code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
import importlib import torch import yaml from omegaconf import OmegaConf from taming.models.vqgan import VQModel def a__ ( __UpperCamelCase , __UpperCamelCase=False ): SCREAMING_SNAKE_CASE_ = OmegaConf.load(__UpperCamelCase ) if display: print(yaml.dump(OmegaConf.to_container(__UpperCamelCase ) ) ) return config def a__ ( __UpperCamelCase , __UpperCamelCase=None , __UpperCamelCase=None ): if conf_path is None: SCREAMING_SNAKE_CASE_ = "./model_checkpoints/vqgan_only.yaml" SCREAMING_SNAKE_CASE_ = load_config(__UpperCamelCase , display=__UpperCamelCase ) SCREAMING_SNAKE_CASE_ = VQModel(**config.model.params ) if ckpt_path is None: SCREAMING_SNAKE_CASE_ = "./model_checkpoints/vqgan_only.pt" SCREAMING_SNAKE_CASE_ = torch.load(__UpperCamelCase , map_location=__UpperCamelCase ) if ".ckpt" in ckpt_path: SCREAMING_SNAKE_CASE_ = sd["state_dict"] model.load_state_dict(__UpperCamelCase , strict=__UpperCamelCase ) model.to(__UpperCamelCase ) del sd return model def a__ ( __UpperCamelCase , __UpperCamelCase ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = model.encode(__UpperCamelCase ) print(F'''VQGAN --- {model.__class__.__name__}: latent shape: {z.shape[2:]}''' ) SCREAMING_SNAKE_CASE_ = model.decode(__UpperCamelCase ) return xrec def a__ ( __UpperCamelCase , __UpperCamelCase=False ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = string.rsplit("." , 1 ) if reload: SCREAMING_SNAKE_CASE_ = importlib.import_module(__UpperCamelCase ) importlib.reload(__UpperCamelCase ) return getattr(importlib.import_module(__UpperCamelCase , package=__UpperCamelCase ) , cls ) def a__ ( __UpperCamelCase ): if "target" not in config: raise KeyError("Expected key `target` to instantiate." ) return get_obj_from_str(config["target"] )(**config.get("params" , {} ) ) def a__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=True , __UpperCamelCase=True ): SCREAMING_SNAKE_CASE_ = instantiate_from_config(__UpperCamelCase ) if sd is not None: model.load_state_dict(__UpperCamelCase ) if gpu: model.cuda() if eval_mode: model.eval() return {"model": model} def a__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): # load the specified checkpoint if ckpt: SCREAMING_SNAKE_CASE_ = torch.load(__UpperCamelCase , map_location="cpu" ) SCREAMING_SNAKE_CASE_ = pl_sd["global_step"] print(F'''loaded model from global step {global_step}.''' ) else: SCREAMING_SNAKE_CASE_ = {"state_dict": None} SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = load_model_from_config(config.model , pl_sd["state_dict"] , gpu=__UpperCamelCase , eval_mode=__UpperCamelCase )["model"] return model, global_step
118
import math from datetime import datetime, timedelta def a__ ( __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = year % 1_9 SCREAMING_SNAKE_CASE_ = year % 4 SCREAMING_SNAKE_CASE_ = year % 7 SCREAMING_SNAKE_CASE_ = math.floor(year / 1_0_0 ) SCREAMING_SNAKE_CASE_ = math.floor((1_3 + 8 * leap_day_inhibits) / 2_5 ) SCREAMING_SNAKE_CASE_ = leap_day_inhibits / 4 SCREAMING_SNAKE_CASE_ = ( 1_5 - lunar_orbit_correction + leap_day_inhibits - leap_day_reinstall_number ) % 3_0 SCREAMING_SNAKE_CASE_ = (4 + leap_day_inhibits - leap_day_reinstall_number) % 7 # days to be added to March 21 SCREAMING_SNAKE_CASE_ = (1_9 * metonic_cycle + secular_moon_shift) % 3_0 # PHM -> Paschal Full Moon SCREAMING_SNAKE_CASE_ = ( 2 * julian_leap_year + 4 * non_leap_year + 6 * days_to_add + century_starting_point ) % 7 if days_to_add == 2_9 and days_from_phm_to_sunday == 6: return datetime(__UpperCamelCase , 4 , 1_9 ) elif days_to_add == 2_8 and days_from_phm_to_sunday == 6: return datetime(__UpperCamelCase , 4 , 1_8 ) else: return datetime(__UpperCamelCase , 3 , 2_2 ) + timedelta( days=int(days_to_add + days_from_phm_to_sunday ) ) if __name__ == "__main__": for year in (19_94, 20_00, 20_10, 20_21, 20_23): A : Dict = "will be" if year > datetime.now().year else "was" print(f"Easter in {year} {tense} {gauss_easter(year)}")
118
1
'''simple docstring''' def UpperCAmelCase_ ( __lowercase : int = 100_0000 ) -> int: '''simple docstring''' _UpperCAmelCase = limit + 1 _UpperCAmelCase = [0] * limit for first_term in range(1 , __lowercase ): for n in range(__lowercase , __lowercase , __lowercase ): _UpperCAmelCase = first_term + n / first_term if common_difference % 4: # d must be divisble by 4 continue else: common_difference /= 4 if ( first_term > common_difference and first_term < 4 * common_difference ): # since x,y,z are positive integers frequency[n] += 1 # so z>0 and a>d ,also 4d<a _UpperCAmelCase = sum(1 for x in frequency[1:limit] if x == 10 ) return count if __name__ == "__main__": print(F"{solution() = }")
156
'''simple docstring''' from typing import Union import fire import torch from tqdm import tqdm def UpperCAmelCase_ ( __lowercase : str , __lowercase : str = "cpu" , __lowercase : Union[str, None] = None ) -> None: '''simple docstring''' _UpperCAmelCase = torch.load(__lowercase , map_location=__lowercase ) for k, v in tqdm(state_dict.items() ): if not isinstance(__lowercase , torch.Tensor ): raise TypeError("FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin" ) _UpperCAmelCase = v.half() if save_path is None: # overwrite src_path _UpperCAmelCase = src_path torch.save(__lowercase , __lowercase ) if __name__ == "__main__": fire.Fire(convert)
156
1
'''simple docstring''' from __future__ import annotations from sys import maxsize from typing import Generic, TypeVar _lowerCAmelCase = TypeVar('''T''') def _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" return (position - 1) // 2 def _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" return (2 * position) + 1 def _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" return (2 * position) + 2 class lowerCAmelCase_( Generic[T] ): '''simple docstring''' def __init__( self ) -> None: lowerCAmelCase__ : list[tuple[T, int]] = [] lowerCAmelCase__ : dict[T, int] = {} lowerCAmelCase__ : int = 0 def __len__( self ) -> int: return self.elements def __repr__( self ) -> str: return str(self.heap ) def UpperCAmelCase_ ( self ) -> bool: # Check if the priority queue is empty return self.elements == 0 def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase ) -> None: # Add an element with given priority to the queue self.heap.append((elem, weight) ) lowerCAmelCase__ : str = self.elements self.elements += 1 self._bubble_up(__UpperCAmelCase ) def UpperCAmelCase_ ( self ) -> T: # Remove and return the element with lowest weight (highest priority) if self.elements > 1: self._swap_nodes(0 ,self.elements - 1 ) lowerCAmelCase__ , lowerCAmelCase__ : Optional[int] = self.heap.pop() del self.position_map[elem] self.elements -= 1 if self.elements > 0: lowerCAmelCase__ , lowerCAmelCase__ : str = self.heap[0] self._bubble_down(__UpperCAmelCase ) return elem def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase ) -> None: # Update the weight of the given key lowerCAmelCase__ : int = self.position_map[elem] lowerCAmelCase__ : List[Any] = (elem, weight) if position > 0: lowerCAmelCase__ : Dict = get_parent_position(__UpperCAmelCase ) lowerCAmelCase__ , lowerCAmelCase__ : Optional[int] = self.heap[parent_position] if parent_weight > weight: self._bubble_up(__UpperCAmelCase ) else: self._bubble_down(__UpperCAmelCase ) else: self._bubble_down(__UpperCAmelCase ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> None: # Place a node at the proper position (upward movement) [to be used internally # only] lowerCAmelCase__ : List[str] = self.position_map[elem] if curr_pos == 0: return None lowerCAmelCase__ : int = get_parent_position(__UpperCAmelCase ) lowerCAmelCase__ , lowerCAmelCase__ : Any = self.heap[curr_pos] lowerCAmelCase__ , lowerCAmelCase__ : List[str] = self.heap[parent_position] if parent_weight > weight: self._swap_nodes(__UpperCAmelCase ,__UpperCAmelCase ) return self._bubble_up(__UpperCAmelCase ) return None def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> None: # Place a node at the proper position (downward movement) [to be used # internally only] lowerCAmelCase__ : List[Any] = self.position_map[elem] lowerCAmelCase__ , lowerCAmelCase__ : Dict = self.heap[curr_pos] lowerCAmelCase__ : str = get_child_left_position(__UpperCAmelCase ) lowerCAmelCase__ : Union[str, Any] = get_child_right_position(__UpperCAmelCase ) if child_left_position < self.elements and child_right_position < self.elements: lowerCAmelCase__ , lowerCAmelCase__ : Dict = self.heap[child_left_position] lowerCAmelCase__ , lowerCAmelCase__ : Any = self.heap[child_right_position] if child_right_weight < child_left_weight and child_right_weight < weight: self._swap_nodes(__UpperCAmelCase ,__UpperCAmelCase ) return self._bubble_down(__UpperCAmelCase ) if child_left_position < self.elements: lowerCAmelCase__ , lowerCAmelCase__ : List[str] = self.heap[child_left_position] if child_left_weight < weight: self._swap_nodes(__UpperCAmelCase ,__UpperCAmelCase ) return self._bubble_down(__UpperCAmelCase ) else: return None if child_right_position < self.elements: lowerCAmelCase__ , lowerCAmelCase__ : Any = self.heap[child_right_position] if child_right_weight < weight: self._swap_nodes(__UpperCAmelCase ,__UpperCAmelCase ) return self._bubble_down(__UpperCAmelCase ) return None def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase ) -> None: # Swap the nodes at the given positions lowerCAmelCase__ : str = self.heap[nodea_pos][0] lowerCAmelCase__ : Dict = self.heap[nodea_pos][0] lowerCAmelCase__ , lowerCAmelCase__ : Tuple = ( self.heap[nodea_pos], self.heap[nodea_pos], ) lowerCAmelCase__ : int = nodea_pos lowerCAmelCase__ : int = nodea_pos class lowerCAmelCase_( Generic[T] ): '''simple docstring''' def __init__( self ) -> None: lowerCAmelCase__ : dict[T, dict[T, int]] = {} lowerCAmelCase__ : int = 0 def __repr__( self ) -> str: return str(self.connections ) def __len__( self ) -> int: return self.nodes def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> None: # Add a node in the graph if it is not in the graph if node not in self.connections: lowerCAmelCase__ : Optional[int] = {} self.nodes += 1 def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) -> None: # Add an edge between 2 nodes in the graph self.add_node(__UpperCAmelCase ) self.add_node(__UpperCAmelCase ) lowerCAmelCase__ : Any = weight lowerCAmelCase__ : Tuple = weight def _SCREAMING_SNAKE_CASE ( UpperCamelCase , ): """simple docstring""" lowerCAmelCase__ : dict[T, int] = {node: maxsize for node in graph.connections} lowerCAmelCase__ : dict[T, T | None] = {node: None for node in graph.connections} lowerCAmelCase__ : MinPriorityQueue[T] = MinPriorityQueue() for node, weight in dist.items(): priority_queue.push(UpperCamelCase , UpperCamelCase ) if priority_queue.is_empty(): return dist, parent # initialization lowerCAmelCase__ : List[Any] = priority_queue.extract_min() lowerCAmelCase__ : str = 0 for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: lowerCAmelCase__ : Any = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(UpperCamelCase , dist[neighbour] ) lowerCAmelCase__ : List[str] = node # running prim's algorithm while not priority_queue.is_empty(): lowerCAmelCase__ : Any = priority_queue.extract_min() for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: lowerCAmelCase__ : Optional[int] = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(UpperCamelCase , dist[neighbour] ) lowerCAmelCase__ : Optional[int] = node return dist, parent
37
from collections.abc import Callable class __SCREAMING_SNAKE_CASE : def __init__( self , SCREAMING_SNAKE_CASE__ = None ): # Stores actual heap items. lowercase : list = [] # Stores indexes of each item for supporting updates and deletion. lowercase : dict = {} # Stores current size of heap. lowercase : str = 0 # Stores function used to evaluate the score of an item on which basis ordering # will be done. lowercase : Tuple = key or (lambda SCREAMING_SNAKE_CASE__ : x) def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ ): return int((i - 1) / 2 ) if i > 0 else None def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ ): lowercase : Any = int(2 * i + 1 ) return left if 0 < left < self.size else None def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ ): lowercase : Any = int(2 * i + 2 ) return right if 0 < right < self.size else None def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): lowercase , lowercase : Dict = ( self.pos_map[self.arr[j][0]], self.pos_map[self.arr[i][0]], ) # Then swap the items in the list. lowercase , lowercase : int = self.arr[j], self.arr[i] def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): return self.arr[i][1] < self.arr[j][1] def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ ): lowercase : int = self._left(SCREAMING_SNAKE_CASE__ ) lowercase : Optional[int] = self._right(SCREAMING_SNAKE_CASE__ ) lowercase : List[Any] = i if left is not None and not self._cmp(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): lowercase : Dict = left if right is not None and not self._cmp(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): lowercase : List[str] = right return valid_parent def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ ): lowercase : Optional[int] = self._parent(SCREAMING_SNAKE_CASE__ ) while parent is not None and not self._cmp(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): self._swap(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowercase , lowercase : Optional[int] = parent, self._parent(SCREAMING_SNAKE_CASE__ ) def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ ): lowercase : Dict = self._get_valid_parent(SCREAMING_SNAKE_CASE__ ) while valid_parent != index: self._swap(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowercase , lowercase : str = valid_parent, self._get_valid_parent(SCREAMING_SNAKE_CASE__ ) def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): if item not in self.pos_map: return lowercase : str = self.pos_map[item] lowercase : Optional[int] = [item, self.key(SCREAMING_SNAKE_CASE__ )] # Make sure heap is right in both up and down direction. # Ideally only one of them will make any change. self._heapify_up(SCREAMING_SNAKE_CASE__ ) self._heapify_down(SCREAMING_SNAKE_CASE__ ) def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ ): if item not in self.pos_map: return lowercase : List[str] = self.pos_map[item] del self.pos_map[item] lowercase : Optional[int] = self.arr[self.size - 1] lowercase : int = index self.size -= 1 # Make sure heap is right in both up and down direction. Ideally only one # of them will make any change- so no performance loss in calling both. if self.size > index: self._heapify_up(SCREAMING_SNAKE_CASE__ ) self._heapify_down(SCREAMING_SNAKE_CASE__ ) def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): lowercase : str = len(self.arr ) if arr_len == self.size: self.arr.append([item, self.key(SCREAMING_SNAKE_CASE__ )] ) else: lowercase : int = [item, self.key(SCREAMING_SNAKE_CASE__ )] lowercase : str = self.size self.size += 1 self._heapify_up(self.size - 1 ) def __lowerCamelCase ( self ): return self.arr[0] if self.size else None def __lowerCamelCase ( self ): lowercase : str = self.get_top() if top_item_tuple: self.delete_item(top_item_tuple[0] ) return top_item_tuple def __lowercase ( ) ->None: """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
337
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCamelCase : Any = logging.get_logger(__name__) _lowerCamelCase : Any = { 'facebook/data2vec-vision-base-ft': ( 'https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json' ), } class __UpperCAmelCase ( lowercase__ ): '''simple docstring''' __lowerCAmelCase = '''data2vec-vision''' def __init__(self : List[Any] , _lowerCAmelCase : Optional[Any]=768 , _lowerCAmelCase : Optional[int]=12 , _lowerCAmelCase : Any=12 , _lowerCAmelCase : Dict=3072 , _lowerCAmelCase : Tuple="gelu" , _lowerCAmelCase : Union[str, Any]=0.0 , _lowerCAmelCase : List[str]=0.0 , _lowerCAmelCase : Any=0.02 , _lowerCAmelCase : int=1e-12 , _lowerCAmelCase : Union[str, Any]=224 , _lowerCAmelCase : Optional[Any]=16 , _lowerCAmelCase : int=3 , _lowerCAmelCase : Dict=False , _lowerCAmelCase : Tuple=False , _lowerCAmelCase : List[str]=False , _lowerCAmelCase : Tuple=False , _lowerCAmelCase : List[str]=0.1 , _lowerCAmelCase : int=0.1 , _lowerCAmelCase : Union[str, Any]=True , _lowerCAmelCase : str=[3, 5, 7, 11] , _lowerCAmelCase : Any=[1, 2, 3, 6] , _lowerCAmelCase : List[Any]=True , _lowerCAmelCase : Dict=0.4 , _lowerCAmelCase : Optional[Any]=256 , _lowerCAmelCase : List[str]=1 , _lowerCAmelCase : Dict=False , _lowerCAmelCase : int=255 , **_lowerCAmelCase : List[str] , ): super().__init__(**_a ) A = hidden_size A = num_hidden_layers A = num_attention_heads A = intermediate_size A = hidden_act A = hidden_dropout_prob A = attention_probs_dropout_prob A = initializer_range A = layer_norm_eps A = image_size A = patch_size A = num_channels A = use_mask_token A = use_absolute_position_embeddings A = use_relative_position_bias A = use_shared_relative_position_bias A = layer_scale_init_value A = drop_path_rate A = use_mean_pooling # decode head attributes (semantic segmentation) A = out_indices A = pool_scales # auxiliary head attributes (semantic segmentation) A = use_auxiliary_head A = auxiliary_loss_weight A = auxiliary_channels A = auxiliary_num_convs A = auxiliary_concat_input A = semantic_loss_ignore_index class __UpperCAmelCase ( lowercase__ ): '''simple docstring''' __lowerCAmelCase = version.parse('''1.11''' ) @property def A (self : Optional[int] ): return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def A (self : Union[str, Any] ): return 1e-4
355
'''simple docstring''' from __future__ import annotations def __a ( UpperCAmelCase ) ->list[int]: """simple docstring""" return [ord(UpperCAmelCase ) - 96 for elem in plain] def __a ( UpperCAmelCase ) ->str: """simple docstring""" return "".join(chr(elem + 96 ) for elem in encoded ) def __a ( ) ->None: """simple docstring""" A = encode(input("""-> """ ).strip().lower() ) print("""Encoded: """ , UpperCAmelCase ) print("""Decoded:""" , decode(UpperCAmelCase ) ) if __name__ == "__main__": main()
337
0
def lowerCamelCase__ ( _A , _A ): '''simple docstring''' snake_case_ = '' for word_or_phrase in separated: if not isinstance(_lowerCAmelCase , _lowerCAmelCase ): raise Exception("join() accepts only strings to be joined" ) joined += word_or_phrase + separator return joined.strip(_lowerCAmelCase ) if __name__ == "__main__": from doctest import testmod testmod()
187
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _UpperCamelCase = { 'configuration_biogpt': ['BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BioGptConfig'], 'tokenization_biogpt': ['BioGptTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ 'BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST', 'BioGptForCausalLM', 'BioGptForTokenClassification', 'BioGptForSequenceClassification', 'BioGptModel', 'BioGptPreTrainedModel', ] if TYPE_CHECKING: from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig from .tokenization_biogpt import BioGptTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_biogpt import ( BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptPreTrainedModel, ) else: import sys _UpperCamelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
208
0
from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _lowercase : def __init__( self : Union[str, Any] , snake_case : int , snake_case : Union[str, Any]=3 , snake_case : List[Any]=3_2 , snake_case : Any=3 , snake_case : Dict=1_0 , snake_case : List[str]=[1_0, 2_0, 3_0, 4_0] , snake_case : List[str]=[1, 1, 2, 1] , snake_case : List[Any]=True , snake_case : Union[str, Any]=True , snake_case : Dict="relu" , snake_case : Any=3 , snake_case : List[Any]=None , ) -> Dict: """simple docstring""" UpperCamelCase_ : List[str] = parent UpperCamelCase_ : Any = batch_size UpperCamelCase_ : Union[str, Any] = image_size UpperCamelCase_ : Any = num_channels UpperCamelCase_ : str = embeddings_size UpperCamelCase_ : str = hidden_sizes UpperCamelCase_ : str = depths UpperCamelCase_ : str = is_training UpperCamelCase_ : Union[str, Any] = use_labels UpperCamelCase_ : List[str] = hidden_act UpperCamelCase_ : List[Any] = num_labels UpperCamelCase_ : int = scope UpperCamelCase_ : Tuple = len(snake_case ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" UpperCamelCase_ : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase_ : Optional[int] = None if self.use_labels: UpperCamelCase_ : Optional[Any] = ids_tensor([self.batch_size] , self.num_labels ) UpperCamelCase_ : Union[str, Any] = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> List[Any]: """simple docstring""" return ResNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def SCREAMING_SNAKE_CASE__ ( self : List[str] , snake_case : int , snake_case : Dict , snake_case : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" UpperCamelCase_ : Any = TFResNetModel(config=snake_case ) UpperCamelCase_ : Any = model(snake_case ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2) , ) def SCREAMING_SNAKE_CASE__ ( self : str , snake_case : Any , snake_case : Optional[int] , snake_case : Any ) -> Union[str, Any]: """simple docstring""" UpperCamelCase_ : Dict = self.num_labels UpperCamelCase_ : List[Any] = TFResNetForImageClassification(snake_case ) UpperCamelCase_ : Union[str, Any] = model(snake_case , labels=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> int: """simple docstring""" UpperCamelCase_ : Union[str, Any] = self.prepare_config_and_inputs() UpperCamelCase_ : List[Any] = config_and_inputs UpperCamelCase_ : Any = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class _lowercase ( snake_case_ , snake_case_ , unittest.TestCase ): lowercase = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () lowercase = ( {'feature-extraction': TFResNetModel, 'image-classification': TFResNetForImageClassification} if is_tf_available() else {} ) lowercase = False lowercase = False lowercase = False lowercase = False lowercase = False def SCREAMING_SNAKE_CASE__ ( self : Any ) -> str: """simple docstring""" UpperCamelCase_ : Union[str, Any] = TFResNetModelTester(self ) UpperCamelCase_ : List[str] = ConfigTester(self , config_class=snake_case , has_text_modality=snake_case ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ) -> List[str]: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def SCREAMING_SNAKE_CASE__ ( self : int ) -> Tuple: """simple docstring""" return @unittest.skip(reason='ResNet does not use inputs_embeds' ) def SCREAMING_SNAKE_CASE__ ( self : Any ) -> Dict: """simple docstring""" pass @unittest.skip(reason='ResNet does not support input and output embeddings' ) def SCREAMING_SNAKE_CASE__ ( self : str ) -> List[Any]: """simple docstring""" pass def SCREAMING_SNAKE_CASE__ ( self : List[str] ) -> int: """simple docstring""" UpperCamelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase_ : Optional[Any] = model_class(snake_case ) UpperCamelCase_ : Union[str, Any] = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase_ : Tuple = [*signature.parameters.keys()] UpperCamelCase_ : Dict = ['pixel_values'] self.assertListEqual(arg_names[:1] , snake_case ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ) -> Any: """simple docstring""" UpperCamelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case ) def SCREAMING_SNAKE_CASE__ ( self : int ) -> Any: """simple docstring""" def check_hidden_states_output(snake_case : Optional[int] , snake_case : str , snake_case : Optional[Any] ): UpperCamelCase_ : Union[str, Any] = model_class(snake_case ) UpperCamelCase_ : Dict = model(**self._prepare_for_class(snake_case , snake_case ) ) UpperCamelCase_ : str = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCamelCase_ : List[str] = self.model_tester.num_stages self.assertEqual(len(snake_case ) , expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) UpperCamelCase_ : Any = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase_ : Optional[Any] = ['basic', 'bottleneck'] for model_class in self.all_model_classes: for layer_type in layers_type: UpperCamelCase_ : Optional[Any] = layer_type UpperCamelCase_ : Any = True check_hidden_states_output(snake_case , snake_case , snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCamelCase_ : Optional[int] = True check_hidden_states_output(snake_case , snake_case , snake_case ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ) -> int: """simple docstring""" UpperCamelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case ) @slow def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> List[Any]: """simple docstring""" for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase_ : str = TFResNetModel.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) def __lowercase ( ): UpperCamelCase_ : Optional[int] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class _lowercase ( unittest.TestCase ): @cached_property def SCREAMING_SNAKE_CASE__ ( self : List[str] ) -> List[str]: """simple docstring""" return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> Optional[Any]: """simple docstring""" UpperCamelCase_ : Dict = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) UpperCamelCase_ : Union[str, Any] = self.default_image_processor UpperCamelCase_ : int = prepare_img() UpperCamelCase_ : Union[str, Any] = image_processor(images=snake_case , return_tensors='tf' ) # forward pass UpperCamelCase_ : Any = model(**snake_case ) # verify the logits UpperCamelCase_ : str = tf.TensorShape((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , snake_case ) UpperCamelCase_ : Tuple = tf.constant([-11.1069, -9.7877, -8.3777] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , snake_case , atol=1e-4 ) )
367
from __future__ import annotations import numpy as np def __lowercase ( lowerCamelCase : list[float] ): return np.maximum(0 , lowerCamelCase ) if __name__ == "__main__": print(np.array(relu([-1, 0, 5]))) # --> [0, 0, 5]
50
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) UpperCamelCase__ = {"""configuration_plbart""": ["""PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP""", """PLBartConfig"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = ["""PLBartTokenizer"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = [ """PLBART_PRETRAINED_MODEL_ARCHIVE_LIST""", """PLBartForCausalLM""", """PLBartForConditionalGeneration""", """PLBartForSequenceClassification""", """PLBartModel""", """PLBartPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_plbart import PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP, PLBartConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_plbart import PLBartTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_plbart import ( PLBART_PRETRAINED_MODEL_ARCHIVE_LIST, PLBartForCausalLM, PLBartForConditionalGeneration, PLBartForSequenceClassification, PLBartModel, PLBartPreTrainedModel, ) else: import sys UpperCamelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
92
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCAmelCase__ : Any = {'configuration_swin': ['SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SwinConfig', 'SwinOnnxConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Union[str, Any] = [ 'SWIN_PRETRAINED_MODEL_ARCHIVE_LIST', 'SwinForImageClassification', 'SwinForMaskedImageModeling', 'SwinModel', 'SwinPreTrainedModel', 'SwinBackbone', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : str = [ 'TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFSwinForImageClassification', 'TFSwinForMaskedImageModeling', 'TFSwinModel', 'TFSwinPreTrainedModel', ] if TYPE_CHECKING: from .configuration_swin import SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinConfig, SwinOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swin import ( SWIN_PRETRAINED_MODEL_ARCHIVE_LIST, SwinBackbone, SwinForImageClassification, SwinForMaskedImageModeling, SwinModel, SwinPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_swin import ( TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST, TFSwinForImageClassification, TFSwinForMaskedImageModeling, TFSwinModel, TFSwinPreTrainedModel, ) else: import sys UpperCAmelCase__ : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
121
0
'''simple docstring''' import warnings from typing import List from unittest.mock import Mock import torch from torch.utils.data import DataLoader, IterableDataset, TensorDataset from accelerate.accelerator import Accelerator from accelerate.utils.dataclasses import DistributedType class A__ ( lowerCamelCase__ ): def __init__( self : Tuple , _a : int ) -> Dict: '''simple docstring''' _SCREAMING_SNAKE_CASE =data def __iter__( self : List[str] ) -> Dict: '''simple docstring''' for element in self.data: yield element def _lowerCAmelCase ( _UpperCamelCase : Dict=True ) -> List[str]: """simple docstring""" _SCREAMING_SNAKE_CASE =Accelerator(even_batches=_A ) assert accelerator.num_processes == 2, "this script expects that two GPUs are available" return accelerator def _lowerCAmelCase ( _UpperCamelCase : str , _UpperCamelCase : Any , _UpperCamelCase : str , _UpperCamelCase : Dict = False ) -> int: """simple docstring""" if iterable: _SCREAMING_SNAKE_CASE =DummyIterableDataset(torch.as_tensor(range(_A ) ) ) else: _SCREAMING_SNAKE_CASE =TensorDataset(torch.as_tensor(range(_A ) ) ) _SCREAMING_SNAKE_CASE =DataLoader(_A , batch_size=_A ) _SCREAMING_SNAKE_CASE =accelerator.prepare(_A ) return dl def _lowerCAmelCase ( _UpperCamelCase : Any , _UpperCamelCase : List[Any] , _UpperCamelCase : str , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Tuple , ) -> Any: """simple docstring""" _SCREAMING_SNAKE_CASE =create_dataloader(accelerator=_A , dataset_size=_A , batch_size=_A ) _SCREAMING_SNAKE_CASE =[len(batch[0] ) for batch in dl] if accelerator.process_index == 0: assert batch_sizes == process_0_expected_batch_sizes elif accelerator.process_index == 1: assert batch_sizes == process_1_expected_batch_sizes def _lowerCAmelCase ( ) -> List[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =create_accelerator() # without padding, we would expect a different number of batches verify_dataloader_batch_sizes( _A , dataset_size=3 , batch_size=1 , process_0_expected_batch_sizes=[1, 1] , process_1_expected_batch_sizes=[1, 1] , ) # without padding, we would expect the same number of batches, but different sizes verify_dataloader_batch_sizes( _A , dataset_size=7 , batch_size=2 , process_0_expected_batch_sizes=[2, 2] , process_1_expected_batch_sizes=[2, 2] , ) def _lowerCAmelCase ( ) -> List[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =create_accelerator(even_batches=_A ) verify_dataloader_batch_sizes( _A , dataset_size=3 , batch_size=1 , process_0_expected_batch_sizes=[1, 1] , process_1_expected_batch_sizes=[1] , ) verify_dataloader_batch_sizes( _A , dataset_size=7 , batch_size=2 , process_0_expected_batch_sizes=[2, 2] , process_1_expected_batch_sizes=[2, 1] , ) def _lowerCAmelCase ( ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE =create_accelerator(even_batches=_A ) _SCREAMING_SNAKE_CASE =torch.nn.Linear(1 , 1 ) _SCREAMING_SNAKE_CASE =accelerator.prepare(_A ) _SCREAMING_SNAKE_CASE =create_dataloader(_A , dataset_size=3 , batch_size=1 ) _SCREAMING_SNAKE_CASE =[] with accelerator.join_uneven_inputs([ddp_model] ): for batch_idx, batch in enumerate(_A ): _SCREAMING_SNAKE_CASE =ddp_model(batch[0].float() ) _SCREAMING_SNAKE_CASE =output.sum() loss.backward() batch_idxs.append(_A ) accelerator.wait_for_everyone() if accelerator.process_index == 0: assert batch_idxs == [0, 1] elif accelerator.process_index == 1: assert batch_idxs == [0] def _lowerCAmelCase ( _UpperCamelCase : Any ) -> Dict: """simple docstring""" with warnings.catch_warnings(record=_A ) as w: with accelerator.join_uneven_inputs([Mock()] ): pass assert issubclass(w[-1].category , _A ) assert "only supported for multi-GPU" in str(w[-1].message ) def _lowerCAmelCase ( ) -> List[str]: """simple docstring""" _SCREAMING_SNAKE_CASE =True _SCREAMING_SNAKE_CASE =False _SCREAMING_SNAKE_CASE =create_accelerator(even_batches=_A ) _SCREAMING_SNAKE_CASE =torch.nn.Linear(1 , 1 ) _SCREAMING_SNAKE_CASE =accelerator.prepare(_A ) _SCREAMING_SNAKE_CASE =create_dataloader(_A , dataset_size=3 , batch_size=1 ) _SCREAMING_SNAKE_CASE =create_dataloader(_A , dataset_size=3 , batch_size=1 ) with accelerator.join_uneven_inputs([ddp_model] , even_batches=_A ): _SCREAMING_SNAKE_CASE =train_dl.batch_sampler.even_batches _SCREAMING_SNAKE_CASE =valid_dl.batch_sampler.even_batches assert train_dl_overridden_value == overridden_even_batches assert valid_dl_overridden_value == overridden_even_batches assert train_dl.batch_sampler.even_batches == default_even_batches assert valid_dl.batch_sampler.even_batches == default_even_batches def _lowerCAmelCase ( ) -> Dict: """simple docstring""" _SCREAMING_SNAKE_CASE =True _SCREAMING_SNAKE_CASE =False _SCREAMING_SNAKE_CASE =create_accelerator(even_batches=_A ) _SCREAMING_SNAKE_CASE =torch.nn.Linear(1 , 1 ) _SCREAMING_SNAKE_CASE =accelerator.prepare(_A ) create_dataloader(_A , dataset_size=3 , batch_size=1 , iterable=_A ) _SCREAMING_SNAKE_CASE =create_dataloader(_A , dataset_size=3 , batch_size=1 ) with warnings.catch_warnings(): warnings.filterwarnings('ignore' ) try: with accelerator.join_uneven_inputs([ddp_model] , even_batches=_A ): _SCREAMING_SNAKE_CASE =batch_dl.batch_sampler.even_batches except AttributeError: # ensure attribute error is not raised when processing iterable dl raise AssertionError assert batch_dl_overridden_value == overridden_even_batches assert batch_dl.batch_sampler.even_batches == default_even_batches def _lowerCAmelCase ( ) -> Dict: """simple docstring""" _SCREAMING_SNAKE_CASE =create_accelerator() _SCREAMING_SNAKE_CASE =torch.nn.Linear(1 , 1 ) _SCREAMING_SNAKE_CASE =accelerator.prepare(_A ) create_dataloader(_A , dataset_size=3 , batch_size=1 , iterable=_A ) with warnings.catch_warnings(record=_A ) as w: with accelerator.join_uneven_inputs([ddp_model] , even_batches=_A ): pass assert issubclass(w[-1].category , _A ) assert "only supported for map-style datasets" in str(w[-1].message ) def _lowerCAmelCase ( ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE =create_accelerator() accelerator.print('Test that even_batches variable ensures uniform batches across processes' ) test_default_ensures_even_batch_sizes() accelerator.print('Run tests with even_batches disabled' ) test_can_disable_even_batches() accelerator.print('Test joining uneven inputs' ) test_can_join_uneven_inputs() accelerator.print('Test overriding even_batches when joining uneven inputs' ) test_join_can_override_even_batches() accelerator.print('Test overriding even_batches for mixed dataloader types' ) test_join_can_override_for_mixed_type_dataloaders() accelerator.print('Test overriding even_batches raises a warning for iterable dataloaders' ) test_join_raises_warning_for_iterable_when_overriding_even_batches() accelerator.print('Test join with non DDP distributed raises warning' ) _SCREAMING_SNAKE_CASE =accelerator.state.distributed_type _SCREAMING_SNAKE_CASE =DistributedType.FSDP test_join_raises_warning_for_non_ddp_distributed(_A ) _SCREAMING_SNAKE_CASE =original_state if __name__ == "__main__": main()
358
'''simple docstring''' # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCamelCase : Optional[int] = { "configuration_efficientnet": [ "EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "EfficientNetConfig", "EfficientNetOnnxConfig", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : str = ["EfficientNetImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Tuple = [ "EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST", "EfficientNetForImageClassification", "EfficientNetModel", "EfficientNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_efficientnet import ( EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientNetConfig, EfficientNetOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientnet import EfficientNetImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientnet import ( EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientNetForImageClassification, EfficientNetModel, EfficientNetPreTrainedModel, ) else: import sys lowerCamelCase : int = _LazyModule(__name__, globals()["__file__"], _import_structure)
114
0
from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers __lowerCAmelCase : Any = [ "python", "tqdm", "regex", "requests", "packaging", "filelock", "numpy", "tokenizers", "huggingface-hub", "safetensors", "accelerate", "pyyaml", ] for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed elif pkg == "accelerate": # must be loaded here, or else tqdm check may fail from .utils import is_accelerate_available # Maybe switch to is_torch_available in the future here so that Accelerate is hard dep of # Transformers with PyTorch if not is_accelerate_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(F'can\'t find {pkg} in {deps.keys()}, check dependency_versions_table.py') def UpperCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase=None ) -> Optional[Any]: require_version(deps[pkg] , __lowerCAmelCase )
156
import argparse import torch from transformers import RemBertConfig, RemBertModel, load_tf_weights_in_rembert from transformers.utils import logging logging.set_verbosity_info() def UpperCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> List[Any]: # Initialise PyTorch model __lowercase : Tuple = RemBertConfig.from_json_file(__lowerCAmelCase ) print('''Building PyTorch model from configuration: {}'''.format(str(__lowerCAmelCase ) ) ) __lowercase : Union[str, Any] = RemBertModel(__lowerCAmelCase ) # Load weights from tf checkpoint load_tf_weights_in_rembert(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # Save pytorch-model print('''Save PyTorch model to {}'''.format(__lowerCAmelCase ) ) torch.save(model.state_dict() , __lowerCAmelCase ) if __name__ == "__main__": __lowerCAmelCase : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--rembert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained RemBERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) __lowerCAmelCase : List[str] = parser.parse_args() convert_rembert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.rembert_config_file, args.pytorch_dump_path)
156
1
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES, BertTokenizer from transformers.testing_utils import require_tokenizers, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor, ViTImageProcessor @require_tokenizers @require_vision class a__ ( unittest.TestCase ): def lowercase ( self : Union[str, Any] ) -> int: lowercase : Dict = tempfile.mkdtemp() # fmt: off lowercase : List[str] = ["""[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest"""] # fmt: on lowercase : Optional[Any] = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file, 'w', encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) lowercase : str = { """do_resize""": True, """size""": {"""height""": 18, """width""": 18}, """do_normalize""": True, """image_mean""": [0.5, 0.5, 0.5], """image_std""": [0.5, 0.5, 0.5], } lowercase : Any = os.path.join(self.tmpdirname, lowerCAmelCase ) with open(self.image_processor_file, 'w', encoding='utf-8' ) as fp: json.dump(lowerCAmelCase, lowerCAmelCase ) def lowercase ( self : str, **lowerCAmelCase : str ) -> Tuple: return BertTokenizer.from_pretrained(self.tmpdirname, **lowerCAmelCase ) def lowercase ( self : Dict, **lowerCAmelCase : List[Any] ) -> Optional[Any]: return ViTImageProcessor.from_pretrained(self.tmpdirname, **lowerCAmelCase ) def lowercase ( self : int ) -> List[str]: shutil.rmtree(self.tmpdirname ) def lowercase ( self : str ) -> Dict: lowercase : List[str] = [np.random.randint(255, size=(3, 30, 400), dtype=np.uinta )] lowercase : Tuple = [Image.fromarray(np.moveaxis(lowerCAmelCase, 0, -1 ) ) for x in image_inputs] return image_inputs def lowercase ( self : Optional[int] ) -> List[Any]: lowercase : List[Any] = self.get_tokenizer() lowercase : str = self.get_image_processor() lowercase : Any = VisionTextDualEncoderProcessor(tokenizer=lowerCAmelCase, image_processor=lowerCAmelCase ) processor.save_pretrained(self.tmpdirname ) lowercase : Dict = VisionTextDualEncoderProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab(), tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer, (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string(), image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor, lowerCAmelCase ) def lowercase ( self : Union[str, Any] ) -> Optional[int]: lowercase : str = VisionTextDualEncoderProcessor( tokenizer=self.get_tokenizer(), image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowercase : List[Any] = self.get_tokenizer(bos_token='(BOS)', eos_token='(EOS)' ) lowercase : str = self.get_image_processor(do_normalize=lowerCAmelCase, padding_value=1.0 ) lowercase : Dict = VisionTextDualEncoderProcessor.from_pretrained( self.tmpdirname, bos_token='(BOS)', eos_token='(EOS)', do_normalize=lowerCAmelCase, padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer, (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor, lowerCAmelCase ) def lowercase ( self : Optional[Any] ) -> Optional[Any]: lowercase : Optional[int] = self.get_image_processor() lowercase : List[Any] = self.get_tokenizer() lowercase : Any = VisionTextDualEncoderProcessor(tokenizer=lowerCAmelCase, image_processor=lowerCAmelCase ) lowercase : List[str] = self.prepare_image_inputs() lowercase : Optional[Any] = image_processor(lowerCAmelCase, return_tensors='np' ) lowercase : str = processor(images=lowerCAmelCase, return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1e-2 ) def lowercase ( self : Optional[Any] ) -> Tuple: lowercase : Any = self.get_image_processor() lowercase : Any = self.get_tokenizer() lowercase : Optional[int] = VisionTextDualEncoderProcessor(tokenizer=lowerCAmelCase, image_processor=lowerCAmelCase ) lowercase : Optional[int] = """lower newer""" lowercase : int = processor(text=lowerCAmelCase ) lowercase : Optional[Any] = tokenizer(lowerCAmelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key], encoded_processor[key] ) def lowercase ( self : int ) -> List[str]: lowercase : Optional[int] = self.get_image_processor() lowercase : List[str] = self.get_tokenizer() lowercase : str = VisionTextDualEncoderProcessor(tokenizer=lowerCAmelCase, image_processor=lowerCAmelCase ) lowercase : Optional[Any] = """lower newer""" lowercase : Optional[Any] = self.prepare_image_inputs() lowercase : List[str] = processor(text=lowerCAmelCase, images=lowerCAmelCase ) self.assertListEqual(list(inputs.keys() ), ['input_ids', 'token_type_ids', 'attention_mask', 'pixel_values'] ) # test if it raises when no input is passed with self.assertRaises(lowerCAmelCase ): processor() def lowercase ( self : Optional[int] ) -> int: lowercase : str = self.get_image_processor() lowercase : Union[str, Any] = self.get_tokenizer() lowercase : str = VisionTextDualEncoderProcessor(tokenizer=lowerCAmelCase, image_processor=lowerCAmelCase ) lowercase : int = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowercase : List[str] = processor.batch_decode(lowerCAmelCase ) lowercase : str = tokenizer.batch_decode(lowerCAmelCase ) self.assertListEqual(lowerCAmelCase, lowerCAmelCase ) def lowercase ( self : Any ) -> Optional[int]: lowercase : Optional[int] = self.get_image_processor() lowercase : Any = self.get_tokenizer() lowercase : List[Any] = VisionTextDualEncoderProcessor(tokenizer=lowerCAmelCase, image_processor=lowerCAmelCase ) lowercase : List[str] = """lower newer""" lowercase : str = self.prepare_image_inputs() lowercase : Optional[int] = processor(text=lowerCAmelCase, images=lowerCAmelCase ) self.assertListEqual(list(inputs.keys() ), processor.model_input_names )
356
"""simple docstring""" from typing import Dict, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import flip_channel_order, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract _UpperCamelCase: Dict = logging.get_logger(__name__) def lowercase__ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Any: '''simple docstring''' return [ int(10_00 * (box[0] / width) ), int(10_00 * (box[1] / height) ), int(10_00 * (box[2] / width) ), int(10_00 * (box[3] / height) ), ] def lowercase__ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = None ) -> str: '''simple docstring''' lowercase : str = tesseract_config if tesseract_config is not None else '' # apply OCR lowercase : Tuple = to_pil_image(_UpperCAmelCase ) lowercase , lowercase : Union[str, Any] = pil_image.size lowercase : Union[str, Any] = pytesseract.image_to_data(_UpperCAmelCase , lang=_UpperCAmelCase , output_type='dict' , config=_UpperCAmelCase ) lowercase , lowercase , lowercase , lowercase , lowercase : str = data['text'], data['left'], data['top'], data['width'], data['height'] # filter empty words and corresponding coordinates lowercase : str = [idx for idx, word in enumerate(_UpperCAmelCase ) if not word.strip()] lowercase : Dict = [word for idx, word in enumerate(_UpperCAmelCase ) if idx not in irrelevant_indices] lowercase : Union[str, Any] = [coord for idx, coord in enumerate(_UpperCAmelCase ) if idx not in irrelevant_indices] lowercase : str = [coord for idx, coord in enumerate(_UpperCAmelCase ) if idx not in irrelevant_indices] lowercase : Any = [coord for idx, coord in enumerate(_UpperCAmelCase ) if idx not in irrelevant_indices] lowercase : Dict = [coord for idx, coord in enumerate(_UpperCAmelCase ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format lowercase : int = [] for x, y, w, h in zip(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase : Any = [x, y, x + w, y + h] actual_boxes.append(_UpperCAmelCase ) # finally, normalize the bounding boxes lowercase : List[str] = [] for box in actual_boxes: normalized_boxes.append(normalize_box(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) ) assert len(_UpperCAmelCase ) == len(_UpperCAmelCase ), "Not as many words as there are bounding boxes" return words, normalized_boxes class a__ ( SCREAMING_SNAKE_CASE__ ): _lowerCamelCase = ['pixel_values'] def __init__( self : str, lowerCAmelCase : bool = True, lowerCAmelCase : Dict[str, int] = None, lowerCAmelCase : PILImageResampling = PILImageResampling.BILINEAR, lowerCAmelCase : bool = True, lowerCAmelCase : Optional[str] = None, lowerCAmelCase : Optional[str] = "", **lowerCAmelCase : List[Any], ) -> None: super().__init__(**lowerCAmelCase ) lowercase : Optional[Any] = size if size is not None else {'height': 224, 'width': 224} lowercase : List[Any] = get_size_dict(lowerCAmelCase ) lowercase : str = do_resize lowercase : List[str] = size lowercase : int = resample lowercase : List[str] = apply_ocr lowercase : str = ocr_lang lowercase : Union[str, Any] = tesseract_config def lowercase ( self : Optional[Any], lowerCAmelCase : np.ndarray, lowerCAmelCase : Dict[str, int], lowerCAmelCase : PILImageResampling = PILImageResampling.BILINEAR, lowerCAmelCase : Optional[Union[str, ChannelDimension]] = None, **lowerCAmelCase : int, ) -> np.ndarray: lowercase : Optional[Any] = get_size_dict(lowerCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f'''The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}''' ) lowercase : Optional[int] = (size['height'], size['width']) return resize(lowerCAmelCase, size=lowerCAmelCase, resample=lowerCAmelCase, data_format=lowerCAmelCase, **lowerCAmelCase ) def lowercase ( self : Any, lowerCAmelCase : ImageInput, lowerCAmelCase : bool = None, lowerCAmelCase : Dict[str, int] = None, lowerCAmelCase : PILImageResampling = None, lowerCAmelCase : bool = None, lowerCAmelCase : Optional[str] = None, lowerCAmelCase : Optional[str] = None, lowerCAmelCase : Optional[Union[str, TensorType]] = None, lowerCAmelCase : ChannelDimension = ChannelDimension.FIRST, **lowerCAmelCase : List[Any], ) -> PIL.Image.Image: lowercase : Any = do_resize if do_resize is not None else self.do_resize lowercase : Union[str, Any] = size if size is not None else self.size lowercase : Dict = get_size_dict(lowerCAmelCase ) lowercase : List[str] = resample if resample is not None else self.resample lowercase : str = apply_ocr if apply_ocr is not None else self.apply_ocr lowercase : Tuple = ocr_lang if ocr_lang is not None else self.ocr_lang lowercase : List[str] = tesseract_config if tesseract_config is not None else self.tesseract_config lowercase : Optional[int] = make_list_of_images(lowerCAmelCase ) if not valid_images(lowerCAmelCase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) # All transformations expect numpy arrays. lowercase : int = [to_numpy_array(lowerCAmelCase ) for image in images] if apply_ocr: requires_backends(self, 'pytesseract' ) lowercase : str = [] lowercase : Dict = [] for image in images: lowercase , lowercase : List[str] = apply_tesseract(lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ) words_batch.append(lowerCAmelCase ) boxes_batch.append(lowerCAmelCase ) if do_resize: lowercase : str = [self.resize(image=lowerCAmelCase, size=lowerCAmelCase, resample=lowerCAmelCase ) for image in images] # flip color channels from RGB to BGR (as Detectron2 requires this) lowercase : Any = [flip_channel_order(lowerCAmelCase ) for image in images] lowercase : Dict = [to_channel_dimension_format(lowerCAmelCase, lowerCAmelCase ) for image in images] lowercase : Tuple = BatchFeature(data={'pixel_values': images}, tensor_type=lowerCAmelCase ) if apply_ocr: lowercase : List[Any] = words_batch lowercase : Tuple = boxes_batch return data
53
0
import requests __a = '''YOUR API KEY''' def __lowercase ( _UpperCamelCase, _UpperCamelCase = giphy_api_key ) ->list: """simple docstring""" lowercase : Dict = '''+'''.join(query.split() ) lowercase : List[str] = f"""https://api.giphy.com/v1/gifs/search?q={formatted_query}&api_key={api_key}""" lowercase : str = requests.get(_UpperCamelCase ).json()['''data'''] return [gif["url"] for gif in gifs] if __name__ == "__main__": print('''\n'''.join(get_gifs('''space ship''')))
337
def __lowercase ( _UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase ) ->Union[str, Any]: """simple docstring""" lowercase : Union[str, Any] = [False] * len(_UpperCamelCase ) lowercase : Optional[int] = [] queue.append(_UpperCamelCase ) lowercase : Union[str, Any] = True while queue: lowercase : List[str] = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(_UpperCamelCase ) lowercase : Tuple = True lowercase : Optional[Any] = u return visited[t] def __lowercase ( _UpperCamelCase, _UpperCamelCase, _UpperCamelCase ) ->List[str]: """simple docstring""" lowercase : List[str] = [-1] * (len(_UpperCamelCase )) lowercase : int = 0 while bfs(_UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase ): lowercase : List[str] = float('''Inf''' ) lowercase : int = sink while s != source: # Find the minimum value in select path lowercase : List[Any] = min(_UpperCamelCase, graph[parent[s]][s] ) lowercase : Union[str, Any] = parent[s] max_flow += path_flow lowercase : Optional[int] = sink while v != source: lowercase : Any = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow lowercase : Union[str, Any] = parent[v] return max_flow __a = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] __a , __a = 0, 5 print(ford_fulkerson(graph, source, sink))
337
1
'''simple docstring''' from __future__ import annotations def _snake_case ( A , A ) -> int: if len(A ) < k or k < 0: raise ValueError('''Invalid Input''' ) lowerCAmelCase__ = lowerCAmelCase__ = sum(array[:k] ) for i in range(len(A ) - k ): lowerCAmelCase__ = current_sum - array[i] + array[i + k] lowerCAmelCase__ = max(A , A ) return max_sum if __name__ == "__main__": from doctest import testmod from random import randint testmod() __UpperCAmelCase = [randint(-1_000, 1_000) for i in range(100)] __UpperCAmelCase = randint(0, 110) print(f"""The maximum sum of {k} consecutive elements is {max_sum_in_array(array,k)}""")
228
'''simple docstring''' from __future__ import annotations def _snake_case ( A , A ) -> float: lowerCAmelCase__ = sorted(numsa + numsa ) lowerCAmelCase__ , lowerCAmelCase__ = divmod(len(A ) , 2 ) if mod == 1: return all_numbers[div] else: return (all_numbers[div] + all_numbers[div - 1]) / 2 if __name__ == "__main__": import doctest doctest.testmod() __UpperCAmelCase = [float(x) for x in input('''Enter the elements of first array: ''').split()] __UpperCAmelCase = [float(x) for x in input('''Enter the elements of second array: ''').split()] print(f"""The median of two arrays is: {median_of_two_arrays(array_a, array_a)}""")
228
1
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING _snake_case = logging.get_logger(__name__) _snake_case = { """SenseTime/deformable-detr""": """https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json""", # See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr } class lowercase ( __UpperCamelCase ): _a = "deformable_detr" _a = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self , _a=True , _a=None , _a=3 , _a=300 , _a=1024 , _a=6 , _a=1024 , _a=8 , _a=6 , _a=1024 , _a=8 , _a=0.0 , _a=True , _a="relu" , _a=256 , _a=0.1 , _a=0.0 , _a=0.0 , _a=0.02 , _a=1.0 , _a=True , _a=False , _a="sine" , _a="resnet50" , _a=True , _a=False , _a=4 , _a=4 , _a=4 , _a=False , _a=300 , _a=False , _a=1 , _a=5 , _a=2 , _a=1 , _a=1 , _a=5 , _a=2 , _a=0.1 , _a=0.25 , _a=False , **_a , ) -> int: if backbone_config is not None and use_timm_backbone: raise ValueError("""You can\'t specify both `backbone_config` and `use_timm_backbone`.""" ) if not use_timm_backbone: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) _A : Optional[Any] = CONFIG_MAPPING['resnet'](out_features=["""stage4"""] ) elif isinstance(_a , _a ): _A : Optional[int] = backbone_config.get("""model_type""" ) _A : int = CONFIG_MAPPING[backbone_model_type] _A : Union[str, Any] = config_class.from_dict(_a ) _A : Optional[Any] = use_timm_backbone _A : List[Any] = backbone_config _A : Union[str, Any] = num_channels _A : str = num_queries _A : Any = max_position_embeddings _A : Optional[Any] = d_model _A : List[str] = encoder_ffn_dim _A : Optional[Any] = encoder_layers _A : Tuple = encoder_attention_heads _A : Optional[int] = decoder_ffn_dim _A : List[Any] = decoder_layers _A : Optional[Any] = decoder_attention_heads _A : str = dropout _A : Any = attention_dropout _A : Any = activation_dropout _A : Tuple = activation_function _A : Union[str, Any] = init_std _A : str = init_xavier_std _A : Optional[int] = encoder_layerdrop _A : Union[str, Any] = auxiliary_loss _A : List[Any] = position_embedding_type _A : List[Any] = backbone _A : int = use_pretrained_backbone _A : List[str] = dilation # deformable attributes _A : Any = num_feature_levels _A : Optional[int] = encoder_n_points _A : Union[str, Any] = decoder_n_points _A : Union[str, Any] = two_stage _A : str = two_stage_num_proposals _A : Union[str, Any] = with_box_refine if two_stage is True and with_box_refine is False: raise ValueError("""If two_stage is True, with_box_refine must be True.""" ) # Hungarian matcher _A : int = class_cost _A : str = bbox_cost _A : Optional[int] = giou_cost # Loss coefficients _A : int = mask_loss_coefficient _A : int = dice_loss_coefficient _A : Tuple = bbox_loss_coefficient _A : Union[str, Any] = giou_loss_coefficient _A : Any = eos_coefficient _A : Any = focal_alpha _A : Tuple = disable_custom_kernels super().__init__(is_encoder_decoder=_a , **_a ) @property def a__ ( self ) -> int: return self.encoder_attention_heads @property def a__ ( self ) -> int: return self.d_model def a__ ( self ) -> List[Any]: _A : int = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: _A : Union[str, Any] = self.backbone_config.to_dict() _A : Dict = self.__class__.model_type return output
26
import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import numpy as np import pytest from datasets.arrow_dataset import Dataset from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex from .utils import require_elasticsearch, require_faiss _UpperCAmelCase : str = pytest.mark.integration @require_faiss class lowerCAmelCase ( __UpperCamelCase ): def A_ ( self : List[Any] ) -> Union[str, Any]: lowerCamelCase__ : List[Any] = Dataset.from_dict({'filename': ['my_name-train' + '_' + str(UpperCAmelCase ) for x in np.arange(30 ).tolist()]} ) return dset def A_ ( self : Optional[Any] ) -> Optional[int]: import faiss lowerCamelCase__ : Dataset = self._create_dummy_dataset() lowerCamelCase__ : List[Any] = dset.map( lambda UpperCAmelCase , UpperCAmelCase : {"vecs": i * np.ones(5 , dtype=np.floataa )} , with_indices=UpperCAmelCase , keep_in_memory=UpperCAmelCase ) lowerCamelCase__ : Tuple = dset.add_faiss_index('vecs' , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT ) lowerCamelCase__ , lowerCamelCase__ : str = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) dset.drop_index('vecs' ) def A_ ( self : Union[str, Any] ) -> int: import faiss lowerCamelCase__ : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT , ) lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) def A_ ( self : List[str] ) -> Tuple: import faiss lowerCamelCase__ : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' , metric_type=faiss.METRIC_INNER_PRODUCT , ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=UpperCAmelCase ) as tmp_file: dset.save_faiss_index('vecs' , tmp_file.name ) dset.load_faiss_index('vecs2' , tmp_file.name ) os.unlink(tmp_file.name ) lowerCamelCase__ , lowerCamelCase__ : str = dset.get_nearest_examples('vecs2' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) def A_ ( self : Any ) -> Optional[Any]: lowerCamelCase__ : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' ) dset.drop_index('vecs' ) self.assertRaises(UpperCAmelCase , partial(dset.get_nearest_examples , 'vecs2' , np.ones(5 , dtype=np.floataa ) ) ) def A_ ( self : Dict ) -> Dict: from elasticsearch import Elasticsearch lowerCamelCase__ : Dataset = self._create_dummy_dataset() with patch('elasticsearch.Elasticsearch.search' ) as mocked_search, patch( 'elasticsearch.client.IndicesClient.create' ) as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk' ) as mocked_bulk: lowerCamelCase__ : List[Any] = {'acknowledged': True} mocked_bulk.return_value([(True, None)] * 30 ) lowerCamelCase__ : int = {'hits': {'hits': [{'_score': 1, '_id': 29}]}} lowerCamelCase__ : List[str] = Elasticsearch() dset.add_elasticsearch_index('filename' , es_client=UpperCAmelCase ) lowerCamelCase__ , lowerCamelCase__ : Dict = dset.get_nearest_examples('filename' , 'my_name-train_29' ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) @require_faiss class lowerCAmelCase ( __UpperCamelCase ): def A_ ( self : Any ) -> Dict: import faiss lowerCamelCase__ : Tuple = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) # add vectors index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsNotNone(index.faiss_index ) self.assertEqual(index.faiss_index.ntotal , 5 ) index.add_vectors(np.zeros((5, 5) , dtype=np.floataa ) ) self.assertEqual(index.faiss_index.ntotal , 10 ) # single query lowerCamelCase__ : int = np.zeros(5 , dtype=np.floataa ) lowerCamelCase__ : Any = 1 lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = index.search(UpperCAmelCase ) self.assertRaises(UpperCAmelCase , index.search , query.reshape(-1 , 1 ) ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) # batched queries lowerCamelCase__ : str = np.eye(5 , dtype=np.floataa )[::-1] lowerCamelCase__ , lowerCamelCase__ : Dict = index.search_batch(UpperCAmelCase ) self.assertRaises(UpperCAmelCase , index.search_batch , queries[0] ) lowerCamelCase__ : str = [scores[0] for scores in total_scores] lowerCamelCase__ : List[str] = [indices[0] for indices in total_indices] self.assertGreater(np.min(UpperCAmelCase ) , 0 ) self.assertListEqual([4, 3, 2, 1, 0] , UpperCAmelCase ) def A_ ( self : List[Any] ) -> List[Any]: import faiss lowerCamelCase__ : Any = FaissIndex(string_factory='Flat' ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) lowerCamelCase__ : Tuple = FaissIndex(string_factory='LSH' ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexLSH ) with self.assertRaises(UpperCAmelCase ): lowerCamelCase__ : List[str] = FaissIndex(string_factory='Flat' , custom_index=faiss.IndexFlat(5 ) ) def A_ ( self : List[str] ) -> Optional[int]: import faiss lowerCamelCase__ : Optional[Any] = faiss.IndexFlat(5 ) lowerCamelCase__ : int = FaissIndex(custom_index=UpperCAmelCase ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) def A_ ( self : Any ) -> Optional[int]: import faiss lowerCamelCase__ : Any = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=UpperCAmelCase ) as tmp_file: index.save(tmp_file.name ) lowerCamelCase__ : List[Any] = FaissIndex.load(tmp_file.name ) os.unlink(tmp_file.name ) lowerCamelCase__ : List[str] = np.zeros(5 , dtype=np.floataa ) lowerCamelCase__ : Tuple = 1 lowerCamelCase__ , lowerCamelCase__ : str = index.search(UpperCAmelCase ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) @require_faiss def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> Any: import faiss lowerCamelCase__ : Optional[Any] = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) lowerCamelCase__ : Optional[int] = 'index.faiss' lowerCamelCase__ : Optional[Any] = F"""mock://{index_name}""" index.save(_UpperCAmelCase , storage_options=mockfs.storage_options ) lowerCamelCase__ : Tuple = FaissIndex.load(_UpperCAmelCase , storage_options=mockfs.storage_options ) lowerCamelCase__ : Optional[int] = np.zeros(5 , dtype=np.floataa ) lowerCamelCase__ : Dict = 1 lowerCamelCase__ , lowerCamelCase__ : str = index.search(_UpperCAmelCase ) assert scores[0] > 0 assert indices[0] == 1 @require_elasticsearch class lowerCAmelCase ( __UpperCamelCase ): def A_ ( self : Dict ) -> List[Any]: from elasticsearch import Elasticsearch with patch('elasticsearch.Elasticsearch.search' ) as mocked_search, patch( 'elasticsearch.client.IndicesClient.create' ) as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk' ) as mocked_bulk: lowerCamelCase__ : Any = Elasticsearch() lowerCamelCase__ : Tuple = {'acknowledged': True} lowerCamelCase__ : Tuple = ElasticSearchIndex(es_client=UpperCAmelCase ) mocked_bulk.return_value([(True, None)] * 3 ) index.add_documents(['foo', 'bar', 'foobar'] ) # single query lowerCamelCase__ : Optional[int] = 'foo' lowerCamelCase__ : str = {'hits': {'hits': [{'_score': 1, '_id': 0}]}} lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = index.search(UpperCAmelCase ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # single query with timeout lowerCamelCase__ : Any = 'foo' lowerCamelCase__ : List[str] = {'hits': {'hits': [{'_score': 1, '_id': 0}]}} lowerCamelCase__ , lowerCamelCase__ : Tuple = index.search(UpperCAmelCase , request_timeout=30 ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # batched queries lowerCamelCase__ : List[str] = ['foo', 'bar', 'foobar'] lowerCamelCase__ : str = {'hits': {'hits': [{'_score': 1, '_id': 1}]}} lowerCamelCase__ , lowerCamelCase__ : str = index.search_batch(UpperCAmelCase ) lowerCamelCase__ : List[str] = [scores[0] for scores in total_scores] lowerCamelCase__ : List[Any] = [indices[0] for indices in total_indices] self.assertGreater(np.min(UpperCAmelCase ) , 0 ) self.assertListEqual([1, 1, 1] , UpperCAmelCase ) # batched queries with timeout lowerCamelCase__ : str = ['foo', 'bar', 'foobar'] lowerCamelCase__ : List[Any] = {'hits': {'hits': [{'_score': 1, '_id': 1}]}} lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = index.search_batch(UpperCAmelCase , request_timeout=30 ) lowerCamelCase__ : Optional[Any] = [scores[0] for scores in total_scores] lowerCamelCase__ : Dict = [indices[0] for indices in total_indices] self.assertGreater(np.min(UpperCAmelCase ) , 0 ) self.assertListEqual([1, 1, 1] , UpperCAmelCase )
50
0
"""simple docstring""" import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import SeqaSeqTrainer from seqaseq_training_args import SeqaSeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( SeqaSeqDataCollator, SeqaSeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) A: Optional[Any] = logging.getLogger(__name__) @dataclass class SCREAMING_SNAKE_CASE__ : __lowerCAmelCase : int = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) __lowerCAmelCase : List[str] = field( default=__snake_case , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) __lowerCAmelCase : Tuple = field( default=__snake_case , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) __lowerCAmelCase : List[Any] = field( default=__snake_case , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) __lowerCAmelCase : Any = field(default=__snake_case , metadata={'help': 'Whether tp freeze the encoder.'} ) __lowerCAmelCase : Optional[int] = field(default=__snake_case , metadata={'help': 'Whether to freeze the embeddings.'} ) @dataclass class SCREAMING_SNAKE_CASE__ : __lowerCAmelCase : Tuple = field( metadata={'help': 'The input data dir. Should contain the .tsv files (or other data files) for the task.'} ) __lowerCAmelCase : Tuple = field( default='summarization' , metadata={'help': 'Task name, summarization (or summarization_{dataset} for pegasus) or translation'} , ) __lowerCAmelCase : List[str] = field( default=1_024 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) __lowerCAmelCase : Optional[Any] = field( default=128 , metadata={ 'help': ( 'The maximum total sequence length for target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) __lowerCAmelCase : Dict = field( default=142 , metadata={ 'help': ( 'The maximum total sequence length for validation target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded. ' 'This argument is also used to override the ``max_length`` param of ``model.generate``, which is used ' 'during ``evaluate`` and ``predict``.' ) } , ) __lowerCAmelCase : Any = field( default=142 , metadata={ 'help': ( 'The maximum total sequence length for test target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) __lowerCAmelCase : Dict = field(default=-1 , metadata={'help': '# training examples. -1 means use all.'} ) __lowerCAmelCase : Dict = field(default=-1 , metadata={'help': '# validation examples. -1 means use all.'} ) __lowerCAmelCase : int = field(default=-1 , metadata={'help': '# test examples. -1 means use all.'} ) __lowerCAmelCase : Union[str, Any] = field(default=__snake_case , metadata={'help': 'Source language id for translation.'} ) __lowerCAmelCase : str = field(default=__snake_case , metadata={'help': 'Target language id for translation.'} ) __lowerCAmelCase : List[Any] = field(default=__snake_case , metadata={'help': '# num_beams to use for evaluation.'} ) __lowerCAmelCase : int = field( default=__snake_case , metadata={'help': 'If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined.'} , ) def _snake_case ( UpperCamelCase : Optional[Any] , UpperCamelCase : str , UpperCamelCase : Tuple ): logger.info(F"***** {split} metrics *****" ) for key in sorted(metrics.keys() ): logger.info(F" {key} = {metrics[key]}" ) save_json(_snake_case , os.path.join(_snake_case , F"{split}_results.json" ) ) def _snake_case ( ): UpperCAmelCase : int = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. UpperCAmelCase : List[str] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: UpperCAmelCase : Optional[Any] = parser.parse_args_into_dataclasses() check_output_dir(_snake_case ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( """Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s""" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info("""Training/evaluation parameters %s""" , _snake_case ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. UpperCAmelCase : str = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) UpperCAmelCase : List[str] = ('''encoder_layerdrop''', '''decoder_layerdrop''', '''dropout''', '''attention_dropout''') for p in extra_model_params: if getattr(_snake_case , _snake_case , _snake_case ): assert hasattr(_snake_case , _snake_case ), F"({config.__class__.__name__}) doesn't have a `{p}` attribute" setattr(_snake_case , _snake_case , getattr(_snake_case , _snake_case ) ) UpperCAmelCase : Optional[int] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) UpperCAmelCase : Any = AutoModelForSeqaSeqLM.from_pretrained( model_args.model_name_or_path , from_tf=""".ckpt""" in model_args.model_name_or_path , config=_snake_case , cache_dir=model_args.cache_dir , ) # use task specific params use_task_specific_params(_snake_case , data_args.task ) # set num_beams for evaluation if data_args.eval_beams is None: UpperCAmelCase : Any = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(_snake_case , (MBartTokenizer, MBartTokenizerFast) ): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(_snake_case , _snake_case ): UpperCAmelCase : Optional[Any] = tokenizer.lang_code_to_id[data_args.tgt_lang] else: UpperCAmelCase : Any = tokenizer.convert_tokens_to_ids(data_args.tgt_lang ) if model_args.freeze_embeds: freeze_embeds(_snake_case ) if model_args.freeze_encoder: freeze_params(model.get_encoder() ) assert_all_frozen(model.get_encoder() ) UpperCAmelCase : Union[str, Any] = SeqaSeqDataset # Get datasets UpperCAmelCase : Optional[int] = ( dataset_class( _snake_case , type_path="""train""" , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or """""" , ) if training_args.do_train else None ) UpperCAmelCase : Any = ( dataset_class( _snake_case , type_path="""val""" , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or """""" , ) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) UpperCAmelCase : str = ( dataset_class( _snake_case , type_path="""test""" , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or """""" , ) if training_args.do_predict else None ) # Initialize our Trainer UpperCAmelCase : List[str] = ( build_compute_metrics_fn(data_args.task , _snake_case ) if training_args.predict_with_generate else None ) UpperCAmelCase : int = SeqaSeqTrainer( model=_snake_case , args=_snake_case , data_args=_snake_case , train_dataset=_snake_case , eval_dataset=_snake_case , data_collator=SeqaSeqDataCollator( _snake_case , _snake_case , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=_snake_case , tokenizer=_snake_case , ) UpperCAmelCase : str = {} # Training if training_args.do_train: logger.info("""*** Train ***""" ) UpperCAmelCase : Tuple = trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) UpperCAmelCase : Union[str, Any] = train_result.metrics UpperCAmelCase : Optional[Any] = data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics("""train""" , _snake_case , training_args.output_dir ) all_metrics.update(_snake_case ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , """trainer_state.json""" ) ) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir ) # Evaluation if training_args.do_eval: logger.info("""*** Evaluate ***""" ) UpperCAmelCase : Tuple = trainer.evaluate(metric_key_prefix="""val""" ) UpperCAmelCase : int = data_args.n_val UpperCAmelCase : List[Any] = round(metrics["""val_loss"""] , 4 ) if trainer.is_world_process_zero(): handle_metrics("""val""" , _snake_case , training_args.output_dir ) all_metrics.update(_snake_case ) if training_args.do_predict: logger.info("""*** Predict ***""" ) UpperCAmelCase : str = trainer.predict(test_dataset=_snake_case , metric_key_prefix="""test""" ) UpperCAmelCase : Tuple = test_output.metrics UpperCAmelCase : Tuple = data_args.n_test if trainer.is_world_process_zero(): UpperCAmelCase : Dict = round(metrics["""test_loss"""] , 4 ) handle_metrics("""test""" , _snake_case , training_args.output_dir ) all_metrics.update(_snake_case ) if training_args.predict_with_generate: UpperCAmelCase : Optional[int] = tokenizer.batch_decode( test_output.predictions , skip_special_tokens=_snake_case , clean_up_tokenization_spaces=_snake_case ) UpperCAmelCase : Optional[int] = lmap(str.strip , _snake_case ) write_txt_file(_snake_case , os.path.join(training_args.output_dir , """test_generations.txt""" ) ) if trainer.is_world_process_zero(): save_json(_snake_case , os.path.join(training_args.output_dir , """all_results.json""" ) ) return all_metrics def _snake_case ( UpperCamelCase : Tuple ): main() if __name__ == "__main__": main()
352
"""simple docstring""" import math from typing import Callable, List, Optional, Union import numpy as np import PIL import torch from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale import StableDiffusionUpscalePipeline from diffusers.schedulers import DDIMScheduler, DDPMScheduler, LMSDiscreteScheduler, PNDMScheduler def _snake_case ( UpperCamelCase : Dict , UpperCamelCase : int , UpperCamelCase : List[str]=[] ): UpperCAmelCase : List[Any] = size[0] - overlap_pixels * 2 UpperCAmelCase : Dict = size[1] - overlap_pixels * 2 for letter in ["l", "r"]: if letter in remove_borders: size_x += overlap_pixels for letter in ["t", "b"]: if letter in remove_borders: size_y += overlap_pixels UpperCAmelCase : Union[str, Any] = np.ones((size_y, size_x) , dtype=np.uinta ) * 255 UpperCAmelCase : Any = np.pad(UpperCamelCase , mode="""linear_ramp""" , pad_width=UpperCamelCase , end_values=0 ) if "l" in remove_borders: UpperCAmelCase : Dict = mask[:, overlap_pixels : mask.shape[1]] if "r" in remove_borders: UpperCAmelCase : Optional[Any] = mask[:, 0 : mask.shape[1] - overlap_pixels] if "t" in remove_borders: UpperCAmelCase : Any = mask[overlap_pixels : mask.shape[0], :] if "b" in remove_borders: UpperCAmelCase : str = mask[0 : mask.shape[0] - overlap_pixels, :] return mask def _snake_case ( UpperCamelCase : Optional[int] , UpperCamelCase : Dict , UpperCamelCase : Optional[Any] ): return max(UpperCamelCase , min(UpperCamelCase , UpperCamelCase ) ) def _snake_case ( UpperCamelCase : [int] , UpperCamelCase : [int] , UpperCamelCase : [int] ): return ( clamp(rect[0] , min[0] , max[0] ), clamp(rect[1] , min[1] , max[1] ), clamp(rect[2] , min[0] , max[0] ), clamp(rect[3] , min[1] , max[1] ), ) def _snake_case ( UpperCamelCase : [int] , UpperCamelCase : int , UpperCamelCase : [int] ): UpperCAmelCase : Optional[Any] = list(UpperCamelCase ) rect[0] -= overlap rect[1] -= overlap rect[2] += overlap rect[3] += overlap UpperCAmelCase : List[str] = clamp_rect(UpperCamelCase , [0, 0] , [image_size[0], image_size[1]] ) return rect def _snake_case ( UpperCamelCase : Optional[Any] , UpperCamelCase : Union[str, Any] , UpperCamelCase : Any , UpperCamelCase : Dict ): UpperCAmelCase : Dict = Image.new("""RGB""" , (tile.size[0] + original_slice, tile.size[1]) ) result.paste( original_image.resize((tile.size[0], tile.size[1]) , Image.BICUBIC ).crop( (slice_x, 0, slice_x + original_slice, tile.size[1]) ) , (0, 0) , ) result.paste(UpperCamelCase , (original_slice, 0) ) return result def _snake_case ( UpperCamelCase : Tuple , UpperCamelCase : Union[str, Any] ): UpperCAmelCase : List[Any] = (original_image_slice * 4, 0, tile.size[0], tile.size[1]) UpperCAmelCase : List[Any] = tile.crop(UpperCamelCase ) return tile def _snake_case ( UpperCamelCase : Optional[int] , UpperCamelCase : Optional[Any] ): UpperCAmelCase : Union[str, Any] = n % d return n - divisor class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 350 , ) -> List[Any]: '''simple docstring''' super().__init__( vae=_SCREAMING_SNAKE_CASE , text_encoder=_SCREAMING_SNAKE_CASE , tokenizer=_SCREAMING_SNAKE_CASE , unet=_SCREAMING_SNAKE_CASE , low_res_scheduler=_SCREAMING_SNAKE_CASE , scheduler=_SCREAMING_SNAKE_CASE , max_noise_level=_SCREAMING_SNAKE_CASE , ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Tuple: '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase : List[str] = ( min(image.size[0] - (tile_size + original_image_slice) , x * tile_size ), min(image.size[1] - (tile_size + original_image_slice) , y * tile_size ), min(image.size[0] , (x + 1) * tile_size ), min(image.size[1] , (y + 1) * tile_size ), ) UpperCAmelCase : Any = add_overlap_rect(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , image.size ) UpperCAmelCase : int = image.crop(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : int = ((crop_rect[0] + ((crop_rect[2] - crop_rect[0]) / 2)) / image.size[0]) * tile.size[0] UpperCAmelCase : Dict = translated_slice_x - (original_image_slice / 2) UpperCAmelCase : Optional[int] = max(0 , _SCREAMING_SNAKE_CASE ) UpperCAmelCase : Union[str, Any] = squeeze_tile(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCAmelCase : Optional[int] = to_input.size UpperCAmelCase : Dict = to_input.resize((tile_size, tile_size) , Image.BICUBIC ) UpperCAmelCase : Optional[Any] = super(_SCREAMING_SNAKE_CASE , self ).__call__(image=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ).images[0] UpperCAmelCase : int = upscaled_tile.resize((orig_input_size[0] * 4, orig_input_size[1] * 4) , Image.BICUBIC ) UpperCAmelCase : Union[str, Any] = unsqueeze_tile(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCAmelCase : List[Any] = upscaled_tile.resize((tile.size[0] * 4, tile.size[1] * 4) , Image.BICUBIC ) UpperCAmelCase : int = [] if x == 0: remove_borders.append("""l""" ) elif crop_rect[2] == image.size[0]: remove_borders.append("""r""" ) if y == 0: remove_borders.append("""t""" ) elif crop_rect[3] == image.size[1]: remove_borders.append("""b""" ) UpperCAmelCase : Any = Image.fromarray( make_transparency_mask( (upscaled_tile.size[0], upscaled_tile.size[1]) , tile_border * 4 , remove_borders=_SCREAMING_SNAKE_CASE ) , mode="""L""" , ) final_image.paste( _SCREAMING_SNAKE_CASE , (crop_rect_with_overlap[0] * 4, crop_rect_with_overlap[1] * 4) , _SCREAMING_SNAKE_CASE ) @torch.no_grad() def __call__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 75 , _SCREAMING_SNAKE_CASE = 9.0 , _SCREAMING_SNAKE_CASE = 50 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 1 , _SCREAMING_SNAKE_CASE = 0.0 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 1 , _SCREAMING_SNAKE_CASE = 128 , _SCREAMING_SNAKE_CASE = 32 , _SCREAMING_SNAKE_CASE = 32 , ) -> Optional[int]: '''simple docstring''' UpperCAmelCase : List[str] = Image.new("""RGB""" , (image.size[0] * 4, image.size[1] * 4) ) UpperCAmelCase : List[str] = math.ceil(image.size[0] / tile_size ) UpperCAmelCase : Optional[Any] = math.ceil(image.size[1] / tile_size ) UpperCAmelCase : Tuple = tcx * tcy UpperCAmelCase : Any = 0 for y in range(_SCREAMING_SNAKE_CASE ): for x in range(_SCREAMING_SNAKE_CASE ): self._process_tile( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , prompt=_SCREAMING_SNAKE_CASE , num_inference_steps=_SCREAMING_SNAKE_CASE , guidance_scale=_SCREAMING_SNAKE_CASE , noise_level=_SCREAMING_SNAKE_CASE , negative_prompt=_SCREAMING_SNAKE_CASE , num_images_per_prompt=_SCREAMING_SNAKE_CASE , eta=_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , latents=_SCREAMING_SNAKE_CASE , ) current_count += 1 if callback is not None: callback({"""progress""": current_count / total_tile_count, """image""": final_image} ) return final_image def _snake_case ( ): # Run a demo UpperCAmelCase : Tuple = """stabilityai/stable-diffusion-x4-upscaler""" UpperCAmelCase : int = StableDiffusionTiledUpscalePipeline.from_pretrained(UpperCamelCase , revision="""fp16""" , torch_dtype=torch.floataa ) UpperCAmelCase : Any = pipe.to("""cuda""" ) UpperCAmelCase : Optional[int] = Image.open("""../../docs/source/imgs/diffusers_library.jpg""" ) def callback(UpperCamelCase : List[str] ): print(F"progress: {obj['progress']:.4f}" ) obj["image"].save("""diffusers_library_progress.jpg""" ) UpperCAmelCase : Any = pipe(image=UpperCamelCase , prompt="""Black font, white background, vector""" , noise_level=40 , callback=UpperCamelCase ) final_image.save("""diffusers_library.jpg""" ) if __name__ == "__main__": main()
76
0
'''simple docstring''' import math def snake_case_ ( __SCREAMING_SNAKE_CASE : int ): """simple docstring""" if not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): lowercase_ : Union[str, Any] = F'''Input value of [number={number}] must be an integer''' raise TypeError(__SCREAMING_SNAKE_CASE ) if number < 1: lowercase_ : Union[str, Any] = F'''Input value of [number={number}] must be > 0''' raise ValueError(__SCREAMING_SNAKE_CASE ) elif number == 1: return 3 elif number == 2: return 5 else: lowercase_ : Any = int(math.log(number // 3 , 2 ) ) + 2 lowercase_ : List[str] = [3, 5] lowercase_ : Any = 2 lowercase_ : Union[str, Any] = 3 for block in range(1 , __SCREAMING_SNAKE_CASE ): for _ in range(__SCREAMING_SNAKE_CASE ): proth_list.append(2 ** (block + 1) + proth_list[proth_index - 1] ) proth_index += 1 increment *= 2 return proth_list[number - 1] if __name__ == "__main__": import doctest doctest.testmod() for number in range(1_1): _lowercase : Any = 0 try: _lowercase : List[str] = proth(number) except ValueError: print(f"""ValueError: there is no {number}th Proth number""") continue print(f"""The {number}th Proth number: {value}""")
93
import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import evaluate import numpy as np from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.31.0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt") a : int = logging.getLogger(__name__) @dataclass class a : """simple docstring""" a : Optional[int] = field( default=128 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) a : bool = field( default=lowercase__ , metadata={'help': 'Overwrite the cached preprocessed datasets or not.'} ) a : bool = field( default=lowercase__ , metadata={ 'help': ( 'Whether to pad all samples to `max_seq_length`. ' 'If False, will pad the samples dynamically when batching to the maximum length in the batch.' ) } , ) a : Optional[int] = field( default=lowercase__ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) a : Optional[int] = field( default=lowercase__ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) a : Optional[int] = field( default=lowercase__ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of prediction examples to this ' 'value if set.' ) } , ) @dataclass class a : """simple docstring""" a : str = field( default=lowercase__ , metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) a : str = field( default=lowercase__ , metadata={'help': 'Evaluation language. Also train language if `train_language` is set to None.'} ) a : Optional[str] = field( default=lowercase__ , metadata={'help': 'Train language if it is different from the evaluation language.'} ) a : Optional[str] = field( default=lowercase__ , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) a : Optional[str] = field( default=lowercase__ , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) a : Optional[str] = field( default=lowercase__ , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) a : Optional[bool] = field( default=lowercase__ , metadata={'help': 'arg to indicate if tokenizer should do lower case in AutoTokenizer.from_pretrained()'} , ) a : bool = field( default=lowercase__ , metadata={'help': 'Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'} , ) a : str = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) a : bool = field( default=lowercase__ , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) a : bool = field( default=lowercase__ , metadata={'help': 'Will enable to load a pretrained model whose head dimensions are different.'} , ) def lowerCamelCase__ ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __UpperCAmelCase : Any = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Tuple = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("""run_xnli""" , __lowerCamelCase ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() __UpperCAmelCase : List[Any] = training_args.get_process_log_level() logger.setLevel(__lowerCamelCase ) datasets.utils.logging.set_verbosity(__lowerCamelCase ) transformers.utils.logging.set_verbosity(__lowerCamelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(f"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. __UpperCAmelCase : Dict = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __UpperCAmelCase : Any = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. """ """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None: logger.info( f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Set seed before initializing model. set_seed(training_args.seed ) # In distributed training, the load_dataset function guarantees that only one local process can concurrently # download the dataset. # Downloading and loading xnli dataset from the hub. if training_args.do_train: if model_args.train_language is None: __UpperCAmelCase : Tuple = load_dataset( """xnli""" , model_args.language , split="""train""" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: __UpperCAmelCase : List[Any] = load_dataset( """xnli""" , model_args.train_language , split="""train""" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) __UpperCAmelCase : str = train_dataset.features["""label"""].names if training_args.do_eval: __UpperCAmelCase : Any = load_dataset( """xnli""" , model_args.language , split="""validation""" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) __UpperCAmelCase : str = eval_dataset.features["""label"""].names if training_args.do_predict: __UpperCAmelCase : Optional[Any] = load_dataset( """xnli""" , model_args.language , split="""test""" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) __UpperCAmelCase : List[str] = predict_dataset.features["""label"""].names # Labels __UpperCAmelCase : Tuple = len(__lowerCamelCase ) # Load pretrained model and tokenizer # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __UpperCAmelCase : List[Any] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=__lowerCamelCase , idalabel={str(__lowerCamelCase ): label for i, label in enumerate(__lowerCamelCase )} , labelaid={label: i for i, label in enumerate(__lowerCamelCase )} , finetuning_task="""xnli""" , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) __UpperCAmelCase : Tuple = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , do_lower_case=model_args.do_lower_case , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) __UpperCAmelCase : Optional[Any] = AutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=__lowerCamelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) # Preprocessing the datasets # Padding strategy if data_args.pad_to_max_length: __UpperCAmelCase : List[Any] = """max_length""" else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch __UpperCAmelCase : List[Any] = False def preprocess_function(__lowerCamelCase : int ): # Tokenize the texts return tokenizer( examples["""premise"""] , examples["""hypothesis"""] , padding=__lowerCamelCase , max_length=data_args.max_seq_length , truncation=__lowerCamelCase , ) if training_args.do_train: if data_args.max_train_samples is not None: __UpperCAmelCase : int = min(len(__lowerCamelCase ) , data_args.max_train_samples ) __UpperCAmelCase : Dict = train_dataset.select(range(__lowerCamelCase ) ) with training_args.main_process_first(desc="""train dataset map pre-processing""" ): __UpperCAmelCase : Union[str, Any] = train_dataset.map( __lowerCamelCase , batched=__lowerCamelCase , load_from_cache_file=not data_args.overwrite_cache , desc="""Running tokenizer on train dataset""" , ) # Log a few random samples from the training set: for index in random.sample(range(len(__lowerCamelCase ) ) , 3 ): logger.info(f"""Sample {index} of the training set: {train_dataset[index]}.""" ) if training_args.do_eval: if data_args.max_eval_samples is not None: __UpperCAmelCase : Tuple = min(len(__lowerCamelCase ) , data_args.max_eval_samples ) __UpperCAmelCase : List[str] = eval_dataset.select(range(__lowerCamelCase ) ) with training_args.main_process_first(desc="""validation dataset map pre-processing""" ): __UpperCAmelCase : Dict = eval_dataset.map( __lowerCamelCase , batched=__lowerCamelCase , load_from_cache_file=not data_args.overwrite_cache , desc="""Running tokenizer on validation dataset""" , ) if training_args.do_predict: if data_args.max_predict_samples is not None: __UpperCAmelCase : Dict = min(len(__lowerCamelCase ) , data_args.max_predict_samples ) __UpperCAmelCase : Tuple = predict_dataset.select(range(__lowerCamelCase ) ) with training_args.main_process_first(desc="""prediction dataset map pre-processing""" ): __UpperCAmelCase : Any = predict_dataset.map( __lowerCamelCase , batched=__lowerCamelCase , load_from_cache_file=not data_args.overwrite_cache , desc="""Running tokenizer on prediction dataset""" , ) # Get the metric function __UpperCAmelCase : Tuple = evaluate.load("""xnli""" ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(__lowerCamelCase : EvalPrediction ): __UpperCAmelCase : Optional[Any] = p.predictions[0] if isinstance(p.predictions , __lowerCamelCase ) else p.predictions __UpperCAmelCase : str = np.argmax(__lowerCamelCase , axis=1 ) return metric.compute(predictions=__lowerCamelCase , references=p.label_ids ) # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: __UpperCAmelCase : Any = default_data_collator elif training_args.fpaa: __UpperCAmelCase : Tuple = DataCollatorWithPadding(__lowerCamelCase , pad_to_multiple_of=8 ) else: __UpperCAmelCase : int = None # Initialize our Trainer __UpperCAmelCase : Union[str, Any] = Trainer( model=__lowerCamelCase , args=__lowerCamelCase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=__lowerCamelCase , tokenizer=__lowerCamelCase , data_collator=__lowerCamelCase , ) # Training if training_args.do_train: __UpperCAmelCase : List[str] = None if training_args.resume_from_checkpoint is not None: __UpperCAmelCase : Optional[int] = training_args.resume_from_checkpoint elif last_checkpoint is not None: __UpperCAmelCase : Union[str, Any] = last_checkpoint __UpperCAmelCase : Any = trainer.train(resume_from_checkpoint=__lowerCamelCase ) __UpperCAmelCase : Dict = train_result.metrics __UpperCAmelCase : Optional[Any] = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(__lowerCamelCase ) ) __UpperCAmelCase : Dict = min(__lowerCamelCase , len(__lowerCamelCase ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics("""train""" , __lowerCamelCase ) trainer.save_metrics("""train""" , __lowerCamelCase ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("""*** Evaluate ***""" ) __UpperCAmelCase : Dict = trainer.evaluate(eval_dataset=__lowerCamelCase ) __UpperCAmelCase : List[str] = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(__lowerCamelCase ) __UpperCAmelCase : Tuple = min(__lowerCamelCase , len(__lowerCamelCase ) ) trainer.log_metrics("""eval""" , __lowerCamelCase ) trainer.save_metrics("""eval""" , __lowerCamelCase ) # Prediction if training_args.do_predict: logger.info("""*** Predict ***""" ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = trainer.predict(__lowerCamelCase , metric_key_prefix="""predict""" ) __UpperCAmelCase : int = ( data_args.max_predict_samples if data_args.max_predict_samples is not None else len(__lowerCamelCase ) ) __UpperCAmelCase : Optional[int] = min(__lowerCamelCase , len(__lowerCamelCase ) ) trainer.log_metrics("""predict""" , __lowerCamelCase ) trainer.save_metrics("""predict""" , __lowerCamelCase ) __UpperCAmelCase : Optional[int] = np.argmax(__lowerCamelCase , axis=1 ) __UpperCAmelCase : Tuple = os.path.join(training_args.output_dir , """predictions.txt""" ) if trainer.is_world_process_zero(): with open(__lowerCamelCase , """w""" ) as writer: writer.write("""index\tprediction\n""" ) for index, item in enumerate(__lowerCamelCase ): __UpperCAmelCase : Tuple = label_list[item] writer.write(f"""{index}\t{item}\n""" ) if __name__ == "__main__": main()
