code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" from __future__ import annotations _a = tuple[int, int, int] _a = tuple[str, str, str] # used alphabet -------------------------- # from string.ascii_uppercase _a = """ABCDEFGHIJKLMNOPQRSTUVWXYZ""" # -------------------------- default selection -------------------------- # rotors -------------------------- _a = """EGZWVONAHDCLFQMSIPJBYUKXTR""" _a = """FOBHMDKEXQNRAULPGSJVTYICZW""" _a = """ZJXESIUQLHAVRMDOYGTNFWPBKC""" # reflector -------------------------- _a = { """A""": """N""", """N""": """A""", """B""": """O""", """O""": """B""", """C""": """P""", """P""": """C""", """D""": """Q""", """Q""": """D""", """E""": """R""", """R""": """E""", """F""": """S""", """S""": """F""", """G""": """T""", """T""": """G""", """H""": """U""", """U""": """H""", """I""": """V""", """V""": """I""", """J""": """W""", """W""": """J""", """K""": """X""", """X""": """K""", """L""": """Y""", """Y""": """L""", """M""": """Z""", """Z""": """M""", } # -------------------------- extra rotors -------------------------- _a = """RMDJXFUWGISLHVTCQNKYPBEZOA""" _a = """SGLCPQWZHKXAREONTFBVIYJUDM""" _a = """HVSICLTYKQUBXDWAJZOMFGPREN""" _a = """RZWQHFMVDBKICJLNTUXAGYPSOE""" _a = """LFKIJODBEGAMQPXVUHYSTCZRWN""" _a = """KOAEGVDHXPQZMLFTYWJNBRCIUS""" def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case ) -> Optional[int]: """simple docstring""" if (unique_rotsel := len(set(lowerCAmelCase__ ) )) < 3: _UpperCamelCase = F'''Please use 3 unique rotors (not {unique_rotsel})''' raise Exception(lowerCAmelCase__ ) # Checks if rotor positions are valid _UpperCamelCase = rotpos if not 0 < rotorposa <= len(lowerCAmelCase__ ): _UpperCamelCase = F'''First rotor position is not within range of 1..26 ({rotorposa}''' raise ValueError(lowerCAmelCase__ ) if not 0 < rotorposa <= len(lowerCAmelCase__ ): _UpperCamelCase = F'''Second rotor position is not within range of 1..26 ({rotorposa})''' raise ValueError(lowerCAmelCase__ ) if not 0 < rotorposa <= len(lowerCAmelCase__ ): _UpperCamelCase = F'''Third rotor position is not within range of 1..26 ({rotorposa})''' raise ValueError(lowerCAmelCase__ ) # Validates string and returns dict _UpperCamelCase = _plugboard(lowerCAmelCase__ ) return rotpos, rotsel, pbdict def lowerCamelCase__ ( __snake_case ) -> List[str]: """simple docstring""" if not isinstance(lowerCAmelCase__, lowerCAmelCase__ ): _UpperCamelCase = F'''Plugboard setting isn\'t type string ({type(lowerCAmelCase__ )})''' raise TypeError(lowerCAmelCase__ ) elif len(lowerCAmelCase__ ) % 2 != 0: _UpperCamelCase = F'''Odd number of symbols ({len(lowerCAmelCase__ )})''' raise Exception(lowerCAmelCase__ ) elif pbstring == "": return {} pbstring.replace(''' ''', '''''' ) # Checks if all characters are unique _UpperCamelCase = set() for i in pbstring: if i not in abc: _UpperCamelCase = F'''\'{i}\' not in list of symbols''' raise Exception(lowerCAmelCase__ ) elif i in tmppbl: _UpperCamelCase = F'''Duplicate symbol ({i})''' raise Exception(lowerCAmelCase__ ) else: tmppbl.add(lowerCAmelCase__ ) del tmppbl # Created the dictionary _UpperCamelCase = {} for j in range(0, len(lowerCAmelCase__ ) - 1, 2 ): _UpperCamelCase = pbstring[j + 1] _UpperCamelCase = pbstring[j] return pb def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case = (rotora, rotora, rotora), __snake_case = "", ) -> List[Any]: """simple docstring""" _UpperCamelCase = text.upper() _UpperCamelCase = _validator( lowerCAmelCase__, lowerCAmelCase__, plugb.upper() ) _UpperCamelCase = rotor_position _UpperCamelCase = rotor_selection rotorposa -= 1 rotorposa -= 1 rotorposa -= 1 _UpperCamelCase = [] # encryption/decryption process -------------------------- for symbol in text: if symbol in abc: # 1st plugboard -------------------------- if symbol in plugboard: _UpperCamelCase = plugboard[symbol] # rotor ra -------------------------- _UpperCamelCase = abc.index(lowerCAmelCase__ ) + rotorposa _UpperCamelCase = rotora[index % len(lowerCAmelCase__ )] # rotor rb -------------------------- _UpperCamelCase = abc.index(lowerCAmelCase__ ) + rotorposa _UpperCamelCase = rotora[index % len(lowerCAmelCase__ )] # rotor rc -------------------------- _UpperCamelCase = abc.index(lowerCAmelCase__ ) + rotorposa _UpperCamelCase = rotora[index % len(lowerCAmelCase__ )] # reflector -------------------------- # this is the reason you don't need another machine to decipher _UpperCamelCase = reflector[symbol] # 2nd rotors _UpperCamelCase = abc[rotora.index(lowerCAmelCase__ ) - rotorposa] _UpperCamelCase = abc[rotora.index(lowerCAmelCase__ ) - rotorposa] _UpperCamelCase = abc[rotora.index(lowerCAmelCase__ ) - rotorposa] # 2nd plugboard if symbol in plugboard: _UpperCamelCase = plugboard[symbol] # moves/resets rotor positions rotorposa += 1 if rotorposa >= len(lowerCAmelCase__ ): _UpperCamelCase = 0 rotorposa += 1 if rotorposa >= len(lowerCAmelCase__ ): _UpperCamelCase = 0 rotorposa += 1 if rotorposa >= len(lowerCAmelCase__ ): _UpperCamelCase = 0 # else: # pass # Error could be also raised # raise ValueError( # 'Invalid symbol('+repr(symbol)+')') result.append(lowerCAmelCase__ ) return "".join(lowerCAmelCase__ ) if __name__ == "__main__": _a = """This is my Python script that emulates the Enigma machine from WWII.""" _a = (1, 1, 1) _a = """pictures""" _a = (rotora, rotora, rotora) _a = enigma(message, rotor_pos, rotor_sel, pb) print("""Encrypted message:""", en) print("""Decrypted message:""", enigma(en, rotor_pos, rotor_sel, pb))
194
import string # frequency taken from https://en.wikipedia.org/wiki/Letter_frequency lowercase__ ={ 'E': 12.70, 'T': 9.06, 'A': 8.17, 'O': 7.51, 'I': 6.97, 'N': 6.75, 'S': 6.33, 'H': 6.09, 'R': 5.99, 'D': 4.25, 'L': 4.03, 'C': 2.78, 'U': 2.76, 'M': 2.41, 'W': 2.36, 'F': 2.23, 'G': 2.02, 'Y': 1.97, 'P': 1.93, 'B': 1.29, 'V': 0.98, 'K': 0.77, 'J': 0.15, 'X': 0.15, 'Q': 0.10, 'Z': 0.07, } lowercase__ ='ETAOINSHRDLCUMWFGYPBVKJXQZ' lowercase__ ='ABCDEFGHIJKLMNOPQRSTUVWXYZ' def __UpperCamelCase ( lowerCAmelCase__ : str ): __a : List[Any] = {letter: 0 for letter in string.ascii_uppercase} for letter in message.upper(): if letter in LETTERS: letter_count[letter] += 1 return letter_count def __UpperCamelCase ( lowerCAmelCase__ : tuple ): return x[0] def __UpperCamelCase ( lowerCAmelCase__ : str ): __a : Optional[Any] = get_letter_count(lowerCAmelCase__ ) __a : dict[int, list[str]] = { freq: [] for letter, freq in letter_to_freq.items() } for letter in LETTERS: freq_to_letter[letter_to_freq[letter]].append(lowerCAmelCase__ ) __a : dict[int, str] = {} for freq in freq_to_letter: freq_to_letter[freq].sort(key=ETAOIN.find , reverse=lowerCAmelCase__ ) __a : int = ''''''.join(freq_to_letter[freq] ) __a : Any = list(freq_to_letter_str.items() ) freq_pairs.sort(key=lowerCAmelCase__ , reverse=lowerCAmelCase__ ) __a : list[str] = [freq_pair[1] for freq_pair in freq_pairs] return "".join(lowerCAmelCase__ ) def __UpperCamelCase ( lowerCAmelCase__ : str ): __a : int = get_frequency_order(lowerCAmelCase__ ) __a : str = 0 for common_letter in ETAOIN[:6]: if common_letter in freq_order[:6]: match_score += 1 for uncommon_letter in ETAOIN[-6:]: if uncommon_letter in freq_order[-6:]: match_score += 1 return match_score if __name__ == "__main__": import doctest doctest.testmod()
216
0
"""simple docstring""" import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def UpperCamelCase ( UpperCAmelCase ) ->str: """simple docstring""" a_ = filter(lambda UpperCAmelCase : p.requires_grad , model.parameters() ) a_ = sum([np.prod(p.size() ) for p in model_parameters] ) return params UpperCamelCase_ = logging.getLogger(__name__) def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ) ->Optional[int]: """simple docstring""" if metric == "rouge2": a_ = "{val_avg_rouge2:.4f}-{step_count}" elif metric == "bleu": a_ = "{val_avg_bleu:.4f}-{step_count}" elif metric == "em": a_ = "{val_avg_em:.4f}-{step_count}" else: raise NotImplementedError( F'''seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this''' " function." ) a_ = ModelCheckpoint( dirpath=a__ , filename=a__ , monitor=F'''val_{metric}''' , mode="max" , save_top_k=3 , every_n_epochs=1 , ) return checkpoint_callback def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ) ->List[Any]: """simple docstring""" return EarlyStopping( monitor=F'''val_{metric}''' , mode="min" if "loss" in metric else "max" , patience=a__ , verbose=a__ , ) class SCREAMING_SNAKE_CASE__ ( pl.Callback ): def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase) ->int: a_ = {F'''lr_group_{i}''': param["lr"] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups)} pl_module.logger.log_metrics(lowercase_) @rank_zero_only def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=True) ->None: logger.info(F'''***** {type_path} results at step {trainer.global_step:05d} *****''') a_ = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ["log", "progress_bar", "preds"]}) # Log results a_ = Path(pl_module.hparams.output_dir) if type_path == "test": a_ = od / "test_results.txt" a_ = od / "test_generations.txt" else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. a_ = od / F'''{type_path}_results/{trainer.global_step:05d}.txt''' a_ = od / F'''{type_path}_generations/{trainer.global_step:05d}.txt''' results_file.parent.mkdir(exist_ok=lowercase_) generations_file.parent.mkdir(exist_ok=lowercase_) with open(lowercase_ , "a+") as writer: for key in sorted(lowercase_): if key in ["log", "progress_bar", "preds"]: continue a_ = metrics[key] if isinstance(lowercase_ , torch.Tensor): a_ = val.item() a_ = F'''{key}: {val:.6f}\n''' writer.write(lowercase_) if not save_generations: return if "preds" in metrics: a_ = "\n".join(metrics["preds"]) generations_file.open("w+").write(lowercase_) @rank_zero_only def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase) ->Dict: try: a_ = pl_module.model.model.num_parameters() except AttributeError: a_ = pl_module.model.num_parameters() a_ = count_trainable_parameters(lowercase_) # mp stands for million parameters trainer.logger.log_metrics({"n_params": npars, "mp": npars / 1E6, "grad_mp": n_trainable_pars / 1E6}) @rank_zero_only def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase) ->List[str]: save_json(pl_module.metrics , pl_module.metrics_save_path) return self._write_logs(lowercase_ , lowercase_ , "test") @rank_zero_only def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase) ->Tuple: save_json(pl_module.metrics , pl_module.metrics_save_path) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
369
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase_ = { 'configuration_lilt': ['LILT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LiltConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ 'LILT_PRETRAINED_MODEL_ARCHIVE_LIST', 'LiltForQuestionAnswering', 'LiltForSequenceClassification', 'LiltForTokenClassification', 'LiltModel', 'LiltPreTrainedModel', ] if TYPE_CHECKING: from .configuration_lilt import LILT_PRETRAINED_CONFIG_ARCHIVE_MAP, LiltConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lilt import ( LILT_PRETRAINED_MODEL_ARCHIVE_LIST, LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, LiltPreTrainedModel, ) else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
303
0
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPanoramaPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() @skip_mps class __lowercase ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" _UpperCAmelCase : int = StableDiffusionPanoramaPipeline _UpperCAmelCase : str = TEXT_TO_IMAGE_PARAMS _UpperCAmelCase : Optional[int] = TEXT_TO_IMAGE_BATCH_PARAMS _UpperCAmelCase : str = TEXT_TO_IMAGE_IMAGE_PARAMS _UpperCAmelCase : List[str] = TEXT_TO_IMAGE_IMAGE_PARAMS def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): torch.manual_seed(0) SCREAMING_SNAKE_CASE_: int = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=1 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) SCREAMING_SNAKE_CASE_: Union[str, Any] = DDIMScheduler() torch.manual_seed(0) SCREAMING_SNAKE_CASE_: Union[str, Any] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) torch.manual_seed(0) SCREAMING_SNAKE_CASE_: Any = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) SCREAMING_SNAKE_CASE_: str = CLIPTextModel(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") SCREAMING_SNAKE_CASE_: int = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def _SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Optional[int]=0): SCREAMING_SNAKE_CASE_: Optional[int] = torch.manual_seed(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[str] = { "prompt": "a photo of the dolomites", "generator": generator, # Setting height and width to None to prevent OOMs on CPU. "height": None, "width": None, "num_inference_steps": 1, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def _SCREAMING_SNAKE_CASE ( self : int): SCREAMING_SNAKE_CASE_: Optional[Any] = "cpu" # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE_: Tuple = self.get_dummy_components() SCREAMING_SNAKE_CASE_: Tuple = StableDiffusionPanoramaPipeline(**lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Dict = sd_pipe.to(lowerCAmelCase__) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = self.get_dummy_inputs(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = sd_pipe(**lowerCAmelCase__).images SCREAMING_SNAKE_CASE_: List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) SCREAMING_SNAKE_CASE_: Any = np.array([0.6186, 0.5374, 0.4915, 0.4135, 0.4114, 0.4563, 0.5128, 0.4977, 0.4757]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 def _SCREAMING_SNAKE_CASE ( self : Tuple): super().test_inference_batch_consistent(batch_sizes=[1, 2]) def _SCREAMING_SNAKE_CASE ( self : List[str]): super().test_inference_batch_single_identical(batch_size=2 , expected_max_diff=3.25E-3) def _SCREAMING_SNAKE_CASE ( self : Any): SCREAMING_SNAKE_CASE_: Optional[Any] = "cpu" # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE_: str = self.get_dummy_components() SCREAMING_SNAKE_CASE_: Union[str, Any] = StableDiffusionPanoramaPipeline(**lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = sd_pipe.to(lowerCAmelCase__) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = self.get_dummy_inputs(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = "french fries" SCREAMING_SNAKE_CASE_: List[str] = sd_pipe(**lowerCAmelCase__ , negative_prompt=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Tuple = output.images SCREAMING_SNAKE_CASE_: int = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) SCREAMING_SNAKE_CASE_: int = np.array([0.6187, 0.5375, 0.4915, 0.4136, 0.4114, 0.4563, 0.5128, 0.4976, 0.4757]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 def _SCREAMING_SNAKE_CASE ( self : Dict): SCREAMING_SNAKE_CASE_: Tuple = "cpu" # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE_: List[str] = self.get_dummy_components() SCREAMING_SNAKE_CASE_: Any = StableDiffusionPanoramaPipeline(**lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[str] = sd_pipe.to(lowerCAmelCase__) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = self.get_dummy_inputs(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Dict = sd_pipe(**lowerCAmelCase__ , view_batch_size=2) SCREAMING_SNAKE_CASE_: List[Any] = output.images SCREAMING_SNAKE_CASE_: int = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) SCREAMING_SNAKE_CASE_: Any = np.array([0.6187, 0.5375, 0.4915, 0.4136, 0.4114, 0.4563, 0.5128, 0.4976, 0.4757]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_: Optional[Any] = "cpu" # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE_: str = self.get_dummy_components() SCREAMING_SNAKE_CASE_: Any = EulerAncestralDiscreteScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="scaled_linear") SCREAMING_SNAKE_CASE_: Tuple = StableDiffusionPanoramaPipeline(**lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = sd_pipe.to(lowerCAmelCase__) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = self.get_dummy_inputs(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = sd_pipe(**lowerCAmelCase__).images SCREAMING_SNAKE_CASE_: int = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) SCREAMING_SNAKE_CASE_: List[Any] = np.array([0.4024, 0.6510, 0.4901, 0.5378, 0.5813, 0.5622, 0.4795, 0.4467, 0.4952]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 def _SCREAMING_SNAKE_CASE ( self : str): SCREAMING_SNAKE_CASE_: List[str] = "cpu" # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE_: str = self.get_dummy_components() SCREAMING_SNAKE_CASE_: Optional[int] = PNDMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="scaled_linear" , skip_prk_steps=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = StableDiffusionPanoramaPipeline(**lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = sd_pipe.to(lowerCAmelCase__) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = self.get_dummy_inputs(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Tuple = sd_pipe(**lowerCAmelCase__).images SCREAMING_SNAKE_CASE_: List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) SCREAMING_SNAKE_CASE_: Optional[int] = np.array([0.6391, 0.6291, 0.4861, 0.5134, 0.5552, 0.4578, 0.5032, 0.5023, 0.4539]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 @slow @require_torch_gpu class __lowercase ( unittest.TestCase ): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self : List[str]): super().tearDown() gc.collect() torch.cuda.empty_cache() def _SCREAMING_SNAKE_CASE ( self : Any , lowerCAmelCase__ : Optional[Any]=0): SCREAMING_SNAKE_CASE_: Union[str, Any] = torch.manual_seed(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = { "prompt": "a photo of the dolomites", "generator": generator, "num_inference_steps": 3, "guidance_scale": 7.5, "output_type": "numpy", } return inputs def _SCREAMING_SNAKE_CASE ( self : str): SCREAMING_SNAKE_CASE_: List[Any] = "stabilityai/stable-diffusion-2-base" SCREAMING_SNAKE_CASE_: Any = DDIMScheduler.from_pretrained(lowerCAmelCase__ , subfolder="scheduler") SCREAMING_SNAKE_CASE_: int = StableDiffusionPanoramaPipeline.from_pretrained(lowerCAmelCase__ , scheduler=lowerCAmelCase__ , safety_checker=lowerCAmelCase__) pipe.to(lowerCAmelCase__) pipe.set_progress_bar_config(disable=lowerCAmelCase__) pipe.enable_attention_slicing() SCREAMING_SNAKE_CASE_: List[str] = self.get_inputs() SCREAMING_SNAKE_CASE_: Tuple = pipe(**lowerCAmelCase__).images SCREAMING_SNAKE_CASE_: int = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 2048, 3) SCREAMING_SNAKE_CASE_: List[str] = np.array( [ 0.3696_8392, 0.2702_5372, 0.3244_6766, 0.2837_9387, 0.3636_3274, 0.3073_3347, 0.2710_0027, 0.2705_4125, 0.2553_6096, ]) assert np.abs(expected_slice - image_slice).max() < 1E-2 def _SCREAMING_SNAKE_CASE ( self : Tuple): SCREAMING_SNAKE_CASE_: Dict = StableDiffusionPanoramaPipeline.from_pretrained( "stabilityai/stable-diffusion-2-base" , safety_checker=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = LMSDiscreteScheduler.from_config(pipe.scheduler.config) pipe.to(lowerCAmelCase__) pipe.set_progress_bar_config(disable=lowerCAmelCase__) pipe.enable_attention_slicing() SCREAMING_SNAKE_CASE_: Optional[int] = self.get_inputs() SCREAMING_SNAKE_CASE_: List[str] = pipe(**lowerCAmelCase__).images SCREAMING_SNAKE_CASE_: Optional[Any] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 2048, 3) SCREAMING_SNAKE_CASE_: int = np.array( [ [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ] ]) assert np.abs(expected_slice - image_slice).max() < 1E-3 def _SCREAMING_SNAKE_CASE ( self : Dict): SCREAMING_SNAKE_CASE_: Tuple = 0 def callback_fn(lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : torch.FloatTensor) -> None: SCREAMING_SNAKE_CASE_: str = True nonlocal number_of_steps number_of_steps += 1 if step == 1: SCREAMING_SNAKE_CASE_: int = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 256) SCREAMING_SNAKE_CASE_: str = latents[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE_: Any = np.array( [ 0.1868_1869, 0.3390_7816, 0.536_1276, 0.1443_2865, -0.0285_6611, -0.7394_1123, 0.2339_7987, 0.4732_2682, -0.3782_3164, ]) assert np.abs(latents_slice.flatten() - expected_slice).max() < 5E-2 elif step == 2: SCREAMING_SNAKE_CASE_: str = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 256) SCREAMING_SNAKE_CASE_: Dict = latents[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE_: List[str] = np.array( [ 0.1853_9645, 0.3398_7248, 0.537_8559, 0.1443_7142, -0.0245_5261, -0.733_8317, 0.2399_0755, 0.4735_6272, -0.378_6505, ]) assert np.abs(latents_slice.flatten() - expected_slice).max() < 5E-2 SCREAMING_SNAKE_CASE_: Optional[int] = False SCREAMING_SNAKE_CASE_: Optional[int] = "stabilityai/stable-diffusion-2-base" SCREAMING_SNAKE_CASE_: Dict = DDIMScheduler.from_pretrained(lowerCAmelCase__ , subfolder="scheduler") SCREAMING_SNAKE_CASE_: List[str] = StableDiffusionPanoramaPipeline.from_pretrained(lowerCAmelCase__ , scheduler=lowerCAmelCase__ , safety_checker=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = pipe.to(lowerCAmelCase__) pipe.set_progress_bar_config(disable=lowerCAmelCase__) pipe.enable_attention_slicing() SCREAMING_SNAKE_CASE_: List[Any] = self.get_inputs() pipe(**lowerCAmelCase__ , callback=lowerCAmelCase__ , callback_steps=1) assert callback_fn.has_been_called assert number_of_steps == 3 def _SCREAMING_SNAKE_CASE ( self : Dict): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() SCREAMING_SNAKE_CASE_: Optional[Any] = "stabilityai/stable-diffusion-2-base" SCREAMING_SNAKE_CASE_: Optional[Any] = DDIMScheduler.from_pretrained(lowerCAmelCase__ , subfolder="scheduler") SCREAMING_SNAKE_CASE_: Dict = StableDiffusionPanoramaPipeline.from_pretrained(lowerCAmelCase__ , scheduler=lowerCAmelCase__ , safety_checker=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = pipe.to(lowerCAmelCase__) pipe.set_progress_bar_config(disable=lowerCAmelCase__) pipe.enable_attention_slicing(1) pipe.enable_sequential_cpu_offload() SCREAMING_SNAKE_CASE_: Union[str, Any] = self.get_inputs() SCREAMING_SNAKE_CASE_: int = pipe(**lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = torch.cuda.max_memory_allocated() # make sure that less than 5.2 GB is allocated assert mem_bytes < 5.5 * 10**9
13
def __snake_case ( __UpperCamelCase : int = 1000 ): """simple docstring""" return sum(2 * a * ((a - 1) // 2) for a in range(3 ,n + 1 ) ) if __name__ == "__main__": print(solution())
312
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase__ =logging.get_logger(__name__) UpperCamelCase__ ={ 'google/mobilenet_v1_1.0_224': 'https://huggingface.co/google/mobilenet_v1_1.0_224/resolve/main/config.json', 'google/mobilenet_v1_0.75_192': 'https://huggingface.co/google/mobilenet_v1_0.75_192/resolve/main/config.json', # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 } class lowerCAmelCase__( __lowercase ): '''simple docstring''' __snake_case = 'mobilenet_v1' def __init__( self , __lowerCamelCase=3 , __lowerCamelCase=2_2_4 , __lowerCamelCase=1.0 , __lowerCamelCase=8 , __lowerCamelCase="relu6" , __lowerCamelCase=True , __lowerCamelCase=0.999 , __lowerCamelCase=0.02 , __lowerCamelCase=0.001 , **__lowerCamelCase , ) -> Tuple: super().__init__(**__lowerCamelCase ) if depth_multiplier <= 0: raise ValueError("depth_multiplier must be greater than zero." ) _SCREAMING_SNAKE_CASE : List[Any] = num_channels _SCREAMING_SNAKE_CASE : Tuple = image_size _SCREAMING_SNAKE_CASE : Any = depth_multiplier _SCREAMING_SNAKE_CASE : int = min_depth _SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_act _SCREAMING_SNAKE_CASE : str = tf_padding _SCREAMING_SNAKE_CASE : Union[str, Any] = classifier_dropout_prob _SCREAMING_SNAKE_CASE : Dict = initializer_range _SCREAMING_SNAKE_CASE : Tuple = layer_norm_eps class lowerCAmelCase__( __lowercase ): '''simple docstring''' __snake_case = version.parse('1.11' ) @property def UpperCamelCase_ ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict([("pixel_values", {0: "batch"})] ) @property def UpperCamelCase_ ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "image-classification": return OrderedDict([("logits", {0: "batch"})] ) else: return OrderedDict([("last_hidden_state", {0: "batch"}), ("pooler_output", {0: "batch"})] ) @property def UpperCamelCase_ ( self ) -> float: return 1E-4
325
from __future__ import annotations import math def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): if depth < 0: raise ValueError("Depth cannot be less than 0" ) if len(__lowerCamelCase ) == 0: raise ValueError("Scores cannot be empty" ) if depth == height: return scores[node_index] if is_max: return max( minimax(depth + 1, node_index * 2, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ), minimax(depth + 1, node_index * 2 + 1, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ), ) return min( minimax(depth + 1, node_index * 2, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ), minimax(depth + 1, node_index * 2 + 1, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ), ) def lowerCamelCase__ (): _SCREAMING_SNAKE_CASE : Union[str, Any] = [90, 23, 6, 33, 21, 65, 123, 34423] _SCREAMING_SNAKE_CASE : Tuple = math.log(len(__lowerCamelCase ), 2 ) print("Optimal value : ", end="" ) print(minimax(0, 0, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
325
1
'''simple docstring''' def SCREAMING_SNAKE_CASE_ (UpperCamelCase ) -> int: assert isinstance(UpperCamelCase , UpperCamelCase ), f'''The input value of [n={number}] is not an integer''' if number == 1: return 2 elif number < 1: lowerCamelCase__ : Optional[Any] = f'''The input value of [n={number}] has to be > 0''' raise ValueError(UpperCamelCase ) else: lowerCamelCase__ : Optional[Any] = sylvester(number - 1 ) lowerCamelCase__ : Union[str, Any] = num - 1 lowerCamelCase__ : List[str] = num return lower * upper + 1 if __name__ == "__main__": print(F'The 8th number in Sylvester\'s sequence: {sylvester(8)}')
41
'''simple docstring''' class _lowercase : def __init__( self: Tuple , UpperCamelCase__: list[int] ): lowerCamelCase__ : Union[str, Any] = len(UpperCamelCase__ ) lowerCamelCase__ : Union[str, Any] = [0] * len_array if len_array > 0: lowerCamelCase__ : Union[str, Any] = array[0] for i in range(1 , UpperCamelCase__ ): lowerCamelCase__ : Tuple = self.prefix_sum[i - 1] + array[i] def lowerCamelCase_ ( self: Tuple , UpperCamelCase__: int , UpperCamelCase__: int ): if start == 0: return self.prefix_sum[end] return self.prefix_sum[end] - self.prefix_sum[start - 1] def lowerCamelCase_ ( self: Optional[int] , UpperCamelCase__: int ): lowerCamelCase__ : Dict = {0} for sum_item in self.prefix_sum: if sum_item - target_sum in sums: return True sums.add(UpperCamelCase__ ) return False if __name__ == "__main__": import doctest doctest.testmod()
41
1
"""simple docstring""" import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def lowercase ( lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Union[str, Any]=0.9_99 , lowerCAmelCase__ : List[str]="cosine" , ) -> Optional[int]: if alpha_transform_type == "cosine": def alpha_bar_fn(lowerCAmelCase__ : int ): return math.cos((t + 0.0_08) / 1.0_08 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(lowerCAmelCase__ : Optional[Any] ): return math.exp(t * -12.0 ) else: raise ValueError(f'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) __a = [] for i in range(lowerCAmelCase__ ): __a = i / num_diffusion_timesteps __a = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(lowerCAmelCase__ ) / alpha_bar_fn(lowerCAmelCase__ ) , lowerCAmelCase__ ) ) return torch.tensor(lowerCAmelCase__ , dtype=torch.floataa ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Tuple = [e.name for e in KarrasDiffusionSchedulers] __UpperCAmelCase : str = 2 @register_to_config def __init__( self , _a = 1_000 , _a = 0.0_0085 , _a = 0.012 , _a = "linear" , _a = None , _a = "epsilon" , _a = "linspace" , _a = 0 , ): if trained_betas is not None: __a = torch.tensor(_a , dtype=torch.floataa ) elif beta_schedule == "linear": __a = torch.linspace(_a , _a , _a , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. __a = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , _a , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule __a = betas_for_alpha_bar(_a ) else: raise NotImplementedError(f'''{beta_schedule} does is not implemented for {self.__class__}''' ) __a = 1.0 - self.betas __a = torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(_a , _a , _a ) def __UpperCAmelCase ( self , _a , _a=None ): if schedule_timesteps is None: __a = self.timesteps __a = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: __a = 1 if len(_a ) > 1 else 0 else: __a = timestep.cpu().item() if torch.is_tensor(_a ) else timestep __a = self._index_counter[timestep_int] return indices[pos].item() @property def __UpperCAmelCase ( self ): # standard deviation of the initial noise distribution if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def __UpperCAmelCase ( self , _a , _a , ): __a = self.index_for_timestep(_a ) if self.state_in_first_order: __a = self.sigmas[step_index] else: __a = self.sigmas_interpol[step_index] __a = sample / ((sigma**2 + 1) ** 0.5) return sample def __UpperCAmelCase ( self , _a , _a = None , _a = None , ): __a = num_inference_steps __a = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": __a = np.linspace(0 , num_train_timesteps - 1 , _a , dtype=_a )[::-1].copy() elif self.config.timestep_spacing == "leading": __a = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 __a = (np.arange(0 , _a ) * step_ratio).round()[::-1].copy().astype(_a ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": __a = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 __a = (np.arange(_a , 0 , -step_ratio )).round().copy().astype(_a ) timesteps -= 1 else: raise ValueError( f'''{self.config.timestep_spacing} is not supported. Please make sure to choose one of \'linspace\', \'leading\' or \'trailing\'.''' ) __a = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) __a = torch.from_numpy(np.log(_a ) ).to(_a ) __a = np.interp(_a , np.arange(0 , len(_a ) ) , _a ) __a = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) __a = torch.from_numpy(_a ).to(device=_a ) # interpolate sigmas __a = sigmas.log().lerp(sigmas.roll(1 ).log() , 0.5 ).exp() __a = torch.cat([sigmas[:1], sigmas[1:].repeat_interleave(2 ), sigmas[-1:]] ) __a = torch.cat( [sigmas_interpol[:1], sigmas_interpol[1:].repeat_interleave(2 ), sigmas_interpol[-1:]] ) if str(_a ).startswith('''mps''' ): # mps does not support float64 __a = torch.from_numpy(_a ).to(_a , dtype=torch.floataa ) else: __a = torch.from_numpy(_a ).to(_a ) # interpolate timesteps __a = self.sigma_to_t(_a ).to(_a , dtype=timesteps.dtype ) __a = torch.stack((timesteps_interpol[1:-1, None], timesteps[1:, None]) , dim=-1 ).flatten() __a = torch.cat([timesteps[:1], interleaved_timesteps] ) __a = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter __a = defaultdict(_a ) def __UpperCAmelCase ( self , _a ): # get log sigma __a = sigma.log() # get distribution __a = log_sigma - self.log_sigmas[:, None] # get sigmas range __a = dists.ge(0 ).cumsum(dim=0 ).argmax(dim=0 ).clamp(max=self.log_sigmas.shape[0] - 2 ) __a = low_idx + 1 __a = self.log_sigmas[low_idx] __a = self.log_sigmas[high_idx] # interpolate sigmas __a = (low - log_sigma) / (low - high) __a = w.clamp(0 , 1 ) # transform interpolation to time range __a = (1 - w) * low_idx + w * high_idx __a = t.view(sigma.shape ) return t @property def __UpperCAmelCase ( self ): return self.sample is None def __UpperCAmelCase ( self , _a , _a , _a , _a = True , ): __a = self.index_for_timestep(_a ) # advance index counter by 1 __a = timestep.cpu().item() if torch.is_tensor(_a ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: __a = self.sigmas[step_index] __a = self.sigmas_interpol[step_index + 1] __a = self.sigmas[step_index + 1] else: # 2nd order / KDPM2's method __a = self.sigmas[step_index - 1] __a = self.sigmas_interpol[step_index] __a = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API __a = 0 __a = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": __a = sigma_hat if self.state_in_first_order else sigma_interpol __a = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": __a = sigma_hat if self.state_in_first_order else sigma_interpol __a = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": raise NotImplementedError('''prediction_type not implemented yet: sample''' ) else: raise ValueError( f'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`''' ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order __a = (sample - pred_original_sample) / sigma_hat # 3. delta timestep __a = sigma_interpol - sigma_hat # store for 2nd order step __a = sample else: # DPM-Solver-2 # 2. Convert to an ODE derivative for 2nd order __a = (sample - pred_original_sample) / sigma_interpol # 3. delta timestep __a = sigma_next - sigma_hat __a = self.sample __a = None __a = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=_a ) def __UpperCAmelCase ( self , _a , _a , _a , ): # Make sure sigmas and timesteps have the same device and dtype as original_samples __a = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(_a ): # mps does not support float64 __a = self.timesteps.to(original_samples.device , dtype=torch.floataa ) __a = timesteps.to(original_samples.device , dtype=torch.floataa ) else: __a = self.timesteps.to(original_samples.device ) __a = timesteps.to(original_samples.device ) __a = [self.index_for_timestep(_a , _a ) for t in timesteps] __a = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): __a = sigma.unsqueeze(-1 ) __a = original_samples + noise * sigma return noisy_samples def __len__( self ): return self.config.num_train_timesteps
350
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) lowercase_ = { "configuration_efficientformer": [ "EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "EfficientFormerConfig", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ["EfficientFormerImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "EfficientFormerForImageClassification", "EfficientFormerForImageClassificationWithTeacher", "EfficientFormerModel", "EfficientFormerPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TFEfficientFormerForImageClassification", "TFEfficientFormerForImageClassificationWithTeacher", "TFEfficientFormerModel", "TFEfficientFormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_efficientformer import EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientformer import EfficientFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientformer import ( EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientFormerForImageClassification, EfficientFormerForImageClassificationWithTeacher, EfficientFormerModel, EfficientFormerPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, TFEfficientFormerPreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
11
0
def a__ ( A_ ): '''simple docstring''' if collection == []: return [] # get some information about the collection __magic_name__ = len(A_ ) __magic_name__ = max(A_ ) __magic_name__ = min(A_ ) # create the counting array __magic_name__ = coll_max + 1 - coll_min __magic_name__ = [0] * counting_arr_length # count how much a number appears in the collection for number in collection: counting_arr[number - coll_min] += 1 # sum each position with it's predecessors. now, counting_arr[i] tells # us how many elements <= i has in the collection for i in range(1, A_ ): __magic_name__ = counting_arr[i] + counting_arr[i - 1] # create the output collection __magic_name__ = [0] * coll_len # place the elements in the output, respecting the original order (stable # sort) from end to begin, updating counting_arr for i in reversed(range(0, A_ ) ): __magic_name__ = collection[i] counting_arr[collection[i] - coll_min] -= 1 return ordered def a__ ( A_ ): '''simple docstring''' return "".join([chr(A_ ) for i in counting_sort([ord(A_ ) for c in string] )] ) if __name__ == "__main__": # Test string sort assert counting_sort_string('thisisthestring') == "eghhiiinrsssttt" __lowerCAmelCase : Tuple = input('Enter numbers separated by a comma:\n').strip() __lowerCAmelCase : Dict = [int(item) for item in user_input.split(',')] print(counting_sort(unsorted))
88
import bza import gzip import lzma import os import shutil import struct import tarfile import warnings import zipfile from abc import ABC, abstractmethod from pathlib import Path from typing import Dict, List, Optional, Type, Union from .. import config from .filelock import FileLock from .logging import get_logger __lowerCAmelCase : Any = get_logger(__name__) class UpperCAmelCase_ : '''simple docstring''' def __init__( self : List[Any] , UpperCamelCase__ : Optional[str] = None ) -> Optional[Any]: """simple docstring""" __magic_name__ = ( os.path.join(UpperCamelCase__ , config.EXTRACTED_DATASETS_DIR ) if cache_dir else config.EXTRACTED_DATASETS_PATH ) __magic_name__ = Extractor def _lowercase ( self : Optional[Any] , UpperCamelCase__ : str ) -> str: """simple docstring""" from .file_utils import hash_url_to_filename # Path where we extract compressed archives # We extract in the cache dir, and get the extracted path name by hashing the original path" __magic_name__ = os.path.abspath(UpperCamelCase__ ) return os.path.join(self.extract_dir , hash_url_to_filename(UpperCamelCase__ ) ) def _lowercase ( self : List[Any] , UpperCamelCase__ : str , UpperCamelCase__ : bool ) -> bool: """simple docstring""" return force_extract or ( not os.path.isfile(UpperCamelCase__ ) and not (os.path.isdir(UpperCamelCase__ ) and os.listdir(UpperCamelCase__ )) ) def _lowercase ( self : Dict , UpperCamelCase__ : str , UpperCamelCase__ : bool = False ) -> str: """simple docstring""" __magic_name__ = self.extractor.infer_extractor_format(UpperCamelCase__ ) if not extractor_format: return input_path __magic_name__ = self._get_output_path(UpperCamelCase__ ) if self._do_extract(UpperCamelCase__ , UpperCamelCase__ ): self.extractor.extract(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) return output_path class UpperCAmelCase_ ( _A ): '''simple docstring''' @classmethod @abstractmethod def _lowercase ( cls : List[str] , UpperCamelCase__ : Union[Path, str] , **UpperCamelCase__ : Union[str, Any] ) -> bool: """simple docstring""" ... @staticmethod @abstractmethod def _lowercase ( UpperCamelCase__ : Union[Path, str] , UpperCamelCase__ : Union[Path, str] ) -> None: """simple docstring""" ... class UpperCAmelCase_ ( _A , _A ): '''simple docstring''' a__ = [] @staticmethod def _lowercase ( UpperCamelCase__ : Union[Path, str] , UpperCamelCase__ : int ) -> List[str]: """simple docstring""" with open(UpperCamelCase__ , """rb""" ) as f: return f.read(UpperCamelCase__ ) @classmethod def _lowercase ( cls : List[Any] , UpperCamelCase__ : Union[Path, str] , UpperCamelCase__ : bytes = b"" ) -> bool: """simple docstring""" if not magic_number: __magic_name__ = max(len(UpperCamelCase__ ) for cls_magic_number in cls.magic_numbers ) try: __magic_name__ = cls.read_magic_number(UpperCamelCase__ , UpperCamelCase__ ) except OSError: return False return any(magic_number.startswith(UpperCamelCase__ ) for cls_magic_number in cls.magic_numbers ) class UpperCAmelCase_ ( _A ): '''simple docstring''' @classmethod def _lowercase ( cls : Optional[Any] , UpperCamelCase__ : Union[Path, str] , **UpperCamelCase__ : int ) -> bool: """simple docstring""" return tarfile.is_tarfile(UpperCamelCase__ ) @staticmethod def _lowercase ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Optional[int] ) -> Union[str, Any]: """simple docstring""" def resolved(UpperCamelCase__ : str ) -> str: return os.path.realpath(os.path.abspath(UpperCamelCase__ ) ) def badpath(UpperCamelCase__ : str , UpperCamelCase__ : str ) -> bool: # joinpath will ignore base if path is absolute return not resolved(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) ).startswith(UpperCamelCase__ ) def badlink(UpperCamelCase__ : Optional[int] , UpperCamelCase__ : str ) -> bool: # Links are interpreted relative to the directory containing the link __magic_name__ = resolved(os.path.join(UpperCamelCase__ , os.path.dirname(info.name ) ) ) return badpath(info.linkname , base=UpperCamelCase__ ) __magic_name__ = resolved(UpperCamelCase__ ) for finfo in members: if badpath(finfo.name , UpperCamelCase__ ): logger.error(F'''Extraction of {finfo.name} is blocked (illegal path)''' ) elif finfo.issym() and badlink(UpperCamelCase__ , UpperCamelCase__ ): logger.error(F'''Extraction of {finfo.name} is blocked: Symlink to {finfo.linkname}''' ) elif finfo.islnk() and badlink(UpperCamelCase__ , UpperCamelCase__ ): logger.error(F'''Extraction of {finfo.name} is blocked: Hard link to {finfo.linkname}''' ) else: yield finfo @staticmethod def _lowercase ( UpperCamelCase__ : Union[Path, str] , UpperCamelCase__ : Union[Path, str] ) -> None: """simple docstring""" os.makedirs(UpperCamelCase__ , exist_ok=UpperCamelCase__ ) __magic_name__ = tarfile.open(UpperCamelCase__ ) tar_file.extractall(UpperCamelCase__ , members=TarExtractor.safemembers(UpperCamelCase__ , UpperCamelCase__ ) ) tar_file.close() class UpperCAmelCase_ ( _A ): '''simple docstring''' a__ = [B"""\x1F\x8B"""] @staticmethod def _lowercase ( UpperCamelCase__ : Union[Path, str] , UpperCamelCase__ : Union[Path, str] ) -> None: """simple docstring""" with gzip.open(UpperCamelCase__ , """rb""" ) as gzip_file: with open(UpperCamelCase__ , """wb""" ) as extracted_file: shutil.copyfileobj(UpperCamelCase__ , UpperCamelCase__ ) class UpperCAmelCase_ ( _A ): '''simple docstring''' a__ = [ B"""PK\x03\x04""", B"""PK\x05\x06""", # empty archive B"""PK\x07\x08""", # spanned archive ] @classmethod def _lowercase ( cls : Union[str, Any] , UpperCamelCase__ : Union[Path, str] , UpperCamelCase__ : bytes = b"" ) -> bool: """simple docstring""" if super().is_extractable(UpperCamelCase__ , magic_number=UpperCamelCase__ ): return True try: # Alternative version of zipfile.is_zipfile that has less false positives, but misses executable zip archives. # From: https://github.com/python/cpython/pull/5053 from zipfile import ( _CD_SIGNATURE, _ECD_DISK_NUMBER, _ECD_DISK_START, _ECD_ENTRIES_TOTAL, _ECD_OFFSET, _ECD_SIZE, _EndRecData, sizeCentralDir, stringCentralDir, structCentralDir, ) with open(UpperCamelCase__ , """rb""" ) as fp: __magic_name__ = _EndRecData(UpperCamelCase__ ) if endrec: if endrec[_ECD_ENTRIES_TOTAL] == 0 and endrec[_ECD_SIZE] == 0 and endrec[_ECD_OFFSET] == 0: return True # Empty zipfiles are still zipfiles elif endrec[_ECD_DISK_NUMBER] == endrec[_ECD_DISK_START]: fp.seek(endrec[_ECD_OFFSET] ) # Central directory is on the same disk if fp.tell() == endrec[_ECD_OFFSET] and endrec[_ECD_SIZE] >= sizeCentralDir: __magic_name__ = fp.read(UpperCamelCase__ ) # CD is where we expect it to be if len(UpperCamelCase__ ) == sizeCentralDir: __magic_name__ = struct.unpack(UpperCamelCase__ , UpperCamelCase__ ) # CD is the right size if centdir[_CD_SIGNATURE] == stringCentralDir: return True # First central directory entry has correct magic number return False except Exception: # catch all errors in case future python versions change the zipfile internals return False @staticmethod def _lowercase ( UpperCamelCase__ : Union[Path, str] , UpperCamelCase__ : Union[Path, str] ) -> None: """simple docstring""" os.makedirs(UpperCamelCase__ , exist_ok=UpperCamelCase__ ) with zipfile.ZipFile(UpperCamelCase__ , """r""" ) as zip_file: zip_file.extractall(UpperCamelCase__ ) zip_file.close() class UpperCAmelCase_ ( _A ): '''simple docstring''' a__ = [B"""\xFD\x37\x7A\x58\x5A\x00"""] @staticmethod def _lowercase ( UpperCamelCase__ : Union[Path, str] , UpperCamelCase__ : Union[Path, str] ) -> None: """simple docstring""" with lzma.open(UpperCamelCase__ ) as compressed_file: with open(UpperCamelCase__ , """wb""" ) as extracted_file: shutil.copyfileobj(UpperCamelCase__ , UpperCamelCase__ ) class UpperCAmelCase_ ( _A ): '''simple docstring''' a__ = [B"""Rar!\x1a\x07\x00""", B"""Rar!\x1a\x07\x01\x00"""] # RAR_ID # RAR5_ID @staticmethod def _lowercase ( UpperCamelCase__ : Union[Path, str] , UpperCamelCase__ : Union[Path, str] ) -> None: """simple docstring""" if not config.RARFILE_AVAILABLE: raise ImportError("""Please pip install rarfile""" ) import rarfile os.makedirs(UpperCamelCase__ , exist_ok=UpperCamelCase__ ) __magic_name__ = rarfile.RarFile(UpperCamelCase__ ) rf.extractall(UpperCamelCase__ ) rf.close() class UpperCAmelCase_ ( _A ): '''simple docstring''' a__ = [B"""\x28\xb5\x2F\xFD"""] @staticmethod def _lowercase ( UpperCamelCase__ : Union[Path, str] , UpperCamelCase__ : Union[Path, str] ) -> None: """simple docstring""" if not config.ZSTANDARD_AVAILABLE: raise ImportError("""Please pip install zstandard""" ) import zstandard as zstd __magic_name__ = zstd.ZstdDecompressor() with open(UpperCamelCase__ , """rb""" ) as ifh, open(UpperCamelCase__ , """wb""" ) as ofh: dctx.copy_stream(UpperCamelCase__ , UpperCamelCase__ ) class UpperCAmelCase_ ( _A ): '''simple docstring''' a__ = [B"""\x42\x5A\x68"""] @staticmethod def _lowercase ( UpperCamelCase__ : Union[Path, str] , UpperCamelCase__ : Union[Path, str] ) -> None: """simple docstring""" with bza.open(UpperCamelCase__ , """rb""" ) as compressed_file: with open(UpperCamelCase__ , """wb""" ) as extracted_file: shutil.copyfileobj(UpperCamelCase__ , UpperCamelCase__ ) class UpperCAmelCase_ ( _A ): '''simple docstring''' a__ = [B"""\x37\x7A\xBC\xAF\x27\x1C"""] @staticmethod def _lowercase ( UpperCamelCase__ : Union[Path, str] , UpperCamelCase__ : Union[Path, str] ) -> None: """simple docstring""" if not config.PY7ZR_AVAILABLE: raise ImportError("""Please pip install py7zr""" ) import pyazr os.makedirs(UpperCamelCase__ , exist_ok=UpperCamelCase__ ) with pyazr.SevenZipFile(UpperCamelCase__ , """r""" ) as archive: archive.extractall(UpperCamelCase__ ) class UpperCAmelCase_ ( _A ): '''simple docstring''' a__ = [B"""\x04\x22\x4D\x18"""] @staticmethod def _lowercase ( UpperCamelCase__ : Union[Path, str] , UpperCamelCase__ : Union[Path, str] ) -> None: """simple docstring""" if not config.LZ4_AVAILABLE: raise ImportError("""Please pip install lz4""" ) import lza.frame with lza.frame.open(UpperCamelCase__ , """rb""" ) as compressed_file: with open(UpperCamelCase__ , """wb""" ) as extracted_file: shutil.copyfileobj(UpperCamelCase__ , UpperCamelCase__ ) class UpperCAmelCase_ : '''simple docstring''' a__ = { "tar": TarExtractor, "gzip": GzipExtractor, "zip": ZipExtractor, "xz": XzExtractor, "rar": RarExtractor, "zstd": ZstdExtractor, "bz2": BzipaExtractor, "7z": SevenZipExtractor, # <Added version="2.4.0"/> "lz4": LzaExtractor, # <Added version="2.4.0"/> } @classmethod def _lowercase ( cls : Tuple ) -> Tuple: """simple docstring""" return max( len(UpperCamelCase__ ) for extractor in cls.extractors.values() if issubclass(UpperCamelCase__ , UpperCamelCase__ ) for extractor_magic_number in extractor.magic_numbers ) @staticmethod def _lowercase ( UpperCamelCase__ : Union[Path, str] , UpperCamelCase__ : int ) -> Union[str, Any]: """simple docstring""" try: return MagicNumberBaseExtractor.read_magic_number(UpperCamelCase__ , magic_number_length=UpperCamelCase__ ) except OSError: return b"" @classmethod def _lowercase ( cls : List[Any] , UpperCamelCase__ : Union[Path, str] , UpperCamelCase__ : bool = False ) -> bool: """simple docstring""" warnings.warn( """Method 'is_extractable' was deprecated in version 2.4.0 and will be removed in 3.0.0. """ """Use 'infer_extractor_format' instead.""" , category=UpperCamelCase__ , ) __magic_name__ = cls.infer_extractor_format(UpperCamelCase__ ) if extractor_format: return True if not return_extractor else (True, cls.extractors[extractor_format]) return False if not return_extractor else (False, None) @classmethod def _lowercase ( cls : Dict , UpperCamelCase__ : Union[Path, str] ) -> str: # <Added version="2.4.0"/> """simple docstring""" __magic_name__ = cls._get_magic_number_max_length() __magic_name__ = cls._read_magic_number(UpperCamelCase__ , UpperCamelCase__ ) for extractor_format, extractor in cls.extractors.items(): if extractor.is_extractable(UpperCamelCase__ , magic_number=UpperCamelCase__ ): return extractor_format @classmethod def _lowercase ( cls : Union[str, Any] , UpperCamelCase__ : Union[Path, str] , UpperCamelCase__ : Union[Path, str] , UpperCamelCase__ : Optional[str] = None , UpperCamelCase__ : Optional[BaseExtractor] = "deprecated" , ) -> None: """simple docstring""" os.makedirs(os.path.dirname(UpperCamelCase__ ) , exist_ok=UpperCamelCase__ ) # Prevent parallel extractions __magic_name__ = str(Path(UpperCamelCase__ ).with_suffix(""".lock""" ) ) with FileLock(UpperCamelCase__ ): shutil.rmtree(UpperCamelCase__ , ignore_errors=UpperCamelCase__ ) if extractor_format or extractor != "deprecated": if extractor != "deprecated" or not isinstance(UpperCamelCase__ , UpperCamelCase__ ): # passed as positional arg warnings.warn( """Parameter 'extractor' was deprecated in version 2.4.0 and will be removed in 3.0.0. """ """Use 'extractor_format' instead.""" , category=UpperCamelCase__ , ) __magic_name__ = extractor if extractor != """deprecated""" else extractor_format else: __magic_name__ = cls.extractors[extractor_format] return extractor.extract(UpperCamelCase__ , UpperCamelCase__ ) else: warnings.warn( """Parameter 'extractor_format' was made required in version 2.4.0 and not passing it will raise an """ """exception in 3.0.0.""" , category=UpperCamelCase__ , ) for extractor in cls.extractors.values(): if extractor.is_extractable(UpperCamelCase__ ): return extractor.extract(UpperCamelCase__ , UpperCamelCase__ )
88
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase_ : Optional[Any] = { """configuration_distilbert""": [ """DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """DistilBertConfig""", """DistilBertOnnxConfig""", ], """tokenization_distilbert""": ["""DistilBertTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Tuple = ["""DistilBertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Dict = [ """DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """DistilBertForMaskedLM""", """DistilBertForMultipleChoice""", """DistilBertForQuestionAnswering""", """DistilBertForSequenceClassification""", """DistilBertForTokenClassification""", """DistilBertModel""", """DistilBertPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Optional[Any] = [ """TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFDistilBertForMaskedLM""", """TFDistilBertForMultipleChoice""", """TFDistilBertForQuestionAnswering""", """TFDistilBertForSequenceClassification""", """TFDistilBertForTokenClassification""", """TFDistilBertMainLayer""", """TFDistilBertModel""", """TFDistilBertPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Optional[Any] = [ """FlaxDistilBertForMaskedLM""", """FlaxDistilBertForMultipleChoice""", """FlaxDistilBertForQuestionAnswering""", """FlaxDistilBertForSequenceClassification""", """FlaxDistilBertForTokenClassification""", """FlaxDistilBertModel""", """FlaxDistilBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_distilbert import ( DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DistilBertConfig, DistilBertOnnxConfig, ) from .tokenization_distilbert import DistilBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_distilbert_fast import DistilBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_distilbert import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, DistilBertPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertMainLayer, TFDistilBertModel, TFDistilBertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, FlaxDistilBertPreTrainedModel, ) else: import sys lowerCamelCase_ : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
368
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging lowerCamelCase_ : List[Any] = logging.get_logger(__name__) if is_vision_available(): import PIL class __A ( _SCREAMING_SNAKE_CASE ): """simple docstring""" __lowerCAmelCase = ["pixel_values"] def __init__( self , __A = True , __A = None , __A = PILImageResampling.BICUBIC , __A = True , __A = None , __A = True , __A = 1 / 255 , __A = True , __A = None , __A = None , __A = True , **__A , ) -> None: super().__init__(**__A ) a =size if size is not None else {'''shortest_edge''': 224} a =get_size_dict(__A , default_to_square=__A ) a =crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} a =get_size_dict(__A , default_to_square=__A , param_name='''crop_size''' ) a =do_resize a =size a =resample a =do_center_crop a =crop_size a =do_rescale a =rescale_factor a =do_normalize a =image_mean if image_mean is not None else OPENAI_CLIP_MEAN a =image_std if image_std is not None else OPENAI_CLIP_STD a =do_convert_rgb def SCREAMING_SNAKE_CASE ( self , __A , __A , __A = PILImageResampling.BICUBIC , __A = None , **__A , ) -> np.ndarray: a =get_size_dict(__A , default_to_square=__A ) if "shortest_edge" not in size: raise ValueError(f'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' ) a =get_resize_output_image_size(__A , size=size['''shortest_edge'''] , default_to_square=__A ) return resize(__A , size=__A , resample=__A , data_format=__A , **__A ) def SCREAMING_SNAKE_CASE ( self , __A , __A , __A = None , **__A , ) -> np.ndarray: a =get_size_dict(__A ) if "height" not in size or "width" not in size: raise ValueError(f'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' ) return center_crop(__A , size=(size['''height'''], size['''width''']) , data_format=__A , **__A ) def SCREAMING_SNAKE_CASE ( self , __A , __A , __A = None , **__A , ) -> Any: return rescale(__A , scale=__A , data_format=__A , **__A ) def SCREAMING_SNAKE_CASE ( self , __A , __A , __A , __A = None , **__A , ) -> np.ndarray: return normalize(__A , mean=__A , std=__A , data_format=__A , **__A ) def SCREAMING_SNAKE_CASE ( self , __A , __A = None , __A = None , __A = None , __A = None , __A = None , __A = None , __A = None , __A = None , __A = None , __A = None , __A = None , __A = None , __A = ChannelDimension.FIRST , **__A , ) -> PIL.Image.Image: a =do_resize if do_resize is not None else self.do_resize a =size if size is not None else self.size a =get_size_dict(__A , param_name='''size''' , default_to_square=__A ) a =resample if resample is not None else self.resample a =do_center_crop if do_center_crop is not None else self.do_center_crop a =crop_size if crop_size is not None else self.crop_size a =get_size_dict(__A , param_name='''crop_size''' , default_to_square=__A ) a =do_rescale if do_rescale is not None else self.do_rescale a =rescale_factor if rescale_factor is not None else self.rescale_factor a =do_normalize if do_normalize is not None else self.do_normalize a =image_mean if image_mean is not None else self.image_mean a =image_std if image_std is not None else self.image_std a =do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb a =make_list_of_images(__A ) if not valid_images(__A ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # PIL RGBA images are converted to RGB if do_convert_rgb: a =[convert_to_rgb(__A ) for image in images] # All transformations expect numpy arrays. a =[to_numpy_array(__A ) for image in images] if do_resize: a =[self.resize(image=__A , size=__A , resample=__A ) for image in images] if do_center_crop: a =[self.center_crop(image=__A , size=__A ) for image in images] if do_rescale: a =[self.rescale(image=__A , scale=__A ) for image in images] if do_normalize: a =[self.normalize(image=__A , mean=__A , std=__A ) for image in images] a =[to_channel_dimension_format(__A , __A ) for image in images] a ={'''pixel_values''': images} return BatchFeature(data=__A , tensor_type=__A )
215
0
'''simple docstring''' import gc import unittest import torch from parameterized import parameterized from diffusers import AutoencoderKL from diffusers.utils import floats_tensor, load_hf_numpy, require_torch_gpu, slow, torch_all_close, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class a ( _lowerCamelCase , _lowerCamelCase , unittest.TestCase ): snake_case_ = AutoencoderKL snake_case_ = "sample" snake_case_ = 1e-2 @property def A_ ( self : Dict ): snake_case_ = 4 snake_case_ = 3 snake_case_ = (32, 32) snake_case_ = floats_tensor((batch_size, num_channels) + sizes ).to(lowercase_ ) return {"sample": image} @property def A_ ( self : List[Any] ): return (3, 32, 32) @property def A_ ( self : Dict ): return (3, 32, 32) def A_ ( self : Union[str, Any] ): snake_case_ = { '''block_out_channels''': [32, 64], '''in_channels''': 3, '''out_channels''': 3, '''down_block_types''': ['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''], '''up_block_types''': ['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''], '''latent_channels''': 4, } snake_case_ = self.dummy_input return init_dict, inputs_dict def A_ ( self : Any ): pass def A_ ( self : str ): pass @unittest.skipIf(torch_device == '''mps''' , '''Gradient checkpointing skipped on MPS''' ) def A_ ( self : Dict ): # enable deterministic behavior for gradient checkpointing snake_case_ ,snake_case_ = self.prepare_init_args_and_inputs_for_common() snake_case_ = self.model_class(**lowercase_ ) model.to(lowercase_ ) assert not model.is_gradient_checkpointing and model.training snake_case_ = model(**lowercase_ ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model.zero_grad() snake_case_ = torch.randn_like(lowercase_ ) snake_case_ = (out - labels).mean() loss.backward() # re-instantiate the model now enabling gradient checkpointing snake_case_ = self.model_class(**lowercase_ ) # clone model model_a.load_state_dict(model.state_dict() ) model_a.to(lowercase_ ) model_a.enable_gradient_checkpointing() assert model_a.is_gradient_checkpointing and model_a.training snake_case_ = model_a(**lowercase_ ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model_a.zero_grad() snake_case_ = (out_a - labels).mean() loss_a.backward() # compare the output and parameters gradients self.assertTrue((loss - loss_a).abs() < 1e-5 ) snake_case_ = dict(model.named_parameters() ) snake_case_ = dict(model_a.named_parameters() ) for name, param in named_params.items(): self.assertTrue(torch_all_close(param.grad.data , named_params_a[name].grad.data , atol=5e-5 ) ) def A_ ( self : Tuple ): snake_case_ ,snake_case_ = AutoencoderKL.from_pretrained('''fusing/autoencoder-kl-dummy''' , output_loading_info=lowercase_ ) self.assertIsNotNone(lowercase_ ) self.assertEqual(len(loading_info['''missing_keys'''] ) , 0 ) model.to(lowercase_ ) snake_case_ = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def A_ ( self : Tuple ): snake_case_ = AutoencoderKL.from_pretrained('''fusing/autoencoder-kl-dummy''' ) snake_case_ = model.to(lowercase_ ) model.eval() if torch_device == "mps": snake_case_ = torch.manual_seed(0 ) else: snake_case_ = torch.Generator(device=lowercase_ ).manual_seed(0 ) snake_case_ = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) snake_case_ = image.to(lowercase_ ) with torch.no_grad(): snake_case_ = model(lowercase_ , sample_posterior=lowercase_ , generator=lowercase_ ).sample snake_case_ = output[0, -1, -3:, -3:].flatten().cpu() # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. if torch_device == "mps": snake_case_ = torch.tensor( [ -4.0_078e-01, -3.8_323e-04, -1.2_681e-01, -1.1_462e-01, 2.0_095e-01, 1.0_893e-01, -8.8_247e-02, -3.0_361e-01, -9.8_644e-03, ] ) elif torch_device == "cpu": snake_case_ = torch.tensor( [-0.1352, 0.0878, 0.0419, -0.0818, -0.1069, 0.0688, -0.1458, -0.4446, -0.0026] ) else: snake_case_ = torch.tensor( [-0.2421, 0.4642, 0.2507, -0.0438, 0.0682, 0.3160, -0.2018, -0.0727, 0.2485] ) self.assertTrue(torch_all_close(lowercase_ , lowercase_ , rtol=1e-2 ) ) @slow class a ( unittest.TestCase ): def A_ ( self : Union[str, Any] , lowercase_ : Optional[Any] , lowercase_ : Optional[int] ): return F"gaussian_noise_s={seed}_shape={'_'.join([str(lowercase_ ) for s in shape] )}.npy" def A_ ( self : Any ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def A_ ( self : Dict , lowercase_ : List[Any]=0 , lowercase_ : Union[str, Any]=(4, 3, 512, 512) , lowercase_ : Optional[Any]=False ): snake_case_ = torch.floataa if fpaa else torch.floataa snake_case_ = torch.from_numpy(load_hf_numpy(self.get_file_format(lowercase_ , lowercase_ ) ) ).to(lowercase_ ).to(lowercase_ ) return image def A_ ( self : Any , lowercase_ : Dict="CompVis/stable-diffusion-v1-4" , lowercase_ : List[str]=False ): snake_case_ = '''fp16''' if fpaa else None snake_case_ = torch.floataa if fpaa else torch.floataa snake_case_ = AutoencoderKL.from_pretrained( lowercase_ , subfolder='''vae''' , torch_dtype=lowercase_ , revision=lowercase_ , ) model.to(lowercase_ ).eval() return model def A_ ( self : Any , lowercase_ : int=0 ): if torch_device == "mps": return torch.manual_seed(lowercase_ ) return torch.Generator(device=lowercase_ ).manual_seed(lowercase_ ) @parameterized.expand( [ # fmt: off [33, [-0.1603, 0.9878, -0.0495, -0.0790, -0.2709, 0.8375, -0.2060, -0.0824], [-0.2395, 0.0098, 0.0102, -0.0709, -0.2840, -0.0274, -0.0718, -0.1824]], [47, [-0.2376, 0.1168, 0.1332, -0.4840, -0.2508, -0.0791, -0.0493, -0.4089], [0.0350, 0.0847, 0.0467, 0.0344, -0.0842, -0.0547, -0.0633, -0.1131]], # fmt: on ] ) def A_ ( self : Union[str, Any] , lowercase_ : Tuple , lowercase_ : Tuple , lowercase_ : Tuple ): snake_case_ = self.get_sd_vae_model() snake_case_ = self.get_sd_image(lowercase_ ) snake_case_ = self.get_generator(lowercase_ ) with torch.no_grad(): snake_case_ = model(lowercase_ , generator=lowercase_ , sample_posterior=lowercase_ ).sample assert sample.shape == image.shape snake_case_ = sample[-1, -2:, -2:, :2].flatten().float().cpu() snake_case_ = torch.tensor(expected_slice_mps if torch_device == '''mps''' else expected_slice ) assert torch_all_close(lowercase_ , lowercase_ , atol=3e-3 ) @parameterized.expand( [ # fmt: off [33, [-0.0513, 0.0289, 1.3799, 0.2166, -0.2573, -0.0871, 0.5103, -0.0999]], [47, [-0.4128, -0.1320, -0.3704, 0.1965, -0.4116, -0.2332, -0.3340, 0.2247]], # fmt: on ] ) @require_torch_gpu def A_ ( self : Optional[int] , lowercase_ : Union[str, Any] , lowercase_ : Dict ): snake_case_ = self.get_sd_vae_model(fpaa=lowercase_ ) snake_case_ = self.get_sd_image(lowercase_ , fpaa=lowercase_ ) snake_case_ = self.get_generator(lowercase_ ) with torch.no_grad(): snake_case_ = model(lowercase_ , generator=lowercase_ , sample_posterior=lowercase_ ).sample assert sample.shape == image.shape snake_case_ = sample[-1, -2:, :2, -2:].flatten().float().cpu() snake_case_ = torch.tensor(lowercase_ ) assert torch_all_close(lowercase_ , lowercase_ , atol=1e-2 ) @parameterized.expand( [ # fmt: off [33, [-0.1609, 0.9866, -0.0487, -0.0777, -0.2716, 0.8368, -0.2055, -0.0814], [-0.2395, 0.0098, 0.0102, -0.0709, -0.2840, -0.0274, -0.0718, -0.1824]], [47, [-0.2377, 0.1147, 0.1333, -0.4841, -0.2506, -0.0805, -0.0491, -0.4085], [0.0350, 0.0847, 0.0467, 0.0344, -0.0842, -0.0547, -0.0633, -0.1131]], # fmt: on ] ) def A_ ( self : Tuple , lowercase_ : Dict , lowercase_ : str , lowercase_ : Optional[int] ): snake_case_ = self.get_sd_vae_model() snake_case_ = self.get_sd_image(lowercase_ ) with torch.no_grad(): snake_case_ = model(lowercase_ ).sample assert sample.shape == image.shape snake_case_ = sample[-1, -2:, -2:, :2].flatten().float().cpu() snake_case_ = torch.tensor(expected_slice_mps if torch_device == '''mps''' else expected_slice ) assert torch_all_close(lowercase_ , lowercase_ , atol=3e-3 ) @parameterized.expand( [ # fmt: off [13, [-0.2051, -0.1803, -0.2311, -0.2114, -0.3292, -0.3574, -0.2953, -0.3323]], [37, [-0.2632, -0.2625, -0.2199, -0.2741, -0.4539, -0.4990, -0.3720, -0.4925]], # fmt: on ] ) @require_torch_gpu def A_ ( self : Dict , lowercase_ : Tuple , lowercase_ : Optional[int] ): snake_case_ = self.get_sd_vae_model() snake_case_ = self.get_sd_image(lowercase_ , shape=(3, 4, 64, 64) ) with torch.no_grad(): snake_case_ = model.decode(lowercase_ ).sample assert list(sample.shape ) == [3, 3, 512, 512] snake_case_ = sample[-1, -2:, :2, -2:].flatten().cpu() snake_case_ = torch.tensor(lowercase_ ) assert torch_all_close(lowercase_ , lowercase_ , atol=1e-3 ) @parameterized.expand( [ # fmt: off [27, [-0.0369, 0.0207, -0.0776, -0.0682, -0.1747, -0.1930, -0.1465, -0.2039]], [16, [-0.1628, -0.2134, -0.2747, -0.2642, -0.3774, -0.4404, -0.3687, -0.4277]], # fmt: on ] ) @require_torch_gpu def A_ ( self : Union[str, Any] , lowercase_ : Any , lowercase_ : Optional[Any] ): snake_case_ = self.get_sd_vae_model(fpaa=lowercase_ ) snake_case_ = self.get_sd_image(lowercase_ , shape=(3, 4, 64, 64) , fpaa=lowercase_ ) with torch.no_grad(): snake_case_ = model.decode(lowercase_ ).sample assert list(sample.shape ) == [3, 3, 512, 512] snake_case_ = sample[-1, -2:, :2, -2:].flatten().float().cpu() snake_case_ = torch.tensor(lowercase_ ) assert torch_all_close(lowercase_ , lowercase_ , atol=5e-3 ) @parameterized.expand([(13,), (16,), (27,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason='''xformers is not required when using PyTorch 2.0.''' ) def A_ ( self : Optional[Any] , lowercase_ : List[str] ): snake_case_ = self.get_sd_vae_model(fpaa=lowercase_ ) snake_case_ = self.get_sd_image(lowercase_ , shape=(3, 4, 64, 64) , fpaa=lowercase_ ) with torch.no_grad(): snake_case_ = model.decode(lowercase_ ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): snake_case_ = model.decode(lowercase_ ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(lowercase_ , lowercase_ , atol=1e-1 ) @parameterized.expand([(13,), (16,), (37,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason='''xformers is not required when using PyTorch 2.0.''' ) def A_ ( self : Optional[Any] , lowercase_ : Any ): snake_case_ = self.get_sd_vae_model() snake_case_ = self.get_sd_image(lowercase_ , shape=(3, 4, 64, 64) ) with torch.no_grad(): snake_case_ = model.decode(lowercase_ ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): snake_case_ = model.decode(lowercase_ ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(lowercase_ , lowercase_ , atol=1e-2 ) @parameterized.expand( [ # fmt: off [33, [-0.3001, 0.0918, -2.6984, -3.9720, -3.2099, -5.0353, 1.7338, -0.2065, 3.4267]], [47, [-1.5030, -4.3871, -6.0355, -9.1157, -1.6661, -2.7853, 2.1607, -5.0823, 2.5633]], # fmt: on ] ) def A_ ( self : str , lowercase_ : Optional[int] , lowercase_ : Tuple ): snake_case_ = self.get_sd_vae_model() snake_case_ = self.get_sd_image(lowercase_ ) snake_case_ = self.get_generator(lowercase_ ) with torch.no_grad(): snake_case_ = model.encode(lowercase_ ).latent_dist snake_case_ = dist.sample(generator=lowercase_ ) assert list(sample.shape ) == [image.shape[0], 4] + [i // 8 for i in image.shape[2:]] snake_case_ = sample[0, -1, -3:, -3:].flatten().cpu() snake_case_ = torch.tensor(lowercase_ ) snake_case_ = 3e-3 if torch_device != '''mps''' else 1e-2 assert torch_all_close(lowercase_ , lowercase_ , atol=lowercase_ )
56
from typing import Dict, List, Optional, Tuple, Union import torch from ...models import AutoencoderKL, TransformeraDModel from ...schedulers import KarrasDiffusionSchedulers from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class __UpperCamelCase ( lowerCAmelCase__ ): """simple docstring""" def __init__( self : List[Any] , _A : TransformeraDModel , _A : AutoencoderKL , _A : KarrasDiffusionSchedulers , _A : Optional[Dict[int, str]] = None , ): """simple docstring""" super().__init__() self.register_modules(transformer=_A , vae=_A , scheduler=_A ) # create a imagenet -> id dictionary for easier use __SCREAMING_SNAKE_CASE : Optional[int] = {} if idalabel is not None: for key, value in idalabel.items(): for label in value.split(''',''' ): __SCREAMING_SNAKE_CASE : Optional[Any] = int(_A ) __SCREAMING_SNAKE_CASE : List[str] = dict(sorted(self.labels.items() ) ) def UpperCAmelCase__ ( self : List[Any] , _A : Union[str, List[str]] ): """simple docstring""" if not isinstance(_A , _A ): __SCREAMING_SNAKE_CASE : Union[str, Any] = list(_A ) for l in label: if l not in self.labels: raise ValueError( F'''{l} does not exist. Please make sure to select one of the following labels: \n {self.labels}.''' ) return [self.labels[l] for l in label] @torch.no_grad() def __call__( self : Dict , _A : List[int] , _A : float = 4.0 , _A : Optional[Union[torch.Generator, List[torch.Generator]]] = None , _A : int = 50 , _A : Optional[str] = "pil" , _A : bool = True , ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = len(_A ) __SCREAMING_SNAKE_CASE : Optional[Any] = self.transformer.config.sample_size __SCREAMING_SNAKE_CASE : List[Any] = self.transformer.config.in_channels __SCREAMING_SNAKE_CASE : Optional[int] = randn_tensor( shape=(batch_size, latent_channels, latent_size, latent_size) , generator=_A , device=self.device , dtype=self.transformer.dtype , ) __SCREAMING_SNAKE_CASE : Tuple = torch.cat([latents] * 2 ) if guidance_scale > 1 else latents __SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor(_A , device=self.device ).reshape(-1 ) __SCREAMING_SNAKE_CASE : Any = torch.tensor([1000] * batch_size , device=self.device ) __SCREAMING_SNAKE_CASE : Any = torch.cat([class_labels, class_null] , 0 ) if guidance_scale > 1 else class_labels # set step values self.scheduler.set_timesteps(_A ) for t in self.progress_bar(self.scheduler.timesteps ): if guidance_scale > 1: __SCREAMING_SNAKE_CASE : Optional[Any] = latent_model_input[: len(_A ) // 2] __SCREAMING_SNAKE_CASE : List[Any] = torch.cat([half, half] , dim=0 ) __SCREAMING_SNAKE_CASE : int = self.scheduler.scale_model_input(_A , _A ) __SCREAMING_SNAKE_CASE : Union[str, Any] = t if not torch.is_tensor(_A ): # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can # This would be a good case for the `match` statement (Python 3.10+) __SCREAMING_SNAKE_CASE : Any = latent_model_input.device.type == '''mps''' if isinstance(_A , _A ): __SCREAMING_SNAKE_CASE : List[Any] = torch.floataa if is_mps else torch.floataa else: __SCREAMING_SNAKE_CASE : int = torch.intaa if is_mps else torch.intaa __SCREAMING_SNAKE_CASE : int = torch.tensor([timesteps] , dtype=_A , device=latent_model_input.device ) elif len(timesteps.shape ) == 0: __SCREAMING_SNAKE_CASE : Optional[Any] = timesteps[None].to(latent_model_input.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML __SCREAMING_SNAKE_CASE : Optional[int] = timesteps.expand(latent_model_input.shape[0] ) # predict noise model_output __SCREAMING_SNAKE_CASE : Union[str, Any] = self.transformer( _A , timestep=_A , class_labels=_A ).sample # perform guidance if guidance_scale > 1: __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Optional[int] = noise_pred[:, :latent_channels], noise_pred[:, latent_channels:] __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Optional[int] = torch.split(_A , len(_A ) // 2 , dim=0 ) __SCREAMING_SNAKE_CASE : str = uncond_eps + guidance_scale * (cond_eps - uncond_eps) __SCREAMING_SNAKE_CASE : List[Any] = torch.cat([half_eps, half_eps] , dim=0 ) __SCREAMING_SNAKE_CASE : List[str] = torch.cat([eps, rest] , dim=1 ) # learned sigma if self.transformer.config.out_channels // 2 == latent_channels: __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : str = torch.split(_A , _A , dim=1 ) else: __SCREAMING_SNAKE_CASE : List[Any] = noise_pred # compute previous image: x_t -> x_t-1 __SCREAMING_SNAKE_CASE : str = self.scheduler.step(_A , _A , _A ).prev_sample if guidance_scale > 1: __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Optional[int] = latent_model_input.chunk(2 , dim=0 ) else: __SCREAMING_SNAKE_CASE : Optional[Any] = latent_model_input __SCREAMING_SNAKE_CASE : List[Any] = 1 / self.vae.config.scaling_factor * latents __SCREAMING_SNAKE_CASE : List[str] = self.vae.decode(_A ).sample __SCREAMING_SNAKE_CASE : Any = (samples / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 __SCREAMING_SNAKE_CASE : int = samples.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": __SCREAMING_SNAKE_CASE : str = self.numpy_to_pil(_A ) if not return_dict: return (samples,) return ImagePipelineOutput(images=_A )
303
0
from typing import List, Optional, Union import numpy as np import tensorflow as tf from .utils import logging snake_case_ = logging.get_logger(__name__) def lowerCamelCase__ ( snake_case_ : Union[tf.Tensor, np.ndarray] ) -> List[int]: if isinstance(snake_case_ , np.ndarray ): return list(tensor.shape ) __snake_case = tf.shape(snake_case_ ) if tensor.shape == tf.TensorShape(snake_case_ ): return dynamic __snake_case = tensor.shape.as_list() return [dynamic[i] if s is None else s for i, s in enumerate(snake_case_ )] def lowerCamelCase__ ( snake_case_ : tf.Tensor , snake_case_ : Optional[int] = None , snake_case_ : Optional[str] = None ) -> tf.Tensor: return tf.nn.softmax(logits=logits + 1e-9 , axis=snake_case_ , name=snake_case_ ) def lowerCamelCase__ ( snake_case_ : Any , snake_case_ : List[Any] , snake_case_ : int , snake_case_ : Optional[int]=1e-5 , snake_case_ : List[str]=-1 ) -> Tuple: # This is a very simplified functional layernorm, designed to duplicate # the functionality of PyTorch nn.functional.layer_norm when this is needed to port # models in Transformers. if weight.shape.rank != 1 or bias.shape.rank != 1 or not isinstance(snake_case_ , snake_case_ ): raise NotImplementedError('''Only 1D weight and bias tensors are supported for now, with only a single axis.''' ) # Get mean and variance on the axis to be normalized __snake_case , __snake_case = tf.nn.moments(snake_case_ , axes=[axis] , keepdims=snake_case_ ) if axis != -1: # Reshape scale and weight to have the same rank as inputs, but with 1 dimensions # on every dimension except axis __snake_case = [1] * inputs.shape.rank __snake_case = shape_list(snake_case_ )[axis] __snake_case = tf.reshape(snake_case_ , snake_case_ ) __snake_case = tf.reshape(snake_case_ , snake_case_ ) # Compute layer normalization using the batch_normalization # function. __snake_case = tf.nn.batch_normalization( snake_case_ , snake_case_ , snake_case_ , offset=snake_case_ , scale=snake_case_ , variance_epsilon=snake_case_ , ) return outputs def lowerCamelCase__ ( snake_case_ : List[str] , snake_case_ : Optional[int]=0 , snake_case_ : str=-1 ) -> Dict: # Replicates the behavior of torch.flatten in TF # If end_dim or start_dim is negative, count them from the end if end_dim < 0: end_dim += input.shape.rank if start_dim < 0: start_dim += input.shape.rank if start_dim == end_dim: return input __snake_case = tf.shape(snake_case_ ) __snake_case = tf.math.reduce_prod(in_shape[start_dim : end_dim + 1] ) __snake_case = tf.concat([in_shape[:start_dim], [flattened_dim], in_shape[end_dim + 1 :]] , axis=0 ) return tf.reshape(snake_case_ , snake_case_ ) def lowerCamelCase__ ( snake_case_ : tf.Tensor ) -> tf.Tensor: if not isinstance(snake_case_ , tf.Tensor ): __snake_case = tf.convert_to_tensor(snake_case_ ) # Catches stray NumPy inputs if encoder_attention_mask.shape.rank == 3: __snake_case = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.shape.rank == 2: __snake_case = encoder_attention_mask[:, None, None, :] # T5 has a mask that can compare sequence ids, we can simulate this here with this transposition # Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow # /transformer/transformer_layers.py#L270 # encoder_extended_attention_mask = (encoder_extended_attention_mask == # encoder_extended_attention_mask.transpose(-1, -2)) __snake_case = ( tf.cast(1 , encoder_attention_mask.dtype ) - encoder_extended_attention_mask ) * encoder_extended_attention_mask.dtype.min return encoder_extended_attention_mask def lowerCamelCase__ ( snake_case_ : tf.Tensor , snake_case_ : int , snake_case_ : str = "input_ids" ) -> None: tf.debugging.assert_less( snake_case_ , tf.cast(snake_case_ , dtype=tensor.dtype ) , message=( f"""The maximum value of {tensor_name} ({tf.math.reduce_max(snake_case_ )}) must be smaller than the embedding """ f"""layer's input dimension ({embed_dim}). The likely cause is some problem at tokenization time.""" ) , ) def lowerCamelCase__ ( snake_case_ : Dict , snake_case_ : Any , snake_case_ : Any ) -> List[Any]: __snake_case = 6_4512 # Check that no item in `data` is larger than `HDF5_OBJECT_HEADER_LIMIT` # because in that case even chunking the array would not make the saving # possible. __snake_case = [x for x in data if len(snake_case_ ) > HDF5_OBJECT_HEADER_LIMIT] # Expecting this to never be true. if bad_attributes: raise RuntimeError( '''The following attributes cannot be saved to HDF5 file because ''' f"""they are larger than {HDF5_OBJECT_HEADER_LIMIT} """ f"""bytes: {bad_attributes}""" ) __snake_case = np.asarray(snake_case_ ) __snake_case = 1 __snake_case = np.array_split(snake_case_ , snake_case_ ) # This will never loop forever thanks to the test above. while any(x.nbytes > HDF5_OBJECT_HEADER_LIMIT for x in chunked_data ): num_chunks += 1 __snake_case = np.array_split(snake_case_ , snake_case_ ) if num_chunks > 1: for chunk_id, chunk_data in enumerate(snake_case_ ): __snake_case = chunk_data else: __snake_case = data def lowerCamelCase__ ( snake_case_ : Optional[int] , snake_case_ : Optional[Any] ) -> List[str]: if name in group.attrs: __snake_case = [n.decode('''utf8''' ) if hasattr(snake_case_ , '''decode''' ) else n for n in group.attrs[name]] else: __snake_case = [] __snake_case = 0 while "%s%d" % (name, chunk_id) in group.attrs: data.extend( [n.decode('''utf8''' ) if hasattr(snake_case_ , '''decode''' ) else n for n in group.attrs['''%s%d''' % (name, chunk_id)]] ) chunk_id += 1 return data def lowerCamelCase__ ( snake_case_ : Optional[Any] ) -> Union[str, Any]: def _expand_single_ad_tensor(snake_case_ : List[str] ): if isinstance(snake_case_ , tf.Tensor ) and t.shape.rank == 1: return tf.expand_dims(snake_case_ , axis=-1 ) return t return tf.nest.map_structure(_expand_single_ad_tensor , snake_case_ )
363
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation snake_case_ = logging.get_logger(__name__) snake_case_ = {'tokenizer_file': 'tokenizer.json'} snake_case_ = { 'tokenizer_file': { 'bigscience/tokenizer': 'https://huggingface.co/bigscience/tokenizer/blob/main/tokenizer.json', 'bigscience/bloom-560m': 'https://huggingface.co/bigscience/bloom-560m/blob/main/tokenizer.json', 'bigscience/bloom-1b1': 'https://huggingface.co/bigscience/bloom-1b1/blob/main/tokenizer.json', 'bigscience/bloom-1b7': 'https://huggingface.co/bigscience/bloom-1b7/blob/main/tokenizer.json', 'bigscience/bloom-3b': 'https://huggingface.co/bigscience/bloom-3b/blob/main/tokenizer.json', 'bigscience/bloom-7b1': 'https://huggingface.co/bigscience/bloom-7b1/blob/main/tokenizer.json', 'bigscience/bloom': 'https://huggingface.co/bigscience/bloom/blob/main/tokenizer.json', }, } class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): A_ : List[str] = VOCAB_FILES_NAMES A_ : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP A_ : str = ['input_ids', 'attention_mask'] A_ : Optional[Any] = None def __init__(self : Optional[int] , a__ : int=None , a__ : str=None , a__ : Any=None , a__ : List[Any]="<unk>" , a__ : List[Any]="<s>" , a__ : Optional[int]="</s>" , a__ : List[str]="<pad>" , a__ : Union[str, Any]=False , a__ : str=False , **a__ : Optional[Any] , ): """simple docstring""" super().__init__( a__ , a__ , tokenizer_file=a__ , unk_token=a__ , bos_token=a__ , eos_token=a__ , pad_token=a__ , add_prefix_space=a__ , clean_up_tokenization_spaces=a__ , **a__ , ) __snake_case = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , a__ ) != add_prefix_space: __snake_case = getattr(a__ , pre_tok_state.pop('''type''' ) ) __snake_case = add_prefix_space __snake_case = pre_tok_class(**a__ ) __snake_case = add_prefix_space def a (self : int , *a__ : Tuple , **a__ : Optional[Any] ): """simple docstring""" __snake_case = kwargs.get('''is_split_into_words''' , a__ ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with""" ''' pretokenized inputs.''' ) return super()._batch_encode_plus(*a__ , **a__ ) def a (self : List[str] , *a__ : List[str] , **a__ : List[str] ): """simple docstring""" __snake_case = kwargs.get('''is_split_into_words''' , a__ ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with""" ''' pretokenized inputs.''' ) return super()._encode_plus(*a__ , **a__ ) def a (self : List[Any] , a__ : str , a__ : Optional[str] = None ): """simple docstring""" __snake_case = self._tokenizer.model.save(a__ , name=a__ ) return tuple(a__ ) def a (self : Tuple , a__ : "Conversation" ): """simple docstring""" __snake_case = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(a__ , add_special_tokens=a__ ) + [self.eos_token_id] ) if len(a__ ) > self.model_max_length: __snake_case = input_ids[-self.model_max_length :] return input_ids
238
0
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..models.auto import AutoProcessor from ..models.vision_encoder_decoder import VisionEncoderDecoderModel from ..utils import is_vision_available from .base import PipelineTool if is_vision_available(): from PIL import Image class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : int = "naver-clova-ix/donut-base-finetuned-docvqa" lowerCAmelCase__ : List[Any] = ( "This is a tool that answers a question about an document (pdf). It takes an input named `document` which " "should be the document containing the information, as well as a `question` that is the question about the " "document. It returns a text that contains the answer to the question." ) lowerCAmelCase__ : Union[str, Any] = "document_qa" lowerCAmelCase__ : Any = AutoProcessor lowerCAmelCase__ : Union[str, Any] = VisionEncoderDecoderModel lowerCAmelCase__ : Optional[Any] = ["image", "text"] lowerCAmelCase__ : List[Any] = ["text"] def __init__( self : Any , *_UpperCAmelCase : Dict , **_UpperCAmelCase : Optional[Any] ) -> Union[str, Any]: """simple docstring""" if not is_vision_available(): raise ValueError('Pillow must be installed to use the DocumentQuestionAnsweringTool.' ) super().__init__(*_UpperCAmelCase , **_UpperCAmelCase ) def a__ ( self : Any , _UpperCAmelCase : "Image" , _UpperCAmelCase : str ) -> Optional[Any]: """simple docstring""" __lowercase = '<s_docvqa><s_question>{user_input}</s_question><s_answer>' __lowercase = task_prompt.replace('{user_input}' , _UpperCAmelCase ) __lowercase = self.pre_processor.tokenizer( _UpperCAmelCase , add_special_tokens=_UpperCAmelCase , return_tensors='pt' ).input_ids __lowercase = self.pre_processor(_UpperCAmelCase , return_tensors='pt' ).pixel_values return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values} def a__ ( self : Dict , _UpperCAmelCase : Tuple ) -> List[Any]: """simple docstring""" return self.model.generate( inputs['pixel_values'].to(self.device ) , decoder_input_ids=inputs['decoder_input_ids'].to(self.device ) , max_length=self.model.decoder.config.max_position_embeddings , early_stopping=_UpperCAmelCase , pad_token_id=self.pre_processor.tokenizer.pad_token_id , eos_token_id=self.pre_processor.tokenizer.eos_token_id , use_cache=_UpperCAmelCase , num_beams=1 , bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]] , return_dict_in_generate=_UpperCAmelCase , ).sequences def a__ ( self : str , _UpperCAmelCase : List[Any] ) -> Optional[int]: """simple docstring""" __lowercase = self.pre_processor.batch_decode(_UpperCAmelCase )[0] __lowercase = sequence.replace(self.pre_processor.tokenizer.eos_token , '' ) __lowercase = sequence.replace(self.pre_processor.tokenizer.pad_token , '' ) __lowercase = re.sub(R'<.*?>' , '' , _UpperCAmelCase , count=1 ).strip() # remove first task start token __lowercase = self.pre_processor.tokenajson(_UpperCAmelCase ) return sequence["answer"]
325
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision import transforms from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[int] ) -> Union[str, Any]: __lowercase = [2, 2, 6, 2] if 'tiny' in model_name else [2, 2, 18, 2] __lowercase = True if 'large' in model_name or 'huge' in model_name else False __lowercase = True if 'large' in model_name or 'huge' in model_name else False __lowercase = True if 'large' in model_name or 'huge' in model_name else False if "large" in model_name or "xlarge" in model_name or "huge" in model_name: if "fl3" in model_name: __lowercase = [3, 3, 3, 3] __lowercase = [5, 5, 5, 5] elif "fl4" in model_name: __lowercase = [4, 4, 4, 4] __lowercase = [3, 3, 3, 3] if "tiny" in model_name or "small" in model_name or "base" in model_name: __lowercase = [3, 3, 3, 3] if "lrf" in model_name: __lowercase = [3, 3, 3, 3] else: __lowercase = [2, 2, 2, 2] if "tiny" in model_name: __lowercase = 96 elif "small" in model_name: __lowercase = 96 elif "base" in model_name: __lowercase = 128 elif "large" in model_name: __lowercase = 192 elif "xlarge" in model_name: __lowercase = 256 elif "huge" in model_name: __lowercase = 352 # set label information __lowercase = 'huggingface/label-files' if "large" in model_name or "huge" in model_name: __lowercase = 'imagenet-22k-id2label.json' else: __lowercase = 'imagenet-1k-id2label.json' __lowercase = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , repo_type='dataset' ) , 'r' ) ) __lowercase = {int(SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} __lowercase = {v: k for k, v in idalabel.items()} __lowercase = FocalNetConfig( embed_dim=SCREAMING_SNAKE_CASE , depths=SCREAMING_SNAKE_CASE , focal_levels=SCREAMING_SNAKE_CASE , focal_windows=SCREAMING_SNAKE_CASE , use_conv_embed=SCREAMING_SNAKE_CASE , idalabel=SCREAMING_SNAKE_CASE , labelaid=SCREAMING_SNAKE_CASE , use_post_layernorm=SCREAMING_SNAKE_CASE , use_layerscale=SCREAMING_SNAKE_CASE , ) return config def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Dict ) -> Dict: if "patch_embed.proj" in name: __lowercase = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: __lowercase = name.replace('patch_embed.norm' , 'embeddings.norm' ) if "layers" in name: __lowercase = 'encoder.' + name if "encoder.layers" in name: __lowercase = name.replace('encoder.layers' , 'encoder.stages' ) if "downsample.proj" in name: __lowercase = name.replace('downsample.proj' , 'downsample.projection' ) if "blocks" in name: __lowercase = name.replace('blocks' , 'layers' ) if "modulation.f.weight" in name or "modulation.f.bias" in name: __lowercase = name.replace('modulation.f' , 'modulation.projection_in' ) if "modulation.h.weight" in name or "modulation.h.bias" in name: __lowercase = name.replace('modulation.h' , 'modulation.projection_context' ) if "modulation.proj.weight" in name or "modulation.proj.bias" in name: __lowercase = name.replace('modulation.proj' , 'modulation.projection_out' ) if name == "norm.weight": __lowercase = 'layernorm.weight' if name == "norm.bias": __lowercase = 'layernorm.bias' if "head" in name: __lowercase = name.replace('head' , 'classifier' ) else: __lowercase = 'focalnet.' + name return name def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Optional[Any]=False ) -> List[str]: # fmt: off __lowercase = { 'focalnet-tiny': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth', 'focalnet-tiny-lrf': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth', 'focalnet-small': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth', 'focalnet-small-lrf': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth', 'focalnet-base': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth', 'focalnet-base-lrf': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth', 'focalnet-large-lrf-fl3': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth', 'focalnet-large-lrf-fl4': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth', 'focalnet-xlarge-lrf-fl3': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth', 'focalnet-xlarge-lrf-fl4': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth', } # fmt: on __lowercase = model_name_to_url[model_name] print('Checkpoint URL: ' , SCREAMING_SNAKE_CASE ) __lowercase = torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE , map_location='cpu' )['model'] # rename keys for key in state_dict.copy().keys(): __lowercase = state_dict.pop(SCREAMING_SNAKE_CASE ) __lowercase = val __lowercase = get_focalnet_config(SCREAMING_SNAKE_CASE ) __lowercase = FocalNetForImageClassification(SCREAMING_SNAKE_CASE ) model.eval() # load state dict model.load_state_dict(SCREAMING_SNAKE_CASE ) # verify conversion __lowercase = 'http://images.cocodataset.org/val2017/000000039769.jpg' __lowercase = BitImageProcessor( do_resize=SCREAMING_SNAKE_CASE , size={'shortest_edge': 256} , resample=PILImageResampling.BILINEAR , do_center_crop=SCREAMING_SNAKE_CASE , crop_size=224 , do_normalize=SCREAMING_SNAKE_CASE , image_mean=SCREAMING_SNAKE_CASE , image_std=SCREAMING_SNAKE_CASE , ) __lowercase = Image.open(requests.get(SCREAMING_SNAKE_CASE , stream=SCREAMING_SNAKE_CASE ).raw ) __lowercase = processor(images=SCREAMING_SNAKE_CASE , return_tensors='pt' ) __lowercase = transforms.Compose( [ transforms.Resize(256 ), transforms.CenterCrop(224 ), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ), ] ) __lowercase = image_transforms(SCREAMING_SNAKE_CASE ).unsqueeze(0 ) # verify pixel_values assert torch.allclose(inputs.pixel_values , SCREAMING_SNAKE_CASE , atol=1E-4 ) __lowercase = model(**SCREAMING_SNAKE_CASE ) __lowercase = outputs.logits.argmax(-1 ).item() print('Predicted class:' , model.config.idalabel[predicted_class_idx] ) print('First values of logits:' , outputs.logits[0, :3] ) if model_name == "focalnet-tiny": __lowercase = torch.tensor([0.2_166, -0.4_368, 0.2_191] ) elif model_name == "focalnet-tiny-lrf": __lowercase = torch.tensor([1.1_669, 0.0_125, -0.1_695] ) elif model_name == "focalnet-small": __lowercase = torch.tensor([0.4_917, -0.0_430, 0.1_341] ) elif model_name == "focalnet-small-lrf": __lowercase = torch.tensor([-0.2_588, -0.5_342, -0.2_331] ) elif model_name == "focalnet-base": __lowercase = torch.tensor([-0.1_655, -0.4_090, -0.1_730] ) elif model_name == "focalnet-base-lrf": __lowercase = torch.tensor([0.5_306, -0.0_483, -0.3_928] ) assert torch.allclose(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE , atol=1E-4 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(F"""Saving model and processor of {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(SCREAMING_SNAKE_CASE ) processor.save_pretrained(SCREAMING_SNAKE_CASE ) if push_to_hub: print(F"""Pushing model and processor of {model_name} to the hub...""" ) model.push_to_hub(F"""{model_name}""" ) processor.push_to_hub(F"""{model_name}""" ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""focalnet-tiny""", type=str, help="""Name of the FocalNet model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to push the model and processor to the hub.""", ) SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
325
1
