self.prepare_config_and_inputs() self.check_save_load(**__snake_case ) def lowerCamelCase__( self :List[str] ) -> int: a__ = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**__snake_case ) @slow def lowerCamelCase__( self :List[str] ) -> str: a__ , a__ = self.get_pretrained_model_and_inputs() a__ = model_a(**__snake_case ) a__ = outputs[0].numpy() with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(__snake_case ) a__ = TFVisionTextDualEncoderModel.from_pretrained(__snake_case ) a__ = model_a(**__snake_case ) a__ = after_outputs[0].numpy() a__ = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(__snake_case ,1E-5 ) @require_tf class snake_case_ (lowerCamelCase_ , unittest.TestCase ): def lowerCamelCase__( self :Tuple ) -> Union[str, Any]: a__ = TFVisionTextDualEncoderModel.from_vision_text_pretrained( 'hf-internal-testing/tiny-random-vit' ,'hf-internal-testing/tiny-random-bert' ) a__ = 13 a__ = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) a__ = ids_tensor([batch_size, 4] ,model.text_model.config.vocab_size ) a__ = random_attention_mask([batch_size, 4] ) a__ = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask} return model, inputs def lowerCamelCase__( self :Dict ,__snake_case :List[Any] ,__snake_case :Tuple ) -> Tuple: a__ = TFViTModel(__snake_case ,name='vision_model' ) a__ = TFBertModel(__snake_case ,name='text_model' ) return vision_model, text_model def lowerCamelCase__( self :str ) -> Tuple: a__ = TFViTModelTester(self ) a__ = TFBertModelTester(self ) a__ = vit_model_tester.prepare_config_and_inputs() a__ = bert_model_tester.prepare_config_and_inputs() a__ , a__ , a__ = vision_config_and_inputs ( ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class snake_case_ (lowerCamelCase_ , unittest.TestCase ): def lowerCamelCase__( self :int ) -> Optional[int]: # DeiT repo doesn't have TF weights, but we don't actually use the weights at all so let's # just reinitialize it. a__ = TFVisionTextDualEncoderModel.from_vision_text_pretrained( 'Rocketknight1/tiny-random-deit-tf' ,'hf-internal-testing/tiny-random-roberta' ) a__ = 13 a__ = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) a__ = ids_tensor([batch_size, 4] ,model.text_model.config.vocab_size ) a__ = random_attention_mask([batch_size, 4] ) a__ = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask} return model, inputs def lowerCamelCase__( self :List[str] ,__snake_case :Optional[Any] ,__snake_case :Optional[int] ,__snake_case :int ,__snake_case :List[Any] ,__snake_case :Dict=None ,**__snake_case :Optional[int] ) -> Union[str, Any]: a__ , a__ = self.get_vision_text_model(__snake_case ,__snake_case ) a__ = TFVisionTextDualEncoderModel(vision_model=__snake_case ,text_model=__snake_case ) a__ = model( input_ids=__snake_case ,pixel_values=__snake_case ,attention_mask=__snake_case ,output_attentions=__snake_case ) a__ = output.vision_model_output.attentions self.assertEqual(len(__snake_case ) ,vision_config.num_hidden_layers ) # in DEiT, the seq_len equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) a__ = to_atuple(vision_model.config.image_size ) a__ = to_atuple(vision_model.config.patch_size ) a__ = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) a__ = num_patches + 2 self.assertEqual(vision_attentions[0].shape[-3:] ,(vision_config.num_attention_heads, seq_len, seq_len) ) a__ = output.text_model_output.attentions self.assertEqual(len(__snake_case ) ,text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] ,(text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) ,) def lowerCamelCase__( self :Optional[Any] ,__snake_case :Tuple ,__snake_case :List[str] ) -> Any: a__ = TFDeiTModel(__snake_case ,name='vision_model' ) a__ = TFRobertaModel(__snake_case ,name='text_model' ) return vision_model, text_model def lowerCamelCase__( self :Dict ) -> Dict: a__ = TFDeiTModelTester(self ) a__ = TFRobertaModelTester(self ) a__ = vit_model_tester.prepare_config_and_inputs() a__ = bert_model_tester.prepare_config_and_inputs() a__ , a__ , a__ = vision_config_and_inputs ( ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class snake_case_ (lowerCamelCase_ , unittest.TestCase ): def lowerCamelCase__( self :List[Any] ) -> Optional[int]: a__ = TFVisionTextDualEncoderModel.from_vision_text_pretrained( 'Rocketknight1/tiny-random-clip-tf' ,'hf-internal-testing/tiny-random-bert' ) a__ = 13 a__ = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) a__ = ids_tensor([batch_size, 4] ,model.text_model.config.vocab_size ) a__ = random_attention_mask([batch_size, 4] ) a__ = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask} return model, inputs def lowerCamelCase__( self :int ,__snake_case :Optional[int] ,__snake_case :str ) -> Optional[int]: a__ = TFCLIPVisionModel(__snake_case ,name='vision_model' ) a__ = TFBertModel(__snake_case ,name='text_model' ) return vision_model, text_model def lowerCamelCase__( self :Dict ) -> str: a__ = TFCLIPVisionModelTester(self ) a__ = TFBertModelTester(self ) a__ = clip_model_tester.prepare_config_and_inputs() a__ = bert_model_tester.prepare_config_and_inputs() a__ , a__ = vision_config_and_inputs ( ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_vision @require_tf class snake_case_ (unittest.TestCase ): @slow def lowerCamelCase__( self :Optional[Any] ) -> List[str]: a__ = TFVisionTextDualEncoderModel.from_pretrained( 'clip-italian/clip-italian' ,logit_scale_init_value=1.0 ,from_pt=__snake_case ) a__ = VisionTextDualEncoderProcessor.from_pretrained('clip-italian/clip-italian' ) a__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) a__ = processor( text=['una foto di un gatto', 'una foto di un cane'] ,images=__snake_case ,padding=__snake_case ,return_tensors='np' ) a__ = model(**__snake_case ) # verify the logits self.assertEqual(outputs.logits_per_image.shape ,(inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape ,(inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) ,) a__ = np.array([[1.2_28_47_27, 0.3_10_41_22]] ) self.assertTrue(np.allclose(outputs.logits_per_image.numpy() ,__snake_case ,atol=1E-3 ) )
109
def __lowercase ( __lowerCAmelCase : Optional[Any] ): return [ { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], }, { 0: [6], 1: [9], 2: [4, 5], 3: [4], 4: [2, 3], 5: [2], 6: [0, 7], 7: [6], 8: [], 9: [1], }, { 0: [4], 1: [6], 2: [], 3: [5, 6, 7], 4: [0, 6], 5: [3, 8, 9], 6: [1, 3, 4, 7], 7: [3, 6, 8, 9], 8: [5, 7], 9: [5, 7], }, { 0: [1, 3], 1: [0, 2, 4], 2: [1, 3, 4], 3: [0, 2, 4], 4: [1, 2, 3], }, ][index] def __lowercase ( __lowerCAmelCase : dict[int, list[int]] ): a__ = 0 a__ = len(__lowerCAmelCase ) # No of vertices in graph a__ = [0] * n a__ = [False] * n def dfs(__lowerCAmelCase : int , __lowerCAmelCase : Any , __lowerCAmelCase : Dict , __lowerCAmelCase : Tuple ): a__ = True a__ = id_ id_ += 1 for to in graph[at]: if to == parent: pass elif not visited[to]: dfs(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , id_ ) a__ = min(low[at] , low[to] ) if id_ <= low[to]: bridges.append((at, to) if at < to else (to, at) ) else: # This edge is a back edge and cannot be a bridge a__ = min(low[at] , low[to] ) a__ = [] for i in range(__lowerCAmelCase ): if not visited[i]: dfs(__lowerCAmelCase , -1 , __lowerCAmelCase , id_ ) return bridges if __name__ == "__main__": import doctest doctest.testmod()
109
1
"""simple docstring""" from typing import Any def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ) -> str: '''simple docstring''' _validation( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ) # Creates data structures and fill initial step lowercase_ = {} lowercase_ = {} for state in states_space: lowercase_ = observations_space[0] lowercase_ = ( initial_probabilities[state] * emission_probabilities[state][observation] ) lowercase_ = None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 , len(__lowerCAmelCase ) ): lowercase_ = observations_space[o] lowercase_ = observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function lowercase_ = """""" lowercase_ = -1 for k_state in states_space: lowercase_ = ( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: lowercase_ = probability lowercase_ = k_state # Update probabilities and pointers dicts lowercase_ = ( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) lowercase_ = arg_max # The final observation lowercase_ = observations_space[len(__lowerCAmelCase ) - 1] # argmax for given final observation lowercase_ = """""" lowercase_ = -1 for k_state in states_space: lowercase_ = probabilities[(k_state, final_observation)] if probability > max_probability: lowercase_ = probability lowercase_ = k_state lowercase_ = arg_max # Process pointers backwards lowercase_ = last_state lowercase_ = [] for o in range(len(__lowerCAmelCase ) - 1 , -1 , -1 ): result.append(__lowerCAmelCase ) lowercase_ = pointers[previous, observations_space[o]] result.reverse() return result def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ) -> Any: '''simple docstring''' _validate_not_empty( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ) _validate_lists(__lowerCAmelCase , __lowerCAmelCase ) _validate_dicts( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ) -> Optional[Any]: '''simple docstring''' if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ] ): raise ValueError("""There's an empty parameter""" ) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> str: '''simple docstring''' _validate_list(__lowerCAmelCase , """observations_space""" ) _validate_list(__lowerCAmelCase , """states_space""" ) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> List[str]: '''simple docstring''' if not isinstance(_object , __lowerCAmelCase ): lowercase_ = F'''{var_name} must be a list''' raise ValueError(__lowerCAmelCase ) else: for x in _object: if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): lowercase_ = F'''{var_name} must be a list of strings''' raise ValueError(__lowerCAmelCase ) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ) -> Any: '''simple docstring''' _validate_dict(__lowerCAmelCase , """initial_probabilities""" , __lowerCAmelCase ) _validate_nested_dict(__lowerCAmelCase , """transition_probabilities""" ) _validate_nested_dict(__lowerCAmelCase , """emission_probabilities""" ) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> Optional[Any]: '''simple docstring''' _validate_dict(_object , __lowerCAmelCase , __lowerCAmelCase ) for x in _object.values(): _validate_dict(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = False ) -> Optional[Any]: '''simple docstring''' if not isinstance(_object , __lowerCAmelCase ): lowercase_ = F'''{var_name} must be a dict''' raise ValueError(__lowerCAmelCase ) if not all(isinstance(__lowerCAmelCase , __lowerCAmelCase ) for x in _object ): lowercase_ = F'''{var_name} all keys must be strings''' raise ValueError(__lowerCAmelCase ) if not all(isinstance(__lowerCAmelCase , __lowerCAmelCase ) for x in _object.values() ): lowercase_ = """nested dictionary """ if nested else """""" lowercase_ = F'''{var_name} {nested_text}all values must be {value_type.__name__}''' raise ValueError(__lowerCAmelCase ) if __name__ == "__main__": from doctest import testmod testmod()
136
"""simple docstring""" import itertools import random import unittest import numpy as np from transformers import ASTFeatureExtractor from transformers.testing_utils import require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin SCREAMING_SNAKE_CASE__:Any = random.Random() if is_torch_available(): import torch def _lowerCamelCase( a , a=1.0 , a=None , a=None ): if rng is None: __a = global_rng __a = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class snake_case__ ( unittest.TestCase ): def __init__( self , lowerCamelCase , lowerCamelCase=7 , lowerCamelCase=400 , lowerCamelCase=2000 , lowerCamelCase=1 , lowerCamelCase=0.0 , lowerCamelCase=16000 , lowerCamelCase=True , lowerCamelCase=True , ): __a = parent __a = batch_size __a = min_seq_length __a = max_seq_length __a = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) __a = feature_size __a = padding_value __a = sampling_rate __a = return_attention_mask __a = do_normalize def a__ ( self ): return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def a__ ( self , lowerCamelCase=False , lowerCamelCase=False ): def _flatten(lowerCamelCase ): return list(itertools.chain(*lowerCamelCase ) ) if equal_length: __a = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size __a = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: __a = [np.asarray(lowerCamelCase ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class snake_case__ ( snake_case_, unittest.TestCase ): _snake_case : str = ASTFeatureExtractor def a__ ( self ): __a = ASTFeatureExtractionTester(self ) def a__ ( self ): # Tests that all call wrap to encode_plus and batch_encode_plus __a = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 __a = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] __a = [np.asarray(lowerCamelCase ) for speech_input in speech_inputs] # Test not batched input __a = feat_extract(speech_inputs[0] , return_tensors="np" ).input_values __a = feat_extract(np_speech_inputs[0] , return_tensors="np" ).input_values self.assertTrue(np.allclose(lowerCamelCase , lowerCamelCase , atol=1E-3 ) ) # Test batched __a = feat_extract(lowerCamelCase , padding=lowerCamelCase , return_tensors="np" ).input_values __a = feat_extract(lowerCamelCase , padding=lowerCamelCase , return_tensors="np" ).input_values for enc_seq_a, enc_seq_a in zip(lowerCamelCase , lowerCamelCase ): self.assertTrue(np.allclose(lowerCamelCase , lowerCamelCase , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. __a = [floats_list((1, x) )[0] for x in (800, 800, 800)] __a = np.asarray(lowerCamelCase ) __a = feat_extract(lowerCamelCase , return_tensors="np" ).input_values __a = feat_extract(lowerCamelCase , return_tensors="np" ).input_values for enc_seq_a, enc_seq_a in zip(lowerCamelCase , lowerCamelCase ): self.assertTrue(np.allclose(lowerCamelCase , lowerCamelCase , atol=1E-3 ) ) @require_torch def a__ ( self ): import torch __a = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __a = np.random.rand(100 ).astype(np.floataa ) __a = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: __a = feature_extractor.pad([{"input_values": inputs}] , return_tensors="np" ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) __a = feature_extractor.pad([{"input_values": inputs}] , return_tensors="pt" ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def a__ ( self , lowerCamelCase ): from datasets import load_dataset __a = load_dataset("hf-internal-testing/librispeech_asr_dummy" , "clean" , split="validation" ) # automatic decoding with librispeech __a = ds.sort("id" ).select(range(lowerCamelCase ) )[:num_samples]["audio"] return [x["array"] for x in speech_samples] @require_torch def a__ ( self ): # fmt: off __a = torch.tensor( [-0.9894, -1.2776, -0.9066, -1.2776, -0.9349, -1.2609, -1.0386, -1.2776, -1.1561, -1.2776, -1.2052, -1.2723, -1.2190, -1.2132, -1.2776, -1.1133, -1.1953, -1.1343, -1.1584, -1.2203, -1.1770, -1.2474, -1.2381, -1.1936, -0.9270, -0.8317, -0.8049, -0.7706, -0.7565, -0.7869] ) # fmt: on __a = self._load_datasamples(1 ) __a = ASTFeatureExtractor() __a = feature_extractor(lowerCamelCase , return_tensors="pt" ).input_values self.assertEquals(input_values.shape , (1, 1024, 128) ) self.assertTrue(torch.allclose(input_values[0, 0, :30] , lowerCamelCase , atol=1E-4 ) )
261
0
import json import os from typing import Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging a_ = logging.get_logger(__name__) a_ = {'vocab_file': 'vocab.json'} a_ = { 'vocab_file': { 'mgp-str': 'https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json', } } a_ = {'mgp-str': 27} class _lowercase ( lowerCamelCase__ ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : Optional[int] , snake_case : Union[str, Any] , snake_case : str="[GO]" , snake_case : List[Any]="[GO]" , snake_case : Optional[int]="[s]" , snake_case : Any="[GO]" , **snake_case : str ) -> Optional[int]: """simple docstring""" super().__init__( unk_token=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , pad_token=__lowerCamelCase , **__lowerCamelCase , ) with open(__lowerCamelCase , encoding='utf-8' ) as vocab_handle: UpperCamelCase_ : int = json.load(__lowerCamelCase ) UpperCamelCase_ : Any = {v: k for k, v in self.vocab.items()} @property def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" return len(self.vocab ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" return dict(self.vocab , **self.added_tokens_encoder ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , snake_case : List[Any] ) -> Union[str, Any]: """simple docstring""" UpperCamelCase_ : List[Any] = [] for s in text: char_tokens.extend(__lowerCamelCase ) return char_tokens def SCREAMING_SNAKE_CASE__ ( self : List[Any] , snake_case : List[Any] ) -> List[str]: """simple docstring""" return self.vocab.get(__lowerCamelCase , self.vocab.get(self.unk_token ) ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] , snake_case : str ) -> Any: """simple docstring""" return self.decoder.get(__lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self : Any , snake_case : int , snake_case : Any = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(__lowerCamelCase ): logger.error('Vocabulary path ({}) should be a directory'.format(__lowerCamelCase ) ) return UpperCamelCase_ : Any = os.path.join( __lowerCamelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) with open(__lowerCamelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.vocab , indent=2 , sort_keys=__lowerCamelCase , ensure_ascii=__lowerCamelCase ) + '\n' ) return (vocab_file,)
355
import copy import tempfile import unittest from transformers import MaMaaaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from transformers.utils import cached_property from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaTokenizer from transformers.models.mam_aaa.modeling_mam_aaa import MaMaaaDecoder, MaMaaaEncoder def __lowercase ( lowerCamelCase : str , lowerCamelCase : Tuple , lowerCamelCase : Optional[int] , lowerCamelCase : str=None , lowerCamelCase : Dict=None , lowerCamelCase : Optional[int]=None , lowerCamelCase : Dict=None , lowerCamelCase : Optional[int]=None , ): if attention_mask is None: UpperCamelCase_ : int = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: UpperCamelCase_ : Dict = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: UpperCamelCase_ : Optional[Any] = torch.ones(config.encoder_layers , config.encoder_attention_heads , device=lowerCamelCase ) if decoder_head_mask is None: UpperCamelCase_ : int = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=lowerCamelCase ) if cross_attn_head_mask is None: UpperCamelCase_ : Tuple = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=lowerCamelCase ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } class _lowercase : def __init__( self : Union[str, Any] , snake_case : str , snake_case : str=1_3 , snake_case : Optional[int]=7 , snake_case : int=True , snake_case : str=False , snake_case : str=9_9 , snake_case : int=1_6 , snake_case : str=2 , snake_case : Dict=4 , snake_case : Tuple=4 , snake_case : List[Any]="relu" , snake_case : str=0.1 , snake_case : Any=0.1 , snake_case : List[str]=0.0 , snake_case : int=0.0 , snake_case : Any=2_0 , snake_case : Union[str, Any]=2 , snake_case : Tuple=1 , snake_case : Optional[int]=0 , ) -> int: """simple docstring""" UpperCamelCase_ : Tuple = parent UpperCamelCase_ : Optional[Any] = batch_size UpperCamelCase_ : Tuple = seq_length UpperCamelCase_ : Dict = is_training UpperCamelCase_ : Tuple = use_labels UpperCamelCase_ : Tuple = vocab_size UpperCamelCase_ : List[str] = hidden_size UpperCamelCase_ : List[str] = num_hidden_layers UpperCamelCase_ : Tuple = num_attention_heads UpperCamelCase_ : Dict = intermediate_size UpperCamelCase_ : Dict = hidden_act UpperCamelCase_ : int = hidden_dropout_prob UpperCamelCase_ : str = attention_probs_dropout_prob UpperCamelCase_ : List[Any] = encoder_layerdrop UpperCamelCase_ : Any = decoder_layerdrop UpperCamelCase_ : Tuple = max_position_embeddings UpperCamelCase_ : Dict = eos_token_id UpperCamelCase_ : int = pad_token_id UpperCamelCase_ : str = bos_token_id def SCREAMING_SNAKE_CASE__ ( self : str ) -> Optional[int]: """simple docstring""" UpperCamelCase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase_ : Any = self.eos_token_id # Eos Token UpperCamelCase_ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for M2M100 the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input UpperCamelCase_ : str = input_ids.clamp(self.pad_token_id + 1 ) UpperCamelCase_ : List[Any] = decoder_input_ids.clamp(self.pad_token_id + 1 ) UpperCamelCase_ : str = self.get_config() UpperCamelCase_ : Any = prepare_mam_aaa_inputs_dict(snake_case , snake_case , snake_case ) return config, inputs_dict def SCREAMING_SNAKE_CASE__ ( self : str ) -> int: """simple docstring""" return MaMaaaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , encoder_layerdrop=self.encoder_layerdrop , decoder_layerdrop=self.decoder_layerdrop , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , ) def SCREAMING_SNAKE_CASE__ ( self : Any ) -> List[str]: """simple docstring""" UpperCamelCase_, UpperCamelCase_ : List[str] = self.prepare_config_and_inputs() return config, inputs_dict def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , snake_case : List[Any] , snake_case : Optional[int] ) -> Dict: """simple docstring""" UpperCamelCase_ : str = MaMaaaModel(config=snake_case ).get_decoder().to(snake_case ).eval() UpperCamelCase_ : str = inputs_dict['input_ids'] UpperCamelCase_ : Any = inputs_dict['attention_mask'] UpperCamelCase_ : Optional[int] = inputs_dict['head_mask'] # first forward pass UpperCamelCase_ : int = model(snake_case , attention_mask=snake_case , head_mask=snake_case , use_cache=snake_case ) UpperCamelCase_, UpperCamelCase_ : int = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids UpperCamelCase_ : int = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCamelCase_ : Optional[int] = ids_tensor((self.batch_size, 3) , 2 ) # append to next input_ids and UpperCamelCase_ : Tuple = torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCamelCase_ : Optional[Any] = torch.cat([attention_mask, next_attn_mask] , dim=-1 ) UpperCamelCase_ : Union[str, Any] = model(snake_case , attention_mask=snake_case )['last_hidden_state'] UpperCamelCase_ : int = model(snake_case , attention_mask=snake_case , past_key_values=snake_case )[ 'last_hidden_state' ] # select random slice UpperCamelCase_ : List[str] = ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCamelCase_ : Tuple = output_from_no_past[:, -3:, random_slice_idx].detach() UpperCamelCase_ : List[str] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(snake_case , snake_case , atol=1e-2 ) ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , snake_case : int , snake_case : str ) -> Dict: """simple docstring""" UpperCamelCase_ : Tuple = MaMaaaModel(config=snake_case ).to(snake_case ).eval() UpperCamelCase_ : List[str] = model(**snake_case ) UpperCamelCase_ : List[Any] = outputs.encoder_last_hidden_state UpperCamelCase_ : Optional[int] = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: UpperCamelCase_ : Optional[int] = model.get_encoder() encoder.save_pretrained(snake_case ) UpperCamelCase_ : Tuple = MaMaaaEncoder.from_pretrained(snake_case ).to(snake_case ) UpperCamelCase_ : Optional[Any] = encoder(inputs_dict['input_ids'] , attention_mask=inputs_dict['attention_mask'] )[ 0 ] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1e-3 ) with tempfile.TemporaryDirectory() as tmpdirname: UpperCamelCase_ : int = model.get_decoder() decoder.save_pretrained(snake_case ) UpperCamelCase_ : int = MaMaaaDecoder.from_pretrained(snake_case ).to(snake_case ) UpperCamelCase_ : int = decoder( input_ids=inputs_dict['decoder_input_ids'] , attention_mask=inputs_dict['decoder_attention_mask'] , encoder_hidden_states=snake_case , encoder_attention_mask=inputs_dict['attention_mask'] , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1e-3 ) @require_torch class _lowercase ( snake_case_ , snake_case_ , snake_case_ , unittest.TestCase ): lowercase = ( ( MaMaaaModel, MaMaaaForConditionalGeneration, ) if is_torch_available() else () ) lowercase = (MaMaaaForConditionalGeneration,) if is_torch_available() else () lowercase = ( { 'conversational': MaMaaaForConditionalGeneration, 'feature-extraction': MaMaaaModel, 'summarization': MaMaaaForConditionalGeneration, 'text2text-generation': MaMaaaForConditionalGeneration, 'translation': MaMaaaForConditionalGeneration, } if is_torch_available() else {} ) lowercase = True lowercase = True lowercase = False lowercase = False def SCREAMING_SNAKE_CASE__ ( self : List[Any] , snake_case : Union[str, Any] , snake_case : List[Any] , snake_case : str , snake_case : str , snake_case : Dict ) -> List[Any]: """simple docstring""" if pipeline_test_casse_name == "TranslationPipelineTests": # Get `ValueError: Translation requires a `src_lang` and a `tgt_lang` for this model`. # `M2M100Config` was never used in pipeline tests: cannot create a simple tokenizer. return True return False def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> Optional[int]: """simple docstring""" UpperCamelCase_ : Tuple = MaMaaaModelTester(self ) UpperCamelCase_ : Optional[Any] = ConfigTester(self , config_class=snake_case ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" UpperCamelCase_, UpperCamelCase_ : str = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: UpperCamelCase_ : int = model_class(snake_case ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(snake_case ) UpperCamelCase_, UpperCamelCase_ : str = model_class.from_pretrained(snake_case , output_loading_info=snake_case ) self.assertEqual(info['missing_keys'] , [] ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> Tuple: """simple docstring""" UpperCamelCase_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(*snake_case ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> List[str]: """simple docstring""" UpperCamelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*snake_case ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ) -> Tuple: """simple docstring""" UpperCamelCase_, UpperCamelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in (MaMaaaModel, MaMaaaForConditionalGeneration): UpperCamelCase_ : Optional[Any] = model_class(snake_case ) model.to(snake_case ) model.eval() UpperCamelCase_ : List[Any] = copy.deepcopy(self._prepare_for_class(snake_case , snake_case ) ) if not self.is_encoder_decoder: UpperCamelCase_ : List[Any] = inputs['input_ids'] del inputs["input_ids"] else: UpperCamelCase_ : str = inputs['input_ids'] UpperCamelCase_ : List[str] = inputs.get('decoder_input_ids' , snake_case ) del inputs["input_ids"] inputs.pop('decoder_input_ids' , snake_case ) UpperCamelCase_ : List[str] = model.get_input_embeddings() if not self.is_encoder_decoder: UpperCamelCase_ : Tuple = wte(snake_case ) else: UpperCamelCase_ : Optional[int] = wte(snake_case ) UpperCamelCase_ : Optional[int] = wte(snake_case ) with torch.no_grad(): model(**snake_case )[0] def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> List[str]: """simple docstring""" UpperCamelCase_, UpperCamelCase_ : int = self.model_tester.prepare_config_and_inputs() UpperCamelCase_ : str = input_dict['input_ids'] UpperCamelCase_ : int = input_ids.ne(1 ).to(snake_case ) UpperCamelCase_ : Dict = MaMaaaForConditionalGeneration(snake_case ).eval().to(snake_case ) if torch_device == "cuda": model.half() model.generate(snake_case , attention_mask=snake_case ) model.generate(num_beams=4 , do_sample=snake_case , early_stopping=snake_case , num_return_sequences=3 ) def __lowercase ( lowerCamelCase : List[Any] ): return torch.tensor(lowerCamelCase , dtype=torch.long , device=lowerCamelCase ) a_ = 1E-4 @require_torch @require_sentencepiece @require_tokenizers @slow class _lowercase ( unittest.TestCase ): @cached_property def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> int: """simple docstring""" return MaMaaaTokenizer.from_pretrained('facebook/m2m100_418M' ) def SCREAMING_SNAKE_CASE__ ( self : str ) -> Union[str, Any]: """simple docstring""" UpperCamelCase_ : Union[str, Any] = MaMaaaModel.from_pretrained('facebook/m2m100_418M' ).to(snake_case ) UpperCamelCase_ : str = _long_tensor([[1_2_8_0_2_8, 9_8, 1_2, 3_0_5_2_7, 2_7_3_2, 1_5_9, 7_7_5_5, 6_1_9_0_4, 3_9_1_4_4, 3_8, 2]] ) UpperCamelCase_ : Dict = _long_tensor([[2, 1_2_8_0_2_8, 9_8, 1_2, 3_0_5_2_7, 2_7_3_2, 1_5_9, 7_7_5_5, 6_1_9_0_4, 3_9_1_4_4, 3_8]] ) UpperCamelCase_ : Optional[int] = prepare_mam_aaa_inputs_dict(model.config , snake_case , snake_case ) with torch.no_grad(): UpperCamelCase_ : Any = model(**snake_case )[0] UpperCamelCase_ : Tuple = torch.Size((1, 1_1, 1_0_2_4) ) self.assertEqual(output.shape , snake_case ) # change to expected output here UpperCamelCase_ : Dict = torch.tensor( [[-0.7780, -0.1676, 0.1038], [-6.7556, -1.3992, 0.0567], [-7.5383, -0.5920, -0.2779]] , device=snake_case ) self.assertTrue(torch.allclose(output[:, :3, :3] , snake_case , atol=snake_case ) ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> str: """simple docstring""" UpperCamelCase_ : List[str] = MaMaaaForConditionalGeneration.from_pretrained('facebook/m2m100_418M' ).to(snake_case ) # change to intended input UpperCamelCase_ : Tuple = _long_tensor([[1_2_8_0_2_8, 9_8, 1_2, 3_0_5_2_7, 2_7_3_2, 1_5_9, 7_7_5_5, 6_1_9_0_4, 3_9_1_4_4, 3_8, 2]] ) UpperCamelCase_ : Union[str, Any] = _long_tensor([[2, 1_2_8_0_2_8, 9_8, 1_2, 3_0_5_2_7, 2_7_3_2, 1_5_9, 7_7_5_5, 6_1_9_0_4, 3_9_1_4_4, 3_8]] ) UpperCamelCase_ : Dict = prepare_mam_aaa_inputs_dict(model.config , snake_case , snake_case ) with torch.no_grad(): UpperCamelCase_ : Dict = model(**snake_case )[0] UpperCamelCase_ : Union[str, Any] = torch.Size((1, 1_1, model.config.vocab_size) ) self.assertEqual(output.shape , snake_case ) # change to expected output here UpperCamelCase_ : Any = torch.tensor( [[-1.0448, -1.0411, 3.7992], [-3.2191, -3.2386, -1.3451], [-3.6210, -3.5993, 0.4925]] , device=snake_case ) self.assertTrue(torch.allclose(output[:, :3, :3] , snake_case , atol=snake_case ) ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> int: """simple docstring""" UpperCamelCase_ : str = MaMaaaForConditionalGeneration.from_pretrained('facebook/m2m100_418M' ).to(snake_case ) UpperCamelCase_ : Optional[int] = MaMaaaTokenizer.from_pretrained('facebook/m2m100_418M' , src_lang='fr' , tgt_lang='en' ) UpperCamelCase_ : Union[str, Any] = [ 'L\'affaire NSA souligne l\'absence totale de débat sur le renseignement', 'Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.', 'Lorsque François Hollande téléphone à Barack Obama ou quand le ministre des affaires étrangères Laurent' ' Fabius convoque l\'ambassadeur des Etats-Unis, ils réagissent à une vraie découverte, qui est celle de' ' l\'ampleur de la surveillance américaine sur l\'ensemble des communications en France.', ] # The below article tests that we don't add any hypotheses outside of the top n_beams UpperCamelCase_ : Optional[Any] = tokenizer(snake_case , padding=snake_case , return_tensors='pt' ) UpperCamelCase_ : Dict = model.generate( input_ids=dct['input_ids'].to(snake_case ) , attention_mask=dct['attention_mask'].to(snake_case ) , num_beams=5 , forced_bos_token_id=tokenizer.get_lang_id('en' ) , ) UpperCamelCase_ : Optional[int] = [ 'The NSA case highlights the total absence of intelligence debate', 'I think there are two levels of response from the French government.', 'When François Hollande calls Barack Obama or when Foreign Minister Laurent Fabius calls the U.S.' ' Ambassador, they respond to a real discovery, which is that of the scale of U.S. surveillance on all' ' communications in France.', ] UpperCamelCase_ : List[str] = tokenizer.batch_decode( hypotheses_batch.tolist() , clean_up_tokenization_spaces=snake_case , skip_special_tokens=snake_case ) assert generated == expected_en
50
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __SCREAMING_SNAKE_CASE : Any = { """configuration_time_series_transformer""": [ """TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TimeSeriesTransformerConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : Optional[int] = [ """TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TimeSeriesTransformerForPrediction""", """TimeSeriesTransformerModel""", """TimeSeriesTransformerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimeSeriesTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimeSeriesTransformerForPrediction, TimeSeriesTransformerModel, TimeSeriesTransformerPreTrainedModel, ) else: import sys __SCREAMING_SNAKE_CASE : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
31
import unittest from transformers.utils.backbone_utils import ( BackboneMixin, get_aligned_output_features_output_indices, verify_out_features_out_indices, ) class A (unittest.TestCase ): '''simple docstring''' def a_ ( self : Any ) -> Union[str, Any]: """simple docstring""" A__ = ["""a""", """b""", """c"""] # Defaults to last layer if both are None A__ , A__ = get_aligned_output_features_output_indices(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) self.assertEqual(__lowerCAmelCase , ["""c"""] ) self.assertEqual(__lowerCAmelCase , [2] ) # Out indices set to match out features A__ , A__ = get_aligned_output_features_output_indices(["""a""", """c"""] , __lowerCAmelCase , __lowerCAmelCase ) self.assertEqual(__lowerCAmelCase , ["""a""", """c"""] ) self.assertEqual(__lowerCAmelCase , [0, 2] ) # Out features set to match out indices A__ , A__ = get_aligned_output_features_output_indices(__lowerCAmelCase , [0, 2] , __lowerCAmelCase ) self.assertEqual(__lowerCAmelCase , ["""a""", """c"""] ) self.assertEqual(__lowerCAmelCase , [0, 2] ) # Out features selected from negative indices A__ , A__ = get_aligned_output_features_output_indices(__lowerCAmelCase , [-3, -1] , __lowerCAmelCase ) self.assertEqual(__lowerCAmelCase , ["""a""", """c"""] ) self.assertEqual(__lowerCAmelCase , [-3, -1] ) def a_ ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" with self.assertRaises(__lowerCAmelCase ): verify_out_features_out_indices(["""a""", """b"""] , (0, 1) , __lowerCAmelCase ) # Out features must be a list with self.assertRaises(__lowerCAmelCase ): verify_out_features_out_indices(("""a""", """b""") , (0, 1) , ["""a""", """b"""] ) # Out features must be a subset of stage names with self.assertRaises(__lowerCAmelCase ): verify_out_features_out_indices(["""a""", """b"""] , (0, 1) , ["""a"""] ) # Out indices must be a list or tuple with self.assertRaises(__lowerCAmelCase ): verify_out_features_out_indices(__lowerCAmelCase , 0 , ["""a""", """b"""] ) # Out indices must be a subset of stage names with self.assertRaises(__lowerCAmelCase ): verify_out_features_out_indices(__lowerCAmelCase , (0, 1) , ["""a"""] ) # Out features and out indices must be the same length with self.assertRaises(__lowerCAmelCase ): verify_out_features_out_indices(["""a""", """b"""] , (0,) , ["""a""", """b""", """c"""] ) # Out features should match out indices with self.assertRaises(__lowerCAmelCase ): verify_out_features_out_indices(["""a""", """b"""] , (0, 2) , ["""a""", """b""", """c"""] ) # Out features and out indices should be in order with self.assertRaises(__lowerCAmelCase ): verify_out_features_out_indices(["""b""", """a"""] , (0, 1) , ["""a""", """b"""] ) # Check passes with valid inputs verify_out_features_out_indices(["""a""", """b""", """d"""] , (0, 1, -1) , ["""a""", """b""", """c""", """d"""] ) def a_ ( self : Union[str, Any] ) -> List[str]: """simple docstring""" A__ = BackboneMixin() A__ = ["""a""", """b""", """c"""] A__ = ["""a""", """c"""] A__ = [0, 2] # Check that the output features and indices are set correctly self.assertEqual(backbone.out_features , ["""a""", """c"""] ) self.assertEqual(backbone.out_indices , [0, 2] ) # Check out features and indices are updated correctly A__ = ["""a""", """b"""] self.assertEqual(backbone.out_features , ["""a""", """b"""] ) self.assertEqual(backbone.out_indices , [0, 1] ) A__ = [-3, -1] self.assertEqual(backbone.out_features , ["""a""", """c"""] ) self.assertEqual(backbone.out_indices , [-3, -1] )
274
0
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging A_ = logging.get_logger(__name__) A_ = { '''microsoft/wavlm-base''': '''https://huggingface.co/microsoft/wavlm-base/resolve/main/config.json''', # See all WavLM models at https://huggingface.co/models?filter=wavlm } class __SCREAMING_SNAKE_CASE ( UpperCamelCase ): snake_case_ = 'wavlm' def __init__( self : int , snake_case : Dict=32 , snake_case : Optional[Any]=768 , snake_case : Optional[int]=12 , snake_case : str=12 , snake_case : str=3072 , snake_case : Union[str, Any]="gelu" , snake_case : List[str]=0.1 , snake_case : Tuple=0.1 , snake_case : Dict=0.1 , snake_case : List[Any]=0.0 , snake_case : Optional[Any]=0.1 , snake_case : Optional[int]=0.1 , snake_case : int=0.02 , snake_case : Dict=1e-5 , snake_case : Optional[Any]="group" , snake_case : Any="gelu" , snake_case : List[str]=(512, 512, 512, 512, 512, 512, 512) , snake_case : Optional[Any]=(5, 2, 2, 2, 2, 2, 2) , snake_case : List[str]=(10, 3, 3, 3, 3, 2, 2) , snake_case : List[str]=False , snake_case : Optional[Any]=128 , snake_case : int=16 , snake_case : List[str]=320 , snake_case : Dict=800 , snake_case : Optional[Any]=False , snake_case : Union[str, Any]=True , snake_case : str=0.05 , snake_case : Tuple=10 , snake_case : List[Any]=2 , snake_case : Any=0.0 , snake_case : int=10 , snake_case : str=320 , snake_case : Optional[Any]=2 , snake_case : List[Any]=0.1 , snake_case : Union[str, Any]=100 , snake_case : Optional[int]=256 , snake_case : List[str]=256 , snake_case : Optional[int]=0.1 , snake_case : Tuple="mean" , snake_case : Any=False , snake_case : Optional[int]=False , snake_case : List[str]=256 , snake_case : int=(512, 512, 512, 512, 1500) , snake_case : str=(5, 3, 3, 1, 1) , snake_case : Optional[Any]=(1, 2, 3, 1, 1) , snake_case : int=512 , snake_case : Any=80 , snake_case : Any=0 , snake_case : Dict=1 , snake_case : Dict=2 , snake_case : Optional[Any]=False , snake_case : Any=3 , snake_case : str=2 , snake_case : Optional[Any]=3 , snake_case : str=None , **snake_case : Tuple , ): '''simple docstring''' super().__init__(**snake_case , pad_token_id=snake_case , bos_token_id=snake_case , eos_token_id=snake_case ) A__ : Any = hidden_size A__ : List[Any] = feat_extract_norm A__ : Any = feat_extract_activation A__ : Dict = list(snake_case ) A__ : int = list(snake_case ) A__ : Union[str, Any] = list(snake_case ) A__ : int = conv_bias A__ : Optional[int] = num_buckets A__ : List[str] = max_bucket_distance A__ : Any = num_conv_pos_embeddings A__ : int = num_conv_pos_embedding_groups A__ : Union[str, Any] = len(self.conv_dim ) A__ : Tuple = num_hidden_layers A__ : Dict = intermediate_size A__ : Union[str, Any] = hidden_act A__ : Union[str, Any] = num_attention_heads A__ : List[Any] = hidden_dropout A__ : List[Any] = attention_dropout A__ : Optional[int] = activation_dropout A__ : Any = feat_proj_dropout A__ : str = final_dropout A__ : str = layerdrop A__ : Optional[int] = layer_norm_eps A__ : List[str] = initializer_range A__ : str = num_ctc_classes A__ : List[str] = vocab_size A__ : List[str] = do_stable_layer_norm A__ : Optional[Any] = use_weighted_layer_sum A__ : Dict = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( """Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==""" """ `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =""" F' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,' F' `len(config.conv_kernel) = {len(self.conv_kernel )}`.' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 A__ : Union[str, Any] = apply_spec_augment A__ : List[Any] = mask_time_prob A__ : str = mask_time_length A__ : str = mask_time_min_masks A__ : List[str] = mask_feature_prob A__ : Union[str, Any] = mask_feature_length # parameters for pretraining with codevector quantized representations A__ : int = num_codevectors_per_group A__ : Any = num_codevector_groups A__ : Tuple = contrastive_logits_temperature A__ : str = num_negatives A__ : Optional[Any] = codevector_dim A__ : List[Any] = proj_codevector_dim A__ : Tuple = diversity_loss_weight # ctc loss A__ : int = ctc_loss_reduction A__ : Union[str, Any] = ctc_zero_infinity # adapter A__ : List[str] = add_adapter A__ : Dict = adapter_kernel_size A__ : Optional[int] = adapter_stride A__ : Optional[int] = num_adapter_layers A__ : str = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. A__ : Dict = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. A__ : str = list(snake_case ) A__ : Union[str, Any] = list(snake_case ) A__ : Tuple = list(snake_case ) A__ : Tuple = xvector_output_dim @property def _UpperCamelCase ( self : Optional[Any] ): '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1 )
296
"""simple docstring""" import re from flax.core.frozen_dict import freeze from flax.traverse_util import flatten_dict, unflatten_dict from jax.experimental import PartitionSpec as P # Sentinels A_ = object() # For specifying empty leaf dict `{}` A_ = object() def _lowerCAmelCase ( UpperCAmelCase__ : Tuple, UpperCAmelCase__ : List[Any] ) ->Dict: A__ : Union[str, Any] = tuple((re.compile(x + """$""" ) for x in qs) ) for i in range(len(UpperCAmelCase__ ) - len(UpperCAmelCase__ ) + 1 ): A__ : Optional[Any] = [x.match(UpperCAmelCase__ ) for x, y in zip(UpperCAmelCase__, ks[i:] )] if matches and all(UpperCAmelCase__ ): return True return False def _lowerCAmelCase ( UpperCAmelCase__ : List[Any] ) ->Dict: def replace(UpperCAmelCase__ : int, UpperCAmelCase__ : List[str] ): for rule, replacement in rules: if _match(UpperCAmelCase__, UpperCAmelCase__ ): return replacement return val return replace def _lowerCAmelCase ( ) ->Tuple: return [ # embeddings (("transformer", "wpe", "embedding"), P("""mp""", UpperCAmelCase__ )), (("transformer", "wte", "embedding"), P("""mp""", UpperCAmelCase__ )), # atention (("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(UpperCAmelCase__, """mp""" )), (("attention", "out_proj", "kernel"), P("""mp""", UpperCAmelCase__ )), (("attention", "out_proj", "bias"), None), # mlp (("mlp", "c_fc", "kernel"), P(UpperCAmelCase__, """mp""" )), (("mlp", "c_fc", "bias"), P("""mp""" )), (("mlp", "c_proj", "kernel"), P("""mp""", UpperCAmelCase__ )), (("mlp", "c_proj", "bias"), None), # layer norms ((r"ln_\d+", "bias"), None), ((r"\d+", r"ln_\d+", "scale"), None), (("ln_f", "bias"), None), (("ln_f", "scale"), None), ] def _lowerCAmelCase ( UpperCAmelCase__ : Tuple ) ->Any: A__ : Union[str, Any] = _get_partition_rules() A__ : int = _replacement_rules(UpperCAmelCase__ ) A__ : Tuple = {k: _unmatched for k in flatten_dict(UpperCAmelCase__ )} A__ : Optional[int] = {k: replace(UpperCAmelCase__, UpperCAmelCase__ ) for k, v in initd.items()} assert _unmatched not in result.values(), "Incomplete partition spec." return freeze(unflatten_dict(UpperCAmelCase__ ) )
296
1
"""simple docstring""" from importlib import import_module from .logging import get_logger lowercase_ = get_logger(__name__) class __lowerCAmelCase : '''simple docstring''' def __init__( self , _a , _a=None ): __a = attrs or [] if module is not None: for key in module.__dict__: if key in attrs or not key.startswith('''__''' ): setattr(self , _a , getattr(_a , _a ) ) __a = module._original_module if isinstance(_a , _PatchedModuleObj ) else module class __lowerCAmelCase : '''simple docstring''' __UpperCAmelCase : int = [] def __init__( self , _a , _a , _a , _a=None ): __a = obj __a = target __a = new __a = target.split('''.''' )[0] __a = {} __a = attrs or [] def __enter__( self ): *__a , __a = self.target.split('''.''' ) # Patch modules: # it's used to patch attributes of submodules like "os.path.join"; # in this case we need to patch "os" and "os.path" for i in range(len(_a ) ): try: __a = import_module('''.'''.join(submodules[: i + 1] ) ) except ModuleNotFoundError: continue # We iterate over all the globals in self.obj in case we find "os" or "os.path" for attr in self.obj.__dir__(): __a = getattr(self.obj , _a ) # We don't check for the name of the global, but rather if its value *is* "os" or "os.path". # This allows to patch renamed modules like "from os import path as ospath". if obj_attr is submodule or ( (isinstance(_a , _PatchedModuleObj ) and obj_attr._original_module is submodule) ): __a = obj_attr # patch at top level setattr(self.obj , _a , _PatchedModuleObj(_a , attrs=self.attrs ) ) __a = getattr(self.obj , _a ) # construct lower levels patches for key in submodules[i + 1 :]: setattr(_a , _a , _PatchedModuleObj(getattr(_a , _a , _a ) , attrs=self.attrs ) ) __a = getattr(_a , _a ) # finally set the target attribute setattr(_a , _a , self.new ) # Patch attribute itself: # it's used for builtins like "open", # and also to patch "os.path.join" we may also need to patch "join" # itself if it was imported as "from os.path import join". if submodules: # if it's an attribute of a submodule like "os.path.join" try: __a = getattr(import_module('''.'''.join(_a ) ) , _a ) except (AttributeError, ModuleNotFoundError): return # We iterate over all the globals in self.obj in case we find "os.path.join" for attr in self.obj.__dir__(): # We don't check for the name of the global, but rather if its value *is* "os.path.join". # This allows to patch renamed attributes like "from os.path import join as pjoin". if getattr(self.obj , _a ) is attr_value: __a = getattr(self.obj , _a ) setattr(self.obj , _a , self.new ) elif target_attr in globals()["__builtins__"]: # if it'a s builtin like "open" __a = globals()['''__builtins__'''][target_attr] setattr(self.obj , _a , self.new ) else: raise RuntimeError(f'''Tried to patch attribute {target_attr} instead of a submodule.''' ) def __exit__( self , *_a ): for attr in list(self.original ): setattr(self.obj , _a , self.original.pop(_a ) ) def __UpperCAmelCase ( self ): self.__enter__() self._active_patches.append(self ) def __UpperCAmelCase ( self ): try: self._active_patches.remove(self ) except ValueError: # If the patch hasn't been started this will fail return None return self.__exit__()
45
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __lowerCamelCase : Union[str, Any] = { '''configuration_chinese_clip''': [ '''CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ChineseCLIPConfig''', '''ChineseCLIPOnnxConfig''', '''ChineseCLIPTextConfig''', '''ChineseCLIPVisionConfig''', ], '''processing_chinese_clip''': ['''ChineseCLIPProcessor'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Any = ['''ChineseCLIPFeatureExtractor'''] __lowerCamelCase : Optional[int] = ['''ChineseCLIPImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : int = [ '''CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ChineseCLIPModel''', '''ChineseCLIPPreTrainedModel''', '''ChineseCLIPTextModel''', '''ChineseCLIPVisionModel''', ] if TYPE_CHECKING: from .configuration_chinese_clip import ( CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, ChineseCLIPConfig, ChineseCLIPOnnxConfig, ChineseCLIPTextConfig, ChineseCLIPVisionConfig, ) from .processing_chinese_clip import ChineseCLIPProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_chinese_clip import ChineseCLIPFeatureExtractor, ChineseCLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_chinese_clip import ( CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, ChineseCLIPModel, ChineseCLIPPreTrainedModel, ChineseCLIPTextModel, ChineseCLIPVisionModel, ) else: import sys __lowerCamelCase : Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
18
0
'''simple docstring''' import requests __lowercase : List[str] = 'https://newsapi.org/v1/articles?source=bbc-news&sortBy=top&apiKey=' def lowerCamelCase (_SCREAMING_SNAKE_CASE : str ): # fetching a list of articles in json format __a : List[str] = requests.get(_NEWS_API + bbc_news_api_key ).json() # each article in the list is a dict for i, article in enumerate(bbc_news_page['articles'] , 1 ): print(F"""{i}.) {article["title"]}""" ) if __name__ == "__main__": fetch_bbc_news(bbc_news_api_key='<Your BBC News API key goes here>')
294
'''simple docstring''' import json import os import re import unittest from transformers import CodeGenTokenizer, CodeGenTokenizerFast from transformers.models.codegen.tokenization_codegen import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __UpperCamelCase ( lowerCAmelCase_ , unittest.TestCase ): A_ = CodeGenTokenizer A_ = CodeGenTokenizerFast A_ = True A_ = {"add_prefix_space": True} A_ = False def __UpperCAmelCase ( self ): '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __a : Tuple = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', '<|endoftext|>', ] __a : Union[str, Any] = dict(zip(__a , range(len(__a ) ) ) ) __a : Tuple = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] __a : Dict = {'unk_token': '<unk>'} __a : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) __a : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(__a ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(__a ) ) def __UpperCAmelCase ( self , **__a ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return CodeGenTokenizer.from_pretrained(self.tmpdirname , **__a ) def __UpperCAmelCase ( self , **__a ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return CodeGenTokenizerFast.from_pretrained(self.tmpdirname , **__a ) def __UpperCAmelCase ( self , __a ): '''simple docstring''' __a : Tuple = 'lower newer' __a : Tuple = 'lower newer' return input_text, output_text def __UpperCAmelCase ( self ): '''simple docstring''' __a : List[Any] = CodeGenTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) __a : str = 'lower newer' __a : Tuple = ['\u0120low', 'er', '\u0120', 'n', 'e', 'w', 'er'] __a : Dict = tokenizer.tokenize(__a , add_prefix_space=__a ) self.assertListEqual(__a , __a ) __a : List[str] = tokens + [tokenizer.unk_token] __a : Any = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , __a ) def __UpperCAmelCase ( self ): '''simple docstring''' if not self.test_rust_tokenizer: return __a : List[Any] = self.get_tokenizer() __a : List[str] = self.get_rust_tokenizer(add_prefix_space=__a ) __a : Any = 'lower newer' # Testing tokenization __a : Dict = tokenizer.tokenize(__a , add_prefix_space=__a ) __a : Dict = rust_tokenizer.tokenize(__a ) self.assertListEqual(__a , __a ) # Testing conversion to ids without special tokens __a : int = tokenizer.encode(__a , add_special_tokens=__a , add_prefix_space=__a ) __a : Tuple = rust_tokenizer.encode(__a , add_special_tokens=__a ) self.assertListEqual(__a , __a ) # Testing conversion to ids with special tokens __a : Tuple = self.get_rust_tokenizer(add_prefix_space=__a ) __a : Union[str, Any] = tokenizer.encode(__a , add_prefix_space=__a ) __a : int = rust_tokenizer.encode(__a ) self.assertListEqual(__a , __a ) # Testing the unknown token __a : Any = tokens + [rust_tokenizer.unk_token] __a : Tuple = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(__a ) , __a ) def __UpperCAmelCase ( self , *__a , **__a ): '''simple docstring''' pass def __UpperCAmelCase ( self , __a=15 ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): __a : Optional[int] = self.rust_tokenizer_class.from_pretrained(__a , **__a ) # Simple input __a : List[Any] = 'This is a simple input' __a : Tuple = ['This is a simple input 1', 'This is a simple input 2'] __a : Tuple = ('This is a simple input', 'This is a pair') __a : str = [ ('This is a simple input 1', 'This is a simple input 2'), ('This is a simple pair 1', 'This is a simple pair 2'), ] # Simple input tests self.assertRaises(__a , tokenizer_r.encode , __a , max_length=__a , padding='max_length' ) # Simple input self.assertRaises(__a , tokenizer_r.encode_plus , __a , max_length=__a , padding='max_length' ) # Simple input self.assertRaises( __a , tokenizer_r.batch_encode_plus , __a , max_length=__a , padding='max_length' , ) # Pair input self.assertRaises(__a , tokenizer_r.encode , __a , max_length=__a , padding='max_length' ) # Pair input self.assertRaises(__a , tokenizer_r.encode_plus , __a , max_length=__a , padding='max_length' ) # Pair input self.assertRaises( __a , tokenizer_r.batch_encode_plus , __a , max_length=__a , padding='max_length' , ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : List[Any] = CodeGenTokenizer.from_pretrained(self.tmpdirname , pad_token='<pad>' ) # Simple input __a : str = 'This is a simple input' __a : Any = ['This is a simple input looooooooong', 'This is a simple input'] __a : Optional[int] = ('This is a simple input', 'This is a pair') __a : Optional[Any] = [ ('This is a simple input loooooong', 'This is a simple input'), ('This is a simple pair loooooong', 'This is a simple pair'), ] __a : int = tokenizer.pad_token_id __a : List[Any] = tokenizer(__a , padding='max_length' , max_length=30 , return_tensors='np' ) __a : Union[str, Any] = tokenizer(__a , padding=__a , truncate=__a , return_tensors='np' ) __a : Optional[Any] = tokenizer(*__a , padding='max_length' , max_length=60 , return_tensors='np' ) __a : List[Any] = tokenizer(__a , padding=__a , truncate=__a , return_tensors='np' ) # s # test single string max_length padding self.assertEqual(out_s['input_ids'].shape[-1] , 30 ) self.assertTrue(pad_token_id in out_s['input_ids'] ) self.assertTrue(0 in out_s['attention_mask'] ) # s2 # test automatic padding self.assertEqual(out_sa['input_ids'].shape[-1] , 33 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa['input_ids'][0] ) self.assertFalse(0 in out_sa['attention_mask'][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa['input_ids'][1] ) self.assertTrue(0 in out_sa['attention_mask'][1] ) # p # test single pair max_length padding self.assertEqual(out_p['input_ids'].shape[-1] , 60 ) self.assertTrue(pad_token_id in out_p['input_ids'] ) self.assertTrue(0 in out_p['attention_mask'] ) # p2 # test automatic padding pair self.assertEqual(out_pa['input_ids'].shape[-1] , 52 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa['input_ids'][0] ) self.assertFalse(0 in out_pa['attention_mask'][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa['input_ids'][1] ) self.assertTrue(0 in out_pa['attention_mask'][1] ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : Optional[int] = '$$$' __a : List[str] = CodeGenTokenizer.from_pretrained(self.tmpdirname , bos_token=__a , add_bos_token=__a ) __a : Union[str, Any] = 'This is a simple input' __a : List[Any] = ['This is a simple input 1', 'This is a simple input 2'] __a : List[Any] = tokenizer.bos_token_id __a : List[str] = tokenizer(__a ) __a : Optional[Any] = tokenizer(__a ) self.assertEqual(out_s.input_ids[0] , __a ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) __a : Any = tokenizer.decode(out_s.input_ids ) __a : Union[str, Any] = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0] , __a ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) @slow def __UpperCAmelCase ( self ): '''simple docstring''' __a : Any = CodeGenTokenizer.from_pretrained('Salesforce/codegen-350M-mono' ) __a : Optional[int] = '\nif len_a > len_b:\n result = a\nelse:\n result = b\n\n\n\n#' __a : Tuple = '\nif len_a > len_b: result = a\nelse: result = b' __a : Optional[int] = tokenizer.encode(__a ) __a : Union[str, Any] = ['^#', re.escape('<|endoftext|>' ), '^\'\'\'', '^"""', '\n\n\n'] __a : Tuple = tokenizer.decode(__a , truncate_before_pattern=__a ) self.assertEqual(__a , __a ) def __UpperCAmelCase ( self ): '''simple docstring''' pass
294
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) A: int = {"configuration_deit": ["DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DeiTConfig", "DeiTOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A: Optional[Any] = ["DeiTFeatureExtractor"] A: Dict = ["DeiTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A: Dict = [ "DEIT_PRETRAINED_MODEL_ARCHIVE_LIST", "DeiTForImageClassification", "DeiTForImageClassificationWithTeacher", "DeiTForMaskedImageModeling", "DeiTModel", "DeiTPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A: Optional[int] = [ "TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFDeiTForImageClassification", "TFDeiTForImageClassificationWithTeacher", "TFDeiTForMaskedImageModeling", "TFDeiTModel", "TFDeiTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig, DeiTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_deit import DeiTFeatureExtractor from .image_processing_deit import DeiTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deit import ( DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, DeiTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deit import ( TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, TFDeiTPreTrainedModel, ) else: import sys A: Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
109
"""simple docstring""" import argparse import torch # Step 1. clone https://github.com/microsoft/unilm # Step 2. git checkout to https://github.com/microsoft/unilm/commit/b94ec76c36f02fb2b0bf0dcb0b8554a2185173cd # Step 3. cd unilm # Step 4. ln -s $(realpath wavlm/modules.py) ./ # create simlink # import classes from unilm.wavlm.WavLM import WavLM as WavLMOrig from unilm.wavlm.WavLM import WavLMConfig as WavLMConfigOrig from transformers import WavLMConfig, WavLMModel, logging logging.set_verbosity_info() A: Optional[int] = logging.get_logger(__name__) A: Tuple = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn.grep_linear": "encoder.layers.*.attention.gru_rel_pos_linear", "self_attn.relative_attention_bias": "encoder.layers.*.attention.rel_attn_embed", "self_attn.grep_a": "encoder.layers.*.attention.gru_rel_pos_const", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "ctc_proj", "mask_emb": "masked_spec_embed", } A: List[str] = [ "ctc_proj", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def _snake_case ( UpperCamelCase : str , UpperCamelCase : Tuple , UpperCamelCase : Optional[int] , UpperCamelCase : Tuple , UpperCamelCase : Any ): for attribute in key.split(""".""" ): UpperCAmelCase : Optional[Any] = getattr(UpperCamelCase , UpperCamelCase ) if weight_type is not None: UpperCAmelCase : List[Any] = getattr(UpperCamelCase , UpperCamelCase ).shape else: UpperCAmelCase : str = hf_pointer.shape assert hf_shape == value.shape, ( F"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" F" {value.shape} for {full_name}" ) if weight_type == "weight": UpperCAmelCase : Optional[Any] = value elif weight_type == "weight_g": UpperCAmelCase : str = value elif weight_type == "weight_v": UpperCAmelCase : Union[str, Any] = value elif weight_type == "bias": UpperCAmelCase : str = value else: UpperCAmelCase : Union[str, Any] = value logger.info(F"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." ) def _snake_case ( UpperCamelCase : List[Any] , UpperCamelCase : Optional[Any] ): UpperCAmelCase : Tuple = [] UpperCAmelCase : Any = fairseq_model.state_dict() UpperCAmelCase : Tuple = hf_model.feature_extractor for name, value in fairseq_dict.items(): UpperCAmelCase : str = False if "conv_layers" in name: load_conv_layer( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , hf_model.config.feat_extract_norm == """group""" , ) UpperCAmelCase : Union[str, Any] = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: UpperCAmelCase : Dict = True if "*" in mapped_key: UpperCAmelCase : str = name.split(UpperCamelCase )[0].split(""".""" )[-2] UpperCAmelCase : Tuple = mapped_key.replace("""*""" , UpperCamelCase ) if "weight_g" in name: UpperCAmelCase : Any = """weight_g""" elif "weight_v" in name: UpperCAmelCase : Optional[Any] = """weight_v""" elif "bias" in name and "relative_attention_bias" not in name: UpperCAmelCase : Union[str, Any] = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj UpperCAmelCase : str = """weight""" else: UpperCAmelCase : Optional[Any] = None set_recursively(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) continue if not is_used: unused_weights.append(UpperCamelCase ) logger.warning(F"Unused weights: {unused_weights}" ) def _snake_case ( UpperCamelCase : Optional[Any] , UpperCamelCase : Dict , UpperCamelCase : Tuple , UpperCamelCase : Any , UpperCamelCase : Any ): UpperCAmelCase : str = full_name.split("""conv_layers.""" )[-1] UpperCAmelCase : Dict = name.split(""".""" ) UpperCAmelCase : List[str] = int(items[0] ) UpperCAmelCase : Any = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) UpperCAmelCase : Optional[Any] = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) UpperCAmelCase : Tuple = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was" " found." ) UpperCAmelCase : str = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"{full_name} has size {value.shape}, but" F" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found." ) UpperCAmelCase : Optional[Any] = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(UpperCamelCase ) @torch.no_grad() def _snake_case ( UpperCamelCase : int , UpperCamelCase : List[Any] , UpperCamelCase : List[Any]=None ): # load the pre-trained checkpoints UpperCAmelCase : List[Any] = torch.load(UpperCamelCase ) UpperCAmelCase : List[str] = WavLMConfigOrig(checkpoint["""cfg"""] ) UpperCAmelCase : Optional[int] = WavLMOrig(UpperCamelCase ) model.load_state_dict(checkpoint["""model"""] ) model.eval() if config_path is not None: UpperCAmelCase : List[str] = WavLMConfig.from_pretrained(UpperCamelCase ) else: UpperCAmelCase : List[Any] = WavLMConfig() UpperCAmelCase : Any = WavLMModel(UpperCamelCase ) recursively_load_weights(UpperCamelCase , UpperCamelCase ) hf_wavlm.save_pretrained(UpperCamelCase ) if __name__ == "__main__": A: int = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") A: Tuple = parser.parse_args() convert_wavlm_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
109
1
"""simple docstring""" import math import flax.linen as nn import jax.numpy as jnp def __UpperCAmelCase ( lowercase ,lowercase ,lowercase = 1 ,lowercase = 1 ,lowercase = 1.0E4 ,lowercase = False ,lowercase = 1.0 ,): """simple docstring""" assert timesteps.ndim == 1, "Timesteps should be a 1d-array" assert embedding_dim % 2 == 0, f'''Embedding dimension {embedding_dim} should be even''' _UpperCAmelCase = float(embedding_dim // 2 ) _UpperCAmelCase = math.log(max_timescale / min_timescale ) / (num_timescales - freq_shift) _UpperCAmelCase = min_timescale * jnp.exp(jnp.arange(_a ,dtype=jnp.floataa ) * -log_timescale_increment ) _UpperCAmelCase = jnp.expand_dims(_a ,1 ) * jnp.expand_dims(_a ,0 ) # scale embeddings _UpperCAmelCase = scale * emb if flip_sin_to_cos: _UpperCAmelCase = jnp.concatenate([jnp.cos(_a ), jnp.sin(_a )] ,axis=1 ) else: _UpperCAmelCase = jnp.concatenate([jnp.sin(_a ), jnp.cos(_a )] ,axis=1 ) _UpperCAmelCase = jnp.reshape(_a ,[jnp.shape(_a )[0], embedding_dim] ) return signal class a ( nn.Module ): _snake_case : Any = 32 _snake_case : int = jnp.floataa @nn.compact def __call__( self : Optional[Any] , __lowerCAmelCase : str ): _UpperCAmelCase = nn.Dense(self.time_embed_dim , dtype=self.dtype , name="""linear_1""" )(lowerCamelCase_ ) _UpperCAmelCase = nn.silu(lowerCamelCase_ ) _UpperCAmelCase = nn.Dense(self.time_embed_dim , dtype=self.dtype , name="""linear_2""" )(lowerCamelCase_ ) return temb class a ( nn.Module ): _snake_case : Dict = 32 _snake_case : int = False _snake_case : Any = 1 @nn.compact def __call__( self : str , __lowerCAmelCase : List[str] ): return get_sinusoidal_embeddings( lowerCamelCase_ , embedding_dim=self.dim , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.freq_shift )
360
"""simple docstring""" import string from math import logaa def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" _UpperCAmelCase = document.translate( str.maketrans("""""" ,"""""" ,string.punctuation ) ).replace("""\n""" ,"""""" ) _UpperCAmelCase = document_without_punctuation.split(""" """ ) # word tokenization return len([word for word in tokenize_document if word.lower() == term.lower()] ) def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" _UpperCAmelCase = corpus.lower().translate( str.maketrans("""""" ,"""""" ,string.punctuation ) ) # strip all punctuation and replace it with '' _UpperCAmelCase = corpus_without_punctuation.split("""\n""" ) _UpperCAmelCase = term.lower() return (len([doc for doc in docs if term in doc] ), len(lowercase )) def __UpperCAmelCase ( lowercase ,lowercase ,lowercase=False ): """simple docstring""" if smoothing: if n == 0: raise ValueError("""log10(0) is undefined.""" ) return round(1 + logaa(n / (1 + df) ) ,3 ) if df == 0: raise ZeroDivisionError("""df must be > 0""" ) elif n == 0: raise ValueError("""log10(0) is undefined.""" ) return round(logaa(n / df ) ,3 ) def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" return round(tf * idf ,3 )
30
0
import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def _a ( ): __lowerCAmelCase = ArgumentParser( description=( "PyTorch TPU distributed training launch " "helper utility that will spawn up " "multiple distributed processes" ) ) # Optional arguments for the launch helper parser.add_argument("--num_cores" , type=SCREAMING_SNAKE_CASE_ , default=1 , help="Number of TPU cores to use (1 or 8)." ) # positional parser.add_argument( "training_script" , type=SCREAMING_SNAKE_CASE_ , help=( "The full path to the single TPU training " "program/script to be launched in parallel, " "followed by all the arguments for the " "training script" ) , ) # rest from the training program parser.add_argument("training_script_args" , nargs=SCREAMING_SNAKE_CASE_ ) return parser.parse_args() def _a ( ): __lowerCAmelCase = parse_args() # Import training_script as a module. __lowerCAmelCase = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) __lowerCAmelCase = script_fpath.stem __lowerCAmelCase = importlib.import_module(SCREAMING_SNAKE_CASE_ ) # Patch sys.argv __lowerCAmelCase = [args.training_script] + args.training_script_args + ["--tpu_num_cores", str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
92
from __future__ import annotations import math def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(_UpperCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True _UpperCAmelCase : Any = [num for num in range(3, 10_00_01, 2) if not is_prime(num)] def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> list[int]: if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise ValueError('n must be an integer' ) if n <= 0: raise ValueError('n must be >= 0' ) lowerCamelCase__ : int = [] for num in range(len(_UpperCAmelCase ) ): lowerCamelCase__ : Union[str, Any] = 0 while 2 * i * i <= odd_composites[num]: lowerCamelCase__ : Dict = odd_composites[num] - 2 * i * i if is_prime(_UpperCAmelCase ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(_UpperCAmelCase ) == n: return list_nums return [] def SCREAMING_SNAKE_CASE ( ) -> int: return compute_nums(1 )[0] if __name__ == "__main__": print(F"""{solution() = }""")
50
0
import json import os import tempfile import datasets from utils import generate_example_dataset, get_duration lowercase : str = 50000 lowercase : str = 5000 lowercase : List[str] = os.path.split(__file__) lowercase : Any = os.path.join(RESULTS_BASEPATH, """results""", RESULTS_FILENAME.replace(""".py""", """.json""")) @get_duration def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> str: for i in range(SCREAMING_SNAKE_CASE__ ): lowercase : Optional[Any] = dataset[i] @get_duration def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Optional[int]: for i in range(0 , len(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ): lowercase : Any = dataset[i : i + batch_size] @get_duration def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> List[Any]: with dataset.formatted_as(type=SCREAMING_SNAKE_CASE__ ): for i in range(SCREAMING_SNAKE_CASE__ ): lowercase : int = dataset[i] @get_duration def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> List[str]: with dataset.formatted_as(type=SCREAMING_SNAKE_CASE__ ): for i in range(0 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): lowercase : List[str] = dataset[i : i + batch_size] def _snake_case( ) -> Any: lowercase : List[Any] = {"""num examples""": SPEED_TEST_N_EXAMPLES} lowercase : Dict = [ (read, {"""length""": SMALL_TEST}), (read, {"""length""": SPEED_TEST_N_EXAMPLES}), (read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 10}), (read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 100}), (read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 1_000}), (read_formatted, {"""type""": """numpy""", """length""": SMALL_TEST}), (read_formatted, {"""type""": """pandas""", """length""": SMALL_TEST}), (read_formatted, {"""type""": """torch""", """length""": SMALL_TEST}), (read_formatted, {"""type""": """tensorflow""", """length""": SMALL_TEST}), (read_formatted_batch, {"""type""": """numpy""", """length""": SMALL_TEST, """batch_size""": 10}), (read_formatted_batch, {"""type""": """numpy""", """length""": SMALL_TEST, """batch_size""": 1_000}), ] lowercase : Any = [ (read, {"""length""": SMALL_TEST}), (read, {"""length""": SPEED_TEST_N_EXAMPLES}), (read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 10}), (read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 100}), (read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 1_000}), (read_formatted, {"""type""": """numpy""", """length""": SMALL_TEST}), (read_formatted_batch, {"""type""": """numpy""", """length""": SMALL_TEST, """batch_size""": 10}), (read_formatted_batch, {"""type""": """numpy""", """length""": SMALL_TEST, """batch_size""": 1_000}), ] with tempfile.TemporaryDirectory() as tmp_dir: print("""generating dataset""" ) lowercase : Optional[int] = datasets.Features( {"""list""": datasets.Sequence(datasets.Value("""float32""" ) ), """numbers""": datasets.Value("""float32""" )} ) lowercase : str = generate_example_dataset( os.path.join(SCREAMING_SNAKE_CASE__ , """dataset.arrow""" ) , SCREAMING_SNAKE_CASE__ , num_examples=SCREAMING_SNAKE_CASE__ , seq_shapes={"""list""": (100,)} , ) print("""first set of iterations""" ) for func, kwargs in functions: print(func.__name__ , str(SCREAMING_SNAKE_CASE__ ) ) lowercase : Dict = func(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) print("""shuffling dataset""" ) lowercase : str = dataset.shuffle() print("""Second set of iterations (after shuffling""" ) for func, kwargs in functions_shuffled: print("""shuffled """ , func.__name__ , str(SCREAMING_SNAKE_CASE__ ) ) lowercase : str = func( SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) with open(SCREAMING_SNAKE_CASE__ , """wb""" ) as f: f.write(json.dumps(SCREAMING_SNAKE_CASE__ ).encode("""utf-8""" ) ) if __name__ == "__main__": # useful to run the profiler benchmark_iterating()