114
0
import os from pickle import UnpicklingError from typing import Dict, Tuple import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict, unflatten_dict import transformers from .utils import logging _snake_case : Union[str, Any] = logging.get_logger(__name__) def a_ ( lowerCAmelCase_ : List[str], lowerCAmelCase_ : str, lowerCAmelCase_ : List[Any], lowerCAmelCase_ : Optional[int]=False ): try: import torch # noqa: F401 except ImportError: logger.error( 'Loading a PyTorch model in Flax, requires both PyTorch and Flax to be installed. Please see' ' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation' ' instructions.' ) raise if not is_sharded: __lowerCAmelCase = os.path.abspath(_lowerCamelCase ) logger.info(F"""Loading PyTorch weights from {pt_path}""" ) __lowerCAmelCase = torch.load(_lowerCamelCase, map_location='cpu' ) logger.info(F"""PyTorch checkpoint contains {sum(t.numel() for t in pt_state_dict.values() ):,} parameters.""" ) __lowerCAmelCase = convert_pytorch_state_dict_to_flax(_lowerCamelCase, _lowerCamelCase ) else: # model is sharded and pytorch_checkpoint_path already contains the list of .pt shard files __lowerCAmelCase = convert_pytorch_sharded_state_dict_to_flax(_lowerCamelCase, _lowerCamelCase ) return flax_state_dict def a_ ( lowerCAmelCase_ : Tuple[str], lowerCAmelCase_ : np.ndarray, lowerCAmelCase_ : Dict[str, jnp.ndarray], lowerCAmelCase_ : str, ): def is_key_or_prefix_key_in_dict(lowerCAmelCase_ : Tuple[str] ) -> bool: return len(set(_lowerCamelCase ) & {key, (model_prefix,) + key} ) > 0 # layer norm __lowerCAmelCase = pt_tuple_key[:-1] + ("scale",) if pt_tuple_key[-1] in ["weight", "gamma"] and is_key_or_prefix_key_in_dict(_lowerCamelCase ): return renamed_pt_tuple_key, pt_tensor # batch norm layer mean __lowerCAmelCase = pt_tuple_key[:-1] + ("mean",) if pt_tuple_key[-1] == "running_mean" and not is_key_or_prefix_key_in_dict(_lowerCamelCase ): return renamed_pt_tuple_key, pt_tensor # batch norm layer var __lowerCAmelCase = pt_tuple_key[:-1] + ("var",) if pt_tuple_key[-1] == "running_var" and not is_key_or_prefix_key_in_dict(_lowerCamelCase ): return renamed_pt_tuple_key, pt_tensor # embedding __lowerCAmelCase = pt_tuple_key[:-1] + ("embedding",) if pt_tuple_key[-1] == "weight" and is_key_or_prefix_key_in_dict(_lowerCamelCase ): return renamed_pt_tuple_key, pt_tensor # conv layer __lowerCAmelCase = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4 and not is_key_or_prefix_key_in_dict(_lowerCamelCase ): __lowerCAmelCase = pt_tensor.transpose(2, 3, 1, 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer __lowerCAmelCase = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight" and not is_key_or_prefix_key_in_dict(_lowerCamelCase ): __lowerCAmelCase = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight __lowerCAmelCase = pt_tuple_key[:-1] + ("weight",) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias __lowerCAmelCase = pt_tuple_key[:-1] + ("bias",) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 __lowerCAmelCase = None if pt_tuple_key[-3::2] == ("parametrizations", "original0"): __lowerCAmelCase = pt_tuple_key[-2] + "_g" elif pt_tuple_key[-3::2] == ("parametrizations", "original1"): __lowerCAmelCase = pt_tuple_key[-2] + "_v" if name is not None: __lowerCAmelCase = pt_tuple_key[:-3] + (name,) return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def a_ ( lowerCAmelCase_ : List[Any], lowerCAmelCase_ : Optional[Any] ): __lowerCAmelCase = {k: v.numpy() for k, v in pt_state_dict.items()} __lowerCAmelCase = flax_model.base_model_prefix # use params dict if the model contains batch norm layers if "params" in flax_model.params: __lowerCAmelCase = flax_model.params["params"] else: __lowerCAmelCase = flax_model.params __lowerCAmelCase = flatten_dict(_lowerCamelCase ) # add batch_stats keys,values to dict if "batch_stats" in flax_model.params: __lowerCAmelCase = flatten_dict(flax_model.params['batch_stats'] ) random_flax_state_dict.update(_lowerCamelCase ) __lowerCAmelCase = {} __lowerCAmelCase = (model_prefix not in flax_model_params) and ( model_prefix in {k.split('.' )[0] for k in pt_state_dict.keys()} ) __lowerCAmelCase = (model_prefix in flax_model_params) and ( model_prefix not in {k.split('.' )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): __lowerCAmelCase = tuple(pt_key.split('.' ) ) # remove base model prefix if necessary __lowerCAmelCase = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: __lowerCAmelCase = pt_tuple_key[1:] # Correctly rename weight parameters __lowerCAmelCase = rename_key_and_reshape_tensor( _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase ) # add model prefix if necessary __lowerCAmelCase = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: __lowerCAmelCase = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F"""PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape """ F"""{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1] or "var" in flax_key[-1]: __lowerCAmelCase = jnp.asarray(_lowerCamelCase ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(_lowerCamelCase, _lowerCamelCase ) continue # also add unexpected weight so that warning is thrown __lowerCAmelCase = jnp.asarray(_lowerCamelCase ) else: # also add unexpected weight so that warning is thrown __lowerCAmelCase = jnp.asarray(_lowerCamelCase ) return unflatten_dict(_lowerCamelCase ) def a_ ( lowerCAmelCase_ : List[Any], lowerCAmelCase_ : Tuple ): import torch # Load the index __lowerCAmelCase = {} for shard_file in shard_filenames: # load using msgpack utils __lowerCAmelCase = torch.load(_lowerCamelCase ) __lowerCAmelCase = {k: v.numpy() for k, v in pt_state_dict.items()} __lowerCAmelCase = flax_model.base_model_prefix # use params dict if the model contains batch norm layers and then add batch_stats keys,values to dict if "batch_stats" in flax_model.params: __lowerCAmelCase = flax_model.params["params"] __lowerCAmelCase = flatten_dict(_lowerCamelCase ) random_flax_state_dict.update(flatten_dict(flax_model.params['batch_stats'] ) ) else: __lowerCAmelCase = flax_model.params __lowerCAmelCase = flatten_dict(_lowerCamelCase ) __lowerCAmelCase = (model_prefix not in flax_model_params) and ( model_prefix in {k.split('.' )[0] for k in pt_state_dict.keys()} ) __lowerCAmelCase = (model_prefix in flax_model_params) and ( model_prefix not in {k.split('.' )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): __lowerCAmelCase = tuple(pt_key.split('.' ) ) # remove base model prefix if necessary __lowerCAmelCase = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: __lowerCAmelCase = pt_tuple_key[1:] # Correctly rename weight parameters __lowerCAmelCase = rename_key_and_reshape_tensor( _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase ) # add model prefix if necessary __lowerCAmelCase = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: __lowerCAmelCase = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F"""PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape """ F"""{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1]: __lowerCAmelCase = jnp.asarray(_lowerCamelCase ) continue if "var" in flax_key[-1]: __lowerCAmelCase = jnp.asarray(_lowerCamelCase ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(_lowerCamelCase, _lowerCamelCase ) continue # also add unexpected weight so that warning is thrown __lowerCAmelCase = jnp.asarray(_lowerCamelCase ) else: # also add unexpected weight so that warning is thrown __lowerCAmelCase = jnp.asarray(_lowerCamelCase ) return unflatten_dict(_lowerCamelCase ) def a_ ( lowerCAmelCase_ : str, lowerCAmelCase_ : Optional[Any] ): __lowerCAmelCase = os.path.abspath(_lowerCamelCase ) logger.info(F"""Loading Flax weights from {flax_checkpoint_path}""" ) # import correct flax class __lowerCAmelCase = getattr(_lowerCamelCase, 'Flax' + model.__class__.__name__ ) # load flax weight dict with open(_lowerCamelCase, 'rb' ) as state_f: try: __lowerCAmelCase = from_bytes(_lowerCamelCase, state_f.read() ) except UnpicklingError: raise EnvironmentError(F"""Unable to convert {flax_checkpoint_path} to Flax deserializable object. """ ) return load_flax_weights_in_pytorch_model(_lowerCamelCase, _lowerCamelCase ) def a_ ( lowerCAmelCase_ : Tuple, lowerCAmelCase_ : Any ): try: import torch # noqa: F401 except ImportError: logger.error( 'Loading a Flax weights in PyTorch, requires both PyTorch and Flax to be installed. Please see' ' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation' ' instructions.' ) raise # check if we have bf16 weights __lowerCAmelCase = flatten_dict(jax.tree_util.tree_map(lambda lowerCAmelCase_ : x.dtype == jnp.bfloataa, _lowerCamelCase ) ).values() if any(_lowerCamelCase ): # convert all weights to fp32 if the are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( 'Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` ' 'before loading those in PyTorch model.' ) __lowerCAmelCase = jax.tree_util.tree_map( lambda lowerCAmelCase_ : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params, _lowerCamelCase ) __lowerCAmelCase = flatten_dict(_lowerCamelCase ) __lowerCAmelCase = pt_model.state_dict() __lowerCAmelCase = (pt_model.base_model_prefix in flax_state) and ( pt_model.base_model_prefix not in {k.split('.' )[0] for k in pt_model_dict.keys()} ) __lowerCAmelCase = (pt_model.base_model_prefix not in flax_state) and ( pt_model.base_model_prefix in {k.split('.' )[0] for k in pt_model_dict.keys()} ) # keep track of unexpected & missing keys __lowerCAmelCase = [] __lowerCAmelCase = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): __lowerCAmelCase = flax_key_tuple[0] == pt_model.base_model_prefix __lowerCAmelCase = ".".join((pt_model.base_model_prefix,) + flax_key_tuple ) in pt_model_dict # adapt flax_key to prepare for loading from/to base model only if load_model_with_head_into_base_model and has_base_model_prefix: __lowerCAmelCase = flax_key_tuple[1:] elif load_base_model_into_model_with_head and require_base_model_prefix: __lowerCAmelCase = (pt_model.base_model_prefix,) + flax_key_tuple # rename flax weights to PyTorch format if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 4 and ".".join(_lowerCamelCase ) not in pt_model_dict: # conv layer __lowerCAmelCase = flax_key_tuple[:-1] + ("weight",) __lowerCAmelCase = jnp.transpose(_lowerCamelCase, (3, 2, 0, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(_lowerCamelCase ) not in pt_model_dict: # linear layer __lowerCAmelCase = flax_key_tuple[:-1] + ("weight",) __lowerCAmelCase = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: __lowerCAmelCase = flax_key_tuple[:-1] + ("weight",) # adding batch stats from flax batch norm to pt elif "mean" in flax_key_tuple[-1]: __lowerCAmelCase = flax_key_tuple[:-1] + ("running_mean",) elif "var" in flax_key_tuple[-1]: __lowerCAmelCase = flax_key_tuple[:-1] + ("running_var",) if "batch_stats" in flax_state: __lowerCAmelCase = ".".join(flax_key_tuple[1:] ) # Remove the params/batch_stats header else: __lowerCAmelCase = ".".join(_lowerCamelCase ) # We also need to look at `pt_model_dict` and see if there are keys requiring further transformation. __lowerCAmelCase = {} # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 for key in pt_model_dict: __lowerCAmelCase = key.split('.' ) __lowerCAmelCase = None if key_components[-3::2] == ["parametrizations", "original0"]: __lowerCAmelCase = key_components[-2] + "_g" elif key_components[-3::2] == ["parametrizations", "original1"]: __lowerCAmelCase = key_components[-2] + "_v" if name is not None: __lowerCAmelCase = key_components[:-3] + [name] __lowerCAmelCase = ".".join(_lowerCamelCase ) __lowerCAmelCase = key if flax_key in special_pt_names: __lowerCAmelCase = special_pt_names[flax_key] if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( F"""Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected """ F"""to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) else: # add weight to pytorch dict __lowerCAmelCase = np.asarray(_lowerCamelCase ) if not isinstance(_lowerCamelCase, np.ndarray ) else flax_tensor __lowerCAmelCase = torch.from_numpy(_lowerCamelCase ) # remove from missing keys missing_keys.remove(_lowerCamelCase ) else: # weight is not expected by PyTorch model unexpected_keys.append(_lowerCamelCase ) pt_model.load_state_dict(_lowerCamelCase ) # re-transform missing_keys to list __lowerCAmelCase = list(_lowerCamelCase ) if len(_lowerCamelCase ) > 0: logger.warning( 'Some weights of the Flax model were not used when initializing the PyTorch model' F""" {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing""" F""" {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture""" ' (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This' F""" IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect""" ' to be exactly identical (e.g. initializing a BertForSequenceClassification model from a' ' FlaxBertForSequenceClassification model).' ) else: logger.warning(F"""All Flax model weights were used when initializing {pt_model.__class__.__name__}.\n""" ) if len(_lowerCamelCase ) > 0: logger.warning( F"""Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly""" F""" initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to""" ' use it for predictions and inference.' ) else: logger.warning( F"""All the weights of {pt_model.__class__.__name__} were initialized from the Flax model.\n""" 'If your task is similar to the task the model of the checkpoint was trained on, ' F"""you can already use {pt_model.__class__.__name__} for predictions without further training.""" ) return pt_model
370
from typing import Dict import numpy as np import torch from . import residue_constants as rc from .tensor_utils import tensor_tree_map, tree_map def a_ ( lowerCAmelCase_ : Dict[str, torch.Tensor] ): __lowerCAmelCase = [] __lowerCAmelCase = [] __lowerCAmelCase = [] for rt in rc.restypes: __lowerCAmelCase = rc.restype_name_to_atomaa_names[rc.restype_atoa[rt]] restype_atomaa_to_atomaa_list.append([(rc.atom_order[name] if name else 0) for name in atom_names] ) __lowerCAmelCase = {name: i for i, name in enumerate(lowerCAmelCase_ )} restype_atomaa_to_atomaa_list.append( [(atom_name_to_idxaa[name] if name in atom_name_to_idxaa else 0) for name in rc.atom_types] ) restype_atomaa_mask_list.append([(1.0 if name else 0.0) for name in atom_names] ) # Add dummy mapping for restype 'UNK' restype_atomaa_to_atomaa_list.append([0] * 14 ) restype_atomaa_to_atomaa_list.append([0] * 37 ) restype_atomaa_mask_list.append([0.0] * 14 ) __lowerCAmelCase = torch.tensor( lowerCAmelCase_, dtype=torch.intaa, device=protein['aatype'].device, ) __lowerCAmelCase = torch.tensor( lowerCAmelCase_, dtype=torch.intaa, device=protein['aatype'].device, ) __lowerCAmelCase = torch.tensor( lowerCAmelCase_, dtype=torch.floataa, device=protein['aatype'].device, ) __lowerCAmelCase = protein['aatype'].to(torch.long ) # create the mapping for (residx, atom14) --> atom37, i.e. an array # with shape (num_res, 14) containing the atom37 indices for this protein __lowerCAmelCase = restype_atomaa_to_atomaa[protein_aatype] __lowerCAmelCase = restype_atomaa_mask[protein_aatype] __lowerCAmelCase = residx_atomaa_mask __lowerCAmelCase = residx_atomaa_to_atomaa.long() # create the gather indices for mapping back __lowerCAmelCase = restype_atomaa_to_atomaa[protein_aatype] __lowerCAmelCase = residx_atomaa_to_atomaa.long() # create the corresponding mask __lowerCAmelCase = torch.zeros([21, 37], dtype=torch.floataa, device=protein['aatype'].device ) for restype, restype_letter in enumerate(rc.restypes ): __lowerCAmelCase = rc.restype_atoa[restype_letter] __lowerCAmelCase = rc.residue_atoms[restype_name] for atom_name in atom_names: __lowerCAmelCase = rc.atom_order[atom_name] __lowerCAmelCase = 1 __lowerCAmelCase = restype_atomaa_mask[protein_aatype] __lowerCAmelCase = residx_atomaa_mask return protein def a_ ( lowerCAmelCase_ : Dict[str, torch.Tensor] ): __lowerCAmelCase = tree_map(lambda lowerCAmelCase_ : torch.tensor(lowerCAmelCase_, device=batch['aatype'].device ), lowerCAmelCase_, np.ndarray ) __lowerCAmelCase = tensor_tree_map(lambda lowerCAmelCase_ : np.array(lowerCAmelCase_ ), make_atomaa_masks(lowerCAmelCase_ ) ) return out
207
0
from __future__ import annotations from typing import Generic, TypeVar _snake_case = TypeVar("T") class lowercase ( Generic[T] ): def __init__( self , _a ) -> None: _A : List[str] = data _A : int = self _A : Any = 0 class lowercase ( Generic[T] ): def __init__( self ) -> None: # map from node name to the node object _A : dict[T, DisjointSetTreeNode[T]] = {} def a__ ( self , _a ) -> None: # create a new set with x as its member _A : Union[str, Any] = DisjointSetTreeNode(_a ) def a__ ( self , _a ) -> DisjointSetTreeNode[T]: # find the set x belongs to (with path-compression) _A : Any = self.map[data] if elem_ref != elem_ref.parent: _A : Optional[int] = self.find_set(elem_ref.parent.data ) return elem_ref.parent def a__ ( self , _a , _a ) -> None: # helper function for union operation if nodea.rank > nodea.rank: _A : List[str] = nodea else: _A : str = nodea if nodea.rank == nodea.rank: nodea.rank += 1 def a__ ( self , _a , _a ) -> None: # merge 2 disjoint sets self.link(self.find_set(_a ) , self.find_set(_a ) ) class lowercase ( Generic[T] ): def __init__( self ) -> None: # connections: map from the node to the neighbouring nodes (with weights) _A : dict[T, dict[T, int]] = {} def a__ ( self , _a ) -> None: # add a node ONLY if its not present in the graph if node not in self.connections: _A : Dict = {} def a__ ( self , _a , _a , _a ) -> None: # add an edge with the given weight self.add_node(_a ) self.add_node(_a ) _A : Optional[int] = weight _A : Tuple = weight def a__ ( self ) -> GraphUndirectedWeighted[T]: _A : Dict = [] _A : Dict = set() for start in self.connections: for end in self.connections[start]: if (start, end) not in seen: seen.add((end, start) ) edges.append((start, end, self.connections[start][end]) ) edges.sort(key=lambda _a : x[2] ) # creating the disjoint set _A : Any = DisjointSetTree[T]() for node in self.connections: disjoint_set.make_set(_a ) # MST generation _A : Optional[int] = 0 _A : List[Any] = 0 _A : Dict = GraphUndirectedWeighted[T]() while num_edges < len(self.connections ) - 1: _A , _A , _A : Tuple = edges[index] index += 1 _A : Optional[Any] = disjoint_set.find_set(_a ) _A : List[str] = disjoint_set.find_set(_a ) if parent_u != parent_v: num_edges += 1 graph.add_edge(_a , _a , _a ) disjoint_set.union(_a , _a ) return graph
26
'''simple docstring''' import argparse import json import os import torch from transformers import LukeConfig, LukeModel, LukeTokenizer, RobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def lowercase__ ( __lowercase : int , __lowercase : int , __lowercase : Union[str, Any] , __lowercase : Union[str, Any] , __lowercase : Any ) -> Optional[Any]: """simple docstring""" with open(__lowercase ) as metadata_file: __UpperCamelCase = json.load(__lowercase ) __UpperCamelCase = LukeConfig(use_entity_aware_attention=__lowercase , **metadata['model_config'] ) # Load in the weights from the checkpoint_path __UpperCamelCase = torch.load(__lowercase , map_location='cpu' ) # Load the entity vocab file __UpperCamelCase = load_entity_vocab(__lowercase ) __UpperCamelCase = RobertaTokenizer.from_pretrained(metadata['model_config']['bert_model_name'] ) # Add special tokens to the token vocabulary for downstream tasks __UpperCamelCase = AddedToken('<ent>' , lstrip=__lowercase , rstrip=__lowercase ) __UpperCamelCase = AddedToken('<ent2>' , lstrip=__lowercase , rstrip=__lowercase ) tokenizer.add_special_tokens({'additional_special_tokens': [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(F'''Saving tokenizer to {pytorch_dump_folder_path}''' ) tokenizer.save_pretrained(__lowercase ) with open(os.path.join(__lowercase , LukeTokenizer.vocab_files_names['entity_vocab_file'] ) , 'w' ) as f: json.dump(__lowercase , __lowercase ) __UpperCamelCase = LukeTokenizer.from_pretrained(__lowercase ) # Initialize the embeddings of the special tokens __UpperCamelCase = state_dict['embeddings.word_embeddings.weight'] __UpperCamelCase = word_emb[tokenizer.convert_tokens_to_ids(['@'] )[0]].unsqueeze(0 ) __UpperCamelCase = word_emb[tokenizer.convert_tokens_to_ids(['#'] )[0]].unsqueeze(0 ) __UpperCamelCase = torch.cat([word_emb, ent_emb, enta_emb] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: __UpperCamelCase = F'''encoder.layer.{layer_index}.attention.self.''' __UpperCamelCase = state_dict[prefix + matrix_name] __UpperCamelCase = state_dict[prefix + matrix_name] __UpperCamelCase = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks __UpperCamelCase = state_dict['entity_embeddings.entity_embeddings.weight'] __UpperCamelCase = entity_emb[entity_vocab['[MASK]']] __UpperCamelCase = LukeModel(config=__lowercase ).eval() __UpperCamelCase , __UpperCamelCase = model.load_state_dict(__lowercase , strict=__lowercase ) if not (len(__lowercase ) == 1 and missing_keys[0] == "embeddings.position_ids"): raise ValueError(F'''Missing keys {', '.join(__lowercase )}. Expected only missing embeddings.position_ids''' ) if not (all(key.startswith('entity_predictions' ) or key.startswith('lm_head' ) for key in unexpected_keys )): raise ValueError( 'Unexpected keys' F''' {', '.join([key for key in unexpected_keys if not (key.startswith('entity_predictions' ) or key.startswith('lm_head' ))] )}''' ) # Check outputs __UpperCamelCase = LukeTokenizer.from_pretrained(__lowercase , task='entity_classification' ) __UpperCamelCase = ( 'Top seed Ana Ivanovic said on Thursday she could hardly believe her luck as a fortuitous netcord helped the' ' new world number one avoid a humiliating second- round exit at Wimbledon .' ) __UpperCamelCase = (39, 42) __UpperCamelCase = tokenizer(__lowercase , entity_spans=[span] , add_prefix_space=__lowercase , return_tensors='pt' ) __UpperCamelCase = model(**__lowercase ) # Verify word hidden states if model_size == "large": __UpperCamelCase = torch.Size((1, 42, 1024) ) __UpperCamelCase = torch.tensor( [[0.0_1_3_3, 0.0_8_6_5, 0.0_0_9_5], [0.3_0_9_3, -0.2_5_7_6, -0.7_4_1_8], [-0.1_7_2_0, -0.2_1_1_7, -0.2_8_6_9]] ) else: # base __UpperCamelCase = torch.Size((1, 42, 768) ) __UpperCamelCase = torch.tensor([[0.0_0_3_7, 0.1_3_6_8, -0.0_0_9_1], [0.1_0_9_9, 0.3_3_2_9, -0.1_0_9_5], [0.0_7_6_5, 0.5_3_3_5, 0.1_1_7_9]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( F'''Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}''' ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , __lowercase , atol=1e-4 ): raise ValueError # Verify entity hidden states if model_size == "large": __UpperCamelCase = torch.Size((1, 1, 1024) ) __UpperCamelCase = torch.tensor([[0.0_4_6_6, -0.0_1_0_6, -0.0_1_7_9]] ) else: # base __UpperCamelCase = torch.Size((1, 1, 768) ) __UpperCamelCase = torch.tensor([[0.1_4_5_7, 0.1_0_4_4, 0.0_1_7_4]] ) if not (outputs.entity_last_hidden_state.shape != expected_shape): raise ValueError( F'''Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is''' F''' {expected_shape}''' ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , __lowercase , atol=1e-4 ): raise ValueError # Finally, save our PyTorch model and tokenizer print('Saving PyTorch model to {}'.format(__lowercase ) ) model.save_pretrained(__lowercase ) def lowercase__ ( __lowercase : Dict ) -> List[str]: """simple docstring""" __UpperCamelCase = {} with open(__lowercase , 'r' , encoding='utf-8' ) as f: for index, line in enumerate(__lowercase ): __UpperCamelCase , __UpperCamelCase = line.rstrip().split('\t' ) __UpperCamelCase = index return entity_vocab if __name__ == "__main__": a__ : Any =argparse.ArgumentParser() # Required parameters parser.add_argument('''--checkpoint_path''', type=str, help='''Path to a pytorch_model.bin file.''') parser.add_argument( '''--metadata_path''', default=None, type=str, help='''Path to a metadata.json file, defining the configuration.''' ) parser.add_argument( '''--entity_vocab_path''', default=None, type=str, help='''Path to an entity_vocab.tsv file, containing the entity vocabulary.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to where to dump the output PyTorch model.''' ) parser.add_argument( '''--model_size''', default='''base''', type=str, choices=['''base''', '''large'''], help='''Size of the model to be converted.''' ) a__ : str =parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
53
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) UpperCAmelCase__ = { "configuration_roberta_prelayernorm": [ "ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP", "RobertaPreLayerNormConfig", "RobertaPreLayerNormOnnxConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST", "RobertaPreLayerNormForCausalLM", "RobertaPreLayerNormForMaskedLM", "RobertaPreLayerNormForMultipleChoice", "RobertaPreLayerNormForQuestionAnswering", "RobertaPreLayerNormForSequenceClassification", "RobertaPreLayerNormForTokenClassification", "RobertaPreLayerNormModel", "RobertaPreLayerNormPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST", "TFRobertaPreLayerNormForCausalLM", "TFRobertaPreLayerNormForMaskedLM", "TFRobertaPreLayerNormForMultipleChoice", "TFRobertaPreLayerNormForQuestionAnswering", "TFRobertaPreLayerNormForSequenceClassification", "TFRobertaPreLayerNormForTokenClassification", "TFRobertaPreLayerNormMainLayer", "TFRobertaPreLayerNormModel", "TFRobertaPreLayerNormPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "FlaxRobertaPreLayerNormForCausalLM", "FlaxRobertaPreLayerNormForMaskedLM", "FlaxRobertaPreLayerNormForMultipleChoice", "FlaxRobertaPreLayerNormForQuestionAnswering", "FlaxRobertaPreLayerNormForSequenceClassification", "FlaxRobertaPreLayerNormForTokenClassification", "FlaxRobertaPreLayerNormModel", "FlaxRobertaPreLayerNormPreTrainedModel", ] if TYPE_CHECKING: from .configuration_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaPreLayerNormConfig, RobertaPreLayerNormOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaPreLayerNormForCausalLM, RobertaPreLayerNormForMaskedLM, RobertaPreLayerNormForMultipleChoice, RobertaPreLayerNormForQuestionAnswering, RobertaPreLayerNormForSequenceClassification, RobertaPreLayerNormForTokenClassification, RobertaPreLayerNormModel, RobertaPreLayerNormPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta_prelayernorm import ( TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaPreLayerNormForCausalLM, TFRobertaPreLayerNormForMaskedLM, TFRobertaPreLayerNormForMultipleChoice, TFRobertaPreLayerNormForQuestionAnswering, TFRobertaPreLayerNormForSequenceClassification, TFRobertaPreLayerNormForTokenClassification, TFRobertaPreLayerNormMainLayer, TFRobertaPreLayerNormModel, TFRobertaPreLayerNormPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormPreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
360
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class lowercase_ ( lowercase ): '''simple docstring''' __snake_case = ['''image_processor''', '''tokenizer'''] __snake_case = '''CLIPImageProcessor''' __snake_case = ('''CLIPTokenizer''', '''CLIPTokenizerFast''') def __init__( self : Dict , __UpperCAmelCase : str=None , __UpperCAmelCase : Optional[Any]=None , **__UpperCAmelCase : Optional[Any] ) ->List[str]: """simple docstring""" a = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , __UpperCAmelCase , ) a = kwargs.pop('''feature_extractor''' ) a = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(__UpperCAmelCase , __UpperCAmelCase ) def __call__( self : List[str] , __UpperCAmelCase : Any=None , __UpperCAmelCase : Dict=None , __UpperCAmelCase : Any=None , **__UpperCAmelCase : str ) ->Optional[Any]: """simple docstring""" if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: a = self.tokenizer(__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase ) if images is not None: a = self.image_processor(__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase ) if text is not None and images is not None: a = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__UpperCAmelCase ) , tensor_type=__UpperCAmelCase ) def __lowerCAmelCase ( self : Tuple , *__UpperCAmelCase : List[str] , **__UpperCAmelCase : Union[str, Any] ) ->Union[str, Any]: """simple docstring""" return self.tokenizer.batch_decode(*__UpperCAmelCase , **__UpperCAmelCase ) def __lowerCAmelCase ( self : Tuple , *__UpperCAmelCase : str , **__UpperCAmelCase : Tuple ) ->Any: """simple docstring""" return self.tokenizer.decode(*__UpperCAmelCase , **__UpperCAmelCase ) @property def __lowerCAmelCase ( self : int ) ->List[str]: """simple docstring""" a = self.tokenizer.model_input_names a = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def __lowerCAmelCase ( self : Optional[int] ) ->List[str]: """simple docstring""" warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , __UpperCAmelCase , ) return self.image_processor_class @property def __lowerCAmelCase ( self : Union[str, Any] ) ->Optional[int]: """simple docstring""" warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , __UpperCAmelCase , ) return self.image_processor
26
0
import os def __A ( ) -> List[str]: a = os.path.dirname(os.path.realpath(__lowerCamelCase ) ) a = os.path.join(__lowerCamelCase , """triangle.txt""" ) with open(__lowerCamelCase ) as f: a = f.readlines() a = [] for line in triangle: a = [] for number in line.strip().split(""" """ ): numbers_from_line.append(int(__lowerCamelCase ) ) a.append(__lowerCamelCase ) for i in range(1 , len(__lowerCamelCase ) ): for j in range(len(a[i] ) ): a = a[i - 1][j] if j != len(a[i - 1] ) else 0 a = a[i - 1][j - 1] if j > 0 else 0 a[i][j] += max(__lowerCamelCase , __lowerCamelCase ) return max(a[-1] ) if __name__ == "__main__": print(solution())
228
def __A ( __lowerCamelCase ) -> int: a = 0 while num > 0: digit_sum += num % 10 num //= 10 return digit_sum def __A ( __lowerCamelCase = 100 ) -> int: a = 1 a = 2 for i in range(2 , max_n + 1 ): a = pre_numerator a = 2 * i // 3 if i % 3 == 0 else 1 a = cur_numerator a = e_cont * pre_numerator + temp return sum_digits(__lowerCamelCase ) if __name__ == "__main__": print(F'{solution() = }')
228
1
"""simple docstring""" import warnings from ...utils import logging from .image_processing_deformable_detr import DeformableDetrImageProcessor _lowercase : List[str] = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ): '''simple docstring''' def __init__( self : Dict, *lowerCamelCase : Union[str, Any], **lowerCamelCase : List[Any] )-> None: warnings.warn( '''The class DeformableDetrFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use DeformableDetrImageProcessor instead.''', lowerCamelCase, ) super().__init__(*lowerCamelCase, **lowerCamelCase )
272
"""simple docstring""" from collections import defaultdict class __SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : Union[str, Any], lowerCamelCase : List[Any], lowerCamelCase : List[str] )-> Optional[int]: lowerCamelCase__ : List[Any] =total # total no of tasks (N) # DP table will have a dimension of (2^M)*N # initially all values are set to -1 lowerCamelCase__ : Optional[Any] =[ [-1 for i in range(total + 1 )] for j in range(2 ** len(lowerCamelCase ) ) ] lowerCamelCase__ : Any =defaultdict(lowerCamelCase ) # stores the list of persons for each task # final_mask is used to check if all persons are included by setting all bits # to 1 lowerCamelCase__ : List[Any] =(1 << len(lowerCamelCase )) - 1 def snake_case ( self : int, lowerCamelCase : str, lowerCamelCase : Any )-> Any: # if mask == self.finalmask all persons are distributed tasks, return 1 if mask == self.final_mask: return 1 # if not everyone gets the task and no more tasks are available, return 0 if task_no > self.total_tasks: return 0 # if case already considered if self.dp[mask][task_no] != -1: return self.dp[mask][task_no] # Number of ways when we don't this task in the arrangement lowerCamelCase__ : Optional[int] =self.count_ways_until(lowerCamelCase, task_no + 1 ) # now assign the tasks one by one to all possible persons and recursively # assign for the remaining tasks. if task_no in self.task: for p in self.task[task_no]: # if p is already given a task if mask & (1 << p): continue # assign this task to p and change the mask value. And recursively # assign tasks with the new mask value. total_ways_util += self.count_ways_until(mask | (1 << p), task_no + 1 ) # save the value. lowerCamelCase__ : int =total_ways_util return self.dp[mask][task_no] def snake_case ( self : Dict, lowerCamelCase : Dict )-> int: # Store the list of persons for each task for i in range(len(lowerCamelCase ) ): for j in task_performed[i]: self.task[j].append(lowerCamelCase ) # call the function to fill the DP table, final answer is stored in dp[0][1] return self.count_ways_until(0, 1 ) if __name__ == "__main__": _lowercase : Tuple = 5 # total no of tasks (the value of N) # the list of tasks that can be done by M persons. _lowercase : Dict = [[1, 3, 4], [1, 2, 5], [3, 4]] print( AssignmentUsingBitmask(task_performed, total_tasks).count_no_of_ways( task_performed ) )
272
1
'''simple docstring''' import pytest from datasets.splits import SplitDict, SplitInfo from datasets.utils.py_utils import asdict @pytest.mark.parametrize( "split_dict" , [ SplitDict(), SplitDict({"train": SplitInfo(name="train" , num_bytes=1337 , num_examples=42 , dataset_name="my_dataset" )} ), SplitDict({"train": SplitInfo(name="train" , num_bytes=1337 , num_examples=42 )} ), SplitDict({"train": SplitInfo()} ), ] , ) def UpperCAmelCase_ ( __lowercase : SplitDict ) -> int: '''simple docstring''' _UpperCAmelCase = split_dict._to_yaml_list() assert len(__lowercase ) == len(__lowercase ) _UpperCAmelCase = SplitDict._from_yaml_list(__lowercase ) for split_name, split_info in split_dict.items(): # dataset_name field is deprecated, and is therefore not part of the YAML dump _UpperCAmelCase = None # the split name of split_dict takes over the name of the split info object _UpperCAmelCase = split_name assert split_dict == reloaded @pytest.mark.parametrize( "split_info" , [SplitInfo(), SplitInfo(dataset_name=__lowercase ), SplitInfo(dataset_name="my_dataset" )] ) def UpperCAmelCase_ ( __lowercase : List[Any] ) -> Dict: '''simple docstring''' _UpperCAmelCase = asdict(SplitDict({"train": split_info} ) ) assert "dataset_name" in split_dict_asdict["train"] assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name
22
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DetrConfig, DetrForObjectDetection, DetrForSegmentation, DetrImageProcessor, ResNetConfig from transformers.utils import logging logging.set_verbosity_info() a_ = logging.get_logger(__name__) def lowerCamelCase__ ( _a): # initialize config if "resnet-50" in model_name: SCREAMING_SNAKE_CASE : int = ResNetConfig.from_pretrained("microsoft/resnet-50") elif "resnet-101" in model_name: SCREAMING_SNAKE_CASE : int = ResNetConfig.from_pretrained("microsoft/resnet-101") else: raise ValueError("Model name should include either resnet50 or resnet101") SCREAMING_SNAKE_CASE : str = DetrConfig(use_timm_backbone=_a , backbone_config=_a) # set label attributes SCREAMING_SNAKE_CASE : List[str] = "panoptic" in model_name if is_panoptic: SCREAMING_SNAKE_CASE : Union[str, Any] = 250 else: SCREAMING_SNAKE_CASE : Union[str, Any] = 91 SCREAMING_SNAKE_CASE : str = "huggingface/label-files" SCREAMING_SNAKE_CASE : Union[str, Any] = "coco-detection-id2label.json" SCREAMING_SNAKE_CASE : Optional[Any] = json.load(open(hf_hub_download(_a , _a , repo_type="dataset") , "r")) SCREAMING_SNAKE_CASE : int = {int(_a): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE : List[Any] = idalabel SCREAMING_SNAKE_CASE : List[Any] = {v: k for k, v in idalabel.items()} return config, is_panoptic def lowerCamelCase__ ( _a): # here we list all keys to be renamed (original name on the left, our name on the right) SCREAMING_SNAKE_CASE : Union[str, Any] = [] # stem # fmt: off rename_keys.append(("backbone.0.body.conv1.weight", "backbone.conv_encoder.model.embedder.embedder.convolution.weight")) rename_keys.append(("backbone.0.body.bn1.weight", "backbone.conv_encoder.model.embedder.embedder.normalization.weight")) rename_keys.append(("backbone.0.body.bn1.bias", "backbone.conv_encoder.model.embedder.embedder.normalization.bias")) rename_keys.append(("backbone.0.body.bn1.running_mean", "backbone.conv_encoder.model.embedder.embedder.normalization.running_mean")) rename_keys.append(("backbone.0.body.bn1.running_var", "backbone.conv_encoder.model.embedder.embedder.normalization.running_var")) # stages for stage_idx in range(len(config.backbone_config.depths)): for layer_idx in range(config.backbone_config.depths[stage_idx]): # shortcut if layer_idx == 0: rename_keys.append( ( f"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.0.weight", f"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.convolution.weight", )) rename_keys.append( ( f"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.weight", f"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.weight", )) rename_keys.append( ( f"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.bias", f"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.bias", )) rename_keys.append( ( f"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_mean", f"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_mean", )) rename_keys.append( ( f"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_var", f"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_var", )) # 3 convs for i in range(3): rename_keys.append( ( f"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.conv{i+1}.weight", f"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.convolution.weight", )) rename_keys.append( ( f"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.weight", f"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.weight", )) rename_keys.append( ( f"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.bias", f"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.bias", )) rename_keys.append( ( f"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_mean", f"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_mean", )) rename_keys.append( ( f"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_var", f"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_var", )) # fmt: on for i in range(config.encoder_layers): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( ( f"transformer.encoder.layers.{i}.self_attn.out_proj.weight", f"encoder.layers.{i}.self_attn.out_proj.weight", )) rename_keys.append( (f"transformer.encoder.layers.{i}.self_attn.out_proj.bias", f"encoder.layers.{i}.self_attn.out_proj.bias")) rename_keys.append((f"transformer.encoder.layers.{i}.linear1.weight", f"encoder.layers.{i}.fc1.weight")) rename_keys.append((f"transformer.encoder.layers.{i}.linear1.bias", f"encoder.layers.{i}.fc1.bias")) rename_keys.append((f"transformer.encoder.layers.{i}.linear2.weight", f"encoder.layers.{i}.fc2.weight")) rename_keys.append((f"transformer.encoder.layers.{i}.linear2.bias", f"encoder.layers.{i}.fc2.bias")) rename_keys.append( (f"transformer.encoder.layers.{i}.norm1.weight", f"encoder.layers.{i}.self_attn_layer_norm.weight")) rename_keys.append( (f"transformer.encoder.layers.{i}.norm1.bias", f"encoder.layers.{i}.self_attn_layer_norm.bias")) rename_keys.append( (f"transformer.encoder.layers.{i}.norm2.weight", f"encoder.layers.{i}.final_layer_norm.weight")) rename_keys.append((f"transformer.encoder.layers.{i}.norm2.bias", f"encoder.layers.{i}.final_layer_norm.bias")) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( ( f"transformer.decoder.layers.{i}.self_attn.out_proj.weight", f"decoder.layers.{i}.self_attn.out_proj.weight", )) rename_keys.append( (f"transformer.decoder.layers.{i}.self_attn.out_proj.bias", f"decoder.layers.{i}.self_attn.out_proj.bias")) rename_keys.append( ( f"transformer.decoder.layers.{i}.multihead_attn.out_proj.weight", f"decoder.layers.{i}.encoder_attn.out_proj.weight", )) rename_keys.append( ( f"transformer.decoder.layers.{i}.multihead_attn.out_proj.bias", f"decoder.layers.{i}.encoder_attn.out_proj.bias", )) rename_keys.append((f"transformer.decoder.layers.{i}.linear1.weight", f"decoder.layers.{i}.fc1.weight")) rename_keys.append((f"transformer.decoder.layers.{i}.linear1.bias", f"decoder.layers.{i}.fc1.bias")) rename_keys.append((f"transformer.decoder.layers.{i}.linear2.weight", f"decoder.layers.{i}.fc2.weight")) rename_keys.append((f"transformer.decoder.layers.{i}.linear2.bias", f"decoder.layers.{i}.fc2.bias")) rename_keys.append( (f"transformer.decoder.layers.{i}.norm1.weight", f"decoder.layers.{i}.self_attn_layer_norm.weight")) rename_keys.append( (f"transformer.decoder.layers.{i}.norm1.bias", f"decoder.layers.{i}.self_attn_layer_norm.bias")) rename_keys.append( (f"transformer.decoder.layers.{i}.norm2.weight", f"decoder.layers.{i}.encoder_attn_layer_norm.weight")) rename_keys.append( (f"transformer.decoder.layers.{i}.norm2.bias", f"decoder.layers.{i}.encoder_attn_layer_norm.bias")) rename_keys.append( (f"transformer.decoder.layers.{i}.norm3.weight", f"decoder.layers.{i}.final_layer_norm.weight")) rename_keys.append((f"transformer.decoder.layers.{i}.norm3.bias", f"decoder.layers.{i}.final_layer_norm.bias")) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ("input_proj.weight", "input_projection.weight"), ("input_proj.bias", "input_projection.bias"), ("query_embed.weight", "query_position_embeddings.weight"), ("transformer.decoder.norm.weight", "decoder.layernorm.weight"), ("transformer.decoder.norm.bias", "decoder.layernorm.bias"), ("class_embed.weight", "class_labels_classifier.weight"), ("class_embed.bias", "class_labels_classifier.bias"), ("bbox_embed.layers.0.weight", "bbox_predictor.layers.0.weight"), ("bbox_embed.layers.0.bias", "bbox_predictor.layers.0.bias"), ("bbox_embed.layers.1.weight", "bbox_predictor.layers.1.weight"), ("bbox_embed.layers.1.bias", "bbox_predictor.layers.1.bias"), ("bbox_embed.layers.2.weight", "bbox_predictor.layers.2.weight"), ("bbox_embed.layers.2.bias", "bbox_predictor.layers.2.bias"), ]) return rename_keys def lowerCamelCase__ ( _a , _a , _a): SCREAMING_SNAKE_CASE : str = state_dict.pop(_a) SCREAMING_SNAKE_CASE : int = val def lowerCamelCase__ ( _a , _a=False): SCREAMING_SNAKE_CASE : Optional[Any] = "" if is_panoptic: SCREAMING_SNAKE_CASE : Optional[int] = "detr." # first: transformer encoder for i in range(6): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) SCREAMING_SNAKE_CASE : List[str] = state_dict.pop(f"{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight") SCREAMING_SNAKE_CASE : Optional[int] = state_dict.pop(f"{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias") # next, add query, keys and values (in that order) to the state dict SCREAMING_SNAKE_CASE : Union[str, Any] = in_proj_weight[:256, :] SCREAMING_SNAKE_CASE : int = in_proj_bias[:256] SCREAMING_SNAKE_CASE : Tuple = in_proj_weight[256:512, :] SCREAMING_SNAKE_CASE : List[Any] = in_proj_bias[256:512] SCREAMING_SNAKE_CASE : str = in_proj_weight[-256:, :] SCREAMING_SNAKE_CASE : Optional[Any] = in_proj_bias[-256:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6): # read in weights + bias of input projection layer of self-attention SCREAMING_SNAKE_CASE : List[str] = state_dict.pop(f"{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight") SCREAMING_SNAKE_CASE : str = state_dict.pop(f"{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias") # next, add query, keys and values (in that order) to the state dict SCREAMING_SNAKE_CASE : Union[str, Any] = in_proj_weight[:256, :] SCREAMING_SNAKE_CASE : Dict = in_proj_bias[:256] SCREAMING_SNAKE_CASE : List[Any] = in_proj_weight[256:512, :] SCREAMING_SNAKE_CASE : Any = in_proj_bias[256:512] SCREAMING_SNAKE_CASE : Optional[int] = in_proj_weight[-256:, :] SCREAMING_SNAKE_CASE : Union[str, Any] = in_proj_bias[-256:] # read in weights + bias of input projection layer of cross-attention SCREAMING_SNAKE_CASE : Optional[Any] = state_dict.pop( f"{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight") SCREAMING_SNAKE_CASE : int = state_dict.pop(f"{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias") # next, add query, keys and values (in that order) of cross-attention to the state dict SCREAMING_SNAKE_CASE : Tuple = in_proj_weight_cross_attn[:256, :] SCREAMING_SNAKE_CASE : Union[str, Any] = in_proj_bias_cross_attn[:256] SCREAMING_SNAKE_CASE : Optional[Any] = in_proj_weight_cross_attn[256:512, :] SCREAMING_SNAKE_CASE : Dict = in_proj_bias_cross_attn[256:512] SCREAMING_SNAKE_CASE : Optional[int] = in_proj_weight_cross_attn[-256:, :] SCREAMING_SNAKE_CASE : Union[str, Any] = in_proj_bias_cross_attn[-256:] def lowerCamelCase__ ( ): SCREAMING_SNAKE_CASE : Tuple = "http://images.cocodataset.org/val2017/000000039769.jpg" SCREAMING_SNAKE_CASE : Union[str, Any] = Image.open(requests.get(_a , stream=_a).raw) return im @torch.no_grad() def lowerCamelCase__ ( _a , _a=None , _a=False): SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Optional[int] = get_detr_config(_a) # load original model from torch hub SCREAMING_SNAKE_CASE : Union[str, Any] = { "detr-resnet-50": "detr_resnet50", "detr-resnet-101": "detr_resnet101", } logger.info(f"Converting model {model_name}...") SCREAMING_SNAKE_CASE : Optional[int] = torch.hub.load("facebookresearch/detr" , model_name_to_original_name[model_name] , pretrained=_a).eval() SCREAMING_SNAKE_CASE : Tuple = detr.state_dict() # rename keys for src, dest in create_rename_keys(_a): if is_panoptic: SCREAMING_SNAKE_CASE : List[str] = "detr." + src rename_key(_a , _a , _a) # query, key and value matrices need special treatment read_in_q_k_v(_a , is_panoptic=_a) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them SCREAMING_SNAKE_CASE : List[Any] = "detr.model." if is_panoptic else "model." for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith("detr") and not key.startswith("class_labels_classifier") and not key.startswith("bbox_predictor") ): SCREAMING_SNAKE_CASE : Optional[int] = state_dict.pop(_a) SCREAMING_SNAKE_CASE : Union[str, Any] = val elif "class_labels_classifier" in key or "bbox_predictor" in key: SCREAMING_SNAKE_CASE : Union[str, Any] = state_dict.pop(_a) SCREAMING_SNAKE_CASE : Optional[int] = val elif key.startswith("bbox_attention") or key.startswith("mask_head"): continue else: SCREAMING_SNAKE_CASE : Optional[Any] = state_dict.pop(_a) SCREAMING_SNAKE_CASE : List[Any] = val else: if not key.startswith("class_labels_classifier") and not key.startswith("bbox_predictor"): SCREAMING_SNAKE_CASE : Any = state_dict.pop(_a) SCREAMING_SNAKE_CASE : Any = val # finally, create HuggingFace model and load state dict SCREAMING_SNAKE_CASE : int = DetrForSegmentation(_a) if is_panoptic else DetrForObjectDetection(_a) model.load_state_dict(_a) model.eval() # verify our conversion on an image SCREAMING_SNAKE_CASE : int = "coco_panoptic" if is_panoptic else "coco_detection" SCREAMING_SNAKE_CASE : Optional[int] = DetrImageProcessor(format=_a) SCREAMING_SNAKE_CASE : List[str] = processor(images=prepare_img() , return_tensors="pt") SCREAMING_SNAKE_CASE : Any = encoding["pixel_values"] SCREAMING_SNAKE_CASE : Optional[Any] = detr(_a) SCREAMING_SNAKE_CASE : Any = model(_a) assert torch.allclose(outputs.logits , original_outputs["pred_logits"] , atol=1E-3) assert torch.allclose(outputs.pred_boxes , original_outputs["pred_boxes"] , atol=1E-3) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs["pred_masks"] , atol=1E-4) print("Looks ok!") if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(f"Saving PyTorch model and image processor to {pytorch_dump_folder_path}...") Path(_a).mkdir(exist_ok=_a) model.save_pretrained(_a) processor.save_pretrained(_a) if push_to_hub: # Upload model and image processor to the hub logger.info("Uploading PyTorch model and image processor to the hub...") model.push_to_hub(f"nielsr/{model_name}") processor.push_to_hub(f"nielsr/{model_name}") if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument( '--model_name', default='detr-resnet-50', type=str, choices=['detr-resnet-50', 'detr-resnet-101'], help='Name of the DETR model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) parser.add_argument('--push_to_hub', action='store_true', help='Whether to push the model to the hub or not.') a_ = parser.parse_args() convert_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
76
0
'''simple docstring''' import numpy as np from sklearn.datasets import fetch_california_housing from sklearn.metrics import mean_absolute_error, mean_squared_error from sklearn.model_selection import train_test_split from xgboost import XGBRegressor def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : dict ): '''simple docstring''' return (data["data"], data["target"]) def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : np.ndarray , SCREAMING_SNAKE_CASE__ : np.ndarray , SCREAMING_SNAKE_CASE__ : np.ndarray ): '''simple docstring''' UpperCAmelCase__ = XGBRegressor(verbosity=0 , random_state=42 ) xgb.fit(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Predict target for test data UpperCAmelCase__ = xgb.predict(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = predictions.reshape(len(SCREAMING_SNAKE_CASE__ ) , 1 ) return predictions def _UpperCamelCase ( ): '''simple docstring''' UpperCAmelCase__ = fetch_california_housing() UpperCAmelCase__ , UpperCAmelCase__ = data_handling(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = train_test_split( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , test_size=0.25 , random_state=1 ) UpperCAmelCase__ = xgboost(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Error printing print(F'''Mean Absolute Error : {mean_absolute_error(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )}''' ) print(F'''Mean Square Error : {mean_squared_error(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )}''' ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
61
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { 'microsoft/cvt-13': 'https://huggingface.co/microsoft/cvt-13/resolve/main/config.json', # See all Cvt models at https://huggingface.co/models?filter=cvt } class lowerCAmelCase_ ( lowerCamelCase_ ): '''simple docstring''' lowerCAmelCase_ : List[str] = """cvt""" def __init__( self : List[Any] , _UpperCAmelCase : List[Any]=3 , _UpperCAmelCase : int=[7, 3, 3] , _UpperCAmelCase : Optional[Any]=[4, 2, 2] , _UpperCAmelCase : List[Any]=[2, 1, 1] , _UpperCAmelCase : Optional[int]=[64, 1_92, 3_84] , _UpperCAmelCase : Any=[1, 3, 6] , _UpperCAmelCase : Tuple=[1, 2, 10] , _UpperCAmelCase : Union[str, Any]=[4.0, 4.0, 4.0] , _UpperCAmelCase : Optional[int]=[0.0, 0.0, 0.0] , _UpperCAmelCase : Dict=[0.0, 0.0, 0.0] , _UpperCAmelCase : Dict=[0.0, 0.0, 0.1] , _UpperCAmelCase : Optional[int]=[True, True, True] , _UpperCAmelCase : Dict=[False, False, True] , _UpperCAmelCase : Dict=["dw_bn", "dw_bn", "dw_bn"] , _UpperCAmelCase : int=[3, 3, 3] , _UpperCAmelCase : Optional[int]=[1, 1, 1] , _UpperCAmelCase : List[Any]=[2, 2, 2] , _UpperCAmelCase : Union[str, Any]=[1, 1, 1] , _UpperCAmelCase : str=[1, 1, 1] , _UpperCAmelCase : Dict=0.02 , _UpperCAmelCase : Dict=1E-12 , **_UpperCAmelCase : Any , ): """simple docstring""" super().__init__(**_UpperCAmelCase ) UpperCAmelCase__ = num_channels UpperCAmelCase__ = patch_sizes UpperCAmelCase__ = patch_stride UpperCAmelCase__ = patch_padding UpperCAmelCase__ = embed_dim UpperCAmelCase__ = num_heads UpperCAmelCase__ = depth UpperCAmelCase__ = mlp_ratio UpperCAmelCase__ = attention_drop_rate UpperCAmelCase__ = drop_rate UpperCAmelCase__ = drop_path_rate UpperCAmelCase__ = qkv_bias UpperCAmelCase__ = cls_token UpperCAmelCase__ = qkv_projection_method UpperCAmelCase__ = kernel_qkv UpperCAmelCase__ = padding_kv UpperCAmelCase__ = stride_kv UpperCAmelCase__ = padding_q UpperCAmelCase__ = stride_q UpperCAmelCase__ = initializer_range UpperCAmelCase__ = layer_norm_eps
61
1
from . import ( albert, align, altclip, audio_spectrogram_transformer, auto, autoformer, bark, bart, barthez, bartpho, beit, bert, bert_generation, bert_japanese, bertweet, big_bird, bigbird_pegasus, biogpt, bit, blenderbot, blenderbot_small, blip, blip_a, bloom, bridgetower, byta, camembert, canine, chinese_clip, clap, clip, clipseg, codegen, conditional_detr, convbert, convnext, convnextva, cpm, cpmant, ctrl, cvt, dataavec, deberta, deberta_va, decision_transformer, deformable_detr, deit, deprecated, deta, detr, dialogpt, dinat, distilbert, dit, donut, dpr, dpt, efficientformer, efficientnet, electra, encodec, encoder_decoder, ernie, ernie_m, esm, falcon, flaubert, flava, fnet, focalnet, fsmt, funnel, git, glpn, gpta, gpt_bigcode, gpt_neo, gpt_neox, gpt_neox_japanese, gpt_swa, gptj, gptsan_japanese, graphormer, groupvit, herbert, hubert, ibert, imagegpt, informer, instructblip, jukebox, layoutlm, layoutlmva, layoutlmva, layoutxlm, led, levit, lilt, llama, longformer, longta, luke, lxmert, mam_aaa, marian, markuplm, maskaformer, maskformer, mbart, mbartaa, mega, megatron_bert, megatron_gpta, mgp_str, mluke, mobilebert, mobilenet_va, mobilenet_va, mobilevit, mobilevitva, mpnet, mra, mta, musicgen, mvp, nat, nezha, nllb, nllb_moe, nystromformer, oneformer, open_llama, openai, opt, owlvit, pegasus, pegasus_x, perceiver, phobert, pixastruct, plbart, poolformer, prophetnet, qdqbert, rag, realm, reformer, regnet, rembert, resnet, roberta, roberta_prelayernorm, roc_bert, roformer, rwkv, sam, segformer, sew, sew_d, speech_encoder_decoder, speech_to_text, speech_to_text_a, speechta, splinter, squeezebert, swiftformer, swin, swinasr, swinva, switch_transformers, ta, table_transformer, tapas, time_series_transformer, timesformer, timm_backbone, transfo_xl, trocr, tvlt, umta, unispeech, unispeech_sat, upernet, videomae, vilt, vision_encoder_decoder, vision_text_dual_encoder, visual_bert, vit, vit_hybrid, vit_mae, vit_msn, vivit, wavaveca, wavaveca_conformer, wavaveca_phoneme, wavaveca_with_lm, wavlm, whisper, x_clip, xglm, xlm, xlm_prophetnet, xlm_roberta, xlm_roberta_xl, xlnet, xmod, yolos, yoso, )
59
from .configuration_bert_masked import MaskedBertConfig from .modeling_bert_masked import ( MaskedBertForMultipleChoice, MaskedBertForQuestionAnswering, MaskedBertForSequenceClassification, MaskedBertForTokenClassification, MaskedBertModel, ) from .modules import *
207
0
from __future__ import annotations import unittest from transformers import DistilBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.distilbert.modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertModel, ) class _snake_case : def __init__( self , _lowerCamelCase , ): a :str = parent a :Any = 13 a :Any = 7 a :str = True a :Union[str, Any] = True a :Tuple = False a :Optional[int] = True a :List[str] = 99 a :Optional[int] = 32 a :str = 2 a :Tuple = 4 a :str = 37 a :List[str] = '''gelu''' a :Dict = 0.1 a :Optional[int] = 0.1 a :Dict = 512 a :int = 16 a :Any = 2 a :Any = 0.02 a :Union[str, Any] = 3 a :Any = 4 a :Any = None def SCREAMING_SNAKE_CASE__ ( self ): a :Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) a :List[Any] = None if self.use_input_mask: a :Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) a :Tuple = None a :Union[str, Any] = None a :List[Any] = None if self.use_labels: a :List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) a :Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) a :List[Any] = ids_tensor([self.batch_size] , self.num_choices ) a :List[str] = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): a :str = TFDistilBertModel(config=_lowerCamelCase ) a :Optional[Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask} a :Optional[Any] = model(_lowerCamelCase ) a :Optional[int] = [input_ids, input_mask] a :str = model(_lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): a :Optional[int] = TFDistilBertForMaskedLM(config=_lowerCamelCase ) a :Any = {'''input_ids''': input_ids, '''attention_mask''': input_mask} a :Any = model(_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): a :str = TFDistilBertForQuestionAnswering(config=_lowerCamelCase ) a :str = { '''input_ids''': input_ids, '''attention_mask''': input_mask, } a :List[Any] = model(_lowerCamelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): a :Any = self.num_labels a :str = TFDistilBertForSequenceClassification(_lowerCamelCase ) a :List[Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask} a :Dict = model(_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): a :int = self.num_choices a :Any = TFDistilBertForMultipleChoice(_lowerCamelCase ) a :Tuple = tf.tile(tf.expand_dims(_lowerCamelCase , 1 ) , (1, self.num_choices, 1) ) a :Optional[Any] = tf.tile(tf.expand_dims(_lowerCamelCase , 1 ) , (1, self.num_choices, 1) ) a :Optional[int] = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, } a :List[Any] = model(_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): a :Any = self.num_labels a :List[str] = TFDistilBertForTokenClassification(_lowerCamelCase ) a :int = {'''input_ids''': input_ids, '''attention_mask''': input_mask} a :int = model(_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self ): a :Dict = self.prepare_config_and_inputs() ((a) , (a) , (a) , (a) , (a) , (a)) :Dict = config_and_inputs a :Optional[Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class _snake_case ( _snake_case , _snake_case , unittest.TestCase ): SCREAMING_SNAKE_CASE__ = ( ( TFDistilBertModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertForMultipleChoice, ) if is_tf_available() else None ) SCREAMING_SNAKE_CASE__ = ( { 'feature-extraction': TFDistilBertModel, 'fill-mask': TFDistilBertForMaskedLM, 'question-answering': TFDistilBertForQuestionAnswering, 'text-classification': TFDistilBertForSequenceClassification, 'token-classification': TFDistilBertForTokenClassification, 'zero-shot': TFDistilBertForSequenceClassification, } if is_tf_available() else {} ) SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False def SCREAMING_SNAKE_CASE__ ( self ): a :Dict = TFDistilBertModelTester(self ) a :str = ConfigTester(self , config_class=_lowerCamelCase , dim=37 ) def SCREAMING_SNAKE_CASE__ ( self ): self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__ ( self ): a :Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*_lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self ): a :Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*_lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self ): a :Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*_lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self ): a :Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*_lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self ): a :Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*_lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self ): a :Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*_lowerCamelCase ) @slow def SCREAMING_SNAKE_CASE__ ( self ): for model_name in list(TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1] ): a :Any = TFDistilBertModel.from_pretrained(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) @require_tf class _snake_case ( unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE__ ( self ): a :str = TFDistilBertModel.from_pretrained('''distilbert-base-uncased''' ) a :Union[str, Any] = tf.constant([[0, 1, 2, 3, 4, 5]] ) a :str = model(_lowerCamelCase )[0] a :Optional[Any] = [1, 6, 768] self.assertEqual(output.shape , _lowerCamelCase ) a :List[str] = tf.constant( [ [ [0.1926_1885, -0.1373_2955, 0.411_9799], [0.2215_0156, -0.0742_2661, 0.3903_7204], [0.2275_6018, -0.089_6414, 0.370_1467], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , _lowerCamelCase , atol=1e-4 )
281
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available snake_case : Any = {'''configuration_van''': ['''VAN_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''VanConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : Union[str, Any] = [ '''VAN_PRETRAINED_MODEL_ARCHIVE_LIST''', '''VanForImageClassification''', '''VanModel''', '''VanPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_van import VAN_PRETRAINED_CONFIG_ARCHIVE_MAP, VanConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_van import ( VAN_PRETRAINED_MODEL_ARCHIVE_LIST, VanForImageClassification, VanModel, VanPreTrainedModel, ) else: import sys snake_case : Optional[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
281
1
"""simple docstring""" import enum import shutil import sys _A , _A = shutil.get_terminal_size() _A = {"""UP""": """A""", """DOWN""": """B""", """RIGHT""": """C""", """LEFT""": """D"""} class _lowerCamelCase ( enum.Enum ): _lowerCamelCase :Tuple = 0 _lowerCamelCase :Any = 1 def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase="" ) -> int: sys.stdout.write(str(snake_case_ ) + end ) sys.stdout.flush() def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase="" ) -> Optional[Any]: forceWrite(f"""\u001b[{color}m{content}\u001b[0m""" , snake_case_ ) def lowercase_ ( ) -> str: forceWrite("""\r""" ) def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase ) -> Optional[int]: forceWrite(f"""\033[{num_lines}{CURSOR_TO_CHAR[direction.upper()]}""" ) def lowercase_ ( ) -> str: forceWrite(""" """ * TERMINAL_WIDTH ) reset_cursor() def lowercase_ ( ) -> int: reset_cursor() forceWrite("""-""" * TERMINAL_WIDTH )
242
import argparse import torch from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() _snake_case = logging.get_logger(__name__) _snake_case = [ ["attention", "attn"], ["encoder_attention", "encoder_attn"], ["q_lin", "q_proj"], ["k_lin", "k_proj"], ["v_lin", "v_proj"], ["out_lin", "out_proj"], ["norm_embeddings", "layernorm_embedding"], ["position_embeddings", "embed_positions"], ["embeddings", "embed_tokens"], ["ffn.lin", "fc"], ] def lowerCAmelCase_ ( snake_case_ ): if k == "embeddings.weight": return "shared.weight" for parlai_name, hf_name in PATTERNS: _A : str = k.replace(snake_case_,snake_case_ ) if k.startswith("""encoder""" ): _A : Optional[Any] = k.replace(""".attn""",""".self_attn""" ) _A : Dict = k.replace("""norm1""","""self_attn_layer_norm""" ) _A : Optional[Any] = k.replace("""norm2""","""final_layer_norm""" ) elif k.startswith("""decoder""" ): _A : str = k.replace("""norm1""","""self_attn_layer_norm""" ) _A : Any = k.replace("""norm2""","""encoder_attn_layer_norm""" ) _A : Optional[int] = k.replace("""norm3""","""final_layer_norm""" ) return k def lowerCAmelCase_ ( snake_case_ ): _A : List[Any] = [ """model.encoder.layernorm_embedding.weight""", """model.encoder.layernorm_embedding.bias""", """model.decoder.layernorm_embedding.weight""", """model.decoder.layernorm_embedding.bias""", ] for k in keys: _A : str = sd.pop(snake_case_ ) _A : Optional[int] = k.replace("""layernorm_embedding""","""layer_norm""" ) assert new_k not in sd _A : Optional[int] = v _snake_case = ["START"] @torch.no_grad() def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ): _A : Tuple = torch.load(snake_case_,map_location="""cpu""" ) _A : List[Any] = model["""model"""] _A : Optional[Any] = BlenderbotConfig.from_json_file(snake_case_ ) _A : List[str] = BlenderbotForConditionalGeneration(snake_case_ ) _A : Tuple = m.model.state_dict().keys() _A : Any = [] _A : Dict = {} for k, v in sd.items(): if k in IGNORE_KEYS: continue _A : Optional[int] = rename_state_dict_key(snake_case_ ) if new_k not in valid_keys: failures.append([k, new_k] ) else: _A : Dict = v if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm rename_layernorm_keys(snake_case_ ) m.model.load_state_dict(snake_case_,strict=snake_case_ ) m.half() m.save_pretrained(snake_case_ ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument("--src_path", type=str, help="like blenderbot-model.bin") parser.add_argument("--save_dir", default="hf_blenderbot", type=str, help="Where to save converted model.") parser.add_argument( "--hf_config_json", default="blenderbot-3b-config.json", type=str, help="Path to config to use" ) _snake_case = parser.parse_args() convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
26
0
import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler lowerCAmelCase : List[str] = 16 lowerCAmelCase : Optional[int] = 32 def A_ ( _UpperCAmelCase , _UpperCAmelCase = 16 , _UpperCAmelCase = "bert-base-cased" ): SCREAMING_SNAKE_CASE_: Tuple = AutoTokenizer.from_pretrained(_a ) SCREAMING_SNAKE_CASE_: Optional[Any] = load_dataset("glue" , "mrpc" ) def tokenize_function(_UpperCAmelCase ): # max_length=None => use the model max length (it's actually the default) SCREAMING_SNAKE_CASE_: List[str] = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=_a , max_length=_a ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset SCREAMING_SNAKE_CASE_: Dict = datasets.map( _a , batched=_a , remove_columns=["idx", "sentence1", "sentence2"] , load_from_cache_file=_a ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library SCREAMING_SNAKE_CASE_: Optional[int] = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(_UpperCAmelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(_a , padding="max_length" , max_length=1_28 , return_tensors="pt" ) return tokenizer.pad(_a , padding="longest" , return_tensors="pt" ) # Instantiate dataloaders. SCREAMING_SNAKE_CASE_: Dict = DataLoader( tokenized_datasets["train"] , shuffle=_a , collate_fn=_a , batch_size=_a ) SCREAMING_SNAKE_CASE_: Tuple = DataLoader( tokenized_datasets["validation"] , shuffle=_a , collate_fn=_a , batch_size=_a ) return train_dataloader, eval_dataloader def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): model.eval() SCREAMING_SNAKE_CASE_: Any = 0 for step, batch in enumerate(_a ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): SCREAMING_SNAKE_CASE_: Any = model(**_a ) SCREAMING_SNAKE_CASE_: Any = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Dict = accelerator.gather( (predictions, batch["labels"]) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(_a ) - 1: SCREAMING_SNAKE_CASE_: List[str] = predictions[: len(eval_dataloader.dataset ) - samples_seen] SCREAMING_SNAKE_CASE_: List[Any] = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=_a , references=_a , ) SCREAMING_SNAKE_CASE_: Tuple = metric.compute() return eval_metric["accuracy"] def A_ ( _UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: int = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs SCREAMING_SNAKE_CASE_: Any = config["lr"] SCREAMING_SNAKE_CASE_: str = int(config["num_epochs"] ) SCREAMING_SNAKE_CASE_: List[Any] = int(config["seed"] ) SCREAMING_SNAKE_CASE_: Any = int(config["batch_size"] ) SCREAMING_SNAKE_CASE_: List[str] = args.model_name_or_path set_seed(_a ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Union[str, Any] = get_dataloaders(_a , _a , _a ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) SCREAMING_SNAKE_CASE_: Tuple = AutoModelForSequenceClassification.from_pretrained(_a , return_dict=_a ) # Instantiate optimizer SCREAMING_SNAKE_CASE_: Union[str, Any] = ( AdamW if accelerator.state.deepspeed_plugin is None or "optimizer" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) SCREAMING_SNAKE_CASE_: List[str] = optimizer_cls(params=model.parameters() , lr=_a ) if accelerator.state.deepspeed_plugin is not None: SCREAMING_SNAKE_CASE_: Optional[Any] = accelerator.state.deepspeed_plugin.deepspeed_config[ "gradient_accumulation_steps" ] else: SCREAMING_SNAKE_CASE_: int = 1 SCREAMING_SNAKE_CASE_: Optional[int] = (len(_a ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): SCREAMING_SNAKE_CASE_: List[str] = get_linear_schedule_with_warmup( optimizer=_a , num_warmup_steps=0 , num_training_steps=_a , ) else: SCREAMING_SNAKE_CASE_: int = DummyScheduler(_a , total_num_steps=_a , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[Any] = accelerator.prepare( _a , _a , _a , _a , _a ) # We need to keep track of how many total steps we have iterated over SCREAMING_SNAKE_CASE_: List[str] = 0 # We also need to keep track of the stating epoch so files are named properly SCREAMING_SNAKE_CASE_: str = 0 SCREAMING_SNAKE_CASE_: int = evaluate.load("glue" , "mrpc" ) SCREAMING_SNAKE_CASE_: Tuple = num_epochs if args.partial_train_epoch is not None: SCREAMING_SNAKE_CASE_: str = args.partial_train_epoch if args.resume_from_checkpoint: accelerator.load_state(args.resume_from_checkpoint ) SCREAMING_SNAKE_CASE_: Dict = args.resume_from_checkpoint.split("epoch_" )[1] SCREAMING_SNAKE_CASE_: Optional[int] = "" for char in epoch_string: if char.isdigit(): state_epoch_num += char else: break SCREAMING_SNAKE_CASE_: Union[str, Any] = int(_a ) + 1 SCREAMING_SNAKE_CASE_: str = evaluation_loop(_a , _a , _a , _a ) accelerator.print("resumed checkpoint performance:" , _a ) accelerator.print("resumed checkpoint's scheduler's lr:" , lr_scheduler.get_lr()[0] ) accelerator.print("resumed optimizers's lr:" , optimizer.param_groups[0]["lr"] ) with open(os.path.join(args.output_dir , f"state_{starting_epoch-1}.json" ) , "r" ) as f: SCREAMING_SNAKE_CASE_: Dict = json.load(_a ) assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed" assert ( resumed_state["lr"] == lr_scheduler.get_lr()[0] ), "Scheduler learning rate mismatch, loading from checkpoint failed" assert ( resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"] ), "Optimizer learning rate mismatch, loading from checkpoint failed" assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed" return # Now we train the model SCREAMING_SNAKE_CASE_: List[str] = {} for epoch in range(_a , _a ): model.train() for step, batch in enumerate(_a ): SCREAMING_SNAKE_CASE_: Optional[int] = model(**_a ) SCREAMING_SNAKE_CASE_: List[str] = outputs.loss SCREAMING_SNAKE_CASE_: str = loss / gradient_accumulation_steps accelerator.backward(_a ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 SCREAMING_SNAKE_CASE_: Any = f"epoch_{epoch}" SCREAMING_SNAKE_CASE_: Union[str, Any] = os.path.join(args.output_dir , _a ) accelerator.save_state(_a ) SCREAMING_SNAKE_CASE_: Dict = evaluation_loop(_a , _a , _a , _a ) SCREAMING_SNAKE_CASE_: str = accuracy SCREAMING_SNAKE_CASE_: Any = lr_scheduler.get_lr()[0] SCREAMING_SNAKE_CASE_: Tuple = optimizer.param_groups[0]["lr"] SCREAMING_SNAKE_CASE_: Tuple = epoch SCREAMING_SNAKE_CASE_: Tuple = overall_step accelerator.print(f"epoch {epoch}:" , _a ) accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , f"state_{epoch}.json" ) , "w" ) as f: json.dump(_a , _a ) def A_ ( ): SCREAMING_SNAKE_CASE_: Optional[Any] = argparse.ArgumentParser(description="Simple example of training script tracking peak GPU memory usage." ) parser.add_argument( "--model_name_or_path" , type=_a , default="bert-base-cased" , help="Path to pretrained model or model identifier from huggingface.co/models." , required=_a , ) parser.add_argument( "--output_dir" , type=_a , default="." , help="Optional save directory where all checkpoint folders will be stored. Default is the current working directory." , ) parser.add_argument( "--resume_from_checkpoint" , type=_a , default=_a , help="If the training should continue from a checkpoint folder." , ) parser.add_argument( "--partial_train_epoch" , type=_a , default=_a , help="If passed, the training will stop after this number of epochs." , ) parser.add_argument( "--num_epochs" , type=_a , default=2 , help="Number of train epochs." , ) SCREAMING_SNAKE_CASE_: Any = parser.parse_args() SCREAMING_SNAKE_CASE_: List[Any] = {"lr": 2e-5, "num_epochs": args.num_epochs, "seed": 42, "batch_size": 16} training_function(_a , _a ) if __name__ == "__main__": main()
361
import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class __lowercase ( unittest.TestCase ): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self : int): SCREAMING_SNAKE_CASE_: str = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2") SCREAMING_SNAKE_CASE_: str = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = -1 SCREAMING_SNAKE_CASE_: Optional[int] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size).to(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Any = model.generate(lowerCAmelCase__ , max_new_tokens=10 , do_sample=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[str] = tokenizer.decode(greedy_ids[0]) with CaptureStdout() as cs: SCREAMING_SNAKE_CASE_: int = TextStreamer(lowerCAmelCase__) model.generate(lowerCAmelCase__ , max_new_tokens=10 , do_sample=lowerCAmelCase__ , streamer=lowerCAmelCase__) # The greedy text should be printed to stdout, except for the final "\n" in the streamer SCREAMING_SNAKE_CASE_: Union[str, Any] = cs.out[:-1] self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : int): SCREAMING_SNAKE_CASE_: List[Any] = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2") SCREAMING_SNAKE_CASE_: int = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = -1 SCREAMING_SNAKE_CASE_: int = ids_tensor((1, 5) , vocab_size=model.config.vocab_size).to(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = model.generate(lowerCAmelCase__ , max_new_tokens=10 , do_sample=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Tuple = tokenizer.decode(greedy_ids[0]) SCREAMING_SNAKE_CASE_: int = TextIteratorStreamer(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = {"input_ids": input_ids, "max_new_tokens": 10, "do_sample": False, "streamer": streamer} SCREAMING_SNAKE_CASE_: Tuple = Thread(target=model.generate , kwargs=lowerCAmelCase__) thread.start() SCREAMING_SNAKE_CASE_: Optional[Any] = "" for new_text in streamer: streamer_text += new_text self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Optional[int]): SCREAMING_SNAKE_CASE_: int = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2") SCREAMING_SNAKE_CASE_: int = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = -1 SCREAMING_SNAKE_CASE_: Optional[Any] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size).to(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Dict = model.generate(lowerCAmelCase__ , max_new_tokens=10 , do_sample=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Tuple = greedy_ids[:, input_ids.shape[1] :] SCREAMING_SNAKE_CASE_: Union[str, Any] = tokenizer.decode(new_greedy_ids[0]) with CaptureStdout() as cs: SCREAMING_SNAKE_CASE_: Dict = TextStreamer(lowerCAmelCase__ , skip_prompt=lowerCAmelCase__) model.generate(lowerCAmelCase__ , max_new_tokens=10 , do_sample=lowerCAmelCase__ , streamer=lowerCAmelCase__) # The greedy text should be printed to stdout, except for the final "\n" in the streamer SCREAMING_SNAKE_CASE_: Any = cs.out[:-1] self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Tuple): # Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested # with actual models -- the dummy models' tokenizers are not aligned with their models, and # `skip_special_tokens=True` has no effect on them SCREAMING_SNAKE_CASE_: Tuple = AutoTokenizer.from_pretrained("distilgpt2") SCREAMING_SNAKE_CASE_: List[str] = AutoModelForCausalLM.from_pretrained("distilgpt2").to(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = -1 SCREAMING_SNAKE_CASE_: List[str] = torch.ones((1, 5) , device=lowerCAmelCase__).long() * model.config.bos_token_id with CaptureStdout() as cs: SCREAMING_SNAKE_CASE_: Union[str, Any] = TextStreamer(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__) model.generate(lowerCAmelCase__ , max_new_tokens=1 , do_sample=lowerCAmelCase__ , streamer=lowerCAmelCase__) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token SCREAMING_SNAKE_CASE_: str = cs.out[:-1] # Remove the final "\n" SCREAMING_SNAKE_CASE_: Tuple = tokenizer(lowerCAmelCase__ , return_tensors="pt") self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1)) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): SCREAMING_SNAKE_CASE_: List[Any] = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2") SCREAMING_SNAKE_CASE_: List[str] = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Dict = -1 SCREAMING_SNAKE_CASE_: List[str] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size).to(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Any = TextIteratorStreamer(lowerCAmelCase__ , timeout=0.001) SCREAMING_SNAKE_CASE_: Any = {"input_ids": input_ids, "max_new_tokens": 10, "do_sample": False, "streamer": streamer} SCREAMING_SNAKE_CASE_: Optional[Any] = Thread(target=model.generate , kwargs=lowerCAmelCase__) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(lowerCAmelCase__): SCREAMING_SNAKE_CASE_: Tuple = "" for new_text in streamer: streamer_text += new_text
127
0
'''simple docstring''' def snake_case__ ( _A: int ) -> list[int]: '''simple docstring''' if length <= 0 or not isinstance(_A , _A ): raise ValueError("""Length must be a positive integer.""" ) return [n * (2 * n - 1) for n in range(_A )] if __name__ == "__main__": print(hexagonal_numbers(length=5)) print(hexagonal_numbers(length=1_0))
272
'''simple docstring''' import unittest import numpy as np from transformers.file_utils import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class a__( unittest.TestCase ): '''simple docstring''' def __init__( self , __lowerCAmelCase , __lowerCAmelCase=7 , __lowerCAmelCase=3 , __lowerCAmelCase=18 , __lowerCAmelCase=30 , __lowerCAmelCase=400 , __lowerCAmelCase=True , __lowerCAmelCase=None , __lowerCAmelCase=True , __lowerCAmelCase=[0.5, 0.5, 0.5] , __lowerCAmelCase=[0.5, 0.5, 0.5] , ): """simple docstring""" lowerCAmelCase = size if size is not None else {"""height""": 18, """width""": 18} lowerCAmelCase = parent lowerCAmelCase = batch_size lowerCAmelCase = num_channels lowerCAmelCase = image_size lowerCAmelCase = min_resolution lowerCAmelCase = max_resolution lowerCAmelCase = do_resize lowerCAmelCase = size lowerCAmelCase = do_normalize lowerCAmelCase = image_mean lowerCAmelCase = image_std def a_ ( self): """simple docstring""" return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class a__( lowerCAmelCase__ , unittest.TestCase ): '''simple docstring''' UpperCAmelCase_ : Tuple = DPTImageProcessor if is_vision_available() else None def a_ ( self): """simple docstring""" lowerCAmelCase = DPTImageProcessingTester(self) @property def a_ ( self): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def a_ ( self): """simple docstring""" lowerCAmelCase = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(__lowerCAmelCase , """image_mean""")) self.assertTrue(hasattr(__lowerCAmelCase , """image_std""")) self.assertTrue(hasattr(__lowerCAmelCase , """do_normalize""")) self.assertTrue(hasattr(__lowerCAmelCase , """do_resize""")) self.assertTrue(hasattr(__lowerCAmelCase , """size""")) def a_ ( self): """simple docstring""" lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size , {"""height""": 18, """width""": 18}) lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42) self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42}) def a_ ( self): """simple docstring""" lowerCAmelCase = self.image_processing_class(**self.image_processor_dict) # create random PIL images lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCAmelCase) for image in image_inputs: self.assertIsInstance(__lowerCAmelCase , Image.Image) # Test not batched input lowerCAmelCase = image_processing(image_inputs[0] , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched lowerCAmelCase = image_processing(__lowerCAmelCase , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def a_ ( self): """simple docstring""" lowerCAmelCase = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCAmelCase , numpify=__lowerCAmelCase) for image in image_inputs: self.assertIsInstance(__lowerCAmelCase , np.ndarray) # Test not batched input lowerCAmelCase = image_processing(image_inputs[0] , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched lowerCAmelCase = image_processing(__lowerCAmelCase , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def a_ ( self): """simple docstring""" lowerCAmelCase = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCAmelCase , torchify=__lowerCAmelCase) for image in image_inputs: self.assertIsInstance(__lowerCAmelCase , torch.Tensor) # Test not batched input lowerCAmelCase = image_processing(image_inputs[0] , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched lowerCAmelCase = image_processing(__lowerCAmelCase , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , )
272
1
import re import subprocess import sys _a = subprocess.check_output("""git merge-base main HEAD""".split()).decode("""utf-8""") _a = ( subprocess.check_output(F"""git diff --diff-filter=d --name-only {fork_point_sha}""".split()).decode("""utf-8""").split() ) _a = """|""".join(sys.argv[1:]) _a = re.compile(RF"""^({joined_dirs}).*?\.py$""") _a = [x for x in modified_files if regex.match(x)] print(""" """.join(relevant_modified_files), end="""""")
359
