code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
'''simple docstring''' import logging import os from dataclasses import dataclass from typing import List, Optional, Union import tqdm from filelock import FileLock from transformers import ( BartTokenizer, BartTokenizerFast, DataProcessor, PreTrainedTokenizer, RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, is_tf_available, is_torch_available, ) _lowerCamelCase : Tuple = logging.getLogger(__name__) @dataclass(frozen=_a ) class SCREAMING_SNAKE_CASE : """simple docstring""" _SCREAMING_SNAKE_CASE = 42 _SCREAMING_SNAKE_CASE = 42 _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = None @dataclass(frozen=_a ) class SCREAMING_SNAKE_CASE : """simple docstring""" _SCREAMING_SNAKE_CASE = 42 _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = None if is_torch_available(): import torch from torch.utils.data import Dataset class SCREAMING_SNAKE_CASE ( _a ): """simple docstring""" _SCREAMING_SNAKE_CASE = 42 def __init__( self : Union[str, Any] , UpperCamelCase__ : str , UpperCamelCase__ : PreTrainedTokenizer , UpperCamelCase__ : str , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : Union[str, Any]=False , UpperCamelCase__ : bool = False , ): """simple docstring""" UpperCamelCase = hans_processors[task]() UpperCamelCase = os.path.join( UpperCamelCase__ , 'cached_{}_{}_{}_{}'.format( 'dev' if evaluate else 'train' , tokenizer.__class__.__name__ , str(UpperCamelCase__ ) , UpperCamelCase__ , ) , ) UpperCamelCase = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) UpperCamelCase , UpperCamelCase = label_list[2], label_list[1] UpperCamelCase = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. UpperCamelCase = cached_features_file + '.lock' with FileLock(UpperCamelCase__ ): if os.path.exists(UpperCamelCase__ ) and not overwrite_cache: logger.info(f"""Loading features from cached file {cached_features_file}""" ) UpperCamelCase = torch.load(UpperCamelCase__ ) else: logger.info(f"""Creating features from dataset file at {data_dir}""" ) UpperCamelCase = ( processor.get_dev_examples(UpperCamelCase__ ) if evaluate else processor.get_train_examples(UpperCamelCase__ ) ) logger.info('Training examples: %s' , len(UpperCamelCase__ ) ) UpperCamelCase = hans_convert_examples_to_features(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) logger.info('Saving features into cached file %s' , UpperCamelCase__ ) torch.save(self.features , UpperCamelCase__ ) def __len__( self : Any ): """simple docstring""" return len(self.features ) def __getitem__( self : Optional[Any] , UpperCamelCase__ : Union[str, Any] ): """simple docstring""" return self.features[i] def A ( self : Any ): """simple docstring""" return self.label_list if is_tf_available(): import tensorflow as tf class SCREAMING_SNAKE_CASE : """simple docstring""" _SCREAMING_SNAKE_CASE = 42 def __init__( self : Optional[int] , UpperCamelCase__ : str , UpperCamelCase__ : PreTrainedTokenizer , UpperCamelCase__ : str , UpperCamelCase__ : Optional[int] = 1_2_8 , UpperCamelCase__ : Any=False , UpperCamelCase__ : bool = False , ): """simple docstring""" UpperCamelCase = hans_processors[task]() UpperCamelCase = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) UpperCamelCase , UpperCamelCase = label_list[2], label_list[1] UpperCamelCase = label_list UpperCamelCase = processor.get_dev_examples(UpperCamelCase__ ) if evaluate else processor.get_train_examples(UpperCamelCase__ ) UpperCamelCase = hans_convert_examples_to_features(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) def gen(): for ex_index, ex in tqdm.tqdm(enumerate(self.features ) , desc='convert examples to features' ): if ex_index % 1_0_0_0_0 == 0: logger.info('Writing example %d of %d' % (ex_index, len(UpperCamelCase__ )) ) yield ( { "example_id": 0, "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label, ) UpperCamelCase = tf.data.Dataset.from_generator( UpperCamelCase__ , ( { 'example_id': tf.intaa, 'input_ids': tf.intaa, 'attention_mask': tf.intaa, 'token_type_ids': tf.intaa, }, tf.intaa, ) , ( { 'example_id': tf.TensorShape([] ), 'input_ids': tf.TensorShape([None, None] ), 'attention_mask': tf.TensorShape([None, None] ), 'token_type_ids': tf.TensorShape([None, None] ), }, tf.TensorShape([] ), ) , ) def A ( self : Dict ): """simple docstring""" return self.dataset def __len__( self : Union[str, Any] ): """simple docstring""" return len(self.features ) def __getitem__( self : List[str] , UpperCamelCase__ : str ): """simple docstring""" return self.features[i] def A ( self : Tuple ): """simple docstring""" return self.label_list class SCREAMING_SNAKE_CASE ( _a ): """simple docstring""" def A ( self : List[Any] , UpperCamelCase__ : Optional[int] ): """simple docstring""" return self._create_examples(self._read_tsv(os.path.join(UpperCamelCase__ , 'heuristics_train_set.txt' ) ) , 'train' ) def A ( self : Optional[int] , UpperCamelCase__ : Union[str, Any] ): """simple docstring""" return self._create_examples(self._read_tsv(os.path.join(UpperCamelCase__ , 'heuristics_evaluation_set.txt' ) ) , 'dev' ) def A ( self : Optional[Any] ): """simple docstring""" return ["contradiction", "entailment", "neutral"] def A ( self : Optional[Any] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : str ): """simple docstring""" UpperCamelCase = [] for i, line in enumerate(UpperCamelCase__ ): if i == 0: continue UpperCamelCase = '%s-%s' % (set_type, line[0]) UpperCamelCase = line[5] UpperCamelCase = line[6] UpperCamelCase = line[7][2:] if line[7].startswith('ex' ) else line[7] UpperCamelCase = line[0] examples.append(InputExample(guid=UpperCamelCase__ , text_a=UpperCamelCase__ , text_b=UpperCamelCase__ , label=UpperCamelCase__ , pairID=UpperCamelCase__ ) ) return examples def __lowerCamelCase ( A__ , A__ , A__ , A__ , ) -> Union[str, Any]: """simple docstring""" UpperCamelCase = {label: i for i, label in enumerate(A__ )} UpperCamelCase = [] for ex_index, example in tqdm.tqdm(enumerate(A__ ) , desc='convert examples to features' ): if ex_index % 10_000 == 0: logger.info('Writing example %d' % (ex_index) ) UpperCamelCase = tokenizer( example.text_a , example.text_b , add_special_tokens=A__ , max_length=A__ , padding='max_length' , truncation=A__ , return_overflowing_tokens=A__ , ) UpperCamelCase = label_map[example.label] if example.label in label_map else 0 UpperCamelCase = int(example.pairID ) features.append(InputFeatures(**A__ , label=A__ , pairID=A__ ) ) for i, example in enumerate(examples[:5] ): logger.info('*** Example ***' ) logger.info(F"""guid: {example}""" ) logger.info(F"""features: {features[i]}""" ) return features _lowerCamelCase : Any = { "hans": 3, } _lowerCamelCase : Optional[int] = { "hans": HansProcessor, }
28
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _lowerCamelCase : List[Any] = { "configuration_m2m_100": ["M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP", "M2M100Config", "M2M100OnnxConfig"], "tokenization_m2m_100": ["M2M100Tokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : int = [ "M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST", "M2M100ForConditionalGeneration", "M2M100Model", "M2M100PreTrainedModel", ] if TYPE_CHECKING: from .configuration_mam_aaa import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, MaMaaaConfig, MaMaaaOnnxConfig from .tokenization_mam_aaa import MaMaaaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mam_aaa import ( M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST, MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaPreTrainedModel, ) else: import sys _lowerCamelCase : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
28
1
'''simple docstring''' import faiss # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import requests # noqa: F401 # Here to have a nice missing dependency error message early on import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on from mauve import compute_mauve # From: mauve-text import datasets UpperCamelCase = '''\ @inproceedings{pillutla-etal:mauve:neurips2021, title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers}, author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid}, booktitle = {NeurIPS}, year = {2021} } ''' UpperCamelCase = '''\ MAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure. MAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences. For details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021). This metrics is a wrapper around the official implementation of MAUVE: https://github.com/krishnap25/mauve ''' UpperCamelCase = ''' Calculates MAUVE scores between two lists of generated text and reference text. Args: predictions: list of generated text to score. Each predictions should be a string with tokens separated by spaces. references: list of reference for each prediction. Each reference should be a string with tokens separated by spaces. Optional Args: num_buckets: the size of the histogram to quantize P and Q. Options: \'auto\' (default) or an integer pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1 kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9 kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5 kmeans_max_iter: maximum number of k-means iterations. Default 500 featurize_model_name: name of the model from which features are obtained. Default \'gpt2-large\' Use one of [\'gpt2\', \'gpt2-medium\', \'gpt2-large\', \'gpt2-xl\']. device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU max_text_length: maximum