356
print((lambda quine: quine % quine)("""print((lambda quine: quine %% quine)(%r))"""))
285
0
import torch from transformers import CamembertForMaskedLM, CamembertTokenizer def __lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=5 ) -> Tuple: '''simple docstring''' assert masked_input.count("""<mask>""" ) == 1 SCREAMING_SNAKE_CASE = torch.tensor(tokenizer.encode(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE ) ).unsqueeze(0 ) # Batch size 1 SCREAMING_SNAKE_CASE = model(_SCREAMING_SNAKE_CASE )[0] # The last hidden-state is the first element of the output tuple SCREAMING_SNAKE_CASE = (input_ids.squeeze() == tokenizer.mask_token_id).nonzero().item() SCREAMING_SNAKE_CASE = logits[0, masked_index, :] SCREAMING_SNAKE_CASE = logits.softmax(dim=0 ) SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE = prob.topk(k=_SCREAMING_SNAKE_CASE , dim=0 ) SCREAMING_SNAKE_CASE = """ """.join( [tokenizer.convert_ids_to_tokens(indices[i].item() ) for i in range(len(_SCREAMING_SNAKE_CASE ) )] ) SCREAMING_SNAKE_CASE = tokenizer.mask_token SCREAMING_SNAKE_CASE = [] for index, predicted_token_bpe in enumerate(topk_predicted_token_bpe.split(""" """ ) ): SCREAMING_SNAKE_CASE = predicted_token_bpe.replace("""\u2581""" , """ """ ) if " {0}".format(_SCREAMING_SNAKE_CASE ) in masked_input: topk_filled_outputs.append( ( masked_input.replace(""" {0}""".format(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ), values[index].item(), predicted_token, ) ) else: topk_filled_outputs.append( ( masked_input.replace(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ), values[index].item(), predicted_token, ) ) return topk_filled_outputs SCREAMING_SNAKE_CASE_ = CamembertTokenizer.from_pretrained("""camembert-base""") SCREAMING_SNAKE_CASE_ = CamembertForMaskedLM.from_pretrained("""camembert-base""") model.eval() SCREAMING_SNAKE_CASE_ = """Le camembert est <mask> :)""" print(fill_mask(masked_input, model, tokenizer, topk=3))
296
from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Base model mapping ("""albert""", """FlaxAlbertModel"""), ("""bart""", """FlaxBartModel"""), ("""beit""", """FlaxBeitModel"""), ("""bert""", """FlaxBertModel"""), ("""big_bird""", """FlaxBigBirdModel"""), ("""blenderbot""", """FlaxBlenderbotModel"""), ("""blenderbot-small""", """FlaxBlenderbotSmallModel"""), ("""clip""", """FlaxCLIPModel"""), ("""distilbert""", """FlaxDistilBertModel"""), ("""electra""", """FlaxElectraModel"""), ("""gpt-sw3""", """FlaxGPT2Model"""), ("""gpt2""", """FlaxGPT2Model"""), ("""gpt_neo""", """FlaxGPTNeoModel"""), ("""gptj""", """FlaxGPTJModel"""), ("""longt5""", """FlaxLongT5Model"""), ("""marian""", """FlaxMarianModel"""), ("""mbart""", """FlaxMBartModel"""), ("""mt5""", """FlaxMT5Model"""), ("""opt""", """FlaxOPTModel"""), ("""pegasus""", """FlaxPegasusModel"""), ("""regnet""", """FlaxRegNetModel"""), ("""resnet""", """FlaxResNetModel"""), ("""roberta""", """FlaxRobertaModel"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormModel"""), ("""roformer""", """FlaxRoFormerModel"""), ("""t5""", """FlaxT5Model"""), ("""vision-text-dual-encoder""", """FlaxVisionTextDualEncoderModel"""), ("""vit""", """FlaxViTModel"""), ("""wav2vec2""", """FlaxWav2Vec2Model"""), ("""whisper""", """FlaxWhisperModel"""), ("""xglm""", """FlaxXGLMModel"""), ("""xlm-roberta""", """FlaxXLMRobertaModel"""), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Model for pre-training mapping ("""albert""", """FlaxAlbertForPreTraining"""), ("""bart""", """FlaxBartForConditionalGeneration"""), ("""bert""", """FlaxBertForPreTraining"""), ("""big_bird""", """FlaxBigBirdForPreTraining"""), ("""electra""", """FlaxElectraForPreTraining"""), ("""longt5""", """FlaxLongT5ForConditionalGeneration"""), ("""mbart""", """FlaxMBartForConditionalGeneration"""), ("""mt5""", """FlaxMT5ForConditionalGeneration"""), ("""roberta""", """FlaxRobertaForMaskedLM"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForMaskedLM"""), ("""roformer""", """FlaxRoFormerForMaskedLM"""), ("""t5""", """FlaxT5ForConditionalGeneration"""), ("""wav2vec2""", """FlaxWav2Vec2ForPreTraining"""), ("""whisper""", """FlaxWhisperForConditionalGeneration"""), ("""xlm-roberta""", """FlaxXLMRobertaForMaskedLM"""), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Model for Masked LM mapping ("""albert""", """FlaxAlbertForMaskedLM"""), ("""bart""", """FlaxBartForConditionalGeneration"""), ("""bert""", """FlaxBertForMaskedLM"""), ("""big_bird""", """FlaxBigBirdForMaskedLM"""), ("""distilbert""", """FlaxDistilBertForMaskedLM"""), ("""electra""", """FlaxElectraForMaskedLM"""), ("""mbart""", """FlaxMBartForConditionalGeneration"""), ("""roberta""", """FlaxRobertaForMaskedLM"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForMaskedLM"""), ("""roformer""", """FlaxRoFormerForMaskedLM"""), ("""xlm-roberta""", """FlaxXLMRobertaForMaskedLM"""), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Model for Seq2Seq Causal LM mapping ("""bart""", """FlaxBartForConditionalGeneration"""), ("""blenderbot""", """FlaxBlenderbotForConditionalGeneration"""), ("""blenderbot-small""", """FlaxBlenderbotSmallForConditionalGeneration"""), ("""encoder-decoder""", """FlaxEncoderDecoderModel"""), ("""longt5""", """FlaxLongT5ForConditionalGeneration"""), ("""marian""", """FlaxMarianMTModel"""), ("""mbart""", """FlaxMBartForConditionalGeneration"""), ("""mt5""", """FlaxMT5ForConditionalGeneration"""), ("""pegasus""", """FlaxPegasusForConditionalGeneration"""), ("""t5""", """FlaxT5ForConditionalGeneration"""), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Model for Image-classsification ("""beit""", """FlaxBeitForImageClassification"""), ("""regnet""", """FlaxRegNetForImageClassification"""), ("""resnet""", """FlaxResNetForImageClassification"""), ("""vit""", """FlaxViTForImageClassification"""), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ ("""vision-encoder-decoder""", """FlaxVisionEncoderDecoderModel"""), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Model for Causal LM mapping ("""bart""", """FlaxBartForCausalLM"""), ("""bert""", """FlaxBertForCausalLM"""), ("""big_bird""", """FlaxBigBirdForCausalLM"""), ("""electra""", """FlaxElectraForCausalLM"""), ("""gpt-sw3""", """FlaxGPT2LMHeadModel"""), ("""gpt2""", """FlaxGPT2LMHeadModel"""), ("""gpt_neo""", """FlaxGPTNeoForCausalLM"""), ("""gptj""", """FlaxGPTJForCausalLM"""), ("""opt""", """FlaxOPTForCausalLM"""), ("""roberta""", """FlaxRobertaForCausalLM"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForCausalLM"""), ("""xglm""", """FlaxXGLMForCausalLM"""), ("""xlm-roberta""", """FlaxXLMRobertaForCausalLM"""), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Model for Sequence Classification mapping ("""albert""", """FlaxAlbertForSequenceClassification"""), ("""bart""", """FlaxBartForSequenceClassification"""), ("""bert""", """FlaxBertForSequenceClassification"""), ("""big_bird""", """FlaxBigBirdForSequenceClassification"""), ("""distilbert""", """FlaxDistilBertForSequenceClassification"""), ("""electra""", """FlaxElectraForSequenceClassification"""), ("""mbart""", """FlaxMBartForSequenceClassification"""), ("""roberta""", """FlaxRobertaForSequenceClassification"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForSequenceClassification"""), ("""roformer""", """FlaxRoFormerForSequenceClassification"""), ("""xlm-roberta""", """FlaxXLMRobertaForSequenceClassification"""), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Model for Question Answering mapping ("""albert""", """FlaxAlbertForQuestionAnswering"""), ("""bart""", """FlaxBartForQuestionAnswering"""), ("""bert""", """FlaxBertForQuestionAnswering"""), ("""big_bird""", """FlaxBigBirdForQuestionAnswering"""), ("""distilbert""", """FlaxDistilBertForQuestionAnswering"""), ("""electra""", """FlaxElectraForQuestionAnswering"""), ("""mbart""", """FlaxMBartForQuestionAnswering"""), ("""roberta""", """FlaxRobertaForQuestionAnswering"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForQuestionAnswering"""), ("""roformer""", """FlaxRoFormerForQuestionAnswering"""), ("""xlm-roberta""", """FlaxXLMRobertaForQuestionAnswering"""), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Model for Token Classification mapping ("""albert""", """FlaxAlbertForTokenClassification"""), ("""bert""", """FlaxBertForTokenClassification"""), ("""big_bird""", """FlaxBigBirdForTokenClassification"""), ("""distilbert""", """FlaxDistilBertForTokenClassification"""), ("""electra""", """FlaxElectraForTokenClassification"""), ("""roberta""", """FlaxRobertaForTokenClassification"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForTokenClassification"""), ("""roformer""", """FlaxRoFormerForTokenClassification"""), ("""xlm-roberta""", """FlaxXLMRobertaForTokenClassification"""), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Model for Multiple Choice mapping ("""albert""", """FlaxAlbertForMultipleChoice"""), ("""bert""", """FlaxBertForMultipleChoice"""), ("""big_bird""", """FlaxBigBirdForMultipleChoice"""), ("""distilbert""", """FlaxDistilBertForMultipleChoice"""), ("""electra""", """FlaxElectraForMultipleChoice"""), ("""roberta""", """FlaxRobertaForMultipleChoice"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForMultipleChoice"""), ("""roformer""", """FlaxRoFormerForMultipleChoice"""), ("""xlm-roberta""", """FlaxXLMRobertaForMultipleChoice"""), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ ("""bert""", """FlaxBertForNextSentencePrediction"""), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ ("""speech-encoder-decoder""", """FlaxSpeechEncoderDecoderModel"""), ("""whisper""", """FlaxWhisperForConditionalGeneration"""), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ ("""whisper""", """FlaxWhisperForAudioClassification"""), ] ) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class UpperCamelCase__ ( _BaseAutoModelClass ): '''simple docstring''' __snake_case : List[str] = FLAX_MODEL_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update(FlaxAutoModel) class UpperCamelCase__ ( _BaseAutoModelClass ): '''simple docstring''' __snake_case : Dict = FLAX_MODEL_FOR_PRETRAINING_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update(FlaxAutoModelForPreTraining, head_doc="""pretraining""") class UpperCamelCase__ ( _BaseAutoModelClass ): '''simple docstring''' __snake_case : Optional[Any] = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update(FlaxAutoModelForCausalLM, head_doc="""causal language modeling""") class UpperCamelCase__ ( _BaseAutoModelClass ): '''simple docstring''' __snake_case : Any = FLAX_MODEL_FOR_MASKED_LM_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update(FlaxAutoModelForMaskedLM, head_doc="""masked language modeling""") class UpperCamelCase__ ( _BaseAutoModelClass ): '''simple docstring''' __snake_case : int = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc="""sequence-to-sequence language modeling""", checkpoint_for_example="""t5-base""" ) class UpperCamelCase__ ( _BaseAutoModelClass ): '''simple docstring''' __snake_case : Optional[int] = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update( FlaxAutoModelForSequenceClassification, head_doc="""sequence classification""" ) class UpperCamelCase__ ( _BaseAutoModelClass ): '''simple docstring''' __snake_case : List[Any] = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc="""question answering""") class UpperCamelCase__ ( _BaseAutoModelClass ): '''simple docstring''' __snake_case : Tuple = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update( FlaxAutoModelForTokenClassification, head_doc="""token classification""" ) class UpperCamelCase__ ( _BaseAutoModelClass ): '''simple docstring''' __snake_case : Union[str, Any] = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc="""multiple choice""") class UpperCamelCase__ ( _BaseAutoModelClass ): '''simple docstring''' __snake_case : List[str] = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc="""next sentence prediction""" ) class UpperCamelCase__ ( _BaseAutoModelClass ): '''simple docstring''' __snake_case : Dict = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update( FlaxAutoModelForImageClassification, head_doc="""image classification""" ) class UpperCamelCase__ ( _BaseAutoModelClass ): '''simple docstring''' __snake_case : Dict = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc="""vision-to-text modeling""") class UpperCamelCase__ ( _BaseAutoModelClass ): '''simple docstring''' __snake_case : Optional[Any] = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc="""sequence-to-sequence speech-to-text modeling""" )
296
1
import argparse import pickle import numpy as np import torch from torch import nn from transformers import ReformerConfig, ReformerModelWithLMHead from transformers.utils import logging logging.set_verbosity_info() def __magic_name__ ( __lowerCAmelCase : str , __lowerCAmelCase : Dict , __lowerCAmelCase : Optional[int]=None ) -> Optional[Any]: # set parameter of one layer assert torch_layer.weight.shape == weight.shape, f'''{torch_layer} layer.weight does not match''' __lowerCamelCase = nn.Parameter(__lowerCAmelCase ) if bias is not None: assert torch_layer.bias.shape == bias.shape, f'''{torch_layer} layer.bias does not match''' __lowerCamelCase = nn.Parameter(__lowerCAmelCase ) def __magic_name__ ( __lowerCAmelCase : List[str] , __lowerCAmelCase : Tuple , __lowerCAmelCase : List[Any] ) -> List[Any]: # set torch weights for 1-to-1 comparison __lowerCamelCase = np.asarray(weights[0] ) __lowerCamelCase = np.asarray(weights[1] ) __lowerCamelCase = np.asarray(weights[2] ) set_param( torch_layer.self_attention.query_key , torch.tensor(__lowerCAmelCase ).transpose(1 , 2 ).contiguous().view(-1 , __lowerCAmelCase ) , ) set_param( torch_layer.self_attention.value , torch.tensor(__lowerCAmelCase ).transpose(1 , 2 ).contiguous().view(-1 , __lowerCAmelCase ) , ) set_param( torch_layer.output.dense , torch.tensor(__lowerCAmelCase ).view(-1 , __lowerCAmelCase ).contiguous().transpose(0 , 1 ) , ) def __magic_name__ ( __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Any , __lowerCAmelCase : Dict ) -> List[Any]: # set torch weights for 1-to-1 comparison __lowerCamelCase = np.asarray(weights[0] ) __lowerCamelCase = np.asarray(weights[1] ) __lowerCamelCase = np.asarray(weights[2] ) __lowerCamelCase = np.asarray(weights[3] ) set_param( torch_layer.self_attention.query , torch.tensor(__lowerCAmelCase ).transpose(1 , 2 ).contiguous().view(-1 , __lowerCAmelCase ) , ) set_param( torch_layer.self_attention.key , torch.tensor(__lowerCAmelCase ).transpose(1 , 2 ).contiguous().view(-1 , __lowerCAmelCase ) , ) set_param( torch_layer.self_attention.value , torch.tensor(__lowerCAmelCase ).transpose(1 , 2 ).contiguous().view(-1 , __lowerCAmelCase ) , ) set_param( torch_layer.output.dense , torch.tensor(__lowerCAmelCase ).view(-1 , __lowerCAmelCase ).contiguous().transpose(0 , 1 ) , ) def __magic_name__ ( __lowerCAmelCase : List[str] , __lowerCAmelCase : int , __lowerCAmelCase : Tuple ) -> Tuple: # layernorm 1 __lowerCamelCase = weights[0][0][0] __lowerCamelCase = np.asarray(layer_norm_a[0] ) __lowerCamelCase = np.asarray(layer_norm_a[1] ) set_param( torch_block.attention.layer_norm , torch.tensor(__lowerCAmelCase ) , torch.tensor(__lowerCAmelCase ) , ) # lsh weights + output __lowerCamelCase = weights[0][1] if len(__lowerCAmelCase ) < 4: set_layer_weights_in_torch_lsh(__lowerCAmelCase , torch_block.attention , __lowerCAmelCase ) else: set_layer_weights_in_torch_local(__lowerCAmelCase , torch_block.attention , __lowerCAmelCase ) # intermediate weighs __lowerCamelCase = weights[2][0][1][2] # Chunked Feed Forward if len(__lowerCAmelCase ) == 4: __lowerCamelCase = intermediate_weights[2] # layernorm 2 __lowerCamelCase = np.asarray(intermediate_weights[0][0] ) __lowerCamelCase = np.asarray(intermediate_weights[0][1] ) set_param( torch_block.feed_forward.layer_norm , torch.tensor(__lowerCAmelCase ) , torch.tensor(__lowerCAmelCase ) , ) # intermediate dense __lowerCamelCase = np.asarray(intermediate_weights[1][0] ) __lowerCamelCase = np.asarray(intermediate_weights[1][1] ) set_param( torch_block.feed_forward.dense.dense , torch.tensor(__lowerCAmelCase ).transpose(0 , 1 ).contiguous() , torch.tensor(__lowerCAmelCase ) , ) # intermediate out __lowerCamelCase = np.asarray(intermediate_weights[4][0] ) __lowerCamelCase = np.asarray(intermediate_weights[4][1] ) set_param( torch_block.feed_forward.output.dense , torch.tensor(__lowerCAmelCase ).transpose(0 , 1 ).contiguous() , torch.tensor(__lowerCAmelCase ) , ) def __magic_name__ ( __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Tuple , __lowerCAmelCase : int ) -> Tuple: # reformer model __lowerCamelCase = torch_model.reformer # word embeds __lowerCamelCase = np.asarray(weights[1] ) set_param( torch_model_reformer.embeddings.word_embeddings , torch.tensor(__lowerCAmelCase ) , ) if isinstance(weights[3] , __lowerCAmelCase ): __lowerCamelCase = torch_model_reformer.embeddings.position_embeddings for emb_idx in range(len(position_embeddings.weights ) ): __lowerCamelCase = np.asarray(weights[3][emb_idx][0] ) assert ( position_embeddings.weights[emb_idx].shape == emb_weights.shape ), f'''{position_embeddings[emb_idx]} emb does not match''' __lowerCamelCase = nn.Parameter(torch.tensor(__lowerCAmelCase ) ) __lowerCamelCase = weights[5] assert len(torch_model_reformer.encoder.layers ) * 4 == len( __lowerCAmelCase ), "HF and trax model do not have the same number of layers" for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers ): __lowerCamelCase = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)] set_block_weights_in_torch(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # output layer norm __lowerCamelCase = np.asarray(weights[7][0] ) __lowerCamelCase = np.asarray(weights[7][1] ) set_param( torch_model_reformer.encoder.layer_norm , torch.tensor(__lowerCAmelCase ) , torch.tensor(__lowerCAmelCase ) , ) # output embeddings __lowerCamelCase = np.asarray(weights[9][0] ) __lowerCamelCase = np.asarray(weights[9][1] ) set_param( torch_model.lm_head.decoder , torch.tensor(__lowerCAmelCase ).transpose(0 , 1 ).contiguous() , torch.tensor(__lowerCAmelCase ) , ) def __magic_name__ ( __lowerCAmelCase : int , __lowerCAmelCase : Tuple , __lowerCAmelCase : List[Any] ) -> str: # Initialise PyTorch model __lowerCamelCase = ReformerConfig.from_json_file(__lowerCAmelCase ) print(f'''Building PyTorch model from configuration: {config}''' ) __lowerCamelCase = ReformerModelWithLMHead(__lowerCAmelCase ) with open(__lowerCAmelCase , '''rb''' ) as f: __lowerCamelCase = pickle.load(__lowerCAmelCase )['''weights'''] set_model_weights_in_torch(__lowerCAmelCase , __lowerCAmelCase , config.hidden_size ) # Save pytorch-model print(f'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , __lowerCAmelCase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( "--trax_model_pkl_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained Reformer model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = parser.parse_args() convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
339
import collections import gzip import os import urllib import numpy from tensorflow.python.framework import dtypes, random_seed from tensorflow.python.platform import gfile from tensorflow.python.util.deprecation import deprecated SCREAMING_SNAKE_CASE__ : Tuple = collections.namedtuple("_Datasets", ["train", "validation", "test"]) # CVDF mirror of http://yann.lecun.com/exdb/mnist/ SCREAMING_SNAKE_CASE__ : List[str] = "https://storage.googleapis.com/cvdf-datasets/mnist/" def __magic_name__ ( __lowerCAmelCase : Any ) -> int: __lowerCamelCase = numpy.dtype(numpy.uintaa ).newbyteorder('''>''' ) return numpy.frombuffer(bytestream.read(4 ) , dtype=__lowerCAmelCase )[0] @deprecated(__lowerCAmelCase , '''Please use tf.data to implement this functionality.''' ) def __magic_name__ ( __lowerCAmelCase : List[Any] ) -> str: print('''Extracting''' , f.name ) with gzip.GzipFile(fileobj=__lowerCAmelCase ) as bytestream: __lowerCamelCase = _readaa(__lowerCAmelCase ) if magic != 2051: raise ValueError( '''Invalid magic number %d in MNIST image file: %s''' % (magic, f.name) ) __lowerCamelCase = _readaa(__lowerCAmelCase ) __lowerCamelCase = _readaa(__lowerCAmelCase ) __lowerCamelCase = _readaa(__lowerCAmelCase ) __lowerCamelCase = bytestream.read(rows * cols * num_images ) __lowerCamelCase = numpy.frombuffer(__lowerCAmelCase , dtype=numpy.uinta ) __lowerCamelCase = data.reshape(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , 1 ) return data @deprecated(__lowerCAmelCase , '''Please use tf.one_hot on tensors.''' ) def __magic_name__ ( __lowerCAmelCase : int , __lowerCAmelCase : List[Any] ) -> Dict: __lowerCamelCase = labels_dense.shape[0] __lowerCamelCase = numpy.arange(__lowerCAmelCase ) * num_classes __lowerCamelCase = numpy.zeros((num_labels, num_classes) ) __lowerCamelCase = 1 return labels_one_hot @deprecated(__lowerCAmelCase , '''Please use tf.data to implement this functionality.''' ) def __magic_name__ ( __lowerCAmelCase : Any , __lowerCAmelCase : str=False , __lowerCAmelCase : List[str]=10 ) -> List[str]: print('''Extracting''' , f.name ) with gzip.GzipFile(fileobj=__lowerCAmelCase ) as bytestream: __lowerCamelCase = _readaa(__lowerCAmelCase ) if magic != 2049: raise ValueError( '''Invalid magic number %d in MNIST label file: %s''' % (magic, f.name) ) __lowerCamelCase = _readaa(__lowerCAmelCase ) __lowerCamelCase = bytestream.read(__lowerCAmelCase ) __lowerCamelCase = numpy.frombuffer(__lowerCAmelCase , dtype=numpy.uinta ) if one_hot: return _dense_to_one_hot(__lowerCAmelCase , __lowerCAmelCase ) return labels class lowerCAmelCase__ : @deprecated( SCREAMING_SNAKE_CASE__ , '''Please use alternatives such as official/mnist/_DataSet.py''' ''' from tensorflow/models.''' , ) def __init__( self : str , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Optional[Any]=False , SCREAMING_SNAKE_CASE__ : List[str]=False , SCREAMING_SNAKE_CASE__ : str=dtypes.floataa , SCREAMING_SNAKE_CASE__ : Tuple=True , SCREAMING_SNAKE_CASE__ : str=None , ) -> Optional[int]: __lowerCamelCase , __lowerCamelCase = random_seed.get_seed(SCREAMING_SNAKE_CASE__ ) # If op level seed is not set, use whatever graph level seed is returned numpy.random.seed(seeda if seed is None else seeda ) __lowerCamelCase = dtypes.as_dtype(SCREAMING_SNAKE_CASE__ ).base_dtype if dtype not in (dtypes.uinta, dtypes.floataa): raise TypeError('''Invalid image dtype %r, expected uint8 or float32''' % dtype ) if fake_data: __lowerCamelCase = 1_00_00 __lowerCamelCase = one_hot else: assert ( images.shape[0] == labels.shape[0] ), f'''images.shape: {images.shape} labels.shape: {labels.shape}''' __lowerCamelCase = images.shape[0] # Convert shape from [num examples, rows, columns, depth] # to [num examples, rows*columns] (assuming depth == 1) if reshape: assert images.shape[3] == 1 __lowerCamelCase = images.reshape( images.shape[0] , images.shape[1] * images.shape[2] ) if dtype == dtypes.floataa: # Convert from [0, 255] -> [0.0, 1.0]. __lowerCamelCase = images.astype(numpy.floataa ) __lowerCamelCase = numpy.multiply(SCREAMING_SNAKE_CASE__ , 1.0 / 255.0 ) __lowerCamelCase = images __lowerCamelCase = labels __lowerCamelCase = 0 __lowerCamelCase = 0 @property def __A ( self : str ) -> Optional[int]: return self._images @property def __A ( self : Any ) -> Dict: return self._labels @property def __A ( self : List[Any] ) -> int: return self._num_examples @property def __A ( self : str ) -> Any: return self._epochs_completed def __A ( self : int , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[Any]=False , SCREAMING_SNAKE_CASE__ : str=True ) -> str: if fake_data: __lowerCamelCase = [1] * 7_84 __lowerCamelCase = [1] + [0] * 9 if self.one_hot else 0 return ( [fake_image for _ in range(SCREAMING_SNAKE_CASE__ )], [fake_label for _ in range(SCREAMING_SNAKE_CASE__ )], ) __lowerCamelCase = self._index_in_epoch # Shuffle for the first epoch if self._epochs_completed == 0 and start == 0 and shuffle: __lowerCamelCase = numpy.arange(self._num_examples ) numpy.random.shuffle(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = self.images[perma] __lowerCamelCase = self.labels[perma] # Go to the next epoch if start + batch_size > self._num_examples: # Finished epoch self._epochs_completed += 1 # Get the rest examples in this epoch __lowerCamelCase = self._num_examples - start __lowerCamelCase = self._images[start : self._num_examples] __lowerCamelCase = self._labels[start : self._num_examples] # Shuffle the data if shuffle: __lowerCamelCase = numpy.arange(self._num_examples ) numpy.random.shuffle(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = self.images[perm] __lowerCamelCase = self.labels[perm] # Start next epoch __lowerCamelCase = 0 __lowerCamelCase = batch_size - rest_num_examples __lowerCamelCase = self._index_in_epoch __lowerCamelCase = self._images[start:end] __lowerCamelCase = self._labels[start:end] return ( numpy.concatenate((images_rest_part, images_new_part) , axis=0 ), numpy.concatenate((labels_rest_part, labels_new_part) , axis=0 ), ) else: self._index_in_epoch += batch_size __lowerCamelCase = self._index_in_epoch return self._images[start:end], self._labels[start:end] @deprecated(__lowerCAmelCase , '''Please write your own downloading logic.''' ) def __magic_name__ ( __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : Union[str, Any] ) -> List[Any]: if not gfile.Exists(__lowerCAmelCase ): gfile.MakeDirs(__lowerCAmelCase ) __lowerCamelCase = os.path.join(__lowerCAmelCase , __lowerCAmelCase ) if not gfile.Exists(__lowerCAmelCase ): urllib.request.urlretrieve(__lowerCAmelCase , __lowerCAmelCase ) # noqa: S310 with gfile.GFile(__lowerCAmelCase ) as f: __lowerCamelCase = f.size() print('''Successfully downloaded''' , __lowerCAmelCase , __lowerCAmelCase , '''bytes.''' ) return filepath @deprecated( __lowerCAmelCase , '''Please use alternatives such as:''' ''' tensorflow_datasets.load(\'mnist\')''' ) def __magic_name__ ( __lowerCAmelCase : Tuple , __lowerCAmelCase : Optional[Any]=False , __lowerCAmelCase : Dict=False , __lowerCAmelCase : List[str]=dtypes.floataa , __lowerCAmelCase : Union[str, Any]=True , __lowerCAmelCase : int=5000 , __lowerCAmelCase : Any=None , __lowerCAmelCase : List[str]=DEFAULT_SOURCE_URL , ) -> Optional[Any]: if fake_data: def fake(): return _DataSet( [] , [] , fake_data=__lowerCAmelCase , one_hot=__lowerCAmelCase , dtype=__lowerCAmelCase , seed=__lowerCAmelCase ) __lowerCamelCase = fake() __lowerCamelCase = fake() __lowerCamelCase = fake() return _Datasets(train=__lowerCAmelCase , validation=__lowerCAmelCase , test=__lowerCAmelCase ) if not source_url: # empty string check __lowerCamelCase = DEFAULT_SOURCE_URL __lowerCamelCase = '''train-images-idx3-ubyte.gz''' __lowerCamelCase = '''train-labels-idx1-ubyte.gz''' __lowerCamelCase = '''t10k-images-idx3-ubyte.gz''' __lowerCamelCase = '''t10k-labels-idx1-ubyte.gz''' __lowerCamelCase = _maybe_download( __lowerCAmelCase , __lowerCAmelCase , source_url + train_images_file ) with gfile.Open(__lowerCAmelCase , '''rb''' ) as f: __lowerCamelCase = _extract_images(__lowerCAmelCase ) __lowerCamelCase = _maybe_download( __lowerCAmelCase , __lowerCAmelCase , source_url + train_labels_file ) with gfile.Open(__lowerCAmelCase , '''rb''' ) as f: __lowerCamelCase = _extract_labels(__lowerCAmelCase , one_hot=__lowerCAmelCase ) __lowerCamelCase = _maybe_download( __lowerCAmelCase , __lowerCAmelCase , source_url + test_images_file ) with gfile.Open(__lowerCAmelCase , '''rb''' ) as f: __lowerCamelCase = _extract_images(__lowerCAmelCase ) __lowerCamelCase = _maybe_download( __lowerCAmelCase , __lowerCAmelCase , source_url + test_labels_file ) with gfile.Open(__lowerCAmelCase , '''rb''' ) as f: __lowerCamelCase = _extract_labels(__lowerCAmelCase , one_hot=__lowerCAmelCase ) if not 0 <= validation_size <= len(__lowerCAmelCase ): __lowerCamelCase = ( '''Validation size should be between 0 and ''' f'''{len(__lowerCAmelCase )}. Received: {validation_size}.''' ) raise ValueError(__lowerCAmelCase ) __lowerCamelCase = train_images[:validation_size] __lowerCamelCase = train_labels[:validation_size] __lowerCamelCase = train_images[validation_size:] __lowerCamelCase = train_labels[validation_size:] __lowerCamelCase = {'''dtype''': dtype, '''reshape''': reshape, '''seed''': seed} __lowerCamelCase = _DataSet(__lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ) __lowerCamelCase = _DataSet(__lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ) __lowerCamelCase = _DataSet(__lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ) return _Datasets(train=__lowerCAmelCase , validation=__lowerCAmelCase , test=__lowerCAmelCase )
339
1
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.activations import gelu_new, gelu_python, get_activation @require_torch class UpperCamelCase ( unittest.TestCase ): def _lowercase ( self : List[str] ) -> List[Any]: _a : Union[str, Any] = torch.tensor([-100, -1, -0.1, 0, 0.1, 1.0, 100] ) _a : List[Any] = get_activation("""gelu""" ) self.assertTrue(torch.allclose(gelu_python(UpperCAmelCase__ ) , torch_builtin(UpperCAmelCase__ ) ) ) self.assertFalse(torch.allclose(gelu_python(UpperCAmelCase__ ) , gelu_new(UpperCAmelCase__ ) ) ) def _lowercase ( self : Optional[int] ) -> List[str]: _a : Optional[Any] = torch.tensor([-100, -1, -0.1, 0, 0.1, 1.0, 100] ) _a : Tuple = get_activation("""gelu""" ) _a : Any = get_activation("""gelu_10""" ) _a : Any = torch_builtin(UpperCAmelCase__ ) _a : Union[str, Any] = geluaa(UpperCAmelCase__ ) _a : Dict = torch.where(y_gelu_aa < 1_0.0 , 1 , 0 ) self.assertTrue(torch.max(UpperCAmelCase__ ).item() == 1_0.0 ) self.assertTrue(torch.allclose(y_gelu * clipped_mask , y_gelu_aa * clipped_mask ) ) def _lowercase ( self : int ) -> Optional[Any]: get_activation("""gelu""" ) get_activation("""gelu_10""" ) get_activation("""gelu_fast""" ) get_activation("""gelu_new""" ) get_activation("""gelu_python""" ) get_activation("""gelu_pytorch_tanh""" ) get_activation("""linear""" ) get_activation("""mish""" ) get_activation("""quick_gelu""" ) get_activation("""relu""" ) get_activation("""sigmoid""" ) get_activation("""silu""" ) get_activation("""swish""" ) get_activation("""tanh""" ) with self.assertRaises(UpperCAmelCase__ ): get_activation("""bogus""" ) with self.assertRaises(UpperCAmelCase__ ): get_activation(UpperCAmelCase__ ) def _lowercase ( self : Dict ) -> Tuple: _a : int = get_activation("""gelu""" ) _a : str = 1 _a : Optional[int] = get_activation("""gelu""" ) self.assertEqual(acta.a , 1 ) with self.assertRaises(UpperCAmelCase__ ): _a : List[Any] = acta.a
294
"""simple docstring""" from __future__ import annotations import time import numpy as np _snake_case = [8, 5, 9, 7] _snake_case = [ [2, 0, 1, 1], [0, 1, 2, 1], [4, 0, 0, 3], [0, 2, 1, 0], [1, 0, 3, 0], ] _snake_case = [ [3, 2, 1, 4], [0, 2, 5, 2], [5, 1, 0, 5], [1, 5, 3, 0], [3, 0, 3, 3], ] class UpperCamelCase : def __init__( self : List[Any] , UpperCAmelCase__ : list[int] , UpperCAmelCase__ : list[list[int]] , UpperCAmelCase__ : list[list[int]] , ) -> None: _a : List[str] = claim_vector _a : List[Any] = allocated_resources_table _a : Union[str, Any] = maximum_claim_table def _lowercase ( self : Tuple ) -> list[int]: return [ sum(p_item[i] for p_item in self.__allocated_resources_table ) for i in range(len(self.__allocated_resources_table[0] ) ) ] def _lowercase ( self : int ) -> list[int]: return np.array(self.__claim_vector ) - np.array( self.__processes_resource_summation() ) def _lowercase ( self : List[str] ) -> list[list[int]]: return [ list(np.array(self.__maximum_claim_table[i] ) - np.array(UpperCAmelCase__ ) ) for i, allocated_resource in enumerate(self.__allocated_resources_table ) ] def _lowercase ( self : Optional[Any] ) -> dict[int, list[int]]: return {self.__need().index(UpperCAmelCase__ ): i for i in self.__need()} def _lowercase ( self : Dict , **UpperCAmelCase__ : Optional[Any] ) -> None: _a : List[Any] = self.__need() _a : Optional[int] = self.__allocated_resources_table _a : str = self.__available_resources() _a : Optional[Any] = self.__need_index_manager() for kw, val in kwargs.items(): if kw and val is True: self.__pretty_data() print("""_""" * 50 + """\n""" ) while need_list: _a : int = False for each_need in need_list: _a : Optional[int] = True for index, need in enumerate(UpperCAmelCase__ ): if need > available_resources[index]: _a : List[Any] = False break if execution: _a : str = True # get the original index of the process from ind_ctrl db for original_need_index, need_clone in need_index_manager.items(): if each_need == need_clone: _a : Any = original_need_index print(f"""Process {process_number + 1} is executing.""" ) # remove the process run from stack need_list.remove(UpperCAmelCase__ ) # update available/freed resources stack _a : Union[str, Any] = np.array(UpperCAmelCase__ ) + np.array( alloc_resources_table[process_number] ) print( """Updated available resource stack for processes: """ + """ """.join([str(UpperCAmelCase__ ) for x in available_resources] ) ) break if safe: print("""The process is in a safe state.\n""" ) else: print("""System in unsafe state. Aborting...\n""" ) break def _lowercase ( self : Any ) -> Optional[int]: print(""" """ * 9 + """Allocated Resource Table""" ) for item in self.__allocated_resources_table: print( f"""P{self.__allocated_resources_table.index(UpperCAmelCase__ ) + 1}""" + """ """.join(f"""{it:>8}""" for it in item ) + """\n""" ) print(""" """ * 9 + """System Resource Table""" ) for item in self.__maximum_claim_table: print( f"""P{self.__maximum_claim_table.index(UpperCAmelCase__ ) + 1}""" + """ """.join(f"""{it:>8}""" for it in item ) + """\n""" ) print( """Current Usage by Active Processes: """ + """ """.join(str(UpperCAmelCase__ ) for x in self.__claim_vector ) ) print( """Initial Available Resources: """ + """ """.join(str(UpperCAmelCase__ ) for x in self.__available_resources() ) ) time.sleep(1 ) if __name__ == "__main__": import doctest doctest.testmod()
294
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) lowerCamelCase_ : str = { """configuration_falcon""": ["""FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FalconConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Optional[Any] = [ """FALCON_PRETRAINED_MODEL_ARCHIVE_LIST""", """FalconForCausalLM""", """FalconModel""", """FalconPreTrainedModel""", """FalconForSequenceClassification""", """FalconForTokenClassification""", """FalconForQuestionAnswering""", ] if TYPE_CHECKING: from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_falcon import ( FALCON_PRETRAINED_MODEL_ARCHIVE_LIST, FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, FalconPreTrainedModel, ) else: import sys lowerCamelCase_ : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
215
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging lowerCamelCase_ : List[Any] = logging.get_logger(__name__) if is_vision_available(): import PIL class __A ( _SCREAMING_SNAKE_CASE ): """simple docstring""" __lowerCAmelCase = ["pixel_values"] def __init__( self , __A = True , __A = None , __A = PILImageResampling.BICUBIC , __A = True , __A = None , __A = True , __A = 1 / 255 , __A = True , __A = None , __A = None , __A = True , **__A , ) -> None: super().__init__(**__A ) a =size if size is not None else {'''shortest_edge''': 224} a =get_size_dict(__A , default_to_square=__A ) a =crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} a =get_size_dict(__A , default_to_square=__A , param_name='''crop_size''' ) a =do_resize a =size a =resample a =do_center_crop a =crop_size a =do_rescale a =rescale_factor a =do_normalize a =image_mean if image_mean is not None else OPENAI_CLIP_MEAN a =image_std if image_std is not None else OPENAI_CLIP_STD a =do_convert_rgb def SCREAMING_SNAKE_CASE ( self , __A , __A , __A = PILImageResampling.BICUBIC , __A = None , **__A , ) -> np.ndarray: a =get_size_dict(__A , default_to_square=__A ) if "shortest_edge" not in size: raise ValueError(f'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' ) a =get_resize_output_image_size(__A , size=size['''shortest_edge'''] , default_to_square=__A ) return resize(__A , size=__A , resample=__A , data_format=__A , **__A ) def SCREAMING_SNAKE_CASE ( self , __A , __A , __A = None , **__A , ) -> np.ndarray: a =get_size_dict(__A ) if "height" not in size or "width" not in size: raise ValueError(f'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' ) return center_crop(__A , size=(size['''height'''], size['''width''']) , data_format=__A , **__A ) def SCREAMING_SNAKE_CASE ( self , __A , __A , __A = None , **__A , ) -> Any: return rescale(__A , scale=__A , data_format=__A , **__A ) def SCREAMING_SNAKE_CASE ( self , __A , __A , __A , __A = None , **__A , ) -> np.ndarray: return normalize(__A , mean=__A , std=__A , data_format=__A , **__A ) def SCREAMING_SNAKE_CASE ( self , __A , __A = None , __A = None , __A = None , __A = None , __A = None , __A = None , __A = None , __A = None , __A = None , __A = None , __A = None , __A = None , __A = ChannelDimension.FIRST , **__A , ) -> PIL.Image.Image: a =do_resize if do_resize is not None else self.do_resize a =size if size is not None else self.size a =get_size_dict(__A , param_name='''size''' , default_to_square=__A ) a =resample if resample is not None else self.resample a =do_center_crop if do_center_crop is not None else self.do_center_crop a =crop_size if crop_size is not None else self.crop_size a =get_size_dict(__A , param_name='''crop_size''' , default_to_square=__A ) a =do_rescale if do_rescale is not None else self.do_rescale a =rescale_factor if rescale_factor is not None else self.rescale_factor a =do_normalize if do_normalize is not None else self.do_normalize a =image_mean if image_mean is not None else self.image_mean a =image_std if image_std is not None else self.image_std a =do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb a =make_list_of_images(__A ) if not valid_images(__A ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # PIL RGBA images are converted to RGB if do_convert_rgb: a =[convert_to_rgb(__A ) for image in images] # All transformations expect numpy arrays. a =[to_numpy_array(__A ) for image in images] if do_resize: a =[self.resize(image=__A , size=__A , resample=__A ) for image in images] if do_center_crop: a =[self.center_crop(image=__A , size=__A ) for image in images] if do_rescale: a =[self.rescale(image=__A , scale=__A ) for image in images] if do_normalize: a =[self.normalize(image=__A , mean=__A , std=__A ) for image in images] a =[to_channel_dimension_format(__A , __A ) for image in images] a ={'''pixel_values''': images} return BatchFeature(data=__A , tensor_type=__A )
215
1
import importlib import inspect import json import os import re import shutil import sys from pathlib import Path from typing import Dict, Optional, Union from urllib import request from huggingface_hub import HfFolder, cached_download, hf_hub_download, model_info from packaging import version from .. import __version__ from . import DIFFUSERS_DYNAMIC_MODULE_NAME, HF_MODULES_CACHE, logging a_ = ( 'https://raw.githubusercontent.com/huggingface/diffusers/{revision}/examples/community/{pipeline}.py' ) a_ = logging.get_logger(__name__) # pylint: disable=invalid-name def lowerCamelCase__ ( ): SCREAMING_SNAKE_CASE : int = "https://pypi.org/pypi/diffusers/json" SCREAMING_SNAKE_CASE : Tuple = json.loads(request.urlopen(_a).read())["releases"].keys() return sorted(_a , key=lambda _a: version.Version(_a)) def lowerCamelCase__ ( ): # This function has already been executed if HF_MODULES_CACHE already is in the Python path. if HF_MODULES_CACHE in sys.path: return sys.path.append(_a) os.makedirs(_a , exist_ok=_a) SCREAMING_SNAKE_CASE : str = Path(_a) / "__init__.py" if not init_path.exists(): init_path.touch() def lowerCamelCase__ ( _a): init_hf_modules() SCREAMING_SNAKE_CASE : Optional[int] = Path(_a) / name # If the parent module does not exist yet, recursively create it. if not dynamic_module_path.parent.exists(): create_dynamic_module(dynamic_module_path.parent) os.makedirs(_a , exist_ok=_a) SCREAMING_SNAKE_CASE : List[Any] = dynamic_module_path / "__init__.py" if not init_path.exists(): init_path.touch() def lowerCamelCase__ ( _a): with open(_a , "r" , encoding="utf-8") as f: SCREAMING_SNAKE_CASE : Union[str, Any] = f.read() # Imports of the form `import .xxx` SCREAMING_SNAKE_CASE : Optional[Any] = re.findall("^\s*import\s+\.(\S+)\s*$" , _a , flags=re.MULTILINE) # Imports of the form `from .xxx import yyy` relative_imports += re.findall("^\s*from\s+\.(\S+)\s+import" , _a , flags=re.MULTILINE) # Unique-ify return list(set(_a)) def lowerCamelCase__ ( _a): SCREAMING_SNAKE_CASE : List[str] = False SCREAMING_SNAKE_CASE : Union[str, Any] = [module_file] SCREAMING_SNAKE_CASE : Dict = [] # Let's recurse through all relative imports while not no_change: SCREAMING_SNAKE_CASE : List[str] = [] for f in files_to_check: new_imports.extend(get_relative_imports(_a)) SCREAMING_SNAKE_CASE : Union[str, Any] = Path(_a).parent SCREAMING_SNAKE_CASE : Union[str, Any] = [str(module_path / m) for m in new_imports] SCREAMING_SNAKE_CASE : Union[str, Any] = [f for f in new_import_files if f not in all_relative_imports] SCREAMING_SNAKE_CASE : Optional[Any] = [f"{f}.py" for f in new_import_files] SCREAMING_SNAKE_CASE : Dict = len(_a) == 0 all_relative_imports.extend(_a) return all_relative_imports def lowerCamelCase__ ( _a): with open(_a , "r" , encoding="utf-8") as f: SCREAMING_SNAKE_CASE : List[str] = f.read() # Imports of the form `import xxx` SCREAMING_SNAKE_CASE : Optional[int] = re.findall("^\s*import\s+(\S+)\s*$" , _a , flags=re.MULTILINE) # Imports of the form `from xxx import yyy` imports += re.findall("^\s*from\s+(\S+)\s+import" , _a , flags=re.MULTILINE) # Only keep the top-level module SCREAMING_SNAKE_CASE : Optional[int] = [imp.split(".")[0] for imp in imports if not imp.startswith(".")] # Unique-ify and test we got them all SCREAMING_SNAKE_CASE : List[str] = list(set(_a)) SCREAMING_SNAKE_CASE : List[str] = [] for imp in imports: try: importlib.import_module(_a) except ImportError: missing_packages.append(_a) if len(_a) > 0: raise ImportError( "This modeling file requires the following packages that were not found in your environment: " f"{', '.join(_a)}. Run `pip install {' '.join(_a)}`") return get_relative_imports(_a) def lowerCamelCase__ ( _a , _a): SCREAMING_SNAKE_CASE : Optional[int] = module_path.replace(os.path.sep , ".") SCREAMING_SNAKE_CASE : Union[str, Any] = importlib.import_module(_a) if class_name is None: return find_pipeline_class(_a) return getattr(_a , _a) def lowerCamelCase__ ( _a): from ..pipelines import DiffusionPipeline SCREAMING_SNAKE_CASE : Optional[int] = dict(inspect.getmembers(_a , inspect.isclass)) SCREAMING_SNAKE_CASE : Union[str, Any] = None for cls_name, cls in cls_members.items(): if ( cls_name != DiffusionPipeline.__name__ and issubclass(cls , _a) and cls.__module__.split(".")[0] != "diffusers" ): if pipeline_class is not None: raise ValueError( f"Multiple classes that inherit from {DiffusionPipeline.__name__} have been found:" f" {pipeline_class.__name__}, and {cls_name}. Please make sure to define only one in" f" {loaded_module}.") SCREAMING_SNAKE_CASE : Any = cls return pipeline_class def lowerCamelCase__ ( _a , _a , _a = None , _a = False , _a = False , _a = None , _a = None , _a = None , _a = False , ): SCREAMING_SNAKE_CASE : Optional[int] = str(_a) SCREAMING_SNAKE_CASE : Optional[int] = os.path.join(_a , _a) if os.path.isfile(_a): SCREAMING_SNAKE_CASE : str = module_file_or_url SCREAMING_SNAKE_CASE : List[Any] = "local" elif pretrained_model_name_or_path.count("/") == 0: SCREAMING_SNAKE_CASE : Any = get_diffusers_versions() # cut ".dev0" SCREAMING_SNAKE_CASE : Tuple = "v" + ".".join(__version__.split(".")[:3]) # retrieve github version that matches if revision is None: SCREAMING_SNAKE_CASE : List[Any] = latest_version if latest_version[1:] in available_versions else "main" logger.info(f"Defaulting to latest_version: {revision}.") elif revision in available_versions: SCREAMING_SNAKE_CASE : Optional[int] = f"v{revision}" elif revision == "main": SCREAMING_SNAKE_CASE : Dict = revision else: raise ValueError( f"`custom_revision`: {revision} does not exist. Please make sure to choose one of" f" {', '.join(available_versions + ['main'])}.") # community pipeline on GitHub SCREAMING_SNAKE_CASE : List[Any] = COMMUNITY_PIPELINES_URL.format(revision=_a , pipeline=_a) try: SCREAMING_SNAKE_CASE : List[str] = cached_download( _a , cache_dir=_a , force_download=_a , proxies=_a , resume_download=_a , local_files_only=_a , use_auth_token=_a , ) SCREAMING_SNAKE_CASE : Any = "git" SCREAMING_SNAKE_CASE : Union[str, Any] = pretrained_model_name_or_path + ".py" except EnvironmentError: logger.error(f"Could not locate the {module_file} inside {pretrained_model_name_or_path}.") raise else: try: # Load from URL or cache if already cached SCREAMING_SNAKE_CASE : List[str] = hf_hub_download( _a , _a , cache_dir=_a , force_download=_a , proxies=_a , resume_download=_a , local_files_only=_a , use_auth_token=_a , ) SCREAMING_SNAKE_CASE : Any = os.path.join("local" , "--".join(pretrained_model_name_or_path.split("/"))) except EnvironmentError: logger.error(f"Could not locate the {module_file} inside {pretrained_model_name_or_path}.") raise # Check we have all the requirements in our environment SCREAMING_SNAKE_CASE : int = check_imports(_a) # Now we move the module inside our cached dynamic modules. SCREAMING_SNAKE_CASE : Union[str, Any] = DIFFUSERS_DYNAMIC_MODULE_NAME + os.path.sep + submodule create_dynamic_module(_a) SCREAMING_SNAKE_CASE : str = Path(_a) / full_submodule if submodule == "local" or submodule == "git": # We always copy local files (we could hash the file to see if there was a change, and give them the name of # that hash, to only copy when there is a modification but it seems overkill for now). # The only reason we do the copy is to avoid putting too many folders in sys.path. shutil.copy(_a , submodule_path / module_file) for module_needed in modules_needed: SCREAMING_SNAKE_CASE : str = f"{module_needed}.py" shutil.copy(os.path.join(_a , _a) , submodule_path / module_needed) else: # Get the commit hash # TODO: we will get this info in the etag soon, so retrieve it from there and not here. if isinstance(_a , _a): SCREAMING_SNAKE_CASE : List[Any] = use_auth_token elif use_auth_token is True: SCREAMING_SNAKE_CASE : Union[str, Any] = HfFolder.get_token() else: SCREAMING_SNAKE_CASE : int = None SCREAMING_SNAKE_CASE : Union[str, Any] = model_info(_a , revision=_a , token=_a).sha # The module file will end up being placed in a subfolder with the git hash of the repo. This way we get the # benefit of versioning. SCREAMING_SNAKE_CASE : str = submodule_path / commit_hash SCREAMING_SNAKE_CASE : Optional[Any] = full_submodule + os.path.sep + commit_hash create_dynamic_module(_a) if not (submodule_path / module_file).exists(): shutil.copy(_a , submodule_path / module_file) # Make sure we also have every file with relative for module_needed in modules_needed: if not (submodule_path / module_needed).exists(): get_cached_module_file( _a , f"{module_needed}.py" , cache_dir=_a , force_download=_a , resume_download=_a , proxies=_a , use_auth_token=_a , revision=_a , local_files_only=_a , ) return os.path.join(_a , _a) def lowerCamelCase__ ( _a , _a , _a = None , _a = None , _a = False , _a = False , _a = None , _a = None , _a = None , _a = False , **_a , ): SCREAMING_SNAKE_CASE : str = get_cached_module_file( _a , _a , cache_dir=_a , force_download=_a , resume_download=_a , proxies=_a , use_auth_token=_a , revision=_a , local_files_only=_a , ) return get_class_in_module(_a , final_module.replace(".py" , ""))
76
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __a = { 'configuration_rembert': ['REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RemBertConfig', 'RemBertOnnxConfig'] } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = ['RemBertTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = ['RemBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ 'REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'RemBertForCausalLM', 'RemBertForMaskedLM', 'RemBertForMultipleChoice', 'RemBertForQuestionAnswering', 'RemBertForSequenceClassification', 'RemBertForTokenClassification', 'RemBertLayer', 'RemBertModel', 'RemBertPreTrainedModel', 'load_tf_weights_in_rembert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ 'TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFRemBertForCausalLM', 'TFRemBertForMaskedLM', 'TFRemBertForMultipleChoice', 'TFRemBertForQuestionAnswering', 'TFRemBertForSequenceClassification', 'TFRemBertForTokenClassification', 'TFRemBertLayer', 'TFRemBertModel', 'TFRemBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_rembert import REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RemBertConfig, RemBertOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert import RemBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert_fast import RemBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rembert import ( REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, RemBertForCausalLM, RemBertForMaskedLM, RemBertForMultipleChoice, RemBertForQuestionAnswering, RemBertForSequenceClassification, RemBertForTokenClassification, RemBertLayer, RemBertModel, RemBertPreTrainedModel, load_tf_weights_in_rembert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rembert import ( TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFRemBertForCausalLM, TFRemBertForMaskedLM, TFRemBertForMultipleChoice, TFRemBertForQuestionAnswering, TFRemBertForSequenceClassification, TFRemBertForTokenClassification, TFRemBertLayer, TFRemBertModel, TFRemBertPreTrainedModel, ) else: import sys __a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
30
0
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import PoolFormerConfig, PoolFormerForImageClassification, PoolFormerImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowercase : Optional[Any] = logging.get_logger(__name__) def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : Optional[Any] , _lowerCamelCase : Any , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : List[Any]) -> Dict: '''simple docstring''' __UpperCamelCase : Optional[Any] = original_name.split(".")[0] __UpperCamelCase : str = key.split(".") __UpperCamelCase : int = int(key_list[key_list.index(_lowerCamelCase) - 2]) __UpperCamelCase : List[str] = int(key_list[key_list.index(_lowerCamelCase) - 1]) __UpperCamelCase : Union[str, Any] = orig_block_num - offset __UpperCamelCase : Union[str, Any] = key.replace(F'{orig_block_num}.{layer_num}.{original_name}' , F'block.{new_block_num}.{layer_num}.{new_name}') return key def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : Optional[int]) -> str: '''simple docstring''' __UpperCamelCase : Optional[int] = OrderedDict() __UpperCamelCase , __UpperCamelCase : int = 0, 0 for key, value in state_dict.items(): if key.startswith("network"): __UpperCamelCase : Tuple = key.replace("network" , "poolformer.encoder") if "proj" in key: # Works for the first embedding as well as the internal embedding layers if key.endswith("bias") and "patch_embed" not in key: patch_emb_offset += 1 __UpperCamelCase : Dict = key[: key.find("proj")] __UpperCamelCase : Union[str, Any] = key.replace(_lowerCamelCase , F'patch_embeddings.{total_embed_found}.') __UpperCamelCase : Optional[int] = key.replace("proj" , "projection") if key.endswith("bias"): total_embed_found += 1 if "patch_embeddings" in key: __UpperCamelCase : Tuple = "poolformer.encoder." + key if "mlp.fc1" in key: __UpperCamelCase : Optional[Any] = replace_key_with_offset(_lowerCamelCase , _lowerCamelCase , "mlp.fc1" , "output.conv1") if "mlp.fc2" in key: __UpperCamelCase : int = replace_key_with_offset(_lowerCamelCase , _lowerCamelCase , "mlp.fc2" , "output.conv2") if "norm1" in key: __UpperCamelCase : str = replace_key_with_offset(_lowerCamelCase , _lowerCamelCase , "norm1" , "before_norm") if "norm2" in key: __UpperCamelCase : Tuple = replace_key_with_offset(_lowerCamelCase , _lowerCamelCase , "norm2" , "after_norm") if "layer_scale_1" in key: __UpperCamelCase : Tuple = replace_key_with_offset(_lowerCamelCase , _lowerCamelCase , "layer_scale_1" , "layer_scale_1") if "layer_scale_2" in key: __UpperCamelCase : Dict = replace_key_with_offset(_lowerCamelCase , _lowerCamelCase , "layer_scale_2" , "layer_scale_2") if "head" in key: __UpperCamelCase : Optional[int] = key.replace("head" , "classifier") __UpperCamelCase : List[str] = value return new_state_dict def _SCREAMING_SNAKE_CASE ( ) -> Optional[int]: '''simple docstring''' __UpperCamelCase : int = "http://images.cocodataset.org/val2017/000000039769.jpg" __UpperCamelCase : int = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase).raw) return image @torch.no_grad() def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : int , _lowerCamelCase : Dict , _lowerCamelCase : List[Any]) -> Any: '''simple docstring''' __UpperCamelCase : Union[str, Any] = PoolFormerConfig() # set attributes based on model_name __UpperCamelCase : Optional[Any] = "huggingface/label-files" __UpperCamelCase : Optional[Any] = model_name[-3:] __UpperCamelCase : Any = 1_000 __UpperCamelCase : str = "imagenet-1k-id2label.json" __UpperCamelCase : Tuple = (1, 1_000) # set config attributes __UpperCamelCase : str = json.load(open(hf_hub_download(_lowerCamelCase , _lowerCamelCase , repo_type="dataset") , "r")) __UpperCamelCase : Any = {int(_lowerCamelCase): v for k, v in idalabel.items()} __UpperCamelCase : str = idalabel __UpperCamelCase : List[str] = {v: k for k, v in idalabel.items()} if size == "s12": __UpperCamelCase : Dict = [2, 2, 6, 2] __UpperCamelCase : List[Any] = [64, 128, 320, 512] __UpperCamelCase : Tuple = 4.0 __UpperCamelCase : Dict = 0.9 elif size == "s24": __UpperCamelCase : List[str] = [4, 4, 12, 4] __UpperCamelCase : Union[str, Any] = [64, 128, 320, 512] __UpperCamelCase : Any = 4.0 __UpperCamelCase : List[str] = 0.9 elif size == "s36": __UpperCamelCase : Union[str, Any] = [6, 6, 18, 6] __UpperCamelCase : Dict = [64, 128, 320, 512] __UpperCamelCase : Tuple = 4.0 __UpperCamelCase : int = 1e-6 __UpperCamelCase : Any = 0.9 elif size == "m36": __UpperCamelCase : List[str] = [6, 6, 18, 6] __UpperCamelCase : Optional[Any] = [96, 192, 384, 768] __UpperCamelCase : int = 4.0 __UpperCamelCase : List[Any] = 1e-6 __UpperCamelCase : Dict = 0.9_5 elif size == "m48": __UpperCamelCase : Optional[int] = [8, 8, 24, 8] __UpperCamelCase : Optional[int] = [96, 192, 384, 768] __UpperCamelCase : Union[str, Any] = 4.0 __UpperCamelCase : Optional[Any] = 1e-6 __UpperCamelCase : Union[str, Any] = 0.9_5 else: raise ValueError(F'Size {size} not supported') # load image processor __UpperCamelCase : List[Any] = PoolFormerImageProcessor(crop_pct=_lowerCamelCase) # Prepare image __UpperCamelCase : Tuple = prepare_img() __UpperCamelCase : Optional[Any] = image_processor(images=_lowerCamelCase , return_tensors="pt").pixel_values logger.info(F'Converting model {model_name}...') # load original state dict __UpperCamelCase : Dict = torch.load(_lowerCamelCase , map_location=torch.device("cpu")) # rename keys __UpperCamelCase : str = rename_keys(_lowerCamelCase) # create HuggingFace model and load state dict __UpperCamelCase : Dict = PoolFormerForImageClassification(_lowerCamelCase) model.load_state_dict(_lowerCamelCase) model.eval() # Define image processor __UpperCamelCase : List[str] = PoolFormerImageProcessor(crop_pct=_lowerCamelCase) __UpperCamelCase : Dict = image_processor(images=prepare_img() , return_tensors="pt").pixel_values # forward pass __UpperCamelCase : Dict = model(_lowerCamelCase) __UpperCamelCase : Dict = outputs.logits # define expected logit slices for different models if size == "s12": __UpperCamelCase : Optional[Any] = torch.tensor([-0.3_0_4_5, -0.6_7_5_8, -0.4_8_6_9]) elif size == "s24": __UpperCamelCase : Tuple = torch.tensor([0.4_4_0_2, -0.1_3_7_4, -0.8_0_4_5]) elif size == "s36": __UpperCamelCase : Tuple = torch.tensor([-0.6_0_8_0, -0.5_1_3_3, -0.5_8_9_8]) elif size == "m36": __UpperCamelCase : List[Any] = torch.tensor([0.3_9_5_2, 0.2_2_6_3, -1.2_6_6_8]) elif size == "m48": __UpperCamelCase : int = torch.tensor([0.1_1_6_7, -0.0_6_5_6, -0.3_4_2_3]) else: raise ValueError(F'Size {size} not supported') # verify logits assert logits.shape == expected_shape assert torch.allclose(logits[0, :3] , _lowerCamelCase , atol=1e-2) # finally, save model and image processor logger.info(F'Saving PyTorch model and image processor to {pytorch_dump_folder_path}...') Path(_lowerCamelCase).mkdir(exist_ok=_lowerCamelCase) model.save_pretrained(_lowerCamelCase) print(F'Saving image processor to {pytorch_dump_folder_path}') image_processor.save_pretrained(_lowerCamelCase) if __name__ == "__main__": lowercase : List[str] = argparse.ArgumentParser() parser.add_argument( '--model_name', default='poolformer_s12', type=str, help='Name of the model you\'d like to convert.', ) parser.add_argument( '--checkpoint_path', default=None, type=str, help='Path to the original PyTorch checkpoint (.pth file).' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) lowercase : List[str] = parser.parse_args() convert_poolformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
151
import random def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : int , _lowerCamelCase : float , _lowerCamelCase : bool = False) -> dict: '''simple docstring''' __UpperCamelCase : dict = {i: [] for i in range(_lowerCamelCase)} # if probability is greater or equal than 1, then generate a complete graph if probability >= 1: return complete_graph(_lowerCamelCase) # if probability is lower or equal than 0, then return a graph without edges if probability <= 0: return graph # for each couple of nodes, add an edge from u to v # if the number randomly generated is greater than probability probability for i in range(_lowerCamelCase): for j in range(i + 1 , _lowerCamelCase): if random.random() < probability: graph[i].append(_lowerCamelCase) if not directed: # if the graph is undirected, add an edge in from j to i, either graph[j].append(_lowerCamelCase) return graph def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : int) -> dict: '''simple docstring''' return { i: [j for j in range(_lowerCamelCase) if i != j] for i in range(_lowerCamelCase) } if __name__ == "__main__": import doctest doctest.testmod()
151
1
"""simple docstring""" import warnings from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A: Tuple = logging.get_logger(__name__) A: List[Any] = { "nvidia/segformer-b0-finetuned-ade-512-512": ( "https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json" ), # See all SegFormer models at https://huggingface.co/models?filter=segformer } class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ): __lowerCAmelCase : int = 'segformer' def __init__( self , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=[2, 2, 2, 2] , _SCREAMING_SNAKE_CASE=[8, 4, 2, 1] , _SCREAMING_SNAKE_CASE=[32, 64, 160, 256] , _SCREAMING_SNAKE_CASE=[7, 3, 3, 3] , _SCREAMING_SNAKE_CASE=[4, 2, 2, 2] , _SCREAMING_SNAKE_CASE=[1, 2, 5, 8] , _SCREAMING_SNAKE_CASE=[4, 4, 4, 4] , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=1E-6 , _SCREAMING_SNAKE_CASE=256 , _SCREAMING_SNAKE_CASE=255 , **_SCREAMING_SNAKE_CASE , ) -> Union[str, Any]: '''simple docstring''' super().__init__(**_SCREAMING_SNAKE_CASE ) if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False: warnings.warn( """Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be""" """ removed, as the behaviour will default to that of reshape_last_stage = True.""" , _SCREAMING_SNAKE_CASE , ) UpperCAmelCase : Dict = num_channels UpperCAmelCase : Optional[Any] = num_encoder_blocks UpperCAmelCase : Optional[Any] = depths UpperCAmelCase : Dict = sr_ratios UpperCAmelCase : Any = hidden_sizes UpperCAmelCase : Any = patch_sizes UpperCAmelCase : Union[str, Any] = strides UpperCAmelCase : Optional[Any] = mlp_ratios UpperCAmelCase : Optional[Any] = num_attention_heads UpperCAmelCase : Tuple = hidden_act UpperCAmelCase : List[str] = hidden_dropout_prob UpperCAmelCase : Dict = attention_probs_dropout_prob UpperCAmelCase : Optional[Any] = classifier_dropout_prob UpperCAmelCase : List[Any] = initializer_range UpperCAmelCase : List[str] = drop_path_rate UpperCAmelCase : int = layer_norm_eps UpperCAmelCase : Optional[Any] = decoder_hidden_size UpperCAmelCase : int = kwargs.get("""reshape_last_stage""" , _SCREAMING_SNAKE_CASE ) UpperCAmelCase : str = semantic_loss_ignore_index class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ): __lowerCAmelCase : List[str] = version.parse('1.11' ) @property def SCREAMING_SNAKE_CASE ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def SCREAMING_SNAKE_CASE ( self ) -> float: '''simple docstring''' return 1E-4 @property def SCREAMING_SNAKE_CASE ( self ) -> int: '''simple docstring''' return 12
109
from abc import ABC, abstractmethod from argparse import ArgumentParser class lowercase ( lowercase_ ): @staticmethod @abstractmethod def a ( snake_case ): raise NotImplementedError() @abstractmethod def a ( self ): raise NotImplementedError()
285
0
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import is_flaky, require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DonutImageProcessor class _a ( unittest.TestCase ): def __init__( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE=7 ,_SCREAMING_SNAKE_CASE=3 ,_SCREAMING_SNAKE_CASE=18 ,_SCREAMING_SNAKE_CASE=30 ,_SCREAMING_SNAKE_CASE=400 ,_SCREAMING_SNAKE_CASE=True ,_SCREAMING_SNAKE_CASE=None ,_SCREAMING_SNAKE_CASE=True ,_SCREAMING_SNAKE_CASE=False ,_SCREAMING_SNAKE_CASE=True ,_SCREAMING_SNAKE_CASE=True ,_SCREAMING_SNAKE_CASE=[0.5, 0.5, 0.5] ,_SCREAMING_SNAKE_CASE=[0.5, 0.5, 0.5] ,) -> int: _snake_case = parent _snake_case = batch_size _snake_case = num_channels _snake_case = image_size _snake_case = min_resolution _snake_case = max_resolution _snake_case = do_resize _snake_case = size if size is not None else {"height": 18, "width": 20} _snake_case = do_thumbnail _snake_case = do_align_axis _snake_case = do_pad _snake_case = do_normalize _snake_case = image_mean _snake_case = image_std def _lowercase ( self ) -> str: return { "do_resize": self.do_resize, "size": self.size, "do_thumbnail": self.do_thumbnail, "do_align_long_axis": self.do_align_axis, "do_pad": self.do_pad, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class _a ( __lowerCAmelCase , unittest.TestCase ): SCREAMING_SNAKE_CASE_ : Tuple = DonutImageProcessor if is_vision_available() else None def _lowercase ( self ) -> Any: _snake_case = DonutImageProcessingTester(self ) @property def _lowercase ( self ) -> int: return self.image_processor_tester.prepare_image_processor_dict() def _lowercase ( self ) -> Optional[int]: _snake_case = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE ,"do_resize" ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE ,"size" ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE ,"do_thumbnail" ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE ,"do_align_long_axis" ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE ,"do_pad" ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE ,"do_normalize" ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE ,"image_mean" ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE ,"image_std" ) ) def _lowercase ( self ) -> List[Any]: _snake_case = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{"height": 18, "width": 20} ) _snake_case = self.image_processing_class.from_dict(self.image_processor_dict ,size=42 ) self.assertEqual(image_processor.size ,{"height": 42, "width": 42} ) # Previous config had dimensions in (width, height) order _snake_case = self.image_processing_class.from_dict(self.image_processor_dict ,size=(42, 84) ) self.assertEqual(image_processor.size ,{"height": 84, "width": 42} ) def _lowercase ( self ) -> str: pass @is_flaky() def _lowercase ( self ) -> Union[str, Any]: # Initialize image_processing _snake_case = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _snake_case = prepare_image_inputs(self.image_processor_tester ,equal_resolution=_SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE ,Image.Image ) # Test not batched input _snake_case = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) ,) # Test batched _snake_case = image_processing(_SCREAMING_SNAKE_CASE ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) ,) @is_flaky() def _lowercase ( self ) -> List[str]: # Initialize image_processing _snake_case = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _snake_case = prepare_image_inputs(self.image_processor_tester ,equal_resolution=_SCREAMING_SNAKE_CASE ,numpify=_SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE ,np.ndarray ) # Test not batched input _snake_case = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) ,) # Test batched _snake_case = image_processing(_SCREAMING_SNAKE_CASE ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) ,) @is_flaky() def _lowercase ( self ) -> List[str]: # Initialize image_processing _snake_case = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _snake_case = prepare_image_inputs(self.image_processor_tester ,equal_resolution=_SCREAMING_SNAKE_CASE ,torchify=_SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE ,torch.Tensor ) # Test not batched input _snake_case = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) ,) # Test batched _snake_case = image_processing(_SCREAMING_SNAKE_CASE ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) ,)
356
'''simple docstring''' import logging import os from dataclasses import dataclass, field from functools import partial from pathlib import Path from tempfile import TemporaryDirectory from typing import List, Optional import faiss import torch from datasets import Features, Sequence, Value, load_dataset from transformers import DPRContextEncoder, DPRContextEncoderTokenizerFast, HfArgumentParser UpperCamelCase_ : Any = logging.getLogger(__name__) torch.set_grad_enabled(False) UpperCamelCase_ : Optional[Any] = '''cuda''' if torch.cuda.is_available() else '''cpu''' def __a ( _UpperCamelCase: str , _UpperCamelCase: Union[str, Any]=100 , _UpperCamelCase: List[str]=" " ) -> List[str]: """simple docstring""" _snake_case = text.split(_UpperCamelCase ) return [character.join(text[i : i + n] ).strip() for i in range(0 , len(_UpperCamelCase ) , _UpperCamelCase )] def __a ( _UpperCamelCase: dict ) -> dict: """simple docstring""" _snake_case , _snake_case = [], [] for title, text in zip(documents["title"] , documents["text"] ): if text is not None: for passage in split_text(_UpperCamelCase ): titles.append(title if title is not None else "" ) texts.append(_UpperCamelCase ) return {"title": titles, "text": texts} def __a ( _UpperCamelCase: dict , _UpperCamelCase: DPRContextEncoder , _UpperCamelCase: DPRContextEncoderTokenizerFast ) -> dict: """simple docstring""" _snake_case = ctx_tokenizer( documents["title"] , documents["text"] , truncation=_UpperCamelCase , padding="longest" , return_tensors="pt" )["input_ids"] _snake_case = ctx_encoder(input_ids.to(device=_UpperCamelCase ) , return_dict=_UpperCamelCase ).pooler_output return {"embeddings": embeddings.detach().cpu().numpy()} def __a ( _UpperCamelCase: "RagExampleArguments" , _UpperCamelCase: "ProcessingArguments" , _UpperCamelCase: "IndexHnswArguments" , ) -> Dict: """simple docstring""" logger.info("Step 1 - Create the dataset" ) ###################################### # The dataset needed for RAG must have three columns: # - title (string): title of the document # - text (string): text of a passage of the document # - embeddings (array of dimension d): DPR representation of the passage # Let's say you have documents in tab-separated csv files with columns "title" and "text" assert os.path.isfile(rag_example_args.csv_path ), "Please provide a valid path to a csv file" # You can load a Dataset object this way _snake_case = load_dataset( "csv" , data_files=[rag_example_args.csv_path] , split="train" , delimiter="\t" , column_names=["title", "text"] ) # More info about loading csv files in the documentation: https://huggingface.co/docs/datasets/loading_datasets.html?highlight=csv#csv-files # Then split the documents into passages of 100 words _snake_case = dataset.map(_UpperCamelCase , batched=_UpperCamelCase , num_proc=processing_args.num_proc ) # And compute the embeddings _snake_case = DPRContextEncoder.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ).to(device=_UpperCamelCase ) _snake_case = DPRContextEncoderTokenizerFast.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ) _snake_case = Features( {"text": Value("string" ), "title": Value("string" ), "embeddings": Sequence(Value("float32" ) )} ) # optional, save as float32 instead of float64 to save space _snake_case = dataset.map( partial(_UpperCamelCase , ctx_encoder=_UpperCamelCase , ctx_tokenizer=_UpperCamelCase ) , batched=_UpperCamelCase , batch_size=processing_args.batch_size , features=_UpperCamelCase , ) # And finally save your dataset _snake_case = os.path.join(rag_example_args.output_dir , "my_knowledge_dataset" ) dataset.save_to_disk(_UpperCamelCase ) # from datasets import load_from_disk # dataset = load_from_disk(passages_path) # to reload the dataset ###################################### logger.info("Step 2 - Index the dataset" ) ###################################### # Let's use the Faiss implementation of HNSW for fast approximate nearest neighbor search _snake_case = faiss.IndexHNSWFlat(index_hnsw_args.d , index_hnsw_args.m , faiss.METRIC_INNER_PRODUCT ) dataset.add_faiss_index("embeddings" , custom_index=_UpperCamelCase ) # And save the index _snake_case = os.path.join(rag_example_args.output_dir , "my_knowledge_dataset_hnsw_index.faiss" ) dataset.get_index("embeddings" ).save(_UpperCamelCase ) # dataset.load_faiss_index("embeddings", index_path) # to reload the index @dataclass class _a : SCREAMING_SNAKE_CASE_ : str = field( default=str(Path(__lowerCAmelCase ).parent / """test_run""" / """dummy-kb""" / """my_knowledge_dataset.csv""" ) , metadata={"""help""": """Path to a tab-separated csv file with columns 'title' and 'text'"""} , ) SCREAMING_SNAKE_CASE_ : Optional[str] = field( default=__lowerCAmelCase , metadata={"""help""": """Question that is passed as input to RAG. Default is 'What does Moses' rod turn into ?'."""} , ) SCREAMING_SNAKE_CASE_ : str = field( default="""facebook/rag-sequence-nq""" , metadata={"""help""": """The RAG model to use. Either 'facebook/rag-sequence-nq' or 'facebook/rag-token-nq'"""} , ) SCREAMING_SNAKE_CASE_ : str = field( default="""facebook/dpr-ctx_encoder-multiset-base""" , metadata={ """help""": ( """The DPR context encoder model to use. Either 'facebook/dpr-ctx_encoder-single-nq-base' or""" """ 'facebook/dpr-ctx_encoder-multiset-base'""" ) } , ) SCREAMING_SNAKE_CASE_ : Optional[str] = field( default=str(Path(__lowerCAmelCase ).parent / """test_run""" / """dummy-kb""" ) , metadata={"""help""": """Path to a directory where the dataset passages and the index will be saved"""} , ) @dataclass class _a : SCREAMING_SNAKE_CASE_ : Optional[int] = field( default=__lowerCAmelCase , metadata={ """help""": """The number of processes to use to split the documents into passages. Default is single process.""" } , ) SCREAMING_SNAKE_CASE_ : int = field( default=16 , metadata={ """help""": """The batch size to use when computing the passages embeddings using the DPR context encoder.""" } , ) @dataclass class _a : SCREAMING_SNAKE_CASE_ : int = field( default=7_68 , metadata={"""help""": """The dimension of the embeddings to pass to the HNSW Faiss index."""} , ) SCREAMING_SNAKE_CASE_ : int = field( default=1_28 , metadata={ """help""": ( """The number of bi-directional links created for every new element during the HNSW index construction.""" ) } , ) if __name__ == "__main__": logging.basicConfig(level=logging.WARNING) logger.setLevel(logging.INFO) UpperCamelCase_ : List[str] = HfArgumentParser((RagExampleArguments, ProcessingArguments, IndexHnswArguments)) UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ : List[Any] = parser.parse_args_into_dataclasses() with TemporaryDirectory() as tmp_dir: UpperCamelCase_ : str = rag_example_args.output_dir or tmp_dir main(rag_example_args, processing_args, index_hnsw_args)