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _a = logging.get_logger(__name__) _a = { """bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/config.json""", """bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/config.json""", """bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/config.json""", """bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/config.json""", """bert-base-multilingual-uncased""": """https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json""", """bert-base-multilingual-cased""": """https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json""", """bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/config.json""", """bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/config.json""", """bert-large-uncased-whole-word-masking""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json""" ), """bert-large-cased-whole-word-masking""": ( """https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json""" ), """bert-large-uncased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json""" ), """bert-large-cased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json""" ), """bert-base-cased-finetuned-mrpc""": """https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json""", """bert-base-german-dbmdz-cased""": """https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json""", """bert-base-german-dbmdz-uncased""": """https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json""", """cl-tohoku/bert-base-japanese""": """https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json""", """cl-tohoku/bert-base-japanese-whole-word-masking""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json""" ), """cl-tohoku/bert-base-japanese-char""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json""" ), """cl-tohoku/bert-base-japanese-char-whole-word-masking""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json""" ), """TurkuNLP/bert-base-finnish-cased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json""" ), """TurkuNLP/bert-base-finnish-uncased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json""" ), """wietsedv/bert-base-dutch-cased""": """https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json""", # See all BERT models at https://huggingface.co/models?filter=bert } class _UpperCAmelCase( lowerCamelCase ): lowercase__ = 'bert' def __init__( self , __a=3_05_22 , __a=7_68 , __a=12 , __a=12 , __a=30_72 , __a="gelu" , __a=0.1 , __a=0.1 , __a=5_12 , __a=2 , __a=0.02 , __a=1e-12 , __a=0 , __a="absolute" , __a=True , __a=None , **__a , ) -> Optional[Any]: '''simple docstring''' super().__init__(pad_token_id=__a , **__a) _UpperCamelCase = vocab_size _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = hidden_act _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = max_position_embeddings _UpperCamelCase = type_vocab_size _UpperCamelCase = initializer_range _UpperCamelCase = layer_norm_eps _UpperCamelCase = position_embedding_type _UpperCamelCase = use_cache _UpperCamelCase = classifier_dropout class _UpperCAmelCase( lowerCamelCase ): @property def UpperCAmelCase ( self) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": _UpperCamelCase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: _UpperCamelCase = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ])
100
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _a = { 'configuration_data2vec_audio': ['DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Data2VecAudioConfig'], 'configuration_data2vec_text': [ 'DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Data2VecTextConfig', 'Data2VecTextOnnxConfig', ], 'configuration_data2vec_vision': [ 'DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Data2VecVisionConfig', 'Data2VecVisionOnnxConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = [ 'DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST', 'Data2VecAudioForAudioFrameClassification', 'Data2VecAudioForCTC', 'Data2VecAudioForSequenceClassification', 'Data2VecAudioForXVector', 'Data2VecAudioModel', 'Data2VecAudioPreTrainedModel', ] _a = [ 'DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST', 'Data2VecTextForCausalLM', 'Data2VecTextForMaskedLM', 'Data2VecTextForMultipleChoice', 'Data2VecTextForQuestionAnswering', 'Data2VecTextForSequenceClassification', 'Data2VecTextForTokenClassification', 'Data2VecTextModel', 'Data2VecTextPreTrainedModel', ] _a = [ 'DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST', 'Data2VecVisionForImageClassification', 'Data2VecVisionForMaskedImageModeling', 'Data2VecVisionForSemanticSegmentation', 'Data2VecVisionModel', 'Data2VecVisionPreTrainedModel', ] if is_tf_available(): _a = [ 'TFData2VecVisionForImageClassification', 'TFData2VecVisionForSemanticSegmentation', 'TFData2VecVisionModel', 'TFData2VecVisionPreTrainedModel', ] if TYPE_CHECKING: from .configuration_dataavec_audio import DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecAudioConfig from .configuration_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecTextConfig, DataaVecTextOnnxConfig, ) from .configuration_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecVisionConfig, DataaVecVisionOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dataavec_audio import ( DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecAudioForAudioFrameClassification, DataaVecAudioForCTC, DataaVecAudioForSequenceClassification, DataaVecAudioForXVector, DataaVecAudioModel, DataaVecAudioPreTrainedModel, ) from .modeling_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecTextForCausalLM, DataaVecTextForMaskedLM, DataaVecTextForMultipleChoice, DataaVecTextForQuestionAnswering, DataaVecTextForSequenceClassification, DataaVecTextForTokenClassification, DataaVecTextModel, DataaVecTextPreTrainedModel, ) from .modeling_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecVisionForImageClassification, DataaVecVisionForMaskedImageModeling, DataaVecVisionForSemanticSegmentation, DataaVecVisionModel, DataaVecVisionPreTrainedModel, ) if is_tf_available(): from .modeling_tf_dataavec_vision import ( TFDataaVecVisionForImageClassification, TFDataaVecVisionForSemanticSegmentation, TFDataaVecVisionModel, TFDataaVecVisionPreTrainedModel, ) else: import sys _a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
61
"""simple docstring""" import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() _a = logging.get_logger(__name__) def __a ( __lowerCamelCase ): UpperCAmelCase_ : Optional[Any] = SwinConfig.from_pretrained( "microsoft/swin-tiny-patch4-window7-224", out_features=["stage1", "stage2", "stage3", "stage4"] ) UpperCAmelCase_ : Dict = MaskFormerConfig(backbone_config=__lowerCamelCase ) UpperCAmelCase_ : int = "huggingface/label-files" if "ade20k-full" in model_name: # this should be ok UpperCAmelCase_ : Dict = 847 UpperCAmelCase_ : str = "maskformer-ade20k-full-id2label.json" elif "ade" in model_name: # this should be ok UpperCAmelCase_ : Tuple = 150 UpperCAmelCase_ : int = "ade20k-id2label.json" elif "coco-stuff" in model_name: # this should be ok UpperCAmelCase_ : str = 171 UpperCAmelCase_ : Optional[int] = "maskformer-coco-stuff-id2label.json" elif "coco" in model_name: # TODO UpperCAmelCase_ : int = 133 UpperCAmelCase_ : Tuple = "coco-panoptic-id2label.json" elif "cityscapes" in model_name: # this should be ok UpperCAmelCase_ : List[Any] = 19 UpperCAmelCase_ : Optional[int] = "cityscapes-id2label.json" elif "vistas" in model_name: # this should be ok UpperCAmelCase_ : Any = 65 UpperCAmelCase_ : Union[str, Any] = "mapillary-vistas-id2label.json" UpperCAmelCase_ : Any = json.load(open(hf_hub_download(__lowerCamelCase, __lowerCamelCase, repo_type="dataset" ), "r" ) ) UpperCAmelCase_ : int = {int(__lowerCamelCase ): v for k, v in idalabel.items()} return config def __a ( __lowerCamelCase ): UpperCAmelCase_ : Dict = [] # stem # fmt: off rename_keys.append(("backbone.patch_embed.proj.weight", "model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight") ) rename_keys.append(("backbone.patch_embed.proj.bias", "model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias") ) rename_keys.append(("backbone.patch_embed.norm.weight", "model.pixel_level_module.encoder.model.embeddings.norm.weight") ) rename_keys.append(("backbone.patch_embed.norm.bias", "model.pixel_level_module.encoder.model.embeddings.norm.bias") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.norm1.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.norm1.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.attn.relative_position_index""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.attn.proj.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.attn.proj.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.norm2.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.norm2.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.mlp.fc1.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.mlp.fc1.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.mlp.fc2.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.mlp.fc2.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias""") ) if i < 3: rename_keys.append((f"""backbone.layers.{i}.downsample.reduction.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight""") ) rename_keys.append((f"""backbone.layers.{i}.downsample.norm.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight""") ) rename_keys.append((f"""backbone.layers.{i}.downsample.norm.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias""") ) rename_keys.append((f"""backbone.norm{i}.weight""", f"""model.pixel_level_module.encoder.hidden_states_norms.{i}.weight""") ) rename_keys.append((f"""backbone.norm{i}.bias""", f"""model.pixel_level_module.encoder.hidden_states_norms.{i}.bias""") ) # FPN rename_keys.append(("sem_seg_head.layer_4.weight", "model.pixel_level_module.decoder.fpn.stem.0.weight") ) rename_keys.append(("sem_seg_head.layer_4.norm.weight", "model.pixel_level_module.decoder.fpn.stem.1.weight") ) rename_keys.append(("sem_seg_head.layer_4.norm.bias", "model.pixel_level_module.decoder.fpn.stem.1.bias") ) for source_index, target_index in zip(range(3, 0, -1 ), range(0, 3 ) ): rename_keys.append((f"""sem_seg_head.adapter_{source_index}.weight""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight""") ) rename_keys.append((f"""sem_seg_head.adapter_{source_index}.norm.weight""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight""") ) rename_keys.append((f"""sem_seg_head.adapter_{source_index}.norm.bias""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias""") ) rename_keys.append((f"""sem_seg_head.layer_{source_index}.weight""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight""") ) rename_keys.append((f"""sem_seg_head.layer_{source_index}.norm.weight""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight""") ) rename_keys.append((f"""sem_seg_head.layer_{source_index}.norm.bias""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias""") ) rename_keys.append(("sem_seg_head.mask_features.weight", "model.pixel_level_module.decoder.mask_projection.weight") ) rename_keys.append(("sem_seg_head.mask_features.bias", "model.pixel_level_module.decoder.mask_projection.bias") ) # Transformer decoder for idx in range(config.decoder_config.decoder_layers ): # self-attention out projection rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight""", f"""model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias""", f"""model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias""") ) # cross-attention out projection rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight""", f"""model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias""", f"""model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias""") ) # MLP 1 rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight""", f"""model.transformer_module.decoder.layers.{idx}.fc1.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias""", f"""model.transformer_module.decoder.layers.{idx}.fc1.bias""") ) # MLP 2 rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight""", f"""model.transformer_module.decoder.layers.{idx}.fc2.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias""", f"""model.transformer_module.decoder.layers.{idx}.fc2.bias""") ) # layernorm 1 (self-attention layernorm) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight""", f"""model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias""", f"""model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias""") ) # layernorm 2 (cross-attention layernorm) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight""", f"""model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias""", f"""model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias""") ) # layernorm 3 (final layernorm) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight""", f"""model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias""", f"""model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias""") ) rename_keys.append(("sem_seg_head.predictor.transformer.decoder.norm.weight", "model.transformer_module.decoder.layernorm.weight") ) rename_keys.append(("sem_seg_head.predictor.transformer.decoder.norm.bias", "model.transformer_module.decoder.layernorm.bias") ) # heads on top rename_keys.append(("sem_seg_head.predictor.query_embed.weight", "model.transformer_module.queries_embedder.weight") ) rename_keys.append(("sem_seg_head.predictor.input_proj.weight", "model.transformer_module.input_projection.weight") ) rename_keys.append(("sem_seg_head.predictor.input_proj.bias", "model.transformer_module.input_projection.bias") ) rename_keys.append(("sem_seg_head.predictor.class_embed.weight", "class_predictor.weight") ) rename_keys.append(("sem_seg_head.predictor.class_embed.bias", "class_predictor.bias") ) for i in range(3 ): rename_keys.append((f"""sem_seg_head.predictor.mask_embed.layers.{i}.weight""", f"""mask_embedder.{i}.0.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.mask_embed.layers.{i}.bias""", f"""mask_embedder.{i}.0.bias""") ) # fmt: on return rename_keys def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : Union[str, Any] = dct.pop(__lowerCamelCase ) UpperCAmelCase_ : str = val def __a ( __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : int = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): UpperCAmelCase_ : List[Any] = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) UpperCAmelCase_ : Tuple = state_dict.pop(f"""backbone.layers.{i}.blocks.{j}.attn.qkv.weight""" ) UpperCAmelCase_ : Optional[int] = state_dict.pop(f"""backbone.layers.{i}.blocks.{j}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase_ : Tuple = in_proj_weight[:dim, :] UpperCAmelCase_ : List[Any] = in_proj_bias[: dim] UpperCAmelCase_ : Any = in_proj_weight[ dim : dim * 2, : ] UpperCAmelCase_ : Optional[int] = in_proj_bias[ dim : dim * 2 ] UpperCAmelCase_ : Tuple = in_proj_weight[ -dim :, : ] UpperCAmelCase_ : Tuple = in_proj_bias[-dim :] # fmt: on def __a ( __lowerCamelCase, __lowerCamelCase ): # fmt: off UpperCAmelCase_ : Dict = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers ): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) UpperCAmelCase_ : int = state_dict.pop(f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight""" ) UpperCAmelCase_ : int = state_dict.pop(f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase_ : Any = in_proj_weight[: hidden_size, :] UpperCAmelCase_ : int = in_proj_bias[:config.hidden_size] UpperCAmelCase_ : Any = in_proj_weight[hidden_size : hidden_size * 2, :] UpperCAmelCase_ : List[Any] = in_proj_bias[hidden_size : hidden_size * 2] UpperCAmelCase_ : Dict = in_proj_weight[-hidden_size :, :] UpperCAmelCase_ : List[Any] = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) UpperCAmelCase_ : str = state_dict.pop(f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight""" ) UpperCAmelCase_ : Dict = state_dict.pop(f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase_ : str = in_proj_weight[: hidden_size, :] UpperCAmelCase_ : Tuple = in_proj_bias[:config.hidden_size] UpperCAmelCase_ : int = in_proj_weight[hidden_size : hidden_size * 2, :] UpperCAmelCase_ : List[str] = in_proj_bias[hidden_size : hidden_size * 2] UpperCAmelCase_ : List[Any] = in_proj_weight[-hidden_size :, :] UpperCAmelCase_ : Optional[Any] = in_proj_bias[-hidden_size :] # fmt: on def __a ( ): UpperCAmelCase_ : List[Any] = "http://images.cocodataset.org/val2017/000000039769.jpg" UpperCAmelCase_ : Tuple = Image.open(requests.get(__lowerCamelCase, stream=__lowerCamelCase ).raw ) return im @torch.no_grad() def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = False ): UpperCAmelCase_ : List[str] = get_maskformer_config(__lowerCamelCase ) # load original state_dict with open(__lowerCamelCase, "rb" ) as f: UpperCAmelCase_ : Union[str, Any] = pickle.load(__lowerCamelCase ) UpperCAmelCase_ : str = data["model"] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys UpperCAmelCase_ : int = create_rename_keys(__lowerCamelCase ) for src, dest in rename_keys: rename_key(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) read_in_swin_q_k_v(__lowerCamelCase, config.backbone_config ) read_in_decoder_q_k_v(__lowerCamelCase, __lowerCamelCase ) # update to torch tensors for key, value in state_dict.items(): UpperCAmelCase_ : Optional[int] = torch.from_numpy(__lowerCamelCase ) # load 🤗 model UpperCAmelCase_ : Dict = MaskFormerForInstanceSegmentation(__lowerCamelCase ) model.eval() for name, param in model.named_parameters(): print(__lowerCamelCase, param.shape ) UpperCAmelCase_ , UpperCAmelCase_ : str = model.load_state_dict(__lowerCamelCase, strict=__lowerCamelCase ) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(__lowerCamelCase ) == 0, f"""Unexpected keys: {unexpected_keys}""" # verify results UpperCAmelCase_ : Optional[int] = prepare_img() if "vistas" in model_name: UpperCAmelCase_ : List[str] = 65 elif "cityscapes" in model_name: UpperCAmelCase_ : Tuple = 6_5535 else: UpperCAmelCase_ : Dict = 255 UpperCAmelCase_ : Optional[Any] = True if "ade" in model_name else False UpperCAmelCase_ : Dict = MaskFormerImageProcessor(ignore_index=__lowerCamelCase, reduce_labels=__lowerCamelCase ) UpperCAmelCase_ : Union[str, Any] = image_processor(__lowerCamelCase, return_tensors="pt" ) UpperCAmelCase_ : Dict = model(**__lowerCamelCase ) print("Logits:", outputs.class_queries_logits[0, :3, :3] ) if model_name == "maskformer-swin-tiny-ade": UpperCAmelCase_ : Any = torch.tensor( [[3.6353, -4.4770, -2.6065], [0.5081, -4.2394, -3.5343], [2.1909, -5.0353, -1.9323]] ) assert torch.allclose(outputs.class_queries_logits[0, :3, :3], __lowerCamelCase, atol=1E-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(f"""Saving model and image processor to {pytorch_dump_folder_path}""" ) Path(__lowerCamelCase ).mkdir(exist_ok=__lowerCamelCase ) model.save_pretrained(__lowerCamelCase ) image_processor.save_pretrained(__lowerCamelCase ) if push_to_hub: print("Pushing model and image processor to the hub..." ) model.push_to_hub(f"""nielsr/{model_name}""" ) image_processor.push_to_hub(f"""nielsr/{model_name}""" ) if __name__ == "__main__": _a = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='maskformer-swin-tiny-ade', type=str, help=('Name of the MaskFormer model you\'d like to convert',), ) parser.add_argument( '--checkpoint_path', default='/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl', type=str, help='Path to the original state dict (.pth file).', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) _a = parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
61
1
'''simple docstring''' import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class __UpperCamelCase ( unittest.TestCase ): def __init__( self , __a , __a=7 , __a=3 , __a=18 , __a=30 , __a=400 , __a=True , __a=None , __a=True , __a=None , __a=True , __a=[0.5, 0.5, 0.5] , __a=[0.5, 0.5, 0.5] , __a=False , ): '''simple docstring''' __a : Optional[Any] = size if size is not None else {'height': 20, 'width': 20} __a : Union[str, Any] = crop_size if crop_size is not None else {'height': 18, 'width': 18} __a : Tuple = parent __a : Optional[int] = batch_size __a : List[str] = num_channels __a : Dict = image_size __a : Optional[Any] = min_resolution __a : Optional[Any] = max_resolution __a : Optional[Any] = do_resize __a : Any = size __a : Union[str, Any] = do_center_crop __a : str = crop_size __a : int = do_normalize __a : Any = image_mean __a : int = image_std __a : str = do_reduce_labels def __UpperCAmelCase ( self ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_reduce_labels": self.do_reduce_labels, } def lowerCamelCase (): __a : Dict = load_dataset('hf-internal-testing/fixtures_ade20k' , split='test' ) __a : Dict = Image.open(dataset[0]['file'] ) __a : int = Image.open(dataset[1]['file'] ) return image, map def lowerCamelCase (): __a : Any = load_dataset('hf-internal-testing/fixtures_ade20k' , split='test' ) __a : Union[str, Any] = Image.open(ds[0]['file'] ) __a : str = Image.open(ds[1]['file'] ) __a : List[str] = Image.open(ds[2]['file'] ) __a : Any = Image.open(ds[3]['file'] ) return [imagea, imagea], [mapa, mapa] @require_torch @require_vision class __UpperCamelCase ( lowerCAmelCase_ , unittest.TestCase ): A_ = BeitImageProcessor if is_vision_available() else None def __UpperCAmelCase ( self ): '''simple docstring''' __a : Tuple = BeitImageProcessingTester(self ) @property def __UpperCAmelCase ( self ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def __UpperCAmelCase ( self ): '''simple docstring''' __a : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__a , 'do_resize' ) ) self.assertTrue(hasattr(__a , 'size' ) ) self.assertTrue(hasattr(__a , 'do_center_crop' ) ) self.assertTrue(hasattr(__a , 'center_crop' ) ) self.assertTrue(hasattr(__a , 'do_normalize' ) ) self.assertTrue(hasattr(__a , 'image_mean' ) ) self.assertTrue(hasattr(__a , 'image_std' ) ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : List[str] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 20, 'width': 20} ) self.assertEqual(image_processor.crop_size , {'height': 18, 'width': 18} ) self.assertEqual(image_processor.do_reduce_labels , __a ) __a : Optional[Any] = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , crop_size=84 , reduce_labels=__a ) self.assertEqual(image_processor.size , {'height': 42, 'width': 42} ) self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84} ) self.assertEqual(image_processor.do_reduce_labels , __a ) def __UpperCAmelCase ( self ): '''simple docstring''' pass def __UpperCAmelCase ( self ): '''simple docstring''' __a : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __a : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__a ) for image in image_inputs: self.assertIsInstance(__a , Image.Image ) # Test not batched input __a : Tuple = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched __a : Dict = image_processing(__a , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __a : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=__a , numpify=__a ) for image in image_inputs: self.assertIsInstance(__a , np.ndarray ) # Test not batched input __a : Any = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched __a : Optional[int] = image_processing(__a , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __a : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=__a , torchify=__a ) for image in image_inputs: self.assertIsInstance(__a , torch.Tensor ) # Test not batched input __a : Dict = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched __a : Any = image_processing(__a , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : str = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __a : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=__a , torchify=__a ) __a : Tuple = [] for image in image_inputs: self.assertIsInstance(__a , torch.Tensor ) maps.append(torch.zeros(image.shape[-2:] ).long() ) # Test not batched input __a : Any = image_processing(image_inputs[0] , maps[0] , return_tensors='pt' ) self.assertEqual( encoding['pixel_values'].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) self.assertEqual( encoding['labels'].shape , ( 1, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) self.assertEqual(encoding['labels'].dtype , torch.long ) self.assertTrue(encoding['labels'].min().item() >= 0 ) self.assertTrue(encoding['labels'].max().item() <= 255 ) # Test batched __a : int = image_processing(__a , __a , return_tensors='pt' ) self.assertEqual( encoding['pixel_values'].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) self.assertEqual( encoding['labels'].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) self.assertEqual(encoding['labels'].dtype , torch.long ) self.assertTrue(encoding['labels'].min().item() >= 0 ) self.assertTrue(encoding['labels'].max().item() <= 255 ) # Test not batched input (PIL images) __a , __a : Union[str, Any] = prepare_semantic_single_inputs() __a : Any = image_processing(__a , __a , return_tensors='pt' ) self.assertEqual( encoding['pixel_values'].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) self.assertEqual( encoding['labels'].shape , ( 1, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) self.assertEqual(encoding['labels'].dtype , torch.long ) self.assertTrue(encoding['labels'].min().item() >= 0 ) self.assertTrue(encoding['labels'].max().item() <= 255 ) # Test batched input (PIL images) __a , __a : Tuple = prepare_semantic_batch_inputs() __a : Optional[int] = image_processing(__a , __a , return_tensors='pt' ) self.assertEqual( encoding['pixel_values'].shape , ( 2, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) self.assertEqual( encoding['labels'].shape , ( 2, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) self.assertEqual(encoding['labels'].dtype , torch.long ) self.assertTrue(encoding['labels'].min().item() >= 0 ) self.assertTrue(encoding['labels'].max().item() <= 255 ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : Tuple = self.image_processing_class(**self.image_processor_dict ) # ADE20k has 150 classes, and the background is included, so labels should be between 0 and 150 __a , __a : Tuple = prepare_semantic_single_inputs() __a : List[str] = image_processing(__a , __a , return_tensors='pt' ) self.assertTrue(encoding['labels'].min().item() >= 0 ) self.assertTrue(encoding['labels'].max().item() <= 150 ) __a : Union[str, Any] = True __a : Tuple = image_processing(__a , __a , return_tensors='pt' ) self.assertTrue(encoding['labels'].min().item() >= 0 ) self.assertTrue(encoding['labels'].max().item() <= 255 )
353
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __lowercase : Union[str, Any] = { 'configuration_roc_bert': ['ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RoCBertConfig'], 'tokenization_roc_bert': ['RoCBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: pass try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : List[str] = [ 'ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'RoCBertForCausalLM', 'RoCBertForMaskedLM', 'RoCBertForMultipleChoice', 'RoCBertForPreTraining', 'RoCBertForQuestionAnswering', 'RoCBertForSequenceClassification', 'RoCBertForTokenClassification', 'RoCBertLayer', 'RoCBertModel', 'RoCBertPreTrainedModel', 'load_tf_weights_in_roc_bert', ] if TYPE_CHECKING: from .configuration_roc_bert import ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RoCBertConfig from .tokenization_roc_bert import RoCBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: raise OptionalDependencyNotAvailable() try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roc_bert import ( ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, RoCBertForCausalLM, RoCBertForMaskedLM, RoCBertForMultipleChoice, RoCBertForPreTraining, RoCBertForQuestionAnswering, RoCBertForSequenceClassification, RoCBertForTokenClassification, RoCBertLayer, RoCBertModel, RoCBertPreTrainedModel, load_tf_weights_in_roc_bert, ) else: import sys __lowercase : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
294
0
import re import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class _snake_case ( snake_case ): UpperCamelCase__ = ['image_processor', 'tokenizer'] UpperCamelCase__ = 'AutoImageProcessor' UpperCamelCase__ = 'AutoTokenizer' def __init__( self , _a=None , _a=None , **_a ): __magic_name__ : Optional[int] = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , _a , ) __magic_name__ : Union[str, Any] = kwargs.pop("feature_extractor" ) __magic_name__ : List[str] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(_a , _a ) __magic_name__ : Tuple = self.image_processor __magic_name__ : Union[str, Any] = False def __call__( self , *_a , **_a ): # For backward compatibility if self._in_target_context_manager: return self.current_processor(*_a , **_a ) __magic_name__ : str = kwargs.pop("images" , _a ) __magic_name__ : Dict = kwargs.pop("text" , _a ) if len(_a ) > 0: __magic_name__ : List[Any] = args[0] __magic_name__ : Any = args[1:] if images is None and text is None: raise ValueError("You need to specify either an `images` or `text` input to process." ) if images is not None: __magic_name__ : Tuple = self.image_processor(_a , *_a , **_a ) if text is not None: __magic_name__ : str = self.tokenizer(_a , **_a ) if text is None: return inputs elif images is None: return encodings else: __magic_name__ : List[str] = encodings["input_ids"] return inputs def SCREAMING_SNAKE_CASE ( self , *_a , **_a ): return self.tokenizer.batch_decode(*_a , **_a ) def SCREAMING_SNAKE_CASE ( self , *_a , **_a ): return self.tokenizer.decode(*_a , **_a ) @contextmanager def SCREAMING_SNAKE_CASE ( self ): warnings.warn( "`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your " "labels by using the argument `text` of the regular `__call__` method (either in the same call as " "your images inputs, or in a separate call." ) __magic_name__ : Any = True __magic_name__ : Dict = self.tokenizer yield __magic_name__ : Any = self.image_processor __magic_name__ : Optional[int] = False def SCREAMING_SNAKE_CASE ( self , _a , _a=False , _a=None ): if added_vocab is None: __magic_name__ : Optional[int] = self.tokenizer.get_added_vocab() __magic_name__ : int = {} while tokens: __magic_name__ : Optional[Any] = re.search(r"<s_(.*?)>" , _a , re.IGNORECASE ) if start_token is None: break __magic_name__ : List[str] = start_token.group(1 ) __magic_name__ : Optional[Any] = re.search(rf'''</s_{key}>''' , _a , re.IGNORECASE ) __magic_name__ : Union[str, Any] = start_token.group() if end_token is None: __magic_name__ : str = tokens.replace(_a , "" ) else: __magic_name__ : Optional[int] = end_token.group() __magic_name__ : Dict = re.escape(_a ) __magic_name__ : List[str] = re.escape(_a ) __magic_name__ : str = re.search(f'''{start_token_escaped}(.*?){end_token_escaped}''' , _a , re.IGNORECASE ) if content is not None: __magic_name__ : int = content.group(1 ).strip() if r"<s_" in content and r"</s_" in content: # non-leaf node __magic_name__ : List[str] = self.tokenajson(_a , is_inner_value=_a , added_vocab=_a ) if value: if len(_a ) == 1: __magic_name__ : Any = value[0] __magic_name__ : int = value else: # leaf nodes __magic_name__ : str = [] for leaf in content.split(r"<sep/>" ): __magic_name__ : Optional[Any] = leaf.strip() if leaf in added_vocab and leaf[0] == "<" and leaf[-2:] == "/>": __magic_name__ : Optional[Any] = leaf[1:-2] # for categorical special tokens output[key].append(_a ) if len(output[key] ) == 1: __magic_name__ : Any = output[key][0] __magic_name__ : Optional[Any] = tokens[tokens.find(_a ) + len(_a ) :].strip() if tokens[:6] == r"<sep/>": # non-leaf nodes return [output] + self.tokenajson(tokens[6:] , is_inner_value=_a , added_vocab=_a ) if len(_a ): return [output] if is_inner_value else output else: return [] if is_inner_value else {"text_sequence": tokens} @property def SCREAMING_SNAKE_CASE ( self ): warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , _a , ) return self.image_processor_class @property def SCREAMING_SNAKE_CASE ( self ): warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , _a , ) return self.image_processor
281
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging snake_case : int = logging.get_logger(__name__) snake_case : List[str] = {"vocab_file": "spiece.model"} snake_case : List[str] = { "vocab_file": { "albert-base-v1": "https://huggingface.co/albert-base-v1/resolve/main/spiece.model", "albert-large-v1": "https://huggingface.co/albert-large-v1/resolve/main/spiece.model", "albert-xlarge-v1": "https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model", "albert-xxlarge-v1": "https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model", "albert-base-v2": "https://huggingface.co/albert-base-v2/resolve/main/spiece.model", "albert-large-v2": "https://huggingface.co/albert-large-v2/resolve/main/spiece.model", "albert-xlarge-v2": "https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model", "albert-xxlarge-v2": "https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model", } } snake_case : Tuple = { "albert-base-v1": 512, "albert-large-v1": 512, "albert-xlarge-v1": 512, "albert-xxlarge-v1": 512, "albert-base-v2": 512, "albert-large-v2": 512, "albert-xlarge-v2": 512, "albert-xxlarge-v2": 512, } snake_case : List[str] = "▁" class _snake_case ( snake_case ): UpperCamelCase__ = VOCAB_FILES_NAMES UpperCamelCase__ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , _a , _a=True , _a=True , _a=False , _a="[CLS]" , _a="[SEP]" , _a="<unk>" , _a="[SEP]" , _a="<pad>" , _a="[CLS]" , _a="[MASK]" , _a = None , **_a , ): # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. __magic_name__ : str = ( AddedToken(_a , lstrip=_a , rstrip=_a , normalized=_a ) if isinstance(_a , _a ) else mask_token ) __magic_name__ : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=_a , remove_space=_a , keep_accents=_a , bos_token=_a , eos_token=_a , unk_token=_a , sep_token=_a , pad_token=_a , cls_token=_a , mask_token=_a , sp_model_kwargs=self.sp_model_kwargs , **_a , ) __magic_name__ : Dict = do_lower_case __magic_name__ : Tuple = remove_space __magic_name__ : Union[str, Any] = keep_accents __magic_name__ : Tuple = vocab_file __magic_name__ : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_a ) @property def SCREAMING_SNAKE_CASE ( self ): return len(self.sp_model ) def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : List[str] = {self.convert_ids_to_tokens(_a ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): __magic_name__ : List[str] = self.__dict__.copy() __magic_name__ : Any = None return state def __setstate__( self , _a ): __magic_name__ : Union[str, Any] = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): __magic_name__ : str = {} __magic_name__ : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def SCREAMING_SNAKE_CASE ( self , _a ): if self.remove_space: __magic_name__ : List[Any] = " ".join(inputs.strip().split() ) else: __magic_name__ : str = inputs __magic_name__ : int = outputs.replace("``" , "\"" ).replace("''" , "\"" ) if not self.keep_accents: __magic_name__ : str = unicodedata.normalize("NFKD" , _a ) __magic_name__ : Tuple = "".join([c for c in outputs if not unicodedata.combining(_a )] ) if self.do_lower_case: __magic_name__ : int = outputs.lower() return outputs def SCREAMING_SNAKE_CASE ( self , _a ): __magic_name__ : Optional[Any] = self.preprocess_text(_a ) __magic_name__ : Dict = self.sp_model.encode(_a , out_type=_a ) __magic_name__ : Any = [] for piece in pieces: if len(_a ) > 1 and piece[-1] == str("," ) and piece[-2].isdigit(): __magic_name__ : Optional[Any] = self.sp_model.EncodeAsPieces(piece[:-1].replace(_a , "" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: __magic_name__ : List[str] = cur_pieces[1:] else: __magic_name__ : Optional[int] = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(_a ) else: new_pieces.append(_a ) return new_pieces def SCREAMING_SNAKE_CASE ( self , _a ): return self.sp_model.PieceToId(_a ) def SCREAMING_SNAKE_CASE ( self , _a ): return self.sp_model.IdToPiece(_a ) def SCREAMING_SNAKE_CASE ( self , _a ): __magic_name__ : Any = [] __magic_name__ : Union[str, Any] = "" __magic_name__ : int = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(_a ) + token __magic_name__ : List[Any] = True __magic_name__ : Optional[int] = [] else: current_sub_tokens.append(_a ) __magic_name__ : Optional[Any] = False out_string += self.sp_model.decode(_a ) return out_string.strip() def SCREAMING_SNAKE_CASE ( self , _a , _a = None ): __magic_name__ : List[str] = [self.sep_token_id] __magic_name__ : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def SCREAMING_SNAKE_CASE ( self , _a , _a = None , _a = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_a , token_ids_a=_a , already_has_special_tokens=_a ) if token_ids_a is not None: return [1] + ([0] * len(_a )) + [1] + ([0] * len(_a )) + [1] return [1] + ([0] * len(_a )) + [1] def SCREAMING_SNAKE_CASE ( self , _a , _a = None ): __magic_name__ : Optional[int] = [self.sep_token_id] __magic_name__ : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def SCREAMING_SNAKE_CASE ( self , _a , _a = None ): if not os.path.isdir(_a ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return __magic_name__ : List[str] = os.path.join( _a , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_a ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _a ) elif not os.path.isfile(self.vocab_file ): with open(_a , "wb" ) as fi: __magic_name__ : Union[str, Any] = self.sp_model.serialized_model_proto() fi.write(_a ) return (out_vocab_file,)
281
1
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class snake_case_ (lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): UpperCAmelCase__ : int = StableDiffusionInpaintPipeline UpperCAmelCase__ : Optional[int] = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS UpperCAmelCase__ : int = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS UpperCAmelCase__ : Optional[int] = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess UpperCAmelCase__ : Tuple = frozenset([] ) def lowerCamelCase__( self :Optional[Any] ) -> Tuple: torch.manual_seed(0 ) a__ = UNetaDConditionModel( block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=9 ,out_channels=4 ,down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') ,up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') ,cross_attention_dim=32 ,attention_head_dim=(2, 4) ,use_linear_projection=__snake_case ,) a__ = PNDMScheduler(skip_prk_steps=__snake_case ) torch.manual_seed(0 ) a__ = AutoencoderKL( block_out_channels=[32, 64] ,in_channels=3 ,out_channels=3 ,down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] ,up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] ,latent_channels=4 ,sample_size=1_28 ,) torch.manual_seed(0 ) a__ = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1E-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=10_00 ,hidden_act='gelu' ,projection_dim=5_12 ,) a__ = CLIPTextModel(__snake_case ) a__ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) a__ = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def lowerCamelCase__( self :Optional[int] ,__snake_case :Union[str, Any] ,__snake_case :int=0 ) -> List[Any]: # TODO: use tensor inputs instead of PIL, this is here just to leave the old expected_slices untouched a__ = floats_tensor((1, 3, 32, 32) ,rng=random.Random(__snake_case ) ).to(__snake_case ) a__ = image.cpu().permute(0 ,2 ,3 ,1 )[0] a__ = Image.fromarray(np.uinta(__snake_case ) ).convert('RGB' ).resize((64, 64) ) a__ = Image.fromarray(np.uinta(image + 4 ) ).convert('RGB' ).resize((64, 64) ) if str(__snake_case ).startswith('mps' ): a__ = torch.manual_seed(__snake_case ) else: a__ = torch.Generator(device=__snake_case ).manual_seed(__snake_case ) a__ = { 'prompt': 'A painting of a squirrel eating a burger', 'image': init_image, 'mask_image': mask_image, 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def lowerCamelCase__( self :int ) -> Union[str, Any]: a__ = 'cpu' # ensure determinism for the device-dependent torch.Generator a__ = self.get_dummy_components() a__ = StableDiffusionInpaintPipeline(**__snake_case ) a__ = sd_pipe.to(__snake_case ) sd_pipe.set_progress_bar_config(disable=__snake_case ) a__ = self.get_dummy_inputs(__snake_case ) a__ = sd_pipe(**__snake_case ).images a__ = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) a__ = np.array([0.47_27, 0.57_35, 0.39_41, 0.54_46, 0.59_26, 0.43_94, 0.50_62, 0.46_54, 0.44_76] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCamelCase__( self :List[Any] ) -> Union[str, Any]: super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class snake_case_ (unittest.TestCase ): def lowerCamelCase__( self :Dict ) -> Optional[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase__( self :Union[str, Any] ) -> Optional[int]: a__ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-inpaint/init_image.png' ) a__ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png' ) a__ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint' '/yellow_cat_sitting_on_a_park_bench.npy' ) a__ = 'stabilityai/stable-diffusion-2-inpainting' a__ = StableDiffusionInpaintPipeline.from_pretrained(__snake_case ,safety_checker=__snake_case ) pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) pipe.enable_attention_slicing() a__ = 'Face of a yellow cat, high resolution, sitting on a park bench' a__ = torch.manual_seed(0 ) a__ = pipe( prompt=__snake_case ,image=__snake_case ,mask_image=__snake_case ,generator=__snake_case ,output_type='np' ,) a__ = output.images[0] assert image.shape == (5_12, 5_12, 3) assert np.abs(expected_image - image ).max() < 9E-3 def lowerCamelCase__( self :List[Any] ) -> List[Any]: a__ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-inpaint/init_image.png' ) a__ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png' ) a__ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint' '/yellow_cat_sitting_on_a_park_bench_fp16.npy' ) a__ = 'stabilityai/stable-diffusion-2-inpainting' a__ = StableDiffusionInpaintPipeline.from_pretrained( __snake_case ,torch_dtype=torch.floataa ,safety_checker=__snake_case ,) pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) pipe.enable_attention_slicing() a__ = 'Face of a yellow cat, high resolution, sitting on a park bench' a__ = torch.manual_seed(0 ) a__ = pipe( prompt=__snake_case ,image=__snake_case ,mask_image=__snake_case ,generator=__snake_case ,output_type='np' ,) a__ = output.images[0] assert image.shape == (5_12, 5_12, 3) assert np.abs(expected_image - image ).max() < 5E-1 def lowerCamelCase__( self :List[str] ) -> Union[str, Any]: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() a__ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-inpaint/init_image.png' ) a__ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png' ) a__ = 'stabilityai/stable-diffusion-2-inpainting' a__ = PNDMScheduler.from_pretrained(__snake_case ,subfolder='scheduler' ) a__ = StableDiffusionInpaintPipeline.from_pretrained( __snake_case ,safety_checker=__snake_case ,scheduler=__snake_case ,torch_dtype=torch.floataa ,) pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() a__ = 'Face of a yellow cat, high resolution, sitting on a park bench' a__ = torch.manual_seed(0 ) a__ = pipe( prompt=__snake_case ,image=__snake_case ,mask_image=__snake_case ,generator=__snake_case ,num_inference_steps=2 ,output_type='np' ,) a__ = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.65 * 10**9
361
def __lowercase ( __lowerCAmelCase : int ): if num <= 0: raise ValueError('Input must be a positive integer' ) a__ = [True] * (num + 1) a__ = 2 while p * p <= num: if primes[p]: for i in range(p * p , num + 1 , __lowerCAmelCase ): a__ = False p += 1 return [prime for prime in range(2 , num + 1 ) if primes[prime]] if __name__ == "__main__": import doctest doctest.testmod() snake_case : Optional[Any] = int(input('''Enter a positive integer: ''').strip()) print(prime_sieve_eratosthenes(user_num))
109
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = { '''microsoft/markuplm-base''': '''https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json''', '''microsoft/markuplm-large''': '''https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json''', } class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' _lowerCamelCase: Tuple = '''markuplm''' def __init__( self : Any ,A_ : List[Any]=3_0522 ,A_ : Tuple=768 ,A_ : Dict=12 ,A_ : Tuple=12 ,A_ : List[Any]=3072 ,A_ : Dict="gelu" ,A_ : List[str]=0.1 ,A_ : Union[str, Any]=0.1 ,A_ : List[str]=512 ,A_ : Dict=2 ,A_ : Optional[int]=0.02 ,A_ : Optional[Any]=1e-12 ,A_ : List[Any]=0 ,A_ : Optional[int]=0 ,A_ : Union[str, Any]=2 ,A_ : Optional[int]=256 ,A_ : Dict=1024 ,A_ : Optional[Any]=216 ,A_ : str=1001 ,A_ : Any=32 ,A_ : Optional[int]=50 ,A_ : Any="absolute" ,A_ : Optional[int]=True ,A_ : List[Any]=None ,**A_ : int ,) -> Dict: super().__init__( pad_token_id=A_ ,bos_token_id=A_ ,eos_token_id=A_ ,**A_ ,) A = vocab_size A = hidden_size A = num_hidden_layers A = num_attention_heads A = hidden_act A = intermediate_size A = hidden_dropout_prob A = attention_probs_dropout_prob A = max_position_embeddings A = type_vocab_size A = initializer_range A = layer_norm_eps A = position_embedding_type A = use_cache A = classifier_dropout # additional properties A = max_depth A = max_xpath_tag_unit_embeddings A = max_xpath_subs_unit_embeddings A = tag_pad_id A = subs_pad_id A = xpath_unit_hidden_size
74
import argparse import math import traceback import dateutil.parser as date_parser import requests def UpperCAmelCase__ (UpperCamelCase_ ): """simple docstring""" snake_case = {} snake_case = job['''started_at'''] snake_case = job['''completed_at'''] snake_case = date_parser.parse(UpperCamelCase_ ) snake_case = date_parser.parse(UpperCamelCase_ ) snake_case = round((end_datetime - start_datetime).total_seconds() / 60.0 ) snake_case = start snake_case = end snake_case = duration_in_min return job_info def UpperCAmelCase__ (UpperCamelCase_ ,UpperCamelCase_=None ): """simple docstring""" snake_case = None if token is not None: snake_case = {'''Accept''': '''application/vnd.github+json''', '''Authorization''': F'''Bearer {token}'''} snake_case = F'''https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100''' snake_case = requests.get(UpperCamelCase_ ,headers=UpperCamelCase_ ).json() snake_case = {} try: job_time.update({job['''name''']: extract_time_from_single_job(UpperCamelCase_ ) for job in result['''jobs''']} ) snake_case = math.ceil((result['''total_count'''] - 1_00) / 1_00 ) for i in range(UpperCamelCase_ ): snake_case = requests.get(url + F'''&page={i + 2}''' ,headers=UpperCamelCase_ ).json() job_time.update({job['''name''']: extract_time_from_single_job(UpperCamelCase_ ) for job in result['''jobs''']} ) return job_time except Exception: print(F'''Unknown error, could not fetch links:\n{traceback.format_exc()}''' ) return {} if __name__ == "__main__": _SCREAMING_SNAKE_CASE : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument("--workflow_run_id", type=str, required=True, help="A GitHub Actions workflow run id.") _SCREAMING_SNAKE_CASE : Union[str, Any] = parser.parse_args() _SCREAMING_SNAKE_CASE : int = get_job_time(args.workflow_run_id) _SCREAMING_SNAKE_CASE : Dict = dict(sorted(job_time.items(), key=lambda item: item[1]["duration"], reverse=True)) for k, v in job_time.items(): print(f'''{k}: {v['duration']}''')
127
0
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowercase : Union[str, Any] ={ "configuration_autoformer": [ "AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "AutoformerConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : List[Any] =[ "AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "AutoformerForPrediction", "AutoformerModel", "AutoformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_autoformer import ( AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_autoformer import ( AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, AutoformerForPrediction, AutoformerModel, AutoformerPreTrainedModel, ) else: import sys _lowercase : Optional[Any] =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
351
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available _lowercase : List[Any] ={} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : int =["BartphoTokenizer"] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bartpho import BartphoTokenizer else: import sys _lowercase : Tuple =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
266
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __UpperCamelCase : Tuple = logging.get_logger(__name__) __UpperCamelCase : str = { "YituTech/conv-bert-base": "https://huggingface.co/YituTech/conv-bert-base/resolve/main/config.json", "YituTech/conv-bert-medium-small": ( "https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/config.json" ), "YituTech/conv-bert-small": "https://huggingface.co/YituTech/conv-bert-small/resolve/main/config.json", # See all ConvBERT models at https://huggingface.co/models?filter=convbert } class __lowerCAmelCase ( __a ): UpperCamelCase__ = '''convbert''' def __init__( self :List[Any] , __magic_name__ :str=3_0522 , __magic_name__ :Optional[int]=768 , __magic_name__ :int=12 , __magic_name__ :Any=12 , __magic_name__ :Union[str, Any]=3072 , __magic_name__ :List[str]="gelu" , __magic_name__ :Optional[int]=0.1 , __magic_name__ :Any=0.1 , __magic_name__ :List[Any]=512 , __magic_name__ :Optional[Any]=2 , __magic_name__ :Dict=0.02 , __magic_name__ :Dict=1E-1_2 , __magic_name__ :Optional[Any]=1 , __magic_name__ :int=0 , __magic_name__ :str=2 , __magic_name__ :Optional[int]=768 , __magic_name__ :Optional[int]=2 , __magic_name__ :int=9 , __magic_name__ :str=1 , __magic_name__ :Any=None , **__magic_name__ :Dict , ): '''simple docstring''' super().__init__( pad_token_id=lowerCAmelCase__ , bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , **lowerCAmelCase__ , ) a = vocab_size a = hidden_size a = num_hidden_layers a = num_attention_heads a = intermediate_size a = hidden_act a = hidden_dropout_prob a = attention_probs_dropout_prob a = max_position_embeddings a = type_vocab_size a = initializer_range a = layer_norm_eps a = embedding_size a = head_ratio a = conv_kernel_size a = num_groups a = classifier_dropout class __lowerCAmelCase ( __a ): @property def lowerCamelCase__ ( self :Any ): '''simple docstring''' if self.task == "multiple-choice": a = {0: """batch""", 1: """choice""", 2: """sequence"""} else: a = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis), ] )
228
"""simple docstring""" from math import isqrt, loga def _lowerCAmelCase ( UpperCamelCase_ ): __SCREAMING_SNAKE_CASE = [True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , UpperCamelCase_ , UpperCamelCase_ ): __SCREAMING_SNAKE_CASE = False return [i for i in range(2 , UpperCamelCase_ ) if is_prime[i]] def _lowerCAmelCase ( UpperCamelCase_ = 80_0800 , UpperCamelCase_ = 80_0800 ): __SCREAMING_SNAKE_CASE = degree * loga(UpperCamelCase_ ) __SCREAMING_SNAKE_CASE = int(UpperCamelCase_ ) __SCREAMING_SNAKE_CASE = calculate_prime_numbers(UpperCamelCase_ ) __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = len(UpperCamelCase_ ) - 1 while left < right: while ( prime_numbers[right] * loga(prime_numbers[left] ) + prime_numbers[left] * loga(prime_numbers[right] ) > upper_bound ): right -= 1 hybrid_integers_count += right - left left += 1 return hybrid_integers_count if __name__ == "__main__": print(F"""{solution() = }""")
100
0
import unittest from transformers import SqueezeBertConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, ) class a ( _A ): '''simple docstring''' def __init__( self : Tuple , __snake_case : List[Any] , __snake_case : Optional[Any]=13 , __snake_case : int=7 , __snake_case : List[Any]=True , __snake_case : Optional[Any]=True , __snake_case : Optional[int]=False , __snake_case : int=True , __snake_case : Union[str, Any]=99 , __snake_case : Optional[int]=32 , __snake_case : Union[str, Any]=5 , __snake_case : List[Any]=4 , __snake_case : Union[str, Any]=64 , __snake_case : Dict="gelu" , __snake_case : Any=0.1 , __snake_case : List[Any]=0.1 , __snake_case : int=5_12 , __snake_case : Optional[int]=16 , __snake_case : Optional[Any]=2 , __snake_case : Any=0.02 , __snake_case : List[str]=3 , __snake_case : List[Any]=4 , __snake_case : str=None , __snake_case : Optional[Any]=2 , __snake_case : Optional[int]=2 , __snake_case : Optional[Any]=2 , __snake_case : List[str]=2 , __snake_case : Dict=4 , __snake_case : Any=1 , ): UpperCAmelCase_ = parent UpperCAmelCase_ = batch_size UpperCAmelCase_ = seq_length UpperCAmelCase_ = is_training UpperCAmelCase_ = use_input_mask UpperCAmelCase_ = use_token_type_ids UpperCAmelCase_ = use_labels UpperCAmelCase_ = vocab_size UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_act UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = type_vocab_size UpperCAmelCase_ = type_sequence_label_size UpperCAmelCase_ = initializer_range UpperCAmelCase_ = num_labels UpperCAmelCase_ = num_choices UpperCAmelCase_ = scope UpperCAmelCase_ = q_groups UpperCAmelCase_ = k_groups UpperCAmelCase_ = v_groups UpperCAmelCase_ = post_attention_groups UpperCAmelCase_ = intermediate_groups UpperCAmelCase_ = output_groups def lowerCamelCase_ ( self : List[str] ): UpperCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase_ = None if self.use_input_mask: UpperCAmelCase_ = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase_ = None UpperCAmelCase_ = None UpperCAmelCase_ = None if self.use_labels: UpperCAmelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase_ = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase_ = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCamelCase_ ( self : str ): return SqueezeBertConfig( embedding_size=self.hidden_size , vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , attention_probs_dropout_prob=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , q_groups=self.q_groups , k_groups=self.k_groups , v_groups=self.v_groups , post_attention_groups=self.post_attention_groups , intermediate_groups=self.intermediate_groups , output_groups=self.output_groups , ) def lowerCamelCase_ ( self : int , __snake_case : Tuple , __snake_case : Tuple , __snake_case : List[Any] , __snake_case : Optional[Any] , __snake_case : Optional[int] , __snake_case : str ): UpperCAmelCase_ = SqueezeBertModel(config=__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ = model(__snake_case , __snake_case ) UpperCAmelCase_ = model(__snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase_ ( self : int , __snake_case : List[str] , __snake_case : str , __snake_case : List[Any] , __snake_case : Union[str, Any] , __snake_case : Optional[int] , __snake_case : Optional[Any] ): UpperCAmelCase_ = SqueezeBertForMaskedLM(config=__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ = model(__snake_case , attention_mask=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase_ ( self : Union[str, Any] , __snake_case : Optional[Any] , __snake_case : str , __snake_case : Optional[Any] , __snake_case : Optional[Any] , __snake_case : int , __snake_case : List[Any] ): UpperCAmelCase_ = SqueezeBertForQuestionAnswering(config=__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ = model( __snake_case , attention_mask=__snake_case , start_positions=__snake_case , end_positions=__snake_case ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCamelCase_ ( self : Optional[Any] , __snake_case : Any , __snake_case : int , __snake_case : List[Any] , __snake_case : Optional[int] , __snake_case : Tuple , __snake_case : List[Any] ): UpperCAmelCase_ = self.num_labels UpperCAmelCase_ = SqueezeBertForSequenceClassification(__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ = model(__snake_case , attention_mask=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase_ ( self : int , __snake_case : Optional[int] , __snake_case : Optional[int] , __snake_case : Optional[Any] , __snake_case : Any , __snake_case : Any , __snake_case : List[Any] ): UpperCAmelCase_ = self.num_labels UpperCAmelCase_ = SqueezeBertForTokenClassification(config=__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ = model(__snake_case , attention_mask=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCamelCase_ ( self : List[str] , __snake_case : Optional[int] , __snake_case : Union[str, Any] , __snake_case : Union[str, Any] , __snake_case : Dict , __snake_case : Tuple , __snake_case : Union[str, Any] ): UpperCAmelCase_ = self.num_choices UpperCAmelCase_ = SqueezeBertForMultipleChoice(config=__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase_ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase_ = model( __snake_case , attention_mask=__snake_case , labels=__snake_case , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCamelCase_ ( self : List[Any] ): UpperCAmelCase_ = self.prepare_config_and_inputs() ((UpperCAmelCase_) , (UpperCAmelCase_) , (UpperCAmelCase_) , (UpperCAmelCase_) , (UpperCAmelCase_) , (UpperCAmelCase_)) = config_and_inputs UpperCAmelCase_ = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class a ( _A , _A , unittest.TestCase ): '''simple docstring''' lowerCAmelCase : Optional[int] = ( ( SqueezeBertModel, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, ) if is_torch_available() else None ) lowerCAmelCase : Optional[int] = ( { 'feature-extraction': SqueezeBertModel, 'fill-mask': SqueezeBertForMaskedLM, 'question-answering': SqueezeBertForQuestionAnswering, 'text-classification': SqueezeBertForSequenceClassification, 'token-classification': SqueezeBertForTokenClassification, 'zero-shot': SqueezeBertForSequenceClassification, } if is_torch_available() else {} ) lowerCAmelCase : str = False lowerCAmelCase : Dict = True lowerCAmelCase : List[Any] = False def lowerCamelCase_ ( self : Union[str, Any] ): UpperCAmelCase_ = SqueezeBertModelTester(self ) UpperCAmelCase_ = ConfigTester(self , config_class=__snake_case , dim=37 ) def lowerCamelCase_ ( self : Tuple ): self.config_tester.run_common_tests() def lowerCamelCase_ ( self : int ): UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_model(*__snake_case ) def lowerCamelCase_ ( self : Tuple ): UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_masked_lm(*__snake_case ) def lowerCamelCase_ ( self : Any ): UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_question_answering(*__snake_case ) def lowerCamelCase_ ( self : Any ): UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_sequence_classification(*__snake_case ) def lowerCamelCase_ ( self : Optional[int] ): UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_token_classification(*__snake_case ) def lowerCamelCase_ ( self : int ): UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_multiple_choice(*__snake_case ) @slow def lowerCamelCase_ ( self : int ): for model_name in SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ = SqueezeBertModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) @require_sentencepiece @require_tokenizers @require_torch class a ( unittest.TestCase ): '''simple docstring''' @slow def lowerCamelCase_ ( self : List[str] ): UpperCAmelCase_ = SqueezeBertForSequenceClassification.from_pretrained('''squeezebert/squeezebert-mnli''' ) UpperCAmelCase_ = torch.tensor([[1, 2_94_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 13, 15_88, 2]] ) UpperCAmelCase_ = model(__snake_case )[0] UpperCAmelCase_ = torch.Size((1, 3) ) self.assertEqual(output.shape , __snake_case ) UpperCAmelCase_ = torch.tensor([[0.6_401, -0.0_349, -0.6_041]] ) self.assertTrue(torch.allclose(__snake_case , __snake_case , atol=1E-4 ) )
177
from __future__ import annotations import os from collections.abc import Mapping _lowerCamelCase = tuple[int, int] class a : '''simple docstring''' def __init__( self : str , __snake_case : set[int] , __snake_case : Mapping[EdgeT, int] ): UpperCAmelCase_ = vertices UpperCAmelCase_ = { (min(__snake_case ), max(__snake_case )): weight for edge, weight in edges.items() } def lowerCamelCase_ ( self : Any , __snake_case : EdgeT , __snake_case : int ): self.vertices.add(edge[0] ) self.vertices.add(edge[1] ) UpperCAmelCase_ = weight def lowerCamelCase_ ( self : Union[str, Any] ): UpperCAmelCase_ = Graph({min(self.vertices )} , {} ) UpperCAmelCase_ = 42 UpperCAmelCase_ = 42 UpperCAmelCase_ = 42 UpperCAmelCase_ = 42 while len(subgraph.vertices ) < len(self.vertices ): UpperCAmelCase_ = max(self.edges.values() ) + 1 for edge, weight in self.edges.items(): if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices): if weight < min_weight: UpperCAmelCase_ = edge UpperCAmelCase_ = weight subgraph.add_edge(__snake_case , __snake_case ) return subgraph def SCREAMING_SNAKE_CASE ( __UpperCamelCase : str = "p107_network.txt" ) -> int: UpperCAmelCase_ = os.path.abspath(os.path.dirname(__UpperCamelCase ) ) UpperCAmelCase_ = os.path.join(__UpperCamelCase , __UpperCamelCase ) UpperCAmelCase_ = {} UpperCAmelCase_ = 42 UpperCAmelCase_ = 42 UpperCAmelCase_ = 42 with open(__UpperCamelCase ) as f: UpperCAmelCase_ = f.read().strip().split('''\n''' ) UpperCAmelCase_ = [line.split(''',''' ) for line in data] for edgea in range(1 , len(__UpperCamelCase ) ): for edgea in range(__UpperCamelCase ): if adjaceny_matrix[edgea][edgea] != "-": UpperCAmelCase_ = int(adjaceny_matrix[edgea][edgea] ) UpperCAmelCase_ = Graph(set(range(len(__UpperCamelCase ) ) ) , __UpperCamelCase ) UpperCAmelCase_ = graph.prims_algorithm() UpperCAmelCase_ = sum(graph.edges.values() ) UpperCAmelCase_ = sum(subgraph.edges.values() ) return initial_total - optimal_total if __name__ == "__main__": print(F"{solution() = }")
177
1
"""simple docstring""" import os def _snake_case ( lowercase__ : str = "matrix.txt" ) -> int: '''simple docstring''' with open(os.path.join(os.path.dirname(lowercase__ ) , lowercase__ ) ) as in_file: lowerCAmelCase_ :str = in_file.read() lowerCAmelCase_ :Tuple = [[int(lowercase__ ) for cell in row.split(""",""" )] for row in data.strip().splitlines()] lowerCAmelCase_ :Tuple = [[0 for cell in row] for row in grid] lowerCAmelCase_ :str = len(grid[0] ) lowerCAmelCase_ :Union[str, Any] = [[0 for i in range(lowercase__ )] for j in range(lowercase__ )] lowerCAmelCase_ :Optional[Any] = grid[0][0] for i in range(1 , lowercase__ ): lowerCAmelCase_ :Optional[int] = grid[0][i] + dp[0][i - 1] for i in range(1 , lowercase__ ): lowerCAmelCase_ :str = grid[i][0] + dp[i - 1][0] for i in range(1 , lowercase__ ): for j in range(1 , lowercase__ ): lowerCAmelCase_ :Dict = grid[i][j] + min(dp[i - 1][j] , dp[i][j - 1] ) return dp[-1][-1] if __name__ == "__main__": print(F"""{solution() = }""")
84
"""simple docstring""" import inspect import unittest import torch import torch.nn as nn from accelerate.hooks import ( AlignDevicesHook, ModelHook, SequentialHook, add_hook_to_module, attach_align_device_hook, remove_hook_from_module, remove_hook_from_submodules, ) from accelerate.test_utils import require_multi_gpu class UpperCamelCase ( nn.Module ): def __init__( self : Union[str, Any] ) -> int: super().__init__() _a : Optional[Any] = nn.Linear(3 , 4 ) _a : Tuple = nn.BatchNormad(4 ) _a : Dict = nn.Linear(4 , 5 ) def _lowercase ( self : Optional[int] , UpperCAmelCase__ : List[str] ) -> int: return self.lineara(self.batchnorm(self.lineara(UpperCAmelCase__ ) ) ) class UpperCamelCase ( snake_case_ ): def _lowercase ( self : Any , UpperCAmelCase__ : Any , *UpperCAmelCase__ : List[str] , **UpperCAmelCase__ : Optional[int] ) -> Optional[int]: return (args[0] + 1,) + args[1:], kwargs class UpperCamelCase ( snake_case_ ): def _lowercase ( self : Optional[Any] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Optional[Any] ) -> List[str]: return output + 1 class UpperCamelCase ( unittest.TestCase ): def _lowercase ( self : Dict ) -> str: _a : List[Any] = ModelForTest() _a : str = ModelHook() add_hook_to_module(UpperCAmelCase__ , UpperCAmelCase__ ) self.assertEqual(test_model._hf_hook , UpperCAmelCase__ ) self.assertTrue(hasattr(UpperCAmelCase__ , """_old_forward""" ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , """forward""" ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ["""x"""] ) remove_hook_from_module(UpperCAmelCase__ ) self.assertFalse(hasattr(UpperCAmelCase__ , """_hf_hook""" ) ) self.assertFalse(hasattr(UpperCAmelCase__ , """_old_forward""" ) ) def _lowercase ( self : Optional[int] ) -> Optional[int]: _a : Dict = ModelForTest() _a : Dict = ModelHook() add_hook_to_module(UpperCAmelCase__ , UpperCAmelCase__ ) add_hook_to_module(UpperCAmelCase__ , UpperCAmelCase__ , append=UpperCAmelCase__ ) self.assertEqual(isinstance(test_model._hf_hook , UpperCAmelCase__ ) , UpperCAmelCase__ ) self.assertEqual(len(test_model._hf_hook.hooks ) , 2 ) self.assertTrue(hasattr(UpperCAmelCase__ , """_old_forward""" ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , """forward""" ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ["""x"""] ) remove_hook_from_module(UpperCAmelCase__ ) self.assertFalse(hasattr(UpperCAmelCase__ , """_hf_hook""" ) ) self.assertFalse(hasattr(UpperCAmelCase__ , """_old_forward""" ) ) def _lowercase ( self : Dict ) -> int: _a : str = ModelForTest() _a : List[Any] = torch.randn(2 , 3 ) _a : Optional[Any] = test_model(x + 1 ) _a : str = test_model(x + 2 ) _a : Union[str, Any] = PreForwardHook() add_hook_to_module(UpperCAmelCase__ , UpperCAmelCase__ ) _a : Tuple = test_model(UpperCAmelCase__ ) self.assertTrue(torch.allclose(UpperCAmelCase__ , UpperCAmelCase__ , atol=1E-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain _a : int = PreForwardHook() add_hook_to_module(UpperCAmelCase__ , UpperCAmelCase__ ) _a : str = test_model(UpperCAmelCase__ ) self.assertTrue(torch.allclose(UpperCAmelCase__ , UpperCAmelCase__ , atol=1E-5 ) ) # You need to use the sequential hook to chain two or more hooks _a : int = SequentialHook(PreForwardHook() , PreForwardHook() ) add_hook_to_module(UpperCAmelCase__ , UpperCAmelCase__ ) _a : Tuple = test_model(UpperCAmelCase__ ) assert torch.allclose(UpperCAmelCase__ , UpperCAmelCase__ , atol=1E-5 ) def _lowercase ( self : Tuple ) -> int: _a : Tuple = ModelForTest() _a : Union[str, Any] = torch.randn(2 , 3 ) _a : Optional[int] = test_model(UpperCAmelCase__ ) _a : int = PostForwardHook() add_hook_to_module(UpperCAmelCase__ , UpperCAmelCase__ ) _a : List[str] = test_model(UpperCAmelCase__ ) self.assertTrue(torch.allclose(UpperCAmelCase__ , output + 1 , atol=1E-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain _a : List[Any] = PostForwardHook() add_hook_to_module(UpperCAmelCase__ , UpperCAmelCase__ ) _a : Dict = test_model(UpperCAmelCase__ ) self.assertTrue(torch.allclose(UpperCAmelCase__ , output + 1 , atol=1E-5 ) ) # You need to use the sequential hook to chain two or more hooks _a : Any = SequentialHook(PostForwardHook() , PostForwardHook() ) add_hook_to_module(UpperCAmelCase__ , UpperCAmelCase__ ) _a : Optional[int] = test_model(UpperCAmelCase__ ) assert torch.allclose(UpperCAmelCase__ , output + 2 , atol=1E-5 ) def _lowercase ( self : Dict ) -> Optional[Any]: _a : Any = ModelForTest() _a : List[Any] = torch.randn(2 , 3 ) _a : Dict = test_model(UpperCAmelCase__ ) _a : Any = PostForwardHook() add_hook_to_module(UpperCAmelCase__ , UpperCAmelCase__ ) _a : List[str] = test_model(UpperCAmelCase__ ) self.assertTrue(torch.allclose(UpperCAmelCase__ , output + 1 ) ) self.assertTrue(outputa.requires_grad ) _a : Any = True _a : Union[str, Any] = test_model(UpperCAmelCase__ ) self.assertFalse(outputa.requires_grad ) @require_multi_gpu def _lowercase ( self : Optional[Any] ) -> str: _a : List[Any] = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=1 ) ) self.assertEqual(model.lineara.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device(0 ) ) self.assertEqual(model.lineara.weight.device , torch.device(1 ) ) # We can still make a forward pass. The input does not need to be on any particular device _a : Optional[int] = torch.randn(2 , 3 ) _a : Any = model(UpperCAmelCase__ ) self.assertEqual(output.device , torch.device(1 ) ) # We can add a general hook to put back output on same device as input. add_hook_to_module(UpperCAmelCase__ , AlignDevicesHook(io_same_device=UpperCAmelCase__ ) ) _a : str = torch.randn(2 , 3 ).to(0 ) _a : Union[str, Any] = model(UpperCAmelCase__ ) self.assertEqual(output.device , torch.device(0 ) ) def _lowercase ( self : str ) -> Union[str, Any]: _a : int = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices _a : List[Any] = {"""execution_device""": 0 if torch.cuda.is_available() else """cpu""", """offload""": True} add_hook_to_module(model.lineara , AlignDevicesHook(**UpperCAmelCase__ ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**UpperCAmelCase__ ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**UpperCAmelCase__ ) ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) # Buffers are not included in the offload by default, so are on the execution device _a : Dict = torch.device(hook_kwargs["""execution_device"""] ) self.assertEqual(model.batchnorm.running_mean.device , UpperCAmelCase__ ) _a : int = torch.randn(2 , 3 ) _a : str = model(UpperCAmelCase__ ) self.assertEqual(output.device , UpperCAmelCase__ ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # Now test with buffers included in the offload _a : List[str] = { """execution_device""": 0 if torch.cuda.is_available() else """cpu""", """offload""": True, """offload_buffers""": True, } add_hook_to_module(model.lineara , AlignDevicesHook(**UpperCAmelCase__ ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**UpperCAmelCase__ ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**UpperCAmelCase__ ) ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("""meta""" ) ) _a : Tuple = torch.randn(2 , 3 ) _a : Union[str, Any] = model(UpperCAmelCase__ ) self.assertEqual(output.device , UpperCAmelCase__ ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) def _lowercase ( self : Tuple ) -> List[str]: _a : str = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices _a : Union[str, Any] = 0 if torch.cuda.is_available() else """cpu""" attach_align_device_hook(UpperCAmelCase__ , execution_device=UpperCAmelCase__ , offload=UpperCAmelCase__ ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) # Buffers are not included in the offload by default, so are on the execution device _a : Dict = torch.device(UpperCAmelCase__ ) self.assertEqual(model.batchnorm.running_mean.device , UpperCAmelCase__ ) _a : Union[str, Any] = torch.randn(2 , 3 ) _a : List[Any] = model(UpperCAmelCase__ ) self.assertEqual(output.device , UpperCAmelCase__ ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(UpperCAmelCase__ ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # Now test with buffers included in the offload attach_align_device_hook(UpperCAmelCase__ , execution_device=UpperCAmelCase__ , offload=UpperCAmelCase__ , offload_buffers=UpperCAmelCase__ ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("""meta""" ) ) _a : List[str] = torch.randn(2 , 3 ) _a : Union[str, Any] = model(UpperCAmelCase__ ) self.assertEqual(output.device , UpperCAmelCase__ ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(UpperCAmelCase__ ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) def _lowercase ( self : Dict ) -> str: _a : Optional[Any] = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices _a : str = 0 if torch.cuda.is_available() else """cpu""" attach_align_device_hook( UpperCAmelCase__ , execution_device=UpperCAmelCase__ , offload=UpperCAmelCase__ , weights_map=model.state_dict() ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) # Buffers are not included in the offload by default, so are on the execution device _a : Union[str, Any] = torch.device(UpperCAmelCase__ ) self.assertEqual(model.batchnorm.running_mean.device , UpperCAmelCase__ ) _a : Union[str, Any] = torch.randn(2 , 3 ) _a : int = model(UpperCAmelCase__ ) self.assertEqual(output.device , UpperCAmelCase__ ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(UpperCAmelCase__ ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # Now test with buffers included in the offload attach_align_device_hook( UpperCAmelCase__ , execution_device=UpperCAmelCase__ , offload=UpperCAmelCase__ , weights_map=model.state_dict() , offload_buffers=UpperCAmelCase__ , ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("""meta""" ) ) _a : Any = torch.randn(2 , 3 ) _a : int = model(UpperCAmelCase__ ) self.assertEqual(output.device , UpperCAmelCase__ ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(UpperCAmelCase__ ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) )
294
0
import os from bleurt import score # From: git+https://github.com/google-research/bleurt.git import datasets lowercase_ = datasets.logging.get_logger(__name__) lowercase_ = '\\n@inproceedings{bleurt,\n title={BLEURT: Learning Robust Metrics for Text Generation},\n author={Thibault Sellam and Dipanjan Das and Ankur P. Parikh},\n booktitle={ACL},\n year={2020},\n url={https://arxiv.org/abs/2004.04696}\n}\n' lowercase_ = '\\nBLEURT a learnt evaluation metric for Natural Language Generation. It is built using multiple phases of transfer learning starting from a pretrained BERT model (Devlin et al. 2018)\nand then employing another pre-training phrase using synthetic data. Finally it is trained on WMT human annotations. You may run BLEURT out-of-the-box or fine-tune\nit for your specific application (the latter is expected to perform better).\n\nSee the project\'s README at https://github.com/google-research/bleurt#readme for more information.\n' lowercase_ = '\nBLEURT score.\n\nArgs:\n `predictions` (list of str): prediction/candidate sentences\n `references` (list of str): reference sentences\n `checkpoint` BLEURT checkpoint. Will default to BLEURT-tiny if None.\n\nReturns:\n \'scores\': List of scores.\nExamples:\n\n >>> predictions = ["hello there", "general kenobi"]\n >>> references = ["hello there", "general kenobi"]\n >>> bleurt = datasets.load_metric("bleurt")\n >>> results = bleurt.compute(predictions=predictions, references=references)\n >>> print([round(v, 2) for v in results["scores"]])\n [1.03, 1.04]\n' lowercase_ = { 'bleurt-tiny-128': 'https://storage.googleapis.com/bleurt-oss/bleurt-tiny-128.zip', 'bleurt-tiny-512': 'https://storage.googleapis.com/bleurt-oss/bleurt-tiny-512.zip', 'bleurt-base-128': 'https://storage.googleapis.com/bleurt-oss/bleurt-base-128.zip', 'bleurt-base-512': 'https://storage.googleapis.com/bleurt-oss/bleurt-base-512.zip', 'bleurt-large-128': 'https://storage.googleapis.com/bleurt-oss/bleurt-large-128.zip', 'bleurt-large-512': 'https://storage.googleapis.com/bleurt-oss/bleurt-large-512.zip', 'BLEURT-20-D3': 'https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D3.zip', 'BLEURT-20-D6': 'https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D6.zip', 'BLEURT-20-D12': 'https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D12.zip', 'BLEURT-20': 'https://storage.googleapis.com/bleurt-oss-21/BLEURT-20.zip', } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A_ ( datasets.Metric ): '''simple docstring''' def _snake_case ( self: int ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='https://github.com/google-research/bleurt' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Value('string' , id='sequence' ), } ) , codebase_urls=['https://github.com/google-research/bleurt'] , reference_urls=['https://github.com/google-research/bleurt', 'https://arxiv.org/abs/2004.04696'] , ) def _snake_case ( self: Tuple , a: List[Any] ): # check that config name specifies a valid BLEURT model if self.config_name == "default": logger.warning( 'Using default BLEURT-Base checkpoint for sequence maximum length 128. ' 'You can use a bigger model for better results with e.g.: datasets.load_metric(\'bleurt\', \'bleurt-large-512\').' ) __lowerCamelCase : Optional[int] = 'bleurt-base-128' if self.config_name.lower() in CHECKPOINT_URLS: __lowerCamelCase : List[str] = self.config_name.lower() elif self.config_name.upper() in CHECKPOINT_URLS: __lowerCamelCase : List[str] = self.config_name.upper() else: raise KeyError( F'{self.config_name} model not found. You should supply the name of a model checkpoint for bleurt in {CHECKPOINT_URLS.keys()}' ) # download the model checkpoint specified by self.config_name and set up the scorer __lowerCamelCase : Union[str, Any] = dl_manager.download_and_extract(CHECKPOINT_URLS[checkpoint_name] ) __lowerCamelCase : Tuple = score.BleurtScorer(os.path.join(a , a ) ) def _snake_case ( self: List[Any] , a: Union[str, Any] , a: str ): __lowerCamelCase : Tuple = self.scorer.score(references=a , candidates=a ) return {"scores": scores}
194
from __future__ import annotations def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ ): __lowerCamelCase : List[Any] = str(SCREAMING_SNAKE_CASE__ ) return len(SCREAMING_SNAKE_CASE__ ) == 9 and set(SCREAMING_SNAKE_CASE__ ) == set('123456789' ) def UpperCamelCase__ ( ): for base_num in range(9_999 , 4_999 , -1 ): __lowerCamelCase : Tuple = 100_002 * base_num if is_9_pandigital(SCREAMING_SNAKE_CASE__ ): return candidate for base_num in range(333 , 99 , -1 ): __lowerCamelCase : Union[str, Any] = 1_002_003 * base_num if is_9_pandigital(SCREAMING_SNAKE_CASE__ ): return candidate return None if __name__ == "__main__": print(F"""{solution() = }""")
194
1
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SwiftFormerConfig, SwiftFormerForImageClassification, ViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() __A = logging.get_logger(__name__) __A = torch.device("cpu") def lowerCAmelCase_ ( ) -> Dict: """simple docstring""" lowerCamelCase__: List[Any] ="""http://images.cocodataset.org/val2017/000000039769.jpg""" lowerCamelCase__: Tuple =Image.open(requests.get(__a , stream=__a ).raw ) return im def lowerCAmelCase_ ( __a ) -> Optional[int]: """simple docstring""" if swiftformer_name == "swiftformer_xs": return torch.tensor([-2.1_703e00, 2.1_107e00, -2.0_811e00, 8.8_685e-01, 2.4_360e-01] ) elif swiftformer_name == "swiftformer_s": return torch.tensor([3.9_636e-01, 2.3_478e-01, -1.6_963e00, -1.7_381e00, -8.6_337e-01] ) elif swiftformer_name == "swiftformer_l1": return torch.tensor([-4.2_768e-01, -4.7_429e-01, -1.0_897e00, -1.0_248e00, 3.5_523e-02] ) elif swiftformer_name == "swiftformer_l3": return torch.tensor([-2.5_330e-01, 2.4_211e-01, -6.0_185e-01, -8.2_789e-01, -6.0_446e-02] ) def lowerCAmelCase_ ( __a , __a , __a ) -> Any: """simple docstring""" lowerCamelCase__: int =dct.pop(__a ) lowerCamelCase__: Any =val def lowerCAmelCase_ ( __a ) -> Dict: """simple docstring""" lowerCamelCase__: Optional[int] =[] for k in state_dict.keys(): lowerCamelCase__: Optional[Any] =k if ".pwconv" in k: lowerCamelCase__: int =k_new.replace(".pwconv" , ".point_wise_conv" ) if ".dwconv" in k: lowerCamelCase__: Tuple =k_new.replace(".dwconv" , ".depth_wise_conv" ) if ".Proj." in k: lowerCamelCase__: List[Any] =k_new.replace(".Proj." , ".proj." ) if "patch_embed" in k_new: lowerCamelCase__: Any =k_new.replace("patch_embed" , "swiftformer.patch_embed.patch_embedding" ) if "network" in k_new: lowerCamelCase__: int =k_new.split("." ) if ls[2].isdigit(): lowerCamelCase__: List[Any] ="""swiftformer.encoder.network.""" + ls[1] + """.blocks.""" + ls[2] + """.""" + """.""".join(ls[3:] ) else: lowerCamelCase__: Any =k_new.replace("network" , "swiftformer.encoder.network" ) rename_keys.append((k, k_new) ) return rename_keys @torch.no_grad() def lowerCAmelCase_ ( __a , __a , __a ) -> Any: """simple docstring""" lowerCamelCase__: List[Any] =SwiftFormerConfig() # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size lowerCamelCase__: Optional[Any] =1000 lowerCamelCase__: Tuple ="""huggingface/label-files""" lowerCamelCase__: List[str] ="""imagenet-1k-id2label.json""" lowerCamelCase__: Dict =json.load(open(hf_hub_download(__a , __a , repo_type="dataset" ) , "r" ) ) lowerCamelCase__: Dict ={int(__a ): v for k, v in idalabel.items()} lowerCamelCase__: str =idalabel lowerCamelCase__: Dict ={v: k for k, v in idalabel.items()} # size of the architecture if swiftformer_name == "swiftformer_xs": lowerCamelCase__: Any =[3, 3, 6, 4] lowerCamelCase__: List[str] =[48, 56, 112, 220] elif swiftformer_name == "swiftformer_s": lowerCamelCase__: Dict =[3, 3, 9, 6] lowerCamelCase__: Union[str, Any] =[48, 64, 168, 224] elif swiftformer_name == "swiftformer_l1": lowerCamelCase__: int =[4, 3, 10, 5] lowerCamelCase__: Optional[int] =[48, 96, 192, 384] elif swiftformer_name == "swiftformer_l3": lowerCamelCase__: Union[str, Any] =[4, 4, 12, 6] lowerCamelCase__: List[Any] =[64, 128, 320, 512] # load state_dict of original model, remove and rename some keys if original_ckpt: if original_ckpt.startswith("https" ): lowerCamelCase__: List[str] =torch.hub.load_state_dict_from_url(__a , map_location="cpu" , check_hash=__a ) else: lowerCamelCase__: Any =torch.load(__a , map_location="cpu" ) lowerCamelCase__: Optional[Any] =checkpoint lowerCamelCase__: Dict =create_rename_keys(__a ) for rename_key_src, rename_key_dest in rename_keys: rename_key(__a , __a , __a ) # load HuggingFace model lowerCamelCase__: List[Any] =SwiftFormerForImageClassification(__a ).eval() hf_model.load_state_dict(__a ) # prepare test inputs lowerCamelCase__: Dict =prepare_img() lowerCamelCase__: Tuple =ViTImageProcessor.from_pretrained("preprocessor_config" ) lowerCamelCase__: Optional[int] =processor(images=__a , return_tensors="pt" ) # compare outputs from both models lowerCamelCase__: Optional[int] =get_expected_output(__a ) lowerCamelCase__: List[str] =hf_model(inputs["pixel_values"] ).logits assert hf_logits.shape == torch.Size([1, 1000] ) assert torch.allclose(hf_logits[0, 0:5] , __a , atol=1e-3 ) Path(__a ).mkdir(exist_ok=__a ) print(F"""Saving model {swiftformer_name} to {pytorch_dump_folder_path}""" ) hf_model.save_pretrained(__a ) if __name__ == "__main__": __A = argparse.ArgumentParser() # Required parameters parser.add_argument( "--swiftformer_name", default="swiftformer_xs", choices=["swiftformer_xs", "swiftformer_s", "swiftformer_l1", "swiftformer_l3"], type=str, help="Name of the SwiftFormer model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default="./converted_outputs/", type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument("--original_ckpt", default=None, type=str, help="Path to the original model checkpoint.") __A = parser.parse_args() convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
10
"""simple docstring""" import os from typing import List, Optional, Union from ...tokenization_utils import PreTrainedTokenizer from ...tokenization_utils_base import AddedToken from ...utils import logging A: str = logging.get_logger(__name__) A: List[Any] = {"vocab_file": "vocab.txt"} A: List[str] = { "vocab_file": { "facebook/esm2_t6_8M_UR50D": "https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt", "facebook/esm2_t12_35M_UR50D": "https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt", }, } A: Dict = { "facebook/esm2_t6_8M_UR50D": 1_0_2_4, "facebook/esm2_t12_35M_UR50D": 1_0_2_4, } def _snake_case ( UpperCamelCase : int ): with open(UpperCamelCase , """r""" ) as f: UpperCAmelCase : int = f.read().splitlines() return [l.strip() for l in lines] class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ): __lowerCAmelCase : Union[str, Any] = VOCAB_FILES_NAMES __lowerCAmelCase : Dict = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase : str = ['input_ids', 'attention_mask'] def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE="<unk>" , _SCREAMING_SNAKE_CASE="<cls>" , _SCREAMING_SNAKE_CASE="<pad>" , _SCREAMING_SNAKE_CASE="<mask>" , _SCREAMING_SNAKE_CASE="<eos>" , **_SCREAMING_SNAKE_CASE , ) -> Any: '''simple docstring''' super().__init__(**_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Optional[Any] = load_vocab_file(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Optional[Any] = dict(enumerate(self.all_tokens ) ) UpperCAmelCase : List[str] = {tok: ind for ind, tok in enumerate(self.all_tokens )} UpperCAmelCase : Any = unk_token UpperCAmelCase : str = cls_token UpperCAmelCase : int = pad_token UpperCAmelCase : Tuple = mask_token UpperCAmelCase : str = eos_token UpperCAmelCase : List[str] = self.all_tokens self._create_trie(self.unique_no_split_tokens ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE ) -> str: '''simple docstring''' return self._id_to_token.get(_SCREAMING_SNAKE_CASE , self.unk_token ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' return self._token_to_id.get(_SCREAMING_SNAKE_CASE , self._token_to_id.get(self.unk_token ) ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Optional[Any]: '''simple docstring''' return text.split() def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE=False ) -> Union[str, Any]: '''simple docstring''' return len(self._id_to_token ) def SCREAMING_SNAKE_CASE ( self ) -> Dict: '''simple docstring''' return {token: i for i, token in enumerate(self.all_tokens )} def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' return self._token_to_id.get(_SCREAMING_SNAKE_CASE , self._token_to_id.get(self.unk_token ) ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE ) -> str: '''simple docstring''' return self._id_to_token.get(_SCREAMING_SNAKE_CASE , self.unk_token ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> List[int]: '''simple docstring''' UpperCAmelCase : Optional[Any] = [self.cls_token_id] UpperCAmelCase : Tuple = [self.eos_token_id] # No sep token in ESM vocabulary if token_ids_a is None: if self.eos_token_id is None: return cls + token_ids_a else: return cls + token_ids_a + sep elif self.eos_token_id is None: raise ValueError("""Cannot tokenize multiple sequences when EOS token is not set!""" ) return cls + token_ids_a + sep + token_ids_a + sep # Multiple inputs always have an EOS token def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: if token_ids_a is not None: raise ValueError( """You should not supply a second sequence if the provided sequence of """ """ids is already formatted with special tokens for the model.""" ) return [1 if token in self.all_special_ids else 0 for token in token_ids_a] UpperCAmelCase : str = [1] + ([0] * len(_SCREAMING_SNAKE_CASE )) + [1] if token_ids_a is not None: mask += [0] * len(_SCREAMING_SNAKE_CASE ) + [1] return mask def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[int]: '''simple docstring''' UpperCAmelCase : Optional[int] = os.path.join(_SCREAMING_SNAKE_CASE , (filename_prefix + """-""" if filename_prefix else """""") + """vocab.txt""" ) with open(_SCREAMING_SNAKE_CASE , """w""" ) as f: f.write("""\n""".join(self.all_tokens ) ) return (vocab_file,) @property def SCREAMING_SNAKE_CASE ( self ) -> int: '''simple docstring''' return self.get_vocab_size(with_added_tokens=_SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = False ) -> int: '''simple docstring''' return super()._add_tokens(_SCREAMING_SNAKE_CASE , special_tokens=_SCREAMING_SNAKE_CASE )
109
0
def lowercase_ ( A__ ) -> bool: """simple docstring""" if not all(x.isalpha() for x in string ): raise ValueError("String must only contain alphabetic characters." ) snake_case = sorted(string.lower() ) return len(__lowerCAmelCase ) == len(set(__lowerCAmelCase ) ) if __name__ == "__main__": _A = input("Enter a string ").strip() _A = is_isogram(input_str) print(f"{input_str} is {'an' if isogram else 'not an'} isogram.")