import inspect from typing import Callable, List, Optional, Union import torch from transformers import ( CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, WhisperForConditionalGeneration, WhisperProcessor, ) from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.utils import logging __UpperCamelCase : Optional[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name class __magic_name__ ( __lowerCAmelCase): def __init__( self : Dict , lowerCamelCase__ : WhisperForConditionalGeneration , lowerCamelCase__ : WhisperProcessor , lowerCamelCase__ : AutoencoderKL , lowerCamelCase__ : CLIPTextModel , lowerCamelCase__ : CLIPTokenizer , lowerCamelCase__ : UNetaDConditionModel , lowerCamelCase__ : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , lowerCamelCase__ : StableDiffusionSafetyChecker , lowerCamelCase__ : CLIPImageProcessor , ) -> List[str]: '''simple docstring''' super().__init__() if safety_checker is None: logger.warning( F"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" ''' that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered''' ''' results in services or applications open to the public. Both the diffusers team and Hugging Face''' ''' strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling''' ''' it only for use-cases that involve analyzing network behavior or auditing its results. For more''' ''' information, please have a look at https://github.com/huggingface/diffusers/pull/254 .''' ) self.register_modules( speech_model=lowerCamelCase__ , speech_processor=lowerCamelCase__ , vae=lowerCamelCase__ , text_encoder=lowerCamelCase__ , tokenizer=lowerCamelCase__ , unet=lowerCamelCase__ , scheduler=lowerCamelCase__ , feature_extractor=lowerCamelCase__ , ) def UpperCAmelCase__ ( self : Dict , lowerCamelCase__ : Optional[Union[str, int]] = "auto" ) -> List[Any]: '''simple docstring''' if slice_size == "auto": UpperCamelCase__ : Union[str, Any] = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(lowerCamelCase__ ) def UpperCAmelCase__ ( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' self.enable_attention_slicing(lowerCamelCase__ ) @torch.no_grad() def __call__( self : int , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : List[str]=16000 , lowerCamelCase__ : int = 512 , lowerCamelCase__ : int = 512 , lowerCamelCase__ : int = 50 , lowerCamelCase__ : float = 7.5 , lowerCamelCase__ : Optional[Union[str, List[str]]] = None , lowerCamelCase__ : Optional[int] = 1 , lowerCamelCase__ : float = 0.0 , lowerCamelCase__ : Optional[torch.Generator] = None , lowerCamelCase__ : Optional[torch.FloatTensor] = None , lowerCamelCase__ : Optional[str] = "pil" , lowerCamelCase__ : bool = True , lowerCamelCase__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , lowerCamelCase__ : int = 1 , **lowerCamelCase__ : List[str] , ) -> Tuple: '''simple docstring''' UpperCamelCase__ : int = self.speech_processor.feature_extractor( lowerCamelCase__ , return_tensors='''pt''' , sampling_rate=lowerCamelCase__ ).input_features.to(self.device ) UpperCamelCase__ : str = self.speech_model.generate(lowerCamelCase__ , max_length=480000 ) UpperCamelCase__ : Dict = self.speech_processor.tokenizer.batch_decode(lowerCamelCase__ , skip_special_tokens=lowerCamelCase__ , normalize=lowerCamelCase__ )[ 0 ] if isinstance(lowerCamelCase__ , lowerCamelCase__ ): UpperCamelCase__ : Optional[Any] = 1 elif isinstance(lowerCamelCase__ , lowerCamelCase__ ): UpperCamelCase__ : Union[str, Any] = len(lowerCamelCase__ ) else: raise ValueError(F"`prompt` has to be of type `str` or `list` but is {type(lowerCamelCase__ )}" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(F"`height` and `width` have to be divisible by 8 but are {height} and {width}." ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(lowerCamelCase__ , lowerCamelCase__ ) or callback_steps <= 0) ): raise ValueError( F"`callback_steps` has to be a positive integer but is {callback_steps} of type" F" {type(lowerCamelCase__ )}." ) # get prompt text embeddings UpperCamelCase__ : int = self.tokenizer( lowerCamelCase__ , padding='''max_length''' , max_length=self.tokenizer.model_max_length , return_tensors='''pt''' , ) UpperCamelCase__ : str = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: UpperCamelCase__ : Optional[int] = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( '''The following part of your input was truncated because CLIP can only handle sequences up to''' F" {self.tokenizer.model_max_length} tokens: {removed_text}" ) UpperCamelCase__ : List[str] = text_input_ids[:, : self.tokenizer.model_max_length] UpperCamelCase__ : str = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ : str = text_embeddings.shape UpperCamelCase__ : List[Any] = text_embeddings.repeat(1 , lowerCamelCase__ , 1 ) UpperCamelCase__ : Union[str, Any] = text_embeddings.view(bs_embed * num_images_per_prompt , lowerCamelCase__ , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. UpperCamelCase__ : List[str] = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: UpperCamelCase__ : List[str] if negative_prompt is None: UpperCamelCase__ : Tuple = [''''''] * batch_size elif type(lowerCamelCase__ ) is not type(lowerCamelCase__ ): raise TypeError( F"`negative_prompt` should be the same type to `prompt`, but got {type(lowerCamelCase__ )} !=" F" {type(lowerCamelCase__ )}." ) elif isinstance(lowerCamelCase__ , lowerCamelCase__ ): UpperCamelCase__ : str = [negative_prompt] elif batch_size != len(lowerCamelCase__ ): raise ValueError( F"`negative_prompt`: {negative_prompt} has batch size {len(lowerCamelCase__ )}, but `prompt`:" F" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" ''' the batch size of `prompt`.''' ) else: UpperCamelCase__ : Any = negative_prompt UpperCamelCase__ : Any = text_input_ids.shape[-1] UpperCamelCase__ : Optional[int] = self.tokenizer( lowerCamelCase__ , padding='''max_length''' , max_length=lowerCamelCase__ , truncation=lowerCamelCase__ , return_tensors='''pt''' , ) UpperCamelCase__ : int = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method UpperCamelCase__ : List[str] = uncond_embeddings.shape[1] UpperCamelCase__ : Optional[int] = uncond_embeddings.repeat(1 , lowerCamelCase__ , 1 ) UpperCamelCase__ : Optional[int] = uncond_embeddings.view(batch_size * num_images_per_prompt , lowerCamelCase__ , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes UpperCamelCase__ : int = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. UpperCamelCase__ : List[str] = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) UpperCamelCase__ : List[Any] = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps UpperCamelCase__ : Union[str, Any] = torch.randn(lowerCamelCase__ , generator=lowerCamelCase__ , device='''cpu''' , dtype=lowerCamelCase__ ).to( self.device ) else: UpperCamelCase__ : int = torch.randn(lowerCamelCase__ , generator=lowerCamelCase__ , device=self.device , dtype=lowerCamelCase__ ) else: if latents.shape != latents_shape: raise ValueError(F"Unexpected latents shape, got {latents.shape}, expected {latents_shape}" ) UpperCamelCase__ : Dict = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(lowerCamelCase__ ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand UpperCamelCase__ : Optional[int] = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler UpperCamelCase__ : Optional[int] = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] UpperCamelCase__ : Optional[int] = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) UpperCamelCase__ : Tuple = {} if accepts_eta: UpperCamelCase__ : List[Any] = eta for i, t in enumerate(self.progress_bar(lowerCamelCase__ ) ): # expand the latents if we are doing classifier free guidance UpperCamelCase__ : str = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents UpperCamelCase__ : int = self.scheduler.scale_model_input(lowerCamelCase__ , lowerCamelCase__ ) # predict the noise residual UpperCamelCase__ : Optional[Any] = self.unet(lowerCamelCase__ , lowerCamelCase__ , encoder_hidden_states=lowerCamelCase__ ).sample # perform guidance if do_classifier_free_guidance: UpperCamelCase__ , UpperCamelCase__ : List[Any] = noise_pred.chunk(2 ) UpperCamelCase__ : Dict = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 UpperCamelCase__ : List[Any] = self.scheduler.step(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , **lowerCamelCase__ ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) UpperCamelCase__ : str = 1 / 0.1_8215 * latents UpperCamelCase__ : Optional[int] = self.vae.decode(lowerCamelCase__ ).sample UpperCamelCase__ : Tuple = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 UpperCamelCase__ : Tuple = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": UpperCamelCase__ : int = self.numpy_to_pil(lowerCamelCase__ ) if not return_dict: return image return StableDiffusionPipelineOutput(images=lowerCamelCase__ , nsfw_content_detected=lowerCamelCase__ )
51
import unittest import numpy as np from transformers.testing_utils import is_flaky, require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DonutImageProcessor class __magic_name__ ( unittest.TestCase): def __init__( self : Optional[Any] , lowerCamelCase__ : Any , lowerCamelCase__ : Tuple=7 , lowerCamelCase__ : List[Any]=3 , lowerCamelCase__ : Optional[int]=18 , lowerCamelCase__ : Any=30 , lowerCamelCase__ : int=400 , lowerCamelCase__ : List[str]=True , lowerCamelCase__ : Optional[Any]=None , lowerCamelCase__ : Union[str, Any]=True , lowerCamelCase__ : int=False , lowerCamelCase__ : Union[str, Any]=True , lowerCamelCase__ : int=True , lowerCamelCase__ : Dict=[0.5, 0.5, 0.5] , lowerCamelCase__ : str=[0.5, 0.5, 0.5] , ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ : Optional[Any] = parent UpperCamelCase__ : Dict = batch_size UpperCamelCase__ : List[Any] = num_channels UpperCamelCase__ : int = image_size UpperCamelCase__ : str = min_resolution UpperCamelCase__ : str = max_resolution UpperCamelCase__ : Tuple = do_resize UpperCamelCase__ : str = size if size is not None else {'''height''': 18, '''width''': 20} UpperCamelCase__ : Optional[Any] = do_thumbnail UpperCamelCase__ : int = do_align_axis UpperCamelCase__ : List[Any] = do_pad UpperCamelCase__ : List[Any] = do_normalize UpperCamelCase__ : Dict = image_mean UpperCamelCase__ : List[Any] = image_std def UpperCAmelCase__ ( self : List[Any] ) -> Any: '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_thumbnail": self.do_thumbnail, "do_align_long_axis": self.do_align_axis, "do_pad": self.do_pad, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class __magic_name__ ( __lowerCAmelCase , unittest.TestCase): A: Tuple = DonutImageProcessor if is_vision_available() else None def UpperCAmelCase__ ( self : str ) -> int: '''simple docstring''' UpperCamelCase__ : int = DonutImageProcessingTester(self ) @property def UpperCAmelCase__ ( self : Tuple ) -> Optional[int]: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase__ ( self : Any ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ : Tuple = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase__ , '''do_resize''' ) ) self.assertTrue(hasattr(lowerCamelCase__ , '''size''' ) ) self.assertTrue(hasattr(lowerCamelCase__ , '''do_thumbnail''' ) ) self.assertTrue(hasattr(lowerCamelCase__ , '''do_align_long_axis''' ) ) self.assertTrue(hasattr(lowerCamelCase__ , '''do_pad''' ) ) self.assertTrue(hasattr(lowerCamelCase__ , '''do_normalize''' ) ) self.assertTrue(hasattr(lowerCamelCase__ , '''image_mean''' ) ) self.assertTrue(hasattr(lowerCamelCase__ , '''image_std''' ) ) def UpperCAmelCase__ ( self : Optional[Any] ) -> Tuple: '''simple docstring''' UpperCamelCase__ : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 18, '''width''': 20} ) UpperCamelCase__ : Any = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42} ) # Previous config had dimensions in (width, height) order UpperCamelCase__ : Dict = self.image_processing_class.from_dict(self.image_processor_dict , size=(42, 84) ) self.assertEqual(image_processor.size , {'''height''': 84, '''width''': 42} ) def UpperCAmelCase__ ( self : Any ) -> str: '''simple docstring''' pass @is_flaky() def UpperCAmelCase__ ( self : Optional[int] ) -> Any: '''simple docstring''' UpperCamelCase__ : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase__ : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase__ , Image.Image ) # Test not batched input UpperCamelCase__ : Dict = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched UpperCamelCase__ : List[str] = image_processing(lowerCamelCase__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) @is_flaky() def UpperCAmelCase__ ( self : Optional[int] ) -> List[str]: '''simple docstring''' UpperCamelCase__ : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCamelCase__ : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase__ , numpify=lowerCamelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase__ , np.ndarray ) # Test not batched input UpperCamelCase__ : List[str] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched UpperCamelCase__ : List[Any] = image_processing(lowerCamelCase__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) @is_flaky() def UpperCAmelCase__ ( self : str ) -> Tuple: '''simple docstring''' UpperCamelCase__ : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCamelCase__ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase__ , torchify=lowerCamelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase__ , torch.Tensor ) # Test not batched input UpperCamelCase__ : str = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched UpperCamelCase__ : List[str] = image_processing(lowerCamelCase__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , )
51
1
from __future__ import annotations a__: Union[str, Any] = [ [-1, 0], # left [0, -1], # down [1, 0], # right [0, 1], # up ] def UpperCamelCase__( UpperCamelCase__ : list[list[int]] , UpperCamelCase__ : list[int] , UpperCamelCase__ : list[int] , UpperCamelCase__ : int , UpperCamelCase__ : list[list[int]] , )->Any: A__ = [ [0 for col in range(len(grid[0] ) )] for row in range(len(UpperCamelCase__ ) ) ] # the reference grid A__ = 1 A__ = [ [0 for col in range(len(grid[0] ) )] for row in range(len(UpperCamelCase__ ) ) ] # the action grid A__ = init[0] A__ = init[1] A__ = 0 A__ = g + heuristic[x][y] # cost from starting cell to destination cell A__ = [[f, g, x, y]] A__ = False # flag that is set when search is complete A__ = False # flag set if we can't find expand while not found and not resign: if len(UpperCamelCase__ ) == 0: raise ValueError('''Algorithm is unable to find solution''' ) else: # to choose the least costliest action so as to move closer to the goal cell.sort() cell.reverse() A__ = cell.pop() A__ = next_cell[2] A__ = next_cell[3] A__ = next_cell[1] if x == goal[0] and y == goal[1]: A__ = True else: for i in range(len(UpperCamelCase__ ) ): # to try out different valid actions A__ = x + DIRECTIONS[i][0] A__ = y + DIRECTIONS[i][1] if xa >= 0 and xa < len(UpperCamelCase__ ) and ya >= 0 and ya < len(grid[0] ): if closed[xa][ya] == 0 and grid[xa][ya] == 0: A__ = g + cost A__ = ga + heuristic[xa][ya] cell.append([fa, ga, xa, ya] ) A__ = 1 A__ = i A__ = [] A__ = goal[0] A__ = goal[1] invpath.append([x, y] ) # we get the reverse path from here while x != init[0] or y != init[1]: A__ = x - DIRECTIONS[action[x][y]][0] A__ = y - DIRECTIONS[action[x][y]][1] A__ = xa A__ = ya invpath.append([x, y] ) A__ = [] for i in range(len(UpperCamelCase__ ) ): path.append(invpath[len(UpperCamelCase__ ) - 1 - i] ) return path, action if __name__ == "__main__": a__: Optional[int] = [ [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0], ] a__: List[str] = [0, 0] # all coordinates are given in format [y,x] a__: Tuple = [len(grid) - 1, len(grid[0]) - 1] a__: Tuple = 1 # the cost map which pushes the path closer to the goal a__: Dict = [[0 for row in range(len(grid[0]))] for col in range(len(grid))] for i in range(len(grid)): for j in range(len(grid[0])): a__: Dict = abs(i - goal[0]) + abs(j - goal[1]) if grid[i][j] == 1: # added extra penalty in the heuristic map a__: List[str] = 99 a__ , a__: Optional[int] = search(grid, init, goal, cost, heuristic) print('ACTION MAP') for i in range(len(action)): print(action[i]) for i in range(len(path)): print(path[i])
193
# HF Trainer benchmarking tool # # This tool can be used to run and compare multiple dimensions of the HF Trainers args. # # It then prints a report once in github format with all the information that needs to be shared # with others and second time in a console-friendly format, so it's easier to use for tuning things up. # # The main idea is: # # ./trainer-benchmark.py --base-cmd '<cmd args that don't change>' \ # --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' \ # --target-metric-key train_samples_per_second # # The variations can be any command line argument that you want to compare and not just dtype as in # the example. # # --variations allows you to compare variations in multiple dimensions. # # as the first dimention has 2 options and the second 3 in our example, this will run the trainer 6 # times adding one of: # # 1. --tf32 0 --fp16 0 # 2. --tf32 0 --fp16 1 # 3. --tf32 0 --bf16 1 # 4. --tf32 1 --fp16 0 # 5. --tf32 1 --fp16 1 # 6. --tf32 1 --bf16 1 # # and print the results. This is just a cartesian product - and more than 2 dimensions can be used. # # If you want to rely on defaults, this: # --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' # is identical to this: # --variations '--tf32 0|--tf32 1' '|--fp16|--bf16' # # the leading empty variation in the 2nd dimension is a valid variation. # # So here we get the following 6 variations: # # 1. --tf32 0 # 2. --tf32 0 --fp16 # 3. --tf32 0 --bf16 # 4. --tf32 1 # 5. --tf32 1 --fp16 # 6. --tf32 1 --bf16 # # In this particular case we don't know what the default tf32 setting is as it's normally # pytorch-version dependent). That's why it's best to do an explicit setting of each variation: # `--tf32 0|--tf32 1` # # Here is a full example of a train: # # CUDA_VISIBLE_DEVICES=0 python ./scripts/benchmark/trainer-benchmark.py \ # --base-cmd \ # ' examples/pytorch/translation/run_translation.py --model_name_or_path t5-small \ # --output_dir output_dir --do_train --label_smoothing 0.1 --logging_strategy no \ # --save_strategy no --per_device_train_batch_size 32 --max_source_length 512 \ # --max_target_length 512 --num_train_epochs 1 --overwrite_output_dir \ # --source_lang en --target_lang ro --dataset_name wmt16 --dataset_config "ro-en" \ # --source_prefix "translate English to Romanian: " --warmup_steps 50 \ # --max_train_samples 20000 --dataloader_num_workers 2 ' \ # --target-metric-key train_samples_per_second --repeat-times 1 --variations \ # '|--fp16|--bf16' '--tf32 0|--tf32 1' --report-metric-keys train_loss \ # --repeat-times 1 --base-variation '--tf32 0' # # and here is a possible output: # # # | Variation | Train | Diff | Train | # | | samples | % | loss | # | | per | | | # | | second | | | # |:----------------|----------:|-------:|--------:| # | --tf32 0 | 285.11 | 0 | 2.51 | # | --tf32 1 | 342.09 | 20 | 2.51 | # | --fp16 --tf32 0 | 423.49 | 49 | 2.51 | # | --fp16 --tf32 1 | 423.13 | 48 | 2.51 | # | --bf16 --tf32 0 | 416.80 | 46 | 2.52 | # | --bf16 --tf32 1 | 415.87 | 46 | 2.52 | # # # So you can quickly compare the different outcomes. # # Typically running each experiment once is enough, but if the environment is unstable you can # re-run each multiple times, e.g., 3 using --repeat-times 3 and it will report the averaged results. # # By default it'll use the lowest result as the base line to use as 100% and then compare the rest to # it as can be seen from the table above, but you can also specify which combination is the one to use as # the baseline, e.g., to change to another entry use: --base-variation '--tf32 1 --fp16 0' # # --target-metric-key is there to tell the program which metrics to compare - the different metric keys are # inside output_dir/all_results.json. e.g., to measure eval performance instead of train use: # --target-metric-key eval_samples_per_second # but of course you will need to adjust the --base-cmd value in the example to perform evaluation as # well (as currently it doesn't) # import argparse import datetime import io import itertools import json import math import os import platform import re import shlex import subprocess import sys from pathlib import Path from statistics import fmean import pandas as pd import torch from tqdm import tqdm import transformers lowerCAmelCase__ = float('nan') class lowerCAmelCase__ : '''simple docstring''' def __init__( self , __lowerCamelCase) -> Optional[Any]: _A : List[Any] = sys.stdout _A : str = open(__lowerCamelCase , "a") def __getattr__( self , __lowerCamelCase) -> List[str]: return getattr(self.stdout , __lowerCamelCase) def _lowerCamelCase ( self , __lowerCamelCase) -> str: self.stdout.write(__lowerCamelCase) # strip tqdm codes self.file.write(re.sub(r"^.*\r" , "" , __lowerCamelCase , 0 , re.M)) def _UpperCAmelCase (UpperCamelCase__ : str=80 , UpperCamelCase__ : Tuple=False ): _A : Tuple = [] # deal with critical env vars _A : Dict = ["CUDA_VISIBLE_DEVICES"] for key in env_keys: _A : Optional[int] = os.environ.get(UpperCamelCase__ , UpperCamelCase__ ) if val is not None: cmd.append(f"{key}={val}" ) # python executable (not always needed if the script is executable) _A : Optional[int] = sys.executable if full_python_path else sys.executable.split("/" )[-1] cmd.append(UpperCamelCase__ ) # now the normal args cmd += list(map(shlex.quote , sys.argv ) ) # split up into up to MAX_WIDTH lines with shell multi-line escapes _A : Tuple = [] _A : Dict = "" while len(UpperCamelCase__ ) > 0: current_line += f"{cmd.pop(0 )} " if len(UpperCamelCase__ ) == 0 or len(UpperCamelCase__ ) + len(cmd[0] ) + 1 > max_width - 1: lines.append(UpperCamelCase__ ) _A : Union[str, Any] = "" return "\\\n".join(UpperCamelCase__ ) def _UpperCAmelCase (UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Tuple ): # unwrap multi-line input _A : Union[str, Any] = re.sub(r"[\\\n]+" , " " , args.base_cmd ) # remove --output_dir if any and set our own _A : int = re.sub("--output_dir\s+[^\s]+" , "" , args.base_cmd ) args.base_cmd += f" --output_dir {output_dir}" # ensure we have --overwrite_output_dir _A : int = re.sub("--overwrite_output_dir\s+" , "" , args.base_cmd ) args.base_cmd += " --overwrite_output_dir" return [sys.executable] + shlex.split(args.base_cmd ) def _UpperCAmelCase (UpperCamelCase__ : List[Any] , UpperCamelCase__ : Any , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Tuple , UpperCamelCase__ : List[str] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Optional[int] ): # Enable to debug everything but the run itself, to do it fast and see the progress. # This is useful for debugging the output formatting quickly - we can remove it later once # everybody is happy with the output if 0: import random from time import sleep sleep(0 ) return dict( {k: random.uniform(0 , 100 ) for k in metric_keys} , **{target_metric_key: random.choice([nan, 10.31, 1_00.2, 55.66_66, 2_22.22_22_22_22] )} , ) _A : Dict = subprocess.run(UpperCamelCase__ , capture_output=UpperCamelCase__ , text=UpperCamelCase__ ) if verbose: print("STDOUT" , result.stdout ) print("STDERR" , result.stderr ) # save the streams _A : Tuple = variation.replace(" " , "-" ) with open(Path(UpperCamelCase__ ) / f"log.{prefix}.stdout.txt" , "w" ) as f: f.write(result.stdout ) with open(Path(UpperCamelCase__ ) / f"log.{prefix}.stderr.txt" , "w" ) as f: f.write(result.stderr ) if result.returncode != 0: if verbose: print("failed" ) return {target_metric_key: nan} with io.open(f"{output_dir}/all_results.json" , "r" , encoding="utf-8" ) as f: _A : List[str] = json.load(UpperCamelCase__ ) # filter out just the keys we want return {k: v for k, v in metrics.items() if k in metric_keys} def _UpperCAmelCase (UpperCamelCase__ : int , UpperCamelCase__ : Dict , UpperCamelCase__ : Tuple , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Any , UpperCamelCase__ : int , UpperCamelCase__ : Tuple , UpperCamelCase__ : List[Any] , UpperCamelCase__ : str , UpperCamelCase__ : Any , ): _A : Union[str, Any] = [] _A : Optional[int] = [] _A : Any = f"{id}: {variation:<{longest_variation_len}}" _A : Dict = f"{preamble}: " _A : Union[str, Any] = set(report_metric_keys + [target_metric_key] ) for i in tqdm(range(UpperCamelCase__ ) , desc=UpperCamelCase__ , leave=UpperCamelCase__ ): _A : Optional[Any] = process_run_single( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) _A : Optional[Any] = single_run_metrics[target_metric_key] if not math.isnan(UpperCamelCase__ ): metrics.append(UpperCamelCase__ ) results.append(UpperCamelCase__ ) outcome += "✓" else: outcome += "✘" _A : str = f"\33[2K\r{outcome}" if len(UpperCamelCase__ ) > 0: _A : List[str] = {k: fmean([x[k] for x in metrics] ) for k in metrics[0].keys()} _A : Any = round(mean_metrics[target_metric_key] , 2 ) _A : Tuple = f"{outcome} {mean_target}" if len(UpperCamelCase__ ) > 1: results_str += f" {tuple(round(UpperCamelCase__ , 2 ) for x in results )}" print(UpperCamelCase__ ) _A : Optional[int] = variation return mean_metrics else: print(UpperCamelCase__ ) return {variation_key: variation, target_metric_key: nan} def _UpperCAmelCase (): _A : int = torch.cuda.get_device_properties(torch.device("cuda" ) ) return f"\nDatetime : {datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S' )}\n\nSoftware:\ntransformers: {transformers.__version__}\ntorch : {torch.__version__}\ncuda : {torch.version.cuda}\npython : {platform.python_version()}\n\nHardware:\n{torch.cuda.device_count()} GPUs : {properties.name}, {properties.total_memory/2**30:0.2f}GB\n" def _UpperCAmelCase (UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Dict , UpperCamelCase__ : Any , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Dict ): _A : Any = pd.DataFrame(UpperCamelCase__ ) _A : List[str] = "variation" _A : List[Any] = "diff_%" _A : int = nan if base_variation is not None and len(df[df[variation_key] == base_variation] ): # this may still return nan _A : int = df.loc[df[variation_key] == base_variation][target_metric_key].item() if math.isnan(UpperCamelCase__ ): # as a fallback, use the minimal value as the sentinel _A : List[str] = df.loc[df[target_metric_key] != nan][target_metric_key].min() # create diff column if possible if not math.isnan(UpperCamelCase__ ): _A : Optional[Any] = df.apply( lambda UpperCamelCase__ : round(100 * (r[target_metric_key] - sentinel_value) / sentinel_value ) if not math.isnan(r[target_metric_key] ) else 0 , axis="columns" , ) # re-order columns _A : Union[str, Any] = [variation_key, target_metric_key, diff_key, *report_metric_keys] _A : Any = df.reindex(UpperCamelCase__ , axis="columns" ) # reorder cols # capitalize _A : Tuple = df.rename(str.capitalize , axis="columns" ) # make the cols as narrow as possible _A : List[str] = df.rename(lambda UpperCamelCase__ : c.replace("_" , "<br>" ) , axis="columns" ) _A : Union[str, Any] = df.rename(lambda UpperCamelCase__ : c.replace("_" , "\n" ) , axis="columns" ) _A : Optional[int] = ["", "Copy between the cut-here-lines and paste as is to github or a forum"] report += ["----------8<-----------------8<--------"] report += ["*** Results:", df_github.to_markdown(index=UpperCamelCase__ , floatfmt=".2f" )] report += ["```"] report += ["*** Setup:", get_versions()] report += ["*** The benchmark command line was:", get_original_command()] report += ["```"] report += ["----------8<-----------------8<--------"] report += ["*** Results (console):", df_console.to_markdown(index=UpperCamelCase__ , floatfmt=".2f" )] print("\n\n".join(UpperCamelCase__ ) ) def _UpperCAmelCase (): _A : int = argparse.ArgumentParser() parser.add_argument( "--base-cmd" , default=UpperCamelCase__ , type=UpperCamelCase__ , required=UpperCamelCase__ , help="Base cmd" , ) parser.add_argument( "--variations" , default=UpperCamelCase__ , type=UpperCamelCase__ , nargs="+" , required=UpperCamelCase__ , help="Multi-dimensional variations, example: '|--fp16|--bf16' '|--tf32'" , ) parser.add_argument( "--base-variation" , default=UpperCamelCase__ , type=UpperCamelCase__ , help="Baseline variation to compare to. if None the minimal target value will be used to compare against" , ) parser.add_argument( "--target-metric-key" , default=UpperCamelCase__ , type=UpperCamelCase__ , required=UpperCamelCase__ , help="Target metric key in output_dir/all_results.json, e.g., train_samples_per_second" , ) parser.add_argument( "--report-metric-keys" , default="" , type=UpperCamelCase__ , help="Report metric keys - other metric keys from output_dir/all_results.json to report, e.g., train_loss. Use a single argument e.g., 'train_loss train_samples" , ) parser.add_argument( "--repeat-times" , default=1 , type=UpperCamelCase__ , help="How many times to re-run each variation - an average will be reported" , ) parser.add_argument( "--output_dir" , default="output_benchmark" , type=UpperCamelCase__ , help="The output directory where all the benchmark reports will go to and additionally this directory will be used to override --output_dir in the script that is being benchmarked" , ) parser.add_argument( "--verbose" , default=UpperCamelCase__ , action="store_true" , help="Whether to show the outputs of each run or just the benchmark progress" , ) _A : int = parser.parse_args() _A : Union[str, Any] = args.output_dir Path(UpperCamelCase__ ).mkdir(exist_ok=UpperCamelCase__ ) _A : Tuple = get_base_command(UpperCamelCase__ , UpperCamelCase__ ) # split each dimension into its --foo variations _A : Dict = [list(map(str.strip , re.split(r"\|" , UpperCamelCase__ ) ) ) for x in args.variations] # build a cartesian product of dimensions and convert those back into cmd-line arg strings, # while stripping white space for inputs that were empty _A : Union[str, Any] = list(map(str.strip , map(" ".join , itertools.product(*UpperCamelCase__ ) ) ) ) _A : Union[str, Any] = max(len(UpperCamelCase__ ) for x in variations ) # split wanted keys _A : str = args.report_metric_keys.split() # capture prints into a log file for convenience _A : Optional[int] = f"benchmark-report-{datetime.datetime.now().strftime('%Y-%m-%d-%H-%M-%S' )}.txt" print(f"\nNote: each run's output is also logged under {output_dir}/log.*.std*.txt" ) print(f"and this script's output is also piped into {report_fn}" ) _A : Tuple = Tee(UpperCamelCase__ ) print(f"\n*** Running {len(UpperCamelCase__ )} benchmarks:" ) print(f"Base command: {' '.join(UpperCamelCase__ )}" ) _A : str = "variation" _A : Union[str, Any] = [] for id, variation in enumerate(tqdm(UpperCamelCase__ , desc="Total completion: " , leave=UpperCamelCase__ ) ): _A : Dict = base_cmd + variation.split() results.append( process_run( id + 1 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , args.target_metric_key , UpperCamelCase__ , args.repeat_times , UpperCamelCase__ , args.verbose , ) ) process_results(UpperCamelCase__ , args.target_metric_key , UpperCamelCase__ , args.base_variation , UpperCamelCase__ ) if __name__ == "__main__": main()
11
0
"""simple docstring""" import argparse import collections import torch from flax import traverse_util from tax import checkpoints from transformers import TaConfig, TaEncoderModel, TaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def _lowerCAmelCase ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase="attention" ): '''simple docstring''' UpperCAmelCase = params[F'''{prefix}/layers_{i}/{layer_name}/key/kernel'''] UpperCAmelCase = params[F'''{prefix}/layers_{i}/{layer_name}/out/kernel'''] UpperCAmelCase = params[F'''{prefix}/layers_{i}/{layer_name}/query/kernel'''] UpperCAmelCase = params[F'''{prefix}/layers_{i}/{layer_name}/value/kernel'''] return k, o, q, v def _lowerCAmelCase ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase=False ): '''simple docstring''' if split_mlp_wi: UpperCAmelCase = params[F'''{prefix}/layers_{i}/mlp/wi_0/kernel'''] UpperCAmelCase = params[F'''{prefix}/layers_{i}/mlp/wi_1/kernel'''] UpperCAmelCase = (wi_a, wi_a) else: UpperCAmelCase = params[F'''{prefix}/layers_{i}/mlp/wi/kernel'''] UpperCAmelCase = params[F'''{prefix}/layers_{i}/mlp/wo/kernel'''] return wi, wo def _lowerCAmelCase ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): '''simple docstring''' return params[F'''{prefix}/layers_{i}/{layer_name}/scale'''] def _lowerCAmelCase ( lowerCAmelCase , *, lowerCAmelCase , lowerCAmelCase ): '''simple docstring''' UpperCAmelCase = traverse_util.flatten_dict(variables["""target"""] ) UpperCAmelCase = {"""/""".join(lowerCAmelCase ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi UpperCAmelCase = """encoder/layers_0/mlp/wi_0/kernel""" in old print("""Split MLP:""" , lowerCAmelCase ) UpperCAmelCase = collections.OrderedDict() # Shared embeddings. UpperCAmelCase = old["""token_embedder/embedding"""] # Encoder. for i in range(lowerCAmelCase ): # Block i, layer 0 (Self Attention). UpperCAmelCase = tax_layer_norm_lookup(lowerCAmelCase , lowerCAmelCase , """encoder""" , """pre_attention_layer_norm""" ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = tax_attention_lookup(lowerCAmelCase , lowerCAmelCase , """encoder""" , """attention""" ) UpperCAmelCase = layer_norm UpperCAmelCase = k.T UpperCAmelCase = o.T UpperCAmelCase = q.T UpperCAmelCase = v.T # Block i, layer 1 (MLP). UpperCAmelCase = tax_layer_norm_lookup(lowerCAmelCase , lowerCAmelCase , """encoder""" , """pre_mlp_layer_norm""" ) UpperCAmelCase , UpperCAmelCase = tax_mlp_lookup(lowerCAmelCase , lowerCAmelCase , """encoder""" , lowerCAmelCase ) UpperCAmelCase = layer_norm if split_mlp_wi: UpperCAmelCase = wi[0].T UpperCAmelCase = wi[1].T else: UpperCAmelCase = wi.T UpperCAmelCase = wo.T UpperCAmelCase = old[ """encoder/relpos_bias/rel_embedding""" ].T UpperCAmelCase = old["""encoder/encoder_norm/scale"""] if not is_encoder_only: # Decoder. for i in range(lowerCAmelCase ): # Block i, layer 0 (Self Attention). UpperCAmelCase = tax_layer_norm_lookup(lowerCAmelCase , lowerCAmelCase , """decoder""" , """pre_self_attention_layer_norm""" ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = tax_attention_lookup(lowerCAmelCase , lowerCAmelCase , """decoder""" , """self_attention""" ) UpperCAmelCase = layer_norm UpperCAmelCase = k.T UpperCAmelCase = o.T UpperCAmelCase = q.T UpperCAmelCase = v.T # Block i, layer 1 (Cross Attention). UpperCAmelCase = tax_layer_norm_lookup(lowerCAmelCase , lowerCAmelCase , """decoder""" , """pre_cross_attention_layer_norm""" ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = tax_attention_lookup(lowerCAmelCase , lowerCAmelCase , """decoder""" , """encoder_decoder_attention""" ) UpperCAmelCase = layer_norm UpperCAmelCase = k.T UpperCAmelCase = o.T UpperCAmelCase = q.T UpperCAmelCase = v.T # Block i, layer 2 (MLP). UpperCAmelCase = tax_layer_norm_lookup(lowerCAmelCase , lowerCAmelCase , """decoder""" , """pre_mlp_layer_norm""" ) UpperCAmelCase , UpperCAmelCase = tax_mlp_lookup(lowerCAmelCase , lowerCAmelCase , """decoder""" , lowerCAmelCase ) UpperCAmelCase = layer_norm if split_mlp_wi: UpperCAmelCase = wi[0].T UpperCAmelCase = wi[1].T else: UpperCAmelCase = wi.T UpperCAmelCase = wo.T UpperCAmelCase = old["""decoder/decoder_norm/scale"""] UpperCAmelCase = old[ """decoder/relpos_bias/rel_embedding""" ].T # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: UpperCAmelCase = old["""decoder/logits_dense/kernel"""].T return new def _lowerCAmelCase ( lowerCAmelCase , lowerCAmelCase ): '''simple docstring''' UpperCAmelCase = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: UpperCAmelCase = state_dict["""shared.weight"""] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: UpperCAmelCase = state_dict["""shared.weight"""] if "lm_head.weight" not in state_dict: # For old 1.0 models. print("""Using shared word embeddings as lm_head.""" ) UpperCAmelCase = state_dict["""shared.weight"""] return state_dict def _lowerCAmelCase ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): '''simple docstring''' UpperCAmelCase = checkpoints.load_tax_checkpoint(lowerCAmelCase ) UpperCAmelCase = convert_tax_to_pytorch(lowerCAmelCase , num_layers=config.num_layers , is_encoder_only=lowerCAmelCase ) UpperCAmelCase = make_state_dict(lowerCAmelCase , lowerCAmelCase ) model.load_state_dict(lowerCAmelCase , strict=lowerCAmelCase ) def _lowerCAmelCase ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = False ): '''simple docstring''' UpperCAmelCase = TaConfig.from_json_file(lowerCAmelCase ) print(F'''Building PyTorch model from configuration: {config}''' ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: UpperCAmelCase = TaEncoderModel(lowerCAmelCase ) else: UpperCAmelCase = TaForConditionalGeneration(lowerCAmelCase ) # Load weights from tf checkpoint load_tax_weights_in_ta(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) model.save_pretrained(lowerCAmelCase ) # Verify that we can load the checkpoint. model.from_pretrained(lowerCAmelCase ) print("""Done""" ) if __name__ == "__main__": lowerCAmelCase_ : Tuple = argparse.ArgumentParser(description='''Converts a native T5X checkpoint into a PyTorch checkpoint.''') # Required parameters parser.add_argument( '''--t5x_checkpoint_path''', default=None, type=str, required=True, help='''Path to the T5X checkpoint.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.''', ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--is_encoder_only''', action='''store_true''', help='''Check if the model is encoder-decoder model''', default=False ) lowerCAmelCase_ : Tuple = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only )
248
"""simple docstring""" from __future__ import annotations import math def _lowerCAmelCase ( lowerCAmelCase ): '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowerCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def _lowerCAmelCase ( lowerCAmelCase ): '''simple docstring''' UpperCAmelCase = str(lowerCAmelCase ) UpperCAmelCase = [n] for i in range(1 , len(lowerCAmelCase ) ): list_nums.append(int(str_num[i:] ) ) list_nums.append(int(str_num[:-i] ) ) return list_nums def _lowerCAmelCase ( lowerCAmelCase ): '''simple docstring''' if len(str(lowerCAmelCase ) ) > 3: if not is_prime(int(str(lowerCAmelCase )[-3:] ) ) or not is_prime(int(str(lowerCAmelCase )[:3] ) ): return False return True def _lowerCAmelCase ( lowerCAmelCase = 11 ): '''simple docstring''' UpperCAmelCase = [] UpperCAmelCase = 13 while len(lowerCAmelCase ) != count: if validate(lowerCAmelCase ): UpperCAmelCase = list_truncated_nums(lowerCAmelCase ) if all(is_prime(lowerCAmelCase ) for i in list_nums ): list_truncated_primes.append(lowerCAmelCase ) num += 2 return list_truncated_primes def _lowerCAmelCase ( ): '''simple docstring''' return sum(compute_truncated_primes(11 ) ) if __name__ == "__main__": print(F'{sum(compute_truncated_primes(1_1)) = }')
248
1
"""simple docstring""" def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : List[Any] ) -> float: return price * (1 + tax_rate) if __name__ == "__main__": print(F'''{price_plus_tax(1_0_0, 0.25) = }''') print(F'''{price_plus_tax(125.50, 0.05) = }''')
45
'''simple docstring''' from __future__ import annotations import typing from collections import Counter def snake_case_ ( lowerCAmelCase_ )-> typing.Counter[int]: '''simple docstring''' _UpperCAmelCase : typing.Counter[int] = Counter() for base in range(1 , max_perimeter + 1 ): for perpendicular in range(lowerCAmelCase_ , max_perimeter + 1 ): _UpperCAmelCase : List[str] = (base * base + perpendicular * perpendicular) ** 0.5 if hypotenuse == int(lowerCAmelCase_ ): _UpperCAmelCase : Optional[Any] = int(base + perpendicular + hypotenuse ) if perimeter > max_perimeter: continue triplets[perimeter] += 1 return triplets def snake_case_ ( lowerCAmelCase_ = 1000 )-> int: '''simple docstring''' _UpperCAmelCase : int = pythagorean_triple(lowerCAmelCase_ ) return triplets.most_common(1 )[0][0] if __name__ == "__main__": print(f"""Perimeter {solution()} has maximum solutions""")
215
0
"""simple docstring""" import numpy as np import torch from ..models.clipseg import CLIPSegForImageSegmentation from ..utils import is_vision_available, requires_backends from .base import PipelineTool if is_vision_available(): from PIL import Image class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = ( '''This is a tool that creates a segmentation mask of an image according to a label. It cannot create an image.''' '''It takes two arguments named `image` which should be the original image, and `label` which should be a text ''' '''describing the elements what should be identified in the segmentation mask. The tool returns the mask.''' ) __lowerCAmelCase = '''CIDAS/clipseg-rd64-refined''' __lowerCAmelCase = '''image_segmenter''' __lowerCAmelCase = CLIPSegForImageSegmentation __lowerCAmelCase = ['''image''', '''text'''] __lowerCAmelCase = ['''image'''] def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase ): requires_backends(self , ['''vision'''] ) super().__init__(*_UpperCAmelCase , **_UpperCAmelCase ) def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase ): return self.pre_processor(text=[label] , images=[image] , padding=_UpperCAmelCase , return_tensors='''pt''' ) def _lowerCamelCase ( self , _UpperCAmelCase ): with torch.no_grad(): __a : List[str] = self.model(**_UpperCAmelCase ).logits return logits def _lowerCamelCase ( self , _UpperCAmelCase ): __a : str = outputs.cpu().detach().numpy() __a : int = 0 __a : Optional[int] = 1 return Image.fromarray((array * 255).astype(np.uinta ) )
355
"""simple docstring""" import random import unittest import numpy as np from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionImgaImgPipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class __lowercase ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __lowerCAmelCase = '''hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline''' def _lowerCamelCase ( self , _UpperCAmelCase=0 ): __a : Tuple = floats_tensor((1, 3, 128, 128) , rng=random.Random(_UpperCAmelCase ) ) __a : Any = np.random.RandomState(_UpperCAmelCase ) __a : Any = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 3, '''strength''': 0.7_5, '''guidance_scale''': 7.5, '''output_type''': '''numpy''', } return inputs def _lowerCamelCase ( self ): __a : int = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) __a : Dict = self.get_dummy_inputs() __a : Any = pipe(**_UpperCAmelCase ).images __a : Optional[int] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 128, 128, 3) __a : List[Any] = np.array([0.6_9_6_4_3, 0.5_8_4_8_4, 0.5_0_3_1_4, 0.5_8_7_6_0, 0.5_5_3_6_8, 0.5_9_6_4_3, 0.5_1_5_2_9, 0.4_1_2_1_7, 0.4_9_0_8_7] ) assert np.abs(image_slice - expected_slice ).max() < 1e-1 def _lowerCamelCase ( self ): __a : int = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) __a : Tuple = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) __a : Optional[int] = self.get_dummy_inputs() __a : Optional[Any] = pipe(**_UpperCAmelCase ).images __a : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __a : Optional[int] = np.array([0.6_1_7_3_7, 0.5_4_6_4_2, 0.5_3_1_8_3, 0.5_4_4_6_5, 0.5_2_7_4_2, 0.6_0_5_2_5, 0.4_9_9_6_9, 0.4_0_6_5_5, 0.4_8_1_5_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _lowerCamelCase ( self ): __a : List[str] = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) __a : Any = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) # warmup pass to apply optimizations __a : Any = pipe(**self.get_dummy_inputs() ) __a : List[str] = self.get_dummy_inputs() __a : Tuple = pipe(**_UpperCAmelCase ).images __a : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __a : int = np.array([0.5_2_7_6_1, 0.5_9_9_7_7, 0.4_9_0_3_3, 0.4_9_6_1_9, 0.5_4_2_8_2, 0.5_0_3_1_1, 0.4_7_6_0_0, 0.4_0_9_1_8, 0.4_5_2_0_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _lowerCamelCase ( self ): __a : int = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) __a : Any = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) __a : List[Any] = self.get_dummy_inputs() __a : Any = pipe(**_UpperCAmelCase ).images __a : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __a : Optional[Any] = np.array([0.5_2_9_1_1, 0.6_0_0_0_4, 0.4_9_2_2_9, 0.4_9_8_0_5, 0.5_4_5_0_2, 0.5_0_6_8_0, 0.4_7_7_7_7, 0.4_1_0_2_8, 0.4_5_3_0_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _lowerCamelCase ( self ): __a : int = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) __a : Any = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) __a : Union[str, Any] = self.get_dummy_inputs() __a : str = pipe(**_UpperCAmelCase ).images __a : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __a : Optional[int] = np.array([0.5_2_9_1_1, 0.6_0_0_0_4, 0.4_9_2_2_9, 0.4_9_8_0_5, 0.5_4_5_0_2, 0.5_0_6_8_0, 0.4_7_7_7_7, 0.4_1_0_2_8, 0.4_5_3_0_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _lowerCamelCase ( self ): __a : int = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) __a : str = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) __a : Optional[int] = self.get_dummy_inputs() __a : Optional[Any] = pipe(**_UpperCAmelCase ).images __a : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __a : Optional[Any] = np.array([0.6_5_3_3_1, 0.5_8_2_7_7, 0.4_8_2_0_4, 0.5_6_0_5_9, 0.5_3_6_6_5, 0.5_6_2_3_5, 0.5_0_9_6_9, 0.4_0_0_0_9, 0.4_6_5_5_2] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 @nightly @require_onnxruntime @require_torch_gpu class __lowercase ( unittest.TestCase ): '''simple docstring''' @property def _lowerCamelCase ( self ): return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def _lowerCamelCase ( self ): __a : Optional[Any] = ort.SessionOptions() __a : Any = False return options def _lowerCamelCase ( self ): __a : str = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) __a : Tuple = init_image.resize((768, 512) ) # using the PNDM scheduler by default __a : List[str] = OnnxStableDiffusionImgaImgPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''onnx''' , safety_checker=_UpperCAmelCase , feature_extractor=_UpperCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) __a : Tuple = '''A fantasy landscape, trending on artstation''' __a : Tuple = np.random.RandomState(0 ) __a : int = pipe( prompt=_UpperCAmelCase , image=_UpperCAmelCase , strength=0.7_5 , guidance_scale=7.5 , num_inference_steps=10 , generator=_UpperCAmelCase , output_type='''np''' , ) __a : List[Any] = output.images __a : int = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) __a : Any = np.array([0.4_9_0_9, 0.5_0_5_9, 0.5_3_7_2, 0.4_6_2_3, 0.4_8_7_6, 0.5_0_4_9, 0.4_8_2_0, 0.4_9_5_6, 0.5_0_1_9] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def _lowerCamelCase ( self ): __a : List[str] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) __a : Tuple = init_image.resize((768, 512) ) __a : str = LMSDiscreteScheduler.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , subfolder='''scheduler''' , revision='''onnx''' ) __a : Optional[int] = OnnxStableDiffusionImgaImgPipeline.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , revision='''onnx''' , scheduler=_UpperCAmelCase , safety_checker=_UpperCAmelCase , feature_extractor=_UpperCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) __a : List[str] = '''A fantasy landscape, trending on artstation''' __a : str = np.random.RandomState(0 ) __a : str = pipe( prompt=_UpperCAmelCase , image=_UpperCAmelCase , strength=0.7_5 , guidance_scale=7.5 , num_inference_steps=20 , generator=_UpperCAmelCase , output_type='''np''' , ) __a : Dict = output.images __a : List[Any] = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) __a : Dict = np.array([0.8_0_4_3, 0.9_2_6, 0.9_5_8_1, 0.8_1_1_9, 0.8_9_5_4, 0.9_1_3, 0.7_2_0_9, 0.7_4_6_3, 0.7_4_3_1] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2
188
0
"""simple docstring""" import pprint import requests lowercase__ : Any = "https://zenquotes.io/api" def UpperCamelCase_ ( ) -> str: """simple docstring""" return requests.get(API_ENDPOINT_URL + '/today' ).json() def UpperCamelCase_ ( ) -> List[str]: """simple docstring""" return requests.get(API_ENDPOINT_URL + '/random' ).json() if __name__ == "__main__": lowercase__ : List[str] = random_quotes() pprint.pprint(response)
224
"""simple docstring""" from __future__ import annotations def snake_case__ ( __lowerCamelCase : int , __lowerCamelCase : int ): """simple docstring""" if b == 0: return (1, 0) ((lowerCamelCase__) , (lowerCamelCase__)) : Any =extended_euclid(__lowerCamelCase , a % b ) lowerCamelCase__ : Optional[Any] =a // b return (y, x - k * y) def snake_case__ ( __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : int ): """simple docstring""" ((lowerCamelCase__) , (lowerCamelCase__)) : Any =extended_euclid(__lowerCamelCase , __lowerCamelCase ) lowerCamelCase__ : List[Any] =na * na lowerCamelCase__ : Union[str, Any] =ra * x * na + ra * y * na return (n % m + m) % m def snake_case__ ( __lowerCamelCase : int , __lowerCamelCase : int ): """simple docstring""" ((lowerCamelCase__) , (lowerCamelCase__)) : int =extended_euclid(__lowerCamelCase , __lowerCamelCase ) if b < 0: lowerCamelCase__ : Any =(b % n + n) % n return b def snake_case__ ( __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : int ): """simple docstring""" lowerCamelCase__ , lowerCamelCase__ : Any =invert_modulo(__lowerCamelCase , __lowerCamelCase ), invert_modulo(__lowerCamelCase , __lowerCamelCase ) lowerCamelCase__ : Tuple =na * na lowerCamelCase__ : Optional[Any] =ra * x * na + ra * y * na return (n % m + m) % m if __name__ == "__main__": from doctest import testmod testmod(name="chinese_remainder_theorem", verbose=True) testmod(name="chinese_remainder_theorem2", verbose=True) testmod(name="invert_modulo", verbose=True) testmod(name="extended_euclid", verbose=True)
238
0
import argparse import io import requests import torch from omegaconf import OmegaConf from diffusers import AutoencoderKL from diffusers.pipelines.stable_diffusion.convert_from_ckpt import ( assign_to_checkpoint, conv_attn_to_linear, create_vae_diffusers_config, renew_vae_attention_paths, renew_vae_resnet_paths, ) def lowerCAmelCase__ ( lowerCamelCase_ : Any ,lowerCamelCase_ : Union[str, Any]): '''simple docstring''' lowerCAmelCase__ : List[Any] = checkpoint lowerCAmelCase__ : Any = {} lowerCAmelCase__ : Optional[Any] = vae_state_dict['''encoder.conv_in.weight'''] lowerCAmelCase__ : Dict = vae_state_dict['''encoder.conv_in.bias'''] lowerCAmelCase__ : Any = vae_state_dict['''encoder.conv_out.weight'''] lowerCAmelCase__ : Tuple = vae_state_dict['''encoder.conv_out.bias'''] lowerCAmelCase__ : List[Any] = vae_state_dict['''encoder.norm_out.weight'''] lowerCAmelCase__ : Optional[Any] = vae_state_dict['''encoder.norm_out.bias'''] lowerCAmelCase__ : Tuple = vae_state_dict['''decoder.conv_in.weight'''] lowerCAmelCase__ : List[str] = vae_state_dict['''decoder.conv_in.bias'''] lowerCAmelCase__ : int = vae_state_dict['''decoder.conv_out.weight'''] lowerCAmelCase__ : List[str] = vae_state_dict['''decoder.conv_out.bias'''] lowerCAmelCase__ : Dict = vae_state_dict['''decoder.norm_out.weight'''] lowerCAmelCase__ : Optional[Any] = vae_state_dict['''decoder.norm_out.bias'''] lowerCAmelCase__ : str = vae_state_dict['''quant_conv.weight'''] lowerCAmelCase__ : List[str] = vae_state_dict['''quant_conv.bias'''] lowerCAmelCase__ : Optional[Any] = vae_state_dict['''post_quant_conv.weight'''] lowerCAmelCase__ : List[Any] = vae_state_dict['''post_quant_conv.bias'''] # Retrieves the keys for the encoder down blocks only lowerCAmelCase__ : Optional[Any] = len({'''.'''.join(layer.split('''.''')[:3]) for layer in vae_state_dict if '''encoder.down''' in layer}) lowerCAmelCase__ : Union[str, Any] = { layer_id: [key for key in vae_state_dict if f"""down.{layer_id}""" in key] for layer_id in range(lowerCamelCase_) } # Retrieves the keys for the decoder up blocks only lowerCAmelCase__ : str = len({'''.'''.join(layer.split('''.''')[:3]) for layer in vae_state_dict if '''decoder.up''' in layer}) lowerCAmelCase__ : int = { layer_id: [key for key in vae_state_dict if f"""up.{layer_id}""" in key] for layer_id in range(lowerCamelCase_) } for i in range(lowerCamelCase_): lowerCAmelCase__ : int = [key for key in down_blocks[i] if f"""down.{i}""" in key and f"""down.{i}.downsample""" not in key] if f"""encoder.down.{i}.downsample.conv.weight""" in vae_state_dict: lowerCAmelCase__ : Any = vae_state_dict.pop( f"""encoder.down.{i}.downsample.conv.weight""") lowerCAmelCase__ : Union[str, Any] = vae_state_dict.pop( f"""encoder.down.{i}.downsample.conv.bias""") lowerCAmelCase__ : List[str] = renew_vae_resnet_paths(lowerCamelCase_) lowerCAmelCase__ : Dict = {'''old''': f"""down.{i}.block""", '''new''': f"""down_blocks.{i}.resnets"""} assign_to_checkpoint(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,additional_replacements=[meta_path] ,config=lowerCamelCase_) lowerCAmelCase__ : Optional[int] = [key for key in vae_state_dict if '''encoder.mid.block''' in key] lowerCAmelCase__ : Optional[Any] = 2 for i in range(1 ,num_mid_res_blocks + 1): lowerCAmelCase__ : Union[str, Any] = [key for key in mid_resnets if f"""encoder.mid.block_{i}""" in key] lowerCAmelCase__ : Optional[int] = renew_vae_resnet_paths(lowerCamelCase_) lowerCAmelCase__ : int = {'''old''': f"""mid.block_{i}""", '''new''': f"""mid_block.resnets.{i - 1}"""} assign_to_checkpoint(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,additional_replacements=[meta_path] ,config=lowerCamelCase_) lowerCAmelCase__ : List[Any] = [key for key in vae_state_dict if '''encoder.mid.attn''' in key] lowerCAmelCase__ : Dict = renew_vae_attention_paths(lowerCamelCase_) lowerCAmelCase__ : Any = {'''old''': '''mid.attn_1''', '''new''': '''mid_block.attentions.0'''} assign_to_checkpoint(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,additional_replacements=[meta_path] ,config=lowerCamelCase_) conv_attn_to_linear(lowerCamelCase_) for i in range(lowerCamelCase_): lowerCAmelCase__ : int = num_up_blocks - 1 - i lowerCAmelCase__ : int = [ key for key in up_blocks[block_id] if f"""up.{block_id}""" in key and f"""up.{block_id}.upsample""" not in key ] if f"""decoder.up.{block_id}.upsample.conv.weight""" in vae_state_dict: lowerCAmelCase__ : Tuple = vae_state_dict[ f"""decoder.up.{block_id}.upsample.conv.weight""" ] lowerCAmelCase__ : Union[str, Any] = vae_state_dict[ f"""decoder.up.{block_id}.upsample.conv.bias""" ] lowerCAmelCase__ : Optional[int] = renew_vae_resnet_paths(lowerCamelCase_) lowerCAmelCase__ : Tuple = {'''old''': f"""up.{block_id}.block""", '''new''': f"""up_blocks.{i}.resnets"""} assign_to_checkpoint(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,additional_replacements=[meta_path] ,config=lowerCamelCase_) lowerCAmelCase__ : Union[str, Any] = [key for key in vae_state_dict if '''decoder.mid.block''' in key] lowerCAmelCase__ : Tuple = 2 for i in range(1 ,num_mid_res_blocks + 1): lowerCAmelCase__ : Any = [key for key in mid_resnets if f"""decoder.mid.block_{i}""" in key] lowerCAmelCase__ : Optional[Any] = renew_vae_resnet_paths(lowerCamelCase_) lowerCAmelCase__ : List[Any] = {'''old''': f"""mid.block_{i}""", '''new''': f"""mid_block.resnets.{i - 1}"""} assign_to_checkpoint(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,additional_replacements=[meta_path] ,config=lowerCamelCase_) lowerCAmelCase__ : Optional[Any] = [key for key in vae_state_dict if '''decoder.mid.attn''' in key] lowerCAmelCase__ : List[Any] = renew_vae_attention_paths(lowerCamelCase_) lowerCAmelCase__ : Any = {'''old''': '''mid.attn_1''', '''new''': '''mid_block.attentions.0'''} assign_to_checkpoint(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,additional_replacements=[meta_path] ,config=lowerCamelCase_) conv_attn_to_linear(lowerCamelCase_) return new_checkpoint def lowerCAmelCase__ ( lowerCamelCase_ : str ,lowerCamelCase_ : str ,): '''simple docstring''' lowerCAmelCase__ : Any = requests.get( ''' https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml''') lowerCAmelCase__ : Any = io.BytesIO(r.content) lowerCAmelCase__ : Optional[int] = OmegaConf.load(lowerCamelCase_) lowerCAmelCase__ : Dict = 512 lowerCAmelCase__ : str = '''cuda''' if torch.cuda.is_available() else '''cpu''' if checkpoint_path.endswith('''safetensors'''): from safetensors import safe_open lowerCAmelCase__ : List[str] = {} with safe_open(lowerCamelCase_ ,framework='''pt''' ,device='''cpu''') as f: for key in f.keys(): lowerCAmelCase__ : Dict = f.get_tensor(lowerCamelCase_) else: lowerCAmelCase__ : List[Any] = torch.load(lowerCamelCase_ ,map_location=lowerCamelCase_)['''state_dict'''] # Convert the VAE model. lowerCAmelCase__ : str = create_vae_diffusers_config(lowerCamelCase_ ,image_size=lowerCamelCase_) lowerCAmelCase__ : Union[str, Any] = custom_convert_ldm_vae_checkpoint(lowerCamelCase_ ,lowerCamelCase_) lowerCAmelCase__ : Union[str, Any] = AutoencoderKL(**lowerCamelCase_) vae.load_state_dict(lowerCamelCase_) vae.save_pretrained(lowerCamelCase_) if __name__ == "__main__": __snake_case : Optional[int] =argparse.ArgumentParser() parser.add_argument('--vae_pt_path', default=None, type=str, required=True, help='Path to the VAE.pt to convert.') parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the VAE.pt to convert.') __snake_case : List[str] =parser.parse_args() vae_pt_to_vae_diffuser(args.vae_pt_path, args.dump_path)
94
import unittest from transformers.models.xlm_prophetnet.tokenization_xlm_prophetnet import SPIECE_UNDERLINE, XLMProphetNetTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin __snake_case : int =get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece class lowerCamelCase__ ( lowerCamelCase__ , unittest.TestCase): '''simple docstring''' snake_case_ =XLMProphetNetTokenizer snake_case_ =False snake_case_ =True def lowerCAmelCase__ (self ) -> Tuple: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase__ : int = XLMProphetNetTokenizer(__lowerCamelCase ,keep_accents=__lowerCamelCase ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCAmelCase__ (self ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase__ : str = '''[PAD]''' lowerCAmelCase__ : Tuple = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__lowerCamelCase ) ,__lowerCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__lowerCamelCase ) ,__lowerCamelCase ) def lowerCAmelCase__ (self ) -> Optional[Any]: """simple docstring""" lowerCAmelCase__ : Any = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] ,'''[PAD]''' ) self.assertEqual(vocab_keys[1] ,'''[CLS]''' ) self.assertEqual(vocab_keys[-1] ,'''j''' ) self.assertEqual(len(__lowerCamelCase ) ,10_12 ) def lowerCAmelCase__ (self ) -> Union[str, Any]: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size ,10_12 ) def lowerCAmelCase__ (self ) -> Tuple: """simple docstring""" lowerCAmelCase__ : Dict = XLMProphetNetTokenizer(__lowerCamelCase ,keep_accents=__lowerCamelCase ) lowerCAmelCase__ : Tuple = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(__lowerCamelCase ,['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__lowerCamelCase ) ,[value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] ,) lowerCAmelCase__ : Dict = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( __lowerCamelCase ,[ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] ,) lowerCAmelCase__ : Optional[Any] = tokenizer.convert_tokens_to_ids(__lowerCamelCase ) self.assertListEqual( __lowerCamelCase ,[ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, -9, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, -9, 4] ] ,) lowerCAmelCase__ : Optional[Any] = tokenizer.convert_ids_to_tokens(__lowerCamelCase ) self.assertListEqual( __lowerCamelCase ,[ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''[UNK]''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''[UNK]''', '''.''', ] ,) @cached_property def lowerCAmelCase__ (self ) -> List[str]: """simple docstring""" return XLMProphetNetTokenizer.from_pretrained('''microsoft/xprophetnet-large-wiki100-cased''' ) @slow def lowerCAmelCase__ (self ) -> Tuple: """simple docstring""" lowerCAmelCase__ : Optional[int] = '''Hello World!''' lowerCAmelCase__ : str = [3_53_89, 66_72, 49, 2] self.assertListEqual(__lowerCamelCase ,self.big_tokenizer.encode(__lowerCamelCase ) ) @slow def lowerCAmelCase__ (self ) -> List[str]: """simple docstring""" lowerCAmelCase__ : Any = {'''input_ids''': [[1_10_73, 8_27_83, 18, 26, 8_27_83, 5_49, 5_15_40, 2_48, 1_72_09, 13_01, 2_17, 20, 21_51_86, 13_25, 1_47, 1_72_09, 13_01, 2_17, 20, 5_63_70, 53, 12_20_20, 20, 1_64_77, 27, 8_73_55, 45_48, 20, 47_28, 7_83_92, 17, 15_99_69, 18, 26, 2_44_91, 6_29, 15, 5_38, 2_27_04, 54_39, 15, 27_88, 2_44_91, 98_85, 15, 4_35_34, 6_05, 15, 8_14, 1_84_03, 3_32_00, 29, 15, 4_35_34, 2_44_58, 1_24_10, 1_11, 2_49_66, 8_36_69, 96_37, 14_40_68, 26, 8_50, 2_23_46, 27, 1_47, 2_49_66, 8_36_69, 8_34_90, 26, 3_91_13, 7_35, 27, 6_89, 6_56, 28_00, 13_39, 46_00, 53, 12_20_20, 11_57_85, 34, 8_16, 13_39, 4_68_87, 18, 1_47, 5_39_05, 19_51, 4_22_38, 4_11_70, 1_77_32, 8_34, 4_36, 15, 2_75_23, 9_87_33, 2_17, 1_47, 55_42, 49_81, 9_30, 1_73_47, 16, 2], [2_00_91, 6_29, 94, 8_27_86, 58, 4_90, 20, 15_28, 84, 5_39_05, 3_44, 8_05_92, 11_01_28, 1_88_22, 52_67, 13_06, 62, 15_25_37, 3_08, 79_97, 4_01, 12_44_27, 5_49, 3_54_42, 2_25, 1_09, 1_50_55, 2_57_48, 1_47, 71_19, 4_37_12, 34, 7_67, 13_53_66, 18, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_92, 6_37_84, 11_94_66, 17, 14_78_08, 8_82_14, 18, 6_56, 81, 32, 32_96, 1_02_80, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__lowerCamelCase ,model_name='''microsoft/xprophetnet-large-wiki100-cased''' ,revision='''1acad1643ddd54a44df6a1b797ada8373685d90e''' ,)
94
1
from argparse import ArgumentParser from . import BaseTransformersCLICommand def A (__A : Any ) -> Tuple: """simple docstring""" return DownloadCommand(args.model , args.cache_dir , args.force , args.trust_remote_code ) class __snake_case ( a ): @staticmethod def lowerCamelCase ( _snake_case : ArgumentParser): """simple docstring""" UpperCAmelCase_ = parser.add_parser('''download''') download_parser.add_argument( '''--cache-dir''' , type=_snake_case , default=_snake_case , help='''Path to location to store the models''') download_parser.add_argument( '''--force''' , action='''store_true''' , help='''Force the model to be download even if already in cache-dir''') download_parser.add_argument( '''--trust-remote-code''' , action='''store_true''' , help='''Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you\'ve reviewed the code as it will execute on your local machine''' , ) download_parser.add_argument('''model''' , type=_snake_case , help='''Name of the model to download''') download_parser.set_defaults(func=_snake_case) def __init__( self : Tuple , _snake_case : str , _snake_case : str , _snake_case : bool , _snake_case : bool): """simple docstring""" UpperCAmelCase_ = model UpperCAmelCase_ = cache UpperCAmelCase_ = force UpperCAmelCase_ = trust_remote_code def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" from ..models.auto import AutoModel, AutoTokenizer AutoModel.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code) AutoTokenizer.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code)
51
# This model implementation is heavily inspired by https://github.com/haofanwang/ControlNet-for-Diffusers/ import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, ControlNetModel, DDIMScheduler, StableDiffusionControlNetImgaImgPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet import MultiControlNetModel from diffusers.utils import floats_tensor, load_image, load_numpy, randn_tensor, slow, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, ) enable_full_determinism() class __snake_case ( a , a , a , unittest.TestCase ): UpperCAmelCase__ : List[Any] = StableDiffusionControlNetImgaImgPipeline UpperCAmelCase__ : Optional[Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width'''} UpperCAmelCase__ : Optional[Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS UpperCAmelCase__ : Union[str, Any] = IMAGE_TO_IMAGE_IMAGE_PARAMS.union({'''control_image'''} ) UpperCAmelCase__ : Optional[Any] = IMAGE_TO_IMAGE_IMAGE_PARAMS def lowerCamelCase ( self : int): """simple docstring""" torch.manual_seed(0) UpperCAmelCase_ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) torch.manual_seed(0) UpperCAmelCase_ = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) torch.manual_seed(0) UpperCAmelCase_ = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='''scaled_linear''' , clip_sample=_snake_case , set_alpha_to_one=_snake_case , ) torch.manual_seed(0) UpperCAmelCase_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0) UpperCAmelCase_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) UpperCAmelCase_ = CLIPTextModel(_snake_case) UpperCAmelCase_ = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''') UpperCAmelCase_ = { '''unet''': unet, '''controlnet''': controlnet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def lowerCamelCase ( self : Union[str, Any] , _snake_case : Any , _snake_case : Dict=0): """simple docstring""" if str(_snake_case).startswith('''mps'''): UpperCAmelCase_ = torch.manual_seed(_snake_case) else: UpperCAmelCase_ = torch.Generator(device=_snake_case).manual_seed(_snake_case) UpperCAmelCase_ = 2 UpperCAmelCase_ = randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=_snake_case , device=torch.device(_snake_case) , ) UpperCAmelCase_ = floats_tensor(control_image.shape , rng=random.Random(_snake_case)).to(_snake_case) UpperCAmelCase_ = image.cpu().permute(0 , 2 , 3 , 1)[0] UpperCAmelCase_ = Image.fromarray(np.uinta(_snake_case)).convert('''RGB''').resize((64, 64)) UpperCAmelCase_ = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', '''image''': image, '''control_image''': control_image, } return inputs def lowerCamelCase ( self : Any): """simple docstring""" return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def lowerCamelCase ( self : Any): """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3) def lowerCamelCase ( self : Optional[Any]): """simple docstring""" self._test_inference_batch_single_identical(expected_max_diff=2e-3) class __snake_case ( a , a , unittest.TestCase ): UpperCAmelCase__ : str = StableDiffusionControlNetImgaImgPipeline UpperCAmelCase__ : List[str] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width'''} UpperCAmelCase__ : Optional[Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS UpperCAmelCase__ : str = frozenset([] ) # TO_DO: add image_params once refactored VaeImageProcessor.preprocess def lowerCamelCase ( self : str): """simple docstring""" torch.manual_seed(0) UpperCAmelCase_ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) torch.manual_seed(0) def init_weights(_snake_case : Optional[int]): if isinstance(_snake_case , torch.nn.Convad): torch.nn.init.normal(m.weight) m.bias.data.fill_(1.0) UpperCAmelCase_ = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) controlneta.controlnet_down_blocks.apply(_snake_case) torch.manual_seed(0) UpperCAmelCase_ = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) controlneta.controlnet_down_blocks.apply(_snake_case) torch.manual_seed(0) UpperCAmelCase_ = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='''scaled_linear''' , clip_sample=_snake_case , set_alpha_to_one=_snake_case , ) torch.manual_seed(0) UpperCAmelCase_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0) UpperCAmelCase_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) UpperCAmelCase_ = CLIPTextModel(_snake_case) UpperCAmelCase_ = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''') UpperCAmelCase_ = MultiControlNetModel([controlneta, controlneta]) UpperCAmelCase_ = { '''unet''': unet, '''controlnet''': controlnet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def lowerCamelCase ( self : int , _snake_case : Union[str, Any] , _snake_case : str=0): """simple docstring""" if str(_snake_case).startswith('''mps'''): UpperCAmelCase_ = torch.manual_seed(_snake_case) else: UpperCAmelCase_ = torch.Generator(device=_snake_case).manual_seed(_snake_case) UpperCAmelCase_ = 2 UpperCAmelCase_ = [ randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=_snake_case , device=torch.device(_snake_case) , ), randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=_snake_case , device=torch.device(_snake_case) , ), ] UpperCAmelCase_ = floats_tensor(control_image[0].shape , rng=random.Random(_snake_case)).to(_snake_case) UpperCAmelCase_ = image.cpu().permute(0 , 2 , 3 , 1)[0] UpperCAmelCase_ = Image.fromarray(np.uinta(_snake_case)).convert('''RGB''').resize((64, 64)) UpperCAmelCase_ = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', '''image''': image, '''control_image''': control_image, } return inputs def lowerCamelCase ( self : Optional[Any]): """simple docstring""" UpperCAmelCase_ = self.get_dummy_components() UpperCAmelCase_ = self.pipeline_class(**_snake_case) pipe.to(_snake_case) UpperCAmelCase_ = 1_0.0 UpperCAmelCase_ = 4 UpperCAmelCase_ = self.get_dummy_inputs(_snake_case) UpperCAmelCase_ = steps UpperCAmelCase_ = scale UpperCAmelCase_ = pipe(**_snake_case)[0] UpperCAmelCase_ = self.get_dummy_inputs(_snake_case) UpperCAmelCase_ = steps UpperCAmelCase_ = scale UpperCAmelCase_ = pipe(**_snake_case , control_guidance_start=0.1 , control_guidance_end=0.2)[0] UpperCAmelCase_ = self.get_dummy_inputs(_snake_case) UpperCAmelCase_ = steps UpperCAmelCase_ = scale UpperCAmelCase_ = pipe(**_snake_case , control_guidance_start=[0.1, 0.3] , control_guidance_end=[0.2, 0.7])[0] UpperCAmelCase_ = self.get_dummy_inputs(_snake_case) UpperCAmelCase_ = steps UpperCAmelCase_ = scale UpperCAmelCase_ = pipe(**_snake_case , control_guidance_start=0.4 , control_guidance_end=[0.5, 0.8])[0] # make sure that all outputs are different assert np.sum(np.abs(output_a - output_a)) > 1e-3 assert np.sum(np.abs(output_a - output_a)) > 1e-3 assert np.sum(np.abs(output_a - output_a)) > 1e-3 def lowerCamelCase ( self : Dict): """simple docstring""" return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def lowerCamelCase ( self : int): """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3) def lowerCamelCase ( self : int): """simple docstring""" self._test_inference_batch_single_identical(expected_max_diff=2e-3) def lowerCamelCase ( self : Optional[int]): """simple docstring""" UpperCAmelCase_ = self.get_dummy_components() UpperCAmelCase_ = self.pipeline_class(**_snake_case) pipe.to(_snake_case) pipe.set_progress_bar_config(disable=_snake_case) with tempfile.TemporaryDirectory() as tmpdir: try: # save_pretrained is not implemented for Multi-ControlNet pipe.save_pretrained(_snake_case) except NotImplementedError: pass @slow @require_torch_gpu class __snake_case ( unittest.TestCase ): def lowerCamelCase ( self : Optional[int]): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase ( self : Optional[int]): """simple docstring""" UpperCAmelCase_ = ControlNetModel.from_pretrained('''lllyasviel/sd-controlnet-canny''') UpperCAmelCase_ = StableDiffusionControlNetImgaImgPipeline.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , safety_checker=_snake_case , controlnet=_snake_case) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=_snake_case) UpperCAmelCase_ = torch.Generator(device='''cpu''').manual_seed(0) UpperCAmelCase_ = '''evil space-punk bird''' UpperCAmelCase_ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png''').resize((512, 512)) UpperCAmelCase_ = load_image( '''https://huggingface.co/lllyasviel/sd-controlnet-canny/resolve/main/images/bird.png''').resize((512, 512)) UpperCAmelCase_ = pipe( _snake_case , _snake_case , control_image=_snake_case , generator=_snake_case , output_type='''np''' , num_inference_steps=50 , strength=0.6 , ) UpperCAmelCase_ = output.images[0] assert image.shape == (512, 512, 3) UpperCAmelCase_ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/img2img.npy''') assert np.abs(expected_image - image).max() < 9e-2
51
1
"""simple docstring""" import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoFeatureExtractor, WavaVecaFeatureExtractor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 _lowerCAmelCase : Dict = get_tests_dir("fixtures") class UpperCAmelCase_ ( unittest.TestCase ): def snake_case_ ( self : str ): # A mock response for an HTTP head request to emulate server down _UpperCAmelCase : List[str] = mock.Mock() _UpperCAmelCase : Optional[Any] = 5_0_0 _UpperCAmelCase : List[Any] = {} _UpperCAmelCase : Tuple = HTTPError _UpperCAmelCase : Union[str, Any] = {} # Download this model to make sure it's in the cache. _UpperCAmelCase : Optional[Any] = WavaVecaFeatureExtractor.from_pretrained("hf-internal-testing/tiny-random-wav2vec2" ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("requests.Session.request" , return_value=UpperCamelCase_ ) as mock_head: _UpperCAmelCase : Optional[int] = WavaVecaFeatureExtractor.from_pretrained("hf-internal-testing/tiny-random-wav2vec2" ) # This check we did call the fake head request mock_head.assert_called() def snake_case_ ( self : List[str] ): # This test is for deprecated behavior and can be removed in v5 _UpperCAmelCase : Optional[int] = WavaVecaFeatureExtractor.from_pretrained( "https://huggingface.co/hf-internal-testing/tiny-random-wav2vec2/resolve/main/preprocessor_config.json" ) @is_staging_test class UpperCAmelCase_ ( unittest.TestCase ): @classmethod def snake_case_ ( cls : Optional[int] ): _UpperCAmelCase : Any = TOKEN HfFolder.save_token(UpperCamelCase_ ) @classmethod def snake_case_ ( cls : List[str] ): try: delete_repo(token=cls._token , repo_id="test-feature-extractor" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-feature-extractor-org" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="test-dynamic-feature-extractor" ) except HTTPError: pass def snake_case_ ( self : str ): _UpperCAmelCase : Optional[Any] = WavaVecaFeatureExtractor.from_pretrained(UpperCamelCase_ ) feature_extractor.push_to_hub("test-feature-extractor" , use_auth_token=self._token ) _UpperCAmelCase : str = WavaVecaFeatureExtractor.from_pretrained(f'{USER}/test-feature-extractor' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(UpperCamelCase_ , getattr(UpperCamelCase_ , UpperCamelCase_ ) ) # Reset repo delete_repo(token=self._token , repo_id="test-feature-extractor" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( UpperCamelCase_ , repo_id="test-feature-extractor" , push_to_hub=UpperCamelCase_ , use_auth_token=self._token ) _UpperCAmelCase : Union[str, Any] = WavaVecaFeatureExtractor.from_pretrained(f'{USER}/test-feature-extractor' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(UpperCamelCase_ , getattr(UpperCamelCase_ , UpperCamelCase_ ) ) def snake_case_ ( self : Optional[Any] ): _UpperCAmelCase : Tuple = WavaVecaFeatureExtractor.from_pretrained(UpperCamelCase_ ) feature_extractor.push_to_hub("valid_org/test-feature-extractor" , use_auth_token=self._token ) _UpperCAmelCase : int = WavaVecaFeatureExtractor.from_pretrained("valid_org/test-feature-extractor" ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(UpperCamelCase_ , getattr(UpperCamelCase_ , UpperCamelCase_ ) ) # Reset repo delete_repo(token=self._token , repo_id="valid_org/test-feature-extractor" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( UpperCamelCase_ , repo_id="valid_org/test-feature-extractor-org" , push_to_hub=UpperCamelCase_ , use_auth_token=self._token ) _UpperCAmelCase : List[str] = WavaVecaFeatureExtractor.from_pretrained("valid_org/test-feature-extractor-org" ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(UpperCamelCase_ , getattr(UpperCamelCase_ , UpperCamelCase_ ) ) def snake_case_ ( self : Dict ): CustomFeatureExtractor.register_for_auto_class() _UpperCAmelCase : List[str] = CustomFeatureExtractor.from_pretrained(UpperCamelCase_ ) feature_extractor.push_to_hub("test-dynamic-feature-extractor" , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( feature_extractor.auto_map , {"AutoFeatureExtractor": "custom_feature_extraction.CustomFeatureExtractor"} , ) _UpperCAmelCase : int = AutoFeatureExtractor.from_pretrained( f'{USER}/test-dynamic-feature-extractor' , trust_remote_code=UpperCamelCase_ ) # Can't make an isinstance check because the new_feature_extractor is from the CustomFeatureExtractor class of a dynamic module self.assertEqual(new_feature_extractor.__class__.__name__ , "CustomFeatureExtractor" )
357
"""simple docstring""" import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu _lowerCAmelCase : Union[str, Any] = get_tests_dir() + "/test_data/fsmt/fsmt_val_data.json" with io.open(filename, "r", encoding="utf-8") as f: _lowerCAmelCase : Tuple = json.load(f) @require_torch class UpperCAmelCase_ ( unittest.TestCase ): def snake_case_ ( self : str , A : Union[str, Any] ): return FSMTTokenizer.from_pretrained(A ) def snake_case_ ( self : Union[str, Any] , A : Union[str, Any] ): _UpperCAmelCase : List[Any] = FSMTForConditionalGeneration.from_pretrained(A ).to(A ) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ["en-ru", 26.0], ["ru-en", 22.0], ["en-de", 22.0], ["de-en", 29.0], ] ) @slow def snake_case_ ( self : Any , A : Dict , A : List[str] ): # note: this test is not testing the best performance since it only evals a small batch # but it should be enough to detect a regression in the output quality _UpperCAmelCase : Any = f'facebook/wmt19-{pair}' _UpperCAmelCase : Dict = self.get_tokenizer(A ) _UpperCAmelCase : Optional[int] = self.get_model(A ) _UpperCAmelCase : int = bleu_data[pair]["src"] _UpperCAmelCase : Optional[int] = bleu_data[pair]["tgt"] _UpperCAmelCase : List[str] = tokenizer(A , return_tensors="pt" , truncation=A , padding="longest" ).to(A ) _UpperCAmelCase : List[str] = model.generate( input_ids=batch.input_ids , num_beams=8 , ) _UpperCAmelCase : Any = tokenizer.batch_decode( A , skip_special_tokens=A , clean_up_tokenization_spaces=A ) _UpperCAmelCase : Any = calculate_bleu(A , A ) print(A ) self.assertGreaterEqual(scores["bleu"] , A )
202
0
from __future__ import annotations from math import pi # Define the Reduced Planck Constant ℏ (H bar), speed of light C, value of # Pi and the function __snake_case : Optional[Any] = 1.054571817e-34 # unit of ℏ : J * s __snake_case : Union[str, Any] = 3e8 # unit of c : m * s^-1 def _UpperCAmelCase ( a__ , a__ , a__): '''simple docstring''' if (force, area, distance).count(0) != 1: raise ValueError("""One and only one argument must be 0""") if force < 0: raise ValueError("""Magnitude of force can not be negative""") if distance < 0: raise ValueError("""Distance can not be negative""") if area < 0: raise ValueError("""Area can not be negative""") if force == 0: a_ : Optional[int] = (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / ( 2_4_0 * (distance) ** 4 ) return {"force": force} elif area == 0: a_ : Dict = (2_4_0 * force * (distance) ** 4) / ( REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 ) return {"area": area} elif distance == 0: a_ : int = ( (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / (2_4_0 * force) ) ** (1 / 4) return {"distance": distance} raise ValueError("""One and only one argument must be 0""") # Run doctest if __name__ == "__main__": import doctest doctest.testmod()
248
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import convert_to_rgb, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __snake_case : List[Any] = logging.get_logger(__name__) class A__(a_ ): """simple docstring""" _A : Optional[Any] = ['''pixel_values'''] def __init__( self , _lowercase = True , _lowercase = None , _lowercase = PILImageResampling.BICUBIC , _lowercase = True , _lowercase = 1 / 255 , _lowercase = True , _lowercase = None , _lowercase = None , _lowercase = True , **_lowercase , ) -> None: super().__init__(**_lowercase ) a_ : Optional[Any] = size if size is not None else {"""height""": 384, """width""": 384} a_ : List[str] = get_size_dict(_lowercase , default_to_square=_lowercase ) a_ : str = do_resize a_ : Optional[int] = size a_ : Dict = resample a_ : Optional[int] = do_rescale a_ : Dict = rescale_factor a_ : int = do_normalize a_ : str = image_mean if image_mean is not None else OPENAI_CLIP_MEAN a_ : Optional[int] = image_std if image_std is not None else OPENAI_CLIP_STD a_ : Any = do_convert_rgb def UpperCamelCase__ ( self , _lowercase , _lowercase , _lowercase = PILImageResampling.BICUBIC , _lowercase = None , **_lowercase , ) -> np.ndarray: a_ : Union[str, Any] = get_size_dict(_lowercase , default_to_square=_lowercase ) if "height" not in size or "width" not in size: raise ValueError(F'''The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}''' ) a_ : List[str] = (size["""height"""], size["""width"""]) return resize(_lowercase , size=_lowercase , resample=_lowercase , data_format=_lowercase , **_lowercase ) def UpperCamelCase__ ( self , _lowercase , _lowercase , _lowercase = None , **_lowercase , ) -> Optional[Any]: return rescale(_lowercase , scale=_lowercase , data_format=_lowercase , **_lowercase ) def UpperCamelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase = None , **_lowercase , ) -> np.ndarray: return normalize(_lowercase , mean=_lowercase , std=_lowercase , data_format=_lowercase , **_lowercase ) def UpperCamelCase__ ( self , _lowercase , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = ChannelDimension.FIRST , **_lowercase , ) -> PIL.Image.Image: a_ : Optional[int] = do_resize if do_resize is not None else self.do_resize a_ : Any = resample if resample is not None else self.resample a_ : Dict = do_rescale if do_rescale is not None else self.do_rescale a_ : int = rescale_factor if rescale_factor is not None else self.rescale_factor a_ : List[str] = do_normalize if do_normalize is not None else self.do_normalize a_ : Optional[int] = image_mean if image_mean is not None else self.image_mean a_ : Optional[Any] = image_std if image_std is not None else self.image_std a_ : Any = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb a_ : str = size if size is not None else self.size a_ : Tuple = get_size_dict(_lowercase , default_to_square=_lowercase ) a_ : Optional[int] = make_list_of_images(_lowercase ) if not valid_images(_lowercase ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # PIL RGBA images are converted to RGB if do_convert_rgb: a_ : Optional[Any] = [convert_to_rgb(_lowercase ) for image in images] # All transformations expect numpy arrays. a_ : str = [to_numpy_array(_lowercase ) for image in images] if do_resize: a_ : Optional[int] = [self.resize(image=_lowercase , size=_lowercase , resample=_lowercase ) for image in images] if do_rescale: a_ : Union[str, Any] = [self.rescale(image=_lowercase , scale=_lowercase ) for image in images] if do_normalize: a_ : str = [self.normalize(image=_lowercase , mean=_lowercase , std=_lowercase ) for image in images] a_ : Optional[Any] = [to_channel_dimension_format(_lowercase , _lowercase ) for image in images] a_ : Optional[Any] = BatchFeature(data={"""pixel_values""": images} , tensor_type=_lowercase ) return encoded_outputs
248
1
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Image from .base import TaskTemplate @dataclass(frozen=_snake_case ) class a_ ( _snake_case ): UpperCamelCase__ : str =field(default="image-classification" , metadata={"include_in_asdict_even_if_is_default": True} ) UpperCamelCase__ : ClassVar[Features] =Features({"image": Image()} ) UpperCamelCase__ : ClassVar[Features] =Features({"labels": ClassLabel} ) UpperCamelCase__ : str ="image" UpperCamelCase__ : str ="labels" def __a ( self :Union[str, Any] , _lowercase :Any) -> Optional[int]: if self.label_column not in features: raise ValueError(f"Column {self.label_column} is not present in features.") if not isinstance(features[self.label_column] , _lowercase): raise ValueError(f"Column {self.label_column} is not a ClassLabel.") UpperCAmelCase_ = copy.deepcopy(self) UpperCAmelCase_ = self.label_schema.copy() UpperCAmelCase_ = features[self.label_column] UpperCAmelCase_ = label_schema return task_template @property def __a ( self :Union[str, Any]) -> Dict[str, str]: return { self.image_column: "image", self.label_column: "labels", }
344
import os from argparse import ArgumentParser, Namespace from ..data import SingleSentenceClassificationProcessor as Processor from ..pipelines import TextClassificationPipeline from ..utils import is_tf_available, is_torch_available, logging from . import BaseTransformersCLICommand if not is_tf_available() and not is_torch_available(): raise RuntimeError("At least one of PyTorch or TensorFlow 2.0+ should be installed to use CLI training") # TF training parameters UpperCamelCase_ = False UpperCamelCase_ = False def A ( __UpperCAmelCase ) -> Any: '''simple docstring''' return TrainCommand(__UpperCAmelCase ) class a_ ( _snake_case ): @staticmethod def __a ( _lowercase :ArgumentParser) -> List[Any]: UpperCAmelCase_ = parser.add_parser('''train''' , help='''CLI tool to train a model on a task.''') train_parser.add_argument( '''--train_data''' , type=_lowercase , required=_lowercase , help='''path to train (and optionally evaluation) dataset as a csv with tab separated labels and sentences.''' , ) train_parser.add_argument( '''--column_label''' , type=_lowercase , default=0 , help='''Column of the dataset csv file with example labels.''') train_parser.add_argument( '''--column_text''' , type=_lowercase , default=1 , help='''Column of the dataset csv file with example texts.''') train_parser.add_argument( '''--column_id''' , type=_lowercase , default=2 , help='''Column of the dataset csv file with example ids.''') train_parser.add_argument( '''--skip_first_row''' , action='''store_true''' , help='''Skip the first row of the csv file (headers).''') train_parser.add_argument('''--validation_data''' , type=_lowercase , default='''''' , help='''path to validation dataset.''') train_parser.add_argument( '''--validation_split''' , type=_lowercase , default=0.1 , help='''if validation dataset is not provided, fraction of train dataset to use as validation dataset.''' , ) train_parser.add_argument('''--output''' , type=_lowercase , default='''./''' , help='''path to saved the trained model.''') train_parser.add_argument( '''--task''' , type=_lowercase , default='''text_classification''' , help='''Task to train the model on.''') train_parser.add_argument( '''--model''' , type=_lowercase , default='''bert-base-uncased''' , help='''Model\'s name or path to stored model.''') train_parser.add_argument('''--train_batch_size''' , type=_lowercase , default=32 , help='''Batch size for training.''') train_parser.add_argument('''--valid_batch_size''' , type=_lowercase , default=64 , help='''Batch size for validation.''') train_parser.add_argument('''--learning_rate''' , type=_lowercase , default=3E-5 , help='''Learning rate.''') train_parser.add_argument('''--adam_epsilon''' , type=_lowercase , default=1E-0_8 , help='''Epsilon for Adam optimizer.''') train_parser.set_defaults(func=_lowercase) def __init__( self :Union[str, Any] , _lowercase :Namespace) -> Union[str, Any]: UpperCAmelCase_ = logging.get_logger('''transformers-cli/training''') UpperCAmelCase_ = '''tf''' if is_tf_available() else '''torch''' os.makedirs(args.output , exist_ok=_lowercase) UpperCAmelCase_ = args.output UpperCAmelCase_ = args.column_label UpperCAmelCase_ = args.column_text UpperCAmelCase_ = args.column_id self.logger.info(f"Loading {args.task} pipeline for {args.model}") if args.task == "text_classification": UpperCAmelCase_ = TextClassificationPipeline.from_pretrained(args.model) elif args.task == "token_classification": raise NotImplementedError elif args.task == "question_answering": raise NotImplementedError self.logger.info(f"Loading dataset from {args.train_data}") UpperCAmelCase_ = Processor.create_from_csv( args.train_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) UpperCAmelCase_ = None if args.validation_data: self.logger.info(f"Loading validation dataset from {args.validation_data}") UpperCAmelCase_ = Processor.create_from_csv( args.validation_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) UpperCAmelCase_ = args.validation_split UpperCAmelCase_ = args.train_batch_size UpperCAmelCase_ = args.valid_batch_size UpperCAmelCase_ = args.learning_rate UpperCAmelCase_ = args.adam_epsilon def __a ( self :int) -> Tuple: if self.framework == "tf": return self.run_tf() return self.run_torch() def __a ( self :Optional[Any]) -> Any: raise NotImplementedError def __a ( self :int) -> Optional[Any]: self.pipeline.fit( self.train_dataset , validation_data=self.valid_dataset , validation_split=self.validation_split , learning_rate=self.learning_rate , adam_epsilon=self.adam_epsilon , train_batch_size=self.train_batch_size , valid_batch_size=self.valid_batch_size , ) # Save trained pipeline self.pipeline.save_pretrained(self.output)
344
1
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import FEATURE_EXTRACTOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor, ChineseCLIPProcessor @require_vision class __lowerCAmelCase ( unittest.TestCase ): def snake_case ( self ): """simple docstring""" _lowerCAmelCase = tempfile.mkdtemp() _lowerCAmelCase = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """的""", """价""", """格""", """是""", """15""", """便""", """alex""", """##andra""", """,""", """。""", """-""", """t""", """shirt""", ] _lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) _lowerCAmelCase = { """do_resize""": True, """size""": {"""height""": 224, """width""": 224}, """do_center_crop""": True, """crop_size""": {"""height""": 18, """width""": 18}, """do_normalize""": True, """image_mean""": [0.4814_5466, 0.457_8275, 0.4082_1073], """image_std""": [0.2686_2954, 0.2613_0258, 0.2757_7711], """do_convert_rgb""": True, } _lowerCAmelCase = os.path.join(self.tmpdirname , lowercase_ ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(lowercase_ , lowercase_ ) def snake_case ( self , **_snake_case ): """simple docstring""" return BertTokenizer.from_pretrained(self.tmpdirname , **lowercase_ ) def snake_case ( self , **_snake_case ): """simple docstring""" return BertTokenizerFast.from_pretrained(self.tmpdirname , **lowercase_ ) def snake_case ( self , **_snake_case ): """simple docstring""" return ChineseCLIPImageProcessor.from_pretrained(self.tmpdirname , **lowercase_ ) def snake_case ( self ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def snake_case ( self ): """simple docstring""" _lowerCAmelCase = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] _lowerCAmelCase = [Image.fromarray(np.moveaxis(lowercase_ , 0 , -1 ) ) for x in image_inputs] return image_inputs def snake_case ( self ): """simple docstring""" _lowerCAmelCase = self.get_tokenizer() _lowerCAmelCase = self.get_rust_tokenizer() _lowerCAmelCase = self.get_image_processor() _lowerCAmelCase = ChineseCLIPProcessor(tokenizer=lowercase_ , image_processor=lowercase_ ) processor_slow.save_pretrained(self.tmpdirname ) _lowerCAmelCase = ChineseCLIPProcessor.from_pretrained(self.tmpdirname , use_fast=lowercase_ ) _lowerCAmelCase = ChineseCLIPProcessor(tokenizer=lowercase_ , image_processor=lowercase_ ) processor_fast.save_pretrained(self.tmpdirname ) _lowerCAmelCase = ChineseCLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , lowercase_ ) self.assertIsInstance(processor_fast.tokenizer , lowercase_ ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , lowercase_ ) self.assertIsInstance(processor_fast.image_processor , lowercase_ ) def snake_case ( self ): """simple docstring""" _lowerCAmelCase = ChineseCLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) _lowerCAmelCase = self.get_tokenizer(cls_token="""(CLS)""" , sep_token="""(SEP)""" ) _lowerCAmelCase = self.get_image_processor(do_normalize=lowercase_ ) _lowerCAmelCase = ChineseCLIPProcessor.from_pretrained( self.tmpdirname , cls_token="""(CLS)""" , sep_token="""(SEP)""" , do_normalize=lowercase_ ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , lowercase_ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , lowercase_ ) def snake_case ( self ): """simple docstring""" _lowerCAmelCase = self.get_image_processor() _lowerCAmelCase = self.get_tokenizer() _lowerCAmelCase = ChineseCLIPProcessor(tokenizer=lowercase_ , image_processor=lowercase_ ) _lowerCAmelCase = self.prepare_image_inputs() _lowerCAmelCase = image_processor(lowercase_ , return_tensors="""np""" ) _lowerCAmelCase = processor(images=lowercase_ , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def snake_case ( self ): """simple docstring""" _lowerCAmelCase = self.get_image_processor() _lowerCAmelCase = self.get_tokenizer() _lowerCAmelCase = ChineseCLIPProcessor(tokenizer=lowercase_ , image_processor=lowercase_ ) _lowerCAmelCase = """Alexandra,T-shirt的价格是15便士。""" _lowerCAmelCase = processor(text=lowercase_ ) _lowerCAmelCase = tokenizer(lowercase_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def snake_case ( self ): """simple docstring""" _lowerCAmelCase = self.get_image_processor() _lowerCAmelCase = self.get_tokenizer() _lowerCAmelCase = ChineseCLIPProcessor(tokenizer=lowercase_ , image_processor=lowercase_ ) _lowerCAmelCase = """Alexandra,T-shirt的价格是15便士。""" _lowerCAmelCase = self.prepare_image_inputs() _lowerCAmelCase = processor(text=lowercase_ , images=lowercase_ ) self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """token_type_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(lowercase_ ): processor() def snake_case ( self ): """simple docstring""" _lowerCAmelCase = self.get_image_processor() _lowerCAmelCase = self.get_tokenizer() _lowerCAmelCase = ChineseCLIPProcessor(tokenizer=lowercase_ , image_processor=lowercase_ ) _lowerCAmelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _lowerCAmelCase = processor.batch_decode(lowercase_ ) _lowerCAmelCase = tokenizer.batch_decode(lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) def snake_case ( self ): """simple docstring""" _lowerCAmelCase = self.get_image_processor() _lowerCAmelCase = self.get_tokenizer() _lowerCAmelCase = ChineseCLIPProcessor(tokenizer=lowercase_ , image_processor=lowercase_ ) _lowerCAmelCase = """Alexandra,T-shirt的价格是15便士。""" _lowerCAmelCase = self.prepare_image_inputs() _lowerCAmelCase = processor(text=lowercase_ , images=lowercase_ ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
82