142
0
from sklearn.metrics import mean_squared_error import datasets UpperCAmelCase__ = "\\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n" UpperCAmelCase__ = "\\nMean Squared Error(MSE) is the average of the square of difference between the predicted\nand actual values.\n" UpperCAmelCase__ = "\nArgs:\n predictions: array-like of shape (n_samples,) or (n_samples, n_outputs)\n Estimated target values.\n references: array-like of shape (n_samples,) or (n_samples, n_outputs)\n Ground truth (correct) target values.\n sample_weight: array-like of shape (n_samples,), default=None\n Sample weights.\n multioutput: {\"raw_values\", \"uniform_average\"} or array-like of shape (n_outputs,), default=\"uniform_average\"\n Defines aggregating of multiple output values. Array-like value defines weights used to average errors.\n\n \"raw_values\" : Returns a full set of errors in case of multioutput input.\n\n \"uniform_average\" : Errors of all outputs are averaged with uniform weight.\n\n squared : bool, default=True\n If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value.\n\nReturns:\n mse : mean squared error.\nExamples:\n\n >>> mse_metric = datasets.load_metric(\"mse\")\n >>> predictions = [2.5, 0.0, 2, 8]\n >>> references = [3, -0.5, 2, 7]\n >>> results = mse_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'mse': 0.375}\n >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False)\n >>> print(rmse_result)\n {'mse': 0.6123724356957945}\n\n If you're using multi-dimensional lists, then set the config as follows :\n\n >>> mse_metric = datasets.load_metric(\"mse\", \"multilist\")\n >>> predictions = [[0.5, 1], [-1, 1], [7, -6]]\n >>> references = [[0, 2], [-1, 2], [8, -5]]\n >>> results = mse_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'mse': 0.7083333333333334}\n >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput='raw_values')\n >>> print(results) # doctest: +NORMALIZE_WHITESPACE\n {'mse': array([0.41666667, 1. ])}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowerCAmelCase ( datasets.Metric ): def _lowerCamelCase ( self : Any) -> List[str]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types()) , reference_urls=[ 'https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html' ] , ) def _lowerCamelCase ( self : List[Any]) -> Union[str, Any]: """simple docstring""" if self.config_name == "multilist": return { "predictions": datasets.Sequence(datasets.Value('float')), "references": datasets.Sequence(datasets.Value('float')), } else: return { "predictions": datasets.Value('float'), "references": datasets.Value('float'), } def _lowerCamelCase ( self : str , A : Optional[int] , A : List[str] , A : str=None , A : List[str]="uniform_average" , A : Tuple=True) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = mean_squared_error( A , A , sample_weight=A , multioutput=A , squared=A) return {"mse": mse}
339
UpperCAmelCase__ = {} def A ( _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int ) -> int: '''simple docstring''' # if we are absent twice, or late 3 consecutive days, # no further prize strings are possible if late == 3 or absent == 2: return 0 # if we have no days left, and have not failed any other rules, # we have a prize string if days == 0: return 1 # No easy solution, so now we need to do the recursive calculation # First, check if the combination is already in the cache, and # if yes, return the stored value from there since we already # know the number of possible prize strings from this point on _UpperCAmelCase = (days, absent, late) if key in cache: return cache[key] # now we calculate the three possible ways that can unfold from # this point on, depending on our attendance today # 1) if we are late (but not absent), the "absent" counter stays as # it is, but the "late" counter increases by one _UpperCAmelCase = _calculate(days - 1 , _UpperCAmelCase , late + 1 ) # 2) if we are absent, the "absent" counter increases by 1, and the # "late" counter resets to 0 _UpperCAmelCase = _calculate(days - 1 , absent + 1 , 0 ) # 3) if we are on time, this resets the "late" counter and keeps the # absent counter _UpperCAmelCase = _calculate(days - 1 , _UpperCAmelCase , 0 ) _UpperCAmelCase = state_late + state_absent + state_ontime _UpperCAmelCase = prizestrings return prizestrings def A ( _UpperCAmelCase : int = 30 ) -> int: '''simple docstring''' return _calculate(_UpperCAmelCase , absent=0 , late=0 ) if __name__ == "__main__": print(solution())
339
1
'''simple docstring''' UpperCamelCase_ : List[Any] = [ 999, 800, 799, 600, 599, 500, 400, 399, 377, 355, 333, 311, 288, 266, 244, 222, 200, 199, 177, 155, 133, 111, 88, 66, 44, 22, 0, ] UpperCamelCase_ : Union[str, Any] = [ 999, 976, 952, 928, 905, 882, 858, 857, 810, 762, 715, 714, 572, 429, 428, 286, 285, 238, 190, 143, 142, 118, 95, 71, 47, 24, 0, ] UpperCamelCase_ : Union[str, Any] = [ 999, 988, 977, 966, 955, 944, 933, 922, 911, 900, 899, 879, 859, 840, 820, 800, 799, 766, 733, 700, 699, 650, 600, 599, 500, 499, 400, 399, 350, 300, 299, 266, 233, 200, 199, 179, 159, 140, 120, 100, 99, 88, 77, 66, 55, 44, 33, 22, 11, 0, ] UpperCamelCase_ : Union[str, Any] = [ 999, 995, 992, 989, 985, 981, 978, 975, 971, 967, 964, 961, 957, 956, 951, 947, 942, 937, 933, 928, 923, 919, 914, 913, 908, 903, 897, 892, 887, 881, 876, 871, 870, 864, 858, 852, 846, 840, 834, 828, 827, 820, 813, 806, 799, 792, 785, 784, 777, 770, 763, 756, 749, 742, 741, 733, 724, 716, 707, 699, 698, 688, 677, 666, 656, 655, 645, 634, 623, 613, 612, 598, 584, 570, 569, 555, 541, 527, 526, 505, 484, 483, 462, 440, 439, 396, 395, 352, 351, 308, 307, 264, 263, 220, 219, 176, 132, 88, 44, 0, ] UpperCamelCase_ : Optional[int] = [ 999, 997, 995, 992, 990, 988, 986, 984, 981, 979, 977, 975, 972, 970, 968, 966, 964, 961, 959, 957, 956, 954, 951, 949, 946, 944, 941, 939, 936, 934, 931, 929, 926, 924, 921, 919, 916, 914, 913, 910, 907, 905, 902, 899, 896, 893, 891, 888, 885, 882, 879, 877, 874, 871, 870, 867, 864, 861, 858, 855, 852, 849, 846, 843, 840, 837, 834, 831, 828, 827, 824, 821, 817, 814, 811, 808, 804, 801, 798, 795, 791, 788, 785, 784, 780, 777, 774, 770, 766, 763, 760, 756, 752, 749, 746, 742, 741, 737, 733, 730, 726, 722, 718, 714, 710, 707, 703, 699, 698, 694, 690, 685, 681, 677, 673, 669, 664, 660, 656, 655, 650, 646, 641, 636, 632, 627, 622, 618, 613, 612, 607, 602, 596, 591, 586, 580, 575, 570, 569, 563, 557, 551, 545, 539, 533, 527, 526, 519, 512, 505, 498, 491, 484, 483, 474, 466, 457, 449, 440, 439, 428, 418, 407, 396, 395, 381, 366, 352, 351, 330, 308, 307, 286, 264, 263, 242, 220, 219, 176, 175, 132, 131, 88, 44, 0, ] UpperCamelCase_ : Tuple = [ 999, 991, 982, 974, 966, 958, 950, 941, 933, 925, 916, 908, 900, 899, 874, 850, 825, 800, 799, 700, 600, 500, 400, 300, 200, 100, 0, ] UpperCamelCase_ : List[Any] = [ 999, 992, 985, 978, 971, 964, 957, 949, 942, 935, 928, 921, 914, 907, 900, 899, 879, 859, 840, 820, 800, 799, 766, 733, 700, 699, 650, 600, 599, 500, 499, 400, 399, 300, 299, 200, 199, 100, 99, 0, ] UpperCamelCase_ : Dict = [ 999, 996, 992, 989, 985, 982, 979, 975, 972, 968, 965, 961, 958, 955, 951, 948, 944, 941, 938, 934, 931, 927, 924, 920, 917, 914, 910, 907, 903, 900, 899, 891, 884, 876, 869, 861, 853, 846, 838, 830, 823, 815, 808, 800, 799, 788, 777, 766, 755, 744, 733, 722, 711, 700, 699, 688, 677, 666, 655, 644, 633, 622, 611, 600, 599, 585, 571, 557, 542, 528, 514, 500, 499, 485, 471, 457, 442, 428, 414, 400, 399, 379, 359, 340, 320, 300, 299, 279, 259, 240, 220, 200, 199, 166, 133, 100, 99, 66, 33, 0, ]
142
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase_ : int = logging.get_logger(__name__) UpperCamelCase_ : Tuple = { '''sayakpaul/vit-msn-base''': '''https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json''', # See all ViT MSN models at https://huggingface.co/models?filter=vit_msn } class _a ( __lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : List[str] = """vit_msn""" def __init__( self ,_SCREAMING_SNAKE_CASE=768 ,_SCREAMING_SNAKE_CASE=12 ,_SCREAMING_SNAKE_CASE=12 ,_SCREAMING_SNAKE_CASE=3_072 ,_SCREAMING_SNAKE_CASE="gelu" ,_SCREAMING_SNAKE_CASE=0.0 ,_SCREAMING_SNAKE_CASE=0.0 ,_SCREAMING_SNAKE_CASE=0.0_2 ,_SCREAMING_SNAKE_CASE=1e-06 ,_SCREAMING_SNAKE_CASE=224 ,_SCREAMING_SNAKE_CASE=16 ,_SCREAMING_SNAKE_CASE=3 ,_SCREAMING_SNAKE_CASE=True ,**_SCREAMING_SNAKE_CASE ,) -> int: super().__init__(**_SCREAMING_SNAKE_CASE ) _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = intermediate_size _snake_case = hidden_act _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = initializer_range _snake_case = layer_norm_eps _snake_case = image_size _snake_case = patch_size _snake_case = num_channels _snake_case = qkv_bias
142
1
'''simple docstring''' import logging import random import ray from transformers import RagConfig, RagRetriever, RagTokenizer from transformers.models.rag.retrieval_rag import CustomHFIndex A_ : int = logging.getLogger(__name__) class lowercase : """simple docstring""" def __init__( self ) -> Dict: _UpperCAmelCase : Optional[int] = False def _snake_case ( self ,a_ ,a_ ,a_ ,a_ ) -> Optional[Any]: if not self.initialized: _UpperCAmelCase : Optional[int] = RagRetriever( a_ ,question_encoder_tokenizer=a_ ,generator_tokenizer=a_ ,index=a_ ,init_retrieval=a_ ,) _UpperCAmelCase : Dict = True def _snake_case ( self ) -> Any: self.retriever.index.init_index() def _snake_case ( self ,a_ ,a_ ) -> int: _UpperCAmelCase ,_UpperCAmelCase : int = self.retriever._main_retrieve(a_ ,a_ ) return doc_ids, retrieved_doc_embeds class lowercase ( _lowerCamelCase ): """simple docstring""" def __init__( self ,a_ ,a_ ,a_ ,a_ ,a_=None ) -> Union[str, Any]: if index is not None and index.is_initialized() and len(a_ ) > 0: raise ValueError( """When using Ray for distributed fine-tuning, """ """you'll need to provide the paths instead, """ """as the dataset and the index are loaded """ """separately. More info in examples/rag/use_own_knowledge_dataset.py """ ) super().__init__( a_ ,question_encoder_tokenizer=a_ ,generator_tokenizer=a_ ,index=a_ ,init_retrieval=a_ ,) _UpperCAmelCase : Union[str, Any] = retrieval_workers if len(self.retrieval_workers ) > 0: ray.get( [ worker.create_rag_retriever.remote(a_ ,a_ ,a_ ,a_ ) for worker in self.retrieval_workers ] ) def _snake_case ( self ) -> Optional[int]: logger.info("""initializing retrieval""" ) if len(self.retrieval_workers ) > 0: ray.get([worker.init_retrieval.remote() for worker in self.retrieval_workers] ) else: # Non-distributed training. Load index into this same process. self.index.init_index() def _snake_case ( self ,a_ ,a_ ) -> int: if len(self.retrieval_workers ) > 0: # Select a random retrieval actor. _UpperCAmelCase : Union[str, Any] = self.retrieval_workers[random.randint(0 ,len(self.retrieval_workers ) - 1 )] _UpperCAmelCase ,_UpperCAmelCase : int = ray.get(random_worker.retrieve.remote(a_ ,a_ ) ) else: _UpperCAmelCase ,_UpperCAmelCase : str = self._main_retrieve(a_ ,a_ ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(a_ ) @classmethod def _snake_case ( cls ,a_ ,a_=None ,**a_ ) -> Any: return super(a_ ,cls ).get_tokenizers(a_ ,a_ ,**a_ ) @classmethod def _snake_case ( cls ,a_ ,a_ ,a_=None ,**a_ ) -> str: _UpperCAmelCase : Tuple = kwargs.pop("""config""" ,a_ ) or RagConfig.from_pretrained(a_ ,**a_ ) _UpperCAmelCase : int = RagTokenizer.from_pretrained(a_ ,config=a_ ) _UpperCAmelCase : Dict = rag_tokenizer.question_encoder _UpperCAmelCase : List[str] = rag_tokenizer.generator if indexed_dataset is not None: _UpperCAmelCase : Union[str, Any] = """custom""" _UpperCAmelCase : Dict = CustomHFIndex(config.retrieval_vector_size ,a_ ) else: _UpperCAmelCase : List[Any] = cls._build_index(a_ ) return cls( a_ ,question_encoder_tokenizer=a_ ,generator_tokenizer=a_ ,retrieval_workers=a_ ,index=a_ ,)
215
'''simple docstring''' from __future__ import annotations import typing from collections import Counter def snake_case_ ( lowerCAmelCase_ )-> typing.Counter[int]: '''simple docstring''' _UpperCAmelCase : typing.Counter[int] = Counter() for base in range(1 , max_perimeter + 1 ): for perpendicular in range(lowerCAmelCase_ , max_perimeter + 1 ): _UpperCAmelCase : List[str] = (base * base + perpendicular * perpendicular) ** 0.5 if hypotenuse == int(lowerCAmelCase_ ): _UpperCAmelCase : Optional[Any] = int(base + perpendicular + hypotenuse ) if perimeter > max_perimeter: continue triplets[perimeter] += 1 return triplets def snake_case_ ( lowerCAmelCase_ = 1000 )-> int: '''simple docstring''' _UpperCAmelCase : int = pythagorean_triple(lowerCAmelCase_ ) return triplets.most_common(1 )[0][0] if __name__ == "__main__": print(f"""Perimeter {solution()} has maximum solutions""")
215
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) _UpperCamelCase = { """configuration_swiftformer""": [ """SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """SwiftFormerConfig""", """SwiftFormerOnnxConfig""", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ """SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """SwiftFormerForImageClassification""", """SwiftFormerModel""", """SwiftFormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_swiftformer import ( SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, SwiftFormerConfig, SwiftFormerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swiftformer import ( SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, SwiftFormerForImageClassification, SwiftFormerModel, SwiftFormerPreTrainedModel, ) else: import sys _UpperCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
353
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import ScoreSdeVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class lowerCamelCase__ ( snake_case ): SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 def __init__( self ,A ,A ): super().__init__() self.register_modules(unet=A ,scheduler=A ) @torch.no_grad() def __call__( self ,A = 1 ,A = 2_000 ,A = None ,A = "pil" ,A = True ,**A ,): UpperCAmelCase = self.unet.config.sample_size UpperCAmelCase = (batch_size, 3, img_size, img_size) UpperCAmelCase = self.unet UpperCAmelCase = randn_tensor(A ,generator=A ) * self.scheduler.init_noise_sigma UpperCAmelCase = sample.to(self.device ) self.scheduler.set_timesteps(A ) self.scheduler.set_sigmas(A ) for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): UpperCAmelCase = self.scheduler.sigmas[i] * torch.ones(shape[0] ,device=self.device ) # correction step for _ in range(self.scheduler.config.correct_steps ): UpperCAmelCase = self.unet(A ,A ).sample UpperCAmelCase = self.scheduler.step_correct(A ,A ,generator=A ).prev_sample # prediction step UpperCAmelCase = model(A ,A ).sample UpperCAmelCase = self.scheduler.step_pred(A ,A ,A ,generator=A ) UpperCAmelCase , UpperCAmelCase = output.prev_sample, output.prev_sample_mean UpperCAmelCase = sample_mean.clamp(0 ,1 ) UpperCAmelCase = sample.cpu().permute(0 ,2 ,3 ,1 ).numpy() if output_type == "pil": UpperCAmelCase = self.numpy_to_pil(A ) if not return_dict: return (sample,) return ImagePipelineOutput(images=A )
234
0
'''simple docstring''' import warnings from ...utils import logging from .image_processing_perceiver import PerceiverImageProcessor lowercase__ = logging.get_logger(__name__) class A_ ( _snake_case ): '''simple docstring''' def __init__( self : List[Any] , *lowercase_ : Optional[Any] , **lowercase_ : Optional[Any] ) -> None: warnings.warn( 'The class PerceiverFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use PerceiverImageProcessor instead.' , lowercase_ , ) super().__init__(*lowercase_ , **lowercase_ )
151
'''simple docstring''' from __future__ import annotations def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): if partitions <= 0: raise ValueError('partitions must be a positive number!' ) if partitions > number_of_bytes: raise ValueError('partitions can not > number_of_bytes!' ) UpperCAmelCase : int = number_of_bytes // partitions UpperCAmelCase : List[str] = [] for i in range(UpperCAmelCase_ ): UpperCAmelCase : List[Any] = i * bytes_per_partition + 1 UpperCAmelCase : str = ( number_of_bytes if i == partitions - 1 else (i + 1) * bytes_per_partition ) allocation_list.append(F"""{start_bytes}-{end_bytes}""" ) return allocation_list if __name__ == "__main__": import doctest doctest.testmod()
151
1
"""simple docstring""" from __future__ import annotations _lowerCAmelCase : List[Any] = list[tuple[int, int]] _lowerCAmelCase : Tuple = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] _lowerCAmelCase : List[str] = ([-1, 0], [0, -1], [1, 0], [0, 1]) # up, left, down, right class A_ : def __init__( self: Union[str, Any] ,__lowerCAmelCase: str ,__lowerCAmelCase: Optional[Any] ,__lowerCAmelCase: Union[str, Any] ,__lowerCAmelCase: int ,__lowerCAmelCase: Tuple ,__lowerCAmelCase: List[Any] ,): '''simple docstring''' _lowerCamelCase : Dict = pos_x _lowerCamelCase : Any = pos_y _lowerCamelCase : Dict = (pos_y, pos_x) _lowerCamelCase : List[Any] = goal_x _lowerCamelCase : str = goal_y _lowerCamelCase : Optional[Any] = g_cost _lowerCamelCase : Tuple = parent _lowerCamelCase : int = self.calculate_heuristic() def _lowercase ( self: Any ): '''simple docstring''' _lowerCamelCase : Optional[int] = abs(self.pos_x - self.goal_x ) _lowerCamelCase : List[Any] = abs(self.pos_y - self.goal_y ) return dx + dy def __lt__( self: Any ,__lowerCAmelCase: Optional[Any] ): '''simple docstring''' return self.f_cost < other.f_cost class A_ : def __init__( self: Tuple ,__lowerCAmelCase: str ,__lowerCAmelCase: List[str] ): '''simple docstring''' _lowerCamelCase : List[str] = Node(start[1] ,start[0] ,goal[1] ,goal[0] ,0 ,a__ ) _lowerCamelCase : Any = Node(goal[1] ,goal[0] ,goal[1] ,goal[0] ,99_999 ,a__ ) _lowerCamelCase : List[Any] = [self.start] _lowerCamelCase : Tuple = [] _lowerCamelCase : str = False def _lowercase ( self: str ): '''simple docstring''' while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() _lowerCamelCase : List[str] = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: _lowerCamelCase : str = True return self.retrace_path(a__ ) self.closed_nodes.append(a__ ) _lowerCamelCase : int = self.get_successors(a__ ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(a__ ) else: # retrieve the best current path _lowerCamelCase : Optional[Any] = self.open_nodes.pop(self.open_nodes.index(a__ ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(a__ ) else: self.open_nodes.append(a__ ) if not self.reached: return [self.start.pos] return None def _lowercase ( self: List[Any] ,__lowerCAmelCase: List[Any] ): '''simple docstring''' _lowerCamelCase : Optional[int] = [] for action in delta: _lowerCamelCase : int = parent.pos_x + action[1] _lowerCamelCase : Optional[int] = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(a__ ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( a__ ,a__ ,self.target.pos_y ,self.target.pos_x ,parent.g_cost + 1 ,a__ ,) ) return successors def _lowercase ( self: str ,__lowerCAmelCase: str ): '''simple docstring''' _lowerCamelCase : Optional[int] = node _lowerCamelCase : List[Any] = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) _lowerCamelCase : int = current_node.parent path.reverse() return path if __name__ == "__main__": _lowerCAmelCase : str = (0, 0) _lowerCAmelCase : Tuple = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) print('''------''') _lowerCAmelCase : List[str] = GreedyBestFirst(init, goal) _lowerCAmelCase : Optional[int] = greedy_bf.search() if path: for pos_x, pos_y in path: _lowerCAmelCase : Optional[Any] = 2 for elem in grid: print(elem)
364
"""simple docstring""" from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCAmelCase : Optional[Any] = { '''configuration_mctct''': ['''MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MCTCTConfig'''], '''feature_extraction_mctct''': ['''MCTCTFeatureExtractor'''], '''processing_mctct''': ['''MCTCTProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Dict = [ '''MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MCTCTForCTC''', '''MCTCTModel''', '''MCTCTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig from .feature_extraction_mctct import MCTCTFeatureExtractor from .processing_mctct import MCTCTProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel else: import sys _lowerCAmelCase : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
340
0
import torch from transformers import AutoModel class _UpperCamelCase ( torch.nn.Module ): '''simple docstring''' def __init__( self : Tuple , a : Optional[int]="sayef/fsner-bert-base-uncased" ) -> Any: """simple docstring""" super(a , self ).__init__() SCREAMING_SNAKE_CASE : Union[str, Any] = AutoModel.from_pretrained(a , return_dict=a ) SCREAMING_SNAKE_CASE : Optional[int] = torch.nn.CosineSimilarity(3 , 1e-08 ) SCREAMING_SNAKE_CASE : str = torch.nn.Softmax(dim=1 ) def __UpperCamelCase ( self : int , **a : Optional[int] ) -> Optional[int]: """simple docstring""" return self.bert(**a ).last_hidden_state def __UpperCamelCase ( self : Optional[int] , a : List[str] ) -> str: """simple docstring""" return token_embeddings.sum(2 , keepdim=a ) def __UpperCamelCase ( self : Optional[int] , a : List[Any] , a : List[Any] , a : Optional[int]=1 ) -> Union[str, Any]: """simple docstring""" return self.softmax(T * self.cos(a , a ) ) def __UpperCamelCase ( self : Union[str, Any] , a : List[str] , a : Optional[int] ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE : int = W_supports['''sizes'''].tolist() SCREAMING_SNAKE_CASE : List[Any] = W_supports['''start_token_id'''].item() SCREAMING_SNAKE_CASE : Optional[Any] = W_supports['''end_token_id'''].item() del W_supports["sizes"] del W_supports["start_token_id"] del W_supports["end_token_id"] SCREAMING_SNAKE_CASE : str = self.BERT(**a ) SCREAMING_SNAKE_CASE : Optional[int] = self.BERT(**a ) SCREAMING_SNAKE_CASE : List[str] = None SCREAMING_SNAKE_CASE : Dict = None SCREAMING_SNAKE_CASE : Dict = W_supports['''input_ids'''] == start_token_id SCREAMING_SNAKE_CASE : Optional[Any] = W_supports['''input_ids'''] == end_token_id for i, size in enumerate(a ): if i == 0: SCREAMING_SNAKE_CASE : List[str] = 0 else: SCREAMING_SNAKE_CASE : Optional[Any] = support_sizes[i - 1] SCREAMING_SNAKE_CASE : Dict = S[s : s + size][start_token_masks[s : s + size]] SCREAMING_SNAKE_CASE : Tuple = S[s : s + size][end_token_masks[s : s + size]] SCREAMING_SNAKE_CASE : Optional[int] = torch.matmul(q[i] , s_start.T ).sum(1 ).softmax(0 ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.matmul(q[i] , s_end.T ).sum(1 ).softmax(0 ) if p_starts is not None: SCREAMING_SNAKE_CASE : Tuple = torch.vstack((p_starts, p_start) ) SCREAMING_SNAKE_CASE : Optional[Any] = torch.vstack((p_ends, p_end) ) else: SCREAMING_SNAKE_CASE : Any = p_start SCREAMING_SNAKE_CASE : List[str] = p_end return p_starts, p_ends
76
from typing import Any class __SCREAMING_SNAKE_CASE : def __init__( self : List[Any] , A : Any ) ->Optional[int]: lowerCamelCase__ : Optional[int] = data lowerCamelCase__ : Any = None class __SCREAMING_SNAKE_CASE : def __init__( self : Optional[Any] ) ->str: lowerCamelCase__ : Any = None def __lowerCamelCase ( self : Tuple ) ->Any: lowerCamelCase__ : str = self.head while temp is not None: print(temp.data , end=''' ''' ) lowerCamelCase__ : Dict = temp.next print() def __lowerCamelCase ( self : Dict , A : Any ) ->Optional[int]: lowerCamelCase__ : Union[str, Any] = Node(A ) lowerCamelCase__ : Dict = self.head lowerCamelCase__ : List[str] = new_node def __lowerCamelCase ( self : Optional[int] , A : int , A : Tuple ) ->List[Any]: if node_data_a == node_data_a: return else: lowerCamelCase__ : Tuple = self.head while node_a is not None and node_a.data != node_data_a: lowerCamelCase__ : Union[str, Any] = node_a.next lowerCamelCase__ : int = self.head while node_a is not None and node_a.data != node_data_a: lowerCamelCase__ : Optional[int] = node_a.next if node_a is None or node_a is None: return lowerCamelCase__ , lowerCamelCase__ : str = node_a.data, node_a.data if __name__ == "__main__": _A : List[Any] = LinkedList() for i in range(5, 0, -1): ll.push(i) ll.print_list() ll.swap_nodes(1, 4) print('After swapping') ll.print_list()
142
0
"""simple docstring""" from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class lowerCAmelCase_ ( lowerCAmelCase ): """simple docstring""" _lowerCAmelCase : List[str] = ["""image_processor""", """tokenizer"""] _lowerCAmelCase : List[str] = """Pix2StructImageProcessor""" _lowerCAmelCase : List[Any] = ("""T5Tokenizer""", """T5TokenizerFast""") def __init__( self , lowerCAmelCase , lowerCAmelCase ): """simple docstring""" snake_case = False super().__init__(lowerCAmelCase , lowerCAmelCase ) def __call__( self , lowerCAmelCase=None , lowerCAmelCase = None , lowerCAmelCase = True , lowerCAmelCase = False , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = 20_48 , lowerCAmelCase = 0 , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = False , lowerCAmelCase = False , lowerCAmelCase = False , lowerCAmelCase = False , lowerCAmelCase = False , lowerCAmelCase = True , lowerCAmelCase = None , **lowerCAmelCase , ): """simple docstring""" if images is None and text is None: raise ValueError('You have to specify either images or text.' ) # Get only text if images is None and not self.image_processor.is_vqa: snake_case = self.tokenizer snake_case = self.tokenizer( text=lowerCAmelCase , add_special_tokens=lowerCAmelCase , padding=lowerCAmelCase , truncation=lowerCAmelCase , max_length=lowerCAmelCase , stride=lowerCAmelCase , pad_to_multiple_of=lowerCAmelCase , return_attention_mask=lowerCAmelCase , return_overflowing_tokens=lowerCAmelCase , return_special_tokens_mask=lowerCAmelCase , return_offsets_mapping=lowerCAmelCase , return_token_type_ids=lowerCAmelCase , return_length=lowerCAmelCase , verbose=lowerCAmelCase , return_tensors=lowerCAmelCase , **lowerCAmelCase , ) return text_encoding if not self.image_processor.is_vqa: # add pixel_values snake_case = self.image_processor( lowerCAmelCase , return_tensors=lowerCAmelCase , max_patches=lowerCAmelCase , **lowerCAmelCase ) else: # add pixel_values and bbox snake_case = self.image_processor( lowerCAmelCase , return_tensors=lowerCAmelCase , max_patches=lowerCAmelCase , header_text=lowerCAmelCase , **lowerCAmelCase ) if text is not None and not self.image_processor.is_vqa: snake_case = self.tokenizer( text=lowerCAmelCase , add_special_tokens=lowerCAmelCase , padding=lowerCAmelCase , truncation=lowerCAmelCase , max_length=lowerCAmelCase , stride=lowerCAmelCase , pad_to_multiple_of=lowerCAmelCase , return_attention_mask=lowerCAmelCase , return_overflowing_tokens=lowerCAmelCase , return_special_tokens_mask=lowerCAmelCase , return_offsets_mapping=lowerCAmelCase , return_token_type_ids=lowerCAmelCase , return_length=lowerCAmelCase , verbose=lowerCAmelCase , return_tensors=lowerCAmelCase , **lowerCAmelCase , ) if "attention_mask" in text_encoding: snake_case = text_encoding.pop('attention_mask' ) if "input_ids" in text_encoding: snake_case = text_encoding.pop('input_ids' ) else: snake_case = None if text_encoding is not None: encoding_image_processor.update(lowerCAmelCase ) return encoding_image_processor def snake_case ( self , *lowerCAmelCase , **lowerCAmelCase ): """simple docstring""" return self.tokenizer.batch_decode(*lowerCAmelCase , **lowerCAmelCase ) def snake_case ( self , *lowerCAmelCase , **lowerCAmelCase ): """simple docstring""" return self.tokenizer.decode(*lowerCAmelCase , **lowerCAmelCase ) @property def snake_case ( self ): """simple docstring""" snake_case = self.tokenizer.model_input_names snake_case = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
149
"""simple docstring""" import argparse import math import traceback import dateutil.parser as date_parser import requests def lowerCAmelCase__ ( _UpperCamelCase : Any ) -> int: """simple docstring""" snake_case = {} snake_case = job['started_at'] snake_case = job['completed_at'] snake_case = date_parser.parse(_UpperCamelCase ) snake_case = date_parser.parse(_UpperCamelCase ) snake_case = round((end_datetime - start_datetime).total_seconds() / 60.0 ) snake_case = start snake_case = end snake_case = duration_in_min return job_info def lowerCAmelCase__ ( _UpperCamelCase : Dict , _UpperCamelCase : Any=None ) -> Union[str, Any]: """simple docstring""" snake_case = None if token is not None: snake_case = {'Accept': 'application/vnd.github+json', 'Authorization': f"""Bearer {token}"""} snake_case = f"""https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100""" snake_case = requests.get(_UpperCamelCase , headers=_UpperCamelCase ).json() snake_case = {} try: job_time.update({job['name']: extract_time_from_single_job(_UpperCamelCase ) for job in result['jobs']} ) snake_case = math.ceil((result['total_count'] - 1_0_0) / 1_0_0 ) for i in range(_UpperCamelCase ): snake_case = requests.get(url + f"""&page={i + 2}""" , headers=_UpperCamelCase ).json() job_time.update({job['name']: extract_time_from_single_job(_UpperCamelCase ) for job in result['jobs']} ) return job_time except Exception: print(f"""Unknown error, could not fetch links:\n{traceback.format_exc()}""" ) return {} if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() # Required parameters parser.add_argument("--workflow_run_id", type=str, required=True, help="A GitHub Actions workflow run id.") SCREAMING_SNAKE_CASE__ = parser.parse_args() SCREAMING_SNAKE_CASE__ = get_job_time(args.workflow_run_id) SCREAMING_SNAKE_CASE__ = dict(sorted(job_time.items(), key=lambda item: item[1]["duration"], reverse=True)) for k, v in job_time.items(): print(f"""{k}: {v['duration']}""")
149
1
# Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from packaging import version from .. import __version__ from .constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD from .doc import ( add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, copy_func, replace_return_docstrings, ) from .generic import ( ContextManagers, ExplicitEnum, ModelOutput, PaddingStrategy, TensorType, add_model_info_to_auto_map, cached_property, can_return_loss, expand_dims, find_labels, flatten_dict, infer_framework, is_jax_tensor, is_numpy_array, is_tensor, is_tf_symbolic_tensor, is_tf_tensor, is_torch_device, is_torch_dtype, is_torch_tensor, reshape, squeeze, strtobool, tensor_size, to_numpy, to_py_obj, transpose, working_or_temp_dir, ) from .hub import ( CLOUDFRONT_DISTRIB_PREFIX, DISABLE_TELEMETRY, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, EntryNotFoundError, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, cached_file, default_cache_path, define_sagemaker_information, download_url, extract_commit_hash, get_cached_models, get_file_from_repo, get_full_repo_name, has_file, http_user_agent, is_offline_mode, is_remote_url, move_cache, send_example_telemetry, try_to_load_from_cache, ) from .import_utils import ( ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, TORCH_FX_REQUIRED_VERSION, USE_JAX, USE_TF, USE_TORCH, DummyObject, OptionalDependencyNotAvailable, _LazyModule, ccl_version, direct_transformers_import, get_torch_version, is_accelerate_available, is_apex_available, is_bitsandbytes_available, is_bsa_available, is_coloredlogs_available, is_cython_available, is_datasets_available, is_decord_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_jieba_available, is_jumanpp_available, is_kenlm_available, is_keras_nlp_available, is_librosa_available, is_natten_available, is_ninja_available, is_onnx_available, is_openai_available, is_optimum_available, is_pandas_available, is_peft_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytest_available, is_pytorch_quantization_available, is_rjieba_available, is_sacremoses_available, is_safetensors_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_sudachi_available, is_tensorflow_probability_available, is_tensorflow_text_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_bfaa_cpu_available, is_torch_bfaa_gpu_available, is_torch_compile_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_neuroncore_available, is_torch_tensorrt_fx_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_torchdistx_available, is_torchdynamo_available, is_torchvision_available, is_training_run_on_sagemaker, is_vision_available, requires_backends, torch_only_method, ) _A : Union[str, Any] = 'pytorch_model.bin' _A : Optional[Any] = 'pytorch_model.bin.index.json' _A : Optional[Any] = 'adapter_config.json' _A : str = 'adapter_model.bin' _A : Any = 'adapter_model.safetensors' _A : List[Any] = 'tf_model.h5' _A : Optional[int] = 'tf_model.h5.index.json' _A : Union[str, Any] = 'model.ckpt' _A : List[Any] = 'flax_model.msgpack' _A : List[str] = 'flax_model.msgpack.index.json' _A : Optional[int] = 'model.safetensors' _A : Optional[int] = 'model.safetensors.index.json' _A : str = 'config.json' _A : List[Any] = 'preprocessor_config.json' _A : Tuple = FEATURE_EXTRACTOR_NAME _A : Optional[int] = 'generation_config.json' _A : Optional[int] = 'modelcard.json' _A : Tuple = '▁' _A : Any = SENTENCEPIECE_UNDERLINE # Kept for backward compatibility _A : Dict = [ [[0, 1, 0, 1], [1, 0, 0, 1]] ] * 2 # Needs to have 0s and 1s only since XLM uses it for langs too. _A : int = [[7, 6, 0, 0, 1], [1, 2, 3, 0, 0], [0, 0, 0, 4, 5]] _A : Union[str, Any] = [[1, 1, 1, 1, 1], [1, 1, 1, 0, 0], [0, 0, 0, 1, 1]] def _a ( UpperCAmelCase ) -> List[Any]: """simple docstring""" if version.parse(UpperCAmelCase ) < version.parse(UpperCAmelCase ): if "dev" in min_version: lowerCamelCase__ : Tuple = ( '''This example requires a source install from HuggingFace Transformers (see ''' '''`https://huggingface.co/docs/transformers/installation#install-from-source`),''' ) else: lowerCamelCase__ : Any = f"This example requires a minimum version of {min_version}," error_message += f" but the version found is {__version__}.\n" raise ImportError( error_message + '''Check out https://github.com/huggingface/transformers/tree/main/examples#important-note for the examples corresponding to other ''' '''versions of HuggingFace Transformers.''' )
142
import os import textwrap import pyarrow as pa import pytest from datasets import ClassLabel, Features, Image from datasets.packaged_modules.csv.csv import Csv from ..utils import require_pil @pytest.fixture def _a ( UpperCAmelCase ) -> str: """simple docstring""" lowerCamelCase__ : int = tmp_path / '''file.csv''' lowerCamelCase__ : Tuple = textwrap.dedent( '''\ header1,header2 1,2 10,20 ''' ) with open(UpperCAmelCase , '''w''' ) as f: f.write(UpperCAmelCase ) return str(UpperCAmelCase ) @pytest.fixture def _a ( UpperCAmelCase ) -> Optional[Any]: """simple docstring""" lowerCamelCase__ : Any = tmp_path / '''malformed_file.csv''' lowerCamelCase__ : List[str] = textwrap.dedent( '''\ header1,header2 1,2 10,20, ''' ) with open(UpperCAmelCase , '''w''' ) as f: f.write(UpperCAmelCase ) return str(UpperCAmelCase ) @pytest.fixture def _a ( UpperCAmelCase , UpperCAmelCase ) -> List[str]: """simple docstring""" lowerCamelCase__ : Dict = tmp_path / '''csv_with_image.csv''' lowerCamelCase__ : int = textwrap.dedent( f"\\n image\n {image_file}\n " ) with open(UpperCAmelCase , '''w''' ) as f: f.write(UpperCAmelCase ) return str(UpperCAmelCase ) @pytest.fixture def _a ( UpperCAmelCase ) -> Any: """simple docstring""" lowerCamelCase__ : Union[str, Any] = tmp_path / '''csv_with_label.csv''' lowerCamelCase__ : List[Any] = textwrap.dedent( '''\ label good bad good ''' ) with open(UpperCAmelCase , '''w''' ) as f: f.write(UpperCAmelCase ) return str(UpperCAmelCase ) @pytest.fixture def _a ( UpperCAmelCase ) -> Any: """simple docstring""" lowerCamelCase__ : int = tmp_path / '''csv_with_int_list.csv''' lowerCamelCase__ : Dict = textwrap.dedent( '''\ int_list 1 2 3 4 5 6 7 8 9 ''' ) with open(UpperCAmelCase , '''w''' ) as f: f.write(UpperCAmelCase ) return str(UpperCAmelCase ) def _a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Any: """simple docstring""" lowerCamelCase__ : Union[str, Any] = Csv() lowerCamelCase__ : List[Any] = csv._generate_tables([[csv_file, malformed_csv_file]] ) with pytest.raises(UpperCAmelCase , match='''Error tokenizing data''' ): for _ in generator: pass assert any( record.levelname == '''ERROR''' and '''Failed to read file''' in record.message and os.path.basename(UpperCAmelCase ) in record.message for record in caplog.records ) @require_pil def _a ( UpperCAmelCase ) -> Optional[Any]: """simple docstring""" with open(UpperCAmelCase , encoding='''utf-8''' ) as f: lowerCamelCase__ : Tuple = f.read().splitlines()[1] lowerCamelCase__ : Any = Csv(encoding='''utf-8''' , features=Features({'''image''': Image()} ) ) lowerCamelCase__ : List[str] = csv._generate_tables([[csv_file_with_image]] ) lowerCamelCase__ : Dict = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field('''image''' ).type == Image()() lowerCamelCase__ : Tuple = pa_table.to_pydict()['''image'''] assert generated_content == [{"path": image_file, "bytes": None}] def _a ( UpperCAmelCase ) -> List[Any]: """simple docstring""" with open(UpperCAmelCase , encoding='''utf-8''' ) as f: lowerCamelCase__ : List[Any] = f.read().splitlines()[1:] lowerCamelCase__ : List[Any] = Csv(encoding='''utf-8''' , features=Features({'''label''': ClassLabel(names=['''good''', '''bad'''] )} ) ) lowerCamelCase__ : Optional[Any] = csv._generate_tables([[csv_file_with_label]] ) lowerCamelCase__ : Tuple = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field('''label''' ).type == ClassLabel(names=['''good''', '''bad'''] )() lowerCamelCase__ : str = pa_table.to_pydict()['''label'''] assert generated_content == [ClassLabel(names=['''good''', '''bad'''] ).straint(UpperCAmelCase ) for label in labels] def _a ( UpperCAmelCase ) -> Any: """simple docstring""" lowerCamelCase__ : List[str] = Csv(encoding='''utf-8''' , sep=''',''' , converters={'''int_list''': lambda UpperCAmelCase : [int(UpperCAmelCase ) for i in x.split()]} ) lowerCamelCase__ : Optional[Any] = csv._generate_tables([[csv_file_with_int_list]] ) lowerCamelCase__ : Tuple = pa.concat_tables([table for _, table in generator] ) assert pa.types.is_list(pa_table.schema.field('''int_list''' ).type ) lowerCamelCase__ : Tuple = pa_table.to_pydict()['''int_list'''] assert generated_content == [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
142
1
from ...utils import logging from ..ta.modeling_tf_ta import TFTaEncoderModel, TFTaForConditionalGeneration, TFTaModel from .configuration_mta import MTaConfig _lowerCAmelCase : List[Any] = logging.get_logger(__name__) _lowerCAmelCase : Union[str, Any] = """T5Config""" class lowerCAmelCase__ ( __magic_name__ ): SCREAMING_SNAKE_CASE_ ='''mt5''' SCREAMING_SNAKE_CASE_ =MTaConfig class lowerCAmelCase__ ( __magic_name__ ): SCREAMING_SNAKE_CASE_ ='''mt5''' SCREAMING_SNAKE_CASE_ =MTaConfig class lowerCAmelCase__ ( __magic_name__ ): SCREAMING_SNAKE_CASE_ ='''mt5''' SCREAMING_SNAKE_CASE_ =MTaConfig
369
"""simple docstring""" import sys from typing import Tuple import numpy as np import torch from PIL import Image from torch import nn from transformers.image_utils import PILImageResampling from utils import img_tensorize class lowerCAmelCase__ : def __init__( self : Optional[int] , snake_case__ : List[Any] , snake_case__ : str=sys.maxsize ): '''simple docstring''' UpperCAmelCase__ : Any = "bilinear" UpperCAmelCase__ : Any = max_size UpperCAmelCase__ : Any = short_edge_length def __call__( self : Dict , snake_case__ : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : Tuple = [] for img in imgs: UpperCAmelCase__ , UpperCAmelCase__ : int = img.shape[:2] # later: provide list and randomly choose index for resize UpperCAmelCase__ : Dict = np.random.randint(self.short_edge_length[0] , self.short_edge_length[1] + 1 ) if size == 0: return img UpperCAmelCase__ : Dict = size * 1.0 / min(snake_case__ , snake_case__ ) if h < w: UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = size, scale * w else: UpperCAmelCase__ , UpperCAmelCase__ : int = scale * h, size if max(snake_case__ , snake_case__ ) > self.max_size: UpperCAmelCase__ : Union[str, Any] = self.max_size * 1.0 / max(snake_case__ , snake_case__ ) UpperCAmelCase__ : List[str] = newh * scale UpperCAmelCase__ : int = neww * scale UpperCAmelCase__ : List[Any] = int(neww + 0.5 ) UpperCAmelCase__ : Optional[Any] = int(newh + 0.5 ) if img.dtype == np.uinta: UpperCAmelCase__ : Any = Image.fromarray(snake_case__ ) UpperCAmelCase__ : Union[str, Any] = pil_image.resize((neww, newh) , PILImageResampling.BILINEAR ) UpperCAmelCase__ : Optional[int] = np.asarray(snake_case__ ) else: UpperCAmelCase__ : Any = img.permute(2 , 0 , 1 ).unsqueeze(0 ) # 3, 0, 1) # hw(c) -> nchw UpperCAmelCase__ : Tuple = nn.functional.interpolate( snake_case__ , (newh, neww) , mode=self.interp_method , align_corners=snake_case__ ).squeeze(0 ) img_augs.append(snake_case__ ) return img_augs class lowerCAmelCase__ : def __init__( self : Optional[int] , snake_case__ : Dict ): '''simple docstring''' UpperCAmelCase__ : Dict = ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST] , cfg.INPUT.MAX_SIZE_TEST ) UpperCAmelCase__ : Any = cfg.INPUT.FORMAT UpperCAmelCase__ : Optional[Any] = cfg.SIZE_DIVISIBILITY UpperCAmelCase__ : str = cfg.PAD_VALUE UpperCAmelCase__ : List[Any] = cfg.INPUT.MAX_SIZE_TEST UpperCAmelCase__ : Dict = cfg.MODEL.DEVICE UpperCAmelCase__ : Optional[int] = torch.tensor(cfg.MODEL.PIXEL_STD ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) UpperCAmelCase__ : str = torch.tensor(cfg.MODEL.PIXEL_MEAN ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) UpperCAmelCase__ : List[str] = lambda snake_case__ : (x - self.pixel_mean) / self.pixel_std def __a ( self : Optional[int] , snake_case__ : Dict ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = tuple(max(snake_case__ ) for s in zip(*[img.shape for img in images] ) ) UpperCAmelCase__ : Tuple = [im.shape[-2:] for im in images] UpperCAmelCase__ : int = [ nn.functional.pad( snake_case__ , [0, max_size[-1] - size[1], 0, max_size[-2] - size[0]] , value=self.pad_value , ) for size, im in zip(snake_case__ , snake_case__ ) ] return torch.stack(snake_case__ ), torch.tensor(snake_case__ ) def __call__( self : str , snake_case__ : int , snake_case__ : int=False ): '''simple docstring''' with torch.no_grad(): if not isinstance(snake_case__ , snake_case__ ): UpperCAmelCase__ : Dict = [images] if single_image: assert len(snake_case__ ) == 1 for i in range(len(snake_case__ ) ): if isinstance(images[i] , torch.Tensor ): images.insert(snake_case__ , images.pop(snake_case__ ).to(self.device ).float() ) elif not isinstance(images[i] , torch.Tensor ): images.insert( snake_case__ , torch.as_tensor(img_tensorize(images.pop(snake_case__ ) , input_format=self.input_format ) ) .to(self.device ) .float() , ) # resize smallest edge UpperCAmelCase__ : Optional[Any] = torch.tensor([im.shape[:2] for im in images] ) UpperCAmelCase__ : Tuple = self.aug(snake_case__ ) # transpose images and convert to torch tensors # images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images] # now normalize before pad to avoid useless arithmetic UpperCAmelCase__ : Optional[int] = [self.normalizer(snake_case__ ) for x in images] # now pad them to do the following operations UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = self.pad(snake_case__ ) # Normalize if self.size_divisibility > 0: raise NotImplementedError() # pad UpperCAmelCase__ : Tuple = torch.true_divide(snake_case__ , snake_case__ ) if single_image: return images[0], sizes[0], scales_yx[0] else: return images, sizes, scales_yx def SCREAMING_SNAKE_CASE__ ( snake_case : Optional[Any] , snake_case : str )-> List[Any]: '''simple docstring''' boxes[:, 0::2] *= scale_yx[:, 1] boxes[:, 1::2] *= scale_yx[:, 0] return boxes def SCREAMING_SNAKE_CASE__ ( snake_case : List[Any] , snake_case : Tuple[int, int] )-> int: '''simple docstring''' assert torch.isfinite(snake_case ).all(), "Box tensor contains infinite or NaN!" UpperCAmelCase__ , UpperCAmelCase__ : Dict = box_size tensor[:, 0].clamp_(min=0 , max=snake_case ) tensor[:, 1].clamp_(min=0 , max=snake_case ) tensor[:, 2].clamp_(min=0 , max=snake_case ) tensor[:, 3].clamp_(min=0 , max=snake_case )
298
0
from dataclasses import dataclass, field from typing import Optional from transformers import AutoConfig, AutoImageProcessor, AutoTokenizer, FlaxVisionEncoderDecoderModel, HfArgumentParser @dataclass class _SCREAMING_SNAKE_CASE : lowerCAmelCase__ = field( metadata={'help': 'The output directory where the model will be written.'} , ) lowerCAmelCase__ = field( metadata={ 'help': ( 'The encoder model checkpoint for weights initialization.' 'Don\'t set if you want to train an encoder model from scratch.' ) } , ) lowerCAmelCase__ = field( metadata={ 'help': ( 'The decoder model checkpoint for weights initialization.' 'Don\'t set if you want to train a decoder model from scratch.' ) } , ) lowerCAmelCase__ = field( default=snake_case_ , metadata={'help': 'Pretrained encoder config name or path if not the same as encoder_model_name'} ) lowerCAmelCase__ = field( default=snake_case_ , metadata={'help': 'Pretrained decoder config name or path if not the same as decoder_model_name'} ) def lowerCamelCase_ ( ): lowerCamelCase_ = HfArgumentParser((ModelArguments,) ) ((lowerCamelCase_) , ) = parser.parse_args_into_dataclasses() # Load pretrained model and tokenizer # Use explicit specified encoder config if model_args.encoder_config_name: lowerCamelCase_ = AutoConfig.from_pretrained(model_args.encoder_config_name ) # Use pretrained encoder model's config else: lowerCamelCase_ = AutoConfig.from_pretrained(model_args.encoder_model_name_or_path ) # Use explicit specified decoder config if model_args.decoder_config_name: lowerCamelCase_ = AutoConfig.from_pretrained(model_args.decoder_config_name ) # Use pretrained decoder model's config else: lowerCamelCase_ = AutoConfig.from_pretrained(model_args.decoder_model_name_or_path ) # necessary for `from_encoder_decoder_pretrained` when `decoder_config` is passed lowerCamelCase_ = True lowerCamelCase_ = True lowerCamelCase_ = FlaxVisionEncoderDecoderModel.from_encoder_decoder_pretrained( encoder_pretrained_model_name_or_path=model_args.encoder_model_name_or_path , decoder_pretrained_model_name_or_path=model_args.decoder_model_name_or_path , encoder_config=lowerCamelCase__ , decoder_config=lowerCamelCase__ , ) # GPT2 only has bos/eos tokens but not decoder_start/pad tokens lowerCamelCase_ = decoder_config.decoder_start_token_id lowerCamelCase_ = decoder_config.pad_token_id if decoder_start_token_id is None: lowerCamelCase_ = decoder_config.bos_token_id if pad_token_id is None: lowerCamelCase_ = decoder_config.eos_token_id # This is necessary to make Flax's generate() work lowerCamelCase_ = decoder_config.eos_token_id lowerCamelCase_ = decoder_start_token_id lowerCamelCase_ = pad_token_id lowerCamelCase_ = AutoImageProcessor.from_pretrained(model_args.encoder_model_name_or_path ) lowerCamelCase_ = AutoTokenizer.from_pretrained(model_args.decoder_model_name_or_path ) lowerCamelCase_ = tokenizer.convert_ids_to_tokens(model.config.pad_token_id ) model.save_pretrained(model_args.output_dir ) image_processor.save_pretrained(model_args.output_dir ) tokenizer.save_pretrained(model_args.output_dir ) if __name__ == "__main__": main()
19
'''simple docstring''' import argparse import re import torch from CLAP import create_model from transformers import AutoFeatureExtractor, ClapConfig, ClapModel lowerCamelCase__ = { 'text_branch': 'text_model', 'audio_branch': 'audio_model.audio_encoder', 'attn': 'attention.self', 'self.proj': 'output.dense', 'attention.self_mask': 'attn_mask', 'mlp.fc1': 'intermediate.dense', 'mlp.fc2': 'output.dense', 'norm1': 'layernorm_before', 'norm2': 'layernorm_after', 'bn0': 'batch_norm', } lowerCamelCase__ = AutoFeatureExtractor.from_pretrained('laion/clap-htsat-unfused', truncation='rand_trunc') def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase=False ): _UpperCAmelCase , _UpperCAmelCase : Optional[Any] = create_model( "HTSAT-tiny" , "roberta" , __lowerCAmelCase , precision="fp32" , device="cuda:0" if torch.cuda.is_available() else "cpu" , enable_fusion=__lowerCAmelCase , fusion_type="aff_2d" if enable_fusion else None , ) return model, model_cfg def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase : Dict = {} _UpperCAmelCase : str = R".*sequential.(\d+).*" _UpperCAmelCase : Any = R".*_projection.(\d+).*" for key, value in state_dict.items(): # check if any key needs to be modified for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: _UpperCAmelCase : Union[str, Any] = key.replace(__lowerCAmelCase , __lowerCAmelCase ) if re.match(__lowerCAmelCase , __lowerCAmelCase ): # replace sequential layers with list _UpperCAmelCase : List[Any] = re.match(__lowerCAmelCase , __lowerCAmelCase ).group(1 ) _UpperCAmelCase : Optional[int] = key.replace(F"""sequential.{sequential_layer}.""" , F"""layers.{int(__lowerCAmelCase )//3}.linear.""" ) elif re.match(__lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : List[str] = int(re.match(__lowerCAmelCase , __lowerCAmelCase ).group(1 ) ) # Because in CLAP they use `nn.Sequential`... _UpperCAmelCase : str = 1 if projecton_layer == 0 else 2 _UpperCAmelCase : Tuple = key.replace(F"""_projection.{projecton_layer}.""" , F"""_projection.linear{transformers_projection_layer}.""" ) if "audio" and "qkv" in key: # split qkv into query key and value _UpperCAmelCase : List[str] = value _UpperCAmelCase : Tuple = mixed_qkv.size(0 ) // 3 _UpperCAmelCase : Union[str, Any] = mixed_qkv[:qkv_dim] _UpperCAmelCase : int = mixed_qkv[qkv_dim : qkv_dim * 2] _UpperCAmelCase : Optional[int] = mixed_qkv[qkv_dim * 2 :] _UpperCAmelCase : List[Any] = query_layer _UpperCAmelCase : int = key_layer _UpperCAmelCase : Any = value_layer else: _UpperCAmelCase : Dict = value return model_state_dict def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=False ): _UpperCAmelCase , _UpperCAmelCase : List[str] = init_clap(__lowerCAmelCase , enable_fusion=__lowerCAmelCase ) clap_model.eval() _UpperCAmelCase : List[str] = clap_model.state_dict() _UpperCAmelCase : str = rename_state_dict(__lowerCAmelCase ) _UpperCAmelCase : List[Any] = ClapConfig() _UpperCAmelCase : str = enable_fusion _UpperCAmelCase : Union[str, Any] = ClapModel(__lowerCAmelCase ) # ignore the spectrogram embedding layer model.load_state_dict(__lowerCAmelCase , strict=__lowerCAmelCase ) model.save_pretrained(__lowerCAmelCase ) transformers_config.save_pretrained(__lowerCAmelCase ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument('--enable_fusion', action='store_true', help='Whether to enable fusion or not') lowerCamelCase__ = parser.parse_args() convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
234
0
from typing import Any class a : """simple docstring""" def __init__( self , lowerCAmelCase_ ) -> Union[str, Any]: _A = data _A = None class a : """simple docstring""" def __init__( self ) -> int: _A = None def UpperCAmelCase ( self ) -> str: _A = self.head while temp is not None: print(temp.data , end=""" """ ) _A = temp.next print() def UpperCAmelCase ( self , lowerCAmelCase_ ) -> Any: _A = Node(lowerCAmelCase_ ) _A = self.head _A = new_node def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ ) -> Any: if node_data_a == node_data_a: return else: _A = self.head while node_a is not None and node_a.data != node_data_a: _A = node_a.next _A = self.head while node_a is not None and node_a.data != node_data_a: _A = node_a.next if node_a is None or node_a is None: return _A , _A = node_a.data, node_a.data if __name__ == "__main__": _SCREAMING_SNAKE_CASE = LinkedList() for i in range(5, 0, -1): ll.push(i) ll.print_list() ll.swap_nodes(1, 4) print('After swapping') ll.print_list()
81
def snake_case ( snake_case__ :str , snake_case__ :str) -> list: _A = len(snake_case__) _A = [] for i in range(len(snake_case__) - pat_len + 1): _A = True for j in range(snake_case__): if s[i + j] != pattern[j]: _A = False break if match_found: position.append(snake_case__) return position if __name__ == "__main__": assert naive_pattern_search('ABCDEFG', 'DE') == [3] print(naive_pattern_search('ABAAABCDBBABCDDEBCABC', 'ABC'))
81
1
"""simple docstring""" from __future__ import annotations from decimal import Decimal from math import * # noqa: F403 from sympy import diff def snake_case_ ( A_ : str, A_ : float | Decimal, A_ : float = 10**-10 ): '''simple docstring''' _lowerCamelCase : Optional[Any] = a while True: _lowerCamelCase : Union[str, Any] = Decimal(A_ ) - ( Decimal(eval(A_ ) ) / Decimal(eval(str(diff(A_ ) ) ) ) # noqa: S307 ) # This number dictates the accuracy of the answer if abs(eval(A_ ) ) < precision: # noqa: S307 return float(A_ ) # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(F"""The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}""") # Find root of polynomial print(F"""The root of x**2 - 5*x + 2 = 0 is {newton_raphson("x**2 - 5*x + 2", 0.4)}""") # Find Square Root of 5 print(F"""The root of log(x) - 1 = 0 is {newton_raphson("log(x) - 1", 2)}""") # Exponential Roots print(F"""The root of exp(x) - 1 = 0 is {newton_raphson("exp(x) - 1", 0)}""")
72
from collections import defaultdict from math import gcd def _a ( UpperCamelCase_ : int = 1_500_000 ) -> int: """simple docstring""" lowerCAmelCase__ = defaultdict(UpperCamelCase_ ) lowerCAmelCase__ = 2 while 2 * euclid_m * (euclid_m + 1) <= limit: for euclid_n in range((euclid_m % 2) + 1 , UpperCamelCase_ , 2 ): if gcd(UpperCamelCase_ , UpperCamelCase_ ) > 1: continue lowerCAmelCase__ = 2 * euclid_m * (euclid_m + euclid_n) for perimeter in range(UpperCamelCase_ , limit + 1 , UpperCamelCase_ ): frequencies[perimeter] += 1 euclid_m += 1 return sum(1 for frequency in frequencies.values() if frequency == 1 ) if __name__ == "__main__": print(F"{solution() = }")
340
0
"""simple docstring""" import argparse import torch from transformers import FunnelBaseModel, FunnelConfig, FunnelModel, load_tf_weights_in_funnel from transformers.utils import logging logging.set_verbosity_info() def _snake_case ( lowercase__ , lowercase__ , lowercase__ , lowercase__ ): # Initialise PyTorch model _lowerCamelCase : Any = FunnelConfig.from_json_file(lowercase__ ) print(f'''Building PyTorch model from configuration: {config}''' ) _lowerCamelCase : Optional[int] = FunnelBaseModel(lowercase__ ) if base_model else FunnelModel(lowercase__ ) # Load weights from tf checkpoint load_tf_weights_in_funnel(lowercase__ , lowercase__ , lowercase__ ) # Save pytorch-model print(f'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , lowercase__ ) if __name__ == "__main__": lowercase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help="""The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.""", ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--base_model""", action="""store_true""", help="""Whether you want just the base model (no decoder) or not.""" ) lowercase__ = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path, args.base_model )
12
"""simple docstring""" import math from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = { """facebook/data2vec-base-960h""": """https://huggingface.co/facebook/data2vec-audio-base-960h/resolve/main/config.json""", # See all Data2VecAudio models at https://huggingface.co/models?filter=data2vec-audio } class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = """data2vec-audio""" def __init__( self , lowercase=32 , lowercase=768 , lowercase=12 , lowercase=12 , lowercase=3072 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=0.1 , lowercase=0.0 , lowercase=0.1 , lowercase=0.1 , lowercase=0.02 , lowercase=1E-5 , lowercase="gelu" , lowercase=(512, 512, 512, 512, 512, 512, 512) , lowercase=(5, 2, 2, 2, 2, 2, 2) , lowercase=(10, 3, 3, 3, 3, 2, 2) , lowercase=False , lowercase=16 , lowercase=19 , lowercase=5 , lowercase=0.05 , lowercase=10 , lowercase=2 , lowercase=0.0 , lowercase=10 , lowercase=0 , lowercase="sum" , lowercase=False , lowercase=False , lowercase=256 , lowercase=(512, 512, 512, 512, 1500) , lowercase=(5, 3, 3, 1, 1) , lowercase=(1, 2, 3, 1, 1) , lowercase=512 , lowercase=0 , lowercase=1 , lowercase=2 , lowercase=False , lowercase=3 , lowercase=2 , lowercase=3 , lowercase=None , **lowercase , ): super().__init__(**lowercase , pad_token_id=lowercase , bos_token_id=lowercase , eos_token_id=lowercase ) _lowerCamelCase : str = hidden_size _lowerCamelCase : str = feat_extract_activation _lowerCamelCase : Optional[Any] = list(lowercase ) _lowerCamelCase : Dict = list(lowercase ) _lowerCamelCase : Dict = list(lowercase ) _lowerCamelCase : Optional[Any] = conv_bias _lowerCamelCase : Union[str, Any] = num_conv_pos_embeddings _lowerCamelCase : List[Any] = num_conv_pos_embedding_groups _lowerCamelCase : List[Any] = conv_pos_kernel_size _lowerCamelCase : Optional[int] = len(self.conv_dim ) _lowerCamelCase : List[str] = num_hidden_layers _lowerCamelCase : Any = intermediate_size _lowerCamelCase : List[str] = hidden_act _lowerCamelCase : Tuple = num_attention_heads _lowerCamelCase : Any = hidden_dropout _lowerCamelCase : Union[str, Any] = attention_dropout _lowerCamelCase : str = activation_dropout _lowerCamelCase : Any = feat_proj_dropout _lowerCamelCase : Tuple = final_dropout _lowerCamelCase : Union[str, Any] = layerdrop _lowerCamelCase : List[Any] = layer_norm_eps _lowerCamelCase : Optional[Any] = initializer_range _lowerCamelCase : Optional[int] = vocab_size _lowerCamelCase : Tuple = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==' ' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =' F''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' F''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _lowerCamelCase : Optional[Any] = mask_time_prob _lowerCamelCase : List[Any] = mask_time_length _lowerCamelCase : List[Any] = mask_time_min_masks _lowerCamelCase : Tuple = mask_feature_prob _lowerCamelCase : Optional[Any] = mask_feature_length _lowerCamelCase : Dict = mask_feature_min_masks # ctc loss _lowerCamelCase : Tuple = ctc_loss_reduction _lowerCamelCase : str = ctc_zero_infinity # adapter _lowerCamelCase : Union[str, Any] = add_adapter _lowerCamelCase : List[Any] = adapter_kernel_size _lowerCamelCase : Optional[Any] = adapter_stride _lowerCamelCase : List[Any] = num_adapter_layers _lowerCamelCase : int = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. _lowerCamelCase : Optional[int] = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. _lowerCamelCase : List[str] = list(lowercase ) _lowerCamelCase : Optional[Any] = list(lowercase ) _lowerCamelCase : Any = list(lowercase ) _lowerCamelCase : Optional[Any] = xvector_output_dim @property def A_ ( self ): return math.prod(self.conv_stride )
12
1
def lowerCAmelCase_ ( A_ ,A_): return x if y == 0 else greatest_common_divisor(A_ ,x % y) def lowerCAmelCase_ ( A_ ,A_): return (x * y) // greatest_common_divisor(A_ ,A_) def lowerCAmelCase_ ( A_ = 20): UpperCamelCase__: List[str] = 1 for i in range(1 ,n + 1): UpperCamelCase__: Optional[Any] = lcm(A_ ,A_) return g if __name__ == "__main__": print(f"{solution() = }")
149
from typing import Optional import numpy as np import torch from torch import nn from transformers import GPTaConfig, GPTaLMHeadModel from transformers.modeling_utils import ModuleUtilsMixin from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class _a ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__): """simple docstring""" UpperCamelCase__ = [r"""h\.\d+\.attn\.bias""", r"""h\.\d+\.attn\.masked_bias"""] @register_to_config def __init__( self: Tuple , __lowerCamelCase: int , __lowerCamelCase: int , __lowerCamelCase: Optional[int] = None , __lowerCamelCase: int = 5_0257 , __lowerCamelCase: int = 1024 , __lowerCamelCase: int = 768 , __lowerCamelCase: int = 12 , __lowerCamelCase: int = 12 , __lowerCamelCase: Optional[int] = None , __lowerCamelCase: str = "gelu_new" , __lowerCamelCase: float = 0.1 , __lowerCamelCase: float = 0.1 , __lowerCamelCase: float = 0.1 , __lowerCamelCase: float = 1e-5 , __lowerCamelCase: float = 0.02 , __lowerCamelCase: bool = True , __lowerCamelCase: bool = True , __lowerCamelCase: bool = False , __lowerCamelCase: bool = False , ): '''simple docstring''' super().__init__() UpperCamelCase__: Union[str, Any] = prefix_length if prefix_inner_dim != n_embd and prefix_hidden_dim is None: raise ValueError( F"`prefix_hidden_dim` cannot be `None` when `prefix_inner_dim`: {prefix_hidden_dim} and" F" `n_embd`: {n_embd} are not equal." ) UpperCamelCase__: List[str] = prefix_inner_dim UpperCamelCase__: Optional[int] = prefix_hidden_dim UpperCamelCase__: Dict = ( nn.Linear(self.prefix_inner_dim , self.prefix_hidden_dim ) if self.prefix_hidden_dim is not None else nn.Identity() ) UpperCamelCase__: Tuple = ( nn.Linear(self.prefix_hidden_dim , __lowerCamelCase ) if self.prefix_hidden_dim is not None else nn.Identity() ) UpperCamelCase__: List[str] = GPTaConfig( vocab_size=__lowerCamelCase , n_positions=__lowerCamelCase , n_embd=__lowerCamelCase , n_layer=__lowerCamelCase , n_head=__lowerCamelCase , n_inner=__lowerCamelCase , activation_function=__lowerCamelCase , resid_pdrop=__lowerCamelCase , embd_pdrop=__lowerCamelCase , attn_pdrop=__lowerCamelCase , layer_norm_epsilon=__lowerCamelCase , initializer_range=__lowerCamelCase , scale_attn_weights=__lowerCamelCase , use_cache=__lowerCamelCase , scale_attn_by_inverse_layer_idx=__lowerCamelCase , reorder_and_upcast_attn=__lowerCamelCase , ) UpperCamelCase__: Any = GPTaLMHeadModel(__lowerCamelCase ) def UpperCAmelCase_ ( self: int , __lowerCamelCase: torch.Tensor , __lowerCamelCase: torch.Tensor , __lowerCamelCase: Optional[torch.Tensor] = None , __lowerCamelCase: Optional[torch.Tensor] = None , ): '''simple docstring''' UpperCamelCase__: Optional[int] = self.transformer.transformer.wte(__lowerCamelCase ) UpperCamelCase__: Dict = self.encode_prefix(__lowerCamelCase ) UpperCamelCase__: List[Any] = self.decode_prefix(__lowerCamelCase ) UpperCamelCase__: str = torch.cat((prefix_embeds, embedding_text) , dim=1 ) if labels is not None: UpperCamelCase__: Union[str, Any] = self.get_dummy_token(input_ids.shape[0] , input_ids.device ) UpperCamelCase__: Any = torch.cat((dummy_token, input_ids) , dim=1 ) UpperCamelCase__: str = self.transformer(inputs_embeds=__lowerCamelCase , labels=__lowerCamelCase , attention_mask=__lowerCamelCase ) if self.prefix_hidden_dim is not None: return out, hidden else: return out def UpperCAmelCase_ ( self: Any , __lowerCamelCase: int , __lowerCamelCase: torch.device ): '''simple docstring''' return torch.zeros(__lowerCamelCase , self.prefix_length , dtype=torch.intaa , device=__lowerCamelCase ) def UpperCAmelCase_ ( self: Union[str, Any] , __lowerCamelCase: List[Any] ): '''simple docstring''' return self.encode_prefix(__lowerCamelCase ) @torch.no_grad() def UpperCAmelCase_ ( self: List[str] , __lowerCamelCase: Dict , __lowerCamelCase: Any , __lowerCamelCase: List[str] ): '''simple docstring''' UpperCamelCase__: Any = torch.split(__lowerCamelCase , 1 , dim=0 ) UpperCamelCase__: Dict = [] UpperCamelCase__: Union[str, Any] = [] for feature in features: UpperCamelCase__: Tuple = self.decode_prefix(feature.to(__lowerCamelCase ) ) # back to the clip feature # Only support beam search for now UpperCamelCase__ , UpperCamelCase__: List[Any] = self.generate_beam( input_embeds=__lowerCamelCase , device=__lowerCamelCase , eos_token_id=__lowerCamelCase ) generated_tokens.append(output_tokens[0] ) generated_seq_lengths.append(seq_lengths[0] ) UpperCamelCase__: str = torch.stack(__lowerCamelCase ) UpperCamelCase__: str = torch.stack(__lowerCamelCase ) return generated_tokens, generated_seq_lengths @torch.no_grad() def UpperCAmelCase_ ( self: str , __lowerCamelCase: Optional[Any]=None , __lowerCamelCase: Optional[int]=None , __lowerCamelCase: Dict=None , __lowerCamelCase: int = 5 , __lowerCamelCase: int = 67 , __lowerCamelCase: float = 1.0 , __lowerCamelCase: Optional[int] = None , ): '''simple docstring''' UpperCamelCase__: Tuple = eos_token_id UpperCamelCase__: List[str] = None UpperCamelCase__: Any = None UpperCamelCase__: Optional[int] = torch.ones(__lowerCamelCase , device=__lowerCamelCase , dtype=torch.int ) UpperCamelCase__: Dict = torch.zeros(__lowerCamelCase , device=__lowerCamelCase , dtype=torch.bool ) if input_embeds is not None: UpperCamelCase__: Dict = input_embeds else: UpperCamelCase__: Optional[int] = self.transformer.transformer.wte(__lowerCamelCase ) for i in range(__lowerCamelCase ): UpperCamelCase__: Union[str, Any] = self.transformer(inputs_embeds=__lowerCamelCase ) UpperCamelCase__: Tuple = outputs.logits UpperCamelCase__: Dict = logits[:, -1, :] / (temperature if temperature > 0 else 1.0) UpperCamelCase__: List[str] = logits.softmax(-1 ).log() if scores is None: UpperCamelCase__ , UpperCamelCase__: Union[str, Any] = logits.topk(__lowerCamelCase , -1 ) UpperCamelCase__: str = generated.expand(__lowerCamelCase , *generated.shape[1:] ) UpperCamelCase__ , UpperCamelCase__: Dict = next_tokens.permute(1 , 0 ), scores.squeeze(0 ) if tokens is None: UpperCamelCase__: int = next_tokens else: UpperCamelCase__: Optional[int] = tokens.expand(__lowerCamelCase , *tokens.shape[1:] ) UpperCamelCase__: str = torch.cat((tokens, next_tokens) , dim=1 ) else: UpperCamelCase__: Optional[Any] = -float(np.inf ) UpperCamelCase__: Any = 0 UpperCamelCase__: List[str] = scores[:, None] + logits seq_lengths[~is_stopped] += 1 UpperCamelCase__: Any = scores_sum / seq_lengths[:, None] UpperCamelCase__ , UpperCamelCase__: Union[str, Any] = scores_sum_average.view(-1 ).topk(__lowerCamelCase , -1 ) UpperCamelCase__: Dict = next_tokens // scores_sum.shape[1] UpperCamelCase__: Optional[int] = seq_lengths[next_tokens_source] UpperCamelCase__: int = next_tokens % scores_sum.shape[1] UpperCamelCase__: Optional[int] = next_tokens.unsqueeze(1 ) UpperCamelCase__: Tuple = tokens[next_tokens_source] UpperCamelCase__: Tuple = torch.cat((tokens, next_tokens) , dim=1 ) UpperCamelCase__: List[Any] = generated[next_tokens_source] UpperCamelCase__: int = scores_sum_average * seq_lengths UpperCamelCase__: Dict = is_stopped[next_tokens_source] UpperCamelCase__: List[str] = self.transformer.transformer.wte(next_tokens.squeeze() ).view(generated.shape[0] , 1 , -1 ) UpperCamelCase__: Any = torch.cat((generated, next_token_embed) , dim=1 ) UpperCamelCase__: Union[str, Any] = is_stopped + next_tokens.eq(__lowerCamelCase ).squeeze() if is_stopped.all(): break UpperCamelCase__: Optional[Any] = scores / seq_lengths UpperCamelCase__: int = scores.argsort(descending=__lowerCamelCase ) # tokens tensors are already padded to max_seq_length UpperCamelCase__: Dict = [tokens[i] for i in order] UpperCamelCase__: Any = torch.stack(__lowerCamelCase , dim=0 ) UpperCamelCase__: int = torch.tensor([seq_lengths[i] for i in order] , dtype=seq_lengths.dtype ) return output_texts, seq_lengths
149
1
'''simple docstring''' UpperCAmelCase = 8.31_4462 # Unit - J mol-1 K-1 def _snake_case ( _SCREAMING_SNAKE_CASE : float , _SCREAMING_SNAKE_CASE : float , _SCREAMING_SNAKE_CASE : float ) -> float: """simple docstring""" if moles < 0 or kelvin < 0 or volume < 0: raise ValueError("""Invalid inputs. Enter positive value.""" ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / volume def _snake_case ( _SCREAMING_SNAKE_CASE : float , _SCREAMING_SNAKE_CASE : float , _SCREAMING_SNAKE_CASE : float ) -> float: """simple docstring""" if moles < 0 or kelvin < 0 or pressure < 0: raise ValueError("""Invalid inputs. Enter positive value.""" ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / pressure if __name__ == "__main__": from doctest import testmod testmod()
187