350
from operator import delitem, getitem, setitem import pytest from data_structures.hashing.hash_map import HashMap def lowercase_ ( A__ ) -> str: """simple docstring""" return getitem, k def lowercase_ ( A__ , A__ ) -> str: """simple docstring""" return setitem, k, v def lowercase_ ( A__ ) -> List[Any]: """simple docstring""" return delitem, k def lowercase_ ( A__ , A__ , *A__ ) -> str: """simple docstring""" try: return fun(A__ , *A__ ), None except Exception as e: return None, e _A = ( _set("key_a", "val_a"), _set("key_b", "val_b"), ) _A = [ _set("key_a", "val_a"), _set("key_a", "val_b"), ] _A = [ _set("key_a", "val_a"), _set("key_b", "val_b"), _del("key_a"), _del("key_b"), _set("key_a", "val_a"), _del("key_a"), ] _A = [ _get("key_a"), _del("key_a"), _set("key_a", "val_a"), _del("key_a"), _del("key_a"), _get("key_a"), ] _A = [ *[_set(x, x) for x in range(5)], # guaranteed upsize ] _A = [ *[_set(x, x) for x in range(5)], # guaranteed upsize *[_del(x) for x in range(5)], _set("key_a", "val_b"), ] @pytest.mark.parametrize( "operations" , ( pytest.param(_add_items , id="add items" ), pytest.param(_overwrite_items , id="overwrite items" ), pytest.param(_delete_items , id="delete items" ), pytest.param(_access_absent_items , id="access absent items" ), pytest.param(_add_with_resize_up , id="add with resize up" ), pytest.param(_add_with_resize_down , id="add with resize down" ), ) , ) def lowercase_ ( A__ ) -> List[Any]: """simple docstring""" snake_case = HashMap(initial_block_size=4 ) snake_case = {} for _, (fun, *args) in enumerate(A__ ): snake_case , snake_case = _run_operation(A__ , A__ , *A__ ) snake_case , snake_case = _run_operation(A__ , A__ , *A__ ) assert my_res == py_res assert str(A__ ) == str(A__ ) assert set(A__ ) == set(A__ ) assert len(A__ ) == len(A__ ) assert set(my.items() ) == set(py.items() ) def lowercase_ ( ) -> Optional[int]: """simple docstring""" def is_public(A__ ) -> bool: return not name.startswith("_" ) snake_case = {name for name in dir({} ) if is_public(A__ )} snake_case = {name for name in dir(HashMap() ) if is_public(A__ )} assert dict_public_names > hash_public_names
137
0
def __magic_name__ ( __a : Any ): '''simple docstring''' UpperCamelCase__ = [0] * len(__UpperCamelCase ) for i in range(1 , len(__UpperCamelCase ) ): # use last results for better performance - dynamic programming UpperCamelCase__ = prefix_result[i - 1] while j > 0 and input_string[i] != input_string[j]: UpperCamelCase__ = prefix_result[j - 1] if input_string[i] == input_string[j]: j += 1 UpperCamelCase__ = j return prefix_result def __magic_name__ ( __a : Tuple ): '''simple docstring''' return max(prefix_function(__UpperCamelCase ) ) if __name__ == "__main__": import doctest doctest.testmod()
244
"""simple docstring""" import itertools import random import unittest import numpy as np from transformers import ASTFeatureExtractor from transformers.testing_utils import require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin lowercase_ = random.Random() if is_torch_available(): import torch def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase=1.0 , __UpperCamelCase=None , __UpperCamelCase=None ): """simple docstring""" if rng is None: __A = global_rng __A = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class snake_case ( unittest.TestCase ): '''simple docstring''' def __init__( self : Any, _lowerCamelCase : List[str], _lowerCamelCase : Any=7, _lowerCamelCase : Optional[int]=4_00, _lowerCamelCase : Optional[int]=20_00, _lowerCamelCase : Dict=1, _lowerCamelCase : Optional[Any]=0.0, _lowerCamelCase : int=1_60_00, _lowerCamelCase : Optional[int]=True, _lowerCamelCase : Dict=True, ): '''simple docstring''' __A = parent __A = batch_size __A = min_seq_length __A = max_seq_length __A = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) __A = feature_size __A = padding_value __A = sampling_rate __A = return_attention_mask __A = do_normalize def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): '''simple docstring''' return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def _SCREAMING_SNAKE_CASE ( self : Any, _lowerCamelCase : Optional[Any]=False, _lowerCamelCase : int=False ): '''simple docstring''' def _flatten(_lowerCamelCase : List[str] ): return list(itertools.chain(*_lowerCamelCase ) ) if equal_length: __A = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size __A = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length, self.max_seq_length, self.seq_length_diff ) ] if numpify: __A = [np.asarray(_lowerCamelCase ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class snake_case ( _lowerCAmelCase , unittest.TestCase ): '''simple docstring''' A_ : int = ASTFeatureExtractor def _SCREAMING_SNAKE_CASE ( self : Tuple ): '''simple docstring''' __A = ASTFeatureExtractionTester(self ) def _SCREAMING_SNAKE_CASE ( self : Dict ): '''simple docstring''' # Tests that all call wrap to encode_plus and batch_encode_plus __A = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 __A = [floats_list((1, x) )[0] for x in range(8_00, 14_00, 2_00 )] __A = [np.asarray(_lowerCamelCase ) for speech_input in speech_inputs] # Test not batched input __A = feat_extract(speech_inputs[0], return_tensors='''np''' ).input_values __A = feat_extract(np_speech_inputs[0], return_tensors='''np''' ).input_values self.assertTrue(np.allclose(_lowerCamelCase, _lowerCamelCase, atol=1e-3 ) ) # Test batched __A = feat_extract(_lowerCamelCase, padding=_lowerCamelCase, return_tensors='''np''' ).input_values __A = feat_extract(_lowerCamelCase, padding=_lowerCamelCase, return_tensors='''np''' ).input_values for enc_seq_a, enc_seq_a in zip(_lowerCamelCase, _lowerCamelCase ): self.assertTrue(np.allclose(_lowerCamelCase, _lowerCamelCase, atol=1e-3 ) ) # Test 2-D numpy arrays are batched. __A = [floats_list((1, x) )[0] for x in (8_00, 8_00, 8_00)] __A = np.asarray(_lowerCamelCase ) __A = feat_extract(_lowerCamelCase, return_tensors='''np''' ).input_values __A = feat_extract(_lowerCamelCase, return_tensors='''np''' ).input_values for enc_seq_a, enc_seq_a in zip(_lowerCamelCase, _lowerCamelCase ): self.assertTrue(np.allclose(_lowerCamelCase, _lowerCamelCase, atol=1e-3 ) ) @require_torch def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): '''simple docstring''' import torch __A = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __A = np.random.rand(1_00 ).astype(np.floataa ) __A = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: __A = feature_extractor.pad([{'''input_values''': inputs}], return_tensors='''np''' ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) __A = feature_extractor.pad([{'''input_values''': inputs}], return_tensors='''pt''' ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def _SCREAMING_SNAKE_CASE ( self : Optional[int], _lowerCamelCase : Union[str, Any] ): '''simple docstring''' from datasets import load_dataset __A = load_dataset('''hf-internal-testing/librispeech_asr_dummy''', '''clean''', split='''validation''' ) # automatic decoding with librispeech __A = ds.sort('''id''' ).select(range(_lowerCamelCase ) )[:num_samples]['''audio'''] return [x["array"] for x in speech_samples] @require_torch def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): '''simple docstring''' # fmt: off __A = torch.tensor( [-0.98_94, -1.27_76, -0.90_66, -1.27_76, -0.93_49, -1.26_09, -1.03_86, -1.27_76, -1.15_61, -1.27_76, -1.20_52, -1.27_23, -1.21_90, -1.21_32, -1.27_76, -1.11_33, -1.19_53, -1.13_43, -1.15_84, -1.22_03, -1.17_70, -1.24_74, -1.23_81, -1.19_36, -0.92_70, -0.83_17, -0.80_49, -0.77_06, -0.75_65, -0.78_69] ) # fmt: on __A = self._load_datasamples(1 ) __A = ASTFeatureExtractor() __A = feature_extractor(_lowerCamelCase, return_tensors='''pt''' ).input_values self.assertEquals(input_values.shape, (1, 10_24, 1_28) ) self.assertTrue(torch.allclose(input_values[0, 0, :30], _lowerCamelCase, atol=1e-4 ) )
266
0
'''simple docstring''' from __future__ import annotations from typing import Any class a_ : def __init__( self : Tuple , lowercase : int = 6 ): """simple docstring""" lowercase_ :Node | None = None lowercase_ :Node | None = None self.create_linked_list(lowercase ) def lowercase__ ( self : int , lowercase : int ): """simple docstring""" lowercase_ :List[Any] = Node() lowercase_ :List[Any] = current_node lowercase_ :str = current_node lowercase_ :Optional[Any] = current_node for _ in range(1 , lowercase ): lowercase_ :List[str] = Node() lowercase_ :Optional[int] = current_node lowercase_ :int = previous_node lowercase_ :str = current_node lowercase_ :Optional[Any] = self.front lowercase_ :List[Any] = previous_node def lowercase__ ( self : List[str] ): """simple docstring""" return ( self.front == self.rear and self.front is not None and self.front.data is None ) def lowercase__ ( self : str ): """simple docstring""" self.check_can_perform_operation() return self.front.data if self.front else None def lowercase__ ( self : str , lowercase : Any ): """simple docstring""" if self.rear is None: return self.check_is_full() if not self.is_empty(): lowercase_ :str = self.rear.next if self.rear: lowercase_ :List[str] = data def lowercase__ ( self : Dict ): """simple docstring""" self.check_can_perform_operation() if self.rear is None or self.front is None: return None if self.front == self.rear: lowercase_ :Tuple = self.front.data lowercase_ :Any = None return data lowercase_ :str = self.front lowercase_ :str = old_front.next lowercase_ :int = old_front.data lowercase_ :Optional[int] = None return data def lowercase__ ( self : Any ): """simple docstring""" if self.is_empty(): raise Exception("Empty Queue" ) def lowercase__ ( self : Optional[int] ): """simple docstring""" if self.rear and self.rear.next == self.front: raise Exception("Full Queue" ) class a_ : def __init__( self : Any ): """simple docstring""" lowercase_ :Any | None = None lowercase_ :Node | None = None lowercase_ :Node | None = None if __name__ == "__main__": import doctest doctest.testmod()
366
'''simple docstring''' def UpperCAmelCase_ ( __lowerCamelCase : list ): if len(__lowerCamelCase ) <= 1: return lst lowercase_ :Optional[Any] = 1 while i < len(__lowerCamelCase ): if lst[i - 1] <= lst[i]: i += 1 else: lowercase_ , lowercase_ :int = lst[i], lst[i - 1] i -= 1 if i == 0: lowercase_ :Dict = 1 return lst if __name__ == "__main__": lowerCAmelCase : Any =input('''Enter numbers separated by a comma:\n''').strip() lowerCAmelCase : List[str] =[int(item) for item in user_input.split(''',''')] print(gnome_sort(unsorted))
147
0
"""simple docstring""" def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> int: if index == number_of_items: return 0 lowercase__: Any = 0 lowercase__: List[Any] = 0 lowercase__: Any = knapsack(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , index + 1 ) if weights[index] <= max_weight: lowercase__: str = values[index] + knapsack( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , max_weight - weights[index] , index + 1 ) return max(__UpperCAmelCase , __UpperCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod()
177
"""simple docstring""" from collections.abc import Sequence def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase = False ) -> float: if not arr: return 0 lowercase__: Any = 0 if allow_empty_subarrays else float('''-inf''' ) lowercase__: Union[str, Any] = 0.0 for num in arr: lowercase__: List[str] = max(0 if allow_empty_subarrays else num , curr_sum + num ) lowercase__: int = max(__UpperCAmelCase , __UpperCAmelCase ) return max_sum if __name__ == "__main__": from doctest import testmod testmod() __A = [-2, 1, -3, 4, -1, 2, 1, -5, 4] print(f'''{max_subarray_sum(nums) = }''')
177
1
"""simple docstring""" from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) # TODO Update this lowerCAmelCase_ = { 'facebook/esm-1b': 'https://huggingface.co/facebook/esm-1b/resolve/main/config.json', # See all ESM models at https://huggingface.co/models?filter=esm } class __A ( A_ ): '''simple docstring''' lowerCAmelCase : int = "esm" def __init__( self : List[Any] ,_snake_case : int=None ,_snake_case : Optional[Any]=None ,_snake_case : Optional[int]=None ,_snake_case : List[str]=768 ,_snake_case : Optional[int]=12 ,_snake_case : Optional[int]=12 ,_snake_case : Optional[Any]=3_072 ,_snake_case : Union[str, Any]=0.1 ,_snake_case : int=0.1 ,_snake_case : Optional[Any]=1_026 ,_snake_case : Optional[int]=0.02 ,_snake_case : int=1e-12 ,_snake_case : Dict="absolute" ,_snake_case : Optional[int]=True ,_snake_case : Union[str, Any]=None ,_snake_case : Dict=False ,_snake_case : List[str]=False ,_snake_case : Optional[Any]=None ,_snake_case : Any=None ,**_snake_case : Optional[Any] ,) -> Optional[int]: """simple docstring""" super().__init__(pad_token_id=_snake_case ,mask_token_id=_snake_case ,**_snake_case ) lowercase__ : Tuple = vocab_size lowercase__ : Tuple = hidden_size lowercase__ : Any = num_hidden_layers lowercase__ : List[str] = num_attention_heads lowercase__ : Any = intermediate_size lowercase__ : int = hidden_dropout_prob lowercase__ : int = attention_probs_dropout_prob lowercase__ : Optional[int] = max_position_embeddings lowercase__ : Dict = initializer_range lowercase__ : int = layer_norm_eps lowercase__ : int = position_embedding_type lowercase__ : Union[str, Any] = use_cache lowercase__ : List[Any] = emb_layer_norm_before lowercase__ : Any = token_dropout lowercase__ : List[str] = is_folding_model if is_folding_model: if esmfold_config is None: logger.info('''No esmfold_config supplied for folding model, using default values.''' ) lowercase__ : Dict = EsmFoldConfig() elif isinstance(_snake_case ,_snake_case ): lowercase__ : Dict = EsmFoldConfig(**_snake_case ) lowercase__ : Optional[Any] = esmfold_config if vocab_list is None: logger.warning('''No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!''' ) lowercase__ : Tuple = get_default_vocab_list() else: lowercase__ : str = vocab_list else: lowercase__ : str = None lowercase__ : Union[str, Any] = None if self.esmfold_config is not None and getattr(self.esmfold_config ,'''use_esm_attn_map''' ,_snake_case ): raise ValueError('''The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!''' ) def UpperCAmelCase ( self : int ) -> Optional[int]: """simple docstring""" lowercase__ : Optional[Any] = super().to_dict() if isinstance(self.esmfold_config ,_snake_case ): lowercase__ : Optional[int] = self.esmfold_config.to_dict() return output @dataclass class __A : '''simple docstring''' lowerCAmelCase : str = None lowerCAmelCase : bool = True lowerCAmelCase : bool = False lowerCAmelCase : bool = False lowerCAmelCase : bool = False lowerCAmelCase : float = 0 lowerCAmelCase : bool = True lowerCAmelCase : bool = False lowerCAmelCase : int = 1_2_8 lowerCAmelCase : "TrunkConfig" = None def UpperCAmelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" if self.trunk is None: lowercase__ : int = TrunkConfig() elif isinstance(self.trunk ,_snake_case ): lowercase__ : Any = TrunkConfig(**self.trunk ) def UpperCAmelCase ( self : str ) -> Any: """simple docstring""" lowercase__ : Tuple = asdict(self ) lowercase__ : List[str] = self.trunk.to_dict() return output @dataclass class __A : '''simple docstring''' lowerCAmelCase : int = 4_8 lowerCAmelCase : int = 1_0_2_4 lowerCAmelCase : int = 1_2_8 lowerCAmelCase : int = 3_2 lowerCAmelCase : int = 3_2 lowerCAmelCase : int = 3_2 lowerCAmelCase : float = 0 lowerCAmelCase : float = 0 lowerCAmelCase : bool = False lowerCAmelCase : int = 4 lowerCAmelCase : Optional[int] = 1_2_8 lowerCAmelCase : "StructureModuleConfig" = None def UpperCAmelCase ( self : Tuple ) -> Dict: """simple docstring""" if self.structure_module is None: lowercase__ : Tuple = StructureModuleConfig() elif isinstance(self.structure_module ,_snake_case ): lowercase__ : Tuple = StructureModuleConfig(**self.structure_module ) if self.max_recycles <= 0: raise ValueError(f"""`max_recycles` should be positive, got {self.max_recycles}.""" ) if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( '''`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got''' f""" {self.sequence_state_dim} and {self.sequence_state_dim}.""" ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( '''`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got''' f""" {self.pairwise_state_dim} and {self.pairwise_state_dim}.""" ) lowercase__ : Optional[int] = self.sequence_state_dim // self.sequence_head_width lowercase__ : Any = self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( '''`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got''' f""" {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}.""" ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( '''`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got''' f""" {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}.""" ) if self.pairwise_state_dim % 2 != 0: raise ValueError(f"""`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.""" ) if self.dropout >= 0.4: raise ValueError(f"""`dropout` should not be greater than 0.4, got {self.dropout}.""" ) def UpperCAmelCase ( self : List[str] ) -> int: """simple docstring""" lowercase__ : List[Any] = asdict(self ) lowercase__ : Dict = self.structure_module.to_dict() return output @dataclass class __A : '''simple docstring''' lowerCAmelCase : int = 3_8_4 lowerCAmelCase : int = 1_2_8 lowerCAmelCase : int = 1_6 lowerCAmelCase : int = 1_2_8 lowerCAmelCase : int = 1_2 lowerCAmelCase : int = 4 lowerCAmelCase : int = 8 lowerCAmelCase : float = 0.1 lowerCAmelCase : int = 8 lowerCAmelCase : int = 1 lowerCAmelCase : int = 2 lowerCAmelCase : int = 7 lowerCAmelCase : int = 1_0 lowerCAmelCase : float = 1e-8 lowerCAmelCase : float = 1e5 def UpperCAmelCase ( self : Any ) -> List[str]: """simple docstring""" return asdict(self ) def __UpperCAmelCase ( ) -> Any: return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
362
"""simple docstring""" from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_outputs import ( BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import logging from .configuration_regnet import RegNetConfig lowerCAmelCase_ = logging.get_logger(__name__) # General docstring lowerCAmelCase_ = 'RegNetConfig' # Base docstring lowerCAmelCase_ = 'facebook/regnet-y-040' lowerCAmelCase_ = [1, 1_088, 7, 7] # Image classification docstring lowerCAmelCase_ = 'facebook/regnet-y-040' lowerCAmelCase_ = 'tabby, tabby cat' lowerCAmelCase_ = [ 'facebook/regnet-y-040', # See all regnet models at https://huggingface.co/models?filter=regnet ] class __A ( nn.Module ): '''simple docstring''' def __init__( self : int ,_snake_case : int ,_snake_case : int ,_snake_case : int = 3 ,_snake_case : int = 1 ,_snake_case : int = 1 ,_snake_case : Optional[str] = "relu" ,) -> Union[str, Any]: """simple docstring""" super().__init__() lowercase__ : Tuple = nn.Convad( _snake_case ,_snake_case ,kernel_size=_snake_case ,stride=_snake_case ,padding=kernel_size // 2 ,groups=_snake_case ,bias=_snake_case ,) lowercase__ : List[Any] = nn.BatchNormad(_snake_case ) lowercase__ : Optional[int] = ACTaFN[activation] if activation is not None else nn.Identity() def UpperCAmelCase ( self : List[str] ,_snake_case : Optional[int] ) -> Optional[Any]: """simple docstring""" lowercase__ : Optional[Any] = self.convolution(_snake_case ) lowercase__ : Tuple = self.normalization(_snake_case ) lowercase__ : Tuple = self.activation(_snake_case ) return hidden_state class __A ( nn.Module ): '''simple docstring''' def __init__( self : Optional[int] ,_snake_case : RegNetConfig ) -> Optional[Any]: """simple docstring""" super().__init__() lowercase__ : List[Any] = RegNetConvLayer( config.num_channels ,config.embedding_size ,kernel_size=3 ,stride=2 ,activation=config.hidden_act ) lowercase__ : str = config.num_channels def UpperCAmelCase ( self : int ,_snake_case : Dict ) -> str: """simple docstring""" lowercase__ : Union[str, Any] = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( '''Make sure that the channel dimension of the pixel values match with the one set in the configuration.''' ) lowercase__ : Optional[int] = self.embedder(_snake_case ) return hidden_state class __A ( nn.Module ): '''simple docstring''' def __init__( self : str ,_snake_case : int ,_snake_case : int ,_snake_case : int = 2 ) -> Any: """simple docstring""" super().__init__() lowercase__ : List[str] = nn.Convad(_snake_case ,_snake_case ,kernel_size=1 ,stride=_snake_case ,bias=_snake_case ) lowercase__ : Any = nn.BatchNormad(_snake_case ) def UpperCAmelCase ( self : List[str] ,_snake_case : Tensor ) -> Tensor: """simple docstring""" lowercase__ : Union[str, Any] = self.convolution(_snake_case ) lowercase__ : Optional[int] = self.normalization(_snake_case ) return hidden_state class __A ( nn.Module ): '''simple docstring''' def __init__( self : Tuple ,_snake_case : int ,_snake_case : int ) -> Dict: """simple docstring""" super().__init__() lowercase__ : Any = nn.AdaptiveAvgPoolad((1, 1) ) lowercase__ : Dict = nn.Sequential( nn.Convad(_snake_case ,_snake_case ,kernel_size=1 ) ,nn.ReLU() ,nn.Convad(_snake_case ,_snake_case ,kernel_size=1 ) ,nn.Sigmoid() ,) def UpperCAmelCase ( self : int ,_snake_case : List[Any] ) -> Optional[Any]: """simple docstring""" lowercase__ : List[str] = self.pooler(_snake_case ) lowercase__ : Union[str, Any] = self.attention(_snake_case ) lowercase__ : List[str] = hidden_state * attention return hidden_state class __A ( nn.Module ): '''simple docstring''' def __init__( self : List[str] ,_snake_case : RegNetConfig ,_snake_case : int ,_snake_case : int ,_snake_case : int = 1 ) -> List[str]: """simple docstring""" super().__init__() lowercase__ : Tuple = in_channels != out_channels or stride != 1 lowercase__ : Optional[int] = max(1 ,out_channels // config.groups_width ) lowercase__ : str = ( RegNetShortCut(_snake_case ,_snake_case ,stride=_snake_case ) if should_apply_shortcut else nn.Identity() ) lowercase__ : Optional[int] = nn.Sequential( RegNetConvLayer(_snake_case ,_snake_case ,kernel_size=1 ,activation=config.hidden_act ) ,RegNetConvLayer(_snake_case ,_snake_case ,stride=_snake_case ,groups=_snake_case ,activation=config.hidden_act ) ,RegNetConvLayer(_snake_case ,_snake_case ,kernel_size=1 ,activation=_snake_case ) ,) lowercase__ : str = ACTaFN[config.hidden_act] def UpperCAmelCase ( self : Optional[Any] ,_snake_case : List[Any] ) -> List[str]: """simple docstring""" lowercase__ : Tuple = hidden_state lowercase__ : Union[str, Any] = self.layer(_snake_case ) lowercase__ : List[Any] = self.shortcut(_snake_case ) hidden_state += residual lowercase__ : Optional[int] = self.activation(_snake_case ) return hidden_state class __A ( nn.Module ): '''simple docstring''' def __init__( self : Tuple ,_snake_case : RegNetConfig ,_snake_case : int ,_snake_case : int ,_snake_case : int = 1 ) -> Optional[int]: """simple docstring""" super().__init__() lowercase__ : List[Any] = in_channels != out_channels or stride != 1 lowercase__ : List[str] = max(1 ,out_channels // config.groups_width ) lowercase__ : Tuple = ( RegNetShortCut(_snake_case ,_snake_case ,stride=_snake_case ) if should_apply_shortcut else nn.Identity() ) lowercase__ : str = nn.Sequential( RegNetConvLayer(_snake_case ,_snake_case ,kernel_size=1 ,activation=config.hidden_act ) ,RegNetConvLayer(_snake_case ,_snake_case ,stride=_snake_case ,groups=_snake_case ,activation=config.hidden_act ) ,RegNetSELayer(_snake_case ,reduced_channels=int(round(in_channels / 4 ) ) ) ,RegNetConvLayer(_snake_case ,_snake_case ,kernel_size=1 ,activation=_snake_case ) ,) lowercase__ : Optional[Any] = ACTaFN[config.hidden_act] def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : Optional[int] ) -> Tuple: """simple docstring""" lowercase__ : str = hidden_state lowercase__ : Optional[Any] = self.layer(_snake_case ) lowercase__ : int = self.shortcut(_snake_case ) hidden_state += residual lowercase__ : str = self.activation(_snake_case ) return hidden_state class __A ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] ,_snake_case : RegNetConfig ,_snake_case : int ,_snake_case : int ,_snake_case : int = 2 ,_snake_case : int = 2 ,) -> Dict: """simple docstring""" super().__init__() lowercase__ : Optional[Any] = RegNetXLayer if config.layer_type == '''x''' else RegNetYLayer lowercase__ : Optional[Any] = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer( _snake_case ,_snake_case ,_snake_case ,stride=_snake_case ,) ,*[layer(_snake_case ,_snake_case ,_snake_case ) for _ in range(depth - 1 )] ,) def UpperCAmelCase ( self : Tuple ,_snake_case : int ) -> List[Any]: """simple docstring""" lowercase__ : List[str] = self.layers(_snake_case ) return hidden_state class __A ( nn.Module ): '''simple docstring''' def __init__( self : Dict ,_snake_case : RegNetConfig ) -> List[Any]: """simple docstring""" super().__init__() lowercase__ : str = nn.ModuleList([] ) # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( RegNetStage( _snake_case ,config.embedding_size ,config.hidden_sizes[0] ,stride=2 if config.downsample_in_first_stage else 1 ,depth=config.depths[0] ,) ) lowercase__ : str = zip(config.hidden_sizes ,config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(_snake_case ,config.depths[1:] ): self.stages.append(RegNetStage(_snake_case ,_snake_case ,_snake_case ,depth=_snake_case ) ) def UpperCAmelCase ( self : List[str] ,_snake_case : Tensor ,_snake_case : bool = False ,_snake_case : bool = True ) -> BaseModelOutputWithNoAttention: """simple docstring""" lowercase__ : Dict = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: lowercase__ : int = hidden_states + (hidden_state,) lowercase__ : Any = stage_module(_snake_case ) if output_hidden_states: lowercase__ : Optional[int] = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=_snake_case ,hidden_states=_snake_case ) class __A ( A_ ): '''simple docstring''' lowerCAmelCase : int = RegNetConfig lowerCAmelCase : List[Any] = "regnet" lowerCAmelCase : Optional[int] = "pixel_values" lowerCAmelCase : Union[str, Any] = True def UpperCAmelCase ( self : Any ,_snake_case : Tuple ) -> List[Any]: """simple docstring""" if isinstance(_snake_case ,nn.Convad ): nn.init.kaiming_normal_(module.weight ,mode='''fan_out''' ,nonlinearity='''relu''' ) elif isinstance(_snake_case ,(nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight ,1 ) nn.init.constant_(module.bias ,0 ) def UpperCAmelCase ( self : Optional[Any] ,_snake_case : Dict ,_snake_case : Any=False ) -> Optional[int]: """simple docstring""" if isinstance(_snake_case ,_snake_case ): lowercase__ : str = value lowerCAmelCase_ = R'\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n' lowerCAmelCase_ = R'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConvNextImageProcessor.__call__`] for details.\n\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( "The bare RegNet model outputting raw features without any specific head on top." ,A_ ,) # Copied from transformers.models.resnet.modeling_resnet.ResNetModel with RESNET->REGNET,ResNet->RegNet class __A ( A_ ): '''simple docstring''' def __init__( self : Optional[Any] ,_snake_case : Any ) -> Tuple: """simple docstring""" super().__init__(_snake_case ) lowercase__ : Any = config lowercase__ : List[str] = RegNetEmbeddings(_snake_case ) lowercase__ : Any = RegNetEncoder(_snake_case ) lowercase__ : Dict = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_snake_case ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC ,output_type=_snake_case ,config_class=_CONFIG_FOR_DOC ,modality='''vision''' ,expected_output=_EXPECTED_OUTPUT_SHAPE ,) def UpperCAmelCase ( self : Dict ,_snake_case : Tensor ,_snake_case : Optional[bool] = None ,_snake_case : Optional[bool] = None ) -> BaseModelOutputWithPoolingAndNoAttention: """simple docstring""" lowercase__ : List[Any] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowercase__ : Dict = return_dict if return_dict is not None else self.config.use_return_dict lowercase__ : Union[str, Any] = self.embedder(_snake_case ) lowercase__ : List[Any] = self.encoder( _snake_case ,output_hidden_states=_snake_case ,return_dict=_snake_case ) lowercase__ : str = encoder_outputs[0] lowercase__ : Optional[int] = self.pooler(_snake_case ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=_snake_case ,pooler_output=_snake_case ,hidden_states=encoder_outputs.hidden_states ,) @add_start_docstrings( "\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " ,A_ ,) # Copied from transformers.models.resnet.modeling_resnet.ResNetForImageClassification with RESNET->REGNET,ResNet->RegNet,resnet->regnet class __A ( A_ ): '''simple docstring''' def __init__( self : int ,_snake_case : Tuple ) -> Any: """simple docstring""" super().__init__(_snake_case ) lowercase__ : Optional[Any] = config.num_labels lowercase__ : int = RegNetModel(_snake_case ) # classification head lowercase__ : str = nn.Sequential( nn.Flatten() ,nn.Linear(config.hidden_sizes[-1] ,config.num_labels ) if config.num_labels > 0 else nn.Identity() ,) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_snake_case ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT ,output_type=_snake_case ,config_class=_CONFIG_FOR_DOC ,expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT ,) def UpperCAmelCase ( self : List[Any] ,_snake_case : Optional[torch.FloatTensor] = None ,_snake_case : Optional[torch.LongTensor] = None ,_snake_case : Optional[bool] = None ,_snake_case : Optional[bool] = None ,) -> ImageClassifierOutputWithNoAttention: """simple docstring""" lowercase__ : Any = return_dict if return_dict is not None else self.config.use_return_dict lowercase__ : List[Any] = self.regnet(_snake_case ,output_hidden_states=_snake_case ,return_dict=_snake_case ) lowercase__ : List[str] = outputs.pooler_output if return_dict else outputs[1] lowercase__ : Union[str, Any] = self.classifier(_snake_case ) lowercase__ : Optional[int] = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: lowercase__ : List[Any] = '''regression''' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): lowercase__ : Dict = '''single_label_classification''' else: lowercase__ : Optional[int] = '''multi_label_classification''' if self.config.problem_type == "regression": lowercase__ : Union[str, Any] = MSELoss() if self.num_labels == 1: lowercase__ : List[Any] = loss_fct(logits.squeeze() ,labels.squeeze() ) else: lowercase__ : Tuple = loss_fct(_snake_case ,_snake_case ) elif self.config.problem_type == "single_label_classification": lowercase__ : Tuple = CrossEntropyLoss() lowercase__ : str = loss_fct(logits.view(-1 ,self.num_labels ) ,labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": lowercase__ : Any = BCEWithLogitsLoss() lowercase__ : Union[str, Any] = loss_fct(_snake_case ,_snake_case ) if not return_dict: lowercase__ : Tuple = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=_snake_case ,logits=_snake_case ,hidden_states=outputs.hidden_states )
302
0
"""simple docstring""" import unittest import torch from torch import nn from diffusers.models.activations import get_activation class _UpperCAmelCase( unittest.TestCase ): def UpperCAmelCase ( self) -> str: '''simple docstring''' _UpperCamelCase = get_activation('''swish''') self.assertIsInstance(__a , nn.SiLU) self.assertEqual(act(torch.tensor(-1_00 , dtype=torch.floataa)).item() , 0) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa)).item() , 0) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa)).item() , 0) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa)).item() , 20) def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = get_activation('''silu''') self.assertIsInstance(__a , nn.SiLU) self.assertEqual(act(torch.tensor(-1_00 , dtype=torch.floataa)).item() , 0) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa)).item() , 0) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa)).item() , 0) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa)).item() , 20) def UpperCAmelCase ( self) -> str: '''simple docstring''' _UpperCamelCase = get_activation('''mish''') self.assertIsInstance(__a , nn.Mish) self.assertEqual(act(torch.tensor(-2_00 , dtype=torch.floataa)).item() , 0) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa)).item() , 0) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa)).item() , 0) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa)).item() , 20) def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCamelCase = get_activation('''gelu''') self.assertIsInstance(__a , nn.GELU) self.assertEqual(act(torch.tensor(-1_00 , dtype=torch.floataa)).item() , 0) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa)).item() , 0) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa)).item() , 0) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa)).item() , 20)
194
"""simple docstring""" import numpy as np from cva import COLOR_BGR2GRAY, CV_8UC3, cvtColor, filteraD, imread, imshow, waitKey def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case, __snake_case, __snake_case, __snake_case ) -> np.ndarray: """simple docstring""" if (ksize % 2) == 0: _UpperCamelCase = ksize + 1 _UpperCamelCase = np.zeros((ksize, ksize), dtype=np.floataa ) # each value for y in range(__snake_case ): for x in range(__snake_case ): # distance from center _UpperCamelCase = x - ksize // 2 _UpperCamelCase = y - ksize // 2 # degree to radiant _UpperCamelCase = theta / 1_80 * np.pi _UpperCamelCase = np.cos(_theta ) _UpperCamelCase = np.sin(_theta ) # get kernel x _UpperCamelCase = cos_theta * px + sin_theta * py # get kernel y _UpperCamelCase = -sin_theta * px + cos_theta * py # fill kernel _UpperCamelCase = np.exp( -(_x**2 + gamma**2 * _y**2) / (2 * sigma**2) ) * np.cos(2 * np.pi * _x / lambd + psi ) return gabor if __name__ == "__main__": import doctest doctest.testmod() # read original image _a = imread("""../image_data/lena.jpg""") # turn image in gray scale value _a = cvtColor(img, COLOR_BGR2GRAY) # Apply multiple Kernel to detect edges _a = np.zeros(gray.shape[:2]) for theta in [0, 30, 60, 90, 120, 150]: _a = gabor_filter_kernel(10, 8, theta, 10, 0, 0) out += filteraD(gray, CV_8UC3, kernel_aa) _a = out / out.max() * 255 _a = out.astype(np.uinta) imshow("""Original""", gray) imshow("""Gabor filter with 20x20 mask and 6 directions""", out) waitKey(0)
194
1
'''simple docstring''' def __a ( _UpperCamelCase: Optional[int] , _UpperCamelCase: int , _UpperCamelCase: List[str] , _UpperCamelCase: Dict ) -> Tuple: """simple docstring""" _snake_case = [False] * len(_UpperCamelCase ) _snake_case = [] queue.append(_UpperCamelCase ) _snake_case = True while queue: _snake_case = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(_UpperCamelCase ) _snake_case = True _snake_case = u return visited[t] def __a ( _UpperCamelCase: List[str] , _UpperCamelCase: Any , _UpperCamelCase: str ) -> Optional[int]: """simple docstring""" _snake_case = [-1] * (len(_UpperCamelCase )) _snake_case = 0 while bfs(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): _snake_case = float("Inf" ) _snake_case = sink while s != source: # Find the minimum value in select path _snake_case = min(_UpperCamelCase , graph[parent[s]][s] ) _snake_case = parent[s] max_flow += path_flow _snake_case = sink while v != source: _snake_case = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow _snake_case = parent[v] return max_flow UpperCamelCase_ : str = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] UpperCamelCase_ , UpperCamelCase_ : Union[str, Any] = 0, 5 print(ford_fulkerson(graph, source, sink))
142
'''simple docstring''' import fire from utils import calculate_rouge, save_json def __a ( _UpperCamelCase: Tuple , _UpperCamelCase: Optional[int] , _UpperCamelCase: Optional[int]=None , **_UpperCamelCase: Any ) -> Optional[Any]: """simple docstring""" _snake_case = [x.strip() for x in open(_UpperCamelCase ).readlines()] _snake_case = [x.strip() for x in open(_UpperCamelCase ).readlines()][: len(_UpperCamelCase )] _snake_case = calculate_rouge(_UpperCamelCase , _UpperCamelCase , **_UpperCamelCase ) if save_path is not None: save_json(_UpperCamelCase , _UpperCamelCase , indent=_UpperCamelCase ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
142
1
'''simple docstring''' # DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from typing import Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import randn_tensor from .scheduling_utils import SchedulerMixin class _lowercase ( _lowercase , _lowercase ): a = 1 @register_to_config def __init__( self: List[Any] , UpperCamelCase__: Any=2_000 , UpperCamelCase__: Any=0.1 , UpperCamelCase__: Union[str, Any]=20 , UpperCamelCase__: int=1e-3 ): lowerCamelCase__ : List[Any] = None lowerCamelCase__ : Dict = None lowerCamelCase__ : Dict = None def lowerCamelCase_ ( self: int , UpperCamelCase__: Union[str, Any] , UpperCamelCase__: Union[str, torch.device] = None ): lowerCamelCase__ : List[Any] = torch.linspace(1 , self.config.sampling_eps , UpperCamelCase__ , device=UpperCamelCase__ ) def lowerCamelCase_ ( self: int , UpperCamelCase__: str , UpperCamelCase__: Dict , UpperCamelCase__: Tuple , UpperCamelCase__: List[Any]=None ): if self.timesteps is None: raise ValueError( """`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler""" ) # TODO(Patrick) better comments + non-PyTorch # postprocess model score lowerCamelCase__ : Dict = ( -0.25 * t**2 * (self.config.beta_max - self.config.beta_min) - 0.5 * t * self.config.beta_min ) lowerCamelCase__ : Optional[int] = torch.sqrt(1.0 - torch.exp(2.0 * log_mean_coeff ) ) lowerCamelCase__ : Dict = std.flatten() while len(std.shape ) < len(score.shape ): lowerCamelCase__ : Any = std.unsqueeze(-1 ) lowerCamelCase__ : Dict = -score / std # compute lowerCamelCase__ : Any = -1.0 / len(self.timesteps ) lowerCamelCase__ : Optional[int] = self.config.beta_min + t * (self.config.beta_max - self.config.beta_min) lowerCamelCase__ : List[str] = beta_t.flatten() while len(beta_t.shape ) < len(x.shape ): lowerCamelCase__ : Tuple = beta_t.unsqueeze(-1 ) lowerCamelCase__ : Union[str, Any] = -0.5 * beta_t * x lowerCamelCase__ : List[str] = torch.sqrt(UpperCamelCase__ ) lowerCamelCase__ : List[Any] = drift - diffusion**2 * score lowerCamelCase__ : Dict = x + drift * dt # add noise lowerCamelCase__ : int = randn_tensor(x.shape , layout=x.layout , generator=UpperCamelCase__ , device=x.device , dtype=x.dtype ) lowerCamelCase__ : str = x_mean + diffusion * math.sqrt(-dt ) * noise return x, x_mean def __len__( self: Dict ): return self.config.num_train_timesteps
41
import importlib import os import sys # This is required to make the module import works (when the python process is running from the root of the repo) sys.path.append('.') def lowerCamelCase__ (_UpperCAmelCase): SCREAMING_SNAKE_CASE = test_file.split(os.path.sep) if components[0:2] != ["tests", "models"]: raise ValueError( '`test_file` should start with `tests/models/` (with `/` being the OS specific path separator). Got ' F'''{test_file} instead.''') SCREAMING_SNAKE_CASE = components[-1] if not test_fn.endswith('py'): raise ValueError(F'''`test_file` should be a python file. Got {test_fn} instead.''') if not test_fn.startswith('test_modeling_'): raise ValueError( F'''`test_file` should point to a file name of the form `test_modeling_*.py`. Got {test_fn} instead.''') SCREAMING_SNAKE_CASE = components[:-1] + [test_fn.replace('.py' , '')] SCREAMING_SNAKE_CASE = '.'.join(_UpperCAmelCase) return test_module_path def lowerCamelCase__ (_UpperCAmelCase): SCREAMING_SNAKE_CASE = get_module_path(_UpperCAmelCase) SCREAMING_SNAKE_CASE = importlib.import_module(_UpperCAmelCase) return test_module def lowerCamelCase__ (_UpperCAmelCase): SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = get_test_module(_UpperCAmelCase) for attr in dir(_UpperCAmelCase): if attr.endswith('ModelTester'): tester_classes.append(getattr(_UpperCAmelCase , _UpperCAmelCase)) # sort with class names return sorted(_UpperCAmelCase , key=lambda _UpperCAmelCase: x.__name__) def lowerCamelCase__ (_UpperCAmelCase): SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = get_test_module(_UpperCAmelCase) for attr in dir(_UpperCAmelCase): SCREAMING_SNAKE_CASE = getattr(_UpperCAmelCase , _UpperCAmelCase) # (TF/Flax)ModelTesterMixin is also an attribute in specific model test module. Let's exclude them by checking # `all_model_classes` is not empty (which also excludes other special classes). SCREAMING_SNAKE_CASE = getattr(_UpperCAmelCase , 'all_model_classes' , []) if len(_UpperCAmelCase) > 0: test_classes.append(_UpperCAmelCase) # sort with class names return sorted(_UpperCAmelCase , key=lambda _UpperCAmelCase: x.__name__) def lowerCamelCase__ (_UpperCAmelCase): SCREAMING_SNAKE_CASE = get_test_classes(_UpperCAmelCase) SCREAMING_SNAKE_CASE = set() for test_class in test_classes: model_classes.update(test_class.all_model_classes) # sort with class names return sorted(_UpperCAmelCase , key=lambda _UpperCAmelCase: x.__name__) def lowerCamelCase__ (_UpperCAmelCase): SCREAMING_SNAKE_CASE = test_class() if hasattr(_UpperCAmelCase , 'setUp'): test.setUp() SCREAMING_SNAKE_CASE = None if hasattr(_UpperCAmelCase , 'model_tester'): # `(TF/Flax)ModelTesterMixin` has this attribute default to `None`. Let's skip this case. if test.model_tester is not None: SCREAMING_SNAKE_CASE = test.model_tester.__class__ return model_tester def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase): SCREAMING_SNAKE_CASE = get_test_classes(_UpperCAmelCase) SCREAMING_SNAKE_CASE = [] for test_class in test_classes: if model_class in test_class.all_model_classes: target_test_classes.append(_UpperCAmelCase) # sort with class names return sorted(_UpperCAmelCase , key=lambda _UpperCAmelCase: x.__name__) def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase): SCREAMING_SNAKE_CASE = get_test_classes_for_model(_UpperCAmelCase , _UpperCAmelCase) SCREAMING_SNAKE_CASE = [] for test_class in test_classes: SCREAMING_SNAKE_CASE = get_model_tester_from_test_class(_UpperCAmelCase) if tester_class is not None: tester_classes.append(_UpperCAmelCase) # sort with class names return sorted(_UpperCAmelCase , key=lambda _UpperCAmelCase: x.__name__) def lowerCamelCase__ (_UpperCAmelCase): SCREAMING_SNAKE_CASE = get_test_classes(_UpperCAmelCase) SCREAMING_SNAKE_CASE = {test_class: get_model_tester_from_test_class(_UpperCAmelCase) for test_class in test_classes} return test_tester_mapping def lowerCamelCase__ (_UpperCAmelCase): SCREAMING_SNAKE_CASE = get_model_classes(_UpperCAmelCase) SCREAMING_SNAKE_CASE = { model_class: get_test_classes_for_model(_UpperCAmelCase , _UpperCAmelCase) for model_class in model_classes } return model_test_mapping def lowerCamelCase__ (_UpperCAmelCase): SCREAMING_SNAKE_CASE = get_model_classes(_UpperCAmelCase) SCREAMING_SNAKE_CASE = { model_class: get_tester_classes_for_model(_UpperCAmelCase , _UpperCAmelCase) for model_class in model_classes } return model_to_tester_mapping def lowerCamelCase__ (_UpperCAmelCase): if isinstance(_UpperCAmelCase , _UpperCAmelCase): return o elif isinstance(_UpperCAmelCase , _UpperCAmelCase): return o.__name__ elif isinstance(_UpperCAmelCase , (list, tuple)): return [to_json(_UpperCAmelCase) for x in o] elif isinstance(_UpperCAmelCase , _UpperCAmelCase): return {to_json(_UpperCAmelCase): to_json(_UpperCAmelCase) for k, v in o.items()} else: return o
137
0
"""simple docstring""" def snake_case (__lowercase ) -> list: '''simple docstring''' def merge(__lowercase , __lowercase ) -> list: def _merge(): while left and right: yield (left if left[0] <= right[0] else right).pop(0 ) yield from left yield from right return list(_merge() ) if len(UpperCAmelCase__ ) <= 1: return collection _snake_case : str = len(UpperCAmelCase__ ) // 2 return merge(merge_sort(collection[:mid] ) , merge_sort(collection[mid:] ) ) if __name__ == "__main__": import doctest doctest.testmod() __SCREAMING_SNAKE_CASE : Any = input('Enter numbers separated by a comma:\n').strip() __SCREAMING_SNAKE_CASE : List[Any] = [int(item) for item in user_input.split(',')] print(*merge_sort(unsorted), sep=',')
371
import argparse import os import shutil import torch from emmental.modules import MagnitudeBinarizer, ThresholdBinarizer, TopKBinarizer def snake_case (__lowercase ) -> str: '''simple docstring''' _snake_case : int = args.pruning_method _snake_case : List[Any] = args.threshold _snake_case : Optional[Any] = args.model_name_or_path.rstrip("/" ) _snake_case : List[str] = args.target_model_path print(F"""Load fine-pruned model from {model_name_or_path}""" ) _snake_case : List[Any] = torch.load(os.path.join(__lowercase , "pytorch_model.bin" ) ) _snake_case : List[str] = {} for name, tensor in model.items(): if "embeddings" in name or "LayerNorm" in name or "pooler" in name: _snake_case : Tuple = tensor print(F"""Copied layer {name}""" ) elif "classifier" in name or "qa_output" in name: _snake_case : Optional[int] = tensor print(F"""Copied layer {name}""" ) elif "bias" in name: _snake_case : List[Any] = tensor print(F"""Copied layer {name}""" ) else: if pruning_method == "magnitude": _snake_case : Tuple = MagnitudeBinarizer.apply(inputs=__lowercase , threshold=__lowercase ) _snake_case : List[str] = tensor * mask print(F"""Pruned layer {name}""" ) elif pruning_method == "topK": if "mask_scores" in name: continue _snake_case : Optional[Any] = name[:-6] _snake_case : Any = model[F"""{prefix_}mask_scores"""] _snake_case : Tuple = TopKBinarizer.apply(__lowercase , __lowercase ) _snake_case : Optional[Any] = tensor * mask print(F"""Pruned layer {name}""" ) elif pruning_method == "sigmoied_threshold": if "mask_scores" in name: continue _snake_case : int = name[:-6] _snake_case : List[Any] = model[F"""{prefix_}mask_scores"""] _snake_case : List[str] = ThresholdBinarizer.apply(__lowercase , __lowercase , __lowercase ) _snake_case : List[str] = tensor * mask print(F"""Pruned layer {name}""" ) elif pruning_method == "l0": if "mask_scores" in name: continue _snake_case : int = name[:-6] _snake_case : Any = model[F"""{prefix_}mask_scores"""] _snake_case ,_snake_case : Union[str, Any] = -0.1, 1.1 _snake_case : Dict = torch.sigmoid(__lowercase ) _snake_case : List[str] = s * (r - l) + l _snake_case : Tuple = s_bar.clamp(min=0.0 , max=1.0 ) _snake_case : Union[str, Any] = tensor * mask print(F"""Pruned layer {name}""" ) else: raise ValueError("Unknown pruning method" ) if target_model_path is None: _snake_case : Any = os.path.join( os.path.dirname(__lowercase ) , F"""bertarized_{os.path.basename(__lowercase )}""" ) if not os.path.isdir(__lowercase ): shutil.copytree(__lowercase , __lowercase ) print(F"""\nCreated folder {target_model_path}""" ) torch.save(__lowercase , os.path.join(__lowercase , "pytorch_model.bin" ) ) print("\nPruned model saved! See you later!" ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE : List[Any] = argparse.ArgumentParser() parser.add_argument( '--pruning_method', choices=['l0', 'magnitude', 'topK', 'sigmoied_threshold'], type=str, required=True, help=( 'Pruning Method (l0 = L0 regularization, magnitude = Magnitude pruning, topK = Movement pruning,' ' sigmoied_threshold = Soft movement pruning)' ), ) parser.add_argument( '--threshold', type=float, required=False, help=( 'For `magnitude` and `topK`, it is the level of remaining weights (in %) in the fine-pruned model.' 'For `sigmoied_threshold`, it is the threshold \tau against which the (sigmoied) scores are compared.' 'Not needed for `l0`' ), ) parser.add_argument( '--model_name_or_path', type=str, required=True, help='Folder containing the model that was previously fine-pruned', ) parser.add_argument( '--target_model_path', default=None, type=str, required=False, help='Folder containing the model that was previously fine-pruned', ) __SCREAMING_SNAKE_CASE : Union[str, Any] = parser.parse_args() main(args)
284
0
'''simple docstring''' import argparse import json import os from tensorflow.core.protobuf.saved_model_pba import SavedModel # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py lowercase__ : Dict = '.' # Internal TensorFlow ops that can be safely ignored (mostly specific to a saved model) lowercase__ : Union[str, Any] = [ 'Assert', 'AssignVariableOp', 'EmptyTensorList', 'MergeV2Checkpoints', 'ReadVariableOp', 'ResourceGather', 'RestoreV2', 'SaveV2', 'ShardedFilename', 'StatefulPartitionedCall', 'StaticRegexFullMatch', 'VarHandleOp', ] def a__ ( lowercase : str, lowercase : Dict, lowercase : Dict ) -> Dict: """simple docstring""" _UpperCamelCase = SavedModel() _UpperCamelCase = [] with open(os.path.join(lowerCAmelCase__, '''utils''', '''tf_ops''', '''onnx.json''' ) ) as f: _UpperCamelCase = json.load(lowerCAmelCase__ )["""opsets"""] for i in range(1, opset + 1 ): onnx_ops.extend(onnx_opsets[str(lowerCAmelCase__ )] ) with open(lowerCAmelCase__, '''rb''' ) as f: saved_model.ParseFromString(f.read() ) _UpperCamelCase = set() # Iterate over every metagraph in case there is more than one (a saved model can contain multiple graphs) for meta_graph in saved_model.meta_graphs: # Add operations in the graph definition model_op_names.update(node.op for node in meta_graph.graph_def.node ) # Go through the functions in the graph definition for func in meta_graph.graph_def.library.function: # Add operations in each function model_op_names.update(node.op for node in func.node_def ) # Convert to list, sorted if you want _UpperCamelCase = sorted(lowerCAmelCase__ ) _UpperCamelCase = [] for op in model_op_names: if op not in onnx_ops and op not in INTERNAL_OPS: incompatible_ops.append(lowerCAmelCase__ ) if strict and len(lowerCAmelCase__ ) > 0: raise Exception(F"""Found the following incompatible ops for the opset {opset}:\n""" + incompatible_ops ) elif len(lowerCAmelCase__ ) > 0: print(F"""Found the following incompatible ops for the opset {opset}:""" ) print(*lowerCAmelCase__, sep='''\n''' ) else: print(F"""The saved model {saved_model_path} can properly be converted with ONNX.""" ) if __name__ == "__main__": lowercase__ : Union[str, Any] = argparse.ArgumentParser() parser.add_argument('--saved_model_path', help='Path of the saved model to check (the .pb file).') parser.add_argument( '--opset', default=12, type=int, help='The ONNX opset against which the model has to be tested.' ) parser.add_argument( '--framework', choices=['onnx'], default='onnx', help='Frameworks against which to test the saved model.' ) parser.add_argument( '--strict', action='store_true', help='Whether make the checking strict (raise errors) or not (raise warnings)' ) lowercase__ : Union[str, Any] = parser.parse_args() if args.framework == "onnx": onnx_compliancy(args.saved_model_path, args.strict, args.opset)
324
from __future__ import annotations from typing import Any class _a : def __init__(self, SCREAMING_SNAKE_CASE_ = 6 ) -> None: UpperCAmelCase_: Node | None = None UpperCAmelCase_: Node | None = None self.create_linked_list(SCREAMING_SNAKE_CASE_ ) def __snake_case (self, SCREAMING_SNAKE_CASE_ ) -> None: UpperCAmelCase_: Optional[Any] = Node() UpperCAmelCase_: Optional[Any] = current_node UpperCAmelCase_: List[str] = current_node UpperCAmelCase_: List[Any] = current_node for _ in range(1, SCREAMING_SNAKE_CASE_ ): UpperCAmelCase_: Optional[int] = Node() UpperCAmelCase_: Dict = current_node UpperCAmelCase_: Any = previous_node UpperCAmelCase_: Tuple = current_node UpperCAmelCase_: Optional[Any] = self.front UpperCAmelCase_: Any = previous_node def __snake_case (self ) -> bool: return ( self.front == self.rear and self.front is not None and self.front.data is None ) def __snake_case (self ) -> Any | None: self.check_can_perform_operation() return self.front.data if self.front else None def __snake_case (self, SCREAMING_SNAKE_CASE_ ) -> None: if self.rear is None: return self.check_is_full() if not self.is_empty(): UpperCAmelCase_: Optional[int] = self.rear.next if self.rear: UpperCAmelCase_: Any = data def __snake_case (self ) -> Any: self.check_can_perform_operation() if self.rear is None or self.front is None: return None if self.front == self.rear: UpperCAmelCase_: Union[str, Any] = self.front.data UpperCAmelCase_: Any = None return data UpperCAmelCase_: str = self.front UpperCAmelCase_: Union[str, Any] = old_front.next UpperCAmelCase_: int = old_front.data UpperCAmelCase_: Any = None return data def __snake_case (self ) -> None: if self.is_empty(): raise Exception("""Empty Queue""" ) def __snake_case (self ) -> None: if self.rear and self.rear.next == self.front: raise Exception("""Full Queue""" ) class _a : def __init__(self ) -> None: UpperCAmelCase_: Any | None = None UpperCAmelCase_: Node | None = None UpperCAmelCase_: Node | None = None if __name__ == "__main__": import doctest doctest.testmod()
147
0
"""simple docstring""" from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...file_utils import TensorType, is_torch_available from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging _lowerCAmelCase : List[str] = logging.get_logger(__name__) _lowerCAmelCase : int = { """facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json""", # See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small } class lowerCAmelCase__ ( __magic_name__ ): SCREAMING_SNAKE_CASE_ ='''blenderbot-small''' SCREAMING_SNAKE_CASE_ =['''past_key_values'''] SCREAMING_SNAKE_CASE_ ={'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self : int , snake_case__ : str=5_0_2_6_5 , snake_case__ : int=5_1_2 , snake_case__ : Optional[int]=8 , snake_case__ : int=2_0_4_8 , snake_case__ : List[str]=1_6 , snake_case__ : Optional[int]=8 , snake_case__ : Optional[int]=2_0_4_8 , snake_case__ : int=1_6 , snake_case__ : Tuple=0.0 , snake_case__ : List[Any]=0.0 , snake_case__ : List[str]=True , snake_case__ : Union[str, Any]=True , snake_case__ : List[Any]="gelu" , snake_case__ : Any=5_1_2 , snake_case__ : List[Any]=0.1 , snake_case__ : int=0.0 , snake_case__ : Dict=0.0 , snake_case__ : List[str]=0.02 , snake_case__ : Optional[int]=1 , snake_case__ : Union[str, Any]=False , snake_case__ : Optional[Any]=0 , snake_case__ : Union[str, Any]=1 , snake_case__ : str=2 , snake_case__ : List[str]=2 , **snake_case__ : int , ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = vocab_size UpperCAmelCase__ : Union[str, Any] = max_position_embeddings UpperCAmelCase__ : Optional[Any] = d_model UpperCAmelCase__ : Any = encoder_ffn_dim UpperCAmelCase__ : int = encoder_layers UpperCAmelCase__ : Dict = encoder_attention_heads UpperCAmelCase__ : Optional[Any] = decoder_ffn_dim UpperCAmelCase__ : Dict = decoder_layers UpperCAmelCase__ : Any = decoder_attention_heads UpperCAmelCase__ : Optional[int] = dropout UpperCAmelCase__ : int = attention_dropout UpperCAmelCase__ : str = activation_dropout UpperCAmelCase__ : List[Any] = activation_function UpperCAmelCase__ : List[Any] = init_std UpperCAmelCase__ : Any = encoder_layerdrop UpperCAmelCase__ : Tuple = decoder_layerdrop UpperCAmelCase__ : Any = use_cache UpperCAmelCase__ : List[Any] = encoder_layers UpperCAmelCase__ : List[str] = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , is_encoder_decoder=snake_case__ , decoder_start_token_id=snake_case__ , forced_eos_token_id=snake_case__ , **snake_case__ , ) class lowerCAmelCase__ ( __magic_name__ ): @property def __a ( self : Dict ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: UpperCAmelCase__ : Dict = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ] ) if self.use_past: UpperCAmelCase__ : Any = {0: "batch"} UpperCAmelCase__ : int = {0: "batch", 1: "past_decoder_sequence + sequence"} else: UpperCAmelCase__ : str = {0: "batch", 1: "decoder_sequence"} UpperCAmelCase__ : Tuple = {0: "batch", 1: "decoder_sequence"} if self.use_past: self.fill_with_past_key_values_(snake_case__ , direction="inputs" ) elif self.task == "causal-lm": # TODO: figure this case out. UpperCAmelCase__ : Any = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ] ) if self.use_past: UpperCAmelCase__ , UpperCAmelCase__ : Dict = self.num_layers for i in range(snake_case__ ): UpperCAmelCase__ : Tuple = {0: "batch", 2: "past_sequence + sequence"} UpperCAmelCase__ : List[Any] = {0: "batch", 2: "past_sequence + sequence"} else: UpperCAmelCase__ : Tuple = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ("decoder_input_ids", {0: "batch", 1: "decoder_sequence"}), ("decoder_attention_mask", {0: "batch", 1: "decoder_sequence"}), ] ) return common_inputs @property def __a ( self : Optional[int] ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: UpperCAmelCase__ : List[str] = super().outputs else: UpperCAmelCase__ : Tuple = super(snake_case__ , self ).outputs if self.use_past: UpperCAmelCase__ , UpperCAmelCase__ : List[Any] = self.num_layers for i in range(snake_case__ ): UpperCAmelCase__ : List[str] = {0: "batch", 2: "past_sequence + sequence"} UpperCAmelCase__ : Optional[int] = {0: "batch", 2: "past_sequence + sequence"} return common_outputs def __a ( self : str , snake_case__ : PreTrainedTokenizer , snake_case__ : int = -1 , snake_case__ : int = -1 , snake_case__ : bool = False , snake_case__ : Optional[TensorType] = None , ): '''simple docstring''' UpperCAmelCase__ : List[str] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) # Generate decoder inputs UpperCAmelCase__ : Dict = seq_length if not self.use_past else 1 UpperCAmelCase__ : List[str] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) UpperCAmelCase__ : Optional[int] = {f'decoder_{name}': tensor for name, tensor in decoder_inputs.items()} UpperCAmelCase__ : str = dict(**snake_case__ , **snake_case__ ) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch UpperCAmelCase__ , UpperCAmelCase__ : Tuple = common_inputs["input_ids"].shape UpperCAmelCase__ : Dict = common_inputs["decoder_input_ids"].shape[1] UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = self.num_attention_heads UpperCAmelCase__ : Optional[int] = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) UpperCAmelCase__ : int = decoder_seq_length + 3 UpperCAmelCase__ : int = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) UpperCAmelCase__ : Union[str, Any] = torch.cat( [common_inputs["decoder_attention_mask"], torch.ones(snake_case__ , snake_case__ )] , dim=1 ) UpperCAmelCase__ : Optional[int] = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = self.num_layers UpperCAmelCase__ : Union[str, Any] = min(snake_case__ , snake_case__ ) UpperCAmelCase__ : int = max(snake_case__ , snake_case__ ) - min_num_layers UpperCAmelCase__ : Tuple = "encoder" if num_encoder_layers > num_decoder_layers else "decoder" for _ in range(snake_case__ ): common_inputs["past_key_values"].append( ( torch.zeros(snake_case__ ), torch.zeros(snake_case__ ), torch.zeros(snake_case__ ), torch.zeros(snake_case__ ), ) ) # TODO: test this. UpperCAmelCase__ : str = encoder_shape if remaining_side_name == "encoder" else decoder_shape for _ in range(snake_case__ , snake_case__ ): common_inputs["past_key_values"].append((torch.zeros(snake_case__ ), torch.zeros(snake_case__ )) ) return common_inputs def __a ( self : List[Any] , snake_case__ : PreTrainedTokenizer , snake_case__ : int = -1 , snake_case__ : int = -1 , snake_case__ : bool = False , snake_case__ : Optional[TensorType] = None , ): '''simple docstring''' UpperCAmelCase__ : Dict = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = common_inputs["input_ids"].shape # Not using the same length for past_key_values UpperCAmelCase__ : List[str] = seqlen + 2 UpperCAmelCase__ , UpperCAmelCase__ : List[Any] = self.num_layers UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = self.num_attention_heads UpperCAmelCase__ : List[str] = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) UpperCAmelCase__ : str = common_inputs["attention_mask"].dtype UpperCAmelCase__ : Any = torch.cat( [common_inputs["attention_mask"], torch.ones(snake_case__ , snake_case__ , dtype=snake_case__ )] , dim=1 ) UpperCAmelCase__ : List[str] = [ (torch.zeros(snake_case__ ), torch.zeros(snake_case__ )) for _ in range(snake_case__ ) ] return common_inputs def __a ( self : Optional[int] , snake_case__ : PreTrainedTokenizer , snake_case__ : int = -1 , snake_case__ : int = -1 , snake_case__ : bool = False , snake_case__ : Optional[TensorType] = None , ): '''simple docstring''' # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX UpperCAmelCase__ : Optional[int] = compute_effective_axis_dimension( snake_case__ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX UpperCAmelCase__ : List[Any] = tokenizer.num_special_tokens_to_add(snake_case__ ) UpperCAmelCase__ : Any = compute_effective_axis_dimension( snake_case__ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=snake_case__ ) # Generate dummy inputs according to compute batch and sequence UpperCAmelCase__ : List[str] = [" ".join([tokenizer.unk_token] ) * seq_length] * batch_size UpperCAmelCase__ : List[str] = dict(tokenizer(snake_case__ , return_tensors=snake_case__ ) ) return common_inputs def __a ( self : Optional[int] , snake_case__ : PreTrainedTokenizer , snake_case__ : int = -1 , snake_case__ : int = -1 , snake_case__ : bool = False , snake_case__ : Optional[TensorType] = None , ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: UpperCAmelCase__ : Union[str, Any] = self._generate_dummy_inputs_for_default_and_seqaseq_lm( snake_case__ , batch_size=snake_case__ , seq_length=snake_case__ , is_pair=snake_case__ , framework=snake_case__ ) elif self.task == "causal-lm": UpperCAmelCase__ : Any = self._generate_dummy_inputs_for_causal_lm( snake_case__ , batch_size=snake_case__ , seq_length=snake_case__ , is_pair=snake_case__ , framework=snake_case__ ) else: UpperCAmelCase__ : Optional[Any] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( snake_case__ , batch_size=snake_case__ , seq_length=snake_case__ , is_pair=snake_case__ , framework=snake_case__ ) return common_inputs def __a ( self : Optional[Any] , snake_case__ : str , snake_case__ : Tuple , snake_case__ : Optional[Any] , snake_case__ : Optional[int] ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: UpperCAmelCase__ : List[str] = super()._flatten_past_key_values_(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) else: UpperCAmelCase__ : List[str] = super(snake_case__ , self )._flatten_past_key_values_( snake_case__ , snake_case__ , snake_case__ , snake_case__ )
298
"""simple docstring""" import unittest from transformers import AlbertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, ) from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCAmelCase__ : def __init__( self : Optional[Any] , snake_case__ : Optional[Any] , snake_case__ : Dict=1_3 , snake_case__ : List[str]=7 , snake_case__ : Union[str, Any]=True , snake_case__ : Tuple=True , snake_case__ : Optional[int]=True , snake_case__ : Any=True , snake_case__ : Any=9_9 , snake_case__ : List[Any]=1_6 , snake_case__ : Any=3_6 , snake_case__ : Union[str, Any]=6 , snake_case__ : Tuple=6 , snake_case__ : List[str]=6 , snake_case__ : List[str]=3_7 , snake_case__ : Dict="gelu" , snake_case__ : int=0.1 , snake_case__ : List[Any]=0.1 , snake_case__ : List[str]=5_1_2 , snake_case__ : Dict=1_6 , snake_case__ : str=2 , snake_case__ : Optional[Any]=0.02 , snake_case__ : List[str]=3 , snake_case__ : Any=4 , snake_case__ : int=None , ): '''simple docstring''' UpperCAmelCase__ : Tuple = parent UpperCAmelCase__ : int = batch_size UpperCAmelCase__ : int = seq_length UpperCAmelCase__ : List[str] = is_training UpperCAmelCase__ : Union[str, Any] = use_input_mask UpperCAmelCase__ : Optional[Any] = use_token_type_ids UpperCAmelCase__ : Any = use_labels UpperCAmelCase__ : List[Any] = vocab_size UpperCAmelCase__ : Any = embedding_size UpperCAmelCase__ : List[str] = hidden_size UpperCAmelCase__ : List[Any] = num_hidden_layers UpperCAmelCase__ : int = num_hidden_groups UpperCAmelCase__ : Union[str, Any] = num_attention_heads UpperCAmelCase__ : List[str] = intermediate_size UpperCAmelCase__ : Optional[Any] = hidden_act UpperCAmelCase__ : List[Any] = hidden_dropout_prob UpperCAmelCase__ : Tuple = attention_probs_dropout_prob UpperCAmelCase__ : str = max_position_embeddings UpperCAmelCase__ : Any = type_vocab_size UpperCAmelCase__ : Union[str, Any] = type_sequence_label_size UpperCAmelCase__ : Union[str, Any] = initializer_range UpperCAmelCase__ : Tuple = num_labels UpperCAmelCase__ : List[str] = num_choices UpperCAmelCase__ : Union[str, Any] = scope def __a ( self : int ): '''simple docstring''' UpperCAmelCase__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase__ : Optional[int] = None if self.use_input_mask: UpperCAmelCase__ : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase__ : Optional[int] = None if self.use_token_type_ids: UpperCAmelCase__ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase__ : List[Any] = None UpperCAmelCase__ : Optional[int] = None UpperCAmelCase__ : Any = None if self.use_labels: UpperCAmelCase__ : int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase__ : Dict = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase__ : int = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __a ( self : Any ): '''simple docstring''' return AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , ) def __a ( self : List[Any] , snake_case__ : Optional[Any] , snake_case__ : List[Any] , snake_case__ : Optional[Any] , snake_case__ : Tuple , snake_case__ : List[str] , snake_case__ : List[Any] , snake_case__ : List[str] ): '''simple docstring''' UpperCAmelCase__ : str = AlbertModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() UpperCAmelCase__ : Union[str, Any] = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ ) UpperCAmelCase__ : Optional[Any] = model(snake_case__ , token_type_ids=snake_case__ ) UpperCAmelCase__ : Optional[int] = model(snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __a ( self : Dict , snake_case__ : List[Any] , snake_case__ : Union[str, Any] , snake_case__ : List[str] , snake_case__ : int , snake_case__ : List[Any] , snake_case__ : str , snake_case__ : int ): '''simple docstring''' UpperCAmelCase__ : List[str] = AlbertForPreTraining(config=snake_case__ ) model.to(snake_case__ ) model.eval() UpperCAmelCase__ : Dict = model( snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ , sentence_order_label=snake_case__ , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels) ) def __a ( self : Union[str, Any] , snake_case__ : Any , snake_case__ : List[str] , snake_case__ : List[str] , snake_case__ : Union[str, Any] , snake_case__ : List[Any] , snake_case__ : Optional[Any] , snake_case__ : List[Any] ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = AlbertForMaskedLM(config=snake_case__ ) model.to(snake_case__ ) model.eval() UpperCAmelCase__ : Union[str, Any] = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __a ( self : Optional[int] , snake_case__ : Optional[int] , snake_case__ : Optional[Any] , snake_case__ : List[str] , snake_case__ : Any , snake_case__ : Optional[Any] , snake_case__ : List[str] , snake_case__ : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : List[str] = AlbertForQuestionAnswering(config=snake_case__ ) model.to(snake_case__ ) model.eval() UpperCAmelCase__ : List[str] = model( snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , start_positions=snake_case__ , end_positions=snake_case__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __a ( self : Dict , snake_case__ : Optional[Any] , snake_case__ : List[str] , snake_case__ : Optional[int] , snake_case__ : Any , snake_case__ : Any , snake_case__ : List[str] , snake_case__ : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = self.num_labels UpperCAmelCase__ : int = AlbertForSequenceClassification(snake_case__ ) model.to(snake_case__ ) model.eval() UpperCAmelCase__ : int = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __a ( self : str , snake_case__ : Optional[Any] , snake_case__ : str , snake_case__ : Optional[Any] , snake_case__ : Union[str, Any] , snake_case__ : Optional[int] , snake_case__ : Dict , snake_case__ : Tuple ): '''simple docstring''' UpperCAmelCase__ : str = self.num_labels UpperCAmelCase__ : Any = AlbertForTokenClassification(config=snake_case__ ) model.to(snake_case__ ) model.eval() UpperCAmelCase__ : List[str] = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __a ( self : Any , snake_case__ : Optional[Any] , snake_case__ : Dict , snake_case__ : Dict , snake_case__ : int , snake_case__ : List[str] , snake_case__ : Union[str, Any] , snake_case__ : Dict ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = self.num_choices UpperCAmelCase__ : Optional[Any] = AlbertForMultipleChoice(config=snake_case__ ) model.to(snake_case__ ) model.eval() UpperCAmelCase__ : int = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase__ : Any = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase__ : Optional[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase__ : Tuple = model( snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __a ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = self.prepare_config_and_inputs() ( ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ) : Optional[Any] = config_and_inputs UpperCAmelCase__ : Optional[int] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class lowerCAmelCase__ ( __magic_name__ , __magic_name__ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ =( ( AlbertModel, AlbertForPreTraining, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertForQuestionAnswering, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE_ =( { '''feature-extraction''': AlbertModel, '''fill-mask''': AlbertForMaskedLM, '''question-answering''': AlbertForQuestionAnswering, '''text-classification''': AlbertForSequenceClassification, '''token-classification''': AlbertForTokenClassification, '''zero-shot''': AlbertForSequenceClassification, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE_ =True def __a ( self : Tuple , snake_case__ : int , snake_case__ : Tuple , snake_case__ : Optional[int]=False ): '''simple docstring''' UpperCAmelCase__ : List[str] = super()._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ ) if return_labels: if model_class in get_values(snake_case__ ): UpperCAmelCase__ : List[Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=snake_case__ ) UpperCAmelCase__ : int = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=snake_case__ ) return inputs_dict def __a ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : Dict = AlbertModelTester(self ) UpperCAmelCase__ : Any = ConfigTester(self , config_class=snake_case__ , hidden_size=3_7 ) def __a ( self : Dict ): '''simple docstring''' self.config_tester.run_common_tests() def __a ( self : str ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def __a ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*snake_case__ ) def __a ( self : str ): '''simple docstring''' UpperCAmelCase__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case__ ) def __a ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*snake_case__ ) def __a ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*snake_case__ ) def __a ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*snake_case__ ) def __a ( self : List[Any] ): '''simple docstring''' UpperCAmelCase__ : str = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCAmelCase__ : Dict = type self.model_tester.create_and_check_model(*snake_case__ ) @slow def __a ( self : Union[str, Any] ): '''simple docstring''' for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ : List[str] = AlbertModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) @require_torch class lowerCAmelCase__ ( unittest.TestCase ): @slow def __a ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ : List[str] = AlbertModel.from_pretrained("albert-base-v2" ) UpperCAmelCase__ : Dict = torch.tensor([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] ) UpperCAmelCase__ : List[str] = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): UpperCAmelCase__ : int = model(snake_case__ , attention_mask=snake_case__ )[0] UpperCAmelCase__ : Dict = torch.Size((1, 1_1, 7_6_8) ) self.assertEqual(output.shape , snake_case__ ) UpperCAmelCase__ : Union[str, Any] = torch.tensor( [[[-0.6513, 1.5035, -0.2766], [-0.6515, 1.5046, -0.2780], [-0.6512, 1.5049, -0.2784]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , snake_case__ , atol=1e-4 ) )
298
1
__lowerCamelCase : Tuple = ''' # Installazione di Transformers ! pip install transformers datasets # Per installare dalla fonte invece dell\'ultima versione rilasciata, commenta il comando sopra e # rimuovi la modalità commento al comando seguente. # ! pip install git+https://github.com/huggingface/transformers.git ''' __lowerCamelCase : Optional[int] = [{'''type''': '''code''', '''content''': INSTALL_CONTENT}] __lowerCamelCase : Union[str, Any] = { '''{processor_class}''': '''FakeProcessorClass''', '''{model_class}''': '''FakeModelClass''', '''{object_class}''': '''FakeObjectClass''', }
18