from ..utils import DummyObject, requires_backends class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : List[Any] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> List[str]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Optional[Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> int: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Dict = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> List[str]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> List[str]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Optional[int]: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : List[str] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Union[str, Any]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Optional[int]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> List[str]: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Dict = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> List[Any]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Optional[Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Union[str, Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Dict = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> str: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Tuple: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Any: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : List[Any] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> List[Any]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Optional[int]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Any: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : int = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Dict: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> str: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Tuple: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : List[Any] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> int: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> str: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Optional[Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : List[Any] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Tuple: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Optional[int]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Optional[Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : List[str] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Optional[Any]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Optional[Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Union[str, Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : List[Any] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Dict: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Tuple: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> List[Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) def UpperCAmelCase__ ( *_A : Optional[Any] , **_A : Optional[Any] ): '''simple docstring''' requires_backends(_A , ['''torch'''] ) def UpperCAmelCase__ ( *_A : Union[str, Any] , **_A : List[Any] ): '''simple docstring''' requires_backends(_A , ['''torch'''] ) def UpperCAmelCase__ ( *_A : Union[str, Any] , **_A : Tuple ): '''simple docstring''' requires_backends(_A , ['''torch'''] ) def UpperCAmelCase__ ( *_A : List[str] , **_A : List[str] ): '''simple docstring''' requires_backends(_A , ['''torch'''] ) def UpperCAmelCase__ ( *_A : Dict , **_A : Dict ): '''simple docstring''' requires_backends(_A , ['''torch'''] ) def UpperCAmelCase__ ( *_A : List[str] , **_A : str ): '''simple docstring''' requires_backends(_A , ['''torch'''] ) def UpperCAmelCase__ ( *_A : Optional[int] , **_A : Dict ): '''simple docstring''' requires_backends(_A , ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : List[Any] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> List[Any]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> List[Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> str: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Any: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> List[Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> str: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : str = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> List[str]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Dict: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Tuple: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Tuple = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> List[str]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Optional[int]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Dict: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Tuple = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Tuple: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Any: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> str: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Dict = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Optional[int]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Dict: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> str: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : List[str] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Any: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> str: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> str: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Any = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> int: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Union[str, Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Optional[Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : List[str] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Dict: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Dict: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Any: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : str = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Optional[Any]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Optional[Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> List[str]: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : int = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> List[str]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> List[str]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> int: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Union[str, Any]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> int: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> List[Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Optional[int]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Dict: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Union[str, Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Dict: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> List[Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> str: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : str = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Optional[Any]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Optional[Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> List[Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> List[Any]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Optional[int]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> List[Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : int = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> List[str]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Optional[int]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Union[str, Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Dict = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Tuple: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Optional[int]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Tuple: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Any: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> str: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> int: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Optional[Any]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Tuple: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Dict: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Dict: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> List[str]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Optional[Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Tuple = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Tuple: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Tuple: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> int: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : int = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Optional[Any]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> List[str]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> int: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : List[Any] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> List[Any]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Union[str, Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Dict: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Dict = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> int: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Union[str, Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> int: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : str = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Optional[Any]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Optional[int]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> List[str]: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Any: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Optional[int]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> str: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : str = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> List[str]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Any: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> List[Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Dict = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Optional[Any]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Any: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> int: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : List[Any] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> int: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> str: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Optional[int]: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> str: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Optional[Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Any: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Dict = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Any: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Tuple: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Dict: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Any = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> int: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Dict: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> int: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : int = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Union[str, Any]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> int: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> int: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Optional[int]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Tuple: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Any: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Optional[int] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Tuple: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> List[Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> List[Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Optional[Any]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> List[Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> str: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Optional[int]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> List[Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> str: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : int = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Tuple: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Tuple: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> str: """simple docstring""" requires_backends(cls, ['''torch'''] )
188
0
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from .config import config_command_parser from .config_args import default_config_file, load_config_from_file # noqa: F401 from .default import default_command_parser from .update import update_command_parser def __lowerCamelCase ( lowerCamelCase__=None ): """simple docstring""" lowercase__ : List[Any] = argparse.ArgumentParser(add_help=lowerCamelCase__ , allow_abbrev=lowerCamelCase__ ) # The main config parser lowercase__ : Tuple = config_command_parser(lowerCamelCase__ ) # The subparser to add commands to lowercase__ : Optional[Any] = config_parser.add_subparsers(title="subcommands" , dest="subcommand" ) # Then add other parsers with the parent parser default_command_parser(lowerCamelCase__ , parents=[parent_parser] ) update_command_parser(lowerCamelCase__ , parents=[parent_parser] ) return config_parser def __lowerCamelCase ( ): """simple docstring""" lowercase__ : List[Any] = get_config_parser() lowercase__ : Union[str, Any] = config_parser.parse_args() if not hasattr(lowerCamelCase__ , "func" ): config_parser.print_help() exit(1 ) # Run args.func(lowerCamelCase__ ) if __name__ == "__main__": main()
355
import argparse import os.path as osp import re import torch from safetensors.torch import load_file, save_file # =================# # UNet Conversion # # =================# lowerCAmelCase__ = [ # (stable-diffusion, HF Diffusers) ('''time_embed.0.weight''', '''time_embedding.linear_1.weight'''), ('''time_embed.0.bias''', '''time_embedding.linear_1.bias'''), ('''time_embed.2.weight''', '''time_embedding.linear_2.weight'''), ('''time_embed.2.bias''', '''time_embedding.linear_2.bias'''), ('''input_blocks.0.0.weight''', '''conv_in.weight'''), ('''input_blocks.0.0.bias''', '''conv_in.bias'''), ('''out.0.weight''', '''conv_norm_out.weight'''), ('''out.0.bias''', '''conv_norm_out.bias'''), ('''out.2.weight''', '''conv_out.weight'''), ('''out.2.bias''', '''conv_out.bias'''), ] lowerCAmelCase__ = [ # (stable-diffusion, HF Diffusers) ('''in_layers.0''', '''norm1'''), ('''in_layers.2''', '''conv1'''), ('''out_layers.0''', '''norm2'''), ('''out_layers.3''', '''conv2'''), ('''emb_layers.1''', '''time_emb_proj'''), ('''skip_connection''', '''conv_shortcut'''), ] lowerCAmelCase__ = [] # hardcoded number of downblocks and resnets/attentions... # would need smarter logic for other networks. for i in range(4): # loop over downblocks/upblocks for j in range(2): # loop over resnets/attentions for downblocks lowerCAmelCase__ = f'''down_blocks.{i}.resnets.{j}.''' lowerCAmelCase__ = f'''input_blocks.{3*i + j + 1}.0.''' unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix)) if i < 3: # no attention layers in down_blocks.3 lowerCAmelCase__ = f'''down_blocks.{i}.attentions.{j}.''' lowerCAmelCase__ = f'''input_blocks.{3*i + j + 1}.1.''' unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix)) for j in range(3): # loop over resnets/attentions for upblocks lowerCAmelCase__ = f'''up_blocks.{i}.resnets.{j}.''' lowerCAmelCase__ = f'''output_blocks.{3*i + j}.0.''' unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix)) if i > 0: # no attention layers in up_blocks.0 lowerCAmelCase__ = f'''up_blocks.{i}.attentions.{j}.''' lowerCAmelCase__ = f'''output_blocks.{3*i + j}.1.''' unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix)) if i < 3: # no downsample in down_blocks.3 lowerCAmelCase__ = f'''down_blocks.{i}.downsamplers.0.conv.''' lowerCAmelCase__ = f'''input_blocks.{3*(i+1)}.0.op.''' unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix)) # no upsample in up_blocks.3 lowerCAmelCase__ = f'''up_blocks.{i}.upsamplers.0.''' lowerCAmelCase__ = f'''output_blocks.{3*i + 2}.{1 if i == 0 else 2}.''' unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix)) lowerCAmelCase__ = '''mid_block.attentions.0.''' lowerCAmelCase__ = '''middle_block.1.''' unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix)) for j in range(2): lowerCAmelCase__ = f'''mid_block.resnets.{j}.''' lowerCAmelCase__ = f'''middle_block.{2*j}.''' unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix)) def __lowerCamelCase ( lowerCamelCase__ ): """simple docstring""" lowercase__ : List[str] = {k: k for k in unet_state_dict.keys()} for sd_name, hf_name in unet_conversion_map: lowercase__ : str = sd_name for k, v in mapping.items(): if "resnets" in k: for sd_part, hf_part in unet_conversion_map_resnet: lowercase__ : List[str] = v.replace(lowerCamelCase__ , lowerCamelCase__ ) lowercase__ : str = v for k, v in mapping.items(): for sd_part, hf_part in unet_conversion_map_layer: lowercase__ : int = v.replace(lowerCamelCase__ , lowerCamelCase__ ) lowercase__ : Optional[Any] = v lowercase__ : Union[str, Any] = {v: unet_state_dict[k] for k, v in mapping.items()} return new_state_dict # ================# # VAE Conversion # # ================# lowerCAmelCase__ = [ # (stable-diffusion, HF Diffusers) ('''nin_shortcut''', '''conv_shortcut'''), ('''norm_out''', '''conv_norm_out'''), ('''mid.attn_1.''', '''mid_block.attentions.0.'''), ] for i in range(4): # down_blocks have two resnets for j in range(2): lowerCAmelCase__ = f'''encoder.down_blocks.{i}.resnets.{j}.''' lowerCAmelCase__ = f'''encoder.down.{i}.block.{j}.''' vae_conversion_map.append((sd_down_prefix, hf_down_prefix)) if i < 3: lowerCAmelCase__ = f'''down_blocks.{i}.downsamplers.0.''' lowerCAmelCase__ = f'''down.{i}.downsample.''' vae_conversion_map.append((sd_downsample_prefix, hf_downsample_prefix)) lowerCAmelCase__ = f'''up_blocks.{i}.upsamplers.0.''' lowerCAmelCase__ = f'''up.{3-i}.upsample.''' vae_conversion_map.append((sd_upsample_prefix, hf_upsample_prefix)) # up_blocks have three resnets # also, up blocks in hf are numbered in reverse from sd for j in range(3): lowerCAmelCase__ = f'''decoder.up_blocks.{i}.resnets.{j}.''' lowerCAmelCase__ = f'''decoder.up.{3-i}.block.{j}.''' vae_conversion_map.append((sd_up_prefix, hf_up_prefix)) # this part accounts for mid blocks in both the encoder and the decoder for i in range(2): lowerCAmelCase__ = f'''mid_block.resnets.{i}.''' lowerCAmelCase__ = f'''mid.block_{i+1}.''' vae_conversion_map.append((sd_mid_res_prefix, hf_mid_res_prefix)) lowerCAmelCase__ = [ # (stable-diffusion, HF Diffusers) ('''norm.''', '''group_norm.'''), ('''q.''', '''query.'''), ('''k.''', '''key.'''), ('''v.''', '''value.'''), ('''proj_out.''', '''proj_attn.'''), ] def __lowerCamelCase ( lowerCamelCase__ ): """simple docstring""" return w.reshape(*w.shape , 1 , 1 ) def __lowerCamelCase ( lowerCamelCase__ ): """simple docstring""" lowercase__ : str = {k: k for k in vae_state_dict.keys()} for k, v in mapping.items(): for sd_part, hf_part in vae_conversion_map: lowercase__ : Optional[int] = v.replace(lowerCamelCase__ , lowerCamelCase__ ) lowercase__ : Dict = v for k, v in mapping.items(): if "attentions" in k: for sd_part, hf_part in vae_conversion_map_attn: lowercase__ : List[str] = v.replace(lowerCamelCase__ , lowerCamelCase__ ) lowercase__ : int = v lowercase__ : Union[str, Any] = {v: vae_state_dict[k] for k, v in mapping.items()} lowercase__ : Optional[int] = ["q", "k", "v", "proj_out"] for k, v in new_state_dict.items(): for weight_name in weights_to_convert: if F"""mid.attn_1.{weight_name}.weight""" in k: print(F"""Reshaping {k} for SD format""" ) lowercase__ : Dict = reshape_weight_for_sd(lowerCamelCase__ ) return new_state_dict # =========================# # Text Encoder Conversion # # =========================# lowerCAmelCase__ = [ # (stable-diffusion, HF Diffusers) ('''resblocks.''', '''text_model.encoder.layers.'''), ('''ln_1''', '''layer_norm1'''), ('''ln_2''', '''layer_norm2'''), ('''.c_fc.''', '''.fc1.'''), ('''.c_proj.''', '''.fc2.'''), ('''.attn''', '''.self_attn'''), ('''ln_final.''', '''transformer.text_model.final_layer_norm.'''), ('''token_embedding.weight''', '''transformer.text_model.embeddings.token_embedding.weight'''), ('''positional_embedding''', '''transformer.text_model.embeddings.position_embedding.weight'''), ] lowerCAmelCase__ = {re.escape(x[1]): x[0] for x in textenc_conversion_lst} lowerCAmelCase__ = re.compile('''|'''.join(protected.keys())) # Ordering is from https://github.com/pytorch/pytorch/blob/master/test/cpp/api/modules.cpp lowerCAmelCase__ = {'''q''': 0, '''k''': 1, '''v''': 2} def __lowerCamelCase ( lowerCamelCase__ ): """simple docstring""" lowercase__ : Union[str, Any] = {} lowercase__ : List[Any] = {} lowercase__ : List[Any] = {} for k, v in text_enc_dict.items(): if ( k.endswith(".self_attn.q_proj.weight" ) or k.endswith(".self_attn.k_proj.weight" ) or k.endswith(".self_attn.v_proj.weight" ) ): lowercase__ : int = k[: -len(".q_proj.weight" )] lowercase__ : Optional[Any] = k[-len("q_proj.weight" )] if k_pre not in capture_qkv_weight: lowercase__ : Dict = [None, None, None] lowercase__ : Any = v continue if ( k.endswith(".self_attn.q_proj.bias" ) or k.endswith(".self_attn.k_proj.bias" ) or k.endswith(".self_attn.v_proj.bias" ) ): lowercase__ : Optional[int] = k[: -len(".q_proj.bias" )] lowercase__ : Any = k[-len("q_proj.bias" )] if k_pre not in capture_qkv_bias: lowercase__ : str = [None, None, None] lowercase__ : str = v continue lowercase__ : Union[str, Any] = textenc_pattern.sub(lambda lowerCamelCase__ : protected[re.escape(m.group(0 ) )] , lowerCamelCase__ ) lowercase__ : List[Any] = v for k_pre, tensors in capture_qkv_weight.items(): if None in tensors: raise Exception("CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing" ) lowercase__ : str = textenc_pattern.sub(lambda lowerCamelCase__ : protected[re.escape(m.group(0 ) )] , lowerCamelCase__ ) lowercase__ : Any = torch.cat(lowerCamelCase__ ) for k_pre, tensors in capture_qkv_bias.items(): if None in tensors: raise Exception("CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing" ) lowercase__ : List[str] = textenc_pattern.sub(lambda lowerCamelCase__ : protected[re.escape(m.group(0 ) )] , lowerCamelCase__ ) lowercase__ : Tuple = torch.cat(lowerCamelCase__ ) return new_state_dict def __lowerCamelCase ( lowerCamelCase__ ): """simple docstring""" return text_enc_dict if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument('''--model_path''', default=None, type=str, required=True, help='''Path to the model to convert.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the output model.''') parser.add_argument('''--half''', action='''store_true''', help='''Save weights in half precision.''') parser.add_argument( '''--use_safetensors''', action='''store_true''', help='''Save weights use safetensors, default is ckpt.''' ) lowerCAmelCase__ = parser.parse_args() assert args.model_path is not None, "Must provide a model path!" assert args.checkpoint_path is not None, "Must provide a checkpoint path!" # Path for safetensors lowerCAmelCase__ = osp.join(args.model_path, '''unet''', '''diffusion_pytorch_model.safetensors''') lowerCAmelCase__ = osp.join(args.model_path, '''vae''', '''diffusion_pytorch_model.safetensors''') lowerCAmelCase__ = osp.join(args.model_path, '''text_encoder''', '''model.safetensors''') # Load models from safetensors if it exists, if it doesn't pytorch if osp.exists(unet_path): lowerCAmelCase__ = load_file(unet_path, device='''cpu''') else: lowerCAmelCase__ = osp.join(args.model_path, '''unet''', '''diffusion_pytorch_model.bin''') lowerCAmelCase__ = torch.load(unet_path, map_location='''cpu''') if osp.exists(vae_path): lowerCAmelCase__ = load_file(vae_path, device='''cpu''') else: lowerCAmelCase__ = osp.join(args.model_path, '''vae''', '''diffusion_pytorch_model.bin''') lowerCAmelCase__ = torch.load(vae_path, map_location='''cpu''') if osp.exists(text_enc_path): lowerCAmelCase__ = load_file(text_enc_path, device='''cpu''') else: lowerCAmelCase__ = osp.join(args.model_path, '''text_encoder''', '''pytorch_model.bin''') lowerCAmelCase__ = torch.load(text_enc_path, map_location='''cpu''') # Convert the UNet model lowerCAmelCase__ = convert_unet_state_dict(unet_state_dict) lowerCAmelCase__ = {'''model.diffusion_model.''' + k: v for k, v in unet_state_dict.items()} # Convert the VAE model lowerCAmelCase__ = convert_vae_state_dict(vae_state_dict) lowerCAmelCase__ = {'''first_stage_model.''' + k: v for k, v in vae_state_dict.items()} # Easiest way to identify v2.0 model seems to be that the text encoder (OpenCLIP) is deeper lowerCAmelCase__ = '''text_model.encoder.layers.22.layer_norm2.bias''' in text_enc_dict if is_vaa_model: # Need to add the tag 'transformer' in advance so we can knock it out from the final layer-norm lowerCAmelCase__ = {'''transformer.''' + k: v for k, v in text_enc_dict.items()} lowerCAmelCase__ = convert_text_enc_state_dict_vaa(text_enc_dict) lowerCAmelCase__ = {'''cond_stage_model.model.''' + k: v for k, v in text_enc_dict.items()} else: lowerCAmelCase__ = convert_text_enc_state_dict(text_enc_dict) lowerCAmelCase__ = {'''cond_stage_model.transformer.''' + k: v for k, v in text_enc_dict.items()} # Put together new checkpoint lowerCAmelCase__ = {**unet_state_dict, **vae_state_dict, **text_enc_dict} if args.half: lowerCAmelCase__ = {k: v.half() for k, v in state_dict.items()} if args.use_safetensors: save_file(state_dict, args.checkpoint_path) else: lowerCAmelCase__ = {'''state_dict''': state_dict} torch.save(state_dict, args.checkpoint_path)
121
0
import json import os import unittest from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES, BioGptTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class _snake_case ( _snake_case , unittest.TestCase ): SCREAMING_SNAKE_CASE__ = BioGptTokenizer SCREAMING_SNAKE_CASE__ = False def SCREAMING_SNAKE_CASE__ ( self ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt a :Optional[Any] = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''w</w>''', '''r</w>''', '''t</w>''', '''lo''', '''low''', '''er</w>''', '''low</w>''', '''lowest</w>''', '''newer</w>''', '''wider</w>''', '''<unk>''', ] a :Optional[Any] = dict(zip(_lowerCamelCase , range(len(_lowerCamelCase ) ) ) ) a :Any = ['''l o 123''', '''lo w 1456''', '''e r</w> 1789''', ''''''] a :List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) a :Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' ) as fp: fp.write(json.dumps(_lowerCamelCase ) ) with open(self.merges_file , '''w''' ) as fp: fp.write('''\n'''.join(_lowerCamelCase ) ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase ): a :Dict = '''lower newer''' a :str = '''lower newer''' return input_text, output_text def SCREAMING_SNAKE_CASE__ ( self ): a :Tuple = BioGptTokenizer(self.vocab_file , self.merges_file ) a :Union[str, Any] = '''lower''' a :Tuple = ['''low''', '''er</w>'''] a :str = tokenizer.tokenize(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) a :int = tokens + ['''<unk>'''] a :Optional[int] = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCamelCase ) , _lowerCamelCase ) @slow def SCREAMING_SNAKE_CASE__ ( self ): a :Dict = BioGptTokenizer.from_pretrained('''microsoft/biogpt''' ) a :Any = tokenizer.encode('''sequence builders''' , add_special_tokens=_lowerCamelCase ) a :List[Any] = tokenizer.encode('''multi-sequence build''' , add_special_tokens=_lowerCamelCase ) a :int = tokenizer.build_inputs_with_special_tokens(_lowerCamelCase ) a :str = tokenizer.build_inputs_with_special_tokens(_lowerCamelCase , _lowerCamelCase ) self.assertTrue(encoded_sentence == [2] + text ) self.assertTrue(encoded_pair == [2] + text + [2] + text_a )
94
def __lowerCamelCase ( UpperCAmelCase_ : int = 1000 ): """simple docstring""" a , a :int = 1, 1 a :Any = 2 while True: a :Optional[int] = 0 a :str = fa + fa a , a :List[Any] = fa, f index += 1 for _ in str(UpperCAmelCase_ ): i += 1 if i == n: break return index if __name__ == "__main__": print(solution(int(str(input()).strip())))
94
1
import argparse from pathlib import Path import fairseq import torch from fairseq.models.xmod import XMODModel as FairseqXmodModel from packaging import version from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse('0.12.2'): raise Exception('requires fairseq >= 0.12.2') if version.parse(fairseq.__version__) > version.parse('2'): raise Exception('requires fairseq < v2') logging.set_verbosity_info() UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = 'Hello, World!' UpperCAmelCase_ = 'en_XX' def lowerCamelCase__ ( A__ : str , A__ : str , A__ : bool ): '''simple docstring''' __lowerCamelCase = Path("""data_bin""" ) __lowerCamelCase = FairseqXmodModel.from_pretrained( model_name_or_path=str(Path(A__ ).parent ) , checkpoint_file=Path(A__ ).name , _name="""xmod_base""" , arch="""xmod_base""" , task="""multilingual_masked_lm""" , data_name_or_path=str(A__ ) , bpe="""sentencepiece""" , sentencepiece_model=str(Path(A__ ).parent / """sentencepiece.bpe.model""" ) , src_dict=str(data_dir / """dict.txt""" ) , ) xmod.eval() # disable dropout print(A__ ) __lowerCamelCase = xmod.model.encoder.sentence_encoder __lowerCamelCase = XmodConfig( vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=514 , type_vocab_size=1 , layer_norm_eps=1E-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , """bottleneck""" , 2 ) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , ) if classification_head: __lowerCamelCase = xmod.model.classification_heads["""mnli"""].out_proj.weight.shape[0] print("""Our X-MOD config:""" , A__ ) __lowerCamelCase = XmodForSequenceClassification(A__ ) if classification_head else XmodForMaskedLM(A__ ) model.eval() # Now let's copy all the weights. # Embeddings __lowerCamelCase = xmod_sent_encoder.embed_tokens.weight __lowerCamelCase = xmod_sent_encoder.embed_positions.weight __lowerCamelCase = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them. __lowerCamelCase = xmod_sent_encoder.layernorm_embedding.weight __lowerCamelCase = xmod_sent_encoder.layernorm_embedding.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer __lowerCamelCase = model.roberta.encoder.layer[i] __lowerCamelCase = xmod_sent_encoder.layers[i] # self attention __lowerCamelCase = layer.attention.self if not ( xmod_layer.self_attn.k_proj.weight.data.shape == xmod_layer.self_attn.q_proj.weight.data.shape == xmod_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ): raise AssertionError("""Dimensions of self-attention weights do not match.""" ) __lowerCamelCase = xmod_layer.self_attn.q_proj.weight __lowerCamelCase = xmod_layer.self_attn.q_proj.bias __lowerCamelCase = xmod_layer.self_attn.k_proj.weight __lowerCamelCase = xmod_layer.self_attn.k_proj.bias __lowerCamelCase = xmod_layer.self_attn.v_proj.weight __lowerCamelCase = xmod_layer.self_attn.v_proj.bias # self-attention output __lowerCamelCase = layer.attention.output if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape: raise AssertionError("""Dimensions of self-attention output weights do not match.""" ) __lowerCamelCase = xmod_layer.self_attn.out_proj.weight __lowerCamelCase = xmod_layer.self_attn.out_proj.bias __lowerCamelCase = xmod_layer.self_attn_layer_norm.weight __lowerCamelCase = xmod_layer.self_attn_layer_norm.bias # intermediate __lowerCamelCase = layer.intermediate if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError("""Dimensions of intermediate weights do not match.""" ) __lowerCamelCase = xmod_layer.fca.weight __lowerCamelCase = xmod_layer.fca.bias # output __lowerCamelCase = layer.output if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError("""Dimensions of feed-forward weights do not match.""" ) __lowerCamelCase = xmod_layer.fca.weight __lowerCamelCase = xmod_layer.fca.bias __lowerCamelCase = xmod_layer.final_layer_norm.weight __lowerCamelCase = xmod_layer.final_layer_norm.bias if bert_output.adapter_layer_norm is not None: __lowerCamelCase = xmod_layer.adapter_layer_norm.weight __lowerCamelCase = xmod_layer.adapter_layer_norm.bias if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ): raise AssertionError("""Lists of language adapters do not match.""" ) for lang_code, adapter in xmod_layer.adapter_modules.items(): __lowerCamelCase = bert_output.adapter_modules[lang_code] __lowerCamelCase = xmod_layer.adapter_modules[lang_code] __lowerCamelCase = from_adapter.fca.weight __lowerCamelCase = from_adapter.fca.bias __lowerCamelCase = from_adapter.fca.weight __lowerCamelCase = from_adapter.fca.bias # end of layer if xmod_sent_encoder.layer_norm is not None: __lowerCamelCase = xmod_sent_encoder.layer_norm.weight __lowerCamelCase = xmod_sent_encoder.layer_norm.bias if classification_head: __lowerCamelCase = xmod.model.classification_heads["""mnli"""].dense.weight __lowerCamelCase = xmod.model.classification_heads["""mnli"""].dense.bias __lowerCamelCase = xmod.model.classification_heads["""mnli"""].out_proj.weight __lowerCamelCase = xmod.model.classification_heads["""mnli"""].out_proj.bias else: # LM Head __lowerCamelCase = xmod.model.encoder.lm_head.dense.weight __lowerCamelCase = xmod.model.encoder.lm_head.dense.bias __lowerCamelCase = xmod.model.encoder.lm_head.layer_norm.weight __lowerCamelCase = xmod.model.encoder.lm_head.layer_norm.bias __lowerCamelCase = xmod.model.encoder.lm_head.weight __lowerCamelCase = xmod.model.encoder.lm_head.bias # Let's check that we get the same results. __lowerCamelCase = xmod.encode(A__ ).unsqueeze(0 ) # batch of size 1 model.roberta.set_default_language(A__ ) __lowerCamelCase = model(A__ )[0] if classification_head: __lowerCamelCase = xmod.model.classification_heads["""mnli"""](xmod.extract_features(A__ ) ) else: __lowerCamelCase = xmod.model(A__ , lang_id=[SAMPLE_LANGUAGE] )[0] print(our_output.shape , their_output.shape ) __lowerCamelCase = torch.max(torch.abs(our_output - their_output ) ).item() print(f'max_absolute_diff = {max_absolute_diff}' ) # ~ 1e-7 __lowerCamelCase = torch.allclose(A__ , A__ , atol=1E-3 ) print("""Do both models output the same tensors?""" , """🔥""" if success else """💩""" ) if not success: raise Exception("""Something went wRoNg""" ) Path(A__ ).mkdir(parents=A__ , exist_ok=A__ ) print(f'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(A__ ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--xmod_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--classification_head', action='store_true', help='Whether to convert a final classification head.' ) UpperCAmelCase_ = parser.parse_args() convert_xmod_checkpoint_to_pytorch( args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
357
import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def lowerCamelCase__ ( A__ : Tuple , A__ : Optional[int]=0.999 , A__ : Any="cosine" , ): '''simple docstring''' if alpha_transform_type == "cosine": def alpha_bar_fn(A__ : Any ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(A__ : Optional[int] ): return math.exp(t * -12.0 ) else: raise ValueError(f'Unsupported alpha_tranform_type: {alpha_transform_type}' ) __lowerCamelCase = [] for i in range(A__ ): __lowerCamelCase = i / num_diffusion_timesteps __lowerCamelCase = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(A__ ) / alpha_bar_fn(A__ ) , A__ ) ) return torch.tensor(A__ , dtype=torch.floataa ) class lowerCamelCase__( __lowerCamelCase , __lowerCamelCase): UpperCAmelCase__ : List[str] = [e.name for e in KarrasDiffusionSchedulers] UpperCAmelCase__ : Any = 2 @register_to_config def __init__( self: List[str] , UpperCamelCase_: int = 10_00 , UpperCamelCase_: float = 0.0_0085 , UpperCamelCase_: float = 0.012 , UpperCamelCase_: str = "linear" , UpperCamelCase_: Optional[Union[np.ndarray, List[float]]] = None , UpperCamelCase_: str = "epsilon" , UpperCamelCase_: str = "linspace" , UpperCamelCase_: int = 0 , ): if trained_betas is not None: __lowerCamelCase = torch.tensor(UpperCamelCase_ , dtype=torch.floataa ) elif beta_schedule == "linear": __lowerCamelCase = torch.linspace(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. __lowerCamelCase = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , UpperCamelCase_ , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule __lowerCamelCase = betas_for_alpha_bar(UpperCamelCase_ ) else: raise NotImplementedError(F'{beta_schedule} does is not implemented for {self.__class__}' ) __lowerCamelCase = 1.0 - self.betas __lowerCamelCase = torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) def lowerCAmelCase__ ( self: int , UpperCamelCase_: List[str] , UpperCamelCase_: Optional[Any]=None ): if schedule_timesteps is None: __lowerCamelCase = self.timesteps __lowerCamelCase = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: __lowerCamelCase = 1 if len(UpperCamelCase_ ) > 1 else 0 else: __lowerCamelCase = timestep.cpu().item() if torch.is_tensor(UpperCamelCase_ ) else timestep __lowerCamelCase = self._index_counter[timestep_int] return indices[pos].item() @property def lowerCAmelCase__ ( self: Optional[int] ): # standard deviation of the initial noise distribution if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: torch.FloatTensor , UpperCamelCase_: Union[float, torch.FloatTensor] , ): __lowerCamelCase = self.index_for_timestep(UpperCamelCase_ ) if self.state_in_first_order: __lowerCamelCase = self.sigmas[step_index] else: __lowerCamelCase = self.sigmas_interpol[step_index] __lowerCamelCase = sample / ((sigma**2 + 1) ** 0.5) return sample def lowerCAmelCase__ ( self: Optional[Any] , UpperCamelCase_: int , UpperCamelCase_: Union[str, torch.device] = None , UpperCamelCase_: Optional[int] = None , ): __lowerCamelCase = num_inference_steps __lowerCamelCase = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": __lowerCamelCase = np.linspace(0 , num_train_timesteps - 1 , UpperCamelCase_ , dtype=UpperCamelCase_ )[::-1].copy() elif self.config.timestep_spacing == "leading": __lowerCamelCase = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 __lowerCamelCase = (np.arange(0 , UpperCamelCase_ ) * step_ratio).round()[::-1].copy().astype(UpperCamelCase_ ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": __lowerCamelCase = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 __lowerCamelCase = (np.arange(UpperCamelCase_ , 0 , -step_ratio )).round().copy().astype(UpperCamelCase_ ) timesteps -= 1 else: raise ValueError( F'{self.config.timestep_spacing} is not supported. Please make sure to choose one of \'linspace\', \'leading\' or \'trailing\'.' ) __lowerCamelCase = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) __lowerCamelCase = torch.from_numpy(np.log(UpperCamelCase_ ) ).to(UpperCamelCase_ ) __lowerCamelCase = np.interp(UpperCamelCase_ , np.arange(0 , len(UpperCamelCase_ ) ) , UpperCamelCase_ ) __lowerCamelCase = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) __lowerCamelCase = torch.from_numpy(UpperCamelCase_ ).to(device=UpperCamelCase_ ) # interpolate sigmas __lowerCamelCase = sigmas.log().lerp(sigmas.roll(1 ).log() , 0.5 ).exp() __lowerCamelCase = torch.cat([sigmas[:1], sigmas[1:].repeat_interleave(2 ), sigmas[-1:]] ) __lowerCamelCase = torch.cat( [sigmas_interpol[:1], sigmas_interpol[1:].repeat_interleave(2 ), sigmas_interpol[-1:]] ) if str(UpperCamelCase_ ).startswith("""mps""" ): # mps does not support float64 __lowerCamelCase = torch.from_numpy(UpperCamelCase_ ).to(UpperCamelCase_ , dtype=torch.floataa ) else: __lowerCamelCase = torch.from_numpy(UpperCamelCase_ ).to(UpperCamelCase_ ) # interpolate timesteps __lowerCamelCase = self.sigma_to_t(UpperCamelCase_ ).to(UpperCamelCase_ , dtype=timesteps.dtype ) __lowerCamelCase = torch.stack((timesteps_interpol[1:-1, None], timesteps[1:, None]) , dim=-1 ).flatten() __lowerCamelCase = torch.cat([timesteps[:1], interleaved_timesteps] ) __lowerCamelCase = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter __lowerCamelCase = defaultdict(UpperCamelCase_ ) def lowerCAmelCase__ ( self: Optional[Any] , UpperCamelCase_: str ): # get log sigma __lowerCamelCase = sigma.log() # get distribution __lowerCamelCase = log_sigma - self.log_sigmas[:, None] # get sigmas range __lowerCamelCase = dists.ge(0 ).cumsum(dim=0 ).argmax(dim=0 ).clamp(max=self.log_sigmas.shape[0] - 2 ) __lowerCamelCase = low_idx + 1 __lowerCamelCase = self.log_sigmas[low_idx] __lowerCamelCase = self.log_sigmas[high_idx] # interpolate sigmas __lowerCamelCase = (low - log_sigma) / (low - high) __lowerCamelCase = w.clamp(0 , 1 ) # transform interpolation to time range __lowerCamelCase = (1 - w) * low_idx + w * high_idx __lowerCamelCase = t.view(sigma.shape ) return t @property def lowerCAmelCase__ ( self: Dict ): return self.sample is None def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: Union[torch.FloatTensor, np.ndarray] , UpperCamelCase_: Union[float, torch.FloatTensor] , UpperCamelCase_: Union[torch.FloatTensor, np.ndarray] , UpperCamelCase_: bool = True , ): __lowerCamelCase = self.index_for_timestep(UpperCamelCase_ ) # advance index counter by 1 __lowerCamelCase = timestep.cpu().item() if torch.is_tensor(UpperCamelCase_ ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: __lowerCamelCase = self.sigmas[step_index] __lowerCamelCase = self.sigmas_interpol[step_index + 1] __lowerCamelCase = self.sigmas[step_index + 1] else: # 2nd order / KDPM2's method __lowerCamelCase = self.sigmas[step_index - 1] __lowerCamelCase = self.sigmas_interpol[step_index] __lowerCamelCase = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API __lowerCamelCase = 0 __lowerCamelCase = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": __lowerCamelCase = sigma_hat if self.state_in_first_order else sigma_interpol __lowerCamelCase = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": __lowerCamelCase = sigma_hat if self.state_in_first_order else sigma_interpol __lowerCamelCase = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": raise NotImplementedError("""prediction_type not implemented yet: sample""" ) else: raise ValueError( F'prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`' ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order __lowerCamelCase = (sample - pred_original_sample) / sigma_hat # 3. delta timestep __lowerCamelCase = sigma_interpol - sigma_hat # store for 2nd order step __lowerCamelCase = sample else: # DPM-Solver-2 # 2. Convert to an ODE derivative for 2nd order __lowerCamelCase = (sample - pred_original_sample) / sigma_interpol # 3. delta timestep __lowerCamelCase = sigma_next - sigma_hat __lowerCamelCase = self.sample __lowerCamelCase = None __lowerCamelCase = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=UpperCamelCase_ ) def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: torch.FloatTensor , UpperCamelCase_: torch.FloatTensor , UpperCamelCase_: torch.FloatTensor , ): # Make sure sigmas and timesteps have the same device and dtype as original_samples __lowerCamelCase = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(UpperCamelCase_ ): # mps does not support float64 __lowerCamelCase = self.timesteps.to(original_samples.device , dtype=torch.floataa ) __lowerCamelCase = timesteps.to(original_samples.device , dtype=torch.floataa ) else: __lowerCamelCase = self.timesteps.to(original_samples.device ) __lowerCamelCase = timesteps.to(original_samples.device ) __lowerCamelCase = [self.index_for_timestep(UpperCamelCase_ , UpperCamelCase_ ) for t in timesteps] __lowerCamelCase = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): __lowerCamelCase = sigma.unsqueeze(-1 ) __lowerCamelCase = original_samples + noise * sigma return noisy_samples def __len__( self: Tuple ): return self.config.num_train_timesteps
29
0
"""simple docstring""" import json import os import unittest from transformers import BatchEncoding, MvpTokenizer, MvpTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin, filter_roberta_detectors @require_tokenizers class lowerCAmelCase_ (a__ , unittest.TestCase ): """simple docstring""" __UpperCamelCase : Optional[Any] = MvpTokenizer __UpperCamelCase : Any = MvpTokenizerFast __UpperCamelCase : Optional[int] = True __UpperCamelCase : int = filter_roberta_detectors def __magic_name__ (self ) -> int: """simple docstring""" super().setUp() SCREAMING_SNAKE_CASE__ : Optional[Any] = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] SCREAMING_SNAKE_CASE__ : List[str] = dict(zip(SCREAMING_SNAKE_CASE__ , range(len(SCREAMING_SNAKE_CASE__ ) ) ) ) SCREAMING_SNAKE_CASE__ : int = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] SCREAMING_SNAKE_CASE__ : Optional[int] = {"""unk_token""": """<unk>"""} SCREAMING_SNAKE_CASE__ : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) SCREAMING_SNAKE_CASE__ : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(SCREAMING_SNAKE_CASE__ ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(SCREAMING_SNAKE_CASE__ ) ) def __magic_name__ (self , **SCREAMING_SNAKE_CASE__ ) -> List[Any]: """simple docstring""" kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self , **SCREAMING_SNAKE_CASE__ ) -> Any: """simple docstring""" kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self , SCREAMING_SNAKE_CASE__ ) -> int: """simple docstring""" return "lower newer", "lower newer" @cached_property def __magic_name__ (self ) -> Any: """simple docstring""" return MvpTokenizer.from_pretrained("""RUCAIBox/mvp""" ) @cached_property def __magic_name__ (self ) -> List[str]: """simple docstring""" return MvpTokenizerFast.from_pretrained("""RUCAIBox/mvp""" ) @require_torch def __magic_name__ (self ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] SCREAMING_SNAKE_CASE__ : List[str] = [0, 2_50, 2_51, 1_78_18, 13, 3_91_86, 19_38, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: SCREAMING_SNAKE_CASE__ : Any = tokenizer(SCREAMING_SNAKE_CASE__ , max_length=len(SCREAMING_SNAKE_CASE__ ) , padding=SCREAMING_SNAKE_CASE__ , return_tensors="""pt""" ) self.assertIsInstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) SCREAMING_SNAKE_CASE__ : List[Any] = batch.input_ids.tolist()[0] self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Test that special tokens are reset @require_torch def __magic_name__ (self ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: SCREAMING_SNAKE_CASE__ : List[Any] = tokenizer(SCREAMING_SNAKE_CASE__ , padding=SCREAMING_SNAKE_CASE__ , return_tensors="""pt""" ) # check if input_ids are returned and no labels self.assertIn("""input_ids""" , SCREAMING_SNAKE_CASE__ ) self.assertIn("""attention_mask""" , SCREAMING_SNAKE_CASE__ ) self.assertNotIn("""labels""" , SCREAMING_SNAKE_CASE__ ) self.assertNotIn("""decoder_attention_mask""" , SCREAMING_SNAKE_CASE__ ) @require_torch def __magic_name__ (self ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = [ """Summary of the text.""", """Another summary.""", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: SCREAMING_SNAKE_CASE__ : Dict = tokenizer(text_target=SCREAMING_SNAKE_CASE__ , max_length=32 , padding="""max_length""" , return_tensors="""pt""" ) self.assertEqual(32 , targets["""input_ids"""].shape[1] ) @require_torch def __magic_name__ (self ) -> Dict: """simple docstring""" for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: SCREAMING_SNAKE_CASE__ : Union[str, Any] = tokenizer( ["""I am a small frog""" * 10_24, """I am a small frog"""] , padding=SCREAMING_SNAKE_CASE__ , truncation=SCREAMING_SNAKE_CASE__ , return_tensors="""pt""" ) self.assertIsInstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) self.assertEqual(batch.input_ids.shape , (2, 10_24) ) @require_torch def __magic_name__ (self ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = ["""A long paragraph for summarization."""] SCREAMING_SNAKE_CASE__ : Optional[Any] = [ """Summary of the text.""", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: SCREAMING_SNAKE_CASE__ : List[Any] = tokenizer(SCREAMING_SNAKE_CASE__ , text_target=SCREAMING_SNAKE_CASE__ , return_tensors="""pt""" ) SCREAMING_SNAKE_CASE__ : List[Any] = inputs["""input_ids"""] SCREAMING_SNAKE_CASE__ : Optional[Any] = inputs["""labels"""] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) def __magic_name__ (self ) -> Dict: """simple docstring""" pass def __magic_name__ (self ) -> Tuple: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Optional[Any] = self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = """A, <mask> AllenNLP sentence.""" SCREAMING_SNAKE_CASE__ : int = tokenizer_r.encode_plus(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ , return_token_type_ids=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Dict = tokenizer_p.encode_plus(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ , return_token_type_ids=SCREAMING_SNAKE_CASE__ ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r["""token_type_ids"""] ) , sum(tokens_p["""token_type_ids"""] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r["""attention_mask"""] ) / len(tokens_r["""attention_mask"""] ) , sum(tokens_p["""attention_mask"""] ) / len(tokens_p["""attention_mask"""] ) , ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = tokenizer_r.convert_ids_to_tokens(tokens_r["""input_ids"""] ) SCREAMING_SNAKE_CASE__ : Optional[int] = tokenizer_p.convert_ids_to_tokens(tokens_p["""input_ids"""] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p["""input_ids"""] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual(tokens_r["""input_ids"""] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual( SCREAMING_SNAKE_CASE__ , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) self.assertSequenceEqual( SCREAMING_SNAKE_CASE__ , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] )
25
"""simple docstring""" import os import zipfile import requests from get_ci_error_statistics import download_artifact, get_artifacts_links def __magic_name__ ( __snake_case : Union[str, Any] , __snake_case : List[str]=7 ) -> str: lowercase : int = None if token is not None: lowercase : Any = {"Accept": "application/vnd.github+json", "Authorization": f"""Bearer {token}"""} # The id of a workflow (not of a workflow run) lowercase : int = "636036" lowercase : Dict = f"""https://api.github.com/repos/huggingface/transformers/actions/workflows/{workflow_id}/runs""" # On `main` branch + event being `schedule` + not returning PRs + only `num_runs` results url += f"""?branch=main&event=schedule&exclude_pull_requests=true&per_page={num_runs}""" lowercase : int = requests.get(__snake_case , headers=__snake_case ).json() return result["workflow_runs"] def __magic_name__ ( __snake_case : Dict ) -> Tuple: lowercase : Tuple = get_daily_ci_runs(__snake_case ) lowercase : Union[str, Any] = None for workflow_run in workflow_runs: if workflow_run["status"] == "completed": lowercase : List[Any] = workflow_run["id"] break return workflow_run_id def __magic_name__ ( __snake_case : Optional[int] , __snake_case : Optional[Any] , __snake_case : Union[str, Any] ) -> int: lowercase : Dict = get_last_daily_ci_runs(__snake_case ) if workflow_run_id is not None: lowercase : Dict = get_artifacts_links(worflow_run_id=__snake_case , token=__snake_case ) for artifact_name in artifact_names: if artifact_name in artifacts_links: lowercase : Optional[int] = artifacts_links[artifact_name] download_artifact( artifact_name=__snake_case , artifact_url=__snake_case , output_dir=__snake_case , token=__snake_case ) def __magic_name__ ( __snake_case : List[Any] , __snake_case : Optional[int] , __snake_case : Tuple ) -> Optional[int]: get_last_daily_ci_artifacts(__snake_case , __snake_case , __snake_case ) lowercase : str = {} for artifact_name in artifact_names: lowercase : Optional[Any] = os.path.join(__snake_case , f"""{artifact_name}.zip""" ) if os.path.isfile(__snake_case ): lowercase : List[Any] = {} with zipfile.ZipFile(__snake_case ) as z: for filename in z.namelist(): if not os.path.isdir(__snake_case ): # read the file with z.open(__snake_case ) as f: lowercase : str = f.read().decode("UTF-8" ) return results
202
0
'''simple docstring''' from ..utils import DummyObject, requires_backends class __magic_name__ ( metaclass=_UpperCAmelCase): UpperCamelCase__ = ['''torch'''] def __init__( self : Tuple , *lowercase_ : Optional[Any] , **lowercase_ : Tuple ): requires_backends(self , ["""torch"""] ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : List[Any] , *lowercase_ : Optional[int] , **lowercase_ : Any ): requires_backends(cls , ["""torch"""] ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Optional[int] , *lowercase_ : List[Any] , **lowercase_ : int ): requires_backends(cls , ["""torch"""] ) class __magic_name__ ( metaclass=_UpperCAmelCase): UpperCamelCase__ = ['''torch'''] def __init__( self : int , *lowercase_ : Any , **lowercase_ : Optional[Any] ): requires_backends(self , ["""torch"""] ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Any , *lowercase_ : List[Any] , **lowercase_ : Optional[int] ): requires_backends(cls , ["""torch"""] ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Tuple , *lowercase_ : List[Any] , **lowercase_ : Tuple ): requires_backends(cls , ["""torch"""] ) class __magic_name__ ( metaclass=_UpperCAmelCase): UpperCamelCase__ = ['''torch'''] def __init__( self : Dict , *lowercase_ : Dict , **lowercase_ : str ): requires_backends(self , ["""torch"""] ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Dict , *lowercase_ : List[str] , **lowercase_ : List[str] ): requires_backends(cls , ["""torch"""] ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Optional[int] , *lowercase_ : Dict , **lowercase_ : List[str] ): requires_backends(cls , ["""torch"""] ) class __magic_name__ ( metaclass=_UpperCAmelCase): UpperCamelCase__ = ['''torch'''] def __init__( self : Optional[Any] , *lowercase_ : str , **lowercase_ : Optional[int] ): requires_backends(self , ["""torch"""] ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Optional[int] , *lowercase_ : int , **lowercase_ : List[Any] ): requires_backends(cls , ["""torch"""] ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : int , *lowercase_ : List[str] , **lowercase_ : Union[str, Any] ): requires_backends(cls , ["""torch"""] ) class __magic_name__ ( metaclass=_UpperCAmelCase): UpperCamelCase__ = ['''torch'''] def __init__( self : List[Any] , *lowercase_ : int , **lowercase_ : Dict ): requires_backends(self , ["""torch"""] ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : int , *lowercase_ : Union[str, Any] , **lowercase_ : Dict ): requires_backends(cls , ["""torch"""] ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Optional[Any] , *lowercase_ : List[str] , **lowercase_ : List[str] ): requires_backends(cls , ["""torch"""] ) class __magic_name__ ( metaclass=_UpperCAmelCase): UpperCamelCase__ = ['''torch'''] def __init__( self : Union[str, Any] , *lowercase_ : int , **lowercase_ : Optional[Any] ): requires_backends(self , ["""torch"""] ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Union[str, Any] , *lowercase_ : int , **lowercase_ : Any ): requires_backends(cls , ["""torch"""] ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Union[str, Any] , *lowercase_ : Optional[int] , **lowercase_ : Optional[Any] ): requires_backends(cls , ["""torch"""] ) class __magic_name__ ( metaclass=_UpperCAmelCase): UpperCamelCase__ = ['''torch'''] def __init__( self : Dict , *lowercase_ : Tuple , **lowercase_ : Dict ): requires_backends(self , ["""torch"""] ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : List[Any] , *lowercase_ : Optional[Any] , **lowercase_ : List[Any] ): requires_backends(cls , ["""torch"""] ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Dict , *lowercase_ : Optional[int] , **lowercase_ : Tuple ): requires_backends(cls , ["""torch"""] ) class __magic_name__ ( metaclass=_UpperCAmelCase): UpperCamelCase__ = ['''torch'''] def __init__( self : int , *lowercase_ : List[str] , **lowercase_ : List[Any] ): requires_backends(self , ["""torch"""] ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : List[Any] , *lowercase_ : Tuple , **lowercase_ : List[str] ): requires_backends(cls , ["""torch"""] ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Tuple , *lowercase_ : Union[str, Any] , **lowercase_ : Dict ): requires_backends(cls , ["""torch"""] ) class __magic_name__ ( metaclass=_UpperCAmelCase): UpperCamelCase__ = ['''torch'''] def __init__( self : Optional[int] , *lowercase_ : Dict , **lowercase_ : Optional[Any] ): requires_backends(self , ["""torch"""] ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Optional[int] , *lowercase_ : List[Any] , **lowercase_ : Tuple ): requires_backends(cls , ["""torch"""] ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Tuple , *lowercase_ : Optional[int] , **lowercase_ : Tuple ): requires_backends(cls , ["""torch"""] ) class __magic_name__ ( metaclass=_UpperCAmelCase): UpperCamelCase__ = ['''torch'''] def __init__( self : Optional[int] , *lowercase_ : Any , **lowercase_ : Dict ): requires_backends(self , ["""torch"""] ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : int , *lowercase_ : Any , **lowercase_ : Tuple ): requires_backends(cls , ["""torch"""] ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Optional[Any] , *lowercase_ : Optional[Any] , **lowercase_ : str ): requires_backends(cls , ["""torch"""] ) class __magic_name__ ( metaclass=_UpperCAmelCase): UpperCamelCase__ = ['''torch'''] def __init__( self : Any , *lowercase_ : Any , **lowercase_ : List[Any] ): requires_backends(self , ["""torch"""] ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Union[str, Any] , *lowercase_ : Any , **lowercase_ : str ): requires_backends(cls , ["""torch"""] ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Dict , *lowercase_ : Union[str, Any] , **lowercase_ : int ): requires_backends(cls , ["""torch"""] ) def lowerCamelCase ( *UpperCAmelCase__ : Tuple , **UpperCAmelCase__ : List[Any] ) -> Optional[Any]: requires_backends(UpperCAmelCase__ , ["""torch"""] ) def lowerCamelCase ( *UpperCAmelCase__ : Dict , **UpperCAmelCase__ : Union[str, Any] ) -> str: requires_backends(UpperCAmelCase__ , ["""torch"""] ) def lowerCamelCase ( *UpperCAmelCase__ : List[Any] , **UpperCAmelCase__ : Any ) -> Optional[Any]: requires_backends(UpperCAmelCase__ , ["""torch"""] ) def lowerCamelCase ( *UpperCAmelCase__ : str , **UpperCAmelCase__ : Optional[int] ) -> str: requires_backends(UpperCAmelCase__ , ["""torch"""] ) def lowerCamelCase ( *UpperCAmelCase__ : Optional[Any] , **UpperCAmelCase__ : Tuple ) -> Optional[int]: requires_backends(UpperCAmelCase__ , ["""torch"""] ) def lowerCamelCase ( *UpperCAmelCase__ : int , **UpperCAmelCase__ : Optional[int] ) -> List[str]: requires_backends(UpperCAmelCase__ , ["""torch"""] ) def lowerCamelCase ( *UpperCAmelCase__ : Optional[int] , **UpperCAmelCase__ : Optional[Any] ) -> int: requires_backends(UpperCAmelCase__ , ["""torch"""] ) class __magic_name__ ( metaclass=_UpperCAmelCase): UpperCamelCase__ = ['''torch'''] def __init__( self : Any , *lowercase_ : List[Any] , **lowercase_ : Any ): requires_backends(self , ["""torch"""] ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Dict , *lowercase_ : str , **lowercase_ : List[Any] ): requires_backends(cls , ["""torch"""] ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : str , *lowercase_ : str , **lowercase_ : Tuple ): requires_backends(cls , ["""torch"""] ) class __magic_name__ ( metaclass=_UpperCAmelCase): UpperCamelCase__ = ['''torch'''] def __init__( self : Dict , *lowercase_ : Any , **lowercase_ : Dict ): requires_backends(self , ["""torch"""] ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Tuple , *lowercase_ : Any , **lowercase_ : int ): requires_backends(cls , ["""torch"""] ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Any , *lowercase_ : str , **lowercase_ : str ): requires_backends(cls , ["""torch"""] ) class __magic_name__ ( metaclass=_UpperCAmelCase): UpperCamelCase__ = ['''torch'''] def __init__( self : Tuple , *lowercase_ : Union[str, Any] , **lowercase_ : Union[str, Any] ): requires_backends(self , ["""torch"""] ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : List[Any] , *lowercase_ : Any , **lowercase_ : List[Any] ): requires_backends(cls , ["""torch"""] ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : int , *lowercase_ : int , **lowercase_ : Optional[int] ): requires_backends(cls , ["""torch"""] ) class __magic_name__ ( metaclass=_UpperCAmelCase): UpperCamelCase__ = ['''torch'''] def __init__( self : str , *lowercase_ : Dict , **lowercase_ : int ): requires_backends(self , ["""torch"""] ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Dict , *lowercase_ : Tuple , **lowercase_ : List[str] ): requires_backends(cls , ["""torch"""] ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Any , *lowercase_ : List[Any] , **lowercase_ : List[str] ): requires_backends(cls , ["""torch"""] ) class __magic_name__ ( metaclass=_UpperCAmelCase): UpperCamelCase__ = ['''torch'''] def __init__( self : Tuple , *lowercase_ : int , **lowercase_ : Union[str, Any] ): requires_backends(self , ["""torch"""] ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Tuple , *lowercase_ : Tuple , **lowercase_ : Optional[Any] ): requires_backends(cls , ["""torch"""] ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Tuple , *lowercase_ : List[Any] , **lowercase_ : Optional[int] ): requires_backends(cls , ["""torch"""] ) class __magic_name__ ( metaclass=_UpperCAmelCase): UpperCamelCase__ = ['''torch'''] def __init__( self : Any , *lowercase_ : List[Any] , **lowercase_ : Optional[int] ): requires_backends(self , ["""torch"""] ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Any , *lowercase_ : int , **lowercase_ : Union[str, Any] ): requires_backends(cls , ["""torch"""] ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Tuple , *lowercase_ : Optional[Any] , **lowercase_ : Dict ): requires_backends(cls , ["""torch"""] ) class __magic_name__ ( metaclass=_UpperCAmelCase): UpperCamelCase__ = ['''torch'''] def __init__( self : int , *lowercase_ : List[Any] , **lowercase_ : Tuple ): requires_backends(self , ["""torch"""] ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : List[Any] , *lowercase_ : Optional[int] , **lowercase_ : Dict ): requires_backends(cls , ["""torch"""] ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Union[str, Any] , *lowercase_ : List[Any] , **lowercase_ : List[str] ): requires_backends(cls , ["""torch"""] ) class __magic_name__ ( metaclass=_UpperCAmelCase): UpperCamelCase__ = ['''torch'''] def __init__( self : List[str] , *lowercase_ : str , **lowercase_ : Any ): requires_backends(self , ["""torch"""] ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Optional[int] , *lowercase_ : str , **lowercase_ : Tuple ): requires_backends(cls , ["""torch"""] ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Dict , *lowercase_ : int , **lowercase_ : List[str] ): requires_backends(cls , ["""torch"""] ) class __magic_name__ ( metaclass=_UpperCAmelCase): UpperCamelCase__ = ['''torch'''] def __init__( self : Union[str, Any] , *lowercase_ : List[Any] , **lowercase_ : Dict ): requires_backends(self , ["""torch"""] ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : int , *lowercase_ : Tuple , **lowercase_ : Optional[int] ): requires_backends(cls , ["""torch"""] ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : List[Any] , *lowercase_ : Optional[int] , **lowercase_ : Optional[Any] ): requires_backends(cls , ["""torch"""] ) class __magic_name__ ( metaclass=_UpperCAmelCase): UpperCamelCase__ = ['''torch'''] def __init__( self : Optional[int] , *lowercase_ : Any , **lowercase_ : List[Any] ): requires_backends(self , ["""torch"""] ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : str , *lowercase_ : Dict , **lowercase_ : Optional[Any] ): requires_backends(cls , ["""torch"""] ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : List[Any] , *lowercase_ : Union[str, Any] , **lowercase_ : Tuple ): requires_backends(cls , ["""torch"""] ) class __magic_name__ ( metaclass=_UpperCAmelCase): UpperCamelCase__ = ['''torch'''] def __init__( self : int , *lowercase_ : int , **lowercase_ : Tuple ): requires_backends(self , ["""torch"""] ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : str , *lowercase_ : Tuple , **lowercase_ : int ): requires_backends(cls , ["""torch"""] ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Union[str, Any] , *lowercase_ : Any , **lowercase_ : Tuple ): requires_backends(cls , ["""torch"""] ) class __magic_name__ ( metaclass=_UpperCAmelCase): UpperCamelCase__ = ['''torch'''] def __init__( self : str , *lowercase_ : List[str] , **lowercase_ : Dict ): requires_backends(self , ["""torch"""] ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : List[str] , *lowercase_ : int , **lowercase_ : Any ): requires_backends(cls , ["""torch"""] ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : str , *lowercase_ : Dict , **lowercase_ : Union[str, Any] ): requires_backends(cls , ["""torch"""] ) class __magic_name__ ( metaclass=_UpperCAmelCase): UpperCamelCase__ = ['''torch'''] def __init__( self : Dict , *lowercase_ : Union[str, Any] , **lowercase_ : Tuple ): requires_backends(self , ["""torch"""] ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : List[str] , *lowercase_ : Optional[Any] , **lowercase_ : Dict ): requires_backends(cls , ["""torch"""] ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Tuple , *lowercase_ : Optional[int] , **lowercase_ : Any ): requires_backends(cls , ["""torch"""] ) class __magic_name__ ( metaclass=_UpperCAmelCase): UpperCamelCase__ = ['''torch'''] def __init__( self : Any , *lowercase_ : Optional[int] , **lowercase_ : int ): requires_backends(self , ["""torch"""] ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Optional[int] , *lowercase_ : Dict , **lowercase_ : List[str] ): requires_backends(cls , ["""torch"""] ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Optional[Any] , *lowercase_ : List[Any] , **lowercase_ : List[Any] ): requires_backends(cls , ["""torch"""] ) class __magic_name__ ( metaclass=_UpperCAmelCase): UpperCamelCase__ = ['''torch'''] def __init__( self : int , *lowercase_ : List[Any] , **lowercase_ : Union[str, Any] ): requires_backends(self , ["""torch"""] ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Union[str, Any] , *lowercase_ : List[str] , **lowercase_ : str ): requires_backends(cls , ["""torch"""] ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Any , *lowercase_ : Dict , **lowercase_ : Dict ): requires_backends(cls , ["""torch"""] ) class __magic_name__ ( metaclass=_UpperCAmelCase): UpperCamelCase__ = ['''torch'''] def __init__( self : int , *lowercase_ : List[str] , **lowercase_ : str ): requires_backends(self , ["""torch"""] ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Optional[int] , *lowercase_ : List[str] , **lowercase_ : Dict ): requires_backends(cls , ["""torch"""] ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Optional[Any] , *lowercase_ : List[Any] , **lowercase_ : Optional[Any] ): requires_backends(cls , ["""torch"""] ) class __magic_name__ ( metaclass=_UpperCAmelCase): UpperCamelCase__ = ['''torch'''] def __init__( self : str , *lowercase_ : Union[str, Any] , **lowercase_ : Optional[Any] ): requires_backends(self , ["""torch"""] ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Any , *lowercase_ : Tuple , **lowercase_ : Optional[Any] ): requires_backends(cls , ["""torch"""] ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : str , *lowercase_ : Optional[int] , **lowercase_ : Union[str, Any] ): requires_backends(cls , ["""torch"""] ) class __magic_name__ ( metaclass=_UpperCAmelCase): UpperCamelCase__ = ['''torch'''] def __init__( self : Tuple , *lowercase_ : List[str] , **lowercase_ : str ): requires_backends(self , ["""torch"""] ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : List[str] , *lowercase_ : str , **lowercase_ : Dict ): requires_backends(cls , ["""torch"""] ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Dict , *lowercase_ : str , **lowercase_ : str ): requires_backends(cls , ["""torch"""] ) class __magic_name__ ( metaclass=_UpperCAmelCase): UpperCamelCase__ = ['''torch'''] def __init__( self : Any , *lowercase_ : Tuple , **lowercase_ : List[str] ): requires_backends(self , ["""torch"""] ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : str , *lowercase_ : Optional[Any] , **lowercase_ : List[str] ): requires_backends(cls , ["""torch"""] ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : List[Any] , *lowercase_ : List[Any] , **lowercase_ : int ): requires_backends(cls , ["""torch"""] ) class __magic_name__ ( metaclass=_UpperCAmelCase): UpperCamelCase__ = ['''torch'''] def __init__( self : Optional[int] , *lowercase_ : Union[str, Any] , **lowercase_ : Optional[Any] ): requires_backends(self , ["""torch"""] ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : List[Any] , *lowercase_ : List[Any] , **lowercase_ : Any ): requires_backends(cls , ["""torch"""] ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Union[str, Any] , *lowercase_ : Any , **lowercase_ : Optional[Any] ): requires_backends(cls , ["""torch"""] ) class __magic_name__ ( metaclass=_UpperCAmelCase): UpperCamelCase__ = ['''torch'''] def __init__( self : List[Any] , *lowercase_ : List[Any] , **lowercase_ : Tuple ): requires_backends(self , ["""torch"""] ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Any , *lowercase_ : Union[str, Any] , **lowercase_ : str ): requires_backends(cls , ["""torch"""] ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Tuple , *lowercase_ : Tuple , **lowercase_ : Union[str, Any] ): requires_backends(cls , ["""torch"""] ) class __magic_name__ ( metaclass=_UpperCAmelCase): UpperCamelCase__ = ['''torch'''] def __init__( self : List[str] , *lowercase_ : List[str] , **lowercase_ : Union[str, Any] ): requires_backends(self , ["""torch"""] ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : List[Any] , *lowercase_ : Union[str, Any] , **lowercase_ : Union[str, Any] ): requires_backends(cls , ["""torch"""] ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : List[str] , *lowercase_ : Any , **lowercase_ : Optional[int] ): requires_backends(cls , ["""torch"""] ) class __magic_name__ ( metaclass=_UpperCAmelCase): UpperCamelCase__ = ['''torch'''] def __init__( self : Tuple , *lowercase_ : Tuple , **lowercase_ : int ): requires_backends(self , ["""torch"""] ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : str , *lowercase_ : Tuple , **lowercase_ : List[Any] ): requires_backends(cls , ["""torch"""] ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Union[str, Any] , *lowercase_ : int , **lowercase_ : Tuple ): requires_backends(cls , ["""torch"""] ) class __magic_name__ ( metaclass=_UpperCAmelCase): UpperCamelCase__ = ['''torch'''] def __init__( self : Union[str, Any] , *lowercase_ : str , **lowercase_ : List[Any] ): requires_backends(self , ["""torch"""] ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Dict , *lowercase_ : List[Any] , **lowercase_ : Union[str, Any] ): requires_backends(cls , ["""torch"""] ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Any , *lowercase_ : Dict , **lowercase_ : Union[str, Any] ): requires_backends(cls , ["""torch"""] ) class __magic_name__ ( metaclass=_UpperCAmelCase): UpperCamelCase__ = ['''torch'''] def __init__( self : Optional[int] , *lowercase_ : Union[str, Any] , **lowercase_ : str ): requires_backends(self , ["""torch"""] ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : List[str] , *lowercase_ : Optional[int] , **lowercase_ : int ): requires_backends(cls , ["""torch"""] ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Dict , *lowercase_ : str , **lowercase_ : Union[str, Any] ): requires_backends(cls , ["""torch"""] ) class __magic_name__ ( metaclass=_UpperCAmelCase): UpperCamelCase__ = ['''torch'''] def __init__( self : Tuple , *lowercase_ : Tuple , **lowercase_ : str ): requires_backends(self , ["""torch"""] ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Union[str, Any] , *lowercase_ : List[Any] , **lowercase_ : Optional[Any] ): requires_backends(cls , ["""torch"""] ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Any , *lowercase_ : Tuple , **lowercase_ : List[str] ): requires_backends(cls , ["""torch"""] ) class __magic_name__ ( metaclass=_UpperCAmelCase): UpperCamelCase__ = ['''torch'''] def __init__( self : Union[str, Any] , *lowercase_ : Any , **lowercase_ : Union[str, Any] ): requires_backends(self , ["""torch"""] ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Dict , *lowercase_ : List[Any] , **lowercase_ : Optional[int] ): requires_backends(cls , ["""torch"""] ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Optional[int] , *lowercase_ : Dict , **lowercase_ : Optional[int] ): requires_backends(cls , ["""torch"""] ) class __magic_name__ ( metaclass=_UpperCAmelCase): UpperCamelCase__ = ['''torch'''] def __init__( self : Any , *lowercase_ : List[Any] , **lowercase_ : Any ): requires_backends(self , ["""torch"""] ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : List[Any] , *lowercase_ : Tuple , **lowercase_ : Optional[int] ): requires_backends(cls , ["""torch"""] ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : List[Any] , *lowercase_ : Tuple , **lowercase_ : int ): requires_backends(cls , ["""torch"""] ) class __magic_name__ ( metaclass=_UpperCAmelCase): UpperCamelCase__ = ['''torch'''] def __init__( self : Optional[int] , *lowercase_ : Any , **lowercase_ : Union[str, Any] ): requires_backends(self , ["""torch"""] ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : int , *lowercase_ : Optional[Any] , **lowercase_ : Dict ): requires_backends(cls , ["""torch"""] ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Any , *lowercase_ : Dict , **lowercase_ : List[Any] ): requires_backends(cls , ["""torch"""] ) class __magic_name__ ( metaclass=_UpperCAmelCase): UpperCamelCase__ = ['''torch'''] def __init__( self : str , *lowercase_ : Union[str, Any] , **lowercase_ : Tuple ): requires_backends(self , ["""torch"""] ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : int , *lowercase_ : Union[str, Any] , **lowercase_ : Optional[Any] ): requires_backends(cls , ["""torch"""] ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : str , *lowercase_ : int , **lowercase_ : str ): requires_backends(cls , ["""torch"""] ) class __magic_name__ ( metaclass=_UpperCAmelCase): UpperCamelCase__ = ['''torch'''] def __init__( self : Dict , *lowercase_ : Any , **lowercase_ : Optional[int] ): requires_backends(self , ["""torch"""] ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : List[str] , *lowercase_ : Union[str, Any] , **lowercase_ : Any ): requires_backends(cls , ["""torch"""] ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : int , *lowercase_ : List[str] , **lowercase_ : Dict ): requires_backends(cls , ["""torch"""] ) class __magic_name__ ( metaclass=_UpperCAmelCase): UpperCamelCase__ = ['''torch'''] def __init__( self : Optional[Any] , *lowercase_ : List[Any] , **lowercase_ : Any ): requires_backends(self , ["""torch"""] ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : int , *lowercase_ : Optional[int] , **lowercase_ : Optional[Any] ): requires_backends(cls , ["""torch"""] ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : List[Any] , *lowercase_ : str , **lowercase_ : str ): requires_backends(cls , ["""torch"""] ) class __magic_name__ ( metaclass=_UpperCAmelCase): UpperCamelCase__ = ['''torch'''] def __init__( self : Union[str, Any] , *lowercase_ : List[Any] , **lowercase_ : Any ): requires_backends(self , ["""torch"""] ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Union[str, Any] , *lowercase_ : Dict , **lowercase_ : str ): requires_backends(cls , ["""torch"""] ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : List[str] , *lowercase_ : Any , **lowercase_ : Tuple ): requires_backends(cls , ["""torch"""] ) class __magic_name__ ( metaclass=_UpperCAmelCase): UpperCamelCase__ = ['''torch'''] def __init__( self : int , *lowercase_ : List[str] , **lowercase_ : int ): requires_backends(self , ["""torch"""] ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : List[str] , *lowercase_ : Optional[Any] , **lowercase_ : Tuple ): requires_backends(cls , ["""torch"""] ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Optional[int] , *lowercase_ : Dict , **lowercase_ : Optional[int] ): requires_backends(cls , ["""torch"""] ) class __magic_name__ ( metaclass=_UpperCAmelCase): UpperCamelCase__ = ['''torch'''] def __init__( self : Union[str, Any] , *lowercase_ : List[str] , **lowercase_ : str ): requires_backends(self , ["""torch"""] ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Tuple , *lowercase_ : List[str] , **lowercase_ : List[str] ): requires_backends(cls , ["""torch"""] ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : List[str] , *lowercase_ : str , **lowercase_ : Optional[Any] ): requires_backends(cls , ["""torch"""] ) class __magic_name__ ( metaclass=_UpperCAmelCase): UpperCamelCase__ = ['''torch'''] def __init__( self : Tuple , *lowercase_ : Tuple , **lowercase_ : List[str] ): requires_backends(self , ["""torch"""] ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : str , *lowercase_ : str , **lowercase_ : int ): requires_backends(cls , ["""torch"""] ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : List[Any] , *lowercase_ : Dict , **lowercase_ : List[str] ): requires_backends(cls , ["""torch"""] ) class __magic_name__ ( metaclass=_UpperCAmelCase): UpperCamelCase__ = ['''torch'''] def __init__( self : Any , *lowercase_ : Optional[int] , **lowercase_ : Optional[int] ): requires_backends(self , ["""torch"""] ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Optional[Any] , *lowercase_ : List[str] , **lowercase_ : Tuple ): requires_backends(cls , ["""torch"""] ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Tuple , *lowercase_ : Optional[Any] , **lowercase_ : Union[str, Any] ): requires_backends(cls , ["""torch"""] ) class __magic_name__ ( metaclass=_UpperCAmelCase): UpperCamelCase__ = ['''torch'''] def __init__( self : Any , *lowercase_ : List[Any] , **lowercase_ : str ): requires_backends(self , ["""torch"""] ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Tuple , *lowercase_ : str , **lowercase_ : Optional[int] ): requires_backends(cls , ["""torch"""] ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : str , *lowercase_ : int , **lowercase_ : List[str] ): requires_backends(cls , ["""torch"""] ) class __magic_name__ ( metaclass=_UpperCAmelCase): UpperCamelCase__ = ['''torch'''] def __init__( self : Dict , *lowercase_ : List[Any] , **lowercase_ : Any ): requires_backends(self , ["""torch"""] ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : List[Any] , *lowercase_ : Tuple , **lowercase_ : List[Any] ): requires_backends(cls , ["""torch"""] ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Tuple , *lowercase_ : Any , **lowercase_ : Union[str, Any] ): requires_backends(cls , ["""torch"""] )
21
'''simple docstring''' import colorsys from PIL import Image # type: ignore def lowerCamelCase ( UpperCAmelCase__ : float , UpperCAmelCase__ : float , UpperCAmelCase__ : int ) -> float: lowercase_ : List[Any] = x lowercase_ : Any = y for step in range(UpperCAmelCase__ ): # noqa: B007 lowercase_ : Dict = a * a - b * b + x lowercase_ : str = 2 * a * b + y lowercase_ : Optional[Any] = a_new # divergence happens for all complex number with an absolute value # greater than 4 if a * a + b * b > 4: break return step / (max_step - 1) def lowerCamelCase ( UpperCAmelCase__ : float ) -> tuple: if distance == 1: return (0, 0, 0) else: return (255, 255, 255) def lowerCamelCase ( UpperCAmelCase__ : float ) -> tuple: if distance == 1: return (0, 0, 0) else: return tuple(round(i * 255 ) for i in colorsys.hsv_to_rgb(UpperCAmelCase__ , 1 , 1 ) ) def lowerCamelCase ( UpperCAmelCase__ : int = 800 , UpperCAmelCase__ : int = 600 , UpperCAmelCase__ : float = -0.6 , UpperCAmelCase__ : float = 0 , UpperCAmelCase__ : float = 3.2 , UpperCAmelCase__ : int = 50 , UpperCAmelCase__ : bool = True , ) -> Image.Image: lowercase_ : Union[str, Any] = Image.new("""RGB""" , (image_width, image_height) ) lowercase_ : Tuple = img.load() # loop through the image-coordinates for image_x in range(UpperCAmelCase__ ): for image_y in range(UpperCAmelCase__ ): # determine the figure-coordinates based on the image-coordinates lowercase_ : Any = figure_width / image_width * image_height lowercase_ : Tuple = figure_center_x + (image_x / image_width - 0.5) * figure_width lowercase_ : Union[str, Any] = figure_center_y + (image_y / image_height - 0.5) * figure_height lowercase_ : str = get_distance(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) # color the corresponding pixel based on the selected coloring-function if use_distance_color_coding: lowercase_ : List[Any] = get_color_coded_rgb(UpperCAmelCase__ ) else: lowercase_ : Dict = get_black_and_white_rgb(UpperCAmelCase__ ) return img if __name__ == "__main__": import doctest doctest.testmod() # colored version, full figure _lowercase : List[str] = get_image() # uncomment for colored version, different section, zoomed in # img = get_image(figure_center_x = -0.6, figure_center_y = -0.4, # figure_width = 0.8) # uncomment for black and white version, full figure # img = get_image(use_distance_color_coding = False) # uncomment to save the image # img.save("mandelbrot.png") img.show()
21
1
'''simple docstring''' from __future__ import annotations import inspect import unittest from typing import List, Tuple from transformers import RegNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFRegNetForImageClassification, TFRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _lowerCAmelCase : """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase=3 , _lowerCamelCase=32 , _lowerCamelCase=3 , _lowerCamelCase=10 , _lowerCamelCase=[10, 20, 30, 40] , _lowerCamelCase=[1, 1, 2, 1] , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase="relu" , _lowerCamelCase=3 , _lowerCamelCase=None , ) -> List[str]: A_ : Any = parent A_ : List[Any] = batch_size A_ : List[Any] = image_size A_ : Optional[int] = num_channels A_ : Tuple = embeddings_size A_ : str = hidden_sizes A_ : Optional[Any] = depths A_ : Any = is_training A_ : int = use_labels A_ : int = hidden_act A_ : Optional[Any] = num_labels A_ : str = scope A_ : Optional[int] = len(_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Tuple: A_ : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A_ : Dict = None if self.use_labels: A_ : Optional[Any] = ids_tensor([self.batch_size] , self.num_labels ) A_ : Union[str, Any] = self.get_config() return config, pixel_values, labels def UpperCAmelCase_ ( self ) -> Optional[Any]: return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[str]: A_ : Dict = TFRegNetModel(config=_lowerCamelCase ) A_ : Optional[int] = model(_lowerCamelCase , training=_lowerCamelCase ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Optional[int]: A_ : Optional[Any] = self.num_labels A_ : int = TFRegNetForImageClassification(_lowerCamelCase ) A_ : Tuple = model(_lowerCamelCase , labels=_lowerCamelCase , training=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase_ ( self ) -> str: A_ : Any = self.prepare_config_and_inputs() A_ , A_ , A_ : str = config_and_inputs A_ : Optional[int] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class _lowerCAmelCase ( __A, __A, unittest.TestCase ): """simple docstring""" lowerCamelCase = (TFRegNetModel, TFRegNetForImageClassification) if is_tf_available() else () lowerCamelCase = ( {'''feature-extraction''': TFRegNetModel, '''image-classification''': TFRegNetForImageClassification} if is_tf_available() else {} ) lowerCamelCase = False lowerCamelCase = False lowerCamelCase = False lowerCamelCase = False lowerCamelCase = False def UpperCAmelCase_ ( self ) -> Optional[Any]: A_ : Dict = TFRegNetModelTester(self ) A_ : Optional[int] = ConfigTester(self , config_class=_lowerCamelCase , has_text_modality=_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> str: return @unittest.skip(reason="""RegNet does not use inputs_embeds""" ) def UpperCAmelCase_ ( self ) -> Dict: pass @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices("""GPU""" ) ) == 0 , reason="""TF does not support backprop for grouped convolutions on CPU.""" , ) @slow def UpperCAmelCase_ ( self ) -> int: super().test_keras_fit() @unittest.skip(reason="""RegNet does not support input and output embeddings""" ) def UpperCAmelCase_ ( self ) -> Optional[Any]: pass def UpperCAmelCase_ ( self ) -> int: A_ , A_ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ : Optional[Any] = model_class(_lowerCamelCase ) A_ : Optional[int] = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A_ : int = [*signature.parameters.keys()] A_ : Any = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Tuple: A_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Dict: def check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): A_ : Optional[int] = model_class(_lowerCamelCase ) A_ : List[Any] = model(**self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) , training=_lowerCamelCase ) A_ : List[str] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states A_ : Optional[int] = self.model_tester.num_stages self.assertEqual(len(_lowerCamelCase ) , expected_num_stages + 1 ) # RegNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 2, self.model_tester.image_size // 2] , ) A_ , A_ : Any = self.model_tester.prepare_config_and_inputs_for_common() A_ : List[str] = ["""basic""", """bottleneck"""] for model_class in self.all_model_classes: for layer_type in layers_type: A_ : Dict = layer_type A_ : List[Any] = True check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] A_ : str = True check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Dict: A_ , A_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() def check_equivalence(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase={} ): A_ : Dict = model(_lowerCamelCase , return_dict=_lowerCamelCase , **_lowerCamelCase ) A_ : Optional[Any] = model(_lowerCamelCase , return_dict=_lowerCamelCase , **_lowerCamelCase ).to_tuple() def recursive_check(_lowerCamelCase , _lowerCamelCase ): if isinstance(_lowerCamelCase , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(_lowerCamelCase , _lowerCamelCase ): recursive_check(_lowerCamelCase , _lowerCamelCase ) elif tuple_object is None: return else: self.assertTrue( all(tf.equal(_lowerCamelCase , _lowerCamelCase ) ) , msg=( """Tuple and dict output are not equal. Difference:""" F" {tf.math.reduce_max(tf.abs(tuple_object - dict_object ) )}" ) , ) recursive_check(_lowerCamelCase , _lowerCamelCase ) for model_class in self.all_model_classes: A_ : Optional[Any] = model_class(_lowerCamelCase ) A_ : Optional[Any] = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) A_ : Optional[int] = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) check_equivalence(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) A_ : Any = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase ) A_ : Tuple = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase ) check_equivalence(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) A_ : Dict = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) A_ : int = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) check_equivalence(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , {"""output_hidden_states""": True} ) A_ : Tuple = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase ) A_ : str = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase ) check_equivalence(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , {"""output_hidden_states""": True} ) def UpperCAmelCase_ ( self ) -> str: A_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCamelCase ) @slow def UpperCAmelCase_ ( self ) -> Tuple: for model_name in TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ : Dict = TFRegNetModel.from_pretrained(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) def UpperCAmelCase ( ) -> Tuple: """simple docstring""" A_ : Optional[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def UpperCAmelCase_ ( self ) -> int: return ( AutoImageProcessor.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def UpperCAmelCase_ ( self ) -> Optional[Any]: A_ : str = TFRegNetForImageClassification.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) A_ : Tuple = self.default_image_processor A_ : Optional[int] = prepare_img() A_ : Any = image_processor(images=_lowerCamelCase , return_tensors="""tf""" ) # forward pass A_ : List[Any] = model(**_lowerCamelCase , training=_lowerCamelCase ) # verify the logits A_ : Optional[Any] = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , _lowerCamelCase ) A_ : Optional[Any] = tf.constant([-0.4180, -1.5051, -3.4836] ) tf.debugging.assert_near(outputs.logits[0, :3] , _lowerCamelCase , atol=1e-4 )
344
'''simple docstring''' def UpperCAmelCase ( a_ = 1_0_0 ) -> int: """simple docstring""" A_ : Dict = n * (n + 1) * (2 * n + 1) / 6 A_ : Optional[int] = (n * (n + 1) / 2) ** 2 return int(square_of_sum - sum_of_squares ) if __name__ == "__main__": print(f'{solution() = }')
344
1
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import warnings from typing import List from unittest.mock import Mock import torch from torch.utils.data import DataLoader, IterableDataset, TensorDataset from accelerate.accelerator import Accelerator from accelerate.utils.dataclasses import DistributedType class _a (__magic_name__ ): '''simple docstring''' def __init__( self , A__ ): A__ : str = data def __iter__( self ): for element in self.data: yield element def UpperCamelCase (lowercase_: Any=True ) -> Dict: A__ : Any = Accelerator(even_batches=lowercase_ ) assert accelerator.num_processes == 2, "this script expects that two GPUs are available" return accelerator def UpperCamelCase (lowercase_: Accelerator , lowercase_: int , lowercase_: int , lowercase_: bool = False ) -> List[str]: if iterable: A__ : Union[str, Any] = DummyIterableDataset(torch.as_tensor(range(lowercase_ ) ) ) else: A__ : int = TensorDataset(torch.as_tensor(range(lowercase_ ) ) ) A__ : Dict = DataLoader(lowercase_ , batch_size=lowercase_ ) A__ : int = accelerator.prepare(lowercase_ ) return dl def UpperCamelCase (lowercase_: Accelerator , lowercase_: int , lowercase_: int , lowercase_: List[int] , lowercase_: List[int] , ) -> List[str]: A__ : str = create_dataloader(accelerator=lowercase_ , dataset_size=lowercase_ , batch_size=lowercase_ ) A__ : List[str] = [len(batch[0] ) for batch in dl] if accelerator.process_index == 0: assert batch_sizes == process_0_expected_batch_sizes elif accelerator.process_index == 1: assert batch_sizes == process_1_expected_batch_sizes def UpperCamelCase () -> Tuple: A__ : Any = create_accelerator() # without padding, we would expect a different number of batches verify_dataloader_batch_sizes( lowercase_ , dataset_size=3 , batch_size=1 , process_0_expected_batch_sizes=[1, 1] , process_1_expected_batch_sizes=[1, 1] , ) # without padding, we would expect the same number of batches, but different sizes verify_dataloader_batch_sizes( lowercase_ , dataset_size=7 , batch_size=2 , process_0_expected_batch_sizes=[2, 2] , process_1_expected_batch_sizes=[2, 2] , ) def UpperCamelCase () -> List[str]: A__ : str = create_accelerator(even_batches=lowercase_ ) verify_dataloader_batch_sizes( lowercase_ , dataset_size=3 , batch_size=1 , process_0_expected_batch_sizes=[1, 1] , process_1_expected_batch_sizes=[1] , ) verify_dataloader_batch_sizes( lowercase_ , dataset_size=7 , batch_size=2 , process_0_expected_batch_sizes=[2, 2] , process_1_expected_batch_sizes=[2, 1] , ) def UpperCamelCase () -> int: A__ : str = create_accelerator(even_batches=lowercase_ ) A__ : List[Any] = torch.nn.Linear(1 , 1 ) A__ : Optional[Any] = accelerator.prepare(lowercase_ ) A__ : List[str] = create_dataloader(lowercase_ , dataset_size=3 , batch_size=1 ) A__ : List[Any] = [] with accelerator.join_uneven_inputs([ddp_model] ): for batch_idx, batch in enumerate(lowercase_ ): A__ : List[Any] = ddp_model(batch[0].float() ) A__ : int = output.sum() loss.backward() batch_idxs.append(lowercase_ ) accelerator.wait_for_everyone() if accelerator.process_index == 0: assert batch_idxs == [0, 1] elif accelerator.process_index == 1: assert batch_idxs == [0] def UpperCamelCase (lowercase_: int ) -> Union[str, Any]: with warnings.catch_warnings(record=lowercase_ ) as w: with accelerator.join_uneven_inputs([Mock()] ): pass assert issubclass(w[-1].category , lowercase_ ) assert "only supported for multi-GPU" in str(w[-1].message ) def UpperCamelCase () -> str: A__ : Union[str, Any] = True A__ : Union[str, Any] = False A__ : List[Any] = create_accelerator(even_batches=lowercase_ ) A__ : Tuple = torch.nn.Linear(1 , 1 ) A__ : Tuple = accelerator.prepare(lowercase_ ) A__ : List[str] = create_dataloader(lowercase_ , dataset_size=3 , batch_size=1 ) A__ : int = create_dataloader(lowercase_ , dataset_size=3 , batch_size=1 ) with accelerator.join_uneven_inputs([ddp_model] , even_batches=lowercase_ ): A__ : Union[str, Any] = train_dl.batch_sampler.even_batches A__ : Any = valid_dl.batch_sampler.even_batches assert train_dl_overridden_value == overridden_even_batches assert valid_dl_overridden_value == overridden_even_batches assert train_dl.batch_sampler.even_batches == default_even_batches assert valid_dl.batch_sampler.even_batches == default_even_batches def UpperCamelCase () -> Tuple: A__ : Optional[Any] = True A__ : str = False A__ : str = create_accelerator(even_batches=lowercase_ ) A__ : str = torch.nn.Linear(1 , 1 ) A__ : List[Any] = accelerator.prepare(lowercase_ ) create_dataloader(lowercase_ , dataset_size=3 , batch_size=1 , iterable=lowercase_ ) A__ : Any = create_dataloader(lowercase_ , dataset_size=3 , batch_size=1 ) with warnings.catch_warnings(): warnings.filterwarnings("""ignore""" ) try: with accelerator.join_uneven_inputs([ddp_model] , even_batches=lowercase_ ): A__ : List[Any] = batch_dl.batch_sampler.even_batches except AttributeError: # ensure attribute error is not raised when processing iterable dl raise AssertionError assert batch_dl_overridden_value == overridden_even_batches assert batch_dl.batch_sampler.even_batches == default_even_batches def UpperCamelCase () -> Union[str, Any]: A__ : Tuple = create_accelerator() A__ : Tuple = torch.nn.Linear(1 , 1 ) A__ : Optional[Any] = accelerator.prepare(lowercase_ ) create_dataloader(lowercase_ , dataset_size=3 , batch_size=1 , iterable=lowercase_ ) with warnings.catch_warnings(record=lowercase_ ) as w: with accelerator.join_uneven_inputs([ddp_model] , even_batches=lowercase_ ): pass assert issubclass(w[-1].category , lowercase_ ) assert "only supported for map-style datasets" in str(w[-1].message ) def UpperCamelCase () -> Any: A__ : Optional[int] = create_accelerator() accelerator.print("""Test that even_batches variable ensures uniform batches across processes""" ) test_default_ensures_even_batch_sizes() accelerator.print("""Run tests with even_batches disabled""" ) test_can_disable_even_batches() accelerator.print("""Test joining uneven inputs""" ) test_can_join_uneven_inputs() accelerator.print("""Test overriding even_batches when joining uneven inputs""" ) test_join_can_override_even_batches() accelerator.print("""Test overriding even_batches for mixed dataloader types""" ) test_join_can_override_for_mixed_type_dataloaders() accelerator.print("""Test overriding even_batches raises a warning for iterable dataloaders""" ) test_join_raises_warning_for_iterable_when_overriding_even_batches() accelerator.print("""Test join with non DDP distributed raises warning""" ) A__ : Dict = accelerator.state.distributed_type A__ : Tuple = DistributedType.FSDP test_join_raises_warning_for_non_ddp_distributed(lowercase_ ) A__ : Optional[int] = original_state if __name__ == "__main__": main()
141
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device if is_torch_available(): from transformers import AutoModelForSeqaSeqLM, AutoTokenizer @require_torch @require_sentencepiece @require_tokenizers class _a (unittest.TestCase ): '''simple docstring''' @slow def __A ( self ): A__ : Optional[Any] = AutoModelForSeqaSeqLM.from_pretrained("""google/mt5-small""" , return_dict=A__ ).to(A__ ) A__ : str = AutoTokenizer.from_pretrained("""google/mt5-small""" ) A__ : int = tokenizer("""Hello there""" , return_tensors="""pt""" ).input_ids A__ : List[Any] = tokenizer("""Hi I am""" , return_tensors="""pt""" ).input_ids A__ : Union[str, Any] = model(input_ids.to(A__ ) , labels=labels.to(A__ ) ).loss A__ : Union[str, Any] = -(labels.shape[-1] * loss.item()) A__ : Any = -8_4.9_1_2_7 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
141
1