'''simple docstring''' import time import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers.generation import ( MaxLengthCriteria, MaxNewTokensCriteria, MaxTimeCriteria, StoppingCriteriaList, validate_stopping_criteria, ) @require_torch class __snake_case( unittest.TestCase ): '''simple docstring''' def __snake_case ( self , A_ ) -> str: lowerCAmelCase = 3 lowerCAmelCase = 250 lowerCAmelCase = ids_tensor((batch_size, length) , A_ ) lowerCAmelCase = torch.ones((batch_size, length) , device=A_ , dtype=torch.float ) / length return input_ids, scores def __snake_case ( self ) -> Any: lowerCAmelCase, lowerCAmelCase = self._get_tensors(5 ) lowerCAmelCase = StoppingCriteriaList( [ MaxLengthCriteria(max_length=10 ), MaxTimeCriteria(max_time=0.1 ), ] ) self.assertFalse(criteria(A_ , A_ ) ) lowerCAmelCase, lowerCAmelCase = self._get_tensors(9 ) self.assertFalse(criteria(A_ , A_ ) ) lowerCAmelCase, lowerCAmelCase = self._get_tensors(10 ) self.assertTrue(criteria(A_ , A_ ) ) def __snake_case ( self ) -> Optional[int]: lowerCAmelCase = MaxLengthCriteria(max_length=10 ) lowerCAmelCase, lowerCAmelCase = self._get_tensors(5 ) self.assertFalse(criteria(A_ , A_ ) ) lowerCAmelCase, lowerCAmelCase = self._get_tensors(9 ) self.assertFalse(criteria(A_ , A_ ) ) lowerCAmelCase, lowerCAmelCase = self._get_tensors(10 ) self.assertTrue(criteria(A_ , A_ ) ) def __snake_case ( self ) -> List[Any]: lowerCAmelCase = MaxNewTokensCriteria(start_length=5 , max_new_tokens=5 ) lowerCAmelCase, lowerCAmelCase = self._get_tensors(5 ) self.assertFalse(criteria(A_ , A_ ) ) lowerCAmelCase, lowerCAmelCase = self._get_tensors(9 ) self.assertFalse(criteria(A_ , A_ ) ) lowerCAmelCase, lowerCAmelCase = self._get_tensors(10 ) self.assertTrue(criteria(A_ , A_ ) ) lowerCAmelCase = StoppingCriteriaList([criteria] ) self.assertEqual(criteria_list.max_length , 10 ) def __snake_case ( self ) -> List[str]: lowerCAmelCase, lowerCAmelCase = self._get_tensors(5 ) lowerCAmelCase = MaxTimeCriteria(max_time=0.1 ) self.assertFalse(criteria(A_ , A_ ) ) lowerCAmelCase = MaxTimeCriteria(max_time=0.1 , initial_timestamp=time.time() - 0.2 ) self.assertTrue(criteria(A_ , A_ ) ) def __snake_case ( self ) -> Optional[int]: validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 10 ) with self.assertWarns(A_ ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 11 ) lowerCAmelCase = validate_stopping_criteria(StoppingCriteriaList() , 11 ) self.assertEqual(len(A_ ) , 1 )
187
1
"""simple docstring""" import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( ConditionalDetrConfig, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase_ = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) lowerCamelCase_ = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f'transformer.encoder.layers.{i}.self_attn.out_proj.weight', f'encoder.layers.{i}.self_attn.out_proj.weight') ) rename_keys.append( (f'transformer.encoder.layers.{i}.self_attn.out_proj.bias', f'encoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.linear1.weight', f'encoder.layers.{i}.fc1.weight')) rename_keys.append((f'transformer.encoder.layers.{i}.linear1.bias', f'encoder.layers.{i}.fc1.bias')) rename_keys.append((f'transformer.encoder.layers.{i}.linear2.weight', f'encoder.layers.{i}.fc2.weight')) rename_keys.append((f'transformer.encoder.layers.{i}.linear2.bias', f'encoder.layers.{i}.fc2.bias')) rename_keys.append( (f'transformer.encoder.layers.{i}.norm1.weight', f'encoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.norm1.bias', f'encoder.layers.{i}.self_attn_layer_norm.bias')) rename_keys.append((f'transformer.encoder.layers.{i}.norm2.weight', f'encoder.layers.{i}.final_layer_norm.weight')) rename_keys.append((f'transformer.encoder.layers.{i}.norm2.bias', f'encoder.layers.{i}.final_layer_norm.bias')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (f'transformer.decoder.layers.{i}.self_attn.out_proj.weight', f'decoder.layers.{i}.self_attn.out_proj.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.self_attn.out_proj.bias', f'decoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append( ( f'transformer.decoder.layers.{i}.cross_attn.out_proj.weight', f'decoder.layers.{i}.encoder_attn.out_proj.weight', ) ) rename_keys.append( ( f'transformer.decoder.layers.{i}.cross_attn.out_proj.bias', f'decoder.layers.{i}.encoder_attn.out_proj.bias', ) ) rename_keys.append((f'transformer.decoder.layers.{i}.linear1.weight', f'decoder.layers.{i}.fc1.weight')) rename_keys.append((f'transformer.decoder.layers.{i}.linear1.bias', f'decoder.layers.{i}.fc1.bias')) rename_keys.append((f'transformer.decoder.layers.{i}.linear2.weight', f'decoder.layers.{i}.fc2.weight')) rename_keys.append((f'transformer.decoder.layers.{i}.linear2.bias', f'decoder.layers.{i}.fc2.bias')) rename_keys.append( (f'transformer.decoder.layers.{i}.norm1.weight', f'decoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm1.bias', f'decoder.layers.{i}.self_attn_layer_norm.bias')) rename_keys.append( (f'transformer.decoder.layers.{i}.norm2.weight', f'decoder.layers.{i}.encoder_attn_layer_norm.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.norm2.bias', f'decoder.layers.{i}.encoder_attn_layer_norm.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm3.weight', f'decoder.layers.{i}.final_layer_norm.weight')) rename_keys.append((f'transformer.decoder.layers.{i}.norm3.bias', f'decoder.layers.{i}.final_layer_norm.bias')) # q, k, v projections in self/cross-attention in decoder for conditional DETR rename_keys.append( (f'transformer.decoder.layers.{i}.sa_qcontent_proj.weight', f'decoder.layers.{i}.sa_qcontent_proj.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.sa_kcontent_proj.weight', f'decoder.layers.{i}.sa_kcontent_proj.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.sa_qpos_proj.weight', f'decoder.layers.{i}.sa_qpos_proj.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.sa_kpos_proj.weight', f'decoder.layers.{i}.sa_kpos_proj.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.sa_v_proj.weight', f'decoder.layers.{i}.sa_v_proj.weight')) rename_keys.append( (f'transformer.decoder.layers.{i}.ca_qcontent_proj.weight', f'decoder.layers.{i}.ca_qcontent_proj.weight') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight")) rename_keys.append( (f'transformer.decoder.layers.{i}.ca_kcontent_proj.weight', f'decoder.layers.{i}.ca_kcontent_proj.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.ca_kpos_proj.weight', f'decoder.layers.{i}.ca_kpos_proj.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.ca_v_proj.weight', f'decoder.layers.{i}.ca_v_proj.weight')) rename_keys.append( (f'transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight', f'decoder.layers.{i}.ca_qpos_sine_proj.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.sa_qcontent_proj.bias', f'decoder.layers.{i}.sa_qcontent_proj.bias') ) rename_keys.append( (f'transformer.decoder.layers.{i}.sa_kcontent_proj.bias', f'decoder.layers.{i}.sa_kcontent_proj.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.sa_qpos_proj.bias', f'decoder.layers.{i}.sa_qpos_proj.bias')) rename_keys.append((f'transformer.decoder.layers.{i}.sa_kpos_proj.bias', f'decoder.layers.{i}.sa_kpos_proj.bias')) rename_keys.append((f'transformer.decoder.layers.{i}.sa_v_proj.bias', f'decoder.layers.{i}.sa_v_proj.bias')) rename_keys.append( (f'transformer.decoder.layers.{i}.ca_qcontent_proj.bias', f'decoder.layers.{i}.ca_qcontent_proj.bias') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias")) rename_keys.append( (f'transformer.decoder.layers.{i}.ca_kcontent_proj.bias', f'decoder.layers.{i}.ca_kcontent_proj.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.ca_kpos_proj.bias', f'decoder.layers.{i}.ca_kpos_proj.bias')) rename_keys.append((f'transformer.decoder.layers.{i}.ca_v_proj.bias', f'decoder.layers.{i}.ca_v_proj.bias')) rename_keys.append( (f'transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias', f'decoder.layers.{i}.ca_qpos_sine_proj.bias') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads # for conditional DETR, also convert reference point head and query scale MLP rename_keys.extend( [ ('''input_proj.weight''', '''input_projection.weight'''), ('''input_proj.bias''', '''input_projection.bias'''), ('''query_embed.weight''', '''query_position_embeddings.weight'''), ('''transformer.decoder.norm.weight''', '''decoder.layernorm.weight'''), ('''transformer.decoder.norm.bias''', '''decoder.layernorm.bias'''), ('''class_embed.weight''', '''class_labels_classifier.weight'''), ('''class_embed.bias''', '''class_labels_classifier.bias'''), ('''bbox_embed.layers.0.weight''', '''bbox_predictor.layers.0.weight'''), ('''bbox_embed.layers.0.bias''', '''bbox_predictor.layers.0.bias'''), ('''bbox_embed.layers.1.weight''', '''bbox_predictor.layers.1.weight'''), ('''bbox_embed.layers.1.bias''', '''bbox_predictor.layers.1.bias'''), ('''bbox_embed.layers.2.weight''', '''bbox_predictor.layers.2.weight'''), ('''bbox_embed.layers.2.bias''', '''bbox_predictor.layers.2.bias'''), ('''transformer.decoder.ref_point_head.layers.0.weight''', '''decoder.ref_point_head.layers.0.weight'''), ('''transformer.decoder.ref_point_head.layers.0.bias''', '''decoder.ref_point_head.layers.0.bias'''), ('''transformer.decoder.ref_point_head.layers.1.weight''', '''decoder.ref_point_head.layers.1.weight'''), ('''transformer.decoder.ref_point_head.layers.1.bias''', '''decoder.ref_point_head.layers.1.bias'''), ('''transformer.decoder.query_scale.layers.0.weight''', '''decoder.query_scale.layers.0.weight'''), ('''transformer.decoder.query_scale.layers.0.bias''', '''decoder.query_scale.layers.0.bias'''), ('''transformer.decoder.query_scale.layers.1.weight''', '''decoder.query_scale.layers.1.weight'''), ('''transformer.decoder.query_scale.layers.1.bias''', '''decoder.query_scale.layers.1.bias'''), ('''transformer.decoder.layers.0.ca_qpos_proj.weight''', '''decoder.layers.0.ca_qpos_proj.weight'''), ('''transformer.decoder.layers.0.ca_qpos_proj.bias''', '''decoder.layers.0.ca_qpos_proj.bias'''), ] ) def snake_case ( A__ ,A__ ,A__ ): UpperCAmelCase_ : List[str] = state_dict.pop(snake_case__ ) UpperCAmelCase_ : Tuple = val def snake_case ( A__ ): UpperCAmelCase_ : Union[str, Any] = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: UpperCAmelCase_ : Union[str, Any] = key.replace("backbone.0.body" ,"backbone.conv_encoder.model" ) UpperCAmelCase_ : int = value else: UpperCAmelCase_ : Any = value return new_state_dict def snake_case ( A__ ,A__=False ): UpperCAmelCase_ : Union[str, Any] = "" if is_panoptic: UpperCAmelCase_ : Optional[int] = "conditional_detr." # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) UpperCAmelCase_ : Dict = state_dict.pop(F"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight""" ) UpperCAmelCase_ : List[Any] = state_dict.pop(F"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase_ : Union[str, Any] = in_proj_weight[:2_56, :] UpperCAmelCase_ : List[str] = in_proj_bias[:2_56] UpperCAmelCase_ : str = in_proj_weight[2_56:5_12, :] UpperCAmelCase_ : int = in_proj_bias[2_56:5_12] UpperCAmelCase_ : int = in_proj_weight[-2_56:, :] UpperCAmelCase_ : Any = in_proj_bias[-2_56:] def snake_case ( ): UpperCAmelCase_ : str = "http://images.cocodataset.org/val2017/000000039769.jpg" UpperCAmelCase_ : str = Image.open(requests.get(snake_case__ ,stream=snake_case__ ).raw ) return im @torch.no_grad() def snake_case ( A__ ,A__ ): UpperCAmelCase_ : Union[str, Any] = ConditionalDetrConfig() # set backbone and dilation attributes if "resnet101" in model_name: UpperCAmelCase_ : Any = "resnet101" if "dc5" in model_name: UpperCAmelCase_ : Union[str, Any] = True UpperCAmelCase_ : List[Any] = "panoptic" in model_name if is_panoptic: UpperCAmelCase_ : Optional[int] = 2_50 else: UpperCAmelCase_ : str = 91 UpperCAmelCase_ : Optional[int] = "huggingface/label-files" UpperCAmelCase_ : Any = "coco-detection-id2label.json" UpperCAmelCase_ : Any = json.load(open(hf_hub_download(snake_case__ ,snake_case__ ,repo_type="dataset" ) ,"r" ) ) UpperCAmelCase_ : Tuple = {int(snake_case__ ): v for k, v in idalabel.items()} UpperCAmelCase_ : Dict = idalabel UpperCAmelCase_ : Union[str, Any] = {v: k for k, v in idalabel.items()} # load image processor UpperCAmelCase_ : int = "coco_panoptic" if is_panoptic else "coco_detection" UpperCAmelCase_ : Union[str, Any] = ConditionalDetrImageProcessor(format=snake_case__ ) # prepare image UpperCAmelCase_ : List[Any] = prepare_img() UpperCAmelCase_ : str = image_processor(images=snake_case__ ,return_tensors="pt" ) UpperCAmelCase_ : str = encoding["pixel_values"] logger.info(F"""Converting model {model_name}...""" ) # load original model from torch hub UpperCAmelCase_ : Tuple = torch.hub.load("DeppMeng/ConditionalDETR" ,snake_case__ ,pretrained=snake_case__ ).eval() UpperCAmelCase_ : Optional[int] = conditional_detr.state_dict() # rename keys for src, dest in rename_keys: if is_panoptic: UpperCAmelCase_ : str = "conditional_detr." + src rename_key(snake_case__ ,snake_case__ ,snake_case__ ) UpperCAmelCase_ : Any = rename_backbone_keys(snake_case__ ) # query, key and value matrices need special treatment read_in_q_k_v(snake_case__ ,is_panoptic=snake_case__ ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them UpperCAmelCase_ : Optional[Any] = "conditional_detr.model." if is_panoptic else "model." for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith("conditional_detr" ) and not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ) ): UpperCAmelCase_ : List[Any] = state_dict.pop(snake_case__ ) UpperCAmelCase_ : List[Any] = val elif "class_labels_classifier" in key or "bbox_predictor" in key: UpperCAmelCase_ : Tuple = state_dict.pop(snake_case__ ) UpperCAmelCase_ : Dict = val elif key.startswith("bbox_attention" ) or key.startswith("mask_head" ): continue else: UpperCAmelCase_ : Optional[Any] = state_dict.pop(snake_case__ ) UpperCAmelCase_ : Optional[Any] = val else: if not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ): UpperCAmelCase_ : Optional[Any] = state_dict.pop(snake_case__ ) UpperCAmelCase_ : List[Any] = val # finally, create HuggingFace model and load state dict UpperCAmelCase_ : Optional[Any] = ConditionalDetrForSegmentation(snake_case__ ) if is_panoptic else ConditionalDetrForObjectDetection(snake_case__ ) model.load_state_dict(snake_case__ ) model.eval() model.push_to_hub(repo_id=snake_case__ ,organization="DepuMeng" ,commit_message="Add model" ) # verify our conversion UpperCAmelCase_ : Dict = conditional_detr(snake_case__ ) UpperCAmelCase_ : Any = model(snake_case__ ) assert torch.allclose(outputs.logits ,original_outputs["pred_logits"] ,atol=1e-4 ) assert torch.allclose(outputs.pred_boxes ,original_outputs["pred_boxes"] ,atol=1e-4 ) if is_panoptic: assert torch.allclose(outputs.pred_masks ,original_outputs["pred_masks"] ,atol=1e-4 ) # Save model and image processor logger.info(F"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" ) Path(snake_case__ ).mkdir(exist_ok=snake_case__ ) model.save_pretrained(snake_case__ ) image_processor.save_pretrained(snake_case__ ) if __name__ == "__main__": lowerCamelCase_ = argparse.ArgumentParser() parser.add_argument( '''--model_name''', default='''conditional_detr_resnet50''', type=str, help='''Name of the CONDITIONAL_DETR model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) lowerCamelCase_ = parser.parse_args() convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
268
'''simple docstring''' def __lowerCAmelCase ( snake_case__ ): return "".join([hex(snake_case__ )[2:].zfill(2 ).upper() for byte in list(snake_case__ )] ) def __lowerCAmelCase ( snake_case__ ): # Check data validity, following RFC3548 # https://www.ietf.org/rfc/rfc3548.txt if (len(snake_case__ ) % 2) != 0: raise ValueError( "Base16 encoded data is invalid:\nData does not have an even number of hex digits." ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(snake_case__ ) <= set("0123456789ABCDEF" ): raise ValueError( "Base16 encoded data is invalid:\nData is not uppercase hex or it contains invalid characters." ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1] , 16 ) for i in range(0 , len(snake_case__ ) , 2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
298
0
from __future__ import annotations import unittest import numpy as np from transformers import BlipTextConfig from transformers.testing_utils import require_tf, slow from transformers.utils import is_tf_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask if is_tf_available(): import tensorflow as tf from transformers import TFBlipTextModel from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST class lowercase__ : def __init__( self : Dict , snake_case__ : str , snake_case__ : Dict=12 , snake_case__ : Union[str, Any]=7 , snake_case__ : int=True , snake_case__ : str=True , snake_case__ : str=True , snake_case__ : Any=99 , snake_case__ : Dict=32 , snake_case__ : Tuple=32 , snake_case__ : Optional[Any]=2 , snake_case__ : Optional[Any]=4 , snake_case__ : Tuple=37 , snake_case__ : Union[str, Any]=0.1 , snake_case__ : Optional[int]=0.1 , snake_case__ : Optional[int]=512 , snake_case__ : Union[str, Any]=0.02 , snake_case__ : Optional[int]=0 , snake_case__ : Optional[int]=None , ): lowerCamelCase_ : List[str] =parent lowerCamelCase_ : List[str] =batch_size lowerCamelCase_ : Any =seq_length lowerCamelCase_ : List[Any] =is_training lowerCamelCase_ : List[str] =use_input_mask lowerCamelCase_ : int =use_labels lowerCamelCase_ : int =vocab_size lowerCamelCase_ : List[str] =hidden_size lowerCamelCase_ : str =projection_dim lowerCamelCase_ : Any =num_hidden_layers lowerCamelCase_ : Dict =num_attention_heads lowerCamelCase_ : Any =intermediate_size lowerCamelCase_ : int =dropout lowerCamelCase_ : Tuple =attention_dropout lowerCamelCase_ : Tuple =max_position_embeddings lowerCamelCase_ : List[str] =initializer_range lowerCamelCase_ : Optional[Any] =scope lowerCamelCase_ : List[Any] =bos_token_id def UpperCAmelCase__ ( self : Any ): lowerCamelCase_ : Any =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase_ : str =None if self.use_input_mask: lowerCamelCase_ : List[str] =random_attention_mask([self.batch_size, self.seq_length] ) if input_mask is not None: lowerCamelCase_ : List[Any] =input_mask.numpy() lowerCamelCase_ : Optional[int] =input_mask.shape lowerCamelCase_ : int =np.random.randint(1 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(snake_case__ ): lowerCamelCase_ : Optional[int] =1 lowerCamelCase_ : Union[str, Any] =0 lowerCamelCase_ : Optional[int] =self.get_config() return config, input_ids, tf.convert_to_tensor(snake_case__ ) def UpperCAmelCase__ ( self : Optional[int] ): return BlipTextConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , projection_dim=self.projection_dim , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , dropout=self.dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , bos_token_id=self.bos_token_id , ) def UpperCAmelCase__ ( self : Optional[Any] , snake_case__ : int , snake_case__ : int , snake_case__ : Dict ): lowerCamelCase_ : Any =TFBlipTextModel(config=snake_case__ ) lowerCamelCase_ : str =model(snake_case__ , attention_mask=snake_case__ , training=snake_case__ ) lowerCamelCase_ : int =model(snake_case__ , training=snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCAmelCase__ ( self : str ): lowerCamelCase_ : Union[str, Any] =self.prepare_config_and_inputs() lowerCamelCase_ : Optional[Any] =config_and_inputs lowerCamelCase_ : int ={"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class lowercase__ ( snake_case__, unittest.TestCase ): _UpperCAmelCase :List[str] = (TFBlipTextModel,) if is_tf_available() else () _UpperCAmelCase :List[str] = False _UpperCAmelCase :List[str] = False _UpperCAmelCase :Union[str, Any] = False def UpperCAmelCase__ ( self : List[Any] ): lowerCamelCase_ : int =BlipTextModelTester(self ) lowerCamelCase_ : Optional[Any] =ConfigTester(self , config_class=snake_case__ , hidden_size=37 ) def UpperCAmelCase__ ( self : Union[str, Any] ): self.config_tester.run_common_tests() def UpperCAmelCase__ ( self : List[Any] ): lowerCamelCase_ : str =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def UpperCAmelCase__ ( self : int ): pass def UpperCAmelCase__ ( self : List[str] ): pass @unittest.skip(reason="Blip does not use inputs_embeds" ) def UpperCAmelCase__ ( self : int ): pass @unittest.skip(reason="BlipTextModel has no base class and is not available in MODEL_MAPPING" ) def UpperCAmelCase__ ( self : List[Any] ): pass @unittest.skip(reason="BlipTextModel has no base class and is not available in MODEL_MAPPING" ) def UpperCAmelCase__ ( self : int ): pass @slow def UpperCAmelCase__ ( self : Tuple ): for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ : Tuple =TFBlipTextModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) def UpperCAmelCase__ ( self : Optional[Any] , snake_case__ : int=True ): super().test_pt_tf_model_equivalence(allow_missing_keys=snake_case__ )
360
"""simple docstring""" import inspect import unittest from transformers import DecisionTransformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import DecisionTransformerModel from transformers.models.decision_transformer.modeling_decision_transformer import ( DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) class lowercase__ : def __init__( self : List[Any] , snake_case__ : Optional[Any] , snake_case__ : Tuple=13 , snake_case__ : str=7 , snake_case__ : Union[str, Any]=6 , snake_case__ : str=17 , snake_case__ : Any=23 , snake_case__ : int=11 , snake_case__ : Tuple=True , ): lowerCamelCase_ : str =parent lowerCamelCase_ : Union[str, Any] =batch_size lowerCamelCase_ : List[Any] =seq_length lowerCamelCase_ : Union[str, Any] =act_dim lowerCamelCase_ : Optional[Any] =state_dim lowerCamelCase_ : Optional[Any] =hidden_size lowerCamelCase_ : Tuple =max_length lowerCamelCase_ : List[Any] =is_training def UpperCAmelCase__ ( self : Dict ): lowerCamelCase_ : Optional[Any] =floats_tensor((self.batch_size, self.seq_length, self.state_dim) ) lowerCamelCase_ : Optional[Any] =floats_tensor((self.batch_size, self.seq_length, self.act_dim) ) lowerCamelCase_ : List[Any] =floats_tensor((self.batch_size, self.seq_length, 1) ) lowerCamelCase_ : Optional[Any] =floats_tensor((self.batch_size, self.seq_length, 1) ) lowerCamelCase_ : List[Any] =ids_tensor((self.batch_size, self.seq_length) , vocab_size=1000 ) lowerCamelCase_ : Optional[int] =random_attention_mask((self.batch_size, self.seq_length) ) lowerCamelCase_ : List[str] =self.get_config() return ( config, states, actions, rewards, returns_to_go, timesteps, attention_mask, ) def UpperCAmelCase__ ( self : Any ): return DecisionTransformerConfig( batch_size=self.batch_size , seq_length=self.seq_length , act_dim=self.act_dim , state_dim=self.state_dim , hidden_size=self.hidden_size , max_length=self.max_length , ) def UpperCAmelCase__ ( self : Optional[Any] , snake_case__ : Tuple , snake_case__ : Dict , snake_case__ : int , snake_case__ : Dict , snake_case__ : Optional[int] , snake_case__ : List[str] , snake_case__ : List[str] , ): lowerCamelCase_ : Tuple =DecisionTransformerModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCamelCase_ : str =model(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) self.parent.assertEqual(result.state_preds.shape , states.shape ) self.parent.assertEqual(result.action_preds.shape , actions.shape ) self.parent.assertEqual(result.return_preds.shape , returns_to_go.shape ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length * 3, self.hidden_size) ) # seq length *3 as there are 3 modelities: states, returns and actions def UpperCAmelCase__ ( self : List[str] ): lowerCamelCase_ : List[str] =self.prepare_config_and_inputs() ( ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ) : Optional[int] =config_and_inputs lowerCamelCase_ : Optional[int] ={ "states": states, "actions": actions, "rewards": rewards, "returns_to_go": returns_to_go, "timesteps": timesteps, "attention_mask": attention_mask, } return config, inputs_dict @require_torch class lowercase__ ( snake_case__, snake_case__, snake_case__, unittest.TestCase ): _UpperCAmelCase :Optional[Any] = (DecisionTransformerModel,) if is_torch_available() else () _UpperCAmelCase :int = () _UpperCAmelCase :int = {"feature-extraction": DecisionTransformerModel} if is_torch_available() else {} # Ignoring of a failing test from GenerationTesterMixin, as the model does not use inputs_ids _UpperCAmelCase :Union[str, Any] = False # Ignoring of a failing tests from ModelTesterMixin, as the model does not implement these features _UpperCAmelCase :Optional[Any] = False _UpperCAmelCase :Tuple = False _UpperCAmelCase :Tuple = False _UpperCAmelCase :List[Any] = False _UpperCAmelCase :Dict = False _UpperCAmelCase :Any = False _UpperCAmelCase :List[Any] = False _UpperCAmelCase :int = False _UpperCAmelCase :str = False def UpperCAmelCase__ ( self : str ): lowerCamelCase_ : Dict =DecisionTransformerModelTester(self ) lowerCamelCase_ : str =ConfigTester(self , config_class=snake_case__ , hidden_size=37 ) def UpperCAmelCase__ ( self : Union[str, Any] ): self.config_tester.run_common_tests() def UpperCAmelCase__ ( self : int ): lowerCamelCase_ : Tuple =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) @slow def UpperCAmelCase__ ( self : List[str] ): for model_name in DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ : str =DecisionTransformerModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) def UpperCAmelCase__ ( self : str ): lowerCamelCase_ , lowerCamelCase_ : Dict =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase_ : List[Any] =model_class(snake_case__ ) lowerCamelCase_ : int =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase_ : List[Any] =[*signature.parameters.keys()] lowerCamelCase_ : List[str] =[ "states", "actions", "rewards", "returns_to_go", "timesteps", "attention_mask", ] self.assertListEqual(arg_names[: len(snake_case__ )] , snake_case__ ) @require_torch class lowercase__ ( unittest.TestCase ): @slow def UpperCAmelCase__ ( self : Any ): lowerCamelCase_ : Optional[int] =2 # number of steps of autoregressive prediction we will perform lowerCamelCase_ : int =10 # defined by the RL environment, may be normalized lowerCamelCase_ : List[Any] =DecisionTransformerModel.from_pretrained("edbeeching/decision-transformer-gym-hopper-expert" ) lowerCamelCase_ : Union[str, Any] =model.to(snake_case__ ) lowerCamelCase_ : Any =model.config torch.manual_seed(0 ) lowerCamelCase_ : Optional[Any] =torch.randn(1 , 1 , config.state_dim ).to(device=snake_case__ , dtype=torch.floataa ) # env.reset() lowerCamelCase_ : Optional[Any] =torch.tensor( [[0.242_793, -0.28_693_074, 0.8_742_613], [0.67_815_274, -0.08_101_085, -0.12_952_147]] , device=snake_case__ ) lowerCamelCase_ : int =torch.tensor(snake_case__ , device=snake_case__ , dtype=torch.floataa ).reshape(1 , 1 , 1 ) lowerCamelCase_ : str =state lowerCamelCase_ : Optional[int] =torch.zeros(1 , 0 , config.act_dim , device=snake_case__ , dtype=torch.floataa ) lowerCamelCase_ : int =torch.zeros(1 , 0 , device=snake_case__ , dtype=torch.floataa ) lowerCamelCase_ : Tuple =torch.tensor(0 , device=snake_case__ , dtype=torch.long ).reshape(1 , 1 ) for step in range(snake_case__ ): lowerCamelCase_ : str =torch.cat([actions, torch.zeros(1 , 1 , config.act_dim , device=snake_case__ )] , dim=1 ) lowerCamelCase_ : Union[str, Any] =torch.cat([rewards, torch.zeros(1 , 1 , device=snake_case__ )] , dim=1 ) lowerCamelCase_ : Optional[int] =torch.ones(1 , states.shape[1] ).to(dtype=torch.long , device=states.device ) with torch.no_grad(): lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ : Dict =model( states=snake_case__ , actions=snake_case__ , rewards=snake_case__ , returns_to_go=snake_case__ , timesteps=snake_case__ , attention_mask=snake_case__ , return_dict=snake_case__ , ) self.assertEqual(action_pred.shape , actions.shape ) self.assertTrue(torch.allclose(action_pred[0, -1] , expected_outputs[step] , atol=1E-4 ) ) lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ : Optional[Any] =( # env.step(action) torch.randn(1 , 1 , config.state_dim ).to(device=snake_case__ , dtype=torch.floataa ), 1.0, False, {}, ) lowerCamelCase_ : str =action_pred[0, -1] lowerCamelCase_ : Optional[int] =torch.cat([states, state] , dim=1 ) lowerCamelCase_ : Optional[Any] =returns_to_go[0, -1] - reward lowerCamelCase_ : str =torch.cat([returns_to_go, pred_return.reshape(1 , 1 , 1 )] , dim=1 ) lowerCamelCase_ : int =torch.cat( [timesteps, torch.ones((1, 1) , device=snake_case__ , dtype=torch.long ) * (step + 1)] , dim=1 )
209
0
"""simple docstring""" import argparse import dataclasses import json import logging import os import shutil from typing import List, Optional import datasets from accelerate import Accelerator from datasets import load_dataset from finetuning import finetune from tqdm.auto import tqdm import transformers from transformers import AutoConfig, set_seed from transformers.trainer_utils import IntervalStrategy lowerCamelCase_ : Dict = logging.getLogger(__name__) lowerCamelCase_ : Tuple = """pytorch_model.bin""" @dataclasses.dataclass class __A : """simple docstring""" __lowerCAmelCase = dataclasses.field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models."} ) __lowerCAmelCase = dataclasses.field( default=_SCREAMING_SNAKE_CASE, metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co."}, ) @dataclasses.dataclass class __A : """simple docstring""" __lowerCAmelCase = dataclasses.field(metadata={"help": "A csv or a json file containing the training data."} ) __lowerCAmelCase = dataclasses.field(metadata={"help": "A csv or a json file containing the data to predict on."} ) __lowerCAmelCase = dataclasses.field( default=_SCREAMING_SNAKE_CASE, metadata={"help": "A csv or a json file containing the validation data."} ) __lowerCAmelCase = dataclasses.field( default=_SCREAMING_SNAKE_CASE, metadata={"help": "The name of the task to train on."}, ) __lowerCAmelCase = dataclasses.field( default=_SCREAMING_SNAKE_CASE, metadata={"help": "The list of labels for the task."} ) @dataclasses.dataclass class __A : """simple docstring""" __lowerCAmelCase = dataclasses.field( metadata={"help": "The output directory where the model predictions and checkpoints will be written."} ) __lowerCAmelCase = dataclasses.field( default="accuracy", metadata={"help": "The evaluation metric used for the task."} ) __lowerCAmelCase = dataclasses.field( default="no", metadata={ "help": "The evaluation strategy to adopt during training. Possible values are: [\"no\", \"step\", \"epoch]" }, ) __lowerCAmelCase = dataclasses.field( default=10, metadata={"help": "Number of evaluation calls with no improvement after which training will be stopped."}, ) __lowerCAmelCase = dataclasses.field( default=0.0, metadata={ "help": "How much the specified evaluation metric must improve to satisfy early stopping conditions." }, ) __lowerCAmelCase = dataclasses.field( default=_SCREAMING_SNAKE_CASE, metadata={"help": "Whether to filter the pseudo-labeled data based on the confidence score."}, ) __lowerCAmelCase = dataclasses.field( default=_SCREAMING_SNAKE_CASE, metadata={"help": "Whether to filter the pseudo-labeled data based on the validation performance."}, ) __lowerCAmelCase = dataclasses.field( default=_SCREAMING_SNAKE_CASE, metadata={"help": "Whether to fine-tune on labeled data after pseudo training."}, ) __lowerCAmelCase = dataclasses.field( default=0.0, metadata={"help": "Confidence threshold for pseudo-labeled data filtering."}, ) __lowerCAmelCase = dataclasses.field( default=100, metadata={"help": "Number of evaluation calls with no improvement after which training will be stopped."}, ) __lowerCAmelCase = dataclasses.field( default=_SCREAMING_SNAKE_CASE, metadata={"help": "Random seed for initialization."}, ) def _A ( lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ): """simple docstring""" a =datasets.concatenate_datasets([infer_input, infer_output] , axis=1 ) if args.do_filter_by_confidence: a =dataset.filter(lambda lowercase : example["probability"] > args.confidence_threshold ) if args.do_filter_by_val_performance: assert eval_result >= 0.0 and eval_result <= 1.0 a =int(eval_result * len(lowercase ) ) print(lowercase ) a =dataset.sort('''probability''' , reverse=lowercase ) a =dataset.select(range(lowercase ) ) a =dataset.remove_columns(['''label''', '''probability'''] ) a =dataset.rename_column('''prediction''' , '''label''' ) a =dataset.map(lambda lowercase : {"label": idalabel[example["label"]]} ) a =dataset.shuffle(seed=args.seed ) a =os.path.join(lowercase , f'''train_pseudo.{args.data_file_extension}''' ) if args.data_file_extension == "csv": dataset.to_csv(lowercase , index=lowercase ) else: dataset.to_json(lowercase ) def _A ( lowercase , lowercase , lowercase , lowercase , **lowercase ): """simple docstring""" a =Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO , ) logger.info(accelerator.state ) # Setup logging, we only want one process per machine to log things on the # screen. accelerator.is_local_main_process is only True for one process per # machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() a =STModelArguments(model_name_or_path=lowercase ) a =STDataArguments(train_file=lowercase , infer_file=lowercase ) a =STTrainingArguments(output_dir=lowercase ) a =argparse.Namespace() for arg_class in (model_args, data_args, training_args): for key, value in vars(lowercase ).items(): setattr(lowercase , lowercase , lowercase ) for key, value in kwargs.items(): if hasattr(lowercase , lowercase ): setattr(lowercase , lowercase , lowercase ) # Sanity checks a ={} a =None # You need to provide the training data and the data to predict on assert args.train_file is not None assert args.infer_file is not None a =args.train_file a =args.infer_file if args.evaluation_strategy != IntervalStrategy.NO.value: assert args.eval_file is not None a =args.eval_file for key in data_files: a =data_files[key].split('''.''' )[-1] assert extension in ["csv", "json"], f'''`{key}_file` should be a csv or a json file.''' if args.data_file_extension is None: a =extension else: assert extension == args.data_file_extension, f'''`{key}_file` should be a {args.data_file_extension} file`.''' assert ( args.eval_metric in datasets.list_metrics() ), f'''{args.eval_metric} not in the list of supported metrics {datasets.list_metrics()}.''' # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed ) logger.info('''Creating the initial data directory for self-training...''' ) a =f'''{args.output_dir}/self-train_iter-{{}}'''.format a =data_dir_format(0 ) if accelerator.is_main_process: if args.output_dir is not None: os.makedirs(args.output_dir , exist_ok=lowercase ) os.makedirs(lowercase , exist_ok=lowercase ) accelerator.wait_for_everyone() a =None a =None a =0 a =False # Show the progress bar a =tqdm(range(args.max_selftrain_iterations ) , disable=not accelerator.is_local_main_process ) # Self-train for iteration in range(0 , int(args.max_selftrain_iterations ) ): a =data_dir_format(lowercase ) assert os.path.exists(lowercase ) # Stage 1: initial fine-tuning for iteration = 0 or pseudo-training for # iteration > 0 a =os.path.join(lowercase , '''stage-1''' ) a ={ '''accelerator''': accelerator, '''model_name_or_path''': args.model_name_or_path, '''cache_dir''': args.cache_dir, '''do_train''': True, '''train_file''': data_files['''train'''] if iteration == 0 else data_files['''train_pseudo'''], '''do_eval''': True if args.eval_file is not None else False, '''eval_file''': data_files['''eval'''], '''do_predict''': True, '''infer_file''': data_files['''infer'''], '''task_name''': args.task_name, '''label_list''': args.label_list, '''output_dir''': current_output_dir, '''eval_metric''': args.eval_metric, '''evaluation_strategy''': args.evaluation_strategy, '''early_stopping_patience''': args.early_stopping_patience, '''early_stopping_threshold''': args.early_stopping_threshold, '''seed''': args.seed, } # Add additional training arguments for key, value in kwargs.items(): if key not in arguments_dict and not hasattr(lowercase , lowercase ): arguments_dict.update({key: value} ) a =os.path.join(lowercase , '''best-checkpoint''' , lowercase ) if os.path.exists(lowercase ): logger.info( '''Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 1.''' , lowercase , lowercase , ) else: logger.info('''***** Running self-training: iteration: %d, stage: 1 *****''' , lowercase ) finetune(**lowercase ) accelerator.wait_for_everyone() assert os.path.exists(lowercase ) logger.info('''Self-training job completed: iteration: %d, stage: 1.''' , lowercase ) if iteration > 0 and args.finetune_on_labeled_data: # Stage 2 (optional): fine-tuning on the original labeled data a =os.path.join(lowercase , '''best-checkpoint''' ) a =os.path.join(lowercase , '''stage-2''' ) # Update arguments_dict a =model_path a =data_files['''train'''] a =current_output_dir a =os.path.join(lowercase , '''best-checkpoint''' , lowercase ) if os.path.exists(lowercase ): logger.info( '''Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 2.''' , lowercase , lowercase , ) else: logger.info('''***** Running self-training: iteration: %d, stage: 2 *****''' , lowercase ) finetune(**lowercase ) accelerator.wait_for_everyone() assert os.path.exists(lowercase ) logger.info('''Self-training job completed: iteration: %d, stage: 2.''' , lowercase ) a =iteration a =data_dir_format(iteration + 1 ) a =AutoConfig.from_pretrained(os.path.join(lowercase , '''best-checkpoint''' ) ) a =config.idalabel a =os.path.join(lowercase , '''eval_results_best-checkpoint.json''' ) a =os.path.join(lowercase , '''test_results_best-checkpoint.json''' ) assert os.path.exists(lowercase ) with open(lowercase , '''r''' ) as f: a =float(json.load(lowercase )[args.eval_metric] ) a =os.path.join(lowercase , '''infer_output_best-checkpoint.csv''' ) assert os.path.exists(lowercase ) # Loading the dataset from local csv or json files. a =load_dataset(args.data_file_extension , data_files={'''data''': data_files['''infer''']} )['''data'''] a =load_dataset('''csv''' , data_files={'''data''': infer_output_file} )['''data'''] if accelerator.is_main_process: os.makedirs(lowercase , exist_ok=lowercase ) shutil.copy(lowercase , os.path.join(lowercase , f'''eval_results_iter-{iteration}.json''' ) ) if os.path.exists(lowercase ): shutil.copy(lowercase , os.path.join(lowercase , f'''test_results_iter-{iteration}.json''' ) ) create_pseudo_labeled_data(lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) accelerator.wait_for_everyone() a =os.path.join(lowercase , f'''train_pseudo.{args.data_file_extension}''' ) if args.evaluation_strategy != IntervalStrategy.NO.value: a =eval_result if best_iteration is None: a =new_iteration a =new_eval_result else: if new_eval_result - best_eval_result > args.early_stopping_threshold: a =new_iteration a =new_eval_result a =0 else: if new_eval_result == best_eval_result: a =new_iteration a =new_eval_result early_stopping_patience_counter += 1 if early_stopping_patience_counter >= args.early_stopping_patience: a =True progress_bar.update(1 ) if should_training_stop: break if best_iteration is not None: # Save the best iteration logger.info('''Best iteration: %d''' , lowercase ) logger.info('''Best evaluation result: %s = %f''' , args.eval_metric , lowercase ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(lowercase , f'''eval_results_iter-{iteration}.json''' ) , os.path.join(lowercase , '''eval_results_best-iteration.json''' ) , ) else: # Assume that the last iteration is the best logger.info('''Best iteration: %d''' , args.max_selftrain_iterations - 1 ) logger.info('''Best evaluation result: %s = %f''' , args.eval_metric , lowercase ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(lowercase , f'''eval_results_iter-{args.max_selftrain_iterations - 1}.json''' ) , os.path.join(lowercase , '''eval_results_best-iteration.json''' ) , )
81
"""simple docstring""" def _A ( lowercase , lowercase ): """simple docstring""" while second != 0: a =first & second first ^= second a =c << 1 return first if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase_ : Dict = int(input("""Enter the first number: """).strip()) lowerCamelCase_ : List[Any] = int(input("""Enter the second number: """).strip()) print(F'{add(first, second) = }')
81
1
"""simple docstring""" from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import ( BackboneOutput, BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from ...utils.backbone_utils import BackboneMixin from .configuration_resnet import ResNetConfig _snake_case = logging.get_logger(__name__) # General docstring _snake_case = 'ResNetConfig' # Base docstring _snake_case = 'microsoft/resnet-50' _snake_case = [1, 2048, 7, 7] # Image classification docstring _snake_case = 'microsoft/resnet-50' _snake_case = 'tiger cat' _snake_case = [ 'microsoft/resnet-50', # See all resnet models at https://huggingface.co/models?filter=resnet ] class UpperCamelCase ( nn.Module ): def __init__( self : Any , UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : int = 3 , UpperCAmelCase__ : int = 1 , UpperCAmelCase__ : str = "relu" ) -> Any: super().__init__() _a : Union[str, Any] = nn.Convad( UpperCAmelCase__ , UpperCAmelCase__ , kernel_size=UpperCAmelCase__ , stride=UpperCAmelCase__ , padding=kernel_size // 2 , bias=UpperCAmelCase__ ) _a : Union[str, Any] = nn.BatchNormad(UpperCAmelCase__ ) _a : int = ACTaFN[activation] if activation is not None else nn.Identity() def _lowercase ( self : Any , UpperCAmelCase__ : Tensor ) -> Tensor: _a : Dict = self.convolution(UpperCAmelCase__ ) _a : Optional[int] = self.normalization(UpperCAmelCase__ ) _a : Optional[int] = self.activation(UpperCAmelCase__ ) return hidden_state class UpperCamelCase ( nn.Module ): def __init__( self : int , UpperCAmelCase__ : ResNetConfig ) -> Optional[int]: super().__init__() _a : List[str] = ResNetConvLayer( config.num_channels , config.embedding_size , kernel_size=7 , stride=2 , activation=config.hidden_act ) _a : List[str] = nn.MaxPoolad(kernel_size=3 , stride=2 , padding=1 ) _a : int = config.num_channels def _lowercase ( self : List[Any] , UpperCAmelCase__ : Tensor ) -> Tensor: _a : Optional[int] = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( """Make sure that the channel dimension of the pixel values match with the one set in the configuration.""" ) _a : List[Any] = self.embedder(UpperCAmelCase__ ) _a : Union[str, Any] = self.pooler(UpperCAmelCase__ ) return embedding class UpperCamelCase ( nn.Module ): def __init__( self : Optional[int] , UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : int = 2 ) -> List[str]: super().__init__() _a : Tuple = nn.Convad(UpperCAmelCase__ , UpperCAmelCase__ , kernel_size=1 , stride=UpperCAmelCase__ , bias=UpperCAmelCase__ ) _a : List[Any] = nn.BatchNormad(UpperCAmelCase__ ) def _lowercase ( self : Tuple , UpperCAmelCase__ : Tensor ) -> Tensor: _a : Optional[Any] = self.convolution(UpperCAmelCase__ ) _a : Optional[Any] = self.normalization(UpperCAmelCase__ ) return hidden_state class UpperCamelCase ( nn.Module ): def __init__( self : Optional[Any] , UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : int = 1 , UpperCAmelCase__ : str = "relu" ) -> Any: super().__init__() _a : List[str] = in_channels != out_channels or stride != 1 _a : Dict = ( ResNetShortCut(UpperCAmelCase__ , UpperCAmelCase__ , stride=UpperCAmelCase__ ) if should_apply_shortcut else nn.Identity() ) _a : int = nn.Sequential( ResNetConvLayer(UpperCAmelCase__ , UpperCAmelCase__ , stride=UpperCAmelCase__ ) , ResNetConvLayer(UpperCAmelCase__ , UpperCAmelCase__ , activation=UpperCAmelCase__ ) , ) _a : List[Any] = ACTaFN[activation] def _lowercase ( self : Union[str, Any] , UpperCAmelCase__ : Dict ) -> List[str]: _a : str = hidden_state _a : Tuple = self.layer(UpperCAmelCase__ ) _a : Union[str, Any] = self.shortcut(UpperCAmelCase__ ) hidden_state += residual _a : Optional[int] = self.activation(UpperCAmelCase__ ) return hidden_state class UpperCamelCase ( nn.Module ): def __init__( self : int , UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : int = 1 , UpperCAmelCase__ : str = "relu" , UpperCAmelCase__ : int = 4 ) -> Optional[int]: super().__init__() _a : int = in_channels != out_channels or stride != 1 _a : Dict = out_channels // reduction _a : Optional[int] = ( ResNetShortCut(UpperCAmelCase__ , UpperCAmelCase__ , stride=UpperCAmelCase__ ) if should_apply_shortcut else nn.Identity() ) _a : List[str] = nn.Sequential( ResNetConvLayer(UpperCAmelCase__ , UpperCAmelCase__ , kernel_size=1 ) , ResNetConvLayer(UpperCAmelCase__ , UpperCAmelCase__ , stride=UpperCAmelCase__ ) , ResNetConvLayer(UpperCAmelCase__ , UpperCAmelCase__ , kernel_size=1 , activation=UpperCAmelCase__ ) , ) _a : Optional[Any] = ACTaFN[activation] def _lowercase ( self : Tuple , UpperCAmelCase__ : Optional[Any] ) -> Optional[Any]: _a : Optional[int] = hidden_state _a : Tuple = self.layer(UpperCAmelCase__ ) _a : Optional[Any] = self.shortcut(UpperCAmelCase__ ) hidden_state += residual _a : List[Any] = self.activation(UpperCAmelCase__ ) return hidden_state class UpperCamelCase ( nn.Module ): def __init__( self : Any , UpperCAmelCase__ : ResNetConfig , UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : int = 2 , UpperCAmelCase__ : int = 2 , ) -> List[str]: super().__init__() _a : Optional[Any] = ResNetBottleNeckLayer if config.layer_type == """bottleneck""" else ResNetBasicLayer _a : Any = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer(UpperCAmelCase__ , UpperCAmelCase__ , stride=UpperCAmelCase__ , activation=config.hidden_act ) , *[layer(UpperCAmelCase__ , UpperCAmelCase__ , activation=config.hidden_act ) for _ in range(depth - 1 )] , ) def _lowercase ( self : Any , UpperCAmelCase__ : Tensor ) -> Tensor: _a : int = input for layer in self.layers: _a : int = layer(UpperCAmelCase__ ) return hidden_state class UpperCamelCase ( nn.Module ): def __init__( self : Dict , UpperCAmelCase__ : ResNetConfig ) -> List[Any]: super().__init__() _a : List[str] = nn.ModuleList([] ) # based on `downsample_in_first_stage` the first layer of the first stage may or may not downsample the input self.stages.append( ResNetStage( UpperCAmelCase__ , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) ) _a : Any = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(UpperCAmelCase__ , config.depths[1:] ): self.stages.append(ResNetStage(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , depth=UpperCAmelCase__ ) ) def _lowercase ( self : Optional[Any] , UpperCAmelCase__ : Tensor , UpperCAmelCase__ : bool = False , UpperCAmelCase__ : bool = True ) -> BaseModelOutputWithNoAttention: _a : Union[str, Any] = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: _a : int = hidden_states + (hidden_state,) _a : Optional[int] = stage_module(UpperCAmelCase__ ) if output_hidden_states: _a : List[Any] = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention( last_hidden_state=UpperCAmelCase__ , hidden_states=UpperCAmelCase__ , ) class UpperCamelCase ( snake_case_ ): UpperCamelCase : List[Any] = ResNetConfig UpperCamelCase : Tuple = '''resnet''' UpperCamelCase : Union[str, Any] = '''pixel_values''' UpperCamelCase : Any = True def _lowercase ( self : Union[str, Any] , UpperCAmelCase__ : Dict ) -> Optional[int]: if isinstance(UpperCAmelCase__ , nn.Convad ): nn.init.kaiming_normal_(module.weight , mode="""fan_out""" , nonlinearity="""relu""" ) elif isinstance(UpperCAmelCase__ , (nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight , 1 ) nn.init.constant_(module.bias , 0 ) def _lowercase ( self : Optional[Any] , UpperCAmelCase__ : str , UpperCAmelCase__ : Optional[int]=False ) -> Optional[Any]: if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): _a : Tuple = value _snake_case = r'\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`ResNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n' _snake_case = r'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConvNextImageProcessor.__call__`] for details.\n\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( '''The bare ResNet model outputting raw features without any specific head on top.''' , snake_case_ , ) class UpperCamelCase ( snake_case_ ): def __init__( self : Tuple , UpperCAmelCase__ : Union[str, Any] ) -> Optional[Any]: super().__init__(UpperCAmelCase__ ) _a : Union[str, Any] = config _a : Optional[Any] = ResNetEmbeddings(UpperCAmelCase__ ) _a : Union[str, Any] = ResNetEncoder(UpperCAmelCase__ ) _a : Optional[int] = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UpperCAmelCase__ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=UpperCAmelCase__ , config_class=_CONFIG_FOR_DOC , modality="""vision""" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def _lowercase ( self : Any , UpperCAmelCase__ : Tensor , UpperCAmelCase__ : Optional[bool] = None , UpperCAmelCase__ : Optional[bool] = None ) -> BaseModelOutputWithPoolingAndNoAttention: _a : List[str] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _a : Dict = return_dict if return_dict is not None else self.config.use_return_dict _a : Union[str, Any] = self.embedder(UpperCAmelCase__ ) _a : Dict = self.encoder( UpperCAmelCase__ , output_hidden_states=UpperCAmelCase__ , return_dict=UpperCAmelCase__ ) _a : Union[str, Any] = encoder_outputs[0] _a : Any = self.pooler(UpperCAmelCase__ ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=UpperCAmelCase__ , pooler_output=UpperCAmelCase__ , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( ''' ResNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. ''' , snake_case_ , ) class UpperCamelCase ( snake_case_ ): def __init__( self : Optional[int] , UpperCAmelCase__ : Dict ) -> Dict: super().__init__(UpperCAmelCase__ ) _a : Union[str, Any] = config.num_labels _a : int = ResNetModel(UpperCAmelCase__ ) # classification head _a : Tuple = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UpperCAmelCase__ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=UpperCAmelCase__ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def _lowercase ( self : Optional[int] , UpperCAmelCase__ : Optional[torch.FloatTensor] = None , UpperCAmelCase__ : Optional[torch.LongTensor] = None , UpperCAmelCase__ : Optional[bool] = None , UpperCAmelCase__ : Optional[bool] = None , ) -> ImageClassifierOutputWithNoAttention: _a : Dict = return_dict if return_dict is not None else self.config.use_return_dict _a : Union[str, Any] = self.resnet(UpperCAmelCase__ , output_hidden_states=UpperCAmelCase__ , return_dict=UpperCAmelCase__ ) _a : List[Any] = outputs.pooler_output if return_dict else outputs[1] _a : Any = self.classifier(UpperCAmelCase__ ) _a : Optional[int] = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: _a : Optional[int] = """regression""" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): _a : Any = """single_label_classification""" else: _a : str = """multi_label_classification""" if self.config.problem_type == "regression": _a : Dict = MSELoss() if self.num_labels == 1: _a : Any = loss_fct(logits.squeeze() , labels.squeeze() ) else: _a : Optional[Any] = loss_fct(UpperCAmelCase__ , UpperCAmelCase__ ) elif self.config.problem_type == "single_label_classification": _a : Dict = CrossEntropyLoss() _a : Dict = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": _a : Tuple = BCEWithLogitsLoss() _a : Tuple = loss_fct(UpperCAmelCase__ , UpperCAmelCase__ ) if not return_dict: _a : str = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=UpperCAmelCase__ , logits=UpperCAmelCase__ , hidden_states=outputs.hidden_states ) @add_start_docstrings( ''' ResNet backbone, to be used with frameworks like DETR and MaskFormer. ''' , snake_case_ , ) class UpperCamelCase ( snake_case_ , snake_case_ ): def __init__( self : Any , UpperCAmelCase__ : Optional[int] ) -> Tuple: super().__init__(UpperCAmelCase__ ) super()._init_backbone(UpperCAmelCase__ ) _a : Dict = [config.embedding_size] + config.hidden_sizes _a : List[str] = ResNetEmbeddings(UpperCAmelCase__ ) _a : Optional[Any] = ResNetEncoder(UpperCAmelCase__ ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UpperCAmelCase__ ) @replace_return_docstrings(output_type=UpperCAmelCase__ , config_class=_CONFIG_FOR_DOC ) def _lowercase ( self : Tuple , UpperCAmelCase__ : Tensor , UpperCAmelCase__ : Optional[bool] = None , UpperCAmelCase__ : Optional[bool] = None ) -> BackboneOutput: _a : int = return_dict if return_dict is not None else self.config.use_return_dict _a : List[str] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _a : Any = self.embedder(UpperCAmelCase__ ) _a : Dict = self.encoder(UpperCAmelCase__ , output_hidden_states=UpperCAmelCase__ , return_dict=UpperCAmelCase__ ) _a : Union[str, Any] = outputs.hidden_states _a : Any = () for idx, stage in enumerate(self.stage_names ): if stage in self.out_features: feature_maps += (hidden_states[idx],) if not return_dict: _a : Dict = (feature_maps,) if output_hidden_states: output += (outputs.hidden_states,) return output return BackboneOutput( feature_maps=UpperCAmelCase__ , hidden_states=outputs.hidden_states if output_hidden_states else None , attentions=UpperCAmelCase__ , )
324
"""simple docstring""" import copy import json import os import tempfile from transformers import is_torch_available from .test_configuration_utils import config_common_kwargs class UpperCamelCase ( snake_case_ ): def __init__( self : Union[str, Any] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : int=None , UpperCAmelCase__ : Optional[Any]=True , UpperCAmelCase__ : List[str]=None , **UpperCAmelCase__ : str ) -> int: _a : str = parent _a : Union[str, Any] = config_class _a : List[Any] = has_text_modality _a : List[Any] = kwargs _a : List[Any] = common_properties def _lowercase ( self : int ) -> Tuple: _a : List[str] = self.config_class(**self.inputs_dict ) _a : Dict = ( ["""hidden_size""", """num_attention_heads""", """num_hidden_layers"""] if self.common_properties is None else self.common_properties ) # Add common fields for text models if self.has_text_modality: common_properties.extend(["""vocab_size"""] ) # Test that config has the common properties as getters for prop in common_properties: self.parent.assertTrue(hasattr(UpperCAmelCase__ , UpperCAmelCase__ ) , msg=f"""`{prop}` does not exist""" ) # Test that config has the common properties as setter for idx, name in enumerate(UpperCAmelCase__ ): try: setattr(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) self.parent.assertEqual( getattr(UpperCAmelCase__ , UpperCAmelCase__ ) , UpperCAmelCase__ , msg=f"""`{name} value {idx} expected, but was {getattr(UpperCAmelCase__ , UpperCAmelCase__ )}""" ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass # Test if config class can be called with Config(prop_name=..) for idx, name in enumerate(UpperCAmelCase__ ): try: _a : Optional[int] = self.config_class(**{name: idx} ) self.parent.assertEqual( getattr(UpperCAmelCase__ , UpperCAmelCase__ ) , UpperCAmelCase__ , msg=f"""`{name} value {idx} expected, but was {getattr(UpperCAmelCase__ , UpperCAmelCase__ )}""" ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass def _lowercase ( self : Optional[int] ) -> Optional[Any]: _a : Optional[Any] = self.config_class(**self.inputs_dict ) _a : List[str] = json.loads(config.to_json_string() ) for key, value in self.inputs_dict.items(): self.parent.assertEqual(obj[key] , UpperCAmelCase__ ) def _lowercase ( self : int ) -> List[str]: _a : Optional[Any] = self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _a : Tuple = os.path.join(UpperCAmelCase__ , """config.json""" ) config_first.to_json_file(UpperCAmelCase__ ) _a : List[str] = self.config_class.from_json_file(UpperCAmelCase__ ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def _lowercase ( self : Union[str, Any] ) -> Dict: _a : Dict = self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: config_first.save_pretrained(UpperCAmelCase__ ) _a : Dict = self.config_class.from_pretrained(UpperCAmelCase__ ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def _lowercase ( self : Dict ) -> Tuple: _a : List[Any] = self.config_class(**self.inputs_dict ) _a : Any = """test""" with tempfile.TemporaryDirectory() as tmpdirname: _a : List[Any] = os.path.join(UpperCAmelCase__ , UpperCAmelCase__ ) config_first.save_pretrained(UpperCAmelCase__ ) _a : List[Any] = self.config_class.from_pretrained(UpperCAmelCase__ , subfolder=UpperCAmelCase__ ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def _lowercase ( self : List[str] ) -> Union[str, Any]: _a : Tuple = self.config_class(**self.inputs_dict , num_labels=5 ) self.parent.assertEqual(len(config.idalabel ) , 5 ) self.parent.assertEqual(len(config.labelaid ) , 5 ) _a : Union[str, Any] = 3 self.parent.assertEqual(len(config.idalabel ) , 3 ) self.parent.assertEqual(len(config.labelaid ) , 3 ) def _lowercase ( self : Tuple ) -> List[str]: if self.config_class.is_composition: return _a : str = self.config_class() self.parent.assertIsNotNone(UpperCAmelCase__ ) def _lowercase ( self : List[Any] ) -> Optional[Any]: _a : Dict = copy.deepcopy(UpperCAmelCase__ ) _a : Any = self.config_class(**UpperCAmelCase__ ) _a : str = [] for key, value in config_common_kwargs.items(): if key == "torch_dtype": if not is_torch_available(): continue else: import torch if config.torch_dtype != torch.floataa: wrong_values.append(("""torch_dtype""", config.torch_dtype, torch.floataa) ) elif getattr(UpperCAmelCase__ , UpperCAmelCase__ ) != value: wrong_values.append((key, getattr(UpperCAmelCase__ , UpperCAmelCase__ ), value) ) if len(UpperCAmelCase__ ) > 0: _a : List[Any] = """\n""".join([f"""- {v[0]}: got {v[1]} instead of {v[2]}""" for v in wrong_values] ) raise ValueError(f"""The following keys were not properly set in the config:\n{errors}""" ) def _lowercase ( self : int ) -> Union[str, Any]: self.create_and_test_config_common_properties() self.create_and_test_config_to_json_string() self.create_and_test_config_to_json_file() self.create_and_test_config_from_and_save_pretrained() self.create_and_test_config_from_and_save_pretrained_subfolder() self.create_and_test_config_with_num_labels() self.check_config_can_be_init_without_params() self.check_config_arguments_init()
324
1
import argparse import torch from transformers import FunnelBaseModel, FunnelConfig, FunnelModel, load_tf_weights_in_funnel from transformers.utils import logging logging.set_verbosity_info() def lowerCamelCase__ ( A__ : List[str] , A__ : Any , A__ : Union[str, Any] , A__ : List[Any] ): '''simple docstring''' __lowerCamelCase = FunnelConfig.from_json_file(A__ ) print(f'Building PyTorch model from configuration: {config}' ) __lowerCamelCase = FunnelBaseModel(A__ ) if base_model else FunnelModel(A__ ) # Load weights from tf checkpoint load_tf_weights_in_funnel(A__ , A__ , A__ ) # Save pytorch-model print(f'Save PyTorch model to {pytorch_dump_path}' ) torch.save(model.state_dict() , A__ ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.', ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--base_model', action='store_true', help='Whether you want just the base model (no decoder) or not.' ) UpperCAmelCase_ = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path, args.base_model )
12
import unittest from transformers import BigBirdConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax from transformers.models.big_bird.modeling_flax_big_bird import ( FlaxBigBirdForCausalLM, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForPreTraining, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, FlaxBigBirdModel, ) class lowerCamelCase__( unittest.TestCase): def __init__( self: Optional[int] , UpperCamelCase_: Any , UpperCamelCase_: int=2 , UpperCamelCase_: Optional[Any]=56 , UpperCamelCase_: Tuple=True , UpperCamelCase_: Union[str, Any]=True , UpperCamelCase_: Optional[Any]=True , UpperCamelCase_: str=True , UpperCamelCase_: str=99 , UpperCamelCase_: Tuple=32 , UpperCamelCase_: int=2 , UpperCamelCase_: Optional[int]=2 , UpperCamelCase_: Tuple=7 , UpperCamelCase_: Optional[int]="gelu_new" , UpperCamelCase_: Any=0.1 , UpperCamelCase_: List[str]=0.1 , UpperCamelCase_: List[Any]=5_12 , UpperCamelCase_: Union[str, Any]=16 , UpperCamelCase_: int=2 , UpperCamelCase_: Dict=0.02 , UpperCamelCase_: Tuple=4 , UpperCamelCase_: Union[str, Any]="block_sparse" , UpperCamelCase_: Optional[Any]=True , UpperCamelCase_: Any=False , UpperCamelCase_: Any=2 , UpperCamelCase_: int=3 , ): __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = seq_length __lowerCamelCase = is_training __lowerCamelCase = use_attention_mask __lowerCamelCase = use_token_type_ids __lowerCamelCase = use_labels __lowerCamelCase = vocab_size __lowerCamelCase = hidden_size __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = intermediate_size __lowerCamelCase = hidden_act __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = max_position_embeddings __lowerCamelCase = type_vocab_size __lowerCamelCase = type_sequence_label_size __lowerCamelCase = initializer_range __lowerCamelCase = num_choices __lowerCamelCase = rescale_embeddings __lowerCamelCase = attention_type __lowerCamelCase = use_bias __lowerCamelCase = block_size __lowerCamelCase = num_random_blocks def lowerCAmelCase__ ( self: int ): __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCamelCase = None if self.use_attention_mask: __lowerCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCamelCase = None if self.use_token_type_ids: __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowerCamelCase = BigBirdConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCamelCase_ , initializer_range=self.initializer_range , attention_type=self.attention_type , block_size=self.block_size , num_random_blocks=self.num_random_blocks , use_bias=self.use_bias , rescale_embeddings=self.rescale_embeddings , ) return config, input_ids, token_type_ids, attention_mask def lowerCAmelCase__ ( self: Dict ): __lowerCamelCase = self.prepare_config_and_inputs() __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = config_and_inputs __lowerCamelCase = { """input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask, } return config, inputs_dict @require_flax class lowerCamelCase__( __lowerCamelCase , unittest.TestCase): UpperCAmelCase__ : Optional[int] = ( ( FlaxBigBirdForCausalLM, FlaxBigBirdModel, FlaxBigBirdForPreTraining, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, ) if is_flax_available() else () ) UpperCAmelCase__ : Optional[int] = False UpperCAmelCase__ : Optional[int] = False def lowerCAmelCase__ ( self: List[str] ): __lowerCamelCase = FlaxBigBirdModelTester(self ) @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def lowerCAmelCase__ ( self: Optional[Any] ): super().test_from_pretrained_save_pretrained() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def lowerCAmelCase__ ( self: List[Any] ): super().test_from_pretrained_with_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def lowerCAmelCase__ ( self: List[Any] ): super().test_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def lowerCAmelCase__ ( self: List[str] ): super().test_hidden_states_output() @slow def lowerCAmelCase__ ( self: Optional[Any] ): for model_class_name in self.all_model_classes: __lowerCamelCase = model_class_name.from_pretrained("""google/bigbird-roberta-base""" ) self.assertIsNotNone(UpperCamelCase_ ) def lowerCAmelCase__ ( self: Dict ): if self.test_attn_probs: super().test_attention_outputs() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def lowerCAmelCase__ ( self: List[Any] ): __lowerCamelCase, __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __lowerCamelCase = self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) __lowerCamelCase = model_class(UpperCamelCase_ ) @jax.jit def model_jitted(UpperCamelCase_: Tuple , UpperCamelCase_: List[Any]=None , **UpperCamelCase_: Union[str, Any] ): return model(input_ids=UpperCamelCase_ , attention_mask=UpperCamelCase_ , **UpperCamelCase_ ) with self.subTest("""JIT Enabled""" ): __lowerCamelCase = model_jitted(**UpperCamelCase_ ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): __lowerCamelCase = model_jitted(**UpperCamelCase_ ).to_tuple() self.assertEqual(len(UpperCamelCase_ ) , len(UpperCamelCase_ ) ) for jitted_output, output in zip(UpperCamelCase_ , UpperCamelCase_ ): self.assertEqual(jitted_output.shape , output.shape ) def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: int , UpperCamelCase_: List[str] , UpperCamelCase_: Any , UpperCamelCase_: Dict=1E-5 , UpperCamelCase_: List[str]="outputs" , UpperCamelCase_: List[str]=None ): # `bigbird_block_sparse_attention` in `FlaxBigBird` returns `attention_probs = None`, while in PyTorch version, # an effort was done to return `attention_probs` (yet to be verified). if name.startswith("""outputs.attentions""" ): return else: super().check_pt_flax_outputs(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
12
1
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = {"vocab_file": "sentencepiece.model"} lowercase_ = { "vocab_file": { "google/rembert": "https://huggingface.co/google/rembert/resolve/main/sentencepiece.model", }, } lowercase_ = { "google/rembert": 256, } class A ( __lowercase ): """simple docstring""" lowerCamelCase = VOCAB_FILES_NAMES lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : Dict,lowercase_ : Dict,lowercase_ : Tuple=False,lowercase_ : Dict=True,lowercase_ : Tuple=True,lowercase_ : int="[CLS]",lowercase_ : List[Any]="[SEP]",lowercase_ : int="[UNK]",lowercase_ : Union[str, Any]="[SEP]",lowercase_ : Optional[int]="[PAD]",lowercase_ : Dict="[CLS]",lowercase_ : List[str]="[MASK]",**lowercase_ : Optional[Any],)-> str: '''simple docstring''' super().__init__( do_lower_case=_a,remove_space=_a,keep_accents=_a,bos_token=_a,eos_token=_a,unk_token=_a,sep_token=_a,pad_token=_a,cls_token=_a,mask_token=_a,**_a,) A__ = do_lower_case A__ = remove_space A__ = keep_accents A__ = vocab_file A__ = spm.SentencePieceProcessor() self.sp_model.Load(_a ) @property def snake_case__ ( self : Dict )-> List[str]: '''simple docstring''' return len(self.sp_model ) def snake_case__ ( self : Union[str, Any] )-> Union[str, Any]: '''simple docstring''' A__ = {self.convert_ids_to_tokens(_a ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : List[Any] )-> Optional[int]: '''simple docstring''' A__ = self.__dict__.copy() A__ = None return state def __setstate__( self : Dict,lowercase_ : List[str] )-> Any: '''simple docstring''' A__ = d A__ = spm.SentencePieceProcessor() self.sp_model.Load(self.vocab_file ) def snake_case__ ( self : Optional[Any],lowercase_ : Optional[Any],lowercase_ : Optional[int]=False )-> Any: '''simple docstring''' A__ = self.sp_model.EncodeAsPieces(_a ) return pieces def snake_case__ ( self : Any,lowercase_ : List[str] )-> Any: '''simple docstring''' return self.sp_model.PieceToId(_a ) def snake_case__ ( self : Optional[int],lowercase_ : List[Any] )-> List[Any]: '''simple docstring''' return self.sp_model.IdToPiece(_a ) def snake_case__ ( self : Optional[int],lowercase_ : List[str] )-> Optional[int]: '''simple docstring''' A__ = self.sp_model.decode_pieces(_a ) return out_string def snake_case__ ( self : List[Any],lowercase_ : Union[str, Any],lowercase_ : Union[str, Any] = None )-> List[int]: '''simple docstring''' A__ = [self.sep_token_id] A__ = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def snake_case__ ( self : Optional[Any],lowercase_ : List[str],lowercase_ : List[Any] = None,lowercase_ : List[Any] = False )-> List[int]: '''simple docstring''' if already_has_special_tokens: if token_ids_a is not None: raise ValueError( 'You should not supply a second sequence if the provided sequence of ' 'ids is already formatted with special tokens for the model.' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(_a )) + [1] + ([0] * len(_a )) + [1] return [1] + ([0] * len(_a )) + [1] def snake_case__ ( self : Tuple,lowercase_ : str,lowercase_ : List[Any] = None )-> List[int]: '''simple docstring''' A__ = [self.sep_token_id] A__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def snake_case__ ( self : Dict,lowercase_ : Optional[Any],lowercase_ : List[Any] = None )-> Tuple[str]: '''simple docstring''' if not os.path.isdir(_a ): logger.error('Vocabulary path ({}) should be a directory'.format(_a ) ) return A__ = os.path.join( _a,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_a ): copyfile(self.vocab_file,_a ) return (out_vocab_file,)
350