import inspect import unittest from transformers import MobileViTVaConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel from transformers.models.mobilevitva.modeling_mobilevitva import ( MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST, make_divisible, ) if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ): def UpperCamelCase_ ( self : str ): '''simple docstring''' __a = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__lowercase , """width_multiplier""" ) ) class SCREAMING_SNAKE_CASE : def __init__( self : Dict , __lowercase : Union[str, Any] , __lowercase : Dict=13 , __lowercase : int=64 , __lowercase : Tuple=2 , __lowercase : Tuple=3 , __lowercase : Tuple="swish" , __lowercase : List[Any]=3 , __lowercase : List[str]=32 , __lowercase : int=0.1 , __lowercase : Union[str, Any]=0.02 , __lowercase : Optional[int]=True , __lowercase : Dict=True , __lowercase : Tuple=10 , __lowercase : str=None , __lowercase : Optional[Any]=0.25 , __lowercase : str=0.0 , __lowercase : Optional[Any]=0.0 , ): '''simple docstring''' __a = parent __a = batch_size __a = image_size __a = patch_size __a = num_channels __a = make_divisible(512 * width_multiplier , divisor=8 ) __a = hidden_act __a = conv_kernel_size __a = output_stride __a = classifier_dropout_prob __a = use_labels __a = is_training __a = num_labels __a = initializer_range __a = scope __a = width_multiplier __a = ffn_dropout __a = attn_dropout def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' __a = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __a = None __a = None if self.use_labels: __a = ids_tensor([self.batch_size] , self.num_labels ) __a = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __a = self.get_config() return config, pixel_values, labels, pixel_labels def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' return MobileViTVaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , width_multiplier=self.width_multiplier , ffn_dropout=self.ffn_dropout_prob , attn_dropout=self.attn_dropout_prob , ) def UpperCamelCase_ ( self : Tuple , __lowercase : Optional[Any] , __lowercase : int , __lowercase : Optional[Any] , __lowercase : Tuple ): '''simple docstring''' __a = MobileViTVaModel(config=__lowercase ) model.to(__lowercase ) model.eval() __a = model(__lowercase ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def UpperCamelCase_ ( self : Union[str, Any] , __lowercase : List[Any] , __lowercase : str , __lowercase : Optional[int] , __lowercase : Union[str, Any] ): '''simple docstring''' __a = self.num_labels __a = MobileViTVaForImageClassification(__lowercase ) model.to(__lowercase ) model.eval() __a = model(__lowercase , labels=__lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase_ ( self : int , __lowercase : str , __lowercase : Any , __lowercase : int , __lowercase : List[str] ): '''simple docstring''' __a = self.num_labels __a = MobileViTVaForSemanticSegmentation(__lowercase ) model.to(__lowercase ) model.eval() __a = model(__lowercase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) __a = model(__lowercase , labels=__lowercase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def UpperCamelCase_ ( self : Dict ): '''simple docstring''' __a = self.prepare_config_and_inputs() __a , __a , __a , __a = config_and_inputs __a = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): __lowerCamelCase : List[Any] =( (MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation) if is_torch_available() else () ) __lowerCamelCase : Any =( { 'feature-extraction': MobileViTVaModel, 'image-classification': MobileViTVaForImageClassification, 'image-segmentation': MobileViTVaForSemanticSegmentation, } if is_torch_available() else {} ) __lowerCamelCase : Dict =False __lowerCamelCase : Optional[Any] =False __lowerCamelCase : int =False __lowerCamelCase : Any =False def UpperCamelCase_ ( self : Dict ): '''simple docstring''' __a = MobileViTVaModelTester(self ) __a = MobileViTVaConfigTester(self , config_class=__lowercase , has_text_modality=__lowercase ) def UpperCamelCase_ ( self : Dict ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="""MobileViTV2 does not use inputs_embeds""" ) def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' pass @unittest.skip(reason="""MobileViTV2 does not support input and output embeddings""" ) def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' pass @unittest.skip(reason="""MobileViTV2 does not output attentions""" ) def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason="""Got `CUDA error: misaligned address` for tests after this one being run.""" ) def UpperCamelCase_ ( self : int ): '''simple docstring''' pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' pass def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' __a , __a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a = model_class(__lowercase ) __a = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __a = [*signature.parameters.keys()] __a = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __lowercase ) def UpperCamelCase_ ( self : Dict ): '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowercase ) def UpperCamelCase_ ( self : int ): '''simple docstring''' def check_hidden_states_output(__lowercase : List[str] , __lowercase : Optional[int] , __lowercase : List[str] ): __a = model_class(__lowercase ) model.to(__lowercase ) model.eval() with torch.no_grad(): __a = model(**self._prepare_for_class(__lowercase , __lowercase ) ) __a = outputs.hidden_states __a = 5 self.assertEqual(len(__lowercase ) , __lowercase ) # MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. __a = 2 for i in range(len(__lowercase ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) __a , __a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a = True check_hidden_states_output(__lowercase , __lowercase , __lowercase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __a = True check_hidden_states_output(__lowercase , __lowercase , __lowercase ) def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__lowercase ) def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__lowercase ) @slow def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __a = MobileViTVaModel.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) def lowerCAmelCase__ ( ): """simple docstring""" __a = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class SCREAMING_SNAKE_CASE ( unittest.TestCase ): @cached_property def UpperCamelCase_ ( self : Dict ): '''simple docstring''' return ( MobileViTImageProcessor.from_pretrained("""apple/mobilevitv2-1.0-imagenet1k-256""" ) if is_vision_available() else None ) @slow def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' __a = MobileViTVaForImageClassification.from_pretrained("""apple/mobilevitv2-1.0-imagenet1k-256""" ).to( __lowercase ) __a = self.default_image_processor __a = prepare_img() __a = image_processor(images=__lowercase , return_tensors="""pt""" ).to(__lowercase ) # forward pass with torch.no_grad(): __a = model(**__lowercase ) # verify the logits __a = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , __lowercase ) __a = torch.tensor([-1.6336E00, -7.3204E-02, -5.1883E-01] ).to(__lowercase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowercase , atol=1E-4 ) ) @slow def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' __a = MobileViTVaForSemanticSegmentation.from_pretrained("""shehan97/mobilevitv2-1.0-voc-deeplabv3""" ) __a = model.to(__lowercase ) __a = MobileViTImageProcessor.from_pretrained("""shehan97/mobilevitv2-1.0-voc-deeplabv3""" ) __a = prepare_img() __a = image_processor(images=__lowercase , return_tensors="""pt""" ).to(__lowercase ) # forward pass with torch.no_grad(): __a = model(**__lowercase ) __a = outputs.logits # verify the logits __a = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape , __lowercase ) __a = torch.tensor( [ [[7.0863, 7.1525, 6.8201], [6.6931, 6.8770, 6.8933], [6.2978, 7.0366, 6.9636]], [[-3.7134, -3.6712, -3.6675], [-3.5825, -3.3549, -3.4777], [-3.3435, -3.3979, -3.2857]], [[-2.9329, -2.8003, -2.7369], [-3.0564, -2.4780, -2.0207], [-2.6889, -1.9298, -1.7640]], ] , device=__lowercase , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , __lowercase , atol=1E-4 ) ) @slow def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' __a = MobileViTVaForSemanticSegmentation.from_pretrained("""shehan97/mobilevitv2-1.0-voc-deeplabv3""" ) __a = model.to(__lowercase ) __a = MobileViTImageProcessor.from_pretrained("""shehan97/mobilevitv2-1.0-voc-deeplabv3""" ) __a = prepare_img() __a = image_processor(images=__lowercase , return_tensors="""pt""" ).to(__lowercase ) # forward pass with torch.no_grad(): __a = model(**__lowercase ) __a = outputs.logits.detach().cpu() __a = image_processor.post_process_semantic_segmentation(outputs=__lowercase , target_sizes=[(50, 60)] ) __a = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape , __lowercase ) __a = image_processor.post_process_semantic_segmentation(outputs=__lowercase ) __a = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape , __lowercase )
302
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase__ : str = logging.get_logger(__name__) lowercase__ : Optional[Any] = { 'bert-base-uncased': 'https://huggingface.co/bert-base-uncased/resolve/main/config.json', 'bert-large-uncased': 'https://huggingface.co/bert-large-uncased/resolve/main/config.json', 'bert-base-cased': 'https://huggingface.co/bert-base-cased/resolve/main/config.json', 'bert-large-cased': 'https://huggingface.co/bert-large-cased/resolve/main/config.json', 'bert-base-multilingual-uncased': 'https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json', 'bert-base-multilingual-cased': 'https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json', 'bert-base-chinese': 'https://huggingface.co/bert-base-chinese/resolve/main/config.json', 'bert-base-german-cased': 'https://huggingface.co/bert-base-german-cased/resolve/main/config.json', 'bert-large-uncased-whole-word-masking': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json' ), 'bert-large-cased-whole-word-masking': ( 'https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json' ), 'bert-large-uncased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json' ), 'bert-large-cased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json' ), 'bert-base-cased-finetuned-mrpc': 'https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json', 'bert-base-german-dbmdz-cased': 'https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json', 'bert-base-german-dbmdz-uncased': 'https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json', 'cl-tohoku/bert-base-japanese': 'https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json', 'cl-tohoku/bert-base-japanese-whole-word-masking': ( 'https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json' ), 'cl-tohoku/bert-base-japanese-char': ( 'https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json' ), 'cl-tohoku/bert-base-japanese-char-whole-word-masking': ( 'https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json' ), 'TurkuNLP/bert-base-finnish-cased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json' ), 'TurkuNLP/bert-base-finnish-uncased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json' ), 'wietsedv/bert-base-dutch-cased': 'https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json', # See all BERT models at https://huggingface.co/models?filter=bert } class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" _snake_case : int = 'bert' def __init__( self : str , lowerCAmelCase__ : List[Any]=30522 , lowerCAmelCase__ : Tuple=768 , lowerCAmelCase__ : List[Any]=12 , lowerCAmelCase__ : Optional[int]=12 , lowerCAmelCase__ : str=3072 , lowerCAmelCase__ : Union[str, Any]="gelu" , lowerCAmelCase__ : Optional[Any]=0.1 , lowerCAmelCase__ : List[Any]=0.1 , lowerCAmelCase__ : Any=512 , lowerCAmelCase__ : List[str]=2 , lowerCAmelCase__ : int=0.02 , lowerCAmelCase__ : Tuple=1e-1_2 , lowerCAmelCase__ : Union[str, Any]=0 , lowerCAmelCase__ : Tuple="absolute" , lowerCAmelCase__ : Union[str, Any]=True , lowerCAmelCase__ : Any=None , **lowerCAmelCase__ : List[Any] , ) -> Union[str, Any]: '''simple docstring''' super().__init__(pad_token_id=lowerCAmelCase__ , **lowerCAmelCase__ ) _UpperCamelCase = vocab_size _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = hidden_act _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = max_position_embeddings _UpperCamelCase = type_vocab_size _UpperCamelCase = initializer_range _UpperCamelCase = layer_norm_eps _UpperCamelCase = position_embedding_type _UpperCamelCase = use_cache _UpperCamelCase = classifier_dropout class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" @property def snake_case__ ( self : Optional[Any] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": _UpperCamelCase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: _UpperCamelCase = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ] )
287
'''simple docstring''' import math def a__ ( lowercase : float, lowercase : float ) -> float: """simple docstring""" if initial_intensity < 0: raise ValueError('''The value of intensity cannot be negative''' ) # handling of negative values of initial intensity if angle < 0 or angle > 360: raise ValueError('''In Malus Law, the angle is in the range 0-360 degrees''' ) # handling of values out of allowed range return initial_intensity * (math.cos(math.radians(lowercase ) ) ** 2) if __name__ == "__main__": import doctest doctest.testmod(name='malus_law')
287
1
import argparse import json import os import re import torch from transformers import BloomConfig, BloomModel from transformers.file_utils import CONFIG_NAME, WEIGHTS_NAME from transformers.utils import logging logging.set_verbosity_info() _A : Union[str, Any] = [ 'word_embeddings_layernorm.weight', 'word_embeddings_layernorm.bias', 'input_layernorm.weight', 'input_layernorm.bias', 'post_attention_layernorm.weight', 'post_attention_layernorm.bias', 'self_attention.dense.bias', 'mlp.dense_4h_to_h.bias', 'ln_f.weight', 'ln_f.bias', ] _A : str = [ 'mlp.dense_4h_to_h.weight', 'self_attention.dense.weight', ] def _a ( UpperCAmelCase , UpperCAmelCase ) -> Optional[Any]: """simple docstring""" lowerCamelCase__ : Tuple = { '''word_embeddings.weight''': '''word_embeddings.weight''', '''word_embeddings.norm.weight''': '''word_embeddings_layernorm.weight''', '''word_embeddings.norm.bias''': '''word_embeddings_layernorm.bias''', '''weight''': '''ln_f.weight''', '''bias''': '''ln_f.bias''', } if key in layer_rename_map: return layer_rename_map[key] # Handle transformer blocks lowerCamelCase__ : str = int(re.match(R'''.*layer_(\d*).*''' , UpperCAmelCase )[1] ) layer_number -= 3 return f"h.{layer_number}." + key def _a ( UpperCAmelCase ) -> int: """simple docstring""" if dtype == torch.bool: return 1 / 8 lowerCamelCase__ : Union[str, Any] = re.search(R'''[^\d](\d+)$''' , str(UpperCAmelCase ) ) if bit_search is None: raise ValueError(f"`dtype` is not a valid dtype: {dtype}." ) lowerCamelCase__ : Tuple = int(bit_search.groups()[0] ) return bit_size // 8 def _a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Any: """simple docstring""" # Construct model if bloom_config_file == "": lowerCamelCase__ : Tuple = BloomConfig() else: lowerCamelCase__ : int = BloomConfig.from_json_file(UpperCAmelCase ) if shard_model: lowerCamelCase__ : List[Any] = os.listdir(UpperCAmelCase ) lowerCamelCase__ : Dict = sorted(filter(lambda UpperCAmelCase : s.startswith('''layer''' ) and "model_00" in s , UpperCAmelCase ) ) lowerCamelCase__ : Any = {'''weight_map''': {}, '''metadata''': {}} lowerCamelCase__ : Optional[Any] = 0 lowerCamelCase__ : List[str] = None lowerCamelCase__ : int = BloomConfig() for j, file in enumerate(UpperCAmelCase ): print('''Processing file: {}'''.format(UpperCAmelCase ) ) lowerCamelCase__ : Any = None for i in range(UpperCAmelCase ): # load all TP files lowerCamelCase__ : Dict = file.replace('''model_00''' , f"model_0{i}" ) lowerCamelCase__ : Optional[Any] = torch.load(os.path.join(UpperCAmelCase , UpperCAmelCase ) , map_location='''cpu''' ) # Rename keys in the transformers names lowerCamelCase__ : List[Any] = list(temp.keys() ) for key in keys: lowerCamelCase__ : Tuple = temp.pop(UpperCAmelCase ) if tensors is None: lowerCamelCase__ : Union[str, Any] = temp else: for key in tensors.keys(): if any(key.endswith(UpperCAmelCase ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel lowerCamelCase__ : Optional[Any] = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0 # We concatenate these weights accross TP ranks lowerCamelCase__ : Union[str, Any] = torch.cat([tensors[key], temp[key]] , dim=UpperCAmelCase ) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(UpperCAmelCase ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): lowerCamelCase__ : List[Any] = tensors[key] / pretraining_tp torch.save( UpperCAmelCase , os.path.join( UpperCAmelCase , '''pytorch_model_{}-of-{}.bin'''.format(str(j + 1 ).zfill(5 ) , str(len(UpperCAmelCase ) ).zfill(5 ) ) , ) , ) for key in tensors.keys(): lowerCamelCase__ : Tuple = tensors[key] total_size += value.numel() * get_dtype_size(value.dtype ) if key not in index_dict["weight_map"]: lowerCamelCase__ : Optional[Any] = '''pytorch_model_{}-of-{}.bin'''.format( str(j + 1 ).zfill(5 ) , str(len(UpperCAmelCase ) ).zfill(5 ) ) lowerCamelCase__ : Tuple = BloomConfig() lowerCamelCase__ : Dict = pytorch_dump_folder_path + '''/''' + CONFIG_NAME lowerCamelCase__ : List[str] = total_size with open(UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as f: f.write(config.to_json_string() ) with open(os.path.join(UpperCAmelCase , WEIGHTS_NAME + '''.index.json''' ) , '''w''' , encoding='''utf-8''' ) as f: lowerCamelCase__ : Union[str, Any] = json.dumps(UpperCAmelCase , indent=2 , sort_keys=UpperCAmelCase ) + '''\n''' f.write(UpperCAmelCase ) else: lowerCamelCase__ : Union[str, Any] = BloomModel(UpperCAmelCase ) lowerCamelCase__ : Optional[int] = os.listdir(UpperCAmelCase ) lowerCamelCase__ : Tuple = sorted(filter(lambda UpperCAmelCase : s.startswith('''layer''' ) and "model_00" in s , UpperCAmelCase ) ) lowerCamelCase__ : int = None for i, file in enumerate(UpperCAmelCase ): lowerCamelCase__ : int = None for i in range(UpperCAmelCase ): # load all TP files lowerCamelCase__ : Dict = file.replace('''model_00''' , f"model_0{i}" ) lowerCamelCase__ : Optional[Any] = torch.load(os.path.join(UpperCAmelCase , UpperCAmelCase ) , map_location='''cpu''' ) # Rename keys in the transformers names lowerCamelCase__ : Optional[Any] = list(temp.keys() ) for key in keys: lowerCamelCase__ : Tuple = temp.pop(UpperCAmelCase ) if tensors is None: lowerCamelCase__ : Optional[int] = temp else: for key in tensors.keys(): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) if any(key.endswith(UpperCAmelCase ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel lowerCamelCase__ : int = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0 # We concatenate these weights accross TP ranks lowerCamelCase__ : List[str] = torch.cat([tensors[key], temp[key]] , dim=UpperCAmelCase ) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(UpperCAmelCase ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): lowerCamelCase__ : Dict = tensors[key] / pretraining_tp lowerCamelCase__ : Dict = model.load_state_dict(UpperCAmelCase , strict=UpperCAmelCase ) assert not other_keys.unexpected_keys, f"The keys {other_keys.unexpected_keys} are unexpected" if missing_keys is None: lowerCamelCase__ : Optional[Any] = set(other_keys.missing_keys ) else: lowerCamelCase__ : Dict = missing_keys.intersection(set(other_keys.missing_keys ) ) assert not missing_keys, f"The keys {missing_keys} are missing" # Save pytorch-model os.makedirs(UpperCAmelCase , exist_ok=UpperCAmelCase ) lowerCamelCase__ : Tuple = pytorch_dump_folder_path + '''/''' + WEIGHTS_NAME lowerCamelCase__ : Optional[int] = pytorch_dump_folder_path + '''/''' + CONFIG_NAME print(f"Save PyTorch model to {pytorch_weights_dump_path} with dtype {config.torch_dtype}" ) if config.torch_dtype is not None: lowerCamelCase__ : str = model.to(config.torch_dtype ) torch.save(model.state_dict() , UpperCAmelCase ) print(f"Save configuration file to {pytorch_config_dump_path}" ) with open(UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": _A : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '--bloom_checkpoint_path', default=None, type=str, required=True, help='Path to the Megatron-LM checkpoint path.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--bloom_config_file', default='', type=str, help=( 'An optional config json file corresponding to the pre-trained model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--shard_model', action='store_true', help='An optional setting to shard the output model \nThis enables sharding the converted checkpoint', ) parser.add_argument( '--pretraining_tp', default=4, type=int, help='Pretraining TP rank that has been used when training the model in Megatron-LM \n', ) _A : List[Any] = parser.parse_args() convert_bloom_checkpoint_to_pytorch( args.bloom_checkpoint_path, args.bloom_config_file, args.pytorch_dump_folder_path, args.shard_model, args.pretraining_tp, )
142
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) _A : Any = { 'configuration_convbert': ['CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConvBertConfig', 'ConvBertOnnxConfig'], 'tokenization_convbert': ['ConvBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : Dict = ['ConvBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : List[str] = [ 'CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'ConvBertForMaskedLM', 'ConvBertForMultipleChoice', 'ConvBertForQuestionAnswering', 'ConvBertForSequenceClassification', 'ConvBertForTokenClassification', 'ConvBertLayer', 'ConvBertModel', 'ConvBertPreTrainedModel', 'load_tf_weights_in_convbert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : Optional[int] = [ 'TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFConvBertForMaskedLM', 'TFConvBertForMultipleChoice', 'TFConvBertForQuestionAnswering', 'TFConvBertForSequenceClassification', 'TFConvBertForTokenClassification', 'TFConvBertLayer', 'TFConvBertModel', 'TFConvBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig from .tokenization_convbert import ConvBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_convbert_fast import ConvBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convbert import ( CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvBertForMaskedLM, ConvBertForMultipleChoice, ConvBertForQuestionAnswering, ConvBertForSequenceClassification, ConvBertForTokenClassification, ConvBertLayer, ConvBertModel, ConvBertPreTrainedModel, load_tf_weights_in_convbert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convbert import ( TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertLayer, TFConvBertModel, TFConvBertPreTrainedModel, ) else: import sys _A : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
142
1
"""simple docstring""" import json import os from pathlib import Path import pytest from datasets.download.download_config import DownloadConfig from datasets.download.download_manager import DownloadManager from datasets.utils.file_utils import hash_url_to_filename _a : Any = 'http://www.mocksite.com/file1.txt' _a : str = '"text": ["foo", "foo"]' _a : Union[str, Any] = '6d8ce9aa78a471c7477201efbeabd3bb01ac2e7d100a6dc024ba1608361f90a8' class __A : _UpperCamelCase : List[str] = 200 _UpperCamelCase : Dict = {"Content-Length": "100"} _UpperCamelCase : Optional[int] = {} def __A ( self , **a__ ): return [bytes(a__ , """utf-8""" )] def SCREAMING_SNAKE_CASE ( *_lowerCamelCase : Optional[int] ,**_lowerCamelCase : Tuple ) -> List[Any]: return MockResponse() @pytest.mark.parametrize("""urls_type""" ,[str, list, dict] ) def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Dict ,_lowerCamelCase : int ,_lowerCamelCase : List[Any] ) -> List[Any]: import requests monkeypatch.setattr(_lowerCamelCase ,"""request""" ,_lowerCamelCase ) _lowerCAmelCase : int = URL if issubclass(_lowerCamelCase ,_lowerCamelCase ): _lowerCAmelCase : int = url elif issubclass(_lowerCamelCase ,_lowerCamelCase ): _lowerCAmelCase : List[Any] = [url] elif issubclass(_lowerCamelCase ,_lowerCamelCase ): _lowerCAmelCase : List[Any] = {"""train""": url} _lowerCAmelCase : Union[str, Any] = """dummy""" _lowerCAmelCase : List[str] = """downloads""" _lowerCAmelCase : Any = tmp_path _lowerCAmelCase : Optional[Any] = DownloadConfig( cache_dir=os.path.join(_lowerCamelCase ,_lowerCamelCase ) ,use_etag=_lowerCamelCase ,) _lowerCAmelCase : List[Any] = DownloadManager(dataset_name=_lowerCamelCase ,download_config=_lowerCamelCase ) _lowerCAmelCase : List[Any] = dl_manager.download(_lowerCamelCase ) _lowerCAmelCase : List[Any] = urls for downloaded_paths in [downloaded_paths]: if isinstance(_lowerCamelCase ,_lowerCamelCase ): _lowerCAmelCase : List[str] = [downloaded_paths] _lowerCAmelCase : Optional[Any] = [urls] elif isinstance(_lowerCamelCase ,_lowerCamelCase ): assert "train" in downloaded_paths.keys() _lowerCAmelCase : Dict = downloaded_paths.values() _lowerCAmelCase : List[Any] = urls.values() assert downloaded_paths for downloaded_path, input_url in zip(_lowerCamelCase ,_lowerCamelCase ): assert downloaded_path == dl_manager.downloaded_paths[input_url] _lowerCAmelCase : Optional[int] = Path(_lowerCamelCase ) _lowerCAmelCase : Optional[int] = downloaded_path.parts assert parts[-1] == HASH assert parts[-2] == cache_subdir assert downloaded_path.exists() _lowerCAmelCase : Dict = downloaded_path.read_text() assert content == CONTENT _lowerCAmelCase : Union[str, Any] = downloaded_path.with_suffix(""".json""" ) assert metadata_downloaded_path.exists() _lowerCAmelCase : List[Any] = json.loads(metadata_downloaded_path.read_text() ) assert metadata_content == {"url": URL, "etag": None} @pytest.mark.parametrize("""paths_type""" ,[str, list, dict] ) def SCREAMING_SNAKE_CASE ( _lowerCamelCase : List[str] ,_lowerCamelCase : int ,_lowerCamelCase : Union[str, Any] ) -> Union[str, Any]: _lowerCAmelCase : Optional[Any] = str(_lowerCamelCase ) if issubclass(_lowerCamelCase ,_lowerCamelCase ): _lowerCAmelCase : str = filename elif issubclass(_lowerCamelCase ,_lowerCamelCase ): _lowerCAmelCase : List[Any] = [filename] elif issubclass(_lowerCamelCase ,_lowerCamelCase ): _lowerCAmelCase : Union[str, Any] = {"""train""": filename} _lowerCAmelCase : str = """dummy""" _lowerCAmelCase : Tuple = xz_file.parent _lowerCAmelCase : int = """extracted""" _lowerCAmelCase : Dict = DownloadConfig( cache_dir=_lowerCamelCase ,use_etag=_lowerCamelCase ,) _lowerCAmelCase : List[Any] = DownloadManager(dataset_name=_lowerCamelCase ,download_config=_lowerCamelCase ) _lowerCAmelCase : Tuple = dl_manager.extract(_lowerCamelCase ) _lowerCAmelCase : List[Any] = paths for extracted_paths in [extracted_paths]: if isinstance(_lowerCamelCase ,_lowerCamelCase ): _lowerCAmelCase : Tuple = [extracted_paths] _lowerCAmelCase : Union[str, Any] = [paths] elif isinstance(_lowerCamelCase ,_lowerCamelCase ): assert "train" in extracted_paths.keys() _lowerCAmelCase : Optional[int] = extracted_paths.values() _lowerCAmelCase : Tuple = paths.values() assert extracted_paths for extracted_path, input_path in zip(_lowerCamelCase ,_lowerCamelCase ): assert extracted_path == dl_manager.extracted_paths[input_path] _lowerCAmelCase : Optional[int] = Path(_lowerCamelCase ) _lowerCAmelCase : Optional[Any] = extracted_path.parts assert parts[-1] == hash_url_to_filename(_lowerCamelCase ,etag=_lowerCamelCase ) assert parts[-2] == extracted_subdir assert extracted_path.exists() _lowerCAmelCase : Dict = extracted_path.read_text() _lowerCAmelCase : List[Any] = text_file.read_text() assert extracted_file_content == expected_file_content def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Optional[Any] ,_lowerCamelCase : List[str] ) -> List[Any]: assert path.endswith(""".jsonl""" ) for num_items, line in enumerate(_lowerCamelCase ,start=1 ): _lowerCAmelCase : List[Any] = json.loads(line.decode("""utf-8""" ) ) assert item.keys() == {"col_1", "col_2", "col_3"} assert num_items == 4 @pytest.mark.parametrize("""archive_jsonl""" ,["""tar_jsonl_path""", """zip_jsonl_path"""] ) def SCREAMING_SNAKE_CASE ( _lowerCamelCase : List[str] ,_lowerCamelCase : Dict ) -> Optional[int]: _lowerCAmelCase : Optional[int] = request.getfixturevalue(_lowerCamelCase ) _lowerCAmelCase : List[str] = DownloadManager() for num_jsonl, (path, file) in enumerate(dl_manager.iter_archive(_lowerCamelCase ) ,start=1 ): _test_jsonl(_lowerCamelCase ,_lowerCamelCase ) assert num_jsonl == 2 @pytest.mark.parametrize("""archive_nested_jsonl""" ,["""tar_nested_jsonl_path""", """zip_nested_jsonl_path"""] ) def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Tuple ,_lowerCamelCase : str ) -> List[str]: _lowerCAmelCase : Any = request.getfixturevalue(_lowerCamelCase ) _lowerCAmelCase : Optional[int] = DownloadManager() for num_tar, (path, file) in enumerate(dl_manager.iter_archive(_lowerCamelCase ) ,start=1 ): for num_jsonl, (subpath, subfile) in enumerate(dl_manager.iter_archive(_lowerCamelCase ) ,start=1 ): _test_jsonl(_lowerCamelCase ,_lowerCamelCase ) assert num_tar == 1 assert num_jsonl == 2 def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Dict ) -> List[Any]: _lowerCAmelCase : List[Any] = DownloadManager() for num_file, file in enumerate(dl_manager.iter_files(_lowerCamelCase ) ,start=1 ): assert os.path.basename(_lowerCamelCase ) == ("test.txt" if num_file == 1 else "train.txt") assert num_file == 2
126
"""simple docstring""" import argparse from tax import checkpoints from transformers import AutoConfig, FlaxAutoModelForSeqaSeqLM def SCREAMING_SNAKE_CASE ( _lowerCamelCase : List[str] ,_lowerCamelCase : Any ,_lowerCamelCase : Optional[Any] ) -> str: _lowerCAmelCase : str = AutoConfig.from_pretrained(_lowerCamelCase ) _lowerCAmelCase : int = FlaxAutoModelForSeqaSeqLM.from_config(config=_lowerCamelCase ) _lowerCAmelCase : Any = checkpoints.load_tax_checkpoint(_lowerCamelCase ) _lowerCAmelCase : Tuple = """wi_0""" in tax_model["""target"""]["""encoder"""]["""layers_0"""]["""mlp"""] if config.model_type == "t5": _lowerCAmelCase : Tuple = """SelfAttention""" if config.model_type == "longt5" and config.encoder_attention_type == "local": _lowerCAmelCase : Optional[Any] = """LocalSelfAttention""" elif config.model_type == "longt5" and config.encoder_attention_type == "transient-global": _lowerCAmelCase : Union[str, Any] = """TransientGlobalSelfAttention""" else: raise ValueError( """Given config is expected to have `model_type='t5'`, or `model_type='longt5` with `encoder_attention_type`""" """ attribute with a value from ['local', 'transient-global].""" ) # Encoder for layer_index in range(config.num_layers ): _lowerCAmelCase : Tuple = f"layers_{str(_lowerCamelCase )}" # Self-Attention _lowerCAmelCase : List[str] = tax_model["""target"""]["""encoder"""][layer_name]["""attention"""]["""key"""]["""kernel"""] _lowerCAmelCase : str = tax_model["""target"""]["""encoder"""][layer_name]["""attention"""]["""out"""]["""kernel"""] _lowerCAmelCase : str = tax_model["""target"""]["""encoder"""][layer_name]["""attention"""]["""query"""]["""kernel"""] _lowerCAmelCase : Any = tax_model["""target"""]["""encoder"""][layer_name]["""attention"""]["""value"""]["""kernel"""] # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": _lowerCAmelCase : Dict = tax_model["""target"""]["""encoder"""][layer_name]["""attention"""]["""T5LayerNorm_0"""]["""scale"""] # Layer Normalization _lowerCAmelCase : Any = tax_model["""target"""]["""encoder"""][layer_name]["""pre_attention_layer_norm"""]["""scale"""] if split_mlp_wi: _lowerCAmelCase : List[str] = tax_model["""target"""]["""encoder"""][layer_name]["""mlp"""]["""wi_0"""]["""kernel"""] _lowerCAmelCase : int = tax_model["""target"""]["""encoder"""][layer_name]["""mlp"""]["""wi_1"""]["""kernel"""] else: _lowerCAmelCase : List[str] = tax_model["""target"""]["""encoder"""][layer_name]["""mlp"""]["""wi"""]["""kernel"""] _lowerCAmelCase : Tuple = tax_model["""target"""]["""encoder"""][layer_name]["""mlp"""]["""wo"""]["""kernel"""] # Layer Normalization _lowerCAmelCase : Tuple = tax_model["""target"""]["""encoder"""][layer_name]["""pre_mlp_layer_norm"""]["""scale"""] # Assigning _lowerCAmelCase : Any = flax_model.params["""encoder"""]["""block"""][str(_lowerCamelCase )]["""layer"""] _lowerCAmelCase : Any = tax_attention_key _lowerCAmelCase : str = tax_attention_out _lowerCAmelCase : Union[str, Any] = tax_attention_query _lowerCAmelCase : Optional[Any] = tax_attention_value _lowerCAmelCase : List[str] = tax_attention_layer_norm # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": _lowerCAmelCase : Any = tax_global_layer_norm if split_mlp_wi: _lowerCAmelCase : Dict = tax_mlp_wi_a _lowerCAmelCase : List[Any] = tax_mlp_wi_a else: _lowerCAmelCase : List[str] = tax_mlp_wi _lowerCAmelCase : str = tax_mlp_wo _lowerCAmelCase : Optional[Any] = tax_mlp_layer_norm _lowerCAmelCase : Any = flax_model_encoder_layer_block # Only for layer 0: _lowerCAmelCase : Union[str, Any] = tax_model["""target"""]["""encoder"""]["""relpos_bias"""]["""rel_embedding"""].T _lowerCAmelCase : Optional[Any] = tax_encoder_rel_embedding # Side/global relative position_bias + layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": _lowerCAmelCase : List[str] = tax_model["""target"""]["""encoder"""]["""side_relpos_bias"""]["""rel_embedding"""].T _lowerCAmelCase : Optional[int] = tax_encoder_global_rel_embedding # Assigning _lowerCAmelCase : Any = tax_model["""target"""]["""encoder"""]["""encoder_norm"""]["""scale"""] _lowerCAmelCase : Any = tax_encoder_norm # Decoder for layer_index in range(config.num_layers ): _lowerCAmelCase : Optional[int] = f"layers_{str(_lowerCamelCase )}" # Self-Attention _lowerCAmelCase : List[str] = tax_model["""target"""]["""decoder"""][layer_name]["""self_attention"""]["""key"""]["""kernel"""] _lowerCAmelCase : int = tax_model["""target"""]["""decoder"""][layer_name]["""self_attention"""]["""out"""]["""kernel"""] _lowerCAmelCase : List[Any] = tax_model["""target"""]["""decoder"""][layer_name]["""self_attention"""]["""query"""]["""kernel"""] _lowerCAmelCase : str = tax_model["""target"""]["""decoder"""][layer_name]["""self_attention"""]["""value"""]["""kernel"""] # Layer Normalization _lowerCAmelCase : Optional[Any] = tax_model["""target"""]["""decoder"""][layer_name]["""pre_self_attention_layer_norm"""][ """scale""" ] # Encoder-Decoder-Attention _lowerCAmelCase : List[Any] = tax_model["""target"""]["""decoder"""][layer_name]["""encoder_decoder_attention"""] _lowerCAmelCase : List[str] = tax_enc_dec_attention_module["""key"""]["""kernel"""] _lowerCAmelCase : List[Any] = tax_enc_dec_attention_module["""out"""]["""kernel"""] _lowerCAmelCase : List[str] = tax_enc_dec_attention_module["""query"""]["""kernel"""] _lowerCAmelCase : Dict = tax_enc_dec_attention_module["""value"""]["""kernel"""] # Layer Normalization _lowerCAmelCase : Any = tax_model["""target"""]["""decoder"""][layer_name]["""pre_cross_attention_layer_norm"""]["""scale"""] # MLP if split_mlp_wi: _lowerCAmelCase : Any = tax_model["""target"""]["""decoder"""][layer_name]["""mlp"""]["""wi_0"""]["""kernel"""] _lowerCAmelCase : List[str] = tax_model["""target"""]["""decoder"""][layer_name]["""mlp"""]["""wi_1"""]["""kernel"""] else: _lowerCAmelCase : Any = tax_model["""target"""]["""decoder"""][layer_name]["""mlp"""]["""wi"""]["""kernel"""] _lowerCAmelCase : Optional[int] = tax_model["""target"""]["""decoder"""][layer_name]["""mlp"""]["""wo"""]["""kernel"""] # Layer Normalization _lowerCAmelCase : Optional[int] = tax_model["""target"""]["""decoder"""][layer_name]["""pre_mlp_layer_norm"""]["""scale"""] # Assigning _lowerCAmelCase : str = flax_model.params["""decoder"""]["""block"""][str(_lowerCamelCase )]["""layer"""] _lowerCAmelCase : int = tax_attention_key _lowerCAmelCase : List[str] = tax_attention_out _lowerCAmelCase : Optional[Any] = tax_attention_query _lowerCAmelCase : Dict = tax_attention_value _lowerCAmelCase : str = tax_pre_attention_layer_norm _lowerCAmelCase : List[Any] = tax_enc_dec_attention_key _lowerCAmelCase : List[Any] = tax_enc_dec_attention_out _lowerCAmelCase : Tuple = tax_enc_dec_attention_query _lowerCAmelCase : Any = tax_enc_dec_attention_value _lowerCAmelCase : Dict = tax_cross_layer_norm if split_mlp_wi: _lowerCAmelCase : Dict = tax_mlp_wi_a _lowerCAmelCase : int = tax_mlp_wi_a else: _lowerCAmelCase : Optional[int] = tax_mlp_wi _lowerCAmelCase : Dict = tax_mlp_wo _lowerCAmelCase : List[Any] = txa_mlp_layer_norm _lowerCAmelCase : Optional[Any] = flax_model_decoder_layer_block # Decoder Normalization _lowerCAmelCase : Any = tax_model["""target"""]["""decoder"""]["""decoder_norm"""]["""scale"""] _lowerCAmelCase : List[str] = txa_decoder_norm # Only for layer 0: _lowerCAmelCase : Optional[int] = tax_model["""target"""]["""decoder"""]["""relpos_bias"""]["""rel_embedding"""].T _lowerCAmelCase : Union[str, Any] = tax_decoder_rel_embedding # Token Embeddings _lowerCAmelCase : Optional[int] = tax_model["""target"""]["""token_embedder"""]["""embedding"""] _lowerCAmelCase : Optional[int] = txa_token_embeddings # LM Head (only in v1.1 and LongT5 checkpoints) if "logits_dense" in tax_model["target"]["decoder"]: _lowerCAmelCase : Tuple = tax_model["""target"""]["""decoder"""]["""logits_dense"""]["""kernel"""] flax_model.save_pretrained(_lowerCamelCase ) print("""T5X Model was sucessfully converted!""" ) if __name__ == "__main__": _a : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '--t5x_checkpoint_path', default=None, type=str, required=True, help='Path the T5X checkpoint.' ) parser.add_argument('--config_name', default=None, type=str, required=True, help='Config name of LongT5/T5 model.') parser.add_argument( '--flax_dump_folder_path', default=None, type=str, required=True, help='Path to the output FLAX model.' ) _a : List[str] = parser.parse_args() convert_tax_checkpoint_to_flax(args.tax_checkpoint_path, args.config_name, args.flax_dump_folder_path)
126
1
from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase : List[Any] = logging.get_logger(__name__) # TODO Update this _lowerCamelCase : Union[str, Any] = { """facebook/esm-1b""": """https://huggingface.co/facebook/esm-1b/resolve/main/config.json""", # See all ESM models at https://huggingface.co/models?filter=esm } class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = '''esm''' def __init__( self : str , UpperCAmelCase__ : Any=None , UpperCAmelCase__ : Tuple=None , UpperCAmelCase__ : List[str]=None , UpperCAmelCase__ : List[str]=768 , UpperCAmelCase__ : int=12 , UpperCAmelCase__ : Union[str, Any]=12 , UpperCAmelCase__ : Dict=3_072 , UpperCAmelCase__ : Optional[Any]=0.1 , UpperCAmelCase__ : Optional[int]=0.1 , UpperCAmelCase__ : Optional[int]=1_026 , UpperCAmelCase__ : int=0.02 , UpperCAmelCase__ : Optional[Any]=1e-12 , UpperCAmelCase__ : Optional[Any]="absolute" , UpperCAmelCase__ : Union[str, Any]=True , UpperCAmelCase__ : int=None , UpperCAmelCase__ : List[Any]=False , UpperCAmelCase__ : Optional[int]=False , UpperCAmelCase__ : List[Any]=None , UpperCAmelCase__ : List[str]=None , **UpperCAmelCase__ : List[Any] , ) ->Tuple: '''simple docstring''' super().__init__(pad_token_id=UpperCAmelCase__ , mask_token_id=UpperCAmelCase__ , **UpperCAmelCase__) A__ = vocab_size A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_size A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = max_position_embeddings A__ = initializer_range A__ = layer_norm_eps A__ = position_embedding_type A__ = use_cache A__ = emb_layer_norm_before A__ = token_dropout A__ = is_folding_model if is_folding_model: if esmfold_config is None: logger.info('''No esmfold_config supplied for folding model, using default values.''') A__ = EsmFoldConfig() elif isinstance(UpperCAmelCase__ , UpperCAmelCase__): A__ = EsmFoldConfig(**UpperCAmelCase__) A__ = esmfold_config if vocab_list is None: logger.warning('''No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!''') A__ = get_default_vocab_list() else: A__ = vocab_list else: A__ = None A__ = None if self.esmfold_config is not None and getattr(self.esmfold_config , '''use_esm_attn_map''' , UpperCAmelCase__): raise ValueError('''The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!''') def SCREAMING_SNAKE_CASE ( self : Any) ->Tuple: '''simple docstring''' A__ = super().to_dict() if isinstance(self.esmfold_config , UpperCAmelCase__): A__ = self.esmfold_config.to_dict() return output @dataclass class UpperCamelCase_ : '''simple docstring''' UpperCAmelCase__ = None UpperCAmelCase__ = True UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = 0 UpperCAmelCase__ = True UpperCAmelCase__ = False UpperCAmelCase__ = 128 UpperCAmelCase__ = None def SCREAMING_SNAKE_CASE ( self : List[Any]) ->Dict: '''simple docstring''' if self.trunk is None: A__ = TrunkConfig() elif isinstance(self.trunk , UpperCAmelCase__): A__ = TrunkConfig(**self.trunk) def SCREAMING_SNAKE_CASE ( self : Tuple) ->Optional[int]: '''simple docstring''' A__ = asdict(self) A__ = self.trunk.to_dict() return output @dataclass class UpperCamelCase_ : '''simple docstring''' UpperCAmelCase__ = 48 UpperCAmelCase__ = 1024 UpperCAmelCase__ = 128 UpperCAmelCase__ = 32 UpperCAmelCase__ = 32 UpperCAmelCase__ = 32 UpperCAmelCase__ = 0 UpperCAmelCase__ = 0 UpperCAmelCase__ = False UpperCAmelCase__ = 4 UpperCAmelCase__ = 128 UpperCAmelCase__ = None def SCREAMING_SNAKE_CASE ( self : List[str]) ->Union[str, Any]: '''simple docstring''' if self.structure_module is None: A__ = StructureModuleConfig() elif isinstance(self.structure_module , UpperCAmelCase__): A__ = StructureModuleConfig(**self.structure_module) if self.max_recycles <= 0: raise ValueError(f"""`max_recycles` should be positive, got {self.max_recycles}.""") if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( '''`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got''' f""" {self.sequence_state_dim} and {self.sequence_state_dim}.""") if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( '''`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got''' f""" {self.pairwise_state_dim} and {self.pairwise_state_dim}.""") A__ = self.sequence_state_dim // self.sequence_head_width A__ = self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( '''`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got''' f""" {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}.""") if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( '''`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got''' f""" {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}.""") if self.pairwise_state_dim % 2 != 0: raise ValueError(f"""`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.""") if self.dropout >= 0.4: raise ValueError(f"""`dropout` should not be greater than 0.4, got {self.dropout}.""") def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Optional[int]: '''simple docstring''' A__ = asdict(self) A__ = self.structure_module.to_dict() return output @dataclass class UpperCamelCase_ : '''simple docstring''' UpperCAmelCase__ = 384 UpperCAmelCase__ = 128 UpperCAmelCase__ = 16 UpperCAmelCase__ = 128 UpperCAmelCase__ = 12 UpperCAmelCase__ = 4 UpperCAmelCase__ = 8 UpperCAmelCase__ = 0.1 UpperCAmelCase__ = 8 UpperCAmelCase__ = 1 UpperCAmelCase__ = 2 UpperCAmelCase__ = 7 UpperCAmelCase__ = 10 UpperCAmelCase__ = 1E-8 UpperCAmelCase__ = 1E5 def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Optional[int]: '''simple docstring''' return asdict(self) def SCREAMING_SNAKE_CASE ( ) -> Tuple: """simple docstring""" return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
14
def a_ ( lowerCAmelCase_ : str, lowerCAmelCase_ : int ): return [sentence[i : i + ngram_size] for i in range(len(lowerCAmelCase_ ) - ngram_size + 1 )] if __name__ == "__main__": from doctest import testmod testmod()
284
0
import time from dataclasses import dataclass from multiprocessing import Pool from unittest import TestCase from unittest.mock import patch import multiprocess import numpy as np import pytest from datasets.utils.py_utils import ( NestedDataStructure, asdict, iflatmap_unordered, map_nested, temp_seed, temporary_assignment, zip_dict, ) from .utils import require_tf, require_torch def _A ( __magic_name__ ): # picklable for multiprocessing return x.sum() def _A ( __magic_name__ ): # picklable for multiprocessing return i + 1 @dataclass class lowerCAmelCase : __lowerCamelCase = 42 __lowerCamelCase = 42 class lowerCAmelCase ( lowercase_ ): def UpperCAmelCase ( self :Optional[Any] ): '''simple docstring''' lowercase__ = {} lowercase__ = [] lowercase__ = 1 lowercase__ = [1, 2] lowercase__ = {"a": 1, "b": 2} lowercase__ = {"a": [1, 2], "b": [3, 4]} lowercase__ = {"a": {"1": 1}, "b": 2} lowercase__ = {"a": 1, "b": 2, "c": 3, "d": 4} lowercase__ = {} lowercase__ = [] lowercase__ = 2 lowercase__ = [2, 3] lowercase__ = {"a": 2, "b": 3} lowercase__ = {"a": [2, 3], "b": [4, 5]} lowercase__ = {"a": {"1": 2}, "b": 3} lowercase__ = {"a": 2, "b": 3, "c": 4, "d": 5} self.assertEqual(map_nested(_lowercase , _lowercase ) , _lowercase ) self.assertEqual(map_nested(_lowercase , _lowercase ) , _lowercase ) self.assertEqual(map_nested(_lowercase , _lowercase ) , _lowercase ) self.assertEqual(map_nested(_lowercase , _lowercase ) , _lowercase ) self.assertEqual(map_nested(_lowercase , _lowercase ) , _lowercase ) self.assertEqual(map_nested(_lowercase , _lowercase ) , _lowercase ) self.assertEqual(map_nested(_lowercase , _lowercase ) , _lowercase ) self.assertEqual(map_nested(_lowercase , _lowercase ) , _lowercase ) lowercase__ = 2 self.assertEqual(map_nested(_lowercase , _lowercase , num_proc=_lowercase ) , _lowercase ) self.assertEqual(map_nested(_lowercase , _lowercase , num_proc=_lowercase ) , _lowercase ) self.assertEqual(map_nested(_lowercase , _lowercase , num_proc=_lowercase ) , _lowercase ) self.assertEqual(map_nested(_lowercase , _lowercase , num_proc=_lowercase ) , _lowercase ) self.assertEqual(map_nested(_lowercase , _lowercase , num_proc=_lowercase ) , _lowercase ) self.assertEqual(map_nested(_lowercase , _lowercase , num_proc=_lowercase ) , _lowercase ) self.assertEqual(map_nested(_lowercase , _lowercase , num_proc=_lowercase ) , _lowercase ) self.assertEqual(map_nested(_lowercase , _lowercase , num_proc=_lowercase ) , _lowercase ) lowercase__ = {"a": np.eye(2 ), "b": np.zeros(3 ), "c": np.ones(2 )} lowercase__ = {"a": 2, "b": 0, "c": 2} lowercase__ = { "a": np.eye(2 ).astype(_lowercase ), "b": np.zeros(3 ).astype(_lowercase ), "c": np.ones(2 ).astype(_lowercase ), } self.assertEqual(map_nested(_lowercase , _lowercase , map_numpy=_lowercase ) , _lowercase ) self.assertEqual( {k: v.tolist() for k, v in map_nested(_lowercase , _lowercase , map_numpy=_lowercase ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) self.assertEqual(map_nested(_lowercase , _lowercase , map_numpy=_lowercase , num_proc=_lowercase ) , _lowercase ) self.assertEqual( {k: v.tolist() for k, v in map_nested(_lowercase , _lowercase , map_numpy=_lowercase , num_proc=_lowercase ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) with self.assertRaises(_lowercase ): # can't pickle a local lambda map_nested(lambda _lowercase : x + 1 , _lowercase , num_proc=_lowercase ) def UpperCAmelCase ( self :List[Any] ): '''simple docstring''' lowercase__ = {"a": 1, "b": 2} lowercase__ = {"a": 3, "b": 4} lowercase__ = {"a": 5, "b": 6} lowercase__ = sorted([("a", (1, 3, 5)), ("b", (2, 4, 6))] ) self.assertEqual(sorted(zip_dict(_lowercase , _lowercase , _lowercase ) ) , _lowercase ) def UpperCAmelCase ( self :Union[str, Any] ): '''simple docstring''' class lowerCAmelCase : __lowerCamelCase = 'bar' lowercase__ = Foo() self.assertEqual(foo.my_attr , "bar" ) with temporary_assignment(_lowercase , "my_attr" , "BAR" ): self.assertEqual(foo.my_attr , "BAR" ) self.assertEqual(foo.my_attr , "bar" ) @pytest.mark.parametrize( "iterable_length, num_proc, expected_num_proc" , [ (1, None, 1), (1, 1, 1), (2, None, 1), (2, 1, 1), (2, 2, 1), (2, 3, 1), (3, 2, 1), (16, 16, 16), (16, 17, 16), (17, 16, 16), ] , ) def _A ( __magic_name__ , __magic_name__ , __magic_name__ ): with patch("datasets.utils.py_utils._single_map_nested" ) as mock_single_map_nested, patch( "datasets.parallel.parallel.Pool" ) as mock_multiprocessing_pool: lowercase__ = {f'''{i}''': i for i in range(__magic_name__ )} lowercase__ = map_nested(lambda __magic_name__ : x + 10 , __magic_name__ , num_proc=__magic_name__ , parallel_min_length=16 ) if expected_num_proc == 1: assert mock_single_map_nested.called assert not mock_multiprocessing_pool.called else: assert not mock_single_map_nested.called assert mock_multiprocessing_pool.called assert mock_multiprocessing_pool.call_args[0][0] == expected_num_proc class lowerCAmelCase ( lowercase_ ): @require_tf def UpperCAmelCase ( self :List[Any] ): '''simple docstring''' import tensorflow as tf from tensorflow.keras import layers lowercase__ = layers.Dense(2 ) def gen_random_output(): lowercase__ = tf.random.uniform((1, 3) ) return model(_lowercase ).numpy() with temp_seed(42 , set_tensorflow=_lowercase ): lowercase__ = gen_random_output() with temp_seed(42 , set_tensorflow=_lowercase ): lowercase__ = gen_random_output() lowercase__ = gen_random_output() np.testing.assert_equal(_lowercase , _lowercase ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @require_torch def UpperCAmelCase ( self :Optional[int] ): '''simple docstring''' import torch def gen_random_output(): lowercase__ = torch.nn.Linear(3 , 2 ) lowercase__ = torch.rand(1 , 3 ) return model(_lowercase ).detach().numpy() with temp_seed(42 , set_pytorch=_lowercase ): lowercase__ = gen_random_output() with temp_seed(42 , set_pytorch=_lowercase ): lowercase__ = gen_random_output() lowercase__ = gen_random_output() np.testing.assert_equal(_lowercase , _lowercase ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) def UpperCAmelCase ( self :str ): '''simple docstring''' def gen_random_output(): return np.random.rand(1 , 3 ) with temp_seed(42 ): lowercase__ = gen_random_output() with temp_seed(42 ): lowercase__ = gen_random_output() lowercase__ = gen_random_output() np.testing.assert_equal(_lowercase , _lowercase ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @pytest.mark.parametrize("input_data" , [{}] ) def _A ( __magic_name__ ): lowercase__ = NestedDataStructure(__magic_name__ ).data assert output_data == input_data @pytest.mark.parametrize( "data, expected_output" , [ ({}, []), ([], []), ("foo", ["foo"]), (["foo", "bar"], ["foo", "bar"]), ([["foo", "bar"]], ["foo", "bar"]), ([[["foo"], ["bar"]]], ["foo", "bar"]), ([[["foo"], "bar"]], ["foo", "bar"]), ({"a": 1, "b": 2}, [1, 2]), ({"a": [1, 2], "b": [3, 4]}, [1, 2, 3, 4]), ({"a": [[1, 2]], "b": [[3, 4]]}, [1, 2, 3, 4]), ({"a": [[1, 2]], "b": [3, 4]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [[[3], [4]]]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [[3, 4]]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [3, 4]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [3, [4]]}, [1, 2, 3, 4]), ({"a": {"1": 1}, "b": 2}, [1, 2]), ({"a": {"1": [1]}, "b": 2}, [1, 2]), ({"a": {"1": [1]}, "b": [2]}, [1, 2]), ] , ) def _A ( __magic_name__ , __magic_name__ ): lowercase__ = NestedDataStructure(__magic_name__ ).flatten() assert output == expected_output def _A ( ): lowercase__ = A(x=1 , y="foobar" ) lowercase__ = {"x": 1, "y": "foobar"} assert asdict(__magic_name__ ) == expected_output lowercase__ = {"a": {"b": A(x=10 , y="foo" )}, "c": [A(x=20 , y="bar" )]} lowercase__ = {"a": {"b": {"x": 10, "y": "foo"}}, "c": [{"x": 20, "y": "bar"}]} assert asdict(__magic_name__ ) == expected_output with pytest.raises(__magic_name__ ): asdict([1, A(x=10 , y="foo" )] ) def _A ( __magic_name__ ): return text.split() def _A ( __magic_name__ ): yield (time.time(), content) time.sleep(2 ) yield (time.time(), content) def _A ( ): with Pool(2 ) as pool: lowercase__ = list(iflatmap_unordered(__magic_name__ , _split_text , kwargs_iterable=[{"text": "hello there"}] * 10 ) ) assert out.count("hello" ) == 10 assert out.count("there" ) == 10 assert len(__magic_name__ ) == 20 # check multiprocess from pathos (uses dill for pickling) with multiprocess.Pool(2 ) as pool: lowercase__ = list(iflatmap_unordered(__magic_name__ , _split_text , kwargs_iterable=[{"text": "hello there"}] * 10 ) ) assert out.count("hello" ) == 10 assert out.count("there" ) == 10 assert len(__magic_name__ ) == 20 # check that we get items as fast as possible with Pool(2 ) as pool: lowercase__ = [] for yield_time, content in iflatmap_unordered( __magic_name__ , _aseconds_generator_of_aitems_with_timing , kwargs_iterable=[{"content": "a"}, {"content": "b"}] ): assert yield_time < time.time() + 0.1, "we should each item directly after it was yielded" out.append(__magic_name__ ) assert out.count("a" ) == 2 assert out.count("b" ) == 2 assert len(__magic_name__ ) == 4
350
import math def _A ( __magic_name__ ): lowercase__ = math.loga(math.sqrt(4 * positive_integer + 1 ) / 2 + 1 / 2 ) return exponent == int(__magic_name__ ) def _A ( __magic_name__ = 1 / 1_2345 ): lowercase__ = 0 lowercase__ = 0 lowercase__ = 3 while True: lowercase__ = (integer**2 - 1) / 4 # if candidate is an integer, then there is a partition for k if partition_candidate == int(__magic_name__ ): lowercase__ = int(__magic_name__ ) total_partitions += 1 if check_partition_perfect(__magic_name__ ): perfect_partitions += 1 if perfect_partitions > 0: if perfect_partitions / total_partitions < max_proportion: return int(__magic_name__ ) integer += 1 if __name__ == "__main__": print(F"""{solution() = }""")
201
0
'''simple docstring''' import argparse import collections import os import re import tempfile import pandas as pd from datasets import Dataset from huggingface_hub import hf_hub_download, upload_folder from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/update_metadata.py _lowerCAmelCase = '''src/transformers''' # This is to make sure the transformers module imported is the one in the repo. _lowerCAmelCase = direct_transformers_import(TRANSFORMERS_PATH) # Regexes that match TF/Flax/PT model names. _lowerCAmelCase = re.compile(R'''TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)''') _lowerCAmelCase = re.compile(R'''Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)''') # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. _lowerCAmelCase = re.compile(R'''(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)''') # Fill this with tuples (pipeline_tag, model_mapping, auto_model) _lowerCAmelCase = [ ('''pretraining''', '''MODEL_FOR_PRETRAINING_MAPPING_NAMES''', '''AutoModelForPreTraining'''), ('''feature-extraction''', '''MODEL_MAPPING_NAMES''', '''AutoModel'''), ('''audio-classification''', '''MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES''', '''AutoModelForAudioClassification'''), ('''text-generation''', '''MODEL_FOR_CAUSAL_LM_MAPPING_NAMES''', '''AutoModelForCausalLM'''), ('''automatic-speech-recognition''', '''MODEL_FOR_CTC_MAPPING_NAMES''', '''AutoModelForCTC'''), ('''image-classification''', '''MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES''', '''AutoModelForImageClassification'''), ('''image-segmentation''', '''MODEL_FOR_IMAGE_SEGMENTATION_MAPPING_NAMES''', '''AutoModelForImageSegmentation'''), ('''fill-mask''', '''MODEL_FOR_MASKED_LM_MAPPING_NAMES''', '''AutoModelForMaskedLM'''), ('''object-detection''', '''MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES''', '''AutoModelForObjectDetection'''), ( '''zero-shot-object-detection''', '''MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING_NAMES''', '''AutoModelForZeroShotObjectDetection''', ), ('''question-answering''', '''MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES''', '''AutoModelForQuestionAnswering'''), ('''text2text-generation''', '''MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES''', '''AutoModelForSeq2SeqLM'''), ('''text-classification''', '''MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES''', '''AutoModelForSequenceClassification'''), ('''automatic-speech-recognition''', '''MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES''', '''AutoModelForSpeechSeq2Seq'''), ( '''table-question-answering''', '''MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES''', '''AutoModelForTableQuestionAnswering''', ), ('''token-classification''', '''MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES''', '''AutoModelForTokenClassification'''), ('''multiple-choice''', '''MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES''', '''AutoModelForMultipleChoice'''), ( '''next-sentence-prediction''', '''MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES''', '''AutoModelForNextSentencePrediction''', ), ( '''audio-frame-classification''', '''MODEL_FOR_AUDIO_FRAME_CLASSIFICATION_MAPPING_NAMES''', '''AutoModelForAudioFrameClassification''', ), ('''audio-xvector''', '''MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES''', '''AutoModelForAudioXVector'''), ( '''document-question-answering''', '''MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES''', '''AutoModelForDocumentQuestionAnswering''', ), ( '''visual-question-answering''', '''MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING_NAMES''', '''AutoModelForVisualQuestionAnswering''', ), ('''image-to-text''', '''MODEL_FOR_FOR_VISION_2_SEQ_MAPPING_NAMES''', '''AutoModelForVision2Seq'''), ( '''zero-shot-image-classification''', '''MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING_NAMES''', '''AutoModelForZeroShotImageClassification''', ), ('''depth-estimation''', '''MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES''', '''AutoModelForDepthEstimation'''), ('''video-classification''', '''MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES''', '''AutoModelForVideoClassification'''), ('''mask-generation''', '''MODEL_FOR_MASK_GENERATION_MAPPING_NAMES''', '''AutoModelForMaskGeneration'''), ] def __lowerCAmelCase ( snake_case__ ): __UpperCamelCase : Any = re.finditer(".+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)" , snake_case__ ) return [m.group(0 ) for m in matches] def __lowerCAmelCase ( ): __UpperCamelCase : Dict = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES __UpperCamelCase : Any = { config.replace("Config" , "" ): model_type for model_type, config in config_maping_names.items() } # Dictionaries flagging if each model prefix has a backend in PT/TF/Flax. __UpperCamelCase : List[Any] = collections.defaultdict(snake_case__ ) __UpperCamelCase : Tuple = collections.defaultdict(snake_case__ ) __UpperCamelCase : List[str] = collections.defaultdict(snake_case__ ) # Let's lookup through all transformers object (once) and find if models are supported by a given backend. for attr_name in dir(snake_case__ ): __UpperCamelCase : Tuple = None if _re_tf_models.match(snake_case__ ) is not None: __UpperCamelCase : Dict = tf_models __UpperCamelCase : str = _re_tf_models.match(snake_case__ ).groups()[0] elif _re_flax_models.match(snake_case__ ) is not None: __UpperCamelCase : str = flax_models __UpperCamelCase : Any = _re_flax_models.match(snake_case__ ).groups()[0] elif _re_pt_models.match(snake_case__ ) is not None: __UpperCamelCase : Optional[int] = pt_models __UpperCamelCase : Any = _re_pt_models.match(snake_case__ ).groups()[0] if lookup_dict is not None: while len(snake_case__ ) > 0: if attr_name in model_prefix_to_model_type: __UpperCamelCase : Tuple = True break # Try again after removing the last word in the name __UpperCamelCase : int = "".join(camel_case_split(snake_case__ )[:-1] ) __UpperCamelCase : str = set(list(pt_models.keys() ) + list(tf_models.keys() ) + list(flax_models.keys() ) ) __UpperCamelCase : str = list(snake_case__ ) all_models.sort() __UpperCamelCase : Union[str, Any] = {"model_type": all_models} __UpperCamelCase : str = [pt_models[t] for t in all_models] __UpperCamelCase : int = [tf_models[t] for t in all_models] __UpperCamelCase : List[Any] = [flax_models[t] for t in all_models] # Now let's use the auto-mapping names to make sure __UpperCamelCase : List[str] = {} for t in all_models: if t in transformers_module.models.auto.processing_auto.PROCESSOR_MAPPING_NAMES: __UpperCamelCase : int = "AutoProcessor" elif t in transformers_module.models.auto.tokenization_auto.TOKENIZER_MAPPING_NAMES: __UpperCamelCase : Optional[Any] = "AutoTokenizer" elif t in transformers_module.models.auto.feature_extraction_auto.FEATURE_EXTRACTOR_MAPPING_NAMES: __UpperCamelCase : Tuple = "AutoFeatureExtractor" else: # Default to AutoTokenizer if a model has nothing, for backward compatibility. __UpperCamelCase : Optional[int] = "AutoTokenizer" __UpperCamelCase : Optional[int] = [processors[t] for t in all_models] return pd.DataFrame(snake_case__ ) def __lowerCAmelCase ( snake_case__ ): __UpperCamelCase : str = [ transformers_module.models.auto.modeling_auto, transformers_module.models.auto.modeling_tf_auto, transformers_module.models.auto.modeling_flax_auto, ] for pipeline_tag, model_mapping, auto_class in PIPELINE_TAGS_AND_AUTO_MODELS: __UpperCamelCase : List[Any] = [model_mapping, F"TF_{model_mapping}", F"FLAX_{model_mapping}"] __UpperCamelCase : List[Any] = [auto_class, F"TF_{auto_class}", F"Flax_{auto_class}"] # Loop through all three frameworks for module, cls, mapping in zip(snake_case__ , snake_case__ , snake_case__ ): # The type of pipeline may not exist in this framework if not hasattr(snake_case__ , snake_case__ ): continue # First extract all model_names __UpperCamelCase : List[Any] = [] for name in getattr(snake_case__ , snake_case__ ).values(): if isinstance(snake_case__ , snake_case__ ): model_names.append(snake_case__ ) else: model_names.extend(list(snake_case__ ) ) # Add pipeline tag and auto model class for those models table.update({model_name: (pipeline_tag, cls) for model_name in model_names} ) return table def __lowerCAmelCase ( snake_case__ , snake_case__ ): __UpperCamelCase : Any = get_frameworks_table() __UpperCamelCase : Union[str, Any] = Dataset.from_pandas(snake_case__ ) __UpperCamelCase : Optional[int] = hf_hub_download( "huggingface/transformers-metadata" , "pipeline_tags.json" , repo_type="dataset" , token=snake_case__ ) __UpperCamelCase : Any = Dataset.from_json(snake_case__ ) __UpperCamelCase : int = { tags_dataset[i]["model_class"]: (tags_dataset[i]["pipeline_tag"], tags_dataset[i]["auto_class"]) for i in range(len(snake_case__ ) ) } __UpperCamelCase : Any = update_pipeline_and_auto_class_table(snake_case__ ) # Sort the model classes to avoid some nondeterministic updates to create false update commits. __UpperCamelCase : List[Any] = sorted(table.keys() ) __UpperCamelCase : Dict = pd.DataFrame( { "model_class": model_classes, "pipeline_tag": [table[m][0] for m in model_classes], "auto_class": [table[m][1] for m in model_classes], } ) __UpperCamelCase : Optional[int] = Dataset.from_pandas(snake_case__ ) with tempfile.TemporaryDirectory() as tmp_dir: frameworks_dataset.to_json(os.path.join(snake_case__ , "frameworks.json" ) ) tags_dataset.to_json(os.path.join(snake_case__ , "pipeline_tags.json" ) ) if commit_sha is not None: __UpperCamelCase : int = ( F"Update with commit {commit_sha}\n\nSee: " F"https://github.com/huggingface/transformers/commit/{commit_sha}" ) else: __UpperCamelCase : Dict = "Update" upload_folder( repo_id="huggingface/transformers-metadata" , folder_path=snake_case__ , repo_type="dataset" , token=snake_case__ , commit_message=snake_case__ , ) def __lowerCAmelCase ( ): __UpperCamelCase : Optional[int] = {tag: cls for tag, _, cls in PIPELINE_TAGS_AND_AUTO_MODELS} __UpperCamelCase : List[Any] = transformers_module.pipelines.SUPPORTED_TASKS __UpperCamelCase : List[Any] = [] for key in pipeline_tasks: if key not in in_table: __UpperCamelCase : Optional[Any] = pipeline_tasks[key]["pt"] if isinstance(snake_case__ , (list, tuple) ): __UpperCamelCase : List[str] = model[0] __UpperCamelCase : Union[str, Any] = model.__name__ if model not in in_table.values(): missing.append(snake_case__ ) if len(snake_case__ ) > 0: __UpperCamelCase : Optional[Any] = ", ".join(snake_case__ ) raise ValueError( "The following pipeline tags are not present in the `PIPELINE_TAGS_AND_AUTO_MODELS` constant inside " F"`utils/update_metadata.py`: {msg}. Please add them!" ) if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() parser.add_argument('''--token''', type=str, help='''The token to use to push to the transformers-metadata dataset.''') parser.add_argument('''--commit_sha''', type=str, help='''The sha of the commit going with this update.''') parser.add_argument('''--check-only''', action='''store_true''', help='''Activate to just check all pipelines are present.''') _lowerCAmelCase = parser.parse_args() if args.check_only: check_pipeline_tags() else: update_metadata(args.token, args.commit_sha)
298
'''simple docstring''' from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class A : '''simple docstring''' def __init__(self , _UpperCAmelCase , _UpperCAmelCase=1_3 , _UpperCAmelCase=7 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=9_9 , _UpperCAmelCase=3_2 , _UpperCAmelCase=2 , _UpperCAmelCase=4 , _UpperCAmelCase=3_7 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=5_1_2 , _UpperCAmelCase=1_6 , _UpperCAmelCase=2 , _UpperCAmelCase=0.02 , _UpperCAmelCase=3 , _UpperCAmelCase=4 , _UpperCAmelCase=None , ) -> Dict: __UpperCamelCase : Optional[Any] = parent __UpperCamelCase : List[str] = 1_3 __UpperCamelCase : List[Any] = 7 __UpperCamelCase : List[str] = True __UpperCamelCase : Optional[Any] = True __UpperCamelCase : Tuple = True __UpperCamelCase : str = True __UpperCamelCase : List[Any] = 9_9 __UpperCamelCase : Union[str, Any] = 3_8_4 __UpperCamelCase : str = 2 __UpperCamelCase : Optional[Any] = 4 __UpperCamelCase : Any = 3_7 __UpperCamelCase : str = "gelu" __UpperCamelCase : Optional[Any] = 0.1 __UpperCamelCase : str = 0.1 __UpperCamelCase : str = 5_1_2 __UpperCamelCase : Optional[Any] = 1_6 __UpperCamelCase : Dict = 2 __UpperCamelCase : Optional[int] = 0.02 __UpperCamelCase : List[Any] = 3 __UpperCamelCase : Optional[Any] = 4 __UpperCamelCase : int = 1_2_8 __UpperCamelCase : Tuple = 2 __UpperCamelCase : str = 9 __UpperCamelCase : List[Any] = 1 __UpperCamelCase : Any = None def a_ (self ) -> int: __UpperCamelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCamelCase : str = None if self.use_input_mask: __UpperCamelCase : str = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCamelCase : int = None if self.use_token_type_ids: __UpperCamelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __UpperCamelCase : List[Any] = None __UpperCamelCase : Union[str, Any] = None __UpperCamelCase : Optional[Any] = None if self.use_labels: __UpperCamelCase : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCamelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCamelCase : Tuple = ids_tensor([self.batch_size] , self.num_choices ) __UpperCamelCase : str = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=_UpperCAmelCase , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def a_ (self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Dict: __UpperCamelCase : Tuple = TFConvBertModel(config=_UpperCAmelCase ) __UpperCamelCase : Optional[Any] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} __UpperCamelCase : Optional[Any] = [input_ids, input_mask] __UpperCamelCase : str = model(_UpperCAmelCase ) __UpperCamelCase : int = model(_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a_ (self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Optional[int]: __UpperCamelCase : int = TFConvBertForMaskedLM(config=_UpperCAmelCase ) __UpperCamelCase : Dict = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } __UpperCamelCase : List[str] = model(_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def a_ (self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Optional[int]: __UpperCamelCase : Union[str, Any] = self.num_labels __UpperCamelCase : Optional[Any] = TFConvBertForSequenceClassification(config=_UpperCAmelCase ) __UpperCamelCase : List[str] = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } __UpperCamelCase : Optional[Any] = model(_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a_ (self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> List[str]: __UpperCamelCase : Optional[int] = self.num_choices __UpperCamelCase : List[Any] = TFConvBertForMultipleChoice(config=_UpperCAmelCase ) __UpperCamelCase : Optional[int] = tf.tile(tf.expand_dims(_UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase : Optional[Any] = tf.tile(tf.expand_dims(_UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase : str = tf.tile(tf.expand_dims(_UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase : List[str] = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, } __UpperCamelCase : int = model(_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def a_ (self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Any: __UpperCamelCase : List[str] = self.num_labels __UpperCamelCase : Tuple = TFConvBertForTokenClassification(config=_UpperCAmelCase ) __UpperCamelCase : Dict = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } __UpperCamelCase : Union[str, Any] = model(_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def a_ (self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Union[str, Any]: __UpperCamelCase : int = TFConvBertForQuestionAnswering(config=_UpperCAmelCase ) __UpperCamelCase : Dict = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } __UpperCamelCase : Any = model(_UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def a_ (self ) -> str: __UpperCamelCase : str = self.prepare_config_and_inputs() ( ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ) : Any = config_and_inputs __UpperCamelCase : int = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class A ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): '''simple docstring''' A = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) A = ( { "feature-extraction": TFConvBertModel, "fill-mask": TFConvBertForMaskedLM, "question-answering": TFConvBertForQuestionAnswering, "text-classification": TFConvBertForSequenceClassification, "token-classification": TFConvBertForTokenClassification, "zero-shot": TFConvBertForSequenceClassification, } if is_tf_available() else {} ) A = False A = False A = False def a_ (self ) -> Optional[int]: __UpperCamelCase : Tuple = TFConvBertModelTester(self ) __UpperCamelCase : Optional[Any] = ConfigTester(self , config_class=_UpperCAmelCase , hidden_size=3_7 ) def a_ (self ) -> Dict: self.config_tester.run_common_tests() def a_ (self ) -> Dict: __UpperCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def a_ (self ) -> Tuple: __UpperCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_UpperCAmelCase ) def a_ (self ) -> Tuple: __UpperCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_UpperCAmelCase ) def a_ (self ) -> Dict: __UpperCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_UpperCAmelCase ) def a_ (self ) -> Dict: __UpperCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_UpperCAmelCase ) def a_ (self ) -> Optional[int]: __UpperCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_UpperCAmelCase ) @slow def a_ (self ) -> Any: __UpperCamelCase , __UpperCamelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() __UpperCamelCase : str = True __UpperCamelCase : int = True if hasattr(_UpperCAmelCase , "use_cache" ): __UpperCamelCase : List[Any] = True __UpperCamelCase : List[str] = getattr(self.model_tester , "encoder_seq_length" , self.model_tester.seq_length ) __UpperCamelCase : Optional[Any] = getattr(self.model_tester , "key_length" , _UpperCAmelCase ) for model_class in self.all_model_classes: __UpperCamelCase : Any = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) __UpperCamelCase : int = model_class(_UpperCAmelCase ) __UpperCamelCase : Any = len(model(_UpperCAmelCase ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_UpperCAmelCase , saved_model=_UpperCAmelCase ) __UpperCamelCase : List[str] = os.path.join(_UpperCAmelCase , "saved_model" , "1" ) __UpperCamelCase : List[str] = tf.keras.models.load_model(_UpperCAmelCase ) __UpperCamelCase : Dict = model(_UpperCAmelCase ) if self.is_encoder_decoder: __UpperCamelCase : Any = outputs["encoder_hidden_states"] __UpperCamelCase : Tuple = outputs["encoder_attentions"] else: __UpperCamelCase : Tuple = outputs["hidden_states"] __UpperCamelCase : Optional[int] = outputs["attentions"] self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase ) __UpperCamelCase : Any = getattr( self.model_tester , "expected_num_hidden_layers" , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(_UpperCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def a_ (self ) -> Optional[Any]: __UpperCamelCase : Tuple = TFConvBertModel.from_pretrained("YituTech/conv-bert-base" ) self.assertIsNotNone(_UpperCAmelCase ) def a_ (self ) -> Tuple: __UpperCamelCase , __UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() __UpperCamelCase : str = True __UpperCamelCase : Tuple = getattr(self.model_tester , "decoder_seq_length" , self.model_tester.seq_length ) __UpperCamelCase : Optional[int] = getattr(self.model_tester , "encoder_seq_length" , self.model_tester.seq_length ) __UpperCamelCase : Any = getattr(self.model_tester , "key_length" , _UpperCAmelCase ) __UpperCamelCase : List[Any] = getattr(self.model_tester , "key_length" , _UpperCAmelCase ) def check_decoder_attentions_output(_UpperCAmelCase ): __UpperCamelCase : Dict = len(_UpperCAmelCase ) self.assertEqual(out_len % 2 , 0 ) __UpperCamelCase : List[str] = outputs.decoder_attentions self.assertEqual(len(_UpperCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(_UpperCAmelCase ): __UpperCamelCase : Any = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(_UpperCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: __UpperCamelCase : Any = True __UpperCamelCase : Dict = False __UpperCamelCase : str = model_class(_UpperCAmelCase ) __UpperCamelCase : Tuple = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) __UpperCamelCase : List[Any] = len(_UpperCAmelCase ) self.assertEqual(config.output_hidden_states , _UpperCAmelCase ) check_encoder_attentions_output(_UpperCAmelCase ) if self.is_encoder_decoder: __UpperCamelCase : str = model_class(_UpperCAmelCase ) __UpperCamelCase : Dict = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) self.assertEqual(config.output_hidden_states , _UpperCAmelCase ) check_decoder_attentions_output(_UpperCAmelCase ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] __UpperCamelCase : Optional[Any] = True __UpperCamelCase : Tuple = model_class(_UpperCAmelCase ) __UpperCamelCase : int = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) self.assertEqual(config.output_hidden_states , _UpperCAmelCase ) check_encoder_attentions_output(_UpperCAmelCase ) # Check attention is always last and order is fine __UpperCamelCase : int = True __UpperCamelCase : str = True __UpperCamelCase : Optional[Any] = model_class(_UpperCAmelCase ) __UpperCamelCase : Optional[int] = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(_UpperCAmelCase ) ) self.assertEqual(model.config.output_hidden_states , _UpperCAmelCase ) check_encoder_attentions_output(_UpperCAmelCase ) @require_tf class A ( unittest.TestCase ): '''simple docstring''' @slow def a_ (self ) -> str: __UpperCamelCase : Dict = TFConvBertModel.from_pretrained("YituTech/conv-bert-base" ) __UpperCamelCase : str = tf.constant([[0, 1, 2, 3, 4, 5]] ) __UpperCamelCase : Optional[int] = model(_UpperCAmelCase )[0] __UpperCamelCase : Tuple = [1, 6, 7_6_8] self.assertEqual(output.shape , _UpperCAmelCase ) __UpperCamelCase : Any = tf.constant( [ [ [-0.03_475_493, -0.4_686_034, -0.30_638_832], [0.22_637_248, -0.26_988_646, -0.7_423_424], [0.10_324_868, -0.45_013_508, -0.58_280_784], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , _UpperCAmelCase , atol=1E-4 )
298
1
'''simple docstring''' from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import KarrasVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class A__ ( UpperCAmelCase__ ): A__ = 42 A__ = 42 def __init__( self : Any , _a : Tuple , _a : List[str] ) -> Optional[int]: '''simple docstring''' super().__init__() self.register_modules(unet=_SCREAMING_SNAKE_CASE , scheduler=_SCREAMING_SNAKE_CASE ) @torch.no_grad() def __call__( self : str , _a : List[str] = 1 , _a : int = 50 , _a : List[Any] = None , _a : Any = "pil" , _a : List[str] = True , **_a : str , ) -> Union[Tuple, ImagePipelineOutput]: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.unet.config.sample_size _SCREAMING_SNAKE_CASE =(batch_size, 3, img_size, img_size) _SCREAMING_SNAKE_CASE =self.unet # sample x_0 ~ N(0, sigma_0^2 * I) _SCREAMING_SNAKE_CASE =randn_tensor(_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , device=self.device ) * self.scheduler.init_noise_sigma self.scheduler.set_timesteps(_SCREAMING_SNAKE_CASE ) for t in self.progress_bar(self.scheduler.timesteps ): # here sigma_t == t_i from the paper _SCREAMING_SNAKE_CASE =self.scheduler.schedule[t] _SCREAMING_SNAKE_CASE =self.scheduler.schedule[t - 1] if t > 0 else 0 # 1. Select temporarily increased noise level sigma_hat # 2. Add new noise to move from sample_i to sample_hat _SCREAMING_SNAKE_CASE =self.scheduler.add_noise_to_input(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE ) # 3. Predict the noise residual given the noise magnitude `sigma_hat` # The model inputs and output are adjusted by following eq. (213) in [1]. _SCREAMING_SNAKE_CASE =(sigma_hat / 2) * model((sample_hat + 1) / 2 , sigma_hat / 2 ).sample # 4. Evaluate dx/dt at sigma_hat # 5. Take Euler step from sigma to sigma_prev _SCREAMING_SNAKE_CASE =self.scheduler.step(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if sigma_prev != 0: # 6. Apply 2nd order correction # The model inputs and output are adjusted by following eq. (213) in [1]. _SCREAMING_SNAKE_CASE =(sigma_prev / 2) * model((step_output.prev_sample + 1) / 2 , sigma_prev / 2 ).sample _SCREAMING_SNAKE_CASE =self.scheduler.step_correct( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , step_output.prev_sample , step_output['derivative'] , ) _SCREAMING_SNAKE_CASE =step_output.prev_sample _SCREAMING_SNAKE_CASE =(sample / 2 + 0.5).clamp(0 , 1 ) _SCREAMING_SNAKE_CASE =sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _SCREAMING_SNAKE_CASE =self.numpy_to_pil(_SCREAMING_SNAKE_CASE ) if not return_dict: return (image,) return ImagePipelineOutput(images=_SCREAMING_SNAKE_CASE )
360
'''simple docstring''' import warnings from contextlib import contextmanager from ....processing_utils import ProcessorMixin class A__ ( A__ ): A__ = 'MCTCTFeatureExtractor' A__ = 'AutoTokenizer' def __init__( self : Optional[Any] , _a : Optional[int] , _a : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' super().__init__(_a , _a ) _SCREAMING_SNAKE_CASE =self.feature_extractor _SCREAMING_SNAKE_CASE =False def __call__( self : Dict , *_a : str , **_a : Dict ) -> Dict: '''simple docstring''' if self._in_target_context_manager: return self.current_processor(*_a , **_a ) if "raw_speech" in kwargs: warnings.warn('Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.' ) _SCREAMING_SNAKE_CASE =kwargs.pop('raw_speech' ) else: _SCREAMING_SNAKE_CASE =kwargs.pop('audio' , _a ) _SCREAMING_SNAKE_CASE =kwargs.pop('sampling_rate' , _a ) _SCREAMING_SNAKE_CASE =kwargs.pop('text' , _a ) if len(_a ) > 0: _SCREAMING_SNAKE_CASE =args[0] _SCREAMING_SNAKE_CASE =args[1:] if audio is None and text is None: raise ValueError('You need to specify either an `audio` or `text` input to process.' ) if audio is not None: _SCREAMING_SNAKE_CASE =self.feature_extractor(_a , *_a , sampling_rate=_a , **_a ) if text is not None: _SCREAMING_SNAKE_CASE =self.tokenizer(_a , **_a ) if text is None: return inputs elif audio is None: return encodings else: _SCREAMING_SNAKE_CASE =encodings['input_ids'] return inputs def A ( self : Any , *_a : List[str] , **_a : Optional[int] ) -> Optional[int]: '''simple docstring''' return self.tokenizer.batch_decode(*_a , **_a ) def A ( self : Dict , *_a : Tuple , **_a : Dict ) -> List[str]: '''simple docstring''' if self._in_target_context_manager: return self.current_processor.pad(*_a , **_a ) _SCREAMING_SNAKE_CASE =kwargs.pop('input_features' , _a ) _SCREAMING_SNAKE_CASE =kwargs.pop('labels' , _a ) if len(_a ) > 0: _SCREAMING_SNAKE_CASE =args[0] _SCREAMING_SNAKE_CASE =args[1:] if input_features is not None: _SCREAMING_SNAKE_CASE =self.feature_extractor.pad(_a , *_a , **_a ) if labels is not None: _SCREAMING_SNAKE_CASE =self.tokenizer.pad(_a , **_a ) if labels is None: return input_features elif input_features is None: return labels else: _SCREAMING_SNAKE_CASE =labels['input_ids'] return input_features def A ( self : Tuple , *_a : Dict , **_a : List[Any] ) -> Optional[int]: '''simple docstring''' return self.tokenizer.decode(*_a , **_a ) @contextmanager def A ( self : Optional[Any] ) -> Dict: '''simple docstring''' warnings.warn( '`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ' 'labels by using the argument `text` of the regular `__call__` method (either in the same call as ' 'your audio inputs, or in a separate call.' ) _SCREAMING_SNAKE_CASE =True _SCREAMING_SNAKE_CASE =self.tokenizer yield _SCREAMING_SNAKE_CASE =self.feature_extractor _SCREAMING_SNAKE_CASE =False