"""simple docstring""" import copy from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging A: Tuple = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ ): __lowerCAmelCase : int = ['''input_features'''] def __init__( self , _SCREAMING_SNAKE_CASE=80 , _SCREAMING_SNAKE_CASE=16000 , _SCREAMING_SNAKE_CASE=160 , _SCREAMING_SNAKE_CASE=30 , _SCREAMING_SNAKE_CASE=400 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=False , **_SCREAMING_SNAKE_CASE , ) -> Optional[int]: '''simple docstring''' super().__init__( feature_size=lowerCAmelCase_ , sampling_rate=lowerCAmelCase_ , padding_value=lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , **lowerCAmelCase_ , ) UpperCAmelCase : Optional[int] = n_fft UpperCAmelCase : Optional[Any] = hop_length UpperCAmelCase : Any = chunk_length UpperCAmelCase : int = chunk_length * sampling_rate UpperCAmelCase : Optional[Any] = self.n_samples // hop_length UpperCAmelCase : int = sampling_rate UpperCAmelCase : Any = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=lowerCAmelCase_ , min_frequency=0.0 , max_frequency=8000.0 , sampling_rate=lowerCAmelCase_ , norm="""slaney""" , mel_scale="""slaney""" , ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE ) -> str: '''simple docstring''' UpperCAmelCase : str = spectrogram( lowerCAmelCase_ , window_function(self.n_fft , """hann""" ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters , log_mel="""log10""" , ) UpperCAmelCase : Union[str, Any] = log_spec[:, :-1] UpperCAmelCase : Union[str, Any] = np.maximum(lowerCAmelCase_ , log_spec.max() - 8.0 ) UpperCAmelCase : Any = (log_spec + 4.0) / 4.0 return log_spec @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 0.0 ) -> Optional[Any]: '''simple docstring''' if attention_mask is not None: UpperCAmelCase : int = np.array(lowerCAmelCase_ , np.intaa ) UpperCAmelCase : Any = [] for vector, length in zip(lowerCAmelCase_ , attention_mask.sum(-1 ) ): UpperCAmelCase : Optional[int] = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1E-7 ) if length < normed_slice.shape[0]: UpperCAmelCase : Tuple = padding_value normed_input_values.append(lowerCAmelCase_ ) else: UpperCAmelCase : Dict = [(x - x.mean()) / np.sqrt(x.var() + 1E-7 ) for x in input_values] return normed_input_values def __call__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = "max_length" , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , ) -> List[str]: '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F"The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a" F" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input" F" was sampled with {self.sampling_rate} and not {sampling_rate}." ) else: logger.warning( """It is strongly recommended to pass the `sampling_rate` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) UpperCAmelCase : Dict = isinstance(lowerCAmelCase_ , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F"Only mono-channel audio is supported for input to {self}" ) UpperCAmelCase : List[Any] = is_batched_numpy or ( isinstance(lowerCAmelCase_ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: UpperCAmelCase : str = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(lowerCAmelCase_ , np.ndarray ): UpperCAmelCase : Tuple = np.asarray(lowerCAmelCase_ , dtype=np.floataa ) elif isinstance(lowerCAmelCase_ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): UpperCAmelCase : str = raw_speech.astype(np.floataa ) # always return batch if not is_batched: UpperCAmelCase : List[str] = [np.asarray([raw_speech] ).T] UpperCAmelCase : List[str] = BatchFeature({"""input_features""": raw_speech} ) # convert into correct format for padding UpperCAmelCase : Optional[int] = self.pad( lowerCAmelCase_ , padding=lowerCAmelCase_ , max_length=max_length if max_length else self.n_samples , truncation=lowerCAmelCase_ , pad_to_multiple_of=lowerCAmelCase_ , return_attention_mask=return_attention_mask or do_normalize , ) # zero-mean and unit-variance normalization if do_normalize: UpperCAmelCase : str = self.zero_mean_unit_var_norm( padded_inputs["""input_features"""] , attention_mask=padded_inputs["""attention_mask"""] , padding_value=self.padding_value , ) UpperCAmelCase : Dict = np.stack(padded_inputs["""input_features"""] , axis=0 ) # make sure list is in array format UpperCAmelCase : Tuple = padded_inputs.get("""input_features""" ).transpose(2 , 0 , 1 ) UpperCAmelCase : Optional[int] = [self._np_extract_fbank_features(lowerCAmelCase_ ) for waveform in input_features[0]] if isinstance(input_features[0] , lowerCAmelCase_ ): UpperCAmelCase : Tuple = [np.asarray(lowerCAmelCase_ , dtype=np.floataa ) for feature in input_features] else: UpperCAmelCase : Optional[Any] = input_features if return_attention_mask: # rescale from sample (48000) to feature (3000) UpperCAmelCase : Union[str, Any] = padded_inputs['''attention_mask'''][:, :: self.hop_length] if return_tensors is not None: UpperCAmelCase : Any = padded_inputs.convert_to_tensors(lowerCAmelCase_ ) return padded_inputs def SCREAMING_SNAKE_CASE ( self ) -> str: '''simple docstring''' UpperCAmelCase : int = copy.deepcopy(self.__dict__ ) UpperCAmelCase : str = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] return output
109
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_convbert import ConvBertTokenizer UpperCAmelCase__ : Optional[Any] = logging.get_logger(__name__) UpperCAmelCase__ : Dict = {'vocab_file': 'vocab.txt'} UpperCAmelCase__ : List[Any] = { 'vocab_file': { 'YituTech/conv-bert-base': 'https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt', 'YituTech/conv-bert-medium-small': ( 'https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt' ), 'YituTech/conv-bert-small': 'https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt', } } UpperCAmelCase__ : Union[str, Any] = { 'YituTech/conv-bert-base': 512, 'YituTech/conv-bert-medium-small': 512, 'YituTech/conv-bert-small': 512, } UpperCAmelCase__ : Dict = { 'YituTech/conv-bert-base': {'do_lower_case': True}, 'YituTech/conv-bert-medium-small': {'do_lower_case': True}, 'YituTech/conv-bert-small': {'do_lower_case': True}, } class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : Any = VOCAB_FILES_NAMES __UpperCamelCase : Tuple = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase : str = PRETRAINED_INIT_CONFIGURATION __UpperCamelCase : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase : int = ConvBertTokenizer def __init__( self : Tuple , lowerCAmelCase_ : int=None , lowerCAmelCase_ : List[Any]=None , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : List[Any]="[UNK]" , lowerCAmelCase_ : Optional[Any]="[SEP]" , lowerCAmelCase_ : Optional[Any]="[PAD]" , lowerCAmelCase_ : List[Any]="[CLS]" , lowerCAmelCase_ : Optional[int]="[MASK]" , lowerCAmelCase_ : Any=True , lowerCAmelCase_ : List[str]=None , **lowerCAmelCase_ : List[Any] , ): """simple docstring""" super().__init__( lowerCAmelCase_ , tokenizer_file=lowerCAmelCase_ , do_lower_case=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , sep_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , cls_token=lowerCAmelCase_ , mask_token=lowerCAmelCase_ , tokenize_chinese_chars=lowerCAmelCase_ , strip_accents=lowerCAmelCase_ , **lowerCAmelCase_ , ) _A: List[Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , lowerCAmelCase_ ) != do_lower_case or normalizer_state.get('''strip_accents''' , lowerCAmelCase_ ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , lowerCAmelCase_ ) != tokenize_chinese_chars ): _A: List[str] = getattr(lowerCAmelCase_ , normalizer_state.pop('''type''' ) ) _A: List[Any] = do_lower_case _A: Optional[Any] = strip_accents _A: Union[str, Any] = tokenize_chinese_chars _A: Optional[int] = normalizer_class(**lowerCAmelCase_ ) _A: Optional[Any] = do_lower_case def __magic_name__ ( self : str , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Union[str, Any]=None ): """simple docstring""" _A: Dict = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __magic_name__ ( self : Union[str, Any] , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None ): """simple docstring""" _A: Any = [self.sep_token_id] _A: int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __magic_name__ ( self : int , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] = None ): """simple docstring""" _A: str = self._tokenizer.model.save(lowerCAmelCase_ , name=lowerCAmelCase_ ) return tuple(lowerCAmelCase_ )
121
0
from graphs.minimum_spanning_tree_kruskal import kruskal def lowerCAmelCase_ ( ): __snake_case : List[Any] = 9 __snake_case : Optional[int] = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 1_4], [3, 4, 9], [5, 4, 1_0], [1, 7, 1_1], ] __snake_case : Tuple = kruskal(__lowerCamelCase , __lowerCamelCase ) __snake_case : List[Any] = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] assert sorted(__lowerCamelCase ) == sorted(__lowerCamelCase )
134
import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class a (_lowerCAmelCase ): """simple docstring""" __UpperCAmelCase : List[str] = ["image_processor", "tokenizer"] __UpperCAmelCase : str = "OwlViTImageProcessor" __UpperCAmelCase : Dict = ("CLIPTokenizer", "CLIPTokenizerFast") def __init__( self : str , lowerCamelCase : Any=None , lowerCamelCase : Any=None , **lowerCamelCase : Union[str, Any] ) -> List[Any]: __snake_case : List[Any] = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , lowerCamelCase , ) __snake_case : List[Any] = kwargs.pop("feature_extractor" ) __snake_case : str = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(lowerCamelCase , lowerCamelCase ) def __call__( self : Union[str, Any] , lowerCamelCase : Tuple=None , lowerCamelCase : int=None , lowerCamelCase : Union[str, Any]=None , lowerCamelCase : List[str]="max_length" , lowerCamelCase : Dict="np" , **lowerCamelCase : str ) -> List[Any]: if text is None and query_images is None and images is None: raise ValueError( "You have to specify at least one text or query image or image. All three cannot be none." ) if text is not None: if isinstance(lowerCamelCase , lowerCamelCase ) or (isinstance(lowerCamelCase , lowerCamelCase ) and not isinstance(text[0] , lowerCamelCase )): __snake_case : Union[str, Any] = [self.tokenizer(lowerCamelCase , padding=lowerCamelCase , return_tensors=lowerCamelCase , **lowerCamelCase )] elif isinstance(lowerCamelCase , lowerCamelCase ) and isinstance(text[0] , lowerCamelCase ): __snake_case : Tuple = [] # Maximum number of queries across batch __snake_case : str = max([len(lowerCamelCase ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(lowerCamelCase ) != max_num_queries: __snake_case : Dict = t + [" "] * (max_num_queries - len(lowerCamelCase )) __snake_case : int = self.tokenizer(lowerCamelCase , padding=lowerCamelCase , return_tensors=lowerCamelCase , **lowerCamelCase ) encodings.append(lowerCamelCase ) else: raise TypeError("Input text should be a string, a list of strings or a nested list of strings" ) if return_tensors == "np": __snake_case : Any = np.concatenate([encoding["input_ids"] for encoding in encodings] , axis=0 ) __snake_case : Tuple = np.concatenate([encoding["attention_mask"] for encoding in encodings] , axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp __snake_case : List[Any] = jnp.concatenate([encoding["input_ids"] for encoding in encodings] , axis=0 ) __snake_case : Any = jnp.concatenate([encoding["attention_mask"] for encoding in encodings] , axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch __snake_case : int = torch.cat([encoding["input_ids"] for encoding in encodings] , dim=0 ) __snake_case : int = torch.cat([encoding["attention_mask"] for encoding in encodings] , dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf __snake_case : int = tf.stack([encoding["input_ids"] for encoding in encodings] , axis=0 ) __snake_case : Dict = tf.stack([encoding["attention_mask"] for encoding in encodings] , axis=0 ) else: raise ValueError("Target return tensor type could not be returned" ) __snake_case : Any = BatchEncoding() __snake_case : Tuple = input_ids __snake_case : int = attention_mask if query_images is not None: __snake_case : List[Any] = BatchEncoding() __snake_case : Union[str, Any] = self.image_processor( lowerCamelCase , return_tensors=lowerCamelCase , **lowerCamelCase ).pixel_values __snake_case : str = query_pixel_values if images is not None: __snake_case : Optional[int] = self.image_processor(lowerCamelCase , return_tensors=lowerCamelCase , **lowerCamelCase ) if text is not None and images is not None: __snake_case : List[str] = image_features.pixel_values return encoding elif query_images is not None and images is not None: __snake_case : int = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**lowerCamelCase ) , tensor_type=lowerCamelCase ) def __snake_case ( self : Dict , *lowerCamelCase : List[Any] , **lowerCamelCase : Union[str, Any] ) -> str: return self.image_processor.post_process(*lowerCamelCase , **lowerCamelCase ) def __snake_case ( self : Union[str, Any] , *lowerCamelCase : str , **lowerCamelCase : List[str] ) -> Tuple: return self.image_processor.post_process_object_detection(*lowerCamelCase , **lowerCamelCase ) def __snake_case ( self : Optional[Any] , *lowerCamelCase : Optional[Any] , **lowerCamelCase : Optional[Any] ) -> Any: return self.image_processor.post_process_image_guided_detection(*lowerCamelCase , **lowerCamelCase ) def __snake_case ( self : List[Any] , *lowerCamelCase : Tuple , **lowerCamelCase : Optional[int] ) -> str: return self.tokenizer.batch_decode(*lowerCamelCase , **lowerCamelCase ) def __snake_case ( self : Union[str, Any] , *lowerCamelCase : Tuple , **lowerCamelCase : List[Any] ) -> Tuple: return self.tokenizer.decode(*lowerCamelCase , **lowerCamelCase ) @property def __snake_case ( self : Any ) -> Dict: warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , lowerCamelCase , ) return self.image_processor_class @property def __snake_case ( self : List[str] ) -> Union[str, Any]: warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , lowerCamelCase , ) return self.image_processor
134
1
import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def _a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=True , UpperCAmelCase="pt" ) -> Union[str, Any]: """simple docstring""" lowerCamelCase__ : List[str] = {'add_prefix_space': True} if isinstance(__snake_case , __snake_case ) and not line.startswith(''' ''' ) else {} lowerCamelCase__ : str = padding_side return tokenizer( [line] , max_length=__snake_case , padding='''max_length''' if pad_to_max_length else None , truncation=__snake_case , return_tensors=__snake_case , add_special_tokens=__snake_case , **__snake_case , ) def _a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=None , ) -> List[Any]: """simple docstring""" lowerCamelCase__ : str = input_ids.ne(__snake_case ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class __SCREAMING_SNAKE_CASE ( _snake_case ): def __init__( self : str , A : Optional[Any] , A : Any , A : Optional[int] , A : int , A : str="train" , A : Dict=None , A : Optional[Any]=None , A : int=None , A : Tuple="" , ) ->Any: super().__init__() lowerCamelCase__ : Optional[Any] = Path(_UpperCamelCase ).joinpath(type_path + '''.source''' ) lowerCamelCase__ : Dict = Path(_UpperCamelCase ).joinpath(type_path + '''.target''' ) lowerCamelCase__ : Optional[Any] = self.get_char_lens(self.src_file ) lowerCamelCase__ : Dict = max_source_length lowerCamelCase__ : List[Any] = max_target_length assert min(self.src_lens ) > 0, F"found empty line in {self.src_file}" lowerCamelCase__ : List[Any] = tokenizer lowerCamelCase__ : Tuple = prefix if n_obs is not None: lowerCamelCase__ : int = self.src_lens[:n_obs] lowerCamelCase__ : Optional[int] = src_lang lowerCamelCase__ : List[str] = tgt_lang def __len__( self : str ) ->Dict: return len(self.src_lens ) def __getitem__( self : List[Any] , A : List[str] ) ->Dict[str, torch.Tensor]: lowerCamelCase__ : Union[str, Any] = index + 1 # linecache starts at 1 lowerCamelCase__ : Any = self.prefix + linecache.getline(str(self.src_file ) , _UpperCamelCase ).rstrip('''\n''' ) lowerCamelCase__ : Optional[int] = linecache.getline(str(self.tgt_file ) , _UpperCamelCase ).rstrip('''\n''' ) assert source_line, F"empty source line for index {index}" assert tgt_line, F"empty tgt line for index {index}" # Need to add eos token manually for T5 if isinstance(self.tokenizer , _UpperCamelCase ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right lowerCamelCase__ : str = ( self.tokenizer.question_encoder if isinstance(self.tokenizer , _UpperCamelCase ) else self.tokenizer ) lowerCamelCase__ : Optional[Any] = self.tokenizer.generator if isinstance(self.tokenizer , _UpperCamelCase ) else self.tokenizer lowerCamelCase__ : str = encode_line(_UpperCamelCase , _UpperCamelCase , self.max_source_length , '''right''' ) lowerCamelCase__ : List[Any] = encode_line(_UpperCamelCase , _UpperCamelCase , self.max_target_length , '''right''' ) lowerCamelCase__ : Optional[Any] = source_inputs['input_ids'].squeeze() lowerCamelCase__ : Any = target_inputs['input_ids'].squeeze() lowerCamelCase__ : int = source_inputs['attention_mask'].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def __lowerCamelCase ( A : Any ) ->Optional[int]: return [len(_UpperCamelCase ) for x in Path(_UpperCamelCase ).open().readlines()] def __lowerCamelCase ( self : int , A : List[str] ) ->Dict[str, torch.Tensor]: lowerCamelCase__ : List[str] = torch.stack([x['''input_ids'''] for x in batch] ) lowerCamelCase__ : int = torch.stack([x['''attention_mask'''] for x in batch] ) lowerCamelCase__ : Tuple = torch.stack([x['''decoder_input_ids'''] for x in batch] ) lowerCamelCase__ : Tuple = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer , _UpperCamelCase ) else self.tokenizer.pad_token_id ) lowerCamelCase__ : str = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer , _UpperCamelCase ) else self.tokenizer.pad_token_id ) lowerCamelCase__ : Union[str, Any] = trim_batch(_UpperCamelCase , _UpperCamelCase ) lowerCamelCase__ : Union[str, Any] = trim_batch(_UpperCamelCase , _UpperCamelCase , attention_mask=_UpperCamelCase ) lowerCamelCase__ : List[Any] = { 'input_ids': source_ids, 'attention_mask': source_mask, 'decoder_input_ids': y, } return batch _A : List[str] = getLogger(__name__) def _a ( UpperCAmelCase ) -> List[str]: """simple docstring""" return list(itertools.chain.from_iterable(__snake_case ) ) def _a ( UpperCAmelCase ) -> Dict: """simple docstring""" lowerCamelCase__ : Union[str, Any] = get_git_info() save_json(__snake_case , os.path.join(__snake_case , '''git_log.json''' ) ) def _a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=4 , **UpperCAmelCase ) -> str: """simple docstring""" with open(__snake_case , '''w''' ) as f: json.dump(__snake_case , __snake_case , indent=__snake_case , **__snake_case ) def _a ( UpperCAmelCase ) -> str: """simple docstring""" with open(__snake_case ) as f: return json.load(__snake_case ) def _a ( ) -> Optional[Any]: """simple docstring""" lowerCamelCase__ : int = git.Repo(search_parent_directories=__snake_case ) lowerCamelCase__ : Tuple = { 'repo_id': str(__snake_case ), 'repo_sha': str(repo.head.object.hexsha ), 'repo_branch': str(repo.active_branch ), 'hostname': str(socket.gethostname() ), } return repo_infos def _a ( UpperCAmelCase , UpperCAmelCase ) -> List[str]: """simple docstring""" return list(map(__snake_case , __snake_case ) ) def _a ( UpperCAmelCase , UpperCAmelCase ) -> List[Any]: """simple docstring""" with open(__snake_case , '''wb''' ) as f: return pickle.dump(__snake_case , __snake_case ) def _a ( UpperCAmelCase ) -> Dict: """simple docstring""" def remove_articles(UpperCAmelCase ): return re.sub(R'''\b(a|an|the)\b''' , ''' ''' , __snake_case ) def white_space_fix(UpperCAmelCase ): return " ".join(text.split() ) def remove_punc(UpperCAmelCase ): lowerCamelCase__ : Optional[int] = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(UpperCAmelCase ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(__snake_case ) ) ) ) def _a ( UpperCAmelCase , UpperCAmelCase ) -> List[str]: """simple docstring""" lowerCamelCase__ : Any = normalize_answer(__snake_case ).split() lowerCamelCase__ : str = normalize_answer(__snake_case ).split() lowerCamelCase__ : Tuple = Counter(__snake_case ) & Counter(__snake_case ) lowerCamelCase__ : Optional[Any] = sum(common.values() ) if num_same == 0: return 0 lowerCamelCase__ : List[Any] = 1.0 * num_same / len(__snake_case ) lowerCamelCase__ : Tuple = 1.0 * num_same / len(__snake_case ) lowerCamelCase__ : List[Any] = (2 * precision * recall) / (precision + recall) return fa def _a ( UpperCAmelCase , UpperCAmelCase ) -> Optional[int]: """simple docstring""" return normalize_answer(__snake_case ) == normalize_answer(__snake_case ) def _a ( UpperCAmelCase , UpperCAmelCase ) -> List[str]: """simple docstring""" assert len(__snake_case ) == len(__snake_case ) lowerCamelCase__ : Any = 0 for hypo, pred in zip(__snake_case , __snake_case ): em += exact_match_score(__snake_case , __snake_case ) if len(__snake_case ) > 0: em /= len(__snake_case ) return {"em": em} def _a ( UpperCAmelCase ) -> str: """simple docstring""" return model_prefix.startswith('''rag''' ) def _a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Any: """simple docstring""" lowerCamelCase__ : Any = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead lowerCamelCase__ : str = 'dropout_rate' for p in extra_params: if getattr(__snake_case , __snake_case , __snake_case ): if not hasattr(__snake_case , __snake_case ) and not hasattr(__snake_case , equivalent_param[p] ): logger.info('''config doesn\'t have a `{}` attribute'''.format(__snake_case ) ) delattr(__snake_case , __snake_case ) continue lowerCamelCase__ : Optional[Any] = p if hasattr(__snake_case , __snake_case ) else equivalent_param[p] setattr(__snake_case , __snake_case , getattr(__snake_case , __snake_case ) ) delattr(__snake_case , __snake_case ) return hparams, config
142
__UpperCAmelCase = { 'Pillow': 'Pillow<10.0.0', 'accelerate': 'accelerate>=0.20.3', 'av': 'av==9.2.0', 'beautifulsoup4': 'beautifulsoup4', 'black': 'black~=23.1', 'codecarbon': 'codecarbon==1.2.0', 'cookiecutter': 'cookiecutter==1.7.3', 'dataclasses': 'dataclasses', 'datasets': 'datasets!=2.5.0', 'decord': 'decord==0.6.0', 'deepspeed': 'deepspeed>=0.9.3', 'diffusers': 'diffusers', 'dill': 'dill<0.3.5', 'evaluate': 'evaluate>=0.2.0', 'fairscale': 'fairscale>0.3', 'faiss-cpu': 'faiss-cpu', 'fastapi': 'fastapi', 'filelock': 'filelock', 'flax': 'flax>=0.4.1,<=0.7.0', 'ftfy': 'ftfy', 'fugashi': 'fugashi>=1.0', 'GitPython': 'GitPython<3.1.19', 'hf-doc-builder': 'hf-doc-builder>=0.3.0', 'huggingface-hub': 'huggingface-hub>=0.14.1,<1.0', 'importlib_metadata': 'importlib_metadata', 'ipadic': 'ipadic>=1.0.0,<2.0', 'isort': 'isort>=5.5.4', 'jax': 'jax>=0.2.8,!=0.3.2,<=0.4.13', 'jaxlib': 'jaxlib>=0.1.65,<=0.4.13', 'jieba': 'jieba', 'kenlm': 'kenlm', 'keras-nlp': 'keras-nlp>=0.3.1', 'librosa': 'librosa', 'nltk': 'nltk', 'natten': 'natten>=0.14.6', 'numpy': 'numpy>=1.17', 'onnxconverter-common': 'onnxconverter-common', 'onnxruntime-tools': 'onnxruntime-tools>=1.4.2', 'onnxruntime': 'onnxruntime>=1.4.0', 'opencv-python': 'opencv-python', 'optuna': 'optuna', 'optax': 'optax>=0.0.8,<=0.1.4', 'packaging': 'packaging>=20.0', 'parameterized': 'parameterized', 'phonemizer': 'phonemizer', 'protobuf': 'protobuf', 'psutil': 'psutil', 'pyyaml': 'pyyaml>=5.1', 'pydantic': 'pydantic<2', 'pytest': 'pytest>=7.2.0', 'pytest-timeout': 'pytest-timeout', 'pytest-xdist': 'pytest-xdist', 'python': 'python>=3.8.0', 'ray[tune]': 'ray[tune]', 'regex': 'regex!=2019.12.17', 'requests': 'requests', 'rhoknp': 'rhoknp>=1.1.0,<1.3.1', 'rjieba': 'rjieba', 'rouge-score': 'rouge-score!=0.0.7,!=0.0.8,!=0.1,!=0.1.1', 'ruff': 'ruff>=0.0.241,<=0.0.259', 'sacrebleu': 'sacrebleu>=1.4.12,<2.0.0', 'sacremoses': 'sacremoses', 'safetensors': 'safetensors>=0.3.1', 'sagemaker': 'sagemaker>=2.31.0', 'scikit-learn': 'scikit-learn', 'sentencepiece': 'sentencepiece>=0.1.91,!=0.1.92', 'sigopt': 'sigopt', 'starlette': 'starlette', 'sudachipy': 'sudachipy>=0.6.6', 'sudachidict_core': 'sudachidict_core>=20220729', 'tensorflow-cpu': 'tensorflow-cpu>=2.6,<2.14', 'tensorflow': 'tensorflow>=2.6,<2.14', 'tensorflow-text': 'tensorflow-text<2.14', 'tf2onnx': 'tf2onnx', 'timeout-decorator': 'timeout-decorator', 'timm': 'timm', 'tokenizers': 'tokenizers>=0.11.1,!=0.11.3,<0.14', 'torch': 'torch>=1.9,!=1.12.0', 'torchaudio': 'torchaudio', 'torchvision': 'torchvision', 'pyctcdecode': 'pyctcdecode>=0.4.0', 'tqdm': 'tqdm>=4.27', 'unidic': 'unidic>=1.0.2', 'unidic_lite': 'unidic_lite>=1.0.7', 'urllib3': 'urllib3<2.0.0', 'uvicorn': 'uvicorn', }
29
0
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging lowercase : List[Any] = logging.get_logger(__name__) if is_vision_available(): import PIL class __UpperCAmelCase ( _lowerCamelCase ): __lowercase = ["""pixel_values"""] def __init__( self , lowerCAmelCase_ = True , lowerCAmelCase_ = None , lowerCAmelCase_ = PILImageResampling.BICUBIC , lowerCAmelCase_ = True , lowerCAmelCase_ = None , lowerCAmelCase_ = True , lowerCAmelCase_ = 1 / 2_55 , lowerCAmelCase_ = True , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = True , **lowerCAmelCase_ , ): """simple docstring""" super().__init__(**lowerCAmelCase_ ) _snake_case = size if size is not None else {'shortest_edge': 2_24} _snake_case = get_size_dict(lowerCAmelCase_ , default_to_square=lowerCAmelCase_ ) _snake_case = crop_size if crop_size is not None else {'height': 2_24, 'width': 2_24} _snake_case = get_size_dict(lowerCAmelCase_ , default_to_square=lowerCAmelCase_ , param_name='crop_size' ) _snake_case = do_resize _snake_case = size _snake_case = resample _snake_case = do_center_crop _snake_case = crop_size _snake_case = do_rescale _snake_case = rescale_factor _snake_case = do_normalize _snake_case = image_mean if image_mean is not None else OPENAI_CLIP_MEAN _snake_case = image_std if image_std is not None else OPENAI_CLIP_STD _snake_case = do_convert_rgb def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = PILImageResampling.BICUBIC , lowerCAmelCase_ = None , **lowerCAmelCase_ , ): """simple docstring""" _snake_case = get_size_dict(lowerCAmelCase_ , default_to_square=lowerCAmelCase_ ) if "shortest_edge" not in size: raise ValueError(F'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) _snake_case = get_resize_output_image_size(lowerCAmelCase_ , size=size['shortest_edge'] , default_to_square=lowerCAmelCase_ ) return resize(lowerCAmelCase_ , size=lowerCAmelCase_ , resample=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = None , **lowerCAmelCase_ , ): """simple docstring""" _snake_case = get_size_dict(lowerCAmelCase_ ) if "height" not in size or "width" not in size: raise ValueError(F'The `size` parameter must contain the keys (height, width). Got {size.keys()}' ) return center_crop(lowerCAmelCase_ , size=(size['height'], size['width']) , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = None , **lowerCAmelCase_ , ): """simple docstring""" return rescale(lowerCAmelCase_ , scale=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = None , **lowerCAmelCase_ , ): """simple docstring""" return normalize(lowerCAmelCase_ , mean=lowerCAmelCase_ , std=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = ChannelDimension.FIRST , **lowerCAmelCase_ , ): """simple docstring""" _snake_case = do_resize if do_resize is not None else self.do_resize _snake_case = size if size is not None else self.size _snake_case = get_size_dict(lowerCAmelCase_ , param_name='size' , default_to_square=lowerCAmelCase_ ) _snake_case = resample if resample is not None else self.resample _snake_case = do_center_crop if do_center_crop is not None else self.do_center_crop _snake_case = crop_size if crop_size is not None else self.crop_size _snake_case = get_size_dict(lowerCAmelCase_ , param_name='crop_size' , default_to_square=lowerCAmelCase_ ) _snake_case = do_rescale if do_rescale is not None else self.do_rescale _snake_case = rescale_factor if rescale_factor is not None else self.rescale_factor _snake_case = do_normalize if do_normalize is not None else self.do_normalize _snake_case = image_mean if image_mean is not None else self.image_mean _snake_case = image_std if image_std is not None else self.image_std _snake_case = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb _snake_case = make_list_of_images(lowerCAmelCase_ ) if not valid_images(lowerCAmelCase_ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # PIL RGBA images are converted to RGB if do_convert_rgb: _snake_case = [convert_to_rgb(lowerCAmelCase_ ) for image in images] # All transformations expect numpy arrays. _snake_case = [to_numpy_array(lowerCAmelCase_ ) for image in images] if do_resize: _snake_case = [self.resize(image=lowerCAmelCase_ , size=lowerCAmelCase_ , resample=lowerCAmelCase_ ) for image in images] if do_center_crop: _snake_case = [self.center_crop(image=lowerCAmelCase_ , size=lowerCAmelCase_ ) for image in images] if do_rescale: _snake_case = [self.rescale(image=lowerCAmelCase_ , scale=lowerCAmelCase_ ) for image in images] if do_normalize: _snake_case = [self.normalize(image=lowerCAmelCase_ , mean=lowerCAmelCase_ , std=lowerCAmelCase_ ) for image in images] _snake_case = [to_channel_dimension_format(lowerCAmelCase_ , lowerCAmelCase_ ) for image in images] _snake_case = {'pixel_values': images} return BatchFeature(data=lowerCAmelCase_ , tensor_type=lowerCAmelCase_ )
160
'''simple docstring''' from __future__ import annotations from collections import namedtuple def SCREAMING_SNAKE_CASE__ ( __A , __A , __A ) -> tuple: _snake_case = namedtuple('result' , 'name value' ) if (voltage, current, power).count(0 ) != 1: raise ValueError('Only one argument must be 0' ) elif power < 0: raise ValueError( 'Power cannot be negative in any electrical/electronics system' ) elif voltage == 0: return result('voltage' , power / current ) elif current == 0: return result('current' , power / voltage ) elif power == 0: return result('power' , float(round(abs(voltage * current ) , 2 ) ) ) else: raise ValueError('Exactly one argument must be 0' ) if __name__ == "__main__": import doctest doctest.testmod()
160
1
def UpperCamelCase_( lowerCamelCase_ ) -> int: if not numbers: return 0 if not isinstance(lowerCamelCase_ , (list, tuple) ) or not all( isinstance(lowerCamelCase_ , lowerCamelCase_ ) for number in numbers ): raise ValueError('numbers must be an iterable of integers' ) _lowercase : int = numbers[0] for i in range(1 , len(lowerCamelCase_ ) ): # update the maximum and minimum subarray products _lowercase : Union[str, Any] = numbers[i] if number < 0: _lowercase , _lowercase : Any = min_till_now, max_till_now _lowercase : Union[str, Any] = max(lowerCamelCase_ , max_till_now * number ) _lowercase : Union[str, Any] = min(lowerCamelCase_ , min_till_now * number ) # update the maximum product found till now _lowercase : Optional[Any] = max(lowerCamelCase_ , lowerCamelCase_ ) return max_prod
21
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyImgaImgPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _lowerCamelCase( _a, unittest.TestCase ): lowercase_ : Any = KandinskyImgaImgPipeline lowercase_ : Union[str, Any] = ["""prompt""", """image_embeds""", """negative_image_embeds""", """image"""] lowercase_ : Any = [ """prompt""", """negative_prompt""", """image_embeds""", """negative_image_embeds""", """image""", ] lowercase_ : List[Any] = [ """generator""", """height""", """width""", """strength""", """guidance_scale""", """negative_prompt""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] lowercase_ : Union[str, Any] = False @property def UpperCamelCase ( self) -> str: """simple docstring""" return 32 @property def UpperCamelCase ( self) -> int: """simple docstring""" return 32 @property def UpperCamelCase ( self) -> Tuple: """simple docstring""" return self.time_input_dim @property def UpperCamelCase ( self) -> Optional[Any]: """simple docstring""" return self.time_input_dim * 4 @property def UpperCamelCase ( self) -> List[str]: """simple docstring""" return 1_00 @property def UpperCamelCase ( self) -> str: """simple docstring""" _lowercase : str = XLMRobertaTokenizerFast.from_pretrained('YiYiXu/tiny-random-mclip-base') return tokenizer @property def UpperCamelCase ( self) -> int: """simple docstring""" torch.manual_seed(0) _lowercase : Optional[int] = MCLIPConfig( numDims=self.cross_attention_dim, transformerDimensions=self.text_embedder_hidden_size, hidden_size=self.text_embedder_hidden_size, intermediate_size=37, num_attention_heads=4, num_hidden_layers=5, vocab_size=10_05, ) _lowercase : Optional[int] = MultilingualCLIP(lowerCamelCase) _lowercase : List[str] = text_encoder.eval() return text_encoder @property def UpperCamelCase ( self) -> List[str]: """simple docstring""" torch.manual_seed(0) _lowercase : Union[str, Any] = { 'in_channels': 4, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'text_image', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'text_image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } _lowercase : Optional[Any] = UNetaDConditionModel(**lowerCamelCase) return model @property def UpperCamelCase ( self) -> str: """simple docstring""" return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def UpperCamelCase ( self) -> List[str]: """simple docstring""" torch.manual_seed(0) _lowercase : Dict = VQModel(**self.dummy_movq_kwargs) return model def UpperCamelCase ( self) -> List[str]: """simple docstring""" _lowercase : Any = self.dummy_text_encoder _lowercase : List[Any] = self.dummy_tokenizer _lowercase : int = self.dummy_unet _lowercase : int = self.dummy_movq _lowercase : Optional[int] = { 'num_train_timesteps': 10_00, 'beta_schedule': 'linear', 'beta_start': 0.0_0_0_8_5, 'beta_end': 0.0_1_2, 'clip_sample': False, 'set_alpha_to_one': False, 'steps_offset': 0, 'prediction_type': 'epsilon', 'thresholding': False, } _lowercase : List[Any] = DDIMScheduler(**lowerCamelCase) _lowercase : List[Any] = { 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase=0) -> Dict: """simple docstring""" _lowercase : List[str] = floats_tensor((1, self.cross_attention_dim), rng=random.Random(lowerCamelCase)).to(lowerCamelCase) _lowercase : Optional[Any] = floats_tensor((1, self.cross_attention_dim), rng=random.Random(seed + 1)).to(lowerCamelCase) # create init_image _lowercase : Tuple = floats_tensor((1, 3, 64, 64), rng=random.Random(lowerCamelCase)).to(lowerCamelCase) _lowercase : Optional[int] = image.cpu().permute(0, 2, 3, 1)[0] _lowercase : Tuple = Image.fromarray(np.uinta(lowerCamelCase)).convert('RGB').resize((2_56, 2_56)) if str(lowerCamelCase).startswith('mps'): _lowercase : List[str] = torch.manual_seed(lowerCamelCase) else: _lowercase : Optional[Any] = torch.Generator(device=lowerCamelCase).manual_seed(lowerCamelCase) _lowercase : Tuple = { 'prompt': 'horse', 'image': init_image, 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'generator': generator, 'height': 64, 'width': 64, 'num_inference_steps': 10, 'guidance_scale': 7.0, 'strength': 0.2, 'output_type': 'np', } return inputs def UpperCamelCase ( self) -> Tuple: """simple docstring""" _lowercase : Dict = 'cpu' _lowercase : Tuple = self.get_dummy_components() _lowercase : str = self.pipeline_class(**lowerCamelCase) _lowercase : str = pipe.to(lowerCamelCase) pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : List[str] = pipe(**self.get_dummy_inputs(lowerCamelCase)) _lowercase : Optional[int] = output.images _lowercase : List[Any] = pipe( **self.get_dummy_inputs(lowerCamelCase), return_dict=lowerCamelCase, )[0] _lowercase : List[str] = image[0, -3:, -3:, -1] _lowercase : List[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _lowercase : Tuple = np.array( [0.6_1_4_7_4_9_4_3, 0.6_0_7_3_5_3_9, 0.4_3_3_0_8_5_4_4, 0.5_9_2_8_2_6_9, 0.4_7_4_9_3_5_9_5, 0.4_6_7_5_5_9_7_3, 0.4_6_1_3_8_3_8, 0.4_5_3_6_8_7_9_7, 0.5_0_1_1_9_2_3_3]) assert ( np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 ), F''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1E-2 ), F''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class _lowerCamelCase( unittest.TestCase ): def UpperCamelCase ( self) -> Tuple: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" _lowercase : int = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/kandinsky_img2img_frog.npy') _lowercase : str = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png') _lowercase : Optional[int] = 'A red cartoon frog, 4k' _lowercase : Union[str, Any] = KandinskyPriorPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-1-prior', torch_dtype=torch.floataa) pipe_prior.to(lowerCamelCase) _lowercase : Optional[Any] = KandinskyImgaImgPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-1', torch_dtype=torch.floataa) _lowercase : List[Any] = pipeline.to(lowerCamelCase) pipeline.set_progress_bar_config(disable=lowerCamelCase) _lowercase : str = torch.Generator(device='cpu').manual_seed(0) _lowercase , _lowercase : List[Any] = pipe_prior( lowerCamelCase, generator=lowerCamelCase, num_inference_steps=5, negative_prompt='', ).to_tuple() _lowercase : Union[str, Any] = pipeline( lowerCamelCase, image=lowerCamelCase, image_embeds=lowerCamelCase, negative_image_embeds=lowerCamelCase, generator=lowerCamelCase, num_inference_steps=1_00, height=7_68, width=7_68, strength=0.2, output_type='np', ) _lowercase : Dict = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(lowerCamelCase, lowerCamelCase)
21
1
"""simple docstring""" from __future__ import annotations import unittest from transformers import DebertaVaConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, TFDebertaVaModel, ) class lowerCamelCase__ : '''simple docstring''' def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=99 , __UpperCAmelCase=32 , __UpperCAmelCase=2 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=5_12 , __UpperCAmelCase=16 , __UpperCAmelCase=2 , __UpperCAmelCase=0.0_2 , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase="None" , __UpperCAmelCase=3 , __UpperCAmelCase=4 , __UpperCAmelCase=None , ) -> List[Any]: _lowerCAmelCase =parent _lowerCAmelCase =batch_size _lowerCAmelCase =seq_length _lowerCAmelCase =is_training _lowerCAmelCase =use_input_mask _lowerCAmelCase =use_token_type_ids _lowerCAmelCase =use_labels _lowerCAmelCase =vocab_size _lowerCAmelCase =hidden_size _lowerCAmelCase =num_hidden_layers _lowerCAmelCase =num_attention_heads _lowerCAmelCase =intermediate_size _lowerCAmelCase =hidden_act _lowerCAmelCase =hidden_dropout_prob _lowerCAmelCase =attention_probs_dropout_prob _lowerCAmelCase =max_position_embeddings _lowerCAmelCase =type_vocab_size _lowerCAmelCase =type_sequence_label_size _lowerCAmelCase =initializer_range _lowerCAmelCase =num_labels _lowerCAmelCase =num_choices _lowerCAmelCase =relative_attention _lowerCAmelCase =position_biased_input _lowerCAmelCase =pos_att_type _lowerCAmelCase =scope def _lowerCAmelCase ( self ) -> Dict: _lowerCAmelCase =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase =None if self.use_input_mask: _lowerCAmelCase =random_attention_mask([self.batch_size, self.seq_length] ) _lowerCAmelCase =None if self.use_token_type_ids: _lowerCAmelCase =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _lowerCAmelCase =None _lowerCAmelCase =None _lowerCAmelCase =None if self.use_labels: _lowerCAmelCase =ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCAmelCase =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowerCAmelCase =DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , initializer_range=self.initializer_range , return_dict=__UpperCAmelCase , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[Any]: _lowerCAmelCase =TFDebertaVaModel(config=__UpperCAmelCase ) _lowerCAmelCase ={"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} _lowerCAmelCase =[input_ids, input_mask] _lowerCAmelCase =model(__UpperCAmelCase ) _lowerCAmelCase =model(__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Any: _lowerCAmelCase =TFDebertaVaForMaskedLM(config=__UpperCAmelCase ) _lowerCAmelCase ={ """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } _lowerCAmelCase =model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Any: _lowerCAmelCase =self.num_labels _lowerCAmelCase =TFDebertaVaForSequenceClassification(config=__UpperCAmelCase ) _lowerCAmelCase ={ """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } _lowerCAmelCase =model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]: _lowerCAmelCase =self.num_labels _lowerCAmelCase =TFDebertaVaForTokenClassification(config=__UpperCAmelCase ) _lowerCAmelCase ={ """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } _lowerCAmelCase =model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> int: _lowerCAmelCase =TFDebertaVaForQuestionAnswering(config=__UpperCAmelCase ) _lowerCAmelCase ={ """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } _lowerCAmelCase =model(__UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowerCAmelCase ( self ) -> str: _lowerCAmelCase =self.prepare_config_and_inputs() ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) =config_and_inputs _lowerCAmelCase ={"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class lowerCamelCase__ ( __magic_name__ , __magic_name__ , unittest.TestCase ): '''simple docstring''' lowerCamelCase = ( ( TFDebertaVaModel, TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, ) if is_tf_available() else () ) lowerCamelCase = ( { '''feature-extraction''': TFDebertaVaModel, '''fill-mask''': TFDebertaVaForMaskedLM, '''question-answering''': TFDebertaVaForQuestionAnswering, '''text-classification''': TFDebertaVaForSequenceClassification, '''token-classification''': TFDebertaVaForTokenClassification, '''zero-shot''': TFDebertaVaForSequenceClassification, } if is_tf_available() else {} ) lowerCamelCase = False lowerCamelCase = False def _lowerCAmelCase ( self ) -> List[str]: _lowerCAmelCase =TFDebertaVaModelTester(self ) _lowerCAmelCase =ConfigTester(self , config_class=__UpperCAmelCase , hidden_size=37 ) def _lowerCAmelCase ( self ) -> str: self.config_tester.run_common_tests() def _lowerCAmelCase ( self ) -> Union[str, Any]: _lowerCAmelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) def _lowerCAmelCase ( self ) -> Dict: _lowerCAmelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__UpperCAmelCase ) def _lowerCAmelCase ( self ) -> List[str]: _lowerCAmelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__UpperCAmelCase ) def _lowerCAmelCase ( self ) -> Tuple: _lowerCAmelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__UpperCAmelCase ) def _lowerCAmelCase ( self ) -> str: _lowerCAmelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__UpperCAmelCase ) @slow def _lowerCAmelCase ( self ) -> Optional[Any]: _lowerCAmelCase =TFDebertaVaModel.from_pretrained("""kamalkraj/deberta-v2-xlarge""" ) self.assertIsNotNone(__UpperCAmelCase ) @require_tf class lowerCamelCase__ ( unittest.TestCase ): '''simple docstring''' @unittest.skip(reason="""Model not available yet""" ) def _lowerCAmelCase ( self ) -> Optional[int]: pass @slow def _lowerCAmelCase ( self ) -> List[str]: _lowerCAmelCase =TFDebertaVaModel.from_pretrained("""kamalkraj/deberta-v2-xlarge""" ) _lowerCAmelCase =tf.constant([[0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2]] ) _lowerCAmelCase =tf.constant([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) _lowerCAmelCase =model(__UpperCAmelCase , attention_mask=__UpperCAmelCase )[0] _lowerCAmelCase =tf.constant( [[[0.2_3_5_6, 0.1_9_4_8, 0.0_3_6_9], [-0.1_0_6_3, 0.3_5_8_6, -0.5_1_5_2], [-0.6_3_9_9, -0.0_2_5_9, -0.2_5_2_5]]] ) tf.debugging.assert_near(output[:, 1:4, 1:4] , __UpperCAmelCase , atol=1e-4 )
341
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = {} class lowerCamelCase__ ( __magic_name__ ): '''simple docstring''' lowerCamelCase = '''llama''' lowerCamelCase = ['''past_key_values'''] def __init__( self , __UpperCAmelCase=3_20_00 , __UpperCAmelCase=40_96 , __UpperCAmelCase=1_10_08 , __UpperCAmelCase=32 , __UpperCAmelCase=32 , __UpperCAmelCase=None , __UpperCAmelCase="silu" , __UpperCAmelCase=20_48 , __UpperCAmelCase=0.0_2 , __UpperCAmelCase=1e-6 , __UpperCAmelCase=True , __UpperCAmelCase=0 , __UpperCAmelCase=1 , __UpperCAmelCase=2 , __UpperCAmelCase=1 , __UpperCAmelCase=False , __UpperCAmelCase=None , **__UpperCAmelCase , ) -> Optional[Any]: _lowerCAmelCase =vocab_size _lowerCAmelCase =max_position_embeddings _lowerCAmelCase =hidden_size _lowerCAmelCase =intermediate_size _lowerCAmelCase =num_hidden_layers _lowerCAmelCase =num_attention_heads # for backward compatibility if num_key_value_heads is None: _lowerCAmelCase =num_attention_heads _lowerCAmelCase =num_key_value_heads _lowerCAmelCase =hidden_act _lowerCAmelCase =initializer_range _lowerCAmelCase =rms_norm_eps _lowerCAmelCase =pretraining_tp _lowerCAmelCase =use_cache _lowerCAmelCase =rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , tie_word_embeddings=__UpperCAmelCase , **__UpperCAmelCase , ) def _lowerCAmelCase ( self ) -> str: if self.rope_scaling is None: return if not isinstance(self.rope_scaling , __UpperCAmelCase ) or len(self.rope_scaling ) != 2: raise ValueError( """`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, """ f'''got {self.rope_scaling}''' ) _lowerCAmelCase =self.rope_scaling.get("""type""" , __UpperCAmelCase ) _lowerCAmelCase =self.rope_scaling.get("""factor""" , __UpperCAmelCase ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f'''`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}''' ) if rope_scaling_factor is None or not isinstance(__UpperCAmelCase , __UpperCAmelCase ) or rope_scaling_factor <= 1.0: raise ValueError(f'''`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}''' )
341
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = { '''SCUT-DLVCLab/lilt-roberta-en-base''': ( '''https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base/resolve/main/config.json''' ), } class lowerCAmelCase ( A ): lowerCAmelCase_ = "lilt" def __init__( self : Dict , __lowercase : Any=30522 , __lowercase : Dict=768 , __lowercase : List[str]=12 , __lowercase : Tuple=12 , __lowercase : List[Any]=3072 , __lowercase : Any="gelu" , __lowercase : Optional[int]=0.1 , __lowercase : Union[str, Any]=0.1 , __lowercase : Optional[int]=512 , __lowercase : Union[str, Any]=2 , __lowercase : str=0.0_2 , __lowercase : Dict=1E-12 , __lowercase : Optional[int]=0 , __lowercase : List[str]="absolute" , __lowercase : Any=None , __lowercase : str=4 , __lowercase : Optional[int]=1024 , **__lowercase : Tuple , ): """simple docstring""" super().__init__(pad_token_id=__lowercase , **__lowercase ) __lowercase =vocab_size __lowercase =hidden_size __lowercase =num_hidden_layers __lowercase =num_attention_heads __lowercase =hidden_act __lowercase =intermediate_size __lowercase =hidden_dropout_prob __lowercase =attention_probs_dropout_prob __lowercase =max_position_embeddings __lowercase =type_vocab_size __lowercase =initializer_range __lowercase =layer_norm_eps __lowercase =position_embedding_type __lowercase =classifier_dropout __lowercase =channel_shrink_ratio __lowercase =max_ad_position_embeddings
141
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = { '''google/bit-50''': '''https://huggingface.co/google/bit-50/resolve/main/config.json''', } class lowerCAmelCase ( A , A ): lowerCAmelCase_ = "bit" lowerCAmelCase_ = ["preactivation", "bottleneck"] lowerCAmelCase_ = ["SAME", "VALID"] def __init__( self : Union[str, Any] , __lowercase : Tuple=3 , __lowercase : Tuple=64 , __lowercase : List[str]=[256, 512, 1024, 2048] , __lowercase : int=[3, 4, 6, 3] , __lowercase : Optional[Any]="preactivation" , __lowercase : str="relu" , __lowercase : Tuple=None , __lowercase : int=32 , __lowercase : int=0.0 , __lowercase : Dict=False , __lowercase : List[Any]=32 , __lowercase : List[str]=1 , __lowercase : str=None , __lowercase : Any=None , **__lowercase : List[str] , ): """simple docstring""" super().__init__(**__lowercase ) if layer_type not in self.layer_types: raise ValueError(f'''layer_type={layer_type} is not one of {",".join(self.layer_types )}''' ) if global_padding is not None: if global_padding.upper() in self.supported_padding: __lowercase =global_padding.upper() else: raise ValueError(f'''Padding strategy {global_padding} not supported''' ) __lowercase =num_channels __lowercase =embedding_size __lowercase =hidden_sizes __lowercase =depths __lowercase =layer_type __lowercase =hidden_act __lowercase =global_padding __lowercase =num_groups __lowercase =drop_path_rate __lowercase =embedding_dynamic_padding __lowercase =output_stride __lowercase =width_factor __lowercase =['stem'] + [f'''stage{idx}''' for idx in range(1 , len(__lowercase ) + 1 )] __lowercase , __lowercase =get_aligned_output_features_output_indices( out_features=__lowercase , out_indices=__lowercase , stage_names=self.stage_names )
141
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE = {"configuration_wavlm": ["WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP", "WavLMConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ "WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST", "WavLMForAudioFrameClassification", "WavLMForCTC", "WavLMForSequenceClassification", "WavLMForXVector", "WavLMModel", "WavLMPreTrainedModel", ] if TYPE_CHECKING: from .configuration_wavlm import WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP, WavLMConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavlm import ( WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST, WavLMForAudioFrameClassification, WavLMForCTC, WavLMForSequenceClassification, WavLMForXVector, WavLMModel, WavLMPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
365
"""simple docstring""" import argparse import os import transformers from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS from .utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = {name: getattr(transformers, name + "Fast") for name in SLOW_TO_FAST_CONVERTERS} def _SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Any: if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES: raise ValueError(f"""Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}.""" ) if tokenizer_name is None: A__ = TOKENIZER_CLASSES else: A__ = {tokenizer_name: getattr(lowercase_ , tokenizer_name + "Fast" )} logger.info(f"""Loading tokenizer classes: {tokenizer_names}""" ) for tokenizer_name in tokenizer_names: A__ = TOKENIZER_CLASSES[tokenizer_name] A__ = True if checkpoint_name is None: A__ = list(tokenizer_class.max_model_input_sizes.keys() ) else: A__ = [checkpoint_name] logger.info(f"""For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}""" ) for checkpoint in checkpoint_names: logger.info(f"""Loading {tokenizer_class.__class__.__name__} {checkpoint}""" ) # Load tokenizer A__ = tokenizer_class.from_pretrained(lowercase_ , force_download=lowercase_ ) # Save fast tokenizer logger.info(f"""Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}""" ) # For organization names we create sub-directories if "/" in checkpoint: A__, A__ = checkpoint.split("/" ) A__ = os.path.join(lowercase_ , lowercase_ ) elif add_prefix: A__ = checkpoint A__ = dump_path else: A__ = None A__ = dump_path logger.info(f"""=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}""" ) if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]: A__ = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint] A__ = file_path.split(lowercase_ )[-1][0] if next_char == "/": A__ = os.path.join(lowercase_ , lowercase_ ) A__ = None logger.info(f"""=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}""" ) A__ = tokenizer.save_pretrained( lowercase_ , legacy_format=lowercase_ , filename_prefix=lowercase_ ) logger.info(f"""=> File names {file_names}""" ) for file_name in file_names: if not file_name.endswith("tokenizer.json" ): os.remove(lowercase_ ) logger.info(f"""=> removing {file_name}""" ) if __name__ == "__main__": SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( "--dump_path", default=None, type=str, required=True, help="Path to output generated fast tokenizer files." ) parser.add_argument( "--tokenizer_name", default=None, type=str, help=( f'Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will ' "download and convert all the checkpoints from AWS." ), ) parser.add_argument( "--checkpoint_name", default=None, type=str, help="Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.", ) parser.add_argument( "--force_download", action="store_true", help="Re-download checkpoints.", ) SCREAMING_SNAKE_CASE = parser.parse_args() convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
230
0
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from pathlib import Path import torch from ...utils import is_npu_available, is_xpu_available from .config_args import ClusterConfig, default_json_config_file from .config_utils import SubcommandHelpFormatter __snake_case : Any = 'Create a default config file for Accelerate with only a few flags set.' def __lowerCamelCase ( __snake_case : Optional[int]="no", __snake_case : str = default_json_config_file, __snake_case : bool = False ) -> List[str]: """simple docstring""" A__ : List[str] =Path(__snake_case ) path.parent.mkdir(parents=__snake_case, exist_ok=__snake_case ) if path.exists(): print( f"Configuration already exists at {save_location}, will not override. Run `accelerate config` manually or pass a different `save_location`." ) return False A__ : Tuple =mixed_precision.lower() if mixed_precision not in ["no", "fp16", "bf16", "fp8"]: raise ValueError( f"`mixed_precision` should be one of 'no', 'fp16', 'bf16', or 'fp8'. Received {mixed_precision}" ) A__ : Any ={ """compute_environment""": """LOCAL_MACHINE""", """mixed_precision""": mixed_precision, } if torch.cuda.is_available(): A__ : Tuple =torch.cuda.device_count() A__ : Dict =num_gpus A__ : List[Any] =False if num_gpus > 1: A__ : Optional[int] ="""MULTI_GPU""" else: A__ : Tuple ="""NO""" elif is_xpu_available() and use_xpu: A__ : Optional[int] =torch.xpu.device_count() A__ : List[Any] =num_xpus A__ : Union[str, Any] =False if num_xpus > 1: A__ : Tuple ="""MULTI_XPU""" else: A__ : List[Any] ="""NO""" elif is_npu_available(): A__ : List[Any] =torch.npu.device_count() A__ : Tuple =num_npus A__ : str =False if num_npus > 1: A__ : Optional[Any] ="""MULTI_NPU""" else: A__ : Dict ="""NO""" else: A__ : List[Any] =0 A__ : List[Any] =True A__ : int =1 A__ : Tuple ="""NO""" A__ : Optional[int] =ClusterConfig(**__snake_case ) config.to_json_file(__snake_case ) return path def __lowerCamelCase ( __snake_case : int, __snake_case : int ) -> Tuple: """simple docstring""" A__ : Any =parser.add_parser("""default""", parents=__snake_case, help=__snake_case, formatter_class=__snake_case ) parser.add_argument( """--config_file""", default=__snake_case, help=( """The path to use to store the config file. Will default to a file named default_config.yaml in the cache """ """location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have """ """such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed """ """with 'huggingface'.""" ), dest="""save_location""", ) parser.add_argument( """--mixed_precision""", choices=["""no""", """fp16""", """bf16"""], type=__snake_case, help="""Whether or not to use mixed precision training. """ """Choose between FP16 and BF16 (bfloat16) training. """ """BF16 training is only supported on Nvidia Ampere GPUs and PyTorch 1.10 or later.""", default="""no""", ) parser.set_defaults(func=__snake_case ) return parser def __lowerCamelCase ( __snake_case : Union[str, Any] ) -> List[Any]: """simple docstring""" A__ : int =write_basic_config(args.mixed_precision, args.save_location ) if config_file: print(f"accelerate configuration saved at {config_file}" )
134
'''simple docstring''' from __future__ import annotations from collections.abc import MutableSequence class lowerCamelCase : '''simple docstring''' def __init__( self : List[str] , lowerCAmelCase_ : int , lowerCAmelCase_ : MutableSequence[float] ) -> None: '''simple docstring''' if len(lowerCAmelCase_ ) != degree + 1: raise ValueError( """The number of coefficients should be equal to the degree + 1.""" ) A__ : list[float] =list(lowerCAmelCase_ ) A__ : Optional[int] =degree def __add__( self : Union[str, Any] , lowerCAmelCase_ : Polynomial ) -> Polynomial: '''simple docstring''' if self.degree > polynomial_a.degree: A__ : int =self.coefficients[:] for i in range(polynomial_a.degree + 1 ): coefficients[i] += polynomial_a.coefficients[i] return Polynomial(self.degree , lowerCAmelCase_ ) else: A__ : Any =polynomial_a.coefficients[:] for i in range(self.degree + 1 ): coefficients[i] += self.coefficients[i] return Polynomial(polynomial_a.degree , lowerCAmelCase_ ) def __sub__( self : str , lowerCAmelCase_ : Polynomial ) -> Polynomial: '''simple docstring''' return self + polynomial_a * Polynomial(0 , [-1] ) def __neg__( self : List[Any] ) -> Polynomial: '''simple docstring''' return Polynomial(self.degree , [-c for c in self.coefficients] ) def __mul__( self : str , lowerCAmelCase_ : Polynomial ) -> Polynomial: '''simple docstring''' A__ : list[float] =[0] * (self.degree + polynomial_a.degree + 1) for i in range(self.degree + 1 ): for j in range(polynomial_a.degree + 1 ): coefficients[i + j] += ( self.coefficients[i] * polynomial_a.coefficients[j] ) return Polynomial(self.degree + polynomial_a.degree , lowerCAmelCase_ ) def lowercase__ ( self : List[Any] , lowerCAmelCase_ : int | float ) -> int | float: '''simple docstring''' A__ : int | float =0 for i in range(self.degree + 1 ): result += self.coefficients[i] * (substitution**i) return result def __str__( self : List[str] ) -> str: '''simple docstring''' A__ : Optional[int] ="""""" for i in range(self.degree , -1 , -1 ): if self.coefficients[i] == 0: continue elif self.coefficients[i] > 0: if polynomial: polynomial += " + " else: polynomial += " - " if i == 0: polynomial += str(abs(self.coefficients[i] ) ) elif i == 1: polynomial += str(abs(self.coefficients[i] ) ) + "x" else: polynomial += str(abs(self.coefficients[i] ) ) + "x^" + str(lowerCAmelCase_ ) return polynomial def __repr__( self : Optional[Any] ) -> str: '''simple docstring''' return self.__str__() def lowercase__ ( self : str ) -> Polynomial: '''simple docstring''' A__ : list[float] =[0] * self.degree for i in range(self.degree ): A__ : Union[str, Any] =self.coefficients[i + 1] * (i + 1) return Polynomial(self.degree - 1 , lowerCAmelCase_ ) def lowercase__ ( self : Any , lowerCAmelCase_ : int | float = 0 ) -> Polynomial: '''simple docstring''' A__ : list[float] =[0] * (self.degree + 2) A__ : Any =constant for i in range(self.degree + 1 ): A__ : str =self.coefficients[i] / (i + 1) return Polynomial(self.degree + 1 , lowerCAmelCase_ ) def __eq__( self : Optional[int] , lowerCAmelCase_ : object ) -> bool: '''simple docstring''' if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): return False if self.degree != polynomial_a.degree: return False for i in range(self.degree + 1 ): if self.coefficients[i] != polynomial_a.coefficients[i]: return False return True def __ne__( self : Optional[Any] , lowerCAmelCase_ : object ) -> bool: '''simple docstring''' return not self.__eq__(lowerCAmelCase_ )
134
1
"""simple docstring""" from __future__ import annotations lowerCamelCase__ = [-10, -5, 0, 5, 5.1, 11, 13, 21, 3, 4, -21, -10, -5, -1, 0] lowerCamelCase__ = [-5, 0, 5, 5.1, 11, 13, 21, -1, 4, -1, -10, -5, -1, 0, -1] def __lowerCAmelCase (_UpperCamelCase ): __lowerCAmelCase : Optional[Any] = [] __lowerCAmelCase : int = len(a_ ) for i in range(a_ ): __lowerCAmelCase : Optional[int] = -1 for j in range(i + 1 , a_ ): if arr[i] < arr[j]: __lowerCAmelCase : Dict = arr[j] break result.append(a_ ) return result def __lowerCAmelCase (_UpperCamelCase ): __lowerCAmelCase : Tuple = [] for i, outer in enumerate(a_ ): __lowerCAmelCase : str = -1 for inner in arr[i + 1 :]: if outer < inner: __lowerCAmelCase : int = inner break result.append(a_ ) return result def __lowerCAmelCase (_UpperCamelCase ): __lowerCAmelCase : Optional[int] = len(a_ ) __lowerCAmelCase : str = [] __lowerCAmelCase : Optional[Any] = [-1] * arr_size for index in reversed(range(a_ ) ): if stack: while stack[-1] <= arr[index]: stack.pop() if not stack: break if stack: __lowerCAmelCase : Tuple = stack[-1] stack.append(arr[index] ) return result if __name__ == "__main__": from doctest import testmod from timeit import timeit testmod() print(next_greatest_element_slow(arr)) print(next_greatest_element_fast(arr)) print(next_greatest_element(arr)) lowerCamelCase__ = ( """from __main__ import arr, next_greatest_element_slow, """ """next_greatest_element_fast, next_greatest_element""" ) print( """next_greatest_element_slow():""", timeit("""next_greatest_element_slow(arr)""", setup=setup), ) print( """next_greatest_element_fast():""", timeit("""next_greatest_element_fast(arr)""", setup=setup), ) print( """ next_greatest_element():""", timeit("""next_greatest_element(arr)""", setup=setup), )
364
"""simple docstring""" # Usage: # ./gen-card-facebook-wmt19.py import os from pathlib import Path def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): __lowerCAmelCase : str = { 'en': 'Machine learning is great, isn\'t it?', 'ru': 'Машинное обучение - это здорово, не так ли?', 'de': 'Maschinelles Lernen ist großartig, oder?', } # BLUE scores as follows: # "pair": [fairseq, transformers] __lowerCAmelCase : Union[str, Any] = { 'ru-en': ['[41.3](http://matrix.statmt.org/matrix/output/1907?run_id=6937)', '39.20'], 'en-ru': ['[36.4](http://matrix.statmt.org/matrix/output/1914?run_id=6724)', '33.47'], 'en-de': ['[43.1](http://matrix.statmt.org/matrix/output/1909?run_id=6862)', '42.83'], 'de-en': ['[42.3](http://matrix.statmt.org/matrix/output/1902?run_id=6750)', '41.35'], } __lowerCAmelCase : List[str] = F"{src_lang}-{tgt_lang}" __lowerCAmelCase : Tuple = F"\n---\nlanguage: \n- {src_lang}\n- {tgt_lang}\nthumbnail:\ntags:\n- translation\n- wmt19\n- facebook\nlicense: apache-2.0\ndatasets:\n- wmt19\nmetrics:\n- bleu\n---\n\n# FSMT\n\n## Model description\n\nThis is a ported version of [fairseq wmt19 transformer](https://github.com/pytorch/fairseq/blob/master/examples/wmt19/README.md) for {src_lang}-{tgt_lang}.\n\nFor more details, please see, [Facebook FAIR's WMT19 News Translation Task Submission](https://arxiv.org/abs/1907.06616).\n\nThe abbreviation FSMT stands for FairSeqMachineTranslation\n\nAll four models are available:\n\n* [wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru)\n* [wmt19-ru-en](https://huggingface.co/facebook/wmt19-ru-en)\n* [wmt19-en-de](https://huggingface.co/facebook/wmt19-en-de)\n* [wmt19-de-en](https://huggingface.co/facebook/wmt19-de-en)\n\n## Intended uses & limitations\n\n#### How to use\n\n```python\nfrom transformers import FSMTForConditionalGeneration, FSMTTokenizer\nmname = \"facebook/wmt19-{src_lang}-{tgt_lang}\"\ntokenizer = FSMTTokenizer.from_pretrained(mname)\nmodel = FSMTForConditionalGeneration.from_pretrained(mname)\n\ninput = \"{texts[src_lang]}\"\ninput_ids = tokenizer.encode(input, return_tensors=\"pt\")\noutputs = model.generate(input_ids)\ndecoded = tokenizer.decode(outputs[0], skip_special_tokens=True)\nprint(decoded) # {texts[tgt_lang]}\n\n```\n\n#### Limitations and bias\n\n- The original (and this ported model) doesn't seem to handle well inputs with repeated sub-phrases, [content gets truncated](https://discuss.huggingface.co/t/issues-with-translating-inputs-containing-repeated-phrases/981)\n\n## Training data\n\nPretrained weights were left identical to the original model released by fairseq. For more details, please, see the [paper](https://arxiv.org/abs/1907.06616).\n\n## Eval results\n\npair | fairseq | transformers\n-------|---------|----------\n{pair} | {scores[pair][0]} | {scores[pair][1]}\n\nThe score is slightly below the score reported by `fairseq`, since `transformers`` currently doesn't support:\n- model ensemble, therefore the best performing checkpoint was ported (``model4.pt``).\n- re-ranking\n\nThe score was calculated using this code:\n\n```bash\ngit clone https://github.com/huggingface/transformers\ncd transformers\nexport PAIR={pair}\nexport DATA_DIR=data/$PAIR\nexport SAVE_DIR=data/$PAIR\nexport BS=8\nexport NUM_BEAMS=15\nmkdir -p $DATA_DIR\nsacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source\nsacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target\necho $PAIR\nPYTHONPATH=\"src:examples/seq2seq\" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS\n```\nnote: fairseq reports using a beam of 50, so you should get a slightly higher score if re-run with `--num_beams 50`.\n\n## Data Sources\n\n- [training, etc.](http://www.statmt.org/wmt19/)\n- [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561)\n\n\n### BibTeX entry and citation info\n\n```bibtex\n@inproceedings{{...,\n year={{2020}},\n title={{Facebook FAIR's WMT19 News Translation Task Submission}},\n author={{Ng, Nathan and Yee, Kyra and Baevski, Alexei and Ott, Myle and Auli, Michael and Edunov, Sergey}},\n booktitle={{Proc. of WMT}},\n}}\n```\n\n\n## TODO\n\n- port model ensemble (fairseq uses 4 model checkpoints)\n\n" os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase ) __lowerCAmelCase : Any = os.path.join(_UpperCamelCase , 'README.md' ) print(F"Generating {path}" ) with open(_UpperCamelCase , 'w' , encoding='utf-8' ) as f: f.write(_UpperCamelCase ) # make sure we are under the root of the project lowerCamelCase__ = Path(__file__).resolve().parent.parent.parent lowerCamelCase__ = repo_dir / """model_cards""" for model_name in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = model_name.split("""-""") lowerCamelCase__ = model_cards_dir / """facebook""" / model_name write_model_card(model_card_dir, src_lang=src_lang, tgt_lang=tgt_lang)
182
0
"""simple docstring""" from torch import nn class __lowercase ( nn.Module ): '''simple docstring''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase ): super().__init__() __a : str = class_size __a : Optional[Any] = embed_size # self.mlp1 = nn.Linear(embed_size, embed_size) # self.mlp2 = (nn.Linear(embed_size, class_size)) __a : Any = nn.Linear(_UpperCAmelCase , _UpperCAmelCase ) def _lowerCamelCase ( self , _UpperCAmelCase ): # hidden_state = nn.functional.relu(self.mlp1(hidden_state)) # hidden_state = self.mlp2(hidden_state) __a : Any = self.mlp(_UpperCAmelCase ) return logits
160
"""simple docstring""" A = 9.80665 def __A ( a_ :float , a_ :float , a_ :float = g) -> float: if fluid_density <= 0: raise ValueError('''Impossible fluid density''') if volume < 0: raise ValueError('''Impossible Object volume''') if gravity <= 0: raise ValueError('''Impossible Gravity''') return fluid_density * gravity * volume if __name__ == "__main__": import doctest # run doctest doctest.testmod()
160
1
'''simple docstring''' class _lowerCAmelCase : """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None ) -> Any: A_ : Any = data A_ : Optional[int] = previous A_ : Any = next_node def __str__( self ) -> str: return F"{self.data}" def UpperCAmelCase_ ( self ) -> int: return self.data def UpperCAmelCase_ ( self ) -> Dict: return self.next def UpperCAmelCase_ ( self ) -> int: return self.previous class _lowerCAmelCase : """simple docstring""" def __init__( self , _lowerCamelCase ) -> Dict: A_ : Optional[int] = head def __iter__( self ) -> Any: return self def UpperCAmelCase_ ( self ) -> Tuple: if not self.current: raise StopIteration else: A_ : int = self.current.get_data() A_ : str = self.current.get_next() return value class _lowerCAmelCase : """simple docstring""" def __init__( self ) -> List[str]: A_ : Tuple = None # First node in list A_ : Union[str, Any] = None # Last node in list def __str__( self ) -> Union[str, Any]: A_ : Optional[Any] = self.head A_ : Union[str, Any] = [] while current is not None: nodes.append(current.get_data() ) A_ : Dict = current.get_next() return " ".join(str(_lowerCamelCase ) for node in nodes ) def __contains__( self , _lowerCamelCase ) -> int: A_ : List[str] = self.head while current: if current.get_data() == value: return True A_ : Optional[int] = current.get_next() return False def __iter__( self ) -> int: return LinkedListIterator(self.head ) def UpperCAmelCase_ ( self ) -> int: if self.head: return self.head.get_data() return None def UpperCAmelCase_ ( self ) -> int: if self.tail: return self.tail.get_data() return None def UpperCAmelCase_ ( self , _lowerCamelCase ) -> None: if self.head is None: A_ : Optional[Any] = node A_ : Optional[int] = node else: self.insert_before_node(self.head , _lowerCamelCase ) def UpperCAmelCase_ ( self , _lowerCamelCase ) -> None: if self.head is None: self.set_head(_lowerCamelCase ) else: self.insert_after_node(self.tail , _lowerCamelCase ) def UpperCAmelCase_ ( self , _lowerCamelCase ) -> None: A_ : Optional[Any] = Node(_lowerCamelCase ) if self.head is None: self.set_head(_lowerCamelCase ) else: self.set_tail(_lowerCamelCase ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase ) -> None: A_ : List[str] = node A_ : Optional[Any] = node.previous if node.get_previous() is None: A_ : Union[str, Any] = node_to_insert else: A_ : List[str] = node_to_insert A_ : List[str] = node_to_insert def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase ) -> None: A_ : Tuple = node A_ : Dict = node.next if node.get_next() is None: A_ : List[Any] = node_to_insert else: A_ : int = node_to_insert A_ : List[str] = node_to_insert def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase ) -> None: A_ : List[str] = 1 A_ : Optional[int] = Node(_lowerCamelCase ) A_ : Any = self.head while node: if current_position == position: self.insert_before_node(_lowerCamelCase , _lowerCamelCase ) return current_position += 1 A_ : Optional[int] = node.next self.insert_after_node(self.tail , _lowerCamelCase ) def UpperCAmelCase_ ( self , _lowerCamelCase ) -> Node: A_ : List[Any] = self.head while node: if node.get_data() == item: return node A_ : List[Any] = node.get_next() raise Exception("""Node not found""" ) def UpperCAmelCase_ ( self , _lowerCamelCase ) -> str: if (node := self.get_node(_lowerCamelCase )) is not None: if node == self.head: A_ : int = self.head.get_next() if node == self.tail: A_ : Dict = self.tail.get_previous() self.remove_node_pointers(_lowerCamelCase ) @staticmethod def UpperCAmelCase_ ( _lowerCamelCase ) -> None: if node.get_next(): A_ : Union[str, Any] = node.previous if node.get_previous(): A_ : Union[str, Any] = node.next A_ : List[str] = None A_ : str = None def UpperCAmelCase_ ( self ) -> Optional[int]: return self.head is None def UpperCAmelCase ( ) -> None: """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
352
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCamelCase__ : List[Any] = logging.get_logger(__name__) UpperCamelCase__ : int = {'vocab_file': 'spm_char.model'} UpperCamelCase__ : Optional[Any] = { 'vocab_file': { 'microsoft/speecht5_asr': 'https://huggingface.co/microsoft/speecht5_asr/resolve/main/spm_char.model', 'microsoft/speecht5_tts': 'https://huggingface.co/microsoft/speecht5_tts/resolve/main/spm_char.model', 'microsoft/speecht5_vc': 'https://huggingface.co/microsoft/speecht5_vc/resolve/main/spm_char.model', } } UpperCamelCase__ : Union[str, Any] = { 'microsoft/speecht5_asr': 1_024, 'microsoft/speecht5_tts': 1_024, 'microsoft/speecht5_vc': 1_024, } class _lowerCAmelCase ( __A ): """simple docstring""" lowerCamelCase = VOCAB_FILES_NAMES lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase = ['''input_ids''', '''attention_mask'''] def __init__( self , _lowerCamelCase , _lowerCamelCase="<s>" , _lowerCamelCase="</s>" , _lowerCamelCase="<unk>" , _lowerCamelCase="<pad>" , _lowerCamelCase = None , **_lowerCamelCase , ) -> None: A_ : str = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_lowerCamelCase , eos_token=_lowerCamelCase , unk_token=_lowerCamelCase , pad_token=_lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , **_lowerCamelCase , ) A_ : List[Any] = vocab_file A_ : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_lowerCamelCase ) @property def UpperCAmelCase_ ( self ) -> Any: return self.sp_model.get_piece_size() def UpperCAmelCase_ ( self ) -> int: A_ : Dict = {self.convert_ids_to_tokens(_lowerCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> str: A_ : Optional[int] = self.__dict__.copy() A_ : str = None return state def __setstate__( self , _lowerCamelCase ) -> List[str]: A_ : int = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): A_ : Union[str, Any] = {} A_ : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCAmelCase_ ( self , _lowerCamelCase ) -> List[str]: return self.sp_model.encode(_lowerCamelCase , out_type=_lowerCamelCase ) def UpperCAmelCase_ ( self , _lowerCamelCase ) -> List[str]: return self.sp_model.piece_to_id(_lowerCamelCase ) def UpperCAmelCase_ ( self , _lowerCamelCase ) -> List[str]: A_ : Dict = self.sp_model.IdToPiece(_lowerCamelCase ) return token def UpperCAmelCase_ ( self , _lowerCamelCase ) -> Union[str, Any]: A_ : Tuple = [] A_ : Union[str, Any] = """""" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(_lowerCamelCase ) + token A_ : Optional[int] = [] else: current_sub_tokens.append(_lowerCamelCase ) out_string += self.sp_model.decode(_lowerCamelCase ) return out_string.strip() def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase=None ) -> List[int]: if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowerCamelCase , token_ids_a=_lowerCamelCase , already_has_special_tokens=_lowerCamelCase ) A_ : Union[str, Any] = [1] if token_ids_a is None: return ([0] * len(_lowerCamelCase )) + suffix_ones return ([0] * len(_lowerCamelCase )) + ([0] * len(_lowerCamelCase )) + suffix_ones def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase = None ) -> Tuple[str]: if not os.path.isdir(_lowerCamelCase ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return A_ : Optional[int] = os.path.join( _lowerCamelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _lowerCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(_lowerCamelCase , """wb""" ) as fi: A_ : List[str] = self.sp_model.serialized_model_proto() fi.write(_lowerCamelCase ) return (out_vocab_file,)
164
0
'''simple docstring''' import argparse import torch from torch import nn from transformers import MBartConfig, MBartForConditionalGeneration def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): _snake_case = [ """encoder.version""", """decoder.version""", """model.encoder.version""", """model.decoder.version""", """_float_tensor""", """decoder.output_projection.weight""", ] for k in ignore_keys: state_dict.pop(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): _snake_case, _snake_case = emb.weight.shape _snake_case = nn.Linear(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , bias=_SCREAMING_SNAKE_CASE ) _snake_case = emb.weight.data return lin_layer def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE="facebook/mbart-large-en-ro" , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False ): _snake_case = torch.load(_SCREAMING_SNAKE_CASE , map_location="""cpu""" )["""model"""] remove_ignore_keys_(_SCREAMING_SNAKE_CASE ) _snake_case = state_dict["""encoder.embed_tokens.weight"""].shape[0] _snake_case = MBartConfig.from_pretrained(_SCREAMING_SNAKE_CASE , vocab_size=_SCREAMING_SNAKE_CASE ) if mbart_aa and finetuned: _snake_case = """relu""" _snake_case = state_dict["""decoder.embed_tokens.weight"""] _snake_case = MBartForConditionalGeneration(_SCREAMING_SNAKE_CASE ) model.model.load_state_dict(_SCREAMING_SNAKE_CASE ) if finetuned: _snake_case = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( 'fairseq_path', type=str, help='bart.large, bart.large.cnn or a path to a model.pt on local filesystem.' ) parser.add_argument('pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument( '--hf_config', default='facebook/mbart-large-cc25', type=str, help='Which huggingface architecture to use: mbart-large', ) parser.add_argument('--mbart_50', action='store_true', help='whether the model is mMART-50 checkpoint') parser.add_argument('--finetuned', action='store_true', help='whether the model is a fine-tuned checkpoint') __lowerCAmelCase = parser.parse_args() __lowerCAmelCase = convert_fairseq_mbart_checkpoint_from_disk( args.fairseq_path, hf_config_path=args.hf_config, finetuned=args.finetuned, mbart_aa=args.mbart_aa ) model.save_pretrained(args.pytorch_dump_folder_path)
341
'''simple docstring''' __lowerCAmelCase = [ (1_000, 'M'), (900, 'CM'), (500, 'D'), (400, 'CD'), (100, 'C'), (90, 'XC'), (50, 'L'), (40, 'XL'), (10, 'X'), (9, 'IX'), (5, 'V'), (4, 'IV'), (1, 'I'), ] def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): _snake_case = {"""I""": 1, """V""": 5, """X""": 10, """L""": 50, """C""": 100, """D""": 500, """M""": 1000} _snake_case = 0 _snake_case = 0 while place < len(_SCREAMING_SNAKE_CASE ): if (place + 1 < len(_SCREAMING_SNAKE_CASE )) and (vals[roman[place]] < vals[roman[place + 1]]): total += vals[roman[place + 1]] - vals[roman[place]] place += 2 else: total += vals[roman[place]] place += 1 return total def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): _snake_case = [] for arabic, roman in ROMAN: ((_snake_case), (_snake_case)) = divmod(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) result.append(roman * factor ) if number == 0: break return "".join(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod()
341
1
def _lowerCAmelCase ( __lowerCAmelCase ) -> Optional[int]: # noqa: E741 """simple docstring""" snake_case__ : Union[str, Any] = len(__lowerCAmelCase ) snake_case__ : Union[str, Any] = 0 snake_case__ : List[Any] = [0] * n snake_case__ : List[str] = [False] * n snake_case__ : List[str] = [False] * n def dfs(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): if parent == root: out_edge_count += 1 snake_case__ : Dict = True snake_case__ : Optional[Any] = at for to in l[at]: if to == parent: pass elif not visited[to]: snake_case__ : Optional[Any] = dfs(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) snake_case__ : str = min(low[at] , low[to] ) # AP found via bridge if at < low[to]: snake_case__ : Optional[int] = True # AP found via cycle if at == low[to]: snake_case__ : List[Any] = True else: snake_case__ : Dict = min(low[at] , __lowerCAmelCase ) return out_edge_count for i in range(__lowerCAmelCase ): if not visited[i]: snake_case__ : Any = 0 snake_case__ : Any = dfs(__lowerCAmelCase , __lowerCAmelCase , -1 , __lowerCAmelCase ) snake_case__ : List[Any] = out_edge_count > 1 for x in range(len(__lowerCAmelCase ) ): if is_art[x] is True: print(__lowerCAmelCase ) # Adjacency list of graph A__ = { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], } compute_ap(data)
44
import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import MaMaaaTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from transformers.utils import is_sentencepiece_available if is_sentencepiece_available(): from transformers.models.mam_aaa.tokenization_mam_aaa import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin if is_sentencepiece_available(): A__ = get_tests_dir('''fixtures/test_sentencepiece.model''') if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right A__ = 12_8022 A__ = 12_8028 @require_sentencepiece class a ( __lowerCamelCase , unittest.TestCase ): __lowerCAmelCase : Optional[int] = MaMaaaTokenizer __lowerCAmelCase : Tuple = False __lowerCAmelCase : Any = False __lowerCAmelCase : Union[str, Any] = True def __lowerCamelCase ( self :int ): super().setUp() snake_case__ : Tuple = ['''</s>''', '''<unk>''', '''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est''', '''\u0120''', '''<pad>'''] snake_case__ : Optional[Any] = dict(zip(__lowercase ,range(len(__lowercase ) ) ) ) snake_case__ : List[Any] = Path(self.tmpdirname ) save_json(__lowercase ,save_dir / VOCAB_FILES_NAMES['''vocab_file'''] ) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(__lowercase ,save_dir / VOCAB_FILES_NAMES['''spm_file'''] ) snake_case__ : str = MaMaaaTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def __lowerCamelCase ( self :Optional[int] ,**__lowercase :Optional[int] ): return MaMaaaTokenizer.from_pretrained(self.tmpdirname ,**__lowercase ) def __lowerCamelCase ( self :Union[str, Any] ,__lowercase :Tuple ): return ( "This is a test", "This is a test", ) def __lowerCamelCase ( self :Tuple ): snake_case__ : Tuple = '''</s>''' snake_case__ : List[Any] = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__lowercase ) ,__lowercase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__lowercase ) ,__lowercase ) def __lowerCamelCase ( self :Union[str, Any] ): snake_case__ : Dict = self.get_tokenizer() snake_case__ : Union[str, Any] = list(tokenizer.get_vocab().keys() ) self.assertEqual(vocab_keys[0] ,'''</s>''' ) self.assertEqual(vocab_keys[1] ,'''<unk>''' ) self.assertEqual(vocab_keys[-1] ,'''<s>''' ) self.assertEqual(len(__lowercase ) ,tokenizer.vocab_size + len(tokenizer.get_added_vocab() ) ) @unittest.skip('''Skip this test while all models are still to be uploaded.''' ) def __lowerCamelCase ( self :List[Any] ): pass def __lowerCamelCase ( self :Optional[Any] ): snake_case__ : List[Any] = self.get_tokenizer() snake_case__ : Optional[int] = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(__lowercase ,['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__lowercase ) ,[2, 3, 4, 5, 6] ,) snake_case__ : str = tokenizer.convert_ids_to_tokens([2, 3, 4, 5, 6] ) self.assertListEqual(__lowercase ,['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) snake_case__ : Optional[int] = tokenizer.convert_tokens_to_string(__lowercase ) self.assertEqual(__lowercase ,'''This is a test''' ) @slow def __lowerCamelCase ( self :Union[str, Any] ): # fmt: off snake_case__ : Tuple = {'''input_ids''': [[1_2_8_0_2_2, 1_1_0_1_0_8, 3_9_7, 1_1, 3_8_2_7_2, 2_2_4_7, 1_2_4_8_1_1, 2_8_5, 1_8_1_0_5, 1_5_8_6, 2_0_7, 7, 3_9_5_3_4, 4_4_2_8, 3_9_7, 1_0_1_9, 1_8_1_0_5, 1_5_8_6, 2_0_7, 7, 4_1_3_3_7, 1_6_7_8_6, 2_4_1, 7, 2_0_2_1_4, 1_7, 1_2_5_6_9_0, 1_0_3_9_8, 7, 4_4_3_7_8, 5_8_0_6_9, 6_8_3_4_2, 7_7_9_8, 7_3_4_3, 1_1, 2_9_9, 3_3_3_1_0, 4, 1_5_8, 3_7_3_5_0, 9_4_0_7_7, 4_5_6_9, 2_9_9, 3_3_3_1_0, 9_0, 4, 5_2_8_4_0, 2_9_0, 4, 3_1_2_7_0, 1_1_2, 2_9_9, 6_8_2, 4, 5_2_8_4_0, 3_9_9_5_3, 1_4_0_7_9, 1_9_3, 5_2_5_1_9, 9_0_8_9_4, 1_7_8_9_4, 1_2_0_6_9_7, 1_1, 4_0_4_4_5, 5_5_1, 1_7, 1_0_1_9, 5_2_5_1_9, 9_0_8_9_4, 1_7_7_5_6, 9_6_3, 1_1, 4_0_4_4_5, 4_8_0, 1_7, 9_7_9_2, 1_1_2_0, 5_1_7_3, 1_3_9_3, 6_2_4_0, 1_6_7_8_6, 2_4_1, 1_2_0_9_9_6, 2_8, 1_2_4_5, 1_3_9_3, 1_1_8_2_4_0, 1_1_1_2_3, 1_0_1_9, 9_3_6_1_2, 2_6_9_1, 1_0_6_1_8, 9_8_0_5_8, 1_2_0_4_0_9, 1_9_2_8, 2_7_9, 4, 4_0_6_8_3, 3_6_7, 1_7_8, 2_0_7, 1_0_1_9, 1_0_3, 1_0_3_1_2_1, 5_0_6, 6_5_2_9_6, 5, 2], [1_2_8_0_2_2, 2_1_2_1_7, 3_6_7, 1_1_7, 1_2_5_4_5_0, 1_2_8, 7_1_9, 7, 7_3_0_8, 4_0, 9_3_6_1_2, 1_2_6_6_9, 1_1_1_6, 1_6_7_0_4, 7_1, 1_7_7_8_5, 3_6_9_9, 1_5_5_9_2, 3_5, 1_4_4, 9_5_8_4, 2_4_1, 1_1_9_4_3, 7_1_3, 9_5_0, 7_9_9, 2_2_4_7, 8_8_4_2_7, 1_5_0, 1_4_9, 1_1_8_8_1_3, 1_2_0_7_0_6, 1_0_1_9, 1_0_6_9_0_6, 8_1_5_1_8, 2_8, 1_2_2_4, 2_2_7_9_9, 3_9_7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1_2_8_0_2_2, 1_6_5_8, 1_2_3_3_1_1, 5_1_5_5, 5_5_7_8, 4_7_2_2, 2_7_9, 1_4_9_4_7, 2_3_6_6, 1_1_2_0, 1_1_9_7, 1_4, 1_3_4_8, 9_2_3_2, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__lowercase ,model_name='''facebook/m2m100_418M''' ,revision='''c168bae485c864188cf9aa0e4108b0b6934dc91e''' ,) @require_torch @require_sentencepiece @require_tokenizers class a ( unittest.TestCase ): __lowerCAmelCase : Union[str, Any] = """facebook/m2m100_418M""" __lowerCAmelCase : Union[str, Any] = [ """In my opinion, there are two levels of response from the French government.""", """NSA Affair Emphasizes Complete Lack of Debate on Intelligence""", ] __lowerCAmelCase : Optional[Any] = [ """Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.""", """L'affaire NSA souligne l'absence totale de débat sur le renseignement""", ] # fmt: off __lowerCAmelCase : Dict = [EN_CODE, 5_93, 19_49, 11_57_81, 4, 7_15_86, 42_34, 6_06_33, 12_62_33, 4_32, 12_38_08, 1_55_92, 11_97, 11_71_32, 12_06_18, 5, 2] @classmethod def __lowerCamelCase ( cls :Union[str, Any] ): snake_case__ : MaMaaaTokenizer = MaMaaaTokenizer.from_pretrained( cls.checkpoint_name ,src_lang='''en''' ,tgt_lang='''fr''' ) snake_case__ : Union[str, Any] = 1 return cls def __lowerCamelCase ( self :Tuple ): self.assertEqual(self.tokenizer.get_lang_id('''ar''' ) ,1_2_8_0_0_6 ) self.assertEqual(self.tokenizer.get_lang_id('''en''' ) ,1_2_8_0_2_2 ) self.assertEqual(self.tokenizer.get_lang_id('''ro''' ) ,1_2_8_0_7_6 ) self.assertEqual(self.tokenizer.get_lang_id('''mr''' ) ,1_2_8_0_6_3 ) def __lowerCamelCase ( self :Any ): snake_case__ : Optional[int] = self.tokenizer.get_vocab() self.assertEqual(len(__lowercase ) ,self.tokenizer.vocab_size ) self.assertEqual(vocab['''<unk>'''] ,3 ) self.assertIn(self.tokenizer.get_lang_token('''en''' ) ,__lowercase ) def __lowerCamelCase ( self :Optional[Any] ): snake_case__ : Optional[int] = '''en''' snake_case__ : Any = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens ,__lowercase ) def __lowerCamelCase ( self :List[Any] ): self.assertIn(__lowercase ,self.tokenizer.all_special_ids ) # fmt: off snake_case__ : int = [FR_CODE, 5_3_6_4, 8_2, 8_6_4_2, 4, 2_9_4, 4_7, 8, 1_4_0_2_8, 1_3_6, 3_2_8_6, 9_7_0_6, 6, 9_0_7_9_7, 6, 1_4_4_0_1_2, 1_6_2, 8_8_1_2_8, 3_0_0_6_1, 5, 2] # fmt: on snake_case__ : Tuple = self.tokenizer.decode(__lowercase ,skip_special_tokens=__lowercase ) snake_case__ : Optional[int] = self.tokenizer.decode(generated_ids[1:] ,skip_special_tokens=__lowercase ) self.assertEqual(__lowercase ,__lowercase ) self.assertNotIn(self.tokenizer.eos_token ,__lowercase ) def __lowerCamelCase ( self :Any ): snake_case__ : List[Any] = tempfile.mkdtemp() snake_case__ : List[Any] = self.tokenizer.lang_token_to_id self.tokenizer.save_pretrained(__lowercase ) snake_case__ : Any = MaMaaaTokenizer.from_pretrained(__lowercase ) self.assertDictEqual(new_tok.lang_token_to_id ,__lowercase ) @require_torch def __lowerCamelCase ( self :str ): snake_case__ : Dict = '''en''' snake_case__ : List[Any] = '''fr''' snake_case__ : Union[str, Any] = self.tokenizer(self.src_text ,text_target=self.tgt_text ,padding=__lowercase ,return_tensors='''pt''' ) snake_case__ : Optional[int] = shift_tokens_right( batch['''labels'''] ,self.tokenizer.pad_token_id ,self.tokenizer.eos_token_id ) for k in batch: snake_case__ : Optional[int] = batch[k].tolist() # batch = {k: v.tolist() for k,v in batch.items()} # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 # batch.decoder_inputs_ids[0][0] == assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == FR_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2] == [2, FR_CODE] @require_torch def __lowerCamelCase ( self :Optional[int] ): snake_case__ : Optional[Any] = '''mr''' self.assertListEqual(self.tokenizer.prefix_tokens ,[self.tokenizer.get_lang_id('''mr''' )] ) self.assertListEqual(self.tokenizer.suffix_tokens ,[self.tokenizer.eos_token_id] ) snake_case__ : Any = '''zh''' self.assertListEqual(self.tokenizer.prefix_tokens ,[self.tokenizer.get_lang_id('''zh''' )] ) self.assertListEqual(self.tokenizer.suffix_tokens ,[self.tokenizer.eos_token_id] ) @require_torch def __lowerCamelCase ( self :Tuple ): snake_case__ : Union[str, Any] = '''mr''' self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens ,[self.tokenizer.get_lang_id('''mr''' )] ) self.assertListEqual(self.tokenizer.suffix_tokens ,[self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens ,[self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) snake_case__ : List[str] = '''zh''' self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens ,[self.tokenizer.get_lang_id('''zh''' )] ) self.assertListEqual(self.tokenizer.suffix_tokens ,[self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens ,[self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) @require_torch def __lowerCamelCase ( self :Tuple ): snake_case__ : str = self.tokenizer._build_translation_inputs('''A test''' ,return_tensors='''pt''' ,src_lang='''en''' ,tgt_lang='''ar''' ) self.assertEqual( nested_simplify(__lowercase ) ,{ # en_XX, A, test, EOS '''input_ids''': [[1_2_8_0_2_2, 5_8, 4_1_8_3, 2]], '''attention_mask''': [[1, 1, 1, 1]], # ar_AR '''forced_bos_token_id''': 1_2_8_0_0_6, } ,)
44
1
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=__SCREAMING_SNAKE_CASE ) class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = field(default="language-modeling" , metadata={"include_in_asdict_even_if_is_default": True} ) lowercase_ = Features({"text": Value("string" )} ) lowercase_ = Features({} ) lowercase_ = "text" @property def SCREAMING_SNAKE_CASE_ (self : Optional[int]) ->Dict[str, str]: '''simple docstring''' return {self.text_column: "text"}
10
def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase ) -> int: """simple docstring""" return int((input_a, input_a).count(1 ) != 0 ) def _lowerCAmelCase ( ) -> None: """simple docstring""" assert or_gate(0 , 0 ) == 0 assert or_gate(0 , 1 ) == 1 assert or_gate(1 , 0 ) == 1 assert or_gate(1 , 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
230
0
'''simple docstring''' import unittest from transformers import ( MODEL_FOR_OBJECT_DETECTION_MAPPING, AutoFeatureExtractor, AutoModelForObjectDetection, ObjectDetectionPipeline, is_vision_available, pipeline, ) from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_pytesseract, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class __SCREAMING_SNAKE_CASE : """simple docstring""" @staticmethod def UpperCamelCase__ ( *__a : List[Any] , **__a : List[str] ): pass @is_pipeline_test @require_vision @require_timm @require_torch class __SCREAMING_SNAKE_CASE (unittest.TestCase ): """simple docstring""" __a =MODEL_FOR_OBJECT_DETECTION_MAPPING def UpperCamelCase__ ( self : Any , __a : Union[str, Any] , __a : Any , __a : Tuple ): _a = ObjectDetectionPipeline(model=_a , image_processor=_a ) return object_detector, ["./tests/fixtures/tests_samples/COCO/000000039769.png"] def UpperCamelCase__ ( self : Union[str, Any] , __a : Optional[int] , __a : Dict ): _a = object_detector("./tests/fixtures/tests_samples/COCO/000000039769.png" , threshold=0.0 ) self.assertGreater(len(_a ) , 0 ) for detected_object in outputs: self.assertEqual( _a , { "score": ANY(_a ), "label": ANY(_a ), "box": {"xmin": ANY(_a ), "ymin": ANY(_a ), "xmax": ANY(_a ), "ymax": ANY(_a )}, } , ) import datasets _a = datasets.load_dataset("hf-internal-testing/fixtures_image_utils" , "image" , split="test" ) _a = [ Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ), """http://images.cocodataset.org/val2017/000000039769.jpg""", # RGBA dataset[0]["""file"""], # LA dataset[1]["""file"""], # L dataset[2]["""file"""], ] _a = object_detector(_a , threshold=0.0 ) self.assertEqual(len(_a ) , len(_a ) ) for outputs in batch_outputs: self.assertGreater(len(_a ) , 0 ) for detected_object in outputs: self.assertEqual( _a , { "score": ANY(_a ), "label": ANY(_a ), "box": {"xmin": ANY(_a ), "ymin": ANY(_a ), "xmax": ANY(_a ), "ymax": ANY(_a )}, } , ) @require_tf @unittest.skip("Object detection not implemented in TF" ) def UpperCamelCase__ ( self : Optional[Any] ): pass @require_torch def UpperCamelCase__ ( self : Dict ): _a = """hf-internal-testing/tiny-detr-mobilenetsv3""" _a = AutoModelForObjectDetection.from_pretrained(_a ) _a = AutoFeatureExtractor.from_pretrained(_a ) _a = ObjectDetectionPipeline(model=_a , feature_extractor=_a ) _a = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" , threshold=0.0 ) self.assertEqual( nested_simplify(_a , decimals=4 ) , [ {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 1_59, "ymin": 1_20, "xmax": 4_80, "ymax": 3_59}}, {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 1_59, "ymin": 1_20, "xmax": 4_80, "ymax": 3_59}}, ] , ) _a = object_detector( [ "http://images.cocodataset.org/val2017/000000039769.jpg", "http://images.cocodataset.org/val2017/000000039769.jpg", ] , threshold=0.0 , ) self.assertEqual( nested_simplify(_a , decimals=4 ) , [ [ {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 1_59, "ymin": 1_20, "xmax": 4_80, "ymax": 3_59}}, {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 1_59, "ymin": 1_20, "xmax": 4_80, "ymax": 3_59}}, ], [ {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 1_59, "ymin": 1_20, "xmax": 4_80, "ymax": 3_59}}, {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 1_59, "ymin": 1_20, "xmax": 4_80, "ymax": 3_59}}, ], ] , ) @require_torch @slow def UpperCamelCase__ ( self : int ): _a = """facebook/detr-resnet-50""" _a = AutoModelForObjectDetection.from_pretrained(_a ) _a = AutoFeatureExtractor.from_pretrained(_a ) _a = ObjectDetectionPipeline(model=_a , feature_extractor=_a ) _a = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" ) self.assertEqual( nested_simplify(_a , decimals=4 ) , [ {"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 1_75, "ymax": 1_17}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 3_33, "ymin": 72, "xmax": 3_68, "ymax": 1_87}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 6_39, "ymax": 4_73}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 3_14, "ymax": 4_70}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 3_45, "ymin": 23, "xmax": 6_40, "ymax": 3_68}}, ] , ) _a = object_detector( [ "http://images.cocodataset.org/val2017/000000039769.jpg", "http://images.cocodataset.org/val2017/000000039769.jpg", ] ) self.assertEqual( nested_simplify(_a , decimals=4 ) , [ [ {"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 1_75, "ymax": 1_17}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 3_33, "ymin": 72, "xmax": 3_68, "ymax": 1_87}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 6_39, "ymax": 4_73}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 3_14, "ymax": 4_70}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 3_45, "ymin": 23, "xmax": 6_40, "ymax": 3_68}}, ], [ {"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 1_75, "ymax": 1_17}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 3_33, "ymin": 72, "xmax": 3_68, "ymax": 1_87}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 6_39, "ymax": 4_73}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 3_14, "ymax": 4_70}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 3_45, "ymin": 23, "xmax": 6_40, "ymax": 3_68}}, ], ] , ) @require_torch @slow def UpperCamelCase__ ( self : int ): _a = """facebook/detr-resnet-50""" _a = pipeline("object-detection" , model=_a ) _a = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" ) self.assertEqual( nested_simplify(_a , decimals=4 ) , [ {"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 1_75, "ymax": 1_17}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 3_33, "ymin": 72, "xmax": 3_68, "ymax": 1_87}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 6_39, "ymax": 4_73}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 3_14, "ymax": 4_70}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 3_45, "ymin": 23, "xmax": 6_40, "ymax": 3_68}}, ] , ) _a = object_detector( [ "http://images.cocodataset.org/val2017/000000039769.jpg", "http://images.cocodataset.org/val2017/000000039769.jpg", ] ) self.assertEqual( nested_simplify(_a , decimals=4 ) , [ [ {"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 1_75, "ymax": 1_17}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 3_33, "ymin": 72, "xmax": 3_68, "ymax": 1_87}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 6_39, "ymax": 4_73}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 3_14, "ymax": 4_70}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 3_45, "ymin": 23, "xmax": 6_40, "ymax": 3_68}}, ], [ {"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 1_75, "ymax": 1_17}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 3_33, "ymin": 72, "xmax": 3_68, "ymax": 1_87}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 6_39, "ymax": 4_73}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 3_14, "ymax": 4_70}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 3_45, "ymin": 23, "xmax": 6_40, "ymax": 3_68}}, ], ] , ) @require_torch @slow def UpperCamelCase__ ( self : str ): _a = 0.9985 _a = """facebook/detr-resnet-50""" _a = pipeline("object-detection" , model=_a ) _a = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" , threshold=_a ) self.assertEqual( nested_simplify(_a , decimals=4 ) , [ {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 3_14, "ymax": 4_70}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 3_45, "ymin": 23, "xmax": 6_40, "ymax": 3_68}}, ] , ) @require_torch @require_pytesseract @slow def UpperCamelCase__ ( self : Union[str, Any] ): _a = """Narsil/layoutlmv3-finetuned-funsd""" _a = 0.9993 _a = pipeline("object-detection" , model=_a , threshold=_a ) _a = object_detector( "https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png" ) self.assertEqual( nested_simplify(_a , decimals=4 ) , [ {"score": 0.9993, "label": "I-ANSWER", "box": {"xmin": 2_94, "ymin": 2_54, "xmax": 3_43, "ymax": 2_64}}, {"score": 0.9993, "label": "I-ANSWER", "box": {"xmin": 2_94, "ymin": 2_54, "xmax": 3_43, "ymax": 2_64}}, ] , )