import argparse import collections import torch from flax import traverse_util from tax import checkpoints from transformers import TaConfig, TaEncoderModel, TaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def _snake_case( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[int]="attention" ) -> Union[str, Any]: '''simple docstring''' A__ = params[f'{prefix}/layers_{i}/{layer_name}/key/kernel'] A__ = params[f'{prefix}/layers_{i}/{layer_name}/out/kernel'] A__ = params[f'{prefix}/layers_{i}/{layer_name}/query/kernel'] A__ = params[f'{prefix}/layers_{i}/{layer_name}/value/kernel'] return k, o, q, v def _snake_case( SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Dict=False ) -> str: '''simple docstring''' if split_mlp_wi: A__ = params[f'{prefix}/layers_{i}/mlp/wi_0/kernel'] A__ = params[f'{prefix}/layers_{i}/mlp/wi_1/kernel'] A__ = (wi_a, wi_a) else: A__ = params[f'{prefix}/layers_{i}/mlp/wi/kernel'] A__ = params[f'{prefix}/layers_{i}/mlp/wo/kernel'] return wi, wo def _snake_case( SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : int ) -> str: '''simple docstring''' return params[f'{prefix}/layers_{i}/{layer_name}/scale'] def _snake_case( SCREAMING_SNAKE_CASE__ : dict , *, SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : bool ) -> int: '''simple docstring''' A__ = traverse_util.flatten_dict(variables['target'] ) A__ = {'/'.join(SCREAMING_SNAKE_CASE__ ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi A__ = 'encoder/layers_0/mlp/wi_0/kernel' in old print('Split MLP:' , SCREAMING_SNAKE_CASE__ ) A__ = collections.OrderedDict() # Shared embeddings. A__ = old['token_embedder/embedding'] # Encoder. for i in range(SCREAMING_SNAKE_CASE__ ): # Block i, layer 0 (Self Attention). A__ = tax_layer_norm_lookup(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'encoder' , 'pre_attention_layer_norm' ) A__ , A__ , A__ , A__ = tax_attention_lookup(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'encoder' , 'attention' ) A__ = layer_norm A__ = k.T A__ = o.T A__ = q.T A__ = v.T # Block i, layer 1 (MLP). A__ = tax_layer_norm_lookup(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'encoder' , 'pre_mlp_layer_norm' ) A__ , A__ = tax_mlp_lookup(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'encoder' , SCREAMING_SNAKE_CASE__ ) A__ = layer_norm if split_mlp_wi: A__ = wi[0].T A__ = wi[1].T else: A__ = wi.T A__ = wo.T A__ = old[ 'encoder/relpos_bias/rel_embedding' ].T A__ = old['encoder/encoder_norm/scale'] if not is_encoder_only: # Decoder. for i in range(SCREAMING_SNAKE_CASE__ ): # Block i, layer 0 (Self Attention). A__ = tax_layer_norm_lookup(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'decoder' , 'pre_self_attention_layer_norm' ) A__ , A__ , A__ , A__ = tax_attention_lookup(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'decoder' , 'self_attention' ) A__ = layer_norm A__ = k.T A__ = o.T A__ = q.T A__ = v.T # Block i, layer 1 (Cross Attention). A__ = tax_layer_norm_lookup(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'decoder' , 'pre_cross_attention_layer_norm' ) A__ , A__ , A__ , A__ = tax_attention_lookup(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'decoder' , 'encoder_decoder_attention' ) A__ = layer_norm A__ = k.T A__ = o.T A__ = q.T A__ = v.T # Block i, layer 2 (MLP). A__ = tax_layer_norm_lookup(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'decoder' , 'pre_mlp_layer_norm' ) A__ , A__ = tax_mlp_lookup(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'decoder' , SCREAMING_SNAKE_CASE__ ) A__ = layer_norm if split_mlp_wi: A__ = wi[0].T A__ = wi[1].T else: A__ = wi.T A__ = wo.T A__ = old['decoder/decoder_norm/scale'] A__ = old[ 'decoder/relpos_bias/rel_embedding' ].T # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: A__ = old['decoder/logits_dense/kernel'].T return new def _snake_case( SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : bool ) -> Dict: '''simple docstring''' A__ = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: A__ = state_dict['shared.weight'] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: A__ = state_dict['shared.weight'] if "lm_head.weight" not in state_dict: # For old 1.0 models. print('Using shared word embeddings as lm_head.' ) A__ = state_dict['shared.weight'] return state_dict def _snake_case( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Tuple ) -> int: '''simple docstring''' A__ = checkpoints.load_tax_checkpoint(SCREAMING_SNAKE_CASE__ ) A__ = convert_tax_to_pytorch(SCREAMING_SNAKE_CASE__ , num_layers=config.num_layers , is_encoder_only=SCREAMING_SNAKE_CASE__ ) A__ = make_state_dict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) model.load_state_dict(SCREAMING_SNAKE_CASE__ , strict=SCREAMING_SNAKE_CASE__ ) def _snake_case( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : bool = False ) -> Any: '''simple docstring''' A__ = TaConfig.from_json_file(SCREAMING_SNAKE_CASE__ ) print(f'Building PyTorch model from configuration: {config}' ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: A__ = TaEncoderModel(SCREAMING_SNAKE_CASE__ ) else: A__ = TaForConditionalGeneration(SCREAMING_SNAKE_CASE__ ) # Load weights from tf checkpoint load_tax_weights_in_ta(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Save pytorch-model print(f'Save PyTorch model to {pytorch_dump_path}' ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) # Verify that we can load the checkpoint. model.from_pretrained(SCREAMING_SNAKE_CASE__ ) print('Done' ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser(description="Converts a native T5X checkpoint into a PyTorch checkpoint.") # Required parameters parser.add_argument( "--t5x_checkpoint_path", default=None, type=str, required=True, help="Path to the T5X checkpoint." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--is_encoder_only", action="store_true", help="Check if the model is encoder-decoder model", default=False ) lowercase_ = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only )
282
0
def lowerCamelCase__ ( _A , _A ): '''simple docstring''' if mass < 0: raise ValueError("The mass of a body cannot be negative" ) return 0.5 * mass * abs(_A ) * abs(_A ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
187
import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def lowerCamelCase__ ( _A , _A , _A , _A , _A=True , _A="pt" ): '''simple docstring''' snake_case_ = {"add_prefix_space": True} if isinstance(_A , _A ) and not line.startswith(" " ) else {} snake_case_ = padding_side return tokenizer( [line] , max_length=_A , padding="max_length" if pad_to_max_length else None , truncation=_A , return_tensors=_A , add_special_tokens=_A , **_A , ) def lowerCamelCase__ ( _A , _A , _A=None , ): '''simple docstring''' snake_case_ = input_ids.ne(_A ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self : int , __lowercase : List[Any] , __lowercase : Tuple , __lowercase : List[Any] , __lowercase : str , __lowercase : Tuple="train" , __lowercase : List[str]=None , __lowercase : List[Any]=None , __lowercase : Optional[Any]=None , __lowercase : Union[str, Any]="" , ): """simple docstring""" super().__init__() snake_case_ = Path(__lowercase ).joinpath(type_path + ".source" ) snake_case_ = Path(__lowercase ).joinpath(type_path + ".target" ) snake_case_ = self.get_char_lens(self.src_file ) snake_case_ = max_source_length snake_case_ = max_target_length assert min(self.src_lens ) > 0, f"found empty line in {self.src_file}" snake_case_ = tokenizer snake_case_ = prefix if n_obs is not None: snake_case_ = self.src_lens[:n_obs] snake_case_ = src_lang snake_case_ = tgt_lang def __len__( self : List[Any] ): """simple docstring""" return len(self.src_lens ) def __getitem__( self : List[Any] , __lowercase : Dict ): """simple docstring""" snake_case_ = index + 1 # linecache starts at 1 snake_case_ = self.prefix + linecache.getline(str(self.src_file ) , __lowercase ).rstrip("\n" ) snake_case_ = linecache.getline(str(self.tgt_file ) , __lowercase ).rstrip("\n" ) assert source_line, f"empty source line for index {index}" assert tgt_line, f"empty tgt line for index {index}" # Need to add eos token manually for T5 if isinstance(self.tokenizer , __lowercase ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right snake_case_ = ( self.tokenizer.question_encoder if isinstance(self.tokenizer , __lowercase ) else self.tokenizer ) snake_case_ = self.tokenizer.generator if isinstance(self.tokenizer , __lowercase ) else self.tokenizer snake_case_ = encode_line(__lowercase , __lowercase , self.max_source_length , "right" ) snake_case_ = encode_line(__lowercase , __lowercase , self.max_target_length , "right" ) snake_case_ = source_inputs["input_ids"].squeeze() snake_case_ = target_inputs["input_ids"].squeeze() snake_case_ = source_inputs["attention_mask"].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def snake_case__ ( __lowercase : Optional[int] ): """simple docstring""" return [len(__lowercase ) for x in Path(__lowercase ).open().readlines()] def snake_case__ ( self : Dict , __lowercase : Union[str, Any] ): """simple docstring""" snake_case_ = torch.stack([x["input_ids"] for x in batch] ) snake_case_ = torch.stack([x["attention_mask"] for x in batch] ) snake_case_ = torch.stack([x["decoder_input_ids"] for x in batch] ) snake_case_ = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer , __lowercase ) else self.tokenizer.pad_token_id ) snake_case_ = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer , __lowercase ) else self.tokenizer.pad_token_id ) snake_case_ = trim_batch(__lowercase , __lowercase ) snake_case_ , snake_case_ = trim_batch(__lowercase , __lowercase , attention_mask=__lowercase ) snake_case_ = { "input_ids": source_ids, "attention_mask": source_mask, "decoder_input_ids": y, } return batch lowercase__ : str = getLogger(__name__) def lowerCamelCase__ ( _A ): '''simple docstring''' return list(itertools.chain.from_iterable(_A ) ) def lowerCamelCase__ ( _A ): '''simple docstring''' snake_case_ = get_git_info() save_json(_A , os.path.join(_A , "git_log.json" ) ) def lowerCamelCase__ ( _A , _A , _A=4 , **_A ): '''simple docstring''' with open(_A , "w" ) as f: json.dump(_A , _A , indent=_A , **_A ) def lowerCamelCase__ ( _A ): '''simple docstring''' with open(_A ) as f: return json.load(_A ) def lowerCamelCase__ ( ): '''simple docstring''' snake_case_ = git.Repo(search_parent_directories=_A ) snake_case_ = { "repo_id": str(_A ), "repo_sha": str(repo.head.object.hexsha ), "repo_branch": str(repo.active_branch ), "hostname": str(socket.gethostname() ), } return repo_infos def lowerCamelCase__ ( _A , _A ): '''simple docstring''' return list(map(_A , _A ) ) def lowerCamelCase__ ( _A , _A ): '''simple docstring''' with open(_A , "wb" ) as f: return pickle.dump(_A , _A ) def lowerCamelCase__ ( _A ): '''simple docstring''' def remove_articles(_A ): return re.sub(R"\b(a|an|the)\b" , " " , _A ) def white_space_fix(_A ): return " ".join(text.split() ) def remove_punc(_A ): snake_case_ = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(_A ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(_A ) ) ) ) def lowerCamelCase__ ( _A , _A ): '''simple docstring''' snake_case_ = normalize_answer(_A ).split() snake_case_ = normalize_answer(_A ).split() snake_case_ = Counter(_A ) & Counter(_A ) snake_case_ = sum(common.values() ) if num_same == 0: return 0 snake_case_ = 1.0 * num_same / len(_A ) snake_case_ = 1.0 * num_same / len(_A ) snake_case_ = (2 * precision * recall) / (precision + recall) return fa def lowerCamelCase__ ( _A , _A ): '''simple docstring''' return normalize_answer(_A ) == normalize_answer(_A ) def lowerCamelCase__ ( _A , _A ): '''simple docstring''' assert len(_A ) == len(_A ) snake_case_ = 0 for hypo, pred in zip(_A , _A ): em += exact_match_score(_A , _A ) if len(_A ) > 0: em /= len(_A ) return {"em": em} def lowerCamelCase__ ( _A ): '''simple docstring''' return model_prefix.startswith("rag" ) def lowerCamelCase__ ( _A , _A , _A ): '''simple docstring''' snake_case_ = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead snake_case_ = "dropout_rate" for p in extra_params: if getattr(_A , _A , _A ): if not hasattr(_A , _A ) and not hasattr(_A , equivalent_param[p] ): logger.info("config doesn't have a `{}` attribute".format(_A ) ) delattr(_A , _A ) continue snake_case_ = p if hasattr(_A , _A ) else equivalent_param[p] setattr(_A , _A , getattr(_A , _A ) ) delattr(_A , _A ) return hparams, config
187
1
from bisect import bisect from itertools import accumulate def UpperCamelCase ( __lowercase : Union[str, Any] ,__lowercase : Any ,__lowercase : Dict ,__lowercase : Tuple ): '''simple docstring''' A_ : List[str] = sorted(zip(__lowercase ,__lowercase ) ,key=lambda __lowercase : x[0] / x[1] ,reverse=__lowercase ) A_ , A_ : Tuple = [i[0] for i in r], [i[1] for i in r] A_ : Tuple = list(accumulate(__lowercase ) ) A_ : Dict = bisect(__lowercase ,__lowercase ) return ( 0 if k == 0 else sum(vl[:k] ) + (w - acc[k - 1]) * (vl[k]) / (wt[k]) if k != n else sum(vl[:k] ) ) if __name__ == "__main__": import doctest doctest.testmod()
192
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_squeezebert import SqueezeBertTokenizer _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} _UpperCAmelCase = { """vocab_file""": { """squeezebert/squeezebert-uncased""": ( """https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/vocab.txt""" ), """squeezebert/squeezebert-mnli""": """https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/vocab.txt""", """squeezebert/squeezebert-mnli-headless""": ( """https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """squeezebert/squeezebert-uncased""": ( """https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/tokenizer.json""" ), """squeezebert/squeezebert-mnli""": ( """https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/tokenizer.json""" ), """squeezebert/squeezebert-mnli-headless""": ( """https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/tokenizer.json""" ), }, } _UpperCAmelCase = { """squeezebert/squeezebert-uncased""": 512, """squeezebert/squeezebert-mnli""": 512, """squeezebert/squeezebert-mnli-headless""": 512, } _UpperCAmelCase = { """squeezebert/squeezebert-uncased""": {"""do_lower_case""": True}, """squeezebert/squeezebert-mnli""": {"""do_lower_case""": True}, """squeezebert/squeezebert-mnli-headless""": {"""do_lower_case""": True}, } class UpperCAmelCase ( __A ): '''simple docstring''' lowerCamelCase_ = VOCAB_FILES_NAMES lowerCamelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase_ = PRETRAINED_INIT_CONFIGURATION lowerCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase_ = SqueezeBertTokenizer def __init__( self , lowercase=None , lowercase=None , lowercase=True , lowercase="[UNK]" , lowercase="[SEP]" , lowercase="[PAD]" , lowercase="[CLS]" , lowercase="[MASK]" , lowercase=True , lowercase=None , **lowercase , ): """simple docstring""" super().__init__( lowercase , tokenizer_file=lowercase , do_lower_case=lowercase , unk_token=lowercase , sep_token=lowercase , pad_token=lowercase , cls_token=lowercase , mask_token=lowercase , tokenize_chinese_chars=lowercase , strip_accents=lowercase , **lowercase , ) A_ : int = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , lowercase ) != do_lower_case or normalizer_state.get('strip_accents' , lowercase ) != strip_accents or normalizer_state.get('handle_chinese_chars' , lowercase ) != tokenize_chinese_chars ): A_ : Dict = getattr(lowercase , normalizer_state.pop('type' ) ) A_ : Optional[int] = do_lower_case A_ : Optional[Any] = strip_accents A_ : str = tokenize_chinese_chars A_ : Any = normalizer_class(**lowercase ) A_ : Tuple = do_lower_case def lowerCAmelCase_ ( self , lowercase , lowercase=None ): """simple docstring""" A_ : str = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowerCAmelCase_ ( self , lowercase , lowercase = None ): """simple docstring""" A_ : Dict = [self.sep_token_id] A_ : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCAmelCase_ ( self , lowercase , lowercase = None ): """simple docstring""" A_ : Dict = self._tokenizer.model.save(lowercase , name=lowercase ) return tuple(lowercase )
192
1
import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import BatchEncoding, PreTrainedTokenizer from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = """▁""" __snake_case = { """vocab_file""": """vocab.json""", """spm_file""": """sentencepiece.bpe.model""", """tokenizer_config_file""": """tokenizer_config.json""", } __snake_case = { """vocab_file""": { """facebook/m2m100_418M""": """https://huggingface.co/facebook/m2m100_418M/resolve/main/vocab.json""", """facebook/m2m100_1.2B""": """https://huggingface.co/facebook/m2m100_1.2B/resolve/main/vocab.json""", }, """spm_file""": { """facebook/m2m100_418M""": """https://huggingface.co/facebook/m2m100_418M/resolve/main/sentencepiece.bpe.model""", """facebook/m2m100_1.2B""": """https://huggingface.co/facebook/m2m100_1.2B/resolve/main/sentencepiece.bpe.model""", }, """tokenizer_config_file""": { """facebook/m2m100_418M""": """https://huggingface.co/facebook/m2m100_418M/resolve/main/tokenizer_config.json""", """facebook/m2m100_1.2B""": """https://huggingface.co/facebook/m2m100_1.2B/resolve/main/tokenizer_config.json""", }, } __snake_case = { """facebook/m2m100_418M""": 10_24, } # fmt: off __snake_case = { """m2m100""": ["""af""", """am""", """ar""", """ast""", """az""", """ba""", """be""", """bg""", """bn""", """br""", """bs""", """ca""", """ceb""", """cs""", """cy""", """da""", """de""", """el""", """en""", """es""", """et""", """fa""", """ff""", """fi""", """fr""", """fy""", """ga""", """gd""", """gl""", """gu""", """ha""", """he""", """hi""", """hr""", """ht""", """hu""", """hy""", """id""", """ig""", """ilo""", """is""", """it""", """ja""", """jv""", """ka""", """kk""", """km""", """kn""", """ko""", """lb""", """lg""", """ln""", """lo""", """lt""", """lv""", """mg""", """mk""", """ml""", """mn""", """mr""", """ms""", """my""", """ne""", """nl""", """no""", """ns""", """oc""", """or""", """pa""", """pl""", """ps""", """pt""", """ro""", """ru""", """sd""", """si""", """sk""", """sl""", """so""", """sq""", """sr""", """ss""", """su""", """sv""", """sw""", """ta""", """th""", """tl""", """tn""", """tr""", """uk""", """ur""", """uz""", """vi""", """wo""", """xh""", """yi""", """yo""", """zh""", """zu"""], """wmt21""": ["""en""", """ha""", """is""", """ja""", """cs""", """ru""", """zh""", """de"""] } class UpperCAmelCase_ ( lowercase ): """simple docstring""" UpperCamelCase_ : Optional[int] =VOCAB_FILES_NAMES UpperCamelCase_ : Dict =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ : Union[str, Any] =PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ : Any =['input_ids', 'attention_mask'] UpperCamelCase_ : Optional[int] =[] UpperCamelCase_ : int =[] def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_="<s>" , SCREAMING_SNAKE_CASE_="</s>" , SCREAMING_SNAKE_CASE_="</s>" , SCREAMING_SNAKE_CASE_="<pad>" , SCREAMING_SNAKE_CASE_="<unk>" , SCREAMING_SNAKE_CASE_="m2m100" , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_=8 , **SCREAMING_SNAKE_CASE_ , ) -> str: UpperCamelCase :Optional[int] = {} if sp_model_kwargs is None else sp_model_kwargs UpperCamelCase :Any = language_codes UpperCamelCase :str = FAIRSEQ_LANGUAGE_CODES[language_codes] UpperCamelCase :Any = {lang_code: F'''__{lang_code}__''' for lang_code in fairseq_language_code} UpperCamelCase :Dict = kwargs.get('''additional_special_tokens''' , [] ) kwargs["additional_special_tokens"] += [ self.get_lang_token(__lowerCAmelCase ) for lang_code in fairseq_language_code if self.get_lang_token(__lowerCAmelCase ) not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=__lowerCAmelCase , tgt_lang=__lowerCAmelCase , bos_token=__lowerCAmelCase , eos_token=__lowerCAmelCase , sep_token=__lowerCAmelCase , unk_token=__lowerCAmelCase , pad_token=__lowerCAmelCase , language_codes=__lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , num_madeup_words=__lowerCAmelCase , **__lowerCAmelCase , ) UpperCamelCase :Any = vocab_file UpperCamelCase :Union[str, Any] = load_json(__lowerCAmelCase ) UpperCamelCase :str = {v: k for k, v in self.encoder.items()} UpperCamelCase :str = spm_file UpperCamelCase :Union[str, Any] = load_spm(__lowerCAmelCase , self.sp_model_kwargs ) UpperCamelCase :Tuple = len(self.encoder ) UpperCamelCase :Any = { self.get_lang_token(__lowerCAmelCase ): self.encoder_size + i for i, lang_code in enumerate(__lowerCAmelCase ) } UpperCamelCase :Any = {lang_code: self.encoder_size + i for i, lang_code in enumerate(__lowerCAmelCase )} UpperCamelCase :Dict = {v: k for k, v in self.lang_token_to_id.items()} UpperCamelCase :Union[str, Any] = src_lang if src_lang is not None else '''en''' UpperCamelCase :Optional[int] = tgt_lang UpperCamelCase :str = self.get_lang_id(self._src_lang ) self.set_src_lang_special_tokens(self._src_lang ) UpperCamelCase :Optional[int] = num_madeup_words @property def UpperCAmelCase ( self ) -> List[str]: return len(self.encoder ) + len(self.lang_token_to_id ) @property def UpperCAmelCase ( self ) -> Tuple: return self._src_lang @src_lang.setter def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ ) -> Tuple: UpperCamelCase :Optional[int] = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ ) -> Tuple: return self.sp_model.encode(__lowerCAmelCase , out_type=__lowerCAmelCase ) def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: if token in self.lang_token_to_id: return self.lang_token_to_id[token] return self.encoder.get(__lowerCAmelCase , self.encoder[self.unk_token] ) def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ ) -> Any: if index in self.id_to_lang_token: return self.id_to_lang_token[index] return self.decoder.get(__lowerCAmelCase , self.unk_token ) def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ ) -> str: UpperCamelCase :List[str] = [] UpperCamelCase :Any = '''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(__lowerCAmelCase ) + token UpperCamelCase :Optional[Any] = [] else: current_sub_tokens.append(__lowerCAmelCase ) out_string += self.sp_model.decode(__lowerCAmelCase ) return out_string.strip() def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = False ) -> Dict: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowerCAmelCase , token_ids_a=__lowerCAmelCase , already_has_special_tokens=__lowerCAmelCase ) UpperCamelCase :Any = [1] * len(self.prefix_tokens ) UpperCamelCase :List[str] = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(__lowerCAmelCase )) + suffix_ones return prefix_ones + ([0] * len(__lowerCAmelCase )) + ([0] * len(__lowerCAmelCase )) + suffix_ones def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> Union[str, Any]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def UpperCAmelCase ( self ) -> Tuple: UpperCamelCase :int = {self.convert_ids_to_tokens(__lowerCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> List[Any]: UpperCamelCase :Tuple = self.__dict__.copy() UpperCamelCase :Dict = None return state def __setstate__( self , SCREAMING_SNAKE_CASE_ ) -> Optional[int]: UpperCamelCase :Dict = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): UpperCamelCase :Optional[Any] = {} UpperCamelCase :str = load_spm(self.spm_file , self.sp_model_kwargs ) def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> List[str]: UpperCamelCase :str = Path(__lowerCAmelCase ) if not save_dir.is_dir(): raise OSError(F'''{save_directory} should be a directory''' ) UpperCamelCase :Optional[int] = save_dir / ( (filename_prefix + '''-''' if filename_prefix else '''''') + self.vocab_files_names['''vocab_file'''] ) UpperCamelCase :Optional[Any] = save_dir / ( (filename_prefix + '''-''' if filename_prefix else '''''') + self.vocab_files_names['''spm_file'''] ) save_json(self.encoder , __lowerCAmelCase ) if os.path.abspath(self.spm_file ) != os.path.abspath(__lowerCAmelCase ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , __lowerCAmelCase ) elif not os.path.isfile(self.spm_file ): with open(__lowerCAmelCase , '''wb''' ) as fi: UpperCamelCase :List[str] = self.sp_model.serialized_model_proto() fi.write(__lowerCAmelCase ) return (str(__lowerCAmelCase ), str(__lowerCAmelCase )) def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = "en" , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = "ro" , **SCREAMING_SNAKE_CASE_ , ) -> Union[str, Any]: UpperCamelCase :Optional[int] = src_lang UpperCamelCase :Any = tgt_lang self.set_src_lang_special_tokens(self.src_lang ) return super().prepare_seqaseq_batch(__lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ) def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) -> Optional[int]: if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) UpperCamelCase :Dict = src_lang UpperCamelCase :int = self(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase , **__lowerCAmelCase ) UpperCamelCase :Optional[Any] = self.get_lang_id(__lowerCAmelCase ) UpperCamelCase :int = tgt_lang_id return inputs def UpperCAmelCase ( self ) -> Optional[int]: self.set_src_lang_special_tokens(self.src_lang ) def UpperCAmelCase ( self ) -> Any: self.set_tgt_lang_special_tokens(self.tgt_lang ) def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: UpperCamelCase :Tuple = self.get_lang_token(__lowerCAmelCase ) UpperCamelCase :int = self.lang_token_to_id[lang_token] UpperCamelCase :int = [self.cur_lang_id] UpperCamelCase :Any = [self.eos_token_id] def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ ) -> Any: UpperCamelCase :Union[str, Any] = self.get_lang_token(__lowerCAmelCase ) UpperCamelCase :Union[str, Any] = self.lang_token_to_id[lang_token] UpperCamelCase :int = [self.cur_lang_id] UpperCamelCase :Optional[Any] = [self.eos_token_id] def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ ) -> Tuple: return self.lang_code_to_token[lang] def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ ) -> Any: UpperCamelCase :Optional[Any] = self.get_lang_token(__lowerCAmelCase ) return self.lang_token_to_id[lang_token] def _A ( SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Optional[Any] ): UpperCamelCase :Any = sentencepiece.SentencePieceProcessor(**__snake_case ) spm.Load(str(__snake_case ) ) return spm def _A ( SCREAMING_SNAKE_CASE__ : List[Any] ): with open(__snake_case , '''r''' ) as f: return json.load(__snake_case ) def _A ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[Any] ): with open(__snake_case , '''w''' ) as f: json.dump(__snake_case , __snake_case , indent=2 )
259
import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class __A ( lowerCAmelCase ): '''simple docstring''' lowerCAmelCase_ = (UnCLIPScheduler,) def __lowerCamelCase ( self , **__lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ = { '''num_train_timesteps''': 1_0_0_0, '''variance_type''': '''fixed_small_log''', '''clip_sample''': True, '''clip_sample_range''': 1.0, '''prediction_type''': '''epsilon''', } config.update(**__lowerCAmelCase ) return config def __lowerCamelCase ( self ): '''simple docstring''' for timesteps in [1, 5, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=__lowerCAmelCase ) def __lowerCamelCase ( self ): '''simple docstring''' for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=__lowerCAmelCase ) def __lowerCamelCase ( self ): '''simple docstring''' for clip_sample in [True, False]: self.check_over_configs(clip_sample=__lowerCAmelCase ) def __lowerCamelCase ( self ): '''simple docstring''' for clip_sample_range in [1, 5, 1_0, 2_0]: self.check_over_configs(clip_sample_range=__lowerCAmelCase ) def __lowerCamelCase ( self ): '''simple docstring''' for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=__lowerCAmelCase ) def __lowerCamelCase ( self ): '''simple docstring''' for time_step in [0, 5_0_0, 9_9_9]: for prev_timestep in [None, 5, 1_0_0, 2_5_0, 5_0_0, 7_5_0]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=__lowerCAmelCase , prev_timestep=__lowerCAmelCase ) def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = self.scheduler_classes[0] lowerCamelCase__ = self.get_scheduler_config(variance_type='''fixed_small_log''' ) lowerCamelCase__ = scheduler_class(**__lowerCAmelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0000E-10 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(4_8_7 ) - 0.054_9625 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(9_9_9 ) - 0.999_4987 ) ) < 1E-5 def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = self.scheduler_classes[0] lowerCamelCase__ = self.get_scheduler_config(variance_type='''learned_range''' ) lowerCamelCase__ = scheduler_class(**__lowerCAmelCase ) lowerCamelCase__ = 0.5 assert scheduler._get_variance(1 , predicted_variance=__lowerCAmelCase ) - -10.171_2790 < 1E-5 assert scheduler._get_variance(4_8_7 , predicted_variance=__lowerCAmelCase ) - -5.799_8052 < 1E-5 assert scheduler._get_variance(9_9_9 , predicted_variance=__lowerCAmelCase ) - -0.001_0011 < 1E-5 def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = self.scheduler_classes[0] lowerCamelCase__ = self.get_scheduler_config() lowerCamelCase__ = scheduler_class(**__lowerCAmelCase ) lowerCamelCase__ = scheduler.timesteps lowerCamelCase__ = self.dummy_model() lowerCamelCase__ = self.dummy_sample_deter lowerCamelCase__ = torch.manual_seed(0 ) for i, t in enumerate(__lowerCAmelCase ): # 1. predict noise residual lowerCamelCase__ = model(__lowerCAmelCase , __lowerCAmelCase ) # 2. predict previous mean of sample x_t-1 lowerCamelCase__ = scheduler.step(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , generator=__lowerCAmelCase ).prev_sample lowerCamelCase__ = pred_prev_sample lowerCamelCase__ = torch.sum(torch.abs(__lowerCAmelCase ) ) lowerCamelCase__ = torch.mean(torch.abs(__lowerCAmelCase ) ) assert abs(result_sum.item() - 252.268_2495 ) < 1E-2 assert abs(result_mean.item() - 0.328_4743 ) < 1E-3 def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = self.scheduler_classes[0] lowerCamelCase__ = self.get_scheduler_config() lowerCamelCase__ = scheduler_class(**__lowerCAmelCase ) scheduler.set_timesteps(2_5 ) lowerCamelCase__ = scheduler.timesteps lowerCamelCase__ = self.dummy_model() lowerCamelCase__ = self.dummy_sample_deter lowerCamelCase__ = torch.manual_seed(0 ) for i, t in enumerate(__lowerCAmelCase ): # 1. predict noise residual lowerCamelCase__ = model(__lowerCAmelCase , __lowerCAmelCase ) if i + 1 == timesteps.shape[0]: lowerCamelCase__ = None else: lowerCamelCase__ = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 lowerCamelCase__ = scheduler.step( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , prev_timestep=__lowerCAmelCase , generator=__lowerCAmelCase ).prev_sample lowerCamelCase__ = pred_prev_sample lowerCamelCase__ = torch.sum(torch.abs(__lowerCAmelCase ) ) lowerCamelCase__ = torch.mean(torch.abs(__lowerCAmelCase ) ) assert abs(result_sum.item() - 258.204_4983 ) < 1E-2 assert abs(result_mean.item() - 0.336_2038 ) < 1E-3 def __lowerCamelCase ( self ): '''simple docstring''' pass def __lowerCamelCase ( self ): '''simple docstring''' pass
209
0
# We ignore warnings about stepping the scheduler since we step it ourselves during gradient accumulation import warnings from .state import AcceleratorState, GradientState warnings.filterwarnings('ignore', category=UserWarning, module='torch.optim.lr_scheduler') class __lowerCamelCase : """simple docstring""" def __init__( self : List[str] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : bool = True , SCREAMING_SNAKE_CASE__ : bool = False ) -> Optional[Any]: lowerCAmelCase__ = scheduler lowerCAmelCase__ = optimizers if isinstance(UpperCamelCase_ , (list, tuple) ) else [optimizers] lowerCAmelCase__ = split_batches lowerCAmelCase__ = step_with_optimizer lowerCAmelCase__ = GradientState() def a ( self : Union[str, Any] , *SCREAMING_SNAKE_CASE__ : Optional[int] , **SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Dict: if not self.step_with_optimizer: # No link between scheduler and optimizer -> just step self.scheduler.step(*UpperCamelCase_ , **UpperCamelCase_ ) return # Otherwise, first make sure the optimizer was stepped. if not self.gradient_state.sync_gradients: if self.gradient_state.adjust_scheduler: self.scheduler._step_count += 1 return for opt in self.optimizers: if opt.step_was_skipped: return if self.split_batches: # Split batches -> the training dataloader batch size is not changed so one step per training step self.scheduler.step(*UpperCamelCase_ , **UpperCamelCase_ ) else: # Otherwise the training dataloader batch size was multiplied by `num_processes`, so we need to do # num_processes steps per training step lowerCAmelCase__ = AcceleratorState().num_processes for _ in range(UpperCamelCase_ ): # Special case when using OneCycle and `drop_last` was not used if hasattr(self.scheduler , "total_steps" ): if self.scheduler._step_count <= self.scheduler.total_steps: self.scheduler.step(*UpperCamelCase_ , **UpperCamelCase_ ) else: self.scheduler.step(*UpperCamelCase_ , **UpperCamelCase_ ) def a ( self : Any ) -> List[str]: return self.scheduler.get_last_lr() def a ( self : Tuple ) -> List[str]: return self.scheduler.state_dict() def a ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[str] ) -> List[Any]: self.scheduler.load_state_dict(UpperCamelCase_ ) def a ( self : Any ) -> Optional[Any]: return self.scheduler.get_lr() def a ( self : Any , *SCREAMING_SNAKE_CASE__ : List[str] , **SCREAMING_SNAKE_CASE__ : Any ) -> Any: return self.scheduler.print_lr(*UpperCamelCase_ , **UpperCamelCase_ )
355
import random def _A ( lowerCAmelCase_ : list , lowerCAmelCase_ : List[str] ): """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = [], [], [] for element in data: if element < pivot: less.append(lowerCAmelCase_ ) elif element > pivot: greater.append(lowerCAmelCase_ ) else: equal.append(lowerCAmelCase_ ) return less, equal, greater def _A ( lowerCAmelCase_ : list , lowerCAmelCase_ : int ): """simple docstring""" if index >= len(lowerCAmelCase_ ) or index < 0: return None lowerCAmelCase__ = items[random.randint(0 , len(lowerCAmelCase_ ) - 1 )] lowerCAmelCase__ = 0 lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = _partition(lowerCAmelCase_ , lowerCAmelCase_ ) lowerCAmelCase__ = len(lowerCAmelCase_ ) lowerCAmelCase__ = len(lowerCAmelCase_ ) # index is the pivot if m <= index < m + count: return pivot # must be in smaller elif m > index: return quick_select(lowerCAmelCase_ , lowerCAmelCase_ ) # must be in larger else: return quick_select(lowerCAmelCase_ , index - (m + count) )
221
0
'''simple docstring''' import pickle import numpy as np from matplotlib import pyplot as plt class __lowerCAmelCase : """simple docstring""" def __init__( self : str , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Any , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Dict=0.2 , lowerCAmelCase__ : Optional[int]=0.2 ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = bp_numa _UpperCamelCase = bp_numa _UpperCamelCase = bp_numa _UpperCamelCase = conva_get[:2] _UpperCamelCase = conva_get[2] _UpperCamelCase = size_pa _UpperCamelCase = rate_w _UpperCamelCase = rate_t _UpperCamelCase = [ np.mat(-1 * np.random.rand(self.conva[0] , self.conva[0] ) + 0.5 ) for i in range(self.conva[1] ) ] _UpperCamelCase = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 ) _UpperCamelCase = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 ) _UpperCamelCase = -2 * np.random.rand(self.conva[1] ) + 1 _UpperCamelCase = -2 * np.random.rand(self.num_bpa ) + 1 _UpperCamelCase = -2 * np.random.rand(self.num_bpa ) + 1 def snake_case__ ( self : List[Any] , lowerCAmelCase__ : str ) -> Any: '''simple docstring''' _UpperCamelCase = { '''num_bp1''': self.num_bpa, '''num_bp2''': self.num_bpa, '''num_bp3''': self.num_bpa, '''conv1''': self.conva, '''step_conv1''': self.step_conva, '''size_pooling1''': self.size_poolinga, '''rate_weight''': self.rate_weight, '''rate_thre''': self.rate_thre, '''w_conv1''': self.w_conva, '''wkj''': self.wkj, '''vji''': self.vji, '''thre_conv1''': self.thre_conva, '''thre_bp2''': self.thre_bpa, '''thre_bp3''': self.thre_bpa, } with open(lowerCAmelCase__ , '''wb''' ) as f: pickle.dump(lowerCAmelCase__ , lowerCAmelCase__ ) print(f"""Model saved: {save_path}""" ) @classmethod def snake_case__ ( cls : Union[str, Any] , lowerCAmelCase__ : Optional[int] ) -> str: '''simple docstring''' with open(lowerCAmelCase__ , '''rb''' ) as f: _UpperCamelCase = pickle.load(lowerCAmelCase__ ) # noqa: S301 _UpperCamelCase = model_dic.get('''conv1''' ) conv_get.append(model_dic.get('''step_conv1''' ) ) _UpperCamelCase = model_dic.get('''size_pooling1''' ) _UpperCamelCase = model_dic.get('''num_bp1''' ) _UpperCamelCase = model_dic.get('''num_bp2''' ) _UpperCamelCase = model_dic.get('''num_bp3''' ) _UpperCamelCase = model_dic.get('''rate_weight''' ) _UpperCamelCase = model_dic.get('''rate_thre''' ) # create model instance _UpperCamelCase = CNN(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # modify model parameter _UpperCamelCase = model_dic.get('''w_conv1''' ) _UpperCamelCase = model_dic.get('''wkj''' ) _UpperCamelCase = model_dic.get('''vji''' ) _UpperCamelCase = model_dic.get('''thre_conv1''' ) _UpperCamelCase = model_dic.get('''thre_bp2''' ) _UpperCamelCase = model_dic.get('''thre_bp3''' ) return conv_ins def snake_case__ ( self : Optional[Any] , lowerCAmelCase__ : Optional[Any] ) -> int: '''simple docstring''' return 1 / (1 + np.exp(-1 * x )) def snake_case__ ( self : List[Any] , lowerCAmelCase__ : Dict ) -> Any: '''simple docstring''' return round(lowerCAmelCase__ , 3 ) def snake_case__ ( self : str , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : int , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : str ) -> Dict: '''simple docstring''' _UpperCamelCase = convs[0] _UpperCamelCase = convs[1] _UpperCamelCase = np.shape(lowerCAmelCase__ )[0] # get the data slice of original image data, data_focus _UpperCamelCase = [] for i_focus in range(0 , size_data - size_conv + 1 , lowerCAmelCase__ ): for j_focus in range(0 , size_data - size_conv + 1 , lowerCAmelCase__ ): _UpperCamelCase = data[ i_focus : i_focus + size_conv, j_focus : j_focus + size_conv ] data_focus.append(lowerCAmelCase__ ) # calculate the feature map of every single kernel, and saved as list of matrix _UpperCamelCase = [] _UpperCamelCase = int((size_data - size_conv) / conv_step + 1 ) for i_map in range(lowerCAmelCase__ ): _UpperCamelCase = [] for i_focus in range(len(lowerCAmelCase__ ) ): _UpperCamelCase = ( np.sum(np.multiply(data_focus[i_focus] , w_convs[i_map] ) ) - thre_convs[i_map] ) featuremap.append(self.sig(lowerCAmelCase__ ) ) _UpperCamelCase = np.asmatrix(lowerCAmelCase__ ).reshape( lowerCAmelCase__ , lowerCAmelCase__ ) data_featuremap.append(lowerCAmelCase__ ) # expanding the data slice to One dimenssion _UpperCamelCase = [] for each_focus in data_focus: focusa_list.extend(self.Expand_Mat(lowerCAmelCase__ ) ) _UpperCamelCase = np.asarray(lowerCAmelCase__ ) return focus_list, data_featuremap def snake_case__ ( self : Optional[int] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : int="average_pool" ) -> Dict: '''simple docstring''' _UpperCamelCase = len(featuremaps[0] ) _UpperCamelCase = int(size_map / size_pooling ) _UpperCamelCase = [] for i_map in range(len(lowerCAmelCase__ ) ): _UpperCamelCase = featuremaps[i_map] _UpperCamelCase = [] for i_focus in range(0 , lowerCAmelCase__ , lowerCAmelCase__ ): for j_focus in range(0 , lowerCAmelCase__ , lowerCAmelCase__ ): _UpperCamelCase = feature_map[ i_focus : i_focus + size_pooling, j_focus : j_focus + size_pooling, ] if pooling_type == "average_pool": # average pooling map_pooled.append(np.average(lowerCAmelCase__ ) ) elif pooling_type == "max_pooling": # max pooling map_pooled.append(np.max(lowerCAmelCase__ ) ) _UpperCamelCase = np.asmatrix(lowerCAmelCase__ ).reshape(lowerCAmelCase__ , lowerCAmelCase__ ) featuremap_pooled.append(lowerCAmelCase__ ) return featuremap_pooled def snake_case__ ( self : Union[str, Any] , lowerCAmelCase__ : Optional[int] ) -> Dict: '''simple docstring''' _UpperCamelCase = [] for i in range(len(lowerCAmelCase__ ) ): _UpperCamelCase = np.shape(data[i] ) _UpperCamelCase = data[i].reshape(1 , shapes[0] * shapes[1] ) _UpperCamelCase = data_listed.getA().tolist()[0] data_expanded.extend(lowerCAmelCase__ ) _UpperCamelCase = np.asarray(lowerCAmelCase__ ) return data_expanded def snake_case__ ( self : Optional[int] , lowerCAmelCase__ : Optional[Any] ) -> List[str]: '''simple docstring''' _UpperCamelCase = np.asarray(lowerCAmelCase__ ) _UpperCamelCase = np.shape(lowerCAmelCase__ ) _UpperCamelCase = data_mat.reshape(1 , shapes[0] * shapes[1] ) return data_expanded def snake_case__ ( self : Tuple , lowerCAmelCase__ : str , lowerCAmelCase__ : Any , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Dict , lowerCAmelCase__ : str ) -> Tuple: '''simple docstring''' _UpperCamelCase = [] _UpperCamelCase = 0 for i_map in range(lowerCAmelCase__ ): _UpperCamelCase = np.ones((size_map, size_map) ) for i in range(0 , lowerCAmelCase__ , lowerCAmelCase__ ): for j in range(0 , lowerCAmelCase__ , lowerCAmelCase__ ): _UpperCamelCase = pd_pool[ i_pool ] _UpperCamelCase = i_pool + 1 _UpperCamelCase = np.multiply( lowerCAmelCase__ , np.multiply(out_map[i_map] , (1 - out_map[i_map]) ) ) pd_all.append(lowerCAmelCase__ ) return pd_all def snake_case__ ( self : Dict , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : int , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : str , lowerCAmelCase__ : List[Any]=bool ) -> Union[str, Any]: '''simple docstring''' print('''----------------------Start Training-------------------------''' ) print((''' - - Shape: Train_Data ''', np.shape(lowerCAmelCase__ )) ) print((''' - - Shape: Teach_Data ''', np.shape(lowerCAmelCase__ )) ) _UpperCamelCase = 0 _UpperCamelCase = [] _UpperCamelCase = 10000 while rp < n_repeat and mse >= error_accuracy: _UpperCamelCase = 0 print(f"""-------------Learning Time {rp}--------------""" ) for p in range(len(lowerCAmelCase__ ) ): # print('------------Learning Image: %d--------------'%p) _UpperCamelCase = np.asmatrix(datas_train[p] ) _UpperCamelCase = np.asarray(datas_teach[p] ) _UpperCamelCase , _UpperCamelCase = self.convolute( lowerCAmelCase__ , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) _UpperCamelCase = self.pooling(lowerCAmelCase__ , self.size_poolinga ) _UpperCamelCase = np.shape(lowerCAmelCase__ ) _UpperCamelCase = self._expand(lowerCAmelCase__ ) _UpperCamelCase = data_bp_input _UpperCamelCase = np.dot(lowerCAmelCase__ , self.vji.T ) - self.thre_bpa _UpperCamelCase = self.sig(lowerCAmelCase__ ) _UpperCamelCase = np.dot(lowerCAmelCase__ , self.wkj.T ) - self.thre_bpa _UpperCamelCase = self.sig(lowerCAmelCase__ ) # --------------Model Leaning ------------------------ # calculate error and gradient--------------- _UpperCamelCase = np.multiply( (data_teach - bp_outa) , np.multiply(lowerCAmelCase__ , (1 - bp_outa) ) ) _UpperCamelCase = np.multiply( np.dot(lowerCAmelCase__ , self.wkj ) , np.multiply(lowerCAmelCase__ , (1 - bp_outa) ) ) _UpperCamelCase = np.dot(lowerCAmelCase__ , self.vji ) _UpperCamelCase = pd_i_all / (self.size_poolinga * self.size_poolinga) _UpperCamelCase = pd_conva_pooled.T.getA().tolist() _UpperCamelCase = self._calculate_gradient_from_pool( lowerCAmelCase__ , lowerCAmelCase__ , shape_featuremapa[0] , shape_featuremapa[1] , self.size_poolinga , ) # weight and threshold learning process--------- # convolution layer for k_conv in range(self.conva[1] ): _UpperCamelCase = self._expand_mat(pd_conva_all[k_conv] ) _UpperCamelCase = self.rate_weight * np.dot(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCamelCase = self.w_conva[k_conv] + delta_w.reshape( (self.conva[0], self.conva[0]) ) _UpperCamelCase = ( self.thre_conva[k_conv] - np.sum(pd_conva_all[k_conv] ) * self.rate_thre ) # all connected layer _UpperCamelCase = self.wkj + pd_k_all.T * bp_outa * self.rate_weight _UpperCamelCase = self.vji + pd_j_all.T * bp_outa * self.rate_weight _UpperCamelCase = self.thre_bpa - pd_k_all * self.rate_thre _UpperCamelCase = self.thre_bpa - pd_j_all * self.rate_thre # calculate the sum error of all single image _UpperCamelCase = np.sum(abs(data_teach - bp_outa ) ) error_count += errors # print(' ----Teach ',data_teach) # print(' ----BP_output ',bp_out3) _UpperCamelCase = rp + 1 _UpperCamelCase = error_count / patterns all_mse.append(lowerCAmelCase__ ) def draw_error(): _UpperCamelCase = [error_accuracy for i in range(int(n_repeat * 1.2 ) )] plt.plot(lowerCAmelCase__ , '''+-''' ) plt.plot(lowerCAmelCase__ , '''r--''' ) plt.xlabel('''Learning Times''' ) plt.ylabel('''All_mse''' ) plt.grid(lowerCAmelCase__ , alpha=0.5 ) plt.show() print('''------------------Training Complished---------------------''' ) print((''' - - Training epoch: ''', rp, f""" - - Mse: {mse:.6f}""") ) if draw_e: draw_error() return mse def snake_case__ ( self : List[Any] , lowerCAmelCase__ : Union[str, Any] ) -> Tuple: '''simple docstring''' _UpperCamelCase = [] print('''-------------------Start Testing-------------------------''' ) print((''' - - Shape: Test_Data ''', np.shape(lowerCAmelCase__ )) ) for p in range(len(lowerCAmelCase__ ) ): _UpperCamelCase = np.asmatrix(datas_test[p] ) _UpperCamelCase , _UpperCamelCase = self.convolute( lowerCAmelCase__ , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) _UpperCamelCase = self.pooling(lowerCAmelCase__ , self.size_poolinga ) _UpperCamelCase = self._expand(lowerCAmelCase__ ) _UpperCamelCase = data_bp_input _UpperCamelCase = bp_outa * self.vji.T - self.thre_bpa _UpperCamelCase = self.sig(lowerCAmelCase__ ) _UpperCamelCase = bp_outa * self.wkj.T - self.thre_bpa _UpperCamelCase = self.sig(lowerCAmelCase__ ) produce_out.extend(bp_outa.getA().tolist() ) _UpperCamelCase = [list(map(self.do_round , lowerCAmelCase__ ) ) for each in produce_out] return np.asarray(lowerCAmelCase__ ) def snake_case__ ( self : Union[str, Any] , lowerCAmelCase__ : Any ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = np.asmatrix(lowerCAmelCase__ ) _UpperCamelCase , _UpperCamelCase = self.convolute( lowerCAmelCase__ , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) _UpperCamelCase = self.pooling(lowerCAmelCase__ , self.size_poolinga ) return data_conveda, data_pooleda if __name__ == "__main__": pass
324
'''simple docstring''' import argparse import json import logging import os import shutil import sys import tempfile import unittest from unittest import mock import torch from accelerate.utils import write_basic_config from transformers.testing_utils import TestCasePlus, get_gpu_count, run_command, slow, torch_device from transformers.utils import is_apex_available logging.basicConfig(level=logging.DEBUG) lowercase__ : Optional[Any] = logging.getLogger() def a__ ( ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase = argparse.ArgumentParser() parser.add_argument('''-f''' ) _UpperCamelCase = parser.parse_args() return args.f def a__ ( lowercase : Dict ) -> int: """simple docstring""" _UpperCamelCase = {} _UpperCamelCase = os.path.join(lowercase, '''all_results.json''' ) if os.path.exists(lowercase ): with open(lowercase, '''r''' ) as f: _UpperCamelCase = json.load(lowercase ) else: raise ValueError(F"""can't find {path}""" ) return results def a__ ( ) -> Optional[Any]: """simple docstring""" _UpperCamelCase = torch.cuda.is_available() and torch_device == '''cuda''' return is_using_cuda and is_apex_available() lowercase__ : str = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" @classmethod def snake_case__ ( cls : Optional[int] ) -> List[Any]: '''simple docstring''' _UpperCamelCase = tempfile.mkdtemp() _UpperCamelCase = os.path.join(cls.tmpdir , '''default_config.yml''' ) write_basic_config(save_location=cls.configPath ) _UpperCamelCase = ['''accelerate''', '''launch''', '''--config_file''', cls.configPath] @classmethod def snake_case__ ( cls : Tuple ) -> int: '''simple docstring''' shutil.rmtree(cls.tmpdir ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def snake_case__ ( self : Any ) -> Dict: '''simple docstring''' _UpperCamelCase = self.get_auto_remove_tmp_dir() _UpperCamelCase = f""" {self.examples_dir}/pytorch/text-classification/run_glue_no_trainer.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --seed=42 --checkpointing_steps epoch --with_tracking """.split() if is_cuda_and_apex_available(): testargs.append('''--fp16''' ) run_command(self._launch_args + testargs ) _UpperCamelCase = get_results(lowerCAmelCase__ ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 ) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''glue_no_trainer''' ) ) ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def snake_case__ ( self : Union[str, Any] ) -> int: '''simple docstring''' _UpperCamelCase = self.get_auto_remove_tmp_dir() _UpperCamelCase = f""" {self.examples_dir}/pytorch/language-modeling/run_clm_no_trainer.py --model_name_or_path distilgpt2 --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --block_size 128 --per_device_train_batch_size 5 --per_device_eval_batch_size 5 --num_train_epochs 2 --output_dir {tmp_dir} --checkpointing_steps epoch --with_tracking """.split() if torch.cuda.device_count() > 1: # Skipping because there are not enough batches to train the model + would need a drop_last to work. return run_command(self._launch_args + testargs ) _UpperCamelCase = get_results(lowerCAmelCase__ ) self.assertLess(result['''perplexity'''] , 100 ) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''clm_no_trainer''' ) ) ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def snake_case__ ( self : Optional[int] ) -> Tuple: '''simple docstring''' _UpperCamelCase = self.get_auto_remove_tmp_dir() _UpperCamelCase = f""" {self.examples_dir}/pytorch/language-modeling/run_mlm_no_trainer.py --model_name_or_path distilroberta-base --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --output_dir {tmp_dir} --num_train_epochs=1 --checkpointing_steps epoch --with_tracking """.split() run_command(self._launch_args + testargs ) _UpperCamelCase = get_results(lowerCAmelCase__ ) self.assertLess(result['''perplexity'''] , 42 ) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''mlm_no_trainer''' ) ) ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def snake_case__ ( self : Union[str, Any] ) -> Any: '''simple docstring''' _UpperCamelCase = 7 if get_gpu_count() > 1 else 2 _UpperCamelCase = self.get_auto_remove_tmp_dir() _UpperCamelCase = f""" {self.examples_dir}/pytorch/token-classification/run_ner_no_trainer.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/conll/sample.json --validation_file tests/fixtures/tests_samples/conll/sample.json --output_dir {tmp_dir} --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=2 --num_train_epochs={epochs} --seed 7 --checkpointing_steps epoch --with_tracking """.split() run_command(self._launch_args + testargs ) _UpperCamelCase = get_results(lowerCAmelCase__ ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 ) self.assertLess(result['''train_loss'''] , 0.5 ) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''ner_no_trainer''' ) ) ) @unittest.skip(reason='''Fix me @muellerzr''' ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def snake_case__ ( self : int ) -> int: '''simple docstring''' _UpperCamelCase = self.get_auto_remove_tmp_dir() _UpperCamelCase = f""" {self.examples_dir}/pytorch/question-answering/run_qa_no_trainer.py --model_name_or_path bert-base-uncased --version_2_with_negative --train_file tests/fixtures/tests_samples/SQUAD/sample.json --validation_file tests/fixtures/tests_samples/SQUAD/sample.json --output_dir {tmp_dir} --seed=42 --max_train_steps=10 --num_warmup_steps=2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --checkpointing_steps epoch --with_tracking """.split() run_command(self._launch_args + testargs ) _UpperCamelCase = get_results(lowerCAmelCase__ ) # Because we use --version_2_with_negative the testing script uses SQuAD v2 metrics. self.assertGreaterEqual(result['''eval_f1'''] , 28 ) self.assertGreaterEqual(result['''eval_exact'''] , 28 ) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''qa_no_trainer''' ) ) ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def snake_case__ ( self : Union[str, Any] ) -> List[str]: '''simple docstring''' _UpperCamelCase = self.get_auto_remove_tmp_dir() _UpperCamelCase = f""" {self.examples_dir}/pytorch/multiple-choice/run_swag_no_trainer.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/swag/sample.json --validation_file tests/fixtures/tests_samples/swag/sample.json --output_dir {tmp_dir} --max_train_steps=20 --num_warmup_steps=2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --with_tracking """.split() run_command(self._launch_args + testargs ) _UpperCamelCase = get_results(lowerCAmelCase__ ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.8 ) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''swag_no_trainer''' ) ) ) @slow @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def snake_case__ ( self : List[str] ) -> int: '''simple docstring''' _UpperCamelCase = self.get_auto_remove_tmp_dir() _UpperCamelCase = f""" {self.examples_dir}/pytorch/summarization/run_summarization_no_trainer.py --model_name_or_path t5-small --train_file tests/fixtures/tests_samples/xsum/sample.json --validation_file tests/fixtures/tests_samples/xsum/sample.json --output_dir {tmp_dir} --max_train_steps=50 --num_warmup_steps=8 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --checkpointing_steps epoch --with_tracking """.split() run_command(self._launch_args + testargs ) _UpperCamelCase = get_results(lowerCAmelCase__ ) self.assertGreaterEqual(result['''eval_rouge1'''] , 10 ) self.assertGreaterEqual(result['''eval_rouge2'''] , 2 ) self.assertGreaterEqual(result['''eval_rougeL'''] , 7 ) self.assertGreaterEqual(result['''eval_rougeLsum'''] , 7 ) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''summarization_no_trainer''' ) ) ) @slow @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def snake_case__ ( self : str ) -> Optional[int]: '''simple docstring''' _UpperCamelCase = self.get_auto_remove_tmp_dir() _UpperCamelCase = f""" {self.examples_dir}/pytorch/translation/run_translation_no_trainer.py --model_name_or_path sshleifer/student_marian_en_ro_6_1 --source_lang en --target_lang ro --train_file tests/fixtures/tests_samples/wmt16/sample.json --validation_file tests/fixtures/tests_samples/wmt16/sample.json --output_dir {tmp_dir} --max_train_steps=50 --num_warmup_steps=8 --num_beams=6 --learning_rate=3e-3 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --source_lang en_XX --target_lang ro_RO --checkpointing_steps epoch --with_tracking """.split() run_command(self._launch_args + testargs ) _UpperCamelCase = get_results(lowerCAmelCase__ ) self.assertGreaterEqual(result['''eval_bleu'''] , 30 ) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''translation_no_trainer''' ) ) ) @slow def snake_case__ ( self : Any ) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = logging.StreamHandler(sys.stdout ) logger.addHandler(lowerCAmelCase__ ) _UpperCamelCase = self.get_auto_remove_tmp_dir() _UpperCamelCase = f""" {self.examples_dir}/pytorch/semantic-segmentation/run_semantic_segmentation_no_trainer.py --dataset_name huggingface/semantic-segmentation-test-sample --output_dir {tmp_dir} --max_train_steps=10 --num_warmup_steps=2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --checkpointing_steps epoch """.split() run_command(self._launch_args + testargs ) _UpperCamelCase = get_results(lowerCAmelCase__ ) self.assertGreaterEqual(result['''eval_overall_accuracy'''] , 0.10 ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def snake_case__ ( self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = self.get_auto_remove_tmp_dir() _UpperCamelCase = f""" {self.examples_dir}/pytorch/image-classification/run_image_classification_no_trainer.py --model_name_or_path google/vit-base-patch16-224-in21k --dataset_name hf-internal-testing/cats_vs_dogs_sample --learning_rate 1e-4 --per_device_train_batch_size 2 --per_device_eval_batch_size 1 --max_train_steps 2 --train_val_split 0.1 --seed 42 --output_dir {tmp_dir} --with_tracking --checkpointing_steps 1 """.split() if is_cuda_and_apex_available(): testargs.append('''--fp16''' ) run_command(self._launch_args + testargs ) _UpperCamelCase = get_results(lowerCAmelCase__ ) # The base model scores a 25% self.assertGreaterEqual(result['''eval_accuracy'''] , 0.6 ) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''step_1''' ) ) ) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''image_classification_no_trainer''' ) ) )
324
1
'''simple docstring''' from __future__ import annotations from numpy import array, cos, cross, floataa, radians, sin from numpy.typing import NDArray def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = False ): if radian_mode: return [magnitude * cos(UpperCAmelCase_ ), magnitude * sin(UpperCAmelCase_ )] return [magnitude * cos(radians(UpperCAmelCase_ ) ), magnitude * sin(radians(UpperCAmelCase_ ) )] def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 10**-1 ): UpperCAmelCase : NDArray[floataa] = cross(UpperCAmelCase_ , UpperCAmelCase_ ) UpperCAmelCase : float = sum(UpperCAmelCase_ ) return abs(UpperCAmelCase_ ) < eps if __name__ == "__main__": # Test to check if it works lowercase__ = array( [ polar_force(718.4, 180 - 30), polar_force(879.54, 45), polar_force(100, -90), ] ) lowercase__ = array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem 1 in image_data/2D_problems.jpg lowercase__ = array( [ polar_force(30 * 9.81, 15), polar_force(215, 180 - 45), polar_force(264, 90 - 30), ] ) lowercase__ = array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem in image_data/2D_problems_1.jpg lowercase__ = array([[0, -2000], [0, -1200], [0, 15600], [0, -12400]]) lowercase__ = array([[0, 0], [6, 0], [10, 0], [12, 0]]) assert in_static_equilibrium(forces, location) import doctest doctest.testmod()
280
'''simple docstring''' def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : int = len(UpperCAmelCase_ ) UpperCAmelCase : int = len(UpperCAmelCase_ ) UpperCAmelCase : int = ( first_str_length if first_str_length > second_str_length else second_str_length ) UpperCAmelCase : list = [] for char_count in range(UpperCAmelCase_ ): if char_count < first_str_length: output_list.append(first_str[char_count] ) if char_count < second_str_length: output_list.append(second_str[char_count] ) return "".join(UpperCAmelCase_ ) if __name__ == "__main__": print(alternative_string_arrange("AB", "XYZ"), end=" ")
280
1
import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all image processors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...image_processing_utils import ImageProcessingMixin from ...utils import CONFIG_NAME, IMAGE_PROCESSOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) SCREAMING_SNAKE_CASE :Union[str, Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE :List[Any] = OrderedDict( [ ('align', 'EfficientNetImageProcessor'), ('beit', 'BeitImageProcessor'), ('bit', 'BitImageProcessor'), ('blip', 'BlipImageProcessor'), ('blip-2', 'BlipImageProcessor'), ('bridgetower', 'BridgeTowerImageProcessor'), ('chinese_clip', 'ChineseCLIPImageProcessor'), ('clip', 'CLIPImageProcessor'), ('clipseg', 'ViTImageProcessor'), ('conditional_detr', 'ConditionalDetrImageProcessor'), ('convnext', 'ConvNextImageProcessor'), ('convnextv2', 'ConvNextImageProcessor'), ('cvt', 'ConvNextImageProcessor'), ('data2vec-vision', 'BeitImageProcessor'), ('deformable_detr', 'DeformableDetrImageProcessor'), ('deit', 'DeiTImageProcessor'), ('deta', 'DetaImageProcessor'), ('detr', 'DetrImageProcessor'), ('dinat', 'ViTImageProcessor'), ('donut-swin', 'DonutImageProcessor'), ('dpt', 'DPTImageProcessor'), ('efficientformer', 'EfficientFormerImageProcessor'), ('efficientnet', 'EfficientNetImageProcessor'), ('flava', 'FlavaImageProcessor'), ('focalnet', 'BitImageProcessor'), ('git', 'CLIPImageProcessor'), ('glpn', 'GLPNImageProcessor'), ('groupvit', 'CLIPImageProcessor'), ('imagegpt', 'ImageGPTImageProcessor'), ('instructblip', 'BlipImageProcessor'), ('layoutlmv2', 'LayoutLMv2ImageProcessor'), ('layoutlmv3', 'LayoutLMv3ImageProcessor'), ('levit', 'LevitImageProcessor'), ('mask2former', 'Mask2FormerImageProcessor'), ('maskformer', 'MaskFormerImageProcessor'), ('mgp-str', 'ViTImageProcessor'), ('mobilenet_v1', 'MobileNetV1ImageProcessor'), ('mobilenet_v2', 'MobileNetV2ImageProcessor'), ('mobilevit', 'MobileViTImageProcessor'), ('mobilevit', 'MobileViTImageProcessor'), ('mobilevitv2', 'MobileViTImageProcessor'), ('nat', 'ViTImageProcessor'), ('oneformer', 'OneFormerImageProcessor'), ('owlvit', 'OwlViTImageProcessor'), ('perceiver', 'PerceiverImageProcessor'), ('pix2struct', 'Pix2StructImageProcessor'), ('poolformer', 'PoolFormerImageProcessor'), ('regnet', 'ConvNextImageProcessor'), ('resnet', 'ConvNextImageProcessor'), ('sam', 'SamImageProcessor'), ('segformer', 'SegformerImageProcessor'), ('swiftformer', 'ViTImageProcessor'), ('swin', 'ViTImageProcessor'), ('swin2sr', 'Swin2SRImageProcessor'), ('swinv2', 'ViTImageProcessor'), ('table-transformer', 'DetrImageProcessor'), ('timesformer', 'VideoMAEImageProcessor'), ('tvlt', 'TvltImageProcessor'), ('upernet', 'SegformerImageProcessor'), ('van', 'ConvNextImageProcessor'), ('videomae', 'VideoMAEImageProcessor'), ('vilt', 'ViltImageProcessor'), ('vit', 'ViTImageProcessor'), ('vit_hybrid', 'ViTHybridImageProcessor'), ('vit_mae', 'ViTImageProcessor'), ('vit_msn', 'ViTImageProcessor'), ('xclip', 'CLIPImageProcessor'), ('yolos', 'YolosImageProcessor'), ] ) SCREAMING_SNAKE_CASE :Optional[int] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, IMAGE_PROCESSOR_MAPPING_NAMES) def UpperCAmelCase ( a_ ) -> Tuple: """simple docstring""" for module_name, extractors in IMAGE_PROCESSOR_MAPPING_NAMES.items(): if class_name in extractors: __A = model_type_to_module_name(a_ ) __A = importlib.import_module(F'''.{module_name}''' , "transformers.models" ) try: return getattr(a_ , a_ ) except AttributeError: continue for _, extractor in IMAGE_PROCESSOR_MAPPING._extra_content.items(): if getattr(a_ , "__name__" , a_ ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. __A = importlib.import_module("transformers" ) if hasattr(a_ , a_ ): return getattr(a_ , a_ ) return None def UpperCAmelCase ( a_ , a_ = None , a_ = False , a_ = False , a_ = None , a_ = None , a_ = None , a_ = False , **a_ , ) -> List[str]: """simple docstring""" __A = get_file_from_repo( a_ , a_ , cache_dir=a_ , force_download=a_ , resume_download=a_ , proxies=a_ , use_auth_token=a_ , revision=a_ , local_files_only=a_ , ) if resolved_config_file is None: logger.info( "Could not locate the image processor configuration file, will try to use the model config instead." ) return {} with open(a_ , encoding="utf-8" ) as reader: return json.load(a_ ) class UpperCAmelCase : '''simple docstring''' def __init__( self : Optional[int] ): raise EnvironmentError( "AutoImageProcessor is designed to be instantiated " "using the `AutoImageProcessor.from_pretrained(pretrained_model_name_or_path)` method." ) @classmethod @replace_list_option_in_docstrings(A ) def UpperCamelCase_ ( cls : Union[str, Any] ,A : Tuple ,**A : Optional[int] ): __A = kwargs.pop("config" ,A ) __A = kwargs.pop("trust_remote_code" ,A ) __A = True __A , __A = ImageProcessingMixin.get_image_processor_dict(A ,**A ) __A = config_dict.get("image_processor_type" ,A ) __A = None if "AutoImageProcessor" in config_dict.get("auto_map" ,{} ): __A = config_dict["auto_map"]["AutoImageProcessor"] # If we still don't have the image processor class, check if we're loading from a previous feature extractor config # and if so, infer the image processor class from there. if image_processor_class is None and image_processor_auto_map is None: __A = config_dict.pop("feature_extractor_type" ,A ) if feature_extractor_class is not None: logger.warning( "Could not find image processor class in the image processor config or the model config. Loading" " based on pattern matching with the model's feature extractor configuration." ) __A = feature_extractor_class.replace("FeatureExtractor" ,"ImageProcessor" ) if "AutoFeatureExtractor" in config_dict.get("auto_map" ,{} ): __A = config_dict["auto_map"]["AutoFeatureExtractor"] __A = feature_extractor_auto_map.replace("FeatureExtractor" ,"ImageProcessor" ) logger.warning( "Could not find image processor auto map in the image processor config or the model config." " Loading based on pattern matching with the model's feature extractor configuration." ) # If we don't find the image processor class in the image processor config, let's try the model config. if image_processor_class is None and image_processor_auto_map is None: if not isinstance(A ,A ): __A = AutoConfig.from_pretrained(A ,**A ) # It could be in `config.image_processor_type`` __A = getattr(A ,"image_processor_type" ,A ) if hasattr(A ,"auto_map" ) and "AutoImageProcessor" in config.auto_map: __A = config.auto_map["AutoImageProcessor"] if image_processor_class is not None: __A = image_processor_class_from_name(A ) __A = image_processor_auto_map is not None __A = image_processor_class is not None or type(A ) in IMAGE_PROCESSOR_MAPPING __A = resolve_trust_remote_code( A ,A ,A ,A ) if has_remote_code and trust_remote_code: __A = get_class_from_dynamic_module( A ,A ,**A ) __A = kwargs.pop("code_revision" ,A ) if os.path.isdir(A ): image_processor_class.register_for_auto_class() return image_processor_class.from_dict(A ,**A ) elif image_processor_class is not None: return image_processor_class.from_dict(A ,**A ) # Last try: we use the IMAGE_PROCESSOR_MAPPING. elif type(A ) in IMAGE_PROCESSOR_MAPPING: __A = IMAGE_PROCESSOR_MAPPING[type(A )] return image_processor_class.from_dict(A ,**A ) raise ValueError( f'''Unrecognized image processor in {pretrained_model_name_or_path}. Should have a ''' f'''`image_processor_type` key in its {IMAGE_PROCESSOR_NAME} of {CONFIG_NAME}, or one of the following ''' f'''`model_type` keys in its {CONFIG_NAME}: {', '.join(c for c in IMAGE_PROCESSOR_MAPPING_NAMES.keys() )}''' ) @staticmethod def UpperCamelCase_ ( A : Optional[Any] ,A : Any ): IMAGE_PROCESSOR_MAPPING.register(A ,A )
15
import argparse import os import shutil import torch from emmental.modules import MagnitudeBinarizer, ThresholdBinarizer, TopKBinarizer def a_ ( __lowercase : Dict ) -> List[Any]: _snake_case = args.pruning_method _snake_case = args.threshold _snake_case = args.model_name_or_path.rstrip('/' ) _snake_case = args.target_model_path print(f'''Load fine-pruned model from {model_name_or_path}''' ) _snake_case = torch.load(os.path.join(__lowercase , 'pytorch_model.bin' ) ) _snake_case = {} for name, tensor in model.items(): if "embeddings" in name or "LayerNorm" in name or "pooler" in name: _snake_case = tensor print(f'''Copied layer {name}''' ) elif "classifier" in name or "qa_output" in name: _snake_case = tensor print(f'''Copied layer {name}''' ) elif "bias" in name: _snake_case = tensor print(f'''Copied layer {name}''' ) else: if pruning_method == "magnitude": _snake_case = MagnitudeBinarizer.apply(inputs=__lowercase , threshold=__lowercase ) _snake_case = tensor * mask print(f'''Pruned layer {name}''' ) elif pruning_method == "topK": if "mask_scores" in name: continue _snake_case = name[:-6] _snake_case = model[f'''{prefix_}mask_scores'''] _snake_case = TopKBinarizer.apply(__lowercase , __lowercase ) _snake_case = tensor * mask print(f'''Pruned layer {name}''' ) elif pruning_method == "sigmoied_threshold": if "mask_scores" in name: continue _snake_case = name[:-6] _snake_case = model[f'''{prefix_}mask_scores'''] _snake_case = ThresholdBinarizer.apply(__lowercase , __lowercase , __lowercase ) _snake_case = tensor * mask print(f'''Pruned layer {name}''' ) elif pruning_method == "l0": if "mask_scores" in name: continue _snake_case = name[:-6] _snake_case = model[f'''{prefix_}mask_scores'''] _snake_case , _snake_case = -0.1, 1.1 _snake_case = torch.sigmoid(__lowercase ) _snake_case = s * (r - l) + l _snake_case = s_bar.clamp(min=0.0 , max=1.0 ) _snake_case = tensor * mask print(f'''Pruned layer {name}''' ) else: raise ValueError('Unknown pruning method' ) if target_model_path is None: _snake_case = os.path.join( os.path.dirname(__lowercase ) , f'''bertarized_{os.path.basename(__lowercase )}''' ) if not os.path.isdir(__lowercase ): shutil.copytree(__lowercase , __lowercase ) print(f'''\nCreated folder {target_model_path}''' ) torch.save(__lowercase , os.path.join(__lowercase , 'pytorch_model.bin' ) ) print('\nPruned model saved! See you later!' ) if __name__ == "__main__": _lowerCamelCase : Dict = argparse.ArgumentParser() parser.add_argument( '''--pruning_method''', choices=['''l0''', '''magnitude''', '''topK''', '''sigmoied_threshold'''], type=str, required=True, help=( '''Pruning Method (l0 = L0 regularization, magnitude = Magnitude pruning, topK = Movement pruning,''' ''' sigmoied_threshold = Soft movement pruning)''' ), ) parser.add_argument( '''--threshold''', type=float, required=False, help=( '''For `magnitude` and `topK`, it is the level of remaining weights (in %) in the fine-pruned model.''' '''For `sigmoied_threshold`, it is the threshold \tau against which the (sigmoied) scores are compared.''' '''Not needed for `l0`''' ), ) parser.add_argument( '''--model_name_or_path''', type=str, required=True, help='''Folder containing the model that was previously fine-pruned''', ) parser.add_argument( '''--target_model_path''', default=None, type=str, required=False, help='''Folder containing the model that was previously fine-pruned''', ) _lowerCamelCase : int = parser.parse_args() main(args)
282
0
"""simple docstring""" import unittest from transformers import BigBirdConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax from transformers.models.big_bird.modeling_flax_big_bird import ( FlaxBigBirdForCausalLM, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForPreTraining, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, FlaxBigBirdModel, ) class lowerCAmelCase__ ( unittest.TestCase ): def __init__( self : List[str] , snake_case__ : Optional[Any] , snake_case__ : Any=2 , snake_case__ : Optional[Any]=5_6 , snake_case__ : Tuple=True , snake_case__ : List[str]=True , snake_case__ : str=True , snake_case__ : List[str]=True , snake_case__ : Optional[Any]=9_9 , snake_case__ : Optional[int]=3_2 , snake_case__ : List[str]=2 , snake_case__ : List[str]=2 , snake_case__ : Union[str, Any]=7 , snake_case__ : Optional[int]="gelu_new" , snake_case__ : Optional[Any]=0.1 , snake_case__ : int=0.1 , snake_case__ : int=5_1_2 , snake_case__ : Union[str, Any]=1_6 , snake_case__ : Optional[Any]=2 , snake_case__ : List[Any]=0.02 , snake_case__ : Optional[Any]=4 , snake_case__ : str="block_sparse" , snake_case__ : Union[str, Any]=True , snake_case__ : Union[str, Any]=False , snake_case__ : Union[str, Any]=2 , snake_case__ : Dict=3 , ): '''simple docstring''' UpperCAmelCase__ : Dict = parent UpperCAmelCase__ : Optional[int] = batch_size UpperCAmelCase__ : List[str] = seq_length UpperCAmelCase__ : Optional[Any] = is_training UpperCAmelCase__ : List[str] = use_attention_mask UpperCAmelCase__ : List[Any] = use_token_type_ids UpperCAmelCase__ : Union[str, Any] = use_labels UpperCAmelCase__ : Tuple = vocab_size UpperCAmelCase__ : Dict = hidden_size UpperCAmelCase__ : List[str] = num_hidden_layers UpperCAmelCase__ : str = num_attention_heads UpperCAmelCase__ : List[str] = intermediate_size UpperCAmelCase__ : Optional[Any] = hidden_act UpperCAmelCase__ : List[Any] = hidden_dropout_prob UpperCAmelCase__ : Optional[Any] = attention_probs_dropout_prob UpperCAmelCase__ : int = max_position_embeddings UpperCAmelCase__ : Dict = type_vocab_size UpperCAmelCase__ : Optional[Any] = type_sequence_label_size UpperCAmelCase__ : Optional[Any] = initializer_range UpperCAmelCase__ : int = num_choices UpperCAmelCase__ : List[Any] = rescale_embeddings UpperCAmelCase__ : Tuple = attention_type UpperCAmelCase__ : Union[str, Any] = use_bias UpperCAmelCase__ : Optional[int] = block_size UpperCAmelCase__ : List[Any] = num_random_blocks def __a ( self : int ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase__ : str = None if self.use_attention_mask: UpperCAmelCase__ : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase__ : List[str] = None if self.use_token_type_ids: UpperCAmelCase__ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase__ : Any = BigBirdConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case__ , initializer_range=self.initializer_range , attention_type=self.attention_type , block_size=self.block_size , num_random_blocks=self.num_random_blocks , use_bias=self.use_bias , rescale_embeddings=self.rescale_embeddings , ) return config, input_ids, token_type_ids, attention_mask def __a ( self : int ): '''simple docstring''' UpperCAmelCase__ : List[Any] = self.prepare_config_and_inputs() UpperCAmelCase__ : List[str] = config_and_inputs UpperCAmelCase__ : int = { "input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask, } return config, inputs_dict @require_flax class lowerCAmelCase__ ( __magic_name__ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ =( ( FlaxBigBirdForCausalLM, FlaxBigBirdModel, FlaxBigBirdForPreTraining, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, ) if is_flax_available() else () ) SCREAMING_SNAKE_CASE_ =False SCREAMING_SNAKE_CASE_ =False def __a ( self : int ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = FlaxBigBirdModelTester(self ) @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def __a ( self : Union[str, Any] ): '''simple docstring''' super().test_from_pretrained_save_pretrained() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def __a ( self : List[Any] ): '''simple docstring''' super().test_from_pretrained_with_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def __a ( self : Tuple ): '''simple docstring''' super().test_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def __a ( self : int ): '''simple docstring''' super().test_hidden_states_output() @slow def __a ( self : List[Any] ): '''simple docstring''' for model_class_name in self.all_model_classes: UpperCAmelCase__ : Union[str, Any] = model_class_name.from_pretrained("google/bigbird-roberta-base" ) self.assertIsNotNone(snake_case__ ) def __a ( self : Optional[int] ): '''simple docstring''' if self.test_attn_probs: super().test_attention_outputs() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def __a ( self : str ): '''simple docstring''' UpperCAmelCase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCAmelCase__ : List[str] = self._prepare_for_class(snake_case__ , snake_case__ ) UpperCAmelCase__ : str = model_class(snake_case__ ) @jax.jit def model_jitted(snake_case__ : str , snake_case__ : List[str]=None , **snake_case__ : Optional[int] ): return model(input_ids=snake_case__ , attention_mask=snake_case__ , **snake_case__ ) with self.subTest("JIT Enabled" ): UpperCAmelCase__ : List[str] = model_jitted(**snake_case__ ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): UpperCAmelCase__ : List[str] = model_jitted(**snake_case__ ).to_tuple() self.assertEqual(len(snake_case__ ) , len(snake_case__ ) ) for jitted_output, output in zip(snake_case__ , snake_case__ ): self.assertEqual(jitted_output.shape , output.shape ) def __a ( self : Tuple , snake_case__ : int , snake_case__ : Optional[Any] , snake_case__ : Optional[int] , snake_case__ : Optional[Any]=1e-5 , snake_case__ : str="outputs" , snake_case__ : Any=None ): '''simple docstring''' # `bigbird_block_sparse_attention` in `FlaxBigBird` returns `attention_probs = None`, while in PyTorch version, # an effort was done to return `attention_probs` (yet to be verified). if name.startswith("outputs.attentions" ): return else: super().check_pt_flax_outputs(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ )
370
"""simple docstring""" import qiskit def SCREAMING_SNAKE_CASE__ ( snake_case : int , snake_case : int )-> qiskit.result.counts.Counts: '''simple docstring''' UpperCAmelCase__ : str = qiskit.Aer.get_backend("aer_simulator" ) UpperCAmelCase__ : Optional[int] = qiskit.QuantumCircuit(4 , 2 ) # encode inputs in qubits 0 and 1 if bita == 1: qc_ha.x(0 ) if bita == 1: qc_ha.x(1 ) qc_ha.barrier() # use cnots to write XOR of the inputs on qubit2 qc_ha.cx(0 , 2 ) qc_ha.cx(1 , 2 ) # use ccx / toffoli gate to write AND of the inputs on qubit3 qc_ha.ccx(0 , 1 , 3 ) qc_ha.barrier() # extract outputs qc_ha.measure(2 , 0 ) # extract XOR value qc_ha.measure(3 , 1 ) # extract AND value # Execute the circuit on the qasm simulator UpperCAmelCase__ : Optional[int] = qiskit.execute(snake_case , snake_case , shots=1000 ) # Return the histogram data of the results of the experiment return job.result().get_counts(snake_case ) if __name__ == "__main__": _lowerCAmelCase : Optional[Any] = half_adder(1, 1) print(F"""Half Adder Output Qubit Counts: {counts}""")
298
0
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging A_ : Dict = logging.get_logger(__name__) A_ : Tuple = { 'asapp/sew-d-tiny-100k': 'https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json', # See all SEW-D models at https://huggingface.co/models?filter=sew-d } class _a (__magic_name__ ): '''simple docstring''' UpperCAmelCase__: List[Any] = '''sew-d''' def __init__( self , A__=32 , A__=768 , A__=12 , A__=12 , A__=3072 , A__=2 , A__=512 , A__=256 , A__=True , A__=True , A__=("p2c", "c2p") , A__="layer_norm" , A__="gelu_python" , A__=0.1 , A__=0.1 , A__=0.1 , A__=0.0 , A__=0.1 , A__=0.0_2 , A__=1e-7 , A__=1e-5 , A__="group" , A__="gelu" , A__=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , A__=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , A__=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , A__=False , A__=128 , A__=16 , A__=True , A__=0.0_5 , A__=10 , A__=2 , A__=0.0 , A__=10 , A__=0 , A__="mean" , A__=False , A__=False , A__=256 , A__=0 , A__=1 , A__=2 , **A__ , ): super().__init__(**A__ , pad_token_id=A__ , bos_token_id=A__ , eos_token_id=A__ ) A__ : Optional[int] = hidden_size A__ : Any = feat_extract_norm A__ : Any = feat_extract_activation A__ : Optional[int] = list(A__ ) A__ : List[str] = list(A__ ) A__ : Union[str, Any] = list(A__ ) A__ : Union[str, Any] = conv_bias A__ : Tuple = num_conv_pos_embeddings A__ : Optional[Any] = num_conv_pos_embedding_groups A__ : List[Any] = len(self.conv_dim ) A__ : List[str] = num_hidden_layers A__ : Any = intermediate_size A__ : int = squeeze_factor A__ : str = max_position_embeddings A__ : Optional[Any] = position_buckets A__ : Optional[int] = share_att_key A__ : Any = relative_attention A__ : int = norm_rel_ebd A__ : int = list(A__ ) A__ : Optional[Any] = hidden_act A__ : Optional[int] = num_attention_heads A__ : Dict = hidden_dropout A__ : Tuple = attention_dropout A__ : List[Any] = activation_dropout A__ : List[Any] = feat_proj_dropout A__ : Optional[Any] = final_dropout A__ : List[str] = layer_norm_eps A__ : List[Any] = feature_layer_norm_eps A__ : List[Any] = initializer_range A__ : Dict = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( """Configuration for convolutional layers is incorrect.""" """It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,""" F"""but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)""" F"""= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 A__ : Dict = apply_spec_augment A__ : Any = mask_time_prob A__ : Optional[int] = mask_time_length A__ : Tuple = mask_time_min_masks A__ : int = mask_feature_prob A__ : Tuple = mask_feature_length A__ : Union[str, Any] = mask_feature_min_masks # ctc loss A__ : str = ctc_loss_reduction A__ : Optional[int] = ctc_zero_infinity # sequence classification A__ : List[Any] = use_weighted_layer_sum A__ : Dict = classifier_proj_size @property def __A ( self ): return functools.reduce(operator.mul , self.conv_stride , 1 )
192
import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import numpy as np import pytest from datasets.arrow_dataset import Dataset from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex from .utils import require_elasticsearch, require_faiss A_ : Any = pytest.mark.integration @require_faiss class _a (__magic_name__ ): '''simple docstring''' def __A ( self ): A__ : Tuple = Dataset.from_dict({"""filename""": ["""my_name-train""" + """_""" + str(A__ ) for x in np.arange(30 ).tolist()]} ) return dset def __A ( self ): import faiss A__ : Dataset = self._create_dummy_dataset() A__ : Union[str, Any] = dset.map( lambda A__ , A__ : {"vecs": i * np.ones(5 , dtype=np.floataa )} , with_indices=A__ , keep_in_memory=A__ ) A__ : int = dset.add_faiss_index("""vecs""" , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT ) A__ , A__ : Optional[Any] = dset.get_nearest_examples("""vecs""" , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples["""filename"""][0] , """my_name-train_29""" ) dset.drop_index("""vecs""" ) def __A ( self ): import faiss A__ : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name="""vecs""" , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT , ) A__ , A__ : str = dset.get_nearest_examples("""vecs""" , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples["""filename"""][0] , """my_name-train_29""" ) def __A ( self ): import faiss A__ : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name="""vecs""" , metric_type=faiss.METRIC_INNER_PRODUCT , ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=A__ ) as tmp_file: dset.save_faiss_index("""vecs""" , tmp_file.name ) dset.load_faiss_index("""vecs2""" , tmp_file.name ) os.unlink(tmp_file.name ) A__ , A__ : Tuple = dset.get_nearest_examples("""vecs2""" , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples["""filename"""][0] , """my_name-train_29""" ) def __A ( self ): A__ : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name="""vecs""" ) dset.drop_index("""vecs""" ) self.assertRaises(A__ , partial(dset.get_nearest_examples , """vecs2""" , np.ones(5 , dtype=np.floataa ) ) ) def __A ( self ): from elasticsearch import Elasticsearch A__ : Dataset = self._create_dummy_dataset() with patch("""elasticsearch.Elasticsearch.search""" ) as mocked_search, patch( """elasticsearch.client.IndicesClient.create""" ) as mocked_index_create, patch("""elasticsearch.helpers.streaming_bulk""" ) as mocked_bulk: A__ : List[Any] = {"""acknowledged""": True} mocked_bulk.return_value([(True, None)] * 30 ) A__ : List[Any] = {"""hits""": {"""hits""": [{"""_score""": 1, """_id""": 29}]}} A__ : Any = Elasticsearch() dset.add_elasticsearch_index("""filename""" , es_client=A__ ) A__ , A__ : Any = dset.get_nearest_examples("""filename""" , """my_name-train_29""" ) self.assertEqual(examples["""filename"""][0] , """my_name-train_29""" ) @require_faiss class _a (__magic_name__ ): '''simple docstring''' def __A ( self ): import faiss A__ : Optional[int] = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) # add vectors index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsNotNone(index.faiss_index ) self.assertEqual(index.faiss_index.ntotal , 5 ) index.add_vectors(np.zeros((5, 5) , dtype=np.floataa ) ) self.assertEqual(index.faiss_index.ntotal , 10 ) # single query A__ : Any = np.zeros(5 , dtype=np.floataa ) A__ : str = 1 A__ , A__ : Optional[Any] = index.search(A__ ) self.assertRaises(A__ , index.search , query.reshape(-1 , 1 ) ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) # batched queries A__ : Optional[int] = np.eye(5 , dtype=np.floataa )[::-1] A__ , A__ : str = index.search_batch(A__ ) self.assertRaises(A__ , index.search_batch , queries[0] ) A__ : str = [scores[0] for scores in total_scores] A__ : Tuple = [indices[0] for indices in total_indices] self.assertGreater(np.min(A__ ) , 0 ) self.assertListEqual([4, 3, 2, 1, 0] , A__ ) def __A ( self ): import faiss A__ : Dict = FaissIndex(string_factory="""Flat""" ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) A__ : Dict = FaissIndex(string_factory="""LSH""" ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexLSH ) with self.assertRaises(A__ ): A__ : List[Any] = FaissIndex(string_factory="""Flat""" , custom_index=faiss.IndexFlat(5 ) ) def __A ( self ): import faiss A__ : List[Any] = faiss.IndexFlat(5 ) A__ : Union[str, Any] = FaissIndex(custom_index=A__ ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) def __A ( self ): import faiss A__ : Any = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=A__ ) as tmp_file: index.save(tmp_file.name ) A__ : int = FaissIndex.load(tmp_file.name ) os.unlink(tmp_file.name ) A__ : Optional[Any] = np.zeros(5 , dtype=np.floataa ) A__ : Optional[int] = 1 A__ , A__ : List[Any] = index.search(A__ ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) @require_faiss def UpperCamelCase (lowercase_: Dict ) -> Optional[Any]: import faiss A__ : Dict = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) A__ : Optional[Any] = """index.faiss""" A__ : Any = f"""mock://{index_name}""" index.save(lowercase_ , storage_options=mockfs.storage_options ) A__ : str = FaissIndex.load(lowercase_ , storage_options=mockfs.storage_options ) A__ : int = np.zeros(5 , dtype=np.floataa ) A__ : Union[str, Any] = 1 A__ , A__ : Any = index.search(lowercase_ ) assert scores[0] > 0 assert indices[0] == 1 @require_elasticsearch class _a (__magic_name__ ): '''simple docstring''' def __A ( self ): from elasticsearch import Elasticsearch with patch("""elasticsearch.Elasticsearch.search""" ) as mocked_search, patch( """elasticsearch.client.IndicesClient.create""" ) as mocked_index_create, patch("""elasticsearch.helpers.streaming_bulk""" ) as mocked_bulk: A__ : List[str] = Elasticsearch() A__ : List[Any] = {"""acknowledged""": True} A__ : int = ElasticSearchIndex(es_client=A__ ) mocked_bulk.return_value([(True, None)] * 3 ) index.add_documents(["""foo""", """bar""", """foobar"""] ) # single query A__ : Dict = """foo""" A__ : Tuple = {"""hits""": {"""hits""": [{"""_score""": 1, """_id""": 0}]}} A__ , A__ : Tuple = index.search(A__ ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # single query with timeout A__ : List[str] = """foo""" A__ : str = {"""hits""": {"""hits""": [{"""_score""": 1, """_id""": 0}]}} A__ , A__ : Dict = index.search(A__ , request_timeout=30 ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # batched queries A__ : Union[str, Any] = ["""foo""", """bar""", """foobar"""] A__ : Tuple = {"""hits""": {"""hits""": [{"""_score""": 1, """_id""": 1}]}} A__ , A__ : Dict = index.search_batch(A__ ) A__ : Tuple = [scores[0] for scores in total_scores] A__ : Optional[int] = [indices[0] for indices in total_indices] self.assertGreater(np.min(A__ ) , 0 ) self.assertListEqual([1, 1, 1] , A__ ) # batched queries with timeout A__ : int = ["""foo""", """bar""", """foobar"""] A__ : List[Any] = {"""hits""": {"""hits""": [{"""_score""": 1, """_id""": 1}]}} A__ , A__ : Tuple = index.search_batch(A__ , request_timeout=30 ) A__ : List[Any] = [scores[0] for scores in total_scores] A__ : Optional[int] = [indices[0] for indices in total_indices] self.assertGreater(np.min(A__ ) , 0 ) self.assertListEqual([1, 1, 1] , A__ )
192
1
from ... import PretrainedConfig UpperCamelCase = { '''sijunhe/nezha-cn-base''': '''https://huggingface.co/sijunhe/nezha-cn-base/resolve/main/config.json''', } class __UpperCAmelCase (_UpperCAmelCase ): __snake_case : Any = NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP __snake_case : List[str] = "nezha" def __init__( self: Optional[int] , UpperCAmelCase_: Tuple=21_128 , UpperCAmelCase_: Union[str, Any]=768 , UpperCAmelCase_: int=12 , UpperCAmelCase_: List[str]=12 , UpperCAmelCase_: str=3_072 , UpperCAmelCase_: int="gelu" , UpperCAmelCase_: Tuple=0.1 , UpperCAmelCase_: Union[str, Any]=0.1 , UpperCAmelCase_: Dict=512 , UpperCAmelCase_: Optional[Any]=64 , UpperCAmelCase_: Optional[Any]=2 , UpperCAmelCase_: List[str]=0.02 , UpperCAmelCase_: List[Any]=1E-12 , UpperCAmelCase_: List[str]=0.1 , UpperCAmelCase_: Tuple=0 , UpperCAmelCase_: Union[str, Any]=2 , UpperCAmelCase_: str=3 , UpperCAmelCase_: str=True , **UpperCAmelCase_: Any , ): '''simple docstring''' super().__init__(pad_token_id=UpperCAmelCase_ , bos_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_ , **UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = vocab_size _SCREAMING_SNAKE_CASE = hidden_size _SCREAMING_SNAKE_CASE = num_hidden_layers _SCREAMING_SNAKE_CASE = num_attention_heads _SCREAMING_SNAKE_CASE = hidden_act _SCREAMING_SNAKE_CASE = intermediate_size _SCREAMING_SNAKE_CASE = hidden_dropout_prob _SCREAMING_SNAKE_CASE = attention_probs_dropout_prob _SCREAMING_SNAKE_CASE = max_position_embeddings _SCREAMING_SNAKE_CASE = max_relative_position _SCREAMING_SNAKE_CASE = type_vocab_size _SCREAMING_SNAKE_CASE = initializer_range _SCREAMING_SNAKE_CASE = layer_norm_eps _SCREAMING_SNAKE_CASE = classifier_dropout _SCREAMING_SNAKE_CASE = use_cache
364
import copy import re class __UpperCAmelCase : __snake_case : Any = "hp" __snake_case : str = {} __snake_case : List[Any] = None @classmethod def UpperCamelCase ( cls: Optional[Any] , UpperCAmelCase_: int , UpperCAmelCase_: Optional[int] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = prefix _SCREAMING_SNAKE_CASE = defaults cls.build_naming_info() @staticmethod def UpperCamelCase ( UpperCAmelCase_: Any , UpperCAmelCase_: str ): '''simple docstring''' if len(UpperCAmelCase_ ) == 0: return "" _SCREAMING_SNAKE_CASE = None if any(char.isdigit() for char in word ): raise Exception(F'Parameters should not contain numbers: \'{word}\' contains a number' ) if word in info["short_word"]: return info["short_word"][word] for prefix_len in range(1 , len(UpperCAmelCase_ ) + 1 ): _SCREAMING_SNAKE_CASE = word[:prefix_len] if prefix in info["reverse_short_word"]: continue else: _SCREAMING_SNAKE_CASE = prefix break if short_word is None: # Paranoid fallback def int_to_alphabetic(UpperCAmelCase_: List[Any] ): _SCREAMING_SNAKE_CASE = """""" while integer != 0: _SCREAMING_SNAKE_CASE = chr(ord("""A""" ) + integer % 10 ) + s integer //= 10 return s _SCREAMING_SNAKE_CASE = 0 while True: _SCREAMING_SNAKE_CASE = word + """#""" + int_to_alphabetic(UpperCAmelCase_ ) if sword in info["reverse_short_word"]: continue else: _SCREAMING_SNAKE_CASE = sword break _SCREAMING_SNAKE_CASE = short_word _SCREAMING_SNAKE_CASE = word return short_word @staticmethod def UpperCamelCase ( UpperCAmelCase_: List[str] , UpperCAmelCase_: List[str] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = param_name.split("""_""" ) _SCREAMING_SNAKE_CASE = [TrialShortNamer.shortname_for_word(UpperCAmelCase_ , UpperCAmelCase_ ) for word in words] # We try to create a separatorless short name, but if there is a collision we have to fallback # to a separated short name _SCREAMING_SNAKE_CASE = ["""""", """_"""] for separator in separators: _SCREAMING_SNAKE_CASE = separator.join(UpperCAmelCase_ ) if shortname not in info["reverse_short_param"]: _SCREAMING_SNAKE_CASE = shortname _SCREAMING_SNAKE_CASE = param_name return shortname return param_name @staticmethod def UpperCamelCase ( UpperCAmelCase_: Optional[int] , UpperCAmelCase_: Optional[int] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TrialShortNamer.shortname_for_key(UpperCAmelCase_ , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = short_name _SCREAMING_SNAKE_CASE = param_name @classmethod def UpperCamelCase ( cls: str ): '''simple docstring''' if cls.NAMING_INFO is not None: return _SCREAMING_SNAKE_CASE = { """short_word""": {}, """reverse_short_word""": {}, """short_param""": {}, """reverse_short_param""": {}, } _SCREAMING_SNAKE_CASE = list(cls.DEFAULTS.keys() ) for k in field_keys: cls.add_new_param_name(UpperCAmelCase_ , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = info @classmethod def UpperCamelCase ( cls: Any , UpperCAmelCase_: Optional[Any] ): '''simple docstring''' cls.build_naming_info() assert cls.PREFIX is not None _SCREAMING_SNAKE_CASE = [copy.copy(cls.PREFIX )] for k, v in params.items(): if k not in cls.DEFAULTS: raise Exception(F'You should provide a default value for the param name {k} with value {v}' ) if v == cls.DEFAULTS[k]: # The default value is not added to the name continue _SCREAMING_SNAKE_CASE = cls.NAMING_INFO["""short_param"""][k] if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): _SCREAMING_SNAKE_CASE = 1 if v else 0 _SCREAMING_SNAKE_CASE = """""" if isinstance(UpperCAmelCase_ , (int, float) ) else """-""" _SCREAMING_SNAKE_CASE = F'{key}{sep}{v}' name.append(UpperCAmelCase_ ) return "_".join(UpperCAmelCase_ ) @classmethod def UpperCamelCase ( cls: int , UpperCAmelCase_: int ): '''simple docstring''' _SCREAMING_SNAKE_CASE = repr[len(cls.PREFIX ) + 1 :] if repr == "": _SCREAMING_SNAKE_CASE = [] else: _SCREAMING_SNAKE_CASE = repr.split("""_""" ) _SCREAMING_SNAKE_CASE = {} for value in values: if "-" in value: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = value.split("""-""" ) else: _SCREAMING_SNAKE_CASE = re.sub("""[0-9.]""" , """""" , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = float(re.sub("""[^0-9.]""" , """""" , UpperCAmelCase_ ) ) _SCREAMING_SNAKE_CASE = cls.NAMING_INFO["""reverse_short_param"""][p_k] _SCREAMING_SNAKE_CASE = p_v for k in cls.DEFAULTS: if k not in parameters: _SCREAMING_SNAKE_CASE = cls.DEFAULTS[k] return parameters
125
0
from ....configuration_utils import PretrainedConfig from ....utils import logging __lowerCAmelCase : Optional[int] = logging.get_logger(__name__) __lowerCAmelCase : str = { 'Visual-Attention-Network/van-base': ( 'https://huggingface.co/Visual-Attention-Network/van-base/blob/main/config.json' ), } class UpperCAmelCase_ ( _A ): '''simple docstring''' a__ = """van""" def __init__( self : Dict , UpperCamelCase__ : Any=224 , UpperCamelCase__ : Optional[int]=3 , UpperCamelCase__ : List[str]=[7, 3, 3, 3] , UpperCamelCase__ : Optional[int]=[4, 2, 2, 2] , UpperCamelCase__ : Union[str, Any]=[64, 128, 320, 512] , UpperCamelCase__ : List[str]=[3, 3, 12, 3] , UpperCamelCase__ : Union[str, Any]=[8, 8, 4, 4] , UpperCamelCase__ : Optional[Any]="gelu" , UpperCamelCase__ : Dict=0.02 , UpperCamelCase__ : Union[str, Any]=1E-6 , UpperCamelCase__ : Tuple=1E-2 , UpperCamelCase__ : Any=0.0 , UpperCamelCase__ : Any=0.0 , **UpperCamelCase__ : Any , ) -> Any: """simple docstring""" super().__init__(**UpperCamelCase__ ) __magic_name__ = image_size __magic_name__ = num_channels __magic_name__ = patch_sizes __magic_name__ = strides __magic_name__ = hidden_sizes __magic_name__ = depths __magic_name__ = mlp_ratios __magic_name__ = hidden_act __magic_name__ = initializer_range __magic_name__ = layer_norm_eps __magic_name__ = layer_scale_init_value __magic_name__ = drop_path_rate __magic_name__ = dropout_rate
88
"""simple docstring""" import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ConvNextConfig, UperNetConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import UperNetForSemanticSegmentation from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCamelCase__: def __init__( self ,__UpperCAmelCase ,__UpperCAmelCase=13 ,__UpperCAmelCase=32 ,__UpperCAmelCase=3 ,__UpperCAmelCase=4 ,__UpperCAmelCase=[10, 20, 30, 40] ,__UpperCAmelCase=[2, 2, 3, 2] ,__UpperCAmelCase=True ,__UpperCAmelCase=True ,__UpperCAmelCase=37 ,__UpperCAmelCase="gelu" ,__UpperCAmelCase=10 ,__UpperCAmelCase=0.0_2 ,__UpperCAmelCase=["stage2", "stage3", "stage4"] ,__UpperCAmelCase=3 ,__UpperCAmelCase=None ,) -> Optional[int]: A__ = parent A__ = batch_size A__ = image_size A__ = num_channels A__ = num_stages A__ = hidden_sizes A__ = depths A__ = is_training A__ = use_labels A__ = intermediate_size A__ = hidden_act A__ = type_sequence_label_size A__ = initializer_range A__ = out_features A__ = num_labels A__ = scope A__ = num_stages def snake_case__ ( self ) -> List[Any]: A__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A__ = None if self.use_labels: A__ = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) A__ = self.get_config() return config, pixel_values, labels def snake_case__ ( self ) -> str: return ConvNextConfig( num_channels=self.num_channels ,num_stages=self.num_stages ,hidden_sizes=self.hidden_sizes ,depths=self.depths ,is_training=self.is_training ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,out_features=self.out_features ,) def snake_case__ ( self ) -> Tuple: return UperNetConfig( backbone_config=self.get_backbone_config() ,hidden_size=5_12 ,pool_scales=[1, 2, 3, 6] ,use_auxiliary_head=__UpperCAmelCase ,auxiliary_loss_weight=0.4 ,auxiliary_in_channels=40 ,auxiliary_channels=2_56 ,auxiliary_num_convs=1 ,auxiliary_concat_input=__UpperCAmelCase ,loss_ignore_index=2_55 ,num_labels=self.num_labels ,) def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) -> Dict: A__ = UperNetForSemanticSegmentation(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() A__ = model(__UpperCAmelCase ) self.parent.assertEqual( result.logits.shape ,(self.batch_size, self.num_labels, self.image_size, self.image_size) ) def snake_case__ ( self ) -> str: A__ = self.prepare_config_and_inputs() ( ( A__ ) , ( A__ ) , ( A__ ) , ) = config_and_inputs A__ = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class UpperCamelCase__( __A , __A , unittest.TestCase ): lowerCAmelCase__ : int = (UperNetForSemanticSegmentation,) if is_torch_available() else () lowerCAmelCase__ : int = {'image-segmentation': UperNetForSemanticSegmentation} if is_torch_available() else {} lowerCAmelCase__ : Optional[int] = False lowerCAmelCase__ : List[Any] = False lowerCAmelCase__ : Tuple = False lowerCAmelCase__ : Optional[Any] = False lowerCAmelCase__ : Union[str, Any] = False lowerCAmelCase__ : Dict = False def snake_case__ ( self ) -> Union[str, Any]: A__ = UperNetModelTester(self ) A__ = ConfigTester(self ,config_class=__UpperCAmelCase ,has_text_modality=__UpperCAmelCase ,hidden_size=37 ) def snake_case__ ( self ) -> List[Any]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def snake_case__ ( self ) -> int: return def snake_case__ ( self ) -> List[Any]: A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ = model_class(__UpperCAmelCase ) A__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A__ = [*signature.parameters.keys()] A__ = ['pixel_values'] self.assertListEqual(arg_names[:1] ,__UpperCAmelCase ) def snake_case__ ( self ) -> Tuple: A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__UpperCAmelCase ) @unittest.skip(reason='UperNet does not use inputs_embeds' ) def snake_case__ ( self ) -> Optional[int]: pass @unittest.skip(reason='UperNet does not support input and output embeddings' ) def snake_case__ ( self ) -> Tuple: pass @unittest.skip(reason='UperNet does not have a base model' ) def snake_case__ ( self ) -> List[Any]: pass @unittest.skip(reason='UperNet does not have a base model' ) def snake_case__ ( self ) -> Dict: pass @require_torch_multi_gpu @unittest.skip(reason='UperNet has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' ) def snake_case__ ( self ) -> Any: pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def snake_case__ ( self ) -> Dict: pass def snake_case__ ( self ) -> Optional[int]: def check_hidden_states_output(__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ): A__ = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() with torch.no_grad(): A__ = model(**self._prepare_for_class(__UpperCAmelCase ,__UpperCAmelCase ) ) A__ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states A__ = self.model_tester.num_stages self.assertEqual(len(__UpperCAmelCase ) ,expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) ,[self.model_tester.image_size // 4, self.model_tester.image_size // 4] ,) A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ = True check_hidden_states_output(__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] A__ = True check_hidden_states_output(__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) def snake_case__ ( self ) -> Optional[Any]: A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() A__ = _config_zero_init(__UpperCAmelCase ) A__ = _config_zero_init(configs_no_init.backbone_config ) for model_class in self.all_model_classes: A__ = model_class(config=__UpperCAmelCase ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() ,[0.0, 1.0] ,msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' ,) @unittest.skip(reason='UperNet does not have tied weights' ) def snake_case__ ( self ) -> str: pass @slow def snake_case__ ( self ) -> List[str]: for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ = UperNetForSemanticSegmentation.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) def UpperCAmelCase ( ): """simple docstring""" A__ = hf_hub_download( repo_id='hf-internal-testing/fixtures_ade20k' , repo_type='dataset' , filename='ADE_val_00000001.jpg' ) A__ = Image.open(UpperCamelCase__ ).convert('RGB' ) return image @require_torch @require_vision @slow class UpperCamelCase__( unittest.TestCase ): def snake_case__ ( self ) -> Dict: A__ = AutoImageProcessor.from_pretrained('openmmlab/upernet-swin-tiny' ) A__ = UperNetForSemanticSegmentation.from_pretrained('openmmlab/upernet-swin-tiny' ).to(__UpperCAmelCase ) A__ = prepare_img() A__ = processor(images=__UpperCAmelCase ,return_tensors='pt' ).to(__UpperCAmelCase ) with torch.no_grad(): A__ = model(**__UpperCAmelCase ) A__ = torch.Size((1, model.config.num_labels, 5_12, 5_12) ) self.assertEqual(outputs.logits.shape ,__UpperCAmelCase ) A__ = torch.tensor( [[-7.5_9_5_8, -7.5_9_5_8, -7.4_3_0_2], [-7.5_9_5_8, -7.5_9_5_8, -7.4_3_0_2], [-7.4_7_9_7, -7.4_7_9_7, -7.3_0_6_8]] ).to(__UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] ,__UpperCAmelCase ,atol=1e-4 ) ) def snake_case__ ( self ) -> str: A__ = AutoImageProcessor.from_pretrained('openmmlab/upernet-convnext-tiny' ) A__ = UperNetForSemanticSegmentation.from_pretrained('openmmlab/upernet-convnext-tiny' ).to(__UpperCAmelCase ) A__ = prepare_img() A__ = processor(images=__UpperCAmelCase ,return_tensors='pt' ).to(__UpperCAmelCase ) with torch.no_grad(): A__ = model(**__UpperCAmelCase ) A__ = torch.Size((1, model.config.num_labels, 5_12, 5_12) ) self.assertEqual(outputs.logits.shape ,__UpperCAmelCase ) A__ = torch.tensor( [[-8.8_1_1_0, -8.8_1_1_0, -8.6_5_2_1], [-8.8_1_1_0, -8.8_1_1_0, -8.6_5_2_1], [-8.7_7_4_6, -8.7_7_4_6, -8.6_1_3_0]] ).to(__UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] ,__UpperCAmelCase ,atol=1e-4 ) )
221
0
from typing import Dict import numpy as np import torch from . import residue_constants as rc from .tensor_utils import tensor_tree_map, tree_map def A_ ( _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Union[str, Any] = [] SCREAMING_SNAKE_CASE_: str = [] SCREAMING_SNAKE_CASE_: Tuple = [] for rt in rc.restypes: SCREAMING_SNAKE_CASE_: Union[str, Any] = rc.restype_name_to_atomaa_names[rc.restype_atoa[rt]] restype_atomaa_to_atomaa_list.append([(rc.atom_order[name] if name else 0) for name in atom_names] ) SCREAMING_SNAKE_CASE_: str = {name: i for i, name in enumerate(_UpperCAmelCase )} restype_atomaa_to_atomaa_list.append( [(atom_name_to_idxaa[name] if name in atom_name_to_idxaa else 0) for name in rc.atom_types] ) restype_atomaa_mask_list.append([(1.0 if name else 0.0) for name in atom_names] ) # Add dummy mapping for restype 'UNK' restype_atomaa_to_atomaa_list.append([0] * 14 ) restype_atomaa_to_atomaa_list.append([0] * 37 ) restype_atomaa_mask_list.append([0.0] * 14 ) SCREAMING_SNAKE_CASE_: Union[str, Any] = torch.tensor( _UpperCAmelCase , dtype=torch.intaa , device=protein["aatype"].device , ) SCREAMING_SNAKE_CASE_: List[Any] = torch.tensor( _UpperCAmelCase , dtype=torch.intaa , device=protein["aatype"].device , ) SCREAMING_SNAKE_CASE_: str = torch.tensor( _UpperCAmelCase , dtype=torch.floataa , device=protein["aatype"].device , ) SCREAMING_SNAKE_CASE_: Tuple = protein["aatype"].to(torch.long ) # create the mapping for (residx, atom14) --> atom37, i.e. an array # with shape (num_res, 14) containing the atom37 indices for this protein SCREAMING_SNAKE_CASE_: int = restype_atomaa_to_atomaa[protein_aatype] SCREAMING_SNAKE_CASE_: Optional[Any] = restype_atomaa_mask[protein_aatype] SCREAMING_SNAKE_CASE_: List[str] = residx_atomaa_mask SCREAMING_SNAKE_CASE_: Dict = residx_atomaa_to_atomaa.long() # create the gather indices for mapping back SCREAMING_SNAKE_CASE_: Dict = restype_atomaa_to_atomaa[protein_aatype] SCREAMING_SNAKE_CASE_: Any = residx_atomaa_to_atomaa.long() # create the corresponding mask SCREAMING_SNAKE_CASE_: Optional[int] = torch.zeros([21, 37] , dtype=torch.floataa , device=protein["aatype"].device ) for restype, restype_letter in enumerate(rc.restypes ): SCREAMING_SNAKE_CASE_: str = rc.restype_atoa[restype_letter] SCREAMING_SNAKE_CASE_: Optional[int] = rc.residue_atoms[restype_name] for atom_name in atom_names: SCREAMING_SNAKE_CASE_: Dict = rc.atom_order[atom_name] SCREAMING_SNAKE_CASE_: Dict = 1 SCREAMING_SNAKE_CASE_: List[str] = restype_atomaa_mask[protein_aatype] SCREAMING_SNAKE_CASE_: List[str] = residx_atomaa_mask return protein def A_ ( _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Tuple = tree_map(lambda _UpperCAmelCase : torch.tensor(_UpperCAmelCase , device=batch["aatype"].device ) , _UpperCAmelCase , np.ndarray ) SCREAMING_SNAKE_CASE_: Optional[int] = tensor_tree_map(lambda _UpperCAmelCase : np.array(_UpperCAmelCase ) , make_atomaa_masks(_UpperCAmelCase ) ) return out
127
import torch from diffusers import StableDiffusionPipeline lowerCAmelCase : Any = """path-to-your-trained-model""" lowerCAmelCase : int = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.floataa).to("""cuda""") lowerCAmelCase : Union[str, Any] = """A photo of sks dog in a bucket""" lowerCAmelCase : Any = pipe(prompt, num_inference_steps=50, guidance_scale=7.5).images[0] image.save("""dog-bucket.png""")
127
1
import importlib.metadata import warnings from copy import deepcopy from packaging import version from ..utils import logging from .import_utils import is_accelerate_available, is_bitsandbytes_available if is_bitsandbytes_available(): import bitsandbytes as bnb import torch import torch.nn as nn from ..pytorch_utils import ConvaD if is_accelerate_available(): from accelerate import init_empty_weights from accelerate.utils import find_tied_parameters UpperCAmelCase : Any = logging.get_logger(__name__) def _SCREAMING_SNAKE_CASE ( a , a , a , a=None , a=None ) -> Optional[Any]: # Recurse if needed if "." in tensor_name: __A : List[Any] = tensor_name.split('.' ) for split in splits[:-1]: __A : int = getattr(a , a ) if new_module is None: raise ValueError(F"""{module} has no attribute {split}.""" ) __A : Tuple = new_module __A : int = splits[-1] if tensor_name not in module._parameters and tensor_name not in module._buffers: raise ValueError(F"""{module} does not have a parameter or a buffer named {tensor_name}.""" ) __A : Tuple = tensor_name in module._buffers __A : Tuple = getattr(a , a ) if old_value.device == torch.device('meta' ) and device not in ["meta", torch.device('meta' )] and value is None: raise ValueError(F"""{tensor_name} is on the meta device, we need a `value` to put in on {device}.""" ) __A : Optional[Any] = False __A : List[str] = False if is_buffer or not is_bitsandbytes_available(): __A : List[Any] = False __A : Dict = False else: __A : Optional[Any] = hasattr(bnb.nn , 'Params4bit' ) and isinstance(module._parameters[tensor_name] , bnb.nn.Paramsabit ) __A : Optional[int] = isinstance(module._parameters[tensor_name] , bnb.nn.IntaParams ) if is_abit or is_abit: __A : Optional[int] = module._parameters[tensor_name] if param.device.type != "cuda": if value is None: __A : int = old_value.to(a ) elif isinstance(a , torch.Tensor ): __A : Dict = value.to('cpu' ) if value.dtype == torch.inta: __A : List[str] = version.parse(importlib.metadata.version('bitsandbytes' ) ) > version.parse( '0.37.2' ) if not is_abit_serializable: raise ValueError( 'Detected int8 weights but the version of bitsandbytes is not compatible with int8 serialization. ' 'Make sure to download the latest `bitsandbytes` version. `pip install --upgrade bitsandbytes`.' ) else: __A : Union[str, Any] = torch.tensor(a , device='cpu' ) # Support models using `Conv1D` in place of `nn.Linear` (e.g. gpt2) by transposing the weight matrix prior to quantization. # Since weights are saved in the correct "orientation", we skip transposing when loading. if issubclass(module.source_cls , a ) and fpaa_statistics is None: __A : Any = new_value.T __A : Union[str, Any] = old_value.__dict__ if is_abit: __A : Optional[Any] = bnb.nn.IntaParams(a , requires_grad=a , **a ).to(a ) elif is_abit: __A : Tuple = bnb.nn.Paramsabit(a , requires_grad=a , **a ).to(a ) __A : Optional[int] = new_value if fpaa_statistics is not None: setattr(module.weight , 'SCB' , fpaa_statistics.to(a ) ) else: if value is None: __A : Dict = old_value.to(a ) elif isinstance(a , torch.Tensor ): __A : Union[str, Any] = value.to(a ) else: __A : str = torch.tensor(a , device=a ) if is_buffer: __A : List[Any] = new_value else: __A : str = nn.Parameter(a , requires_grad=old_value.requires_grad ) __A : Optional[int] = new_value def _SCREAMING_SNAKE_CASE ( a , a=None , a=None , a=None , a=False ) -> str: for name, module in model.named_children(): if current_key_name is None: __A : Optional[Any] = [] current_key_name.append(a ) if (isinstance(a , nn.Linear ) or isinstance(a , a )) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` if not any(key in '.'.join(a ) for key in modules_to_not_convert ): with init_empty_weights(): if isinstance(a , a ): __A , __A : str = module.weight.shape else: __A : int = module.in_features __A : List[Any] = module.out_features if quantization_config.quantization_method() == "llm_int8": __A : int = bnb.nn.LinearabitLt( a , a , module.bias is not None , has_fpaa_weights=quantization_config.llm_inta_has_fpaa_weight , threshold=quantization_config.llm_inta_threshold , ) __A : List[Any] = True else: if ( quantization_config.llm_inta_skip_modules is not None and name in quantization_config.llm_inta_skip_modules ): pass else: __A : Any = bnb.nn.Linearabit( a , a , module.bias is not None , quantization_config.bnb_abit_compute_dtype , compress_statistics=quantization_config.bnb_abit_use_double_quant , quant_type=quantization_config.bnb_abit_quant_type , ) __A : Union[str, Any] = True # Store the module class in case we need to transpose the weight later __A : str = type(a ) # Force requires grad to False to avoid unexpected errors model._modules[name].requires_grad_(a ) if len(list(module.children() ) ) > 0: __A , __A : str = _replace_with_bnb_linear( a , a , a , a , has_been_replaced=a , ) # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def _SCREAMING_SNAKE_CASE ( a , a=None , a=None , a=None ) -> Any: __A : Optional[int] = ['lm_head'] if modules_to_not_convert is None else modules_to_not_convert __A , __A : Optional[Any] = _replace_with_bnb_linear( a , a , a , a ) if not has_been_replaced: logger.warning( 'You are loading your model in 8bit or 4bit but no linear modules were found in your model.' ' Please double check your model architecture, or submit an issue on github if you think this is' ' a bug.' ) return model def _SCREAMING_SNAKE_CASE ( *a , **a ) -> str: warnings.warn( '`replace_8bit_linear` will be deprecated in a future version, please use `replace_with_bnb_linear` instead' , a , ) return replace_with_bnb_linear(*a , **a ) def _SCREAMING_SNAKE_CASE ( *a , **a ) -> Tuple: warnings.warn( '`set_module_8bit_tensor_to_device` will be deprecated in a future version, please use `set_module_quantized_tensor_to_device` instead' , a , ) return set_module_quantized_tensor_to_device(*a , **a ) def _SCREAMING_SNAKE_CASE ( a ) -> Dict: __A : str = deepcopy(a ) # this has 0 cost since it is done inside `init_empty_weights` context manager` tied_model.tie_weights() __A : Tuple = find_tied_parameters(a ) # For compatibility with Accelerate < 0.18 if isinstance(a , a ): __A : Optional[int] = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: __A : Dict = sum(a , [] ) __A : Optional[int] = len(a ) > 0 # Check if it is a base model __A : Dict = not hasattr(a , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head __A : Tuple = list(model.named_children() ) __A : Optional[int] = [list_modules[-1][0]] # add last module together with tied weights __A : List[Any] = set(a ) - set(a ) __A : int = list(set(a ) ) + list(a ) # remove ".weight" from the keys __A : List[Any] = ['.weight', '.bias'] __A : int = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: __A : int = name.replace(a , '' ) filtered_module_names.append(a ) return filtered_module_names
280
from __future__ import annotations def _SCREAMING_SNAKE_CASE ( a ) -> int: if not nums: return 0 __A : Optional[int] = nums[0] __A : str = 0 for num in nums[1:]: __A , __A : Tuple = ( max_excluding + num, max(a , a ), ) return max(a , a ) if __name__ == "__main__": import doctest doctest.testmod()
280
1
"""simple docstring""" # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. A_ : int =abspath(join(dirname(dirname(__file__)), """src""")) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action="""ignore""", category=FutureWarning) def SCREAMING_SNAKE_CASE_ ( snake_case : int )-> List[Any]: from diffusers.utils.testing_utils import pytest_addoption_shared pytest_addoption_shared(snake_case ) def SCREAMING_SNAKE_CASE_ ( snake_case : int )-> List[str]: from diffusers.utils.testing_utils import pytest_terminal_summary_main _lowerCamelCase = terminalreporter.config.getoption('--make-reports' ) if make_reports: pytest_terminal_summary_main(snake_case , id=snake_case )
80
"""simple docstring""" import argparse import torch from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_from_original_stable_diffusion_ckpt if __name__ == "__main__": A_ : List[Any] =argparse.ArgumentParser() parser.add_argument( """--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert.""" ) # !wget https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml parser.add_argument( """--original_config_file""", default=None, type=str, help="""The YAML config file corresponding to the original architecture.""", ) parser.add_argument( """--num_in_channels""", default=None, type=int, help="""The number of input channels. If `None` number of input channels will be automatically inferred.""", ) parser.add_argument( """--scheduler_type""", default="""pndm""", type=str, help="""Type of scheduler to use. Should be one of ['pndm', 'lms', 'ddim', 'euler', 'euler-ancestral', 'dpm']""", ) parser.add_argument( """--pipeline_type""", default=None, type=str, help=( """The pipeline type. One of 'FrozenOpenCLIPEmbedder', 'FrozenCLIPEmbedder', 'PaintByExample'""" """. If `None` pipeline will be automatically inferred.""" ), ) parser.add_argument( """--image_size""", default=None, type=int, help=( """The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2""" """ Base. Use 768 for Stable Diffusion v2.""" ), ) parser.add_argument( """--prediction_type""", default=None, type=str, help=( """The prediction type that the model was trained on. Use 'epsilon' for Stable Diffusion v1.X and Stable""" """ Diffusion v2 Base. Use 'v_prediction' for Stable Diffusion v2.""" ), ) parser.add_argument( """--extract_ema""", action="""store_true""", help=( """Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights""" """ or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield""" """ higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.""" ), ) parser.add_argument( """--upcast_attention""", action="""store_true""", help=( """Whether the attention computation should always be upcasted. This is necessary when running stable""" """ diffusion 2.1.""" ), ) parser.add_argument( """--from_safetensors""", action="""store_true""", help="""If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.""", ) parser.add_argument( """--to_safetensors""", action="""store_true""", help="""Whether to store pipeline in safetensors format or not.""", ) parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") parser.add_argument("""--device""", type=str, help="""Device to use (e.g. cpu, cuda:0, cuda:1, etc.)""") parser.add_argument( """--stable_unclip""", type=str, default=None, required=False, help="""Set if this is a stable unCLIP model. One of 'txt2img' or 'img2img'.""", ) parser.add_argument( """--stable_unclip_prior""", type=str, default=None, required=False, help="""Set if this is a stable unCLIP txt2img model. Selects which prior to use. If `--stable_unclip` is set to `txt2img`, the karlo prior (https://huggingface.co/kakaobrain/karlo-v1-alpha/tree/main/prior) is selected by default.""", ) parser.add_argument( """--clip_stats_path""", type=str, help="""Path to the clip stats file. Only required if the stable unclip model's config specifies `model.params.noise_aug_config.params.clip_stats_path`.""", required=False, ) parser.add_argument( """--controlnet""", action="""store_true""", default=None, help="""Set flag if this is a controlnet checkpoint.""" ) parser.add_argument("""--half""", action="""store_true""", help="""Save weights in half precision.""") parser.add_argument( """--vae_path""", type=str, default=None, required=False, help="""Set to a path, hub id to an already converted vae to not convert it again.""", ) A_ : List[str] =parser.parse_args() A_ : Any =download_from_original_stable_diffusion_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, prediction_type=args.prediction_type, model_type=args.pipeline_type, extract_ema=args.extract_ema, scheduler_type=args.scheduler_type, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, stable_unclip=args.stable_unclip, stable_unclip_prior=args.stable_unclip_prior, clip_stats_path=args.clip_stats_path, controlnet=args.controlnet, vae_path=args.vae_path, ) if args.half: pipe.to(torch_dtype=torch.floataa) if args.controlnet: # only save the controlnet model pipe.controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors) else: pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
80
1
'''simple docstring''' from pathlib import Path import fire def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> int: lowerCamelCase__ : str = Path(snake_case__ ) lowerCamelCase__ : List[Any] = Path(snake_case__ ) dest_dir.mkdir(exist_ok=snake_case__ ) for path in src_dir.iterdir(): lowerCamelCase__ : List[str] = [x.rstrip() for x in list(path.open().readlines() )][:n] lowerCamelCase__ : Dict = dest_dir.joinpath(path.name ) print(snake_case__ ) dest_path.open("""w""" ).write("""\n""".join(snake_case__ ) ) if __name__ == "__main__": fire.Fire(minify)
41
'''simple docstring''' import argparse import json import logging import os import sys from unittest.mock import patch from transformers.testing_utils import TestCasePlus, get_gpu_count, slow _lowerCAmelCase = [ os.path.join(os.path.dirname(__file__), dirname) for dirname in [ '''text-classification''', '''language-modeling''', '''summarization''', '''token-classification''', '''question-answering''', ] ] sys.path.extend(SRC_DIRS) if SRC_DIRS is not None: import run_clm_flax import run_flax_glue import run_flax_ner import run_mlm_flax import run_qa import run_summarization_flax import run_ta_mlm_flax logging.basicConfig(level=logging.DEBUG) _lowerCAmelCase = logging.getLogger() def __lowerCAmelCase ( ): __UpperCamelCase : List[Any] = argparse.ArgumentParser() parser.add_argument("-f" ) __UpperCamelCase : Optional[Any] = parser.parse_args() return args.f def __lowerCAmelCase ( snake_case__ , snake_case__="eval" ): __UpperCamelCase : List[str] = os.path.join(snake_case__ , F"{split}_results.json" ) if os.path.exists(snake_case__ ): with open(snake_case__ , "r" ) as f: return json.load(snake_case__ ) raise ValueError(F"can't find {path}" ) _lowerCAmelCase = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class A ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' def a_ (self ) -> str: __UpperCamelCase : Any = self.get_auto_remove_tmp_dir() __UpperCamelCase : List[str] = f"\n run_glue.py\n --model_name_or_path distilbert-base-uncased\n --output_dir {tmp_dir}\n --train_file ./tests/fixtures/tests_samples/MRPC/train.csv\n --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --learning_rate=1e-4\n --eval_steps=2\n --warmup_steps=2\n --seed=42\n --max_seq_length=128\n ".split() with patch.object(_UpperCAmelCase , "argv" , _UpperCAmelCase ): run_flax_glue.main() __UpperCamelCase : int = get_results(_UpperCAmelCase ) self.assertGreaterEqual(result["eval_accuracy"] , 0.75 ) @slow def a_ (self ) -> Tuple: __UpperCamelCase : List[Any] = self.get_auto_remove_tmp_dir() __UpperCamelCase : Any = f"\n run_clm_flax.py\n --model_name_or_path distilgpt2\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --do_train\n --do_eval\n --block_size 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --num_train_epochs 2\n --logging_steps 2 --eval_steps 2\n --output_dir {tmp_dir}\n --overwrite_output_dir\n ".split() with patch.object(_UpperCAmelCase , "argv" , _UpperCAmelCase ): run_clm_flax.main() __UpperCamelCase : Optional[int] = get_results(_UpperCAmelCase ) self.assertLess(result["eval_perplexity"] , 1_0_0 ) @slow def a_ (self ) -> str: __UpperCamelCase : Any = self.get_auto_remove_tmp_dir() __UpperCamelCase : Tuple = f"\n run_summarization.py\n --model_name_or_path t5-small\n --train_file tests/fixtures/tests_samples/xsum/sample.json\n --validation_file tests/fixtures/tests_samples/xsum/sample.json\n --test_file tests/fixtures/tests_samples/xsum/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --num_train_epochs=3\n --warmup_steps=8\n --do_train\n --do_eval\n --do_predict\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --predict_with_generate\n ".split() with patch.object(_UpperCAmelCase , "argv" , _UpperCAmelCase ): run_summarization_flax.main() __UpperCamelCase : Tuple = get_results(_UpperCAmelCase , split="test" ) self.assertGreaterEqual(result["test_rouge1"] , 1_0 ) self.assertGreaterEqual(result["test_rouge2"] , 2 ) self.assertGreaterEqual(result["test_rougeL"] , 7 ) self.assertGreaterEqual(result["test_rougeLsum"] , 7 ) @slow def a_ (self ) -> int: __UpperCamelCase : int = self.get_auto_remove_tmp_dir() __UpperCamelCase : str = f"\n run_mlm.py\n --model_name_or_path distilroberta-base\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --max_seq_length 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --logging_steps 2 --eval_steps 2\n --do_train\n --do_eval\n --num_train_epochs=1\n ".split() with patch.object(_UpperCAmelCase , "argv" , _UpperCAmelCase ): run_mlm_flax.main() __UpperCamelCase : Optional[Any] = get_results(_UpperCAmelCase ) self.assertLess(result["eval_perplexity"] , 4_2 ) @slow def a_ (self ) -> Dict: __UpperCamelCase : Dict = self.get_auto_remove_tmp_dir() __UpperCamelCase : Tuple = f"\n run_t5_mlm_flax.py\n --model_name_or_path t5-small\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --do_train\n --do_eval\n --max_seq_length 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --num_train_epochs 2\n --logging_steps 2 --eval_steps 2\n --output_dir {tmp_dir}\n --overwrite_output_dir\n ".split() with patch.object(_UpperCAmelCase , "argv" , _UpperCAmelCase ): run_ta_mlm_flax.main() __UpperCamelCase : Tuple = get_results(_UpperCAmelCase ) self.assertGreaterEqual(result["eval_accuracy"] , 0.42 ) @slow def a_ (self ) -> Union[str, Any]: # with so little data distributed training needs more epochs to get the score on par with 0/1 gpu __UpperCamelCase : Union[str, Any] = 7 if get_gpu_count() > 1 else 2 __UpperCamelCase : Optional[Any] = self.get_auto_remove_tmp_dir() __UpperCamelCase : Optional[Any] = f"\n run_flax_ner.py\n --model_name_or_path bert-base-uncased\n --train_file tests/fixtures/tests_samples/conll/sample.json\n --validation_file tests/fixtures/tests_samples/conll/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --do_train\n --do_eval\n --warmup_steps=2\n --learning_rate=2e-4\n --logging_steps 2 --eval_steps 2\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=2\n --num_train_epochs={epochs}\n --seed 7\n ".split() with patch.object(_UpperCAmelCase , "argv" , _UpperCAmelCase ): run_flax_ner.main() __UpperCamelCase : int = get_results(_UpperCAmelCase ) self.assertGreaterEqual(result["eval_accuracy"] , 0.75 ) self.assertGreaterEqual(result["eval_f1"] , 0.3 ) @slow def a_ (self ) -> List[Any]: __UpperCamelCase : Optional[Any] = self.get_auto_remove_tmp_dir() __UpperCamelCase : Dict = f"\n run_qa.py\n --model_name_or_path bert-base-uncased\n --version_2_with_negative\n --train_file tests/fixtures/tests_samples/SQUAD/sample.json\n --validation_file tests/fixtures/tests_samples/SQUAD/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --num_train_epochs=3\n --warmup_steps=2\n --do_train\n --do_eval\n --logging_steps 2 --eval_steps 2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n ".split() with patch.object(_UpperCAmelCase , "argv" , _UpperCAmelCase ): run_qa.main() __UpperCamelCase : List[Any] = get_results(_UpperCAmelCase ) self.assertGreaterEqual(result["eval_f1"] , 3_0 ) self.assertGreaterEqual(result["eval_exact"] , 3_0 )
298
0
def lowerCamelCase__ ( snake_case_ : int ) -> bool: return number & 1 == 0 if __name__ == "__main__": import doctest doctest.testmod()
356
# Algorithm for the pigeonhole sorting def lowerCamelCase__ ( snake_case_ : int ) -> Optional[int]: __snake_case = min(snake_case_ ) # min() finds the minimum value __snake_case = max(snake_case_ ) # max() finds the maximum value __snake_case = max_val - min_val + 1 # size is difference of max and min values plus one # list of pigeonholes of size equal to the variable size __snake_case = [0] * size # Populate the pigeonholes. for x in a: assert isinstance(snake_case_ , snake_case_ ), "integers only please" holes[x - min_val] += 1 # Putting the elements back into the array in an order. __snake_case = 0 for count in range(snake_case_ ): while holes[count] > 0: holes[count] -= 1 __snake_case = count + min_val i += 1 def lowerCamelCase__ ( ) -> Union[str, Any]: __snake_case = [8, 3, 2, 7, 4, 6, 8] pigeonhole_sort(snake_case_ ) print('''Sorted order is:''' , ''' '''.join(snake_case_ ) ) if __name__ == "__main__": main()
238
0
"""simple docstring""" import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor _lowercase : Optional[int] = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ): '''simple docstring''' def __init__( self : int, *lowerCamelCase : Tuple, **lowerCamelCase : int )-> None: warnings.warn( '''The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use YolosImageProcessor instead.''', lowerCamelCase, ) super().__init__(*lowerCamelCase, **lowerCamelCase )
238
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case_ : Any = logging.get_logger(__name__) snake_case_ : Dict = { "weiweishi/roc-bert-base-zh": "https://huggingface.co/weiweishi/roc-bert-base-zh/resolve/main/config.json", } class __a (lowerCamelCase ): __a : Tuple = "roc_bert" def __init__( self : Union[str, Any] , __magic_name__ : List[str]=3_05_22 , __magic_name__ : Tuple=7_68 , __magic_name__ : Any=12 , __magic_name__ : Optional[Any]=12 , __magic_name__ : Union[str, Any]=30_72 , __magic_name__ : Optional[int]="gelu" , __magic_name__ : Optional[int]=0.1 , __magic_name__ : Tuple=0.1 , __magic_name__ : Any=5_12 , __magic_name__ : str=2 , __magic_name__ : Any=0.0_2 , __magic_name__ : Dict=1E-12 , __magic_name__ : int=True , __magic_name__ : Optional[int]=0 , __magic_name__ : str="absolute" , __magic_name__ : Tuple=None , __magic_name__ : Any=True , __magic_name__ : Optional[Any]=True , __magic_name__ : List[str]=7_68 , __magic_name__ : List[Any]=9_10 , __magic_name__ : Tuple=5_12 , __magic_name__ : Dict=2_48_58 , __magic_name__ : Any=True , **__magic_name__ : Union[str, Any] , ) -> Dict: """simple docstring""" UpperCAmelCase_ : List[str] = vocab_size UpperCAmelCase_ : Any = max_position_embeddings UpperCAmelCase_ : Dict = hidden_size UpperCAmelCase_ : int = num_hidden_layers UpperCAmelCase_ : Optional[Any] = num_attention_heads UpperCAmelCase_ : Optional[int] = intermediate_size UpperCAmelCase_ : Dict = hidden_act UpperCAmelCase_ : Tuple = hidden_dropout_prob UpperCAmelCase_ : Optional[int] = attention_probs_dropout_prob UpperCAmelCase_ : Dict = initializer_range UpperCAmelCase_ : Optional[Any] = type_vocab_size UpperCAmelCase_ : str = layer_norm_eps UpperCAmelCase_ : Tuple = use_cache UpperCAmelCase_ : Optional[int] = enable_pronunciation UpperCAmelCase_ : Union[str, Any] = enable_shape UpperCAmelCase_ : List[str] = pronunciation_embed_dim UpperCAmelCase_ : List[str] = pronunciation_vocab_size UpperCAmelCase_ : int = shape_embed_dim UpperCAmelCase_ : Optional[int] = shape_vocab_size UpperCAmelCase_ : Optional[Any] = concat_input UpperCAmelCase_ : Dict = position_embedding_type UpperCAmelCase_ : Union[str, Any] = classifier_dropout super().__init__(pad_token_id=__magic_name__ , **__magic_name__ )
125
0
import gc import math import unittest import torch from diffusers import UNetaDModel from diffusers.utils import floats_tensor, logging, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin lowercase : str = logging.get_logger(__name__) enable_full_determinism() class UpperCAmelCase_ ( UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): '''simple docstring''' A : Optional[int] = UNetaDModel A : Dict = 'sample' @property def _lowerCAmelCase ( self ) -> List[Any]: snake_case_ : Tuple = 4 snake_case_ : Optional[Any] = 3 snake_case_ : Any = (32, 32) snake_case_ : Union[str, Any] = floats_tensor((batch_size, num_channels) + sizes ).to(__lowerCamelCase ) snake_case_ : Union[str, Any] = torch.tensor([10] ).to(__lowerCamelCase ) return {"sample": noise, "timestep": time_step} @property def _lowerCAmelCase ( self ) -> Dict: return (3, 32, 32) @property def _lowerCAmelCase ( self ) -> Dict: return (3, 32, 32) def _lowerCAmelCase ( self ) -> int: snake_case_ : int = { "block_out_channels": (32, 64), "down_block_types": ("DownBlock2D", "AttnDownBlock2D"), "up_block_types": ("AttnUpBlock2D", "UpBlock2D"), "attention_head_dim": 3, "out_channels": 3, "in_channels": 3, "layers_per_block": 2, "sample_size": 32, } snake_case_ : List[str] = self.dummy_input return init_dict, inputs_dict class UpperCAmelCase_ ( UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): '''simple docstring''' A : Dict = UNetaDModel A : List[str] = 'sample' @property def _lowerCAmelCase ( self ) -> Dict: snake_case_ : List[Any] = 4 snake_case_ : str = 4 snake_case_ : Tuple = (32, 32) snake_case_ : List[str] = floats_tensor((batch_size, num_channels) + sizes ).to(__lowerCamelCase ) snake_case_ : List[str] = torch.tensor([10] ).to(__lowerCamelCase ) return {"sample": noise, "timestep": time_step} @property def _lowerCAmelCase ( self ) -> Optional[int]: return (4, 32, 32) @property def _lowerCAmelCase ( self ) -> Union[str, Any]: return (4, 32, 32) def _lowerCAmelCase ( self ) -> List[Any]: snake_case_ : Dict = { "sample_size": 32, "in_channels": 4, "out_channels": 4, "layers_per_block": 2, "block_out_channels": (32, 64), "attention_head_dim": 32, "down_block_types": ("DownBlock2D", "DownBlock2D"), "up_block_types": ("UpBlock2D", "UpBlock2D"), } snake_case_ : Dict = self.dummy_input return init_dict, inputs_dict def _lowerCAmelCase ( self ) -> str: snake_case_ , snake_case_ : Tuple = UNetaDModel.from_pretrained("fusing/unet-ldm-dummy-update" , output_loading_info=__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) self.assertEqual(len(loading_info["missing_keys"] ) , 0 ) model.to(__lowerCamelCase ) snake_case_ : Any = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != "cuda" , "This test is supposed to run on GPU" ) def _lowerCAmelCase ( self ) -> List[Any]: snake_case_ , snake_case_ : Any = UNetaDModel.from_pretrained("fusing/unet-ldm-dummy-update" , output_loading_info=__lowerCamelCase ) model.to(__lowerCamelCase ) snake_case_ : Optional[Any] = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != "cuda" , "This test is supposed to run on GPU" ) def _lowerCAmelCase ( self ) -> List[str]: # by defautl model loading will use accelerate as `low_cpu_mem_usage=True` snake_case_ , snake_case_ : str = UNetaDModel.from_pretrained("fusing/unet-ldm-dummy-update" , output_loading_info=__lowerCamelCase ) model_accelerate.to(__lowerCamelCase ) model_accelerate.eval() snake_case_ : List[Any] = torch.randn( 1 , model_accelerate.config.in_channels , model_accelerate.config.sample_size , model_accelerate.config.sample_size , generator=torch.manual_seed(0 ) , ) snake_case_ : int = noise.to(__lowerCamelCase ) snake_case_ : str = torch.tensor([10] * noise.shape[0] ).to(__lowerCamelCase ) snake_case_ : Any = model_accelerate(__lowerCamelCase , __lowerCamelCase )["sample"] # two models don't need to stay in the device at the same time del model_accelerate torch.cuda.empty_cache() gc.collect() snake_case_ , snake_case_ : Union[str, Any] = UNetaDModel.from_pretrained( "fusing/unet-ldm-dummy-update" , output_loading_info=__lowerCamelCase , low_cpu_mem_usage=__lowerCamelCase ) model_normal_load.to(__lowerCamelCase ) model_normal_load.eval() snake_case_ : str = model_normal_load(__lowerCamelCase , __lowerCamelCase )["sample"] assert torch_all_close(__lowerCamelCase , __lowerCamelCase , rtol=1e-3 ) def _lowerCAmelCase ( self ) -> Any: snake_case_ : Union[str, Any] = UNetaDModel.from_pretrained("fusing/unet-ldm-dummy-update" ) model.eval() model.to(__lowerCamelCase ) snake_case_ : Optional[int] = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) snake_case_ : int = noise.to(__lowerCamelCase ) snake_case_ : Union[str, Any] = torch.tensor([10] * noise.shape[0] ).to(__lowerCamelCase ) with torch.no_grad(): snake_case_ : str = model(__lowerCamelCase , __lowerCamelCase ).sample snake_case_ : Tuple = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off snake_case_ : Any = torch.tensor([-13.3258, -20.1100, -15.9873, -17.6617, -23.0596, -17.9419, -13.3675, -16.1889, -12.3800] ) # fmt: on self.assertTrue(torch_all_close(__lowerCamelCase , __lowerCamelCase , rtol=1e-3 ) ) class UpperCAmelCase_ ( UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): '''simple docstring''' A : Dict = UNetaDModel A : List[Any] = 'sample' @property def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE=(32, 32) ) -> Tuple: snake_case_ : List[str] = 4 snake_case_ : Union[str, Any] = 3 snake_case_ : Tuple = floats_tensor((batch_size, num_channels) + sizes ).to(__lowerCamelCase ) snake_case_ : Tuple = torch.tensor(batch_size * [10] ).to(dtype=torch.intaa , device=__lowerCamelCase ) return {"sample": noise, "timestep": time_step} @property def _lowerCAmelCase ( self ) -> List[str]: return (3, 32, 32) @property def _lowerCAmelCase ( self ) -> List[Any]: return (3, 32, 32) def _lowerCAmelCase ( self ) -> List[str]: snake_case_ : Any = { "block_out_channels": [32, 64, 64, 64], "in_channels": 3, "layers_per_block": 1, "out_channels": 3, "time_embedding_type": "fourier", "norm_eps": 1e-6, "mid_block_scale_factor": math.sqrt(2.0 ), "norm_num_groups": None, "down_block_types": [ "SkipDownBlock2D", "AttnSkipDownBlock2D", "SkipDownBlock2D", "SkipDownBlock2D", ], "up_block_types": [ "SkipUpBlock2D", "SkipUpBlock2D", "AttnSkipUpBlock2D", "SkipUpBlock2D", ], } snake_case_ : Any = self.dummy_input return init_dict, inputs_dict @slow def _lowerCAmelCase ( self ) -> Any: snake_case_ , snake_case_ : Any = UNetaDModel.from_pretrained("google/ncsnpp-celebahq-256" , output_loading_info=__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) self.assertEqual(len(loading_info["missing_keys"] ) , 0 ) model.to(__lowerCamelCase ) snake_case_ : str = self.dummy_input snake_case_ : str = floats_tensor((4, 3) + (256, 256) ).to(__lowerCamelCase ) snake_case_ : Any = noise snake_case_ : Optional[Any] = model(**__lowerCamelCase ) assert image is not None, "Make sure output is not None" @slow def _lowerCAmelCase ( self ) -> int: snake_case_ : Dict = UNetaDModel.from_pretrained("google/ncsnpp-celebahq-256" ) model.to(__lowerCamelCase ) snake_case_ : Dict = 4 snake_case_ : List[str] = 3 snake_case_ : Union[str, Any] = (256, 256) snake_case_ : Tuple = torch.ones((batch_size, num_channels) + sizes ).to(__lowerCamelCase ) snake_case_ : str = torch.tensor(batch_size * [1e-4] ).to(__lowerCamelCase ) with torch.no_grad(): snake_case_ : Tuple = model(__lowerCamelCase , __lowerCamelCase ).sample snake_case_ : int = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off snake_case_ : Any = torch.tensor([-4842.8691, -6499.6631, -3800.1953, -7978.2686, -1_0980.7129, -2_0028.8535, 8148.2822, 2342.2905, 567.7608] ) # fmt: on self.assertTrue(torch_all_close(__lowerCamelCase , __lowerCamelCase , rtol=1e-2 ) ) def _lowerCAmelCase ( self ) -> Any: snake_case_ : Dict = UNetaDModel.from_pretrained("fusing/ncsnpp-ffhq-ve-dummy-update" ) model.to(__lowerCamelCase ) snake_case_ : str = 4 snake_case_ : Optional[Any] = 3 snake_case_ : List[str] = (32, 32) snake_case_ : int = torch.ones((batch_size, num_channels) + sizes ).to(__lowerCamelCase ) snake_case_ : List[Any] = torch.tensor(batch_size * [1e-4] ).to(__lowerCamelCase ) with torch.no_grad(): snake_case_ : Union[str, Any] = model(__lowerCamelCase , __lowerCamelCase ).sample snake_case_ : List[Any] = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off snake_case_ : List[Any] = torch.tensor([-0.0325, -0.0900, -0.0869, -0.0332, -0.0725, -0.0270, -0.0101, 0.0227, 0.0256] ) # fmt: on self.assertTrue(torch_all_close(__lowerCamelCase , __lowerCamelCase , rtol=1e-2 ) ) def _lowerCAmelCase ( self ) -> Any: # not required for this model pass
366
def lowerCAmelCase__ ( _a : dict ): snake_case_ : List[Any] = set() # edges = list of graph's edges snake_case_ : int = get_edges(_a ) # While there are still elements in edges list, take an arbitrary edge # (from_node, to_node) and add his extremity to chosen_vertices and then # remove all arcs adjacent to the from_node and to_node while edges: snake_case_ , snake_case_ : Dict = edges.pop() chosen_vertices.add(_a ) chosen_vertices.add(_a ) for edge in edges.copy(): if from_node in edge or to_node in edge: edges.discard(_a ) return chosen_vertices def lowerCAmelCase__ ( _a : dict ): snake_case_ : List[str] = set() for from_node, to_nodes in graph.items(): for to_node in to_nodes: edges.add((from_node, to_node) ) return edges if __name__ == "__main__": import doctest doctest.testmod() # graph = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} # print(f"Matching vertex cover:\n{matching_min_vertex_cover(graph)}")
36
0
from __future__ import annotations from decimal import Decimal from math import * # noqa: F403 from sympy import diff def UpperCAmelCase__ (UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ = 10**-10 ): """simple docstring""" snake_case = a while True: snake_case = Decimal(UpperCamelCase_ ) - ( Decimal(eval(UpperCamelCase_ ) ) / Decimal(eval(str(diff(UpperCamelCase_ ) ) ) ) # noqa: S307 ) # This number dictates the accuracy of the answer if abs(eval(UpperCamelCase_ ) ) < precision: # noqa: S307 return float(UpperCamelCase_ ) # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(f'''The root of sin(x) = 0 is {newton_raphson('sin(x)', 2)}''') # Find root of polynomial print(f'''The root of x**2 - 5*x + 2 = 0 is {newton_raphson('x**2 - 5*x + 2', 0.4)}''') # Find Square Root of 5 print(f'''The root of log(x) - 1 = 0 is {newton_raphson('log(x) - 1', 2)}''') # Exponential Roots print(f'''The root of exp(x) - 1 = 0 is {newton_raphson('exp(x) - 1', 0)}''')
127
from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_torch_available, is_torch_tpu_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_torch_available(): import torch if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm _SCREAMING_SNAKE_CASE : List[Any] = logging.get_logger(__name__) @dataclass class A__ ( snake_case__ ): """simple docstring""" __magic_name__ = [ 'no_inference', 'no_cuda', 'no_tpu', 'no_speed', 'no_memory', 'no_env_print', 'no_multi_process', ] def __init__( self , **__snake_case ): for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: snake_case = deprecated_arg[3:] setattr(self , __snake_case , not kwargs.pop(__snake_case ) ) logger.warning( F'''{deprecated_arg} is depreciated. Please use --no_{positive_arg} or''' F''' {positive_arg}={kwargs[positive_arg]}''' ) snake_case = kwargs.pop('''torchscript''' , self.torchscript ) snake_case = kwargs.pop('''torch_xla_tpu_print_metrics''' , self.torch_xla_tpu_print_metrics ) snake_case = kwargs.pop('''fp16_opt_level''' , self.fpaa_opt_level ) super().__init__(**__snake_case ) __magic_name__ = field(default=snake_case__ , metadata={'help': 'Trace the models using torchscript'} ) __magic_name__ = field(default=snake_case__ , metadata={'help': 'Print Xla/PyTorch tpu metrics'} ) __magic_name__ = field( default='O1' , metadata={ 'help': ( 'For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\']. ' 'See details at https://nvidia.github.io/apex/amp.html' ) } , ) @cached_property def a_ ( self ): requires_backends(self , ['''torch'''] ) logger.info('''PyTorch: setting up devices''' ) if not self.cuda: snake_case = torch.device('''cpu''' ) snake_case = 0 elif is_torch_tpu_available(): snake_case = xm.xla_device() snake_case = 0 else: snake_case = torch.device('''cuda''' if torch.cuda.is_available() else '''cpu''' ) snake_case = torch.cuda.device_count() return device, n_gpu @property def a_ ( self ): return is_torch_tpu_available() and self.tpu @property def a_ ( self ): requires_backends(self , ['''torch'''] ) # TODO(PVP): currently only single GPU is supported return torch.cuda.current_device() @property def a_ ( self ): requires_backends(self , ['''torch'''] ) return self._setup_devices[0] @property def a_ ( self ): requires_backends(self , ['''torch'''] ) return self._setup_devices[1] @property def a_ ( self ): return self.n_gpu > 0
127
1
from __future__ import annotations from itertools import permutations from random import randint from timeit import repeat def UpperCamelCase__( ): A__ = [randint(-10_00 , 10_00 ) for i in range(10 )] A__ = randint(-50_00 , 50_00 ) return (arr, r) a__: List[str] = make_dataset() def UpperCamelCase__( UpperCamelCase__ : list[int] , UpperCamelCase__ : int ): for triplet in permutations(UpperCamelCase__ , 3 ): if sum(UpperCamelCase__ ) == target: return tuple(sorted(UpperCamelCase__ ) ) return (0, 0, 0) def UpperCamelCase__( UpperCamelCase__ : list[int] , UpperCamelCase__ : int ): arr.sort() A__ = len(UpperCamelCase__ ) for i in range(n - 1 ): A__ , A__ = i + 1, n - 1 while left < right: if arr[i] + arr[left] + arr[right] == target: return (arr[i], arr[left], arr[right]) elif arr[i] + arr[left] + arr[right] < target: left += 1 elif arr[i] + arr[left] + arr[right] > target: right -= 1 return (0, 0, 0) def UpperCamelCase__( ): A__ = ''' from __main__ import dataset, triplet_sum1, triplet_sum2 ''' A__ = ''' triplet_sum1(*dataset) ''' A__ = ''' triplet_sum2(*dataset) ''' A__ = repeat(setup=UpperCamelCase__ , stmt=UpperCamelCase__ , repeat=5 , number=1_00_00 ) A__ = repeat(setup=UpperCamelCase__ , stmt=UpperCamelCase__ , repeat=5 , number=1_00_00 ) return (min(UpperCamelCase__ ), min(UpperCamelCase__ )) if __name__ == "__main__": from doctest import testmod testmod() a__: List[str] = solution_times() print(F"The time for naive implementation is {times[0]}.") print(F"The time for optimized implementation is {times[1]}.")