114
0
from collections import deque def _a ( lowerCamelCase ): lowerCamelCase : Dict = len(lowerCamelCase ) lowerCamelCase : Optional[Any] = deque() lowerCamelCase : Optional[Any] = [False for _ in range(lowerCamelCase )] lowerCamelCase : Optional[int] = [-1 for _ in range(lowerCamelCase )] lowerCamelCase : Tuple = index_of[:] def strong_connect(lowerCamelCase, lowerCamelCase, lowerCamelCase ): lowerCamelCase : List[Any] = index # the number when this node is seen lowerCamelCase : List[str] = index # lowest rank node reachable from here index += 1 stack.append(lowerCamelCase ) lowerCamelCase : Tuple = True for w in g[v]: if index_of[w] == -1: lowerCamelCase : int = strong_connect(lowerCamelCase, lowerCamelCase, lowerCamelCase ) lowerCamelCase : List[str] = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) elif on_stack[w]: lowerCamelCase : str = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) if lowlink_of[v] == index_of[v]: lowerCamelCase : Optional[int] = [] lowerCamelCase : str = stack.pop() lowerCamelCase : int = False component.append(lowerCamelCase ) while w != v: lowerCamelCase : Tuple = stack.pop() lowerCamelCase : int = False component.append(lowerCamelCase ) components.append(lowerCamelCase ) return index lowerCamelCase : Any = [] for v in range(lowerCamelCase ): if index_of[v] == -1: strong_connect(lowerCamelCase, 0, lowerCamelCase ) return components def _a ( lowerCamelCase, lowerCamelCase ): lowerCamelCase : Union[str, Any] = [[] for _ in range(lowerCamelCase )] for u, v in edges: g[u].append(lowerCamelCase ) return g if __name__ == "__main__": # Test _lowerCamelCase =7 _lowerCamelCase =[0, 0, 1, 2, 3, 3, 4, 4, 6] _lowerCamelCase =[1, 3, 2, 0, 1, 4, 5, 6, 5] _lowerCamelCase =[(u, v) for u, v in zip(source, target)] _lowerCamelCase =create_graph(n_vertices, edges) assert [[5], [6], [4], [3, 2, 1, 0]] == tarjan(g)
287
from . import __version__ # Backward compatibility imports, to make sure all those objects can be found in file_utils from .utils import ( CLOUDFRONT_DISTRIB_PREFIX, CONFIG_NAME, DISABLE_TELEMETRY, DUMMY_INPUTS, DUMMY_MASK, ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, FEATURE_EXTRACTOR_NAME, FLAX_WEIGHTS_NAME, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, MODEL_CARD_NAME, MULTIPLE_CHOICE_DUMMY_INPUTS, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, SENTENCEPIECE_UNDERLINE, SPIECE_UNDERLINE, TF2_WEIGHTS_NAME, TF_WEIGHTS_NAME, TORCH_FX_REQUIRED_VERSION, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, USE_JAX, USE_TF, USE_TORCH, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ContextManagers, DummyObject, EntryNotFoundError, ExplicitEnum, ModelOutput, PaddingStrategy, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, TensorType, _LazyModule, add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, cached_property, copy_func, default_cache_path, define_sagemaker_information, get_cached_models, get_file_from_repo, get_full_repo_name, get_torch_version, has_file, http_user_agent, is_apex_available, is_bsa_available, is_coloredlogs_available, is_datasets_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_librosa_available, is_offline_mode, is_onnx_available, is_pandas_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytorch_quantization_available, is_rjieba_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_tensor, is_tensorflow_probability_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_training_run_on_sagemaker, is_vision_available, replace_return_docstrings, requires_backends, to_numpy, to_py_obj, torch_only_method, )
287
1
'''simple docstring''' from __future__ import annotations from functools import lru_cache from math import ceil __snake_case =100 __snake_case =set(range(3, NUM_PRIMES, 2)) primes.add(2) __snake_case =42 for prime in range(3, ceil(NUM_PRIMES**0.5), 2): if prime not in primes: continue primes.difference_update(set(range(prime * prime, NUM_PRIMES, prime))) @lru_cache(maxsize=100 ) def a_ ( lowerCamelCase : int ): if number_to_partition < 0: return set() elif number_to_partition == 0: return {1} lowerCAmelCase = set() lowerCAmelCase = 42 lowerCAmelCase = 42 for prime in primes: if prime > number_to_partition: continue for sub in partition(number_to_partition - prime ): ret.add(sub * prime ) return ret def a_ ( lowerCamelCase : int = 5000 ): for number_to_partition in range(1 , lowerCamelCase ): if len(partition(lowerCamelCase ) ) > number_unique_partitions: return number_to_partition return None if __name__ == "__main__": print(F'''{solution() = }''')
359
'''simple docstring''' import itertools import string from collections.abc import Generator, Iterable def a_ ( lowerCamelCase : Iterable[str] , lowerCamelCase : int ): lowerCAmelCase = iter(lowerCamelCase ) while True: lowerCAmelCase = tuple(itertools.islice(lowerCamelCase , lowerCamelCase ) ) if not chunk: return yield chunk def a_ ( lowerCamelCase : str ): lowerCAmelCase = ''.join([c.upper() for c in dirty if c in string.ascii_letters] ) lowerCAmelCase = '' if len(lowerCamelCase ) < 2: return dirty for i in range(len(lowerCamelCase ) - 1 ): clean += dirty[i] if dirty[i] == dirty[i + 1]: clean += "X" clean += dirty[-1] if len(lowerCamelCase ) & 1: clean += "X" return clean def a_ ( lowerCamelCase : str ): # I and J are used interchangeably to allow # us to use a 5x5 table (25 letters) lowerCAmelCase = 'ABCDEFGHIKLMNOPQRSTUVWXYZ' # we're using a list instead of a '2d' array because it makes the math # for setting up the table and doing the actual encoding/decoding simpler lowerCAmelCase = [] # copy key chars into the table if they are in `alphabet` ignoring duplicates for char in key.upper(): if char not in table and char in alphabet: table.append(lowerCamelCase ) # fill the rest of the table in with the remaining alphabet chars for char in alphabet: if char not in table: table.append(lowerCamelCase ) return table def a_ ( lowerCamelCase : str , lowerCamelCase : str ): lowerCAmelCase = generate_table(lowerCamelCase ) lowerCAmelCase = prepare_input(lowerCamelCase ) lowerCAmelCase = '' # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(lowerCamelCase , 2 ): lowerCAmelCase , lowerCAmelCase = divmod(table.index(lowerCamelCase ) , 5 ) lowerCAmelCase , lowerCAmelCase = divmod(table.index(lowerCamelCase ) , 5 ) if rowa == rowa: ciphertext += table[rowa * 5 + (cola + 1) % 5] ciphertext += table[rowa * 5 + (cola + 1) % 5] elif cola == cola: ciphertext += table[((rowa + 1) % 5) * 5 + cola] ciphertext += table[((rowa + 1) % 5) * 5 + cola] else: # rectangle ciphertext += table[rowa * 5 + cola] ciphertext += table[rowa * 5 + cola] return ciphertext def a_ ( lowerCamelCase : str , lowerCamelCase : str ): lowerCAmelCase = generate_table(lowerCamelCase ) lowerCAmelCase = '' # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(lowerCamelCase , 2 ): lowerCAmelCase , lowerCAmelCase = divmod(table.index(lowerCamelCase ) , 5 ) lowerCAmelCase , lowerCAmelCase = divmod(table.index(lowerCamelCase ) , 5 ) if rowa == rowa: plaintext += table[rowa * 5 + (cola - 1) % 5] plaintext += table[rowa * 5 + (cola - 1) % 5] elif cola == cola: plaintext += table[((rowa - 1) % 5) * 5 + cola] plaintext += table[((rowa - 1) % 5) * 5 + cola] else: # rectangle plaintext += table[rowa * 5 + cola] plaintext += table[rowa * 5 + cola] return plaintext
55
0
"""simple docstring""" def lowerCAmelCase_ ( snake_case_ : str ) ->str: lowerCamelCase__ : int =0 # if input_string is "aba" than new_input_string become "a|b|a" lowerCamelCase__ : Optional[int] ='' lowerCamelCase__ : List[str] ='' # append each character + "|" in new_string for range(0, length-1) for i in input_string[: len(snake_case_ ) - 1]: new_input_string += i + "|" # append last character new_input_string += input_string[-1] # we will store the starting and ending of previous furthest ending palindromic # substring lowerCamelCase__ , lowerCamelCase__ : Tuple =0, 0 # length[i] shows the length of palindromic substring with center i lowerCamelCase__ : int =[1 for i in range(len(snake_case_ ) )] # for each character in new_string find corresponding palindromic string lowerCamelCase__ : Optional[Any] =0 for j in range(len(snake_case_ ) ): lowerCamelCase__ : Union[str, Any] =1 if j > r else min(length[l + r - j] // 2 , r - j + 1 ) while ( j - k >= 0 and j + k < len(snake_case_ ) and new_input_string[k + j] == new_input_string[j - k] ): k += 1 lowerCamelCase__ : List[Any] =2 * k - 1 # does this string is ending after the previously explored end (that is r) ? # if yes the update the new r to the last index of this if j + k - 1 > r: lowerCamelCase__ : Optional[int] =j - k + 1 # noqa: E741 lowerCamelCase__ : Dict =j + k - 1 # update max_length and start position if max_length < length[j]: lowerCamelCase__ : List[Any] =length[j] lowerCamelCase__ : Union[str, Any] =j # create that string lowerCamelCase__ : List[Any] =new_input_string[start - max_length // 2 : start + max_length // 2 + 1] for i in s: if i != "|": output_string += i return output_string if __name__ == "__main__": import doctest doctest.testmod()
126
"""simple docstring""" import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = {"""tokenizer_file""": """tokenizer.json"""} lowerCAmelCase = { """tokenizer_file""": { """bigscience/tokenizer""": """https://huggingface.co/bigscience/tokenizer/blob/main/tokenizer.json""", """bigscience/bloom-560m""": """https://huggingface.co/bigscience/bloom-560m/blob/main/tokenizer.json""", """bigscience/bloom-1b1""": """https://huggingface.co/bigscience/bloom-1b1/blob/main/tokenizer.json""", """bigscience/bloom-1b7""": """https://huggingface.co/bigscience/bloom-1b7/blob/main/tokenizer.json""", """bigscience/bloom-3b""": """https://huggingface.co/bigscience/bloom-3b/blob/main/tokenizer.json""", """bigscience/bloom-7b1""": """https://huggingface.co/bigscience/bloom-7b1/blob/main/tokenizer.json""", """bigscience/bloom""": """https://huggingface.co/bigscience/bloom/blob/main/tokenizer.json""", }, } class A_ ( A__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ = ["""input_ids""", """attention_mask"""] SCREAMING_SNAKE_CASE_ = None def __init__( self :Dict , lowerCamelCase_ :Union[str, Any]=None , lowerCamelCase_ :Any=None , lowerCamelCase_ :int=None , lowerCamelCase_ :List[str]="<unk>" , lowerCamelCase_ :List[Any]="<s>" , lowerCamelCase_ :str="</s>" , lowerCamelCase_ :Union[str, Any]="<pad>" , lowerCamelCase_ :Union[str, Any]=False , lowerCamelCase_ :Dict=False , **lowerCamelCase_ :List[Any] , ): """simple docstring""" super().__init__( lowerCamelCase_ , lowerCamelCase_ , tokenizer_file=lowerCamelCase_ , unk_token=lowerCamelCase_ , bos_token=lowerCamelCase_ , eos_token=lowerCamelCase_ , pad_token=lowerCamelCase_ , add_prefix_space=lowerCamelCase_ , clean_up_tokenization_spaces=lowerCamelCase_ , **lowerCamelCase_ , ) lowerCamelCase__ : List[str] =json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , lowerCamelCase_ ) != add_prefix_space: lowerCamelCase__ : str =getattr(lowerCamelCase_ , pre_tok_state.pop('type' ) ) lowerCamelCase__ : List[Any] =add_prefix_space lowerCamelCase__ : Optional[Any] =pre_tok_class(**lowerCamelCase_ ) lowerCamelCase__ : Any =add_prefix_space def UpperCAmelCase__ ( self :Optional[int] , *lowerCamelCase_ :List[str] , **lowerCamelCase_ :Optional[Any] ): """simple docstring""" lowerCamelCase__ : List[Any] =kwargs.get('is_split_into_words' , lowerCamelCase_ ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with""" ' pretokenized inputs.' ) return super()._batch_encode_plus(*lowerCamelCase_ , **lowerCamelCase_ ) def UpperCAmelCase__ ( self :int , *lowerCamelCase_ :Optional[Any] , **lowerCamelCase_ :Any ): """simple docstring""" lowerCamelCase__ : Optional[Any] =kwargs.get('is_split_into_words' , lowerCamelCase_ ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with""" ' pretokenized inputs.' ) return super()._encode_plus(*lowerCamelCase_ , **lowerCamelCase_ ) def UpperCAmelCase__ ( self :Dict , lowerCamelCase_ :str , lowerCamelCase_ :Optional[str] = None ): """simple docstring""" lowerCamelCase__ : Optional[Any] =self._tokenizer.model.save(lowerCamelCase_ , name=lowerCamelCase_ ) return tuple(lowerCamelCase_ ) def UpperCAmelCase__ ( self :List[Any] , lowerCamelCase_ :"Conversation" ): """simple docstring""" lowerCamelCase__ : Optional[int] =[] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) + [self.eos_token_id] ) if len(lowerCamelCase_ ) > self.model_max_length: lowerCamelCase__ : List[str] =input_ids[-self.model_max_length :] return input_ids
126
1
from __future__ import annotations def lowerCamelCase__ ( UpperCamelCase__ : list[int] , UpperCamelCase__ : list[int] , UpperCamelCase__ : int ) -> tuple[float, list[float]]: '''simple docstring''' _snake_case = list(range(len(UpperCamelCase__ ) ) ) _snake_case = [v / w for v, w in zip(UpperCamelCase__ , UpperCamelCase__ )] index.sort(key=lambda UpperCamelCase__ : ratio[i] , reverse=UpperCamelCase__ ) _snake_case = 0 _snake_case = [0] * len(UpperCamelCase__ ) for i in index: if weight[i] <= capacity: _snake_case = 1 max_value += value[i] capacity -= weight[i] else: _snake_case = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
295
from cva import destroyAllWindows, imread, imshow, waitKey def lowerCamelCase__ ( UpperCamelCase__ : Dict ) -> Optional[Any]: '''simple docstring''' _snake_case , _snake_case = img.shape[0], img.shape[1] # converting each pixel's color to its negative for i in range(UpperCamelCase__ ): for j in range(UpperCamelCase__ ): _snake_case = [255, 255, 255] - img[i][j] return img if __name__ == "__main__": # read original image UpperCAmelCase_ = imread("""image_data/lena.jpg""", 1) # convert to its negative UpperCAmelCase_ = convert_to_negative(img) # show result image imshow("""negative of original image""", img) waitKey(0) destroyAllWindows()
295
1
# NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from ...utils import deprecate from ..controlnet.multicontrolnet import MultiControlNetModel # noqa: F401 from ..controlnet.pipeline_controlnet import StableDiffusionControlNetPipeline # noqa: F401 deprecate( """stable diffusion controlnet""", """0.22.0""", """Importing `StableDiffusionControlNetPipeline` or `MultiControlNetModel` from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import StableDiffusionControlNetPipeline` instead.""", standard_warn=False, stacklevel=3, )
82
class lowercase__ : '''simple docstring''' def __init__( self, __magic_name__ = "", __magic_name__ = False ) -> None: """simple docstring""" # Mapping from the first character of the prefix of the node UpperCamelCase__ : dict[str, RadixNode] = {} # A node will be a leaf if the tree contains its word UpperCamelCase__ : Optional[Any] = is_leaf UpperCamelCase__ : List[str] = prefix def UpperCamelCase__ ( self, __magic_name__ ) -> tuple[str, str, str]: """simple docstring""" UpperCamelCase__ : Dict = 0 for q, w in zip(self.prefix, __magic_name__ ): if q != w: break x += 1 return self.prefix[:x], self.prefix[x:], word[x:] def UpperCamelCase__ ( self, __magic_name__ ) -> None: """simple docstring""" for word in words: self.insert(__magic_name__ ) def UpperCamelCase__ ( self, __magic_name__ ) -> None: """simple docstring""" # Case 1: If the word is the prefix of the node # Solution: We set the current node as leaf if self.prefix == word: UpperCamelCase__ : Union[str, Any] = True # Case 2: The node has no edges that have a prefix to the word # Solution: We create an edge from the current node to a new one # containing the word elif word[0] not in self.nodes: UpperCamelCase__ : Tuple = RadixNode(prefix=__magic_name__, is_leaf=__magic_name__ ) else: UpperCamelCase__ : Any = self.nodes[word[0]] UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ : Union[str, Any] = incoming_node.match( __magic_name__ ) # Case 3: The node prefix is equal to the matching # Solution: We insert remaining word on the next node if remaining_prefix == "": self.nodes[matching_string[0]].insert(__magic_name__ ) # Case 4: The word is greater equal to the matching # Solution: Create a node in between both nodes, change # prefixes and add the new node for the remaining word else: UpperCamelCase__ : Tuple = remaining_prefix UpperCamelCase__ : Tuple = self.nodes[matching_string[0]] UpperCamelCase__ : List[Any] = RadixNode(__magic_name__, __magic_name__ ) UpperCamelCase__ : str = aux_node if remaining_word == "": UpperCamelCase__ : Any = True else: self.nodes[matching_string[0]].insert(__magic_name__ ) def UpperCamelCase__ ( self, __magic_name__ ) -> bool: """simple docstring""" UpperCamelCase__ : Optional[Any] = self.nodes.get(word[0], __magic_name__ ) if not incoming_node: return False else: UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ : Dict = incoming_node.match( __magic_name__ ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # This applies when the word and the prefix are equal elif remaining_word == "": return incoming_node.is_leaf # We have word remaining so we check the next node else: return incoming_node.find(__magic_name__ ) def UpperCamelCase__ ( self, __magic_name__ ) -> bool: """simple docstring""" UpperCamelCase__ : Optional[Any] = self.nodes.get(word[0], __magic_name__ ) if not incoming_node: return False else: UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ : Union[str, Any] = incoming_node.match( __magic_name__ ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # We have word remaining so we check the next node elif remaining_word != "": return incoming_node.delete(__magic_name__ ) else: # If it is not a leaf, we don't have to delete if not incoming_node.is_leaf: return False else: # We delete the nodes if no edges go from it if len(incoming_node.nodes ) == 0: del self.nodes[word[0]] # We merge the current node with its only child if len(self.nodes ) == 1 and not self.is_leaf: UpperCamelCase__ : Optional[Any] = list(self.nodes.values() )[0] UpperCamelCase__ : Union[str, Any] = merging_node.is_leaf self.prefix += merging_node.prefix UpperCamelCase__ : int = merging_node.nodes # If there is more than 1 edge, we just mark it as non-leaf elif len(incoming_node.nodes ) > 1: UpperCamelCase__ : Any = False # If there is 1 edge, we merge it with its child else: UpperCamelCase__ : Union[str, Any] = list(incoming_node.nodes.values() )[0] UpperCamelCase__ : List[str] = merging_node.is_leaf incoming_node.prefix += merging_node.prefix UpperCamelCase__ : int = merging_node.nodes return True def UpperCamelCase__ ( self, __magic_name__ = 0 ) -> None: """simple docstring""" if self.prefix != "": print('''-''' * height, self.prefix, ''' (leaf)''' if self.is_leaf else '''''' ) for value in self.nodes.values(): value.print_tree(height + 1 ) def lowerCAmelCase_ ( ) -> bool: UpperCamelCase__ : Optional[int] = '''banana bananas bandana band apple all beast'''.split() UpperCamelCase__ : Optional[int] = RadixNode() root.insert_many(__UpperCAmelCase ) assert all(root.find(__UpperCAmelCase ) for word in words ) assert not root.find('''bandanas''' ) assert not root.find('''apps''' ) root.delete('''all''' ) assert not root.find('''all''' ) root.delete('''banana''' ) assert not root.find('''banana''' ) assert root.find('''bananas''' ) return True def lowerCAmelCase_ ( ) -> None: assert test_trie() def lowerCAmelCase_ ( ) -> None: UpperCamelCase__ : int = RadixNode() UpperCamelCase__ : Any = '''banana bananas bandanas bandana band apple all beast'''.split() root.insert_many(__UpperCAmelCase ) print('''Words:''' , __UpperCAmelCase ) print('''Tree:''' ) root.print_tree() if __name__ == "__main__": main()
201
0
from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable lowerCAmelCase__ : Optional[int] ={'''configuration_gpt_neox''': ['''GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GPTNeoXConfig''']} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ : Dict =['''GPTNeoXTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ : Optional[int] =[ '''GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GPTNeoXForCausalLM''', '''GPTNeoXForQuestionAnswering''', '''GPTNeoXForSequenceClassification''', '''GPTNeoXForTokenClassification''', '''GPTNeoXLayer''', '''GPTNeoXModel''', '''GPTNeoXPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_gpt_neox import GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_neox_fast import GPTNeoXTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neox import ( GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXLayer, GPTNeoXModel, GPTNeoXPreTrainedModel, ) else: import sys lowerCAmelCase__ : List[Any] =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
118
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase__ : List[str] ={ '''configuration_timesformer''': ['''TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TimesformerConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ : List[str] =[ '''TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TimesformerModel''', '''TimesformerForVideoClassification''', '''TimesformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_timesformer import TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimesformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timesformer import ( TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimesformerForVideoClassification, TimesformerModel, TimesformerPreTrainedModel, ) else: import sys lowerCAmelCase__ : Union[str, Any] =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
118
1
from __future__ import annotations import time a =list[tuple[int, int]] a =[ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] a =[[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right class A_ : def __init__( self : List[str] ,SCREAMING_SNAKE_CASE__ : int ,SCREAMING_SNAKE_CASE__ : int ,SCREAMING_SNAKE_CASE__ : int ,SCREAMING_SNAKE_CASE__ : int ,SCREAMING_SNAKE_CASE__ : Node | None): __lowerCamelCase : Tuple = pos_x __lowerCamelCase : List[str] = pos_y __lowerCamelCase : str = (pos_y, pos_x) __lowerCamelCase : str = goal_x __lowerCamelCase : int = goal_y __lowerCamelCase : List[Any] = parent class A_ : def __init__( self : Union[str, Any] ,SCREAMING_SNAKE_CASE__ : tuple[int, int] ,SCREAMING_SNAKE_CASE__ : tuple[int, int]): __lowerCamelCase : Any = Node(start[1] ,start[0] ,goal[1] ,goal[0] ,SCREAMING_SNAKE_CASE__) __lowerCamelCase : List[Any] = Node(goal[1] ,goal[0] ,goal[1] ,goal[0] ,SCREAMING_SNAKE_CASE__) __lowerCamelCase : Union[str, Any] = [self.start] __lowerCamelCase : List[str] = False def lowerCAmelCase ( self : List[Any]): while self.node_queue: __lowerCamelCase : Any = self.node_queue.pop(0) if current_node.pos == self.target.pos: __lowerCamelCase : Dict = True return self.retrace_path(SCREAMING_SNAKE_CASE__) __lowerCamelCase : Tuple = self.get_successors(SCREAMING_SNAKE_CASE__) for node in successors: self.node_queue.append(SCREAMING_SNAKE_CASE__) if not self.reached: return [self.start.pos] return None def lowerCAmelCase ( self : str ,SCREAMING_SNAKE_CASE__ : Node): __lowerCamelCase : Union[str, Any] = [] for action in delta: __lowerCamelCase : Optional[Any] = parent.pos_x + action[1] __lowerCamelCase : Optional[int] = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0]) - 1 and 0 <= pos_y <= len(SCREAMING_SNAKE_CASE__) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,self.target.pos_y ,self.target.pos_x ,SCREAMING_SNAKE_CASE__)) return successors def lowerCAmelCase ( self : Optional[int] ,SCREAMING_SNAKE_CASE__ : Node | None): __lowerCamelCase : List[Any] = node __lowerCamelCase : int = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x)) __lowerCamelCase : int = current_node.parent path.reverse() return path class A_ : def __init__( self : Optional[Any] ,SCREAMING_SNAKE_CASE__ : Union[str, Any] ,SCREAMING_SNAKE_CASE__ : int): __lowerCamelCase : int = BreadthFirstSearch(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) __lowerCamelCase : Optional[Any] = BreadthFirstSearch(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) __lowerCamelCase : Optional[Any] = False def lowerCAmelCase ( self : str): while self.fwd_bfs.node_queue or self.bwd_bfs.node_queue: __lowerCamelCase : Any = self.fwd_bfs.node_queue.pop(0) __lowerCamelCase : Any = self.bwd_bfs.node_queue.pop(0) if current_bwd_node.pos == current_fwd_node.pos: __lowerCamelCase : List[str] = True return self.retrace_bidirectional_path( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) __lowerCamelCase : Optional[Any] = current_bwd_node __lowerCamelCase : int = current_fwd_node __lowerCamelCase : str = { self.fwd_bfs: self.fwd_bfs.get_successors(SCREAMING_SNAKE_CASE__), self.bwd_bfs: self.bwd_bfs.get_successors(SCREAMING_SNAKE_CASE__), } for bfs in [self.fwd_bfs, self.bwd_bfs]: for node in successors[bfs]: bfs.node_queue.append(SCREAMING_SNAKE_CASE__) if not self.reached: return [self.fwd_bfs.start.pos] return None def lowerCAmelCase ( self : Dict ,SCREAMING_SNAKE_CASE__ : Node ,SCREAMING_SNAKE_CASE__ : Node): __lowerCamelCase : List[Any] = self.fwd_bfs.retrace_path(SCREAMING_SNAKE_CASE__) __lowerCamelCase : str = self.bwd_bfs.retrace_path(SCREAMING_SNAKE_CASE__) bwd_path.pop() bwd_path.reverse() __lowerCamelCase : List[Any] = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] import doctest doctest.testmod() a =(0, 0) a =(len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) a =time.time() a =BreadthFirstSearch(init, goal) a =bfs.search() a =time.time() - start_bfs_time print("""Unidirectional BFS computation time : """, bfs_time) a =time.time() a =BidirectionalBreadthFirstSearch(init, goal) a =bd_bfs.search() a =time.time() - start_bd_bfs_time print("""Bidirectional BFS computation time : """, bd_bfs_time)
73
from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging a : Tuple = logging.get_logger(__name__) a : Dict = { "t5-small": "https://huggingface.co/t5-small/resolve/main/config.json", "t5-base": "https://huggingface.co/t5-base/resolve/main/config.json", "t5-large": "https://huggingface.co/t5-large/resolve/main/config.json", "t5-3b": "https://huggingface.co/t5-3b/resolve/main/config.json", "t5-11b": "https://huggingface.co/t5-11b/resolve/main/config.json", } class a ( lowercase__ ): """simple docstring""" a : int = 't5' a : Dict = ['past_key_values'] a : Tuple = {'hidden_size': 'd_model', 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers'} def __init__( self : str , __lowercase : Optional[int]=32128 , __lowercase : Optional[int]=512 , __lowercase : int=64 , __lowercase : Any=2048 , __lowercase : Tuple=6 , __lowercase : Tuple=None , __lowercase : int=8 , __lowercase : List[Any]=32 , __lowercase : Dict=128 , __lowercase : Optional[int]=0.1 , __lowercase : int=1e-6 , __lowercase : List[str]=1.0 , __lowercase : List[str]="relu" , __lowercase : Dict=True , __lowercase : Optional[Any]=True , __lowercase : Tuple=0 , __lowercase : List[str]=1 , **__lowercase : Any , ) -> str: __UpperCAmelCase : Tuple = vocab_size __UpperCAmelCase : Optional[int] = d_model __UpperCAmelCase : Union[str, Any] = d_kv __UpperCAmelCase : Union[str, Any] = d_ff __UpperCAmelCase : int = num_layers __UpperCAmelCase : Any = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry __UpperCAmelCase : Dict = num_heads __UpperCAmelCase : List[Any] = relative_attention_num_buckets __UpperCAmelCase : List[str] = relative_attention_max_distance __UpperCAmelCase : Union[str, Any] = dropout_rate __UpperCAmelCase : List[str] = layer_norm_epsilon __UpperCAmelCase : str = initializer_factor __UpperCAmelCase : Dict = feed_forward_proj __UpperCAmelCase : Optional[int] = use_cache __UpperCAmelCase : List[Any] = self.feed_forward_proj.split("""-""" ) __UpperCAmelCase : Tuple = act_info[-1] __UpperCAmelCase : int = act_info[0] == """gated""" if len(__lowercase ) > 1 and act_info[0] != "gated" or len(__lowercase ) > 2: raise ValueError( f"""`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.""" """Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. """ """'gated-gelu' or 'relu'""" ) # for backwards compatibility if feed_forward_proj == "gated-gelu": __UpperCAmelCase : Dict = """gelu_new""" super().__init__( pad_token_id=__lowercase , eos_token_id=__lowercase , is_encoder_decoder=__lowercase , **__lowercase , ) class a ( lowercase__ ): """simple docstring""" @property def UpperCAmelCase ( self : str ) -> Mapping[str, Mapping[int, str]]: __UpperCAmelCase : Union[str, Any] = { """input_ids""": {0: """batch""", 1: """encoder_sequence"""}, """attention_mask""": {0: """batch""", 1: """encoder_sequence"""}, } if self.use_past: __UpperCAmelCase : List[Any] = """past_encoder_sequence + sequence""" __UpperCAmelCase : Optional[int] = {0: """batch"""} __UpperCAmelCase : Union[str, Any] = {0: """batch""", 1: """past_decoder_sequence + sequence"""} else: __UpperCAmelCase : str = {0: """batch""", 1: """decoder_sequence"""} __UpperCAmelCase : str = {0: """batch""", 1: """decoder_sequence"""} if self.use_past: self.fill_with_past_key_values_(__lowercase , direction="""inputs""" ) return common_inputs @property def UpperCAmelCase ( self : int ) -> int: return 13
114
0
import argparse from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline if __name__ == "__main__": _UpperCAmelCase : Tuple = argparse.ArgumentParser() parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") parser.add_argument( """--txt2img_unclip""", default="""kakaobrain/karlo-v1-alpha""", type=str, required=False, help="""The pretrained txt2img unclip.""", ) _UpperCAmelCase : Dict = parser.parse_args() _UpperCAmelCase : Any = UnCLIPPipeline.from_pretrained(args.txtaimg_unclip) _UpperCAmelCase : Tuple = CLIPImageProcessor() _UpperCAmelCase : Optional[int] = CLIPVisionModelWithProjection.from_pretrained("""openai/clip-vit-large-patch14""") _UpperCAmelCase : Optional[int] = UnCLIPImageVariationPipeline( decoder=txtaimg.decoder, text_encoder=txtaimg.text_encoder, tokenizer=txtaimg.tokenizer, text_proj=txtaimg.text_proj, feature_extractor=feature_extractor, image_encoder=image_encoder, super_res_first=txtaimg.super_res_first, super_res_last=txtaimg.super_res_last, decoder_scheduler=txtaimg.decoder_scheduler, super_res_scheduler=txtaimg.super_res_scheduler, ) imgaimg.save_pretrained(args.dump_path)
362
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import OwlViTImageProcessor, OwlViTProcessor @require_vision class a__ ( unittest.TestCase ): """simple docstring""" def _snake_case (self ): __lowerCAmelCase = tempfile.mkdtemp() # fmt: off __lowerCAmelCase = ['''''', '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''lo''', '''l</w>''', '''w</w>''', '''r</w>''', '''t</w>''', '''low</w>''', '''er</w>''', '''lowest</w>''', '''newer</w>''', '''wider''', '''<unk>''', '''<|startoftext|>''', '''<|endoftext|>'''] # fmt: on __lowerCAmelCase = dict(zip(__lowercase , range(len(__lowercase ) ) ) ) __lowerCAmelCase = ['''#version: 0.2''', '''l o''', '''lo w</w>''', '''e r</w>''', ''''''] __lowerCAmelCase = {'''unk_token''': '''<unk>'''} __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__lowercase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__lowercase ) ) __lowerCAmelCase = { '''do_resize''': True, '''size''': 20, '''do_center_crop''': True, '''crop_size''': 18, '''do_normalize''': True, '''image_mean''': [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3], '''image_std''': [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1], } __lowerCAmelCase = os.path.join(self.tmpdirname , __lowercase ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(__lowercase , __lowercase ) def _snake_case (self , **__lowercase ): return CLIPTokenizer.from_pretrained(self.tmpdirname , pad_token='''!''' , **__lowercase ) def _snake_case (self , **__lowercase ): return CLIPTokenizerFast.from_pretrained(self.tmpdirname , pad_token='''!''' , **__lowercase ) def _snake_case (self , **__lowercase ): return OwlViTImageProcessor.from_pretrained(self.tmpdirname , **__lowercase ) def _snake_case (self ): shutil.rmtree(self.tmpdirname ) def _snake_case (self ): __lowerCAmelCase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] __lowerCAmelCase = [Image.fromarray(np.moveaxis(__lowercase , 0 , -1 ) ) for x in image_inputs] return image_inputs def _snake_case (self ): __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = self.get_rust_tokenizer() __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase ) processor_slow.save_pretrained(self.tmpdirname ) __lowerCAmelCase = OwlViTProcessor.from_pretrained(self.tmpdirname , use_fast=__lowercase ) __lowerCAmelCase = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase ) processor_fast.save_pretrained(self.tmpdirname ) __lowerCAmelCase = OwlViTProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , __lowercase ) self.assertIsInstance(processor_fast.tokenizer , __lowercase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , __lowercase ) self.assertIsInstance(processor_fast.image_processor , __lowercase ) def _snake_case (self ): __lowerCAmelCase = OwlViTProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __lowerCAmelCase = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) __lowerCAmelCase = self.get_image_processor(do_normalize=__lowercase ) __lowerCAmelCase = OwlViTProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=__lowercase ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __lowercase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __lowercase ) def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = image_processor(__lowercase , return_tensors='''np''' ) __lowerCAmelCase = processor(images=__lowercase , return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = '''lower newer''' __lowerCAmelCase = processor(text=__lowercase , return_tensors='''np''' ) __lowerCAmelCase = tokenizer(__lowercase , return_tensors='''np''' ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key][0].tolist() , encoded_processor[key][0].tolist() ) def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = '''lower newer''' __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = processor(text=__lowercase , images=__lowercase ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(__lowercase ): processor() def _snake_case (self ): __lowerCAmelCase = '''google/owlvit-base-patch32''' __lowerCAmelCase = OwlViTProcessor.from_pretrained(__lowercase ) __lowerCAmelCase = ['''cat''', '''nasa badge'''] __lowerCAmelCase = processor(text=__lowercase ) __lowerCAmelCase = 16 self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask'''] ) self.assertEqual(inputs['''input_ids'''].shape , (2, seq_length) ) # test if it raises when no input is passed with pytest.raises(__lowercase ): processor() def _snake_case (self ): __lowerCAmelCase = '''google/owlvit-base-patch32''' __lowerCAmelCase = OwlViTProcessor.from_pretrained(__lowercase ) __lowerCAmelCase = [['''cat''', '''nasa badge'''], ['''person''']] __lowerCAmelCase = processor(text=__lowercase ) __lowerCAmelCase = 16 __lowerCAmelCase = len(__lowercase ) __lowerCAmelCase = max([len(__lowercase ) for texts in input_texts] ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask'''] ) self.assertEqual(inputs['''input_ids'''].shape , (batch_size * num_max_text_queries, seq_length) ) # test if it raises when no input is passed with pytest.raises(__lowercase ): processor() def _snake_case (self ): __lowerCAmelCase = '''google/owlvit-base-patch32''' __lowerCAmelCase = OwlViTProcessor.from_pretrained(__lowercase ) __lowerCAmelCase = ['''cat''', '''nasa badge'''] __lowerCAmelCase = processor(text=__lowercase ) __lowerCAmelCase = 16 __lowerCAmelCase = inputs['''input_ids'''] __lowerCAmelCase = [ [4_94_06, 23_68, 4_94_07, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [4_94_06, 68_41, 1_13_01, 4_94_07, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask'''] ) self.assertEqual(inputs['''input_ids'''].shape , (2, seq_length) ) self.assertListEqual(list(input_ids[0] ) , predicted_ids[0] ) self.assertListEqual(list(input_ids[1] ) , predicted_ids[1] ) def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = processor(images=__lowercase , query_images=__lowercase ) self.assertListEqual(list(inputs.keys() ) , ['''query_pixel_values''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(__lowercase ): processor() def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __lowerCAmelCase = processor.batch_decode(__lowercase ) __lowerCAmelCase = tokenizer.batch_decode(__lowercase ) self.assertListEqual(__lowercase , __lowercase )
9
0
import io import itertools import json from dataclasses import dataclass from typing import Optional import pyarrow as pa import pyarrow.json as paj import datasets from datasets.table import table_cast from datasets.utils.file_utils import readline SCREAMING_SNAKE_CASE_ = datasets.utils.logging.get_logger(__name__) @dataclass class UpperCamelCase__ ( datasets.BuilderConfig ): '''simple docstring''' __snake_case : int = None __snake_case : Tuple = "utf-8" __snake_case : List[Any] = None __snake_case : Any = None __snake_case : List[str] = True # deprecated __snake_case : Union[str, Any] = None # deprecated __snake_case : Dict = 10 << 20 # 10MB __snake_case : Optional[int] = None class UpperCamelCase__ ( datasets.ArrowBasedBuilder ): '''simple docstring''' __snake_case : Dict = JsonConfig def SCREAMING_SNAKE_CASE__ ( self : str ) -> Optional[int]: '''simple docstring''' if self.config.block_size is not None: logger.warning("""The JSON loader parameter `block_size` is deprecated. Please use `chunksize` instead""" ) SCREAMING_SNAKE_CASE = self.config.block_size if self.config.use_threads is not True: logger.warning( """The JSON loader parameter `use_threads` is deprecated and doesn't have any effect anymore.""" ) if self.config.newlines_in_values is not None: raise ValueError("""The JSON loader parameter `newlines_in_values` is no longer supported""" ) return datasets.DatasetInfo(features=self.config.features ) def SCREAMING_SNAKE_CASE__ ( self : str ,lowerCamelCase__ : Dict ) -> Union[str, Any]: '''simple docstring''' if not self.config.data_files: raise ValueError(F"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) SCREAMING_SNAKE_CASE = dl_manager.download_and_extract(self.config.data_files ) if isinstance(lowerCamelCase__ ,(str, list, tuple) ): SCREAMING_SNAKE_CASE = data_files if isinstance(lowerCamelCase__ ,lowerCamelCase__ ): SCREAMING_SNAKE_CASE = [files] SCREAMING_SNAKE_CASE = [dl_manager.iter_files(lowerCamelCase__ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN ,gen_kwargs={"""files""": files} )] SCREAMING_SNAKE_CASE = [] for split_name, files in data_files.items(): if isinstance(lowerCamelCase__ ,lowerCamelCase__ ): SCREAMING_SNAKE_CASE = [files] SCREAMING_SNAKE_CASE = [dl_manager.iter_files(lowerCamelCase__ ) for file in files] splits.append(datasets.SplitGenerator(name=lowerCamelCase__ ,gen_kwargs={"""files""": files} ) ) return splits def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ,lowerCamelCase__ : List[Any] ) -> Dict: '''simple docstring''' if self.config.features is not None: # adding missing columns for column_name in set(self.config.features ) - set(pa_table.column_names ): SCREAMING_SNAKE_CASE = self.config.features.arrow_schema.field(lowerCamelCase__ ).type SCREAMING_SNAKE_CASE = pa_table.append_column(lowerCamelCase__ ,pa.array([None] * len(lowerCamelCase__ ) ,type=lowerCamelCase__ ) ) # more expensive cast to support nested structures with keys in a different order # allows str <-> int/float or str to Audio for example SCREAMING_SNAKE_CASE = table_cast(lowerCamelCase__ ,self.config.features.arrow_schema ) return pa_table def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ,lowerCamelCase__ : Tuple ) -> Optional[Any]: '''simple docstring''' for file_idx, file in enumerate(itertools.chain.from_iterable(lowerCamelCase__ ) ): # If the file is one json object and if we need to look at the list of items in one specific field if self.config.field is not None: with open(lowerCamelCase__ ,encoding=self.config.encoding ,errors=self.config.encoding_errors ) as f: SCREAMING_SNAKE_CASE = json.load(lowerCamelCase__ ) # We keep only the field we are interested in SCREAMING_SNAKE_CASE = dataset[self.config.field] # We accept two format: a list of dicts or a dict of lists if isinstance(lowerCamelCase__ ,(list, tuple) ): SCREAMING_SNAKE_CASE = set().union(*[row.keys() for row in dataset] ) SCREAMING_SNAKE_CASE = {col: [row.get(lowerCamelCase__ ) for row in dataset] for col in keys} else: SCREAMING_SNAKE_CASE = dataset SCREAMING_SNAKE_CASE = pa.Table.from_pydict(lowerCamelCase__ ) yield file_idx, self._cast_table(lowerCamelCase__ ) # If the file has one json object per line else: with open(lowerCamelCase__ ,"""rb""" ) as f: SCREAMING_SNAKE_CASE = 0 # Use block_size equal to the chunk size divided by 32 to leverage multithreading # Set a default minimum value of 16kB if the chunk size is really small SCREAMING_SNAKE_CASE = max(self.config.chunksize // 32 ,16 << 10 ) SCREAMING_SNAKE_CASE = ( self.config.encoding_errors if self.config.encoding_errors is not None else """strict""" ) while True: SCREAMING_SNAKE_CASE = f.read(self.config.chunksize ) if not batch: break # Finish current line try: batch += f.readline() except (AttributeError, io.UnsupportedOperation): batch += readline(lowerCamelCase__ ) # PyArrow only accepts utf-8 encoded bytes if self.config.encoding != "utf-8": SCREAMING_SNAKE_CASE = batch.decode(self.config.encoding ,errors=lowerCamelCase__ ).encode("""utf-8""" ) try: while True: try: SCREAMING_SNAKE_CASE = paj.read_json( io.BytesIO(lowerCamelCase__ ) ,read_options=paj.ReadOptions(block_size=lowerCamelCase__ ) ) break except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e: if ( isinstance(lowerCamelCase__ ,pa.ArrowInvalid ) and "straddling" not in str(lowerCamelCase__ ) or block_size > len(lowerCamelCase__ ) ): raise else: # Increase the block size in case it was too small. # The block size will be reset for the next file. logger.debug( F"""Batch of {len(lowerCamelCase__ )} bytes couldn\'t be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}.""" ) block_size *= 2 except pa.ArrowInvalid as e: try: with open( lowerCamelCase__ ,encoding=self.config.encoding ,errors=self.config.encoding_errors ) as f: SCREAMING_SNAKE_CASE = json.load(lowerCamelCase__ ) except json.JSONDecodeError: logger.error(F"""Failed to read file \'{file}\' with error {type(lowerCamelCase__ )}: {e}""" ) raise e # If possible, parse the file as a list of json objects and exit the loop if isinstance(lowerCamelCase__ ,lowerCamelCase__ ): # list is the only sequence type supported in JSON try: SCREAMING_SNAKE_CASE = set().union(*[row.keys() for row in dataset] ) SCREAMING_SNAKE_CASE = {col: [row.get(lowerCamelCase__ ) for row in dataset] for col in keys} SCREAMING_SNAKE_CASE = pa.Table.from_pydict(lowerCamelCase__ ) except (pa.ArrowInvalid, AttributeError) as e: logger.error(F"""Failed to read file \'{file}\' with error {type(lowerCamelCase__ )}: {e}""" ) raise ValueError(F"""Not able to read records in the JSON file at {file}.""" ) from None yield file_idx, self._cast_table(lowerCamelCase__ ) break else: logger.error(F"""Failed to read file \'{file}\' with error {type(lowerCamelCase__ )}: {e}""" ) raise ValueError( F"""Not able to read records in the JSON file at {file}. """ F"""You should probably indicate the field of the JSON file containing your records. """ F"""This JSON file contain the following fields: {str(list(dataset.keys() ) )}. """ F"""Select the correct one and provide it as `field=\'XXX\'` to the dataset loading method. """ ) from None # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(lowerCamelCase__ ) batch_idx += 1
296
'''simple docstring''' from typing import List, Optional, Union import numpy as np import torch import torchaudio.compliance.kaldi as ta_kaldi from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging a_ : int = logging.get_logger(__name__) class snake_case ( lowercase ): """simple docstring""" _lowerCamelCase = ["input_features", "attention_mask"] def __init__( self , UpperCamelCase=80 , UpperCamelCase=1_6000 , UpperCamelCase=80 , UpperCamelCase=0.0 , UpperCamelCase=True , UpperCamelCase=True , UpperCamelCase=True , **UpperCamelCase , ): """simple docstring""" super().__init__(feature_size=UpperCamelCase , sampling_rate=UpperCamelCase , padding_value=UpperCamelCase , **UpperCamelCase ) lowerCamelCase_ = num_mel_bins lowerCamelCase_ = do_ceptral_normalize lowerCamelCase_ = normalize_means lowerCamelCase_ = normalize_vars lowerCamelCase_ = True def snake_case ( self , UpperCamelCase , ): """simple docstring""" lowerCamelCase_ = waveform * (2**15) # Kaldi compliance: 16-bit signed integers lowerCamelCase_ = torch.from_numpy(UpperCamelCase ).unsqueeze(0 ) lowerCamelCase_ = ta_kaldi.fbank(UpperCamelCase , num_mel_bins=self.num_mel_bins , sample_frequency=self.sampling_rate ) return features.numpy() @staticmethod def snake_case ( UpperCamelCase , UpperCamelCase , UpperCamelCase = True , UpperCamelCase = True , UpperCamelCase = 0.0 , ): """simple docstring""" # make sure we normalize float32 arrays if normalize_means: lowerCamelCase_ = x[:input_length].mean(axis=0 ) lowerCamelCase_ = np.subtract(UpperCamelCase , UpperCamelCase ) if normalize_vars: lowerCamelCase_ = x[:input_length].std(axis=0 ) lowerCamelCase_ = np.divide(UpperCamelCase , UpperCamelCase ) if input_length < x.shape[0]: lowerCamelCase_ = padding_value # make sure array is in float32 lowerCamelCase_ = x.astype(np.floataa ) return x def snake_case ( self , UpperCamelCase , UpperCamelCase = None ): """simple docstring""" lowerCamelCase_ = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [ self.utterance_cmvn(UpperCamelCase , UpperCamelCase , self.normalize_means , self.normalize_vars , self.padding_value ) for x, n in zip(UpperCamelCase , UpperCamelCase ) ] def __call__( self , UpperCamelCase , UpperCamelCase = False , UpperCamelCase = None , UpperCamelCase = False , UpperCamelCase = None , UpperCamelCase = None , UpperCamelCase = None , UpperCamelCase = None , **UpperCamelCase , ): """simple docstring""" if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of''' f''' {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with''' f''' {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( "It is strongly recommended to pass the `sampling_rate` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) lowerCamelCase_ = isinstance(UpperCamelCase , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'''Only mono-channel audio is supported for input to {self}''' ) lowerCamelCase_ = is_batched_numpy or ( isinstance(UpperCamelCase , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: lowerCamelCase_ = [np.asarray(UpperCamelCase , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(UpperCamelCase , np.ndarray ): lowerCamelCase_ = np.asarray(UpperCamelCase , dtype=np.floataa ) elif isinstance(UpperCamelCase , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): lowerCamelCase_ = raw_speech.astype(np.floataa ) # always return batch if not is_batched: lowerCamelCase_ = [raw_speech] # extract fbank features lowerCamelCase_ = [self._extract_fbank_features(UpperCamelCase ) for waveform in raw_speech] # convert into correct format for padding lowerCamelCase_ = BatchFeature({"input_features": features} ) lowerCamelCase_ = self.pad( UpperCamelCase , padding=UpperCamelCase , max_length=UpperCamelCase , truncation=UpperCamelCase , pad_to_multiple_of=UpperCamelCase , return_attention_mask=UpperCamelCase , **UpperCamelCase , ) # make sure list is in array format lowerCamelCase_ = padded_inputs.get("input_features" ) if isinstance(input_features[0] , UpperCamelCase ): lowerCamelCase_ = [np.asarray(UpperCamelCase , dtype=np.floataa ) for feature in input_features] lowerCamelCase_ = padded_inputs.get("attention_mask" ) if attention_mask is not None: lowerCamelCase_ = [np.asarray(UpperCamelCase , dtype=np.intaa ) for array in attention_mask] # Utterance-level cepstral mean and variance normalization if self.do_ceptral_normalize: lowerCamelCase_ = ( np.array(UpperCamelCase , dtype=np.intaa ) if self._get_padding_strategies(UpperCamelCase , max_length=UpperCamelCase ) is not PaddingStrategy.DO_NOT_PAD else None ) lowerCamelCase_ = self.normalize( padded_inputs["input_features"] , attention_mask=UpperCamelCase ) if return_tensors is not None: lowerCamelCase_ = padded_inputs.convert_to_tensors(UpperCamelCase ) return padded_inputs
55
0
'''simple docstring''' import warnings from ...utils import logging from .image_processing_flava import FlavaImageProcessor __a: int = logging.get_logger(__name__) class UpperCAmelCase ( a__ ): '''simple docstring''' def __init__( self , *__lowerCAmelCase , **__lowerCAmelCase ) -> None: warnings.warn( '''The class FlavaFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use FlavaImageProcessor instead.''' , __lowerCAmelCase , ) super().__init__(*__lowerCAmelCase , **__lowerCAmelCase )
214
'''simple docstring''' import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __a: Union[str, Any] = logging.get_logger(__name__) __a: Tuple = {"""tokenizer_file""": """tokenizer.json"""} __a: Union[str, Any] = { """tokenizer_file""": { """bigscience/tokenizer""": """https://huggingface.co/bigscience/tokenizer/blob/main/tokenizer.json""", """bigscience/bloom-560m""": """https://huggingface.co/bigscience/bloom-560m/blob/main/tokenizer.json""", """bigscience/bloom-1b1""": """https://huggingface.co/bigscience/bloom-1b1/blob/main/tokenizer.json""", """bigscience/bloom-1b7""": """https://huggingface.co/bigscience/bloom-1b7/blob/main/tokenizer.json""", """bigscience/bloom-3b""": """https://huggingface.co/bigscience/bloom-3b/blob/main/tokenizer.json""", """bigscience/bloom-7b1""": """https://huggingface.co/bigscience/bloom-7b1/blob/main/tokenizer.json""", """bigscience/bloom""": """https://huggingface.co/bigscience/bloom/blob/main/tokenizer.json""", }, } class UpperCAmelCase ( a__ ): '''simple docstring''' SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE = ["input_ids", "attention_mask"] SCREAMING_SNAKE_CASE = None def __init__( self , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase="<unk>" , __lowerCAmelCase="<s>" , __lowerCAmelCase="</s>" , __lowerCAmelCase="<pad>" , __lowerCAmelCase=False , __lowerCAmelCase=False , **__lowerCAmelCase , ) -> Union[str, Any]: super().__init__( __lowerCAmelCase , __lowerCAmelCase , tokenizer_file=__lowerCAmelCase , unk_token=__lowerCAmelCase , bos_token=__lowerCAmelCase , eos_token=__lowerCAmelCase , pad_token=__lowerCAmelCase , add_prefix_space=__lowerCAmelCase , clean_up_tokenization_spaces=__lowerCAmelCase , **__lowerCAmelCase , ) lowercase__ : int = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , __lowerCAmelCase ) != add_prefix_space: lowercase__ : int = getattr(__lowerCAmelCase , pre_tok_state.pop('''type''' ) ) lowercase__ : Tuple = add_prefix_space lowercase__ : List[str] = pre_tok_class(**__lowerCAmelCase ) lowercase__ : Union[str, Any] = add_prefix_space def _lowerCAmelCase( self , *__lowerCAmelCase , **__lowerCAmelCase ) -> BatchEncoding: lowercase__ : Dict = kwargs.get('''is_split_into_words''' , __lowerCAmelCase ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with""" ''' pretokenized inputs.''' ) return super()._batch_encode_plus(*__lowerCAmelCase , **__lowerCAmelCase ) def _lowerCAmelCase( self , *__lowerCAmelCase , **__lowerCAmelCase ) -> BatchEncoding: lowercase__ : str = kwargs.get('''is_split_into_words''' , __lowerCAmelCase ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with""" ''' pretokenized inputs.''' ) return super()._encode_plus(*__lowerCAmelCase , **__lowerCAmelCase ) def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase = None ) -> Tuple[str]: lowercase__ : List[Any] = self._tokenizer.model.save(__lowerCAmelCase , name=__lowerCAmelCase ) return tuple(__lowerCAmelCase ) def _lowerCAmelCase( self , __lowerCAmelCase ) -> List[int]: lowercase__ : Dict = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) + [self.eos_token_id] ) if len(__lowerCAmelCase ) > self.model_max_length: lowercase__ : Optional[Any] = input_ids[-self.model_max_length :] return input_ids
214
1
lowerCAmelCase = [ (1_0_0_0, '''M'''), (9_0_0, '''CM'''), (5_0_0, '''D'''), (4_0_0, '''CD'''), (1_0_0, '''C'''), (9_0, '''XC'''), (5_0, '''L'''), (4_0, '''XL'''), (1_0, '''X'''), (9, '''IX'''), (5, '''V'''), (4, '''IV'''), (1, '''I'''), ] def _lowerCamelCase( lowercase__ ) -> int: '''simple docstring''' __lowercase= {'I': 1, 'V': 5, 'X': 1_0, 'L': 5_0, 'C': 1_0_0, 'D': 5_0_0, 'M': 1_0_0_0} __lowercase= 0 __lowercase= 0 while place < len(lowercase__ ): if (place + 1 < len(lowercase__ )) and (vals[roman[place]] < vals[roman[place + 1]]): total += vals[roman[place + 1]] - vals[roman[place]] place += 2 else: total += vals[roman[place]] place += 1 return total def _lowerCamelCase( lowercase__ ) -> str: '''simple docstring''' __lowercase= [] for arabic, roman in ROMAN: ((__lowercase), (__lowercase))= divmod(lowercase__ , lowercase__ ) result.append(roman * factor ) if number == 0: break return "".join(lowercase__ ) if __name__ == "__main__": import doctest doctest.testmod()
295
from __future__ import annotations def _lowerCamelCase( lowercase__ , lowercase__ ) -> Any: '''simple docstring''' if len(lowercase__ ) <= 1 or n <= 1: return insert_next(lowercase__ , n - 1 ) rec_insertion_sort(lowercase__ , n - 1 ) def _lowerCamelCase( lowercase__ , lowercase__ ) -> Any: '''simple docstring''' if index >= len(lowercase__ ) or collection[index - 1] <= collection[index]: return # Swaps adjacent elements since they are not in ascending order __lowercase, __lowercase= ( collection[index], collection[index - 1], ) insert_next(lowercase__ , index + 1 ) if __name__ == "__main__": lowerCAmelCase = input('''Enter integers separated by spaces: ''') lowerCAmelCase = [int(num) for num in numbers.split()] rec_insertion_sort(number_list, len(number_list)) print(number_list)
295
1
"""simple docstring""" __snake_case = [0, 2, 4, 6, 8] __snake_case = [1, 3, 5, 7, 9] def __lowerCAmelCase ( lowercase : int , lowercase : int , lowercase : list[int] , lowercase : int ) -> int: """simple docstring""" if remaining_length == 0: if digits[0] == 0 or digits[-1] == 0: return 0 for i in range(length // 2 - 1 , -1 , -1 ): remainder += digits[i] + digits[length - i - 1] if remainder % 2 == 0: return 0 remainder //= 10 return 1 if remaining_length == 1: if remainder % 2 == 0: return 0 snake_case : Union[str, Any] = 0 for digit in range(10 ): snake_case : List[Any] = digit result += reversible_numbers( 0 , (remainder + 2 * digit) // 10 , lowercase , lowercase ) return result snake_case : int = 0 for digita in range(10 ): snake_case : Optional[int] = digita if (remainder + digita) % 2 == 0: snake_case : Dict = ODD_DIGITS else: snake_case : List[str] = EVEN_DIGITS for digita in other_parity_digits: snake_case : Union[str, Any] = digita result += reversible_numbers( remaining_length - 2 , (remainder + digita + digita) // 10 , lowercase , lowercase , ) return result def __lowerCAmelCase ( lowercase : int = 9 ) -> int: """simple docstring""" snake_case : Dict = 0 for length in range(1 , max_power + 1 ): result += reversible_numbers(lowercase , 0 , [0] * length , lowercase ) return result if __name__ == "__main__": print(F'''{solution() = }''')
112
"""simple docstring""" import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class _lowerCAmelCase ( unittest.TestCase ): @property def lowerCamelCase ( self ) -> str: '''simple docstring''' torch.manual_seed(0 ) snake_case : int = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("DownBlock2D", "AttnDownBlock2D") , up_block_types=("AttnUpBlock2D", "UpBlock2D") , ) return model def lowerCamelCase ( self ) -> Any: '''simple docstring''' snake_case : Any = self.dummy_uncond_unet snake_case : Tuple = KarrasVeScheduler() snake_case : int = KarrasVePipeline(unet=UpperCamelCase__ , scheduler=UpperCamelCase__ ) pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) snake_case : Optional[Any] = torch.manual_seed(0 ) snake_case : List[Any] = pipe(num_inference_steps=2 , generator=UpperCamelCase__ , output_type="numpy" ).images snake_case : Dict = torch.manual_seed(0 ) snake_case : Dict = pipe(num_inference_steps=2 , generator=UpperCamelCase__ , output_type="numpy" , return_dict=UpperCamelCase__ )[0] snake_case : Tuple = image[0, -3:, -3:, -1] snake_case : Tuple = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) snake_case : int = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class _lowerCAmelCase ( unittest.TestCase ): def lowerCamelCase ( self ) -> List[Any]: '''simple docstring''' snake_case : Optional[Any] = "google/ncsnpp-celebahq-256" snake_case : List[str] = UNetaDModel.from_pretrained(UpperCamelCase__ ) snake_case : Optional[Any] = KarrasVeScheduler() snake_case : Optional[int] = KarrasVePipeline(unet=UpperCamelCase__ , scheduler=UpperCamelCase__ ) pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) snake_case : Dict = torch.manual_seed(0 ) snake_case : Union[str, Any] = pipe(num_inference_steps=20 , generator=UpperCamelCase__ , output_type="numpy" ).images snake_case : int = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) snake_case : Any = np.array([0.578, 0.5811, 0.5924, 0.5809, 0.587, 0.5886, 0.5861, 0.5802, 0.586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
112
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) A : str = { "configuration_convnext": ["CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ConvNextConfig", "ConvNextOnnxConfig"] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : List[Any] = ["ConvNextFeatureExtractor"] A : str = ["ConvNextImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : List[str] = [ "CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST", "ConvNextForImageClassification", "ConvNextModel", "ConvNextPreTrainedModel", "ConvNextBackbone", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : List[Any] = [ "TFConvNextForImageClassification", "TFConvNextModel", "TFConvNextPreTrainedModel", ] if TYPE_CHECKING: from .configuration_convnext import CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvNextConfig, ConvNextOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_convnext import ConvNextFeatureExtractor from .image_processing_convnext import ConvNextImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convnext import ( CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvNextBackbone, ConvNextForImageClassification, ConvNextModel, ConvNextPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convnext import TFConvNextForImageClassification, TFConvNextModel, TFConvNextPreTrainedModel else: import sys A : Any = _LazyModule(__name__, globals()["__file__"], _import_structure)
118
import io import itertools import json from dataclasses import dataclass from typing import Optional import pyarrow as pa import pyarrow.json as paj import datasets from datasets.table import table_cast from datasets.utils.file_utils import readline A : Tuple = datasets.utils.logging.get_logger(__name__) @dataclass class lowerCamelCase (datasets.BuilderConfig ): """simple docstring""" lowerCamelCase__ = None lowerCamelCase__ = "utf-8" lowerCamelCase__ = None lowerCamelCase__ = None lowerCamelCase__ = True # deprecated lowerCamelCase__ = None # deprecated lowerCamelCase__ = 1_0 << 2_0 # 10MB lowerCamelCase__ = None class lowerCamelCase (datasets.ArrowBasedBuilder ): """simple docstring""" lowerCamelCase__ = JsonConfig def __A ( self : Optional[int] ) -> Optional[int]: if self.config.block_size is not None: logger.warning("The JSON loader parameter `block_size` is deprecated. Please use `chunksize` instead" ) SCREAMING_SNAKE_CASE_ = self.config.block_size if self.config.use_threads is not True: logger.warning( "The JSON loader parameter `use_threads` is deprecated and doesn't have any effect anymore." ) if self.config.newlines_in_values is not None: raise ValueError("The JSON loader parameter `newlines_in_values` is no longer supported" ) return datasets.DatasetInfo(features=self.config.features ) def __A ( self : List[str] , __magic_name__ : str ) -> Tuple: if not self.config.data_files: raise ValueError(F'''At least one data file must be specified, but got data_files={self.config.data_files}''' ) SCREAMING_SNAKE_CASE_ = dl_manager.download_and_extract(self.config.data_files ) if isinstance(__magic_name__ , (str, list, tuple) ): SCREAMING_SNAKE_CASE_ = data_files if isinstance(__magic_name__ , __magic_name__ ): SCREAMING_SNAKE_CASE_ = [files] SCREAMING_SNAKE_CASE_ = [dl_manager.iter_files(__magic_name__ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"files": files} )] SCREAMING_SNAKE_CASE_ = [] for split_name, files in data_files.items(): if isinstance(__magic_name__ , __magic_name__ ): SCREAMING_SNAKE_CASE_ = [files] SCREAMING_SNAKE_CASE_ = [dl_manager.iter_files(__magic_name__ ) for file in files] splits.append(datasets.SplitGenerator(name=__magic_name__ , gen_kwargs={"files": files} ) ) return splits def __A ( self : str , __magic_name__ : pa.Table ) -> pa.Table: if self.config.features is not None: # adding missing columns for column_name in set(self.config.features ) - set(pa_table.column_names ): SCREAMING_SNAKE_CASE_ = self.config.features.arrow_schema.field(__magic_name__ ).type SCREAMING_SNAKE_CASE_ = pa_table.append_column(__magic_name__ , pa.array([None] * len(__magic_name__ ) , type=__magic_name__ ) ) # more expensive cast to support nested structures with keys in a different order # allows str <-> int/float or str to Audio for example SCREAMING_SNAKE_CASE_ = table_cast(__magic_name__ , self.config.features.arrow_schema ) return pa_table def __A ( self : List[str] , __magic_name__ : List[str] ) -> int: for file_idx, file in enumerate(itertools.chain.from_iterable(__magic_name__ ) ): # If the file is one json object and if we need to look at the list of items in one specific field if self.config.field is not None: with open(__magic_name__ , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: SCREAMING_SNAKE_CASE_ = json.load(__magic_name__ ) # We keep only the field we are interested in SCREAMING_SNAKE_CASE_ = dataset[self.config.field] # We accept two format: a list of dicts or a dict of lists if isinstance(__magic_name__ , (list, tuple) ): SCREAMING_SNAKE_CASE_ = set().union(*[row.keys() for row in dataset] ) SCREAMING_SNAKE_CASE_ = {col: [row.get(__magic_name__ ) for row in dataset] for col in keys} else: SCREAMING_SNAKE_CASE_ = dataset SCREAMING_SNAKE_CASE_ = pa.Table.from_pydict(__magic_name__ ) yield file_idx, self._cast_table(__magic_name__ ) # If the file has one json object per line else: with open(__magic_name__ , "rb" ) as f: SCREAMING_SNAKE_CASE_ = 0 # Use block_size equal to the chunk size divided by 32 to leverage multithreading # Set a default minimum value of 16kB if the chunk size is really small SCREAMING_SNAKE_CASE_ = max(self.config.chunksize // 32 , 16 << 10 ) SCREAMING_SNAKE_CASE_ = ( self.config.encoding_errors if self.config.encoding_errors is not None else "strict" ) while True: SCREAMING_SNAKE_CASE_ = f.read(self.config.chunksize ) if not batch: break # Finish current line try: batch += f.readline() except (AttributeError, io.UnsupportedOperation): batch += readline(__magic_name__ ) # PyArrow only accepts utf-8 encoded bytes if self.config.encoding != "utf-8": SCREAMING_SNAKE_CASE_ = batch.decode(self.config.encoding , errors=__magic_name__ ).encode("utf-8" ) try: while True: try: SCREAMING_SNAKE_CASE_ = paj.read_json( io.BytesIO(__magic_name__ ) , read_options=paj.ReadOptions(block_size=__magic_name__ ) ) break except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e: if ( isinstance(__magic_name__ , pa.ArrowInvalid ) and "straddling" not in str(__magic_name__ ) or block_size > len(__magic_name__ ) ): raise else: # Increase the block size in case it was too small. # The block size will be reset for the next file. logger.debug( F'''Batch of {len(__magic_name__ )} bytes couldn\'t be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}.''' ) block_size *= 2 except pa.ArrowInvalid as e: try: with open( __magic_name__ , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: SCREAMING_SNAKE_CASE_ = json.load(__magic_name__ ) except json.JSONDecodeError: logger.error(F'''Failed to read file \'{file}\' with error {type(__magic_name__ )}: {e}''' ) raise e # If possible, parse the file as a list of json objects and exit the loop if isinstance(__magic_name__ , __magic_name__ ): # list is the only sequence type supported in JSON try: SCREAMING_SNAKE_CASE_ = set().union(*[row.keys() for row in dataset] ) SCREAMING_SNAKE_CASE_ = {col: [row.get(__magic_name__ ) for row in dataset] for col in keys} SCREAMING_SNAKE_CASE_ = pa.Table.from_pydict(__magic_name__ ) except (pa.ArrowInvalid, AttributeError) as e: logger.error(F'''Failed to read file \'{file}\' with error {type(__magic_name__ )}: {e}''' ) raise ValueError(F'''Not able to read records in the JSON file at {file}.''' ) from None yield file_idx, self._cast_table(__magic_name__ ) break else: logger.error(F'''Failed to read file \'{file}\' with error {type(__magic_name__ )}: {e}''' ) raise ValueError( F'''Not able to read records in the JSON file at {file}. ''' F'''You should probably indicate the field of the JSON file containing your records. ''' F'''This JSON file contain the following fields: {str(list(dataset.keys() ) )}. ''' F'''Select the correct one and provide it as `field=\'XXX\'` to the dataset loading method. ''' ) from None # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(__magic_name__ ) batch_idx += 1
118
1
import unittest from transformers import DebertaVaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaVaForMaskedLM, DebertaVaForMultipleChoice, DebertaVaForQuestionAnswering, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaModel, ) from transformers.models.deberta_va.modeling_deberta_va import DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST class A ( A_ ): def __init__(self , lowerCAmelCase , lowerCAmelCase=1_3 , lowerCAmelCase=7 , lowerCAmelCase=True , lowerCAmelCase=True , lowerCAmelCase=True , lowerCAmelCase=True , lowerCAmelCase=9_9 , lowerCAmelCase=3_2 , lowerCAmelCase=5 , lowerCAmelCase=4 , lowerCAmelCase=3_7 , lowerCAmelCase="gelu" , lowerCAmelCase=0.1 , lowerCAmelCase=0.1 , lowerCAmelCase=5_1_2 , lowerCAmelCase=1_6 , lowerCAmelCase=2 , lowerCAmelCase=0.02 , lowerCAmelCase=False , lowerCAmelCase=True , lowerCAmelCase="None" , lowerCAmelCase=3 , lowerCAmelCase=4 , lowerCAmelCase=None , ): __lowercase= parent __lowercase= batch_size __lowercase= seq_length __lowercase= is_training __lowercase= use_input_mask __lowercase= use_token_type_ids __lowercase= use_labels __lowercase= vocab_size __lowercase= hidden_size __lowercase= num_hidden_layers __lowercase= num_attention_heads __lowercase= intermediate_size __lowercase= hidden_act __lowercase= hidden_dropout_prob __lowercase= attention_probs_dropout_prob __lowercase= max_position_embeddings __lowercase= type_vocab_size __lowercase= type_sequence_label_size __lowercase= initializer_range __lowercase= num_labels __lowercase= num_choices __lowercase= relative_attention __lowercase= position_biased_input __lowercase= pos_att_type __lowercase= scope def _A (self ): __lowercase= ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase= None if self.use_input_mask: __lowercase= ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) __lowercase= None if self.use_token_type_ids: __lowercase= ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowercase= None __lowercase= None __lowercase= None if self.use_labels: __lowercase= ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase= ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowercase= ids_tensor([self.batch_size] , self.num_choices ) __lowercase= self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _A (self ): return DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def _A (self , lowerCAmelCase ): self.parent.assertListEqual(list(result.loss.size() ) , [] ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): __lowercase= DebertaVaModel(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowercase= model(lowerCAmelCase , attention_mask=lowerCAmelCase , token_type_ids=lowerCAmelCase )[0] __lowercase= model(lowerCAmelCase , token_type_ids=lowerCAmelCase )[0] __lowercase= model(lowerCAmelCase )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): __lowercase= DebertaVaForMaskedLM(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowercase= model(lowerCAmelCase , attention_mask=lowerCAmelCase , token_type_ids=lowerCAmelCase , labels=lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): __lowercase= self.num_labels __lowercase= DebertaVaForSequenceClassification(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowercase= model(lowerCAmelCase , attention_mask=lowerCAmelCase , token_type_ids=lowerCAmelCase , labels=lowerCAmelCase ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(lowerCAmelCase ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): __lowercase= self.num_labels __lowercase= DebertaVaForTokenClassification(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowercase= model(lowerCAmelCase , attention_mask=lowerCAmelCase , token_type_ids=lowerCAmelCase , labels=lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): __lowercase= DebertaVaForQuestionAnswering(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowercase= model( lowerCAmelCase , attention_mask=lowerCAmelCase , token_type_ids=lowerCAmelCase , start_positions=lowerCAmelCase , end_positions=lowerCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): __lowercase= DebertaVaForMultipleChoice(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowercase= input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowercase= token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowercase= input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowercase= model( lowerCAmelCase , attention_mask=lowerCAmelCase , token_type_ids=lowerCAmelCase , labels=lowerCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _A (self ): __lowercase= self.prepare_config_and_inputs() ( ( __lowercase ), ( __lowercase ), ( __lowercase ), ( __lowercase ), ( __lowercase ), ( __lowercase ), ( __lowercase ), )= config_and_inputs __lowercase= {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class A ( A_ , A_ , unittest.TestCase ): UpperCamelCase_ : List[Any] =( ( DebertaVaModel, DebertaVaForMaskedLM, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaForQuestionAnswering, DebertaVaForMultipleChoice, ) if is_torch_available() else () ) UpperCamelCase_ : Union[str, Any] =( { '''feature-extraction''': DebertaVaModel, '''fill-mask''': DebertaVaForMaskedLM, '''question-answering''': DebertaVaForQuestionAnswering, '''text-classification''': DebertaVaForSequenceClassification, '''token-classification''': DebertaVaForTokenClassification, '''zero-shot''': DebertaVaForSequenceClassification, } if is_torch_available() else {} ) UpperCamelCase_ : Union[str, Any] =True UpperCamelCase_ : int =False UpperCamelCase_ : List[Any] =False UpperCamelCase_ : Dict =False UpperCamelCase_ : List[str] =False def _A (self ): __lowercase= DebertaVaModelTester(self ) __lowercase= ConfigTester(self , config_class=lowerCAmelCase , hidden_size=3_7 ) def _A (self ): self.config_tester.run_common_tests() def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*lowerCAmelCase ) def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*lowerCAmelCase ) def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*lowerCAmelCase ) def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*lowerCAmelCase ) def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*lowerCAmelCase ) def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_multiple_choice(*lowerCAmelCase ) @slow def _A (self ): for model_name in DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase= DebertaVaModel.from_pretrained(lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) @require_torch @require_sentencepiece @require_tokenizers class A ( unittest.TestCase ): @unittest.skip(reason='Model not available yet' ) def _A (self ): pass @slow def _A (self ): __lowercase= DebertaVaModel.from_pretrained('microsoft/deberta-v2-xlarge' ) __lowercase= torch.tensor([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] ) __lowercase= torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __lowercase= model(lowerCAmelCase , attention_mask=lowerCAmelCase )[0] # compare the actual values for a slice. __lowercase= torch.tensor( [[[0.23_56, 0.19_48, 0.03_69], [-0.10_63, 0.35_86, -0.51_52], [-0.63_99, -0.02_59, -0.25_25]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , lowerCAmelCase , atol=1E-4 ) , f'{output[:, 1:4, 1:4]}' )
355