number of tokens to consider. Default 1024 divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25 mauve_scaling_factor: "c" from the paper. Default 5. verbose: If True (default), print running time updates seed: random seed to initialize k-means cluster assignments. Returns: mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer, frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer, divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve, p_hist: a discrete distribution, which is a quantized version of the text distribution p_text, q_hist: same as above, but with q_text. Examples: >>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest >>> import datasets >>> mauve = datasets.load_metric(\'mauve\') >>> predictions = ["hello there", "general kenobi"] >>> references = ["hello there", "general kenobi"] >>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP >>> print(out.mauve) # doctest: +SKIP 1.0 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase_ ( datasets.Metric ): '''simple docstring''' def _snake_case ( self : Union[str, Any] ) -> Dict: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='''https://github.com/krishnap25/mauve''' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , codebase_urls=['''https://github.com/krishnap25/mauve'''] , reference_urls=[ '''https://arxiv.org/abs/2102.01454''', '''https://github.com/krishnap25/mauve''', ] , ) def _snake_case ( self : List[Any] , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Any=None , SCREAMING_SNAKE_CASE_ : List[str]=None , SCREAMING_SNAKE_CASE_ : List[Any]=None , SCREAMING_SNAKE_CASE_ : Optional[int]=None , SCREAMING_SNAKE_CASE_ : List[Any]="auto" , SCREAMING_SNAKE_CASE_ : str=-1 , SCREAMING_SNAKE_CASE_ : Optional[int]=0.9 , SCREAMING_SNAKE_CASE_ : Dict=5 , SCREAMING_SNAKE_CASE_ : Optional[int]=5_00 , SCREAMING_SNAKE_CASE_ : str="gpt2-large" , SCREAMING_SNAKE_CASE_ : List[str]=-1 , SCREAMING_SNAKE_CASE_ : List[str]=10_24 , SCREAMING_SNAKE_CASE_ : str=25 , SCREAMING_SNAKE_CASE_ : List[Any]=5 , SCREAMING_SNAKE_CASE_ : List[Any]=True , SCREAMING_SNAKE_CASE_ : str=25 , ) -> List[Any]: '''simple docstring''' A: str = compute_mauve( p_text=SCREAMING_SNAKE_CASE_ , q_text=SCREAMING_SNAKE_CASE_ , p_features=SCREAMING_SNAKE_CASE_ , q_features=SCREAMING_SNAKE_CASE_ , p_tokens=SCREAMING_SNAKE_CASE_ , q_tokens=SCREAMING_SNAKE_CASE_ , num_buckets=SCREAMING_SNAKE_CASE_ , pca_max_data=SCREAMING_SNAKE_CASE_ , kmeans_explained_var=SCREAMING_SNAKE_CASE_ , kmeans_num_redo=SCREAMING_SNAKE_CASE_ , kmeans_max_iter=SCREAMING_SNAKE_CASE_ , featurize_model_name=SCREAMING_SNAKE_CASE_ , device_id=SCREAMING_SNAKE_CASE_ , max_text_length=SCREAMING_SNAKE_CASE_ , divergence_curve_discretization_size=SCREAMING_SNAKE_CASE_ , mauve_scaling_factor=SCREAMING_SNAKE_CASE_ , verbose=SCREAMING_SNAKE_CASE_ , seed=SCREAMING_SNAKE_CASE_ , ) return out
334
'''simple docstring''' import requests UpperCamelCase = '''https://newsapi.org/v1/articles?source=bbc-news&sortBy=top&apiKey=''' def SCREAMING_SNAKE_CASE( __lowercase ) -> None: # fetching a list of articles in json format A: Tuple = requests.get(_NEWS_API + bbc_news_api_key ).json() # each article in the list is a dict for i, article in enumerate(bbc_news_page['''articles'''] , 1 ): print(F"""{i}.) {article['title']}""" ) if __name__ == "__main__": fetch_bbc_news(bbc_news_api_key='''<Your BBC News API key goes here>''')
334
1
'''simple docstring''' from __future__ import annotations from functools import lru_cache from math import ceil lowerCAmelCase__ = 100 lowerCAmelCase__ = set(range(3, NUM_PRIMES, 2)) primes.add(2) lowerCAmelCase__ = 42 for prime in range(3, ceil(NUM_PRIMES**0.5), 2): if prime not in primes: continue primes.difference_update(set(range(prime * prime, NUM_PRIMES, prime))) @lru_cache(maxsize=100 ) def _A ( A__ ): """simple docstring""" if number_to_partition < 0: return set() elif number_to_partition == 0: return {1} __lowercase = set() __lowercase = 42 __lowercase = 42 for prime in primes: if prime > number_to_partition: continue for sub in partition(number_to_partition - prime ): ret.add(sub * prime ) return ret def _A ( A__ = 5000 ): """simple docstring""" for number_to_partition in range(1 , lowercase__ ): if len(partition(lowercase__ ) ) > number_unique_partitions: return number_to_partition return None if __name__ == "__main__": print(f'{solution() = }')
104
from __future__ import annotations def _lowerCamelCase( lowercase__ , lowercase__ ) -> bool: '''simple docstring''' __lowercase= get_failure_array(lowercase__ ) # 2) Step through text searching for pattern __lowercase, __lowercase= 0, 0 # index into text, pattern while i < len(lowercase__ ): if pattern[j] == text[i]: if j == (len(lowercase__ ) - 1): return True j += 1 # if this is a prefix in our pattern # just go back far enough to continue elif j > 0: __lowercase= failure[j - 1] continue i += 1 return False def _lowerCamelCase( lowercase__ ) -> list[int]: '''simple docstring''' __lowercase= [0] __lowercase= 0 __lowercase= 1 while j < len(lowercase__ ): if pattern[i] == pattern[j]: i += 1 elif i > 0: __lowercase= failure[i - 1] continue j += 1 failure.append(lowercase__ ) return failure if __name__ == "__main__": # Test 1) lowerCAmelCase = '''abc1abc12''' lowerCAmelCase = '''alskfjaldsabc1abc1abc12k23adsfabcabc''' lowerCAmelCase = '''alskfjaldsk23adsfabcabc''' assert kmp(pattern, texta) and not kmp(pattern, texta) # Test 2) lowerCAmelCase = '''ABABX''' lowerCAmelCase = '''ABABZABABYABABX''' assert kmp(pattern, text) # Test 3) lowerCAmelCase = '''AAAB''' lowerCAmelCase = '''ABAAAAAB''' assert kmp(pattern, text) # Test 4) lowerCAmelCase = '''abcdabcy''' lowerCAmelCase = '''abcxabcdabxabcdabcdabcy''' assert kmp(pattern, text) # Test 5) lowerCAmelCase = '''aabaabaaa''' assert get_failure_array(pattern) == [0, 1, 0, 1, 2, 3, 4, 5, 2]
295
0
import random import timeit from functools import wraps from typing import Callable, Optional from ..configuration_utils import PretrainedConfig from ..models.auto.modeling_tf_auto import TF_MODEL_MAPPING, TF_MODEL_WITH_LM_HEAD_MAPPING from ..utils import is_pyanvml_available, is_tf_available, logging from .benchmark_utils import ( Benchmark, Memory, MemorySummary, measure_peak_memory_cpu, start_memory_tracing, stop_memory_tracing, ) if is_tf_available(): import tensorflow as tf from tensorflow.python.framework.errors_impl import ResourceExhaustedError from .benchmark_args_tf import TensorFlowBenchmarkArguments if is_pyanvml_available(): import pyanvml.pyanvml as nvml _A : Any = logging.get_logger(__name__) def _a ( UpperCAmelCase , UpperCAmelCase ) -> List[str]: """simple docstring""" def run_func(UpperCAmelCase ): @wraps(UpperCAmelCase ) def run_in_eager_mode(*UpperCAmelCase , **UpperCAmelCase ): return func(*UpperCAmelCase , **UpperCAmelCase ) @wraps(UpperCAmelCase ) @tf.function(experimental_compile=UpperCAmelCase ) def run_in_graph_mode(*UpperCAmelCase , **UpperCAmelCase ): return func(*UpperCAmelCase , **UpperCAmelCase ) if do_eager_mode is True: if use_xla is not False: raise ValueError( '''Cannot run model in XLA, if `args.eager_mode` is set to `True`. Please set `args.eager_mode=False`.''' ) return run_in_eager_mode else: return run_in_graph_mode return run_func def _a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> ["tf.Tensor"]: """simple docstring""" lowerCamelCase__ : List[Any] = random.Random() lowerCamelCase__ : str = [rng.randint(0 , vocab_size - 1 ) for i in range(batch_size * sequence_length )] return tf.constant(UpperCAmelCase , shape=(batch_size, sequence_length) , dtype=tf.intaa ) class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ): _UpperCAmelCase : TensorFlowBenchmarkArguments _UpperCAmelCase : PretrainedConfig _UpperCAmelCase : str = "TensorFlow" @property def __lowerCamelCase ( self : int ) ->Optional[int]: return tf.__version__ def __lowerCamelCase ( self : Optional[int] , A : str , A : int , A : int ) ->float: # initialize GPU on separate process lowerCamelCase__ : Dict = self.args.strategy if strategy is None: raise ValueError('''A device strategy has to be initialized before using TensorFlow.''' ) lowerCamelCase__ : int = self._prepare_inference_func(A , A , A ) return self._measure_speed(_inference ) def __lowerCamelCase ( self : str , A : str , A : int , A : int ) ->float: lowerCamelCase__ : Optional[int] = self.args.strategy if strategy is None: raise ValueError('''A device strategy has to be initialized before using TensorFlow.''' ) lowerCamelCase__ : List[Any] = self._prepare_train_func(A , A , A ) return self._measure_speed(_train ) def __lowerCamelCase ( self : int , A : str , A : int , A : int ) ->[Memory, Optional[MemorySummary]]: # initialize GPU on separate process if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , A ) lowerCamelCase__ : int = self.args.strategy if strategy is None: raise ValueError('''A device strategy has to be initialized before using TensorFlow.''' ) lowerCamelCase__ : str = self._prepare_inference_func(A , A , A ) return self._measure_memory(_inference ) def __lowerCamelCase ( self : List[str] , A : str , A : int , A : int ) ->[Memory, Optional[MemorySummary]]: if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , A ) lowerCamelCase__ : List[Any] = self.args.strategy if strategy is None: raise ValueError('''A device strategy has to be initialized before using TensorFlow.''' ) lowerCamelCase__ : str = self._prepare_train_func(A , A , A ) return self._measure_memory(_train ) def __lowerCamelCase ( self : Dict , A : str , A : int , A : int ) ->Callable[[], None]: lowerCamelCase__ : Tuple = self.config_dict[model_name] if self.args.fpaa: raise NotImplementedError('''Mixed precision is currently not supported.''' ) lowerCamelCase__ : Tuple = ( hasattr(A , '''architectures''' ) and isinstance(config.architectures , A ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: lowerCamelCase__ : Any = '''TF''' + config.architectures[0] # prepend 'TF' for tensorflow model lowerCamelCase__ : List[Any] = __import__('''transformers''' , fromlist=[model_class] ) lowerCamelCase__ : int = getattr(A , A ) lowerCamelCase__ : int = model_cls(A ) except ImportError: raise ImportError( F"{model_class} does not exist. If you just want to test the pretrained model, you might want to" ''' set `--only_pretrain_model` or `args.only_pretrain_model=True`.''' ) else: lowerCamelCase__ : Union[str, Any] = TF_MODEL_MAPPING[config.