351
# Algorithm for the pigeonhole sorting def UpperCamelCase__( UpperCamelCase__ : int )->str: A__ = min(UpperCamelCase__ ) # min() finds the minimum value A__ = max(UpperCamelCase__ ) # max() finds the maximum value A__ = max_val - min_val + 1 # size is difference of max and min values plus one # list of pigeonholes of size equal to the variable size A__ = [0] * size # Populate the pigeonholes. for x in a: assert isinstance(UpperCamelCase__ , UpperCamelCase__ ), "integers only please" holes[x - min_val] += 1 # Putting the elements back into the array in an order. A__ = 0 for count in range(UpperCamelCase__ ): while holes[count] > 0: holes[count] -= 1 A__ = count + min_val i += 1 def UpperCamelCase__( )->Tuple: A__ = [8, 3, 2, 7, 4, 6, 8] pigeonhole_sort(UpperCamelCase__ ) print('''Sorted order is:''' , ''' '''.join(UpperCamelCase__ ) ) if __name__ == "__main__": main()
39
0
'''simple docstring''' from __future__ import annotations def _UpperCamelCase ( __A ) -> bool: '''simple docstring''' UpperCamelCase__ = len(__A ) # We need to create solution object to save path. UpperCamelCase__ = [[0 for _ in range(__A )] for _ in range(__A )] UpperCamelCase__ = run_maze(__A , 0 , 0 , __A ) if solved: print("\n".join(str(__A ) for row in solutions ) ) else: print("No solution exists!" ) return solved def _UpperCamelCase ( __A , __A , __A , __A ) -> bool: '''simple docstring''' UpperCamelCase__ = len(__A ) # Final check point. if i == j == (size - 1): UpperCamelCase__ = 1 return True UpperCamelCase__ = (not i < 0) and (not j < 0) # Check lower bounds UpperCamelCase__ = (i < size) and (j < size) # Check upper bounds if lower_flag and upper_flag: # check for already visited and block points. UpperCamelCase__ = (not solutions[i][j]) and (not maze[i][j]) if block_flag: # check visited UpperCamelCase__ = 1 # check for directions if ( run_maze(__A , i + 1 , __A , __A ) or run_maze(__A , __A , j + 1 , __A ) or run_maze(__A , i - 1 , __A , __A ) or run_maze(__A , __A , j - 1 , __A ) ): return True UpperCamelCase__ = 0 return False return False if __name__ == "__main__": import doctest doctest.testmod()
80
'''simple docstring''' from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent a__ : Tuple = {'UserAgent': UserAgent().random} def _UpperCamelCase ( __A ) -> dict: '''simple docstring''' UpperCamelCase__ = script.contents[0] UpperCamelCase__ = json.loads(data[data.find("{\"config\"" ) : -1] ) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class lowercase_ : def __init__( self , a ): UpperCamelCase__ = f'''https://www.instagram.com/{username}/''' UpperCamelCase__ = self.get_json() def __a ( self ): UpperCamelCase__ = requests.get(self.url , headers=a ).text UpperCamelCase__ = BeautifulSoup(a , "html.parser" ).find_all("script" ) try: return extract_user_profile(scripts[4] ) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3] ) def __repr__( self ): return f'''{self.__class__.__name__}(\'{self.username}\')''' def __str__( self ): return f'''{self.fullname} ({self.username}) is {self.biography}''' @property def __a ( self ): return self.user_data["username"] @property def __a ( self ): return self.user_data["full_name"] @property def __a ( self ): return self.user_data["biography"] @property def __a ( self ): return self.user_data["business_email"] @property def __a ( self ): return self.user_data["external_url"] @property def __a ( self ): return self.user_data["edge_followed_by"]["count"] @property def __a ( self ): return self.user_data["edge_follow"]["count"] @property def __a ( self ): return self.user_data["edge_owner_to_timeline_media"]["count"] @property def __a ( self ): return self.user_data["profile_pic_url_hd"] @property def __a ( self ): return self.user_data["is_verified"] @property def __a ( self ): return self.user_data["is_private"] def _UpperCamelCase ( __A = "github" ) -> None: '''simple docstring''' import os if os.environ.get("CI" ): return # test failing on GitHub Actions UpperCamelCase__ = InstagramUser(__A ) assert instagram_user.user_data assert isinstance(instagram_user.user_data , __A ) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 150 assert instagram_user.number_of_followers > 120000 assert instagram_user.number_of_followings > 15 assert instagram_user.email == "[email protected]" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith("https://instagram." ) assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() a__ : Any = InstagramUser('github') print(instagram_user) print(F"""{instagram_user.number_of_posts = }""") print(F"""{instagram_user.number_of_followers = }""") print(F"""{instagram_user.number_of_followings = }""") print(F"""{instagram_user.email = }""") print(F"""{instagram_user.website = }""") print(F"""{instagram_user.profile_picture_url = }""") print(F"""{instagram_user.is_verified = }""") print(F"""{instagram_user.is_private = }""")
80
1
'''simple docstring''' from math import factorial def UpperCAmelCase ( a_ , a_ , a_ ) -> float: """simple docstring""" if successes > trials: raise ValueError("""successes must be lower or equal to trials""" ) if trials < 0 or successes < 0: raise ValueError("""the function is defined for non-negative integers""" ) if not isinstance(a_ , a_ ) or not isinstance(a_ , a_ ): raise ValueError("""the function is defined for non-negative integers""" ) if not 0 < prob < 1: raise ValueError("""prob has to be in range of 1 - 0""" ) A_ : str = (prob**successes) * ((1 - prob) ** (trials - successes)) # Calculate the binomial coefficient: n! / k!(n-k)! A_ : Union[str, Any] = float(factorial(a_ ) ) coefficient /= factorial(a_ ) * factorial(trials - successes ) return probability * coefficient if __name__ == "__main__": from doctest import testmod testmod() print('Probability of 2 successes out of 4 trails') print('with probability of 0.75 is:', end=' ') print(binomial_distribution(2, 4, 0.7_5))
358
'''simple docstring''' def UpperCAmelCase ( a_ , a_ ) -> int: """simple docstring""" return int((input_a, input_a).count(1 ) != 0 ) def UpperCAmelCase ( ) -> None: """simple docstring""" assert or_gate(0 , 0 ) == 0 assert or_gate(0 , 1 ) == 1 assert or_gate(1 , 0 ) == 1 assert or_gate(1 , 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
164
0
import re from pathlib import Path from unittest import TestCase import pytest @pytest.mark.integration class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ): def lowerCamelCase_ ( self : Union[str, Any] , lowerCamelCase_ : str ): """simple docstring""" with open(lowerCamelCase_ , encoding="""utf-8""" ) as input_file: UpperCamelCase = re.compile(R"""(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)""" ) UpperCamelCase = input_file.read() UpperCamelCase = regexp.search(lowerCamelCase_ ) return match def lowerCamelCase_ ( self : Union[str, Any] , lowerCamelCase_ : str ): """simple docstring""" with open(lowerCamelCase_ , encoding="""utf-8""" ) as input_file: UpperCamelCase = re.compile(R"""#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()""" , re.DOTALL ) UpperCamelCase = input_file.read() # use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search` UpperCamelCase = regexp.finditer(lowerCamelCase_ ) UpperCamelCase = [match for match in matches if match is not None and match.group(1 ) is not None] return matches[0] if matches else None def lowerCamelCase_ ( self : Optional[Any] ): """simple docstring""" UpperCamelCase = Path("""./datasets""" ) UpperCamelCase = list(dataset_paths.absolute().glob("""**/*.py""" ) ) for dataset in dataset_files: if self._no_encoding_on_file_open(str(lowerCamelCase_ ) ): raise AssertionError(f"""open(...) must use utf-8 encoding in {dataset}""" ) def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" UpperCamelCase = Path("""./datasets""" ) UpperCamelCase = list(dataset_paths.absolute().glob("""**/*.py""" ) ) for dataset in dataset_files: if self._no_print_statements(str(lowerCamelCase_ ) ): raise AssertionError(f"""print statement found in {dataset}. Use datasets.logger/logging instead.""" )
343
"""simple docstring""" import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import VideoMAEConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEModel, ) from transformers.models.videomae.modeling_videomae import VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class __SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : Optional[Any], lowerCamelCase : Any, lowerCamelCase : List[Any]=13, lowerCamelCase : Any=10, lowerCamelCase : Optional[Any]=3, lowerCamelCase : Union[str, Any]=2, lowerCamelCase : Dict=2, lowerCamelCase : Tuple=2, lowerCamelCase : List[str]=True, lowerCamelCase : Optional[int]=True, lowerCamelCase : Dict=32, lowerCamelCase : Any=5, lowerCamelCase : Dict=4, lowerCamelCase : Any=37, lowerCamelCase : Union[str, Any]="gelu", lowerCamelCase : Dict=0.1, lowerCamelCase : Union[str, Any]=0.1, lowerCamelCase : Dict=10, lowerCamelCase : str=0.02, lowerCamelCase : List[Any]=0.9, lowerCamelCase : List[Any]=None, )-> str: lowerCamelCase__ : List[str] =parent lowerCamelCase__ : Any =batch_size lowerCamelCase__ : str =image_size lowerCamelCase__ : Optional[Any] =num_channels lowerCamelCase__ : Optional[int] =patch_size lowerCamelCase__ : List[str] =tubelet_size lowerCamelCase__ : Optional[Any] =num_frames lowerCamelCase__ : Any =is_training lowerCamelCase__ : List[Any] =use_labels lowerCamelCase__ : Union[str, Any] =hidden_size lowerCamelCase__ : List[str] =num_hidden_layers lowerCamelCase__ : str =num_attention_heads lowerCamelCase__ : List[Any] =intermediate_size lowerCamelCase__ : Any =hidden_act lowerCamelCase__ : int =hidden_dropout_prob lowerCamelCase__ : Optional[int] =attention_probs_dropout_prob lowerCamelCase__ : Optional[Any] =type_sequence_label_size lowerCamelCase__ : int =initializer_range lowerCamelCase__ : Optional[Any] =mask_ratio lowerCamelCase__ : Any =scope # in VideoMAE, the number of tokens equals num_frames/tubelet_size * num_patches per frame lowerCamelCase__ : Optional[Any] =(image_size // patch_size) ** 2 lowerCamelCase__ : Any =(num_frames // tubelet_size) * self.num_patches_per_frame # use this variable to define bool_masked_pos lowerCamelCase__ : List[Any] =int(mask_ratio * self.seq_length ) def snake_case ( self : Dict )-> Union[str, Any]: lowerCamelCase__ : str =floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase__ : Any =None if self.use_labels: lowerCamelCase__ : Union[str, Any] =ids_tensor([self.batch_size], self.type_sequence_label_size ) lowerCamelCase__ : Optional[Any] =self.get_config() return config, pixel_values, labels def snake_case ( self : Union[str, Any] )-> Optional[int]: return VideoMAEConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, num_frames=self.num_frames, tubelet_size=self.tubelet_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=lowerCamelCase, initializer_range=self.initializer_range, ) def snake_case ( self : Dict, lowerCamelCase : Tuple, lowerCamelCase : Optional[Any], lowerCamelCase : Any )-> Union[str, Any]: lowerCamelCase__ : List[str] =VideoMAEModel(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() lowerCamelCase__ : int =model(lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case ( self : Any, lowerCamelCase : str, lowerCamelCase : Optional[int], lowerCamelCase : str )-> Dict: lowerCamelCase__ : int =VideoMAEForPreTraining(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch lowerCamelCase__ : Optional[int] =torch.ones((self.num_masks,) ) lowerCamelCase__ : List[str] =torch.cat([mask, torch.zeros(self.seq_length - mask.size(0 ) )] ) lowerCamelCase__ : int =mask.expand(self.batch_size, -1 ).bool() lowerCamelCase__ : Any =model(lowerCamelCase, lowerCamelCase ) # model only returns predictions for masked patches lowerCamelCase__ : Optional[int] =mask.sum().item() lowerCamelCase__ : Dict =3 * self.tubelet_size * self.patch_size**2 self.parent.assertEqual(result.logits.shape, (self.batch_size, num_masked_patches, decoder_num_labels) ) def snake_case ( self : Optional[Any] )-> Tuple: lowerCamelCase__ : Tuple =self.prepare_config_and_inputs() lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Dict =config_and_inputs lowerCamelCase__ : List[str] ={'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): '''simple docstring''' _a = ( (VideoMAEModel, VideoMAEForPreTraining, VideoMAEForVideoClassification) if is_torch_available() else () ) _a = ( {'feature-extraction': VideoMAEModel, 'video-classification': VideoMAEForVideoClassification} if is_torch_available() else {} ) _a = False _a = False _a = False _a = False def snake_case ( self : List[Any] )-> Tuple: lowerCamelCase__ : int =VideoMAEModelTester(self ) lowerCamelCase__ : Optional[int] =ConfigTester(self, config_class=lowerCamelCase, has_text_modality=lowerCamelCase, hidden_size=37 ) def snake_case ( self : Any, lowerCamelCase : List[Any], lowerCamelCase : Optional[Any], lowerCamelCase : List[str]=False )-> Tuple: lowerCamelCase__ : str =copy.deepcopy(lowerCamelCase ) if model_class == VideoMAEForPreTraining: # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch lowerCamelCase__ : Any =torch.ones((self.model_tester.num_masks,) ) lowerCamelCase__ : Dict =torch.cat([mask, torch.zeros(self.model_tester.seq_length - mask.size(0 ) )] ) lowerCamelCase__ : Optional[int] =mask.expand(self.model_tester.batch_size, -1 ).bool() lowerCamelCase__ : int =bool_masked_pos.to(lowerCamelCase ) if return_labels: if model_class in [ *get_values(lowerCamelCase ), ]: lowerCamelCase__ : List[str] =torch.zeros( self.model_tester.batch_size, dtype=torch.long, device=lowerCamelCase ) return inputs_dict def snake_case ( self : List[Any] )-> int: self.config_tester.run_common_tests() @unittest.skip(reason='''VideoMAE does not use inputs_embeds''' ) def snake_case ( self : List[str] )-> Tuple: pass def snake_case ( self : Union[str, Any] )-> Union[str, Any]: lowerCamelCase__ , lowerCamelCase__ : Optional[int] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ : List[str] =model_class(lowerCamelCase ) self.assertIsInstance(model.get_input_embeddings(), (nn.Module) ) lowerCamelCase__ : Optional[Any] =model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCamelCase, nn.Linear ) ) def snake_case ( self : Optional[int] )-> Optional[Any]: lowerCamelCase__ , lowerCamelCase__ : Any =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ : Optional[int] =model_class(lowerCamelCase ) lowerCamelCase__ : Dict =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase__ : Tuple =[*signature.parameters.keys()] lowerCamelCase__ : List[str] =['''pixel_values'''] self.assertListEqual(arg_names[:1], lowerCamelCase ) def snake_case ( self : Tuple )-> Optional[int]: lowerCamelCase__ : Any =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase ) def snake_case ( self : List[Any] )-> Union[str, Any]: lowerCamelCase__ : Optional[int] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*lowerCamelCase ) @slow def snake_case ( self : List[Any] )-> Dict: for model_name in VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__ : str =VideoMAEModel.from_pretrained(lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) def snake_case ( self : List[str] )-> Optional[int]: if not self.has_attentions: pass else: lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] =self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase__ : Tuple =True for model_class in self.all_model_classes: lowerCamelCase__ : Any =self.model_tester.seq_length - self.model_tester.num_masks lowerCamelCase__ : Any =( num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length ) lowerCamelCase__ : Optional[int] =True lowerCamelCase__ : Optional[int] =False lowerCamelCase__ : Optional[int] =True lowerCamelCase__ : int =model_class(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() with torch.no_grad(): lowerCamelCase__ : Union[str, Any] =model(**self._prepare_for_class(lowerCamelCase, lowerCamelCase ) ) lowerCamelCase__ : str =outputs.attentions self.assertEqual(len(lowerCamelCase ), self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowerCamelCase__ : Tuple =True lowerCamelCase__ : Union[str, Any] =model_class(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() with torch.no_grad(): lowerCamelCase__ : List[str] =model(**self._prepare_for_class(lowerCamelCase, lowerCamelCase ) ) lowerCamelCase__ : int =outputs.attentions self.assertEqual(len(lowerCamelCase ), self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ), [self.model_tester.num_attention_heads, seq_len, seq_len], ) lowerCamelCase__ : Union[str, Any] =len(lowerCamelCase ) # Check attention is always last and order is fine lowerCamelCase__ : List[Any] =True lowerCamelCase__ : Union[str, Any] =True lowerCamelCase__ : Dict =model_class(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() with torch.no_grad(): lowerCamelCase__ : Any =model(**self._prepare_for_class(lowerCamelCase, lowerCamelCase ) ) self.assertEqual(out_len + 1, len(lowerCamelCase ) ) lowerCamelCase__ : Optional[Any] =outputs.attentions self.assertEqual(len(lowerCamelCase ), self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ), [self.model_tester.num_attention_heads, seq_len, seq_len], ) def snake_case ( self : str )-> int: def check_hidden_states_output(lowerCamelCase : Optional[Any], lowerCamelCase : List[str], lowerCamelCase : Optional[Any] ): lowerCamelCase__ : List[Any] =model_class(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() with torch.no_grad(): lowerCamelCase__ : Optional[Any] =model(**self._prepare_for_class(lowerCamelCase, lowerCamelCase ) ) lowerCamelCase__ : Dict =outputs.hidden_states lowerCamelCase__ : Any =self.model_tester.num_hidden_layers + 1 self.assertEqual(len(lowerCamelCase ), lowerCamelCase ) lowerCamelCase__ : Any =self.model_tester.seq_length - self.model_tester.num_masks lowerCamelCase__ : str =num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ), [seq_length, self.model_tester.hidden_size], ) lowerCamelCase__ , lowerCamelCase__ : List[str] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ : Union[str, Any] =True check_hidden_states_output(lowerCamelCase, lowerCamelCase, lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase__ : int =True check_hidden_states_output(lowerCamelCase, lowerCamelCase, lowerCamelCase ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def snake_case ( self : Optional[int] )-> int: pass def snake_case__ ( ): """simple docstring""" lowerCamelCase__ : int =hf_hub_download( repo_id='''hf-internal-testing/spaghetti-video''' , filename='''eating_spaghetti.npy''' , repo_type='''dataset''' ) lowerCamelCase__ : str =np.load(__lowerCamelCase ) return list(__lowerCamelCase ) @require_torch @require_vision class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @cached_property def snake_case ( self : List[str] )-> List[Any]: # logits were tested with a different mean and std, so we use the same here return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5], image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def snake_case ( self : Optional[Any] )-> Dict: lowerCamelCase__ : str =VideoMAEForVideoClassification.from_pretrained('''MCG-NJU/videomae-base-finetuned-kinetics''' ).to( lowerCamelCase ) lowerCamelCase__ : Optional[Any] =self.default_image_processor lowerCamelCase__ : List[str] =prepare_video() lowerCamelCase__ : Union[str, Any] =image_processor(lowerCamelCase, return_tensors='''pt''' ).to(lowerCamelCase ) # forward pass with torch.no_grad(): lowerCamelCase__ : Tuple =model(**lowerCamelCase ) # verify the logits lowerCamelCase__ : Union[str, Any] =torch.Size((1, 400) ) self.assertEqual(outputs.logits.shape, lowerCamelCase ) lowerCamelCase__ : Tuple =torch.tensor([0.3_669, -0.0_688, -0.2_421] ).to(lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3], lowerCamelCase, atol=1E-4 ) ) @slow def snake_case ( self : Any )-> Tuple: lowerCamelCase__ : Tuple =VideoMAEForPreTraining.from_pretrained('''MCG-NJU/videomae-base-short''' ).to(lowerCamelCase ) lowerCamelCase__ : Optional[int] =self.default_image_processor lowerCamelCase__ : Dict =prepare_video() lowerCamelCase__ : Dict =image_processor(lowerCamelCase, return_tensors='''pt''' ).to(lowerCamelCase ) # add boolean mask, indicating which patches to mask lowerCamelCase__ : str =hf_hub_download(repo_id='''hf-internal-testing/bool-masked-pos''', filename='''bool_masked_pos.pt''' ) lowerCamelCase__ : Dict =torch.load(lowerCamelCase ) # forward pass with torch.no_grad(): lowerCamelCase__ : Union[str, Any] =model(**lowerCamelCase ) # verify the logits lowerCamelCase__ : Dict =torch.Size([1, 1408, 1536] ) lowerCamelCase__ : Union[str, Any] =torch.tensor( [[0.7_994, 0.9_612, 0.8_508], [0.7_401, 0.8_958, 0.8_302], [0.5_862, 0.7_468, 0.7_325]], device=lowerCamelCase ) self.assertEqual(outputs.logits.shape, lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3], lowerCamelCase, atol=1E-4 ) ) # verify the loss (`config.norm_pix_loss` = `True`) lowerCamelCase__ : Optional[int] =torch.tensor([0.5_142], device=lowerCamelCase ) self.assertTrue(torch.allclose(outputs.loss, lowerCamelCase, atol=1E-4 ) ) # verify the loss (`config.norm_pix_loss` = `False`) lowerCamelCase__ : Union[str, Any] =VideoMAEForPreTraining.from_pretrained('''MCG-NJU/videomae-base-short''', norm_pix_loss=lowerCamelCase ).to( lowerCamelCase ) with torch.no_grad(): lowerCamelCase__ : Union[str, Any] =model(**lowerCamelCase ) lowerCamelCase__ : Union[str, Any] =torch.tensor(torch.tensor([0.6_469] ), device=lowerCamelCase ) self.assertTrue(torch.allclose(outputs.loss, lowerCamelCase, atol=1E-4 ) )
238
0
from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class __lowerCAmelCase : UpperCamelCase = XGLMConfig UpperCamelCase = {} UpperCamelCase = "gelu" def __init__( self : List[str] , A : str , A : List[str]=14 , A : List[Any]=7 , A : Dict=True , A : str=True , A : Union[str, Any]=True , A : Any=99 , A : int=32 , A : Union[str, Any]=2 , A : Optional[int]=4 , A : Dict=37 , A : Dict="gelu" , A : Dict=0.1 , A : List[Any]=0.1 , A : Dict=5_12 , A : int=0.0_2 , ) -> Tuple: """simple docstring""" _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = seq_length _UpperCAmelCase = is_training _UpperCAmelCase = use_input_mask _UpperCAmelCase = use_labels _UpperCAmelCase = vocab_size _UpperCAmelCase = d_model _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = ffn_dim _UpperCAmelCase = activation_function _UpperCAmelCase = activation_dropout _UpperCAmelCase = attention_dropout _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = initializer_range _UpperCAmelCase = None _UpperCAmelCase = 0 _UpperCAmelCase = 2 _UpperCAmelCase = 1 def _lowerCamelCase ( self : Dict) -> List[str]: """simple docstring""" return XGLMConfig.from_pretrained('facebook/xglm-564M') def _lowerCamelCase ( self : List[str]) -> Optional[int]: """simple docstring""" _UpperCAmelCase = tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) , clip_value_min=0 , clip_value_max=3) _UpperCAmelCase = None if self.use_input_mask: _UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length]) _UpperCAmelCase = self.get_config() _UpperCAmelCase = floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2) return ( config, input_ids, input_mask, head_mask, ) def _lowerCamelCase ( self : str) -> Union[str, Any]: """simple docstring""" return XGLMConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=_UpperCAmelCase , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=_UpperCAmelCase , ) def _lowerCamelCase ( self : Dict) -> List[Any]: """simple docstring""" _UpperCAmelCase = self.prepare_config_and_inputs() ( _UpperCAmelCase ) = config_and_inputs _UpperCAmelCase = { '''input_ids''': input_ids, '''head_mask''': head_mask, } return config, inputs_dict @require_tf class __lowerCAmelCase ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): UpperCamelCase = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () UpperCamelCase = (TFXGLMForCausalLM,) if is_tf_available() else () UpperCamelCase = ( {"feature-extraction": TFXGLMModel, "text-generation": TFXGLMForCausalLM} if is_tf_available() else {} ) UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def _lowerCamelCase ( self : str) -> str: """simple docstring""" _UpperCAmelCase = TFXGLMModelTester(self) _UpperCAmelCase = ConfigTester(self , config_class=_UpperCAmelCase , n_embd=37) def _lowerCamelCase ( self : Optional[int]) -> Any: """simple docstring""" self.config_tester.run_common_tests() @slow def _lowerCamelCase ( self : str) -> List[Any]: """simple docstring""" for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase = TFXGLMModel.from_pretrained(_UpperCAmelCase) self.assertIsNotNone(_UpperCAmelCase) @unittest.skip(reason='Currently, model embeddings are going to undergo a major refactor.') def _lowerCamelCase ( self : str) -> Optional[int]: """simple docstring""" super().test_resize_token_embeddings() @require_tf class __lowerCAmelCase ( unittest.TestCase ): @slow def _lowerCamelCase ( self : Dict , A : str=True) -> Dict: """simple docstring""" _UpperCAmelCase = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M') _UpperCAmelCase = tf.convert_to_tensor([[2, 2_68, 98_65]] , dtype=tf.intaa) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off _UpperCAmelCase = [2, 2_68, 98_65, 67, 11, 19_88, 5_72_52, 98_65, 5, 9_84, 67, 19_88, 21_38_38, 16_58, 53, 7_04_46, 33, 66_57, 2_78, 15_81] # fmt: on _UpperCAmelCase = model.generate(_UpperCAmelCase , do_sample=_UpperCAmelCase , num_beams=1) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist() , _UpperCAmelCase) @slow def _lowerCamelCase ( self : str) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = XGLMTokenizer.from_pretrained('facebook/xglm-564M') _UpperCAmelCase = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M') tf.random.set_seed(0) _UpperCAmelCase = tokenizer('Today is a nice day and' , return_tensors='tf') _UpperCAmelCase = tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(':/CPU:0'): _UpperCAmelCase = model.generate(_UpperCAmelCase , do_sample=_UpperCAmelCase , seed=[7, 0]) _UpperCAmelCase = tokenizer.decode(output_ids[0] , skip_special_tokens=_UpperCAmelCase) _UpperCAmelCase = ( '''Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due''' ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase) @slow def _lowerCamelCase ( self : List[Any]) -> str: """simple docstring""" _UpperCAmelCase = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M') _UpperCAmelCase = XGLMTokenizer.from_pretrained('facebook/xglm-564M') _UpperCAmelCase = '''left''' # use different length sentences to test batching _UpperCAmelCase = [ '''This is an extremelly long sentence that only exists to test the ability of the model to cope with ''' '''left-padding, such as in batched generation. The output for the sequence below should be the same ''' '''regardless of whether left padding is applied or not. When''', '''Hello, my dog is a little''', ] _UpperCAmelCase = tokenizer(_UpperCAmelCase , return_tensors='tf' , padding=_UpperCAmelCase) _UpperCAmelCase = inputs['''input_ids'''] _UpperCAmelCase = model.generate(input_ids=_UpperCAmelCase , attention_mask=inputs['attention_mask'] , max_new_tokens=12) _UpperCAmelCase = tokenizer(sentences[0] , return_tensors='tf').input_ids _UpperCAmelCase = model.generate(input_ids=_UpperCAmelCase , max_new_tokens=12) _UpperCAmelCase = tokenizer(sentences[1] , return_tensors='tf').input_ids _UpperCAmelCase = model.generate(input_ids=_UpperCAmelCase , max_new_tokens=12) _UpperCAmelCase = tokenizer.batch_decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase) _UpperCAmelCase = tokenizer.decode(output_non_padded[0] , skip_special_tokens=_UpperCAmelCase) _UpperCAmelCase = tokenizer.decode(output_padded[0] , skip_special_tokens=_UpperCAmelCase) _UpperCAmelCase = [ '''This is an extremelly long sentence that only exists to test the ability of the model to cope with ''' '''left-padding, such as in batched generation. The output for the sequence below should be the same ''' '''regardless of whether left padding is applied or not. When left padding is applied, the sequence will be ''' '''a single''', '''Hello, my dog is a little bit of a shy one, but he is very friendly''', ] self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase) self.assertListEqual(_UpperCAmelCase , [non_padded_sentence, padded_sentence])
352
from typing import TYPE_CHECKING from ...utils import _LazyModule UpperCAmelCase__ = {"tokenization_bertweet": ["BertweetTokenizer"]} if TYPE_CHECKING: from .tokenization_bertweet import BertweetTokenizer else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
290
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) UpperCAmelCase_ : Union[str, Any] = { '''configuration_clip''': [ '''CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CLIPConfig''', '''CLIPOnnxConfig''', '''CLIPTextConfig''', '''CLIPVisionConfig''', ], '''processing_clip''': ['''CLIPProcessor'''], '''tokenization_clip''': ['''CLIPTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Any = ['''CLIPTokenizerFast'''] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Union[str, Any] = ['''CLIPFeatureExtractor'''] UpperCAmelCase_ : Dict = ['''CLIPImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : List[Any] = [ '''CLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CLIPModel''', '''CLIPPreTrainedModel''', '''CLIPTextModel''', '''CLIPTextModelWithProjection''', '''CLIPVisionModel''', '''CLIPVisionModelWithProjection''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : str = [ '''TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFCLIPModel''', '''TFCLIPPreTrainedModel''', '''TFCLIPTextModel''', '''TFCLIPVisionModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Any = [ '''FlaxCLIPModel''', '''FlaxCLIPPreTrainedModel''', '''FlaxCLIPTextModel''', '''FlaxCLIPTextPreTrainedModel''', '''FlaxCLIPVisionModel''', '''FlaxCLIPVisionPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_clip import ( CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPConfig, CLIPOnnxConfig, CLIPTextConfig, CLIPVisionConfig, ) from .processing_clip import CLIPProcessor from .tokenization_clip import CLIPTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_clip_fast import CLIPTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clip import CLIPFeatureExtractor from .image_processing_clip import CLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clip import ( CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPModel, CLIPPreTrainedModel, CLIPTextModel, CLIPTextModelWithProjection, CLIPVisionModel, CLIPVisionModelWithProjection, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_clip import ( TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFCLIPModel, TFCLIPPreTrainedModel, TFCLIPTextModel, TFCLIPVisionModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_clip import ( FlaxCLIPModel, FlaxCLIPPreTrainedModel, FlaxCLIPTextModel, FlaxCLIPTextPreTrainedModel, FlaxCLIPVisionModel, FlaxCLIPVisionPreTrainedModel, ) else: import sys UpperCAmelCase_ : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
38
import os import unittest from transformers.models.bartpho.tokenization_bartpho import VOCAB_FILES_NAMES, BartphoTokenizer from transformers.testing_utils import get_tests_dir from ...test_tokenization_common import TokenizerTesterMixin _snake_case = get_tests_dir("fixtures/test_sentencepiece_bpe.model") class UpperCAmelCase_ ( a , unittest.TestCase): lowerCamelCase__ = BartphoTokenizer lowerCamelCase__ = False lowerCamelCase__ = True def snake_case__ ( self): '''simple docstring''' super().setUp() _lowerCAmelCase : str = ["▁This", "▁is", "▁a", "▁t", "est"] _lowerCAmelCase : List[str] = dict(zip(__a, range(len(__a)))) _lowerCAmelCase : Optional[Any] = {"unk_token": "<unk>"} _lowerCAmelCase : Optional[int] = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["monolingual_vocab_file"]) with open(self.monolingual_vocab_file, "w", encoding="utf-8") as fp: for token in vocab_tokens: fp.write(f"{token} {vocab_tokens[token]}\n") _lowerCAmelCase : Optional[Any] = BartphoTokenizer(__a, self.monolingual_vocab_file, **self.special_tokens_map) tokenizer.save_pretrained(self.tmpdirname) def snake_case__ ( self, **__a): '''simple docstring''' kwargs.update(self.special_tokens_map) return BartphoTokenizer.from_pretrained(self.tmpdirname, **__a) def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = "This is a là test" _lowerCAmelCase : Optional[int] = "This is a<unk><unk> test" return input_text, output_text def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = BartphoTokenizer(__a, self.monolingual_vocab_file, **self.special_tokens_map) _lowerCAmelCase : List[Any] = "This is a là test" _lowerCAmelCase : str = "▁This ▁is ▁a ▁l à ▁t est".split() _lowerCAmelCase : str = tokenizer.tokenize(__a) self.assertListEqual(__a, __a) _lowerCAmelCase : Tuple = tokens + [tokenizer.unk_token] _lowerCAmelCase : List[str] = [4, 5, 6, 3, 3, 7, 8, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(__a), __a)
36
0
import gc import importlib.metadata import tempfile import unittest from packaging import version from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoTokenizer, BitsAndBytesConfig, pipeline, ) from transformers.testing_utils import ( is_torch_available, require_accelerate, require_bitsandbytes, require_torch, require_torch_gpu, require_torch_multi_gpu, slow, ) def A ( lowercase ) -> Tuple: '''simple docstring''' if model.config.model_type == "gpt2": return model.transformer.h[0].mlp.c_fc return model.transformer.h[0].mlp.dense_ah_to_h if is_torch_available(): import torch import torch.nn as nn class lowercase ( nn.Module ): def __init__( self , A_ , A_ ) -> List[str]: """simple docstring""" super().__init__() UpperCamelCase = module UpperCamelCase = nn.Sequential( nn.Linear(module.in_features , A_ , bias=A_ ) , nn.Linear(A_ , module.out_features , bias=A_ ) , ) UpperCamelCase = (2.0 / (5 * min(module.in_features , module.out_features ))) ** 0.5 nn.init.normal_(self.adapter[0].weight , std=A_ ) nn.init.zeros_(self.adapter[1].weight ) self.adapter.to(module.weight.device ) def __UpperCamelCase ( self , A_ , *A_ , **A_ ) -> Dict: """simple docstring""" return self.module(A_ , *A_ , **A_ ) + self.adapter(A_ ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class lowercase ( unittest.TestCase ): # We keep the constants inside the init function and model loading inside setUp function # We need to test on relatively large models (aka >1b parameters otherwise the quantiztion may not work as expected) # Therefore here we use only bloom-1b3 to test our module __lowercase : List[str] = "bigscience/bloom-1b7" # Constant values __lowercase : List[str] = 2.1_0_9_6_5_9_5_5_2_6_9_2_5_7_4 __lowercase : List[Any] = "Hello my name is" __lowercase : str = set() EXPECTED_OUTPUTS.add("Hello my name is John and I am a professional photographer. I" ) EXPECTED_OUTPUTS.add("Hello my name is John.\nI am a friend of your father.\n" ) EXPECTED_OUTPUTS.add("Hello my name is John Doe, I am a student at the University" ) __lowercase : Tuple = 10 def __UpperCamelCase ( self ) -> List[Any]: """simple docstring""" UpperCamelCase = AutoTokenizer.from_pretrained(self.model_name ) class lowercase ( _SCREAMING_SNAKE_CASE ): def __UpperCamelCase ( self ) -> Any: """simple docstring""" super().setUp() # Models and tokenizer UpperCamelCase = AutoModelForCausalLM.from_pretrained( self.model_name , torch_dtype=torch.floataa , device_map='auto' ) UpperCamelCase = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=A_ , device_map='auto' ) def __UpperCamelCase ( self ) -> List[Any]: """simple docstring""" del self.model_fpaa del self.model_abit gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self ) -> int: """simple docstring""" UpperCamelCase = self.model_abit.config self.assertTrue(hasattr(A_ , 'quantization_config' ) ) UpperCamelCase = config.to_dict() UpperCamelCase = config.to_diff_dict() UpperCamelCase = config.to_json_string() def __UpperCamelCase ( self ) -> Any: """simple docstring""" from bitsandbytes.nn import Paramsabit UpperCamelCase = self.model_fpaa.get_memory_footprint() UpperCamelCase = self.model_abit.get_memory_footprint() self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE ) UpperCamelCase = get_some_linear_layer(self.model_abit ) self.assertTrue(linear.weight.__class__ == Paramsabit ) def __UpperCamelCase ( self ) -> int: """simple docstring""" from transformers import TaPreTrainedModel self.model_fpaa.get_memory_footprint() self.model_abit.get_memory_footprint() for name, module in self.model_abit.named_modules(): if isinstance(A_ , torch.nn.Linear ): if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules: # 4-bit parameters are packed in uint8 variables self.assertTrue(module.weight.dtype == torch.uinta ) def __UpperCamelCase ( self ) -> List[Any]: """simple docstring""" UpperCamelCase = self.tokenizer(self.input_text , return_tensors='pt' ) UpperCamelCase = self.model_abit.generate(input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=A_ ) , self.EXPECTED_OUTPUTS ) def __UpperCamelCase ( self ) -> Any: """simple docstring""" UpperCamelCase = BitsAndBytesConfig() UpperCamelCase = True UpperCamelCase = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=A_ , device_map='auto' ) UpperCamelCase = self.tokenizer(self.input_text , return_tensors='pt' ) UpperCamelCase = model_abit_from_config.generate( input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=A_ ) , self.EXPECTED_OUTPUTS ) def __UpperCamelCase ( self ) -> Tuple: """simple docstring""" with self.assertRaises(A_ ), tempfile.TemporaryDirectory() as tmpdirname: self.model_abit.save_pretrained(A_ ) def __UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" UpperCamelCase = BitsAndBytesConfig() with self.assertRaises(A_ ): UpperCamelCase = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=A_ , load_in_abit=A_ , device_map='auto' , bnb_abit_quant_type='nf4' , ) def __UpperCamelCase ( self ) -> Any: """simple docstring""" with self.assertRaises(A_ ): # Tries with `str` self.model_abit.to('cpu' ) with self.assertRaises(A_ ): # Tries with a `dtype`` self.model_abit.to(torch.floataa ) with self.assertRaises(A_ ): # Tries with a `device` self.model_abit.to(torch.device('cuda:0' ) ) with self.assertRaises(A_ ): # Tries with a `device` self.model_abit.float() with self.assertRaises(A_ ): # Tries with a `device` self.model_abit.half() # Test if we did not break anything UpperCamelCase = self.tokenizer(self.input_text , return_tensors='pt' ) UpperCamelCase = self.model_fpaa.to(torch.floataa ) UpperCamelCase = self.model_fpaa.generate(input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 ) # Check this does not throw an error UpperCamelCase = self.model_fpaa.to('cpu' ) # Check this does not throw an error UpperCamelCase = self.model_fpaa.half() # Check this does not throw an error UpperCamelCase = self.model_fpaa.float() def __UpperCamelCase ( self ) -> List[str]: """simple docstring""" UpperCamelCase = AutoModelForSeqaSeqLM.from_pretrained('t5-small' , load_in_abit=A_ , device_map='auto' ) self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class lowercase ( unittest.TestCase ): @classmethod def __UpperCamelCase ( cls ) -> str: """simple docstring""" UpperCamelCase = 't5-small' UpperCamelCase = 'google/flan-t5-small' # flan-t5 uses dense-act instead of dense-relu-dense UpperCamelCase = AutoTokenizer.from_pretrained(cls.model_name ) UpperCamelCase = 'Translate in German: Hello, my dog is cute' def __UpperCamelCase ( self ) -> List[str]: """simple docstring""" gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self ) -> Union[str, Any]: """simple docstring""" from transformers import TaForConditionalGeneration UpperCamelCase = TaForConditionalGeneration._keep_in_fpaa_modules UpperCamelCase = None # test with `t5-small` UpperCamelCase = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=A_ , device_map='auto' ) UpperCamelCase = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 ) UpperCamelCase = model.generate(**A_ ) # test with `flan-t5-small` UpperCamelCase = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=A_ , device_map='auto' ) UpperCamelCase = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 ) UpperCamelCase = model.generate(**A_ ) UpperCamelCase = modules def __UpperCamelCase ( self ) -> str: """simple docstring""" import bitsandbytes as bnb from transformers import TaForConditionalGeneration # test with `t5-small` UpperCamelCase = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=A_ , device_map='auto' ) # there was a bug with decoders - this test checks that it is fixed self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit ) ) UpperCamelCase = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 ) UpperCamelCase = model.generate(**A_ ) # test with `flan-t5-small` UpperCamelCase = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=A_ , device_map='auto' ) UpperCamelCase = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 ) UpperCamelCase = model.generate(**A_ ) class lowercase ( _SCREAMING_SNAKE_CASE ): def __UpperCamelCase ( self ) -> Optional[int]: """simple docstring""" super().setUp() # model_name UpperCamelCase = 'bigscience/bloom-560m' UpperCamelCase = 't5-small' # Different types of model UpperCamelCase = AutoModel.from_pretrained(self.model_name , load_in_abit=A_ , device_map='auto' ) # Sequence classification model UpperCamelCase = AutoModelForSequenceClassification.from_pretrained( self.model_name , load_in_abit=A_ , device_map='auto' ) # CausalLM model UpperCamelCase = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=A_ , device_map='auto' ) # Seq2seq model UpperCamelCase = AutoModelForSeqaSeqLM.from_pretrained( self.seq_to_seq_name , load_in_abit=A_ , device_map='auto' ) def __UpperCamelCase ( self ) -> str: """simple docstring""" del self.base_model del self.sequence_model del self.model_abit del self.seq_to_seq_model gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self ) -> Optional[int]: """simple docstring""" from bitsandbytes.nn import Paramsabit self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit ) # Other heads should be nn.Parameter self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter ) class lowercase ( _SCREAMING_SNAKE_CASE ): def __UpperCamelCase ( self ) -> Any: """simple docstring""" super().setUp() def __UpperCamelCase ( self ) -> Dict: """simple docstring""" del self.pipe gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self ) -> List[str]: """simple docstring""" UpperCamelCase = pipeline( 'text-generation' , model=self.model_name , model_kwargs={'device_map': 'auto', 'load_in_4bit': True, 'torch_dtype': torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , ) # Real second forward pass UpperCamelCase = self.pipe(self.input_text ) self.assertIn(pipeline_output[0]['generated_text'] , self.EXPECTED_OUTPUTS ) @require_torch_multi_gpu class lowercase ( _SCREAMING_SNAKE_CASE ): def __UpperCamelCase ( self ) -> int: """simple docstring""" super().setUp() def __UpperCamelCase ( self ) -> List[Any]: """simple docstring""" UpperCamelCase = AutoModelForCausalLM.from_pretrained( self.model_name , load_in_abit=A_ , device_map='balanced' ) # Check correct device map self.assertEqual(set(model_parallel.hf_device_map.values() ) , {0, 1} ) # Check that inference pass works on the model UpperCamelCase = self.tokenizer(self.input_text , return_tensors='pt' ) # Second real batch UpperCamelCase = model_parallel.generate(input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=A_ ) , self.EXPECTED_OUTPUTS ) class lowercase ( _SCREAMING_SNAKE_CASE ): def __UpperCamelCase ( self ) -> Optional[int]: """simple docstring""" UpperCamelCase = 'facebook/opt-350m' super().setUp() def __UpperCamelCase ( self ) -> int: """simple docstring""" if version.parse(importlib.metadata.version('bitsandbytes' ) ) < version.parse('0.37.0' ): return # Step 1: freeze all parameters UpperCamelCase = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=A_ ) self.assertEqual(set(model.hf_device_map.values() ) , {torch.cuda.current_device()} ) for param in model.parameters(): UpperCamelCase = False # freeze the model - train adapters later if param.ndim == 1: # cast the small parameters (e.g. layernorm) to fp32 for stability UpperCamelCase = param.data.to(torch.floataa ) # Step 2: add adapters for _, module in model.named_modules(): if "OPTAttention" in repr(type(A_ ) ): UpperCamelCase = LoRALayer(module.q_proj , rank=16 ) UpperCamelCase = LoRALayer(module.k_proj , rank=16 ) UpperCamelCase = LoRALayer(module.v_proj , rank=16 ) # Step 3: dummy batch UpperCamelCase = self.tokenizer('Test batch ' , return_tensors='pt' ).to(0 ) # Step 4: Check if the gradient is not None with torch.cuda.amp.autocast(): UpperCamelCase = model.forward(**A_ ) out.logits.norm().backward() for module in model.modules(): if isinstance(A_ , A_ ): self.assertTrue(module.adapter[1].weight.grad is not None ) self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 ) elif isinstance(A_ , nn.Embedding ): self.assertTrue(module.weight.grad is None ) class lowercase ( _SCREAMING_SNAKE_CASE ): __lowercase : Dict = "gpt2-xl" __lowercase : int = 3.3_1_9_1_8_5_4_8_5_4_1_5_2_1_8_7
365
from __future__ import annotations class lowercase : def __init__( self , A_ , A_ ) -> Any: """simple docstring""" UpperCamelCase , UpperCamelCase = text, pattern UpperCamelCase , UpperCamelCase = len(A_ ), len(A_ ) def __UpperCamelCase ( self , A_ ) -> int: """simple docstring""" for i in range(self.patLen - 1 , -1 , -1 ): if char == self.pattern[i]: return i return -1 def __UpperCamelCase ( self , A_ ) -> int: """simple docstring""" for i in range(self.patLen - 1 , -1 , -1 ): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def __UpperCamelCase ( self ) -> list[int]: """simple docstring""" # searches pattern in text and returns index positions UpperCamelCase = [] for i in range(self.textLen - self.patLen + 1 ): UpperCamelCase = self.mismatch_in_text(A_ ) if mismatch_index == -1: positions.append(A_ ) else: UpperCamelCase = self.match_in_pattern(self.text[mismatch_index] ) UpperCamelCase = ( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions _UpperCAmelCase : Union[str, Any] = "ABAABA" _UpperCAmelCase : Any = "AB" _UpperCAmelCase : Dict = BoyerMooreSearch(text, pattern) _UpperCAmelCase : Optional[int] = bms.bad_character_heuristic() if len(positions) == 0: print("No match found") else: print("Pattern found in following positions: ") print(positions)
110
0
def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Tuple ) -> bool: '''simple docstring''' A__ = [int(__lowerCAmelCase ) for i in ip_va_address.split("." ) if i.isdigit()] return len(__lowerCAmelCase ) == 4 and all(0 <= int(__lowerCAmelCase ) <= 2_5_4 for octet in octets ) if __name__ == "__main__": lowerCAmelCase__ = input().strip() lowerCAmelCase__ = """valid""" if is_ip_va_address_valid(ip) else """invalid""" print(f"""{ip} is a {valid_or_invalid} IP v4 address.""")
68
from __future__ import annotations import collections import pprint from pathlib import Path def __A ( __lowerCAmelCase )-> str: """simple docstring""" return "".join(sorted(__lowerCAmelCase ) ) def __A ( __lowerCAmelCase )-> list[str]: """simple docstring""" return word_by_signature[signature(__lowerCAmelCase )] _a = Path(__file__).parent.joinpath('''words.txt''').read_text(encoding='''utf-8''') _a = sorted({word.strip().lower() for word in data.splitlines()}) _a = collections.defaultdict(list) for word in word_list: word_by_signature[signature(word)].append(word) if __name__ == "__main__": _a = {word: anagram(word) for word in word_list if len(anagram(word)) > 1} with open('''anagrams.txt''', '''w''') as file: file.write('''all_anagrams = \n ''') file.write(pprint.pformat(all_anagrams))
39
0
import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFGPTaLMHeadModel, is_keras_nlp_available, is_tf_available from transformers.models.gpta.tokenization_gpta import GPTaTokenizer from transformers.testing_utils import require_keras_nlp, require_tf, slow if is_tf_available(): import tensorflow as tf if is_keras_nlp_available(): from transformers.models.gpta import TFGPTaTokenizer _snake_case : List[Any] = ['gpt2'] _snake_case : Union[str, Any] = 'gpt2' if is_tf_available(): class _UpperCAmelCase ( tf.Module ): """simple docstring""" def __init__( self : Union[str, Any] , lowerCAmelCase_ : List[Any] ) -> List[str]: super().__init__() __lowerCAmelCase = tokenizer __lowerCAmelCase = AutoConfig.from_pretrained(lowerCAmelCase_ ) __lowerCAmelCase = TFGPTaLMHeadModel.from_config(lowerCAmelCase_ ) @tf.function(input_signature=(tf.TensorSpec((None,) , tf.string , name='text' ),) ) def lowercase ( self : Union[str, Any] , lowerCAmelCase_ : Optional[Any] ) -> Dict: __lowerCAmelCase = self.tokenizer(lowerCAmelCase_ ) __lowerCAmelCase = tokenized['input_ids'].to_tensor() __lowerCAmelCase = tf.cast(input_ids_dense > 0 , tf.intaa ) # input_mask = tf.reshape(input_mask, [-1, MAX_SEQ_LEN]) __lowerCAmelCase = self.model(input_ids=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ )['logits'] return outputs @require_tf @require_keras_nlp class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase ( self : Optional[int] ) -> str: super().setUp() __lowerCAmelCase = [GPTaTokenizer.from_pretrained(lowerCAmelCase_ ) for checkpoint in (TOKENIZER_CHECKPOINTS)] __lowerCAmelCase = [TFGPTaTokenizer.from_pretrained(lowerCAmelCase_ ) for checkpoint in TOKENIZER_CHECKPOINTS] assert len(self.tokenizers ) == len(self.tf_tokenizers ) __lowerCAmelCase = [ 'This is a straightforward English test sentence.', 'This one has some weird characters\rto\nsee\r\nif those\u00E9break things.', 'Now we\'re going to add some Chinese: 一 二 三 一二三', 'And some much more rare Chinese: 齉 堃 齉堃', 'Je vais aussi écrire en français pour tester les accents', 'Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ', ] __lowerCAmelCase = list(zip(self.test_sentences , self.test_sentences[::-1] ) ) def lowercase ( self : List[str] ) -> Optional[int]: for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ): for test_inputs in self.test_sentences: __lowerCAmelCase = tokenizer([test_inputs] , return_tensors='tf' ) __lowerCAmelCase = tf_tokenizer([test_inputs] ) for key in python_outputs.keys(): # convert them to numpy to avoid messing with ragged tensors __lowerCAmelCase = python_outputs[key].numpy() __lowerCAmelCase = tf_outputs[key].numpy() self.assertTrue(tf.reduce_all(python_outputs_values.shape == tf_outputs_values.shape ) ) self.assertTrue(tf.reduce_all(tf.cast(lowerCAmelCase_ , tf.intaa ) == tf_outputs_values ) ) @slow def lowercase ( self : Dict ) -> Dict: for tf_tokenizer in self.tf_tokenizers: __lowerCAmelCase = tf.function(lowerCAmelCase_ ) for test_inputs in self.test_sentences: __lowerCAmelCase = tf.constant(lowerCAmelCase_ ) __lowerCAmelCase = compiled_tokenizer(lowerCAmelCase_ ) __lowerCAmelCase = tf_tokenizer(lowerCAmelCase_ ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def lowercase ( self : Dict ) -> Dict: for tf_tokenizer in self.tf_tokenizers: __lowerCAmelCase = ModelToSave(tokenizer=lowerCAmelCase_ ) __lowerCAmelCase = tf.convert_to_tensor([self.test_sentences[0]] ) __lowerCAmelCase = model.serving(lowerCAmelCase_ ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: __lowerCAmelCase = Path(lowerCAmelCase_ ) / 'saved.model' tf.saved_model.save(lowerCAmelCase_ , lowerCAmelCase_ , signatures={'serving_default': model.serving} ) __lowerCAmelCase = tf.saved_model.load(lowerCAmelCase_ ) __lowerCAmelCase = loaded_model.signatures['serving_default'](lowerCAmelCase_ )['output_0'] # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertTrue(tf.reduce_all(out == loaded_output ) ) @slow def lowercase ( self : Dict ) -> Dict: for tf_tokenizer in self.tf_tokenizers: __lowerCAmelCase = tf.convert_to_tensor([self.test_sentences[0]] ) __lowerCAmelCase = tf_tokenizer(lowerCAmelCase_ ) # Build model with some sample inputs __lowerCAmelCase = tf_tokenizer.get_config() __lowerCAmelCase = TFGPTaTokenizer.from_config(lowerCAmelCase_ ) __lowerCAmelCase = model_from_config(lowerCAmelCase_ ) for key in from_config_output.keys(): self.assertTrue(tf.reduce_all(from_config_output[key] == out[key] ) ) @slow def lowercase ( self : Dict ) -> Dict: for tf_tokenizer in self.tf_tokenizers: # for the test to run __lowerCAmelCase = 1_2_3_1_2_3 for max_length in [3, 5, 1_0_2_4]: __lowerCAmelCase = tf.convert_to_tensor([self.test_sentences[0]] ) __lowerCAmelCase = tf_tokenizer(lowerCAmelCase_ , max_length=lowerCAmelCase_ ) __lowerCAmelCase = out['input_ids'].numpy().shape[1] assert out_length == max_length
207
import gc import unittest import numpy as np import torch from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS, UNCONDITIONAL_AUDIO_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class _UpperCAmelCase ( _UpperCamelCase , unittest.TestCase ): """simple docstring""" a_ = DanceDiffusionPipeline a_ = UNCONDITIONAL_AUDIO_GENERATION_PARAMS a_ = PipelineTesterMixin.required_optional_params - { """callback""", """latents""", """callback_steps""", """output_type""", """num_images_per_prompt""", } a_ = UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS a_ = False a_ = False def lowercase ( self : List[Any] ) -> Dict: torch.manual_seed(0 ) __lowerCAmelCase = UNetaDModel( block_out_channels=(3_2, 3_2, 6_4) , extra_in_channels=1_6 , sample_size=5_1_2 , sample_rate=1_6_0_0_0 , in_channels=2 , out_channels=2 , flip_sin_to_cos=lowerCAmelCase_ , use_timestep_embedding=lowerCAmelCase_ , time_embedding_type='fourier' , mid_block_type='UNetMidBlock1D' , down_block_types=('DownBlock1DNoSkip', 'DownBlock1D', 'AttnDownBlock1D') , up_block_types=('AttnUpBlock1D', 'UpBlock1D', 'UpBlock1DNoSkip') , ) __lowerCAmelCase = IPNDMScheduler() __lowerCAmelCase = { 'unet': unet, 'scheduler': scheduler, } return components def lowercase ( self : Tuple , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[str]=0 ) -> Any: if str(lowerCAmelCase_ ).startswith('mps' ): __lowerCAmelCase = torch.manual_seed(lowerCAmelCase_ ) else: __lowerCAmelCase = torch.Generator(device=lowerCAmelCase_ ).manual_seed(lowerCAmelCase_ ) __lowerCAmelCase = { 'batch_size': 1, 'generator': generator, 'num_inference_steps': 4, } return inputs def lowercase ( self : Union[str, Any] ) -> int: __lowerCAmelCase = 'cpu' # ensure determinism for the device-dependent torch.Generator __lowerCAmelCase = self.get_dummy_components() __lowerCAmelCase = DanceDiffusionPipeline(**lowerCAmelCase_ ) __lowerCAmelCase = pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) __lowerCAmelCase = self.get_dummy_inputs(lowerCAmelCase_ ) __lowerCAmelCase = pipe(**lowerCAmelCase_ ) __lowerCAmelCase = output.audios __lowerCAmelCase = audio[0, -3:, -3:] assert audio.shape == (1, 2, components["unet"].sample_size) __lowerCAmelCase = np.array([-0.72_65, 1.00_00, -0.83_88, 0.11_75, 0.94_98, -1.00_00] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def lowercase ( self : Union[str, Any] ) -> Tuple: return super().test_save_load_local() @skip_mps def lowercase ( self : List[str] ) -> Dict: return super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) @skip_mps def lowercase ( self : str ) -> List[str]: return super().test_save_load_optional_components() @skip_mps def lowercase ( self : List[Any] ) -> List[str]: return super().test_attention_slicing_forward_pass() def lowercase ( self : str ) -> int: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase ( self : Any ) -> Union[str, Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase ( self : List[str] ) -> List[str]: __lowerCAmelCase = torch_device __lowerCAmelCase = DanceDiffusionPipeline.from_pretrained('harmonai/maestro-150k' ) __lowerCAmelCase = pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) __lowerCAmelCase = torch.manual_seed(0 ) __lowerCAmelCase = pipe(generator=lowerCAmelCase_ , num_inference_steps=1_0_0 , audio_length_in_s=4.0_96 ) __lowerCAmelCase = output.audios __lowerCAmelCase = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) __lowerCAmelCase = np.array([-0.01_92, -0.02_31, -0.03_18, -0.00_59, 0.00_02, -0.00_20] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2 def lowercase ( self : Tuple ) -> Dict: __lowerCAmelCase = torch_device __lowerCAmelCase = DanceDiffusionPipeline.from_pretrained('harmonai/maestro-150k' , torch_dtype=torch.floataa ) __lowerCAmelCase = pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) __lowerCAmelCase = torch.manual_seed(0 ) __lowerCAmelCase = pipe(generator=lowerCAmelCase_ , num_inference_steps=1_0_0 , audio_length_in_s=4.0_96 ) __lowerCAmelCase = output.audios __lowerCAmelCase = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) __lowerCAmelCase = np.array([-0.03_67, -0.04_88, -0.07_71, -0.05_25, -0.04_44, -0.03_41] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2
207
1
from typing import Optional import numpy as np import torch from torch import nn from transformers import GPTaConfig, GPTaLMHeadModel from transformers.modeling_utils import ModuleUtilsMixin from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class lowercase ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): lowercase_ : str =[R"""h\.\d+\.attn\.bias""", R"""h\.\d+\.attn\.masked_bias"""] @register_to_config def __init__( self ,A__ ,A__ ,A__ = None ,A__ = 5_0_2_5_7 ,A__ = 1_0_2_4 ,A__ = 7_6_8 ,A__ = 1_2 ,A__ = 1_2 ,A__ = None ,A__ = "gelu_new" ,A__ = 0.1 ,A__ = 0.1 ,A__ = 0.1 ,A__ = 1E-5 ,A__ = 0.02 ,A__ = True ,A__ = True ,A__ = False ,A__ = False ,): super().__init__() lowercase = prefix_length if prefix_inner_dim != n_embd and prefix_hidden_dim is None: raise ValueError( f'`prefix_hidden_dim` cannot be `None` when `prefix_inner_dim`: {prefix_hidden_dim} and' f' `n_embd`: {n_embd} are not equal.') lowercase = prefix_inner_dim lowercase = prefix_hidden_dim lowercase = ( nn.Linear(self.prefix_inner_dim ,self.prefix_hidden_dim) if self.prefix_hidden_dim is not None else nn.Identity() ) lowercase = ( nn.Linear(self.prefix_hidden_dim ,lowerCamelCase__) if self.prefix_hidden_dim is not None else nn.Identity() ) lowercase = GPTaConfig( vocab_size=lowerCamelCase__ ,n_positions=lowerCamelCase__ ,n_embd=lowerCamelCase__ ,n_layer=lowerCamelCase__ ,n_head=lowerCamelCase__ ,n_inner=lowerCamelCase__ ,activation_function=lowerCamelCase__ ,resid_pdrop=lowerCamelCase__ ,embd_pdrop=lowerCamelCase__ ,attn_pdrop=lowerCamelCase__ ,layer_norm_epsilon=lowerCamelCase__ ,initializer_range=lowerCamelCase__ ,scale_attn_weights=lowerCamelCase__ ,use_cache=lowerCamelCase__ ,scale_attn_by_inverse_layer_idx=lowerCamelCase__ ,reorder_and_upcast_attn=lowerCamelCase__ ,) lowercase = GPTaLMHeadModel(lowerCamelCase__) def A__ ( self ,A__ ,A__ ,A__ = None ,A__ = None ,): lowercase = self.transformer.transformer.wte(lowerCamelCase__) lowercase = self.encode_prefix(lowerCamelCase__) lowercase = self.decode_prefix(lowerCamelCase__) lowercase = torch.cat((prefix_embeds, embedding_text) ,dim=1) if labels is not None: lowercase = self.get_dummy_token(input_ids.shape[0] ,input_ids.device) lowercase = torch.cat((dummy_token, input_ids) ,dim=1) lowercase = self.transformer(inputs_embeds=lowerCamelCase__ ,labels=lowerCamelCase__ ,attention_mask=lowerCamelCase__) if self.prefix_hidden_dim is not None: return out, hidden else: return out def A__ ( self ,A__ ,A__): return torch.zeros(lowerCamelCase__ ,self.prefix_length ,dtype=torch.intaa ,device=lowerCamelCase__) def A__ ( self ,A__): return self.encode_prefix(lowerCamelCase__) @torch.no_grad() def A__ ( self ,A__ ,A__ ,A__): lowercase = torch.split(lowerCamelCase__ ,1 ,dim=0) lowercase = [] lowercase = [] for feature in features: lowercase = self.decode_prefix(feature.to(lowerCamelCase__)) # back to the clip feature # Only support beam search for now lowercase , lowercase = self.generate_beam( input_embeds=lowerCamelCase__ ,device=lowerCamelCase__ ,eos_token_id=lowerCamelCase__) generated_tokens.append(output_tokens[0]) generated_seq_lengths.append(seq_lengths[0]) lowercase = torch.stack(lowerCamelCase__) lowercase = torch.stack(lowerCamelCase__) return generated_tokens, generated_seq_lengths @torch.no_grad() def A__ ( self ,A__=None ,A__=None ,A__=None ,A__ = 5 ,A__ = 6_7 ,A__ = 1.0 ,A__ = None ,): lowercase = eos_token_id lowercase = None lowercase = None lowercase = torch.ones(lowerCamelCase__ ,device=lowerCamelCase__ ,dtype=torch.int) lowercase = torch.zeros(lowerCamelCase__ ,device=lowerCamelCase__ ,dtype=torch.bool) if input_embeds is not None: lowercase = input_embeds else: lowercase = self.transformer.transformer.wte(lowerCamelCase__) for i in range(lowerCamelCase__): lowercase = self.transformer(inputs_embeds=lowerCamelCase__) lowercase = outputs.logits lowercase = logits[:, -1, :] / (temperature if temperature > 0 else 1.0) lowercase = logits.softmax(-1).log() if scores is None: lowercase , lowercase = logits.topk(lowerCamelCase__ ,-1) lowercase = generated.expand(lowerCamelCase__ ,*generated.shape[1:]) lowercase , lowercase = next_tokens.permute(1 ,0), scores.squeeze(0) if tokens is None: lowercase = next_tokens else: lowercase = tokens.expand(lowerCamelCase__ ,*tokens.shape[1:]) lowercase = torch.cat((tokens, next_tokens) ,dim=1) else: lowercase = -float(np.inf) lowercase = 0 lowercase = scores[:, None] + logits seq_lengths[~is_stopped] += 1 lowercase = scores_sum / seq_lengths[:, None] lowercase , lowercase = scores_sum_average.view(-1).topk(lowerCamelCase__ ,-1) lowercase = next_tokens // scores_sum.shape[1] lowercase = seq_lengths[next_tokens_source] lowercase = next_tokens % scores_sum.shape[1] lowercase = next_tokens.unsqueeze(1) lowercase = tokens[next_tokens_source] lowercase = torch.cat((tokens, next_tokens) ,dim=1) lowercase = generated[next_tokens_source] lowercase = scores_sum_average * seq_lengths lowercase = is_stopped[next_tokens_source] lowercase = self.transformer.transformer.wte(next_tokens.squeeze()).view(generated.shape[0] ,1 ,-1) lowercase = torch.cat((generated, next_token_embed) ,dim=1) lowercase = is_stopped + next_tokens.eq(lowerCamelCase__).squeeze() if is_stopped.all(): break lowercase = scores / seq_lengths lowercase = scores.argsort(descending=lowerCamelCase__) # tokens tensors are already padded to max_seq_length lowercase = [tokens[i] for i in order] lowercase = torch.stack(lowerCamelCase__ ,dim=0) lowercase = torch.tensor([seq_lengths[i] for i in order] ,dtype=seq_lengths.dtype) return output_texts, seq_lengths
101
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionInstructPixaPixPipeline, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.utils import floats_tensor, load_image, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class A ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ): lowerCamelCase : Union[str, Any] = StableDiffusionInstructPixaPixPipeline lowerCamelCase : Dict = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"""height""", """width""", """cross_attention_kwargs"""} lowerCamelCase : Dict = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS lowerCamelCase : List[Any] = IMAGE_TO_IMAGE_IMAGE_PARAMS lowerCamelCase : Any = IMAGE_TO_IMAGE_IMAGE_PARAMS def A__ ( self ) -> List[Any]: '''simple docstring''' torch.manual_seed(0 ) lowercase__ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=8 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) lowercase__ = PNDMScheduler(skip_prk_steps=lowerCamelCase__ ) torch.manual_seed(0 ) lowercase__ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) lowercase__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) lowercase__ = CLIPTextModel(lowerCamelCase__ ) lowercase__ = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) lowercase__ = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def A__ ( self , lowerCamelCase__ , lowerCamelCase__=0 ) -> Optional[Any]: '''simple docstring''' lowercase__ = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowerCamelCase__ ) ).to(lowerCamelCase__ ) lowercase__ = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowercase__ = Image.fromarray(np.uinta(lowerCamelCase__ ) ).convert("""RGB""" ) if str(lowerCamelCase__ ).startswith("""mps""" ): lowercase__ = torch.manual_seed(lowerCamelCase__ ) else: lowercase__ = torch.Generator(device=lowerCamelCase__ ).manual_seed(lowerCamelCase__ ) lowercase__ = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """image_guidance_scale""": 1, """output_type""": """numpy""", } return inputs def A__ ( self ) -> str: '''simple docstring''' lowercase__ = """cpu""" # ensure determinism for the device-dependent torch.Generator lowercase__ = self.get_dummy_components() lowercase__ = StableDiffusionInstructPixaPixPipeline(**lowerCamelCase__ ) lowercase__ = sd_pipe.to(lowerCamelCase__ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase__ ) lowercase__ = self.get_dummy_inputs(lowerCamelCase__ ) lowercase__ = sd_pipe(**lowerCamelCase__ ).images lowercase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowercase__ = np.array([0.75_26, 0.37_50, 0.45_47, 0.61_17, 0.58_66, 0.50_16, 0.43_27, 0.56_42, 0.48_15] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def A__ ( self ) -> Dict: '''simple docstring''' lowercase__ = """cpu""" # ensure determinism for the device-dependent torch.Generator lowercase__ = self.get_dummy_components() lowercase__ = StableDiffusionInstructPixaPixPipeline(**lowerCamelCase__ ) lowercase__ = sd_pipe.to(lowerCamelCase__ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase__ ) lowercase__ = self.get_dummy_inputs(lowerCamelCase__ ) lowercase__ = """french fries""" lowercase__ = sd_pipe(**lowerCamelCase__ , negative_prompt=lowerCamelCase__ ) lowercase__ = output.images lowercase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowercase__ = np.array([0.75_11, 0.36_42, 0.45_53, 0.62_36, 0.57_97, 0.50_13, 0.43_43, 0.56_11, 0.48_31] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def A__ ( self ) -> Optional[Any]: '''simple docstring''' lowercase__ = """cpu""" # ensure determinism for the device-dependent torch.Generator lowercase__ = self.get_dummy_components() lowercase__ = StableDiffusionInstructPixaPixPipeline(**lowerCamelCase__ ) lowercase__ = sd_pipe.to(lowerCamelCase__ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase__ ) lowercase__ = self.get_dummy_inputs(lowerCamelCase__ ) lowercase__ = [inputs["""prompt"""]] * 2 lowercase__ = np.array(inputs["""image"""] ).astype(np.floataa ) / 2_55.0 lowercase__ = torch.from_numpy(lowerCamelCase__ ).unsqueeze(0 ).to(lowerCamelCase__ ) lowercase__ = image / 2 + 0.5 lowercase__ = image.permute(0 , 3 , 1 , 2 ) lowercase__ = image.repeat(2 , 1 , 1 , 1 ) lowercase__ = sd_pipe(**lowerCamelCase__ ).images lowercase__ = image[-1, -3:, -3:, -1] assert image.shape == (2, 32, 32, 3) lowercase__ = np.array([0.58_12, 0.57_48, 0.52_22, 0.59_08, 0.56_95, 0.71_74, 0.68_04, 0.55_23, 0.55_79] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def A__ ( self ) -> Any: '''simple docstring''' lowercase__ = """cpu""" # ensure determinism for the device-dependent torch.Generator lowercase__ = self.get_dummy_components() lowercase__ = EulerAncestralDiscreteScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule="""scaled_linear""" ) lowercase__ = StableDiffusionInstructPixaPixPipeline(**lowerCamelCase__ ) lowercase__ = sd_pipe.to(lowerCamelCase__ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase__ ) lowercase__ = self.get_dummy_inputs(lowerCamelCase__ ) lowercase__ = sd_pipe(**lowerCamelCase__ ).images lowercase__ = image[0, -3:, -3:, -1] lowercase__ = [round(lowerCamelCase__ , 4 ) for x in image_slice.flatten().tolist()] print(""",""".join([str(lowerCamelCase__ ) for x in slice] ) ) assert image.shape == (1, 32, 32, 3) lowercase__ = np.array([0.74_17, 0.38_42, 0.47_32, 0.57_76, 0.58_91, 0.51_39, 0.40_52, 0.56_73, 0.49_86] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def A__ ( self ) -> Optional[Any]: '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) def A__ ( self ) -> Tuple: '''simple docstring''' lowercase__ = self.get_dummy_components() lowercase__ = StableDiffusionInstructPixaPixPipeline(**lowerCamelCase__ ) lowercase__ = VaeImageProcessor(do_resize=lowerCamelCase__ , do_normalize=lowerCamelCase__ ) lowercase__ = pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) lowercase__ = pipe(**self.get_dummy_inputs_by_type(lowerCamelCase__ , input_image_type="""pt""" ) )[0] lowercase__ = components["""vae"""] lowercase__ = self.get_dummy_inputs_by_type(lowerCamelCase__ , input_image_type="""pt""" ) for image_param in self.image_latents_params: if image_param in inputs.keys(): lowercase__ = vae.encode(inputs[image_param] ).latent_dist.mode() lowercase__ = pipe(**lowerCamelCase__ )[0] lowercase__ = np.abs(out - out_latents_inputs ).max() self.assertLess(lowerCamelCase__ , 1e-4 , """passing latents as image input generate different result from passing image""" ) @slow @require_torch_gpu class A ( unittest.TestCase ): def A__ ( self ) -> Union[str, Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ ( self , lowerCamelCase__=0 ) -> int: '''simple docstring''' lowercase__ = torch.manual_seed(lowerCamelCase__ ) lowercase__ = load_image( """https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/stable_diffusion_pix2pix/example.jpg""" ) lowercase__ = { """prompt""": """turn him into a cyborg""", """image""": image, """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 7.5, """image_guidance_scale""": 1.0, """output_type""": """numpy""", } return inputs def A__ ( self ) -> str: '''simple docstring''' lowercase__ = StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" , safety_checker=lowerCamelCase__ ) pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) pipe.enable_attention_slicing() lowercase__ = self.get_inputs() lowercase__ = pipe(**lowerCamelCase__ ).images lowercase__ = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) lowercase__ = np.array([0.59_02, 0.60_15, 0.60_27, 0.59_83, 0.60_92, 0.60_61, 0.57_65, 0.57_85, 0.55_55] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def A__ ( self ) -> List[Any]: '''simple docstring''' lowercase__ = StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" , safety_checker=lowerCamelCase__ ) lowercase__ = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) pipe.enable_attention_slicing() lowercase__ = self.get_inputs() lowercase__ = pipe(**lowerCamelCase__ ).images lowercase__ = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) lowercase__ = np.array([0.65_78, 0.68_17, 0.69_72, 0.67_61, 0.68_56, 0.69_16, 0.64_28, 0.65_16, 0.63_01] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def A__ ( self ) -> str: '''simple docstring''' lowercase__ = StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" , safety_checker=lowerCamelCase__ ) lowercase__ = DDIMScheduler.from_config(pipe.scheduler.config ) pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) pipe.enable_attention_slicing() lowercase__ = self.get_inputs() lowercase__ = pipe(**lowerCamelCase__ ).images lowercase__ = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) lowercase__ = np.array([0.38_28, 0.38_34, 0.38_18, 0.37_92, 0.38_65, 0.37_52, 0.37_92, 0.38_47, 0.37_53] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def A__ ( self ) -> int: '''simple docstring''' lowercase__ = 0 def callback_fn(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> None: lowercase__ = True nonlocal number_of_steps number_of_steps += 1 if step == 1: lowercase__ = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) lowercase__ = latents[0, -3:, -3:, -1] lowercase__ = np.array([-0.24_63, -0.46_44, -0.97_56, 1.51_76, 1.44_14, 0.78_66, 0.98_97, 0.85_21, 0.79_83] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 elif step == 2: lowercase__ = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) lowercase__ = latents[0, -3:, -3:, -1] lowercase__ = np.array([-0.26_44, -0.46_26, -0.96_53, 1.51_76, 1.45_51, 0.76_86, 0.98_05, 0.84_52, 0.81_15] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 lowercase__ = False lowercase__ = StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" , safety_checker=lowerCamelCase__ , torch_dtype=torch.floataa ) lowercase__ = pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) pipe.enable_attention_slicing() lowercase__ = self.get_inputs() pipe(**lowerCamelCase__ , callback=lowerCamelCase__ , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def A__ ( self ) -> Tuple: '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowercase__ = StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" , safety_checker=lowerCamelCase__ , torch_dtype=torch.floataa ) lowercase__ = pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() lowercase__ = self.get_inputs() lowercase__ = pipe(**lowerCamelCase__ ) lowercase__ = torch.cuda.max_memory_allocated() # make sure that less than 2.2 GB is allocated assert mem_bytes < 2.2 * 10**9 def A__ ( self ) -> Optional[Any]: '''simple docstring''' lowercase__ = self.get_inputs() # resize to resolution that is divisible by 8 but not 16 or 32 lowercase__ = inputs["""image"""].resize((504, 504) ) lowercase__ = """timbrooks/instruct-pix2pix""" lowercase__ = StableDiffusionInstructPixaPixPipeline.from_pretrained( lowerCamelCase__ , safety_checker=lowerCamelCase__ , ) pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) pipe.enable_attention_slicing() lowercase__ = pipe(**lowerCamelCase__ ) lowercase__ = output.images[0] lowercase__ = image[255:258, 383:386, -1] assert image.shape == (504, 504, 3) lowercase__ = np.array([0.27_26, 0.25_29, 0.26_64, 0.26_55, 0.26_41, 0.26_42, 0.25_91, 0.26_49, 0.25_90] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-3