import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class A : def __init__(self , lowerCAmelCase , lowerCAmelCase=1_3 , lowerCAmelCase=7 , lowerCAmelCase=True , lowerCAmelCase=True , lowerCAmelCase=True , lowerCAmelCase=True , lowerCAmelCase=True , lowerCAmelCase=False , lowerCAmelCase=False , lowerCAmelCase=False , lowerCAmelCase=2 , lowerCAmelCase=9_9 , lowerCAmelCase=0 , lowerCAmelCase=3_2 , lowerCAmelCase=5 , lowerCAmelCase=4 , lowerCAmelCase=0.1 , lowerCAmelCase=0.1 , lowerCAmelCase=5_1_2 , lowerCAmelCase=2 , lowerCAmelCase=0.02 , lowerCAmelCase=2 , lowerCAmelCase=4 , lowerCAmelCase="last" , lowerCAmelCase=True , lowerCAmelCase=None , lowerCAmelCase=0 , ): __lowercase= parent __lowercase= batch_size __lowercase= seq_length __lowercase= is_training __lowercase= use_input_lengths __lowercase= use_token_type_ids __lowercase= use_labels __lowercase= gelu_activation __lowercase= sinusoidal_embeddings __lowercase= causal __lowercase= asm __lowercase= n_langs __lowercase= vocab_size __lowercase= n_special __lowercase= hidden_size __lowercase= num_hidden_layers __lowercase= num_attention_heads __lowercase= hidden_dropout_prob __lowercase= attention_probs_dropout_prob __lowercase= max_position_embeddings __lowercase= type_sequence_label_size __lowercase= initializer_range __lowercase= num_labels __lowercase= num_choices __lowercase= summary_type __lowercase= use_proj __lowercase= scope __lowercase= bos_token_id def _A (self ): __lowercase= ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase= random_attention_mask([self.batch_size, self.seq_length] ) __lowercase= None if self.use_input_lengths: __lowercase= ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length __lowercase= None if self.use_token_type_ids: __lowercase= ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) __lowercase= None __lowercase= None __lowercase= None if self.use_labels: __lowercase= ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase= ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowercase= ids_tensor([self.batch_size] , 2 ).float() __lowercase= ids_tensor([self.batch_size] , self.num_choices ) __lowercase= self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def _A (self ): return XLMConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , ): __lowercase= XLMModel(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowercase= model(lowerCAmelCase , lengths=lowerCAmelCase , langs=lowerCAmelCase ) __lowercase= model(lowerCAmelCase , langs=lowerCAmelCase ) __lowercase= model(lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , ): __lowercase= XLMWithLMHeadModel(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowercase= model(lowerCAmelCase , token_type_ids=lowerCAmelCase , labels=lowerCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , ): __lowercase= XLMForQuestionAnsweringSimple(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowercase= model(lowerCAmelCase ) __lowercase= model(lowerCAmelCase , start_positions=lowerCAmelCase , end_positions=lowerCAmelCase ) __lowercase= outputs self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , ): __lowercase= XLMForQuestionAnswering(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowercase= model(lowerCAmelCase ) __lowercase= model( lowerCAmelCase , start_positions=lowerCAmelCase , end_positions=lowerCAmelCase , cls_index=lowerCAmelCase , is_impossible=lowerCAmelCase , p_mask=lowerCAmelCase , ) __lowercase= model( lowerCAmelCase , start_positions=lowerCAmelCase , end_positions=lowerCAmelCase , cls_index=lowerCAmelCase , is_impossible=lowerCAmelCase , ) ((__lowercase), )= result_with_labels.to_tuple() __lowercase= model(lowerCAmelCase , start_positions=lowerCAmelCase , end_positions=lowerCAmelCase ) ((__lowercase), )= result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , ): __lowercase= XLMForSequenceClassification(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowercase= model(lowerCAmelCase ) __lowercase= model(lowerCAmelCase , labels=lowerCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , ): __lowercase= self.num_labels __lowercase= XLMForTokenClassification(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowercase= model(lowerCAmelCase , attention_mask=lowerCAmelCase , labels=lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , ): __lowercase= self.num_choices __lowercase= XLMForMultipleChoice(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowercase= input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowercase= token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowercase= input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowercase= model( lowerCAmelCase , attention_mask=lowerCAmelCase , token_type_ids=lowerCAmelCase , labels=lowerCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _A (self ): __lowercase= self.prepare_config_and_inputs() ( ( __lowercase ), ( __lowercase ), ( __lowercase ), ( __lowercase ), ( __lowercase ), ( __lowercase ), ( __lowercase ), ( __lowercase ), ( __lowercase ), )= config_and_inputs __lowercase= {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'lengths': input_lengths} return config, inputs_dict @require_torch class A ( A_ , A_ , A_ , unittest.TestCase ): UpperCamelCase_ : int =( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) UpperCamelCase_ : Dict =( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable UpperCamelCase_ : str =( { '''feature-extraction''': XLMModel, '''fill-mask''': XLMWithLMHeadModel, '''question-answering''': XLMForQuestionAnsweringSimple, '''text-classification''': XLMForSequenceClassification, '''text-generation''': XLMWithLMHeadModel, '''token-classification''': XLMForTokenClassification, '''zero-shot''': XLMForSequenceClassification, } if is_torch_available() else {} ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('Fast' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase=False ): __lowercase= super()._prepare_for_class(lowerCAmelCase , lowerCAmelCase , return_labels=lowerCAmelCase ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": __lowercase= torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase ) __lowercase= torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase ) return inputs_dict def _A (self ): __lowercase= XLMModelTester(self ) __lowercase= ConfigTester(self , config_class=lowerCAmelCase , emb_dim=3_7 ) def _A (self ): self.config_tester.run_common_tests() def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*lowerCAmelCase ) def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*lowerCAmelCase ) def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*lowerCAmelCase ) def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*lowerCAmelCase ) def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*lowerCAmelCase ) def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*lowerCAmelCase ) def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*lowerCAmelCase ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase=False , lowerCAmelCase=1 ): self.assertIsInstance(lowerCAmelCase , lowerCAmelCase ) self.assertListEqual( [isinstance(lowerCAmelCase , lowerCAmelCase ) for iter_attentions in attentions] , [True] * len(lowerCAmelCase ) ) self.assertEqual(len(lowerCAmelCase ) , (max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(lowerCAmelCase ): # adds PAD dummy token __lowercase= min_length + idx + 1 __lowercase= min_length + idx + 1 __lowercase= ( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(lowerCAmelCase ) ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase=False , lowerCAmelCase=1 ): self.assertIsInstance(lowerCAmelCase , lowerCAmelCase ) self.assertListEqual( [isinstance(lowerCAmelCase , lowerCAmelCase ) for iter_hidden_states in hidden_states] , [True] * len(lowerCAmelCase ) , ) self.assertEqual(len(lowerCAmelCase ) , (max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(lowerCAmelCase ): # adds PAD dummy token __lowercase= min_length + idx + 1 __lowercase= (batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(lowerCAmelCase ) , ) pass @slow def _A (self ): for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase= XLMModel.from_pretrained(lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) @require_torch class A ( unittest.TestCase ): @slow def _A (self ): __lowercase= XLMWithLMHeadModel.from_pretrained('xlm-mlm-en-2048' ) model.to(lowerCAmelCase ) __lowercase= torch.tensor([[1_4, 4_4_7]] , dtype=torch.long , device=lowerCAmelCase ) # the president __lowercase= [ 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference __lowercase= model.generate(lowerCAmelCase , do_sample=lowerCAmelCase ) self.assertListEqual(output_ids[0].cpu().numpy().tolist() , lowerCAmelCase )
304
0
import argparse import math import os import torch from neural_compressor.utils.pytorch import load from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, StableDiffusionPipeline, UNetaDConditionModel def UpperCamelCase ( ): '''simple docstring''' lowercase = argparse.ArgumentParser() parser.add_argument( '''-m''' , '''--pretrained_model_name_or_path''' , type=lowerCAmelCase__ , default=lowerCAmelCase__ , required=lowerCAmelCase__ , help='''Path to pretrained model or model identifier from huggingface.co/models.''' , ) parser.add_argument( '''-c''' , '''--caption''' , type=lowerCAmelCase__ , default='''robotic cat with wings''' , help='''Text used to generate images.''' , ) parser.add_argument( '''-n''' , '''--images_num''' , type=lowerCAmelCase__ , default=4 , help='''How much images to generate.''' , ) parser.add_argument( '''-s''' , '''--seed''' , type=lowerCAmelCase__ , default=42 , help='''Seed for random process.''' , ) parser.add_argument( '''-ci''' , '''--cuda_id''' , type=lowerCAmelCase__ , default=0 , help='''cuda_id.''' , ) lowercase = parser.parse_args() return args def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' if not len(lowerCAmelCase__ ) == rows * cols: raise ValueError('''The specified number of rows and columns are not correct.''' ) lowercase , lowercase = imgs[0].size lowercase = Image.new('''RGB''' , size=(cols * w, rows * h) ) lowercase , lowercase = grid.size for i, img in enumerate(lowerCAmelCase__ ): grid.paste(lowerCAmelCase__ , box=(i % cols * w, i // cols * h) ) return grid def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__="robotic cat with wings" , lowerCAmelCase__=7.5 , lowerCAmelCase__=50 , lowerCAmelCase__=1 , lowerCAmelCase__=42 , ): '''simple docstring''' lowercase = torch.Generator(pipeline.device ).manual_seed(lowerCAmelCase__ ) lowercase = pipeline( lowerCAmelCase__ , guidance_scale=lowerCAmelCase__ , num_inference_steps=lowerCAmelCase__ , generator=lowerCAmelCase__ , num_images_per_prompt=lowerCAmelCase__ , ).images lowercase = int(math.sqrt(lowerCAmelCase__ ) ) lowercase = image_grid(lowerCAmelCase__ , rows=_rows , cols=num_images_per_prompt // _rows ) return grid, images lowercase__ :Tuple = parse_args() # Load models and create wrapper for stable diffusion lowercase__ :Optional[int] = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder="tokenizer") lowercase__ :List[str] = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="text_encoder") lowercase__ :Dict = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder="vae") lowercase__ :int = UNetaDConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="unet") lowercase__ :Union[str, Any] = StableDiffusionPipeline.from_pretrained( args.pretrained_model_name_or_path, text_encoder=text_encoder, vae=vae, unet=unet, tokenizer=tokenizer ) lowercase__ :List[Any] = lambda images, clip_input: (images, False) if os.path.exists(os.path.join(args.pretrained_model_name_or_path, "best_model.pt")): lowercase__ :str = load(args.pretrained_model_name_or_path, model=unet) unet.eval() setattr(pipeline, "unet", unet) else: lowercase__ :Optional[int] = unet.to(torch.device("cuda", args.cuda_id)) lowercase__ :List[Any] = pipeline.to(unet.device) lowercase__ , lowercase__ :Tuple = generate_images(pipeline, prompt=args.caption, num_images_per_prompt=args.images_num, seed=args.seed) grid.save(os.path.join(args.pretrained_model_name_or_path, "{}.png".format("_".join(args.caption.split())))) lowercase__ :Optional[Any] = os.path.join(args.pretrained_model_name_or_path, "_".join(args.caption.split())) os.makedirs(dirname, exist_ok=True) for idx, image in enumerate(images): image.save(os.path.join(dirname, "{}.png".format(idx + 1)))
101
import math_equivalence # From: git+https://github.com/hendrycks/math.git import datasets __lowerCAmelCase : Optional[Any] ='\\n@article{hendrycksmath2021,\n title={Measuring Mathematical Problem Solving With the MATH Dataset},\n author={Dan Hendrycks\n and Collin Burns\n and Saurav Kadavath\n and Akul Arora\n and Steven Basart\n and Eric Tang\n and Dawn Song\n and Jacob Steinhardt},\n journal={arXiv preprint arXiv:2103.03874},\n year={2021}\n}\n' __lowerCAmelCase : Any ='\\nThis metric is used to assess performance on the Mathematics Aptitude Test of Heuristics (MATH) dataset.\nIt first canonicalizes the inputs (e.g., converting "1/2" to "\\frac{1}{2}") and then computes accuracy.\n' __lowerCAmelCase : Optional[Any] =r'\nCalculates accuracy after canonicalizing inputs.\n\nArgs:\n predictions: list of predictions to score. Each prediction\n is a string that contains natural language and LaTex.\n references: list of reference for each prediction. Each\n reference is a string that contains natural language\n and LaTex.\nReturns:\n accuracy: accuracy after canonicalizing inputs\n (e.g., converting "1/2" to "\\frac{1}{2}")\n\nExamples:\n >>> metric = datasets.load_metric("competition_math")\n >>> results = metric.compute(references=["\\frac{1}{2}"], predictions=["1/2"])\n >>> print(results)\n {\'accuracy\': 1.0}\n' @datasets.utils.file_utils.add_end_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _lowercase ( datasets.Metric ): '''simple docstring''' def __magic_name__( self :Optional[Any] ) -> List[str]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' ), '''references''': datasets.Value('''string''' ), } ) , homepage='''https://github.com/hendrycks/math''' , codebase_urls=['''https://github.com/hendrycks/math'''] , ) def __magic_name__( self :Any , lowerCAmelCase__ :Optional[int] , lowerCAmelCase__ :Any ) -> Optional[int]: __SCREAMING_SNAKE_CASE : Tuple = 0.0 for i, j in zip(lowerCAmelCase__ , lowerCAmelCase__ ): n_correct += 1.0 if math_equivalence.is_equiv(lowerCAmelCase__ , lowerCAmelCase__ ) else 0.0 __SCREAMING_SNAKE_CASE : str = n_correct / len(lowerCAmelCase__ ) return { "accuracy": accuracy, }
9
0
from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case : int =logging.get_logger(__name__) __snake_case : Tuple ={ 'abeja/gpt-neox-japanese-2.7b': 'https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/config.json', } class lowerCamelCase__ ( lowerCamelCase__): '''simple docstring''' snake_case_ ="""gpt_neox_japanese""" def __init__(self ,__lowerCamelCase=3_20_00 ,__lowerCamelCase=25_60 ,__lowerCamelCase=32 ,__lowerCamelCase=32 ,__lowerCamelCase=4 ,__lowerCamelCase="gelu" ,__lowerCamelCase=1.00 ,__lowerCamelCase=1_00_00 ,__lowerCamelCase=20_48 ,__lowerCamelCase=0.02 ,__lowerCamelCase=1e-5 ,__lowerCamelCase=True ,__lowerCamelCase=3_19_96 ,__lowerCamelCase=3_19_99 ,__lowerCamelCase=0.1 ,__lowerCamelCase=0.0 ,**__lowerCamelCase ,) -> Optional[Any]: """simple docstring""" super().__init__(bos_token_id=__lowerCamelCase ,eos_token_id=__lowerCamelCase ,**__lowerCamelCase ) lowerCAmelCase__ : Dict = vocab_size lowerCAmelCase__ : List[Any] = max_position_embeddings lowerCAmelCase__ : List[Any] = hidden_size lowerCAmelCase__ : List[str] = num_hidden_layers lowerCAmelCase__ : List[Any] = num_attention_heads lowerCAmelCase__ : Optional[int] = intermediate_multiple_size lowerCAmelCase__ : int = hidden_act lowerCAmelCase__ : int = rotary_pct lowerCAmelCase__ : List[Any] = rotary_emb_base lowerCAmelCase__ : Optional[int] = initializer_range lowerCAmelCase__ : Dict = layer_norm_eps lowerCAmelCase__ : Optional[Any] = use_cache lowerCAmelCase__ : Dict = attention_dropout lowerCAmelCase__ : List[str] = hidden_dropout
94
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __snake_case : Optional[int] ={ 'configuration_vision_text_dual_encoder': ['VisionTextDualEncoderConfig'], 'processing_vision_text_dual_encoder': ['VisionTextDualEncoderProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : int =['VisionTextDualEncoderModel'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : List[str] =['FlaxVisionTextDualEncoderModel'] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Tuple =['TFVisionTextDualEncoderModel'] if TYPE_CHECKING: from .configuration_vision_text_dual_encoder import VisionTextDualEncoderConfig from .processing_vision_text_dual_encoder import VisionTextDualEncoderProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_text_dual_encoder import VisionTextDualEncoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_text_dual_encoder import FlaxVisionTextDualEncoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_text_dual_encoder import TFVisionTextDualEncoderModel else: import sys __snake_case : str =_LazyModule(__name__, globals()['__file__'], _import_structure)
94
1
import shutil import tempfile import unittest import numpy as np import pytest from transformers import is_speech_available, is_vision_available from transformers.testing_utils import require_torch if is_vision_available(): from transformers import TvltImageProcessor if is_speech_available(): from transformers import TvltFeatureExtractor from transformers import TvltProcessor @require_torch class SCREAMING_SNAKE_CASE__ (unittest.TestCase ): def snake_case_ ( self): lowercase__ : Any = 'ZinengTang/tvlt-base' lowercase__ : Optional[Any] = tempfile.mkdtemp() def snake_case_ ( self , **a): return TvltImageProcessor.from_pretrained(self.checkpoint , **a) def snake_case_ ( self , **a): return TvltFeatureExtractor.from_pretrained(self.checkpoint , **a) def snake_case_ ( self): shutil.rmtree(self.tmpdirname) def snake_case_ ( self): lowercase__ : int = self.get_image_processor() lowercase__ : Dict = self.get_feature_extractor() lowercase__ : List[Any] = TvltProcessor(image_processor=a , feature_extractor=a) processor.save_pretrained(self.tmpdirname) lowercase__ : Optional[int] = TvltProcessor.from_pretrained(self.tmpdirname) self.assertIsInstance(processor.feature_extractor , a) self.assertIsInstance(processor.image_processor , a) def snake_case_ ( self): lowercase__ : Any = self.get_image_processor() lowercase__ : str = self.get_feature_extractor() lowercase__ : Optional[int] = TvltProcessor(image_processor=a , feature_extractor=a) lowercase__ : List[Any] = np.ones([1_2000]) lowercase__ : str = feature_extractor(a , return_tensors='np') lowercase__ : Union[str, Any] = processor(audio=a , return_tensors='np') for key in audio_dict.keys(): self.assertAlmostEqual(audio_dict[key].sum() , input_processor[key].sum() , delta=1e-2) def snake_case_ ( self): lowercase__ : Dict = self.get_image_processor() lowercase__ : List[Any] = self.get_feature_extractor() lowercase__ : List[Any] = TvltProcessor(image_processor=a , feature_extractor=a) lowercase__ : Tuple = np.ones([3, 224, 224]) lowercase__ : Optional[int] = image_processor(a , return_tensors='np') lowercase__ : Union[str, Any] = processor(images=a , return_tensors='np') for key in image_dict.keys(): self.assertAlmostEqual(image_dict[key].sum() , input_processor[key].sum() , delta=1e-2) def snake_case_ ( self): lowercase__ : Any = self.get_image_processor() lowercase__ : List[str] = self.get_feature_extractor() lowercase__ : str = TvltProcessor(image_processor=a , feature_extractor=a) lowercase__ : List[Any] = np.ones([1_2000]) lowercase__ : Optional[int] = np.ones([3, 224, 224]) lowercase__ : Optional[Any] = processor(audio=a , images=a) self.assertListEqual(list(inputs.keys()) , ['audio_values', 'audio_mask', 'pixel_values', 'pixel_mask']) # test if it raises when no input is passed with pytest.raises(a): processor() def snake_case_ ( self): lowercase__ : List[Any] = self.get_image_processor() lowercase__ : Tuple = self.get_feature_extractor() lowercase__ : List[str] = TvltProcessor(image_processor=a , feature_extractor=a) self.assertListEqual( processor.model_input_names , image_processor.model_input_names + feature_extractor.model_input_names , msg='`processor` and `image_processor`+`feature_extractor` model input names do not match' , )
214
from __future__ import annotations def snake_case__ ( SCREAMING_SNAKE_CASE_ : dict , SCREAMING_SNAKE_CASE_ : str ): '''simple docstring''' lowercase__ , lowercase__ : List[str] = set(SCREAMING_SNAKE_CASE_ ), [start] while stack: lowercase__ : Union[str, Any] = stack.pop() explored.add(SCREAMING_SNAKE_CASE_ ) # Differences from BFS: # 1) pop last element instead of first one # 2) add adjacent elements to stack without exploring them for adj in reversed(graph[v] ): if adj not in explored: stack.append(SCREAMING_SNAKE_CASE_ ) return explored snake_case_ = { '''A''': ['''B''', '''C''', '''D'''], '''B''': ['''A''', '''D''', '''E'''], '''C''': ['''A''', '''F'''], '''D''': ['''B''', '''D'''], '''E''': ['''B''', '''F'''], '''F''': ['''C''', '''E''', '''G'''], '''G''': ['''F'''], } if __name__ == "__main__": import doctest doctest.testmod() print(depth_first_search(G, '''A'''))
214
1
"""simple docstring""" import os def _snake_case ( ): _lowerCamelCase : Tuple = os.path.dirname(os.path.realpath(lowercase__ ) ) _lowerCamelCase : Any = os.path.join(lowercase__ , 'triangle.txt' ) with open(lowercase__ ) as f: _lowerCamelCase : List[str] = f.readlines() _lowerCamelCase : List[Any] = [] for line in triangle: _lowerCamelCase : str = [] for number in line.strip().split(' ' ): numbers_from_line.append(int(lowercase__ ) ) a.append(lowercase__ ) for i in range(1 , len(lowercase__ ) ): for j in range(len(a[i] ) ): _lowerCamelCase : List[str] = a[i - 1][j] if j != len(a[i - 1] ) else 0 _lowerCamelCase : Any = a[i - 1][j - 1] if j > 0 else 0 a[i][j] += max(lowercase__ , lowercase__ ) return max(a[-1] ) if __name__ == "__main__": print(solution())
12
"""simple docstring""" import re def _snake_case ( lowercase__ ): _lowerCamelCase : Optional[int] = re.compile(r'^(\+91[\-\s]?)?[0]?(91)?[789]\d{9}$' ) if match := re.search(lowercase__ , lowercase__ ): return match.string == phone return False if __name__ == "__main__": print(indian_phone_validator("""+918827897895"""))
12
1
'''simple docstring''' import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration UpperCamelCase__ : Tuple = [ # tf -> hf ('''/''', '''.'''), ('''layer_''', '''layers.'''), ('''kernel''', '''weight'''), ('''beta''', '''bias'''), ('''gamma''', '''weight'''), ('''pegasus''', '''model'''), ] UpperCamelCase__ : Any = [ ('''.output.dense''', '''.fc2'''), ('''intermediate.LayerNorm''', '''final_layer_norm'''), ('''intermediate.dense''', '''fc1'''), ] UpperCamelCase__ : Tuple = ( INIT_COMMON + [ ('''attention.self.LayerNorm''', '''self_attn_layer_norm'''), ('''attention.output.dense''', '''self_attn.out_proj'''), ('''attention.self''', '''self_attn'''), ('''attention.encdec.LayerNorm''', '''encoder_attn_layer_norm'''), ('''attention.encdec_output.dense''', '''encoder_attn.out_proj'''), ('''attention.encdec''', '''encoder_attn'''), ('''key''', '''k_proj'''), ('''value''', '''v_proj'''), ('''query''', '''q_proj'''), ('''decoder.LayerNorm''', '''decoder.layernorm_embedding'''), ] + END_COMMON ) UpperCamelCase__ : int = ( INIT_COMMON + [ ('''embeddings.word_embeddings''', '''shared.weight'''), ('''embeddings.position_embeddings''', '''embed_positions.weight'''), ('''attention.self.LayerNorm''', '''self_attn_layer_norm'''), ('''attention.output.dense''', '''self_attn.output'''), ('''attention.self''', '''self_attn.self'''), ('''encoder.LayerNorm''', '''encoder.layernorm_embedding'''), ] + END_COMMON ) UpperCamelCase__ : Any = [ '''encdec/key/bias''', '''encdec/query/bias''', '''encdec/value/bias''', '''self/key/bias''', '''self/query/bias''', '''self/value/bias''', '''encdec_output/dense/bias''', '''attention/output/dense/bias''', ] def lowerCAmelCase_ ( _lowerCamelCase: str , _lowerCamelCase: List[str] ): for tf_name, hf_name in patterns: __SCREAMING_SNAKE_CASE : Dict = k.replace(_lowerCamelCase , _lowerCamelCase ) return k def lowerCAmelCase_ ( _lowerCamelCase: dict , _lowerCamelCase: dict ): __SCREAMING_SNAKE_CASE : Optional[int] = BigBirdPegasusConfig(**_lowerCamelCase ) __SCREAMING_SNAKE_CASE : List[str] = BigBirdPegasusForConditionalGeneration(_lowerCamelCase ) __SCREAMING_SNAKE_CASE : Optional[Any] = torch_model.state_dict() __SCREAMING_SNAKE_CASE : Any = {} # separating decoder weights __SCREAMING_SNAKE_CASE : List[Any] = {k: tf_weights[k] for k in tf_weights if k.startswith("""pegasus/decoder""" )} __SCREAMING_SNAKE_CASE : Tuple = {k: tf_weights[k] for k in tf_weights if not k.startswith("""pegasus/decoder""" )} for k, v in tqdm(decoder_weights.items() , """tf -> hf conversion""" ): __SCREAMING_SNAKE_CASE : Optional[int] = [k.endswith(_lowerCamelCase ) for ending in KEYS_TO_IGNORE] if any(_lowerCamelCase ): continue __SCREAMING_SNAKE_CASE : List[Any] = DECODER_PATTERNS __SCREAMING_SNAKE_CASE : List[Any] = rename_state_dict_key(_lowerCamelCase , _lowerCamelCase ) if new_k not in state_dict: raise ValueError(F"could not find new key {new_k} in state dict. (converted from {k})" ) if any(True if i in k else False for i in ["""dense""", """query""", """key""", """value"""] ): __SCREAMING_SNAKE_CASE : Dict = v.T __SCREAMING_SNAKE_CASE : int = torch.from_numpy(_lowerCamelCase ) assert v.shape == state_dict[new_k].shape, F"{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}" for k, v in tqdm(remaining_weights.items() , """tf -> hf conversion""" ): __SCREAMING_SNAKE_CASE : Tuple = [k.endswith(_lowerCamelCase ) for ending in KEYS_TO_IGNORE] if any(_lowerCamelCase ): continue __SCREAMING_SNAKE_CASE : List[str] = REMAINING_PATTERNS __SCREAMING_SNAKE_CASE : Optional[Any] = rename_state_dict_key(_lowerCamelCase , _lowerCamelCase ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(F"could not find new key {new_k} in state dict. (converted from {k})" ) if any(True if i in k else False for i in ["""dense""", """query""", """key""", """value"""] ): __SCREAMING_SNAKE_CASE : Dict = v.T __SCREAMING_SNAKE_CASE : Union[str, Any] = torch.from_numpy(_lowerCamelCase ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, F"{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}" __SCREAMING_SNAKE_CASE : Tuple = mapping["""model.embed_positions.weight"""] __SCREAMING_SNAKE_CASE : int = mapping.pop("""model.embed_positions.weight""" ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : List[Any] = torch_model.load_state_dict(_lowerCamelCase , strict=_lowerCamelCase ) __SCREAMING_SNAKE_CASE : Dict = [ k for k in missing if k not in [ """final_logits_bias""", """model.encoder.embed_tokens.weight""", """model.decoder.embed_tokens.weight""", """lm_head.weight""", ] ] assert unexpected_missing == [], F"no matches found for the following torch keys {unexpected_missing}" assert extra == [], F"no matches found for the following tf keys {extra}" return torch_model def lowerCAmelCase_ ( _lowerCamelCase: Union[str, Any] ): __SCREAMING_SNAKE_CASE : List[str] = tf.train.list_variables(_lowerCamelCase ) __SCREAMING_SNAKE_CASE : Any = {} __SCREAMING_SNAKE_CASE : List[Any] = ["""global_step"""] for name, shape in tqdm(_lowerCamelCase , desc="""converting tf checkpoint to dict""" ): __SCREAMING_SNAKE_CASE : Dict = any(pat in name for pat in ignore_name ) if skip_key: continue __SCREAMING_SNAKE_CASE : Optional[int] = tf.train.load_variable(_lowerCamelCase , _lowerCamelCase ) __SCREAMING_SNAKE_CASE : List[str] = array return tf_weights def lowerCAmelCase_ ( _lowerCamelCase: str , _lowerCamelCase: str , _lowerCamelCase: dict ): __SCREAMING_SNAKE_CASE : List[Any] = get_tf_weights_as_numpy(_lowerCamelCase ) __SCREAMING_SNAKE_CASE : Optional[Any] = convert_bigbird_pegasus(_lowerCamelCase , _lowerCamelCase ) torch_model.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": UpperCamelCase__ : Union[str, Any] = argparse.ArgumentParser() parser.add_argument('''--tf_ckpt_path''', type=str, help='''passed to tf.train.list_variables''') parser.add_argument('''--save_dir''', default=None, type=str, help='''Path to the output PyTorch model.''') UpperCamelCase__ : List[str] = parser.parse_args() UpperCamelCase__ : int = {} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
112
'''simple docstring''' def lowerCAmelCase_ ( _lowerCamelCase: float , _lowerCamelCase: list[float] ): if discount_rate < 0: raise ValueError("""Discount rate cannot be negative""" ) if not cash_flows: raise ValueError("""Cash flows list cannot be empty""" ) __SCREAMING_SNAKE_CASE : List[str] = sum( cash_flow / ((1 + discount_rate) ** i) for i, cash_flow in enumerate(_lowerCamelCase ) ) return round(_lowerCamelCase , ndigits=2 ) if __name__ == "__main__": import doctest doctest.testmod()
112
1
'''simple docstring''' from functools import lru_cache def SCREAMING_SNAKE_CASE__ ( __A ) -> set: _snake_case = 2 _snake_case = set() while i * i <= n: if n % i: i += 1 else: n //= i factors.add(__A ) if n > 1: factors.add(__A ) return factors @lru_cache def SCREAMING_SNAKE_CASE__ ( __A ) -> int: return len(unique_prime_factors(__A ) ) def SCREAMING_SNAKE_CASE__ ( __A ) -> bool: return len(set(__A ) ) in (0, 1) def SCREAMING_SNAKE_CASE__ ( __A ) -> list: _snake_case = 2 while True: # Increment each value of a generated range _snake_case = [base + i for i in range(__A )] # Run elements through out unique_prime_factors function # Append our target number to the end. _snake_case = [upf_len(__A ) for x in group] checker.append(__A ) # If all numbers in the list are equal, return the group variable. if equality(__A ): return group # Increment our base variable by 1 base += 1 def SCREAMING_SNAKE_CASE__ ( __A = 4 ) -> int: _snake_case = run(__A ) return results[0] if len(__A ) else None if __name__ == "__main__": print(solution())
160
'''simple docstring''' import json import os import shutil import tempfile import unittest from transformers import BatchEncoding, CanineTokenizer from transformers.testing_utils import require_tokenizers, require_torch from transformers.tokenization_utils import AddedToken from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin class __UpperCAmelCase ( _lowerCamelCase , unittest.TestCase ): __lowercase = CanineTokenizer __lowercase = False def lowerCamelCase ( self ): """simple docstring""" super().setUp() _snake_case = CanineTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowerCamelCase ( self ): """simple docstring""" return CanineTokenizer.from_pretrained('google/canine-s' ) def lowerCamelCase ( self , **lowerCAmelCase_ ): """simple docstring""" _snake_case = self.tokenizer_class.from_pretrained(self.tmpdirname , **lowerCAmelCase_ ) _snake_case = 10_24 return tokenizer @require_torch def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.canine_tokenizer _snake_case = ['Life is like a box of chocolates.', 'You never know what you\'re gonna get.'] # fmt: off _snake_case = [5_73_44, 76, 1_05, 1_02, 1_01, 32, 1_05, 1_15, 32, 1_08, 1_05, 1_07, 1_01, 32, 97, 32, 98, 1_11, 1_20, 32, 1_11, 1_02, 32, 99, 1_04, 1_11, 99, 1_11, 1_08, 97, 1_16, 1_01, 1_15, 46, 5_73_45, 0, 0, 0, 0] # fmt: on _snake_case = tokenizer(lowerCAmelCase_ , padding=lowerCAmelCase_ , return_tensors='pt' ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case = list(batch.input_ids.numpy()[0] ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual((2, 39) , batch.input_ids.shape ) self.assertEqual((2, 39) , batch.attention_mask.shape ) @require_torch def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.canine_tokenizer _snake_case = ['Once there was a man.', 'He wrote a test in HuggingFace Tranformers.'] _snake_case = tokenizer(lowerCAmelCase_ , padding=lowerCAmelCase_ , return_tensors='pt' ) # check if input_ids, attention_mask and token_type_ids are returned self.assertIn('input_ids' , lowerCAmelCase_ ) self.assertIn('attention_mask' , lowerCAmelCase_ ) self.assertIn('token_type_ids' , lowerCAmelCase_ ) @require_torch def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.canine_tokenizer _snake_case = [ 'What\'s the weater?', 'It\'s about 25 degrees.', ] _snake_case = tokenizer( text_target=lowerCAmelCase_ , max_length=32 , padding='max_length' , truncation=lowerCAmelCase_ , return_tensors='pt' ) self.assertEqual(32 , targets['input_ids'].shape[1] ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test _snake_case = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): # Isolate this from the other tests because we save additional tokens/etc _snake_case = tempfile.mkdtemp() _snake_case = ' He is very happy, UNwant\u00E9d,running' _snake_case = tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) tokenizer.save_pretrained(lowerCAmelCase_ ) _snake_case = tokenizer.__class__.from_pretrained(lowerCAmelCase_ ) _snake_case = after_tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) shutil.rmtree(lowerCAmelCase_ ) _snake_case = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): # Isolate this from the other tests because we save additional tokens/etc _snake_case = tempfile.mkdtemp() _snake_case = ' He is very happy, UNwant\u00E9d,running' _snake_case = tokenizer.additional_special_tokens # We can add a new special token for Canine as follows: _snake_case = chr(0XE_0_0_7 ) additional_special_tokens.append(lowerCAmelCase_ ) tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens} ) _snake_case = tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) tokenizer.save_pretrained(lowerCAmelCase_ ) _snake_case = tokenizer.__class__.from_pretrained(lowerCAmelCase_ ) _snake_case = after_tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertIn(lowerCAmelCase_ , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) _snake_case = tokenizer.__class__.from_pretrained(lowerCAmelCase_ , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(lowerCAmelCase_ ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.get_tokenizers(do_lower_case=lowerCAmelCase_ ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): _snake_case , _snake_case = self.get_clean_sequence(lowerCAmelCase_ ) # a special token for Canine can be defined as follows: _snake_case = 0XE_0_0_5 _snake_case = chr(lowerCAmelCase_ ) tokenizer.add_special_tokens({'cls_token': special_token} ) _snake_case = tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) self.assertEqual(len(lowerCAmelCase_ ) , 1 ) _snake_case = tokenizer.decode(ids + encoded_special_token , clean_up_tokenization_spaces=lowerCAmelCase_ ) _snake_case = tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) _snake_case = tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) _snake_case = tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , input_encoded + special_token_id ) _snake_case = tokenizer.decode(lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_ ) self.assertTrue(special_token not in decoded ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.get_tokenizers(do_lower_case=lowerCAmelCase_ ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): _snake_case = chr(0XE_0_0_5 ) _snake_case = chr(0XE_0_0_6 ) # `add_tokens` method stores special tokens only in `tokenizer.unique_no_split_tokens`. (in tokenization_utils.py) tokenizer.add_tokens([SPECIAL_TOKEN_1] , special_tokens=lowerCAmelCase_ ) # `add_special_tokens` method stores special tokens in `tokenizer.additional_special_tokens`, # which also occur in `tokenizer.all_special_tokens`. (in tokenization_utils_base.py) tokenizer.add_special_tokens({'additional_special_tokens': [SPECIAL_TOKEN_2]} ) _snake_case = tokenizer.tokenize(lowerCAmelCase_ ) _snake_case = tokenizer.tokenize(lowerCAmelCase_ ) self.assertEqual(len(lowerCAmelCase_ ) , 1 ) self.assertEqual(len(lowerCAmelCase_ ) , 1 ) self.assertEqual(token_a[0] , lowerCAmelCase_ ) self.assertEqual(token_a[0] , lowerCAmelCase_ ) @require_tokenizers def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.get_tokenizers(do_lower_case=lowerCAmelCase_ ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): # a special token for Canine can be defined as follows: _snake_case = 0XE_0_0_6 _snake_case = chr(lowerCAmelCase_ ) _snake_case = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ ) tokenizer.add_special_tokens({'additional_special_tokens': [new_token]} ) with tempfile.TemporaryDirectory() as tmp_dir_name: tokenizer.save_pretrained(lowerCAmelCase_ ) tokenizer.from_pretrained(lowerCAmelCase_ ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(lowerCAmelCase_ ) with open(os.path.join(lowerCAmelCase_ , 'special_tokens_map.json' ) , encoding='utf-8' ) as json_file: _snake_case = json.load(lowerCAmelCase_ ) with open(os.path.join(lowerCAmelCase_ , 'tokenizer_config.json' ) , encoding='utf-8' ) as json_file: _snake_case = json.load(lowerCAmelCase_ ) # a special token for Canine can be defined as follows: _snake_case = 0XE_0_0_6 _snake_case = chr(lowerCAmelCase_ ) _snake_case = [new_token_a] _snake_case = [new_token_a] with open(os.path.join(lowerCAmelCase_ , 'special_tokens_map.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(lowerCAmelCase_ , lowerCAmelCase_ ) with open(os.path.join(lowerCAmelCase_ , 'tokenizer_config.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(lowerCAmelCase_ , lowerCAmelCase_ ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files _snake_case = tokenizer_class.from_pretrained(lowerCAmelCase_ , extra_ids=0 ) self.assertIn(lowerCAmelCase_ , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids([new_token_a] ) ) , ) _snake_case = 0XE_0_0_7 _snake_case = chr(lowerCAmelCase_ ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained _snake_case = [AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ )] _snake_case = tokenizer_class.from_pretrained( lowerCAmelCase_ , additional_special_tokens=lowerCAmelCase_ , extra_ids=0 ) self.assertIn(lowerCAmelCase_ , tokenizer.additional_special_tokens ) # self.assertIn(new_token_2,tokenizer.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer.convert_ids_to_tokens(tokenizer.convert_tokens_to_ids([new_token_a] ) ) ) @require_tokenizers def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.get_tokenizers(do_lower_case=lowerCAmelCase_ ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): _snake_case = 'hello world' if self.space_between_special_tokens: _snake_case = '[CLS] hello world [SEP]' else: _snake_case = input _snake_case = tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) _snake_case = tokenizer.decode(lowerCAmelCase_ , spaces_between_special_tokens=self.space_between_special_tokens ) self.assertIn(lowerCAmelCase_ , [output, output.lower()] ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): _snake_case = [ 'bos_token', 'eos_token', 'unk_token', 'sep_token', 'pad_token', 'cls_token', 'mask_token', ] _snake_case = 'a' _snake_case = ord(lowerCAmelCase_ ) for attr in attributes_list: setattr(lowerCAmelCase_ , attr + '_id' , lowerCAmelCase_ ) self.assertEqual(getattr(lowerCAmelCase_ , lowerCAmelCase_ ) , lowerCAmelCase_ ) self.assertEqual(getattr(lowerCAmelCase_ , attr + '_id' ) , lowerCAmelCase_ ) setattr(lowerCAmelCase_ , attr + '_id' , lowerCAmelCase_ ) self.assertEqual(getattr(lowerCAmelCase_ , lowerCAmelCase_ ) , lowerCAmelCase_ ) self.assertEqual(getattr(lowerCAmelCase_ , attr + '_id' ) , lowerCAmelCase_ ) setattr(lowerCAmelCase_ , 'additional_special_tokens_ids' , [] ) self.assertListEqual(getattr(lowerCAmelCase_ , 'additional_special_tokens' ) , [] ) self.assertListEqual(getattr(lowerCAmelCase_ , 'additional_special_tokens_ids' ) , [] ) _snake_case = 0XE_0_0_6 _snake_case = chr(lowerCAmelCase_ ) setattr(lowerCAmelCase_ , 'additional_special_tokens_ids' , [additional_special_token_id] ) self.assertListEqual(getattr(lowerCAmelCase_ , 'additional_special_tokens' ) , [additional_special_token] ) self.assertListEqual(getattr(lowerCAmelCase_ , 'additional_special_tokens_ids' ) , [additional_special_token_id] ) def lowerCamelCase ( self ): """simple docstring""" pass def lowerCamelCase ( self ): """simple docstring""" pass def lowerCamelCase ( self ): """simple docstring""" pass def lowerCamelCase ( self ): """simple docstring""" pass def lowerCamelCase ( self ): """simple docstring""" pass def lowerCamelCase ( self ): """simple docstring""" pass def lowerCamelCase ( self ): """simple docstring""" pass def lowerCamelCase ( self ): """simple docstring""" pass
160
1
from ... import PretrainedConfig __snake_case : List[Any] ={ 'sijunhe/nezha-cn-base': 'https://huggingface.co/sijunhe/nezha-cn-base/resolve/main/config.json', } class lowerCamelCase__ ( lowerCamelCase__): '''simple docstring''' snake_case_ =NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP snake_case_ ="""nezha""" def __init__(self ,__lowerCamelCase=2_11_28 ,__lowerCamelCase=7_68 ,__lowerCamelCase=12 ,__lowerCamelCase=12 ,__lowerCamelCase=30_72 ,__lowerCamelCase="gelu" ,__lowerCamelCase=0.1 ,__lowerCamelCase=0.1 ,__lowerCamelCase=5_12 ,__lowerCamelCase=64 ,__lowerCamelCase=2 ,__lowerCamelCase=0.02 ,__lowerCamelCase=1e-12 ,__lowerCamelCase=0.1 ,__lowerCamelCase=0 ,__lowerCamelCase=2 ,__lowerCamelCase=3 ,__lowerCamelCase=True ,**__lowerCamelCase ,) -> List[str]: """simple docstring""" super().__init__(pad_token_id=_A ,bos_token_id=_A ,eos_token_id=_A ,**_A ) lowerCAmelCase__ : Union[str, Any] = vocab_size lowerCAmelCase__ : Dict = hidden_size lowerCAmelCase__ : Tuple = num_hidden_layers lowerCAmelCase__ : int = num_attention_heads lowerCAmelCase__ : Any = hidden_act lowerCAmelCase__ : Tuple = intermediate_size lowerCAmelCase__ : Tuple = hidden_dropout_prob lowerCAmelCase__ : Tuple = attention_probs_dropout_prob lowerCAmelCase__ : List[Any] = max_position_embeddings lowerCAmelCase__ : List[str] = max_relative_position lowerCAmelCase__ : str = type_vocab_size lowerCAmelCase__ : int = initializer_range lowerCAmelCase__ : Optional[int] = layer_norm_eps lowerCAmelCase__ : Union[str, Any] = classifier_dropout lowerCAmelCase__ : List[str] = use_cache
129
'''simple docstring''' import unicodedata from dataclasses import dataclass from typing import Optional, Union import numpy as np from transformers.data.data_collator import DataCollatorMixin from transformers.file_utils import PaddingStrategy from transformers.tokenization_utils_base import PreTrainedTokenizerBase def __UpperCAmelCase ( A : List[str] , A : Any , A : Optional[int] , A : Optional[int] ) -> Optional[Any]: if isinstance(A , A ): UpperCAmelCase_ : Any = np.full((len(A ), sequence_length, 2) , A ) else: UpperCAmelCase_ : int = np.full((len(A ), sequence_length) , A ) for i, tensor in enumerate(A ): if padding_side == "right": if isinstance(A , A ): UpperCAmelCase_ : Tuple = tensor[:sequence_length] else: UpperCAmelCase_ : Dict = tensor[:sequence_length] else: if isinstance(A , A ): UpperCAmelCase_ : Optional[Any] = tensor[:sequence_length] else: UpperCAmelCase_ : int = tensor[:sequence_length] return out_tensor.tolist() def __UpperCAmelCase ( A : List[Any] ) -> str: UpperCAmelCase_ : Dict = ord(A ) if (cp >= 3_3 and cp <= 4_7) or (cp >= 5_8 and cp <= 6_4) or (cp >= 9_1 and cp <= 9_6) or (cp >= 1_2_3 and cp <= 1_2_6): return True UpperCAmelCase_ : Union[str, Any] = unicodedata.category(A ) if cat.startswith('''P''' ): return True return False @dataclass class snake_case__ ( UpperCamelCase): a_ = 42 a_ = True a_ = None a_ = None a_ = -100 a_ = "pt" def A ( self : List[Any] , _A : Dict ) -> Tuple: import torch UpperCAmelCase_ : Dict = '''label''' if '''label''' in features[0].keys() else '''labels''' UpperCAmelCase_ : List[Any] = [feature[label_name] for feature in features] if label_name in features[0].keys() else None UpperCAmelCase_ : Tuple = self.tokenizer.pad( _A , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='''pt''' if labels is None else None , ) if labels is None: return batch UpperCAmelCase_ : Any = torch.tensor(batch['''entity_ids'''] ).shape[1] UpperCAmelCase_ : Union[str, Any] = self.tokenizer.padding_side if padding_side == "right": UpperCAmelCase_ : Optional[Any] = [ list(_A ) + [self.label_pad_token_id] * (sequence_length - len(_A )) for label in labels ] else: UpperCAmelCase_ : Any = [ [self.label_pad_token_id] * (sequence_length - len(_A )) + list(_A ) for label in labels ] UpperCAmelCase_ : Union[str, Any] = [feature['''ner_tags'''] for feature in features] UpperCAmelCase_ : Union[str, Any] = padding_tensor(_A , -1 , _A , _A ) UpperCAmelCase_ : List[str] = [feature['''original_entity_spans'''] for feature in features] UpperCAmelCase_ : int = padding_tensor(_A , (-1, -1) , _A , _A ) UpperCAmelCase_ : Union[str, Any] = {k: torch.tensor(_A , dtype=torch.intaa ) for k, v in batch.items()} return batch
304
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tensorflow_text_available, is_torch_available SCREAMING_SNAKE_CASE_ : Tuple = { '''configuration_ernie''': ['''ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ErnieConfig''', '''ErnieOnnxConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ : str = [ '''ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ErnieForCausalLM''', '''ErnieForMaskedLM''', '''ErnieForMultipleChoice''', '''ErnieForNextSentencePrediction''', '''ErnieForPreTraining''', '''ErnieForQuestionAnswering''', '''ErnieForSequenceClassification''', '''ErnieForTokenClassification''', '''ErnieModel''', '''ErniePreTrainedModel''', ] if TYPE_CHECKING: from .configuration_ernie import ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP, ErnieConfig, ErnieOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ernie import ( ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST, ErnieForCausalLM, ErnieForMaskedLM, ErnieForMultipleChoice, ErnieForNextSentencePrediction, ErnieForPreTraining, ErnieForQuestionAnswering, ErnieForSequenceClassification, ErnieForTokenClassification, ErnieModel, ErniePreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE_ : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
369
"""simple docstring""" from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING SCREAMING_SNAKE_CASE_ : List[Any] = logging.get_logger(__name__) @add_end_docstrings(_lowerCamelCase ) class a ( _lowerCamelCase ): """simple docstring""" def __init__( self: Union[str, Any] , *UpperCamelCase: List[str] , **UpperCamelCase: Union[str, Any] ): """simple docstring""" super().__init__(*UpperCamelCase , **UpperCamelCase ) requires_backends(self , """vision""" ) self.check_model_type( TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING if self.framework == """tf""" else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING ) def UpperCamelCase ( self: List[str] , UpperCamelCase: Any=None ): """simple docstring""" A__ = {} if top_k is not None: A__ = top_k return {}, {}, postprocess_params def __call__( self: Union[str, Any] , UpperCamelCase: Union[str, List[str], "Image.Image", List["Image.Image"]] , **UpperCamelCase: Dict ): """simple docstring""" return super().__call__(UpperCamelCase , **UpperCamelCase ) def UpperCamelCase ( self: Any , UpperCamelCase: int ): """simple docstring""" A__ = load_image(UpperCamelCase ) A__ = self.image_processor(images=UpperCamelCase , return_tensors=self.framework ) return model_inputs def UpperCamelCase ( self: List[Any] , UpperCamelCase: Any ): """simple docstring""" A__ = self.model(**UpperCamelCase ) return model_outputs def UpperCamelCase ( self: Any , UpperCamelCase: Optional[Any] , UpperCamelCase: int=5 ): """simple docstring""" if top_k > self.model.config.num_labels: A__ = self.model.config.num_labels if self.framework == "pt": A__ = model_outputs.logits.softmax(-1 )[0] A__ , A__ = probs.topk(UpperCamelCase ) elif self.framework == "tf": A__ = stable_softmax(model_outputs.logits , axis=-1 )[0] A__ = tf.math.top_k(UpperCamelCase , k=UpperCamelCase ) A__ , A__ = topk.values.numpy(), topk.indices.numpy() else: raise ValueError(f"""Unsupported framework: {self.framework}""" ) A__ = scores.tolist() A__ = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(UpperCamelCase , UpperCamelCase )]
69
0
import argparse import json from typing import List from ltp import LTP from transformers.models.bert.tokenization_bert import BertTokenizer def __lowerCamelCase ( UpperCAmelCase_ : int ): """simple docstring""" if ( (cp >= 0x4_E00 and cp <= 0x9_FFF) or (cp >= 0x3_400 and cp <= 0x4_DBF) # or (cp >= 0x20_000 and cp <= 0x2A_6DF) # or (cp >= 0x2A_700 and cp <= 0x2B_73F) # or (cp >= 0x2B_740 and cp <= 0x2B_81F) # or (cp >= 0x2B_820 and cp <= 0x2C_EAF) # or (cp >= 0xF_900 and cp <= 0xF_AFF) or (cp >= 0x2F_800 and cp <= 0x2F_A1F) # ): # return True return False def __lowerCamelCase ( UpperCAmelCase_ : str ): """simple docstring""" for char in word: a :List[str] = ord(UpperCAmelCase_ ) if not _is_chinese_char(UpperCAmelCase_ ): return 0 return 1 def __lowerCamelCase ( UpperCAmelCase_ : List[str] ): """simple docstring""" a :Any = set() for token in tokens: a :str = len(UpperCAmelCase_ ) > 1 and is_chinese(UpperCAmelCase_ ) if chinese_word: word_set.add(UpperCAmelCase_ ) a :Dict = list(UpperCAmelCase_ ) return word_list def __lowerCamelCase ( UpperCAmelCase_ : List[str] , UpperCAmelCase_ : set() ): """simple docstring""" if not chinese_word_set: return bert_tokens a :List[str] = max([len(UpperCAmelCase_ ) for w in chinese_word_set] ) a :Union[str, Any] = bert_tokens a , a :Tuple = 0, len(UpperCAmelCase_ ) while start < end: a :Optional[Any] = True if is_chinese(bert_word[start] ): a :Optional[Any] = min(end - start , UpperCAmelCase_ ) for i in range(UpperCAmelCase_ , 1 , -1 ): a :Dict = ''''''.join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): a :Tuple = '''##''' + bert_word[j] a :Union[str, Any] = start + i a :Union[str, Any] = False break if single_word: start += 1 return bert_word def __lowerCamelCase ( UpperCAmelCase_ : List[str] , UpperCAmelCase_ : LTP , UpperCAmelCase_ : BertTokenizer ): """simple docstring""" a :List[str] = [] for i in range(0 , len(UpperCAmelCase_ ) , 100 ): a :Optional[int] = ltp_tokenizer.pipeline(lines[i : i + 100] , tasks=['''cws'''] ).cws a :str = [get_chinese_word(UpperCAmelCase_ ) for r in res] ltp_res.extend(UpperCAmelCase_ ) assert len(UpperCAmelCase_ ) == len(UpperCAmelCase_ ) a :List[Any] = [] for i in range(0 , len(UpperCAmelCase_ ) , 100 ): a :Union[str, Any] = bert_tokenizer(lines[i : i + 100] , add_special_tokens=UpperCAmelCase_ , truncation=UpperCAmelCase_ , max_length=512 ) bert_res.extend(res['''input_ids'''] ) assert len(UpperCAmelCase_ ) == len(UpperCAmelCase_ ) a :Any = [] for input_ids, chinese_word in zip(UpperCAmelCase_ , UpperCAmelCase_ ): a :int = [] for id in input_ids: a :Optional[Any] = bert_tokenizer._convert_id_to_token(UpperCAmelCase_ ) input_tokens.append(UpperCAmelCase_ ) a :int = add_sub_symbol(UpperCAmelCase_ , UpperCAmelCase_ ) a :str = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(UpperCAmelCase_ ): if token[:2] == "##": a :List[Any] = token[2:] # save chinese tokens' pos if len(UpperCAmelCase_ ) == 1 and _is_chinese_char(ord(UpperCAmelCase_ ) ): ref_id.append(UpperCAmelCase_ ) ref_ids.append(UpperCAmelCase_ ) assert len(UpperCAmelCase_ ) == len(UpperCAmelCase_ ) return ref_ids def __lowerCamelCase ( UpperCAmelCase_ : int ): """simple docstring""" with open(args.file_name , '''r''' , encoding='''utf-8''' ) as f: a :Dict = f.readlines() a :Dict = [line.strip() for line in data if len(UpperCAmelCase_ ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' a :Any = LTP(args.ltp ) # faster in GPU device a :Optional[int] = BertTokenizer.from_pretrained(args.bert ) a :List[str] = prepare_ref(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) with open(args.save_path , '''w''' , encoding='''utf-8''' ) as f: a :Union[str, Any] = [json.dumps(UpperCAmelCase_ ) + '''\n''' for ref in ref_ids] f.writelines(UpperCAmelCase_ ) if __name__ == "__main__": snake_case : Optional[Any] = argparse.ArgumentParser(description='''prepare_chinese_ref''') parser.add_argument( '''--file_name''', required=False, type=str, default='''./resources/chinese-demo.txt''', help='''file need process, same as training data in lm''', ) parser.add_argument( '''--ltp''', required=False, type=str, default='''./resources/ltp''', help='''resources for LTP tokenizer, usually a path''', ) parser.add_argument( '''--bert''', required=False, type=str, default='''./resources/robert''', help='''resources for Bert tokenizer''', ) parser.add_argument( '''--save_path''', required=False, type=str, default='''./resources/ref.txt''', help='''path to save res''', ) snake_case : Tuple = parser.parse_args() main(args)
94
from __future__ import annotations def __lowerCamelCase ( UpperCAmelCase_ : dict , UpperCAmelCase_ : str ): """simple docstring""" a , a :Optional[Any] = set(UpperCAmelCase_ ), [start] while stack: a :Optional[int] = stack.pop() explored.add(UpperCAmelCase_ ) # Differences from BFS: # 1) pop last element instead of first one # 2) add adjacent elements to stack without exploring them for adj in reversed(graph[v] ): if adj not in explored: stack.append(UpperCAmelCase_ ) return explored snake_case : Optional[int] = { '''A''': ['''B''', '''C''', '''D'''], '''B''': ['''A''', '''D''', '''E'''], '''C''': ['''A''', '''F'''], '''D''': ['''B''', '''D'''], '''E''': ['''B''', '''F'''], '''F''': ['''C''', '''E''', '''G'''], '''G''': ['''F'''], } if __name__ == "__main__": import doctest doctest.testmod() print(depth_first_search(G, '''A'''))
94
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { "roberta-base": "https://huggingface.co/roberta-base/resolve/main/config.json", "roberta-large": "https://huggingface.co/roberta-large/resolve/main/config.json", "roberta-large-mnli": "https://huggingface.co/roberta-large-mnli/resolve/main/config.json", "distilroberta-base": "https://huggingface.co/distilroberta-base/resolve/main/config.json", "roberta-base-openai-detector": "https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json", "roberta-large-openai-detector": "https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json", } class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = '''roberta''' def __init__( self, lowercase_=50265, lowercase_=768, lowercase_=12, lowercase_=12, lowercase_=3072, lowercase_="gelu", lowercase_=0.1, lowercase_=0.1, lowercase_=512, lowercase_=2, lowercase_=0.02, lowercase_=1E-12, lowercase_=1, lowercase_=0, lowercase_=2, lowercase_="absolute", lowercase_=True, lowercase_=None, **lowercase_, ) -> Tuple: super().__init__(pad_token_id=lowercase_, bos_token_id=lowercase_, eos_token_id=lowercase_, **lowercase_ ) snake_case = vocab_size snake_case = hidden_size snake_case = num_hidden_layers snake_case = num_attention_heads snake_case = hidden_act snake_case = intermediate_size snake_case = hidden_dropout_prob snake_case = attention_probs_dropout_prob snake_case = max_position_embeddings snake_case = type_vocab_size snake_case = initializer_range snake_case = layer_norm_eps snake_case = position_embedding_type snake_case = use_cache snake_case = classifier_dropout class lowerCamelCase ( __lowerCAmelCase ): @property def _lowerCamelCase ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": snake_case = {0: 'batch', 1: 'choice', 2: 'sequence'} else: snake_case = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
367
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import TransformeraDModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings from diffusers.utils import load_numpy, slow, torch_device from diffusers.utils.testing_utils import require_torch_gpu lowerCAmelCase_ = False class lowerCamelCase ( unittest.TestCase ): def _lowerCamelCase ( self ) -> Union[str, Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _lowerCamelCase ( self ) -> List[Any]: return 12 @property def _lowerCamelCase ( self ) -> Dict: return 12 @property def _lowerCamelCase ( self ) -> List[Any]: return 32 @property def _lowerCamelCase ( self ) -> List[Any]: torch.manual_seed(0 ) snake_case = VQModel( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'], up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'], latent_channels=3, num_vq_embeddings=self.num_embed, vq_embed_dim=3, ) return model @property def _lowerCamelCase ( self ) -> List[Any]: snake_case = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) return tokenizer @property def _lowerCamelCase ( self ) -> Tuple: torch.manual_seed(0 ) snake_case = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=self.text_embedder_hidden_size, intermediate_size=37, layer_norm_eps=1E-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, ) return CLIPTextModel(lowercase_ ) @property def _lowerCamelCase ( self ) -> str: torch.manual_seed(0 ) snake_case = 12 snake_case = 12 snake_case = { 'attention_bias': True, 'cross_attention_dim': 32, 'attention_head_dim': height * width, 'num_attention_heads': 1, 'num_vector_embeds': self.num_embed, 'num_embeds_ada_norm': self.num_embeds_ada_norm, 'norm_num_groups': 32, 'sample_size': width, 'activation_fn': 'geglu-approximate', } snake_case = TransformeraDModel(**lowercase_ ) return model def _lowerCamelCase ( self ) -> Tuple: snake_case = 'cpu' snake_case = self.dummy_vqvae snake_case = self.dummy_text_encoder snake_case = self.dummy_tokenizer snake_case = self.dummy_transformer snake_case = VQDiffusionScheduler(self.num_embed ) snake_case = LearnedClassifierFreeSamplingEmbeddings(learnable=lowercase_ ) snake_case = VQDiffusionPipeline( vqvae=lowercase_, text_encoder=lowercase_, tokenizer=lowercase_, transformer=lowercase_, scheduler=lowercase_, learned_classifier_free_sampling_embeddings=lowercase_, ) snake_case = pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) snake_case = 'teddy bear playing in the pool' snake_case = torch.Generator(device=lowercase_ ).manual_seed(0 ) snake_case = pipe([prompt], generator=lowercase_, num_inference_steps=2, output_type='np' ) snake_case = output.images snake_case = torch.Generator(device=lowercase_ ).manual_seed(0 ) snake_case = pipe( [prompt], generator=lowercase_, output_type='np', return_dict=lowercase_, num_inference_steps=2 )[0] snake_case = image[0, -3:, -3:, -1] snake_case = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) snake_case = np.array([0.6_551, 0.6_168, 0.5_008, 0.5_676, 0.5_659, 0.4_295, 0.6_073, 0.5_599, 0.4_992] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def _lowerCamelCase ( self ) -> Optional[Any]: snake_case = 'cpu' snake_case = self.dummy_vqvae snake_case = self.dummy_text_encoder snake_case = self.dummy_tokenizer snake_case = self.dummy_transformer snake_case = VQDiffusionScheduler(self.num_embed ) snake_case = LearnedClassifierFreeSamplingEmbeddings( learnable=lowercase_, hidden_size=self.text_embedder_hidden_size, length=tokenizer.model_max_length ) snake_case = VQDiffusionPipeline( vqvae=lowercase_, text_encoder=lowercase_, tokenizer=lowercase_, transformer=lowercase_, scheduler=lowercase_, learned_classifier_free_sampling_embeddings=lowercase_, ) snake_case = pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) snake_case = 'teddy bear playing in the pool' snake_case = torch.Generator(device=lowercase_ ).manual_seed(0 ) snake_case = pipe([prompt], generator=lowercase_, num_inference_steps=2, output_type='np' ) snake_case = output.images snake_case = torch.Generator(device=lowercase_ ).manual_seed(0 ) snake_case = pipe( [prompt], generator=lowercase_, output_type='np', return_dict=lowercase_, num_inference_steps=2 )[0] snake_case = image[0, -3:, -3:, -1] snake_case = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) snake_case = np.array([0.6_693, 0.6_075, 0.4_959, 0.5_701, 0.5_583, 0.4_333, 0.6_171, 0.5_684, 0.4_988] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2.0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class lowerCamelCase ( unittest.TestCase ): def _lowerCamelCase ( self ) -> int: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCamelCase ( self ) -> str: snake_case = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy' ) snake_case = VQDiffusionPipeline.from_pretrained('microsoft/vq-diffusion-ithq' ) snake_case = pipeline.to(lowercase_ ) pipeline.set_progress_bar_config(disable=lowercase_ ) # requires GPU generator for gumbel softmax # don't use GPU generator in tests though snake_case = torch.Generator(device=lowercase_ ).manual_seed(0 ) snake_case = pipeline( 'teddy bear playing in the pool', num_images_per_prompt=1, generator=lowercase_, output_type='np', ) snake_case = output.images[0] assert image.shape == (256, 256, 3) assert np.abs(expected_image - image ).max() < 2.0
332
0
import os def lowerCamelCase__ ( ): '''simple docstring''' __lowerCamelCase = os.path.dirname(os.path.realpath(A__ ) ) __lowerCamelCase = os.path.join(A__ , """triangle.txt""" ) with open(A__ ) as f: __lowerCamelCase = f.readlines() __lowerCamelCase = [] for line in triangle: __lowerCamelCase = [] for number in line.strip().split(""" """ ): numbers_from_line.append(int(A__ ) ) a.append(A__ ) for i in range(1 , len(A__ ) ): for j in range(len(a[i] ) ): __lowerCamelCase = a[i - 1][j] if j != len(a[i - 1] ) else 0 __lowerCamelCase = a[i - 1][j - 1] if j > 0 else 0 a[i][j] += max(A__ , A__ ) return max(a[-1] ) if __name__ == "__main__": print(solution())
12
from __future__ import annotations from PIL import Image # Define glider example UpperCAmelCase_ = [ [0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], ] # Define blinker example UpperCAmelCase_ = [[0, 1, 0], [0, 1, 0], [0, 1, 0]] def lowerCamelCase__ ( A__ : list[list[int]] ): '''simple docstring''' __lowerCamelCase = [] for i in range(len(A__ ) ): __lowerCamelCase = [] for j in range(len(cells[i] ) ): # Get the number of live neighbours __lowerCamelCase = 0 if i > 0 and j > 0: neighbour_count += cells[i - 1][j - 1] if i > 0: neighbour_count += cells[i - 1][j] if i > 0 and j < len(cells[i] ) - 1: neighbour_count += cells[i - 1][j + 1] if j > 0: neighbour_count += cells[i][j - 1] if j < len(cells[i] ) - 1: neighbour_count += cells[i][j + 1] if i < len(A__ ) - 1 and j > 0: neighbour_count += cells[i + 1][j - 1] if i < len(A__ ) - 1: neighbour_count += cells[i + 1][j] if i < len(A__ ) - 1 and j < len(cells[i] ) - 1: neighbour_count += cells[i + 1][j + 1] # Rules of the game of life (excerpt from Wikipedia): # 1. Any live cell with two or three live neighbours survives. # 2. Any dead cell with three live neighbours becomes a live cell. # 3. All other live cells die in the next generation. # Similarly, all other dead cells stay dead. __lowerCamelCase = cells[i][j] == 1 if ( (alive and 2 <= neighbour_count <= 3) or not alive and neighbour_count == 3 ): next_generation_row.append(1 ) else: next_generation_row.append(0 ) next_generation.append(A__ ) return next_generation def lowerCamelCase__ ( A__ : list[list[int]] , A__ : int ): '''simple docstring''' __lowerCamelCase = [] for _ in range(A__ ): # Create output image __lowerCamelCase = Image.new("""RGB""" , (len(cells[0] ), len(A__ )) ) __lowerCamelCase = img.load() # Save cells to image for x in range(len(A__ ) ): for y in range(len(cells[0] ) ): __lowerCamelCase = 255 - cells[y][x] * 255 __lowerCamelCase = (colour, colour, colour) # Save image images.append(A__ ) __lowerCamelCase = new_generation(A__ ) return images if __name__ == "__main__": UpperCAmelCase_ = generate_images(GLIDER, 16) images[0].save('out.gif', save_all=True, append_images=images[1:])
12
1
"""simple docstring""" import collections import os import re from pathlib import Path lowercase__ : List[str] = '''src/transformers''' # Matches is_xxx_available() lowercase__ : Any = re.compile(r'''is\_([a-z_]*)_available()''') # Catches a one-line _import_struct = {xxx} lowercase__ : Optional[int] = re.compile(r'''^_import_structure\s+=\s+\{([^\}]+)\}''') # Catches a line with a key-values pattern: "bla": ["foo", "bar"] lowercase__ : Dict = re.compile(r'''\s+"\S*":\s+\[([^\]]*)\]''') # Catches a line if not is_foo_available lowercase__ : List[str] = re.compile(r'''^\s*if\s+not\s+is\_[a-z_]*\_available\(\)''') # Catches a line _import_struct["bla"].append("foo") lowercase__ : Optional[int] = re.compile(r'''^\s*_import_structure\["\S*"\]\.append\("(\S*)"\)''') # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] lowercase__ : List[str] = re.compile(r'''^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]''') # Catches a line with an object between quotes and a comma: "MyModel", lowercase__ : Any = re.compile(r'''^\s+"([^"]+)",''') # Catches a line with objects between brackets only: ["foo", "bar"], lowercase__ : List[str] = re.compile(r'''^\s+\[([^\]]+)\]''') # Catches a line with from foo import bar, bla, boo lowercase__ : Any = re.compile(r'''\s+from\s+\S*\s+import\s+([^\(\s].*)\n''') # Catches a line with try: lowercase__ : Optional[Any] = re.compile(r'''^\s*try:''') # Catches a line with else: lowercase__ : Union[str, Any] = re.compile(r'''^\s*else:''') def __lowercase ( _a ): if _re_test_backend.search(_a ) is None: return None snake_case_ : Optional[int] = [b[0] for b in _re_backend.findall(_a )] backends.sort() return "_and_".join(_a ) def __lowercase ( _a ): with open(_a , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: snake_case_ : Any = f.readlines() snake_case_ : Optional[Any] = 0 while line_index < len(_a ) and not lines[line_index].startswith('''_import_structure = {''' ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(_a ): return None # First grab the objects without a specific backend in _import_structure snake_case_ : Optional[int] = [] while not lines[line_index].startswith('''if TYPE_CHECKING''' ) and find_backend(lines[line_index] ) is None: snake_case_ : int = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(_a ): snake_case_ : Dict = _re_one_line_import_struct.search(_a ).groups()[0] snake_case_ : Dict = re.findall(r'''\[([^\]]+)\]''' , _a ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(''', ''' )] ) line_index += 1 continue snake_case_ : List[Any] = _re_import_struct_key_value.search(_a ) if single_line_import_search is not None: snake_case_ : Tuple = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(''', ''' ) if len(_a ) > 0] objects.extend(_a ) elif line.startswith(''' ''' * 8 + '''"''' ): objects.append(line[9:-3] ) line_index += 1 snake_case_ : Tuple = {'''none''': objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith('''if TYPE_CHECKING''' ): # If the line is an if not is_backend_available, we grab all objects associated. snake_case_ : str = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: snake_case_ : Any = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 snake_case_ : Optional[int] = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(''' ''' * 4 ): snake_case_ : Any = lines[line_index] if _re_import_struct_add_one.search(_a ) is not None: objects.append(_re_import_struct_add_one.search(_a ).groups()[0] ) elif _re_import_struct_add_many.search(_a ) is not None: snake_case_ : int = _re_import_struct_add_many.search(_a ).groups()[0].split(''', ''' ) snake_case_ : str = [obj[1:-1] for obj in imports if len(_a ) > 0] objects.extend(_a ) elif _re_between_brackets.search(_a ) is not None: snake_case_ : Dict = _re_between_brackets.search(_a ).groups()[0].split(''', ''' ) snake_case_ : Optional[int] = [obj[1:-1] for obj in imports if len(_a ) > 0] objects.extend(_a ) elif _re_quote_object.search(_a ) is not None: objects.append(_re_quote_object.search(_a ).groups()[0] ) elif line.startswith(''' ''' * 8 + '''"''' ): objects.append(line[9:-3] ) elif line.startswith(''' ''' * 12 + '''"''' ): objects.append(line[13:-3] ) line_index += 1 snake_case_ : Optional[int] = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend snake_case_ : List[str] = [] while ( line_index < len(_a ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith('''else''' ) ): snake_case_ : List[Any] = lines[line_index] snake_case_ : str = _re_import.search(_a ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''' ) ) elif line.startswith(''' ''' * 8 ): objects.append(line[8:-2] ) line_index += 1 snake_case_ : Any = {'''none''': objects} # Let's continue with backend-specific objects while line_index < len(_a ): # If the line is an if is_backend_available, we grab all objects associated. snake_case_ : int = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: snake_case_ : Union[str, Any] = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 snake_case_ : Optional[int] = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(''' ''' * 8 ): snake_case_ : int = lines[line_index] snake_case_ : int = _re_import.search(_a ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''' ) ) elif line.startswith(''' ''' * 12 ): objects.append(line[12:-2] ) line_index += 1 snake_case_ : Tuple = objects else: line_index += 1 return import_dict_objects, type_hint_objects def __lowercase ( _a , _a ): def find_duplicates(_a ): return [k for k, v in collections.Counter(_a ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] snake_case_ : List[Any] = [] for key in import_dict_objects.keys(): snake_case_ : Dict = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(f"Duplicate _import_structure definitions for: {duplicate_imports}" ) snake_case_ : Optional[Any] = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(f"Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}" ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): snake_case_ : List[Any] = '''base imports''' if key == '''none''' else f"{key} backend" errors.append(f"Differences for {name}:" ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(f" {a} in TYPE_HINT but not in _import_structure." ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(f" {a} in _import_structure but not in TYPE_HINT." ) return errors def __lowercase ( ): snake_case_ : List[str] = [] for root, _, files in os.walk(_a ): if "__init__.py" in files: snake_case_ : int = os.path.join(_a , '''__init__.py''' ) snake_case_ : Optional[Any] = parse_init(_a ) if objects is not None: snake_case_ : Dict = analyze_results(*_a ) if len(_a ) > 0: snake_case_ : Dict = f"Problem in {fname}, both halves do not define the same objects.\n{errors[0]}" failures.append('''\n'''.join(_a ) ) if len(_a ) > 0: raise ValueError('''\n\n'''.join(_a ) ) def __lowercase ( ): snake_case_ : List[str] = [] for path, directories, files in os.walk(_a ): for folder in directories: # Ignore private modules if folder.startswith('''_''' ): directories.remove(_a ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(_a ) / folder).glob('''*.py''' ) ) ) == 0: continue snake_case_ : Optional[int] = str((Path(_a ) / folder).relative_to(_a ) ) snake_case_ : Optional[Any] = short_path.replace(os.path.sep , '''.''' ) submodules.append(_a ) for fname in files: if fname == "__init__.py": continue snake_case_ : Optional[int] = str((Path(_a ) / fname).relative_to(_a ) ) snake_case_ : Union[str, Any] = short_path.replace('''.py''' , '''''' ).replace(os.path.sep , '''.''' ) if len(submodule.split('''.''' ) ) == 1: submodules.append(_a ) return submodules lowercase__ : int = [ '''convert_pytorch_checkpoint_to_tf2''', '''modeling_flax_pytorch_utils''', '''models.esm.openfold_utils''', ] def __lowercase ( ): # This is to make sure the transformers module imported is the one in the repo. from transformers.utils import direct_transformers_import snake_case_ : List[Any] = direct_transformers_import(_a ) snake_case_ : Optional[int] = set(transformers._import_structure.keys() ) # This contains all the base keys of the _import_structure object defined in the init, but if the user is missing # some optional dependencies, they may not have all of them. Thus we read the init to read all additions and # (potentiall re-) add them. with open(os.path.join(_a , '''__init__.py''' ) , '''r''' ) as f: snake_case_ : List[str] = f.read() import_structure_keys.update(set(re.findall(r'''import_structure\[\"([^\"]*)\"\]''' , _a ) ) ) snake_case_ : Union[str, Any] = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in import_structure_keys ] if len(_a ) > 0: snake_case_ : Dict = '''\n'''.join(f"- {module}" for module in module_not_registered ) raise ValueError( '''The following submodules are not properly registed in the main init of Transformers:\n''' f"{list_of_modules}\n" '''Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.''' ) if __name__ == "__main__": check_all_inits() check_submodules()
155
"""simple docstring""" from typing import Optional from .. import Features, NamedSplit from ..packaged_modules.text.text import Text from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class _UpperCAmelCase ( lowerCAmelCase__): def __init__( self : List[Any] , lowercase_ : NestedDataStructureLike[PathLike] , lowercase_ : Optional[NamedSplit] = None , lowercase_ : Optional[Features] = None , lowercase_ : str = None , lowercase_ : bool = False , lowercase_ : bool = False , lowercase_ : Optional[int] = None , **lowercase_ : Optional[Any] , ): super().__init__( lowercase_ , split=lowercase_ , features=lowercase_ , cache_dir=lowercase_ , keep_in_memory=lowercase_ , streaming=lowercase_ , num_proc=lowercase_ , **lowercase_ , ) snake_case_ : List[Any] = path_or_paths if isinstance(lowercase_ , lowercase_ ) else {self.split: path_or_paths} snake_case_ : str = Text( cache_dir=lowercase_ , data_files=lowercase_ , features=lowercase_ , **lowercase_ , ) def _snake_case ( self : Any ): # Build iterable dataset if self.streaming: snake_case_ : Union[str, Any] = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: snake_case_ : List[Any] = None snake_case_ : Optional[Any] = None snake_case_ : str = None snake_case_ : Optional[int] = None self.builder.download_and_prepare( download_config=lowercase_ , download_mode=lowercase_ , verification_mode=lowercase_ , base_path=lowercase_ , num_proc=self.num_proc , ) snake_case_ : Union[str, Any] = self.builder.as_dataset( split=self.split , verification_mode=lowercase_ , in_memory=self.keep_in_memory ) return dataset
155
1
"""simple docstring""" import contextlib from multiprocessing import Pool, RLock from tqdm.auto import tqdm from ..utils import experimental, logging A = logging.get_logger(__name__) class __lowercase : '''simple docstring''' __lowerCAmelCase = None @experimental def __A ( a_ :str , a_ :Union[str, Any] , a_ :Any , a_ :str , a_ :Tuple , a_ :List[str] , a_ :Union[str, Any]) -> List[str]: if ParallelBackendConfig.backend_name is None: return _map_with_multiprocessing_pool( a_ , a_ , a_ , a_ , a_ , a_ , a_) return _map_with_joblib(a_ , a_ , a_ , a_ , a_ , a_ , a_) def __A ( a_ :Optional[int] , a_ :List[Any] , a_ :Any , a_ :List[Any] , a_ :str , a_ :Any , a_ :Any) -> str: __a : List[str] = num_proc if num_proc <= len(a_) else len(a_) __a : Dict = [] # We organize the splits ourselve (contiguous splits) for index in range(a_): __a : Dict = len(a_) // num_proc __a : int = len(a_) % num_proc __a : List[Any] = div * index + min(a_ , a_) __a : Dict = start + div + (1 if index < mod else 0) split_kwds.append((function, iterable[start:end], types, index, disable_tqdm, desc)) if len(a_) != sum(len(i[1]) for i in split_kwds): raise ValueError( F"""Error dividing inputs iterable among processes. """ F"""Total number of objects {len(a_)}, """ F"""length: {sum(len(i[1]) for i in split_kwds)}""") logger.info( F"""Spawning {num_proc} processes for {len(a_)} objects in slices of {[len(i[1]) for i in split_kwds]}""") __a , __a : Optional[int] = None, None if not disable_tqdm: __a , __a : Tuple = (RLock(),), tqdm.set_lock with Pool(a_ , initargs=a_ , initializer=a_) as pool: __a : List[Any] = pool.map(a_ , a_) logger.info(F"""Finished {num_proc} processes""") __a : Any = [obj for proc_res in mapped for obj in proc_res] logger.info(F"""Unpacked {len(a_)} objects""") return mapped def __A ( a_ :Optional[int] , a_ :Any , a_ :List[Any] , a_ :Optional[int] , a_ :Any , a_ :Any , a_ :Any) -> Optional[Any]: # progress bar is not yet supported for _map_with_joblib, because tqdm couldn't accurately be applied to joblib, # and it requires monkey-patching joblib internal classes which is subject to change import joblib with joblib.parallel_backend(ParallelBackendConfig.backend_name , n_jobs=a_): return joblib.Parallel()( joblib.delayed(a_)((function, obj, types, None, True, None)) for obj in iterable) @experimental @contextlib.contextmanager def __A ( a_ :str) -> List[Any]: __a : Union[str, Any] = backend_name if backend_name == "spark": from joblibspark import register_spark register_spark() # TODO: call create_cache_and_write_probe if "download" in steps # TODO: raise NotImplementedError when Dataset.map etc is called try: yield finally: __a : Tuple = None
160
"""simple docstring""" import warnings from ...utils import logging from .image_processing_deformable_detr import DeformableDetrImageProcessor A = logging.get_logger(__name__) class __lowercase ( _UpperCamelCase ): '''simple docstring''' def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase ): warnings.warn( '''The class DeformableDetrFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use DeformableDetrImageProcessor instead.''' , _UpperCAmelCase , ) super().__init__(*_UpperCAmelCase , **_UpperCAmelCase )
160
1
from unittest.mock import Mock, patch from file_transfer.send_file import send_file @patch("socket.socket" ) @patch("builtins.open" ) def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase ): # ===== initialization ===== _SCREAMING_SNAKE_CASE : List[Any] = Mock() _SCREAMING_SNAKE_CASE : Optional[Any] = conn, Mock() _SCREAMING_SNAKE_CASE : Dict = iter([1, None] ) _SCREAMING_SNAKE_CASE : Optional[Any] = lambda __lowerCamelCase : next(__lowerCamelCase ) # ===== invoke ===== send_file(filename="mytext.txt", testing=__lowerCamelCase ) # ===== ensurance ===== sock.assert_called_once() sock.return_value.bind.assert_called_once() sock.return_value.listen.assert_called_once() sock.return_value.accept.assert_called_once() conn.recv.assert_called_once() file.return_value.__enter__.assert_called_once() file.return_value.__enter__.return_value.read.assert_called() conn.send.assert_called_once() conn.close.assert_called_once() sock.return_value.shutdown.assert_called_once() sock.return_value.close.assert_called_once()
325