__class__](A ) # encoder-decoder has vocab size saved differently lowerCamelCase__ : Tuple = config.vocab_size if hasattr(A , '''vocab_size''' ) else config.encoder.vocab_size lowerCamelCase__ : Optional[Any] = random_input_ids(A , A , A ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_forward(): return model(A , decoder_input_ids=A , training=A ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_forward(): return model(A , training=A ) lowerCamelCase__ : int = encoder_decoder_forward if config.is_encoder_decoder else encoder_forward return _inference def __lowerCamelCase ( self : List[str] , A : str , A : int , A : int ) ->Callable[[], None]: lowerCamelCase__ : Tuple = self.config_dict[model_name] if self.args.eager_mode is not False: raise ValueError('''Training cannot be done in eager mode. Please make sure that `args.eager_mode = False`.''' ) if self.args.fpaa: raise NotImplementedError('''Mixed precision is currently not supported.''' ) lowerCamelCase__ : Optional[int] = ( hasattr(A , '''architectures''' ) and isinstance(config.architectures , A ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: lowerCamelCase__ : Any = '''TF''' + config.architectures[0] # prepend 'TF' for tensorflow model lowerCamelCase__ : List[str] = __import__('''transformers''' , fromlist=[model_class] ) lowerCamelCase__ : Optional[int] = getattr(A , A ) lowerCamelCase__ : Optional[Any] = model_cls(A ) except ImportError: raise ImportError( F"{model_class} does not exist. If you just want to test the pretrained model, you might want to" ''' set `--only_pretrain_model` or `args.only_pretrain_model=True`.''' ) else: lowerCamelCase__ : List[str] = TF_MODEL_WITH_LM_HEAD_MAPPING[config.__class__](A ) # encoder-decoder has vocab size saved differently lowerCamelCase__ : Optional[int] = config.vocab_size if hasattr(A , '''vocab_size''' ) else config.encoder.vocab_size lowerCamelCase__ : Dict = random_input_ids(A , A , A ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_train(): lowerCamelCase__ : int = model(A , decoder_input_ids=A , labels=A , training=A )[0] lowerCamelCase__ : List[Any] = tf.gradients(A , model.trainable_variables ) return gradients @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_train(): lowerCamelCase__ : Optional[int] = model(A , labels=A , training=A )[0] lowerCamelCase__ : List[str] = tf.gradients(A , model.trainable_variables ) return gradients lowerCamelCase__ : Tuple = encoder_decoder_train if config.is_encoder_decoder else encoder_train return _train def __lowerCamelCase ( self : Tuple , A : Any ) ->float: with self.args.strategy.scope(): try: if self.args.is_tpu or self.args.use_xla: # run additional 10 times to stabilize compilation for tpu logger.info('''Do inference on TPU. Running model 5 times to stabilize compilation''' ) timeit.repeat(A , repeat=1 , number=5 ) # as written in https://docs.python.org/2/library/timeit.html#timeit.Timer.repeat, min should be taken rather than the average lowerCamelCase__ : Optional[Any] = timeit.repeat( A , repeat=self.args.repeat , number=1_0 , ) return min(A ) / 10.0 except ResourceExhaustedError as e: self.print_fn(F"Doesn't fit on GPU. {e}" ) def __lowerCamelCase ( self : List[Any] , A : Callable[[], None] ) ->[Memory, MemorySummary]: logger.info( '''Note that TensorFlow allocates more memory than ''' '''it might need to speed up computation. ''' '''The memory reported here corresponds to the memory ''' '''reported by `nvidia-smi`, which can vary depending ''' '''on total available memory on the GPU that is used.''' ) with self.args.strategy.scope(): try: if self.args.trace_memory_line_by_line: if not self.args.eager_mode: raise ValueError( '''`args.eager_mode` is set to `False`. Make sure to run model in eager mode to measure memory''' ''' consumption line by line.''' ) lowerCamelCase__ : Union[str, Any] = start_memory_tracing('''transformers''' ) if self.args.is_tpu: # tpu raise NotImplementedError( '''Memory Benchmarking is currently not implemented for TPU. Please disable memory benchmarking''' ''' with `args.memory=False`''' ) elif self.args.is_gpu: # gpu if not is_pyanvml_available(): logger.warning( '''py3nvml not installed, we won\'t log GPU memory usage. ''' '''Install py3nvml (pip install py3nvml) to log information about GPU.''' ) lowerCamelCase__ : Union[str, Any] = '''N/A''' else: logger.info( '''Measuring total GPU usage on GPU device. Make sure to not have additional processes''' ''' running on the same GPU.''' ) # init nvml nvml.nvmlInit() func() lowerCamelCase__ : Any = nvml.nvmlDeviceGetHandleByIndex(self.args.device_idx ) lowerCamelCase__ : Optional[int] = nvml.nvmlDeviceGetMemoryInfo(A ) lowerCamelCase__ : List[Any] = meminfo.used lowerCamelCase__ : Union[str, Any] = Memory(A ) # shutdown nvml nvml.nvmlShutdown() else: # cpu if self.args.trace_memory_line_by_line: logger.info( '''When enabling line by line tracing, the max peak memory for CPU is inaccurate in''' ''' TensorFlow.''' ) lowerCamelCase__ : Tuple = None else: lowerCamelCase__ : Dict = measure_peak_memory_cpu(A ) lowerCamelCase__ : Optional[Any] = Memory(A ) if isinstance(A , A ) else memory_bytes if self.args.trace_memory_line_by_line: lowerCamelCase__ : Union[str, Any] = stop_memory_tracing(A ) if memory is None: lowerCamelCase__ : Dict = summary.total else: lowerCamelCase__ : Optional[int] = None return memory, summary except ResourceExhaustedError as e: self.print_fn(F"Doesn't fit on GPU. {e}" ) return "N/A", None
354
def _a ( UpperCAmelCase ) -> int: """simple docstring""" if not isinstance(UpperCAmelCase , UpperCAmelCase ) or number < 0: raise ValueError('''Input must be a non-negative integer''' ) lowerCamelCase__ : List[str] = 0 while number: # This way we arrive at next set bit (next 1) instead of looping # through each bit and checking for 1s hence the # loop won't run 32 times it will only run the number of `1` times number &= number - 1 count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
265
0
"""simple docstring""" import logging import math import os from dataclasses import dataclass, field from glob import glob from typing import Optional from torch.utils.data import ConcatDataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_WITH_LM_HEAD_MAPPING, AutoConfig, AutoModelWithLMHead, AutoTokenizer, DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForWholeWordMask, HfArgumentParser, LineByLineTextDataset, LineByLineWithRefDataset, PreTrainedTokenizer, TextDataset, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process lowercase__ = logging.getLogger(__name__) lowercase__ = list(MODEL_WITH_LM_HEAD_MAPPING.keys()) lowercase__ = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class lowerCAmelCase__ : '''simple docstring''' lowerCamelCase__ = field( default=lowercase, metadata={ """help""": ( """The model checkpoint for weights initialization. Leave None if you want to train a model from""" """ scratch.""" ) }, ) lowerCamelCase__ = field( default=lowercase, metadata={"""help""": """If training from scratch, pass a model type from the list: """ + """, """.join(lowercase )}, ) lowerCamelCase__ = field( default=lowercase, metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) lowerCamelCase__ = field( default=lowercase, metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) lowerCamelCase__ = field( default=lowercase, metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""}, ) @dataclass class lowerCAmelCase__ : '''simple docstring''' lowerCamelCase__ = field( default=lowercase, metadata={"""help""": """The input training data file (a text file)."""} ) lowerCamelCase__ = field( default=lowercase, metadata={ """help""": ( """The input training data files (multiple files in glob format). """ """Very often splitting large files to smaller files can prevent tokenizer going out of memory""" ) }, ) lowerCamelCase__ = field( default=lowercase, metadata={"""help""": """An optional input evaluation data file to evaluate the perplexity on (a text file)."""}, ) lowerCamelCase__ = field( default=lowercase, metadata={"""help""": """An optional input train ref data file for whole word mask in Chinese."""}, ) lowerCamelCase__ = field( default=lowercase, metadata={"""help""": """An optional input eval ref data file for whole word mask in Chinese."""}, ) lowerCamelCase__ = field( default=lowercase, metadata={"""help""": """Whether distinct lines of text in the dataset are to be handled as distinct sequences."""}, ) lowerCamelCase__ = field( default=lowercase, metadata={"""help""": """Train with masked-language modeling loss instead of language modeling."""