362
'''simple docstring''' def _lowerCamelCase ( lowercase : int , lowercase : list ) -> Union[str, Any]: _enforce_args(lowercase , lowercase ) if n == 0: return 0 _a = float("-inf" ) for i in range(1 , n + 1 ): _a = max( lowercase , prices[i - 1] + naive_cut_rod_recursive(n - i , lowercase ) ) return max_revue def _lowerCamelCase ( lowercase : int , lowercase : list ) -> Tuple: _enforce_args(lowercase , lowercase ) _a = [float("-inf" ) for _ in range(n + 1 )] return _top_down_cut_rod_recursive(lowercase , lowercase , lowercase ) def _lowerCamelCase ( lowercase : int , lowercase : list , lowercase : list ) -> List[str]: if max_rev[n] >= 0: return max_rev[n] elif n == 0: return 0 else: _a = float("-inf" ) for i in range(1 , n + 1 ): _a = max( lowercase , prices[i - 1] + _top_down_cut_rod_recursive(n - i , lowercase , lowercase ) , ) _a = max_revenue return max_rev[n] def _lowerCamelCase ( lowercase : int , lowercase : list ) -> Any: _enforce_args(lowercase , lowercase ) # length(max_rev) = n + 1, to accommodate for the revenue obtainable from a rod of # length 0. _a = [float("-inf" ) for _ in range(n + 1 )] _a = 0 for i in range(1 , n + 1 ): _a = max_rev[i] for j in range(1 , i + 1 ): _a = max(lowercase , prices[j - 1] + max_rev[i - j] ) _a = max_revenue_i return max_rev[n] def _lowerCamelCase ( lowercase : int , lowercase : list ) -> Dict: if n < 0: _a = F'n must be greater than or equal to 0. Got n = {n}' raise ValueError(lowercase ) if n > len(lowercase ): _a = ( "Each integral piece of rod must have a corresponding price. " F'Got n = {n} but length of prices = {len(lowercase )}' ) raise ValueError(lowercase ) def _lowerCamelCase ( ) -> Any: _a = [6, 10, 12, 15, 20, 23] _a = len(lowercase ) # the best revenue comes from cutting the rod into 6 pieces, each # of length 1 resulting in a revenue of 6 * 6 = 36. _a = 36 _a = top_down_cut_rod(lowercase , lowercase ) _a = bottom_up_cut_rod(lowercase , lowercase ) _a = naive_cut_rod_recursive(lowercase , lowercase ) assert expected_max_revenue == max_rev_top_down assert max_rev_top_down == max_rev_bottom_up assert max_rev_bottom_up == max_rev_naive if __name__ == "__main__": main()
346
0
import copy import unittest from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_MULTIPLE_CHOICE_MAPPING, MODEL_FOR_QUESTION_ANSWERING_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, ) from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__(self : Dict , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Tuple=2 , UpperCAmelCase_ : Dict=3 , UpperCAmelCase_ : Dict=4 , UpperCAmelCase_ : List[str]=2 , UpperCAmelCase_ : Optional[Any]=7 , UpperCAmelCase_ : int=True , UpperCAmelCase_ : Optional[Any]=True , UpperCAmelCase_ : List[Any]=True , UpperCAmelCase_ : Any=True , UpperCAmelCase_ : Any=99 , UpperCAmelCase_ : Optional[int]=36 , UpperCAmelCase_ : Dict=3 , UpperCAmelCase_ : int=4 , UpperCAmelCase_ : List[str]=37 , UpperCAmelCase_ : Optional[Any]="gelu" , UpperCAmelCase_ : Tuple=0.1 , UpperCAmelCase_ : Union[str, Any]=0.1 , UpperCAmelCase_ : List[str]=512 , UpperCAmelCase_ : int=16 , UpperCAmelCase_ : int=2 , UpperCAmelCase_ : Optional[int]=0.02 , UpperCAmelCase_ : int=6 , UpperCAmelCase_ : Dict=6 , UpperCAmelCase_ : Any=3 , UpperCAmelCase_ : int=4 , UpperCAmelCase_ : Optional[Any]=None , UpperCAmelCase_ : Optional[Any]=1_000 , ) ->Tuple: '''simple docstring''' lowerCamelCase__: Tuple =parent lowerCamelCase__: Union[str, Any] =batch_size lowerCamelCase__: Dict =num_channels lowerCamelCase__: int =image_size lowerCamelCase__: List[Any] =patch_size lowerCamelCase__: Union[str, Any] =text_seq_length lowerCamelCase__: str =is_training lowerCamelCase__: Dict =use_input_mask lowerCamelCase__: Optional[Any] =use_token_type_ids lowerCamelCase__: List[str] =use_labels lowerCamelCase__: int =vocab_size lowerCamelCase__: Optional[Any] =hidden_size lowerCamelCase__: Tuple =num_hidden_layers lowerCamelCase__: Optional[Any] =num_attention_heads lowerCamelCase__: Optional[int] =intermediate_size lowerCamelCase__: Union[str, Any] =hidden_act lowerCamelCase__: Union[str, Any] =hidden_dropout_prob lowerCamelCase__: Dict =attention_probs_dropout_prob lowerCamelCase__: Any =max_position_embeddings lowerCamelCase__: Tuple =type_vocab_size lowerCamelCase__: str =type_sequence_label_size lowerCamelCase__: Optional[Any] =initializer_range lowerCamelCase__: Optional[int] =coordinate_size lowerCamelCase__: Any =shape_size lowerCamelCase__: Optional[Any] =num_labels lowerCamelCase__: Optional[int] =num_choices lowerCamelCase__: int =scope lowerCamelCase__: str =range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) lowerCamelCase__: str =text_seq_length lowerCamelCase__: List[Any] =(image_size // patch_size) ** 2 + 1 lowerCamelCase__: List[Any] =self.text_seq_length + self.image_seq_length def SCREAMING_SNAKE_CASE_ (self : Any) ->Any: '''simple docstring''' lowerCamelCase__: Optional[Any] =ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size) lowerCamelCase__: Union[str, Any] =ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox) # Ensure that bbox is legal for i in range(bbox.shape[0]): for j in range(bbox.shape[1]): if bbox[i, j, 3] < bbox[i, j, 1]: lowerCamelCase__: Dict =bbox[i, j, 3] lowerCamelCase__: Union[str, Any] =bbox[i, j, 1] lowerCamelCase__: str =t if bbox[i, j, 2] < bbox[i, j, 0]: lowerCamelCase__: Tuple =bbox[i, j, 2] lowerCamelCase__: Any =bbox[i, j, 0] lowerCamelCase__: Optional[Any] =t lowerCamelCase__: str =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) lowerCamelCase__: Union[str, Any] =None if self.use_input_mask: lowerCamelCase__: Optional[int] =random_attention_mask([self.batch_size, self.text_seq_length]) lowerCamelCase__: Any =None if self.use_token_type_ids: lowerCamelCase__: Any =ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size) lowerCamelCase__: str =None lowerCamelCase__: List[Any] =None if self.use_labels: lowerCamelCase__: Tuple =ids_tensor([self.batch_size] , self.type_sequence_label_size) lowerCamelCase__: Tuple =ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels) lowerCamelCase__: str =LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def SCREAMING_SNAKE_CASE_ (self : int , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: Optional[int] =LayoutLMvaModel(config=UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() # text + image lowerCamelCase__: Optional[int] =model(UpperCAmelCase_ , pixel_values=UpperCAmelCase_) lowerCamelCase__: Tuple =model( UpperCAmelCase_ , bbox=UpperCAmelCase_ , pixel_values=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_) lowerCamelCase__: Any =model(UpperCAmelCase_ , bbox=UpperCAmelCase_ , pixel_values=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_) lowerCamelCase__: int =model(UpperCAmelCase_ , bbox=UpperCAmelCase_ , pixel_values=UpperCAmelCase_) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) # text only lowerCamelCase__: str =model(UpperCAmelCase_) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size)) # image only lowerCamelCase__: int =model(pixel_values=UpperCAmelCase_) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size)) def SCREAMING_SNAKE_CASE_ (self : int , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[Any]) ->List[str]: '''simple docstring''' lowerCamelCase__: Any =self.num_labels lowerCamelCase__: Optional[Any] =LayoutLMvaForSequenceClassification(UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() lowerCamelCase__: int =model( UpperCAmelCase_ , bbox=UpperCAmelCase_ , pixel_values=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def SCREAMING_SNAKE_CASE_ (self : Tuple , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Any , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Any , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[Any]) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: Tuple =self.num_labels lowerCamelCase__: List[str] =LayoutLMvaForTokenClassification(config=UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() lowerCamelCase__: Union[str, Any] =model( UpperCAmelCase_ , bbox=UpperCAmelCase_ , pixel_values=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels)) def SCREAMING_SNAKE_CASE_ (self : Tuple , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : str , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[str]) ->Tuple: '''simple docstring''' lowerCamelCase__: Optional[int] =LayoutLMvaForQuestionAnswering(config=UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() lowerCamelCase__: Union[str, Any] =model( UpperCAmelCase_ , bbox=UpperCAmelCase_ , pixel_values=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , start_positions=UpperCAmelCase_ , end_positions=UpperCAmelCase_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def SCREAMING_SNAKE_CASE_ (self : Dict) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: Optional[Any] =self.prepare_config_and_inputs() ( ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ): List[Any] =config_and_inputs lowerCamelCase__: List[str] ={ "input_ids": input_ids, "bbox": bbox, "pixel_values": pixel_values, "token_type_ids": token_type_ids, "attention_mask": input_mask, } return config, inputs_dict @require_torch class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase_ = False lowercase_ = False lowercase_ = False lowercase_ = ( ( LayoutLMvaModel, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaForQuestionAnswering, ) if is_torch_available() else () ) lowercase_ = ( {"document-question-answering": LayoutLMvaForQuestionAnswering, "feature-extraction": LayoutLMvaModel} if is_torch_available() else {} ) def SCREAMING_SNAKE_CASE_ (self : Dict , UpperCAmelCase_ : str , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : str , UpperCAmelCase_ : Any) ->Optional[int]: '''simple docstring''' return True def SCREAMING_SNAKE_CASE_ (self : int) ->Dict: '''simple docstring''' lowerCamelCase__: Union[str, Any] =LayoutLMvaModelTester(self) lowerCamelCase__: Union[str, Any] =ConfigTester(self , config_class=UpperCAmelCase_ , hidden_size=37) def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : List[Any]=False) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: Any =copy.deepcopy(UpperCAmelCase_) if model_class in get_values(UpperCAmelCase_): lowerCamelCase__: Union[str, Any] ={ k: v.unsqueeze(1).expand(-1 , self.model_tester.num_choices , -1).contiguous() if isinstance(UpperCAmelCase_ , torch.Tensor) and v.ndim > 1 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(UpperCAmelCase_): lowerCamelCase__: Optional[int] =torch.ones(self.model_tester.batch_size , dtype=torch.long , device=UpperCAmelCase_) elif model_class in get_values(UpperCAmelCase_): lowerCamelCase__: int =torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCAmelCase_) lowerCamelCase__: int =torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCAmelCase_) elif model_class in [ *get_values(UpperCAmelCase_), ]: lowerCamelCase__: Union[str, Any] =torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCAmelCase_) elif model_class in [ *get_values(UpperCAmelCase_), ]: lowerCamelCase__: int =torch.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=torch.long , device=UpperCAmelCase_ , ) return inputs_dict def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->int: '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->List[str]: '''simple docstring''' lowerCamelCase__: Optional[int] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : str) ->str: '''simple docstring''' lowerCamelCase__: Tuple =self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowerCamelCase__: Union[str, Any] =type self.model_tester.create_and_check_model(*UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->List[Any]: '''simple docstring''' lowerCamelCase__: Union[str, Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: List[str] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : List[str]) ->Optional[int]: '''simple docstring''' lowerCamelCase__: List[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase_) @slow def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Union[str, Any]: '''simple docstring''' for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__: int =LayoutLMvaModel.from_pretrained(UpperCAmelCase_) self.assertIsNotNone(UpperCAmelCase_) def lowerCAmelCase_ ( ) -> Dict: """simple docstring""" lowerCamelCase__: str =Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @cached_property def SCREAMING_SNAKE_CASE_ (self : Any) ->str: '''simple docstring''' return LayoutLMvaImageProcessor(apply_ocr=UpperCAmelCase_) if is_vision_available() else None @slow def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: Optional[Any] =LayoutLMvaModel.from_pretrained("microsoft/layoutlmv3-base").to(UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =self.default_image_processor lowerCamelCase__: List[Any] =prepare_img() lowerCamelCase__: Union[str, Any] =image_processor(images=UpperCAmelCase_ , return_tensors="pt").pixel_values.to(UpperCAmelCase_) lowerCamelCase__: Any =torch.tensor([[1, 2]]) lowerCamelCase__: str =torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]]).unsqueeze(0) # forward pass lowerCamelCase__: Tuple =model( input_ids=input_ids.to(UpperCAmelCase_) , bbox=bbox.to(UpperCAmelCase_) , pixel_values=pixel_values.to(UpperCAmelCase_) , ) # verify the logits lowerCamelCase__: str =torch.Size((1, 199, 768)) self.assertEqual(outputs.last_hidden_state.shape , UpperCAmelCase_) lowerCamelCase__: Dict =torch.tensor( [[-0.0529, 0.3618, 0.1632], [-0.1587, -0.1667, -0.0400], [-0.1557, -0.1671, -0.0505]]).to(UpperCAmelCase_) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , UpperCAmelCase_ , atol=1E-4))
10
import pytest import datasets.config from datasets.utils.info_utils import is_small_dataset @pytest.mark.parametrize('''dataset_size''' , [None, 400 * 2**20, 600 * 2**20] ) @pytest.mark.parametrize('''input_in_memory_max_size''' , ['''default''', 0, 100 * 2**20, 900 * 2**20] ) def A ( _lowercase , _lowercase , _lowercase ): if input_in_memory_max_size != "default": monkeypatch.setattr(datasets.config , '''IN_MEMORY_MAX_SIZE''' , _lowercase ) SCREAMING_SNAKE_CASE : Tuple = datasets.config.IN_MEMORY_MAX_SIZE if input_in_memory_max_size == "default": assert in_memory_max_size == 0 else: assert in_memory_max_size == input_in_memory_max_size if dataset_size and in_memory_max_size: SCREAMING_SNAKE_CASE : str = dataset_size < in_memory_max_size else: SCREAMING_SNAKE_CASE : Union[str, Any] = False SCREAMING_SNAKE_CASE : Any = is_small_dataset(_lowercase ) assert result == expected
182
0
import string from math import logaa def lowerCamelCase_ ( UpperCamelCase__ : str, UpperCamelCase__ : str ): '''simple docstring''' UpperCamelCase__ = document.translate( str.maketrans('''''', '''''', string.punctuation ) ).replace('''\n''', '''''' ) UpperCamelCase__ = document_without_punctuation.split(''' ''' ) # word tokenization return len([word for word in tokenize_document if word.lower() == term.lower()] ) def lowerCamelCase_ ( UpperCamelCase__ : str, UpperCamelCase__ : str ): '''simple docstring''' UpperCamelCase__ = corpus.lower().translate( str.maketrans('''''', '''''', string.punctuation ) ) # strip all punctuation and replace it with '' UpperCamelCase__ = corpus_without_punctuation.split('''\n''' ) UpperCamelCase__ = term.lower() return (len([doc for doc in docs if term in doc] ), len(UpperCamelCase__ )) def lowerCamelCase_ ( UpperCamelCase__ : int, UpperCamelCase__ : int, UpperCamelCase__ : List[str]=False ): '''simple docstring''' if smoothing: if n == 0: raise ValueError('''log10(0) is undefined.''' ) return round(1 + logaa(n / (1 + df) ), 3 ) if df == 0: raise ZeroDivisionError('''df must be > 0''' ) elif n == 0: raise ValueError('''log10(0) is undefined.''' ) return round(logaa(n / df ), 3 ) def lowerCamelCase_ ( UpperCamelCase__ : int, UpperCamelCase__ : int ): '''simple docstring''' return round(tf * idf, 3 )
35
import copy import os from typing import TYPE_CHECKING, List, Union if TYPE_CHECKING: pass from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase = logging.get_logger(__name__) lowercase = { """kakaobrain/align-base""": """https://huggingface.co/kakaobrain/align-base/resolve/main/config.json""", } class __lowercase ( A ): '''simple docstring''' _A : int = '''align_text_model''' def __init__( self : Tuple , _a : Tuple=30_522 , _a : str=768 , _a : Tuple=12 , _a : Dict=12 , _a : Any=3_072 , _a : str="gelu" , _a : int=0.1 , _a : Optional[Any]=0.1 , _a : int=512 , _a : List[str]=2 , _a : Any=0.02 , _a : Dict=1E-12 , _a : Tuple=0 , _a : Optional[Any]="absolute" , _a : str=True , **_a : Union[str, Any] , ): super().__init__(**_a ) UpperCamelCase__ = vocab_size UpperCamelCase__ = hidden_size UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = num_attention_heads UpperCamelCase__ = hidden_act UpperCamelCase__ = intermediate_size UpperCamelCase__ = hidden_dropout_prob UpperCamelCase__ = attention_probs_dropout_prob UpperCamelCase__ = max_position_embeddings UpperCamelCase__ = type_vocab_size UpperCamelCase__ = initializer_range UpperCamelCase__ = layer_norm_eps UpperCamelCase__ = position_embedding_type UpperCamelCase__ = use_cache UpperCamelCase__ = pad_token_id @classmethod def A_ ( cls : List[str] , _a : Union[str, os.PathLike] , **_a : Any ): cls._set_token_in_kwargs(_a ) UpperCamelCase__ , UpperCamelCase__ = cls.get_config_dict(_a , **_a ) # get the text config dict if we are loading from AlignConfig if config_dict.get('''model_type''' ) == "align": UpperCamelCase__ = config_dict['''text_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_a , **_a ) class __lowercase ( A ): '''simple docstring''' _A : List[Any] = '''align_vision_model''' def __init__( self : List[str] , _a : int = 3 , _a : int = 600 , _a : float = 2.0 , _a : float = 3.1 , _a : int = 8 , _a : List[int] = [3, 3, 5, 3, 5, 5, 3] , _a : List[int] = [32, 16, 24, 40, 80, 112, 192] , _a : List[int] = [16, 24, 40, 80, 112, 192, 320] , _a : List[int] = [] , _a : List[int] = [1, 2, 2, 2, 1, 2, 1] , _a : List[int] = [1, 2, 2, 3, 3, 4, 1] , _a : List[int] = [1, 6, 6, 6, 6, 6, 6] , _a : float = 0.25 , _a : str = "swish" , _a : int = 2_560 , _a : str = "mean" , _a : float = 0.02 , _a : float = 0.001 , _a : float = 0.99 , _a : float = 0.2 , **_a : List[Any] , ): super().__init__(**_a ) UpperCamelCase__ = num_channels UpperCamelCase__ = image_size UpperCamelCase__ = width_coefficient UpperCamelCase__ = depth_coefficient UpperCamelCase__ = depth_divisor UpperCamelCase__ = kernel_sizes UpperCamelCase__ = in_channels UpperCamelCase__ = out_channels UpperCamelCase__ = depthwise_padding UpperCamelCase__ = strides UpperCamelCase__ = num_block_repeats UpperCamelCase__ = expand_ratios UpperCamelCase__ = squeeze_expansion_ratio UpperCamelCase__ = hidden_act UpperCamelCase__ = hidden_dim UpperCamelCase__ = pooling_type UpperCamelCase__ = initializer_range UpperCamelCase__ = batch_norm_eps UpperCamelCase__ = batch_norm_momentum UpperCamelCase__ = drop_connect_rate UpperCamelCase__ = sum(_a ) * 4 @classmethod def A_ ( cls : Tuple , _a : Union[str, os.PathLike] , **_a : Union[str, Any] ): cls._set_token_in_kwargs(_a ) UpperCamelCase__ , UpperCamelCase__ = cls.get_config_dict(_a , **_a ) # get the vision config dict if we are loading from AlignConfig if config_dict.get('''model_type''' ) == "align": UpperCamelCase__ = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_a , **_a ) class __lowercase ( A ): '''simple docstring''' _A : List[Any] = '''align''' _A : Optional[int] = True def __init__( self : Optional[int] , _a : Tuple=None , _a : int=None , _a : Any=640 , _a : Optional[Any]=1.0 , _a : Tuple=0.02 , **_a : List[Any] , ): super().__init__(**_a ) if text_config is None: UpperCamelCase__ = {} logger.info('''text_config is None. Initializing the AlignTextConfig with default values.''' ) if vision_config is None: UpperCamelCase__ = {} logger.info('''vision_config is None. Initializing the AlignVisionConfig with default values.''' ) UpperCamelCase__ = AlignTextConfig(**_a ) UpperCamelCase__ = AlignVisionConfig(**_a ) UpperCamelCase__ = projection_dim UpperCamelCase__ = temperature_init_value UpperCamelCase__ = initializer_range @classmethod def A_ ( cls : Optional[int] , _a : AlignTextConfig , _a : AlignVisionConfig , **_a : Optional[Any] ): return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **_a ) def A_ ( self : Tuple ): UpperCamelCase__ = copy.deepcopy(self.__dict__ ) UpperCamelCase__ = self.text_config.to_dict() UpperCamelCase__ = self.vision_config.to_dict() UpperCamelCase__ = self.__class__.model_type return output
35
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __UpperCamelCase = {'''configuration_reformer''': ['''REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ReformerConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = ['''ReformerTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = ['''ReformerTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ '''REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ReformerAttention''', '''ReformerForMaskedLM''', '''ReformerForQuestionAnswering''', '''ReformerForSequenceClassification''', '''ReformerLayer''', '''ReformerModel''', '''ReformerModelWithLMHead''', '''ReformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer import ReformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer_fast import ReformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_reformer import ( REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ReformerAttention, ReformerForMaskedLM, ReformerForQuestionAnswering, ReformerForSequenceClassification, ReformerLayer, ReformerModel, ReformerModelWithLMHead, ReformerPreTrainedModel, ) else: import sys __UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
113
'''simple docstring''' import os import sys __A = os.path.join(os.path.dirname(__file__), "src") sys.path.append(SRC_DIR) from transformers import ( AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForQuestionAnswering, AutoModelForSequenceClassification, AutoTokenizer, add_start_docstrings, ) __A = [ "torch", "numpy", "tokenizers", "filelock", "requests", "tqdm", "regex", "sentencepiece", "sacremoses", "importlib_metadata", "huggingface_hub", ] @add_start_docstrings(AutoConfig.__doc__ ) def _A ( *lowercase__ , **lowercase__ ): return AutoConfig.from_pretrained(*lowercase__ , **lowercase__ ) @add_start_docstrings(AutoTokenizer.__doc__ ) def _A ( *lowercase__ , **lowercase__ ): return AutoTokenizer.from_pretrained(*lowercase__ , **lowercase__ ) @add_start_docstrings(AutoModel.__doc__ ) def _A ( *lowercase__ , **lowercase__ ): return AutoModel.from_pretrained(*lowercase__ , **lowercase__ ) @add_start_docstrings(AutoModelForCausalLM.__doc__ ) def _A ( *lowercase__ , **lowercase__ ): return AutoModelForCausalLM.from_pretrained(*lowercase__ , **lowercase__ ) @add_start_docstrings(AutoModelForMaskedLM.__doc__ ) def _A ( *lowercase__ , **lowercase__ ): return AutoModelForMaskedLM.from_pretrained(*lowercase__ , **lowercase__ ) @add_start_docstrings(AutoModelForSequenceClassification.__doc__ ) def _A ( *lowercase__ , **lowercase__ ): return AutoModelForSequenceClassification.from_pretrained(*lowercase__ , **lowercase__ ) @add_start_docstrings(AutoModelForQuestionAnswering.__doc__ ) def _A ( *lowercase__ , **lowercase__ ): return AutoModelForQuestionAnswering.from_pretrained(*lowercase__ , **lowercase__ )
164
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCamelCase_ = {"configuration_opt": ["OPT_PRETRAINED_CONFIG_ARCHIVE_MAP", "OPTConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ "OPT_PRETRAINED_MODEL_ARCHIVE_LIST", "OPTForCausalLM", "OPTModel", "OPTPreTrainedModel", "OPTForSequenceClassification", "OPTForQuestionAnswering", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = ["TFOPTForCausalLM", "TFOPTModel", "TFOPTPreTrainedModel"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ "FlaxOPTForCausalLM", "FlaxOPTModel", "FlaxOPTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_opt import OPT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_opt import ( OPT_PRETRAINED_MODEL_ARCHIVE_LIST, OPTForCausalLM, OPTForQuestionAnswering, OPTForSequenceClassification, OPTModel, OPTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_opt import TFOPTForCausalLM, TFOPTModel, TFOPTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_opt import FlaxOPTForCausalLM, FlaxOPTModel, FlaxOPTPreTrainedModel else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
344
import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class a_ ( _snake_case ): UpperCamelCase__ : List[Any] =(PNDMScheduler,) UpperCamelCase__ : Optional[Any] =(("num_inference_steps", 50),) def __a ( self :Union[str, Any] , **_lowercase :Any) -> Union[str, Any]: UpperCAmelCase_ = { '''num_train_timesteps''': 1000, '''beta_start''': 0.0_001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', } config.update(**_lowercase) return config def __a ( self :str , _lowercase :List[Any]=0 , **_lowercase :str) -> Union[str, Any]: UpperCAmelCase_ = dict(self.forward_default_kwargs) UpperCAmelCase_ = kwargs.pop('''num_inference_steps''' , _lowercase) UpperCAmelCase_ = self.dummy_sample UpperCAmelCase_ = 0.1 * sample UpperCAmelCase_ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: UpperCAmelCase_ = self.get_scheduler_config(**_lowercase) UpperCAmelCase_ = scheduler_class(**_lowercase) scheduler.set_timesteps(_lowercase) # copy over dummy past residuals UpperCAmelCase_ = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_lowercase) UpperCAmelCase_ = scheduler_class.from_pretrained(_lowercase) new_scheduler.set_timesteps(_lowercase) # copy over dummy past residuals UpperCAmelCase_ = dummy_past_residuals[:] UpperCAmelCase_ = scheduler.step_prk(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample UpperCAmelCase_ = new_scheduler.step_prk(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1E-5, "Scheduler outputs are not identical" UpperCAmelCase_ = scheduler.step_plms(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample UpperCAmelCase_ = new_scheduler.step_plms(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1E-5, "Scheduler outputs are not identical" def __a ( self :Any) -> Optional[Any]: pass def __a ( self :str , _lowercase :int=0 , **_lowercase :Union[str, Any]) -> List[Any]: UpperCAmelCase_ = dict(self.forward_default_kwargs) UpperCAmelCase_ = kwargs.pop('''num_inference_steps''' , _lowercase) UpperCAmelCase_ = self.dummy_sample UpperCAmelCase_ = 0.1 * sample UpperCAmelCase_ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: UpperCAmelCase_ = self.get_scheduler_config() UpperCAmelCase_ = scheduler_class(**_lowercase) scheduler.set_timesteps(_lowercase) # copy over dummy past residuals (must be after setting timesteps) UpperCAmelCase_ = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_lowercase) UpperCAmelCase_ = scheduler_class.from_pretrained(_lowercase) # copy over dummy past residuals new_scheduler.set_timesteps(_lowercase) # copy over dummy past residual (must be after setting timesteps) UpperCAmelCase_ = dummy_past_residuals[:] UpperCAmelCase_ = scheduler.step_prk(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample UpperCAmelCase_ = new_scheduler.step_prk(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1E-5, "Scheduler outputs are not identical" UpperCAmelCase_ = scheduler.step_plms(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample UpperCAmelCase_ = new_scheduler.step_plms(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1E-5, "Scheduler outputs are not identical" def __a ( self :int , **_lowercase :str) -> Optional[Any]: UpperCAmelCase_ = self.scheduler_classes[0] UpperCAmelCase_ = self.get_scheduler_config(**_lowercase) UpperCAmelCase_ = scheduler_class(**_lowercase) UpperCAmelCase_ = 10 UpperCAmelCase_ = self.dummy_model() UpperCAmelCase_ = self.dummy_sample_deter scheduler.set_timesteps(_lowercase) for i, t in enumerate(scheduler.prk_timesteps): UpperCAmelCase_ = model(_lowercase , _lowercase) UpperCAmelCase_ = scheduler.step_prk(_lowercase , _lowercase , _lowercase).prev_sample for i, t in enumerate(scheduler.plms_timesteps): UpperCAmelCase_ = model(_lowercase , _lowercase) UpperCAmelCase_ = scheduler.step_plms(_lowercase , _lowercase , _lowercase).prev_sample return sample def __a ( self :Union[str, Any]) -> int: UpperCAmelCase_ = dict(self.forward_default_kwargs) UpperCAmelCase_ = kwargs.pop('''num_inference_steps''' , _lowercase) for scheduler_class in self.scheduler_classes: UpperCAmelCase_ = self.get_scheduler_config() UpperCAmelCase_ = scheduler_class(**_lowercase) UpperCAmelCase_ = self.dummy_sample UpperCAmelCase_ = 0.1 * sample if num_inference_steps is not None and hasattr(_lowercase , '''set_timesteps'''): scheduler.set_timesteps(_lowercase) elif num_inference_steps is not None and not hasattr(_lowercase , '''set_timesteps'''): UpperCAmelCase_ = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) UpperCAmelCase_ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] UpperCAmelCase_ = dummy_past_residuals[:] UpperCAmelCase_ = scheduler.step_prk(_lowercase , 0 , _lowercase , **_lowercase).prev_sample UpperCAmelCase_ = scheduler.step_prk(_lowercase , 1 , _lowercase , **_lowercase).prev_sample self.assertEqual(output_a.shape , sample.shape) self.assertEqual(output_a.shape , output_a.shape) UpperCAmelCase_ = scheduler.step_plms(_lowercase , 0 , _lowercase , **_lowercase).prev_sample UpperCAmelCase_ = scheduler.step_plms(_lowercase , 1 , _lowercase , **_lowercase).prev_sample self.assertEqual(output_a.shape , sample.shape) self.assertEqual(output_a.shape , output_a.shape) def __a ( self :Any) -> Dict: for timesteps in [100, 1000]: self.check_over_configs(num_train_timesteps=_lowercase) def __a ( self :List[Any]) -> Any: for steps_offset in [0, 1]: self.check_over_configs(steps_offset=_lowercase) UpperCAmelCase_ = self.scheduler_classes[0] UpperCAmelCase_ = self.get_scheduler_config(steps_offset=1) UpperCAmelCase_ = scheduler_class(**_lowercase) scheduler.set_timesteps(10) assert torch.equal( scheduler.timesteps , torch.LongTensor( [901, 851, 851, 801, 801, 751, 751, 701, 701, 651, 651, 601, 601, 501, 401, 301, 201, 101, 1]) , ) def __a ( self :Optional[int]) -> str: for beta_start, beta_end in zip([0.0_001, 0.001] , [0.002, 0.02]): self.check_over_configs(beta_start=_lowercase , beta_end=_lowercase) def __a ( self :Any) -> List[str]: for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_lowercase) def __a ( self :List[Any]) -> Dict: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_lowercase) def __a ( self :Any) -> Tuple: for t in [1, 5, 10]: self.check_over_forward(time_step=_lowercase) def __a ( self :Tuple) -> Dict: for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100]): self.check_over_forward(num_inference_steps=_lowercase) def __a ( self :str) -> List[Any]: # earlier version of set_timesteps() caused an error indexing alpha's with inference steps as power of 3 UpperCAmelCase_ = 27 for scheduler_class in self.scheduler_classes: UpperCAmelCase_ = self.dummy_sample UpperCAmelCase_ = 0.1 * sample UpperCAmelCase_ = self.get_scheduler_config() UpperCAmelCase_ = scheduler_class(**_lowercase) scheduler.set_timesteps(_lowercase) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2]): UpperCAmelCase_ = scheduler.step_prk(_lowercase , _lowercase , _lowercase).prev_sample def __a ( self :List[str]) -> int: with self.assertRaises(_lowercase): UpperCAmelCase_ = self.scheduler_classes[0] UpperCAmelCase_ = self.get_scheduler_config() UpperCAmelCase_ = scheduler_class(**_lowercase) scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample).prev_sample def __a ( self :List[str]) -> Dict: UpperCAmelCase_ = self.full_loop() UpperCAmelCase_ = torch.sum(torch.abs(_lowercase)) UpperCAmelCase_ = torch.mean(torch.abs(_lowercase)) assert abs(result_sum.item() - 198.1_318) < 1E-2 assert abs(result_mean.item() - 0.2_580) < 1E-3 def __a ( self :Any) -> Tuple: UpperCAmelCase_ = self.full_loop(prediction_type='''v_prediction''') UpperCAmelCase_ = torch.sum(torch.abs(_lowercase)) UpperCAmelCase_ = torch.mean(torch.abs(_lowercase)) assert abs(result_sum.item() - 67.3_986) < 1E-2 assert abs(result_mean.item() - 0.0_878) < 1E-3 def __a ( self :int) -> Any: # We specify different beta, so that the first alpha is 0.99 UpperCAmelCase_ = self.full_loop(set_alpha_to_one=_lowercase , beta_start=0.01) UpperCAmelCase_ = torch.sum(torch.abs(_lowercase)) UpperCAmelCase_ = torch.mean(torch.abs(_lowercase)) assert abs(result_sum.item() - 230.0_399) < 1E-2 assert abs(result_mean.item() - 0.2_995) < 1E-3 def __a ( self :Any) -> Dict: # We specify different beta, so that the first alpha is 0.99 UpperCAmelCase_ = self.full_loop(set_alpha_to_one=_lowercase , beta_start=0.01) UpperCAmelCase_ = torch.sum(torch.abs(_lowercase)) UpperCAmelCase_ = torch.mean(torch.abs(_lowercase)) assert abs(result_sum.item() - 186.9_482) < 1E-2 assert abs(result_mean.item() - 0.2_434) < 1E-3
344
1
"""simple docstring""" import itertools from dataclasses import dataclass from typing import List, Optional import pyarrow as pa import pyarrow.parquet as pq import datasets from datasets.table import table_cast _a : Dict = datasets.utils.logging.get_logger(__name__) @dataclass class __A ( datasets.BuilderConfig ): _UpperCamelCase : int = 10_000 _UpperCamelCase : Optional[List[str]] = None _UpperCamelCase : Optional[datasets.Features] = None class __A ( datasets.ArrowBasedBuilder ): _UpperCamelCase : List[str] = ParquetConfig def __A ( self ): return datasets.DatasetInfo(features=self.config.features ) def __A ( self , a__ ): if not self.config.data_files: raise ValueError(F"At least one data file must be specified, but got data_files={self.config.data_files}" ) _lowerCAmelCase : Optional[Any] = dl_manager.download_and_extract(self.config.data_files ) if isinstance(a__ , (str, list, tuple) ): _lowerCAmelCase : Any = data_files if isinstance(a__ , a__ ): _lowerCAmelCase : Tuple = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive _lowerCAmelCase : Any = [dl_manager.iter_files(a__ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""files""": files} )] _lowerCAmelCase : Optional[Any] = [] for split_name, files in data_files.items(): if isinstance(a__ , a__ ): _lowerCAmelCase : Dict = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive _lowerCAmelCase : Tuple = [dl_manager.iter_files(a__ ) for file in files] # Infer features is they are stoed in the arrow schema if self.info.features is None: for file in itertools.chain.from_iterable(a__ ): with open(a__ , """rb""" ) as f: _lowerCAmelCase : Optional[Any] = datasets.Features.from_arrow_schema(pq.read_schema(a__ ) ) break splits.append(datasets.SplitGenerator(name=a__ , gen_kwargs={"""files""": files} ) ) return splits def __A ( self , a__ ): if self.info.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example _lowerCAmelCase : Optional[int] = table_cast(a__ , self.info.features.arrow_schema ) return pa_table def __A ( self , a__ ): _lowerCAmelCase : Optional[int] = self.info.features.arrow_schema if self.info.features is not None else None if self.info.features is not None and self.config.columns is not None: if sorted(field.name for field in schema ) != sorted(self.config.columns ): raise ValueError( F"Tried to load parquet data with columns '{self.config.columns}' with mismatching features '{self.info.features}'" ) for file_idx, file in enumerate(itertools.chain.from_iterable(a__ ) ): with open(a__ , """rb""" ) as f: _lowerCAmelCase : Tuple = pq.ParquetFile(a__ ) try: for batch_idx, record_batch in enumerate( parquet_file.iter_batches(batch_size=self.config.batch_size , columns=self.config.columns ) ): _lowerCAmelCase : Any = pa.Table.from_batches([record_batch] ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield F"{file_idx}_{batch_idx}", self._cast_table(a__ ) except ValueError as e: logger.error(F"Failed to read file '{file}' with error {type(a__ )}: {e}" ) raise
44
"""simple docstring""" def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Any ) -> List[Any]: # noqa: E741 _lowerCAmelCase : Optional[int] = len(_lowerCamelCase ) _lowerCAmelCase : str = 0 _lowerCAmelCase : Any = [0] * n _lowerCAmelCase : str = [False] * n _lowerCAmelCase : str = [False] * n def dfs(_lowerCamelCase : Tuple ,_lowerCamelCase : Union[str, Any] ,_lowerCamelCase : Union[str, Any] ,_lowerCamelCase : str ): if parent == root: out_edge_count += 1 _lowerCAmelCase : Any = True _lowerCAmelCase : int = at for to in l[at]: if to == parent: pass elif not visited[to]: _lowerCAmelCase : Union[str, Any] = dfs(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) _lowerCAmelCase : Optional[int] = min(low[at] ,low[to] ) # AP found via bridge if at < low[to]: _lowerCAmelCase : int = True # AP found via cycle if at == low[to]: _lowerCAmelCase : Tuple = True else: _lowerCAmelCase : Union[str, Any] = min(low[at] ,_lowerCamelCase ) return out_edge_count for i in range(_lowerCamelCase ): if not visited[i]: _lowerCAmelCase : int = 0 _lowerCAmelCase : Dict = dfs(_lowerCamelCase ,_lowerCamelCase ,-1 ,_lowerCamelCase ) _lowerCAmelCase : List[str] = out_edge_count > 1 for x in range(len(_lowerCamelCase ) ): if is_art[x] is True: print(_lowerCamelCase ) # Adjacency list of graph _a : Optional[Any] = { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], } compute_ap(data)
44
1
"""simple docstring""" def lowerCamelCase__ ( __snake_case, __snake_case ) -> float: """simple docstring""" _validate_point(lowerCAmelCase__ ) _validate_point(lowerCAmelCase__ ) if len(lowerCAmelCase__ ) != len(lowerCAmelCase__ ): raise ValueError('''Both points must be in the same n-dimensional space''' ) return float(sum(abs(a - b ) for a, b in zip(lowerCAmelCase__, lowerCAmelCase__ ) ) ) def lowerCamelCase__ ( __snake_case ) -> None: """simple docstring""" if point: if isinstance(lowerCAmelCase__, lowerCAmelCase__ ): for item in point: if not isinstance(lowerCAmelCase__, (int, float) ): _UpperCamelCase = ( '''Expected a list of numbers as input, found ''' F'''{type(lowerCAmelCase__ ).__name__}''' ) raise TypeError(lowerCAmelCase__ ) else: _UpperCamelCase = F'''Expected a list of numbers as input, found {type(lowerCAmelCase__ ).__name__}''' raise TypeError(lowerCAmelCase__ ) else: raise ValueError('''Missing an input''' ) def lowerCamelCase__ ( __snake_case, __snake_case ) -> float: """simple docstring""" _validate_point(lowerCAmelCase__ ) _validate_point(lowerCAmelCase__ ) if len(lowerCAmelCase__ ) != len(lowerCAmelCase__ ): raise ValueError('''Both points must be in the same n-dimensional space''' ) return float(sum(abs(x - y ) for x, y in zip(lowerCAmelCase__, lowerCAmelCase__ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
360
"""simple docstring""" import numpy class _UpperCAmelCase: def __init__( self , __a , __a) -> None: '''simple docstring''' _UpperCamelCase = input_array # Random initial weights are assigned where first argument is the # number of nodes in previous layer and second argument is the # number of nodes in the next layer. # Random initial weights are assigned. # self.input_array.shape[1] is used to represent number of nodes in input layer. # First hidden layer consists of 4 nodes. _UpperCamelCase = numpy.random.rand( self.input_array.shape[1] , 4) # Random initial values for the first hidden layer. # First hidden layer has 4 nodes. # Second hidden layer has 3 nodes. _UpperCamelCase = numpy.random.rand( 4 , 3) # Random initial values for the second hidden layer. # Second hidden layer has 3 nodes. # Output layer has 1 node. _UpperCamelCase = numpy.random.rand(3 , 1) # Real output values provided. _UpperCamelCase = output_array # Predicted output values by the neural network. # Predicted_output array initially consists of zeroes. _UpperCamelCase = numpy.zeros(output_array.shape) def UpperCAmelCase ( self) -> numpy.ndarray: '''simple docstring''' _UpperCamelCase = sigmoid( numpy.dot(self.input_array , self.input_layer_and_first_hidden_layer_weights)) # layer_between_first_hidden_layer_and_second_hidden_layer is the layer # connecting the first hidden set of nodes with the second hidden set of nodes. _UpperCamelCase = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , )) # layer_between_second_hidden_layer_and_output is the layer connecting # second hidden layer with the output node. _UpperCamelCase = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , )) return self.layer_between_second_hidden_layer_and_output def UpperCAmelCase ( self) -> None: '''simple docstring''' _UpperCamelCase = numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer.T , 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output) , ) _UpperCamelCase = numpy.dot( self.layer_between_input_and_first_hidden_layer.T , numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer) , ) _UpperCamelCase = numpy.dot( self.input_array.T , numpy.dot( numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer) , self.first_hidden_layer_and_second_hidden_layer_weights.T , ) * sigmoid_derivative(self.layer_between_input_and_first_hidden_layer) , ) self.input_layer_and_first_hidden_layer_weights += ( updated_input_layer_and_first_hidden_layer_weights ) self.first_hidden_layer_and_second_hidden_layer_weights += ( updated_first_hidden_layer_and_second_hidden_layer_weights ) self.second_hidden_layer_and_output_layer_weights += ( updated_second_hidden_layer_and_output_layer_weights ) def UpperCAmelCase ( self , __a , __a , __a) -> None: '''simple docstring''' for iteration in range(1 , iterations + 1): _UpperCamelCase = self.feedforward() self.back_propagation() if give_loss: _UpperCamelCase = numpy.mean(numpy.square(output - self.feedforward())) print(F'''Iteration {iteration} Loss: {loss}''') def UpperCAmelCase ( self , __a) -> int: '''simple docstring''' _UpperCamelCase = input_arr _UpperCamelCase = sigmoid( numpy.dot(self.array , self.input_layer_and_first_hidden_layer_weights)) _UpperCamelCase = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , )) _UpperCamelCase = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , )) return int(self.layer_between_second_hidden_layer_and_output > 0.6) def lowerCamelCase__ ( __snake_case ) -> numpy.ndarray: """simple docstring""" return 1 / (1 + numpy.exp(-value )) def lowerCamelCase__ ( __snake_case ) -> numpy.ndarray: """simple docstring""" return (value) * (1 - (value)) def lowerCamelCase__ ( ) -> int: """simple docstring""" _UpperCamelCase = numpy.array( ( [0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1], ), dtype=numpy.floataa, ) # True output values for the given input values. _UpperCamelCase = numpy.array(([0], [1], [1], [0], [1], [0], [0], [1]), dtype=numpy.floataa ) # Calling neural network class. _UpperCamelCase = TwoHiddenLayerNeuralNetwork( input_array=__snake_case, output_array=__snake_case ) # Calling training function. # Set give_loss to True if you want to see loss in every iteration. neural_network.train(output=__snake_case, iterations=10, give_loss=__snake_case ) return neural_network.predict(numpy.array(([1, 1, 1]), dtype=numpy.floataa ) ) if __name__ == "__main__": example()
100
0
'''simple docstring''' import unittest from transformers import AlbertTokenizer, AlbertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin a : List[str] = get_tests_dir('fixtures/spiece.model') @require_sentencepiece @require_tokenizers class a ( _lowerCamelCase , unittest.TestCase ): snake_case_ = AlbertTokenizer snake_case_ = AlbertTokenizerFast snake_case_ = True snake_case_ = True snake_case_ = True def A_ ( self : int ): super().setUp() # We have a SentencePiece fixture for testing snake_case_ = AlbertTokenizer(lowercase_ ) tokenizer.save_pretrained(self.tmpdirname ) def A_ ( self : Dict , lowercase_ : Optional[int] ): snake_case_ = '''this is a test''' snake_case_ = '''this is a test''' return input_text, output_text def A_ ( self : Union[str, Any] ): snake_case_ = '''<pad>''' snake_case_ = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowercase_ ) , lowercase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowercase_ ) , lowercase_ ) def A_ ( self : Union[str, Any] ): snake_case_ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<pad>''' ) self.assertEqual(vocab_keys[1] , '''<unk>''' ) self.assertEqual(vocab_keys[-1] , '''▁eloquent''' ) self.assertEqual(len(lowercase_ ) , 3_0000 ) def A_ ( self : Union[str, Any] ): self.assertEqual(self.get_tokenizer().vocab_size , 3_0000 ) def A_ ( self : List[str] ): if not self.test_rust_tokenizer: return snake_case_ = self.get_tokenizer() snake_case_ = self.get_rust_tokenizer() snake_case_ = '''I was born in 92000, and this is falsé.''' snake_case_ = tokenizer.tokenize(lowercase_ ) snake_case_ = rust_tokenizer.tokenize(lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) snake_case_ = tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ ) snake_case_ = rust_tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) snake_case_ = self.get_rust_tokenizer() snake_case_ = tokenizer.encode(lowercase_ ) snake_case_ = rust_tokenizer.encode(lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) def A_ ( self : int ): snake_case_ = AlbertTokenizer(lowercase_ , keep_accents=lowercase_ ) snake_case_ = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(lowercase_ , ['''▁this''', '''▁is''', '''▁a''', '''▁test'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase_ ) , [48, 25, 21, 1289] ) snake_case_ = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( lowercase_ , ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''é''', '''.'''] ) snake_case_ = tokenizer.convert_tokens_to_ids(lowercase_ ) self.assertListEqual(lowercase_ , [31, 23, 386, 19, 561, 3050, 15, 17, 48, 25, 8256, 18, 1, 9] ) snake_case_ = tokenizer.convert_ids_to_tokens(lowercase_ ) self.assertListEqual( lowercase_ , ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''.'''] , ) def A_ ( self : Optional[Any] ): snake_case_ = AlbertTokenizer(lowercase_ ) snake_case_ = tokenizer.encode('''sequence builders''' ) snake_case_ = tokenizer.encode('''multi-sequence build''' ) snake_case_ = tokenizer.build_inputs_with_special_tokens(lowercase_ ) snake_case_ = tokenizer.build_inputs_with_special_tokens(lowercase_ , lowercase_ ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ] @slow def A_ ( self : Optional[int] ): # fmt: off snake_case_ = {'''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''input_ids''': [[2, 2_1970, 13, 5, 6092, 167, 28, 7103, 2153, 673, 8, 7028, 1_2051, 18, 17, 7103, 2153, 673, 8, 3515, 1_8684, 8, 4461, 6, 1927, 297, 8, 1_2060, 2607, 18, 13, 5, 4461, 15, 1_0538, 38, 8, 135, 15, 822, 58, 15, 993, 1_0363, 15, 1460, 8005, 4461, 15, 993, 255, 2328, 9, 9, 9, 6, 26, 1112, 816, 3260, 13, 5, 103, 2377, 6, 17, 1112, 816, 2782, 13, 5, 103, 1_0641, 6, 29, 84, 2512, 2430, 782, 1_8684, 2761, 19, 808, 2430, 2556, 17, 855, 1480, 9477, 4091, 128, 1_1712, 15, 7103, 2153, 673, 17, 2_4883, 9990, 9, 3], [2, 1_1502, 25, 1006, 20, 782, 8, 1_1809, 855, 1732, 1_9393, 1_8667, 37, 367, 2_1018, 69, 1854, 34, 1_1860, 1_9124, 27, 156, 225, 17, 193, 4141, 19, 65, 9124, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 14, 2231, 886, 2385, 1_7659, 84, 14, 1_6792, 1952, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''token_type_ids''': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowercase_ , model_name='''albert-base-v2''' , revision='''6b6560eaf5ff2e250b00c50f380c5389a9c2d82e''' , )
56
'''simple docstring''' import datasets from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py UpperCAmelCase_ = '\\n@INPROCEEDINGS{Papineni02bleu:a,\n author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu},\n title = {BLEU: a Method for Automatic Evaluation of Machine Translation},\n booktitle = {},\n year = {2002},\n pages = {311--318}\n}\n@inproceedings{lin-och-2004-orange,\n title = "{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation",\n author = "Lin, Chin-Yew and\n Och, Franz Josef",\n booktitle = "{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics",\n month = "aug 23{--}aug 27",\n year = "2004",\n address = "Geneva, Switzerland",\n publisher = "COLING",\n url = "https://www.aclweb.org/anthology/C04-1072",\n pages = "501--507",\n}\n' UpperCAmelCase_ = '\\nBLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another.\nQuality is considered to be the correspondence between a machine\'s output and that of a human: "the closer a machine translation is to a professional human translation,\nthe better it is" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and\nremains one of the most popular automated and inexpensive metrics.\n\nScores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations.\nThose scores are then averaged over the whole corpus to reach an estimate of the translation\'s overall quality. Intelligibility or grammatical correctness\nare not taken into account[citation needed].\n\nBLEU\'s output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1\nrepresenting more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the\nreference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional\nreference translations will increase the BLEU score.\n' UpperCAmelCase_ = '\nComputes BLEU score of translated segments against one or more references.\nArgs:\n predictions: list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n max_order: Maximum n-gram order to use when computing BLEU score.\n smooth: Whether or not to apply Lin et al. 2004 smoothing.\nReturns:\n \'bleu\': bleu score,\n \'precisions\': geometric mean of n-gram precisions,\n \'brevity_penalty\': brevity penalty,\n \'length_ratio\': ratio of lengths,\n \'translation_length\': translation_length,\n \'reference_length\': reference_length\nExamples:\n\n >>> predictions = [\n ... ["hello", "there", "general", "kenobi"], # tokenized prediction of the first sample\n ... ["foo", "bar", "foobar"] # tokenized prediction of the second sample\n ... ]\n >>> references = [\n ... [["hello", "there", "general", "kenobi"], ["hello", "there", "!"]], # tokenized references for the first sample (2 references)\n ... [["foo", "bar", "foobar"]] # tokenized references for the second sample (1 reference)\n ... ]\n >>> bleu = datasets.load_metric("bleu")\n >>> results = bleu.compute(predictions=predictions, references=references)\n >>> print(results["bleu"])\n 1.0\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase_ ( datasets.Metric ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self : int ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Sequence(datasets.Value("""string""" , id="""token""" ) , id="""sequence""" ), """references""": datasets.Sequence( datasets.Sequence(datasets.Value("""string""" , id="""token""" ) , id="""sequence""" ) , id="""references""" ), } ) , codebase_urls=["""https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py"""] , reference_urls=[ """https://en.wikipedia.org/wiki/BLEU""", """https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213""", ] , ) def SCREAMING_SNAKE_CASE__ ( self : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[Any]=4 , _UpperCAmelCase : Union[str, Any]=False ): """simple docstring""" UpperCAmelCase__ = compute_bleu( reference_corpus=_UpperCAmelCase , translation_corpus=_UpperCAmelCase , max_order=_UpperCAmelCase , smooth=_UpperCAmelCase ) ((UpperCAmelCase__) , (UpperCAmelCase__) , (UpperCAmelCase__) , (UpperCAmelCase__) , (UpperCAmelCase__) , (UpperCAmelCase__)) = score return { "bleu": bleu, "precisions": precisions, "brevity_penalty": bp, "length_ratio": ratio, "translation_length": translation_length, "reference_length": reference_length, }
346
0
'''simple docstring''' # Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING import numpy as np import pyarrow as pa from .. import config from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import torch class UpperCAmelCase_ ( TensorFormatter[Mapping, '''torch.Tensor''', Mapping] ): def __init__( self : Optional[int] , UpperCAmelCase__ : List[str]=None , **UpperCAmelCase__ : int ) -> List[str]: super().__init__(features=lowerCamelCase__ ) lowerCAmelCase = torch_tensor_kwargs import torch # noqa import torch at initialization def __UpperCAmelCase ( self : Optional[Any] , UpperCAmelCase__ : Optional[int] ) -> Optional[Any]: import torch if isinstance(lowerCamelCase__ , lowerCamelCase__ ) and column: if all( isinstance(lowerCamelCase__ , torch.Tensor ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return torch.stack(lowerCamelCase__ ) return column def __UpperCAmelCase ( self : Optional[Any] , UpperCAmelCase__ : Union[str, Any] ) -> int: import torch if isinstance(lowerCamelCase__ , (str, bytes, type(lowerCamelCase__ )) ): return value elif isinstance(lowerCamelCase__ , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() lowerCAmelCase = {} if isinstance(lowerCamelCase__ , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): lowerCAmelCase = {'''dtype''': torch.intaa} elif isinstance(lowerCamelCase__ , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): lowerCAmelCase = {'''dtype''': torch.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(lowerCamelCase__ , PIL.Image.Image ): lowerCAmelCase = np.asarray(lowerCamelCase__ ) return torch.tensor(lowerCamelCase__ , **{**default_dtype, **self.torch_tensor_kwargs} ) def __UpperCAmelCase ( self : List[str] , UpperCAmelCase__ : Any ) -> Dict: import torch # support for torch, tf, jax etc. if hasattr(lowerCamelCase__ , '__array__' ) and not isinstance(lowerCamelCase__ , torch.Tensor ): lowerCAmelCase = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(lowerCamelCase__ , np.ndarray ): if data_struct.dtype == object: # torch tensors cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(lowerCamelCase__ ) for substruct in data_struct] ) elif isinstance(lowerCamelCase__ , (list, tuple) ): return self._consolidate([self.recursive_tensorize(lowerCamelCase__ ) for substruct in data_struct] ) return self._tensorize(lowerCamelCase__ ) def __UpperCAmelCase ( self : int , UpperCAmelCase__ : dict ) -> Optional[int]: return map_nested(self._recursive_tensorize , lowerCamelCase__ , map_list=lowerCamelCase__ ) def __UpperCAmelCase ( self : Union[str, Any] , UpperCAmelCase__ : pa.Table ) -> Mapping: lowerCAmelCase = self.numpy_arrow_extractor().extract_row(lowerCamelCase__ ) lowerCAmelCase = self.python_features_decoder.decode_row(lowerCamelCase__ ) return self.recursive_tensorize(lowerCamelCase__ ) def __UpperCAmelCase ( self : str , UpperCAmelCase__ : pa.Table ) -> "torch.Tensor": lowerCAmelCase = self.numpy_arrow_extractor().extract_column(lowerCamelCase__ ) lowerCAmelCase = self.python_features_decoder.decode_column(lowerCamelCase__ , pa_table.column_names[0] ) lowerCAmelCase = self.recursive_tensorize(lowerCamelCase__ ) lowerCAmelCase = self._consolidate(lowerCamelCase__ ) return column def __UpperCAmelCase ( self : Tuple , UpperCAmelCase__ : pa.Table ) -> Mapping: lowerCAmelCase = self.numpy_arrow_extractor().extract_batch(lowerCamelCase__ ) lowerCAmelCase = self.python_features_decoder.decode_batch(lowerCamelCase__ ) lowerCAmelCase = self.recursive_tensorize(lowerCamelCase__ ) for column_name in batch: lowerCAmelCase = self._consolidate(batch[column_name] ) return batch
357
'''simple docstring''' import math def a_ ( lowerCamelCase : int ): lowerCAmelCase = math.loga(math.sqrt(4 * positive_integer + 1 ) / 2 + 1 / 2 ) return exponent == int(lowerCamelCase ) def a_ ( lowerCamelCase : float = 1 / 12345 ): lowerCAmelCase = 0 lowerCAmelCase = 0 lowerCAmelCase = 3 while True: lowerCAmelCase = (integer**2 - 1) / 4 # if candidate is an integer, then there is a partition for k if partition_candidate == int(lowerCamelCase ): lowerCAmelCase = int(lowerCamelCase ) total_partitions += 1 if check_partition_perfect(lowerCamelCase ): perfect_partitions += 1 if perfect_partitions > 0: if perfect_partitions / total_partitions < max_proportion: return int(lowerCamelCase ) integer += 1 if __name__ == "__main__": print(F'''{solution() = }''')
55
0
'''simple docstring''' import json import os import unittest from transformers.models.gptsan_japanese.tokenization_gptsan_japanese import ( VOCAB_FILES_NAMES, GPTSanJapaneseTokenizer, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase_ ( _a , unittest.TestCase ): """simple docstring""" lowercase = GPTSanJapaneseTokenizer lowercase = False lowercase = {"do_clean_text": False, "add_prefix_space": False} def lowerCamelCase ( self : str ): super().setUp() # fmt: off snake_case__ : Optional[Any] = ["""こん""", """こんに""", """にちは""", """ばんは""", """世界,㔺界""", """、""", """。""", """<BR>""", """<SP>""", """<TAB>""", """<URL>""", """<EMAIL>""", """<TEL>""", """<DATE>""", """<PRICE>""", """<BLOCK>""", """<KIGOU>""", """<U2000U2BFF>""", """<|emoji1|>""", """<unk>""", """<|bagoftoken|>""", """<|endoftext|>"""] # fmt: on snake_case__ : int = {"""emoji""": {"""\ud83d\ude00""": """<|emoji1|>"""}, """emoji_inv""": {"""<|emoji1|>""": """\ud83d\ude00"""}} # 😀 snake_case__ : List[Any] = {"""unk_token""": """<unk>"""} snake_case__ : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) snake_case__ : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""emoji_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) with open(self.emoji_file , """w""" ) as emoji_writer: emoji_writer.write(json.dumps(snake_case_ ) ) def lowerCamelCase ( self : Any , **snake_case_ : Union[str, Any] ): kwargs.update(self.special_tokens_map ) return GPTSanJapaneseTokenizer.from_pretrained(self.tmpdirname , **snake_case_ ) def lowerCamelCase ( self : Any , snake_case_ : str ): snake_case__ : Union[str, Any] = """こんにちは、世界。 \nこんばんは、㔺界。😀""" snake_case__ : List[str] = """こんにちは、世界。 \nこんばんは、世界。😀""" return input_text, output_text def lowerCamelCase ( self : Any , snake_case_ : Dict ): snake_case__ , snake_case__ : int = self.get_input_output_texts(snake_case_ ) snake_case__ : int = tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) snake_case__ : List[str] = tokenizer.decode(snake_case_ , clean_up_tokenization_spaces=snake_case_ ) return text, ids def lowerCamelCase ( self : Optional[Any] ): pass # TODO add if relevant def lowerCamelCase ( self : Union[str, Any] ): pass # TODO add if relevant def lowerCamelCase ( self : List[str] ): pass # TODO add if relevant def lowerCamelCase ( self : Dict ): snake_case__ : Optional[Any] = self.get_tokenizer() # Testing tokenization snake_case__ : int = """こんにちは、世界。 こんばんは、㔺界。""" snake_case__ : Optional[int] = ["""こん""", """にちは""", """、""", """世界""", """。""", """<SP>""", """こん""", """ばんは""", """、""", """㔺界""", """。"""] snake_case__ : Dict = tokenizer.tokenize(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) # Testing conversion to ids without special tokens snake_case__ : Union[str, Any] = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6] snake_case__ : List[Any] = tokenizer.convert_tokens_to_ids(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) # Testing conversion to ids with special tokens snake_case__ : Union[str, Any] = tokens + [tokenizer.unk_token] snake_case__ : Dict = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6, 19] snake_case__ : Any = tokenizer.convert_tokens_to_ids(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) def lowerCamelCase ( self : Optional[Any] ): snake_case__ : Union[str, Any] = self.get_tokenizer() # Testing tokenization snake_case__ : Union[str, Any] = """こんにちは、<|bagoftoken|>世界。こんばんは、<|bagoftoken|>㔺界。""" snake_case__ : Optional[int] = """こんにちは、、、、世界。こんばんは、、、、世界。""" snake_case__ : Any = tokenizer.encode(snake_case_ ) snake_case__ : int = tokenizer.decode(snake_case_ ) self.assertEqual(snake_case_ , snake_case_ ) @slow def lowerCamelCase ( self : Union[str, Any] ): snake_case__ : Optional[Any] = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) # Testing tokenization snake_case__ : Tuple = """こんにちは、世界。""" snake_case__ : Optional[Any] = """こんばんは、㔺界。😀""" snake_case__ : List[str] = """こんにちは、世界。こんばんは、世界。😀""" snake_case__ : Dict = tokenizer.encode(prefix_text + input_text ) snake_case__ : Dict = tokenizer.encode("""""" , prefix_text=prefix_text + input_text ) snake_case__ : int = tokenizer.encode(snake_case_ , prefix_text=snake_case_ ) snake_case__ : Optional[Any] = tokenizer.decode(snake_case_ ) snake_case__ : Union[str, Any] = tokenizer.decode(snake_case_ ) snake_case__ : str = tokenizer.decode(snake_case_ ) self.assertEqual(snake_case_ , snake_case_ ) self.assertEqual(snake_case_ , snake_case_ ) self.assertEqual(snake_case_ , snake_case_ ) @slow def lowerCamelCase ( self : Union[str, Any] ): snake_case__ : Optional[Any] = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) # Testing tokenization snake_case__ : Dict = """こんにちは、世界。""" snake_case__ : Optional[int] = """こんばんは、㔺界。😀""" snake_case__ : Any = len(tokenizer.encode(snake_case_ ) ) - 2 snake_case__ : Optional[int] = len(tokenizer.encode(snake_case_ ) ) - 2 snake_case__ : List[str] = [1] + [0] * (len_prefix + len_text + 1) snake_case__ : Optional[int] = [1] * (len_prefix + len_text + 1) + [0] snake_case__ : int = [1] + [1] * (len_prefix) + [0] * (len_text + 1) snake_case__ : Any = tokenizer(prefix_text + input_text ).token_type_ids snake_case__ : str = tokenizer("""""" , prefix_text=prefix_text + input_text ).token_type_ids snake_case__ : Optional[Any] = tokenizer(snake_case_ , prefix_text=snake_case_ ).token_type_ids self.assertListEqual(snake_case_ , snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) @slow def lowerCamelCase ( self : Optional[int] ): snake_case__ : Optional[Any] = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) snake_case__ : Union[str, Any] = tokenizer.encode("""あンいワ""" ) snake_case__ : int = tokenizer.encode("""""" , prefix_text="""あンいワ""" ) snake_case__ : Dict = tokenizer.encode("""いワ""" , prefix_text="""あン""" ) self.assertEqual(tokenizer.decode(snake_case_ ) , tokenizer.decode(snake_case_ ) ) self.assertEqual(tokenizer.decode(snake_case_ ) , tokenizer.decode(snake_case_ ) ) self.assertNotEqual(snake_case_ , snake_case_ ) self.assertNotEqual(snake_case_ , snake_case_ ) self.assertEqual(x_token_a[1] , x_token_a[-1] ) # SEG token self.assertEqual(x_token_a[1] , x_token_a[3] ) # SEG token @slow def lowerCamelCase ( self : Any ): snake_case__ : Optional[int] = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) snake_case__ : int = [["""武田信玄""", """は、"""], ["""織田信長""", """の配下の、"""]] snake_case__ : Optional[Any] = tokenizer(snake_case_ , padding=snake_case_ ) snake_case__ : Tuple = tokenizer.batch_encode_plus(snake_case_ , padding=snake_case_ ) # fmt: off snake_case__ : Optional[Any] = [[35_993, 8_640, 25_948, 35_998, 30_647, 35_675, 35_999, 35_999], [35_993, 10_382, 9_868, 35_998, 30_646, 9_459, 30_646, 35_675]] snake_case__ : Optional[Any] = [[1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0]] snake_case__ : Optional[Any] = [[1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1]] # fmt: on self.assertListEqual(x_token.input_ids , snake_case_ ) self.assertListEqual(x_token.token_type_ids , snake_case_ ) self.assertListEqual(x_token.attention_mask , snake_case_ ) self.assertListEqual(x_token_a.input_ids , snake_case_ ) self.assertListEqual(x_token_a.token_type_ids , snake_case_ ) self.assertListEqual(x_token_a.attention_mask , snake_case_ ) def lowerCamelCase ( self : Any ): # Intentionally convert some words to accommodate character fluctuations unique to Japanese pass def lowerCamelCase ( self : List[str] ): # tokenizer has no padding token pass
35
'''simple docstring''' # Function to print upper half of diamond (pyramid) def __snake_case( _lowerCAmelCase ) -> Any: for i in range(0 , _lowerCAmelCase ): for _ in range(0 , n - i - 1 ): # printing spaces print(""" """ , end="""""" ) for _ in range(0 , i + 1 ): # printing stars print("""* """ , end="""""" ) print() def __snake_case( _lowerCAmelCase ) -> List[str]: for i in range(_lowerCAmelCase , 0 , -1 ): for _ in range(_lowerCAmelCase , 0 , -1 ): # printing stars print("""* """ , end="""""" ) print() for _ in range(n - i + 1 , 0 , -1 ): # printing spaces print(""" """ , end="""""" ) def __snake_case( _lowerCAmelCase ) -> List[Any]: if n <= 0: print(""" ... .... nothing printing :(""" ) return floyd(_lowerCAmelCase ) # upper half reverse_floyd(_lowerCAmelCase ) # lower half if __name__ == "__main__": print(R"| /\ | |- | |- |--| |\ /| |-") print(R"|/ \| |- |_ |_ |__| | \/ | |_") __a = 1 while K: __a = int(input("enter the number and , and see the magic : ")) print() pretty_print(user_number) __a = int(input("press 0 to exit... and 1 to continue...")) print("Good Bye...")
35
1
"""simple docstring""" import os from typing import Any, Callable, Dict, List, Optional, Tuple, Union import torch from torch import nn from ...models.controlnet import ControlNetModel, ControlNetOutput from ...models.modeling_utils import ModelMixin from ...utils import logging a = logging.get_logger(__name__) class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' def __init__( self : List[Any] , _UpperCAmelCase : Union[List[ControlNetModel], Tuple[ControlNetModel]] ): super().__init__() _A = nn.ModuleList(_UpperCAmelCase ) def lowerCAmelCase_ ( self : Optional[int] , _UpperCAmelCase : torch.FloatTensor , _UpperCAmelCase : Union[torch.Tensor, float, int] , _UpperCAmelCase : torch.Tensor , _UpperCAmelCase : List[torch.tensor] , _UpperCAmelCase : List[float] , _UpperCAmelCase : Optional[torch.Tensor] = None , _UpperCAmelCase : Optional[torch.Tensor] = None , _UpperCAmelCase : Optional[torch.Tensor] = None , _UpperCAmelCase : Optional[Dict[str, Any]] = None , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = True , ): for i, (image, scale, controlnet) in enumerate(zip(_UpperCAmelCase , _UpperCAmelCase , self.nets ) ): _A , _A = controlnet( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ) # merge samples if i == 0: _A , _A = down_samples, mid_sample else: _A = [ samples_prev + samples_curr for samples_prev, samples_curr in zip(_UpperCAmelCase , _UpperCAmelCase ) ] mid_block_res_sample += mid_sample return down_block_res_samples, mid_block_res_sample def lowerCAmelCase_ ( self : List[Any] , _UpperCAmelCase : Union[str, os.PathLike] , _UpperCAmelCase : bool = True , _UpperCAmelCase : Callable = None , _UpperCAmelCase : bool = False , _UpperCAmelCase : Optional[str] = None , ): _A = 0 _A = save_directory for controlnet in self.nets: controlnet.save_pretrained( _UpperCAmelCase , is_main_process=_UpperCAmelCase , save_function=_UpperCAmelCase , safe_serialization=_UpperCAmelCase , variant=_UpperCAmelCase , ) idx += 1 _A = model_path_to_save + F'''_{idx}''' @classmethod def lowerCAmelCase_ ( cls : Optional[Any] , _UpperCAmelCase : Optional[Union[str, os.PathLike]] , **_UpperCAmelCase : Tuple ): _A = 0 _A = [] # load controlnet and append to list until no controlnet directory exists anymore # first controlnet has to be saved under `./mydirectory/controlnet` to be compliant with `DiffusionPipeline.from_prertained` # second, third, ... controlnets have to be saved under `./mydirectory/controlnet_1`, `./mydirectory/controlnet_2`, ... _A = pretrained_model_path while os.path.isdir(_UpperCAmelCase ): _A = ControlNetModel.from_pretrained(_UpperCAmelCase , **_UpperCAmelCase ) controlnets.append(_UpperCAmelCase ) idx += 1 _A = pretrained_model_path + F'''_{idx}''' logger.info(F'''{len(_UpperCAmelCase )} controlnets loaded from {pretrained_model_path}.''' ) if len(_UpperCAmelCase ) == 0: raise ValueError( F'''No ControlNets found under {os.path.dirname(_UpperCAmelCase )}. Expected at least {pretrained_model_path + "_0"}.''' ) return cls(_UpperCAmelCase )
271
"""simple docstring""" def _snake_case ( _snake_case : str ) -> str: '''simple docstring''' _A = '' for ch in key: if ch == " " or ch not in key_no_dups and ch.isalpha(): key_no_dups += ch return key_no_dups def _snake_case ( _snake_case : str ) -> dict[str, str]: '''simple docstring''' _A = [chr(i + 65 ) for i in range(26 )] # Remove duplicate characters from key _A = remove_duplicates(key.upper() ) _A = len(_snake_case ) # First fill cipher with key characters _A = {alphabet[i]: char for i, char in enumerate(_snake_case )} # Then map remaining characters in alphabet to # the alphabet from the beginning for i in range(len(_snake_case ) , 26 ): _A = alphabet[i - offset] # Ensure we are not mapping letters to letters previously mapped while char in key: offset -= 1 _A = alphabet[i - offset] _A = char return cipher_alphabet def _snake_case ( _snake_case : str , _snake_case : dict[str, str] ) -> str: '''simple docstring''' return "".join(cipher_map.get(_snake_case , _snake_case ) for ch in message.upper() ) def _snake_case ( _snake_case : str , _snake_case : dict[str, str] ) -> str: '''simple docstring''' _A = {v: k for k, v in cipher_map.items()} return "".join(rev_cipher_map.get(_snake_case , _snake_case ) for ch in message.upper() ) def _snake_case ( ) -> None: '''simple docstring''' _A = input('Enter message to encode or decode: ' ).strip() _A = input('Enter keyword: ' ).strip() _A = input('Encipher or decipher? E/D:' ).strip()[0].lower() try: _A = {'e': encipher, 'd': decipher}[option] except KeyError: raise KeyError('invalid input option' ) _A = create_cipher_map(_snake_case ) print(func(_snake_case , _snake_case ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
271
1
'''simple docstring''' import unittest from transformers import GPTSwaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin UpperCamelCase__ : Optional[int] = get_tests_dir('fixtures/test_sentencepiece_with_bytefallback.model') @require_sentencepiece @require_tokenizers class _lowerCAmelCase ( __A, unittest.TestCase ): """simple docstring""" lowerCamelCase = GPTSwaTokenizer lowerCamelCase = False lowerCamelCase = True lowerCamelCase = False def UpperCAmelCase_ ( self ) -> Optional[Any]: super().setUp() # We have a SentencePiece fixture for testing A_ : Tuple = GPTSwaTokenizer(_lowerCamelCase , eos_token="""<unk>""" , bos_token="""<unk>""" , pad_token="""<unk>""" ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCAmelCase_ ( self , _lowerCamelCase ) -> Optional[int]: A_ : str = """This is a test""" A_ : Dict = """This is a test""" return input_text, output_text def UpperCAmelCase_ ( self ) -> Tuple: A_ : Optional[Any] = """<s>""" A_ : Optional[int] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowerCamelCase ) , _lowerCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowerCamelCase ) , _lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Optional[Any]: A_ : Tuple = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<unk>""" ) self.assertEqual(vocab_keys[1] , """<s>""" ) self.assertEqual(vocab_keys[-1] , """j""" ) self.assertEqual(len(_lowerCamelCase ) , 2000 ) def UpperCAmelCase_ ( self ) -> Tuple: self.assertEqual(self.get_tokenizer().vocab_size , 2000 ) def UpperCAmelCase_ ( self ) -> Dict: A_ : Dict = GPTSwaTokenizer(_lowerCamelCase ) A_ : List[str] = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(_lowerCamelCase , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCamelCase ) , [465, 287, 265, 631, 842] ) A_ : int = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) # fmt: off self.assertListEqual( _lowerCamelCase , ["""▁I""", """▁was""", """▁bor""", """n""", """▁in""", """▁""", """<0x39>""", """2""", """0""", """0""", """0""", """,""", """▁and""", """▁this""", """▁is""", """▁f""", """al""", """s""", """<0xC3>""", """<0xA9>""", """."""] , ) # fmt: on A_ : List[str] = tokenizer.convert_tokens_to_ids(_lowerCamelCase ) self.assertListEqual( _lowerCamelCase , [262, 272, 1525, 286, 271, 268, 60, 916, 633, 633, 633, 259, 266, 301, 287, 384, 367, 263, 198, 172, 260] , ) A_ : Optional[Any] = tokenizer.convert_ids_to_tokens(_lowerCamelCase ) # fmt: off self.assertListEqual( _lowerCamelCase , ["""▁I""", """▁was""", """▁bor""", """n""", """▁in""", """▁""", """<0x39>""", """2""", """0""", """0""", """0""", """,""", """▁and""", """▁this""", """▁is""", """▁f""", """al""", """s""", """<0xC3>""", """<0xA9>""", """."""] ) # fmt: on def UpperCAmelCase_ ( self ) -> int: A_ : Any = GPTSwaTokenizer(_lowerCamelCase ) A_ : Optional[int] = ["""This is a test""", """I was born in 92000, and this is falsé."""] A_ : Dict = [ [465, 287, 265, 631, 842], [262, 272, 1525, 286, 271, 268, 60, 916, 633, 633, 633, 259, 266, 301, 287, 384, 367, 263, 198, 172, 260], ] # Test that encode_fast returns the same as tokenize + convert_tokens_to_ids for text, expected_ids in zip(_lowerCamelCase , _lowerCamelCase ): self.assertListEqual(tokenizer.encode_fast(_lowerCamelCase ) , _lowerCamelCase ) # Test that decode_fast returns the input text for text, token_ids in zip(_lowerCamelCase , _lowerCamelCase ): self.assertEqual(tokenizer.decode_fast(_lowerCamelCase ) , _lowerCamelCase ) @slow def UpperCAmelCase_ ( self ) -> Tuple: A_ : Dict = [ """<|python|>def fibonacci(n)\n if n < 0:\n print('Incorrect input')""", """Hey there, how are you doing this fine day?""", """This is a text with a trailing spaces followed by a dot .""", """Häj sväjs lillebrör! =)""", """Det är inget fel på Mr. Cool""", ] # fmt: off A_ : Dict = {"""input_ids""": [[6_3423, 5, 6811, 1_4954, 282, 816, 3821, 6_3466, 6_3425, 6_3462, 18, 6_3978, 678, 301, 1320, 6_3423, 6_3455, 6_3458, 18, 6_3982, 4246, 3940, 1901, 4_7789, 5547, 1_8994], [1_9630, 1100, 6_3446, 1342, 633, 544, 4488, 593, 5102, 2416, 6_3495, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1652, 428, 268, 1936, 515, 268, 5_8593, 2_2413, 9106, 546, 268, 3_3213, 6_3979, 698, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_5130, 6_3450, 924, 6_3449, 2249, 4062, 1558, 318, 6_3504, 2_1498, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [509, 377, 2827, 2559, 332, 6575, 6_3443, 2_6801, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """token_type_ids""": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # fmt: on self.tokenizer_integration_test_util( expected_encoding=_lowerCamelCase , model_name="""AI-Sweden/gpt-sw3-126m""" , sequences=_lowerCamelCase , )
344
'''simple docstring''' import inspect import unittest import warnings from transformers import DeiTConfig from transformers.models.auto import get_values from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_MAPPING, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, ) from transformers.models.deit.modeling_deit import DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class _lowerCAmelCase : """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase=13 , _lowerCamelCase=30 , _lowerCamelCase=2 , _lowerCamelCase=3 , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=32 , _lowerCamelCase=5 , _lowerCamelCase=4 , _lowerCamelCase=37 , _lowerCamelCase="gelu" , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=10 , _lowerCamelCase=0.02 , _lowerCamelCase=3 , _lowerCamelCase=None , _lowerCamelCase=2 , ) -> str: A_ : Optional[int] = parent A_ : Dict = batch_size A_ : List[Any] = image_size A_ : Optional[int] = patch_size A_ : List[str] = num_channels A_ : List[Any] = is_training A_ : Union[str, Any] = use_labels A_ : Union[str, Any] = hidden_size A_ : str = num_hidden_layers A_ : List[str] = num_attention_heads A_ : Union[str, Any] = intermediate_size A_ : Any = hidden_act A_ : Optional[Any] = hidden_dropout_prob A_ : List[Any] = attention_probs_dropout_prob A_ : Dict = type_sequence_label_size A_ : Optional[int] = initializer_range A_ : str = scope A_ : Optional[Any] = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) A_ : Tuple = (image_size // patch_size) ** 2 A_ : Union[str, Any] = num_patches + 2 def UpperCAmelCase_ ( self ) -> Union[str, Any]: A_ : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A_ : Dict = None if self.use_labels: A_ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A_ : Optional[Any] = self.get_config() return config, pixel_values, labels def UpperCAmelCase_ ( self ) -> int: return DeiTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_lowerCamelCase , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> int: A_ : List[str] = DeiTModel(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A_ : Dict = model(_lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> int: A_ : int = DeiTForMaskedImageModeling(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A_ : int = model(_lowerCamelCase ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images A_ : Dict = 1 A_ : Optional[int] = DeiTForMaskedImageModeling(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A_ : Optional[int] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) A_ : int = model(_lowerCamelCase ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Union[str, Any]: A_ : Tuple = self.type_sequence_label_size A_ : Tuple = DeiTForImageClassification(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A_ : int = model(_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images A_ : Dict = 1 A_ : Any = DeiTForImageClassification(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A_ : str = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) A_ : List[str] = model(_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCAmelCase_ ( self ) -> List[str]: A_ : List[Any] = self.prepare_config_and_inputs() ( ( A_ ) , ( A_ ) , ( A_ ) , ) : Union[str, Any] = config_and_inputs A_ : Tuple = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _lowerCAmelCase ( __A, __A, unittest.TestCase ): """simple docstring""" lowerCamelCase = ( ( DeiTModel, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, ) if is_torch_available() else () ) lowerCamelCase = ( { '''feature-extraction''': DeiTModel, '''image-classification''': (DeiTForImageClassification, DeiTForImageClassificationWithTeacher), } if is_torch_available() else {} ) lowerCamelCase = False lowerCamelCase = False lowerCamelCase = False def UpperCAmelCase_ ( self ) -> Union[str, Any]: A_ : int = DeiTModelTester(self ) A_ : str = ConfigTester(self , config_class=_lowerCamelCase , has_text_modality=_lowerCamelCase , hidden_size=37 ) def UpperCAmelCase_ ( self ) -> List[str]: self.config_tester.run_common_tests() @unittest.skip(reason="""DeiT does not use inputs_embeds""" ) def UpperCAmelCase_ ( self ) -> Optional[int]: pass def UpperCAmelCase_ ( self ) -> Union[str, Any]: A_ , A_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ : List[Any] = model_class(_lowerCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) A_ : Union[str, Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_lowerCamelCase , nn.Linear ) ) def UpperCAmelCase_ ( self ) -> Optional[Any]: A_ , A_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ : List[str] = model_class(_lowerCamelCase ) A_ : str = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A_ : Union[str, Any] = [*signature.parameters.keys()] A_ : List[str] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _lowerCamelCase ) def UpperCAmelCase_ ( self ) -> List[str]: A_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Union[str, Any]: A_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Optional[Any]: A_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCamelCase ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=False ) -> Union[str, Any]: A_ : int = super()._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase ) if return_labels: if model_class.__name__ == "DeiTForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def UpperCAmelCase_ ( self ) -> Optional[Any]: if not self.model_tester.is_training: return A_ , A_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() A_ : Optional[Any] = True for model_class in self.all_model_classes: # DeiTForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(_lowerCamelCase ) or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue A_ : List[str] = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.train() A_ : List[str] = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase ) A_ : List[str] = model(**_lowerCamelCase ).loss loss.backward() def UpperCAmelCase_ ( self ) -> int: A_ , A_ : Dict = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return A_ : Any = False A_ : Union[str, Any] = True for model_class in self.all_model_classes: if model_class in get_values(_lowerCamelCase ) or not model_class.supports_gradient_checkpointing: continue # DeiTForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "DeiTForImageClassificationWithTeacher": continue A_ : List[Any] = model_class(_lowerCamelCase ) model.gradient_checkpointing_enable() model.to(_lowerCamelCase ) model.train() A_ : str = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase ) A_ : Union[str, Any] = model(**_lowerCamelCase ).loss loss.backward() def UpperCAmelCase_ ( self ) -> Tuple: A_ , A_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() A_ : Optional[Any] = [ {"""title""": """multi_label_classification""", """num_labels""": 2, """dtype""": torch.float}, {"""title""": """single_label_classification""", """num_labels""": 1, """dtype""": torch.long}, {"""title""": """regression""", """num_labels""": 1, """dtype""": torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(_lowerCamelCase ), *get_values(_lowerCamelCase ), ] or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=F"Testing {model_class} with {problem_type['title']}" ): A_ : Dict = problem_type["""title"""] A_ : List[Any] = problem_type["""num_labels"""] A_ : List[str] = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.train() A_ : List[Any] = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase ) if problem_type["num_labels"] > 1: A_ : Tuple = inputs["""labels"""].unsqueeze(1 ).repeat(1 , problem_type["""num_labels"""] ) A_ : Union[str, Any] = inputs["""labels"""].to(problem_type["""dtype"""] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=_lowerCamelCase ) as warning_list: A_ : List[str] = model(**_lowerCamelCase ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( F"Something is going wrong in the regression problem: intercepted {w.message}" ) loss.backward() @slow def UpperCAmelCase_ ( self ) -> Tuple: for model_name in DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ : int = DeiTModel.from_pretrained(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) def UpperCAmelCase ( ) -> Tuple: """simple docstring""" A_ : Optional[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def UpperCAmelCase_ ( self ) -> Optional[Any]: return ( DeiTImageProcessor.from_pretrained("""facebook/deit-base-distilled-patch16-224""" ) if is_vision_available() else None ) @slow def UpperCAmelCase_ ( self ) -> Tuple: A_ : Any = DeiTForImageClassificationWithTeacher.from_pretrained("""facebook/deit-base-distilled-patch16-224""" ).to( _lowerCamelCase ) A_ : Optional[int] = self.default_image_processor A_ : str = prepare_img() A_ : Any = image_processor(images=_lowerCamelCase , return_tensors="""pt""" ).to(_lowerCamelCase ) # forward pass with torch.no_grad(): A_ : Any = model(**_lowerCamelCase ) # verify the logits A_ : Tuple = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _lowerCamelCase ) A_ : List[Any] = torch.tensor([-1.0266, 0.1912, -1.2861] ).to(_lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _lowerCamelCase , atol=1e-4 ) ) @slow @require_accelerate @require_torch_gpu def UpperCAmelCase_ ( self ) -> Tuple: A_ : Optional[Any] = DeiTModel.from_pretrained( """facebook/deit-base-distilled-patch16-224""" , torch_dtype=torch.floataa , device_map="""auto""" ) A_ : int = self.default_image_processor A_ : List[str] = prepare_img() A_ : List[Any] = image_processor(images=_lowerCamelCase , return_tensors="""pt""" ) A_ : Union[str, Any] = inputs.pixel_values.to(_lowerCamelCase ) # forward pass to make sure inference works in fp16 with torch.no_grad(): A_ : List[Any] = model(_lowerCamelCase )
344
1
"""simple docstring""" import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class _lowerCamelCase ( unittest.TestCase ): def snake_case_ (self ) -> List[str]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def snake_case_ (self ) -> Tuple: UpperCamelCase = 1 UpperCamelCase = 3 UpperCamelCase = (32, 32) UpperCamelCase = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(__a ) return image @property def snake_case_ (self ) -> Any: torch.manual_seed(0 ) UpperCamelCase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) return model @property def snake_case_ (self ) -> Tuple: torch.manual_seed(0 ) UpperCamelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) return model @property def snake_case_ (self ) -> Dict: torch.manual_seed(0 ) UpperCamelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) return CLIPTextModel(__a ) @property def snake_case_ (self ) -> List[Any]: def extract(*__a , **__a ): class _lowerCamelCase : def __init__(self ) -> List[Any]: UpperCamelCase = torch.ones([0] ) def snake_case_ (self , __a ) -> Optional[Any]: self.pixel_values.to(__a ) return self return Out() return extract def snake_case_ (self ) -> List[Any]: UpperCamelCase = "cpu" # ensure determinism for the device-dependent torch.Generator UpperCamelCase = self.dummy_cond_unet UpperCamelCase = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule="scaled_linear" , clip_sample=__a , set_alpha_to_one=__a , ) UpperCamelCase = self.dummy_vae UpperCamelCase = self.dummy_text_encoder UpperCamelCase = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) # make sure here that pndm scheduler skips prk UpperCamelCase = StableDiffusionPipeline( unet=__a , scheduler=__a , vae=__a , text_encoder=__a , tokenizer=__a , safety_checker=__a , feature_extractor=self.dummy_extractor , ) UpperCamelCase = sd_pipe.to(__a ) sd_pipe.set_progress_bar_config(disable=__a ) UpperCamelCase = "A painting of a squirrel eating a burger" UpperCamelCase = torch.Generator(device=__a ).manual_seed(0 ) UpperCamelCase = sd_pipe([prompt] , generator=__a , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" ) UpperCamelCase = output.images UpperCamelCase = torch.Generator(device=__a ).manual_seed(0 ) UpperCamelCase = sd_pipe( [prompt] , generator=__a , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , return_dict=__a , )[0] UpperCamelCase = image[0, -3:, -3:, -1] UpperCamelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCamelCase = np.array([0.5756, 0.6118, 0.5005, 0.5041, 0.5471, 0.4726, 0.4976, 0.4865, 0.4864] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def snake_case_ (self ) -> Optional[int]: UpperCamelCase = "cpu" # ensure determinism for the device-dependent torch.Generator UpperCamelCase = self.dummy_cond_unet UpperCamelCase = PNDMScheduler(skip_prk_steps=__a ) UpperCamelCase = self.dummy_vae UpperCamelCase = self.dummy_text_encoder UpperCamelCase = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) # make sure here that pndm scheduler skips prk UpperCamelCase = StableDiffusionPipeline( unet=__a , scheduler=__a , vae=__a , text_encoder=__a , tokenizer=__a , safety_checker=__a , feature_extractor=self.dummy_extractor , ) UpperCamelCase = sd_pipe.to(__a ) sd_pipe.set_progress_bar_config(disable=__a ) UpperCamelCase = "A painting of a squirrel eating a burger" UpperCamelCase = torch.Generator(device=__a ).manual_seed(0 ) UpperCamelCase = sd_pipe([prompt] , generator=__a , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" ) UpperCamelCase = output.images UpperCamelCase = torch.Generator(device=__a ).manual_seed(0 ) UpperCamelCase = sd_pipe( [prompt] , generator=__a , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , return_dict=__a , )[0] UpperCamelCase = image[0, -3:, -3:, -1] UpperCamelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCamelCase = np.array([0.5125, 0.5716, 0.4828, 0.5060, 0.5650, 0.4768, 0.5185, 0.4895, 0.4993] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def snake_case_ (self ) -> Any: UpperCamelCase = StableDiffusionPipeline.from_pretrained( "hf-internal-testing/tiny-stable-diffusion-lms-pipe" , safety_checker=__a ) assert isinstance(__a , __a ) assert isinstance(pipe.scheduler , __a ) assert pipe.safety_checker is None UpperCamelCase = pipe("example prompt" , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(__a ) UpperCamelCase = StableDiffusionPipeline.from_pretrained(__a ) # sanity check that the pipeline still works assert pipe.safety_checker is None UpperCamelCase = pipe("example prompt" , num_inference_steps=2 ).images[0] assert image is not None @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def snake_case_ (self ) -> Optional[int]: UpperCamelCase = self.dummy_cond_unet UpperCamelCase = PNDMScheduler(skip_prk_steps=__a ) UpperCamelCase = self.dummy_vae UpperCamelCase = self.dummy_text_encoder UpperCamelCase = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) # put models in fp16 UpperCamelCase = unet.half() UpperCamelCase = vae.half() UpperCamelCase = bert.half() # make sure here that pndm scheduler skips prk UpperCamelCase = StableDiffusionPipeline( unet=__a , scheduler=__a , vae=__a , text_encoder=__a , tokenizer=__a , safety_checker=__a , feature_extractor=self.dummy_extractor , ) UpperCamelCase = sd_pipe.to(__a ) sd_pipe.set_progress_bar_config(disable=__a ) UpperCamelCase = "A painting of a squirrel eating a burger" UpperCamelCase = sd_pipe([prompt] , num_inference_steps=2 , output_type="np" ).images assert image.shape == (1, 64, 64, 3) @nightly @require_torch_gpu class _lowerCamelCase ( unittest.TestCase ): def snake_case_ (self ) -> Tuple: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case_ (self ) -> int: UpperCamelCase = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5" , safety_checker=__a ) UpperCamelCase = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) UpperCamelCase = sd_pipe.to(__a ) sd_pipe.set_progress_bar_config(disable=__a ) UpperCamelCase = ( "portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle" " coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with" " anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and" " children from bahnhof zoo, detailed " ) UpperCamelCase = 40_03_66_03_46 UpperCamelCase = 7 # without safety guidance (sld_guidance_scale = 0) UpperCamelCase = torch.manual_seed(__a ) UpperCamelCase = sd_pipe( [prompt] , generator=__a , guidance_scale=__a , num_inference_steps=50 , output_type="np" , width=5_12 , height=5_12 , sld_guidance_scale=0 , ) UpperCamelCase = output.images UpperCamelCase = image[0, -3:, -3:, -1] UpperCamelCase = [0.2278, 0.2231, 0.2249, 0.2333, 0.2303, 0.1885, 0.2273, 0.2144, 0.2176] assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 # without safety guidance (strong configuration) UpperCamelCase = torch.manual_seed(__a ) UpperCamelCase = sd_pipe( [prompt] , generator=__a , guidance_scale=__a , num_inference_steps=50 , output_type="np" , width=5_12 , height=5_12 , sld_guidance_scale=20_00 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) UpperCamelCase = output.images UpperCamelCase = image[0, -3:, -3:, -1] UpperCamelCase = [0.2383, 0.2276, 0.236, 0.2192, 0.2186, 0.2053, 0.1971, 0.1901, 0.1719] assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def snake_case_ (self ) -> Optional[int]: UpperCamelCase = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5" , safety_checker=__a ) UpperCamelCase = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) UpperCamelCase = sd_pipe.to(__a ) sd_pipe.set_progress_bar_config(disable=__a ) UpperCamelCase = "padme amidala taking a bath artwork, safe for work, no nudity" UpperCamelCase = 27_34_97_17_55 UpperCamelCase = 7 UpperCamelCase = torch.manual_seed(__a ) UpperCamelCase = sd_pipe( [prompt] , generator=__a , guidance_scale=__a , num_inference_steps=50 , output_type="np" , width=5_12 , height=5_12 , sld_guidance_scale=0 , ) UpperCamelCase = output.images UpperCamelCase = image[0, -3:, -3:, -1] UpperCamelCase = [0.3502, 0.3622, 0.3396, 0.3642, 0.3478, 0.3318, 0.35, 0.3348, 0.3297] assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 UpperCamelCase = torch.manual_seed(__a ) UpperCamelCase = sd_pipe( [prompt] , generator=__a , guidance_scale=__a , num_inference_steps=50 , output_type="np" , width=5_12 , height=5_12 , sld_guidance_scale=20_00 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) UpperCamelCase = output.images UpperCamelCase = image[0, -3:, -3:, -1] UpperCamelCase = [0.5531, 0.5206, 0.4895, 0.5156, 0.5182, 0.4751, 0.4802, 0.4803, 0.4443] assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def snake_case_ (self ) -> Optional[Any]: UpperCamelCase = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5" ) UpperCamelCase = sd_pipe.to(__a ) sd_pipe.set_progress_bar_config(disable=__a ) UpperCamelCase = ( "the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c." " leyendecker" ) UpperCamelCase = 10_44_35_52_34 UpperCamelCase = 12 UpperCamelCase = torch.manual_seed(__a ) UpperCamelCase = sd_pipe( [prompt] , generator=__a , guidance_scale=__a , num_inference_steps=50 , output_type="np" , width=5_12 , height=5_12 , sld_guidance_scale=0 , ) UpperCamelCase = output.images UpperCamelCase = image[0, -3:, -3:, -1] UpperCamelCase = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] ) assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-7 UpperCamelCase = torch.manual_seed(__a ) UpperCamelCase = sd_pipe( [prompt] , generator=__a , guidance_scale=__a , num_inference_steps=50 , output_type="np" , width=5_12 , height=5_12 , sld_guidance_scale=20_00 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) UpperCamelCase = output.images UpperCamelCase = image[0, -3:, -3:, -1] UpperCamelCase = np.array([0.5818, 0.6285, 0.6835, 0.6019, 0.625, 0.6754, 0.6096, 0.6334, 0.6561] ) assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