from __future__ import annotations import unittest from transformers import BlenderbotSmallConfig, BlenderbotSmallTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel @require_tf class lowerCAmelCase__: '''simple docstring''' __snake_case = BlenderbotSmallConfig __snake_case = {} __snake_case = 'gelu' def __init__( self , __lowerCamelCase , __lowerCamelCase=1_3 , __lowerCamelCase=7 , __lowerCamelCase=True , __lowerCamelCase=False , __lowerCamelCase=9_9 , __lowerCamelCase=3_2 , __lowerCamelCase=2 , __lowerCamelCase=4 , __lowerCamelCase=3_7 , __lowerCamelCase=0.1 , __lowerCamelCase=0.1 , __lowerCamelCase=2_0 , __lowerCamelCase=2 , __lowerCamelCase=1 , __lowerCamelCase=0 , ) -> List[str]: _SCREAMING_SNAKE_CASE : int = parent _SCREAMING_SNAKE_CASE : Tuple = batch_size _SCREAMING_SNAKE_CASE : Dict = seq_length _SCREAMING_SNAKE_CASE : List[str] = is_training _SCREAMING_SNAKE_CASE : List[str] = use_labels _SCREAMING_SNAKE_CASE : Dict = vocab_size _SCREAMING_SNAKE_CASE : Dict = hidden_size _SCREAMING_SNAKE_CASE : int = num_hidden_layers _SCREAMING_SNAKE_CASE : Optional[Any] = num_attention_heads _SCREAMING_SNAKE_CASE : Optional[Any] = intermediate_size _SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_dropout_prob _SCREAMING_SNAKE_CASE : str = attention_probs_dropout_prob _SCREAMING_SNAKE_CASE : List[str] = max_position_embeddings _SCREAMING_SNAKE_CASE : Optional[int] = eos_token_id _SCREAMING_SNAKE_CASE : Optional[Any] = pad_token_id _SCREAMING_SNAKE_CASE : List[str] = bos_token_id def UpperCamelCase_ ( self ) -> List[str]: _SCREAMING_SNAKE_CASE : int = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) _SCREAMING_SNAKE_CASE : Optional[Any] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) _SCREAMING_SNAKE_CASE : List[str] = tf.concat([input_ids, eos_tensor] , axis=1 ) _SCREAMING_SNAKE_CASE : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _SCREAMING_SNAKE_CASE : str = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) _SCREAMING_SNAKE_CASE : List[Any] = prepare_blenderbot_small_inputs_dict(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) return config, inputs_dict def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase ) -> Tuple: _SCREAMING_SNAKE_CASE : Any = TFBlenderbotSmallModel(config=__lowerCamelCase ).get_decoder() _SCREAMING_SNAKE_CASE : Dict = inputs_dict["input_ids"] _SCREAMING_SNAKE_CASE : List[Any] = input_ids[:1, :] _SCREAMING_SNAKE_CASE : Optional[Any] = inputs_dict["attention_mask"][:1, :] _SCREAMING_SNAKE_CASE : List[str] = inputs_dict["head_mask"] _SCREAMING_SNAKE_CASE : int = 1 # first forward pass _SCREAMING_SNAKE_CASE : Any = model(__lowerCamelCase , attention_mask=__lowerCamelCase , head_mask=__lowerCamelCase , use_cache=__lowerCamelCase ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : str = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _SCREAMING_SNAKE_CASE : Dict = ids_tensor((self.batch_size, 3) , config.vocab_size ) _SCREAMING_SNAKE_CASE : Optional[int] = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and _SCREAMING_SNAKE_CASE : Tuple = tf.concat([input_ids, next_tokens] , axis=-1 ) _SCREAMING_SNAKE_CASE : int = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) _SCREAMING_SNAKE_CASE : List[str] = model(__lowerCamelCase , attention_mask=__lowerCamelCase )[0] _SCREAMING_SNAKE_CASE : Any = model(__lowerCamelCase , attention_mask=__lowerCamelCase , past_key_values=__lowerCamelCase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice _SCREAMING_SNAKE_CASE : str = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) _SCREAMING_SNAKE_CASE : Optional[Any] = output_from_no_past[:, -3:, random_slice_idx] _SCREAMING_SNAKE_CASE : Dict = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(__lowerCamelCase , __lowerCamelCase , rtol=1E-3 ) def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase=None, __lowerCamelCase=None, __lowerCamelCase=None, __lowerCamelCase=None, __lowerCamelCase=None, ): if attention_mask is None: _SCREAMING_SNAKE_CASE : Optional[Any] = tf.cast(tf.math.not_equal(__lowerCamelCase, config.pad_token_id ), tf.inta ) if decoder_attention_mask is None: _SCREAMING_SNAKE_CASE : List[str] = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape, dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:], config.pad_token_id ), tf.inta ), ], axis=-1, ) if head_mask is None: _SCREAMING_SNAKE_CASE : Tuple = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _SCREAMING_SNAKE_CASE : Tuple = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: _SCREAMING_SNAKE_CASE : List[str] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class lowerCAmelCase__( __lowercase , __lowercase , unittest.TestCase ): '''simple docstring''' __snake_case = ( (TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel) if is_tf_available() else () ) __snake_case = (TFBlenderbotSmallForConditionalGeneration,) if is_tf_available() else () __snake_case = ( { 'conversational': TFBlenderbotSmallForConditionalGeneration, 'feature-extraction': TFBlenderbotSmallModel, 'summarization': TFBlenderbotSmallForConditionalGeneration, 'text2text-generation': TFBlenderbotSmallForConditionalGeneration, 'translation': TFBlenderbotSmallForConditionalGeneration, } if is_tf_available() else {} ) __snake_case = True __snake_case = False __snake_case = False def UpperCamelCase_ ( self ) -> Optional[int]: _SCREAMING_SNAKE_CASE : Union[str, Any] = TFBlenderbotSmallModelTester(self ) _SCREAMING_SNAKE_CASE : Dict = ConfigTester(self , config_class=__lowerCamelCase ) def UpperCamelCase_ ( self ) -> Tuple: self.config_tester.run_common_tests() def UpperCamelCase_ ( self ) -> List[Any]: _SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*__lowerCamelCase ) @require_tokenizers @require_tf class lowerCAmelCase__( unittest.TestCase ): '''simple docstring''' __snake_case = [ 'Social anxiety\nWow, I am never shy. Do you have anxiety?\nYes. I end up sweating and blushing and feel like ' ' i\'m going to throw up.\nand why is that?' ] __snake_case = 'facebook/blenderbot_small-90M' @cached_property def UpperCamelCase_ ( self ) -> List[Any]: # use "old" tokenizer here because of bug when downloading new tokenizer return BlenderbotSmallTokenizer.from_pretrained("facebook/blenderbot-90M" ) @cached_property def UpperCamelCase_ ( self ) -> str: _SCREAMING_SNAKE_CASE : List[Any] = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model @slow def UpperCamelCase_ ( self ) -> Tuple: _SCREAMING_SNAKE_CASE : Optional[int] = self.tokenizer(self.src_text , return_tensors="tf" ) _SCREAMING_SNAKE_CASE : Dict = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=__lowerCamelCase , ) _SCREAMING_SNAKE_CASE : List[Any] = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=__lowerCamelCase )[0] assert generated_words in ( "i don't know. i just feel like i'm going to throw up. it's not fun.", "i'm not sure. i just feel like i've been feeling like i have to be in a certain place", "i'm not sure. i just feel like i've been in a bad situation.", )
325
1
"""simple docstring""" _a = 6_55_21 def _A ( UpperCamelCase_ : str) -> int: '''simple docstring''' __lowercase = 1 __lowercase = 0 for plain_chr in plain_text: __lowercase = (a + ord(UpperCamelCase_)) % MOD_ADLER __lowercase = (b + a) % MOD_ADLER return (b << 16) | a
17
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) if is_sentencepiece_available(): from ..ta.tokenization_ta import TaTokenizer else: from ...utils.dummy_sentencepiece_objects import TaTokenizer __UpperCamelCase = TaTokenizer if is_tokenizers_available(): from ..ta.tokenization_ta_fast import TaTokenizerFast else: from ...utils.dummy_tokenizers_objects import TaTokenizerFast __UpperCamelCase = TaTokenizerFast __UpperCamelCase = {'''configuration_mt5''': ['''MT5Config''', '''MT5OnnxConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ '''MT5EncoderModel''', '''MT5ForConditionalGeneration''', '''MT5ForQuestionAnswering''', '''MT5Model''', '''MT5PreTrainedModel''', '''MT5Stack''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = ['''TFMT5EncoderModel''', '''TFMT5ForConditionalGeneration''', '''TFMT5Model'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = ['''FlaxMT5EncoderModel''', '''FlaxMT5ForConditionalGeneration''', '''FlaxMT5Model'''] if TYPE_CHECKING: from .configuration_mta import MTaConfig, MTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mta import ( MTaEncoderModel, MTaForConditionalGeneration, MTaForQuestionAnswering, MTaModel, MTaPreTrainedModel, MTaStack, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel else: import sys __UpperCamelCase = _LazyModule( __name__, globals()['''__file__'''], _import_structure, extra_objects={'''MT5Tokenizer''': MTaTokenizer, '''MT5TokenizerFast''': MTaTokenizerFast}, module_spec=__spec__, )
69
0
import re def a( A : str ) -> bool: """simple docstring""" a = re.compile( r"^(?:0|94|\+94|0{2}94)" r"7(0|1|2|4|5|6|7|8)" r"(-| |)" r"\d{7}$" ) return bool(re.search(A , A ) ) if __name__ == "__main__": _lowercase: Tuple = "0094702343221" print(is_sri_lankan_phone_number(phone))
357
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_rembert import RemBertTokenizer else: _lowercase: Any = None _lowercase: Optional[int] = logging.get_logger(__name__) _lowercase: str = {"vocab_file": "sentencepiece.model", "tokenizer_file": "tokenizer.json"} _lowercase: Tuple = { "vocab_file": { "google/rembert": "https://huggingface.co/google/rembert/resolve/main/sentencepiece.model", }, "tokenizer_file": { "google/rembert": "https://huggingface.co/google/rembert/resolve/main/tokenizer.json", }, } _lowercase: List[Any] = { "google/rembert": 256, } _lowercase: Dict = "▁" class _lowercase ( lowerCAmelCase ): """simple docstring""" __A = VOCAB_FILES_NAMES __A = PRETRAINED_VOCAB_FILES_MAP __A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __A = RemBertTokenizer def __init__(self , lowerCamelCase_=None , lowerCamelCase_=None , lowerCamelCase_=True , lowerCamelCase_=True , lowerCamelCase_=False , lowerCamelCase_="[CLS]" , lowerCamelCase_="[SEP]" , lowerCamelCase_="<unk>" , lowerCamelCase_="[SEP]" , lowerCamelCase_="<pad>" , lowerCamelCase_="[CLS]" , lowerCamelCase_="[MASK]" , **lowerCamelCase_ , ): """simple docstring""" a = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else mask_token super().__init__( lowerCamelCase_ , tokenizer_file=lowerCamelCase_ , do_lower_case=lowerCamelCase_ , remove_space=lowerCamelCase_ , keep_accents=lowerCamelCase_ , bos_token=lowerCamelCase_ , eos_token=lowerCamelCase_ , unk_token=lowerCamelCase_ , sep_token=lowerCamelCase_ , pad_token=lowerCamelCase_ , cls_token=lowerCamelCase_ , mask_token=lowerCamelCase_ , **lowerCamelCase_ , ) a = do_lower_case a = remove_space a = keep_accents a = vocab_file a = False if not self.vocab_file else True def UpperCamelCase_ (self , lowerCamelCase_ , lowerCamelCase_ = None ): """simple docstring""" a = [self.sep_token_id] a = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def UpperCamelCase_ (self , lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = False ): """simple docstring""" if already_has_special_tokens: if token_ids_a is not None: raise ValueError( "You should not supply a second sequence if the provided sequence of " "ids is already formatted with special tokens for the model." ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(lowerCamelCase_ )) + [1] + ([0] * len(lowerCamelCase_ )) + [1] return [1] + ([0] * len(lowerCamelCase_ )) + [1] def UpperCamelCase_ (self , lowerCamelCase_ , lowerCamelCase_ = None ): """simple docstring""" a = [self.sep_token_id] a = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase_ (self , lowerCamelCase_ , lowerCamelCase_ = None ): """simple docstring""" if not os.path.isdir(lowerCamelCase_ ): logger.error("Vocabulary path ({}) should be a directory".format(lowerCamelCase_ ) ) return a = os.path.join( lowerCamelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase_ ): copyfile(self.vocab_file , lowerCamelCase_ ) return (out_vocab_file,)
71
0
'''simple docstring''' import warnings from ...utils import logging from .image_processing_videomae import VideoMAEImageProcessor __a = logging.get_logger(__name__) class UpperCAmelCase_ ( _lowerCAmelCase ): """simple docstring""" def __init__( self : Union[str, Any] , *snake_case_ : Any , **snake_case_ : List[Any] ): warnings.warn( """The class VideoMAEFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use VideoMAEImageProcessor instead.""" , _lowercase , ) super().__init__(*_lowercase , **_lowercase )
35
"""simple docstring""" import importlib.util import os import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import ( is_accelerate_available, is_flax_available, is_safetensors_available, is_tf_available, is_torch_available, ) from . import BaseTransformersCLICommand def lowercase__ ( snake_case_ :Optional[int] ): return EnvironmentCommand() def lowercase__ ( snake_case_ :List[str] ): return EnvironmentCommand(args.accelerate_config_file ) class _UpperCAmelCase ( _lowerCAmelCase ): @staticmethod def a ( _lowercase : ArgumentParser ): __UpperCAmelCase = parser.add_parser('''env''' ) download_parser.set_defaults(func=_lowercase ) download_parser.add_argument( '''--accelerate-config_file''' , default=_lowercase , help='''The accelerate config file to use for the default values in the launching script.''' , ) download_parser.set_defaults(func=_lowercase ) def __init__( self : Optional[int] , _lowercase : str , *_lowercase : Tuple ): __UpperCAmelCase = accelerate_config_file def a ( self : Dict ): __UpperCAmelCase = '''not installed''' if is_safetensors_available(): import safetensors __UpperCAmelCase = safetensors.__version__ elif importlib.util.find_spec('''safetensors''' ) is not None: import safetensors __UpperCAmelCase = F'''{safetensors.__version__} but is ignored because of PyTorch version too old.''' __UpperCAmelCase = '''not installed''' __UpperCAmelCase = __UpperCAmelCase = '''not found''' if is_accelerate_available(): import accelerate from accelerate.commands.config import default_config_file, load_config_from_file __UpperCAmelCase = accelerate.__version__ # Get the default from the config file. if self._accelerate_config_file is not None or os.path.isfile(_lowercase ): __UpperCAmelCase = load_config_from_file(self._accelerate_config_file ).to_dict() __UpperCAmelCase = ( '''\n'''.join([F'''\t- {prop}: {val}''' for prop, val in accelerate_config.items()] ) if isinstance(_lowercase , _lowercase ) else F'''\t{accelerate_config}''' ) __UpperCAmelCase = '''not installed''' __UpperCAmelCase = '''NA''' if is_torch_available(): import torch __UpperCAmelCase = torch.__version__ __UpperCAmelCase = torch.cuda.is_available() __UpperCAmelCase = '''not installed''' __UpperCAmelCase = '''NA''' if is_tf_available(): import tensorflow as tf __UpperCAmelCase = tf.__version__ try: # deprecated in v2.1 __UpperCAmelCase = tf.test.is_gpu_available() except AttributeError: # returns list of devices, convert to bool __UpperCAmelCase = bool(tf.config.list_physical_devices('''GPU''' ) ) __UpperCAmelCase = '''not installed''' __UpperCAmelCase = '''not installed''' __UpperCAmelCase = '''not installed''' __UpperCAmelCase = '''NA''' if is_flax_available(): import flax import jax import jaxlib __UpperCAmelCase = flax.__version__ __UpperCAmelCase = jax.__version__ __UpperCAmelCase = jaxlib.__version__ __UpperCAmelCase = jax.lib.xla_bridge.get_backend().platform __UpperCAmelCase = { '''`transformers` version''': version, '''Platform''': platform.platform(), '''Python version''': platform.python_version(), '''Huggingface_hub version''': huggingface_hub.__version__, '''Safetensors version''': F'''{safetensors_version}''', '''Accelerate version''': F'''{accelerate_version}''', '''Accelerate config''': F'''{accelerate_config_str}''', '''PyTorch version (GPU?)''': F'''{pt_version} ({pt_cuda_available})''', '''Tensorflow version (GPU?)''': F'''{tf_version} ({tf_cuda_available})''', '''Flax version (CPU?/GPU?/TPU?)''': F'''{flax_version} ({jax_backend})''', '''Jax version''': F'''{jax_version}''', '''JaxLib version''': F'''{jaxlib_version}''', '''Using GPU in script?''': '''<fill in>''', '''Using distributed or parallel set-up in script?''': '''<fill in>''', } print('''\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n''' ) print(self.format_dict(_lowercase ) ) return info @staticmethod def a ( _lowercase : str ): return "\n".join([F'''- {prop}: {val}''' for prop, val in d.items()] ) + "\n"
332
0
'''simple docstring''' import json import os import re import sys import urllib.request import requests from bsa import BeautifulSoup UpperCamelCase_ : Tuple = { '''User-Agent''': '''Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36''' ''' (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582''' } def __a ( _UpperCamelCase: str = "dhaka" , _UpperCamelCase: int = 5 ) -> int: """simple docstring""" _snake_case = min(__lowerCamelCase , 50 ) # Prevent abuse! _snake_case = { "q": query, "tbm": "isch", "hl": "en", "ijn": "0", } _snake_case = requests.get("https://www.google.com/search" , params=__lowerCamelCase , headers=__lowerCamelCase ) _snake_case = BeautifulSoup(html.text , "html.parser" ) _snake_case = "".join( re.findall(r"AF_initDataCallback\(([^<]+)\);" , str(soup.select("script" ) ) ) ) _snake_case = json.dumps(__lowerCamelCase ) _snake_case = json.loads(__lowerCamelCase ) _snake_case = re.findall( r"\[\"GRID_STATE0\",null,\[\[1,\[0,\".*?\",(.*),\"All\"," , __lowerCamelCase , ) if not matched_google_image_data: return 0 _snake_case = re.sub( r"\[\"(https\:\/\/encrypted-tbn0\.gstatic\.com\/images\?.*?)\",\d+,\d+\]" , "" , str(__lowerCamelCase ) , ) _snake_case = re.findall( r"(?:\'|,),\[\"(https:|http.*?)\",\d+,\d+\]" , __lowerCamelCase , ) for index, fixed_full_res_image in enumerate(__lowerCamelCase ): if index >= max_images: return index _snake_case = bytes(__lowerCamelCase , "ascii" ).decode( "unicode-escape" ) _snake_case = bytes(__lowerCamelCase , "ascii" ).decode( "unicode-escape" ) _snake_case = urllib.request.build_opener() _snake_case = [ ( "User-Agent", "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36" " (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582", ) ] urllib.request.install_opener(__lowerCamelCase ) _snake_case = F"""query_{query.replace(' ' , '_' )}""" if not os.path.exists(__lowerCamelCase ): os.makedirs(__lowerCamelCase ) urllib.request.urlretrieve( # noqa: S310 __lowerCamelCase , F"""{path_name}/original_size_img_{index}.jpg""" ) return index if __name__ == "__main__": try: UpperCamelCase_ : Any = download_images_from_google_query(sys.argv[1]) print(F'{image_count} images were downloaded to disk.') except IndexError: print('''Please provide a search term.''') raise
368
'''simple docstring''' from decimal import Decimal, getcontext from math import ceil, factorial def __a ( _UpperCamelCase: int ) -> str: """simple docstring""" if not isinstance(_UpperCamelCase , _UpperCamelCase ): raise TypeError("Undefined for non-integers" ) elif precision < 1: raise ValueError("Undefined for non-natural numbers" ) _snake_case = precision _snake_case = ceil(precision / 14 ) _snake_case = 426_880 * Decimal(10_005 ).sqrt() _snake_case = 1 _snake_case = 13_591_409 _snake_case = Decimal(_UpperCamelCase ) for k in range(1 , _UpperCamelCase ): _snake_case = factorial(6 * k ) // (factorial(3 * k ) * factorial(_UpperCamelCase ) ** 3) linear_term += 545_140_134 exponential_term *= -262_537_412_640_768_000 partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term return str(constant_term / partial_sum )[:-1] if __name__ == "__main__": UpperCamelCase_ : Any = 50 print(F'The first {n} digits of pi is: {pi(n)}')
142
0
"""simple docstring""" import os import zipfile import pytest from datasets.utils.extract import ( BzipaExtractor, Extractor, GzipExtractor, LzaExtractor, SevenZipExtractor, TarExtractor, XzExtractor, ZipExtractor, ZstdExtractor, ) from .utils import require_lza, require_pyazr, require_zstandard @pytest.mark.parametrize( """compression_format, is_archive""" , [ ("""7z""", True), ("""bz2""", False), ("""gzip""", False), ("""lz4""", False), ("""tar""", True), ("""xz""", False), ("""zip""", True), ("""zstd""", False), ] , ) def lowercase (snake_case__ : Optional[Any] , snake_case__ : Optional[Any] , snake_case__ : int , snake_case__ : Optional[Any] , snake_case__ : Any , snake_case__ : str , snake_case__ : List[Any] , snake_case__ : int , snake_case__ : Optional[Any] , snake_case__ : Optional[Any] , snake_case__ : Dict , snake_case__ : int , ) -> List[Any]: '''simple docstring''' lowerCAmelCase = { """7z""": (seven_zip_file, SevenZipExtractor), """bz2""": (bza_file, BzipaExtractor), """gzip""": (gz_file, GzipExtractor), """lz4""": (lza_file, LzaExtractor), """tar""": (tar_file, TarExtractor), """xz""": (xz_file, XzExtractor), """zip""": (zip_file, ZipExtractor), """zstd""": (zstd_file, ZstdExtractor), } lowerCAmelCase , lowerCAmelCase = input_paths_and_base_extractors[compression_format] if input_path is None: lowerCAmelCase = f'''for \'{compression_format}\' compression_format, ''' if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(snake_case__ ) assert base_extractor.is_extractable(snake_case__ ) lowerCAmelCase = tmp_path / ("""extracted""" if is_archive else """extracted.txt""") base_extractor.extract(snake_case__ , snake_case__ ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name lowerCAmelCase = file_path.read_text(encoding="""utf-8""" ) else: lowerCAmelCase = output_path.read_text(encoding="""utf-8""" ) lowerCAmelCase = text_file.read_text(encoding="""utf-8""" ) assert extracted_file_content == expected_file_content @pytest.mark.parametrize( """compression_format, is_archive""" , [ ("""7z""", True), ("""bz2""", False), ("""gzip""", False), ("""lz4""", False), ("""tar""", True), ("""xz""", False), ("""zip""", True), ("""zstd""", False), ] , ) def lowercase (snake_case__ : int , snake_case__ : Optional[Any] , snake_case__ : List[Any] , snake_case__ : List[str] , snake_case__ : List[Any] , snake_case__ : List[Any] , snake_case__ : Tuple , snake_case__ : List[str] , snake_case__ : Optional[Any] , snake_case__ : Dict , snake_case__ : Optional[int] , snake_case__ : Union[str, Any] , ) -> str: '''simple docstring''' lowerCAmelCase = { """7z""": seven_zip_file, """bz2""": bza_file, """gzip""": gz_file, """lz4""": lza_file, """tar""": tar_file, """xz""": xz_file, """zip""": zip_file, """zstd""": zstd_file, } lowerCAmelCase = input_paths[compression_format] if input_path is None: lowerCAmelCase = f'''for \'{compression_format}\' compression_format, ''' if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(snake_case__ ) lowerCAmelCase = Extractor.infer_extractor_format(snake_case__ ) assert extractor_format is not None lowerCAmelCase = tmp_path / ("""extracted""" if is_archive else """extracted.txt""") Extractor.extract(snake_case__ , snake_case__ , snake_case__ ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name lowerCAmelCase = file_path.read_text(encoding="""utf-8""" ) else: lowerCAmelCase = output_path.read_text(encoding="""utf-8""" ) lowerCAmelCase = text_file.read_text(encoding="""utf-8""" ) assert extracted_file_content == expected_file_content @pytest.fixture def lowercase (snake_case__ : List[Any] , snake_case__ : Tuple ) -> Union[str, Any]: '''simple docstring''' import tarfile lowerCAmelCase = tmp_path / """data_dot_dot""" directory.mkdir() lowerCAmelCase = directory / """tar_file_with_dot_dot.tar""" with tarfile.TarFile(snake_case__ , """w""" ) as f: f.add(snake_case__ , arcname=os.path.join("""..""" , text_file.name ) ) return path @pytest.fixture def lowercase (snake_case__ : Optional[int] ) -> Union[str, Any]: '''simple docstring''' import tarfile lowerCAmelCase = tmp_path / """data_sym_link""" directory.mkdir() lowerCAmelCase = directory / """tar_file_with_sym_link.tar""" os.symlink("""..""" , directory / """subdir""" , target_is_directory=snake_case__ ) with tarfile.TarFile(snake_case__ , """w""" ) as f: f.add(str(directory / """subdir""" ) , arcname="""subdir""" ) # str required by os.readlink on Windows and Python < 3.8 return path @pytest.mark.parametrize( """insecure_tar_file, error_log""" , [("""tar_file_with_dot_dot""", """illegal path"""), ("""tar_file_with_sym_link""", """Symlink""")] , ) def lowercase (snake_case__ : int , snake_case__ : Union[str, Any] , snake_case__ : Optional[int] , snake_case__ : Tuple , snake_case__ : Any , snake_case__ : Any ) -> Tuple: '''simple docstring''' lowerCAmelCase = { """tar_file_with_dot_dot""": tar_file_with_dot_dot, """tar_file_with_sym_link""": tar_file_with_sym_link, } lowerCAmelCase = insecure_tar_files[insecure_tar_file] lowerCAmelCase = tmp_path / """extracted""" TarExtractor.extract(snake_case__ , snake_case__ ) assert caplog.text for record in caplog.records: assert record.levelname == "ERROR" assert error_log in record.msg def lowercase (snake_case__ : str ) -> Dict: '''simple docstring''' lowerCAmelCase = tmpdir / """not_a_zip_file""" # From: https://github.com/python/cpython/pull/5053 lowerCAmelCase = ( B"""\x89PNG\r\n\x1a\n\x00\x00\x00\rIHDR\x00\x00\x00\x01\x00\x00""" B"""\x00\x02\x08\x06\x00\x00\x00\x99\x81\xb6'\x00\x00\x00\x15I""" B"""DATx\x01\x01\n\x00\xf5\xff\x00PK\x05\x06\x00PK\x06\x06\x07""" B"""\xac\x01N\xc6|a\r\x00\x00\x00\x00IEND\xaeB`\x82""" ) with not_a_zip_file.open("""wb""" ) as f: f.write(snake_case__ ) assert zipfile.is_zipfile(str(snake_case__ ) ) # is a false positive for `zipfile` assert not ZipExtractor.is_extractable(snake_case__ ) # but we're right
155
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..bit import BitConfig a = logging.get_logger(__name__) a = { 'Intel/dpt-large': 'https://huggingface.co/Intel/dpt-large/resolve/main/config.json', # See all DPT models at https://huggingface.co/models?filter=dpt } class SCREAMING_SNAKE_CASE__ ( _a ): _a = 'dpt' def __init__( self : int , lowerCAmelCase : List[str]=768 , lowerCAmelCase : Optional[int]=12 , lowerCAmelCase : Any=12 , lowerCAmelCase : str=3072 , lowerCAmelCase : Union[str, Any]="gelu" , lowerCAmelCase : Optional[int]=0.0 , lowerCAmelCase : Union[str, Any]=0.0 , lowerCAmelCase : str=0.02 , lowerCAmelCase : str=1e-12 , lowerCAmelCase : Optional[Any]=384 , lowerCAmelCase : str=16 , lowerCAmelCase : int=3 , lowerCAmelCase : Tuple=False , lowerCAmelCase : Any=True , lowerCAmelCase : Tuple=[2, 5, 8, 11] , lowerCAmelCase : Tuple="project" , lowerCAmelCase : Optional[int]=[4, 2, 1, 0.5] , lowerCAmelCase : Any=[96, 192, 384, 768] , lowerCAmelCase : int=256 , lowerCAmelCase : List[Any]=-1 , lowerCAmelCase : Any=False , lowerCAmelCase : int=True , lowerCAmelCase : List[str]=0.4 , lowerCAmelCase : Dict=255 , lowerCAmelCase : int=0.1 , lowerCAmelCase : List[Any]=[1, 1024, 24, 24] , lowerCAmelCase : str=[0, 1] , lowerCAmelCase : str=None , **lowerCAmelCase : Optional[Any] , ): super().__init__(**lowerCAmelCase ) lowerCAmelCase = hidden_size lowerCAmelCase = is_hybrid if self.is_hybrid: if backbone_config is None: logger.info("""Initializing the config with a `BiT` backbone.""" ) lowerCAmelCase = { """global_padding""": """same""", """layer_type""": """bottleneck""", """depths""": [3, 4, 9], """out_features""": ["""stage1""", """stage2""", """stage3"""], """embedding_dynamic_padding""": True, } lowerCAmelCase = BitConfig(**lowerCAmelCase ) elif isinstance(lowerCAmelCase , lowerCAmelCase ): logger.info("""Initializing the config with a `BiT` backbone.""" ) lowerCAmelCase = BitConfig(**lowerCAmelCase ) elif isinstance(lowerCAmelCase , lowerCAmelCase ): lowerCAmelCase = backbone_config else: raise ValueError( f'''backbone_config must be a dictionary or a `PretrainedConfig`, got {backbone_config.__class__}.''' ) lowerCAmelCase = backbone_featmap_shape lowerCAmelCase = neck_ignore_stages if readout_type != "project": raise ValueError("""Readout type must be 'project' when using `DPT-hybrid` mode.""" ) else: lowerCAmelCase = None lowerCAmelCase = None lowerCAmelCase = [] lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_act lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = initializer_range lowerCAmelCase = layer_norm_eps lowerCAmelCase = image_size lowerCAmelCase = patch_size lowerCAmelCase = num_channels lowerCAmelCase = qkv_bias lowerCAmelCase = backbone_out_indices if readout_type not in ["ignore", "add", "project"]: raise ValueError("""Readout_type must be one of ['ignore', 'add', 'project']""" ) lowerCAmelCase = readout_type lowerCAmelCase = reassemble_factors lowerCAmelCase = neck_hidden_sizes lowerCAmelCase = fusion_hidden_size lowerCAmelCase = head_in_index lowerCAmelCase = use_batch_norm_in_fusion_residual # auxiliary head attributes (semantic segmentation) lowerCAmelCase = use_auxiliary_head lowerCAmelCase = auxiliary_loss_weight lowerCAmelCase = semantic_loss_ignore_index lowerCAmelCase = semantic_classifier_dropout def __lowercase ( self : Any ): lowerCAmelCase = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: lowerCAmelCase = self.backbone_config.to_dict() lowerCAmelCase = self.__class__.model_type return output
155
1
def a_ ( __lowercase : Dict ) -> Tuple: _snake_case = len(__lowercase ) _snake_case = sum(__lowercase ) _snake_case = [[False for x in range(s + 1 )] for y in range(n + 1 )] for i in range(1 , n + 1 ): _snake_case = True for i in range(1 , s + 1 ): _snake_case = False for i in range(1 , n + 1 ): for j in range(1 , s + 1 ): _snake_case = dp[i][j - 1] if arr[i - 1] <= j: _snake_case = dp[i][j] or dp[i - 1][j - arr[i - 1]] for j in range(int(s / 2 ) , -1 , -1 ): if dp[n][j] is True: _snake_case = s - 2 * j break return diff
130
import baseaa def a_ ( __lowercase : str ) -> bytes: return baseaa.aaaencode(string.encode('utf-8' ) ) def a_ ( __lowercase : bytes ) -> str: return baseaa.aaadecode(__lowercase ).decode('utf-8' ) if __name__ == "__main__": import doctest doctest.testmod()
130
1
from PIL import Image def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Image , SCREAMING_SNAKE_CASE : int ) -> Image: __lowercase = (259 * (level + 255)) / (255 * (259 - level)) def contrast(SCREAMING_SNAKE_CASE : int ) -> int: return int(128 + factor * (c - 128) ) return img.point(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": # Load image with Image.open("""image_data/lena.jpg""") as img: # Change contrast to 170 SCREAMING_SNAKE_CASE__ = change_contrast(img, 170) cont_img.save("""image_data/lena_high_contrast.png""", format="""png""")
325
from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { """transfo-xl-wt103""": """https://huggingface.co/transfo-xl-wt103/resolve/main/config.json""", } class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : Union[str, Any] = "transfo-xl" lowerCAmelCase__ : int = ["mems"] lowerCAmelCase__ : Dict = { "n_token": "vocab_size", "hidden_size": "d_model", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : Optional[int] , _UpperCAmelCase : Tuple=26_77_35 , _UpperCAmelCase : Any=[2_00_00, 4_00_00, 20_00_00] , _UpperCAmelCase : Tuple=10_24 , _UpperCAmelCase : Union[str, Any]=10_24 , _UpperCAmelCase : Optional[int]=16 , _UpperCAmelCase : Tuple=64 , _UpperCAmelCase : Tuple=40_96 , _UpperCAmelCase : List[Any]=4 , _UpperCAmelCase : str=False , _UpperCAmelCase : Optional[Any]=18 , _UpperCAmelCase : int=16_00 , _UpperCAmelCase : Optional[int]=10_00 , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : Tuple=True , _UpperCAmelCase : Any=0 , _UpperCAmelCase : Optional[Any]=-1 , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : Optional[Any]=0.1 , _UpperCAmelCase : List[str]=0.0 , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : int="normal" , _UpperCAmelCase : int=0.01 , _UpperCAmelCase : List[Any]=0.01 , _UpperCAmelCase : List[Any]=0.02 , _UpperCAmelCase : Optional[Any]=1e-5 , _UpperCAmelCase : Tuple=0 , **_UpperCAmelCase : List[str] , ) -> Tuple: """simple docstring""" __lowercase = vocab_size __lowercase = [] self.cutoffs.extend(_UpperCAmelCase ) if proj_share_all_but_first: __lowercase = [False] + [True] * len(self.cutoffs ) else: __lowercase = [False] + [False] * len(self.cutoffs ) __lowercase = d_model __lowercase = d_embed __lowercase = d_head __lowercase = d_inner __lowercase = div_val __lowercase = pre_lnorm __lowercase = n_layer __lowercase = n_head __lowercase = mem_len __lowercase = same_length __lowercase = attn_type __lowercase = clamp_len __lowercase = sample_softmax __lowercase = adaptive __lowercase = dropout __lowercase = dropatt __lowercase = untie_r __lowercase = init __lowercase = init_range __lowercase = proj_init_std __lowercase = init_std __lowercase = layer_norm_epsilon super().__init__(eos_token_id=_UpperCAmelCase , **_UpperCAmelCase ) @property def a__ ( self : Tuple ) -> Any: """simple docstring""" logger.info(f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" ) return -1 @max_position_embeddings.setter def a__ ( self : Dict , _UpperCAmelCase : List[str] ) -> Optional[Any]: """simple docstring""" raise NotImplementedError( f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" )
325
1
import gzip import hashlib import json import multiprocessing import os import re import shutil import time from pathlib import Path import numpy as np from arguments import PreprocessingArguments from datasets import load_dataset from minhash_deduplication import deduplicate_dataset from transformers import AutoTokenizer, HfArgumentParser snake_case_ : Union[str, Any] = re.compile(r'''\s+''') def snake_case__ ( SCREAMING_SNAKE_CASE_ : Any ): '''simple docstring''' return {"hash": hashlib.mda(re.sub(SCREAMING_SNAKE_CASE_ , '' , example['content'] ).encode('utf-8' ) ).hexdigest()} def snake_case__ ( SCREAMING_SNAKE_CASE_ : str ): '''simple docstring''' lowercase__ : Optional[int] = [len(SCREAMING_SNAKE_CASE_ ) for line in example['content'].splitlines()] return {"line_mean": np.mean(SCREAMING_SNAKE_CASE_ ), "line_max": max(SCREAMING_SNAKE_CASE_ )} def snake_case__ ( SCREAMING_SNAKE_CASE_ : str ): '''simple docstring''' lowercase__ : str = np.mean([c.isalnum() for c in example['content']] ) return {"alpha_frac": alpha_frac} def snake_case__ ( SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Dict ): '''simple docstring''' if example["hash"] in uniques: uniques.remove(example['hash'] ) return True else: return False def snake_case__ ( SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : str=5 ): '''simple docstring''' lowercase__ : int = ['auto-generated', 'autogenerated', 'automatically generated'] lowercase__ : Union[str, Any] = example['content'].splitlines() for _, line in zip(range(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ): for keyword in keywords: if keyword in line.lower(): return {"autogenerated": True} else: return {"autogenerated": False} def snake_case__ ( SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[Any]=5 , SCREAMING_SNAKE_CASE_ : List[Any]=0.05 ): '''simple docstring''' lowercase__ : Any = ['unit tests', 'test file', 'configuration file'] lowercase__ : Union[str, Any] = example['content'].splitlines() lowercase__ : Any = 0 lowercase__ : Optional[int] = 0 # first test for _, line in zip(range(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ): for keyword in keywords: if keyword in line.lower(): return {"config_or_test": True} # second test lowercase__ : Any = example['content'].count('\n' ) lowercase__ : List[str] = int(coeff * nlines ) for line in lines: count_config += line.lower().count('config' ) count_test += line.lower().count('test' ) if count_config > threshold or count_test > threshold: return {"config_or_test": True} return {"config_or_test": False} def snake_case__ ( SCREAMING_SNAKE_CASE_ : Optional[Any] ): '''simple docstring''' lowercase__ : int = ['def ', 'class ', 'for ', 'while '] lowercase__ : Any = example['content'].splitlines() for line in lines: for keyword in keywords: if keyword in line.lower(): return {"has_no_keywords": False} return {"has_no_keywords": True} def snake_case__ ( SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Optional[int]=4 ): '''simple docstring''' lowercase__ : Tuple = example['content'].splitlines() lowercase__ : Union[str, Any] = 0 for line in lines: counter += line.lower().count('=' ) if counter > minimum: return {"has_few_assignments": False} return {"has_few_assignments": True} def snake_case__ ( SCREAMING_SNAKE_CASE_ : Union[str, Any] ): '''simple docstring''' lowercase__ : Optional[Any] = tokenizer(example['content'] , truncation=SCREAMING_SNAKE_CASE_ )['input_ids'] lowercase__ : str = len(example['content'] ) / len(SCREAMING_SNAKE_CASE_ ) return {"ratio": ratio} def snake_case__ ( SCREAMING_SNAKE_CASE_ : Any ): '''simple docstring''' lowercase__ : int = {} results.update(get_hash(SCREAMING_SNAKE_CASE_ ) ) results.update(line_stats(SCREAMING_SNAKE_CASE_ ) ) results.update(alpha_stats(SCREAMING_SNAKE_CASE_ ) ) results.update(char_token_ratio(SCREAMING_SNAKE_CASE_ ) ) results.update(is_autogenerated(SCREAMING_SNAKE_CASE_ ) ) results.update(is_config_or_test(SCREAMING_SNAKE_CASE_ ) ) results.update(has_no_keywords(SCREAMING_SNAKE_CASE_ ) ) results.update(has_few_assignments(SCREAMING_SNAKE_CASE_ ) ) return results def snake_case__ ( SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Any ): '''simple docstring''' if not check_uniques(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): return False elif example["autogenerated"]: return False elif example["line_max"] > args.line_max: return False elif example["line_mean"] > args.line_mean: return False elif example["alpha_frac"] < args.alpha_frac: return False elif example["ratio"] < args.min_token_ratio: return False elif example["config_or_test"] and np.random.rand() <= args.filter_proba: return False elif example["has_no_keywords"] and np.random.rand() <= args.filter_proba: return False elif example["has_few_assignments"]: return False else: return True def snake_case__ ( SCREAMING_SNAKE_CASE_ : List[str] ): '''simple docstring''' with open(SCREAMING_SNAKE_CASE_ , 'rb' ) as f_in: with gzip.open(str(SCREAMING_SNAKE_CASE_ ) + '.gz' , 'wb' , compresslevel=6 ) as f_out: shutil.copyfileobj(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) os.unlink(SCREAMING_SNAKE_CASE_ ) # Settings snake_case_ : Union[str, Any] = HfArgumentParser(PreprocessingArguments) snake_case_ : List[Any] = parser.parse_args() if args.num_workers is None: snake_case_ : List[Any] = multiprocessing.cpu_count() snake_case_ : List[Any] = AutoTokenizer.from_pretrained(args.tokenizer_dir) # Load dataset snake_case_ : int = time.time() snake_case_ : str = load_dataset(args.dataset_name, split='''train''') print(F'''Time to load dataset: {time.time()-t_start:.2f}''') # Run preprocessing snake_case_ : Optional[Any] = time.time() snake_case_ : Union[str, Any] = ds.map(preprocess, num_proc=args.num_workers) print(F'''Time to preprocess dataset: {time.time()-t_start:.2f}''') # Deduplicate hashes snake_case_ : str = set(ds.unique('''hash''')) snake_case_ : Union[str, Any] = len(uniques) / len(ds) print(F'''Fraction of duplicates: {1-frac:.2%}''') # Deduplicate data and apply heuristics snake_case_ : List[Any] = time.time() snake_case_ : str = ds.filter(filter, fn_kwargs={'''uniques''': uniques, '''args''': args}) print(F'''Time to filter dataset: {time.time()-t_start:.2f}''') print(F'''Size of filtered dataset: {len(ds_filter)}''') # Deduplicate with minhash and jaccard similarity if args.near_deduplication: snake_case_ : List[Any] = time.time() snake_case_ , snake_case_ : Optional[int] = deduplicate_dataset(ds_filter, args.jaccard_threshold) print(F'''Time to deduplicate dataset: {time.time()-t_start:.2f}''') print(F'''Size of deduplicate dataset: {len(ds_filter)}''') # Save data in batches of samples_per_file snake_case_ : Tuple = Path(args.output_dir) output_dir.mkdir(exist_ok=True) # save duplicate_clusters in the output_dir as artifacts # not sure it is the right place the save it if args.near_deduplication: with open(output_dir / '''duplicate_clusters.json''', '''w''') as f: json.dump(duplicate_clusters, f) snake_case_ : Union[str, Any] = output_dir / '''data''' data_dir.mkdir(exist_ok=True) snake_case_ : List[str] = time.time() for file_number, index in enumerate(range(0, len(ds_filter), args.samples_per_file)): snake_case_ : List[str] = str(data_dir / F'''file-{file_number+1:012}.json''') snake_case_ : Union[str, Any] = min(len(ds_filter), index + args.samples_per_file) ds_filter.select(list(range(index, end_index))).to_json(file_path) compress_file(file_path) print(F'''Time to save dataset: {time.time()-t_start:.2f}''')
365
import math import sys def snake_case__ ( SCREAMING_SNAKE_CASE_ : int ): '''simple docstring''' if number != int(SCREAMING_SNAKE_CASE_ ): raise ValueError('the value of input must be a natural number' ) if number < 0: raise ValueError('the value of input must not be a negative number' ) if number == 0: return 1 lowercase__ : Tuple = [-1] * (number + 1) lowercase__ : Tuple = 0 for i in range(1 , number + 1 ): lowercase__ : Tuple = sys.maxsize lowercase__ : str = int(math.sqrt(SCREAMING_SNAKE_CASE_ ) ) for j in range(1 , root + 1 ): lowercase__ : List[Any] = 1 + answers[i - (j**2)] lowercase__ : str = min(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowercase__ : List[str] = answer return answers[number] if __name__ == "__main__": import doctest doctest.testmod()
216
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available a : Dict = { '''configuration_mvp''': ['''MVP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MvpConfig''', '''MvpOnnxConfig'''], '''tokenization_mvp''': ['''MvpTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Optional[Any] = ['''MvpTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : List[str] = [ '''MVP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MvpForCausalLM''', '''MvpForConditionalGeneration''', '''MvpForQuestionAnswering''', '''MvpForSequenceClassification''', '''MvpModel''', '''MvpPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mvp import MVP_PRETRAINED_CONFIG_ARCHIVE_MAP, MvpConfig, MvpOnnxConfig from .tokenization_mvp import MvpTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mvp_fast import MvpTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mvp import ( MVP_PRETRAINED_MODEL_ARCHIVE_LIST, MvpForCausalLM, MvpForConditionalGeneration, MvpForQuestionAnswering, MvpForSequenceClassification, MvpModel, MvpPreTrainedModel, ) else: import sys a : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
56
import argparse import hashlib import os import urllib import warnings import torch from torch import nn from tqdm import tqdm from transformers import WhisperConfig, WhisperForConditionalGeneration A_ :Optional[Any] = { '''tiny.en''': '''https://openaipublic.azureedge.net/main/whisper/models/d3dd57d32accea0b295c96e26691aa14d8822fac7d9d27d5dc00b4ca2826dd03/tiny.en.pt''', '''tiny''': '''https://openaipublic.azureedge.net/main/whisper/models/65147644a518d12f04e32d6f3b26facc3f8dd46e5390956a9424a650c0ce22b9/tiny.pt''', '''base.en''': '''https://openaipublic.azureedge.net/main/whisper/models/25a8566e1d0c1e2231d1c762132cd20e0f96a85d16145c3a00adf5d1ac670ead/base.en.pt''', '''base''': '''https://openaipublic.azureedge.net/main/whisper/models/ed3a0b6b1c0edf879ad9b11b1af5a0e6ab5db9205f891f668f8b0e6c6326e34e/base.pt''', '''small.en''': '''https://openaipublic.azureedge.net/main/whisper/models/f953ad0fd29cacd07d5a9eda5624af0f6bcf2258be67c92b79389873d91e0872/small.en.pt''', '''small''': '''https://openaipublic.azureedge.net/main/whisper/models/9ecf779972d90ba49c06d968637d720dd632c55bbf19d441fb42bf17a411e794/small.pt''', '''medium.en''': '''https://openaipublic.azureedge.net/main/whisper/models/d7440d1dc186f76616474e0ff0b3b6b879abc9d1a4926b7adfa41db2d497ab4f/medium.en.pt''', '''medium''': '''https://openaipublic.azureedge.net/main/whisper/models/345ae4da62f9b3d59415adc60127b97c714f32e89e936602e85993674d08dcb1/medium.pt''', '''large''': '''https://openaipublic.azureedge.net/main/whisper/models/e4b87e7e0bf463eb8e6956e646f1e277e901512310def2c24bf0e11bd3c28e9a/large.pt''', '''large-v2''': '''https://openaipublic.azureedge.net/main/whisper/models/81f7c96c852ee8fc832187b0132e569d6c3065a3252ed18e56effd0b6a73e524/large-v2.pt''', } def A ( a_ ) -> List[Any]: __UpperCamelCase : Any =['layers', 'blocks'] for k in ignore_keys: state_dict.pop(a_ ,a_ ) A_ :int = { '''blocks''': '''layers''', '''mlp.0''': '''fc1''', '''mlp.2''': '''fc2''', '''mlp_ln''': '''final_layer_norm''', '''.attn.query''': '''.self_attn.q_proj''', '''.attn.key''': '''.self_attn.k_proj''', '''.attn.value''': '''.self_attn.v_proj''', '''.attn_ln''': '''.self_attn_layer_norm''', '''.attn.out''': '''.self_attn.out_proj''', '''.cross_attn.query''': '''.encoder_attn.q_proj''', '''.cross_attn.key''': '''.encoder_attn.k_proj''', '''.cross_attn.value''': '''.encoder_attn.v_proj''', '''.cross_attn_ln''': '''.encoder_attn_layer_norm''', '''.cross_attn.out''': '''.encoder_attn.out_proj''', '''decoder.ln.''': '''decoder.layer_norm.''', '''encoder.ln.''': '''encoder.layer_norm.''', '''token_embedding''': '''embed_tokens''', '''encoder.positional_embedding''': '''encoder.embed_positions.weight''', '''decoder.positional_embedding''': '''decoder.embed_positions.weight''', '''ln_post''': '''layer_norm''', } def A ( a_ ) -> Union[str, Any]: __UpperCamelCase : str =list(s_dict.keys() ) for key in keys: __UpperCamelCase : str =key for k, v in WHISPER_MAPPING.items(): if k in key: __UpperCamelCase : Optional[Any] =new_key.replace(a_ ,a_ ) print(F'{key} -> {new_key}' ) __UpperCamelCase : Dict =s_dict.pop(a_ ) return s_dict def A ( a_ ) -> Optional[Any]: __UpperCamelCase , __UpperCamelCase : Tuple =emb.weight.shape __UpperCamelCase : Tuple =nn.Linear(a_ ,a_ ,bias=a_ ) __UpperCamelCase : List[Any] =emb.weight.data return lin_layer def A ( a_ ,a_ ) -> bytes: os.makedirs(a_ ,exist_ok=a_ ) __UpperCamelCase : Optional[int] =os.path.basename(a_ ) __UpperCamelCase : Union[str, Any] =url.split('/' )[-2] __UpperCamelCase : Union[str, Any] =os.path.join(a_ ,a_ ) if os.path.exists(a_ ) and not os.path.isfile(a_ ): raise RuntimeError(F'{download_target} exists and is not a regular file' ) if os.path.isfile(a_ ): __UpperCamelCase : str =open(a_ ,'rb' ).read() if hashlib.shaaaa(a_ ).hexdigest() == expected_shaaaa: return model_bytes else: warnings.warn(F'{download_target} exists, but the SHA256 checksum does not match; re-downloading the file' ) with urllib.request.urlopen(a_ ) as source, open(a_ ,'wb' ) as output: with tqdm( total=int(source.info().get('Content-Length' ) ) ,ncols=80 ,unit='iB' ,unit_scale=a_ ,unit_divisor=1_024 ) as loop: while True: __UpperCamelCase : Optional[Any] =source.read(8_192 ) if not buffer: break output.write(a_ ) loop.update(len(a_ ) ) __UpperCamelCase : List[Any] =open(a_ ,'rb' ).read() if hashlib.shaaaa(a_ ).hexdigest() != expected_shaaaa: raise RuntimeError( 'Model has been downloaded but the SHA256 checksum does not not match. Please retry loading the model.' ) return model_bytes def A ( a_ ,a_ ) -> Optional[Any]: if ".pt" not in checkpoint_path: __UpperCamelCase : int =_download(_MODELS[checkpoint_path] ) else: __UpperCamelCase : List[str] =torch.load(a_ ,map_location='cpu' ) __UpperCamelCase : Union[str, Any] =original_checkpoint['dims'] __UpperCamelCase : List[Any] =original_checkpoint['model_state_dict'] __UpperCamelCase : Dict =state_dict['decoder.token_embedding.weight'] remove_ignore_keys_(a_ ) rename_keys(a_ ) __UpperCamelCase : List[str] =True __UpperCamelCase : str =state_dict['decoder.layers.0.fc1.weight'].shape[0] __UpperCamelCase : Optional[int] =WhisperConfig( vocab_size=dimensions['n_vocab'] ,encoder_ffn_dim=a_ ,decoder_ffn_dim=a_ ,num_mel_bins=dimensions['n_mels'] ,d_model=dimensions['n_audio_state'] ,max_target_positions=dimensions['n_text_ctx'] ,encoder_layers=dimensions['n_audio_layer'] ,encoder_attention_heads=dimensions['n_audio_head'] ,decoder_layers=dimensions['n_text_layer'] ,decoder_attention_heads=dimensions['n_text_state'] ,max_source_positions=dimensions['n_audio_ctx'] ,) __UpperCamelCase : List[str] =WhisperForConditionalGeneration(a_ ) __UpperCamelCase , __UpperCamelCase : Union[str, Any] =model.model.load_state_dict(a_ ,strict=a_ ) if len(a_ ) > 0 and not set(a_ ) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( 'Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing,' F' but all the following weights are missing {missing}' ) if tie_embeds: __UpperCamelCase : Optional[int] =make_linear_from_emb(model.model.decoder.embed_tokens ) else: __UpperCamelCase : List[str] =proj_out_weights model.save_pretrained(a_ ) if __name__ == "__main__": A_ :List[Any] = argparse.ArgumentParser() # # Required parameters parser.add_argument('''--checkpoint_path''', type=str, help='''Patht to the downloaded checkpoints''') parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') A_ :List[Any] = parser.parse_args() convert_openai_whisper_to_tfms(args.checkpoint_path, args.pytorch_dump_folder_path)
71
0
"""simple docstring""" import shutil import tempfile import unittest from transformers import ClapFeatureExtractor, ClapProcessor, RobertaTokenizer, RobertaTokenizerFast from transformers.testing_utils import require_sentencepiece, require_torchaudio from .test_feature_extraction_clap import floats_list @require_torchaudio @require_sentencepiece class UpperCamelCase ( unittest.TestCase ): def a_ ( self) -> Tuple: snake_case_ = """laion/clap-htsat-unfused""" snake_case_ = tempfile.mkdtemp() def a_ ( self, **lowerCAmelCase__) -> str: return RobertaTokenizer.from_pretrained(self.checkpoint, **lowercase_) def a_ ( self, **lowerCAmelCase__) -> Dict: return ClapFeatureExtractor.from_pretrained(self.checkpoint, **lowercase_) def a_ ( self) -> List[str]: shutil.rmtree(self.tmpdirname) def a_ ( self) -> Union[str, Any]: snake_case_ = self.get_tokenizer() snake_case_ = self.get_feature_extractor() snake_case_ = ClapProcessor(tokenizer=lowercase_, feature_extractor=lowercase_) processor.save_pretrained(self.tmpdirname) snake_case_ = ClapProcessor.from_pretrained(self.tmpdirname) self.assertEqual(processor.tokenizer.get_vocab(), tokenizer.get_vocab()) self.assertIsInstance(processor.tokenizer, lowercase_) self.assertEqual(processor.feature_extractor.to_json_string(), feature_extractor.to_json_string()) self.assertIsInstance(processor.feature_extractor, lowercase_) def a_ ( self) -> int: snake_case_ = ClapProcessor(tokenizer=self.get_tokenizer(), feature_extractor=self.get_feature_extractor()) processor.save_pretrained(self.tmpdirname) snake_case_ = self.get_tokenizer(bos_token='(BOS)', eos_token='(EOS)') snake_case_ = self.get_feature_extractor(do_normalize=lowercase_, padding_value=1.0) snake_case_ = ClapProcessor.from_pretrained( self.tmpdirname, bos_token='(BOS)', eos_token='(EOS)', do_normalize=lowercase_, padding_value=1.0) self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer, lowercase_) self.assertEqual(processor.feature_extractor.to_json_string(), feature_extractor_add_kwargs.to_json_string()) self.assertIsInstance(processor.feature_extractor, lowercase_) def a_ ( self) -> Any: snake_case_ = self.get_feature_extractor() snake_case_ = self.get_tokenizer() snake_case_ = ClapProcessor(tokenizer=lowercase_, feature_extractor=lowercase_) snake_case_ = floats_list((3, 1000)) snake_case_ = feature_extractor(lowercase_, return_tensors='np') snake_case_ = processor(audios=lowercase_, return_tensors='np') for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1e-2) def a_ ( self) -> str: snake_case_ = self.get_feature_extractor() snake_case_ = self.get_tokenizer() snake_case_ = ClapProcessor(tokenizer=lowercase_, feature_extractor=lowercase_) snake_case_ = """This is a test string""" snake_case_ = processor(text=lowercase_) snake_case_ = tokenizer(lowercase_) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key], encoded_processor[key]) def a_ ( self) -> Union[str, Any]: snake_case_ = self.get_feature_extractor() snake_case_ = self.get_tokenizer() snake_case_ = ClapProcessor(tokenizer=lowercase_, feature_extractor=lowercase_) snake_case_ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] snake_case_ = processor.batch_decode(lowercase_) snake_case_ = tokenizer.batch_decode(lowercase_) self.assertListEqual(lowercase_, lowercase_) def a_ ( self) -> int: snake_case_ = self.get_feature_extractor() snake_case_ = self.get_tokenizer() snake_case_ = ClapProcessor(tokenizer=lowercase_, feature_extractor=lowercase_) self.assertListEqual( processor.model_input_names[2:], feature_extractor.model_input_names, msg='`processor` and `feature_extractor` model input names do not match', )
371
"""simple docstring""" import random import unittest import numpy as np from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionImgaImgPipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class UpperCamelCase ( lowerCAmelCase__ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ = "hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline" def a_ ( self, lowerCAmelCase__=0) -> List[Any]: snake_case_ = floats_tensor((1, 3, 128, 128), rng=random.Random(lowerCAmelCase__)) snake_case_ = np.random.RandomState(lowerCAmelCase__) snake_case_ = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'generator': generator, 'num_inference_steps': 3, 'strength': 0.75, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def a_ ( self) -> Optional[Any]: snake_case_ = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider') pipe.set_progress_bar_config(disable=lowerCAmelCase__) snake_case_ = self.get_dummy_inputs() snake_case_ = pipe(**lowerCAmelCase__).images snake_case_ = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 128, 128, 3) snake_case_ = np.array([0.69643, 0.58484, 0.50314, 0.58760, 0.55368, 0.59643, 0.51529, 0.41217, 0.49087]) assert np.abs(image_slice - expected_slice).max() < 1e-1 def a_ ( self) -> List[str]: snake_case_ = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider') snake_case_ = PNDMScheduler.from_config(pipe.scheduler.config, skip_prk_steps=lowerCAmelCase__) pipe.set_progress_bar_config(disable=lowerCAmelCase__) snake_case_ = self.get_dummy_inputs() snake_case_ = pipe(**lowerCAmelCase__).images snake_case_ = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) snake_case_ = np.array([0.61737, 0.54642, 0.53183, 0.54465, 0.52742, 0.60525, 0.49969, 0.40655, 0.48154]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 def a_ ( self) -> str: snake_case_ = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider') snake_case_ = LMSDiscreteScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=lowerCAmelCase__) # warmup pass to apply optimizations snake_case_ = pipe(**self.get_dummy_inputs()) snake_case_ = self.get_dummy_inputs() snake_case_ = pipe(**lowerCAmelCase__).images snake_case_ = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) snake_case_ = np.array([0.52761, 0.59977, 0.49033, 0.49619, 0.54282, 0.50311, 0.47600, 0.40918, 0.45203]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 def a_ ( self) -> int: snake_case_ = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider') snake_case_ = EulerDiscreteScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=lowerCAmelCase__) snake_case_ = self.get_dummy_inputs() snake_case_ = pipe(**lowerCAmelCase__).images snake_case_ = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) snake_case_ = np.array([0.52911, 0.60004, 0.49229, 0.49805, 0.54502, 0.50680, 0.47777, 0.41028, 0.45304]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 def a_ ( self) -> Dict: snake_case_ = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider') snake_case_ = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=lowerCAmelCase__) snake_case_ = self.get_dummy_inputs() snake_case_ = pipe(**lowerCAmelCase__).images snake_case_ = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) snake_case_ = np.array([0.52911, 0.60004, 0.49229, 0.49805, 0.54502, 0.50680, 0.47777, 0.41028, 0.45304]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 def a_ ( self) -> Dict: snake_case_ = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider') snake_case_ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=lowerCAmelCase__) snake_case_ = self.get_dummy_inputs() snake_case_ = pipe(**lowerCAmelCase__).images snake_case_ = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) snake_case_ = np.array([0.65331, 0.58277, 0.48204, 0.56059, 0.53665, 0.56235, 0.50969, 0.40009, 0.46552]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 @nightly @require_onnxruntime @require_torch_gpu class UpperCamelCase ( unittest.TestCase ): @property def a_ ( self) -> int: return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def a_ ( self) -> str: snake_case_ = ort.SessionOptions() snake_case_ = False return options def a_ ( self) -> Any: snake_case_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg') snake_case_ = init_image.resize((768, 512)) # using the PNDM scheduler by default snake_case_ = OnnxStableDiffusionImgaImgPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4', revision='onnx', safety_checker=lowerCAmelCase__, feature_extractor=lowerCAmelCase__, provider=self.gpu_provider, sess_options=self.gpu_options, ) pipe.set_progress_bar_config(disable=lowerCAmelCase__) snake_case_ = 'A fantasy landscape, trending on artstation' snake_case_ = np.random.RandomState(0) snake_case_ = pipe( prompt=lowerCAmelCase__, image=lowerCAmelCase__, strength=0.75, guidance_scale=7.5, num_inference_steps=10, generator=lowerCAmelCase__, output_type='np', ) snake_case_ = output.images snake_case_ = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) snake_case_ = np.array([0.4909, 0.5059, 0.5372, 0.4623, 0.4876, 0.5049, 0.4820, 0.4956, 0.5019]) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice).max() < 2e-2 def a_ ( self) -> List[Any]: snake_case_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg') snake_case_ = init_image.resize((768, 512)) snake_case_ = LMSDiscreteScheduler.from_pretrained( 'runwayml/stable-diffusion-v1-5', subfolder='scheduler', revision='onnx') snake_case_ = OnnxStableDiffusionImgaImgPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5', revision='onnx', scheduler=lowerCAmelCase__, safety_checker=lowerCAmelCase__, feature_extractor=lowerCAmelCase__, provider=self.gpu_provider, sess_options=self.gpu_options, ) pipe.set_progress_bar_config(disable=lowerCAmelCase__) snake_case_ = 'A fantasy landscape, trending on artstation' snake_case_ = np.random.RandomState(0) snake_case_ = pipe( prompt=lowerCAmelCase__, image=lowerCAmelCase__, strength=0.75, guidance_scale=7.5, num_inference_steps=20, generator=lowerCAmelCase__, output_type='np', ) snake_case_ = output.images snake_case_ = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) snake_case_ = np.array([0.8043, 0.926, 0.9581, 0.8119, 0.8954, 0.913, 0.7209, 0.7463, 0.7431]) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice).max() < 2e-2
312
0
'''simple docstring''' _lowerCAmelCase = frozenset( [ '''prompt''', '''height''', '''width''', '''guidance_scale''', '''negative_prompt''', '''prompt_embeds''', '''negative_prompt_embeds''', '''cross_attention_kwargs''', ] ) _lowerCAmelCase = frozenset(['''prompt''', '''negative_prompt''']) _lowerCAmelCase = frozenset([]) _lowerCAmelCase = frozenset(['''image''']) _lowerCAmelCase = frozenset( [ '''image''', '''height''', '''width''', '''guidance_scale''', ] ) _lowerCAmelCase = frozenset(['''image''']) _lowerCAmelCase = frozenset( [ '''prompt''', '''image''', '''height''', '''width''', '''guidance_scale''', '''negative_prompt''', '''prompt_embeds''', '''negative_prompt_embeds''', ] ) _lowerCAmelCase = frozenset(['''prompt''', '''image''', '''negative_prompt''']) _lowerCAmelCase = frozenset( [ # Text guided image variation with an image mask '''prompt''', '''image''', '''mask_image''', '''height''', '''width''', '''guidance_scale''', '''negative_prompt''', '''prompt_embeds''', '''negative_prompt_embeds''', ] ) _lowerCAmelCase = frozenset(['''prompt''', '''image''', '''mask_image''', '''negative_prompt''']) _lowerCAmelCase = frozenset( [ # image variation with an image mask '''image''', '''mask_image''', '''height''', '''width''', '''guidance_scale''', ] ) _lowerCAmelCase = frozenset(['''image''', '''mask_image''']) _lowerCAmelCase = frozenset( [ '''example_image''', '''image''', '''mask_image''', '''height''', '''width''', '''guidance_scale''', ] ) _lowerCAmelCase = frozenset(['''example_image''', '''image''', '''mask_image''']) _lowerCAmelCase = frozenset(['''class_labels''']) _lowerCAmelCase = frozenset(['''class_labels''']) _lowerCAmelCase = frozenset(['''batch_size''']) _lowerCAmelCase = frozenset([]) _lowerCAmelCase = frozenset(['''batch_size''']) _lowerCAmelCase = frozenset([]) _lowerCAmelCase = frozenset( [ '''prompt''', '''audio_length_in_s''', '''guidance_scale''', '''negative_prompt''', '''prompt_embeds''', '''negative_prompt_embeds''', '''cross_attention_kwargs''', ] ) _lowerCAmelCase = frozenset(['''prompt''', '''negative_prompt''']) _lowerCAmelCase = frozenset(['''input_tokens''']) _lowerCAmelCase = frozenset(['''input_tokens'''])
37
from collections import namedtuple import requests from lxml import html # type: ignore _A : Any = namedtuple('covid_data', 'cases deaths recovered') def _a ( UpperCAmelCase = "https://www.worldometers.info/coronavirus/" ) -> covid_data: """simple docstring""" lowerCamelCase__ : Optional[Any] = '''//div[@class = "maincounter-number"]/span/text()''' return covid_data(*html.fromstring(requests.get(UpperCAmelCase ).content ).xpath(UpperCAmelCase ) ) _A : Dict = 'Total COVID-19 cases in the world: {}\nTotal deaths due to COVID-19 in the world: {}\nTotal COVID-19 patients recovered in the world: {}' print(fmt.format(*covid_stats()))
142
0
# Logistic Regression from scratch # In[62]: # In[63]: # importing all the required libraries import numpy as np from matplotlib import pyplot as plt from sklearn import datasets def lowerCAmelCase_ ( _snake_case : List[str] ) -> Optional[Any]: '''simple docstring''' return 1 / (1 + np.exp(-z )) def lowerCAmelCase_ ( _snake_case : Optional[Any] , _snake_case : Tuple ) -> int: '''simple docstring''' return (-y * np.log(_snake_case ) - (1 - y) * np.log(1 - h )).mean() def lowerCAmelCase_ ( _snake_case : Tuple , _snake_case : List[Any] , _snake_case : int ) -> Optional[Any]: '''simple docstring''' __magic_name__ : Any = np.dot(_snake_case , _snake_case ) return np.sum(y * scores - np.log(1 + np.exp(_snake_case ) ) ) def lowerCAmelCase_ ( _snake_case : Tuple , _snake_case : Optional[Any] , _snake_case : Optional[int] , _snake_case : List[Any]=70000 ) -> List[Any]: '''simple docstring''' __magic_name__ : Optional[Any] = np.zeros(x.shape[1] ) for iterations in range(_snake_case ): __magic_name__ : Dict = np.dot(_snake_case , _snake_case ) __magic_name__ : Tuple = sigmoid_function(_snake_case ) __magic_name__ : List[str] = np.dot(x.T , h - y ) / y.size __magic_name__ : Union[str, Any] = theta - alpha * gradient # updating the weights __magic_name__ : Optional[Any] = np.dot(_snake_case , _snake_case ) __magic_name__ : List[Any] = sigmoid_function(_snake_case ) __magic_name__ : Tuple = cost_function(_snake_case , _snake_case ) if iterations % 100 == 0: print(F'''loss: {j} \t''' ) # printing the loss after every 100 iterations return theta # In[68]: if __name__ == "__main__": snake_case : Union[str, Any] = datasets.load_iris() snake_case : Tuple = iris.data[:, :2] snake_case : Optional[Any] = (iris.target != 0) * 1 snake_case : int = 0.1 snake_case : int = logistic_reg(alpha, x, y, max_iterations=70_000) print("theta: ", theta) # printing the theta i.e our weights vector def lowerCAmelCase_ ( _snake_case : Dict ) -> Dict: '''simple docstring''' return sigmoid_function( np.dot(_snake_case , _snake_case ) ) # predicting the value of probability from the logistic regression algorithm plt.figure(figsize=(10, 6)) plt.scatter(x[y == 0][:, 0], x[y == 0][:, 1], color="b", label="0") plt.scatter(x[y == 1][:, 0], x[y == 1][:, 1], color="r", label="1") ((snake_case) ,(snake_case)) : Any = (x[:, 0].min(), x[:, 0].max()) ((snake_case) ,(snake_case)) : Optional[Any] = (x[:, 1].min(), x[:, 1].max()) ((snake_case) ,(snake_case)) : int = np.meshgrid(np.linspace(xa_min, xa_max), np.linspace(xa_min, xa_max)) snake_case : List[Any] = np.c_[xxa.ravel(), xxa.ravel()] snake_case : Any = predict_prob(grid).reshape(xxa.shape) plt.contour(xxa, xxa, probs, [0.5], linewidths=1, colors="black") plt.legend() plt.show()
41
from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case : Dict = logging.get_logger(__name__) snake_case : Optional[int] = { "naver-clova-ix/donut-base": "https://huggingface.co/naver-clova-ix/donut-base/resolve/main/config.json", # See all Donut models at https://huggingface.co/models?filter=donut-swin } class _snake_case ( snake_case ): UpperCamelCase__ = 'donut-swin' UpperCamelCase__ = { 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self , _a=224 , _a=4 , _a=3 , _a=96 , _a=[2, 2, 6, 2] , _a=[3, 6, 12, 24] , _a=7 , _a=4.0 , _a=True , _a=0.0 , _a=0.0 , _a=0.1 , _a="gelu" , _a=False , _a=0.02 , _a=1e-5 , **_a , ): super().__init__(**_a ) __magic_name__ : Optional[int] = image_size __magic_name__ : Any = patch_size __magic_name__ : Tuple = num_channels __magic_name__ : Dict = embed_dim __magic_name__ : Dict = depths __magic_name__ : int = len(_a ) __magic_name__ : str = num_heads __magic_name__ : Tuple = window_size __magic_name__ : Dict = mlp_ratio __magic_name__ : List[str] = qkv_bias __magic_name__ : Any = hidden_dropout_prob __magic_name__ : str = attention_probs_dropout_prob __magic_name__ : Union[str, Any] = drop_path_rate __magic_name__ : List[Any] = hidden_act __magic_name__ : List[Any] = use_absolute_embeddings __magic_name__ : Union[str, Any] = layer_norm_eps __magic_name__ : Optional[Any] = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model __magic_name__ : Tuple = int(embed_dim * 2 ** (len(_a ) - 1) )
41
1
from functools import lru_cache @lru_cache def __lowerCamelCase ( lowerCamelCase__ ): """simple docstring""" if num < 0: raise ValueError("Number should not be negative." ) return 1 if num in (0, 1) else num * factorial(num - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
130
import argparse import json from collections import OrderedDict from functools import partial from pathlib import Path import timm import torch from huggingface_hub import hf_hub_download from transformers import LevitConfig, LevitForImageClassificationWithTeacher, LevitImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger() def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = True ): """simple docstring""" print(F"""Converting {name}...""" ) with torch.no_grad(): if hidden_sizes == 128: if name[-1] == "S": lowercase__ : Union[str, Any] = timm.create_model("levit_128s" , pretrained=lowerCamelCase__ ) else: lowercase__ : Union[str, Any] = timm.create_model("levit_128" , pretrained=lowerCamelCase__ ) if hidden_sizes == 192: lowercase__ : Dict = timm.create_model("levit_192" , pretrained=lowerCamelCase__ ) if hidden_sizes == 256: lowercase__ : Optional[Any] = timm.create_model("levit_256" , pretrained=lowerCamelCase__ ) if hidden_sizes == 384: lowercase__ : List[str] = timm.create_model("levit_384" , pretrained=lowerCamelCase__ ) from_model.eval() lowercase__ : Union[str, Any] = LevitForImageClassificationWithTeacher(lowerCamelCase__ ).eval() lowercase__ : Tuple = OrderedDict() lowercase__ : Dict = from_model.state_dict() lowercase__ : Union[str, Any] = list(from_model.state_dict().keys() ) lowercase__ : Any = list(our_model.state_dict().keys() ) print(len(lowerCamelCase__ ) , len(lowerCamelCase__ ) ) for i in range(len(lowerCamelCase__ ) ): lowercase__ : Union[str, Any] = weights[og_keys[i]] our_model.load_state_dict(lowerCamelCase__ ) lowercase__ : List[str] = torch.randn((2, 3, 224, 224) ) lowercase__ : Optional[Any] = from_model(lowerCamelCase__ ) lowercase__ : Optional[Any] = our_model(lowerCamelCase__ ).logits assert torch.allclose(lowerCamelCase__ , lowerCamelCase__ ), "The model logits don't match the original one." lowercase__ : Optional[Any] = name print(lowerCamelCase__ ) if push_to_hub: our_model.save_pretrained(save_directory / checkpoint_name ) lowercase__ : Union[str, Any] = LevitImageProcessor() image_processor.save_pretrained(save_directory / checkpoint_name ) print(F"""Pushed {checkpoint_name}""" ) def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__ = None , lowerCamelCase__ = True ): """simple docstring""" lowercase__ : Optional[Any] = "imagenet-1k-id2label.json" lowercase__ : str = 1_000 lowercase__ : Any = (1, num_labels) lowercase__ : Optional[Any] = "huggingface/label-files" lowercase__ : Optional[Any] = num_labels lowercase__ : Optional[int] = json.load(open(hf_hub_download(lowerCamelCase__ , lowerCamelCase__ , repo_type="dataset" ) , "r" ) ) lowercase__ : Optional[int] = {int(lowerCamelCase__ ): v for k, v in idalabel.items()} lowercase__ : Dict = idalabel lowercase__ : str = {v: k for k, v in idalabel.items()} lowercase__ : Optional[Any] = partial(lowerCamelCase__ , num_labels=lowerCamelCase__ , idalabel=lowerCamelCase__ , labelaid=lowerCamelCase__ ) lowercase__ : List[str] = { "levit-128S": 128, "levit-128": 128, "levit-192": 192, "levit-256": 256, "levit-384": 384, } lowercase__ : int = { "levit-128S": ImageNetPreTrainedConfig( hidden_sizes=[128, 256, 384] , num_attention_heads=[4, 6, 8] , depths=[2, 3, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), "levit-128": ImageNetPreTrainedConfig( hidden_sizes=[128, 256, 384] , num_attention_heads=[4, 8, 12] , depths=[4, 4, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), "levit-192": ImageNetPreTrainedConfig( hidden_sizes=[192, 288, 384] , num_attention_heads=[3, 5, 6] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), "levit-256": ImageNetPreTrainedConfig( hidden_sizes=[256, 384, 512] , num_attention_heads=[4, 6, 8] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), "levit-384": ImageNetPreTrainedConfig( hidden_sizes=[384, 512, 768] , num_attention_heads=[6, 9, 12] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0.1 , ), } if model_name: convert_weight_and_push( names_to_hidden_sizes[model_name] , lowerCamelCase__ , names_to_config[model_name] , lowerCamelCase__ , lowerCamelCase__ ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(names_to_hidden_sizes[model_name] , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) return config, expected_shape if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default=None, type=str, help='''The name of the model you wish to convert, it must be one of the supported Levit* architecture,''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default='''levit-dump-folder/''', type=Path, required=False, help='''Path to the output PyTorch model directory.''', ) parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Push model and image processor to the hub''') parser.add_argument( '''--no-push_to_hub''', dest='''push_to_hub''', action='''store_false''', help='''Do not push model and image processor to the hub''', ) lowerCAmelCase__ = parser.parse_args() lowerCAmelCase__ = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
130
1
import pytest from datasets.parallel import ParallelBackendConfig, parallel_backend from datasets.utils.py_utils import map_nested from .utils import require_dill_gt_0_3_2, require_joblibspark, require_not_windows def SCREAMING_SNAKE_CASE__ ( __a ): # picklable for multiprocessing return i + 1 @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows def SCREAMING_SNAKE_CASE__ ( ): with parallel_backend('spark' ): assert ParallelBackendConfig.backend_name == "spark" snake_case_ : Optional[Any] = [1, 2, 3] with pytest.raises(__a ): with parallel_backend('unsupported backend' ): map_nested(__a , __a , num_proc=2 ) with pytest.raises(__a ): with parallel_backend('unsupported backend' ): map_nested(__a , __a , num_proc=-1 ) @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows @pytest.mark.parametrize('num_proc' , [2, -1] ) def SCREAMING_SNAKE_CASE__ ( __a ): snake_case_ : Optional[Any] = [1, 2] snake_case_ : Optional[Any] = {'a': 1, 'b': 2} snake_case_ : int = {'a': [1, 2], 'b': [3, 4]} snake_case_ : int = {'a': {'1': 1}, 'b': 2} snake_case_ : int = {'a': 1, 'b': 2, 'c': 3, 'd': 4} snake_case_ : Any = [2, 3] snake_case_ : Tuple = {'a': 2, 'b': 3} snake_case_ : str = {'a': [2, 3], 'b': [4, 5]} snake_case_ : List[str] = {'a': {'1': 2}, 'b': 3} snake_case_ : Union[str, Any] = {'a': 2, 'b': 3, 'c': 4, 'd': 5} with parallel_backend('spark' ): assert map_nested(__a , __a , num_proc=__a ) == expected_map_nested_sa assert map_nested(__a , __a , num_proc=__a ) == expected_map_nested_sa assert map_nested(__a , __a , num_proc=__a ) == expected_map_nested_sa assert map_nested(__a , __a , num_proc=__a ) == expected_map_nested_sa assert map_nested(__a , __a , num_proc=__a ) == expected_map_nested_sa
88
import json import multiprocessing import os import re from collections import defaultdict import torch from accelerate import Accelerator from accelerate.utils import set_seed from arguments import HumanEvalArguments from datasets import load_dataset, load_metric from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from tqdm import tqdm import transformers from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, StoppingCriteria, StoppingCriteriaList _SCREAMING_SNAKE_CASE = ["""\nclass""", """\ndef""", """\n#""", """\n@""", """\nprint""", """\nif"""] class SCREAMING_SNAKE_CASE_ ( snake_case_ ): def __init__( self : Tuple , _A : Any , _A : str , _A : int=None , _A : str=1 ) -> List[str]: """simple docstring""" snake_case_ : Union[str, Any] = tokenizer snake_case_ : Optional[int] = dataset snake_case_ : List[str] = len(_A ) if n_tasks is None else n_tasks snake_case_ : List[Any] = n_copies def __iter__( self : Any ) -> List[str]: """simple docstring""" snake_case_ : List[str] = [] for task in range(self.n_tasks ): # without strip, the model generate commented codes ... prompts.append(self.tokenizer.eos_token + self.dataset[task]['prompt'].strip() ) snake_case_ : Optional[int] = self.tokenizer(_A , padding=_A , return_tensors='pt' ) for task in range(self.n_tasks ): for _ in range(self.n_copies ): yield { "ids": outputs.input_ids[task], "task_id": task, "input_len": outputs.attention_mask[task].sum(), } class SCREAMING_SNAKE_CASE_ ( snake_case_ ): def __init__( self : List[Any] , _A : Optional[int] , _A : str , _A : Dict ) -> Any: """simple docstring""" snake_case_ : List[str] = start_length snake_case_ : int = eof_strings snake_case_ : Dict = tokenizer def __call__( self : Any , _A : Union[str, Any] , _A : Dict , **_A : List[Any] ) -> List[str]: """simple docstring""" snake_case_ : Optional[int] = self.tokenizer.batch_decode(input_ids[:, self.start_length :] ) snake_case_ : Optional[int] = [] for decoded_generation in decoded_generations: done.append(any(stop_string in decoded_generation for stop_string in self.eof_strings ) ) return all(_A ) def SCREAMING_SNAKE_CASE__ ( __a ): snake_case_ : List[str] = re.split('(%s)' % '|'.join(__a ) , __a ) # last string should be "" return "".join(string_list[:-2] ) def SCREAMING_SNAKE_CASE__ ( __a , __a , __a , __a , __a , __a=20 , **__a ): snake_case_ : Tuple = defaultdict(__a ) # dict of list of generated tokens for step, batch in tqdm(enumerate(__a ) ): with torch.no_grad(): snake_case_ : Optional[Any] = batch['ids'].shape[-1] snake_case_ : List[str] = accelerator.unwrap_model(__a ).generate( input_ids=batch['ids'][:, : batch['input_len']] , num_return_sequences=__a , **__a ) # each task is generated batch_size times snake_case_ : List[str] = batch['task_id'].repeat(__a ) snake_case_ : Union[str, Any] = accelerator.pad_across_processes( __a , dim=1 , pad_index=tokenizer.pad_token_id ) snake_case_ ,snake_case_ : Union[str, Any] = accelerator.gather((generated_tokens, generated_tasks) ) snake_case_ : Optional[Any] = generated_tokens.cpu().numpy() snake_case_ : Dict = generated_tasks.cpu().numpy() for task, generated_tokens in zip(__a , __a ): gen_token_dict[task].append(__a ) snake_case_ : Tuple = [[] for _ in range(__a )] for task, generated_tokens in gen_token_dict.items(): for s in generated_tokens: snake_case_ : int = tokenizer.decode(__a , skip_special_tokens=__a , clean_up_tokenization_spaces=__a ) code_gens[task].append(remove_last_block(__a ) ) return code_gens def SCREAMING_SNAKE_CASE__ ( ): # Setup configuration snake_case_ : Optional[int] = HfArgumentParser(__a ) snake_case_ : Tuple = parser.parse_args() transformers.logging.set_verbosity_error() # enables code execution in code_eval metric snake_case_ : Optional[int] = args.HF_ALLOW_CODE_EVAL # make sure tokenizer plays nice with multiprocessing snake_case_ : int = 'false' if args.num_workers is None: snake_case_ : Any = multiprocessing.cpu_count() # Use dataset load to feed to accelerate snake_case_ : List[Any] = Accelerator() set_seed(args.seed , device_specific=__a ) # Load model and tokenizer snake_case_ : Any = AutoTokenizer.from_pretrained(args.model_ckpt ) snake_case_ : int = tokenizer.eos_token snake_case_ : List[str] = AutoModelForCausalLM.from_pretrained(args.model_ckpt ) # Generation settings snake_case_ : List[Any] = { 'do_sample': args.do_sample, 'temperature': args.temperature, 'max_new_tokens': args.max_new_tokens, 'top_p': args.top_p, 'top_k': args.top_k, 'stopping_criteria': StoppingCriteriaList([EndOfFunctionCriteria(0 , __a , __a )] ), } # Load evaluation dataset and metric snake_case_ : Dict = load_dataset('openai_humaneval' ) snake_case_ : Optional[Any] = load_metric('code_eval' ) snake_case_ : Union[str, Any] = args.num_tasks if args.num_tasks is not None else len(human_eval['test'] ) snake_case_ : Optional[int] = args.n_samples // args.batch_size snake_case_ : Dict = TokenizedDataset(__a , human_eval['test'] , n_copies=__a , n_tasks=__a ) # do not confuse args.batch_size, which is actually the num_return_sequences snake_case_ : Optional[Any] = DataLoader(__a , batch_size=1 ) # Run a quick test to see if code evaluation is enabled try: snake_case_ : Union[str, Any] = code_eval_metric.compute(references=[''] , predictions=[['']] ) except ValueError as exception: print( 'Code evaluation not enabled. Read the warning below carefully and then use `--HF_ALLOW_CODE_EVAL="1"`' ' flag to enable code evaluation.' ) raise exception snake_case_ ,snake_case_ : Union[str, Any] = accelerator.prepare(__a , __a ) snake_case_ : str = complete_code( __a , __a , __a , __a , n_tasks=__a , batch_size=args.batch_size , **__a , ) if accelerator.is_main_process: snake_case_ : Tuple = [] for task in tqdm(range(__a ) ): snake_case_ : Union[str, Any] = human_eval['test'][task]['test'] snake_case_ : Union[str, Any] = f"""check({human_eval['test'][task]['entry_point']})""" references.append('\n' + test_func + '\n' + entry_point ) # Evaluate completions with "code_eval" metric snake_case_ ,snake_case_ : int = code_eval_metric.compute( references=__a , predictions=__a , num_workers=args.num_workers ) print(f"""Results: {pass_at_k}""" ) # Save results to json file with open(args.output_file , 'w' ) as fp: json.dump(__a , __a ) # For some reason the folliwng seems to be necessary sometimes for code_eval to work nice with multiprocessing # https://stackoverflow.com/questions/60804599/python-multiprocessing-keeps-spawning-the-whole-script if __name__ == "__main__": main()
88
1