} ) lowerCamelCase__ = field(default=lowercase, metadata={"""help""": """Whether ot not to use whole word mask."""} ) lowerCamelCase__ = field( default=0.15, metadata={"""help""": """Ratio of tokens to mask for masked language modeling loss"""} ) lowerCamelCase__ = field( default=1 / 6, metadata={ """help""": ( """Ratio of length of a span of masked tokens to surrounding context length for permutation language""" """ modeling.""" ) }, ) lowerCamelCase__ = field( default=5, metadata={"""help""": """Maximum length of a span of masked tokens for permutation language modeling."""} ) lowerCamelCase__ = field( default=-1, metadata={ """help""": ( """Optional input sequence length after tokenization.""" """The training dataset will be truncated in block of this size for training.""" """Default to the model max input length for single sentence inputs (take into account special tokens).""" ) }, ) lowerCamelCase__ = field( default=lowercase, metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) def _snake_case ( lowercase__ , lowercase__ , lowercase__ = False , lowercase__ = None , ): def _dataset(lowercase__ , lowercase__=None ): if args.line_by_line: if ref_path is not None: if not args.whole_word_mask or not args.mlm: raise ValueError('You need to set world whole masking and mlm to True for Chinese Whole Word Mask' ) return LineByLineWithRefDataset( tokenizer=lowercase__ , file_path=lowercase__ , block_size=args.block_size , ref_path=lowercase__ , ) return LineByLineTextDataset(tokenizer=lowercase__ , file_path=lowercase__ , block_size=args.block_size ) else: return TextDataset( tokenizer=lowercase__ , file_path=lowercase__ , block_size=args.block_size , overwrite_cache=args.overwrite_cache , cache_dir=lowercase__ , ) if evaluate: return _dataset(args.eval_data_file , args.eval_ref_file ) elif args.train_data_files: return ConcatDataset([_dataset(lowercase__ ) for f in glob(args.train_data_files )] ) else: return _dataset(args.train_data_file , args.train_ref_file ) def _snake_case ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _lowerCamelCase : Optional[Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Dict = parser.parse_args_into_dataclasses() if data_args.eval_data_file is None and training_args.do_eval: raise ValueError( 'Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file ' 'or remove the --do_eval argument.' ) if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f'''Output directory ({training_args.output_dir}) already exists and is not empty. Use''' ' --overwrite_output_dir to overcome.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( 'Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('Training/evaluation parameters %s' , lowercase__ ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. if model_args.config_name: _lowerCamelCase : Optional[Any] = AutoConfig.from_pretrained(model_args.config_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: _lowerCamelCase : List[str] = AutoConfig.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: _lowerCamelCase : Any = CONFIG_MAPPING[model_args.model_type]() logger.warning('You are instantiating a new config instance from scratch.' ) if model_args.tokenizer_name: _lowerCamelCase : Optional[int] = AutoTokenizer.from_pretrained(model_args.tokenizer_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: _lowerCamelCase : List[Any] = AutoTokenizer.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: raise ValueError( 'You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another' ' script, save it,and load it from here, using --tokenizer_name' ) if model_args.model_name_or_path: _lowerCamelCase : str = AutoModelWithLMHead.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=lowercase__ , cache_dir=model_args.cache_dir , ) else: logger.info('Training new model from scratch' ) _lowerCamelCase : int = AutoModelWithLMHead.from_config(lowercase__ ) model.resize_token_embeddings(len(lowercase__ ) ) if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm: raise ValueError( 'BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the' '--mlm flag (masked language modeling).' ) if data_args.block_size <= 0: _lowerCamelCase : Dict = tokenizer.max_len # Our input block size will be the max possible for the model else: _lowerCamelCase : Tuple = min(data_args.block_size , tokenizer.max_len ) # Get datasets _lowerCamelCase : Optional[Any] = ( get_dataset(lowercase__ , tokenizer=lowercase__ , cache_dir=model_args.cache_dir ) if training_args.do_train else None ) _lowerCamelCase : Tuple = ( get_dataset(lowercase__ , tokenizer=lowercase__ , evaluate=lowercase__ , cache_dir=model_args.cache_dir ) if training_args.do_eval else None ) if config.model_type == "xlnet": _lowerCamelCase : List[str] = DataCollatorForPermutationLanguageModeling( tokenizer=lowercase__ , plm_probability=data_args.plm_probability , max_span_length=data_args.max_span_length , ) else: if data_args.mlm and data_args.whole_word_mask: _lowerCamelCase : Optional[Any] = DataCollatorForWholeWordMask( tokenizer=lowercase__ , mlm_probability=data_args.mlm_probability ) else: _lowerCamelCase : Dict = DataCollatorForLanguageModeling( tokenizer=lowercase__ , mlm=data_args.mlm , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer _lowerCamelCase : str = Trainer( model=lowercase__ , args=lowercase__ , data_collator=lowercase__ , train_dataset=lowercase__ , eval_dataset=lowercase__ , prediction_loss_only=lowercase__ , ) # Training if training_args.do_train: _lowerCamelCase : Optional[Any] = ( model_args.model_name_or_path if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ) else None ) trainer.train(model_path=lowercase__ ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation _lowerCamelCase : Any = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) _lowerCamelCase : Optional[int] = trainer.evaluate() _lowerCamelCase : int = math.exp(eval_output['eval_loss'] ) _lowerCamelCase : str = {'perplexity': perplexity} _lowerCamelCase : str = os.path.join(training_args.output_dir , 'eval_results_lm.txt' ) if trainer.is_world_master(): with open(lowercase__ , 'w' ) as writer: logger.info('***** Eval results *****' ) for key in sorted(result.keys() ): logger.info(' %s = %s' , lowercase__ , str(result[key] ) ) writer.write('%s = %s\n' % (key, str(result[key] )) ) results.update(lowercase__ ) return results def _snake_case ( lowercase__ ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
96
"""simple docstring""" from sklearn.metrics import fa_score, matthews_corrcoef import datasets from .record_evaluation import evaluate as evaluate_record lowercase__ = """\ @article{wang2019superglue, title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems}, author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R}, journal={arXiv preprint arXiv:1905.00537}, year={2019} } """ lowercase__ = """\ SuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after GLUE with a new set of more difficult language understanding tasks, improved resources, and a new public leaderboard. """ lowercase__ = """ Compute SuperGLUE evaluation metric associated to each SuperGLUE dataset. Args: predictions: list of predictions to score. Depending on the SuperGlUE subset: - for 'record': list of question-answer dictionaries with the following keys: - 'idx': index of the question as specified by the dataset - 'prediction_text': the predicted answer text - for 'multirc': list of question-answer dictionaries with the following keys: - 'idx': index of the question-answer pair as specified by the dataset - 'prediction': the predicted answer label - otherwise: list of predicted labels references: list of reference labels. Depending on the SuperGLUE subset: - for 'record': list of question-answers dictionaries with the following keys: - 'idx': index of the question as specified by the dataset - 'answers': list of possible answers - otherwise: list of reference labels Returns: depending on the SuperGLUE subset: - for 'record': - 'exact_match': Exact match between answer and gold answer - 'f1': F1 score - for 'multirc': - 'exact_match': Exact match between answer and gold answer - 'f1_m': Per-question macro-F1 score - 'f1_a': Average F1 score over all answers - for 'axb': 'matthews_correlation': Matthew Correlation - for 'cb': - 'accuracy': Accuracy - 'f1': F1 score - for all others: - 'accuracy': Accuracy Examples: >>> super_glue_metric = datasets.load_metric('super_glue', 'copa') # any of [\"copa\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"boolq\", \"axg\"] >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'accuracy': 1.0} >>> super_glue_metric = datasets.load_metric('super_glue', 'cb') >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'accuracy': 1.0, 'f1': 1.0} >>> super_glue_metric = datasets.load_metric('super_glue', 'record') >>> predictions = [{'idx': {'passage': 0, 'query': 0}, 'prediction_text': 'answer'}] >>> references = [{'idx': {'passage': 0, 'query': 0}, 'answers': ['answer', 'another_answer']}] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'exact_match': 1.0, 'f1': 1.0} >>> super_glue_metric = datasets.load_metric('super_glue', 'multirc') >>> predictions = [{'idx': {'answer': 0, 'paragraph': 0, 'question': 0}, 'prediction': 0}, {'idx': {'answer': 1, 'paragraph': 2, 'question': 3}, 'prediction': 1}] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'exact_match': 1.0, 'f1_m': 1.0, 'f1_a': 