358
"""simple docstring""" import doctest from collections import deque import numpy as np class _lowerCamelCase : def __init__(self ) -> None: UpperCamelCase = [2, 1, 2, -1] UpperCamelCase = [1, 2, 3, 4] def snake_case_ (self ) -> list[float]: UpperCamelCase = len(self.first_signal ) UpperCamelCase = len(self.second_signal ) UpperCamelCase = max(__a , __a ) # create a zero matrix of max_length x max_length UpperCamelCase = [[0] * max_length for i in range(__a )] # fills the smaller signal with zeros to make both signals of same length if length_first_signal < length_second_signal: self.first_signal += [0] * (max_length - length_first_signal) elif length_first_signal > length_second_signal: self.second_signal += [0] * (max_length - length_second_signal) for i in range(__a ): UpperCamelCase = deque(self.second_signal ) rotated_signal.rotate(__a ) for j, item in enumerate(__a ): matrix[i][j] += item # multiply the matrix with the first signal UpperCamelCase = np.matmul(np.transpose(__a ) , np.transpose(self.first_signal ) ) # rounding-off to two decimal places return [round(__a , 2 ) for i in final_signal] if __name__ == "__main__": doctest.testmod()
244
0
import sys __a = ( '73167176531330624919225119674426574742355349194934' '96983520312774506326239578318016984801869478851843' '85861560789112949495459501737958331952853208805511' '12540698747158523863050715693290963295227443043557' '66896648950445244523161731856403098711121722383113' '62229893423380308135336276614282806444486645238749' '30358907296290491560440772390713810515859307960866' '70172427121883998797908792274921901699720888093776' '65727333001053367881220235421809751254540594752243' '52584907711670556013604839586446706324415722155397' '53697817977846174064955149290862569321978468622482' '83972241375657056057490261407972968652414535100474' '82166370484403199890008895243450658541227588666881' '16427171479924442928230863465674813919123162824586' '17866458359124566529476545682848912883142607690042' '24219022671055626321111109370544217506941658960408' '07198403850962455444362981230987879927244284909188' '84580156166097919133875499200524063689912560717606' '05886116467109405077541002256983155200055935729725' '71636269561882670428252483600823257530420752963450' ) def a ( snake_case__: str = N ): '''simple docstring''' lowercase_ = -sys.maxsize - 1 for i in range(len(snake_case__ ) - 12 ): lowercase_ = 1 for j in range(13 ): product *= int(n[i + j] ) if product > largest_product: lowercase_ = product return largest_product if __name__ == "__main__": print(f"{solution() = }")
30
"""simple docstring""" from __future__ import annotations __magic_name__ = [-10, -5, 0, 5, 5.1, 11, 13, 21, 3, 4, -21, -10, -5, -1, 0] __magic_name__ = [-5, 0, 5, 5.1, 11, 13, 21, -1, 4, -1, -10, -5, -1, 0, -1] def _lowerCAmelCase ( UpperCamelCase_ ): __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = len(UpperCamelCase_ ) for i in range(UpperCamelCase_ ): __SCREAMING_SNAKE_CASE = -1 for j in range(i + 1 , UpperCamelCase_ ): if arr[i] < arr[j]: __SCREAMING_SNAKE_CASE = arr[j] break result.append(UpperCamelCase_ ) return result def _lowerCAmelCase ( UpperCamelCase_ ): __SCREAMING_SNAKE_CASE = [] for i, outer in enumerate(UpperCamelCase_ ): __SCREAMING_SNAKE_CASE = -1 for inner in arr[i + 1 :]: if outer < inner: __SCREAMING_SNAKE_CASE = inner break result.append(UpperCamelCase_ ) return result def _lowerCAmelCase ( UpperCamelCase_ ): __SCREAMING_SNAKE_CASE = len(UpperCamelCase_ ) __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = [-1] * arr_size for index in reversed(range(UpperCamelCase_ ) ): if stack: while stack[-1] <= arr[index]: stack.pop() if not stack: break if stack: __SCREAMING_SNAKE_CASE = stack[-1] stack.append(arr[index] ) return result if __name__ == "__main__": from doctest import testmod from timeit import timeit testmod() print(next_greatest_element_slow(arr)) print(next_greatest_element_fast(arr)) print(next_greatest_element(arr)) __magic_name__ = ( "from __main__ import arr, next_greatest_element_slow, " "next_greatest_element_fast, next_greatest_element" ) print( "next_greatest_element_slow():", timeit("next_greatest_element_slow(arr)", setup=setup), ) print( "next_greatest_element_fast():", timeit("next_greatest_element_fast(arr)", setup=setup), ) print( " next_greatest_element():", timeit("next_greatest_element(arr)", setup=setup), )
100
0
from collections import deque from .hash_table import HashTable class _lowerCamelCase( _a ): def __init__( self, *lowerCamelCase, **lowerCamelCase) -> Union[str, Any]: """simple docstring""" super().__init__(*lowerCamelCase, **lowerCamelCase) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase) -> Optional[Any]: """simple docstring""" _lowercase : Tuple = deque([]) if self.values[key] is None else self.values[key] self.values[key].appendleft(lowerCamelCase) _lowercase : Optional[Any] = self.values[key] def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" return ( sum(self.charge_factor - len(lowerCamelCase) for slot in self.values) / self.size_table * self.charge_factor ) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase=None) -> Dict: """simple docstring""" if not ( len(self.values[key]) == self.charge_factor and self.values.count(lowerCamelCase) == 0 ): return key return super()._collision_resolution(lowerCamelCase, lowerCamelCase)
84
from collections import defaultdict def UpperCamelCase_( lowerCamelCase_ ) -> int: _lowercase : Optional[Any] = 1 _lowercase : Union[str, Any] = True for v in tree[start]: if v not in visited: ret += dfs(lowerCamelCase_ ) if ret % 2 == 0: cuts.append(lowerCamelCase_ ) return ret def UpperCamelCase_( ) -> Optional[Any]: dfs(1 ) if __name__ == "__main__": SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = 10, 9 SCREAMING_SNAKE_CASE : List[Any] = defaultdict(list) SCREAMING_SNAKE_CASE : dict[int, bool] = {} SCREAMING_SNAKE_CASE : list[int] = [] SCREAMING_SNAKE_CASE : Optional[int] = 0 SCREAMING_SNAKE_CASE : Any = [(2, 1), (3, 1), (4, 3), (5, 2), (6, 1), (7, 2), (8, 6), (9, 8), (10, 8)] for u, v in edges: tree[u].append(v) tree[v].append(u) even_tree() print(len(cuts) - 1)
84
1
import dataclasses import json import warnings from dataclasses import dataclass, field from time import time from typing import List from ..utils import logging __snake_case :Optional[Any] = logging.get_logger(__name__) def __snake_case ( _UpperCAmelCase=None , _UpperCAmelCase=None ): return field(default_factory=lambda: default , metadata=_UpperCAmelCase ) @dataclass class _A : UpperCamelCase__ : List[str] = list_field( default=[] ,metadata={ '''help''': ( '''Model checkpoints to be provided to the AutoModel classes. Leave blank to benchmark the base version''' ''' of all available models''' ) } ,) UpperCamelCase__ : List[int] = list_field( default=[8] ,metadata={'''help''': '''List of batch sizes for which memory and time performance will be evaluated'''} ) UpperCamelCase__ : List[int] = list_field( default=[8, 32, 128, 512] ,metadata={'''help''': '''List of sequence lengths for which memory and time performance will be evaluated'''} ,) UpperCamelCase__ : bool = field( default=__UpperCAmelCase ,metadata={'''help''': '''Whether to benchmark inference of model. Inference can be disabled via --no-inference.'''} ,) UpperCamelCase__ : bool = field( default=__UpperCAmelCase ,metadata={'''help''': '''Whether to run on available cuda devices. Cuda can be disabled via --no-cuda.'''} ,) UpperCamelCase__ : bool = field( default=__UpperCAmelCase ,metadata={'''help''': '''Whether to run on available tpu devices. TPU can be disabled via --no-tpu.'''} ) UpperCamelCase__ : bool = field(default=__UpperCAmelCase ,metadata={'''help''': '''Use FP16 to accelerate inference.'''} ) UpperCamelCase__ : bool = field(default=__UpperCAmelCase ,metadata={'''help''': '''Benchmark training of model'''} ) UpperCamelCase__ : bool = field(default=__UpperCAmelCase ,metadata={'''help''': '''Verbose memory tracing'''} ) UpperCamelCase__ : bool = field( default=__UpperCAmelCase ,metadata={'''help''': '''Whether to perform speed measurements. Speed measurements can be disabled via --no-speed.'''} ,) UpperCamelCase__ : bool = field( default=__UpperCAmelCase ,metadata={ '''help''': '''Whether to perform memory measurements. Memory measurements can be disabled via --no-memory''' } ,) UpperCamelCase__ : bool = field(default=__UpperCAmelCase ,metadata={'''help''': '''Trace memory line by line'''} ) UpperCamelCase__ : bool = field(default=__UpperCAmelCase ,metadata={'''help''': '''Save result to a CSV file'''} ) UpperCamelCase__ : bool = field(default=__UpperCAmelCase ,metadata={'''help''': '''Save all print statements in a log file'''} ) UpperCamelCase__ : bool = field(default=__UpperCAmelCase ,metadata={'''help''': '''Whether to print environment information'''} ) UpperCamelCase__ : bool = field( default=__UpperCAmelCase ,metadata={ '''help''': ( '''Whether to use multiprocessing for memory and speed measurement. It is highly recommended to use''' ''' multiprocessing for accurate CPU and GPU memory measurements. This option should only be disabled''' ''' for debugging / testing and on TPU.''' ) } ,) UpperCamelCase__ : str = field( default=F'''inference_time_{round(time() )}.csv''' ,metadata={'''help''': '''CSV filename used if saving time results to csv.'''} ,) UpperCamelCase__ : str = field( default=F'''inference_memory_{round(time() )}.csv''' ,metadata={'''help''': '''CSV filename used if saving memory results to csv.'''} ,) UpperCamelCase__ : str = field( default=F'''train_time_{round(time() )}.csv''' ,metadata={'''help''': '''CSV filename used if saving time results to csv for training.'''} ,) UpperCamelCase__ : str = field( default=F'''train_memory_{round(time() )}.csv''' ,metadata={'''help''': '''CSV filename used if saving memory results to csv for training.'''} ,) UpperCamelCase__ : str = field( default=F'''env_info_{round(time() )}.csv''' ,metadata={'''help''': '''CSV filename used if saving environment information.'''} ,) UpperCamelCase__ : str = field( default=F'''log_{round(time() )}.csv''' ,metadata={'''help''': '''Log filename used if print statements are saved in log.'''} ,) UpperCamelCase__ : int = field(default=3 ,metadata={'''help''': '''Times an experiment will be run.'''} ) UpperCamelCase__ : bool = field( default=__UpperCAmelCase ,metadata={ '''help''': ( '''Instead of loading the model as defined in `config.architectures` if exists, just load the pretrain''' ''' model weights.''' ) } ,) def _lowerCamelCase ( self : List[str]): '''simple docstring''' warnings.warn( F'The class {self.__class__} is deprecated. Hugging Face Benchmarking utils' ''' are deprecated in general and it is advised to use external Benchmarking libraries ''' ''' to benchmark Transformer models.''' , __SCREAMING_SNAKE_CASE , ) def _lowerCamelCase ( self : Tuple): '''simple docstring''' return json.dumps(dataclasses.asdict(self) , indent=2) @property def _lowerCamelCase ( self : str): '''simple docstring''' if len(self.models) <= 0: raise ValueError( '''Please make sure you provide at least one model name / model identifier, *e.g.* `--models''' ''' bert-base-cased` or `args.models = [\'bert-base-cased\'].''') return self.models @property def _lowerCamelCase ( self : int): '''simple docstring''' if not self.multi_process: return False elif self.is_tpu: logger.info('''Multiprocessing is currently not possible on TPU.''') return False else: return True
49
'''simple docstring''' import math def __snake_case ( UpperCAmelCase_ : int ): lowerCamelCase_ = math.loga(math.sqrt(4 * positive_integer + 1 ) / 2 + 1 / 2 ) return exponent == int(UpperCAmelCase_ ) def __snake_case ( UpperCAmelCase_ : float = 1 / 12345 ): lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = 3 while True: lowerCamelCase_ = (integer**2 - 1) / 4 # if candidate is an integer, then there is a partition for k if partition_candidate == int(UpperCAmelCase_ ): lowerCamelCase_ = int(UpperCAmelCase_ ) total_partitions += 1 if check_partition_perfect(UpperCAmelCase_ ): perfect_partitions += 1 if perfect_partitions > 0: if perfect_partitions / total_partitions < max_proportion: return int(UpperCAmelCase_ ) integer += 1 if __name__ == "__main__": print(f'''{solution() = }''')
55
0
from packaging import version from .import_utils import is_accelerate_available if is_accelerate_available(): import accelerate def _UpperCamelCase (a__ :Dict ): """simple docstring""" if not is_accelerate_available(): return method UpperCamelCase__ = version.parse(accelerate.__version__ ).base_version if version.parse(a__ ) < version.parse("""0.17.0""" ): return method def wrapper(self :Optional[Any] , *a__ :Optional[Any] , **a__ :List[str] ): if hasattr(self , """_hf_hook""" ) and hasattr(self._hf_hook , """pre_forward""" ): self._hf_hook.pre_forward(self ) return method(self , *a__ , **a__ ) return wrapper
87
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) UpperCamelCase__ = { "configuration_swiftformer": [ "SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "SwiftFormerConfig", "SwiftFormerOnnxConfig", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = [ "SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "SwiftFormerForImageClassification", "SwiftFormerModel", "SwiftFormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_swiftformer import ( SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, SwiftFormerConfig, SwiftFormerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swiftformer import ( SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, SwiftFormerForImageClassification, SwiftFormerModel, SwiftFormerPreTrainedModel, ) else: import sys UpperCamelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
87
1
'''simple docstring''' import unittest from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers @require_sentencepiece @slow # see https://github.com/huggingface/transformers/issues/11457 class UpperCAmelCase__ ( lowercase__ , unittest.TestCase ): """simple docstring""" __UpperCAmelCase : List[str] = BarthezTokenizer __UpperCAmelCase : Optional[Any] = BarthezTokenizerFast __UpperCAmelCase : List[str] = True __UpperCAmelCase : str = True def __lowercase ( self : Tuple ): '''simple docstring''' super().setUp() _a : str = BarthezTokenizerFast.from_pretrained('moussaKam/mbarthez' ) tokenizer.save_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ,legacy_format=_a ) _a : List[str] = tokenizer def __lowercase ( self : List[Any] ): '''simple docstring''' _a : str = '<pad>' _a : str = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_a ) ,_a ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_a ) ,_a ) def __lowercase ( self : List[str] ): '''simple docstring''' _a : Any = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] ,'<s>' ) self.assertEqual(vocab_keys[1] ,'<pad>' ) self.assertEqual(vocab_keys[-1] ,'<mask>' ) self.assertEqual(len(_a ) ,10_1122 ) def __lowercase ( self : List[Any] ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size ,10_1122 ) @require_torch def __lowercase ( self : Optional[int] ): '''simple docstring''' _a : Any = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] _a : Optional[Any] = [0, 57, 3018, 7_0307, 91, 2] _a : Optional[int] = self.tokenizer( _a ,max_length=len(_a ) ,padding=_a ,truncation=_a ,return_tensors='pt' ) self.assertIsInstance(_a ,_a ) self.assertEqual((2, 6) ,batch.input_ids.shape ) self.assertEqual((2, 6) ,batch.attention_mask.shape ) _a : List[Any] = batch.input_ids.tolist()[0] self.assertListEqual(_a ,_a ) def __lowercase ( self : Optional[Any] ): '''simple docstring''' if not self.test_rust_tokenizer: return _a : Dict = self.get_tokenizer() _a : Optional[Any] = self.get_rust_tokenizer() _a : Union[str, Any] = 'I was born in 92000, and this is falsé.' _a : int = tokenizer.tokenize(_a ) _a : Optional[Any] = rust_tokenizer.tokenize(_a ) self.assertListEqual(_a ,_a ) _a : List[str] = tokenizer.encode(_a ,add_special_tokens=_a ) _a : List[Any] = rust_tokenizer.encode(_a ,add_special_tokens=_a ) self.assertListEqual(_a ,_a ) _a : Optional[int] = self.get_rust_tokenizer() _a : List[str] = tokenizer.encode(_a ) _a : int = rust_tokenizer.encode(_a ) self.assertListEqual(_a ,_a ) @slow def __lowercase ( self : List[Any] ): '''simple docstring''' _a : List[Any] = {'input_ids': [[0, 490, 1_4328, 4507, 354, 47, 4_3669, 95, 25, 7_8117, 2_0215, 1_9779, 190, 22, 400, 4, 3_5343, 8_0310, 603, 86, 2_4937, 105, 3_3438, 9_4762, 196, 3_9642, 7, 15, 1_5933, 173, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 1_0534, 87, 25, 66, 3358, 196, 5_5289, 8, 8_2961, 81, 2204, 7_5203, 7, 15, 763, 1_2956, 216, 178, 1_4328, 9595, 1377, 6_9693, 7, 448, 7_1021, 196, 1_8106, 1437, 1_3974, 108, 9083, 4, 4_9315, 7, 39, 86, 1326, 2793, 4_6333, 4, 448, 196, 7_4588, 7, 4_9315, 7, 39, 21, 822, 3_8470, 74, 21, 6_6723, 6_2480, 8, 2_2050, 5, 2]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # moussaKam/mbarthez is a french model. So we also use french texts. _a : Tuple = [ 'Le transformeur est un modèle d\'apprentissage profond introduit en 2017, ' 'utilisé principalement dans le domaine du traitement automatique des langues (TAL).', 'À l\'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus ' 'pour gérer des données séquentielles, telles que le langage naturel, pour des tâches ' 'telles que la traduction et la synthèse de texte.', ] self.tokenizer_integration_test_util( expected_encoding=_a ,model_name='moussaKam/mbarthez' ,revision='c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6' ,sequences=_a ,)
271
'''simple docstring''' import numpy as np from transformers import BatchFeature from transformers.testing_utils import require_tf, require_torch from .test_feature_extraction_common import FeatureExtractionSavingTestMixin class UpperCAmelCase__ ( lowercase__ ): """simple docstring""" __UpperCAmelCase : Union[str, Any] = None __UpperCAmelCase : List[Any] = None @property def __lowercase ( self : Dict ): '''simple docstring''' return self.feat_extract_tester.prepare_feat_extract_dict() def __lowercase ( self : str ): '''simple docstring''' _a : Dict = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(_a ,'feature_size' ) ) self.assertTrue(hasattr(_a ,'sampling_rate' ) ) self.assertTrue(hasattr(_a ,'padding_value' ) ) def __lowercase ( self : int ): '''simple docstring''' _a : Any = self.feat_extract_tester.prepare_inputs_for_common() _a : str = self.feature_extraction_class(**self.feat_extract_dict ) _a : int = feat_extract.model_input_names[0] _a : List[Any] = BatchFeature({input_name: speech_inputs} ) self.assertTrue(all(len(_a ) == len(_a ) for x, y in zip(_a ,processed_features[input_name] ) ) ) _a : Any = self.feat_extract_tester.prepare_inputs_for_common(equal_length=_a ) _a : Union[str, Any] = BatchFeature({input_name: speech_inputs} ,tensor_type='np' ) _a : Union[str, Any] = processed_features[input_name] if len(batch_features_input.shape ) < 3: _a : Optional[int] = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) @require_torch def __lowercase ( self : Any ): '''simple docstring''' _a : List[Any] = self.feat_extract_tester.prepare_inputs_for_common(equal_length=_a ) _a : Dict = self.feature_extraction_class(**self.feat_extract_dict ) _a : int = feat_extract.model_input_names[0] _a : str = BatchFeature({input_name: speech_inputs} ,tensor_type='pt' ) _a : str = processed_features[input_name] if len(batch_features_input.shape ) < 3: _a : str = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) @require_tf def __lowercase ( self : int ): '''simple docstring''' _a : int = self.feat_extract_tester.prepare_inputs_for_common(equal_length=_a ) _a : Dict = self.feature_extraction_class(**self.feat_extract_dict ) _a : Tuple = feat_extract.model_input_names[0] _a : int = BatchFeature({input_name: speech_inputs} ,tensor_type='tf' ) _a : Optional[int] = processed_features[input_name] if len(batch_features_input.shape ) < 3: _a : Optional[Any] = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) def __lowercase ( self : Dict ,_a : Any=False ): '''simple docstring''' def _inputs_have_equal_length(_a : Tuple ): _a : Tuple = len(input[0] ) for input_slice in input[1:]: if len(_a ) != length: return False return True def _inputs_are_equal(_a : Optional[Any] ,_a : Union[str, Any] ): if len(_a ) != len(_a ): return False for input_slice_a, input_slice_a in zip(_a ,_a ): if not np.allclose(np.asarray(_a ) ,np.asarray(_a ) ,atol=1E-3 ): return False return True _a : int = self.feature_extraction_class(**self.feat_extract_dict ) _a : Tuple = self.feat_extract_tester.prepare_inputs_for_common(numpify=_a ) _a : Union[str, Any] = feat_extract.model_input_names[0] _a : Tuple = BatchFeature({input_name: speech_inputs} ) _a : str = self.feat_extract_tester.seq_length_diff _a : Dict = self.feat_extract_tester.max_seq_length + pad_diff _a : Dict = self.feat_extract_tester.min_seq_length _a : Optional[Any] = self.feat_extract_tester.batch_size _a : Tuple = self.feat_extract_tester.feature_size # test padding for List[int] + numpy _a : int = feat_extract.pad(_a ,padding=_a ) _a : List[Any] = input_a[input_name] _a : Tuple = feat_extract.pad(_a ,padding='longest' ) _a : Any = input_a[input_name] _a : Optional[Any] = feat_extract.pad(_a ,padding='max_length' ,max_length=len(speech_inputs[-1] ) ) _a : List[str] = input_a[input_name] _a : List[str] = feat_extract.pad(_a ,padding='longest' ,return_tensors='np' ) _a : str = input_a[input_name] # max_length parameter has to be provided when setting `padding="max_length"` with self.assertRaises(_a ): feat_extract.pad(_a ,padding='max_length' )[input_name] _a : int = feat_extract.pad( _a ,padding='max_length' ,max_length=_a ,return_tensors='np' ) _a : Optional[int] = input_a[input_name] self.assertFalse(_inputs_have_equal_length(_a ) ) self.assertTrue(_inputs_have_equal_length(_a ) ) self.assertTrue(_inputs_have_equal_length(_a ) ) self.assertTrue(_inputs_are_equal(_a ,_a ) ) self.assertTrue(len(input_a[0] ) == pad_min_length ) self.assertTrue(len(input_a[1] ) == pad_min_length + pad_diff ) self.assertTrue(input_a.shape[:2] == (batch_size, len(input_a[0] )) ) self.assertTrue(input_a.shape[:2] == (batch_size, pad_max_length) ) if feature_size > 1: self.assertTrue(input_a.shape[2] == input_a.shape[2] == feature_size ) # test padding for `pad_to_multiple_of` for List[int] + numpy _a : Tuple = feat_extract.pad(_a ,pad_to_multiple_of=10 ) _a : List[str] = input_a[input_name] _a : str = feat_extract.pad(_a ,padding='longest' ,pad_to_multiple_of=10 ) _a : Tuple = input_a[input_name] _a : Optional[int] = feat_extract.pad( _a ,padding='max_length' ,pad_to_multiple_of=10 ,max_length=_a ) _a : Any = input_a[input_name] _a : Optional[int] = feat_extract.pad( _a ,padding='max_length' ,pad_to_multiple_of=10 ,max_length=_a ,return_tensors='np' ,) _a : Dict = input_a[input_name] self.assertTrue(all(len(_a ) % 10 == 0 for x in input_a ) ) self.assertTrue(_inputs_are_equal(_a ,_a ) ) _a : List[str] = pad_max_length if pad_max_length % 10 == 0 else (pad_max_length // 10 + 1) * 10 self.assertTrue(all(len(_a ) == expected_mult_pad_length for x in input_a ) ) self.assertEqual(input_a.shape[:2] ,(batch_size, expected_mult_pad_length) ) if feature_size > 1: self.assertTrue(input_a.shape[2] == feature_size ) # Check padding value is correct _a : Any = (np.ones(self.feat_extract_tester.feature_size ) * feat_extract.padding_value).sum() self.assertTrue( abs(np.asarray(input_a[0] )[pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) ) < 1E-3 ) self.assertTrue( abs( np.asarray(input_a[1] )[pad_min_length + pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - pad_diff) ) < 1E-3 ) self.assertTrue( abs( np.asarray(input_a[2] )[pad_min_length + 2 * pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - 2 * pad_diff) ) < 1E-3 ) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) ) < 1E-3 ) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (expected_mult_pad_length - pad_min_length) ) < 1E-3 ) def __lowercase ( self : List[Any] ,_a : Optional[int]=False ): '''simple docstring''' def _inputs_have_equal_length(_a : List[str] ): _a : Union[str, Any] = len(input[0] ) for input_slice in input[1:]: if len(_a ) != length: return False return True def _inputs_are_equal(_a : List[str] ,_a : List[str] ): if len(_a ) != len(_a ): return False for input_slice_a, input_slice_a in zip(_a ,_a ): if not np.allclose(np.asarray(_a ) ,np.asarray(_a ) ,atol=1E-3 ): return False return True _a : Dict = self.feature_extraction_class(**self.feat_extract_dict ) _a : str = self.feat_extract_tester.prepare_inputs_for_common(numpify=_a ) _a : Any = feat_extract.model_input_names[0] _a : List[Any] = BatchFeature({input_name: speech_inputs} ) # truncate to smallest _a : Union[str, Any] = feat_extract.pad( _a ,padding='max_length' ,max_length=len(speech_inputs[0] ) ,truncation=_a ) _a : str = input_a[input_name] _a : List[str] = feat_extract.pad(_a ,padding='max_length' ,max_length=len(speech_inputs[0] ) ) _a : Tuple = input_a[input_name] self.assertTrue(_inputs_have_equal_length(_a ) ) self.assertFalse(_inputs_have_equal_length(_a ) ) # truncate to smallest with np _a : Dict = feat_extract.pad( _a ,padding='max_length' ,max_length=len(speech_inputs[0] ) ,return_tensors='np' ,truncation=_a ,) _a : Any = input_a[input_name] _a : List[Any] = feat_extract.pad( _a ,padding='max_length' ,max_length=len(speech_inputs[0] ) ,return_tensors='np' ) _a : int = input_a[input_name] self.assertTrue(_inputs_have_equal_length(_a ) ) self.assertTrue(input_a.shape[1] == len(speech_inputs[0] ) ) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(_a ) ) # truncate to middle _a : Dict = feat_extract.pad( _a ,padding='max_length' ,max_length=len(speech_inputs[1] ) ,truncation=_a ,return_tensors='np' ,) _a : List[Any] = input_a[input_name] _a : Tuple = feat_extract.pad( _a ,padding='max_length' ,max_length=len(speech_inputs[1] ) ,truncation=_a ) _a : Tuple = input_a[input_name] _a : Tuple = feat_extract.pad( _a ,padding='max_length' ,max_length=len(speech_inputs[1] ) ,return_tensors='np' ) _a : Dict = input_a[input_name] self.assertTrue(input_a.shape[1] == len(speech_inputs[1] ) ) self.assertTrue(_inputs_have_equal_length(_a ) ) self.assertTrue(_inputs_have_equal_length(_a ) ) self.assertTrue(_inputs_are_equal(_a ,_a ) ) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(_a ) ) self.assertTrue(len(input_a[-1] ) == len(speech_inputs[-1] ) ) # padding has to be max_length when setting `truncation=True` with self.assertRaises(_a ): feat_extract.pad(_a ,truncation=_a )[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(_a ): feat_extract.pad(_a ,padding='longest' ,truncation=_a )[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(_a ): feat_extract.pad(_a ,padding='longest' ,truncation=_a )[input_name] # max_length parameter has to be provided when setting `truncation=True` and padding="max_length" with self.assertRaises(_a ): feat_extract.pad(_a ,padding='max_length' ,truncation=_a )[input_name] # test truncation for `pad_to_multiple_of` for List[int] + numpy _a : Optional[Any] = 12 _a : List[Any] = feat_extract.pad( _a ,padding='max_length' ,max_length=len(speech_inputs[0] ) ,pad_to_multiple_of=_a ,truncation=_a ,) _a : Tuple = input_a[input_name] _a : str = feat_extract.pad( _a ,padding='max_length' ,max_length=len(speech_inputs[0] ) ,pad_to_multiple_of=_a ,) _a : List[Any] = input_a[input_name] # retrieve expected_length as multiple of pad_to_multiple_of _a : List[Any] = len(speech_inputs[0] ) if expected_length % pad_to_multiple_of != 0: _a : Union[str, Any] = ((len(speech_inputs[0] ) // pad_to_multiple_of) + 1) * pad_to_multiple_of self.assertTrue(len(input_a[0] ) == expected_length ) self.assertTrue(_inputs_have_equal_length(_a ) ) self.assertFalse(_inputs_have_equal_length(_a ) ) def __lowercase ( self : Union[str, Any] ): '''simple docstring''' self._check_padding(numpify=_a ) def __lowercase ( self : Tuple ): '''simple docstring''' self._check_padding(numpify=_a ) def __lowercase ( self : Dict ): '''simple docstring''' self._check_truncation(numpify=_a ) def __lowercase ( self : str ): '''simple docstring''' self._check_truncation(numpify=_a ) @require_torch def __lowercase ( self : Dict ): '''simple docstring''' _a : Any = self.feature_extraction_class(**self.feat_extract_dict ) _a : List[Any] = self.feat_extract_tester.prepare_inputs_for_common() _a : Union[str, Any] = feat_extract.model_input_names[0] _a : Optional[int] = BatchFeature({input_name: speech_inputs} ) _a : List[Any] = feat_extract.pad(_a ,padding='longest' ,return_tensors='np' )[input_name] _a : List[str] = feat_extract.pad(_a ,padding='longest' ,return_tensors='pt' )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1E-2 ) @require_tf def __lowercase ( self : int ): '''simple docstring''' _a : List[str] = self.feature_extraction_class(**self.feat_extract_dict ) _a : Optional[Any] = self.feat_extract_tester.prepare_inputs_for_common() _a : Dict = feat_extract.model_input_names[0] _a : Optional[Any] = BatchFeature({input_name: speech_inputs} ) _a : Dict = feat_extract.pad(_a ,padding='longest' ,return_tensors='np' )[input_name] _a : Any = feat_extract.pad(_a ,padding='longest' ,return_tensors='tf' )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_tf.numpy().astype(np.floataa ).sum() ) < 1E-2 ) def __lowercase ( self : Union[str, Any] ): '''simple docstring''' _a : str = self.feat_extract_dict _a : List[Any] = True _a : Optional[int] = self.feature_extraction_class(**_a ) _a : List[Any] = self.feat_extract_tester.prepare_inputs_for_common() _a : Tuple = [len(_a ) for x in speech_inputs] _a : int = feat_extract.model_input_names[0] _a : Optional[Any] = BatchFeature({input_name: speech_inputs} ) _a : str = feat_extract.pad(_a ,padding='longest' ,return_tensors='np' ) self.assertIn('attention_mask' ,_a ) self.assertListEqual(list(processed.attention_mask.shape ) ,list(processed[input_name].shape[:2] ) ) self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() ,_a ) def __lowercase ( self : int ): '''simple docstring''' _a : Any = self.feat_extract_dict _a : Tuple = True _a : Optional[int] = self.feature_extraction_class(**_a ) _a : Dict = self.feat_extract_tester.prepare_inputs_for_common() _a : Dict = [len(_a ) for x in speech_inputs] _a : Union[str, Any] = feat_extract.model_input_names[0] _a : Any = BatchFeature({input_name: speech_inputs} ) _a : List[Any] = min(_a ) _a : Dict = feat_extract.pad( _a ,padding='max_length' ,max_length=_a ,truncation=_a ,return_tensors='np' ) self.assertIn('attention_mask' ,_a ) self.assertListEqual( list(processed_pad.attention_mask.shape ) ,[processed_pad[input_name].shape[0], max_length] ) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() ,[max_length for x in speech_inputs] )
271
1
import logging import os import sys import warnings from dataclasses import dataclass, field from random import randint from typing import Optional import datasets import evaluate import numpy as np from datasets import DatasetDict, load_dataset import transformers from transformers import ( AutoConfig, AutoFeatureExtractor, AutoModelForAudioClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version _UpperCAmelCase : Optional[int] = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.31.0") require_version("datasets>=1.14.0", "To fix: pip install -r examples/pytorch/audio-classification/requirements.txt") def UpperCAmelCase__ ( lowerCamelCase, lowerCamelCase, lowerCamelCase = 16000 ): lowercase :Any = int(round(sample_rate * max_length ) ) if len(lowerCamelCase ) <= sample_length: return wav lowercase :Optional[int] = randint(0, len(lowerCamelCase ) - sample_length - 1 ) return wav[random_offset : random_offset + sample_length] @dataclass class __lowerCAmelCase : _a = field(default=lowerCAmelCase , metadata={'''help''': '''Name of a dataset from the datasets package'''}) _a = field( default=lowerCAmelCase , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''}) _a = field( default=lowerCAmelCase , metadata={'''help''': '''A file containing the training audio paths and labels.'''}) _a = field( default=lowerCAmelCase , metadata={'''help''': '''A file containing the validation audio paths and labels.'''}) _a = field( default='''train''' , metadata={ '''help''': '''The name of the training data set split to use (via the datasets library). Defaults to \'train\'''' } , ) _a = field( default='''validation''' , metadata={ '''help''': ( '''The name of the training data set split to use (via the datasets library). Defaults to \'validation\'''' ) } , ) _a = field( default='''audio''' , metadata={'''help''': '''The name of the dataset column containing the audio data. Defaults to \'audio\''''} , ) _a = field( default='''label''' , metadata={'''help''': '''The name of the dataset column containing the labels. Defaults to \'label\''''}) _a = field( default=lowerCAmelCase , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) } , ) _a = field( default=lowerCAmelCase , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of evaluation examples to this ''' '''value if set.''' ) } , ) _a = field( default=20 , metadata={'''help''': '''Audio clips will be randomly cut to this length during training if the value is set.'''} , ) @dataclass class __lowerCAmelCase : _a = field( default='''facebook/wav2vec2-base''' , metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} , ) _a = field( default=lowerCAmelCase , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''}) _a = field( default=lowerCAmelCase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from the Hub'''}) _a = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) _a = field( default=lowerCAmelCase , metadata={'''help''': '''Name or path of preprocessor config.'''}) _a = field( default=lowerCAmelCase , metadata={'''help''': '''Whether to freeze the feature encoder layers of the model.'''}) _a = field( default=lowerCAmelCase , metadata={'''help''': '''Whether to generate an attention mask in the feature extractor.'''}) _a = field( default=lowerCAmelCase , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) _a = field( default=lowerCAmelCase , metadata={'''help''': '''Whether to freeze the feature extractor layers of the model.'''}) _a = field( default=lowerCAmelCase , metadata={'''help''': '''Will enable to load a pretrained model whose head dimensions are different.'''} , ) def SCREAMING_SNAKE_CASE ( self: List[Any] ): if not self.freeze_feature_extractor and self.freeze_feature_encoder: warnings.warn( "The argument `--freeze_feature_extractor` is deprecated and " "will be removed in a future version. Use `--freeze_feature_encoder`" "instead. Setting `freeze_feature_encoder==True`." , _lowerCAmelCase , ) if self.freeze_feature_extractor and not self.freeze_feature_encoder: raise ValueError( "The argument `--freeze_feature_extractor` is deprecated and " "should not be used in combination with `--freeze_feature_encoder`." "Only make use of `--freeze_feature_encoder`." ) def UpperCAmelCase__ ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowercase :Any = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowercase , lowercase , lowercase :Optional[Any] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowercase , lowercase , lowercase :Dict = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_audio_classification", lowerCamelCase, lowerCamelCase ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", handlers=[logging.StreamHandler(sys.stdout )], ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() lowercase :Tuple = training_args.get_process_log_level() logger.setLevel(lowerCamelCase ) transformers.utils.logging.set_verbosity(lowerCamelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu} " + F"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" ) logger.info(F"Training/evaluation parameters {training_args}" ) # Set seed before initializing model. set_seed(training_args.seed ) # Detecting last checkpoint. lowercase :str = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowercase :Optional[int] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"Output directory ({training_args.output_dir}) already exists and is not empty. " "Use --overwrite_output_dir to train from scratch." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Initialize our dataset and prepare it for the audio classification task. lowercase :List[Any] = DatasetDict() lowercase :Dict = load_dataset( data_args.dataset_name, data_args.dataset_config_name, split=data_args.train_split_name, use_auth_token=True if model_args.use_auth_token else None, ) lowercase :List[Any] = load_dataset( data_args.dataset_name, data_args.dataset_config_name, split=data_args.eval_split_name, use_auth_token=True if model_args.use_auth_token else None, ) if data_args.audio_column_name not in raw_datasets["train"].column_names: raise ValueError( F"--audio_column_name {data_args.audio_column_name} not found in dataset '{data_args.dataset_name}'. " "Make sure to set `--audio_column_name` to the correct audio column - one of " F"{', '.join(raw_datasets['train'].column_names )}." ) if data_args.label_column_name not in raw_datasets["train"].column_names: raise ValueError( F"--label_column_name {data_args.label_column_name} not found in dataset '{data_args.dataset_name}'. " "Make sure to set `--label_column_name` to the correct text column - one of " F"{', '.join(raw_datasets['train'].column_names )}." ) # Setting `return_attention_mask=True` is the way to get a correctly masked mean-pooling over # transformer outputs in the classifier, but it doesn't always lead to better accuracy lowercase :Dict = AutoFeatureExtractor.from_pretrained( model_args.feature_extractor_name or model_args.model_name_or_path, return_attention_mask=model_args.attention_mask, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) # `datasets` takes care of automatically loading and resampling the audio, # so we just need to set the correct target sampling rate. lowercase :int = raw_datasets.cast_column( data_args.audio_column_name, datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate ) ) lowercase :Optional[int] = feature_extractor.model_input_names[0] def train_transforms(lowerCamelCase ): lowercase :List[str] = [] for audio in batch[data_args.audio_column_name]: lowercase :Dict = random_subsample( audio["array"], max_length=data_args.max_length_seconds, sample_rate=feature_extractor.sampling_rate ) subsampled_wavs.append(lowerCamelCase ) lowercase :List[str] = feature_extractor(lowerCamelCase, sampling_rate=feature_extractor.sampling_rate ) lowercase :Optional[Any] = {model_input_name: inputs.get(lowerCamelCase )} lowercase :Dict = list(batch[data_args.label_column_name] ) return output_batch def val_transforms(lowerCamelCase ): lowercase :Optional[int] = [audio["array"] for audio in batch[data_args.audio_column_name]] lowercase :Dict = feature_extractor(lowerCamelCase, sampling_rate=feature_extractor.sampling_rate ) lowercase :Tuple = {model_input_name: inputs.get(lowerCamelCase )} lowercase :Dict = list(batch[data_args.label_column_name] ) return output_batch # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. lowercase :Any = raw_datasets["train"].features[data_args.label_column_name].names lowercase , lowercase :Dict = {}, {} for i, label in enumerate(lowerCamelCase ): lowercase :Optional[Any] = str(lowerCamelCase ) lowercase :Dict = label # Load the accuracy metric from the datasets package lowercase :List[str] = evaluate.load("accuracy" ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with # `predictions` and `label_ids` fields) and has to return a dictionary string to float. def compute_metrics(lowerCamelCase ): lowercase :List[str] = np.argmax(eval_pred.predictions, axis=1 ) return metric.compute(predictions=lowerCamelCase, references=eval_pred.label_ids ) lowercase :Any = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path, num_labels=len(lowerCamelCase ), labelaid=lowerCamelCase, idalabel=lowerCamelCase, finetuning_task="audio-classification", cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) lowercase :Optional[Any] = AutoModelForAudioClassification.from_pretrained( model_args.model_name_or_path, from_tf=bool(".ckpt" in model_args.model_name_or_path ), config=lowerCamelCase, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ignore_mismatched_sizes=model_args.ignore_mismatched_sizes, ) # freeze the convolutional waveform encoder if model_args.freeze_feature_encoder: model.freeze_feature_encoder() if training_args.do_train: if data_args.max_train_samples is not None: lowercase :Dict = ( raw_datasets["train"].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms raw_datasets["train"].set_transform(lowerCamelCase, output_all_columns=lowerCamelCase ) if training_args.do_eval: if data_args.max_eval_samples is not None: lowercase :Dict = ( raw_datasets["eval"].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms raw_datasets["eval"].set_transform(lowerCamelCase, output_all_columns=lowerCamelCase ) # Initialize our trainer lowercase :List[str] = Trainer( model=lowerCamelCase, args=lowerCamelCase, train_dataset=raw_datasets["train"] if training_args.do_train else None, eval_dataset=raw_datasets["eval"] if training_args.do_eval else None, compute_metrics=lowerCamelCase, tokenizer=lowerCamelCase, ) # Training if training_args.do_train: lowercase :Union[str, Any] = None if training_args.resume_from_checkpoint is not None: lowercase :Tuple = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowercase :Dict = last_checkpoint lowercase :List[Any] = trainer.train(resume_from_checkpoint=lowerCamelCase ) trainer.save_model() trainer.log_metrics("train", train_result.metrics ) trainer.save_metrics("train", train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: lowercase :List[str] = trainer.evaluate() trainer.log_metrics("eval", lowerCamelCase ) trainer.save_metrics("eval", lowerCamelCase ) # Write model card and (optionally) push to hub lowercase :Union[str, Any] = { "finetuned_from": model_args.model_name_or_path, "tasks": "audio-classification", "dataset": data_args.dataset_name, "tags": ["audio-classification"], } if training_args.push_to_hub: trainer.push_to_hub(**lowerCamelCase ) else: trainer.create_model_card(**lowerCamelCase ) if __name__ == "__main__": main()
158
from typing import TYPE_CHECKING from ...utils import _LazyModule _UpperCAmelCase : Optional[int] = {"processing_wav2vec2_with_lm": ["Wav2Vec2ProcessorWithLM"]} if TYPE_CHECKING: from .processing_wavaveca_with_lm import WavaVecaProcessorWithLM else: import sys _UpperCAmelCase : int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
158
1
"""simple docstring""" def lowerCamelCase__ ( __snake_case ) -> str: """simple docstring""" if not head: return True # split the list to two parts _UpperCamelCase , _UpperCamelCase = head.next, head while fast and fast.next: _UpperCamelCase = fast.next.next _UpperCamelCase = slow.next _UpperCamelCase = slow.next _UpperCamelCase = None # Don't forget here! But forget still works! # reverse the second part _UpperCamelCase = None while second: _UpperCamelCase = second.next _UpperCamelCase = node _UpperCamelCase = second _UpperCamelCase = nxt # compare two parts # second part has the same or one less node while node: if node.val != head.val: return False _UpperCamelCase = node.next _UpperCamelCase = head.next return True def lowerCamelCase__ ( __snake_case ) -> Union[str, Any]: """simple docstring""" if not head or not head.next: return True # 1. Get the midpoint (slow) _UpperCamelCase = _UpperCamelCase = _UpperCamelCase = head while fast and fast.next: _UpperCamelCase , _UpperCamelCase = fast.next.next, slow.next # 2. Push the second half into the stack _UpperCamelCase = [slow.val] while slow.next: _UpperCamelCase = slow.next stack.append(slow.val ) # 3. Comparison while stack: if stack.pop() != cur.val: return False _UpperCamelCase = cur.next return True def lowerCamelCase__ ( __snake_case ) -> Dict: """simple docstring""" if not head or not head.next: return True _UpperCamelCase = {} _UpperCamelCase = 0 while head: if head.val in d: d[head.val].append(__a ) else: _UpperCamelCase = [pos] _UpperCamelCase = head.next pos += 1 _UpperCamelCase = pos - 1 _UpperCamelCase = 0 for v in d.values(): if len(__a ) % 2 != 0: middle += 1 else: _UpperCamelCase = 0 for i in range(0, len(__a ) ): if v[i] + v[len(__a ) - 1 - step] != checksum: return False step += 1 if middle > 1: return False return True
194
import unittest from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin lowerCamelCase_ = get_tests_dir('''fixtures/spiece.model''') @require_sentencepiece @require_tokenizers class __A( __lowerCamelCase , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = DebertaVaTokenizer SCREAMING_SNAKE_CASE__ = DebertaVaTokenizerFast SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = True def UpperCAmelCase_ (self ): super().setUp() # We have a SentencePiece fixture for testing UpperCamelCase__ = DebertaVaTokenizer(SCREAMING_SNAKE_CASE_ , unk_token="""<unk>""" ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = """this is a test""" UpperCamelCase__ = """this is a test""" return input_text, output_text def UpperCAmelCase_ (self ): UpperCamelCase__ = """<pad>""" UpperCamelCase__ = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self ): UpperCamelCase__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<pad>""" ) self.assertEqual(vocab_keys[1] , """<unk>""" ) self.assertEqual(vocab_keys[-1] , """[PAD]""" ) self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , 3_00_01 ) def UpperCAmelCase_ (self ): self.assertEqual(self.get_tokenizer().vocab_size , 3_00_00 ) def UpperCAmelCase_ (self ): # fmt: off UpperCamelCase__ = """ \tHeLLo!how \n Are yoU? """ UpperCamelCase__ = ["""▁hello""", """!""", """how""", """▁are""", """▁you""", """?"""] # fmt: on UpperCamelCase__ = DebertaVaTokenizer(SCREAMING_SNAKE_CASE_ , do_lower_case=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = DebertaVaTokenizerFast(SCREAMING_SNAKE_CASE_ , do_lower_case=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) @unittest.skip("""There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.""" ) def UpperCAmelCase_ (self ): pass @unittest.skip("""There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.""" ) def UpperCAmelCase_ (self ): pass def UpperCAmelCase_ (self ): # fmt: off UpperCamelCase__ = """I was born in 92000, and this is falsé.""" UpperCamelCase__ = ["""▁""", """<unk>""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """▁""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """▁""", """.""", ] # fmt: on UpperCamelCase__ = DebertaVaTokenizer(SCREAMING_SNAKE_CASE_ , split_by_punct=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = DebertaVaTokenizerFast(SCREAMING_SNAKE_CASE_ , split_by_punct=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self ): # fmt: off UpperCamelCase__ = """I was born in 92000, and this is falsé.""" UpperCamelCase__ = ["""▁i""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """▁""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """▁""", """.""", ] # fmt: on UpperCamelCase__ = DebertaVaTokenizer(SCREAMING_SNAKE_CASE_ , do_lower_case=SCREAMING_SNAKE_CASE_ , split_by_punct=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = DebertaVaTokenizerFast(SCREAMING_SNAKE_CASE_ , do_lower_case=SCREAMING_SNAKE_CASE_ , split_by_punct=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self ): # fmt: off UpperCamelCase__ = """I was born in 92000, and this is falsé.""" UpperCamelCase__ = ["""▁i""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """.""", ] # fmt: on UpperCamelCase__ = DebertaVaTokenizer(SCREAMING_SNAKE_CASE_ , do_lower_case=SCREAMING_SNAKE_CASE_ , split_by_punct=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = DebertaVaTokenizerFast(SCREAMING_SNAKE_CASE_ , do_lower_case=SCREAMING_SNAKE_CASE_ , split_by_punct=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self ): # fmt: off UpperCamelCase__ = """I was born in 92000, and this is falsé.""" UpperCamelCase__ = ["""▁""", """<unk>""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """▁""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """▁""", """.""", ] # fmt: on UpperCamelCase__ = DebertaVaTokenizer(SCREAMING_SNAKE_CASE_ , do_lower_case=SCREAMING_SNAKE_CASE_ , split_by_punct=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = DebertaVaTokenizerFast(SCREAMING_SNAKE_CASE_ , do_lower_case=SCREAMING_SNAKE_CASE_ , split_by_punct=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self ): # fmt: off UpperCamelCase__ = """ \tHeLLo!how \n Are yoU? """ UpperCamelCase__ = ["""▁""", """<unk>""", """e""", """<unk>""", """o""", """!""", """how""", """▁""", """<unk>""", """re""", """▁yo""", """<unk>""", """?"""] # fmt: on UpperCamelCase__ = DebertaVaTokenizer(SCREAMING_SNAKE_CASE_ , do_lower_case=SCREAMING_SNAKE_CASE_ , split_by_punct=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = DebertaVaTokenizerFast(SCREAMING_SNAKE_CASE_ , do_lower_case=SCREAMING_SNAKE_CASE_ , split_by_punct=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self ): UpperCamelCase__ = self.get_tokenizer() UpperCamelCase__ = self.get_rust_tokenizer() UpperCamelCase__ = """I was born in 92000, and this is falsé.""" UpperCamelCase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) ) UpperCamelCase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = rust_tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = self.get_rust_tokenizer() UpperCamelCase__ = tokenizer.encode(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = rust_tokenizer.encode(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self ): UpperCamelCase__ = """This is a test""" UpperCamelCase__ = [13, 1, 43_98, 25, 21, 12_89] UpperCamelCase__ = ["""▁""", """T""", """his""", """▁is""", """▁a""", """▁test"""] UpperCamelCase__ = ["""▁""", """<unk>""", """his""", """▁is""", """▁a""", """▁test"""] UpperCamelCase__ = DebertaVaTokenizer(SCREAMING_SNAKE_CASE_ , keep_accents=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = DebertaVaTokenizerFast(SCREAMING_SNAKE_CASE_ , keep_accents=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = tokenizer.tokenize(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = tokenizer.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = rust_tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = rust_tokenizer.tokenize(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = rust_tokenizer.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # fmt: off UpperCamelCase__ = """I was born in 92000, and this is falsé.""" UpperCamelCase__ = [13, 1, 23, 3_86, 19, 5_61, 30_50, 15, 17, 48, 25, 82_56, 18, 1, 9] UpperCamelCase__ = ["""▁""", """I""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """é""", """.""", ] UpperCamelCase__ = ["""▁""", """<unk>""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """.""", ] # fmt: on UpperCamelCase__ = tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = tokenizer.tokenize(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = tokenizer.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = rust_tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = rust_tokenizer.tokenize(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = rust_tokenizer.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self ): UpperCamelCase__ = DebertaVaTokenizer(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = tokenizer.encode("""sequence builders""" ) UpperCamelCase__ = tokenizer.encode("""multi-sequence build""" ) UpperCamelCase__ = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] , SCREAMING_SNAKE_CASE_ ) self.assertEqual( [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id] , SCREAMING_SNAKE_CASE_ , ) @slow def UpperCAmelCase_ (self ): # fmt: off UpperCamelCase__ = {"""input_ids""": [[1, 3_98_67, 36, 1_93_90, 4_86, 27, 3_50_52, 8_14_36, 18, 6_06_85, 12_25, 7, 3_50_52, 8_14_36, 18, 93_67, 1_68_99, 18, 1_59_37, 53, 5_94, 7_73, 18, 1_62_87, 3_04_65, 36, 1_59_37, 6, 4_11_39, 38, 3_69_79, 6_07_63, 1_91, 6, 3_41_32, 99, 6, 5_05_38, 3_90, 4_32_30, 6, 3_41_32, 27_79, 2_08_50, 14, 6_99, 10_72, 11_94, 36, 3_82, 1_09_01, 53, 7, 6_99, 10_72, 20_84, 36, 2_04_22, 6_30, 53, 19, 1_05, 30_49, 18_96, 10_53, 1_68_99, 15_06, 11, 3_79_78, 42_43, 7, 12_37, 3_18_69, 2_00, 1_65_66, 6_54, 6, 3_50_52, 8_14_36, 7, 5_56_30, 1_35_93, 4, 2], [1, 26, 1_50_11, 13, 6_67, 8, 10_53, 18, 2_36_11, 12_37, 7_23_56, 1_28_20, 34, 10_41_34, 12_09, 35, 1_33_13, 66_27, 21, 2_02, 3_47, 7, 1_64, 23_99, 11, 46, 44_85, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 12_32, 28_64, 1_57_85, 1_49_51, 1_05, 5, 85_81, 12_50, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """token_type_ids""": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=SCREAMING_SNAKE_CASE_ , model_name="""microsoft/deberta-v2-xlarge""" , revision="""ad6e42c1532ddf3a15c39246b63f5559d558b670""" , )
244
0
"""simple docstring""" from __future__ import annotations import time _A = list[tuple[int, int]] _A = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] _A = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right class _lowercase : def __init__( self , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) -> Optional[int]: lowerCamelCase : Tuple = pos_x lowerCamelCase : List[str] = pos_y lowerCamelCase : Optional[int] = (pos_y, pos_x) lowerCamelCase : Tuple = goal_x lowerCamelCase : int = goal_y lowerCamelCase : Any = parent class _lowercase : def __init__( self , UpperCAmelCase_ , UpperCAmelCase_ ) -> int: lowerCamelCase : Optional[int] = Node(start[1] , start[0] , goal[1] , goal[0] , UpperCAmelCase_ ) lowerCamelCase : Optional[Any] = Node(goal[1] , goal[0] , goal[1] , goal[0] , UpperCAmelCase_ ) lowerCamelCase : Optional[int] = [self.start] lowerCamelCase : Dict = False def _UpperCamelCase ( self ) -> Path | None: while self.node_queue: lowerCamelCase : Optional[Any] = self.node_queue.pop(0 ) if current_node.pos == self.target.pos: lowerCamelCase : List[str] = True return self.retrace_path(UpperCAmelCase_ ) lowerCamelCase : Union[str, Any] = self.get_successors(UpperCAmelCase_ ) for node in successors: self.node_queue.append(UpperCAmelCase_ ) if not self.reached: return [self.start.pos] return None def _UpperCamelCase ( self , UpperCAmelCase_ ) -> list[Node]: lowerCamelCase : Union[str, Any] = [] for action in delta: lowerCamelCase : int = parent.pos_x + action[1] lowerCamelCase : Tuple = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(UpperCAmelCase_ ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node(UpperCAmelCase_ , UpperCAmelCase_ , self.target.pos_y , self.target.pos_x , UpperCAmelCase_ ) ) return successors def _UpperCamelCase ( self , UpperCAmelCase_ ) -> Path: lowerCamelCase : str = node lowerCamelCase : List[str] = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) lowerCamelCase : str = current_node.parent path.reverse() return path class _lowercase : def __init__( self , UpperCAmelCase_ , UpperCAmelCase_ ) -> Optional[int]: lowerCamelCase : int = BreadthFirstSearch(UpperCAmelCase_ , UpperCAmelCase_ ) lowerCamelCase : Union[str, Any] = BreadthFirstSearch(UpperCAmelCase_ , UpperCAmelCase_ ) lowerCamelCase : Dict = False def _UpperCamelCase ( self ) -> Path | None: while self.fwd_bfs.node_queue or self.bwd_bfs.node_queue: lowerCamelCase : Optional[int] = self.fwd_bfs.node_queue.pop(0 ) lowerCamelCase : Optional[int] = self.bwd_bfs.node_queue.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: lowerCamelCase : Dict = True return self.retrace_bidirectional_path( UpperCAmelCase_ , UpperCAmelCase_ ) lowerCamelCase : Tuple = current_bwd_node lowerCamelCase : Optional[int] = current_fwd_node lowerCamelCase : Optional[Any] = { self.fwd_bfs: self.fwd_bfs.get_successors(UpperCAmelCase_ ), self.bwd_bfs: self.bwd_bfs.get_successors(UpperCAmelCase_ ), } for bfs in [self.fwd_bfs, self.bwd_bfs]: for node in successors[bfs]: bfs.node_queue.append(UpperCAmelCase_ ) if not self.reached: return [self.fwd_bfs.start.pos] return None def _UpperCamelCase ( self , UpperCAmelCase_ , UpperCAmelCase_ ) -> Path: lowerCamelCase : str = self.fwd_bfs.retrace_path(UpperCAmelCase_ ) lowerCamelCase : Any = self.bwd_bfs.retrace_path(UpperCAmelCase_ ) bwd_path.pop() bwd_path.reverse() lowerCamelCase : List[Any] = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] import doctest doctest.testmod() _A = (0, 0) _A = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) _A = time.time() _A = BreadthFirstSearch(init, goal) _A = bfs.search() _A = time.time() - start_bfs_time print('Unidirectional BFS computation time : ', bfs_time) _A = time.time() _A = BidirectionalBreadthFirstSearch(init, goal) _A = bd_bfs.search() _A = time.time() - start_bd_bfs_time print('Bidirectional BFS computation time : ', bd_bfs_time)
357
"""simple docstring""" def UpperCAmelCase ( a_ = 10 ): '''simple docstring''' if not isinstance(a_, a_ ) or n < 0: raise ValueError('Invalid input' ) lowerCamelCase : Union[str, Any] = 10**n lowerCamelCase : int = 2_8433 * (pow(2, 783_0457, a_ )) + 1 return str(number % modulus ) if __name__ == "__main__": from doctest import testmod testmod() print(F"""{solution(1_0) = }""")
205
0
"""simple docstring""" import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def _snake_case ( lowercase__ : Tuple ) -> Union[str, Any]: '''simple docstring''' if is_torch_version("""<""" , """2.0.0""" ) or not hasattr(lowercase__ , """_dynamo""" ): return False return isinstance(lowercase__ , torch._dynamo.eval_frame.OptimizedModule ) def _snake_case ( lowercase__ : Tuple , lowercase__ : bool = True ) -> List[str]: '''simple docstring''' lowerCAmelCase_ :List[str] = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) lowerCAmelCase_ :List[Any] = is_compiled_module(lowercase__ ) if is_compiled: lowerCAmelCase_ :Optional[int] = model lowerCAmelCase_ :Optional[int] = model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(lowercase__ , lowercase__ ): lowerCAmelCase_ :List[str] = model.module if not keep_fpaa_wrapper: lowerCAmelCase_ :Any = getattr(lowercase__ , """forward""" ) lowerCAmelCase_ :List[str] = model.__dict__.pop("""_original_forward""" , lowercase__ ) if original_forward is not None: while hasattr(lowercase__ , """__wrapped__""" ): lowerCAmelCase_ :Dict = forward.__wrapped__ if forward == original_forward: break lowerCAmelCase_ :int = forward if getattr(lowercase__ , """_converted_to_transformer_engine""" , lowercase__ ): convert_model(lowercase__ , to_transformer_engine=lowercase__ ) if is_compiled: lowerCAmelCase_ :List[Any] = model lowerCAmelCase_ :Optional[int] = compiled_model return model def _snake_case ( ) -> Union[str, Any]: '''simple docstring''' PartialState().wait_for_everyone() def _snake_case ( lowercase__ : List[str] , lowercase__ : Dict ) -> Union[str, Any]: '''simple docstring''' if PartialState().distributed_type == DistributedType.TPU: xm.save(lowercase__ , lowercase__ ) elif PartialState().local_process_index == 0: torch.save(lowercase__ , lowercase__ ) @contextmanager def _snake_case ( **lowercase__ : Dict ) -> List[str]: '''simple docstring''' for key, value in kwargs.items(): lowerCAmelCase_ :Tuple = str(lowercase__ ) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def _snake_case ( lowercase__ : List[str] ) -> Any: '''simple docstring''' if not hasattr(lowercase__ , """__qualname__""" ) and not hasattr(lowercase__ , """__name__""" ): lowerCAmelCase_ :str = getattr(lowercase__ , """__class__""" , lowercase__ ) if hasattr(lowercase__ , """__qualname__""" ): return obj.__qualname__ if hasattr(lowercase__ , """__name__""" ): return obj.__name__ return str(lowercase__ ) def _snake_case ( lowercase__ : int , lowercase__ : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' for key, value in source.items(): if isinstance(lowercase__ , lowercase__ ): lowerCAmelCase_ :Tuple = destination.setdefault(lowercase__ , {} ) merge_dicts(lowercase__ , lowercase__ ) else: lowerCAmelCase_ :int = value return destination def _snake_case ( lowercase__ : int = None ) -> bool: '''simple docstring''' if port is None: lowerCAmelCase_ :Optional[Any] = 2_9_5_0_0 with socket.socket(socket.AF_INET , socket.SOCK_STREAM ) as s: return s.connect_ex(("""localhost""", port) ) == 0
84
"""simple docstring""" import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("TEST_SAGEMAKER" , "False" ) ) is not True , reason="Skipping test because should only be run when releasing minor transformers version" , ) @pytest.mark.usefixtures("sm_env" ) @parameterized_class( [ { "framework": "pytorch", "script": "run_glue_model_parallelism.py", "model_name_or_path": "roberta-large", "instance_type": "ml.p3dn.24xlarge", "results": {"train_runtime": 1600, "eval_accuracy": 0.3, "eval_loss": 1.2}, }, { "framework": "pytorch", "script": "run_glue.py", "model_name_or_path": "roberta-large", "instance_type": "ml.p3dn.24xlarge", "results": {"train_runtime": 1600, "eval_accuracy": 0.3, "eval_loss": 1.2}, }, ] ) class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __lowerCAmelCase ( self ) -> Dict: if self.framework == "pytorch": subprocess.run( f"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split() , encoding="""utf-8""" , check=__A , ) assert hasattr(self , """env""" ) def __lowerCAmelCase ( self , __A ) -> Any: # configuration for running training on smdistributed Model Parallel lowerCAmelCase_ :Union[str, Any] = { """enabled""": True, """processes_per_host""": 8, } lowerCAmelCase_ :Tuple = { """enabled""": True, """parameters""": { """microbatches""": 4, """placement_strategy""": """spread""", """pipeline""": """interleaved""", """optimize""": """speed""", """partitions""": 4, """ddp""": True, }, } lowerCAmelCase_ :Any = {"""smdistributed""": {"""modelparallel""": smp_options}, """mpi""": mpi_options} lowerCAmelCase_ :Any = """trainer""" if self.script == """run_glue.py""" else """smtrainer""" # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=f"""{self.env.base_job_name}-{instance_count}-smp-{name_extension}""" , instance_count=__A , instance_type=self.instance_type , debugger_hook_config=__A , hyperparameters={ **self.env.hyperparameters, """model_name_or_path""": self.model_name_or_path, """max_steps""": 500, } , metric_definitions=self.env.metric_definitions , distribution=__A , py_version="""py36""" , ) def __lowerCAmelCase ( self , __A ) -> List[Any]: TrainingJobAnalytics(__A ).export_csv(f"""{self.env.test_path}/{job_name}_metrics.csv""" ) @parameterized.expand([(1,)] ) def __lowerCAmelCase ( self , __A ) -> List[str]: # create estimator lowerCAmelCase_ :Any = self.create_estimator(__A ) # run training estimator.fit() # result dataframe lowerCAmelCase_ :Optional[Any] = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis lowerCAmelCase_ :List[str] = list(result_metrics_df[result_metrics_df.metric_name == """eval_accuracy"""]["""value"""] ) lowerCAmelCase_ :Optional[int] = list(result_metrics_df[result_metrics_df.metric_name == """eval_loss"""]["""value"""] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping lowerCAmelCase_ :Optional[int] = ( Session().describe_training_job(estimator.latest_training_job.name ).get("""TrainingTimeInSeconds""" , 99_9999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results["""eval_accuracy"""] for t in eval_accuracy ) assert all(t <= self.results["""eval_loss"""] for t in eval_loss ) # dump tests result into json file to share in PR with open(f"""{estimator.latest_training_job.name}.json""" , """w""" ) as outfile: json.dump({"""train_time""": train_runtime, """eval_accuracy""": eval_accuracy, """eval_loss""": eval_loss} , __A )
84
1
"""simple docstring""" import os import sys import warnings from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen from ..table import array_cast from ..utils.file_utils import is_local_path from ..utils.py_utils import first_non_null_value, no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: import PIL.Image from .features import FeatureType a_ = None a_ = """<""" if sys.byteorder == """little""" else """>""" # Origin: https://github.com/python-pillow/Pillow/blob/698951e19e19972aeed56df686868f1329981c12/src/PIL/Image.py#L3126 minus "|i1" which values are not preserved correctly when saving and loading an image a_ = [ np.dtype("""|b1"""), np.dtype("""|u1"""), np.dtype("""<u2"""), np.dtype(""">u2"""), np.dtype("""<i2"""), np.dtype(""">i2"""), np.dtype("""<u4"""), np.dtype(""">u4"""), np.dtype("""<i4"""), np.dtype(""">i4"""), np.dtype("""<f4"""), np.dtype(""">f4"""), np.dtype("""<f8"""), np.dtype(""">f8"""), ] @dataclass class __snake_case : """simple docstring""" _lowerCamelCase = True _lowerCamelCase = None # Automatically constructed _lowerCamelCase = "PIL.Image.Image" _lowerCamelCase = pa.struct({"""bytes""": pa.binary(), """path""": pa.string()} ) _lowerCamelCase = field(default="""Image""" , init=SCREAMING_SNAKE_CASE__ , repr=SCREAMING_SNAKE_CASE__ ) def __call__( self ): '''simple docstring''' return self.pa_type def UpperCamelCase__( self , __lowerCamelCase ): '''simple docstring''' if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('''To support encoding images, please install \'Pillow\'.''' ) if isinstance(__lowerCamelCase , __lowerCamelCase ): __A : List[str] = np.array(__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ): return {"path": value, "bytes": None} elif isinstance(__lowerCamelCase , __lowerCamelCase ): return {"path": None, "bytes": value} elif isinstance(__lowerCamelCase , np.ndarray ): # convert the image array to PNG/TIFF bytes return encode_np_array(__lowerCamelCase ) elif isinstance(__lowerCamelCase , PIL.Image.Image ): # convert the PIL image to bytes (default format is PNG/TIFF) return encode_pil_image(__lowerCamelCase ) elif value.get('''path''' ) is not None and os.path.isfile(value['''path'''] ): # we set "bytes": None to not duplicate the data if they're already available locally return {"bytes": None, "path": value.get('''path''' )} elif value.get('''bytes''' ) is not None or value.get('''path''' ) is not None: # store the image bytes, and path is used to infer the image format using the file extension return {"bytes": value.get('''bytes''' ), "path": value.get('''path''' )} else: raise ValueError( F"""An image sample should have one of 'path' or 'bytes' but they are missing or None in {value}.""" ) def UpperCamelCase__( self , __lowerCamelCase , __lowerCamelCase=None ): '''simple docstring''' if not self.decode: raise RuntimeError('''Decoding is disabled for this feature. Please use Image(decode=True) instead.''' ) if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('''To support decoding images, please install \'Pillow\'.''' ) if token_per_repo_id is None: __A : Dict = {} __A , __A : Tuple = value['''path'''], value['''bytes'''] if bytes_ is None: if path is None: raise ValueError(F"""An image should have one of 'path' or 'bytes' but both are None in {value}.""" ) else: if is_local_path(__lowerCamelCase ): __A : Union[str, Any] = PIL.Image.open(__lowerCamelCase ) else: __A : List[Any] = path.split('''::''' )[-1] try: __A : Tuple = string_to_dict(__lowerCamelCase , config.HUB_DATASETS_URL )['''repo_id'''] __A : str = token_per_repo_id.get(__lowerCamelCase ) except ValueError: __A : Optional[Any] = None with xopen(__lowerCamelCase , '''rb''' , use_auth_token=__lowerCamelCase ) as f: __A : Optional[Any] = BytesIO(f.read() ) __A : List[str] = PIL.Image.open(bytes_ ) else: __A : Optional[int] = PIL.Image.open(BytesIO(bytes_ ) ) image.load() # to avoid "Too many open files" errors return image def UpperCamelCase__( self ): '''simple docstring''' from .features import Value return ( self if self.decode else { "bytes": Value('''binary''' ), "path": Value('''string''' ), } ) def UpperCamelCase__( self , __lowerCamelCase ): '''simple docstring''' if pa.types.is_string(storage.type ): __A : Optional[Any] = pa.array([None] * len(__lowerCamelCase ) , type=pa.binary() ) __A : str = pa.StructArray.from_arrays([bytes_array, storage] , ['''bytes''', '''path'''] , mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): __A : str = pa.array([None] * len(__lowerCamelCase ) , type=pa.string() ) __A : Optional[Any] = pa.StructArray.from_arrays([storage, path_array] , ['''bytes''', '''path'''] , mask=storage.is_null() ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index('''bytes''' ) >= 0: __A : Optional[Any] = storage.field('''bytes''' ) else: __A : str = pa.array([None] * len(__lowerCamelCase ) , type=pa.binary() ) if storage.type.get_field_index('''path''' ) >= 0: __A : Optional[Any] = storage.field('''path''' ) else: __A : Tuple = pa.array([None] * len(__lowerCamelCase ) , type=pa.string() ) __A : Tuple = pa.StructArray.from_arrays([bytes_array, path_array] , ['''bytes''', '''path'''] , mask=storage.is_null() ) elif pa.types.is_list(storage.type ): __A : List[Any] = pa.array( [encode_np_array(np.array(__lowerCamelCase ) )['''bytes'''] if arr is not None else None for arr in storage.to_pylist()] , type=pa.binary() , ) __A : List[str] = pa.array([None] * len(__lowerCamelCase ) , type=pa.string() ) __A : Tuple = pa.StructArray.from_arrays( [bytes_array, path_array] , ['''bytes''', '''path'''] , mask=bytes_array.is_null() ) return array_cast(__lowerCamelCase , self.pa_type ) def UpperCamelCase__( self , __lowerCamelCase ): '''simple docstring''' @no_op_if_value_is_null def path_to_bytes(__lowerCamelCase ): with xopen(__lowerCamelCase , '''rb''' ) as f: __A : Tuple = f.read() return bytes_ __A : List[Any] = pa.array( [ (path_to_bytes(x['''path'''] ) if x['''bytes'''] is None else x['''bytes''']) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) __A : List[Any] = pa.array( [os.path.basename(__lowerCamelCase ) if path is not None else None for path in storage.field('''path''' ).to_pylist()] , type=pa.string() , ) __A : List[Any] = pa.StructArray.from_arrays([bytes_array, path_array] , ['''bytes''', '''path'''] , mask=bytes_array.is_null() ) return array_cast(__lowerCamelCase , self.pa_type ) def __lowercase ( ) ->List[str]: '''simple docstring''' if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('''To support encoding images, please install \'Pillow\'.''' ) global _IMAGE_COMPRESSION_FORMATS if _IMAGE_COMPRESSION_FORMATS is None: PIL.Image.init() __A : str = list(set(PIL.Image.OPEN.keys() ) & set(PIL.Image.SAVE.keys() ) ) return _IMAGE_COMPRESSION_FORMATS def __lowercase ( snake_case_ : "PIL.Image.Image" ) ->bytes: '''simple docstring''' __A : Any = BytesIO() if image.format in list_image_compression_formats(): __A : List[str] = image.format else: __A : Optional[Any] = '''PNG''' if image.mode in ['''1''', '''L''', '''LA''', '''RGB''', '''RGBA'''] else '''TIFF''' image.save(snake_case_ ,format=snake_case_ ) return buffer.getvalue() def __lowercase ( snake_case_ : "PIL.Image.Image" ) ->dict: '''simple docstring''' if hasattr(snake_case_ ,'''filename''' ) and image.filename != "": return {"path": image.filename, "bytes": None} else: return {"path": None, "bytes": image_to_bytes(snake_case_ )} def __lowercase ( snake_case_ : np.ndarray ) ->dict: '''simple docstring''' if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('''To support encoding images, please install \'Pillow\'.''' ) __A : List[Any] = array.dtype __A : Optional[Any] = dtype.byteorder if dtype.byteorder != '''=''' else _NATIVE_BYTEORDER __A : Union[str, Any] = dtype.kind __A : List[Any] = dtype.itemsize __A : Tuple = None # Multi-channel array case (only np.dtype("|u1") is allowed) if array.shape[2:]: __A : List[Any] = np.dtype('''|u1''' ) if dtype_kind not in ["u", "i"]: raise TypeError( F"""Unsupported array dtype {dtype} for image encoding. Only {dest_dtype} is supported for multi-channel arrays.""" ) if dtype is not dest_dtype: warnings.warn(F"""Downcasting array dtype {dtype} to {dest_dtype} to be compatible with 'Pillow'""" ) # Exact match elif dtype in _VALID_IMAGE_ARRAY_DTPYES: __A : Optional[Any] = dtype else: # Downcast the type within the kind (np.can_cast(from_type, to_type, casting="same_kind") doesn't behave as expected, so do it manually) while dtype_itemsize >= 1: __A : int = dtype_byteorder + dtype_kind + str(snake_case_ ) __A : Optional[int] = np.dtype(snake_case_ ) if dest_dtype in _VALID_IMAGE_ARRAY_DTPYES: warnings.warn(F"""Downcasting array dtype {dtype} to {dest_dtype} to be compatible with 'Pillow'""" ) break else: dtype_itemsize //= 2 if dest_dtype is None: raise TypeError( F"""Cannot convert dtype {dtype} to a valid image dtype. Valid image dtypes: {_VALID_IMAGE_ARRAY_DTPYES}""" ) __A : Optional[Any] = PIL.Image.fromarray(array.astype(snake_case_ ) ) return {"path": None, "bytes": image_to_bytes(snake_case_ )} def __lowercase ( snake_case_ : Union[List[str], List[dict], List[np.ndarray], List["PIL.Image.Image"]] ) ->List[dict]: '''simple docstring''' if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('''To support encoding images, please install \'Pillow\'.''' ) if objs: __A , __A : Dict = first_non_null_value(snake_case_ ) if isinstance(snake_case_ ,snake_case_ ): return [{"path": obj, "bytes": None} if obj is not None else None for obj in objs] if isinstance(snake_case_ ,np.ndarray ): __A : List[str] = no_op_if_value_is_null(snake_case_ ) return [obj_to_image_dict_func(snake_case_ ) for obj in objs] elif isinstance(snake_case_ ,PIL.Image.Image ): __A : List[Any] = no_op_if_value_is_null(snake_case_ ) return [obj_to_image_dict_func(snake_case_ ) for obj in objs] else: return objs else: return objs
291
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { """asapp/sew-d-tiny-100k""": """https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json""", # See all SEW-D models at https://huggingface.co/models?filter=sew-d } class __snake_case ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = """sew-d""" def __init__( self , __lowerCamelCase=32 , __lowerCamelCase=768 , __lowerCamelCase=12 , __lowerCamelCase=12 , __lowerCamelCase=3072 , __lowerCamelCase=2 , __lowerCamelCase=512 , __lowerCamelCase=256 , __lowerCamelCase=True , __lowerCamelCase=True , __lowerCamelCase=("p2c", "c2p") , __lowerCamelCase="layer_norm" , __lowerCamelCase="gelu_python" , __lowerCamelCase=0.1 , __lowerCamelCase=0.1 , __lowerCamelCase=0.1 , __lowerCamelCase=0.0 , __lowerCamelCase=0.1 , __lowerCamelCase=0.0_2 , __lowerCamelCase=1e-7 , __lowerCamelCase=1e-5 , __lowerCamelCase="group" , __lowerCamelCase="gelu" , __lowerCamelCase=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , __lowerCamelCase=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , __lowerCamelCase=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , __lowerCamelCase=False , __lowerCamelCase=128 , __lowerCamelCase=16 , __lowerCamelCase=True , __lowerCamelCase=0.0_5 , __lowerCamelCase=10 , __lowerCamelCase=2 , __lowerCamelCase=0.0 , __lowerCamelCase=10 , __lowerCamelCase=0 , __lowerCamelCase="mean" , __lowerCamelCase=False , __lowerCamelCase=False , __lowerCamelCase=256 , __lowerCamelCase=0 , __lowerCamelCase=1 , __lowerCamelCase=2 , **__lowerCamelCase , ): '''simple docstring''' super().__init__(**__lowerCamelCase , pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase ) __A : str = hidden_size __A : List[Any] = feat_extract_norm __A : Tuple = feat_extract_activation __A : Dict = list(__lowerCamelCase ) __A : int = list(__lowerCamelCase ) __A : List[Any] = list(__lowerCamelCase ) __A : Any = conv_bias __A : List[Any] = num_conv_pos_embeddings __A : Any = num_conv_pos_embedding_groups __A : Optional[Any] = len(self.conv_dim ) __A : int = num_hidden_layers __A : Union[str, Any] = intermediate_size __A : Union[str, Any] = squeeze_factor __A : int = max_position_embeddings __A : Tuple = position_buckets __A : Tuple = share_att_key __A : List[str] = relative_attention __A : Optional[Any] = norm_rel_ebd __A : Dict = list(__lowerCamelCase ) __A : str = hidden_act __A : List[str] = num_attention_heads __A : Union[str, Any] = hidden_dropout __A : Optional[int] = attention_dropout __A : Optional[Any] = activation_dropout __A : List[str] = feat_proj_dropout __A : str = final_dropout __A : Tuple = layer_norm_eps __A : int = feature_layer_norm_eps __A : Optional[int] = initializer_range __A : Dict = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect.''' '''It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,''' F"""but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)""" F"""= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __A : int = apply_spec_augment __A : Any = mask_time_prob __A : Optional[int] = mask_time_length __A : Any = mask_time_min_masks __A : int = mask_feature_prob __A : Tuple = mask_feature_length __A : Dict = mask_feature_min_masks # ctc loss __A : Tuple = ctc_loss_reduction __A : Union[str, Any] = ctc_zero_infinity # sequence classification __A : Tuple = use_weighted_layer_sum __A : List[str] = classifier_proj_size @property def UpperCamelCase__( self ): '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1 )
291
1
import unittest from datasets import load_dataset from transformers.pipelines import pipeline from transformers.testing_utils import is_pipeline_test, nested_simplify, require_torch, slow @is_pipeline_test @require_torch class snake_case_ ( unittest.TestCase ): @require_torch def __UpperCamelCase ( self : Optional[int] ) -> List[Any]: lowercase__ : Union[str, Any] = pipeline( task="zero-shot-audio-classification" , model="hf-internal-testing/tiny-clap-htsat-unfused" ) lowercase__ : List[str] = load_dataset("ashraq/esc50" ) lowercase__ : List[Any] = dataset["train"]["audio"][-1]["array"] lowercase__ : Dict = audio_classifier(lowercase_ , candidate_labels=["Sound of a dog", "Sound of vaccum cleaner"] ) self.assertEqual( nested_simplify(lowercase_ ) , [{"score": 0.5_01, "label": "Sound of a dog"}, {"score": 0.4_99, "label": "Sound of vaccum cleaner"}] , ) @unittest.skip("No models are available in TF" ) def __UpperCamelCase ( self : str ) -> Optional[int]: pass @slow @require_torch def __UpperCamelCase ( self : List[str] ) -> int: lowercase__ : Tuple = pipeline( task="zero-shot-audio-classification" , model="laion/clap-htsat-unfused" , ) # This is an audio of a dog lowercase__ : Union[str, Any] = load_dataset("ashraq/esc50" ) lowercase__ : Tuple = dataset["train"]["audio"][-1]["array"] lowercase__ : List[Any] = audio_classifier(lowercase_ , candidate_labels=["Sound of a dog", "Sound of vaccum cleaner"] ) self.assertEqual( nested_simplify(lowercase_ ) , [ {"score": 0.9_99, "label": "Sound of a dog"}, {"score": 0.0_01, "label": "Sound of vaccum cleaner"}, ] , ) lowercase__ : int = audio_classifier([audio] * 5 , candidate_labels=["Sound of a dog", "Sound of vaccum cleaner"] ) self.assertEqual( nested_simplify(lowercase_ ) , [ [ {"score": 0.9_99, "label": "Sound of a dog"}, {"score": 0.0_01, "label": "Sound of vaccum cleaner"}, ], ] * 5 , ) lowercase__ : Tuple = audio_classifier( [audio] * 5 , candidate_labels=["Sound of a dog", "Sound of vaccum cleaner"] , batch_size=5 ) self.assertEqual( nested_simplify(lowercase_ ) , [ [ {"score": 0.9_99, "label": "Sound of a dog"}, {"score": 0.0_01, "label": "Sound of vaccum cleaner"}, ], ] * 5 , ) @unittest.skip("No models are available in TF" ) def __UpperCamelCase ( self : Union[str, Any] ) -> Dict: pass
87
from typing import Dict import numpy as np import torch from . import residue_constants as rc from .tensor_utils import tensor_tree_map, tree_map def lowercase_ ( _lowerCamelCase : Dict[str, torch.Tensor]): lowercase__ : Any = [] lowercase__ : Optional[int] = [] lowercase__ : Tuple = [] for rt in rc.restypes: lowercase__ : Dict = rc.restype_name_to_atomaa_names[rc.restype_atoa[rt]] restype_atomaa_to_atomaa_list.append([(rc.atom_order[name] if name else 0) for name in atom_names]) lowercase__ : str = {name: i for i, name in enumerate(_lowerCamelCase)} restype_atomaa_to_atomaa_list.append( [(atom_name_to_idxaa[name] if name in atom_name_to_idxaa else 0) for name in rc.atom_types]) restype_atomaa_mask_list.append([(1.0 if name else 0.0) for name in atom_names]) # Add dummy mapping for restype 'UNK' restype_atomaa_to_atomaa_list.append([0] * 14) restype_atomaa_to_atomaa_list.append([0] * 37) restype_atomaa_mask_list.append([0.0] * 14) lowercase__ : Union[str, Any] = torch.tensor( _lowerCamelCase , dtype=torch.intaa , device=protein["aatype"].device , ) lowercase__ : str = torch.tensor( _lowerCamelCase , dtype=torch.intaa , device=protein["aatype"].device , ) lowercase__ : List[str] = torch.tensor( _lowerCamelCase , dtype=torch.floataa , device=protein["aatype"].device , ) lowercase__ : str = protein["aatype"].to(torch.long) # create the mapping for (residx, atom14) --> atom37, i.e. an array # with shape (num_res, 14) containing the atom37 indices for this protein lowercase__ : Dict = restype_atomaa_to_atomaa[protein_aatype] lowercase__ : str = restype_atomaa_mask[protein_aatype] lowercase__ : List[Any] = residx_atomaa_mask lowercase__ : Optional[Any] = residx_atomaa_to_atomaa.long() # create the gather indices for mapping back lowercase__ : str = restype_atomaa_to_atomaa[protein_aatype] lowercase__ : str = residx_atomaa_to_atomaa.long() # create the corresponding mask lowercase__ : Optional[Any] = torch.zeros([21, 37] , dtype=torch.floataa , device=protein["aatype"].device) for restype, restype_letter in enumerate(rc.restypes): lowercase__ : Tuple = rc.restype_atoa[restype_letter] lowercase__ : List[Any] = rc.residue_atoms[restype_name] for atom_name in atom_names: lowercase__ : Optional[int] = rc.atom_order[atom_name] lowercase__ : Tuple = 1 lowercase__ : Dict = restype_atomaa_mask[protein_aatype] lowercase__ : Any = residx_atomaa_mask return protein def lowercase_ ( _lowerCamelCase : Dict[str, torch.Tensor]): lowercase__ : Tuple = tree_map(lambda _lowerCamelCase: torch.tensor(_lowerCamelCase , device=batch["aatype"].device) , _lowerCamelCase , np.ndarray) lowercase__ : List[str] = tensor_tree_map(lambda _lowerCamelCase: np.array(_lowerCamelCase) , make_atomaa_masks(_lowerCamelCase)) return out
87
1
"""simple docstring""" from __future__ import annotations import unittest from transformers import AutoTokenizer, MBartConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFMBartForConditionalGeneration, TFMBartModel @require_tf class a : '''simple docstring''' lowerCAmelCase : Any = MBartConfig lowerCAmelCase : List[Any] = {} lowerCAmelCase : List[str] = 'gelu' def __init__( self : int , __snake_case : Union[str, Any] , __snake_case : Union[str, Any]=13 , __snake_case : Any=7 , __snake_case : Tuple=True , __snake_case : List[str]=False , __snake_case : int=99 , __snake_case : Optional[Any]=32 , __snake_case : str=2 , __snake_case : int=4 , __snake_case : Tuple=37 , __snake_case : List[str]=0.1 , __snake_case : Optional[Any]=0.1 , __snake_case : str=20 , __snake_case : str=2 , __snake_case : Optional[int]=1 , __snake_case : Tuple=0 , ): UpperCAmelCase_ = parent UpperCAmelCase_ = batch_size UpperCAmelCase_ = seq_length UpperCAmelCase_ = is_training UpperCAmelCase_ = use_labels UpperCAmelCase_ = vocab_size UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = eos_token_id UpperCAmelCase_ = pad_token_id UpperCAmelCase_ = bos_token_id def lowerCamelCase_ ( self : Union[str, Any] ): UpperCAmelCase_ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) UpperCAmelCase_ = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) UpperCAmelCase_ = tf.concat([input_ids, eos_tensor] , axis=1 ) UpperCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase_ = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) UpperCAmelCase_ = prepare_mbart_inputs_dict(__snake_case , __snake_case , __snake_case ) return config, inputs_dict def lowerCamelCase_ ( self : Optional[int] , __snake_case : Union[str, Any] , __snake_case : Optional[int] ): UpperCAmelCase_ = TFMBartModel(config=__snake_case ).get_decoder() UpperCAmelCase_ = inputs_dict['''input_ids'''] UpperCAmelCase_ = input_ids[:1, :] UpperCAmelCase_ = inputs_dict['''attention_mask'''][:1, :] UpperCAmelCase_ = inputs_dict['''head_mask'''] UpperCAmelCase_ = 1 # first forward pass UpperCAmelCase_ = model(__snake_case , attention_mask=__snake_case , head_mask=__snake_case , use_cache=__snake_case ) UpperCAmelCase_ , UpperCAmelCase_ = outputs.to_tuple() UpperCAmelCase_ = past_key_values[1] def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Any , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : str , __UpperCamelCase : List[Any]=None , __UpperCamelCase : List[Any]=None , __UpperCamelCase : Dict=None , __UpperCamelCase : str=None , __UpperCamelCase : Any=None , ) -> Union[str, Any]: if attention_mask is None: UpperCAmelCase_ = tf.cast(tf.math.not_equal(__UpperCamelCase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: UpperCAmelCase_ = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: UpperCAmelCase_ = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: UpperCAmelCase_ = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: UpperCAmelCase_ = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class a ( _A , _A , unittest.TestCase ): '''simple docstring''' lowerCAmelCase : str = (TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else () lowerCAmelCase : Optional[int] = (TFMBartForConditionalGeneration,) if is_tf_available() else () lowerCAmelCase : str = ( { 'conversational': TFMBartForConditionalGeneration, 'feature-extraction': TFMBartModel, 'summarization': TFMBartForConditionalGeneration, 'text2text-generation': TFMBartForConditionalGeneration, 'translation': TFMBartForConditionalGeneration, } if is_tf_available() else {} ) lowerCAmelCase : str = True lowerCAmelCase : Optional[Any] = False lowerCAmelCase : Optional[Any] = False def lowerCamelCase_ ( self : Optional[int] , __snake_case : Optional[int] , __snake_case : List[str] , __snake_case : Optional[int] , __snake_case : str , __snake_case : int ): if pipeline_test_casse_name != "FeatureExtractionPipelineTests": # Exception encountered when calling layer '...' return True return False def lowerCamelCase_ ( self : List[str] ): UpperCAmelCase_ = TFMBartModelTester(self ) UpperCAmelCase_ = ConfigTester(self , config_class=__snake_case ) def lowerCamelCase_ ( self : str ): self.config_tester.run_common_tests() def lowerCamelCase_ ( self : List[str] ): UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*__snake_case ) @require_sentencepiece @require_tokenizers @require_tf class a ( unittest.TestCase ): '''simple docstring''' lowerCAmelCase : str = [ ' UN Chief Says There Is No Military Solution in Syria', ] lowerCAmelCase : Dict = [ 'Şeful ONU declară că nu există o soluţie militară în Siria', ] lowerCAmelCase : List[Any] = 'facebook/mbart-large-en-ro' @cached_property def lowerCamelCase_ ( self : Union[str, Any] ): return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def lowerCamelCase_ ( self : Optional[Any] ): UpperCAmelCase_ = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def lowerCamelCase_ ( self : Optional[Any] , **__snake_case : List[str] ): UpperCAmelCase_ = self.translate_src_text(**__snake_case ) self.assertListEqual(self.expected_text , __snake_case ) def lowerCamelCase_ ( self : Tuple , **__snake_case : Union[str, Any] ): UpperCAmelCase_ = self.tokenizer(self.src_text , **__snake_case , return_tensors='''tf''' ) UpperCAmelCase_ = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 ) UpperCAmelCase_ = self.tokenizer.batch_decode(__snake_case , skip_special_tokens=__snake_case ) return generated_words @slow def lowerCamelCase_ ( self : str ): self._assert_generated_batch_equal_expected()
365
import baseaa def SCREAMING_SNAKE_CASE ( __UpperCamelCase : str ) -> bytes: return baseaa.baaencode(string.encode('''utf-8''' ) ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : bytes ) -> str: return baseaa.baadecode(__UpperCamelCase ).decode('''utf-8''' ) if __name__ == "__main__": _lowerCamelCase = 'Hello World!' _lowerCamelCase = baseaa_encode(test) print(encoded) _lowerCamelCase = baseaa_decode(encoded) print(decoded)
177
0
'''simple docstring''' import argparse import torch from transformers import OpenAIGPTConfig, OpenAIGPTModel, load_tf_weights_in_openai_gpt from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def __a(SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Union[str, Any] ): '''simple docstring''' if openai_config_file == "": _lowerCAmelCase = OpenAIGPTConfig() else: _lowerCAmelCase = OpenAIGPTConfig.from_json_file(SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = OpenAIGPTModel(SCREAMING_SNAKE_CASE_ ) # Load weights from numpy load_tf_weights_in_openai_gpt(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Save pytorch-model _lowerCAmelCase = pytorch_dump_folder_path + "/" + WEIGHTS_NAME _lowerCAmelCase = pytorch_dump_folder_path + "/" + CONFIG_NAME print(F'''Save PyTorch model to {pytorch_weights_dump_path}''' ) torch.save(model.state_dict() , SCREAMING_SNAKE_CASE_ ) print(F'''Save configuration file to {pytorch_config_dump_path}''' ) with open(SCREAMING_SNAKE_CASE_ , "w" , encoding="utf-8" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( "--openai_checkpoint_folder_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--openai_config_file", default="", type=str, help=( "An optional config json file corresponding to the pre-trained OpenAI model. \n" "This specifies the model architecture." ), ) _SCREAMING_SNAKE_CASE = parser.parse_args() convert_openai_checkpoint_to_pytorch( args.openai_checkpoint_folder_path, args.openai_config_file, args.pytorch_dump_folder_path )
158
'''simple docstring''' import math import sys def __a(SCREAMING_SNAKE_CASE_ : int ): '''simple docstring''' if number != int(SCREAMING_SNAKE_CASE_ ): raise ValueError("the value of input must be a natural number" ) if number < 0: raise ValueError("the value of input must not be a negative number" ) if number == 0: return 1 _lowerCAmelCase = [-1] * (number + 1) _lowerCAmelCase = 0 for i in range(1 , number + 1 ): _lowerCAmelCase = sys.maxsize _lowerCAmelCase = int(math.sqrt(SCREAMING_SNAKE_CASE_ ) ) for j in range(1 , root + 1 ): _lowerCAmelCase = 1 + answers[i - (j**2)] _lowerCAmelCase = min(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = answer return answers[number] if __name__ == "__main__": import doctest doctest.testmod()
158
1