164
0
from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time __UpperCAmelCase = Lock() def lowercase__ ( __snake_case : int , __snake_case : Optional[Any] , __snake_case : List[str] , __snake_case : Dict , __snake_case : Optional[Any] , __snake_case : Any , __snake_case : List[str] ): '''simple docstring''' global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 10 ): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(__snake_case ) process_lock.release() # receive your right neighbor's value process_lock.acquire() UpperCAmelCase_ : List[Any] = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left UpperCAmelCase_ : Union[str, Any] = min(__snake_case , __snake_case ) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(__snake_case ) process_lock.release() # receive your left neighbor's value process_lock.acquire() UpperCAmelCase_ : List[Any] = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right UpperCAmelCase_ : int = max(__snake_case , __snake_case ) # after all swaps are performed, send the values back to main result_pipe[1].send(__snake_case ) def lowercase__ ( __snake_case : Tuple ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = [] UpperCAmelCase_ : Union[str, Any] = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe() ) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop UpperCAmelCase_ : List[Any] = Pipe() UpperCAmelCase_ : Dict = Pipe() process_array_.append( Process( target=__snake_case , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) ) UpperCAmelCase_ : Optional[int] = temp_rs UpperCAmelCase_ : Union[str, Any] = temp_rr for i in range(1 , len(__snake_case ) - 1 ): UpperCAmelCase_ : List[Any] = Pipe() UpperCAmelCase_ : Tuple = Pipe() process_array_.append( Process( target=__snake_case , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) ) UpperCAmelCase_ : Tuple = temp_rs UpperCAmelCase_ : Optional[Any] = temp_rr process_array_.append( Process( target=__snake_case , args=( len(__snake_case ) - 1, arr[len(__snake_case ) - 1], temp_ls, None, temp_lr, None, result_pipe[len(__snake_case ) - 1], ) , ) ) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(__snake_case ) ): UpperCAmelCase_ : Dict = result_pipe[p][0].recv() process_array_[p].join() return arr def lowercase__ ( ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = list(range(10 , 0 , -1 ) ) print('Initial List' ) print(*__snake_case ) UpperCAmelCase_ : str = odd_even_transposition(__snake_case ) print('Sorted List\n' ) print(*__snake_case ) if __name__ == "__main__": main()
145
from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_OBJECT_DETECTION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = Dict[str, Any] __UpperCAmelCase = List[Prediction] @add_end_docstrings(_snake_case ) class lowerCamelCase (_snake_case ): '''simple docstring''' def __init__( self , *_UpperCamelCase , **_UpperCamelCase ) -> Optional[int]: super().__init__(*_UpperCamelCase , **_UpperCamelCase ) if self.framework == "tf": raise ValueError(f"The {self.__class__} is only available in PyTorch." ) requires_backends(self , 'vision' ) self.check_model_type( dict(MODEL_FOR_OBJECT_DETECTION_MAPPING.items() + MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING.items() ) ) def __UpperCAmelCase ( self , **_UpperCamelCase ) -> Tuple: UpperCAmelCase_ : str = {} if "threshold" in kwargs: UpperCAmelCase_ : Tuple = kwargs['threshold'] return {}, {}, postprocess_kwargs def __call__( self , *_UpperCamelCase , **_UpperCamelCase ) -> Union[Predictions, List[Prediction]]: return super().__call__(*_UpperCamelCase , **_UpperCamelCase ) def __UpperCAmelCase ( self , _UpperCamelCase ) -> Dict: UpperCAmelCase_ : Any = load_image(_UpperCamelCase ) UpperCAmelCase_ : Any = torch.IntTensor([[image.height, image.width]] ) UpperCAmelCase_ : str = self.image_processor(images=[image] , return_tensors='pt' ) if self.tokenizer is not None: UpperCAmelCase_ : List[str] = self.tokenizer(text=inputs['words'] , boxes=inputs['boxes'] , return_tensors='pt' ) UpperCAmelCase_ : Any = target_size return inputs def __UpperCAmelCase ( self , _UpperCamelCase ) -> List[Any]: UpperCAmelCase_ : Any = model_inputs.pop('target_size' ) UpperCAmelCase_ : Optional[Any] = self.model(**_UpperCamelCase ) UpperCAmelCase_ : Dict = outputs.__class__({'target_size': target_size, **outputs} ) if self.tokenizer is not None: UpperCAmelCase_ : List[str] = model_inputs['bbox'] return model_outputs def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase=0.9 ) -> List[str]: UpperCAmelCase_ : List[Any] = model_outputs['target_size'] if self.tokenizer is not None: # This is a LayoutLMForTokenClassification variant. # The OCR got the boxes and the model classified the words. UpperCAmelCase_ , UpperCAmelCase_ : str = target_size[0].tolist() def unnormalize(_UpperCamelCase ): return self._get_bounding_box( torch.Tensor( [ (width * bbox[0] / 1_0_0_0), (height * bbox[1] / 1_0_0_0), (width * bbox[2] / 1_0_0_0), (height * bbox[3] / 1_0_0_0), ] ) ) UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = model_outputs['logits'].squeeze(0 ).softmax(dim=-1 ).max(dim=-1 ) UpperCAmelCase_ : Union[str, Any] = [self.model.config.idalabel[prediction] for prediction in classes.tolist()] UpperCAmelCase_ : Tuple = [unnormalize(_UpperCamelCase ) for bbox in model_outputs['bbox'].squeeze(0 )] UpperCAmelCase_ : List[str] = ['score', 'label', 'box'] UpperCAmelCase_ : Any = [dict(zip(_UpperCamelCase , _UpperCamelCase ) ) for vals in zip(scores.tolist() , _UpperCamelCase , _UpperCamelCase ) if vals[0] > threshold] else: # This is a regular ForObjectDetectionModel UpperCAmelCase_ : Union[str, Any] = self.image_processor.post_process_object_detection(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) UpperCAmelCase_ : str = raw_annotations[0] UpperCAmelCase_ : str = raw_annotation['scores'] UpperCAmelCase_ : Tuple = raw_annotation['labels'] UpperCAmelCase_ : List[Any] = raw_annotation['boxes'] UpperCAmelCase_ : Union[str, Any] = scores.tolist() UpperCAmelCase_ : int = [self.model.config.idalabel[label.item()] for label in labels] UpperCAmelCase_ : Any = [self._get_bounding_box(_UpperCamelCase ) for box in boxes] # {"scores": [...], ...} --> [{"score":x, ...}, ...] UpperCAmelCase_ : int = ['score', 'label', 'box'] UpperCAmelCase_ : Dict = [ dict(zip(_UpperCamelCase , _UpperCamelCase ) ) for vals in zip(raw_annotation['scores'] , raw_annotation['labels'] , raw_annotation['boxes'] ) ] return annotation def __UpperCAmelCase ( self , _UpperCamelCase ) -> Dict[str, int]: if self.framework != "pt": raise ValueError('The ObjectDetectionPipeline is only available in PyTorch.' ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Dict = box.int().tolist() UpperCAmelCase_ : str = { 'xmin': xmin, 'ymin': ymin, 'xmax': xmax, 'ymax': ymax, } return bbox
145
1
"""simple docstring""" import argparse import json import math import os import time import traceback import zipfile from collections import Counter import requests def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) ->Optional[int]: a__: int = None if token is not None: a__: Tuple = {'Accept': 'application/vnd.github+json', 'Authorization': F'Bearer {token}'} a__: Optional[Any] = F'https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100' a__: str = requests.get(_SCREAMING_SNAKE_CASE , headers=_SCREAMING_SNAKE_CASE ).json() a__: str = {} try: job_links.update({job['name']: job['html_url'] for job in result['jobs']} ) a__: int = math.ceil((result['total_count'] - 100) / 100 ) for i in range(_SCREAMING_SNAKE_CASE ): a__: Dict = requests.get(url + F'&page={i + 2}' , headers=_SCREAMING_SNAKE_CASE ).json() job_links.update({job['name']: job['html_url'] for job in result['jobs']} ) return job_links except Exception: print(F'Unknown error, could not fetch links:\n{traceback.format_exc()}' ) return {} def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) ->Dict: a__: Dict = None if token is not None: a__: List[str] = {'Accept': 'application/vnd.github+json', 'Authorization': F'Bearer {token}'} a__: Dict = F'https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100' a__: Union[str, Any] = requests.get(_SCREAMING_SNAKE_CASE , headers=_SCREAMING_SNAKE_CASE ).json() a__: List[Any] = {} try: artifacts.update({artifact['name']: artifact['archive_download_url'] for artifact in result['artifacts']} ) a__: Dict = math.ceil((result['total_count'] - 100) / 100 ) for i in range(_SCREAMING_SNAKE_CASE ): a__: Optional[int] = requests.get(url + F'&page={i + 2}' , headers=_SCREAMING_SNAKE_CASE ).json() artifacts.update({artifact['name']: artifact['archive_download_url'] for artifact in result['artifacts']} ) return artifacts except Exception: print(F'Unknown error, could not fetch links:\n{traceback.format_exc()}' ) return {} def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->str: a__: List[Any] = None if token is not None: a__: Optional[int] = {'Accept': 'application/vnd.github+json', 'Authorization': F'Bearer {token}'} a__: Union[str, Any] = requests.get(_SCREAMING_SNAKE_CASE , headers=_SCREAMING_SNAKE_CASE , allow_redirects=_SCREAMING_SNAKE_CASE ) a__: Optional[Any] = result.headers['Location'] a__: Optional[int] = requests.get(_SCREAMING_SNAKE_CASE , allow_redirects=_SCREAMING_SNAKE_CASE ) a__: int = os.path.join(_SCREAMING_SNAKE_CASE , F'{artifact_name}.zip' ) with open(_SCREAMING_SNAKE_CASE , 'wb' ) as fp: fp.write(response.content ) def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) ->List[Any]: a__: List[Any] = [] a__: Optional[Any] = [] a__: List[Any] = None with zipfile.ZipFile(_SCREAMING_SNAKE_CASE ) as z: for filename in z.namelist(): if not os.path.isdir(_SCREAMING_SNAKE_CASE ): # read the file if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]: with z.open(_SCREAMING_SNAKE_CASE ) as f: for line in f: a__: Optional[int] = line.decode('UTF-8' ).strip() if filename == "failures_line.txt": try: # `error_line` is the place where `error` occurs a__: Union[str, Any] = line[: line.index(': ' )] a__: Union[str, Any] = line[line.index(': ' ) + len(': ' ) :] errors.append([error_line, error] ) except Exception: # skip un-related lines pass elif filename == "summary_short.txt" and line.startswith('FAILED ' ): # `test` is the test method that failed a__: Optional[int] = line[len('FAILED ' ) :] failed_tests.append(_SCREAMING_SNAKE_CASE ) elif filename == "job_name.txt": a__: Union[str, Any] = line if len(_SCREAMING_SNAKE_CASE ) != len(_SCREAMING_SNAKE_CASE ): raise ValueError( F'`errors` and `failed_tests` should have the same number of elements. Got {len(_SCREAMING_SNAKE_CASE )} for `errors` ' F'and {len(_SCREAMING_SNAKE_CASE )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some' ' problem.' ) a__: Tuple = None if job_name and job_links: a__: Dict = job_links.get(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # A list with elements of the form (line of error, error, failed test) a__: int = [x + [y] + [job_link] for x, y in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )] return result def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) ->str: a__: int = [] a__: Optional[int] = [os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for p in os.listdir(_SCREAMING_SNAKE_CASE ) if p.endswith('.zip' )] for p in paths: errors.extend(get_errors_from_single_artifact(_SCREAMING_SNAKE_CASE , job_links=_SCREAMING_SNAKE_CASE ) ) return errors def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) ->Any: a__: str = Counter() counter.update([x[1] for x in logs] ) a__: int = counter.most_common() a__: Any = {} for error, count in counts: if error_filter is None or error not in error_filter: a__: List[str] = {'count': count, 'failed_tests': [(x[2], x[0]) for x in logs if x[1] == error]} a__: Optional[Any] = dict(sorted(r.items() , key=lambda _SCREAMING_SNAKE_CASE : item[1]["count"] , reverse=_SCREAMING_SNAKE_CASE ) ) return r def __a ( _SCREAMING_SNAKE_CASE ) ->Union[str, Any]: a__: List[str] = test.split('::' )[0] if test.startswith('tests/models/' ): a__: Dict = test.split('/' )[2] else: a__: Any = None return test def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) ->List[str]: a__: int = [(x[0], x[1], get_model(x[2] )) for x in logs] a__: List[Any] = [x for x in logs if x[2] is not None] a__: Optional[Any] = {x[2] for x in logs} a__: Dict = {} for test in tests: a__: Union[str, Any] = Counter() # count by errors in `test` counter.update([x[1] for x in logs if x[2] == test] ) a__: Union[str, Any] = counter.most_common() a__: List[str] = {error: count for error, count in counts if (error_filter is None or error not in error_filter)} a__: List[Any] = sum(error_counts.values() ) if n_errors > 0: a__: Any = {'count': n_errors, 'errors': error_counts} a__: Optional[int] = dict(sorted(r.items() , key=lambda _SCREAMING_SNAKE_CASE : item[1]["count"] , reverse=_SCREAMING_SNAKE_CASE ) ) return r def __a ( _SCREAMING_SNAKE_CASE ) ->Union[str, Any]: a__: Any = '| no. | error | status |' a__: Any = '|-:|:-|:-|' a__: str = [header, sep] for error in reduced_by_error: a__: int = reduced_by_error[error]['count'] a__: Tuple = F'| {count} | {error[:100]} | |' lines.append(_SCREAMING_SNAKE_CASE ) return "\n".join(_SCREAMING_SNAKE_CASE ) def __a ( _SCREAMING_SNAKE_CASE ) ->str: a__: List[str] = '| model | no. of errors | major error | count |' a__: str = '|-:|-:|-:|-:|' a__: int = [header, sep] for model in reduced_by_model: a__: Tuple = reduced_by_model[model]['count'] a__ , a__: Dict = list(reduced_by_model[model]['errors'].items() )[0] a__: Dict = F'| {model} | {count} | {error[:60]} | {_count} |' lines.append(_SCREAMING_SNAKE_CASE ) return "\n".join(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": lowercase__ = argparse.ArgumentParser() # Required parameters parser.add_argument('--workflow_run_id', type=str, required=True, help='A GitHub Actions workflow run id.') parser.add_argument( '--output_dir', type=str, required=True, help='Where to store the downloaded artifacts and other result files.', ) parser.add_argument('--token', default=None, type=str, help='A token that has actions:read permission.') lowercase__ = parser.parse_args() os.makedirs(args.output_dir, exist_ok=True) lowercase__ = get_job_links(args.workflow_run_id, token=args.token) lowercase__ = {} # To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee. # For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`. if _job_links: for k, v in _job_links.items(): # This is how GitHub actions combine job names. if " / " in k: lowercase__ = k.find(' / ') lowercase__ = k[index + len(' / ') :] lowercase__ = v with open(os.path.join(args.output_dir, 'job_links.json'), 'w', encoding='UTF-8') as fp: json.dump(job_links, fp, ensure_ascii=False, indent=4) lowercase__ = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, 'artifacts.json'), 'w', encoding='UTF-8') as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) for idx, (name, url) in enumerate(artifacts.items()): download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) lowercase__ = get_all_errors(args.output_dir, job_links=job_links) # `e[1]` is the error lowercase__ = Counter() counter.update([e[1] for e in errors]) # print the top 30 most common test errors lowercase__ = counter.most_common(30) for item in most_common: print(item) with open(os.path.join(args.output_dir, 'errors.json'), 'w', encoding='UTF-8') as fp: json.dump(errors, fp, ensure_ascii=False, indent=4) lowercase__ = reduce_by_error(errors) lowercase__ = reduce_by_model(errors) lowercase__ = make_github_table(reduced_by_error) lowercase__ = make_github_table_per_model(reduced_by_model) with open(os.path.join(args.output_dir, 'reduced_by_error.txt'), 'w', encoding='UTF-8') as fp: fp.write(sa) with open(os.path.join(args.output_dir, 'reduced_by_model.txt'), 'w', encoding='UTF-8') as fp: fp.write(sa)
290
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __snake_case ( __lowerCAmelCase , unittest.TestCase ): a__ = KandinskyInpaintPipeline a__ = ["""prompt""", """image_embeds""", """negative_image_embeds""", """image""", """mask_image"""] a__ = [ """prompt""", """negative_prompt""", """image_embeds""", """negative_image_embeds""", """image""", """mask_image""", ] a__ = [ """generator""", """height""", """width""", """latents""", """guidance_scale""", """negative_prompt""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] a__ = False @property def lowerCamelCase_ ( self) -> Optional[int]: '''simple docstring''' return 32 @property def lowerCamelCase_ ( self) -> Tuple: '''simple docstring''' return 32 @property def lowerCamelCase_ ( self) -> Dict: '''simple docstring''' return self.time_input_dim @property def lowerCamelCase_ ( self) -> Dict: '''simple docstring''' return self.time_input_dim * 4 @property def lowerCamelCase_ ( self) -> List[Any]: '''simple docstring''' return 1_00 @property def lowerCamelCase_ ( self) -> List[Any]: '''simple docstring''' a__: Optional[int] = XLMRobertaTokenizerFast.from_pretrained('YiYiXu/tiny-random-mclip-base') return tokenizer @property def lowerCamelCase_ ( self) -> Any: '''simple docstring''' torch.manual_seed(0) a__: Dict = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=10_05 , ) a__: Optional[Any] = MultilingualCLIP(lowercase) a__: int = text_encoder.eval() return text_encoder @property def lowerCamelCase_ ( self) -> List[str]: '''simple docstring''' torch.manual_seed(0) a__: Any = { 'in_channels': 9, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'text_image', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'text_image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } a__: str = UNetaDConditionModel(**lowercase) return model @property def lowerCamelCase_ ( self) -> Union[str, Any]: '''simple docstring''' return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def lowerCamelCase_ ( self) -> List[Any]: '''simple docstring''' torch.manual_seed(0) a__: Any = VQModel(**self.dummy_movq_kwargs) return model def lowerCamelCase_ ( self) -> Any: '''simple docstring''' a__: Dict = self.dummy_text_encoder a__: int = self.dummy_tokenizer a__: str = self.dummy_unet a__: Any = self.dummy_movq a__: Tuple = DDIMScheduler( num_train_timesteps=10_00 , beta_schedule='linear' , beta_start=0.00085 , beta_end=0.012 , clip_sample=lowercase , set_alpha_to_one=lowercase , steps_offset=1 , prediction_type='epsilon' , thresholding=lowercase , ) a__: Tuple = { 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def lowerCamelCase_ ( self , lowercase , lowercase=0) -> Any: '''simple docstring''' a__: List[Any] = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(lowercase)).to(lowercase) a__: int = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1)).to(lowercase) # create init_image a__: Optional[int] = floats_tensor((1, 3, 64, 64) , rng=random.Random(lowercase)).to(lowercase) a__: int = image.cpu().permute(0 , 2 , 3 , 1)[0] a__: Optional[int] = Image.fromarray(np.uinta(lowercase)).convert('RGB').resize((2_56, 2_56)) # create mask a__: Tuple = np.ones((64, 64) , dtype=np.floataa) a__: Optional[Any] = 0 if str(lowercase).startswith('mps'): a__: str = torch.manual_seed(lowercase) else: a__: Dict = torch.Generator(device=lowercase).manual_seed(lowercase) a__: Optional[int] = { 'prompt': 'horse', 'image': init_image, 'mask_image': mask, 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'generator': generator, 'height': 64, 'width': 64, 'num_inference_steps': 2, 'guidance_scale': 4.0, 'output_type': 'np', } return inputs def lowerCamelCase_ ( self) -> str: '''simple docstring''' a__: Optional[Any] = 'cpu' a__: List[Any] = self.get_dummy_components() a__: Optional[Any] = self.pipeline_class(**lowercase) a__: str = pipe.to(lowercase) pipe.set_progress_bar_config(disable=lowercase) a__: Optional[int] = pipe(**self.get_dummy_inputs(lowercase)) a__: List[str] = output.images a__: int = pipe( **self.get_dummy_inputs(lowercase) , return_dict=lowercase , )[0] a__: Optional[Any] = image[0, -3:, -3:, -1] a__: List[Any] = image_from_tuple[0, -3:, -3:, -1] print(f'image.shape {image.shape}') assert image.shape == (1, 64, 64, 3) a__: str = np.array( [0.8326919, 0.73790467, 0.20918581, 0.9309612, 0.5511791, 0.43713328, 0.5513321, 0.49922934, 0.59497786]) assert ( np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 ), f' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 ), f' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' def lowerCamelCase_ ( self) -> str: '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3e-3) @slow @require_torch_gpu class __snake_case ( unittest.TestCase ): def lowerCamelCase_ ( self) -> Optional[Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase_ ( self) -> Dict: '''simple docstring''' a__: List[Any] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy') a__: int = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png') a__: Union[str, Any] = np.ones((7_68, 7_68) , dtype=np.floataa) a__: int = 0 a__: Optional[int] = 'a hat' a__: int = KandinskyPriorPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-1-prior' , torch_dtype=torch.floataa) pipe_prior.to(lowercase) a__: Any = KandinskyInpaintPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-1-inpaint' , torch_dtype=torch.floataa) a__: Optional[Any] = pipeline.to(lowercase) pipeline.set_progress_bar_config(disable=lowercase) a__: Dict = torch.Generator(device='cpu').manual_seed(0) a__ , a__: Optional[Any] = pipe_prior( lowercase , generator=lowercase , num_inference_steps=5 , negative_prompt='' , ).to_tuple() a__: List[str] = pipeline( lowercase , image=lowercase , mask_image=lowercase , image_embeds=lowercase , negative_image_embeds=lowercase , generator=lowercase , num_inference_steps=1_00 , height=7_68 , width=7_68 , output_type='np' , ) a__: str = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(lowercase , lowercase)
290
1
import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, UNetaDConditionModel, VideoToVideoSDPipeline, ) from diffusers.utils import floats_tensor, is_xformers_available, skip_mps from diffusers.utils.testing_utils import enable_full_determinism, slow, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class UpperCAmelCase_ ( UpperCamelCase_ , unittest.TestCase ): '''simple docstring''' UpperCamelCase__ : int = VideoToVideoSDPipeline UpperCamelCase__ : Union[str, Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS.union({'''video'''} ) - {'''image''', '''width''', '''height'''} UpperCamelCase__ : List[Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'''video'''} ) - {'''image'''} UpperCamelCase__ : str = PipelineTesterMixin.required_optional_params - {'''latents'''} UpperCamelCase__ : Optional[Any] = False # No `output_type`. UpperCamelCase__ : str = frozenset( [ '''num_inference_steps''', '''generator''', '''latents''', '''return_dict''', '''callback''', '''callback_steps''', ] ) def _A ( self ): '''simple docstring''' torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('CrossAttnDownBlock3D', 'CrossAttnDownBlock3D', 'CrossAttnDownBlock3D', 'DownBlock3D') , up_block_types=('UpBlock3D', 'CrossAttnUpBlock3D', 'CrossAttnUpBlock3D', 'CrossAttnUpBlock3D') , cross_attention_dim=32 , attention_head_dim=4 , ) __SCREAMING_SNAKE_CASE = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='scaled_linear' , clip_sample=_A , set_alpha_to_one=_A , ) torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , hidden_act='gelu' , projection_dim=512 , ) __SCREAMING_SNAKE_CASE = CLIPTextModel(_A ) __SCREAMING_SNAKE_CASE = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) __SCREAMING_SNAKE_CASE = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, } return components def _A ( self , _A , _A=0 ): '''simple docstring''' __SCREAMING_SNAKE_CASE = floats_tensor((1, 3, 3, 32, 32) , rng=random.Random(_A ) ).to(_A ) if str(_A ).startswith('mps' ): __SCREAMING_SNAKE_CASE = torch.manual_seed(_A ) else: __SCREAMING_SNAKE_CASE = torch.Generator(device=_A ).manual_seed(_A ) __SCREAMING_SNAKE_CASE = { 'prompt': 'A painting of a squirrel eating a burger', 'video': video, 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'pt', } return inputs def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = 'cpu' # ensure determinism for the device-dependent torch.Generator __SCREAMING_SNAKE_CASE = self.get_dummy_components() __SCREAMING_SNAKE_CASE = VideoToVideoSDPipeline(**_A ) __SCREAMING_SNAKE_CASE = sd_pipe.to(_A ) sd_pipe.set_progress_bar_config(disable=_A ) __SCREAMING_SNAKE_CASE = self.get_dummy_inputs(_A ) __SCREAMING_SNAKE_CASE = 'np' __SCREAMING_SNAKE_CASE = sd_pipe(**_A ).frames __SCREAMING_SNAKE_CASE = frames[0][-3:, -3:, -1] assert frames[0].shape == (32, 32, 3) __SCREAMING_SNAKE_CASE = np.array([106, 117, 113, 174, 137, 112, 148, 151, 131] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def _A ( self ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=_A , expected_max_diff=5e-3 ) @unittest.skip(reason='Batching needs to be properly figured out first for this pipeline.' ) def _A ( self ): '''simple docstring''' pass @unittest.skip(reason='Batching needs to be properly figured out first for this pipeline.' ) def _A ( self ): '''simple docstring''' pass @unittest.skip(reason='`num_images_per_prompt` argument is not supported for this pipeline.' ) def _A ( self ): '''simple docstring''' pass def _A ( self ): '''simple docstring''' return super().test_progress_bar() @slow @skip_mps class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = VideoToVideoSDPipeline.from_pretrained('cerspense/zeroscope_v2_XL' , torch_dtype=torch.floataa ) pipe.enable_model_cpu_offload() # 10 frames __SCREAMING_SNAKE_CASE = torch.Generator(device='cpu' ).manual_seed(0 ) __SCREAMING_SNAKE_CASE = torch.randn((1, 10, 3, 1_024, 576) , generator=_A ) __SCREAMING_SNAKE_CASE = video.to('cuda' ) __SCREAMING_SNAKE_CASE = 'Spiderman is surfing' __SCREAMING_SNAKE_CASE = pipe(_A , video=_A , generator=_A , num_inference_steps=3 , output_type='pt' ).frames __SCREAMING_SNAKE_CASE = np.array([-1.0_4_5_8_9_8_4, -1.1_2_7_9_2_9_7, -0.9_6_6_3_0_8_6, -0.9_1_5_0_3_9_0_6, -0.7_5_0_9_7_6_5_6] ) assert np.abs(video_frames.cpu().numpy()[0, 0, 0, 0, -5:] - expected_array ).sum() < 1e-2
118
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision import transforms from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def __lowercase ( a__ ) -> Optional[Any]: __SCREAMING_SNAKE_CASE = [2, 2, 6, 2] if 'tiny' in model_name else [2, 2, 18, 2] __SCREAMING_SNAKE_CASE = True if 'large' in model_name or 'huge' in model_name else False __SCREAMING_SNAKE_CASE = True if 'large' in model_name or 'huge' in model_name else False __SCREAMING_SNAKE_CASE = True if 'large' in model_name or 'huge' in model_name else False if "large" in model_name or "xlarge" in model_name or "huge" in model_name: if "fl3" in model_name: __SCREAMING_SNAKE_CASE = [3, 3, 3, 3] __SCREAMING_SNAKE_CASE = [5, 5, 5, 5] elif "fl4" in model_name: __SCREAMING_SNAKE_CASE = [4, 4, 4, 4] __SCREAMING_SNAKE_CASE = [3, 3, 3, 3] if "tiny" in model_name or "small" in model_name or "base" in model_name: __SCREAMING_SNAKE_CASE = [3, 3, 3, 3] if "lrf" in model_name: __SCREAMING_SNAKE_CASE = [3, 3, 3, 3] else: __SCREAMING_SNAKE_CASE = [2, 2, 2, 2] if "tiny" in model_name: __SCREAMING_SNAKE_CASE = 96 elif "small" in model_name: __SCREAMING_SNAKE_CASE = 96 elif "base" in model_name: __SCREAMING_SNAKE_CASE = 1_28 elif "large" in model_name: __SCREAMING_SNAKE_CASE = 1_92 elif "xlarge" in model_name: __SCREAMING_SNAKE_CASE = 2_56 elif "huge" in model_name: __SCREAMING_SNAKE_CASE = 3_52 # set label information __SCREAMING_SNAKE_CASE = 'huggingface/label-files' if "large" in model_name or "huge" in model_name: __SCREAMING_SNAKE_CASE = 'imagenet-22k-id2label.json' else: __SCREAMING_SNAKE_CASE = 'imagenet-1k-id2label.json' __SCREAMING_SNAKE_CASE = json.load(open(hf_hub_download(a__ , a__ , repo_type='dataset' ) , 'r' ) ) __SCREAMING_SNAKE_CASE = {int(a__ ): v for k, v in idalabel.items()} __SCREAMING_SNAKE_CASE = {v: k for k, v in idalabel.items()} __SCREAMING_SNAKE_CASE = FocalNetConfig( embed_dim=a__ , depths=a__ , focal_levels=a__ , focal_windows=a__ , use_conv_embed=a__ , idalabel=a__ , labelaid=a__ , use_post_layernorm=a__ , use_layerscale=a__ , ) return config def __lowercase ( a__ ) -> Any: if "patch_embed.proj" in name: __SCREAMING_SNAKE_CASE = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: __SCREAMING_SNAKE_CASE = name.replace('patch_embed.norm' , 'embeddings.norm' ) if "layers" in name: __SCREAMING_SNAKE_CASE = 'encoder.' + name if "encoder.layers" in name: __SCREAMING_SNAKE_CASE = name.replace('encoder.layers' , 'encoder.stages' ) if "downsample.proj" in name: __SCREAMING_SNAKE_CASE = name.replace('downsample.proj' , 'downsample.projection' ) if "blocks" in name: __SCREAMING_SNAKE_CASE = name.replace('blocks' , 'layers' ) if "modulation.f.weight" in name or "modulation.f.bias" in name: __SCREAMING_SNAKE_CASE = name.replace('modulation.f' , 'modulation.projection_in' ) if "modulation.h.weight" in name or "modulation.h.bias" in name: __SCREAMING_SNAKE_CASE = name.replace('modulation.h' , 'modulation.projection_context' ) if "modulation.proj.weight" in name or "modulation.proj.bias" in name: __SCREAMING_SNAKE_CASE = name.replace('modulation.proj' , 'modulation.projection_out' ) if name == "norm.weight": __SCREAMING_SNAKE_CASE = 'layernorm.weight' if name == "norm.bias": __SCREAMING_SNAKE_CASE = 'layernorm.bias' if "head" in name: __SCREAMING_SNAKE_CASE = name.replace('head' , 'classifier' ) else: __SCREAMING_SNAKE_CASE = 'focalnet.' + name return name def __lowercase ( a__ , a__ , a__=False ) -> Dict: # fmt: off __SCREAMING_SNAKE_CASE = { 'focalnet-tiny': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth', 'focalnet-tiny-lrf': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth', 'focalnet-small': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth', 'focalnet-small-lrf': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth', 'focalnet-base': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth', 'focalnet-base-lrf': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth', 'focalnet-large-lrf-fl3': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth', 'focalnet-large-lrf-fl4': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth', 'focalnet-xlarge-lrf-fl3': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth', 'focalnet-xlarge-lrf-fl4': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth', } # fmt: on __SCREAMING_SNAKE_CASE = model_name_to_url[model_name] print('Checkpoint URL: ' , a__ ) __SCREAMING_SNAKE_CASE = torch.hub.load_state_dict_from_url(a__ , map_location='cpu' )['model'] # rename keys for key in state_dict.copy().keys(): __SCREAMING_SNAKE_CASE = state_dict.pop(a__ ) __SCREAMING_SNAKE_CASE = val __SCREAMING_SNAKE_CASE = get_focalnet_config(a__ ) __SCREAMING_SNAKE_CASE = FocalNetForImageClassification(a__ ) model.eval() # load state dict model.load_state_dict(a__ ) # verify conversion __SCREAMING_SNAKE_CASE = 'http://images.cocodataset.org/val2017/000000039769.jpg' __SCREAMING_SNAKE_CASE = BitImageProcessor( do_resize=a__ , size={'shortest_edge': 2_56} , resample=PILImageResampling.BILINEAR , do_center_crop=a__ , crop_size=2_24 , do_normalize=a__ , image_mean=a__ , image_std=a__ , ) __SCREAMING_SNAKE_CASE = Image.open(requests.get(a__ , stream=a__ ).raw ) __SCREAMING_SNAKE_CASE = processor(images=a__ , return_tensors='pt' ) __SCREAMING_SNAKE_CASE = transforms.Compose( [ transforms.Resize(2_56 ), transforms.CenterCrop(2_24 ), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ), ] ) __SCREAMING_SNAKE_CASE = image_transforms(a__ ).unsqueeze(0 ) # verify pixel_values assert torch.allclose(inputs.pixel_values , a__ , atol=1E-4 ) __SCREAMING_SNAKE_CASE = model(**a__ ) __SCREAMING_SNAKE_CASE = outputs.logits.argmax(-1 ).item() print('Predicted class:' , model.config.idalabel[predicted_class_idx] ) print('First values of logits:' , outputs.logits[0, :3] ) if model_name == "focalnet-tiny": __SCREAMING_SNAKE_CASE = torch.tensor([0.2166, -0.4368, 0.2191] ) elif model_name == "focalnet-tiny-lrf": __SCREAMING_SNAKE_CASE = torch.tensor([1.1669, 0.0125, -0.1695] ) elif model_name == "focalnet-small": __SCREAMING_SNAKE_CASE = torch.tensor([0.4917, -0.0430, 0.1341] ) elif model_name == "focalnet-small-lrf": __SCREAMING_SNAKE_CASE = torch.tensor([-0.2588, -0.5342, -0.2331] ) elif model_name == "focalnet-base": __SCREAMING_SNAKE_CASE = torch.tensor([-0.1655, -0.4090, -0.1730] ) elif model_name == "focalnet-base-lrf": __SCREAMING_SNAKE_CASE = torch.tensor([0.5306, -0.0483, -0.3928] ) assert torch.allclose(outputs.logits[0, :3] , a__ , atol=1E-4 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(f"""Saving model and processor of {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(a__ ) processor.save_pretrained(a__ ) if push_to_hub: print(f"""Pushing model and processor of {model_name} to the hub...""" ) model.push_to_hub(f"""{model_name}""" ) processor.push_to_hub(f"""{model_name}""" ) if __name__ == "__main__": lowerCAmelCase__ : int =argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''focalnet-tiny''', type=str, help='''Name of the FocalNet model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether to push the model and processor to the hub.''', ) lowerCAmelCase__ : List[Any] =parser.parse_args() convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
118
1
import logging import os import sys from dataclasses import dataclass, field from typing import Optional import evaluate import numpy as np import torch from datasets import load_dataset from PIL import Image from torchvision.transforms import ( CenterCrop, Compose, Normalize, RandomHorizontalFlip, RandomResizedCrop, Resize, ToTensor, ) import transformers from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForImageClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version _lowerCAmelCase : Union[str, Any] = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.31.0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/image-classification/requirements.txt") _lowerCAmelCase : List[str] = list(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING.keys()) _lowerCAmelCase : Dict = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) def lowerCAmelCase ( _lowerCAmelCase : Optional[Any] ): """simple docstring""" with open(_lowerCAmelCase , "rb" ) as f: UpperCAmelCase__ = Image.open(_lowerCAmelCase ) return im.convert("RGB" ) @dataclass class _UpperCamelCase : UpperCAmelCase_ = field( default=UpperCamelCase__ , metadata={ """help""": """Name of a dataset from the hub (could be your own, possibly private dataset hosted on the hub).""" } , ) UpperCAmelCase_ = field( default=UpperCamelCase__ , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} ) UpperCAmelCase_ = field(default=UpperCamelCase__ , metadata={"""help""": """A folder containing the training data."""} ) UpperCAmelCase_ = field(default=UpperCamelCase__ , metadata={"""help""": """A folder containing the validation data."""} ) UpperCAmelCase_ = field( default=0.15 , metadata={"""help""": """Percent to split off of train for validation."""} ) UpperCAmelCase_ = field( default=UpperCamelCase__ , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) UpperCAmelCase_ = field( default=UpperCamelCase__ , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } , ) def UpperCAmelCase_ ( self :Any ) -> int: if self.dataset_name is None and (self.train_dir is None and self.validation_dir is None): raise ValueError( "You must specify either a dataset name from the hub or a train and/or validation directory." ) @dataclass class _UpperCamelCase : UpperCAmelCase_ = field( default="""google/vit-base-patch16-224-in21k""" , metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} , ) UpperCAmelCase_ = field( default=UpperCamelCase__ , metadata={"""help""": """If training from scratch, pass a model type from the list: """ + """, """.join(UpperCamelCase__ )} , ) UpperCAmelCase_ = field( default=UpperCamelCase__ , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) UpperCAmelCase_ = field( default=UpperCamelCase__ , metadata={"""help""": """Where do you want to store the pretrained models downloaded from s3"""} ) UpperCAmelCase_ = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) UpperCAmelCase_ = field(default=UpperCamelCase__ , metadata={"""help""": """Name or path of preprocessor config."""} ) UpperCAmelCase_ = field( default=UpperCamelCase__ , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) UpperCAmelCase_ = field( default=UpperCamelCase__ , metadata={"""help""": """Will enable to load a pretrained model whose head dimensions are different."""} , ) def lowerCAmelCase ( _lowerCAmelCase : List[Any] ): """simple docstring""" UpperCAmelCase__ = torch.stack([example["pixel_values"] for example in examples] ) UpperCAmelCase__ = torch.tensor([example["labels"] for example in examples] ) return {"pixel_values": pixel_values, "labels": labels} def lowerCAmelCase ( ): """simple docstring""" UpperCAmelCase__ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_image_classification" , _lowerCAmelCase , _lowerCAmelCase ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() UpperCAmelCase__ = training_args.get_process_log_level() logger.setLevel(_lowerCAmelCase ) transformers.utils.logging.set_verbosity(_lowerCAmelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(F'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. UpperCAmelCase__ = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: UpperCAmelCase__ = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Set seed before initializing model. set_seed(training_args.seed ) # Initialize our dataset and prepare it for the 'image-classification' task. if data_args.dataset_name is not None: UpperCAmelCase__ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir , task="image-classification" , use_auth_token=True if model_args.use_auth_token else None , ) else: UpperCAmelCase__ = {} if data_args.train_dir is not None: UpperCAmelCase__ = os.path.join(data_args.train_dir , "**" ) if data_args.validation_dir is not None: UpperCAmelCase__ = os.path.join(data_args.validation_dir , "**" ) UpperCAmelCase__ = load_dataset( "imagefolder" , data_files=_lowerCAmelCase , cache_dir=model_args.cache_dir , task="image-classification" , ) # If we don't have a validation split, split off a percentage of train as validation. UpperCAmelCase__ = None if "validation" in dataset.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , _lowerCAmelCase ) and data_args.train_val_split > 0.0: UpperCAmelCase__ = dataset["train"].train_test_split(data_args.train_val_split ) UpperCAmelCase__ = split["train"] UpperCAmelCase__ = split["test"] # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. UpperCAmelCase__ = dataset["train"].features["labels"].names UpperCAmelCase__ , UpperCAmelCase__ = {}, {} for i, label in enumerate(_lowerCAmelCase ): UpperCAmelCase__ = str(_lowerCAmelCase ) UpperCAmelCase__ = label # Load the accuracy metric from the datasets package UpperCAmelCase__ = evaluate.load("accuracy" ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(_lowerCAmelCase : str ): return metric.compute(predictions=np.argmax(p.predictions , axis=1 ) , references=p.label_ids ) UpperCAmelCase__ = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path , num_labels=len(_lowerCAmelCase ) , labelaid=_lowerCAmelCase , idalabel=_lowerCAmelCase , finetuning_task="image-classification" , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) UpperCAmelCase__ = AutoModelForImageClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=_lowerCAmelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) UpperCAmelCase__ = AutoImageProcessor.from_pretrained( model_args.image_processor_name or model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Define torchvision transforms to be applied to each image. if "shortest_edge" in image_processor.size: UpperCAmelCase__ = image_processor.size["shortest_edge"] else: UpperCAmelCase__ = (image_processor.size["height"], image_processor.size["width"]) UpperCAmelCase__ = Normalize(mean=image_processor.image_mean , std=image_processor.image_std ) UpperCAmelCase__ = Compose( [ RandomResizedCrop(_lowerCAmelCase ), RandomHorizontalFlip(), ToTensor(), normalize, ] ) UpperCAmelCase__ = Compose( [ Resize(_lowerCAmelCase ), CenterCrop(_lowerCAmelCase ), ToTensor(), normalize, ] ) def train_transforms(_lowerCAmelCase : Tuple ): UpperCAmelCase__ = [ _train_transforms(pil_img.convert("RGB" ) ) for pil_img in example_batch["image"] ] return example_batch def val_transforms(_lowerCAmelCase : List[str] ): UpperCAmelCase__ = [_val_transforms(pil_img.convert("RGB" ) ) for pil_img in example_batch["image"]] return example_batch if training_args.do_train: if "train" not in dataset: raise ValueError("--do_train requires a train dataset" ) if data_args.max_train_samples is not None: UpperCAmelCase__ = ( dataset["train"].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms dataset["train"].set_transform(_lowerCAmelCase ) if training_args.do_eval: if "validation" not in dataset: raise ValueError("--do_eval requires a validation dataset" ) if data_args.max_eval_samples is not None: UpperCAmelCase__ = ( dataset["validation"].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms dataset["validation"].set_transform(_lowerCAmelCase ) # Initalize our trainer UpperCAmelCase__ = Trainer( model=_lowerCAmelCase , args=_lowerCAmelCase , train_dataset=dataset["train"] if training_args.do_train else None , eval_dataset=dataset["validation"] if training_args.do_eval else None , compute_metrics=_lowerCAmelCase , tokenizer=_lowerCAmelCase , data_collator=_lowerCAmelCase , ) # Training if training_args.do_train: UpperCAmelCase__ = None if training_args.resume_from_checkpoint is not None: UpperCAmelCase__ = training_args.resume_from_checkpoint elif last_checkpoint is not None: UpperCAmelCase__ = last_checkpoint UpperCAmelCase__ = trainer.train(resume_from_checkpoint=_lowerCAmelCase ) trainer.save_model() trainer.log_metrics("train" , train_result.metrics ) trainer.save_metrics("train" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: UpperCAmelCase__ = trainer.evaluate() trainer.log_metrics("eval" , _lowerCAmelCase ) trainer.save_metrics("eval" , _lowerCAmelCase ) # Write model card and (optionally) push to hub UpperCAmelCase__ = { "finetuned_from": model_args.model_name_or_path, "tasks": "image-classification", "dataset": data_args.dataset_name, "tags": ["image-classification", "vision"], } if training_args.push_to_hub: trainer.push_to_hub(**_lowerCAmelCase ) else: trainer.create_model_card(**_lowerCAmelCase ) if __name__ == "__main__": main()
169
from pickle import UnpicklingError import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict from ..utils import logging lowerCAmelCase = logging.get_logger(__name__) def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" try: with open(SCREAMING_SNAKE_CASE , '''rb''' ) as flax_state_f: lowercase__ = from_bytes(SCREAMING_SNAKE_CASE , flax_state_f.read() ) except UnpicklingError as e: try: with open(SCREAMING_SNAKE_CASE ) as f: if f.read().startswith('''version''' ): raise OSError( '''You seem to have cloned a repository without having git-lfs installed. Please''' ''' install git-lfs and run `git lfs install` followed by `git lfs pull` in the''' ''' folder you cloned.''' ) else: raise ValueError from e except (UnicodeDecodeError, ValueError): raise EnvironmentError(f'Unable to convert {model_file} to Flax deserializable object. ' ) return load_flax_weights_in_pytorch_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" try: import torch # noqa: F401 except ImportError: logger.error( '''Loading Flax weights in PyTorch requires both PyTorch and Flax to be installed. Please see''' ''' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation''' ''' instructions.''' ) raise # check if we have bf16 weights lowercase__ = flatten_dict(jax.tree_util.tree_map(lambda SCREAMING_SNAKE_CASE : x.dtype == jnp.bfloataa , SCREAMING_SNAKE_CASE ) ).values() if any(SCREAMING_SNAKE_CASE ): # convert all weights to fp32 if they are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( '''Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` ''' '''before loading those in PyTorch model.''' ) lowercase__ = jax.tree_util.tree_map( lambda SCREAMING_SNAKE_CASE : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , SCREAMING_SNAKE_CASE ) lowercase__ = '''''' lowercase__ = flatten_dict(SCREAMING_SNAKE_CASE , sep='''.''' ) lowercase__ = pt_model.state_dict() # keep track of unexpected & missing keys lowercase__ = [] lowercase__ = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): lowercase__ = flax_key_tuple.split('''.''' ) if flax_key_tuple_array[-1] == "kernel" and flax_tensor.ndim == 4: lowercase__ = flax_key_tuple_array[:-1] + ['''weight'''] lowercase__ = jnp.transpose(SCREAMING_SNAKE_CASE , (3, 2, 0, 1) ) elif flax_key_tuple_array[-1] == "kernel": lowercase__ = flax_key_tuple_array[:-1] + ['''weight'''] lowercase__ = flax_tensor.T elif flax_key_tuple_array[-1] == "scale": lowercase__ = flax_key_tuple_array[:-1] + ['''weight'''] if "time_embedding" not in flax_key_tuple_array: for i, flax_key_tuple_string in enumerate(SCREAMING_SNAKE_CASE ): lowercase__ = ( flax_key_tuple_string.replace('''_0''' , '''.0''' ) .replace('''_1''' , '''.1''' ) .replace('''_2''' , '''.2''' ) .replace('''_3''' , '''.3''' ) .replace('''_4''' , '''.4''' ) .replace('''_5''' , '''.5''' ) .replace('''_6''' , '''.6''' ) .replace('''_7''' , '''.7''' ) .replace('''_8''' , '''.8''' ) .replace('''_9''' , '''.9''' ) ) lowercase__ = '''.'''.join(SCREAMING_SNAKE_CASE ) if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( f'Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected ' f'to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.' ) else: # add weight to pytorch dict lowercase__ = np.asarray(SCREAMING_SNAKE_CASE ) if not isinstance(SCREAMING_SNAKE_CASE , np.ndarray ) else flax_tensor lowercase__ = torch.from_numpy(SCREAMING_SNAKE_CASE ) # remove from missing keys missing_keys.remove(SCREAMING_SNAKE_CASE ) else: # weight is not expected by PyTorch model unexpected_keys.append(SCREAMING_SNAKE_CASE ) pt_model.load_state_dict(SCREAMING_SNAKE_CASE ) # re-transform missing_keys to list lowercase__ = list(SCREAMING_SNAKE_CASE ) if len(SCREAMING_SNAKE_CASE ) > 0: logger.warning( '''Some weights of the Flax model were not used when initializing the PyTorch model''' f' {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing' f' {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture' ''' (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This''' f' IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect' ''' to be exactly identical (e.g. initializing a BertForSequenceClassification model from a''' ''' FlaxBertForSequenceClassification model).''' ) if len(SCREAMING_SNAKE_CASE ) > 0: logger.warning( f'Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly' f' initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to' ''' use it for predictions and inference.''' ) return pt_model
110
0
'''simple docstring''' import unittest from transformers import AutoTokenizer, is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, slow if is_flax_available(): import jax.numpy as jnp from transformers import FlaxXLMRobertaModel @require_sentencepiece @require_tokenizers @require_flax class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def A (self : Any ): A = FlaxXLMRobertaModel.from_pretrained("""xlm-roberta-base""" ) A = AutoTokenizer.from_pretrained("""xlm-roberta-base""" ) A = 'The dog is cute and lives in the garden house' A = jnp.array([tokenizer.encode(_lowerCAmelCase )] ) A = (1, 12, 768) # batch_size, sequence_length, embedding_vector_dim A = jnp.array( [[-0.0_101, 0.1_218, -0.0_803, 0.0_801, 0.1_327, 0.0_776, -0.1_215, 0.2_383, 0.3_338, 0.3_106, 0.0_300, 0.0_252]] ) A = model(_lowerCAmelCase )['last_hidden_state'] self.assertEqual(output.shape , _lowerCAmelCase ) # compare the actual values for a slice of last dim self.assertTrue(jnp.allclose(output[:, :, -1] , _lowerCAmelCase , atol=1e-3 ) )
351
'''simple docstring''' import json import os from typing import Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _lowerCamelCase : Dict = logging.get_logger(__name__) _lowerCamelCase : List[str] = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', } _lowerCamelCase : Dict = { 'vocab_file': {'ctrl': 'https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-vocab.json'}, 'merges_file': {'ctrl': 'https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-merges.txt'}, } _lowerCamelCase : Optional[Any] = { 'ctrl': 256, } _lowerCamelCase : List[str] = { 'Pregnancy': 16_8629, 'Christianity': 7675, 'Explain': 10_6423, 'Fitness': 6_3440, 'Saving': 6_3163, 'Ask': 2_7171, 'Ass': 9_5985, 'Joke': 16_3509, 'Questions': 4_5622, 'Thoughts': 4_9605, 'Retail': 5_2342, 'Feminism': 16_4338, 'Writing': 1_1992, 'Atheism': 19_2263, 'Netflix': 4_8616, 'Computing': 3_9639, 'Opinion': 4_3213, 'Alone': 4_4967, 'Funny': 5_8917, 'Gaming': 4_0358, 'Human': 4088, 'India': 1331, 'Joker': 7_7138, 'Diet': 3_6206, 'Legal': 1_1859, 'Norman': 4939, 'Tip': 7_2689, 'Weight': 5_2343, 'Movies': 4_6273, 'Running': 2_3425, 'Science': 2090, 'Horror': 3_7793, 'Confession': 6_0572, 'Finance': 1_2250, 'Politics': 1_6360, 'Scary': 19_1985, 'Support': 1_2654, 'Technologies': 3_2516, 'Teenage': 6_6160, 'Event': 3_2769, 'Learned': 6_7460, 'Notion': 18_2770, 'Wikipedia': 3_7583, 'Books': 6665, 'Extract': 7_6050, 'Confessions': 10_2701, 'Conspiracy': 7_5932, 'Links': 6_3674, 'Narcissus': 15_0425, 'Relationship': 5_4766, 'Relationships': 13_4796, 'Reviews': 4_1671, 'News': 4256, 'Translation': 2_6820, 'multilingual': 12_8406, } def __a ( UpperCAmelCase ) ->Dict: """simple docstring""" A = set() A = word[0] for char in word[1:]: pairs.add((prev_char, char) ) A = char A = set(UpperCAmelCase ) return pairs class __UpperCAmelCase ( A__ ): '''simple docstring''' __lowerCAmelCase = VOCAB_FILES_NAMES __lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase = CONTROL_CODES def __init__(self : Any , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[Any]="<unk>" , **_lowerCAmelCase : Dict ): super().__init__(unk_token=_lowerCAmelCase , **_lowerCAmelCase ) with open(_lowerCAmelCase , encoding="""utf-8""" ) as vocab_handle: A = json.load(_lowerCAmelCase ) A = {v: k for k, v in self.encoder.items()} with open(_lowerCAmelCase , encoding="""utf-8""" ) as merges_handle: A = merges_handle.read().split("""\n""" )[1:-1] A = [tuple(merge.split() ) for merge in merges] A = dict(zip(_lowerCAmelCase , range(len(_lowerCAmelCase ) ) ) ) A = {} @property def A (self : Tuple ): return len(self.encoder ) def A (self : int ): return dict(self.encoder , **self.added_tokens_encoder ) def A (self : Optional[int] , _lowerCAmelCase : Optional[int] ): if token in self.cache: return self.cache[token] A = tuple(_lowerCAmelCase ) A = tuple(list(word[:-1] ) + [word[-1] + """</w>"""] ) A = get_pairs(_lowerCAmelCase ) if not pairs: return token while True: A = min(_lowerCAmelCase , key=lambda _lowerCAmelCase : self.bpe_ranks.get(_lowerCAmelCase , float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break A , A = bigram A = [] A = 0 while i < len(_lowerCAmelCase ): try: A = word.index(_lowerCAmelCase , _lowerCAmelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) A = j if word[i] == first and i < len(_lowerCAmelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 A = tuple(_lowerCAmelCase ) A = new_word if len(_lowerCAmelCase ) == 1: break else: A = get_pairs(_lowerCAmelCase ) A = """@@ """.join(_lowerCAmelCase ) A = word[:-4] A = word return word def A (self : List[str] , _lowerCAmelCase : Dict ): A = [] A = re.findall(r"""\S+\n?""" , _lowerCAmelCase ) for token in words: split_tokens.extend(list(self.bpe(_lowerCAmelCase ).split(""" """ ) ) ) return split_tokens def A (self : str , _lowerCAmelCase : int ): return self.encoder.get(_lowerCAmelCase , self.encoder.get(self.unk_token ) ) def A (self : Dict , _lowerCAmelCase : str ): return self.decoder.get(_lowerCAmelCase , self.unk_token ) def A (self : List[str] , _lowerCAmelCase : List[Any] ): A = """ """.join(_lowerCAmelCase ).replace("""@@ """ , """""" ).strip() return out_string def A (self : str , _lowerCAmelCase : str , _lowerCAmelCase : Optional[str] = None ): if not os.path.isdir(_lowerCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return A = os.path.join( _lowerCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) A = os.path.join( _lowerCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) with open(_lowerCAmelCase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=_lowerCAmelCase , ensure_ascii=_lowerCAmelCase ) + """\n""" ) A = 0 with open(_lowerCAmelCase , """w""" , encoding="""utf-8""" ) as writer: writer.write("""#version: 0.2\n""" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda _lowerCAmelCase : kv[1] ): if index != token_index: logger.warning( F"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" """ Please check that the tokenizer is not corrupted!""" ) A = token_index writer.write(""" """.join(_lowerCAmelCase ) + """\n""" ) index += 1 return vocab_file, merge_file # def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True): # filtered_tokens = ' '.join(self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens)) # tokens_generated_so_far = re.sub('(@@ )', '', string=filtered_tokens) # tokens_generated_so_far = re.sub('(@@ ?$)', '', string=tokens_generated_so_far) # return ''.join(tokens_generated_so_far)
337
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) A__ : Tuple = { 'configuration_blenderbot_small': [ 'BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BlenderbotSmallConfig', 'BlenderbotSmallOnnxConfig', ], 'tokenization_blenderbot_small': ['BlenderbotSmallTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Union[str, Any] = ['BlenderbotSmallTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : str = [ 'BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST', 'BlenderbotSmallForCausalLM', 'BlenderbotSmallForConditionalGeneration', 'BlenderbotSmallModel', 'BlenderbotSmallPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : List[str] = [ 'TFBlenderbotSmallForConditionalGeneration', 'TFBlenderbotSmallModel', 'TFBlenderbotSmallPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Union[str, Any] = [ 'FlaxBlenderbotSmallForConditionalGeneration', 'FlaxBlenderbotSmallModel', 'FlaxBlenderbotSmallPreTrainedModel', ] if TYPE_CHECKING: from .configuration_blenderbot_small import ( BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotSmallConfig, BlenderbotSmallOnnxConfig, ) from .tokenization_blenderbot_small import BlenderbotSmallTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_small_fast import BlenderbotSmallTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot_small import ( BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotSmallForCausalLM, BlenderbotSmallForConditionalGeneration, BlenderbotSmallModel, BlenderbotSmallPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot_small import ( TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel, TFBlenderbotSmallPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot_small import ( FlaxBlenderbotSmallForConditionalGeneration, FlaxBlenderbotSmallModel, FlaxBlenderbotSmallPreTrainedModel, ) else: import sys A__ : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
207
from typing import Optional import pyspark from .. import Features, NamedSplit from ..download import DownloadMode from ..packaged_modules.spark.spark import Spark from .abc import AbstractDatasetReader class _UpperCAmelCase ( A__ ): """simple docstring""" def __init__( self : Dict, lowerCamelCase : pyspark.sql.DataFrame, lowerCamelCase : Optional[NamedSplit] = None, lowerCamelCase : Optional[Features] = None, lowerCamelCase : bool = True, lowerCamelCase : str = None, lowerCamelCase : bool = False, lowerCamelCase : str = None, lowerCamelCase : bool = True, lowerCamelCase : str = "arrow", **lowerCamelCase : str, ): '''simple docstring''' super().__init__( split=lowerCamelCase, features=lowerCamelCase, cache_dir=lowerCamelCase, keep_in_memory=lowerCamelCase, streaming=lowerCamelCase, **lowerCamelCase, ) lowercase__ = load_from_cache_file lowercase__ = file_format lowercase__ = Spark( df=lowerCamelCase, features=lowerCamelCase, cache_dir=lowerCamelCase, working_dir=lowerCamelCase, **lowerCamelCase, ) def lowercase__ ( self : List[Any] ): '''simple docstring''' if self.streaming: return self.builder.as_streaming_dataset(split=self.split ) lowercase__ = None if self._load_from_cache_file else DownloadMode.FORCE_REDOWNLOAD self.builder.download_and_prepare( download_mode=lowerCamelCase, file_format=self._file_format, ) return self.builder.as_dataset(split=self.split )
207
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCamelCase : str = { "configuration_bridgetower": [ "BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP", "BridgeTowerConfig", "BridgeTowerTextConfig", "BridgeTowerVisionConfig", ], "processing_bridgetower": ["BridgeTowerProcessor"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Tuple = ["BridgeTowerImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : int = [ "BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST", "BridgeTowerForContrastiveLearning", "BridgeTowerForImageAndTextRetrieval", "BridgeTowerForMaskedLM", "BridgeTowerModel", "BridgeTowerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_bridgetower import ( BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP, BridgeTowerConfig, BridgeTowerTextConfig, BridgeTowerVisionConfig, ) from .processing_bridgetower import BridgeTowerProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_bridgetower import BridgeTowerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bridgetower import ( BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST, BridgeTowerForContrastiveLearning, BridgeTowerForImageAndTextRetrieval, BridgeTowerForMaskedLM, BridgeTowerModel, BridgeTowerPreTrainedModel, ) else: import sys lowerCamelCase : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure)
368
from ..utils import DummyObject, requires_backends class A( metaclass=UpperCamelCase ): '''simple docstring''' UpperCamelCase = ['''keras_nlp'''] def __init__( self : Optional[int] , *A_ : Any , **A_ : Dict ) -> Optional[int]: """simple docstring""" requires_backends(self , ['keras_nlp'] )
208
0
'''simple docstring''' import os from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE, hf_cache_home __a = HUGGINGFACE_HUB_CACHE __a = 'config.json' __a = 'diffusion_pytorch_model.bin' __a = 'diffusion_flax_model.msgpack' __a = 'model.onnx' __a = 'diffusion_pytorch_model.safetensors' __a = 'weights.pb' __a = 'https://huggingface.co' __a = default_cache_path __a = 'diffusers_modules' __a = os.getenv('HF_MODULES_CACHE', os.path.join(hf_cache_home, 'modules')) __a = ['fp16', 'non-ema'] __a = '.self_attn'
145
'''simple docstring''' from typing import Callable, List, Optional, Union import PIL import torch from transformers import ( CLIPImageProcessor, CLIPSegForImageSegmentation, CLIPSegProcessor, CLIPTextModel, CLIPTokenizer, ) from diffusers import DiffusionPipeline from diffusers.configuration_utils import FrozenDict from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionInpaintPipeline from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import deprecate, is_accelerate_available, logging __a = logging.get_logger(__name__) # pylint: disable=invalid-name class A__ ( UpperCamelCase ): """simple docstring""" def __init__( self : List[Any] , lowerCAmelCase__ : CLIPSegForImageSegmentation , lowerCAmelCase__ : CLIPSegProcessor , lowerCAmelCase__ : AutoencoderKL , lowerCAmelCase__ : CLIPTextModel , lowerCAmelCase__ : CLIPTokenizer , lowerCAmelCase__ : UNetaDConditionModel , lowerCAmelCase__ : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , lowerCAmelCase__ : StableDiffusionSafetyChecker , lowerCAmelCase__ : CLIPImageProcessor , ) -> Dict: """simple docstring""" super().__init__() if hasattr(scheduler.config , "steps_offset" ) and scheduler.config.steps_offset != 1: _UpperCAmelCase : str = ( F"""The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`""" F""" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure """ "to update the config accordingly as leaving `steps_offset` might led to incorrect results" " in future versions. If you have downloaded this checkpoint from the Hugging Face Hub," " it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`" " file" ) deprecate("steps_offset!=1" , "1.0.0" , lowerCAmelCase__ , standard_warn=lowerCAmelCase__ ) _UpperCAmelCase : Any = dict(scheduler.config ) _UpperCAmelCase : Tuple = 1 _UpperCAmelCase : Optional[Any] = FrozenDict(lowerCAmelCase__ ) if hasattr(scheduler.config , "skip_prk_steps" ) and scheduler.config.skip_prk_steps is False: _UpperCAmelCase : Union[str, Any] = ( F"""The configuration file of this scheduler: {scheduler} has not set the configuration""" " `skip_prk_steps`. `skip_prk_steps` should be set to True in the configuration file. Please make" " sure to update the config accordingly as not setting `skip_prk_steps` in the config might lead to" " incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face" " Hub, it would be very nice if you could open a Pull request for the" " `scheduler/scheduler_config.json` file" ) deprecate("skip_prk_steps not set" , "1.0.0" , lowerCAmelCase__ , standard_warn=lowerCAmelCase__ ) _UpperCAmelCase : List[str] = dict(scheduler.config ) _UpperCAmelCase : Optional[Any] = True _UpperCAmelCase : Dict = FrozenDict(lowerCAmelCase__ ) if safety_checker is None: logger.warning( F"""You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure""" " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" " results in services or applications open to the public. Both the diffusers team and Hugging Face" " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" " it only for use-cases that involve analyzing network behavior or auditing its results. For more" " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." ) self.register_modules( segmentation_model=lowerCAmelCase__ , segmentation_processor=lowerCAmelCase__ , vae=lowerCAmelCase__ , text_encoder=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ , unet=lowerCAmelCase__ , scheduler=lowerCAmelCase__ , safety_checker=lowerCAmelCase__ , feature_extractor=lowerCAmelCase__ , ) def _lowerCAmelCase ( self : str , lowerCAmelCase__ : Optional[Union[str, int]] = "auto" ) -> Optional[int]: """simple docstring""" if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory _UpperCAmelCase : Tuple = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(lowerCAmelCase__ ) def _lowerCAmelCase ( self : Optional[int] ) -> Any: """simple docstring""" self.enable_attention_slicing(lowerCAmelCase__ ) def _lowerCAmelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`" ) _UpperCAmelCase : Dict = torch.device("cuda" ) for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae, self.safety_checker]: if cpu_offloaded_model is not None: cpu_offload(lowerCAmelCase__ , lowerCAmelCase__ ) @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def _lowerCAmelCase ( self : Any ) -> int: """simple docstring""" if self.device != torch.device("meta" ) or not hasattr(self.unet , "_hf_hook" ): return self.device for module in self.unet.modules(): if ( hasattr(lowerCAmelCase__ , "_hf_hook" ) and hasattr(module._hf_hook , "execution_device" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() def __call__( self : Optional[int] , lowerCAmelCase__ : Union[str, List[str]] , lowerCAmelCase__ : Union[torch.FloatTensor, PIL.Image.Image] , lowerCAmelCase__ : str , lowerCAmelCase__ : int = 5_1_2 , lowerCAmelCase__ : int = 5_1_2 , lowerCAmelCase__ : int = 5_0 , lowerCAmelCase__ : float = 7.5 , lowerCAmelCase__ : Optional[Union[str, List[str]]] = None , lowerCAmelCase__ : Optional[int] = 1 , lowerCAmelCase__ : float = 0.0 , lowerCAmelCase__ : Optional[torch.Generator] = None , lowerCAmelCase__ : Optional[torch.FloatTensor] = None , lowerCAmelCase__ : Optional[str] = "pil" , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , lowerCAmelCase__ : int = 1 , **lowerCAmelCase__ : Any , ) -> Tuple: """simple docstring""" _UpperCAmelCase : List[str] = self.segmentation_processor( text=[text] , images=[image] , padding="max_length" , return_tensors="pt" ).to(self.device ) _UpperCAmelCase : List[Any] = self.segmentation_model(**lowerCAmelCase__ ) _UpperCAmelCase : Any = torch.sigmoid(outputs.logits ).cpu().detach().unsqueeze(-1 ).numpy() _UpperCAmelCase : str = self.numpy_to_pil(lowerCAmelCase__ )[0].resize(image.size ) # Run inpainting pipeline with the generated mask _UpperCAmelCase : Union[str, Any] = StableDiffusionInpaintPipeline( vae=self.vae , text_encoder=self.text_encoder , tokenizer=self.tokenizer , unet=self.unet , scheduler=self.scheduler , safety_checker=self.safety_checker , feature_extractor=self.feature_extractor , ) return inpainting_pipeline( prompt=lowerCAmelCase__ , image=lowerCAmelCase__ , mask_image=lowerCAmelCase__ , height=lowerCAmelCase__ , width=lowerCAmelCase__ , num_inference_steps=lowerCAmelCase__ , guidance_scale=lowerCAmelCase__ , negative_prompt=lowerCAmelCase__ , num_images_per_prompt=lowerCAmelCase__ , eta=lowerCAmelCase__ , generator=lowerCAmelCase__ , latents=lowerCAmelCase__ , output_type=lowerCAmelCase__ , return_dict=lowerCAmelCase__ , callback=lowerCAmelCase__ , callback_steps=lowerCAmelCase__ , )
145
1
from __future__ import annotations from scipy.special import comb # type: ignore class snake_case__: """simple docstring""" def __init__( self : List[Any] , SCREAMING_SNAKE_CASE : list[tuple[float, float]] ): lowercase__ : Union[str, Any] = list_of_points # Degree determines the flexibility of the curve. # Degree = 1 will produce a straight line. lowercase__ : Dict = len(_A ) - 1 def snake_case ( self : Any , SCREAMING_SNAKE_CASE : float ): assert 0 <= t <= 1, "Time t must be between 0 and 1." lowercase__ : list[float] = [] for i in range(len(self.list_of_points ) ): # basis function for each i output_values.append( comb(self.degree , _A ) * ((1 - t) ** (self.degree - i)) * (t**i) ) # the basis must sum up to 1 for it to produce a valid Bezier curve. assert round(sum(_A ) , 5 ) == 1 return output_values def snake_case ( self : Union[str, Any] , SCREAMING_SNAKE_CASE : float ): assert 0 <= t <= 1, "Time t must be between 0 and 1." lowercase__ : Optional[int] = self.basis_function(_A ) lowercase__ : int = 0.0 lowercase__ : List[Any] = 0.0 for i in range(len(self.list_of_points ) ): # For all points, sum up the product of i-th basis function and i-th point. x += basis_function[i] * self.list_of_points[i][0] y += basis_function[i] * self.list_of_points[i][1] return (x, y) def snake_case ( self : Any , SCREAMING_SNAKE_CASE : float = 0.01 ): from matplotlib import pyplot as plt # type: ignore lowercase__ : list[float] = [] # x coordinates of points to plot lowercase__ : list[float] = [] # y coordinates of points to plot lowercase__ : List[Any] = 0.0 while t <= 1: lowercase__ : List[str] = self.bezier_curve_function(_A ) to_plot_x.append(value[0] ) to_plot_y.append(value[1] ) t += step_size lowercase__ : Optional[Any] = [i[0] for i in self.list_of_points] lowercase__ : Any = [i[1] for i in self.list_of_points] plt.plot( _A , _A , color="blue" , label="Curve of Degree " + str(self.degree ) , ) plt.scatter(_A , _A , color="red" , label="Control Points" ) plt.legend() plt.show() if __name__ == "__main__": import doctest doctest.testmod() BezierCurve([(1, 2), (3, 5)]).plot_curve() # degree 1 BezierCurve([(0, 0), (5, 5), (5, 0)]).plot_curve() # degree 2 BezierCurve([(0, 0), (5, 5), (5, 0), (2.5, -2.5)]).plot_curve() # degree 3
357
from collections import Counter from timeit import timeit def __lowerCamelCase ( lowerCamelCase__ = "" , ): """simple docstring""" return sum(c % 2 for c in Counter(input_str.replace(" " , "" ).lower() ).values() ) < 2 def __lowerCamelCase ( lowerCamelCase__ = "" ): """simple docstring""" if len(lowerCamelCase__ ) == 0: return True lowercase__ : str = input_str.replace(" " , "" ).lower() # character_freq_dict: Stores the frequency of every character in the input string lowercase__ : dict[str, int] = {} for character in lower_case_input_str: lowercase__ : List[Any] = character_freq_dict.get(lowerCamelCase__ , 0 ) + 1 lowercase__ : List[Any] = 0 for character_count in character_freq_dict.values(): if character_count % 2: odd_char += 1 if odd_char > 1: return False return True def __lowerCamelCase ( lowerCamelCase__ = "" ): """simple docstring""" print("\nFor string = " , lowerCamelCase__ , ":" ) print( "> can_string_be_rearranged_as_palindrome_counter()" , "\tans =" , can_string_be_rearranged_as_palindrome_counter(lowerCamelCase__ ) , "\ttime =" , timeit( "z.can_string_be_rearranged_as_palindrome_counter(z.check_str)" , setup="import __main__ as z" , ) , "seconds" , ) print( "> can_string_be_rearranged_as_palindrome()" , "\tans =" , can_string_be_rearranged_as_palindrome(lowerCamelCase__ ) , "\ttime =" , timeit( "z.can_string_be_rearranged_as_palindrome(z.check_str)" , setup="import __main__ as z" , ) , "seconds" , ) if __name__ == "__main__": lowerCAmelCase__ = input( '''Enter string to determine if it can be rearranged as a palindrome or not: ''' ).strip() benchmark(check_str) lowerCAmelCase__ = can_string_be_rearranged_as_palindrome_counter(check_str) print(f'''{check_str} can {"" if status else "not "}be rearranged as a palindrome''')
121
0