1.0} >>> super_glue_metric = datasets.load_metric('super_glue', 'axb') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'matthews_correlation': 1.0} """ def _snake_case ( lowercase__ , lowercase__ ): return float((preds == labels).mean() ) def _snake_case ( lowercase__ , lowercase__ , lowercase__="binary" ): _lowerCamelCase : str = simple_accuracy(lowercase__ , lowercase__ ) _lowerCamelCase : Any = float(fa_score(y_true=lowercase__ , y_pred=lowercase__ , average=lowercase__ ) ) return { "accuracy": acc, "f1": fa, } def _snake_case ( lowercase__ , lowercase__ ): _lowerCamelCase : Any = {} for id_pred, label in zip(lowercase__ , lowercase__ ): _lowerCamelCase : Tuple = f'''{id_pred['idx']['paragraph']}-{id_pred['idx']['question']}''' _lowerCamelCase : Union[str, Any] = id_pred['prediction'] if question_id in question_map: question_map[question_id].append((pred, label) ) else: _lowerCamelCase : Optional[Any] = [(pred, label)] _lowerCamelCase, _lowerCamelCase : Optional[int] = [], [] for question, preds_labels in question_map.items(): _lowerCamelCase, _lowerCamelCase : Tuple = zip(*lowercase__ ) _lowerCamelCase : List[str] = fa_score(y_true=lowercase__ , y_pred=lowercase__ , average='macro' ) fas.append(lowercase__ ) _lowerCamelCase : int = int(sum(pred == label for pred, label in preds_labels ) == len(lowercase__ ) ) ems.append(lowercase__ ) _lowerCamelCase : Optional[Any] = float(sum(lowercase__ ) / len(lowercase__ ) ) _lowerCamelCase : Optional[int] = sum(lowercase__ ) / len(lowercase__ ) _lowerCamelCase : List[Any] = float(fa_score(y_true=lowercase__ , y_pred=[id_pred['prediction'] for id_pred in ids_preds] ) ) return {"exact_match": em, "f1_m": fa_m, "f1_a": fa_a} @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class lowerCAmelCase__ ( datasets.Metric ): '''simple docstring''' def A_ ( self ): if self.config_name not in [ "boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg", ]: raise KeyError( 'You should supply a configuration name selected in ' '["boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg",]' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , codebase_urls=[] , reference_urls=[] , format='numpy' if not self.config_name == 'record' and not self.config_name == 'multirc' else None , ) def A_ ( self ): if self.config_name == "record": return { "predictions": { "idx": { "passage": datasets.Value('int64' ), "query": datasets.Value('int64' ), }, "prediction_text": datasets.Value('string' ), }, "references": { "idx": { "passage": datasets.Value('int64' ), "query": datasets.Value('int64' ), }, "answers": datasets.Sequence(datasets.Value('string' ) ), }, } elif self.config_name == "multirc": return { "predictions": { "idx": { "answer": datasets.Value('int64' ), "paragraph": datasets.Value('int64' ), "question": datasets.Value('int64' ), }, "prediction": datasets.Value('int64' ), }, "references": datasets.Value('int64' ), } else: return { "predictions": datasets.Value('int64' ), "references": datasets.Value('int64' ), } def A_ ( self , lowercase , lowercase ): if self.config_name == "axb": return {"matthews_correlation": matthews_corrcoef(lowercase , lowercase )} elif self.config_name == "cb": return acc_and_fa(lowercase , lowercase , fa_avg='macro' ) elif self.config_name == "record": _lowerCamelCase : List[str] = [ { 'qas': [ {'id': ref['idx']['query'], 'answers': [{'text': ans} for ans in ref['answers']]} for ref in references ] } ] _lowerCamelCase : Union[str, Any] = {pred['idx']['query']: pred['prediction_text'] for pred in predictions} return evaluate_record(lowercase , lowercase )[0] elif self.config_name == "multirc": return evaluate_multirc(lowercase , lowercase ) elif self.config_name in ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]: return {"accuracy": simple_accuracy(lowercase , lowercase )} else: raise KeyError( 'You should supply a configuration name selected in ' '["boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg",]' )
96
1
"""simple docstring""" import csv from collections import defaultdict from dataclasses import dataclass, field from typing import List, Optional import matplotlib.pyplot as plt import numpy as np from matplotlib.ticker import ScalarFormatter from transformers import HfArgumentParser def _snake_case ( _snake_case : List[Any]=None , _snake_case : Optional[int]=None ) -> Dict: '''simple docstring''' return field(default_factory=lambda: default , metadata=_snake_case ) @dataclass class lowercase_ : '''simple docstring''' UpperCAmelCase : str = field( metadata={'''help''': '''The csv file to plot.'''} , ) UpperCAmelCase : bool = field( default=__lowerCAmelCase , metadata={'''help''': '''Whether to plot along batch size or sequence length. Defaults to sequence length.'''} , ) UpperCAmelCase : bool = field( default=__lowerCAmelCase , metadata={'''help''': '''Whether the csv file has time results or memory results. Defaults to memory results.'''} , ) UpperCAmelCase : bool = field( default=__lowerCAmelCase , metadata={'''help''': '''Disable logarithmic scale when plotting'''} , ) UpperCAmelCase : bool = field( default=__lowerCAmelCase , metadata={ '''help''': '''Whether the csv file has training results or inference results. Defaults to inference results.''' } , ) UpperCAmelCase : Optional[str] = field( default=__lowerCAmelCase , metadata={'''help''': '''Filename under which the plot will be saved. If unused no plot is saved.'''} , ) UpperCAmelCase : Optional[List[str]] = list_field( default=__lowerCAmelCase , metadata={'''help''': '''List of model names that are used instead of the ones in the csv file.'''} ) def _snake_case ( _snake_case : Optional[Any] ) -> List[str]: '''simple docstring''' try: int(_snake_case ) return True except ValueError: return False def _snake_case ( _snake_case : Dict ) -> str: '''simple docstring''' try: float(_snake_case ) return True except ValueError: return False class lowercase_ : '''simple docstring''' def __init__( self : Union[str, Any] , _UpperCAmelCase : Optional[int] ): _A = args _A = defaultdict(lambda: {"bsz": [], "seq_len": [], "result": {}} ) with open(self.args.csv_file , newline='' ) as csv_file: _A = csv.DictReader(_UpperCAmelCase ) for row in reader: _A = row['model'] self.result_dict[model_name]["bsz"].append(int(row['batch_size'] ) ) self.result_dict[model_name]["seq_len"].append(int(row['sequence_length'] ) ) if can_convert_to_int(row['result'] ): # value is not None _A = int(row['result'] ) elif can_convert_to_float(row['result'] ): # value is not None _A = float(row['result'] ) def lowerCAmelCase_ ( self : Union[str, Any] ): _A , _A = plt.subplots() _A = 'Time usage' if self.args.is_time else 'Memory usage' _A = title_str + ' for training' if self.args.is_train else title_str + ' for inference' if not self.args.no_log_scale: # set logarithm scales ax.set_xscale('log' ) ax.set_yscale('log' ) for axis in [ax.xaxis, ax.yaxis]: axis.set_major_formatter(ScalarFormatter() ) for model_name_idx, model_name in enumerate(self.result_dict.keys() ): _A = sorted(set(self.result_dict[model_name]['bsz'] ) ) _A = sorted(set(self.result_dict[model_name]['seq_len'] ) ) _A = self.result_dict[model_name]['result'] ((_A) , (_A)) = ( (batch_sizes, sequence_lengths) if self.args.plot_along_batch else (sequence_lengths, batch_sizes) ) _A = ( model_name if self.args.short_model_names is None else self.args.short_model_names[model_name_idx] ) for inner_loop_value in inner_loop_array: if self.args.plot_along_batch: _A = np.asarray( [results[(x, inner_loop_value)] for x in x_axis_array if (x, inner_loop_value) in results] , dtype=_UpperCAmelCase , ) else: _A = np.asarray( [results[(inner_loop_value, x)] for x in x_axis_array if (inner_loop_value, x) in results] , dtype=np.floataa , ) ((_A) , (_A)) = ( ('batch_size', 'len') if self.args.plot_along_batch else ('in #tokens', 'bsz') ) _A = np.asarray(_UpperCAmelCase , _UpperCAmelCase )[: len(_UpperCAmelCase )] plt.scatter( _UpperCAmelCase , _UpperCAmelCase , label=F'''{label_model_name} - {inner_loop_label}: {inner_loop_value}''' ) plt.plot(_UpperCAmelCase , _UpperCAmelCase , '--' ) title_str += F''' {label_model_name} vs.''' _A = title_str[:-4] _A = 'Time in s' if self.args.is_time else 'Memory in MB' # plot plt.title(_UpperCAmelCase ) plt.xlabel(_UpperCAmelCase ) plt.ylabel(_UpperCAmelCase ) plt.legend() if self.args.figure_png_file is not None: plt.savefig(self.args.figure_png_file ) else: plt.show() def _snake_case ( ) -> Any: '''simple docstring''' _A = HfArgumentParser(_snake_case ) _A = parser.parse_args_into_dataclasses()[0] _A = Plot(args=_snake_case ) plot.plot() if __name__ == "__main__": main()
352