"""simple docstring""" import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging UpperCamelCase : Any = logging.get_logger(__name__) UpperCamelCase : str = {"vocab_file": "vocab.json", "merges_file": "merges.txt"} # See all BART models at https://huggingface.co/models?filter=bart UpperCamelCase : Any = { "vocab_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/vocab.json", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/vocab.json", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json", }, "merges_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/merges.txt", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/merges.txt", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt", }, } UpperCamelCase : Any = { "facebook/bart-base": 1_0_2_4, "facebook/bart-large": 1_0_2_4, "facebook/bart-large-mnli": 1_0_2_4, "facebook/bart-large-cnn": 1_0_2_4, "facebook/bart-large-xsum": 1_0_2_4, "yjernite/bart_eli5": 1_0_2_4, } @lru_cache() def A ( ) -> List[Any]: __UpperCamelCase = ( list(range(ord('!' ) , ord('~' ) + 1 ) ) + list(range(ord('¡' ) , ord('¬' ) + 1 ) ) + list(range(ord('®' ) , ord('ÿ' ) + 1 ) ) ) __UpperCamelCase = bs[:] __UpperCamelCase = 0 for b in range(2**8 ): if b not in bs: bs.append(snake_case ) cs.append(2**8 + n ) n += 1 __UpperCamelCase = [chr(snake_case ) for n in cs] return dict(zip(snake_case , snake_case ) ) def A ( snake_case :Union[str, Any] ) -> Tuple: __UpperCamelCase = set() __UpperCamelCase = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __UpperCamelCase = char return pairs class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = ["input_ids", "attention_mask"] def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase="replace" , __UpperCAmelCase="<s>" , __UpperCAmelCase="</s>" , __UpperCAmelCase="</s>" , __UpperCAmelCase="<s>" , __UpperCAmelCase="<unk>" , __UpperCAmelCase="<pad>" , __UpperCAmelCase="<mask>" , __UpperCAmelCase=False , **__UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else bos_token __UpperCamelCase = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else eos_token __UpperCamelCase = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else sep_token __UpperCamelCase = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else cls_token __UpperCamelCase = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else unk_token __UpperCamelCase = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it __UpperCamelCase = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else mask_token super().__init__( errors=__UpperCAmelCase , bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , add_prefix_space=__UpperCAmelCase , **__UpperCAmelCase , ) with open(__UpperCAmelCase , encoding='utf-8' ) as vocab_handle: __UpperCamelCase = json.load(__UpperCAmelCase ) __UpperCamelCase = {v: k for k, v in self.encoder.items()} __UpperCamelCase = errors # how to handle errors in decoding __UpperCamelCase = bytes_to_unicode() __UpperCamelCase = {v: k for k, v in self.byte_encoder.items()} with open(__UpperCAmelCase , encoding='utf-8' ) as merges_handle: __UpperCamelCase = merges_handle.read().split('\n' )[1:-1] __UpperCamelCase = [tuple(merge.split() ) for merge in bpe_merges] __UpperCamelCase = dict(zip(__UpperCAmelCase , range(len(__UpperCAmelCase ) ) ) ) __UpperCamelCase = {} __UpperCamelCase = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions __UpperCamelCase = re.compile(R'\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+' ) @property def UpperCAmelCase ( self ): '''simple docstring''' return len(self.encoder ) def UpperCAmelCase ( self ): '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' if token in self.cache: return self.cache[token] __UpperCamelCase = tuple(__UpperCAmelCase ) __UpperCamelCase = get_pairs(__UpperCAmelCase ) if not pairs: return token while True: __UpperCamelCase = min(__UpperCAmelCase , key=lambda __UpperCAmelCase : self.bpe_ranks.get(__UpperCAmelCase , float('inf' ) ) ) if bigram not in self.bpe_ranks: break __UpperCamelCase , __UpperCamelCase = bigram __UpperCamelCase = [] __UpperCamelCase = 0 while i < len(__UpperCAmelCase ): try: __UpperCamelCase = word.index(__UpperCAmelCase , __UpperCAmelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __UpperCamelCase = j if word[i] == first and i < len(__UpperCAmelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __UpperCamelCase = tuple(__UpperCAmelCase ) __UpperCamelCase = new_word if len(__UpperCAmelCase ) == 1: break else: __UpperCamelCase = get_pairs(__UpperCAmelCase ) __UpperCamelCase = ' '.join(__UpperCAmelCase ) __UpperCamelCase = word return word def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = [] for token in re.findall(self.pat , __UpperCAmelCase ): __UpperCamelCase = ''.join( self.byte_encoder[b] for b in token.encode('utf-8' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(__UpperCAmelCase ).split(' ' ) ) return bpe_tokens def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' return self.encoder.get(__UpperCAmelCase , self.encoder.get(self.unk_token ) ) def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' return self.decoder.get(__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = ''.join(__UpperCAmelCase ) __UpperCamelCase = bytearray([self.byte_decoder[c] for c in text] ).decode('utf-8' , errors=self.errors ) return text def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ): '''simple docstring''' if not os.path.isdir(__UpperCAmelCase ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return __UpperCamelCase = os.path.join( __UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) __UpperCamelCase = os.path.join( __UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(__UpperCAmelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__UpperCAmelCase , ensure_ascii=__UpperCAmelCase ) + '\n' ) __UpperCamelCase = 0 with open(__UpperCAmelCase , 'w' , encoding='utf-8' ) as writer: writer.write('#version: 0.2\n' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __UpperCAmelCase : kv[1] ): if index != token_index: logger.warning( F'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' ' Please check that the tokenizer is not corrupted!' ) __UpperCamelCase = token_index writer.write(' '.join(__UpperCAmelCase ) + '\n' ) index += 1 return vocab_file, merge_file def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __UpperCamelCase = [self.cls_token_id] __UpperCamelCase = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__UpperCAmelCase , token_ids_a=__UpperCAmelCase , already_has_special_tokens=__UpperCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(__UpperCAmelCase )) + [1] return [1] + ([0] * len(__UpperCAmelCase )) + [1, 1] + ([0] * len(__UpperCAmelCase )) + [1] def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ): '''simple docstring''' __UpperCamelCase = [self.sep_token_id] __UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase=False , **__UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = kwargs.pop('add_prefix_space' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(__UpperCAmelCase ) > 0 and not text[0].isspace()): __UpperCamelCase = ' ' + text return (text, kwargs)
263
"""simple docstring""" import json import os import re import unicodedata from json.encoder import INFINITY from typing import Any, Dict, List, Optional, Tuple, Union import numpy as np import regex from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_flax_available, is_tf_available, is_torch_available, logging from ...utils.generic import _is_jax, _is_numpy UpperCamelCase : Tuple = logging.get_logger(__name__) UpperCamelCase : int = { "artists_file": "artists.json", "lyrics_file": "lyrics.json", "genres_file": "genres.json", } UpperCamelCase : Optional[Any] = { "artists_file": { "jukebox": "https://huggingface.co/ArthurZ/jukebox/blob/main/artists.json", }, "genres_file": { "jukebox": "https://huggingface.co/ArthurZ/jukebox/blob/main/genres.json", }, "lyrics_file": { "jukebox": "https://huggingface.co/ArthurZ/jukebox/blob/main/lyrics.json", }, } UpperCamelCase : Any = { "jukebox": 5_1_2, } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_LYRIC_TOKENS_SIZES lowercase = ["input_ids", "attention_mask"] def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=["v3", "v2", "v2"] , __UpperCAmelCase=512 , __UpperCAmelCase=5 , __UpperCAmelCase="<|endoftext|>" , **__UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else unk_token super().__init__( unk_token=__UpperCAmelCase , n_genres=__UpperCAmelCase , version=__UpperCAmelCase , max_n_lyric_tokens=__UpperCAmelCase , **__UpperCAmelCase , ) __UpperCamelCase = version __UpperCamelCase = max_n_lyric_tokens __UpperCamelCase = n_genres with open(__UpperCAmelCase , encoding='utf-8' ) as vocab_handle: __UpperCamelCase = json.load(__UpperCAmelCase ) with open(__UpperCAmelCase , encoding='utf-8' ) as vocab_handle: __UpperCamelCase = json.load(__UpperCAmelCase ) with open(__UpperCAmelCase , encoding='utf-8' ) as vocab_handle: __UpperCamelCase = json.load(__UpperCAmelCase ) __UpperCamelCase = R'[^A-Za-z0-9.,:;!?\-\'\"()\[\] \t\n]+' # In v2, we had a n_vocab=80 and in v3 we missed + and so n_vocab=79 of characters. if len(self.lyrics_encoder ) == 79: __UpperCamelCase = oov.replace(R'\-\'' , R'\-+\'' ) __UpperCamelCase = regex.compile(__UpperCAmelCase ) __UpperCamelCase = {v: k for k, v in self.artists_encoder.items()} __UpperCamelCase = {v: k for k, v in self.genres_encoder.items()} __UpperCamelCase = {v: k for k, v in self.lyrics_encoder.items()} @property def UpperCAmelCase ( self ): '''simple docstring''' return len(self.artists_encoder ) + len(self.genres_encoder ) + len(self.lyrics_encoder ) def UpperCAmelCase ( self ): '''simple docstring''' return dict(self.artists_encoder , self.genres_encoder , self.lyrics_encoder ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = [self.artists_encoder.get(__UpperCAmelCase , 0 ) for artist in list_artists] for genres in range(len(__UpperCAmelCase ) ): __UpperCamelCase = [self.genres_encoder.get(__UpperCAmelCase , 0 ) for genre in list_genres[genres]] __UpperCamelCase = list_genres[genres] + [-1] * (self.n_genres - len(list_genres[genres] )) __UpperCamelCase = [[self.lyrics_encoder.get(__UpperCAmelCase , 0 ) for character in list_lyrics[0]], [], []] return artists_id, list_genres, lyric_ids def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' return list(__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = self.prepare_for_tokenization(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) __UpperCamelCase = self._tokenize(__UpperCAmelCase ) return artist, genre, lyrics def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = False ): '''simple docstring''' for idx in range(len(self.version ) ): if self.version[idx] == "v3": __UpperCamelCase = artists[idx].lower() __UpperCamelCase = [genres[idx].lower()] else: __UpperCamelCase = self._normalize(artists[idx] ) + '.v2' __UpperCamelCase = [ self._normalize(__UpperCAmelCase ) + '.v2' for genre in genres[idx].split('_' ) ] # split is for the full dictionary with combined genres if self.version[0] == "v2": __UpperCamelCase = regex.compile(R'[^A-Za-z0-9.,:;!?\-\'\"()\[\] \t\n]+' ) __UpperCamelCase = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789.,:;!?-+\'\"()[] \t\n' __UpperCamelCase = {vocab[index]: index + 1 for index in range(len(__UpperCAmelCase ) )} __UpperCamelCase = 0 __UpperCamelCase = len(__UpperCAmelCase ) + 1 __UpperCamelCase = self.vocab __UpperCamelCase = {v: k for k, v in self.vocab.items()} __UpperCamelCase = '' else: __UpperCamelCase = regex.compile(R'[^A-Za-z0-9.,:;!?\-+\'\"()\[\] \t\n]+' ) __UpperCamelCase = self._run_strip_accents(__UpperCAmelCase ) __UpperCamelCase = lyrics.replace('\\' , '\n' ) __UpperCamelCase = self.out_of_vocab.sub('' , __UpperCAmelCase ), [], [] return artists, genres, lyrics def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = unicodedata.normalize('NFD' , __UpperCAmelCase ) __UpperCamelCase = [] for char in text: __UpperCamelCase = unicodedata.category(__UpperCAmelCase ) if cat == "Mn": continue output.append(__UpperCAmelCase ) return "".join(__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = ( [chr(__UpperCAmelCase ) for i in range(ord('a' ) , ord('z' ) + 1 )] + [chr(__UpperCAmelCase ) for i in range(ord('A' ) , ord('Z' ) + 1 )] + [chr(__UpperCAmelCase ) for i in range(ord('0' ) , ord('9' ) + 1 )] + ['.'] ) __UpperCamelCase = frozenset(__UpperCAmelCase ) __UpperCamelCase = re.compile(R'_+' ) __UpperCamelCase = ''.join([c if c in accepted else '_' for c in text.lower()] ) __UpperCamelCase = pattern.sub('_' , __UpperCAmelCase ).strip('_' ) return text def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' return " ".join(__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = False ): '''simple docstring''' if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): __UpperCamelCase = TensorType(__UpperCAmelCase ) # Get a function reference for the correct framework if tensor_type == TensorType.TENSORFLOW: if not is_tf_available(): raise ImportError( 'Unable to convert output to TensorFlow tensors format, TensorFlow is not installed.' ) import tensorflow as tf __UpperCamelCase = tf.constant __UpperCamelCase = tf.is_tensor elif tensor_type == TensorType.PYTORCH: if not is_torch_available(): raise ImportError('Unable to convert output to PyTorch tensors format, PyTorch is not installed.' ) import torch __UpperCamelCase = torch.tensor __UpperCamelCase = torch.is_tensor elif tensor_type == TensorType.JAX: if not is_flax_available(): raise ImportError('Unable to convert output to JAX tensors format, JAX is not installed.' ) import jax.numpy as jnp # noqa: F811 __UpperCamelCase = jnp.array __UpperCamelCase = _is_jax else: __UpperCamelCase = np.asarray __UpperCamelCase = _is_numpy # Do the tensor conversion in batch try: if prepend_batch_axis: __UpperCamelCase = [inputs] if not is_tensor(__UpperCAmelCase ): __UpperCamelCase = as_tensor(__UpperCAmelCase ) except: # noqa E722 raise ValueError( 'Unable to create tensor, you should probably activate truncation and/or padding ' 'with \'padding=True\' \'truncation=True\' to have batched tensors with the same length.' ) return inputs def __call__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase="" , __UpperCAmelCase="pt" ): '''simple docstring''' __UpperCamelCase = [0, 0, 0] __UpperCamelCase = [artist] * len(self.version ) __UpperCamelCase = [genres] * len(self.version ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = self.tokenize(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = self._convert_token_to_id(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) __UpperCamelCase = [-INFINITY] * len(full_tokens[-1] ) __UpperCamelCase = [ self.convert_to_tensors( [input_ids + [artists_id[i]] + genres_ids[i] + full_tokens[i]] , tensor_type=__UpperCAmelCase ) for i in range(len(self.version ) ) ] return BatchEncoding({'input_ids': input_ids, 'attention_masks': attention_masks} ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ): '''simple docstring''' if not os.path.isdir(__UpperCAmelCase ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return __UpperCamelCase = os.path.join( __UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['artists_file'] ) with open(__UpperCAmelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.artists_encoder , ensure_ascii=__UpperCAmelCase ) ) __UpperCamelCase = os.path.join( __UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['genres_file'] ) with open(__UpperCAmelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.genres_encoder , ensure_ascii=__UpperCAmelCase ) ) __UpperCamelCase = os.path.join( __UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['lyrics_file'] ) with open(__UpperCAmelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.lyrics_encoder , ensure_ascii=__UpperCAmelCase ) ) return (artists_file, genres_file, lyrics_file) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = self.artists_decoder.get(__UpperCAmelCase ) __UpperCamelCase = [self.genres_decoder.get(__UpperCAmelCase ) for genre in genres_index] __UpperCamelCase = [self.lyrics_decoder.get(__UpperCAmelCase ) for character in lyric_index] return artist, genres, lyrics
263
1
"""simple docstring""" import warnings from ...utils import logging from .image_processing_layoutlmva import LayoutLMvaImageProcessor A = logging.get_logger(__name__) class __lowercase ( _UpperCamelCase ): '''simple docstring''' def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase ): warnings.warn( '''The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use LayoutLMv2ImageProcessor instead.''' , _UpperCAmelCase , ) super().__init__(*_UpperCAmelCase , **_UpperCAmelCase )
160
# Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING import numpy as np import pyarrow as pa from .. import config from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import torch class __lowerCAmelCase ( TensorFormatter[Mapping, """torch.Tensor""", Mapping] ): def __init__( self , lowerCAmelCase=None , **lowerCAmelCase ) -> Optional[Any]: '''simple docstring''' super().__init__(features=lowerCAmelCase ) _lowercase =torch_tensor_kwargs import torch # noqa import torch at initialization def A__ ( self , lowerCAmelCase ) -> int: '''simple docstring''' import torch if isinstance(lowerCAmelCase , lowerCAmelCase ) and column: if all( isinstance(lowerCAmelCase , torch.Tensor ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return torch.stack(lowerCAmelCase ) return column def A__ ( self , lowerCAmelCase ) -> str: '''simple docstring''' import torch if isinstance(lowerCAmelCase , (str, bytes, type(lowerCAmelCase )) ): return value elif isinstance(lowerCAmelCase , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() _lowercase ={} if isinstance(lowerCAmelCase , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): _lowercase ={'dtype': torch.intaa} elif isinstance(lowerCAmelCase , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): _lowercase ={'dtype': torch.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(lowerCAmelCase , PIL.Image.Image ): _lowercase =np.asarray(lowerCAmelCase ) return torch.tensor(lowerCAmelCase , **{**default_dtype, **self.torch_tensor_kwargs} ) def A__ ( self , lowerCAmelCase ) -> str: '''simple docstring''' import torch # support for torch, tf, jax etc. if hasattr(lowerCAmelCase , '__array__' ) and not isinstance(lowerCAmelCase , torch.Tensor ): _lowercase =data_struct.__array__() # support for nested types like struct of list of struct if isinstance(lowerCAmelCase , np.ndarray ): if data_struct.dtype == object: # torch tensors cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(lowerCAmelCase ) for substruct in data_struct] ) elif isinstance(lowerCAmelCase , (list, tuple) ): return self._consolidate([self.recursive_tensorize(lowerCAmelCase ) for substruct in data_struct] ) return self._tensorize(lowerCAmelCase ) def A__ ( self , lowerCAmelCase ) -> Tuple: '''simple docstring''' return map_nested(self._recursive_tensorize , lowerCAmelCase , map_list=lowerCAmelCase ) def A__ ( self , lowerCAmelCase ) -> Mapping: '''simple docstring''' _lowercase =self.numpy_arrow_extractor().extract_row(lowerCAmelCase ) _lowercase =self.python_features_decoder.decode_row(lowerCAmelCase ) return self.recursive_tensorize(lowerCAmelCase ) def A__ ( self , lowerCAmelCase ) -> "torch.Tensor": '''simple docstring''' _lowercase =self.numpy_arrow_extractor().extract_column(lowerCAmelCase ) _lowercase =self.python_features_decoder.decode_column(lowerCAmelCase , pa_table.column_names[0] ) _lowercase =self.recursive_tensorize(lowerCAmelCase ) _lowercase =self._consolidate(lowerCAmelCase ) return column def A__ ( self , lowerCAmelCase ) -> Mapping: '''simple docstring''' _lowercase =self.numpy_arrow_extractor().extract_batch(lowerCAmelCase ) _lowercase =self.python_features_decoder.decode_batch(lowerCAmelCase ) _lowercase =self.recursive_tensorize(lowerCAmelCase ) for column_name in batch: _lowercase =self._consolidate(batch[column_name] ) return batch
205
0
def a__ ( UpperCAmelCase : list , UpperCAmelCase : list , UpperCAmelCase : int ) -> int: if len(UpperCAmelCase ) != len(UpperCAmelCase ): raise ValueError('''The length of profit and weight must be same.''' ) if max_weight <= 0: raise ValueError('''max_weight must greater than zero.''' ) if any(p < 0 for p in profit ): raise ValueError('''Profit can not be negative.''' ) if any(w < 0 for w in weight ): raise ValueError('''Weight can not be negative.''' ) # List created to store profit gained for the 1kg in case of each weight # respectively. Calculate and append profit/weight for each element. UpperCAmelCase : Tuple = [p / w for p, w in zip(UpperCAmelCase , UpperCAmelCase )] # Creating a copy of the list and sorting profit/weight in ascending order UpperCAmelCase : str = sorted(UpperCAmelCase ) # declaring useful variables UpperCAmelCase : int = len(UpperCAmelCase ) UpperCAmelCase : Optional[Any] = 0 UpperCAmelCase : List[Any] = 0 UpperCAmelCase : Any = 0 # loop till the total weight do not reach max limit e.g. 15 kg and till i<length while limit <= max_weight and i < length: # flag value for encountered greatest element in sorted_profit_by_weight UpperCAmelCase : str = sorted_profit_by_weight[length - i - 1] UpperCAmelCase : Union[str, Any] = profit_by_weight.index(UpperCAmelCase ) UpperCAmelCase : str = -1 # check if the weight encountered is less than the total weight # encountered before. if max_weight - limit >= weight[index]: limit += weight[index] # Adding profit gained for the given weight 1 === # weight[index]/weight[index] gain += 1 * profit[index] else: # Since the weight encountered is greater than limit, therefore take the # required number of remaining kgs and calculate profit for it. # weight remaining / weight[index] gain += (max_weight - limit) / weight[index] * profit[index] break i += 1 return gain if __name__ == "__main__": print( "Input profits, weights, and then max_weight (all positive ints) separated by " "spaces." ) _lowerCamelCase : Tuple = [int(x) for x in input("Input profits separated by spaces: ").split()] _lowerCamelCase : Tuple = [int(x) for x in input("Input weights separated by spaces: ").split()] _lowerCamelCase : Dict = int(input("Max weight allowed: ")) # Function Call calc_profit(profit, weight, max_weight)
99
import gc import random import unittest import numpy as np import torch from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import floats_tensor, load_image, load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class __UpperCAmelCase ( lowerCamelCase__ , unittest.TestCase ): UpperCamelCase = ShapEImgaImgPipeline UpperCamelCase = ["""image"""] UpperCamelCase = ["""image"""] UpperCamelCase = [ """num_images_per_prompt""", """num_inference_steps""", """generator""", """latents""", """guidance_scale""", """frame_size""", """output_type""", """return_dict""", ] UpperCamelCase = False @property def __magic_name__ ( self : Optional[Any] ): return 3_2 @property def __magic_name__ ( self : Optional[int] ): return 3_2 @property def __magic_name__ ( self : Union[str, Any] ): return self.time_input_dim * 4 @property def __magic_name__ ( self : Any ): return 8 @property def __magic_name__ ( self : List[str] ): torch.manual_seed(0 ) UpperCAmelCase : str = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size, image_size=6_4, projection_dim=self.text_embedder_hidden_size, intermediate_size=3_7, num_attention_heads=4, num_channels=3, num_hidden_layers=5, patch_size=1, ) UpperCAmelCase : Any = CLIPVisionModel(__A ) return model @property def __magic_name__ ( self : int ): UpperCAmelCase : Optional[int] = CLIPImageProcessor( crop_size=2_2_4, do_center_crop=__A, do_normalize=__A, do_resize=__A, image_mean=[0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3], image_std=[0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1], resample=3, size=2_2_4, ) return image_processor @property def __magic_name__ ( self : Dict ): torch.manual_seed(0 ) UpperCAmelCase : Any = { '''num_attention_heads''': 2, '''attention_head_dim''': 1_6, '''embedding_dim''': self.time_input_dim, '''num_embeddings''': 3_2, '''embedding_proj_dim''': self.text_embedder_hidden_size, '''time_embed_dim''': self.time_embed_dim, '''num_layers''': 1, '''clip_embed_dim''': self.time_input_dim * 2, '''additional_embeddings''': 0, '''time_embed_act_fn''': '''gelu''', '''norm_in_type''': '''layer''', '''embedding_proj_norm_type''': '''layer''', '''encoder_hid_proj_type''': None, '''added_emb_type''': None, } UpperCAmelCase : List[Any] = PriorTransformer(**__A ) return model @property def __magic_name__ ( self : Union[str, Any] ): torch.manual_seed(0 ) UpperCAmelCase : List[Any] = { '''param_shapes''': ( (self.renderer_dim, 9_3), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), '''d_latent''': self.time_input_dim, '''d_hidden''': self.renderer_dim, '''n_output''': 1_2, '''background''': ( 0.1, 0.1, 0.1, ), } UpperCAmelCase : List[str] = ShapERenderer(**__A ) return model def __magic_name__ ( self : List[Any] ): UpperCAmelCase : str = self.dummy_prior UpperCAmelCase : List[str] = self.dummy_image_encoder UpperCAmelCase : List[Any] = self.dummy_image_processor UpperCAmelCase : Dict = self.dummy_renderer UpperCAmelCase : int = HeunDiscreteScheduler( beta_schedule='''exp''', num_train_timesteps=1_0_2_4, prediction_type='''sample''', use_karras_sigmas=__A, clip_sample=__A, clip_sample_range=1.0, ) UpperCAmelCase : List[str] = { '''prior''': prior, '''image_encoder''': image_encoder, '''image_processor''': image_processor, '''renderer''': renderer, '''scheduler''': scheduler, } return components def __magic_name__ ( self : List[Any], __A : Dict, __A : List[Any]=0 ): UpperCAmelCase : int = floats_tensor((1, 3, 6_4, 6_4), rng=random.Random(__A ) ).to(__A ) if str(__A ).startswith('''mps''' ): UpperCAmelCase : List[str] = torch.manual_seed(__A ) else: UpperCAmelCase : Optional[Any] = torch.Generator(device=__A ).manual_seed(__A ) UpperCAmelCase : Dict = { '''image''': input_image, '''generator''': generator, '''num_inference_steps''': 1, '''frame_size''': 3_2, '''output_type''': '''np''', } return inputs def __magic_name__ ( self : str ): UpperCAmelCase : Dict = '''cpu''' UpperCAmelCase : Any = self.get_dummy_components() UpperCAmelCase : Tuple = self.pipeline_class(**__A ) UpperCAmelCase : Dict = pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) UpperCAmelCase : List[Any] = pipe(**self.get_dummy_inputs(__A ) ) UpperCAmelCase : Any = output.images[0] UpperCAmelCase : List[str] = image[0, -3:, -3:, -1] assert image.shape == (2_0, 3_2, 3_2, 3) UpperCAmelCase : Optional[int] = np.array( [ 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def __magic_name__ ( self : Dict ): # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def __magic_name__ ( self : str ): UpperCAmelCase : Tuple = torch_device == '''cpu''' UpperCAmelCase : List[Any] = True self._test_inference_batch_single_identical( batch_size=2, test_max_difference=__A, relax_max_difference=__A, ) def __magic_name__ ( self : Dict ): UpperCAmelCase : Dict = self.get_dummy_components() UpperCAmelCase : Union[str, Any] = self.pipeline_class(**__A ) UpperCAmelCase : List[str] = pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) UpperCAmelCase : Any = 1 UpperCAmelCase : Any = 2 UpperCAmelCase : Optional[int] = self.get_dummy_inputs(__A ) for key in inputs.keys(): if key in self.batch_params: UpperCAmelCase : Any = batch_size * [inputs[key]] UpperCAmelCase : int = pipe(**__A, num_images_per_prompt=__A )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class __UpperCAmelCase ( unittest.TestCase ): def __magic_name__ ( self : List[Any] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __magic_name__ ( self : Tuple ): UpperCAmelCase : List[str] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/corgi.png''' ) UpperCAmelCase : Dict = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/test_shap_e_img2img_out.npy''' ) UpperCAmelCase : Union[str, Any] = ShapEImgaImgPipeline.from_pretrained('''openai/shap-e-img2img''' ) UpperCAmelCase : int = pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) UpperCAmelCase : Dict = torch.Generator(device=__A ).manual_seed(0 ) UpperCAmelCase : List[str] = pipe( __A, generator=__A, guidance_scale=3.0, num_inference_steps=6_4, frame_size=6_4, output_type='''np''', ).images[0] assert images.shape == (2_0, 6_4, 6_4, 3) assert_mean_pixel_difference(__A, __A )
99
1
"""simple docstring""" from __future__ import annotations def a__ ( snake_case__ ) -> bool: lowerCamelCase = len(snake_case__ ) # We need to create solution object to save path. lowerCamelCase = [[0 for _ in range(snake_case__ )] for _ in range(snake_case__ )] lowerCamelCase = run_maze(snake_case__ , 0 , 0 , snake_case__ ) if solved: print("""\n""".join(str(snake_case__ ) for row in solutions ) ) else: print("""No solution exists!""" ) return solved def a__ ( snake_case__ , snake_case__ , snake_case__ , snake_case__ ) -> bool: lowerCamelCase = len(snake_case__ ) # Final check point. if i == j == (size - 1): lowerCamelCase = 1 return True lowerCamelCase = (not i < 0) and (not j < 0) # Check lower bounds lowerCamelCase = (i < size) and (j < size) # Check upper bounds if lower_flag and upper_flag: # check for already visited and block points. lowerCamelCase = (not solutions[i][j]) and (not maze[i][j]) if block_flag: # check visited lowerCamelCase = 1 # check for directions if ( run_maze(snake_case__ , i + 1 , snake_case__ , snake_case__ ) or run_maze(snake_case__ , snake_case__ , j + 1 , snake_case__ ) or run_maze(snake_case__ , i - 1 , snake_case__ , snake_case__ ) or run_maze(snake_case__ , snake_case__ , j - 1 , snake_case__ ) ): return True lowerCamelCase = 0 return False return False if __name__ == "__main__": import doctest doctest.testmod()
291
"""simple docstring""" import argparse import collections import numpy as np import torch from flax import traverse_util from tax import checkpoints from transformers import MTaConfig, UMTaEncoderModel, UMTaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def a__ ( snake_case__ , snake_case__ , snake_case__ ) -> List[Any]: return params[F'{prefix}/{prefix}/relpos_bias/rel_embedding'][:, i, :] def a__ ( snake_case__ , snake_case__ , snake_case__ , snake_case__="attention" ) -> List[Any]: lowerCamelCase = lowerCamelCase = np.ascontiguousarray(params[F'{prefix}/{prefix}/{layer_name}/key/kernel'][:, i, :, :] ) lowerCamelCase = k_tmp.reshape(k_tmp.shape[0] , k_tmp.shape[1] * k_tmp.shape[2] ) lowerCamelCase = np.ascontiguousarray(params[F'{prefix}/{prefix}/{layer_name}/out/kernel'][:, i, :, :] ) lowerCamelCase = o_tmp.reshape(o_tmp.shape[0] * o_tmp.shape[1] , o_tmp.shape[2] ) lowerCamelCase = np.ascontiguousarray(params[F'{prefix}/{prefix}/{layer_name}/query/kernel'][:, i, :, :] ) lowerCamelCase = q_tmp.reshape(q_tmp.shape[0] , q_tmp.shape[1] * q_tmp.shape[2] ) lowerCamelCase = np.ascontiguousarray(params[F'{prefix}/{prefix}/{layer_name}/value/kernel'][:, i, :, :] ) lowerCamelCase = v_tmp.reshape(v_tmp.shape[0] , v_tmp.shape[1] * v_tmp.shape[2] ) return k, o, q, v def a__ ( snake_case__ , snake_case__ , snake_case__ , snake_case__=False ) -> List[str]: if split_mlp_wi: lowerCamelCase = params[F'{prefix}/{prefix}/mlp/wi_0/kernel'][:, i, :] lowerCamelCase = params[F'{prefix}/{prefix}/mlp/wi_1/kernel'][:, i, :] lowerCamelCase = (wi_a, wi_a) else: lowerCamelCase = params[F'{prefix}/{prefix}/mlp/wi/kernel'][:, i, :] lowerCamelCase = params[F'{prefix}/{prefix}/mlp/wo/kernel'][:, i, :] return wi, wo def a__ ( snake_case__ , snake_case__ , snake_case__ , snake_case__ ) -> Tuple: return params[F'{prefix}/{prefix}/{layer_name}/scale'][:, i] def a__ ( snake_case__ , *, snake_case__ , snake_case__ , snake_case__ = False ) -> Dict: lowerCamelCase = traverse_util.flatten_dict(variables["""target"""] ) lowerCamelCase = {"""/""".join(snake_case__ ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi lowerCamelCase = """encoder/encoder/mlp/wi_0/kernel""" in old print("""Split MLP:""" , snake_case__ ) lowerCamelCase = collections.OrderedDict() # Shared embeddings. lowerCamelCase = old["""token_embedder/embedding"""] # Encoder. for i in range(snake_case__ ): # Block i, layer 0 (Self Attention). lowerCamelCase = tax_layer_norm_lookup(snake_case__ , snake_case__ , """encoder""" , """pre_attention_layer_norm""" ) lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase = tax_attention_lookup(snake_case__ , snake_case__ , """encoder""" , """attention""" ) lowerCamelCase = layer_norm lowerCamelCase = k.T lowerCamelCase = o.T lowerCamelCase = q.T lowerCamelCase = v.T # Block i, layer 1 (MLP). lowerCamelCase = tax_layer_norm_lookup(snake_case__ , snake_case__ , """encoder""" , """pre_mlp_layer_norm""" ) lowerCamelCase , lowerCamelCase = tax_mlp_lookup(snake_case__ , snake_case__ , """encoder""" , snake_case__ ) lowerCamelCase = layer_norm if split_mlp_wi: lowerCamelCase = wi[0].T lowerCamelCase = wi[1].T else: lowerCamelCase = wi.T lowerCamelCase = wo.T if scalable_attention: # convert the rel_embedding of each layer lowerCamelCase = tax_relpos_bias_lookup( snake_case__ , snake_case__ , """encoder""" ).T lowerCamelCase = old["""encoder/encoder_norm/scale"""] if not scalable_attention: lowerCamelCase = tax_relpos_bias_lookup( snake_case__ , 0 , """encoder""" ).T lowerCamelCase = tax_relpos_bias_lookup( snake_case__ , 0 , """decoder""" ).T if not is_encoder_only: # Decoder. for i in range(snake_case__ ): # Block i, layer 0 (Self Attention). lowerCamelCase = tax_layer_norm_lookup(snake_case__ , snake_case__ , """decoder""" , """pre_self_attention_layer_norm""" ) lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase = tax_attention_lookup(snake_case__ , snake_case__ , """decoder""" , """self_attention""" ) lowerCamelCase = layer_norm lowerCamelCase = k.T lowerCamelCase = o.T lowerCamelCase = q.T lowerCamelCase = v.T # Block i, layer 1 (Cross Attention). lowerCamelCase = tax_layer_norm_lookup(snake_case__ , snake_case__ , """decoder""" , """pre_cross_attention_layer_norm""" ) lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase = tax_attention_lookup(snake_case__ , snake_case__ , """decoder""" , """encoder_decoder_attention""" ) lowerCamelCase = layer_norm lowerCamelCase = k.T lowerCamelCase = o.T lowerCamelCase = q.T lowerCamelCase = v.T # Block i, layer 2 (MLP). lowerCamelCase = tax_layer_norm_lookup(snake_case__ , snake_case__ , """decoder""" , """pre_mlp_layer_norm""" ) lowerCamelCase , lowerCamelCase = tax_mlp_lookup(snake_case__ , snake_case__ , """decoder""" , snake_case__ ) lowerCamelCase = layer_norm if split_mlp_wi: lowerCamelCase = wi[0].T lowerCamelCase = wi[1].T else: lowerCamelCase = wi.T lowerCamelCase = wo.T if scalable_attention: # convert the rel_embedding of each layer lowerCamelCase = tax_relpos_bias_lookup(snake_case__ , snake_case__ , """decoder""" ).T lowerCamelCase = old["""decoder/decoder_norm/scale"""] # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: lowerCamelCase = old["""decoder/logits_dense/kernel"""].T return new def a__ ( snake_case__ , snake_case__ ) -> Optional[int]: lowerCamelCase = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: lowerCamelCase = state_dict["""shared.weight"""] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: lowerCamelCase = state_dict["""shared.weight"""] if "lm_head.weight" not in state_dict: # For old 1.0 models. print("""Using shared word embeddings as lm_head.""" ) lowerCamelCase = state_dict["""shared.weight"""] return state_dict def a__ ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) -> List[Any]: lowerCamelCase = checkpoints.load_tax_checkpoint(snake_case__ ) lowerCamelCase = convert_tax_to_pytorch( snake_case__ , num_layers=config.num_layers , is_encoder_only=snake_case__ , scalable_attention=snake_case__ ) lowerCamelCase = make_state_dict(snake_case__ , snake_case__ ) model.load_state_dict(snake_case__ , strict=snake_case__ ) def a__ ( snake_case__ , snake_case__ , snake_case__ , snake_case__ = False , snake_case__ = False , ) -> str: lowerCamelCase = MTaConfig.from_json_file(snake_case__ ) print(F'Building PyTorch model from configuration: {config}' ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: lowerCamelCase = UMTaEncoderModel(snake_case__ ) else: lowerCamelCase = UMTaForConditionalGeneration(snake_case__ ) # Load weights from tf checkpoint load_tax_weights_in_ta(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) # Save pytorch-model print(F'Save PyTorch model to {pytorch_dump_path}' ) model.save_pretrained(snake_case__ ) # Verify that we can load the checkpoint. model.from_pretrained(snake_case__ ) print("""Done""" ) if __name__ == "__main__": lowerCAmelCase : Optional[int] = argparse.ArgumentParser(description="""Converts a native T5X checkpoint into a PyTorch checkpoint.""") # Required parameters parser.add_argument( """--t5x_checkpoint_path""", default=None, type=str, required=True, help="""Path to the T5X checkpoint.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help="""The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.""", ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--is_encoder_only""", action="""store_true""", help="""Check if the model is encoder-decoder model""", default=False ) parser.add_argument( """--scalable_attention""", action="""store_true""", help="""Whether the model uses scaled attention (umt5 model)""", default=False, ) lowerCAmelCase : int = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only, args.scalable_attention, )
291
1
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_download, hf_hub_url from PIL import Image from transformers import DetaConfig, DetaForObjectDetection, DetaImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() A_ : List[str] = logging.get_logger(__name__) def snake_case (UpperCAmelCase__ ) -> str: UpperCamelCase_: int = SwinConfig( embed_dim=1_9_2 , depths=(2, 2, 1_8, 2) , num_heads=(6, 1_2, 2_4, 4_8) , window_size=1_2 , out_features=['stage2', 'stage3', 'stage4'] , ) UpperCamelCase_: List[str] = DetaConfig( backbone_config=UpperCAmelCase__ , num_queries=9_0_0 , encoder_ffn_dim=2_0_4_8 , decoder_ffn_dim=2_0_4_8 , num_feature_levels=5 , assign_first_stage=UpperCAmelCase__ , with_box_refine=UpperCAmelCase__ , two_stage=UpperCAmelCase__ , ) # set labels UpperCamelCase_: List[Any] = 'huggingface/label-files' if "o365" in model_name: UpperCamelCase_: str = 3_6_6 UpperCamelCase_: int = 'object365-id2label.json' else: UpperCamelCase_: Optional[int] = 9_1 UpperCamelCase_: Optional[Any] = 'coco-detection-id2label.json' UpperCamelCase_: Dict = num_labels UpperCamelCase_: Optional[int] = json.load(open(cached_download(hf_hub_url(UpperCAmelCase__ , UpperCAmelCase__ , repo_type='dataset' ) ) , 'r' ) ) UpperCamelCase_: int = {int(UpperCAmelCase__ ): v for k, v in idalabel.items()} UpperCamelCase_: Optional[Any] = idalabel UpperCamelCase_: Optional[Any] = {v: k for k, v in idalabel.items()} return config def snake_case (UpperCAmelCase__ ) -> int: UpperCamelCase_: Dict = [] # stem # fmt: off rename_keys.append(('backbone.0.body.patch_embed.proj.weight', 'model.backbone.model.embeddings.patch_embeddings.projection.weight') ) rename_keys.append(('backbone.0.body.patch_embed.proj.bias', 'model.backbone.model.embeddings.patch_embeddings.projection.bias') ) rename_keys.append(('backbone.0.body.patch_embed.norm.weight', 'model.backbone.model.embeddings.norm.weight') ) rename_keys.append(('backbone.0.body.patch_embed.norm.bias', 'model.backbone.model.embeddings.norm.bias') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.norm1.weight''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.norm1.bias''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_bias_table''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_index''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.attn.proj.weight''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.attn.proj.bias''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.norm2.weight''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.norm2.bias''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.weight''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.bias''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.weight''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.weight''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.bias''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.bias''') ) if i < 3: rename_keys.append((F'''backbone.0.body.layers.{i}.downsample.reduction.weight''', F'''model.backbone.model.encoder.layers.{i}.downsample.reduction.weight''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.downsample.norm.weight''', F'''model.backbone.model.encoder.layers.{i}.downsample.norm.weight''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.downsample.norm.bias''', F'''model.backbone.model.encoder.layers.{i}.downsample.norm.bias''') ) rename_keys.append(('backbone.0.body.norm1.weight', 'model.backbone.model.hidden_states_norms.stage2.weight') ) rename_keys.append(('backbone.0.body.norm1.bias', 'model.backbone.model.hidden_states_norms.stage2.bias') ) rename_keys.append(('backbone.0.body.norm2.weight', 'model.backbone.model.hidden_states_norms.stage3.weight') ) rename_keys.append(('backbone.0.body.norm2.bias', 'model.backbone.model.hidden_states_norms.stage3.bias') ) rename_keys.append(('backbone.0.body.norm3.weight', 'model.backbone.model.hidden_states_norms.stage4.weight') ) rename_keys.append(('backbone.0.body.norm3.bias', 'model.backbone.model.hidden_states_norms.stage4.bias') ) # transformer encoder for i in range(config.encoder_layers ): rename_keys.append((F'''transformer.encoder.layers.{i}.self_attn.sampling_offsets.weight''', F'''model.encoder.layers.{i}.self_attn.sampling_offsets.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.self_attn.sampling_offsets.bias''', F'''model.encoder.layers.{i}.self_attn.sampling_offsets.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.self_attn.attention_weights.weight''', F'''model.encoder.layers.{i}.self_attn.attention_weights.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.self_attn.attention_weights.bias''', F'''model.encoder.layers.{i}.self_attn.attention_weights.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.self_attn.value_proj.weight''', F'''model.encoder.layers.{i}.self_attn.value_proj.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.self_attn.value_proj.bias''', F'''model.encoder.layers.{i}.self_attn.value_proj.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.self_attn.output_proj.weight''', F'''model.encoder.layers.{i}.self_attn.output_proj.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.self_attn.output_proj.bias''', F'''model.encoder.layers.{i}.self_attn.output_proj.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.norm1.weight''', F'''model.encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.norm1.bias''', F'''model.encoder.layers.{i}.self_attn_layer_norm.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.weight''', F'''model.encoder.layers.{i}.fc1.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.bias''', F'''model.encoder.layers.{i}.fc1.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.weight''', F'''model.encoder.layers.{i}.fc2.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.bias''', F'''model.encoder.layers.{i}.fc2.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.weight''', F'''model.encoder.layers.{i}.final_layer_norm.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.bias''', F'''model.encoder.layers.{i}.final_layer_norm.bias''') ) # transformer decoder for i in range(config.decoder_layers ): rename_keys.append((F'''transformer.decoder.layers.{i}.cross_attn.sampling_offsets.weight''', F'''model.decoder.layers.{i}.encoder_attn.sampling_offsets.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.cross_attn.sampling_offsets.bias''', F'''model.decoder.layers.{i}.encoder_attn.sampling_offsets.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.cross_attn.attention_weights.weight''', F'''model.decoder.layers.{i}.encoder_attn.attention_weights.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.cross_attn.attention_weights.bias''', F'''model.decoder.layers.{i}.encoder_attn.attention_weights.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.cross_attn.value_proj.weight''', F'''model.decoder.layers.{i}.encoder_attn.value_proj.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.cross_attn.value_proj.bias''', F'''model.decoder.layers.{i}.encoder_attn.value_proj.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.cross_attn.output_proj.weight''', F'''model.decoder.layers.{i}.encoder_attn.output_proj.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.cross_attn.output_proj.bias''', F'''model.decoder.layers.{i}.encoder_attn.output_proj.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm1.weight''', F'''model.decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm1.bias''', F'''model.decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', F'''model.decoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', F'''model.decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm2.weight''', F'''model.decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm2.bias''', F'''model.decoder.layers.{i}.self_attn_layer_norm.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.weight''', F'''model.decoder.layers.{i}.fc1.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.bias''', F'''model.decoder.layers.{i}.fc1.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.weight''', F'''model.decoder.layers.{i}.fc2.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.bias''', F'''model.decoder.layers.{i}.fc2.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.weight''', F'''model.decoder.layers.{i}.final_layer_norm.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.bias''', F'''model.decoder.layers.{i}.final_layer_norm.bias''') ) # fmt: on return rename_keys def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> List[Any]: UpperCamelCase_: str = dct.pop(UpperCAmelCase__ ) UpperCamelCase_: List[str] = val def snake_case (UpperCAmelCase__ , UpperCAmelCase__ ) -> List[str]: UpperCamelCase_: Tuple = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): UpperCamelCase_: int = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) UpperCamelCase_: str = state_dict.pop(F'''backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.weight''' ) UpperCamelCase_: Dict = state_dict.pop(F'''backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict UpperCamelCase_: Any = in_proj_weight[:dim, :] UpperCamelCase_: List[str] = in_proj_bias[: dim] UpperCamelCase_: Any = in_proj_weight[ dim : dim * 2, : ] UpperCamelCase_: List[str] = in_proj_bias[ dim : dim * 2 ] UpperCamelCase_: Tuple = in_proj_weight[ -dim :, : ] UpperCamelCase_: str = in_proj_bias[-dim :] # fmt: on def snake_case (UpperCAmelCase__ , UpperCAmelCase__ ) -> str: # transformer decoder self-attention layers UpperCamelCase_: Optional[int] = config.d_model for i in range(config.decoder_layers ): # read in weights + bias of input projection layer of self-attention UpperCamelCase_: Union[str, Any] = state_dict.pop(F'''transformer.decoder.layers.{i}.self_attn.in_proj_weight''' ) UpperCamelCase_: Dict = state_dict.pop(F'''transformer.decoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict UpperCamelCase_: Tuple = in_proj_weight[:hidden_size, :] UpperCamelCase_: Dict = in_proj_bias[:hidden_size] UpperCamelCase_: List[str] = in_proj_weight[ hidden_size : hidden_size * 2, : ] UpperCamelCase_: Union[str, Any] = in_proj_bias[hidden_size : hidden_size * 2] UpperCamelCase_: Optional[int] = in_proj_weight[-hidden_size:, :] UpperCamelCase_: Tuple = in_proj_bias[-hidden_size:] def snake_case () -> Tuple: UpperCamelCase_: int = 'http://images.cocodataset.org/val2017/000000039769.jpg' UpperCamelCase_: Tuple = Image.open(requests.get(UpperCAmelCase__ , stream=UpperCAmelCase__ ).raw ) return im @torch.no_grad() def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> Optional[int]: UpperCamelCase_: List[str] = get_deta_config(UpperCAmelCase__ ) # load original state dict if model_name == "deta-swin-large": UpperCamelCase_: List[Any] = hf_hub_download(repo_id='nielsr/deta-checkpoints' , filename='adet_swin_ft.pth' ) elif model_name == "deta-swin-large-o365": UpperCamelCase_: str = hf_hub_download(repo_id='jozhang97/deta-swin-l-o365' , filename='deta_swin_pt_o365.pth' ) else: raise ValueError(F'''Model name {model_name} not supported''' ) UpperCamelCase_: Any = torch.load(UpperCAmelCase__ , map_location='cpu' )['model'] # original state dict for name, param in state_dict.items(): print(UpperCAmelCase__ , param.shape ) # rename keys UpperCamelCase_: Any = create_rename_keys(UpperCAmelCase__ ) for src, dest in rename_keys: rename_key(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) read_in_swin_q_k_v(UpperCAmelCase__ , config.backbone_config ) read_in_decoder_q_k_v(UpperCAmelCase__ , UpperCAmelCase__ ) # fix some prefixes for key in state_dict.copy().keys(): if "transformer.decoder.class_embed" in key or "transformer.decoder.bbox_embed" in key: UpperCamelCase_: Dict = state_dict.pop(UpperCAmelCase__ ) UpperCamelCase_: Any = val if "input_proj" in key: UpperCamelCase_: Optional[int] = state_dict.pop(UpperCAmelCase__ ) UpperCamelCase_: Tuple = val if "level_embed" in key or "pos_trans" in key or "pix_trans" in key or "enc_output" in key: UpperCamelCase_: str = state_dict.pop(UpperCAmelCase__ ) UpperCamelCase_: Tuple = val # finally, create HuggingFace model and load state dict UpperCamelCase_: Any = DetaForObjectDetection(UpperCAmelCase__ ) model.load_state_dict(UpperCAmelCase__ ) model.eval() UpperCamelCase_: int = 'cuda' if torch.cuda.is_available() else 'cpu' model.to(UpperCAmelCase__ ) # load image processor UpperCamelCase_: Optional[Any] = DetaImageProcessor(format='coco_detection' ) # verify our conversion on image UpperCamelCase_: Optional[int] = prepare_img() UpperCamelCase_: List[Any] = processor(images=UpperCAmelCase__ , return_tensors='pt' ) UpperCamelCase_: str = encoding['pixel_values'] UpperCamelCase_: Any = model(pixel_values.to(UpperCAmelCase__ ) ) # verify logits print('Logits:' , outputs.logits[0, :3, :3] ) print('Boxes:' , outputs.pred_boxes[0, :3, :3] ) if model_name == "deta-swin-large": UpperCamelCase_: int = torch.tensor( [[-7.6308, -2.8485, -5.3737], [-7.2037, -4.5505, -4.8027], [-7.2943, -4.2611, -4.6617]] ) UpperCamelCase_: Any = torch.tensor([[0.4987, 0.4969, 0.9999], [0.2549, 0.5498, 0.4805], [0.5498, 0.2757, 0.0569]] ) elif model_name == "deta-swin-large-o365": UpperCamelCase_: Dict = torch.tensor( [[-8.0122, -3.5720, -4.9717], [-8.1547, -3.6886, -4.6389], [-7.6610, -3.6194, -5.0134]] ) UpperCamelCase_: int = torch.tensor([[0.2523, 0.5549, 0.4881], [0.7715, 0.4149, 0.4601], [0.5503, 0.2753, 0.0575]] ) assert torch.allclose(outputs.logits[0, :3, :3] , expected_logits.to(UpperCAmelCase__ ) , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , expected_boxes.to(UpperCAmelCase__ ) , atol=1E-4 ) print('Everything ok!' ) if pytorch_dump_folder_path: # Save model and processor logger.info(F'''Saving PyTorch model and processor to {pytorch_dump_folder_path}...''' ) Path(UpperCAmelCase__ ).mkdir(exist_ok=UpperCAmelCase__ ) model.save_pretrained(UpperCAmelCase__ ) processor.save_pretrained(UpperCAmelCase__ ) # Push to hub if push_to_hub: print('Pushing model and processor to hub...' ) model.push_to_hub(F'''jozhang97/{model_name}''' ) processor.push_to_hub(F'''jozhang97/{model_name}''' ) if __name__ == "__main__": A_ : Optional[Any] = argparse.ArgumentParser() parser.add_argument( '--model_name', type=str, default='deta-swin-large', choices=['deta-swin-large', 'deta-swin-large-o365'], help='Name of the model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.', ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) A_ : Optional[int] = parser.parse_args() convert_deta_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
292
import os import sys import tempfile import torch from .state import AcceleratorState from .utils import PrecisionType, PrepareForLaunch, is_mps_available, patch_environment def snake_case (UpperCAmelCase__ , UpperCAmelCase__=() , UpperCAmelCase__=None , UpperCAmelCase__="no" , UpperCAmelCase__="29500" ) -> List[Any]: UpperCamelCase_: Any = False UpperCamelCase_: List[str] = False if any(key.startswith('KAGGLE' ) for key in os.environ.keys() ): UpperCamelCase_: List[Any] = True elif "IPython" in sys.modules: UpperCamelCase_: List[Any] = 'google.colab' in str(sys.modules['IPython'].get_ipython() ) try: UpperCamelCase_: Optional[int] = PrecisionType(mixed_precision.lower() ) except ValueError: raise ValueError( F'''Unknown mixed_precision mode: {args.mixed_precision.lower()}. Choose between {PrecisionType.list()}.''' ) if (in_colab or in_kaggle) and (os.environ.get('TPU_NAME' , UpperCAmelCase__ ) is not None): # TPU launch import torch_xla.distributed.xla_multiprocessing as xmp if len(AcceleratorState._shared_state ) > 0: raise ValueError( 'To train on TPU in Colab or Kaggle Kernel, the `Accelerator` should only be initialized inside ' 'your training function. Restart your notebook and make sure no cells initializes an ' '`Accelerator`.' ) if num_processes is None: UpperCamelCase_: List[str] = 8 UpperCamelCase_: str = PrepareForLaunch(UpperCAmelCase__ , distributed_type='TPU' ) print(F'''Launching a training on {num_processes} TPU cores.''' ) xmp.spawn(UpperCAmelCase__ , args=UpperCAmelCase__ , nprocs=UpperCAmelCase__ , start_method='fork' ) elif in_colab: # No need for a distributed launch otherwise as it's either CPU or one GPU. if torch.cuda.is_available(): print('Launching training on one GPU.' ) else: print('Launching training on one CPU.' ) function(*UpperCAmelCase__ ) else: if num_processes is None: raise ValueError( 'You have to specify the number of GPUs you would like to use, add `num_processes=...` to your call.' ) if num_processes > 1: # Multi-GPU launch from torch.multiprocessing import start_processes from torch.multiprocessing.spawn import ProcessRaisedException if len(AcceleratorState._shared_state ) > 0: raise ValueError( 'To launch a multi-GPU training from your notebook, the `Accelerator` should only be initialized ' 'inside your training function. Restart your notebook and make sure no cells initializes an ' '`Accelerator`.' ) if torch.cuda.is_initialized(): raise ValueError( 'To launch a multi-GPU training from your notebook, you need to avoid running any instruction ' 'using `torch.cuda` in any cell. Restart your notebook and make sure no cells use any CUDA ' 'function.' ) # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=UpperCAmelCase__ , master_addr='127.0.01' , master_port=UpperCAmelCase__ , mixed_precision=UpperCAmelCase__ ): UpperCamelCase_: str = PrepareForLaunch(UpperCAmelCase__ , distributed_type='MULTI_GPU' ) print(F'''Launching training on {num_processes} GPUs.''' ) try: start_processes(UpperCAmelCase__ , args=UpperCAmelCase__ , nprocs=UpperCAmelCase__ , start_method='fork' ) except ProcessRaisedException as e: if "Cannot re-initialize CUDA in forked subprocess" in e.args[0]: raise RuntimeError( 'CUDA has been initialized before the `notebook_launcher` could create a forked subprocess. ' 'This likely stems from an outside import causing issues once the `notebook_launcher()` is called. ' 'Please review your imports and test them when running the `notebook_launcher()` to identify ' 'which one is problematic.' ) from e else: # No need for a distributed launch otherwise as it's either CPU, GPU or MPS. if is_mps_available(): UpperCamelCase_: Tuple = '1' print('Launching training on MPS.' ) elif torch.cuda.is_available(): print('Launching training on one GPU.' ) else: print('Launching training on CPU.' ) function(*UpperCAmelCase__ ) def snake_case (UpperCAmelCase__ , UpperCAmelCase__=() , UpperCAmelCase__=2 ) -> Optional[int]: from torch.multiprocessing import start_processes with tempfile.NamedTemporaryFile() as tmp_file: # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=UpperCAmelCase__ , master_addr='127.0.01' , master_port='29500' , accelerate_mixed_precision='no' , accelerate_debug_rdv_file=tmp_file.name , accelerate_use_cpu='yes' , ): UpperCamelCase_: str = PrepareForLaunch(UpperCAmelCase__ , debug=UpperCAmelCase__ ) start_processes(UpperCAmelCase__ , args=UpperCAmelCase__ , nprocs=UpperCAmelCase__ , start_method='fork' )
292
1
'''simple docstring''' import unittest import numpy as np from transformers import RoFormerConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roformer.modeling_flax_roformer import ( FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, ) class a__ ( unittest.TestCase ): def __init__( self , _UpperCamelCase , _UpperCamelCase=13 , _UpperCamelCase=7 , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=99 , _UpperCamelCase=32 , _UpperCamelCase=5 , _UpperCamelCase=4 , _UpperCamelCase=37 , _UpperCamelCase="gelu" , _UpperCamelCase=0.1 , _UpperCamelCase=0.1 , _UpperCamelCase=512 , _UpperCamelCase=16 , _UpperCamelCase=2 , _UpperCamelCase=0.0_2 , _UpperCamelCase=4 , ): """simple docstring""" _lowercase : Dict = parent _lowercase : List[str] = batch_size _lowercase : Optional[Any] = seq_length _lowercase : List[Any] = is_training _lowercase : int = use_attention_mask _lowercase : Tuple = use_token_type_ids _lowercase : Union[str, Any] = use_labels _lowercase : str = vocab_size _lowercase : str = hidden_size _lowercase : str = num_hidden_layers _lowercase : Optional[int] = num_attention_heads _lowercase : List[str] = intermediate_size _lowercase : List[str] = hidden_act _lowercase : Tuple = hidden_dropout_prob _lowercase : int = attention_probs_dropout_prob _lowercase : int = max_position_embeddings _lowercase : Union[str, Any] = type_vocab_size _lowercase : List[Any] = type_sequence_label_size _lowercase : Any = initializer_range _lowercase : str = num_choices def _lowerCamelCase ( self ): """simple docstring""" _lowercase : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowercase : List[Any] = None if self.use_attention_mask: _lowercase : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) _lowercase : List[Any] = None if self.use_token_type_ids: _lowercase : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _lowercase : Optional[int] = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def _lowerCamelCase ( self ): """simple docstring""" _lowercase : str = self.prepare_config_and_inputs() _lowercase : Optional[Any] = config_and_inputs _lowercase : Dict = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask} return config, inputs_dict @require_flax class a__ ( _UpperCAmelCase , unittest.TestCase ): _SCREAMING_SNAKE_CASE : List[str] = True _SCREAMING_SNAKE_CASE : Union[str, Any] = ( ( FlaxRoFormerModel, FlaxRoFormerForMaskedLM, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, ) if is_flax_available() else () ) def _lowerCamelCase ( self ): """simple docstring""" _lowercase : str = FlaxRoFormerModelTester(self ) @slow def _lowerCamelCase ( self ): """simple docstring""" for model_class_name in self.all_model_classes: _lowercase : Dict = model_class_name.from_pretrained("junnyu/roformer_chinese_small" , from_pt=_UpperCAmelCase ) _lowercase : int = model(np.ones((1, 1) ) ) self.assertIsNotNone(_UpperCAmelCase ) @require_flax class a__ ( unittest.TestCase ): @slow def _lowerCamelCase ( self ): """simple docstring""" _lowercase : Any = FlaxRoFormerForMaskedLM.from_pretrained("junnyu/roformer_chinese_base" ) _lowercase : Optional[int] = jnp.array([[0, 1, 2, 3, 4, 5]] ) _lowercase : List[Any] = model(_UpperCAmelCase )[0] _lowercase : str = 50000 _lowercase : Tuple = (1, 6, vocab_size) self.assertEqual(output.shape , _UpperCAmelCase ) _lowercase : List[Any] = jnp.array( [[[-0.1_2_0_5, -1.0_2_6_5, 0.2_9_2_2], [-1.5_1_3_4, 0.1_9_7_4, 0.1_5_1_9], [-5.0_1_3_5, -3.9_0_0_3, -0.8_4_0_4]]] ) self.assertTrue(jnp.allclose(output[:, :3, :3] , _UpperCAmelCase , atol=1E-4 ) )
250
"""simple docstring""" from __future__ import annotations from fractions import Fraction def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase ) -> bool: return ( num != den and num % 1_0 == den // 1_0 and (num // 1_0) / (den % 1_0) == num / den ) def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> list[str]: lowercase__: str = [] lowercase__: str = 1_1 lowercase__: str = int('''1''' + '''0''' * digit_len ) for num in range(__UpperCAmelCase , __UpperCAmelCase ): while den <= 9_9: if (num != den) and (num % 1_0 == den // 1_0) and (den % 1_0 != 0): if is_digit_cancelling(__UpperCAmelCase , __UpperCAmelCase ): solutions.append(F"""{num}/{den}""" ) den += 1 num += 1 lowercase__: Dict = 1_0 return solutions def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase = 2 ) -> int: lowercase__: List[str] = 1.0 for fraction in fraction_list(__UpperCAmelCase ): lowercase__: List[str] = Fraction(__UpperCAmelCase ) result *= frac.denominator / frac.numerator return int(__UpperCAmelCase ) if __name__ == "__main__": print(solution())
177
0
'''simple docstring''' import cva import numpy as np class _UpperCAmelCase : def __init__( self : int , __UpperCAmelCase : float , __UpperCAmelCase : int ): '''simple docstring''' if k in (0.04, 0.06): _A = k _A = window_size else: raise ValueError("invalid k value" ) def __str__( self : List[Any] ): '''simple docstring''' return str(self.k ) def lowerCAmelCase ( self : Tuple , __UpperCAmelCase : str ): '''simple docstring''' _A = cva.imread(__UpperCAmelCase , 0 ) _A , _A = img.shape _A = [] _A = img.copy() _A = cva.cvtColor(__UpperCAmelCase , cva.COLOR_GRAY2RGB ) _A , _A = np.gradient(__UpperCAmelCase ) _A = dx**2 _A = dy**2 _A = dx * dy _A = 0.04 _A = self.window_size // 2 for y in range(__UpperCAmelCase , h - offset ): for x in range(__UpperCAmelCase , w - offset ): _A = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() _A = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() _A = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() _A = (wxx * wyy) - (wxy**2) _A = wxx + wyy _A = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) , 0 ) color_img.itemset((y, x, 1) , 0 ) color_img.itemset((y, x, 2) , 255 ) return color_img, corner_list if __name__ == "__main__": lowerCamelCase_ = HarrisCorner(0.04, 3) lowerCamelCase_ , lowerCamelCase_ = edge_detect.detect('''path_to_image''') cva.imwrite('''detect.png''', color_img)
356
'''simple docstring''' import os from collections import deque import torch from torch.utils.data import Dataset class _UpperCAmelCase ( snake_case_ ): """simple docstring""" def __init__( self : Dict , __UpperCAmelCase : Union[str, Any]="" , __UpperCAmelCase : List[str]="train" ): '''simple docstring''' assert os.path.isdir(__UpperCAmelCase ) _A = [] _A = os.listdir(__UpperCAmelCase ) for story_filename in story_filenames_list: if "summary" in story_filename: continue _A = os.path.join(__UpperCAmelCase , __UpperCAmelCase ) if not os.path.isfile(__UpperCAmelCase ): continue self.documents.append(__UpperCAmelCase ) def __len__( self : str ): '''simple docstring''' return len(self.documents ) def __getitem__( self : Union[str, Any] , __UpperCAmelCase : str ): '''simple docstring''' _A = self.documents[idx] _A = document_path.split("/" )[-1] with open(__UpperCAmelCase , encoding="utf-8" ) as source: _A = source.read() _A , _A = process_story(__UpperCAmelCase ) return document_name, story_lines, summary_lines def __lowercase ( __lowercase ) -> Optional[Any]: '''simple docstring''' _A = list(filter(lambda __lowercase : len(__lowercase ) != 0 , [line.strip() for line in raw_story.split("\n" )] ) ) # for some unknown reason some lines miss a period, add it _A = [_add_missing_period(__lowercase ) for line in nonempty_lines] # gather article lines _A = [] _A = deque(__lowercase ) while True: try: _A = lines.popleft() if element.startswith("@highlight" ): break story_lines.append(__lowercase ) except IndexError: # if "@highlight" is absent from the file we pop # all elements until there is None, raising an exception. return story_lines, [] # gather summary lines _A = list(filter(lambda __lowercase : not t.startswith("@highlight" ) , __lowercase ) ) return story_lines, summary_lines def __lowercase ( __lowercase ) -> Optional[int]: '''simple docstring''' _A = [".", "!", "?", "...", "'", "`", "\"", "\u2019", "\u2019", ")"] if line.startswith("@highlight" ): return line if line[-1] in END_TOKENS: return line return line + "." def __lowercase ( __lowercase , __lowercase , __lowercase ) -> str: '''simple docstring''' if len(__lowercase ) > block_size: return sequence[:block_size] else: sequence.extend([pad_token_id] * (block_size - len(__lowercase )) ) return sequence def __lowercase ( __lowercase , __lowercase ) -> Optional[int]: '''simple docstring''' _A = torch.ones_like(__lowercase ) _A = sequence == pad_token_id _A = 0 return mask def __lowercase ( __lowercase , __lowercase , __lowercase ) -> str: '''simple docstring''' _A = [tokenizer.encode(__lowercase ) for line in story_lines] _A = [token for sentence in story_lines_token_ids for token in sentence] _A = [tokenizer.encode(__lowercase ) for line in summary_lines] _A = [token for sentence in summary_lines_token_ids for token in sentence] return story_token_ids, summary_token_ids def __lowercase ( __lowercase , __lowercase ) -> List[str]: '''simple docstring''' _A = [] for sequence in batch: _A = -1 _A = [] for s in sequence: if s == separator_token_id: sentence_num += 1 embeddings.append(sentence_num % 2 ) batch_embeddings.append(__lowercase ) return torch.tensor(__lowercase )
174
0
"""simple docstring""" from math import sqrt def lowerCamelCase_ (UpperCamelCase__ : int ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(sqrt(UpperCamelCase__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def lowerCamelCase_ (UpperCamelCase__ : int = 1_0001 ): _UpperCAmelCase : Any = 0 _UpperCAmelCase : Tuple = 1 while count != nth and number < 3: number += 1 if is_prime(UpperCamelCase__ ): count += 1 while count != nth: number += 2 if is_prime(UpperCamelCase__ ): count += 1 return number if __name__ == "__main__": print(f"{solution() = }")
263
"""simple docstring""" import math from numpy import inf from scipy.integrate import quad def lowerCamelCase_ (UpperCamelCase__ : float ): if num <= 0: raise ValueError('''math domain error''' ) return quad(UpperCamelCase__ , 0 , UpperCamelCase__ , args=(UpperCamelCase__) )[0] def lowerCamelCase_ (UpperCamelCase__ : float , UpperCamelCase__ : float ): return math.pow(UpperCamelCase__ , z - 1 ) * math.exp(-x ) if __name__ == "__main__": from doctest import testmod testmod()
263
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a__: int = { 'configuration_clipseg': [ 'CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP', 'CLIPSegConfig', 'CLIPSegTextConfig', 'CLIPSegVisionConfig', ], 'processing_clipseg': ['CLIPSegProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__: Optional[int] = [ 'CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST', 'CLIPSegModel', 'CLIPSegPreTrainedModel', 'CLIPSegTextModel', 'CLIPSegVisionModel', 'CLIPSegForImageSegmentation', ] if TYPE_CHECKING: from .configuration_clipseg import ( CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPSegConfig, CLIPSegTextConfig, CLIPSegVisionConfig, ) from .processing_clipseg import CLIPSegProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clipseg import ( CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPSegForImageSegmentation, CLIPSegModel, CLIPSegPreTrainedModel, CLIPSegTextModel, CLIPSegVisionModel, ) else: import sys a__: Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
39
import re from typing import Callable, List, Optional, Union import tensorflow as tf try: from tensorflow.keras.optimizers.legacy import Adam except ImportError: from tensorflow.keras.optimizers import Adam class SCREAMING_SNAKE_CASE__ ( tf.keras.optimizers.schedules.LearningRateSchedule ): def __init__( self,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase = 1.0,__lowerCamelCase = None,): super().__init__() A__ = initial_learning_rate A__ = warmup_steps A__ = power A__ = decay_schedule_fn A__ = name def __call__( self,__lowerCamelCase ): with tf.name_scope(self.name or '''WarmUp''' ) as name: # Implements polynomial warmup. i.e., if global_step < warmup_steps, the # learning rate will be `global_step/num_warmup_steps * init_lr`. A__ = tf.cast(__lowerCamelCase,tf.floataa ) A__ = tf.cast(self.warmup_steps,tf.floataa ) A__ = global_step_float / warmup_steps_float A__ = self.initial_learning_rate * tf.math.pow(__lowerCamelCase,self.power ) return tf.cond( global_step_float < warmup_steps_float,lambda: warmup_learning_rate,lambda: self.decay_schedule_fn(step - self.warmup_steps ),name=__lowerCamelCase,) def UpperCamelCase ( self ): return { "initial_learning_rate": self.initial_learning_rate, "decay_schedule_fn": self.decay_schedule_fn, "warmup_steps": self.warmup_steps, "power": self.power, "name": self.name, } def UpperCamelCase__( UpperCamelCase__ : float , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : float = 0.0 , UpperCamelCase__ : float = 0.9 , UpperCamelCase__ : float = 0.999 , UpperCamelCase__ : float = 1e-8 , UpperCamelCase__ : Optional[float] = None , UpperCamelCase__ : Optional[float] = None , UpperCamelCase__ : float = 0.0 , UpperCamelCase__ : float = 1.0 , UpperCamelCase__ : Optional[List[str]] = None , )->int: A__ = tf.keras.optimizers.schedules.PolynomialDecay( initial_learning_rate=UpperCamelCase__ , decay_steps=num_train_steps - num_warmup_steps , end_learning_rate=init_lr * min_lr_ratio , power=UpperCamelCase__ , ) if num_warmup_steps: A__ = WarmUp( initial_learning_rate=UpperCamelCase__ , decay_schedule_fn=UpperCamelCase__ , warmup_steps=UpperCamelCase__ , ) if weight_decay_rate > 0.0: A__ = AdamWeightDecay( learning_rate=UpperCamelCase__ , weight_decay_rate=UpperCamelCase__ , beta_a=UpperCamelCase__ , beta_a=UpperCamelCase__ , epsilon=UpperCamelCase__ , clipnorm=UpperCamelCase__ , global_clipnorm=UpperCamelCase__ , exclude_from_weight_decay=['''LayerNorm''', '''layer_norm''', '''bias'''] , include_in_weight_decay=UpperCamelCase__ , ) else: A__ = tf.keras.optimizers.Adam( learning_rate=UpperCamelCase__ , beta_a=UpperCamelCase__ , beta_a=UpperCamelCase__ , epsilon=UpperCamelCase__ , clipnorm=UpperCamelCase__ , global_clipnorm=UpperCamelCase__ , ) # We return the optimizer and the LR scheduler in order to better track the # evolution of the LR independently of the optimizer. return optimizer, lr_schedule class SCREAMING_SNAKE_CASE__ ( UpperCamelCase__ ): def __init__( self,__lowerCamelCase = 0.001,__lowerCamelCase = 0.9,__lowerCamelCase = 0.999,__lowerCamelCase = 1E-7,__lowerCamelCase = False,__lowerCamelCase = 0.0,__lowerCamelCase = None,__lowerCamelCase = None,__lowerCamelCase = "AdamWeightDecay",**__lowerCamelCase,): super().__init__(__lowerCamelCase,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase,**__lowerCamelCase ) A__ = weight_decay_rate A__ = include_in_weight_decay A__ = exclude_from_weight_decay @classmethod def UpperCamelCase ( cls,__lowerCamelCase ): A__ = {'''WarmUp''': WarmUp} return super(__lowerCamelCase,cls ).from_config(__lowerCamelCase,custom_objects=__lowerCamelCase ) def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase ): super(__lowerCamelCase,self )._prepare_local(__lowerCamelCase,__lowerCamelCase,__lowerCamelCase ) A__ = tf.constant( self.weight_decay_rate,name='''adam_weight_decay_rate''' ) def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase ): A__ = self._do_use_weight_decay(var.name ) if do_decay: return var.assign_sub( learning_rate * var * apply_state[(var.device, var.dtype.base_dtype)]['''weight_decay_rate'''],use_locking=self._use_locking,) return tf.no_op() def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase=None,**__lowerCamelCase ): A__ , A__ = list(zip(*__lowerCamelCase ) ) return super(__lowerCamelCase,self ).apply_gradients(zip(__lowerCamelCase,__lowerCamelCase ),name=__lowerCamelCase,**__lowerCamelCase ) def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase ): if apply_state is None: return self._decayed_lr_t[var_dtype], {} A__ = apply_state or {} A__ = apply_state.get((var_device, var_dtype) ) if coefficients is None: A__ = self._fallback_apply_state(__lowerCamelCase,__lowerCamelCase ) A__ = coefficients return coefficients["lr_t"], {"apply_state": apply_state} def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase=None ): A__ , A__ = self._get_lr(var.device,var.dtype.base_dtype,__lowerCamelCase ) A__ = self._decay_weights_op(__lowerCamelCase,__lowerCamelCase,__lowerCamelCase ) with tf.control_dependencies([decay] ): return super(__lowerCamelCase,self )._resource_apply_dense(__lowerCamelCase,__lowerCamelCase,**__lowerCamelCase ) def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase=None ): A__ , A__ = self._get_lr(var.device,var.dtype.base_dtype,__lowerCamelCase ) A__ = self._decay_weights_op(__lowerCamelCase,__lowerCamelCase,__lowerCamelCase ) with tf.control_dependencies([decay] ): return super(__lowerCamelCase,self )._resource_apply_sparse(__lowerCamelCase,__lowerCamelCase,__lowerCamelCase,**__lowerCamelCase ) def UpperCamelCase ( self ): A__ = super().get_config() config.update({'''weight_decay_rate''': self.weight_decay_rate} ) return config def UpperCamelCase ( self,__lowerCamelCase ): if self.weight_decay_rate == 0: return False if self._include_in_weight_decay: for r in self._include_in_weight_decay: if re.search(__lowerCamelCase,__lowerCamelCase ) is not None: return True if self._exclude_from_weight_decay: for r in self._exclude_from_weight_decay: if re.search(__lowerCamelCase,__lowerCamelCase ) is not None: return False return True class SCREAMING_SNAKE_CASE__ ( UpperCamelCase__ ): def __init__( self ): A__ = [] A__ = None @property def UpperCamelCase ( self ): if self._accum_steps is None: A__ = tf.Variable( tf.constant(0,dtype=tf.intaa ),trainable=__lowerCamelCase,synchronization=tf.VariableSynchronization.ON_READ,aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA,) return self._accum_steps.value() @property def UpperCamelCase ( self ): if not self._gradients: raise ValueError('''The accumulator should be called first to initialize the gradients''' ) return [gradient.value() if gradient is not None else gradient for gradient in self._gradients] def __call__( self,__lowerCamelCase ): if not self._gradients: A__ = self.step # Create the step variable. self._gradients.extend( [ tf.Variable( tf.zeros_like(__lowerCamelCase ),trainable=__lowerCamelCase,synchronization=tf.VariableSynchronization.ON_READ,aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA,) if gradient is not None else gradient for gradient in gradients ] ) if len(__lowerCamelCase ) != len(self._gradients ): raise ValueError(f"Expected {len(self._gradients )} gradients, but got {len(__lowerCamelCase )}" ) for accum_gradient, gradient in zip(self._gradients,__lowerCamelCase ): if accum_gradient is not None and gradient is not None: accum_gradient.assign_add(__lowerCamelCase ) self._accum_steps.assign_add(1 ) def UpperCamelCase ( self ): if not self._gradients: return self._accum_steps.assign(0 ) for gradient in self._gradients: if gradient is not None: gradient.assign(tf.zeros_like(__lowerCamelCase ) )
39
1
from itertools import product from cva import COLOR_BGR2GRAY, cvtColor, imread, imshow, waitKey from numpy import dot, exp, mgrid, pi, ravel, square, uinta, zeros def A_ ( A__ , A__ ) -> Any: a__ : Any = k_size // 2 a__ , a__ : Optional[int] = mgrid[0 - center : k_size - center, 0 - center : k_size - center] a__ : List[Any] = 1 / (2 * pi * sigma) * exp(-(square(A__ ) + square(A__ )) / (2 * square(A__ )) ) return g def A_ ( A__ , A__ , A__ ) -> List[Any]: a__ , a__ : Optional[int] = image.shape[0], image.shape[1] # dst image height and width a__ : List[str] = height - k_size + 1 a__ : List[Any] = width - k_size + 1 # im2col, turn the k_size*k_size pixels into a row and np.vstack all rows a__ : Optional[int] = zeros((dst_height * dst_width, k_size * k_size) ) a__ : int = 0 for i, j in product(range(A__ ) , range(A__ ) ): a__ : str = ravel(image[i : i + k_size, j : j + k_size] ) a__ : List[str] = window row += 1 # turn the kernel into shape(k*k, 1) a__ : Union[str, Any] = gen_gaussian_kernel(A__ , A__ ) a__ : Any = ravel(A__ ) # reshape and get the dst image a__ : Optional[Any] = dot(A__ , A__ ).reshape(A__ , A__ ).astype(A__ ) return dst if __name__ == "__main__": # read original image lowercase : Optional[int] = imread(r"""../image_data/lena.jpg""") # turn image in gray scale value lowercase : List[Any] = cvtColor(img, COLOR_BGR2GRAY) # get values with two different mask size lowercase : Dict = gaussian_filter(gray, 3, sigma=1) lowercase : Optional[int] = gaussian_filter(gray, 5, sigma=0.8) # show result images imshow("""gaussian filter with 3x3 mask""", gaussianaxa) imshow("""gaussian filter with 5x5 mask""", gaussianaxa) waitKey()
99
import inspect import unittest from transformers import ViTMSNConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMSNForImageClassification, ViTMSNModel from transformers.models.vit_msn.modeling_vit_msn import VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class A__ : """simple docstring""" def __init__( self , lowercase , lowercase=13 , lowercase=30 , lowercase=2 , lowercase=3 , lowercase=True , lowercase=True , lowercase=32 , lowercase=5 , lowercase=4 , lowercase=37 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=10 , lowercase=0.02 , lowercase=None , ) -> Union[str, Any]: '''simple docstring''' a__ : Optional[int] = parent a__ : List[str] = batch_size a__ : List[str] = image_size a__ : Dict = patch_size a__ : Optional[Any] = num_channels a__ : List[Any] = is_training a__ : str = use_labels a__ : Dict = hidden_size a__ : Tuple = num_hidden_layers a__ : Tuple = num_attention_heads a__ : Union[str, Any] = intermediate_size a__ : List[str] = hidden_act a__ : List[str] = hidden_dropout_prob a__ : Any = attention_probs_dropout_prob a__ : Dict = type_sequence_label_size a__ : Tuple = initializer_range a__ : Optional[int] = scope # in ViT MSN, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) a__ : List[str] = (image_size // patch_size) ** 2 a__ : Any = num_patches + 1 def __lowercase ( self) -> int: '''simple docstring''' a__ : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) a__ : Tuple = None if self.use_labels: a__ : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size) a__ : List[str] = self.get_config() return config, pixel_values, labels def __lowercase ( self) -> Optional[int]: '''simple docstring''' return ViTMSNConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , ) def __lowercase ( self , lowercase , lowercase , lowercase) -> List[str]: '''simple docstring''' a__ : int = ViTMSNModel(config=lowercase) model.to(lowercase) model.eval() a__ : int = model(lowercase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def __lowercase ( self , lowercase , lowercase , lowercase) -> Tuple: '''simple docstring''' a__ : Optional[Any] = self.type_sequence_label_size a__ : List[str] = ViTMSNForImageClassification(lowercase) model.to(lowercase) model.eval() a__ : int = model(lowercase , labels=lowercase) print('Pixel and labels shape: {pixel_values.shape}, {labels.shape}') print('Labels: {labels}') self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) # test greyscale images a__ : List[str] = 1 a__ : Optional[int] = ViTMSNForImageClassification(lowercase) model.to(lowercase) model.eval() a__ : Dict = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) a__ : Dict = model(lowercase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) def __lowercase ( self) -> Tuple: '''simple docstring''' a__ : List[Any] = self.prepare_config_and_inputs() a__ , a__ , a__ : Optional[Any] = config_and_inputs a__ : Dict = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class A__ ( __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ): """simple docstring""" __A : Any = (ViTMSNModel, ViTMSNForImageClassification) if is_torch_available() else () __A : Tuple = ( {'''feature-extraction''': ViTMSNModel, '''image-classification''': ViTMSNForImageClassification} if is_torch_available() else {} ) __A : List[str] = False __A : Optional[Any] = False __A : Union[str, Any] = False __A : Any = False def __lowercase ( self) -> List[str]: '''simple docstring''' a__ : Optional[int] = ViTMSNModelTester(self) a__ : Union[str, Any] = ConfigTester(self , config_class=lowercase , has_text_modality=lowercase , hidden_size=37) def __lowercase ( self) -> List[Any]: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='ViTMSN does not use inputs_embeds') def __lowercase ( self) -> Any: '''simple docstring''' pass def __lowercase ( self) -> Tuple: '''simple docstring''' a__ , a__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ : Union[str, Any] = model_class(lowercase) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) a__ : str = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowercase , nn.Linear)) def __lowercase ( self) -> Tuple: '''simple docstring''' a__ , a__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ : Dict = model_class(lowercase) a__ : List[Any] = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic a__ : str = [*signature.parameters.keys()] a__ : Optional[Any] = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowercase) def __lowercase ( self) -> str: '''simple docstring''' a__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase) def __lowercase ( self) -> str: '''simple docstring''' a__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowercase) @slow def __lowercase ( self) -> Union[str, Any]: '''simple docstring''' for model_name in VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a__ : Tuple = ViTMSNModel.from_pretrained(lowercase) self.assertIsNotNone(lowercase) def A_ ( ) -> Dict: a__ : List[str] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class A__ ( unittest.TestCase ): """simple docstring""" @cached_property def __lowercase ( self) -> List[Any]: '''simple docstring''' return ViTImageProcessor.from_pretrained('facebook/vit-msn-small') if is_vision_available() else None @slow def __lowercase ( self) -> List[Any]: '''simple docstring''' torch.manual_seed(2) a__ : List[str] = ViTMSNForImageClassification.from_pretrained('facebook/vit-msn-small').to(lowercase) a__ : Any = self.default_image_processor a__ : List[Any] = prepare_img() a__ : Optional[Any] = image_processor(images=lowercase , return_tensors='pt').to(lowercase) # forward pass with torch.no_grad(): a__ : Tuple = model(**lowercase) # verify the logits a__ : Union[str, Any] = torch.Size((1, 1000)) self.assertEqual(outputs.logits.shape , lowercase) a__ : Any = torch.tensor([-0.08_03, -0.44_54, -0.23_75]).to(lowercase) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowercase , atol=1e-4))
99
1
'''simple docstring''' import warnings from functools import wraps from typing import Callable def _A (lowerCAmelCase__ :Callable ) -> Callable: '''simple docstring''' @wraps(lowerCAmelCase__ ) def _inner_fn(*lowerCAmelCase__ :str , **lowerCAmelCase__ :Optional[int] ): warnings.warn( (f'\'{fn.__name__}\' is experimental and might be subject to breaking changes in the future.') , lowerCAmelCase__ , ) return fn(*lowerCAmelCase__ , **lowerCAmelCase__ ) return _inner_fn
104
'''simple docstring''' from timeit import timeit def _A (lowerCAmelCase__ :int ) -> int: '''simple docstring''' if number < 0: raise ValueError('the value of input must not be negative' ) _a = 0 while number: number &= number - 1 result += 1 return result def _A (lowerCAmelCase__ :int ) -> int: '''simple docstring''' if number < 0: raise ValueError('the value of input must not be negative' ) _a = 0 while number: if number % 2 == 1: result += 1 number >>= 1 return result def _A () -> None: '''simple docstring''' def do_benchmark(lowerCAmelCase__ :int ) -> None: _a = 'import __main__ as z' print(f'Benchmark when {number = }:' ) print(f'{get_set_bits_count_using_modulo_operator(lowerCAmelCase__ ) = }' ) _a = timeit('z.get_set_bits_count_using_modulo_operator(25)' , setup=lowerCAmelCase__ ) print(f'timeit() runs in {timing} seconds' ) print(f'{get_set_bits_count_using_brian_kernighans_algorithm(lowerCAmelCase__ ) = }' ) _a = timeit( 'z.get_set_bits_count_using_brian_kernighans_algorithm(25)' , setup=lowerCAmelCase__ , ) print(f'timeit() runs in {timing} seconds' ) for number in (25, 37, 58, 0): do_benchmark(lowerCAmelCase__ ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
104
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) _snake_case : Any = { 'configuration_perceiver': ['PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PerceiverConfig', 'PerceiverOnnxConfig'], 'tokenization_perceiver': ['PerceiverTokenizer'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case : Union[str, Any] = ['PerceiverFeatureExtractor'] _snake_case : str = ['PerceiverImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case : int = [ 'PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST', 'PerceiverForImageClassificationConvProcessing', 'PerceiverForImageClassificationFourier', 'PerceiverForImageClassificationLearned', 'PerceiverForMaskedLM', 'PerceiverForMultimodalAutoencoding', 'PerceiverForOpticalFlow', 'PerceiverForSequenceClassification', 'PerceiverLayer', 'PerceiverModel', 'PerceiverPreTrainedModel', ] if TYPE_CHECKING: from .configuration_perceiver import PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP, PerceiverConfig, PerceiverOnnxConfig from .tokenization_perceiver import PerceiverTokenizer try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_perceiver import PerceiverFeatureExtractor from .image_processing_perceiver import PerceiverImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_perceiver import ( PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST, PerceiverForImageClassificationConvProcessing, PerceiverForImageClassificationFourier, PerceiverForImageClassificationLearned, PerceiverForMaskedLM, PerceiverForMultimodalAutoencoding, PerceiverForOpticalFlow, PerceiverForSequenceClassification, PerceiverLayer, PerceiverModel, PerceiverPreTrainedModel, ) else: import sys _snake_case : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
292
"""simple docstring""" from __future__ import annotations import unittest from transformers import AutoTokenizer, PegasusConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFPegasusForConditionalGeneration, TFPegasusModel @require_tf class _UpperCAmelCase : UpperCamelCase = PegasusConfig UpperCamelCase = {} UpperCamelCase = '''gelu''' def __init__( self :Union[str, Any] , __UpperCamelCase :Union[str, Any] , __UpperCamelCase :str=13 , __UpperCamelCase :List[Any]=7 , __UpperCamelCase :Union[str, Any]=True , __UpperCamelCase :List[Any]=False , __UpperCamelCase :Any=99 , __UpperCamelCase :Tuple=32 , __UpperCamelCase :Optional[int]=2 , __UpperCamelCase :Optional[Any]=4 , __UpperCamelCase :Tuple=37 , __UpperCamelCase :Optional[Any]=0.1 , __UpperCamelCase :Tuple=0.1 , __UpperCamelCase :Optional[int]=40 , __UpperCamelCase :Tuple=2 , __UpperCamelCase :Dict=1 , __UpperCamelCase :Any=0 , ): A = parent A = batch_size A = seq_length A = is_training A = use_labels A = vocab_size A = hidden_size A = num_hidden_layers A = num_attention_heads A = intermediate_size A = hidden_dropout_prob A = attention_probs_dropout_prob A = max_position_embeddings A = eos_token_id A = pad_token_id A = bos_token_id def lowerCamelCase ( self :Tuple ): A = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) A = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) A = tf.concat([input_ids, eos_tensor] , axis=1 ) A = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) A = prepare_pegasus_inputs_dict(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) return config, inputs_dict def lowerCamelCase ( self :str , __UpperCamelCase :str , __UpperCamelCase :Union[str, Any] ): A = TFPegasusModel(config=__UpperCamelCase ).get_decoder() A = inputs_dict["input_ids"] A = input_ids[:1, :] A = inputs_dict["attention_mask"][:1, :] A = inputs_dict["head_mask"] A = 1 # first forward pass A = model(__UpperCamelCase , attention_mask=__UpperCamelCase , head_mask=__UpperCamelCase , use_cache=__UpperCamelCase ) A, A = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids A = ids_tensor((self.batch_size, 3) , config.vocab_size ) A = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and A = tf.concat([input_ids, next_tokens] , axis=-1 ) A = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) A = model(__UpperCamelCase , attention_mask=__UpperCamelCase )[0] A = model(__UpperCamelCase , attention_mask=__UpperCamelCase , past_key_values=__UpperCamelCase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice A = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) A = output_from_no_past[:, -3:, random_slice_idx] A = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(__UpperCamelCase , __UpperCamelCase , rtol=1e-3 ) def A__ ( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase=None , UpperCamelCase=None , UpperCamelCase=None , UpperCamelCase=None , UpperCamelCase=None , ): if attention_mask is None: A = tf.cast(tf.math.not_equal(UpperCamelCase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: A = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: A = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: A = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: A = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class _UpperCAmelCase ( lowercase_ , lowercase_ , unittest.TestCase ): UpperCamelCase = (TFPegasusForConditionalGeneration, TFPegasusModel) if is_tf_available() else () UpperCamelCase = (TFPegasusForConditionalGeneration,) if is_tf_available() else () UpperCamelCase = ( { '''conversational''': TFPegasusForConditionalGeneration, '''feature-extraction''': TFPegasusModel, '''summarization''': TFPegasusForConditionalGeneration, '''text2text-generation''': TFPegasusForConditionalGeneration, '''translation''': TFPegasusForConditionalGeneration, } if is_tf_available() else {} ) UpperCamelCase = True UpperCamelCase = False UpperCamelCase = False def lowerCamelCase ( self :int ): A = TFPegasusModelTester(self ) A = ConfigTester(self , config_class=__UpperCamelCase ) def lowerCamelCase ( self :Dict ): self.config_tester.run_common_tests() def lowerCamelCase ( self :Any ): A = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*__UpperCamelCase ) @require_sentencepiece @require_tokenizers @require_tf class _UpperCAmelCase ( unittest.TestCase ): UpperCamelCase = [ ''' PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.''', ''' The London trio are up for best UK act and best album, as well as getting two nominations in the best song category."We got told like this morning \'Oh I think you\'re nominated\'", said Dappy."And I was like \'Oh yeah, which one?\' And now we\'ve got nominated for four awards. I mean, wow!"Bandmate Fazer added: "We thought it\'s best of us to come down and mingle with everyone and say hello to the cameras. And now we find we\'ve got four nominations."The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn\'t be too disappointed if they didn\'t win this time around."At the end of the day we\'re grateful to be where we are in our careers."If it don\'t happen then it don\'t happen - live to fight another day and keep on making albums and hits for the fans."Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers\' All These Things That I\'ve Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year\'s Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border."We just done Edinburgh the other day," said Dappy."We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!" ''', ] UpperCamelCase = [ '''California\'s largest electricity provider has cut power to hundreds of thousands of customers in an effort to''' ''' reduce the risk of wildfires.''', '''N-Dubz have revealed they\'re "grateful" to have been nominated for four Mobo Awards.''', ] # differs slightly from pytorch, likely due to numerical differences in linear layers UpperCamelCase = '''google/pegasus-xsum''' @cached_property def lowerCamelCase ( self :Any ): return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def lowerCamelCase ( self :Dict ): A = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def lowerCamelCase ( self :str , **__UpperCamelCase :str ): A = self.translate_src_text(**__UpperCamelCase ) assert self.expected_text == generated_words def lowerCamelCase ( self :Any , **__UpperCamelCase :List[str] ): A = self.tokenizer(self.src_text , **__UpperCamelCase , padding=__UpperCamelCase , return_tensors="tf" ) A = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=__UpperCamelCase , ) A = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=__UpperCamelCase ) return generated_words @slow def lowerCamelCase ( self :Union[str, Any] ): self._assert_generated_batch_equal_expected()
292
1
'''simple docstring''' import baseaa import io import json import os from copy import deepcopy from ..optimizer import AcceleratedOptimizer from ..scheduler import AcceleratedScheduler class __UpperCamelCase : def __init__( self :Any ,_UpperCamelCase :Optional[Any] ): if isinstance(_UpperCamelCase ,_UpperCamelCase ): # Don't modify user's data should they want to reuse it (e.g. in tests), because once we # modified it, it will not be accepted here again, since `auto` values would have been overridden snake_case_ : List[str] = deepcopy(_UpperCamelCase ) elif os.path.exists(_UpperCamelCase ): with io.open(_UpperCamelCase ,"""r""" ,encoding="""utf-8""" ) as f: snake_case_ : List[Any] = json.load(_UpperCamelCase ) else: try: snake_case_ : int = baseaa.urlsafe_baadecode(_UpperCamelCase ).decode("""utf-8""" ) snake_case_ : List[str] = json.loads(_UpperCamelCase ) except (UnicodeDecodeError, AttributeError, ValueError): raise ValueError( F'''Expected a string path to an existing deepspeed config, or a dictionary, or a base64 encoded string. Received: {config_file_or_dict}''' ) snake_case_ : int = config self.set_stage_and_offload() def a__ ( self :Tuple ): # zero stage - this is done as early as possible, before model is created, to allow # ``is_deepspeed_zero3_enabled`` query and getting to the early deepspeed config object # during ``zero.Init()`` which needs to know the dtype, and some other hparams. snake_case_ : List[Any] = self.get_value("""zero_optimization.stage""" ,-1 ) # offload snake_case_ : List[Any] = False if self.is_zeroa() or self.is_zeroa(): snake_case_ : Tuple = set(["""cpu""", """nvme"""] ) snake_case_ : Optional[int] = set( [ self.get_value("""zero_optimization.offload_optimizer.device""" ), self.get_value("""zero_optimization.offload_param.device""" ), ] ) if len(offload_devices & offload_devices_valid ) > 0: snake_case_ : Tuple = True def a__ ( self :int ,_UpperCamelCase :List[Any] ): snake_case_ : str = self.config # find the config node of interest if it exists snake_case_ : List[str] = ds_key_long.split(""".""" ) snake_case_ : str = nodes.pop() for node in nodes: snake_case_ : Optional[Any] = config.get(_UpperCamelCase ) if config is None: return None, ds_key return config, ds_key def a__ ( self :Optional[Any] ,_UpperCamelCase :Tuple ,_UpperCamelCase :List[str]=None ): snake_case_ , snake_case_ : Union[str, Any] = self.find_config_node(_UpperCamelCase ) if config is None: return default return config.get(_UpperCamelCase ,_UpperCamelCase ) def a__ ( self :int ,_UpperCamelCase :str ,_UpperCamelCase :Any=False ): snake_case_ : int = self.config # find the config node of interest if it exists snake_case_ : List[str] = ds_key_long.split(""".""" ) for node in nodes: snake_case_ : Optional[Any] = config snake_case_ : Tuple = config.get(_UpperCamelCase ) if config is None: if must_exist: raise ValueError(F'''Can\'t find {ds_key_long} entry in the config: {self.config}''' ) else: return # if found remove it if parent_config is not None: parent_config.pop(_UpperCamelCase ) def a__ ( self :Optional[Any] ,_UpperCamelCase :Optional[int] ): snake_case_ : Optional[int] = self.get_value(_UpperCamelCase ) return False if value is None else bool(_UpperCamelCase ) def a__ ( self :Any ,_UpperCamelCase :List[Any] ): snake_case_ : Optional[int] = self.get_value(_UpperCamelCase ) return False if value is None else not bool(_UpperCamelCase ) def a__ ( self :Dict ): return self._stage == 2 def a__ ( self :List[str] ): return self._stage == 3 def a__ ( self :List[str] ): return self._offload class __UpperCamelCase : def __init__( self :Optional[int] ,_UpperCamelCase :List[str] ): snake_case_ : Any = engine def a__ ( self :Optional[Any] ,_UpperCamelCase :Any ,**_UpperCamelCase :Dict ): # runs backpropagation and handles mixed precision self.engine.backward(_UpperCamelCase ,**_UpperCamelCase ) # Deepspeed's `engine.step` performs the following operations: # - gradient accumulation check # - gradient clipping # - optimizer step # - zero grad # - checking overflow # - lr_scheduler step (only if engine.lr_scheduler is not None) self.engine.step() # and this plugin overrides the above calls with no-ops when Accelerate runs under # Deepspeed, but allows normal functionality for non-Deepspeed cases thus enabling a simple # training loop that works transparently under many training regimes. class __UpperCamelCase ( lowercase__ ): def __init__( self :str ,_UpperCamelCase :Optional[Any] ): super().__init__(_UpperCamelCase ,device_placement=_UpperCamelCase ,scaler=_UpperCamelCase ) snake_case_ : int = hasattr(self.optimizer ,"""overflow""" ) def a__ ( self :int ,_UpperCamelCase :Any=None ): pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed def a__ ( self :str ): pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed @property def a__ ( self :int ): if self.__has_overflow__: return self.optimizer.overflow return False class __UpperCamelCase ( lowercase__ ): def __init__( self :Dict ,_UpperCamelCase :Union[str, Any] ,_UpperCamelCase :int ): super().__init__(_UpperCamelCase ,_UpperCamelCase ) def a__ ( self :Optional[int] ): pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed class __UpperCamelCase : def __init__( self :List[str] ,_UpperCamelCase :int ,_UpperCamelCase :str=0.0_01 ,_UpperCamelCase :str=0 ,**_UpperCamelCase :str ): snake_case_ : Any = params snake_case_ : Dict = lr snake_case_ : Union[str, Any] = weight_decay snake_case_ : Any = kwargs class __UpperCamelCase : def __init__( self :List[Any] ,_UpperCamelCase :List[Any] ,_UpperCamelCase :Any=None ,_UpperCamelCase :Optional[Any]=0 ,**_UpperCamelCase :Any ): snake_case_ : Dict = optimizer snake_case_ : Tuple = total_num_steps snake_case_ : Optional[int] = warmup_num_steps snake_case_ : Union[str, Any] = kwargs
8
'''simple docstring''' from __future__ import annotations from collections.abc import Callable def UpperCAmelCase ( lowerCamelCase_ :Callable[[int | float], int | float] , lowerCamelCase_ :int | float , lowerCamelCase_ :int | float , lowerCamelCase_ :int = 1_00 , ): '''simple docstring''' snake_case_ : Tuple = x_start snake_case_ : Optional[int] = fnc(lowerCamelCase_ ) snake_case_ : Optional[int] = 0.0 for _ in range(lowerCamelCase_ ): # Approximates small segments of curve as linear and solve # for trapezoidal area snake_case_ : int = (x_end - x_start) / steps + xa snake_case_ : Union[str, Any] = fnc(lowerCamelCase_ ) area += abs(fxa + fxa ) * (xa - xa) / 2 # Increment step snake_case_ : Any = xa snake_case_ : str = fxa return area if __name__ == "__main__": def UpperCAmelCase ( lowerCamelCase_ :Any ): '''simple docstring''' return x**3 + x**2 print('f(x) = x^3 + x^2') print('The area between the curve, x = -5, x = 5 and the x axis is:') __A : List[str] = 10 while i <= 100_000: print(F'with {i} steps: {trapezoidal_area(f, -5, 5, i)}') i *= 10
8
1
import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaImgaImgPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _a ( __A , unittest.TestCase ): A = KandinskyVaaImgaImgPipeline A = ['image_embeds', 'negative_image_embeds', 'image'] A = [ 'image_embeds', 'negative_image_embeds', 'image', ] A = [ 'generator', 'height', 'width', 'strength', 'guidance_scale', 'num_inference_steps', 'return_dict', 'guidance_scale', 'num_images_per_prompt', 'output_type', 'return_dict', ] A = False @property def __snake_case (self ) -> List[Any]: return 32 @property def __snake_case (self ) -> Tuple: return 32 @property def __snake_case (self ) -> List[str]: return self.time_input_dim @property def __snake_case (self ) -> Optional[int]: return self.time_input_dim * 4 @property def __snake_case (self ) -> Optional[Any]: return 100 @property def __snake_case (self ) -> List[str]: torch.manual_seed(0 ) UpperCAmelCase_: Optional[Any] = { """in_channels""": 4, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } UpperCAmelCase_: List[str] = UNetaDConditionModel(**__lowercase ) return model @property def __snake_case (self ) -> Union[str, Any]: return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def __snake_case (self ) -> Tuple: torch.manual_seed(0 ) UpperCAmelCase_: Union[str, Any] = VQModel(**self.dummy_movq_kwargs ) return model def __snake_case (self ) -> Tuple: UpperCAmelCase_: str = self.dummy_unet UpperCAmelCase_: List[Any] = self.dummy_movq UpperCAmelCase_: Optional[Any] = { """num_train_timesteps""": 1000, """beta_schedule""": """linear""", """beta_start""": 0.0_0_0_8_5, """beta_end""": 0.0_1_2, """clip_sample""": False, """set_alpha_to_one""": False, """steps_offset""": 0, """prediction_type""": """epsilon""", """thresholding""": False, } UpperCAmelCase_: List[str] = DDIMScheduler(**__lowercase ) UpperCAmelCase_: List[Any] = { """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=0 ) -> Optional[Any]: UpperCAmelCase_: int = floats_tensor((1, self.text_embedder_hidden_size), rng=random.Random(__lowercase ) ).to(__lowercase ) UpperCAmelCase_: int = floats_tensor((1, self.text_embedder_hidden_size), rng=random.Random(seed + 1 ) ).to( __lowercase ) # create init_image UpperCAmelCase_: Optional[int] = floats_tensor((1, 3, 64, 64), rng=random.Random(__lowercase ) ).to(__lowercase ) UpperCAmelCase_: Any = image.cpu().permute(0, 2, 3, 1 )[0] UpperCAmelCase_: Optional[int] = Image.fromarray(np.uinta(__lowercase ) ).convert("""RGB""" ).resize((256, 256) ) if str(__lowercase ).startswith("""mps""" ): UpperCAmelCase_: List[Any] = torch.manual_seed(__lowercase ) else: UpperCAmelCase_: str = torch.Generator(device=__lowercase ).manual_seed(__lowercase ) UpperCAmelCase_: int = { """image""": init_image, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 10, """guidance_scale""": 7.0, """strength""": 0.2, """output_type""": """np""", } return inputs def __snake_case (self ) -> int: UpperCAmelCase_: Any = """cpu""" UpperCAmelCase_: List[str] = self.get_dummy_components() UpperCAmelCase_: Any = self.pipeline_class(**__lowercase ) UpperCAmelCase_: Any = pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) UpperCAmelCase_: Union[str, Any] = pipe(**self.get_dummy_inputs(__lowercase ) ) UpperCAmelCase_: Tuple = output.images UpperCAmelCase_: List[Any] = pipe( **self.get_dummy_inputs(__lowercase ), return_dict=__lowercase, )[0] UpperCAmelCase_: List[str] = image[0, -3:, -3:, -1] UpperCAmelCase_: List[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase_: str = np.array( [0.6_1_9_9_7_7_8, 0.6_3_9_8_4_4_0_6, 0.4_6_1_4_5_7_8_5, 0.6_2_9_4_4_9_8_4, 0.5_6_2_2_2_1_5, 0.4_7_3_0_6_1_3_2, 0.4_7_4_4_1_4_5_6, 0.4_6_0_7_6_0_6, 0.4_8_7_1_9_2_6_3] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' @slow @require_torch_gpu class _a ( unittest.TestCase ): def __snake_case (self ) -> Optional[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __snake_case (self ) -> List[str]: UpperCAmelCase_: Any = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/kandinskyv22_img2img_frog.npy""" ) UpperCAmelCase_: List[Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) UpperCAmelCase_: List[Any] = """A red cartoon frog, 4k""" UpperCAmelCase_: int = KandinskyVaaPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-prior""", torch_dtype=torch.floataa ) pipe_prior.to(__lowercase ) UpperCAmelCase_: Any = KandinskyVaaImgaImgPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-decoder""", torch_dtype=torch.floataa ) UpperCAmelCase_: str = pipeline.to(__lowercase ) pipeline.set_progress_bar_config(disable=__lowercase ) UpperCAmelCase_: int = torch.Generator(device="""cpu""" ).manual_seed(0 ) UpperCAmelCase_ , UpperCAmelCase_: Union[str, Any] = pipe_prior( __lowercase, generator=__lowercase, num_inference_steps=5, negative_prompt="""""", ).to_tuple() UpperCAmelCase_: Union[str, Any] = pipeline( image=__lowercase, image_embeds=__lowercase, negative_image_embeds=__lowercase, generator=__lowercase, num_inference_steps=100, height=768, width=768, strength=0.2, output_type="""np""", ) UpperCAmelCase_: int = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(__lowercase, __lowercase )
147
'''simple docstring''' from math import factorial, radians def __magic_name__( lowerCamelCase, lowerCamelCase = 1_8, lowerCamelCase = 1_0): __lowerCAmelCase = angle_in_degrees - ((angle_in_degrees // 3_60.0) * 3_60.0) # Converting from degrees to radians __lowerCAmelCase = radians(lowerCamelCase) __lowerCAmelCase = angle_in_radians __lowerCAmelCase = 3 __lowerCAmelCase = -1 for _ in range(lowerCamelCase): result += (b * (angle_in_radians**a)) / factorial(lowerCamelCase) __lowerCAmelCase = -b # One positive term and the next will be negative and so on... a += 2 # Increased by 2 for every term. return round(lowerCamelCase, lowerCamelCase) if __name__ == "__main__": __import__("""doctest""").testmod()
174
0
"""simple docstring""" import argparse import json import os from tensorflow.core.protobuf.saved_model_pba import SavedModel # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py __SCREAMING_SNAKE_CASE = "." # Internal TensorFlow ops that can be safely ignored (mostly specific to a saved model) __SCREAMING_SNAKE_CASE = [ "Assert", "AssignVariableOp", "EmptyTensorList", "MergeV2Checkpoints", "ReadVariableOp", "ResourceGather", "RestoreV2", "SaveV2", "ShardedFilename", "StatefulPartitionedCall", "StaticRegexFullMatch", "VarHandleOp", ] def lowercase__( __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Tuple ): lowercase_ : int = SavedModel() lowercase_ : Union[str, Any] = [] with open(os.path.join(__SCREAMING_SNAKE_CASE , 'utils' , 'tf_ops' , 'onnx.json' ) ) as f: lowercase_ : List[str] = json.load(__SCREAMING_SNAKE_CASE )['opsets'] for i in range(1 , opset + 1 ): onnx_ops.extend(onnx_opsets[str(__SCREAMING_SNAKE_CASE )] ) with open(__SCREAMING_SNAKE_CASE , 'rb' ) as f: saved_model.ParseFromString(f.read() ) lowercase_ : Any = set() # Iterate over every metagraph in case there is more than one (a saved model can contain multiple graphs) for meta_graph in saved_model.meta_graphs: # Add operations in the graph definition model_op_names.update(node.op for node in meta_graph.graph_def.node ) # Go through the functions in the graph definition for func in meta_graph.graph_def.library.function: # Add operations in each function model_op_names.update(node.op for node in func.node_def ) # Convert to list, sorted if you want lowercase_ : int = sorted(__SCREAMING_SNAKE_CASE ) lowercase_ : str = [] for op in model_op_names: if op not in onnx_ops and op not in INTERNAL_OPS: incompatible_ops.append(__SCREAMING_SNAKE_CASE ) if strict and len(__SCREAMING_SNAKE_CASE ) > 0: raise Exception(F'''Found the following incompatible ops for the opset {opset}:\n''' + incompatible_ops ) elif len(__SCREAMING_SNAKE_CASE ) > 0: print(F'''Found the following incompatible ops for the opset {opset}:''' ) print(*__SCREAMING_SNAKE_CASE , sep='\n' ) else: print(F'''The saved model {saved_model_path} can properly be converted with ONNX.''' ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument("--saved_model_path", help="Path of the saved model to check (the .pb file).") parser.add_argument( "--opset", default=12, type=int, help="The ONNX opset against which the model has to be tested." ) parser.add_argument( "--framework", choices=["onnx"], default="onnx", help="Frameworks against which to test the saved model." ) parser.add_argument( "--strict", action="store_true", help="Whether make the checking strict (raise errors) or not (raise warnings)" ) __SCREAMING_SNAKE_CASE = parser.parse_args() if args.framework == "onnx": onnx_compliancy(args.saved_model_path, args.strict, args.opset)
356
"""simple docstring""" __SCREAMING_SNAKE_CASE ={ "a": "AAAAA", "b": "AAAAB", "c": "AAABA", "d": "AAABB", "e": "AABAA", "f": "AABAB", "g": "AABBA", "h": "AABBB", "i": "ABAAA", "j": "BBBAA", "k": "ABAAB", "l": "ABABA", "m": "ABABB", "n": "ABBAA", "o": "ABBAB", "p": "ABBBA", "q": "ABBBB", "r": "BAAAA", "s": "BAAAB", "t": "BAABA", "u": "BAABB", "v": "BBBAB", "w": "BABAA", "x": "BABAB", "y": "BABBA", "z": "BABBB", " ": " ", } __SCREAMING_SNAKE_CASE ={value: key for key, value in encode_dict.items()} def lowercase__( __SCREAMING_SNAKE_CASE : str ): lowercase_ : Union[str, Any] = '' for letter in word.lower(): if letter.isalpha() or letter == " ": encoded += encode_dict[letter] else: raise Exception('encode() accepts only letters of the alphabet and spaces' ) return encoded def lowercase__( __SCREAMING_SNAKE_CASE : str ): if set(__SCREAMING_SNAKE_CASE ) - {"A", "B", " "} != set(): raise Exception('decode() accepts only \'A\', \'B\' and spaces' ) lowercase_ : Dict = '' for word in coded.split(): while len(__SCREAMING_SNAKE_CASE ) != 0: decoded += decode_dict[word[:5]] lowercase_ : Any = word[5:] decoded += " " return decoded.strip() if __name__ == "__main__": from doctest import testmod testmod()
321
0
from functools import reduce _a = ( '''73167176531330624919225119674426574742355349194934''' '''96983520312774506326239578318016984801869478851843''' '''85861560789112949495459501737958331952853208805511''' '''12540698747158523863050715693290963295227443043557''' '''66896648950445244523161731856403098711121722383113''' '''62229893423380308135336276614282806444486645238749''' '''30358907296290491560440772390713810515859307960866''' '''70172427121883998797908792274921901699720888093776''' '''65727333001053367881220235421809751254540594752243''' '''52584907711670556013604839586446706324415722155397''' '''53697817977846174064955149290862569321978468622482''' '''83972241375657056057490261407972968652414535100474''' '''82166370484403199890008895243450658541227588666881''' '''16427171479924442928230863465674813919123162824586''' '''17866458359124566529476545682848912883142607690042''' '''24219022671055626321111109370544217506941658960408''' '''07198403850962455444362981230987879927244284909188''' '''84580156166097919133875499200524063689912560717606''' '''05886116467109405077541002256983155200055935729725''' '''71636269561882670428252483600823257530420752963450''' ) def __A ( __lowerCAmelCase = N )-> int: """simple docstring""" return max( # mypy cannot properly interpret reduce int(reduce(lambda __lowerCAmelCase , __lowerCAmelCase : str(int(__lowerCAmelCase ) * int(__lowerCAmelCase ) ) , n[i : i + 13] ) ) for i in range(len(__lowerCAmelCase ) - 12 ) ) if __name__ == "__main__": print(F'''{solution() = }''')
39
import warnings from pathlib import Path from typing import List, Tuple, Union import fire from torch import nn from transformers import AutoModelForSeqaSeqLM, AutoTokenizer, PreTrainedModel from transformers.utils import logging _a = logging.get_logger(__name__) def __A ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )-> None: """simple docstring""" _UpperCAmelCase = nn.ModuleList([src_layers[i] for i in layers_to_copy] ) assert len(__lowerCAmelCase ) == len(__lowerCAmelCase ), F"""{len(__lowerCAmelCase )} != {len(__lowerCAmelCase )}""" dest_layers.load_state_dict(layers_to_copy.state_dict() ) _a = { # maps num layers in teacher -> num_layers in student -> which teacher layers to copy. # 12: bart, 16: pegasus, 6: marian/Helsinki-NLP 12: { 1: [0], # This says that if the teacher has 12 layers and the student has 1, copy layer 0 of the teacher 2: [0, 6], 3: [0, 6, 11], 4: [0, 4, 8, 11], 6: [0, 2, 4, 7, 9, 11], 9: [0, 1, 2, 4, 5, 7, 9, 10, 11], 12: list(range(12)), }, 16: { # maps num layers in student -> which teacher layers to copy 1: [0], 2: [0, 15], 3: [0, 8, 15], 4: [0, 5, 10, 15], 6: [0, 3, 6, 9, 12, 15], 8: [0, 2, 4, 6, 8, 10, 12, 15], 9: [0, 1, 3, 5, 7, 9, 11, 13, 15], 12: [0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 15], 16: list(range(16)), }, 6: {1: [0], 2: [0, 5], 3: [0, 2, 5], 4: [0, 1, 3, 5], 6: list(range(6))}, } _a = { # maps num layers in student -> which teacher layers to copy. 6: {1: [5], 2: [3, 5], 3: [1, 4, 5], 4: [1, 2, 4, 5]}, 12: {1: [11], 2: [5, 11], 3: [3, 7, 11], 6: [1, 3, 5, 8, 10, 11]}, 16: {1: [15], 4: [4, 9, 12, 15], 8: [1, 3, 5, 7, 9, 11, 13, 15]}, } def __A ( __lowerCAmelCase , __lowerCAmelCase )-> Dict: """simple docstring""" try: _UpperCAmelCase = LAYERS_TO_COPY[n_teacher][n_student] return val except KeyError: if n_student != n_teacher: warnings.warn( F"""no hardcoded layers to copy for teacher {n_teacher} -> student {n_student}, defaulting to first""" F""" {n_student}""" ) return list(range(__lowerCAmelCase ) ) def __A ( __lowerCAmelCase , __lowerCAmelCase )-> List[int]: """simple docstring""" if n_student > n_teacher: raise ValueError(F"""Cannot perform intermediate supervision for student {n_student} > teacher {n_teacher}""" ) elif n_teacher == n_student: return list(range(__lowerCAmelCase ) ) elif n_student == 1: return [n_teacher - 1] else: return LAYERS_TO_SUPERVISE[n_teacher][n_student] def __A ( __lowerCAmelCase , __lowerCAmelCase = "student" , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase=False , __lowerCAmelCase=None , __lowerCAmelCase=None , **__lowerCAmelCase , )-> Tuple[PreTrainedModel, List[int], List[int]]: """simple docstring""" _UpperCAmelCase = 'encoder_layers and decoder_layers cannot be both None-- you would just have an identical teacher.' assert (e is not None) or (d is not None), _msg if isinstance(__lowerCAmelCase , __lowerCAmelCase ): AutoTokenizer.from_pretrained(__lowerCAmelCase ).save_pretrained(__lowerCAmelCase ) # purely for convenience _UpperCAmelCase = AutoModelForSeqaSeqLM.from_pretrained(__lowerCAmelCase ).eval() else: assert isinstance(__lowerCAmelCase , __lowerCAmelCase ), F"""teacher must be a model or string got type {type(__lowerCAmelCase )}""" _UpperCAmelCase = teacher.config.to_diff_dict() try: _UpperCAmelCase , _UpperCAmelCase = teacher.config.encoder_layers, teacher.config.decoder_layers if e is None: _UpperCAmelCase = teacher_e if d is None: _UpperCAmelCase = teacher_d init_kwargs.update({'encoder_layers': e, 'decoder_layers': d} ) except AttributeError: # T5 if hasattr(teacher.config , 'num_encoder_layers' ): _UpperCAmelCase , _UpperCAmelCase = teacher.config.num_encoder_layers, teacher.config.num_decoder_layers else: _UpperCAmelCase , _UpperCAmelCase = teacher.config.num_layers, teacher.config.num_decoder_layers if e is None: _UpperCAmelCase = teacher_e if d is None: _UpperCAmelCase = teacher_d if hasattr(teacher.config , 'num_encoder_layers' ): init_kwargs.update({'num_encoder_layers': e, 'num_decoder_layers': d} ) else: init_kwargs.update({'num_layers': e, 'num_decoder_layers': d} ) # Kwargs to instantiate student: teacher kwargs with updated layer numbers + **extra_config_kwargs init_kwargs.update(__lowerCAmelCase ) # Copy weights _UpperCAmelCase = teacher.config_class(**__lowerCAmelCase ) _UpperCAmelCase = AutoModelForSeqaSeqLM.from_config(__lowerCAmelCase ) # Start by copying the full teacher state dict this will copy the first N teacher layers to the student. _UpperCAmelCase = student.load_state_dict(teacher.state_dict() , strict=__lowerCAmelCase ) assert info.missing_keys == [], info.missing_keys # every student key should have a teacher keys. if copy_first_teacher_layers: # Our copying is done. We just log and save _UpperCAmelCase , _UpperCAmelCase = list(range(__lowerCAmelCase ) ), list(range(__lowerCAmelCase ) ) logger.info( F"""Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to""" F""" {save_path}""" ) student.save_pretrained(__lowerCAmelCase ) return student, e_layers_to_copy, d_layers_to_copy # Decide which layers of the teacher to copy. Not exactly alternating -- we try to keep first and last layer. if e_layers_to_copy is None: _UpperCAmelCase = pick_layers_to_copy(__lowerCAmelCase , __lowerCAmelCase ) if d_layers_to_copy is None: _UpperCAmelCase = pick_layers_to_copy(__lowerCAmelCase , __lowerCAmelCase ) try: if hasattr( __lowerCAmelCase , 'prophetnet' ): # For ProphetNet, student.model.encoder.layers is called student.prophetnet.encoder.layers copy_layers(teacher.prophetnet.encoder.layers , student.prophetnet.encoder.layers , __lowerCAmelCase ) copy_layers(teacher.prophetnet.decoder.layers , student.prophetnet.decoder.layers , __lowerCAmelCase ) else: copy_layers(teacher.model.encoder.layers , student.model.encoder.layers , __lowerCAmelCase ) copy_layers(teacher.model.decoder.layers , student.model.decoder.layers , __lowerCAmelCase ) except AttributeError: # For t5, student.model.encoder.layers is called student.encoder.block copy_layers(teacher.encoder.block , student.encoder.block , __lowerCAmelCase ) copy_layers(teacher.decoder.block , student.decoder.block , __lowerCAmelCase ) logger.info( F"""Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to {save_path}""" ) _UpperCAmelCase = { 'teacher_type': teacher.config.model_type, 'copied_encoder_layers': e_layers_to_copy, 'copied_decoder_layers': d_layers_to_copy, } student.save_pretrained(__lowerCAmelCase ) # Save information about copying for easier reproducibility return student, e_layers_to_copy, d_layers_to_copy if __name__ == "__main__": fire.Fire(create_student_by_copying_alternating_layers)
39
1
import os import sys import transformers SCREAMING_SNAKE_CASE__ = "3" print("Python version:", sys.version) print("transformers version:", transformers.__version__) try: import torch print("Torch version:", torch.__version__) print("Cuda available:", torch.cuda.is_available()) print("Cuda version:", torch.version.cuda) print("CuDNN version:", torch.backends.cudnn.version()) print("Number of GPUs available:", torch.cuda.device_count()) print("NCCL version:", torch.cuda.nccl.version()) except ImportError: print("Torch version:", None) try: import deepspeed print("DeepSpeed version:", deepspeed.__version__) except ImportError: print("DeepSpeed version:", None) try: import tensorflow as tf print("TensorFlow version:", tf.__version__) print("TF GPUs available:", bool(tf.config.list_physical_devices("GPU"))) print("Number of TF GPUs available:", len(tf.config.list_physical_devices("GPU"))) except ImportError: print("TensorFlow version:", None)
367
"""simple docstring""" import secrets from random import shuffle from string import ascii_letters, ascii_lowercase, ascii_uppercase, digits, punctuation def lowerCAmelCase__ ( _UpperCamelCase : int = 8 ) -> str: """simple docstring""" snake_case = ascii_letters + digits + punctuation return "".join(secrets.choice(_UpperCamelCase ) for _ in range(_UpperCamelCase ) ) def lowerCAmelCase__ ( _UpperCamelCase : str , _UpperCamelCase : int ) -> str: """simple docstring""" i -= len(_UpperCamelCase ) snake_case = i // 3 snake_case = i % 3 # chars = chars_incl + random_letters(ascii_letters, i / 3 + remainder) + # random_number(digits, i / 3) + random_characters(punctuation, i / 3) snake_case = ( chars_incl + random(_UpperCamelCase , quotient + remainder ) + random(_UpperCamelCase , _UpperCamelCase ) + random(_UpperCamelCase , _UpperCamelCase ) ) snake_case = list(_UpperCamelCase ) shuffle(_UpperCamelCase ) return "".join(_UpperCamelCase ) # random is a generalised function for letters, characters and numbers def lowerCAmelCase__ ( _UpperCamelCase : str , _UpperCamelCase : int ) -> str: """simple docstring""" return "".join(secrets.choice(_UpperCamelCase ) for _ in range(_UpperCamelCase ) ) def lowerCAmelCase__ ( _UpperCamelCase : Optional[Any] , _UpperCamelCase : Optional[Any] ) -> List[Any]: """simple docstring""" pass # Put your code here... def lowerCAmelCase__ ( _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Optional[Any] ) -> Any: """simple docstring""" pass # Put your code here... def lowerCAmelCase__ ( _UpperCamelCase : Dict , _UpperCamelCase : Optional[Any] ) -> Union[str, Any]: """simple docstring""" pass # Put your code here... def lowerCAmelCase__ ( _UpperCamelCase : str , _UpperCamelCase : int = 8 ) -> bool: """simple docstring""" if len(_UpperCamelCase ) < min_length: # Your Password must be at least 8 characters long return False snake_case = any(char in ascii_uppercase for char in password ) snake_case = any(char in ascii_lowercase for char in password ) snake_case = any(char in digits for char in password ) snake_case = any(char in punctuation for char in password ) return upper and lower and num and spec_char # Passwords should contain UPPERCASE, lowerase # numbers, and special characters def lowerCAmelCase__ ( ) -> Any: """simple docstring""" snake_case = int(input('Please indicate the max length of your password: ' ).strip() ) snake_case = input( 'Please indicate the characters that must be in your password: ' ).strip() print('Password generated:' , password_generator(_UpperCamelCase ) ) print( 'Alternative Password generated:' , alternative_password_generator(_UpperCamelCase , _UpperCamelCase ) , ) print('[If you are thinking of using this passsword, You better save it.]' ) if __name__ == "__main__": main()
149
0
'''simple docstring''' def _A ( A__ ): """simple docstring""" return " ".join(input_str.split()[::-1] ) if __name__ == "__main__": import doctest doctest.testmod()
104
'''simple docstring''' import argparse from pathlib import Path import torch from packaging import version from torch.onnx import export from diffusers import AutoencoderKL lowerCAmelCase__ = version.parse(version.parse(torch.__version__).base_version) < version.parse('''1.11''') def _A ( A__ , A__ , A__ , A__ , A__ , A__ , A__ , A__=False , ): """simple docstring""" output_path.parent.mkdir(parents=A__ , exist_ok=A__ ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( A__ , A__ , f=output_path.as_posix() , input_names=A__ , output_names=A__ , dynamic_axes=A__ , do_constant_folding=A__ , use_external_data_format=A__ , enable_onnx_checker=A__ , opset_version=A__ , ) else: export( A__ , A__ , f=output_path.as_posix() , input_names=A__ , output_names=A__ , dynamic_axes=A__ , do_constant_folding=A__ , opset_version=A__ , ) @torch.no_grad() def _A ( A__ , A__ , A__ , A__ = False ): """simple docstring""" __lowercase = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): __lowercase = '''cuda''' elif fpaa and not torch.cuda.is_available(): raise ValueError('''`float16` model export is only supported on GPUs with CUDA''' ) else: __lowercase = '''cpu''' __lowercase = Path(A__ ) # VAE DECODER __lowercase = AutoencoderKL.from_pretrained(model_path + '''/vae''' ) __lowercase = vae_decoder.config.latent_channels # forward only through the decoder part __lowercase = vae_decoder.decode onnx_export( A__ , model_args=( torch.randn(1 , A__ , 25 , 25 ).to(device=A__ , dtype=A__ ), False, ) , output_path=output_path / '''vae_decoder''' / '''model.onnx''' , ordered_input_names=['''latent_sample''', '''return_dict'''] , output_names=['''sample'''] , dynamic_axes={ '''latent_sample''': {0: '''batch''', 1: '''channels''', 2: '''height''', 3: '''width'''}, } , opset=A__ , ) del vae_decoder if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument( '''--model_path''', type=str, required=True, help='''Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).''', ) parser.add_argument('''--output_path''', type=str, required=True, help='''Path to the output model.''') parser.add_argument( '''--opset''', default=14, type=int, help='''The version of the ONNX operator set to use.''', ) parser.add_argument('''--fp16''', action='''store_true''', default=False, help='''Export the models in `float16` mode''') lowerCAmelCase__ = parser.parse_args() print(args.output_path) convert_models(args.model_path, args.output_path, args.opset, args.fpaa) print('''SD: Done: ONNX''')
104
1
"""simple docstring""" from __future__ import annotations from fractions import Fraction def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int , _UpperCAmelCase : int ): return ( num != den and num % 10 == den // 10 and (num // 10) / (den % 10) == num / den ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int ): lowerCAmelCase = [] lowerCAmelCase = 11 lowerCAmelCase = int('1' + '0' * digit_len ) for num in range(_UpperCAmelCase , _UpperCAmelCase ): while den <= 99: if (num != den) and (num % 10 == den // 10) and (den % 10 != 0): if is_digit_cancelling(_UpperCAmelCase , _UpperCAmelCase ): solutions.append(F'{num}/{den}' ) den += 1 num += 1 lowerCAmelCase = 10 return solutions def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int = 2 ): lowerCAmelCase = 1.0 for fraction in fraction_list(_UpperCAmelCase ): lowerCAmelCase = Fraction(_UpperCAmelCase ) result *= frac.denominator / frac.numerator return int(_UpperCAmelCase ) if __name__ == "__main__": print(solution())
358
"""simple docstring""" import os import time import warnings from dataclasses import dataclass, field from enum import Enum from typing import List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import logging from ..processors.glue import glue_convert_examples_to_features, glue_output_modes, glue_processors from ..processors.utils import InputFeatures __UpperCamelCase : Optional[Any] = logging.get_logger(__name__) @dataclass class a : snake_case__ = field(metadata={'''help''': '''The name of the task to train on: ''' + ''', '''.join(glue_processors.keys() )} ) snake_case__ = field( metadata={'''help''': '''The input data dir. Should contain the .tsv files (or other data files) for the task.'''} ) snake_case__ = field( default=1_2_8 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) snake_case__ = field( default=a__ , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.task_name.lower() class a ( a__ ): snake_case__ = '''train''' snake_case__ = '''dev''' snake_case__ = '''test''' class a ( a__ ): snake_case__ = 42 snake_case__ = 42 snake_case__ = 42 def __init__( self , _snake_case , _snake_case , _snake_case = None , _snake_case = Split.train , _snake_case = None , ): """simple docstring""" warnings.warn( 'This dataset will be removed from the library soon, preprocessing should be handled with the 🤗 Datasets ' 'library. You can have a look at this example script for pointers: ' 'https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py' , _snake_case , ) lowerCAmelCase = args lowerCAmelCase = glue_processors[args.task_name]() lowerCAmelCase = glue_output_modes[args.task_name] if isinstance(_snake_case , _snake_case ): try: lowerCAmelCase = Split[mode] except KeyError: raise KeyError('mode is not a valid split name' ) # Load data features from cache or dataset file lowerCAmelCase = os.path.join( cache_dir if cache_dir is not None else args.data_dir , F'cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{args.task_name}' , ) lowerCAmelCase = self.processor.get_labels() if args.task_name in ["mnli", "mnli-mm"] and tokenizer.__class__.__name__ in ( "RobertaTokenizer", "RobertaTokenizerFast", "XLMRobertaTokenizer", "BartTokenizer", "BartTokenizerFast", ): # HACK(label indices are swapped in RoBERTa pretrained model) lowerCAmelCase ,lowerCAmelCase = label_list[2], label_list[1] lowerCAmelCase = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. lowerCAmelCase = cached_features_file + '.lock' with FileLock(_snake_case ): if os.path.exists(_snake_case ) and not args.overwrite_cache: lowerCAmelCase = time.time() lowerCAmelCase = torch.load(_snake_case ) logger.info( F'Loading features from cached file {cached_features_file} [took %.3f s]' , time.time() - start ) else: logger.info(F'Creating features from dataset file at {args.data_dir}' ) if mode == Split.dev: lowerCAmelCase = self.processor.get_dev_examples(args.data_dir ) elif mode == Split.test: lowerCAmelCase = self.processor.get_test_examples(args.data_dir ) else: lowerCAmelCase = self.processor.get_train_examples(args.data_dir ) if limit_length is not None: lowerCAmelCase = examples[:limit_length] lowerCAmelCase = glue_convert_examples_to_features( _snake_case , _snake_case , max_length=args.max_seq_length , label_list=_snake_case , output_mode=self.output_mode , ) lowerCAmelCase = time.time() torch.save(self.features , _snake_case ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( F'Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]' ) def __len__( self ): """simple docstring""" return len(self.features ) def __getitem__( self , _snake_case ): """simple docstring""" return self.features[i] def UpperCamelCase__ ( self ): """simple docstring""" return self.label_list
309
0
import baseaa import io import json import os from copy import deepcopy from ..optimizer import AcceleratedOptimizer from ..scheduler import AcceleratedScheduler class snake_case_ : '''simple docstring''' def __init__( self : List[Any] , _UpperCamelCase : Dict ) ->Any: if isinstance(_UpperCamelCase , _UpperCamelCase ): # Don't modify user's data should they want to reuse it (e.g. in tests), because once we # modified it, it will not be accepted here again, since `auto` values would have been overridden snake_case_ = deepcopy(_UpperCamelCase ) elif os.path.exists(_UpperCamelCase ): with io.open(_UpperCamelCase , '''r''' , encoding='''utf-8''' ) as f: snake_case_ = json.load(_UpperCamelCase ) else: try: snake_case_ = baseaa.urlsafe_baadecode(_UpperCamelCase ).decode('''utf-8''' ) snake_case_ = json.loads(_UpperCamelCase ) except (UnicodeDecodeError, AttributeError, ValueError): raise ValueError( f'''Expected a string path to an existing deepspeed config, or a dictionary, or a base64 encoded string. Received: {config_file_or_dict}''' ) snake_case_ = config self.set_stage_and_offload() def snake_case__( self : Optional[int] ) ->Optional[Any]: # zero stage - this is done as early as possible, before model is created, to allow # ``is_deepspeed_zero3_enabled`` query and getting to the early deepspeed config object # during ``zero.Init()`` which needs to know the dtype, and some other hparams. snake_case_ = self.get_value('''zero_optimization.stage''' , -1 ) # offload snake_case_ = False if self.is_zeroa() or self.is_zeroa(): snake_case_ = set(['''cpu''', '''nvme'''] ) snake_case_ = set( [ self.get_value('''zero_optimization.offload_optimizer.device''' ), self.get_value('''zero_optimization.offload_param.device''' ), ] ) if len(offload_devices & offload_devices_valid ) > 0: snake_case_ = True def snake_case__( self : int , _UpperCamelCase : List[Any] ) ->List[Any]: snake_case_ = self.config # find the config node of interest if it exists snake_case_ = ds_key_long.split('''.''' ) snake_case_ = nodes.pop() for node in nodes: snake_case_ = config.get(_UpperCamelCase ) if config is None: return None, ds_key return config, ds_key def snake_case__( self : str , _UpperCamelCase : List[str] , _UpperCamelCase : List[Any]=None ) ->List[Any]: snake_case_, snake_case_ = self.find_config_node(_UpperCamelCase ) if config is None: return default return config.get(_UpperCamelCase , _UpperCamelCase ) def snake_case__( self : str , _UpperCamelCase : Tuple , _UpperCamelCase : Tuple=False ) ->List[Any]: snake_case_ = self.config # find the config node of interest if it exists snake_case_ = ds_key_long.split('''.''' ) for node in nodes: snake_case_ = config snake_case_ = config.get(_UpperCamelCase ) if config is None: if must_exist: raise ValueError(f'''Can\'t find {ds_key_long} entry in the config: {self.config}''' ) else: return # if found remove it if parent_config is not None: parent_config.pop(_UpperCamelCase ) def snake_case__( self : int , _UpperCamelCase : Union[str, Any] ) ->Optional[Any]: snake_case_ = self.get_value(_UpperCamelCase ) return False if value is None else bool(_UpperCamelCase ) def snake_case__( self : str , _UpperCamelCase : Dict ) ->Optional[Any]: snake_case_ = self.get_value(_UpperCamelCase ) return False if value is None else not bool(_UpperCamelCase ) def snake_case__( self : Optional[int] ) ->Dict: return self._stage == 2 def snake_case__( self : List[str] ) ->List[str]: return self._stage == 3 def snake_case__( self : Any ) ->Any: return self._offload class snake_case_ : '''simple docstring''' def __init__( self : Dict , _UpperCamelCase : Tuple ) ->Optional[int]: snake_case_ = engine def snake_case__( self : Tuple , _UpperCamelCase : Tuple , **_UpperCamelCase : Dict ) ->Tuple: # runs backpropagation and handles mixed precision self.engine.backward(_UpperCamelCase , **_UpperCamelCase ) # Deepspeed's `engine.step` performs the following operations: # - gradient accumulation check # - gradient clipping # - optimizer step # - zero grad # - checking overflow # - lr_scheduler step (only if engine.lr_scheduler is not None) self.engine.step() # and this plugin overrides the above calls with no-ops when Accelerate runs under # Deepspeed, but allows normal functionality for non-Deepspeed cases thus enabling a simple # training loop that works transparently under many training regimes. class snake_case_ ( __A ): '''simple docstring''' def __init__( self : Tuple , _UpperCamelCase : Any ) ->Optional[Any]: super().__init__(_UpperCamelCase , device_placement=_UpperCamelCase , scaler=_UpperCamelCase ) snake_case_ = hasattr(self.optimizer , '''overflow''' ) def snake_case__( self : Optional[Any] , _UpperCamelCase : List[str]=None ) ->List[str]: pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed def snake_case__( self : Tuple ) ->Any: pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed @property def snake_case__( self : Dict ) ->List[str]: if self.__has_overflow__: return self.optimizer.overflow return False class snake_case_ ( __A ): '''simple docstring''' def __init__( self : Dict , _UpperCamelCase : List[str] , _UpperCamelCase : Any ) ->Dict: super().__init__(_UpperCamelCase , _UpperCamelCase ) def snake_case__( self : Union[str, Any] ) ->List[Any]: pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed class snake_case_ : '''simple docstring''' def __init__( self : Tuple , _UpperCamelCase : str , _UpperCamelCase : Any=0.001 , _UpperCamelCase : Optional[int]=0 , **_UpperCamelCase : List[str] ) ->int: snake_case_ = params snake_case_ = lr snake_case_ = weight_decay snake_case_ = kwargs class snake_case_ : '''simple docstring''' def __init__( self : int , _UpperCamelCase : Tuple , _UpperCamelCase : List[str]=None , _UpperCamelCase : Optional[Any]=0 , **_UpperCamelCase : Dict ) ->List[Any]: snake_case_ = optimizer snake_case_ = total_num_steps snake_case_ = warmup_num_steps snake_case_ = kwargs
8
from typing import Optional import pyspark from .. import Features, NamedSplit from ..download import DownloadMode from ..packaged_modules.spark.spark import Spark from .abc import AbstractDatasetReader class snake_case_ ( __A ): '''simple docstring''' def __init__( self : int , _UpperCamelCase : pyspark.sql.DataFrame , _UpperCamelCase : Optional[NamedSplit] = None , _UpperCamelCase : Optional[Features] = None , _UpperCamelCase : bool = True , _UpperCamelCase : str = None , _UpperCamelCase : bool = False , _UpperCamelCase : str = None , _UpperCamelCase : bool = True , _UpperCamelCase : str = "arrow" , **_UpperCamelCase : Tuple , ) ->str: super().__init__( split=_UpperCamelCase , features=_UpperCamelCase , cache_dir=_UpperCamelCase , keep_in_memory=_UpperCamelCase , streaming=_UpperCamelCase , **_UpperCamelCase , ) snake_case_ = load_from_cache_file snake_case_ = file_format snake_case_ = Spark( df=_UpperCamelCase , features=_UpperCamelCase , cache_dir=_UpperCamelCase , working_dir=_UpperCamelCase , **_UpperCamelCase , ) def snake_case__( self : int ) ->Tuple: if self.streaming: return self.builder.as_streaming_dataset(split=self.split ) snake_case_ = None if self._load_from_cache_file else DownloadMode.FORCE_REDOWNLOAD self.builder.download_and_prepare( download_mode=_UpperCamelCase , file_format=self._file_format , ) return self.builder.as_dataset(split=self.split )
8
1
"""simple docstring""" from typing import Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING A_ = logging.get_logger(__name__) @add_end_docstrings(UpperCamelCase ) class __SCREAMING_SNAKE_CASE ( UpperCamelCase ): def __init__( self : Any , *snake_case : Union[str, Any] , **snake_case : Optional[Any] ): '''simple docstring''' super().__init__(*snake_case , **snake_case ) self.check_model_type(snake_case ) def _UpperCamelCase ( self : Any , snake_case : List[str]=None , snake_case : List[str]=None , snake_case : Union[str, Any]=None , **snake_case : Optional[int] ): '''simple docstring''' A__ : Optional[Any] = {}, {} if padding is not None: A__ : Any = padding if truncation is not None: A__ : str = truncation if top_k is not None: A__ : Tuple = top_k return preprocess_params, {}, postprocess_params def __call__( self : Optional[Any] , snake_case : Union["Image.Image", str] , snake_case : str = None , **snake_case : Dict ): '''simple docstring''' if isinstance(snake_case , (Image.Image, str) ) and isinstance(snake_case , snake_case ): A__ : List[Any] = {"""image""": image, """question""": question} else: A__ : Union[str, Any] = image A__ : Union[str, Any] = super().__call__(snake_case , **snake_case ) return results def _UpperCamelCase ( self : Union[str, Any] , snake_case : Optional[Any] , snake_case : Union[str, Any]=False , snake_case : Tuple=False ): '''simple docstring''' A__ : Any = load_image(inputs["""image"""] ) A__ : List[str] = self.tokenizer( inputs["""question"""] , return_tensors=self.framework , padding=snake_case , truncation=snake_case ) A__ : str = self.image_processor(images=snake_case , return_tensors=self.framework ) model_inputs.update(snake_case ) return model_inputs def _UpperCamelCase ( self : Optional[int] , snake_case : Union[str, Any] ): '''simple docstring''' A__ : Union[str, Any] = self.model(**snake_case ) return model_outputs def _UpperCamelCase ( self : Dict , snake_case : Optional[int] , snake_case : List[Any]=5 ): '''simple docstring''' if top_k > self.model.config.num_labels: A__ : Dict = self.model.config.num_labels if self.framework == "pt": A__ : Tuple = model_outputs.logits.sigmoid()[0] A__ : List[Any] = probs.topk(snake_case ) else: raise ValueError(F'Unsupported framework: {self.framework}' ) A__ : int = scores.tolist() A__ : Dict = ids.tolist() return [{"score": score, "answer": self.model.config.idalabel[_id]} for score, _id in zip(snake_case , snake_case )]
353
"""simple docstring""" import os from distutils.util import strtobool def _lowerCAmelCase ( UpperCAmelCase__ : List[Any], UpperCAmelCase__ : Optional[Any] ) ->List[str]: for e in env_keys: A__ : List[Any] = int(os.environ.get(UpperCAmelCase__, -1 ) ) if val >= 0: return val return default def _lowerCAmelCase ( UpperCAmelCase__ : Tuple, UpperCAmelCase__ : str=False ) ->List[str]: A__ : List[Any] = os.environ.get(UpperCAmelCase__, str(UpperCAmelCase__ ) ) return strtobool(UpperCAmelCase__ ) == 1 # As its name indicates `strtobool` actually returns an int... def _lowerCAmelCase ( UpperCAmelCase__ : Tuple, UpperCAmelCase__ : List[Any]="no" ) ->int: A__ : str = os.environ.get(UpperCAmelCase__, str(UpperCAmelCase__ ) ) return value
296
0
"""simple docstring""" from string import ascii_uppercase lowerCAmelCase__ = {str(ord(c) - 55): c for c in ascii_uppercase} def a__ ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ): '''simple docstring''' if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): raise TypeError("int() can't convert non-string with explicit base" ) if num < 0: raise ValueError("parameter must be positive int" ) if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): raise TypeError("'str' object cannot be interpreted as an integer" ) if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): raise TypeError("'float' object cannot be interpreted as an integer" ) if base in (0, 1): raise ValueError("base must be >= 2" ) if base > 3_6: raise ValueError("base must be <= 36" ) lowerCAmelCase : str = "" lowerCAmelCase : Optional[Any] = 0 lowerCAmelCase : List[Any] = 0 while div != 1: lowerCAmelCase , lowerCAmelCase : Optional[Any] = divmod(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if base >= 1_1 and 9 < mod < 3_6: lowerCAmelCase : int = ALPHABET_VALUES[str(SCREAMING_SNAKE_CASE )] else: lowerCAmelCase : List[str] = str(SCREAMING_SNAKE_CASE ) new_value += actual_value lowerCAmelCase : Dict = num // base lowerCAmelCase : Tuple = div if div == 0: return str(new_value[::-1] ) elif div == 1: new_value += str(SCREAMING_SNAKE_CASE ) return str(new_value[::-1] ) return new_value[::-1] if __name__ == "__main__": import doctest doctest.testmod() for base in range(2, 37): for num in range(1_000): assert int(decimal_to_any(num, base), base) == num, ( num, base, decimal_to_any(num, base), int(decimal_to_any(num, base), base), )
108
'''simple docstring''' import argparse import os from io import BytesIO from pathlib import Path import requests from clip_retrieval.clip_client import ClipClient from PIL import Image from tqdm import tqdm def lowercase__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> List[str]: UpperCamelCase = 1.5 UpperCamelCase = int(factor * num_class_images ) UpperCamelCase = ClipClient( url="""https://knn.laion.ai/knn-service""" , indice_name="""laion_400m""" , num_images=__UpperCamelCase , aesthetic_weight=0.1 ) os.makedirs(F"{class_data_dir}/images" , exist_ok=__UpperCamelCase ) if len(list(Path(F"{class_data_dir}/images" ).iterdir() ) ) >= num_class_images: return while True: UpperCamelCase = client.query(text=__UpperCamelCase ) if len(__UpperCamelCase ) >= factor * num_class_images or num_images > 1E4: break else: UpperCamelCase = int(factor * num_images ) UpperCamelCase = ClipClient( url="""https://knn.laion.ai/knn-service""" , indice_name="""laion_400m""" , num_images=__UpperCamelCase , aesthetic_weight=0.1 , ) UpperCamelCase = 0 UpperCamelCase = 0 UpperCamelCase = tqdm(desc="""downloading real regularization images""" , total=__UpperCamelCase ) with open(F"{class_data_dir}/caption.txt" , """w""" ) as fa, open(F"{class_data_dir}/urls.txt" , """w""" ) as fa, open( F"{class_data_dir}/images.txt" , """w""" ) as fa: while total < num_class_images: UpperCamelCase = class_images[count] count += 1 try: UpperCamelCase = requests.get(images["""url"""] ) if img.status_code == 200: UpperCamelCase = Image.open(BytesIO(img.content ) ) with open(F"{class_data_dir}/images/{total}.jpg" , """wb""" ) as f: f.write(img.content ) fa.write(images["""caption"""] + """\n""" ) fa.write(images["""url"""] + """\n""" ) fa.write(F"{class_data_dir}/images/{total}.jpg" + """\n""" ) total += 1 pbar.update(1 ) else: continue except Exception: continue return def lowercase__ ( )-> str: UpperCamelCase = argparse.ArgumentParser("""""" , add_help=__UpperCamelCase ) parser.add_argument("""--class_prompt""" , help="""text prompt to retrieve images""" , required=__UpperCamelCase , type=__UpperCamelCase ) parser.add_argument("""--class_data_dir""" , help="""path to save images""" , required=__UpperCamelCase , type=__UpperCamelCase ) parser.add_argument("""--num_class_images""" , help="""number of images to download""" , default=200 , type=__UpperCamelCase ) return parser.parse_args() if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = parse_args() retrieve(args.class_prompt, args.class_data_dir, args.num_class_images)
321
0
class _a : def __init__( self: Optional[Any] , UpperCamelCase_: Dict , UpperCamelCase_: str , UpperCamelCase_: Any ) -> Optional[int]: """simple docstring""" lowercase__ = name lowercase__ = value lowercase__ = weight def __repr__( self: List[Any] ) -> Dict: """simple docstring""" return f'{self.__class__.__name__}({self.name}, {self.value}, {self.weight})' def lowerCamelCase_ ( self: Optional[Any] ) -> str: """simple docstring""" return self.value def lowerCamelCase_ ( self: Optional[int] ) -> Dict: """simple docstring""" return self.name def lowerCamelCase_ ( self: Optional[int] ) -> List[str]: """simple docstring""" return self.weight def lowerCamelCase_ ( self: Optional[int] ) -> Optional[int]: """simple docstring""" return self.value / self.weight def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = [] for i in range(len(SCREAMING_SNAKE_CASE ) ): menu.append(Things(name[i] , value[i] , weight[i] ) ) return menu def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = sorted(SCREAMING_SNAKE_CASE , key=SCREAMING_SNAKE_CASE , reverse=SCREAMING_SNAKE_CASE ) lowercase__ = [] lowercase__ , lowercase__ = 0.0, 0.0 for i in range(len(SCREAMING_SNAKE_CASE ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def _a ( ): """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
352
lowerCAmelCase = [sum(int(c, 10) ** 2 for c in i.__str__()) for i in range(10_0000)] def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = 0 while number: # Increased Speed Slightly by checking every 5 digits together. sum_of_digits_squared += DIGITS_SQUARED[number % 10_00_00] number //= 10_00_00 return sum_of_digits_squared # There are 2 Chains made, # One ends with 89 with the chain member 58 being the one which when declared first, # there will be the least number of iterations for all the members to be checked. # The other one ends with 1 and has only one element 1. # So 58 and 1 are chosen to be declared at the starting. # Changed dictionary to an array to quicken the solution lowerCAmelCase = [None] * 1000_0000 lowerCAmelCase = True lowerCAmelCase = False def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" if CHAINS[number - 1] is not None: return CHAINS[number - 1] # type: ignore lowercase__ = chain(next_number(SCREAMING_SNAKE_CASE ) ) lowercase__ = number_chain while number < 10_00_00_00: lowercase__ = number_chain number *= 10 return number_chain def _a ( SCREAMING_SNAKE_CASE = 10_00_00_00 ): """simple docstring""" for i in range(1 , SCREAMING_SNAKE_CASE ): if CHAINS[i] is None: chain(i + 1 ) return CHAINS[:number].count(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod() print(f"""{solution() = }""")
93
0
from .glue import GlueDataset, GlueDataTrainingArguments from .language_modeling import ( LineByLineTextDataset, LineByLineWithRefDataset, LineByLineWithSOPTextDataset, TextDataset, TextDatasetForNextSentencePrediction, ) from .squad import SquadDataset, SquadDataTrainingArguments
14
from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES A__: List[Any] = logging.get_logger(__name__) A__: Any = OrderedDict( [ # Base model mapping ('''albert''', '''FlaxAlbertModel'''), ('''bart''', '''FlaxBartModel'''), ('''beit''', '''FlaxBeitModel'''), ('''bert''', '''FlaxBertModel'''), ('''big_bird''', '''FlaxBigBirdModel'''), ('''blenderbot''', '''FlaxBlenderbotModel'''), ('''blenderbot-small''', '''FlaxBlenderbotSmallModel'''), ('''clip''', '''FlaxCLIPModel'''), ('''distilbert''', '''FlaxDistilBertModel'''), ('''electra''', '''FlaxElectraModel'''), ('''gpt-sw3''', '''FlaxGPT2Model'''), ('''gpt2''', '''FlaxGPT2Model'''), ('''gpt_neo''', '''FlaxGPTNeoModel'''), ('''gptj''', '''FlaxGPTJModel'''), ('''longt5''', '''FlaxLongT5Model'''), ('''marian''', '''FlaxMarianModel'''), ('''mbart''', '''FlaxMBartModel'''), ('''mt5''', '''FlaxMT5Model'''), ('''opt''', '''FlaxOPTModel'''), ('''pegasus''', '''FlaxPegasusModel'''), ('''regnet''', '''FlaxRegNetModel'''), ('''resnet''', '''FlaxResNetModel'''), ('''roberta''', '''FlaxRobertaModel'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormModel'''), ('''roformer''', '''FlaxRoFormerModel'''), ('''t5''', '''FlaxT5Model'''), ('''vision-text-dual-encoder''', '''FlaxVisionTextDualEncoderModel'''), ('''vit''', '''FlaxViTModel'''), ('''wav2vec2''', '''FlaxWav2Vec2Model'''), ('''whisper''', '''FlaxWhisperModel'''), ('''xglm''', '''FlaxXGLMModel'''), ('''xlm-roberta''', '''FlaxXLMRobertaModel'''), ] ) A__: Dict = OrderedDict( [ # Model for pre-training mapping ('''albert''', '''FlaxAlbertForPreTraining'''), ('''bart''', '''FlaxBartForConditionalGeneration'''), ('''bert''', '''FlaxBertForPreTraining'''), ('''big_bird''', '''FlaxBigBirdForPreTraining'''), ('''electra''', '''FlaxElectraForPreTraining'''), ('''longt5''', '''FlaxLongT5ForConditionalGeneration'''), ('''mbart''', '''FlaxMBartForConditionalGeneration'''), ('''mt5''', '''FlaxMT5ForConditionalGeneration'''), ('''roberta''', '''FlaxRobertaForMaskedLM'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForMaskedLM'''), ('''roformer''', '''FlaxRoFormerForMaskedLM'''), ('''t5''', '''FlaxT5ForConditionalGeneration'''), ('''wav2vec2''', '''FlaxWav2Vec2ForPreTraining'''), ('''whisper''', '''FlaxWhisperForConditionalGeneration'''), ('''xlm-roberta''', '''FlaxXLMRobertaForMaskedLM'''), ] ) A__: Optional[int] = OrderedDict( [ # Model for Masked LM mapping ('''albert''', '''FlaxAlbertForMaskedLM'''), ('''bart''', '''FlaxBartForConditionalGeneration'''), ('''bert''', '''FlaxBertForMaskedLM'''), ('''big_bird''', '''FlaxBigBirdForMaskedLM'''), ('''distilbert''', '''FlaxDistilBertForMaskedLM'''), ('''electra''', '''FlaxElectraForMaskedLM'''), ('''mbart''', '''FlaxMBartForConditionalGeneration'''), ('''roberta''', '''FlaxRobertaForMaskedLM'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForMaskedLM'''), ('''roformer''', '''FlaxRoFormerForMaskedLM'''), ('''xlm-roberta''', '''FlaxXLMRobertaForMaskedLM'''), ] ) A__: Optional[Any] = OrderedDict( [ # Model for Seq2Seq Causal LM mapping ('''bart''', '''FlaxBartForConditionalGeneration'''), ('''blenderbot''', '''FlaxBlenderbotForConditionalGeneration'''), ('''blenderbot-small''', '''FlaxBlenderbotSmallForConditionalGeneration'''), ('''encoder-decoder''', '''FlaxEncoderDecoderModel'''), ('''longt5''', '''FlaxLongT5ForConditionalGeneration'''), ('''marian''', '''FlaxMarianMTModel'''), ('''mbart''', '''FlaxMBartForConditionalGeneration'''), ('''mt5''', '''FlaxMT5ForConditionalGeneration'''), ('''pegasus''', '''FlaxPegasusForConditionalGeneration'''), ('''t5''', '''FlaxT5ForConditionalGeneration'''), ] ) A__: Optional[Any] = OrderedDict( [ # Model for Image-classsification ('''beit''', '''FlaxBeitForImageClassification'''), ('''regnet''', '''FlaxRegNetForImageClassification'''), ('''resnet''', '''FlaxResNetForImageClassification'''), ('''vit''', '''FlaxViTForImageClassification'''), ] ) A__: List[Any] = OrderedDict( [ ('''vision-encoder-decoder''', '''FlaxVisionEncoderDecoderModel'''), ] ) A__: int = OrderedDict( [ # Model for Causal LM mapping ('''bart''', '''FlaxBartForCausalLM'''), ('''bert''', '''FlaxBertForCausalLM'''), ('''big_bird''', '''FlaxBigBirdForCausalLM'''), ('''electra''', '''FlaxElectraForCausalLM'''), ('''gpt-sw3''', '''FlaxGPT2LMHeadModel'''), ('''gpt2''', '''FlaxGPT2LMHeadModel'''), ('''gpt_neo''', '''FlaxGPTNeoForCausalLM'''), ('''gptj''', '''FlaxGPTJForCausalLM'''), ('''opt''', '''FlaxOPTForCausalLM'''), ('''roberta''', '''FlaxRobertaForCausalLM'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForCausalLM'''), ('''xglm''', '''FlaxXGLMForCausalLM'''), ('''xlm-roberta''', '''FlaxXLMRobertaForCausalLM'''), ] ) A__: Optional[Any] = OrderedDict( [ # Model for Sequence Classification mapping ('''albert''', '''FlaxAlbertForSequenceClassification'''), ('''bart''', '''FlaxBartForSequenceClassification'''), ('''bert''', '''FlaxBertForSequenceClassification'''), ('''big_bird''', '''FlaxBigBirdForSequenceClassification'''), ('''distilbert''', '''FlaxDistilBertForSequenceClassification'''), ('''electra''', '''FlaxElectraForSequenceClassification'''), ('''mbart''', '''FlaxMBartForSequenceClassification'''), ('''roberta''', '''FlaxRobertaForSequenceClassification'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForSequenceClassification'''), ('''roformer''', '''FlaxRoFormerForSequenceClassification'''), ('''xlm-roberta''', '''FlaxXLMRobertaForSequenceClassification'''), ] ) A__: Optional[Any] = OrderedDict( [ # Model for Question Answering mapping ('''albert''', '''FlaxAlbertForQuestionAnswering'''), ('''bart''', '''FlaxBartForQuestionAnswering'''), ('''bert''', '''FlaxBertForQuestionAnswering'''), ('''big_bird''', '''FlaxBigBirdForQuestionAnswering'''), ('''distilbert''', '''FlaxDistilBertForQuestionAnswering'''), ('''electra''', '''FlaxElectraForQuestionAnswering'''), ('''mbart''', '''FlaxMBartForQuestionAnswering'''), ('''roberta''', '''FlaxRobertaForQuestionAnswering'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForQuestionAnswering'''), ('''roformer''', '''FlaxRoFormerForQuestionAnswering'''), ('''xlm-roberta''', '''FlaxXLMRobertaForQuestionAnswering'''), ] ) A__: List[Any] = OrderedDict( [ # Model for Token Classification mapping ('''albert''', '''FlaxAlbertForTokenClassification'''), ('''bert''', '''FlaxBertForTokenClassification'''), ('''big_bird''', '''FlaxBigBirdForTokenClassification'''), ('''distilbert''', '''FlaxDistilBertForTokenClassification'''), ('''electra''', '''FlaxElectraForTokenClassification'''), ('''roberta''', '''FlaxRobertaForTokenClassification'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForTokenClassification'''), ('''roformer''', '''FlaxRoFormerForTokenClassification'''), ('''xlm-roberta''', '''FlaxXLMRobertaForTokenClassification'''), ] ) A__: Optional[int] = OrderedDict( [ # Model for Multiple Choice mapping ('''albert''', '''FlaxAlbertForMultipleChoice'''), ('''bert''', '''FlaxBertForMultipleChoice'''), ('''big_bird''', '''FlaxBigBirdForMultipleChoice'''), ('''distilbert''', '''FlaxDistilBertForMultipleChoice'''), ('''electra''', '''FlaxElectraForMultipleChoice'''), ('''roberta''', '''FlaxRobertaForMultipleChoice'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForMultipleChoice'''), ('''roformer''', '''FlaxRoFormerForMultipleChoice'''), ('''xlm-roberta''', '''FlaxXLMRobertaForMultipleChoice'''), ] ) A__: Optional[Any] = OrderedDict( [ ('''bert''', '''FlaxBertForNextSentencePrediction'''), ] ) A__: Dict = OrderedDict( [ ('''speech-encoder-decoder''', '''FlaxSpeechEncoderDecoderModel'''), ('''whisper''', '''FlaxWhisperForConditionalGeneration'''), ] ) A__: Dict = OrderedDict( [ ('''whisper''', '''FlaxWhisperForAudioClassification'''), ] ) A__: Optional[Any] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) A__: List[str] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) A__: str = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) A__: int = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) A__: str = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) A__: List[str] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) A__: List[Any] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) A__: int = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) A__: str = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) A__: Any = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) A__: Optional[Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) A__: Optional[int] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) A__: str = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) A__: Union[str, Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class _a ( _BaseAutoModelClass): """simple docstring""" UpperCamelCase__ = FLAX_MODEL_MAPPING A__: int = auto_class_update(FlaxAutoModel) class _a ( _BaseAutoModelClass): """simple docstring""" UpperCamelCase__ = FLAX_MODEL_FOR_PRETRAINING_MAPPING A__: Dict = auto_class_update(FlaxAutoModelForPreTraining, head_doc='''pretraining''') class _a ( _BaseAutoModelClass): """simple docstring""" UpperCamelCase__ = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING A__: Any = auto_class_update(FlaxAutoModelForCausalLM, head_doc='''causal language modeling''') class _a ( _BaseAutoModelClass): """simple docstring""" UpperCamelCase__ = FLAX_MODEL_FOR_MASKED_LM_MAPPING A__: List[Any] = auto_class_update(FlaxAutoModelForMaskedLM, head_doc='''masked language modeling''') class _a ( _BaseAutoModelClass): """simple docstring""" UpperCamelCase__ = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING A__: int = auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc='''sequence-to-sequence language modeling''', checkpoint_for_example='''t5-base''' ) class _a ( _BaseAutoModelClass): """simple docstring""" UpperCamelCase__ = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING A__: Tuple = auto_class_update( FlaxAutoModelForSequenceClassification, head_doc='''sequence classification''' ) class _a ( _BaseAutoModelClass): """simple docstring""" UpperCamelCase__ = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING A__: Optional[Any] = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc='''question answering''') class _a ( _BaseAutoModelClass): """simple docstring""" UpperCamelCase__ = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING A__: str = auto_class_update( FlaxAutoModelForTokenClassification, head_doc='''token classification''' ) class _a ( _BaseAutoModelClass): """simple docstring""" UpperCamelCase__ = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING A__: List[Any] = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc='''multiple choice''') class _a ( _BaseAutoModelClass): """simple docstring""" UpperCamelCase__ = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING A__: Any = auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc='''next sentence prediction''' ) class _a ( _BaseAutoModelClass): """simple docstring""" UpperCamelCase__ = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING A__: Dict = auto_class_update( FlaxAutoModelForImageClassification, head_doc='''image classification''' ) class _a ( _BaseAutoModelClass): """simple docstring""" UpperCamelCase__ = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING A__: Dict = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc='''vision-to-text modeling''') class _a ( _BaseAutoModelClass): """simple docstring""" UpperCamelCase__ = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING A__: List[Any] = auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc='''sequence-to-sequence speech-to-text modeling''' )
149
0
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType snake_case : Union[str, Any] = logging.get_logger(__name__) snake_case : List[str] = { "microsoft/deberta-v2-xlarge": "https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json", "microsoft/deberta-v2-xxlarge": "https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json", "microsoft/deberta-v2-xlarge-mnli": ( "https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json" ), "microsoft/deberta-v2-xxlarge-mnli": ( "https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json" ), } class _snake_case ( snake_case ): UpperCamelCase__ = 'deberta-v2' def __init__( self , _a=128_100 , _a=1_536 , _a=24 , _a=24 , _a=6_144 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=0 , _a=0.02 , _a=1e-7 , _a=False , _a=-1 , _a=0 , _a=True , _a=None , _a=0 , _a="gelu" , **_a , ): super().__init__(**_a ) __magic_name__ : Tuple = hidden_size __magic_name__ : int = num_hidden_layers __magic_name__ : Optional[int] = num_attention_heads __magic_name__ : Dict = intermediate_size __magic_name__ : List[str] = hidden_act __magic_name__ : Dict = hidden_dropout_prob __magic_name__ : Dict = attention_probs_dropout_prob __magic_name__ : Union[str, Any] = max_position_embeddings __magic_name__ : List[Any] = type_vocab_size __magic_name__ : Tuple = initializer_range __magic_name__ : Dict = relative_attention __magic_name__ : Tuple = max_relative_positions __magic_name__ : str = pad_token_id __magic_name__ : Optional[Any] = position_biased_input # Backwards compatibility if type(_a ) == str: __magic_name__ : str = [x.strip() for x in pos_att_type.lower().split("|" )] __magic_name__ : str = pos_att_type __magic_name__ : int = vocab_size __magic_name__ : List[Any] = layer_norm_eps __magic_name__ : Union[str, Any] = kwargs.get("pooler_hidden_size" , _a ) __magic_name__ : str = pooler_dropout __magic_name__ : Optional[Any] = pooler_hidden_act class _snake_case ( snake_case ): @property def SCREAMING_SNAKE_CASE ( self ): if self.task == "multiple-choice": __magic_name__ : Union[str, Any] = {0: "batch", 1: "choice", 2: "sequence"} else: __magic_name__ : int = {0: "batch", 1: "sequence"} if self._config.type_vocab_size > 0: return OrderedDict( [("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis)] ) else: return OrderedDict([("input_ids", dynamic_axis), ("attention_mask", dynamic_axis)] ) @property def SCREAMING_SNAKE_CASE ( self ): return 12 def SCREAMING_SNAKE_CASE ( self , _a , _a = -1 , _a = -1 , _a = -1 , _a = False , _a = None , _a = 3 , _a = 40 , _a = 40 , _a = None , ): __magic_name__ : List[str] = super().generate_dummy_inputs(preprocessor=_a , framework=_a ) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
358
from __future__ import annotations snake_case : Optional[int] = { "A": ["B", "C", "E"], "B": ["A", "D", "E"], "C": ["A", "F", "G"], "D": ["B"], "E": ["A", "B", "D"], "F": ["C"], "G": ["C"], } class _snake_case : def __init__( self , _a , _a ): __magic_name__ : Any = graph # mapping node to its parent in resulting breadth first tree __magic_name__ : dict[str, str | None] = {} __magic_name__ : List[str] = source_vertex def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : List[str] = {self.source_vertex} __magic_name__ : Optional[int] = None __magic_name__ : int = [self.source_vertex] # first in first out queue while queue: __magic_name__ : Optional[Any] = queue.pop(0 ) for adjacent_vertex in self.graph[vertex]: if adjacent_vertex not in visited: visited.add(_a ) __magic_name__ : Dict = vertex queue.append(_a ) def SCREAMING_SNAKE_CASE ( self , _a ): if target_vertex == self.source_vertex: return self.source_vertex __magic_name__ : str = self.parent.get(_a ) if target_vertex_parent is None: __magic_name__ : Union[str, Any] = ( f'''No path from vertex: {self.source_vertex} to vertex: {target_vertex}''' ) raise ValueError(_a ) return self.shortest_path(_a ) + f'''->{target_vertex}''' if __name__ == "__main__": snake_case : int = Graph(graph, "G") g.breath_first_search() print(g.shortest_path("D")) print(g.shortest_path("G")) print(g.shortest_path("Foo"))
41
0
'''simple docstring''' import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand _lowerCAmelCase = ( '''4S 3H 2C 7S 5H''', '''9D 8H 2C 6S 7H''', '''2D 6D 9D TH 7D''', '''TC 8C 2S JH 6C''', '''JH 8S TH AH QH''', '''TS KS 5S 9S AC''', '''KD 6S 9D TH AD''', '''KS 8D 4D 9S 4S''', # pair '''8C 4S KH JS 4D''', # pair '''QH 8H KD JH 8S''', # pair '''KC 4H KS 2H 8D''', # pair '''KD 4S KC 3H 8S''', # pair '''AH 8S AS KC JH''', # pair '''3H 4C 4H 3S 2H''', # 2 pairs '''5S 5D 2C KH KH''', # 2 pairs '''3C KH 5D 5S KH''', # 2 pairs '''AS 3C KH AD KH''', # 2 pairs '''7C 7S 3S 7H 5S''', # 3 of a kind '''7C 7S KH 2H 7H''', # 3 of a kind '''AC KH QH AH AS''', # 3 of a kind '''2H 4D 3C AS 5S''', # straight (low ace) '''3C 5C 4C 2C 6H''', # straight '''6S 8S 7S 5H 9H''', # straight '''JS QS 9H TS KH''', # straight '''QC KH TS JS AH''', # straight (high ace) '''8C 9C 5C 3C TC''', # flush '''3S 8S 9S 5S KS''', # flush '''4C 5C 9C 8C KC''', # flush '''JH 8H AH KH QH''', # flush '''3D 2H 3H 2C 2D''', # full house '''2H 2C 3S 3H 3D''', # full house '''KH KC 3S 3H 3D''', # full house '''JC 6H JS JD JH''', # 4 of a kind '''JC 7H JS JD JH''', # 4 of a kind '''JC KH JS JD JH''', # 4 of a kind '''2S AS 4S 5S 3S''', # straight flush (low ace) '''2D 6D 3D 4D 5D''', # straight flush '''5C 6C 3C 7C 4C''', # straight flush '''JH 9H TH KH QH''', # straight flush '''JH AH TH KH QH''', # royal flush (high ace straight flush) ) _lowerCAmelCase = ( ('''2H 3H 4H 5H 6H''', '''KS AS TS QS JS''', '''Loss'''), ('''2H 3H 4H 5H 6H''', '''AS AD AC AH JD''', '''Win'''), ('''AS AH 2H AD AC''', '''JS JD JC JH 3D''', '''Win'''), ('''2S AH 2H AS AC''', '''JS JD JC JH AD''', '''Loss'''), ('''2S AH 2H AS AC''', '''2H 3H 5H 6H 7H''', '''Win'''), ('''AS 3S 4S 8S 2S''', '''2H 3H 5H 6H 7H''', '''Win'''), ('''2H 3H 5H 6H 7H''', '''2S 3H 4H 5S 6C''', '''Win'''), ('''2S 3H 4H 5S 6C''', '''3D 4C 5H 6H 2S''', '''Tie'''), ('''2S 3H 4H 5S 6C''', '''AH AC 5H 6H AS''', '''Win'''), ('''2S 2H 4H 5S 4C''', '''AH AC 5H 6H AS''', '''Loss'''), ('''2S 2H 4H 5S 4C''', '''AH AC 5H 6H 7S''', '''Win'''), ('''6S AD 7H 4S AS''', '''AH AC 5H 6H 7S''', '''Loss'''), ('''2S AH 4H 5S KC''', '''AH AC 5H 6H 7S''', '''Loss'''), ('''2S 3H 6H 7S 9C''', '''7H 3C TH 6H 9S''', '''Loss'''), ('''4S 5H 6H TS AC''', '''3S 5H 6H TS AC''', '''Win'''), ('''2S AH 4H 5S 6C''', '''AD 4C 5H 6H 2C''', '''Tie'''), ('''AS AH 3H AD AC''', '''AS AH 2H AD AC''', '''Win'''), ('''AH AC 5H 5C QS''', '''AH AC 5H 5C KS''', '''Loss'''), ('''AH AC 5H 5C QS''', '''KH KC 5H 5C QS''', '''Win'''), ('''7C 7S KH 2H 7H''', '''3C 3S AH 2H 3H''', '''Win'''), ('''3C 3S AH 2H 3H''', '''7C 7S KH 2H 7H''', '''Loss'''), ('''6H 5H 4H 3H 2H''', '''5H 4H 3H 2H AH''', '''Win'''), ('''5H 4H 3H 2H AH''', '''5H 4H 3H 2H AH''', '''Tie'''), ('''5H 4H 3H 2H AH''', '''6H 5H 4H 3H 2H''', '''Loss'''), ('''AH AD KS KC AC''', '''AH KD KH AC KC''', '''Win'''), ('''2H 4D 3C AS 5S''', '''2H 4D 3C 6S 5S''', '''Loss'''), ('''2H 3S 3C 3H 2S''', '''3S 3C 2S 2H 2D''', '''Win'''), ('''4D 6D 5D 2D JH''', '''3S 8S 3H TC KH''', '''Loss'''), ('''4S 6C 8S 3S 7S''', '''AD KS 2D 7D 7C''', '''Loss'''), ('''6S 4C 7H 8C 3H''', '''5H JC AH 9D 9C''', '''Loss'''), ('''9D 9H JH TC QH''', '''3C 2S JS 5C 7H''', '''Win'''), ('''2H TC 8S AD 9S''', '''4H TS 7H 2C 5C''', '''Win'''), ('''9D 3S 2C 7S 7C''', '''JC TD 3C TC 9H''', '''Loss'''), ) _lowerCAmelCase = ( ('''2H 3H 4H 5H 6H''', True), ('''AS AH 2H AD AC''', False), ('''2H 3H 5H 6H 7H''', True), ('''KS AS TS QS JS''', True), ('''8H 9H QS JS TH''', False), ('''AS 3S 4S 8S 2S''', True), ) _lowerCAmelCase = ( ('''2H 3H 4H 5H 6H''', True), ('''AS AH 2H AD AC''', False), ('''2H 3H 5H 6H 7H''', False), ('''KS AS TS QS JS''', True), ('''8H 9H QS JS TH''', True), ) _lowerCAmelCase = ( ('''2H 4D 3C AS 5S''', True, [5, 4, 3, 2, 14]), ('''2H 5D 3C AS 5S''', False, [14, 5, 5, 3, 2]), ('''JH QD KC AS TS''', False, [14, 13, 12, 11, 10]), ('''9D 3S 2C 7S 7C''', False, [9, 7, 7, 3, 2]), ) _lowerCAmelCase = ( ('''JH AH TH KH QH''', 0), ('''JH 9H TH KH QH''', 0), ('''JC KH JS JD JH''', 7), ('''KH KC 3S 3H 3D''', 6), ('''8C 9C 5C 3C TC''', 0), ('''JS QS 9H TS KH''', 0), ('''7C 7S KH 2H 7H''', 3), ('''3C KH 5D 5S KH''', 2), ('''QH 8H KD JH 8S''', 1), ('''2D 6D 9D TH 7D''', 0), ) _lowerCAmelCase = ( ('''JH AH TH KH QH''', 23), ('''JH 9H TH KH QH''', 22), ('''JC KH JS JD JH''', 21), ('''KH KC 3S 3H 3D''', 20), ('''8C 9C 5C 3C TC''', 19), ('''JS QS 9H TS KH''', 18), ('''7C 7S KH 2H 7H''', 17), ('''3C KH 5D 5S KH''', 16), ('''QH 8H KD JH 8S''', 15), ('''2D 6D 9D TH 7D''', 14), ) def __lowerCAmelCase ( ): __UpperCamelCase : List[Any] = randrange(len(_lowerCamelCase ) ), randrange(len(_lowerCamelCase ) ) __UpperCamelCase : Optional[Any] = ["""Loss""", """Tie""", """Win"""][(play >= oppo) + (play > oppo)] __UpperCamelCase : Union[str, Any] = SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def __lowerCAmelCase ( snake_case__ = 100 ): return (generate_random_hand() for _ in range(_lowerCamelCase )) @pytest.mark.parametrize("hand, expected" , _lowerCamelCase ) def __lowerCAmelCase ( snake_case__ , snake_case__ ): assert PokerHand(_lowerCamelCase )._is_flush() == expected @pytest.mark.parametrize("hand, expected" , _lowerCamelCase ) def __lowerCAmelCase ( snake_case__ , snake_case__ ): assert PokerHand(_lowerCamelCase )._is_straight() == expected @pytest.mark.parametrize("hand, expected, card_values" , _lowerCamelCase ) def __lowerCAmelCase ( snake_case__ , snake_case__ , snake_case__ ): __UpperCamelCase : int = PokerHand(_lowerCamelCase ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize("hand, expected" , _lowerCamelCase ) def __lowerCAmelCase ( snake_case__ , snake_case__ ): assert PokerHand(_lowerCamelCase )._is_same_kind() == expected @pytest.mark.parametrize("hand, expected" , _lowerCamelCase ) def __lowerCAmelCase ( snake_case__ , snake_case__ ): assert PokerHand(_lowerCamelCase )._hand_type == expected @pytest.mark.parametrize("hand, other, expected" , _lowerCamelCase ) def __lowerCAmelCase ( snake_case__ , snake_case__ , snake_case__ ): assert PokerHand(_lowerCamelCase ).compare_with(PokerHand(_lowerCamelCase ) ) == expected @pytest.mark.parametrize("hand, other, expected" , generate_random_hands() ) def __lowerCAmelCase ( snake_case__ , snake_case__ , snake_case__ ): assert PokerHand(_lowerCamelCase ).compare_with(PokerHand(_lowerCamelCase ) ) == expected def __lowerCAmelCase ( ): __UpperCamelCase : Optional[Any] = [PokerHand(_lowerCamelCase ) for hand in SORTED_HANDS] __UpperCamelCase : Any = poker_hands.copy() shuffle(_lowerCamelCase ) __UpperCamelCase : List[str] = chain(sorted(_lowerCamelCase ) ) for index, hand in enumerate(_lowerCamelCase ): assert hand == poker_hands[index] def __lowerCAmelCase ( ): # Test that five high straights are compared correctly. __UpperCamelCase : Dict = [PokerHand("2D AC 3H 4H 5S" ), PokerHand("2S 3H 4H 5S 6C" )] pokerhands.sort(reverse=_lowerCamelCase ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def __lowerCAmelCase ( ): # Multiple calls to five_high_straight function should still return True # and shouldn't mutate the list in every call other than the first. __UpperCamelCase : Optional[int] = PokerHand("2C 4S AS 3D 5C" ) __UpperCamelCase : List[Any] = True __UpperCamelCase : Optional[Any] = [5, 4, 3, 2, 14] for _ in range(10 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def __lowerCAmelCase ( ): # Problem number 54 from Project Euler # Testing from poker_hands.txt file __UpperCamelCase : Union[str, Any] = 0 __UpperCamelCase : Optional[Any] = os.path.abspath(os.path.dirname(_lowerCamelCase ) ) __UpperCamelCase : str = os.path.join(_lowerCamelCase , "poker_hands.txt" ) with open(_lowerCamelCase ) as file_hand: for line in file_hand: __UpperCamelCase : List[Any] = line[:14].strip() __UpperCamelCase : Optional[int] = line[15:].strip() __UpperCamelCase : Any = PokerHand(_lowerCamelCase ), PokerHand(_lowerCamelCase ) __UpperCamelCase : Any = player.compare_with(_lowerCamelCase ) if output == "Win": answer += 1 assert answer == 376
298
'''simple docstring''' from __future__ import annotations import time from math import sqrt # 1 for manhattan, 0 for euclidean UpperCamelCase_ = 0 UpperCamelCase_ = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] UpperCamelCase_ = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right UpperCamelCase_ = tuple[int, int] class a_ : def __init__( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , ): _lowerCAmelCase : Optional[int] = pos_x _lowerCAmelCase : List[str] = pos_y _lowerCAmelCase : Tuple = (pos_y, pos_x) _lowerCAmelCase : List[Any] = goal_x _lowerCAmelCase : int = goal_y _lowerCAmelCase : Union[str, Any] = g_cost _lowerCAmelCase : List[Any] = parent _lowerCAmelCase : List[Any] = self.calculate_heuristic() _lowerCAmelCase : Optional[int] = self.g_cost + self.h_cost def __UpperCamelCase ( self ): _lowerCAmelCase : List[str] = self.pos_x - self.goal_x _lowerCAmelCase : Optional[int] = self.pos_y - self.goal_y if HEURISTIC == 1: return abs(snake_case_ ) + abs(snake_case_ ) else: return sqrt(dy**2 + dx**2 ) def __lt__( self , snake_case_ ): return self.f_cost < other.f_cost class a_ : def __init__( self , snake_case_ , snake_case_ ): _lowerCAmelCase : Optional[Any] = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , snake_case_ ) _lowerCAmelCase : Tuple = Node(goal[1] , goal[0] , goal[1] , goal[0] , 9_9_9_9_9 , snake_case_ ) _lowerCAmelCase : List[str] = [self.start] _lowerCAmelCase : list[Node] = [] _lowerCAmelCase : List[str] = False def __UpperCamelCase ( self ): while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() _lowerCAmelCase : Optional[int] = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: return self.retrace_path(snake_case_ ) self.closed_nodes.append(snake_case_ ) _lowerCAmelCase : Optional[int] = self.get_successors(snake_case_ ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(snake_case_ ) else: # retrieve the best current path _lowerCAmelCase : Optional[Any] = self.open_nodes.pop(self.open_nodes.index(snake_case_ ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(snake_case_ ) else: self.open_nodes.append(snake_case_ ) return [self.start.pos] def __UpperCamelCase ( self , snake_case_ ): _lowerCAmelCase : Union[str, Any] = [] for action in delta: _lowerCAmelCase : Union[str, Any] = parent.pos_x + action[1] _lowerCAmelCase : Dict = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(snake_case_ ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( snake_case_ , snake_case_ , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , snake_case_ , ) ) return successors def __UpperCamelCase ( self , snake_case_ ): _lowerCAmelCase : List[Any] = node _lowerCAmelCase : Optional[Any] = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) _lowerCAmelCase : Optional[int] = current_node.parent path.reverse() return path class a_ : def __init__( self , snake_case_ , snake_case_ ): _lowerCAmelCase : List[str] = AStar(snake_case_ , snake_case_ ) _lowerCAmelCase : int = AStar(snake_case_ , snake_case_ ) _lowerCAmelCase : Optional[int] = False def __UpperCamelCase ( self ): while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes: self.fwd_astar.open_nodes.sort() self.bwd_astar.open_nodes.sort() _lowerCAmelCase : Tuple = self.fwd_astar.open_nodes.pop(0 ) _lowerCAmelCase : Optional[Any] = self.bwd_astar.open_nodes.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: return self.retrace_bidirectional_path( snake_case_ , snake_case_ ) self.fwd_astar.closed_nodes.append(snake_case_ ) self.bwd_astar.closed_nodes.append(snake_case_ ) _lowerCAmelCase : List[str] = current_bwd_node _lowerCAmelCase : Dict = current_fwd_node _lowerCAmelCase : Any = { self.fwd_astar: self.fwd_astar.get_successors(snake_case_ ), self.bwd_astar: self.bwd_astar.get_successors(snake_case_ ), } for astar in [self.fwd_astar, self.bwd_astar]: for child_node in successors[astar]: if child_node in astar.closed_nodes: continue if child_node not in astar.open_nodes: astar.open_nodes.append(snake_case_ ) else: # retrieve the best current path _lowerCAmelCase : List[Any] = astar.open_nodes.pop( astar.open_nodes.index(snake_case_ ) ) if child_node.g_cost < better_node.g_cost: astar.open_nodes.append(snake_case_ ) else: astar.open_nodes.append(snake_case_ ) return [self.fwd_astar.start.pos] def __UpperCamelCase ( self , snake_case_ , snake_case_ ): _lowerCAmelCase : int = self.fwd_astar.retrace_path(snake_case_ ) _lowerCAmelCase : Optional[Any] = self.bwd_astar.retrace_path(snake_case_ ) bwd_path.pop() bwd_path.reverse() _lowerCAmelCase : Dict = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] UpperCamelCase_ = (0, 0) UpperCamelCase_ = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) UpperCamelCase_ = time.time() UpperCamelCase_ = AStar(init, goal) UpperCamelCase_ = a_star.search() UpperCamelCase_ = time.time() - start_time print(F'AStar execution time = {end_time:f} seconds') UpperCamelCase_ = time.time() UpperCamelCase_ = BidirectionalAStar(init, goal) UpperCamelCase_ = time.time() - bd_start_time print(F'BidirectionalAStar execution time = {bd_end_time:f} seconds')
309
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase : Any = { 'configuration_mobilebert': [ 'MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MobileBertConfig', 'MobileBertOnnxConfig', ], 'tokenization_mobilebert': ['MobileBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Optional[int] = ['MobileBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Any = [ 'MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'MobileBertForMaskedLM', 'MobileBertForMultipleChoice', 'MobileBertForNextSentencePrediction', 'MobileBertForPreTraining', 'MobileBertForQuestionAnswering', 'MobileBertForSequenceClassification', 'MobileBertForTokenClassification', 'MobileBertLayer', 'MobileBertModel', 'MobileBertPreTrainedModel', 'load_tf_weights_in_mobilebert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Dict = [ 'TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFMobileBertForMaskedLM', 'TFMobileBertForMultipleChoice', 'TFMobileBertForNextSentencePrediction', 'TFMobileBertForPreTraining', 'TFMobileBertForQuestionAnswering', 'TFMobileBertForSequenceClassification', 'TFMobileBertForTokenClassification', 'TFMobileBertMainLayer', 'TFMobileBertModel', 'TFMobileBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mobilebert import ( MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileBertConfig, MobileBertOnnxConfig, ) from .tokenization_mobilebert import MobileBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mobilebert_fast import MobileBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilebert import ( MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertLayer, MobileBertModel, MobileBertPreTrainedModel, load_tf_weights_in_mobilebert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilebert import ( TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertMainLayer, TFMobileBertModel, TFMobileBertPreTrainedModel, ) else: import sys lowerCamelCase : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
355
from typing import List from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : Optional[int] = logging.get_logger(__name__) lowerCamelCase : Tuple = { 'snap-research/efficientformer-l1-300': ( 'https://huggingface.co/snap-research/efficientformer-l1-300/resolve/main/config.json' ), } class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = """efficientformer""" def __init__( self , A = [3, 2, 6, 4] , A = [4_8, 9_6, 2_2_4, 4_4_8] , A = [True, True, True, True] , A = 4_4_8 , A = 3_2 , A = 4 , A = 7 , A = 5 , A = 8 , A = 4 , A = 0.0 , A = 1_6 , A = 3 , A = 3 , A = 3 , A = 2 , A = 1 , A = 0.0 , A = 1 , A = True , A = True , A = 1e-5 , A = "gelu" , A = 0.02 , A = 1e-1_2 , A = 2_2_4 , A = 1e-0_5 , **A , ) -> None: super().__init__(**A ) snake_case : Dict = hidden_act snake_case : int = hidden_dropout_prob snake_case : Any = hidden_sizes snake_case : Optional[Any] = num_hidden_layers snake_case : List[Any] = num_attention_heads snake_case : List[Any] = initializer_range snake_case : str = layer_norm_eps snake_case : Dict = patch_size snake_case : Optional[int] = num_channels snake_case : int = depths snake_case : Optional[int] = mlp_expansion_ratio snake_case : Any = downsamples snake_case : Dict = dim snake_case : Optional[int] = key_dim snake_case : Union[str, Any] = attention_ratio snake_case : Any = resolution snake_case : Dict = pool_size snake_case : Any = downsample_patch_size snake_case : Tuple = downsample_stride snake_case : Any = downsample_pad snake_case : Union[str, Any] = drop_path_rate snake_case : List[str] = num_metaad_blocks snake_case : Union[str, Any] = distillation snake_case : List[str] = use_layer_scale snake_case : int = layer_scale_init_value snake_case : Union[str, Any] = image_size snake_case : Dict = batch_norm_eps
176
0
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ..models.auto import AutoModelForVisionaSeq from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class __lowerCAmelCase ( lowerCAmelCase_): _a = "Salesforce/blip-image-captioning-base" _a = ( "This is a tool that generates a description of an image. It takes an input named `image` which should be the " "image to caption, and returns a text that contains the description in English." ) _a = "image_captioner" _a = AutoModelForVisionaSeq _a = ["image"] _a = ["text"] def __init__( self: Any , *_lowerCAmelCase: Any , **_lowerCAmelCase: Tuple ): requires_backends(self , ["vision"] ) super().__init__(*lowerCamelCase__ , **lowerCamelCase__ ) def SCREAMING_SNAKE_CASE ( self: List[Any] , _lowerCAmelCase: "Image" ): return self.pre_processor(images=lowerCamelCase__ , return_tensors="pt" ) def SCREAMING_SNAKE_CASE ( self: Optional[Any] , _lowerCAmelCase: List[str] ): return self.model.generate(**lowerCamelCase__ ) def SCREAMING_SNAKE_CASE ( self: Tuple , _lowerCAmelCase: List[str] ): return self.pre_processor.batch_decode(lowerCamelCase__ , skip_special_tokens=lowerCamelCase__ )[0].strip()
236
import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' @property def SCREAMING_SNAKE_CASE__ ( self : str ) -> Optional[int]: '''simple docstring''' torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = UNetaDModel( block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=3 ,out_channels=3 ,down_block_types=("""DownBlock2D""", """AttnDownBlock2D""") ,up_block_types=("""AttnUpBlock2D""", """UpBlock2D""") ,) return model def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.dummy_uncond_unet SCREAMING_SNAKE_CASE = KarrasVeScheduler() SCREAMING_SNAKE_CASE = KarrasVePipeline(unet=lowerCamelCase__ ,scheduler=lowerCamelCase__ ) pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) SCREAMING_SNAKE_CASE = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = pipe(num_inference_steps=2 ,generator=lowerCamelCase__ ,output_type="""numpy""" ).images SCREAMING_SNAKE_CASE = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = pipe(num_inference_steps=2 ,generator=lowerCamelCase__ ,output_type="""numpy""" ,return_dict=lowerCamelCase__ )[0] SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) SCREAMING_SNAKE_CASE = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = """google/ncsnpp-celebahq-256""" SCREAMING_SNAKE_CASE = UNetaDModel.from_pretrained(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = KarrasVeScheduler() SCREAMING_SNAKE_CASE = KarrasVePipeline(unet=lowerCamelCase__ ,scheduler=lowerCamelCase__ ) pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) SCREAMING_SNAKE_CASE = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = pipe(num_inference_steps=20 ,generator=lowerCamelCase__ ,output_type="""numpy""" ).images SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) SCREAMING_SNAKE_CASE = np.array([0.578, 0.5811, 0.5924, 0.5809, 0.587, 0.5886, 0.5861, 0.5802, 0.586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
296
0
import pytest import requests from datasets.utils.file_utils import http_head from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline @pytest.mark.integration def __A ( ): '''simple docstring''' with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT ): with pytest.raises(lowerCAmelCase__ ): requests.request('''GET''' , '''https://huggingface.co''' ) with pytest.raises(requests.exceptions.ConnectTimeout ): requests.request('''GET''' , '''https://huggingface.co''' , timeout=1.0 ) @pytest.mark.integration def __A ( ): '''simple docstring''' with offline(OfflineSimulationMode.CONNECTION_FAILS ): with pytest.raises(requests.exceptions.ConnectionError ): requests.request('''GET''' , '''https://huggingface.co''' ) def __A ( ): '''simple docstring''' with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1 ): with pytest.raises(lowerCAmelCase__ ): http_head('''https://huggingface.co''' )
365
import re import tempfile from pathlib import Path import pytest import yaml from datasets.utils.readme import ReadMe # @pytest.fixture # def example_yaml_structure(): __A = yaml.safe_load( '\\nname: ""\nallow_empty: false\nallow_empty_text: true\nsubsections:\n - name: "Dataset Card for X" # First-level markdown heading\n allow_empty: false\n allow_empty_text: true\n subsections:\n - name: "Table of Contents"\n allow_empty: false\n allow_empty_text: false\n subsections: null\n - name: "Dataset Description"\n allow_empty: false\n allow_empty_text: false\n subsections:\n - name: "Dataset Summary"\n allow_empty: false\n allow_empty_text: false\n subsections: null\n - name: "Supported Tasks and Leaderboards"\n allow_empty: true\n allow_empty_text: true\n subsections: null\n - name: Languages\n allow_empty: false\n allow_empty_text: true\n subsections: null\n' ) __A = { 'name': 'root', 'text': '', 'is_empty_text': True, 'subsections': [ { 'name': 'Dataset Card for My Dataset', 'text': '', 'is_empty_text': True, 'subsections': [ {'name': 'Table of Contents', 'text': 'Some text here.', 'is_empty_text': False, 'subsections': []}, { 'name': 'Dataset Description', 'text': 'Some text here.', 'is_empty_text': False, 'subsections': [ { 'name': 'Dataset Summary', 'text': 'Some text here.', 'is_empty_text': False, 'subsections': [], }, { 'name': 'Supported Tasks and Leaderboards', 'text': '', 'is_empty_text': True, 'subsections': [], }, {'name': 'Languages', 'text': 'Language Text', 'is_empty_text': False, 'subsections': []}, ], }, ], } ], } __A = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' __A = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n#### Extra Ignored Subsection\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' __A = { 'name': 'root', 'text': '', 'is_empty_text': True, 'subsections': [ { 'name': 'Dataset Card for My Dataset', 'text': '', 'is_empty_text': True, 'subsections': [ {'name': 'Table of Contents', 'text': 'Some text here.', 'is_empty_text': False, 'subsections': []}, { 'name': 'Dataset Description', 'text': 'Some text here.', 'is_empty_text': False, 'subsections': [ { 'name': 'Dataset Summary', 'text': 'Some text here.', 'is_empty_text': False, 'subsections': [ { 'name': 'Extra Ignored Subsection', 'text': '', 'is_empty_text': True, 'subsections': [], } ], }, { 'name': 'Supported Tasks and Leaderboards', 'text': '', 'is_empty_text': True, 'subsections': [], }, {'name': 'Languages', 'text': 'Language Text', 'is_empty_text': False, 'subsections': []}, ], }, ], } ], } __A = '\\n---\n---\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' __A = ( 'The following issues were found for the README at `{path}`:\n-\tEmpty YAML markers are present in the README.' ) __A = '\\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' __A = ( 'The following issues were found for the README at `{path}`:\n-\tNo YAML markers are present in the README.' ) __A = '\\n---\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' __A = 'The following issues were found for the README at `{path}`:\n-\tOnly the start of YAML tags present in the README.' __A = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' __A = 'The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Summary` but it is empty.\n-\tExpected some text in section `Dataset Summary` but it is empty (text in subsections are ignored).' __A = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n' __A = 'The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Card for My Dataset` but it is empty.\n-\tSection `Dataset Card for My Dataset` expected the following subsections: `Table of Contents`, `Dataset Description`. Found \'None\'.' __A = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Languages\nLanguage Text\n' __A = 'The following issues were found for the README at `{path}`:\n-\tSection `Dataset Description` is missing subsection: `Supported Tasks and Leaderboards`.' __A = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\n' __A = 'The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Languages` but it is empty.' __A = '\\n---\nlanguage:\n- zh\n- en\n---\n\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' __A = 'The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.' __A = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n# Dataset Card My Dataset\n' __A = 'The following issues were found for the README at `{path}`:\n-\tThe README has several first-level headings: `Dataset Card for My Dataset`, `Dataset Card My Dataset`. Only one heading is expected. Skipping further validation for this README.' __A = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' __A = 'The following issues were found for the README at `{path}`:\n-\tNo first-level heading starting with `Dataset Card for` found in README. Skipping further validation for this README.' __A = '' __A = 'The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.\n-\tNo YAML markers are present in the README.' __A = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' __A = 'The following issues were found while parsing the README at `{path}`:\n-\tMultiple sections with the same heading `Dataset Card for My Dataset` have been found. Please keep only one of these sections.' @pytest.mark.parametrize( '''readme_md, expected_dict''' , [ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ] , ) def __A ( _lowercase , _lowercase ): '''simple docstring''' assert ReadMe.from_string(_lowercase , _lowercase ).to_dict() == expected_dict @pytest.mark.parametrize( '''readme_md, expected_error''' , [ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ] , ) def __A ( _lowercase , _lowercase ): '''simple docstring''' with pytest.raises(_lowercase , match=re.escape(expected_error.format(path='''root''' ) ) ): _A = ReadMe.from_string(_lowercase , _lowercase ) readme.validate() @pytest.mark.parametrize( '''readme_md, expected_error''' , [ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ] , ) def __A ( _lowercase , _lowercase ): '''simple docstring''' with pytest.raises(_lowercase , match=re.escape(expected_error.format(path='''root''' ) ) ): ReadMe.from_string(_lowercase , _lowercase ) @pytest.mark.parametrize( '''readme_md,''' , [ (README_MULTIPLE_SAME_HEADING_1), ] , ) def __A ( _lowercase ): '''simple docstring''' ReadMe.from_string(_lowercase , _lowercase , suppress_parsing_errors=_lowercase ) @pytest.mark.parametrize( '''readme_md, expected_dict''' , [ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ] , ) def __A ( _lowercase , _lowercase ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: _A = Path(_lowercase ) / '''README.md''' with open(_lowercase , '''w+''' ) as readme_file: readme_file.write(_lowercase ) _A = ReadMe.from_readme(_lowercase , _lowercase ).to_dict() assert out["name"] == path assert out["text"] == "" assert out["is_empty_text"] assert out["subsections"] == expected_dict["subsections"] @pytest.mark.parametrize( '''readme_md, expected_error''' , [ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ] , ) def __A ( _lowercase , _lowercase ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: _A = Path(_lowercase ) / '''README.md''' with open(_lowercase , '''w+''' ) as readme_file: readme_file.write(_lowercase ) _A = expected_error.format(path=_lowercase ) with pytest.raises(_lowercase , match=re.escape(_lowercase ) ): _A = ReadMe.from_readme(_lowercase , _lowercase ) readme.validate() @pytest.mark.parametrize( '''readme_md, expected_error''' , [ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ] , ) def __A ( _lowercase , _lowercase ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: _A = Path(_lowercase ) / '''README.md''' with open(_lowercase , '''w+''' ) as readme_file: readme_file.write(_lowercase ) _A = expected_error.format(path=_lowercase ) with pytest.raises(_lowercase , match=re.escape(_lowercase ) ): ReadMe.from_readme(_lowercase , _lowercase ) @pytest.mark.parametrize( '''readme_md,''' , [ (README_MULTIPLE_SAME_HEADING_1), ] , ) def __A ( _lowercase ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: _A = Path(_lowercase ) / '''README.md''' with open(_lowercase , '''w+''' ) as readme_file: readme_file.write(_lowercase ) ReadMe.from_readme(_lowercase , _lowercase , suppress_parsing_errors=_lowercase )
75
0