"""simple docstring""" import inspect import os import unittest from pathlib import Path import torch import accelerate from accelerate.test_utils import execute_subprocess_async from accelerate.test_utils.testing import run_command class lowercase_ ( unittest.TestCase ): '''simple docstring''' UpperCAmelCase : str = inspect.getfile(accelerate.test_utils ) UpperCAmelCase : Optional[Any] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_cli.py'''] ) UpperCAmelCase : List[Any] = ['''accelerate''', '''launch'''] UpperCAmelCase : Dict = Path.home() / '''.cache/huggingface/accelerate''' UpperCAmelCase : Union[str, Any] = '''default_config.yaml''' UpperCAmelCase : Union[str, Any] = config_folder / config_file UpperCAmelCase : Union[str, Any] = config_folder / '''_default_config.yaml''' UpperCAmelCase : List[Any] = Path('''tests/test_configs''' ) @classmethod def lowerCAmelCase_ ( cls : List[Any] ): if cls.config_path.is_file(): cls.config_path.rename(cls.changed_path ) @classmethod def lowerCAmelCase_ ( cls : Tuple ): if cls.changed_path.is_file(): cls.changed_path.rename(cls.config_path ) def lowerCAmelCase_ ( self : List[Any] ): _A = self.base_cmd if torch.cuda.is_available() and (torch.cuda.device_count() > 1): cmd += ["--multi_gpu"] execute_subprocess_async(cmd + [self.test_file_path] , env=os.environ.copy() ) def lowerCAmelCase_ ( self : Optional[int] ): for config in sorted(self.test_config_path.glob('**/*.yaml' ) ): with self.subTest(config_file=_UpperCAmelCase ): execute_subprocess_async( self.base_cmd + ['--config_file', str(_UpperCAmelCase ), self.test_file_path] , env=os.environ.copy() ) def lowerCAmelCase_ ( self : Any ): execute_subprocess_async(['accelerate', 'test'] , env=os.environ.copy() ) class lowercase_ ( unittest.TestCase ): '''simple docstring''' UpperCAmelCase : Dict = '''test-tpu''' UpperCAmelCase : Optional[int] = '''us-central1-a''' UpperCAmelCase : List[str] = '''ls''' UpperCAmelCase : str = ['''accelerate''', '''tpu-config'''] UpperCAmelCase : Optional[Any] = '''cd /usr/share''' UpperCAmelCase : Optional[Any] = '''tests/test_samples/test_command_file.sh''' UpperCAmelCase : str = '''Running gcloud compute tpus tpu-vm ssh''' def lowerCAmelCase_ ( self : Any ): _A = run_command( self.cmd + ['--command', self.command, '--tpu_zone', self.tpu_zone, '--tpu_name', self.tpu_name, '--debug'] , return_stdout=_UpperCAmelCase , ) self.assertIn( F'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all''' , _UpperCAmelCase , ) def lowerCAmelCase_ ( self : Dict ): _A = run_command( self.cmd + [ '--config_file', 'tests/test_configs/0_12_0.yaml', '--command', self.command, '--tpu_zone', self.tpu_zone, '--tpu_name', self.tpu_name, '--debug', ] , return_stdout=_UpperCAmelCase , ) self.assertIn( F'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all''' , _UpperCAmelCase , ) def lowerCAmelCase_ ( self : Optional[int] ): _A = run_command( self.cmd + ['--config_file', 'tests/test_configs/latest.yaml', '--debug'] , return_stdout=_UpperCAmelCase ) self.assertIn( F'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo "hello world"; echo "this is a second command" --worker all''' , _UpperCAmelCase , ) def lowerCAmelCase_ ( self : str ): _A = run_command( self.cmd + ['--config_file', 'tests/test_configs/latest.yaml', '--command', self.command, '--debug'] , return_stdout=_UpperCAmelCase , ) self.assertIn( F'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all''' , _UpperCAmelCase , ) def lowerCAmelCase_ ( self : List[str] ): _A = run_command( self.cmd + [ '--config_file', 'tests/test_configs/latest.yaml', '--command', self.command, '--command', 'echo "Hello World"', '--debug', ] , return_stdout=_UpperCAmelCase , ) self.assertIn( F'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls; echo "Hello World" --worker all''' , _UpperCAmelCase , ) def lowerCAmelCase_ ( self : str ): _A = run_command( self.cmd + ['--config_file', 'tests/test_configs/latest.yaml', '--command_file', self.command_file, '--debug'] , return_stdout=_UpperCAmelCase , ) self.assertIn( F'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo "hello world"; echo "this is a second command" --worker all''' , _UpperCAmelCase , ) def lowerCAmelCase_ ( self : List[Any] ): _A = run_command( self.cmd + [ '--config_file', 'tests/test_configs/0_12_0.yaml', '--command_file', self.command_file, '--tpu_zone', self.tpu_zone, '--tpu_name', self.tpu_name, '--debug', ] , return_stdout=_UpperCAmelCase , ) self.assertIn( F'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo "hello world"; echo "this is a second command" --worker all''' , _UpperCAmelCase , ) def lowerCAmelCase_ ( self : int ): _A = run_command( self.cmd + ['--config_file', 'tests/test_configs/latest.yaml', '--install_accelerate', '--debug'] , return_stdout=_UpperCAmelCase , ) self.assertIn( F'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate -U; echo "hello world"; echo "this is a second command" --worker all''' , _UpperCAmelCase , ) def lowerCAmelCase_ ( self : Optional[int] ): _A = run_command( self.cmd + [ '--config_file', 'tests/test_configs/latest.yaml', '--install_accelerate', '--accelerate_version', '12.0.0', '--debug', ] , return_stdout=_UpperCAmelCase , ) self.assertIn( F'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate==12.0.0; echo "hello world"; echo "this is a second command" --worker all''' , _UpperCAmelCase , )
271
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _A : Tuple =logging.get_logger(__name__) class _lowercase ( A__ , A__ ): a = """maskformer-swin""" a = { """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self: Union[str, Any] , UpperCamelCase__: Optional[Any]=224 , UpperCamelCase__: int=4 , UpperCamelCase__: str=3 , UpperCamelCase__: Optional[Any]=96 , UpperCamelCase__: Tuple=[2, 2, 6, 2] , UpperCamelCase__: Any=[3, 6, 12, 24] , UpperCamelCase__: Tuple=7 , UpperCamelCase__: List[Any]=4.0 , UpperCamelCase__: Union[str, Any]=True , UpperCamelCase__: Optional[Any]=0.0 , UpperCamelCase__: Optional[int]=0.0 , UpperCamelCase__: int=0.1 , UpperCamelCase__: Optional[int]="gelu" , UpperCamelCase__: Optional[Any]=False , UpperCamelCase__: Union[str, Any]=0.02 , UpperCamelCase__: Tuple=1e-5 , UpperCamelCase__: Dict=None , UpperCamelCase__: Tuple=None , **UpperCamelCase__: Optional[int] , ): super().__init__(**lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = image_size lowerCamelCase__ : Any = patch_size lowerCamelCase__ : Optional[int] = num_channels lowerCamelCase__ : int = embed_dim lowerCamelCase__ : Optional[int] = depths lowerCamelCase__ : int = len(lowerCamelCase_ ) lowerCamelCase__ : List[Any] = num_heads lowerCamelCase__ : int = window_size lowerCamelCase__ : Optional[int] = mlp_ratio lowerCamelCase__ : List[str] = qkv_bias lowerCamelCase__ : Any = hidden_dropout_prob lowerCamelCase__ : Dict = attention_probs_dropout_prob lowerCamelCase__ : Dict = drop_path_rate lowerCamelCase__ : Optional[Any] = hidden_act lowerCamelCase__ : Optional[Any] = use_absolute_embeddings lowerCamelCase__ : Tuple = layer_norm_eps lowerCamelCase__ : Any = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model lowerCamelCase__ : List[str] = int(embed_dim * 2 ** (len(lowerCamelCase_ ) - 1) ) lowerCamelCase__ : Union[str, Any] = ['stem'] + [F'''stage{idx}''' for idx in range(1 , len(lowerCamelCase_ ) + 1 )] lowerCamelCase__ : Union[str, Any] = get_aligned_output_features_output_indices( out_features=lowerCamelCase_ , out_indices=lowerCamelCase_ , stage_names=self.stage_names )
41
"""simple docstring""" import argparse import os import re import numpy as np import PIL import torch from timm import create_model from torch.optim.lr_scheduler import OneCycleLR from torch.utils.data import DataLoader, Dataset from torchvision.transforms import Compose, RandomResizedCrop, Resize, ToTensor from accelerate import Accelerator def lowerCAmelCase_ ( snake_case_ : Dict ) ->Tuple: lowerCamelCase__ : List[str] =fname.split(os.path.sep )[-1] return re.search(R'^(.*)_\d+\.jpg$' , snake_case_ ).groups()[0] class A_ ( A__ ): """simple docstring""" def __init__( self :int , lowerCamelCase_ :int , lowerCamelCase_ :Any=None , lowerCamelCase_ :Any=None ): """simple docstring""" lowerCamelCase__ : Tuple =file_names lowerCamelCase__ : str =image_transform lowerCamelCase__ : str =label_to_id def __len__( self :Optional[int] ): """simple docstring""" return len(self.file_names ) def __getitem__( self :Optional[Any] , lowerCamelCase_ :Optional[int] ): """simple docstring""" lowerCamelCase__ : Tuple =self.file_names[idx] lowerCamelCase__ : Dict =PIL.Image.open(lowerCamelCase_ ) lowerCamelCase__ : Dict =raw_image.convert('RGB' ) if self.image_transform is not None: lowerCamelCase__ : int =self.image_transform(lowerCamelCase_ ) lowerCamelCase__ : List[str] =extract_label(lowerCamelCase_ ) if self.label_to_id is not None: lowerCamelCase__ : Optional[int] =self.label_to_id[label] return {"image": image, "label": label} def lowerCAmelCase_ ( snake_case_ : Dict , snake_case_ : Any ) ->Dict: # Initialize accelerator if args.with_tracking: lowerCamelCase__ : List[str] =Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with='all' , project_dir=args.project_dir ) else: lowerCamelCase__ : Tuple =Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowerCamelCase__ : Optional[Any] =config['lr'] lowerCamelCase__ : List[str] =int(config['num_epochs'] ) lowerCamelCase__ : List[str] =int(config['seed'] ) lowerCamelCase__ : Dict =int(config['batch_size'] ) lowerCamelCase__ : Optional[int] =config['image_size'] if not isinstance(snake_case_ , (list, tuple) ): lowerCamelCase__ : Optional[int] =(image_size, image_size) # Parse out whether we are saving every epoch or after a certain number of batches if hasattr(args.checkpointing_steps , 'isdigit' ): if args.checkpointing_steps == "epoch": lowerCamelCase__ : Optional[Any] =args.checkpointing_steps elif args.checkpointing_steps.isdigit(): lowerCamelCase__ : Union[str, Any] =int(args.checkpointing_steps ) else: raise ValueError( f"""Argument `checkpointing_steps` must be either a number or `epoch`. `{args.checkpointing_steps}` passed.""" ) else: lowerCamelCase__ : int =None # We need to initialize the trackers we use, and also store our configuration if args.with_tracking: lowerCamelCase__ : Tuple =os.path.split(snake_case_ )[-1].split('.' )[0] accelerator.init_trackers(snake_case_ , snake_case_ ) # Grab all the image filenames lowerCamelCase__ : List[str] =[os.path.join(args.data_dir , snake_case_ ) for fname in os.listdir(args.data_dir ) if fname.endswith('.jpg' )] # Build the label correspondences lowerCamelCase__ : str =[extract_label(snake_case_ ) for fname in file_names] lowerCamelCase__ : Any =list(set(snake_case_ ) ) id_to_label.sort() lowerCamelCase__ : List[Any] ={lbl: i for i, lbl in enumerate(snake_case_ )} # Set the seed before splitting the data. np.random.seed(snake_case_ ) torch.manual_seed(snake_case_ ) torch.cuda.manual_seed_all(snake_case_ ) # Split our filenames between train and validation lowerCamelCase__ : int =np.random.permutation(len(snake_case_ ) ) lowerCamelCase__ : Tuple =int(0.8 * len(snake_case_ ) ) lowerCamelCase__ : str =random_perm[:cut] lowerCamelCase__ : Dict =random_perm[cut:] # For training we use a simple RandomResizedCrop lowerCamelCase__ : str =Compose([RandomResizedCrop(snake_case_ , scale=(0.5, 1.0) ), ToTensor()] ) lowerCamelCase__ : Any =PetsDataset( [file_names[i] for i in train_split] , image_transform=snake_case_ , label_to_id=snake_case_ ) # For evaluation, we use a deterministic Resize lowerCamelCase__ : Optional[int] =Compose([Resize(snake_case_ ), ToTensor()] ) lowerCamelCase__ : Dict =PetsDataset([file_names[i] for i in eval_split] , image_transform=snake_case_ , label_to_id=snake_case_ ) # Instantiate dataloaders. lowerCamelCase__ : Optional[Any] =DataLoader(snake_case_ , shuffle=snake_case_ , batch_size=snake_case_ , num_workers=4 ) lowerCamelCase__ : int =DataLoader(snake_case_ , shuffle=snake_case_ , batch_size=snake_case_ , num_workers=4 ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowerCamelCase__ : Dict =create_model('resnet50d' , pretrained=snake_case_ , num_classes=len(snake_case_ ) ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowerCamelCase__ : str =model.to(accelerator.device ) # Freezing the base model for param in model.parameters(): lowerCamelCase__ : Dict =False for param in model.get_classifier().parameters(): lowerCamelCase__ : List[str] =True # We normalize the batches of images to be a bit faster. lowerCamelCase__ : Any =torch.tensor(model.default_cfg['mean'] )[None, :, None, None].to(accelerator.device ) lowerCamelCase__ : Dict =torch.tensor(model.default_cfg['std'] )[None, :, None, None].to(accelerator.device ) # Instantiate optimizer lowerCamelCase__ : int =torch.optim.Adam(params=model.parameters() , lr=lr / 2_5 ) # Instantiate learning rate scheduler lowerCamelCase__ : Dict =OneCycleLR(optimizer=snake_case_ , max_lr=snake_case_ , epochs=snake_case_ , steps_per_epoch=len(snake_case_ ) ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Any =accelerator.prepare( snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) # We need to keep track of how many total steps we have iterated over lowerCamelCase__ : int =0 # We also need to keep track of the starting epoch so files are named properly lowerCamelCase__ : Optional[int] =0 # Potentially load in the weights and states from a previous save if args.resume_from_checkpoint: if args.resume_from_checkpoint is not None or args.resume_from_checkpoint != "": accelerator.print(f"""Resumed from checkpoint: {args.resume_from_checkpoint}""" ) accelerator.load_state(args.resume_from_checkpoint ) lowerCamelCase__ : int =os.path.basename(args.resume_from_checkpoint ) else: # Get the most recent checkpoint lowerCamelCase__ : int =[f.name for f in os.scandir(os.getcwd() ) if f.is_dir()] dirs.sort(key=os.path.getctime ) lowerCamelCase__ : Optional[int] =dirs[-1] # Sorts folders by date modified, most recent checkpoint is the last # Extract `epoch_{i}` or `step_{i}` lowerCamelCase__ : Tuple =os.path.splitext(snake_case_ )[0] if "epoch" in training_difference: lowerCamelCase__ : Union[str, Any] =int(training_difference.replace('epoch_' , '' ) ) + 1 lowerCamelCase__ : Optional[int] =None else: lowerCamelCase__ : List[Any] =int(training_difference.replace('step_' , '' ) ) lowerCamelCase__ : int =resume_step // len(snake_case_ ) resume_step -= starting_epoch * len(snake_case_ ) # Now we train the model for epoch in range(snake_case_ , snake_case_ ): model.train() if args.with_tracking: lowerCamelCase__ : str =0 if args.resume_from_checkpoint and epoch == starting_epoch and resume_step is not None: # We need to skip steps until we reach the resumed step lowerCamelCase__ : Tuple =accelerator.skip_first_batches(snake_case_ , snake_case_ ) overall_step += resume_step else: # After the first iteration though, we need to go back to the original dataloader lowerCamelCase__ : str =train_dataloader for batch in active_dataloader: # We could avoid this line since we set the accelerator with `device_placement=True`. lowerCamelCase__ : int ={k: v.to(accelerator.device ) for k, v in batch.items()} lowerCamelCase__ : List[str] =(batch['image'] - mean) / std lowerCamelCase__ : Any =model(snake_case_ ) lowerCamelCase__ : List[Any] =torch.nn.functional.cross_entropy(snake_case_ , batch['label'] ) # We keep track of the loss at each epoch if args.with_tracking: total_loss += loss.detach().float() accelerator.backward(snake_case_ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 if isinstance(snake_case_ , snake_case_ ): lowerCamelCase__ : int =f"""step_{overall_step}""" if overall_step % checkpointing_steps == 0: if args.output_dir is not None: lowerCamelCase__ : List[Any] =os.path.join(args.output_dir , snake_case_ ) accelerator.save_state(snake_case_ ) model.eval() lowerCamelCase__ : int =0 lowerCamelCase__ : Optional[Any] =0 for step, batch in enumerate(snake_case_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. lowerCamelCase__ : Union[str, Any] ={k: v.to(accelerator.device ) for k, v in batch.items()} lowerCamelCase__ : int =(batch['image'] - mean) / std with torch.no_grad(): lowerCamelCase__ : List[str] =model(snake_case_ ) lowerCamelCase__ : Optional[int] =outputs.argmax(dim=-1 ) lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] =accelerator.gather_for_metrics((predictions, batch['label']) ) lowerCamelCase__ : Union[str, Any] =predictions == references num_elems += accurate_preds.shape[0] accurate += accurate_preds.long().sum() lowerCamelCase__ : List[str] =accurate.item() / num_elems # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}: {1_0_0 * eval_metric:.2f}""" ) if args.with_tracking: accelerator.log( { 'accuracy': 1_0_0 * eval_metric, 'train_loss': total_loss.item() / len(snake_case_ ), 'epoch': epoch, } , step=snake_case_ , ) if checkpointing_steps == "epoch": lowerCamelCase__ : Tuple =f"""epoch_{epoch}""" if args.output_dir is not None: lowerCamelCase__ : Tuple =os.path.join(args.output_dir , snake_case_ ) accelerator.save_state(snake_case_ ) if args.with_tracking: accelerator.end_training() def lowerCAmelCase_ ( ) ->int: lowerCamelCase__ : Any =argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument('--data_dir' , required=snake_case_ , help='The data folder on disk.' ) parser.add_argument('--fp16' , action='store_true' , help='If passed, will use FP16 training.' ) parser.add_argument( '--mixed_precision' , type=snake_case_ , default=snake_case_ , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.' , ) parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.' ) parser.add_argument( '--checkpointing_steps' , type=snake_case_ , default=snake_case_ , help='Whether the various states should be saved at the end of every n steps, or \'epoch\' for each epoch.' , ) parser.add_argument( '--output_dir' , type=snake_case_ , default='.' , help='Optional save directory where all checkpoint folders will be stored. Default is the current working directory.' , ) parser.add_argument( '--resume_from_checkpoint' , type=snake_case_ , default=snake_case_ , help='If the training should continue from a checkpoint folder.' , ) parser.add_argument( '--with_tracking' , action='store_true' , help='Whether to load in all available experiment trackers from the environment and use them for logging.' , ) parser.add_argument( '--project_dir' , type=snake_case_ , default='logs' , help='Location on where to store experiment tracking logs` and relevent project information' , ) lowerCamelCase__ : Dict =parser.parse_args() lowerCamelCase__ : List[str] ={'lr': 3E-2, 'num_epochs': 3, 'seed': 4_2, 'batch_size': 6_4, 'image_size': 2_2_4} training_function(snake_case_ , snake_case_ ) if __name__ == "__main__": main()
126
0
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL _a : int = logging.get_logger(__name__) class __A ( SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : List[str] = ["pixel_values"] def __init__( self , a__ = True , a__ = None , a__ = 0.9 , a__ = PILImageResampling.BICUBIC , a__ = True , a__ = None , a__ = 1 / 255 , a__ = True , a__ = True , a__ = None , a__ = None , **a__ , ): super().__init__(**a__ ) _lowerCAmelCase : Any = size if size is not None else {"""shortest_edge""": 224} _lowerCAmelCase : Optional[int] = get_size_dict(a__ , default_to_square=a__ ) _lowerCAmelCase : Dict = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} _lowerCAmelCase : Union[str, Any] = get_size_dict(a__ , param_name="""crop_size""" ) _lowerCAmelCase : int = do_resize _lowerCAmelCase : Tuple = size _lowerCAmelCase : Union[str, Any] = crop_pct _lowerCAmelCase : Optional[Any] = resample _lowerCAmelCase : str = do_center_crop _lowerCAmelCase : Optional[int] = crop_size _lowerCAmelCase : Any = do_rescale _lowerCAmelCase : Dict = rescale_factor _lowerCAmelCase : Optional[Any] = do_normalize _lowerCAmelCase : Tuple = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN _lowerCAmelCase : Union[str, Any] = image_std if image_std is not None else IMAGENET_DEFAULT_STD def __A ( self , a__ , a__ , a__ = None , a__ = PILImageResampling.BICUBIC , a__ = None , **a__ , ): _lowerCAmelCase : Any = get_size_dict(a__ , default_to_square=a__ ) if "shortest_edge" not in size and ("height" not in size or "width" not in size): raise ValueError(F"size must contain 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}" ) if crop_pct is not None: if "shortest_edge" in size: _lowerCAmelCase : List[Any] = int(size["""shortest_edge"""] / crop_pct ) elif "height" in size and "width" in size: if size["height"] == size["width"]: _lowerCAmelCase : str = int(size["""height"""] / crop_pct ) else: _lowerCAmelCase : Dict = (int(size["""height"""] / crop_pct ), int(size["""width"""] / crop_pct )) else: raise ValueError("""Invalid size for resize: {}""".format(a__ ) ) _lowerCAmelCase : str = get_resize_output_image_size(a__ , size=a__ , default_to_square=a__ ) else: if "shortest_edge" in size: _lowerCAmelCase : Optional[int] = get_resize_output_image_size(a__ , size=size["""shortest_edge"""] , default_to_square=a__ ) elif "height" in size and "width" in size: _lowerCAmelCase : str = (size["""height"""], size["""width"""]) else: raise ValueError("""Invalid size for resize: {}""".format(a__ ) ) return resize(a__ , size=a__ , resample=a__ , data_format=a__ , **a__ ) def __A ( self , a__ , a__ , a__ = None , **a__ , ): _lowerCAmelCase : str = get_size_dict(a__ ) if "height" not in size or "width" not in size: raise ValueError(F"size must contain 'height' and 'width' as keys. Got {size.keys()}" ) return center_crop(a__ , size=(size["""height"""], size["""width"""]) , data_format=a__ , **a__ ) def __A ( self , a__ , a__ , a__ = None , **a__ , ): return rescale(a__ , scale=a__ , data_format=a__ , **a__ ) def __A ( self , a__ , a__ , a__ , a__ = None , **a__ , ): return normalize(a__ , mean=a__ , std=a__ , data_format=a__ , **a__ ) def __A ( self , a__ , a__ = None , a__ = None , a__ = None , a__ = None , a__ = None , a__ = None , a__ = None , a__ = None , a__ = None , a__ = None , a__ = None , a__ = None , a__ = ChannelDimension.FIRST , **a__ , ): _lowerCAmelCase : int = do_resize if do_resize is not None else self.do_resize _lowerCAmelCase : Tuple = crop_pct if crop_pct is not None else self.crop_pct _lowerCAmelCase : str = resample if resample is not None else self.resample _lowerCAmelCase : Tuple = do_center_crop if do_center_crop is not None else self.do_center_crop _lowerCAmelCase : Tuple = do_rescale if do_rescale is not None else self.do_rescale _lowerCAmelCase : int = rescale_factor if rescale_factor is not None else self.rescale_factor _lowerCAmelCase : Union[str, Any] = do_normalize if do_normalize is not None else self.do_normalize _lowerCAmelCase : str = image_mean if image_mean is not None else self.image_mean _lowerCAmelCase : Tuple = image_std if image_std is not None else self.image_std _lowerCAmelCase : Optional[int] = size if size is not None else self.size _lowerCAmelCase : Union[str, Any] = get_size_dict(a__ , default_to_square=a__ ) _lowerCAmelCase : List[Any] = crop_size if crop_size is not None else self.crop_size _lowerCAmelCase : Any = get_size_dict(a__ , param_name="""crop_size""" ) _lowerCAmelCase : List[str] = make_list_of_images(a__ ) if not valid_images(a__ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_center_crop and crop_pct is None: raise ValueError("""Crop_pct must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. _lowerCAmelCase : List[str] = [to_numpy_array(a__ ) for image in images] if do_resize: _lowerCAmelCase : int = [self.resize(image=a__ , size=a__ , crop_pct=a__ , resample=a__ ) for image in images] if do_center_crop: _lowerCAmelCase : List[Any] = [self.center_crop(image=a__ , size=a__ ) for image in images] if do_rescale: _lowerCAmelCase : Union[str, Any] = [self.rescale(image=a__ , scale=a__ ) for image in images] if do_normalize: _lowerCAmelCase : List[Any] = [self.normalize(image=a__ , mean=a__ , std=a__ ) for image in images] _lowerCAmelCase : Union[str, Any] = [to_channel_dimension_format(a__ , a__ ) for image in images] _lowerCAmelCase : int = {"""pixel_values""": images} return BatchFeature(data=a__ , tensor_type=a__ )
126
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _a : List[Any] = logging.get_logger(__name__) class __A ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : Tuple = "maskformer-swin" _UpperCamelCase : Union[str, Any] = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self , a__=224 , a__=4 , a__=3 , a__=96 , a__=[2, 2, 6, 2] , a__=[3, 6, 12, 24] , a__=7 , a__=4.0 , a__=True , a__=0.0 , a__=0.0 , a__=0.1 , a__="gelu" , a__=False , a__=0.0_2 , a__=1e-5 , a__=None , a__=None , **a__ , ): super().__init__(**a__ ) _lowerCAmelCase : Dict = image_size _lowerCAmelCase : List[str] = patch_size _lowerCAmelCase : Any = num_channels _lowerCAmelCase : int = embed_dim _lowerCAmelCase : Optional[Any] = depths _lowerCAmelCase : List[str] = len(a__ ) _lowerCAmelCase : List[Any] = num_heads _lowerCAmelCase : Tuple = window_size _lowerCAmelCase : List[Any] = mlp_ratio _lowerCAmelCase : Optional[Any] = qkv_bias _lowerCAmelCase : int = hidden_dropout_prob _lowerCAmelCase : Union[str, Any] = attention_probs_dropout_prob _lowerCAmelCase : Any = drop_path_rate _lowerCAmelCase : Optional[Any] = hidden_act _lowerCAmelCase : Tuple = use_absolute_embeddings _lowerCAmelCase : str = layer_norm_eps _lowerCAmelCase : Any = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _lowerCAmelCase : Union[str, Any] = int(embed_dim * 2 ** (len(a__ ) - 1) ) _lowerCAmelCase : int = ["""stem"""] + [F"stage{idx}" for idx in range(1 , len(a__ ) + 1 )] _lowerCAmelCase , _lowerCAmelCase : int = get_aligned_output_features_output_indices( out_features=a__ , out_indices=a__ , stage_names=self.stage_names )
126
1
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" return int((input_a, input_a).count(1 ) != 0 ) def snake_case__ ( ): """simple docstring""" assert or_gate(0, 0 ) == 0 assert or_gate(0, 1 ) == 1 assert or_gate(1, 0 ) == 1 assert or_gate(1, 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
334
import unittest from transformers import SqueezeBertConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, ) class a_ ( lowerCamelCase_ ): """simple docstring""" def __init__( self : Tuple ,snake_case : Optional[int] ,snake_case : Dict=13 ,snake_case : str=7 ,snake_case : Dict=True ,snake_case : List[Any]=True ,snake_case : Dict=False ,snake_case : int=True ,snake_case : Dict=99 ,snake_case : int=32 ,snake_case : List[str]=5 ,snake_case : Optional[Any]=4 ,snake_case : Tuple=64 ,snake_case : List[Any]="gelu" ,snake_case : str=0.1 ,snake_case : str=0.1 ,snake_case : List[str]=512 ,snake_case : List[str]=16 ,snake_case : str=2 ,snake_case : Dict=0.02 ,snake_case : Optional[int]=3 ,snake_case : int=4 ,snake_case : Any=None ,snake_case : Union[str, Any]=2 ,snake_case : List[Any]=2 ,snake_case : Optional[int]=2 ,snake_case : Dict=2 ,snake_case : List[str]=4 ,snake_case : int=1 ,): SCREAMING_SNAKE_CASE =parent SCREAMING_SNAKE_CASE =batch_size SCREAMING_SNAKE_CASE =seq_length SCREAMING_SNAKE_CASE =is_training SCREAMING_SNAKE_CASE =use_input_mask SCREAMING_SNAKE_CASE =use_token_type_ids SCREAMING_SNAKE_CASE =use_labels SCREAMING_SNAKE_CASE =vocab_size SCREAMING_SNAKE_CASE =hidden_size SCREAMING_SNAKE_CASE =num_hidden_layers SCREAMING_SNAKE_CASE =num_attention_heads SCREAMING_SNAKE_CASE =intermediate_size SCREAMING_SNAKE_CASE =hidden_act SCREAMING_SNAKE_CASE =hidden_dropout_prob SCREAMING_SNAKE_CASE =attention_probs_dropout_prob SCREAMING_SNAKE_CASE =max_position_embeddings SCREAMING_SNAKE_CASE =type_vocab_size SCREAMING_SNAKE_CASE =type_sequence_label_size SCREAMING_SNAKE_CASE =initializer_range SCREAMING_SNAKE_CASE =num_labels SCREAMING_SNAKE_CASE =num_choices SCREAMING_SNAKE_CASE =scope SCREAMING_SNAKE_CASE =q_groups SCREAMING_SNAKE_CASE =k_groups SCREAMING_SNAKE_CASE =v_groups SCREAMING_SNAKE_CASE =post_attention_groups SCREAMING_SNAKE_CASE =intermediate_groups SCREAMING_SNAKE_CASE =output_groups def _lowerCAmelCase ( self : Tuple ): SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) SCREAMING_SNAKE_CASE =None if self.use_input_mask: SCREAMING_SNAKE_CASE =random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE =None SCREAMING_SNAKE_CASE =None SCREAMING_SNAKE_CASE =None if self.use_labels: SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size] ,self.type_sequence_label_size ) SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size] ,self.num_choices ) SCREAMING_SNAKE_CASE =self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowerCAmelCase ( self : Optional[int] ): return SqueezeBertConfig( embedding_size=self.hidden_size ,vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,attention_probs_dropout_prob=self.hidden_dropout_prob ,attention_dropout=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,initializer_range=self.initializer_range ,q_groups=self.q_groups ,k_groups=self.k_groups ,v_groups=self.v_groups ,post_attention_groups=self.post_attention_groups ,intermediate_groups=self.intermediate_groups ,output_groups=self.output_groups ,) def _lowerCAmelCase ( self : Dict ,snake_case : List[str] ,snake_case : Optional[Any] ,snake_case : List[str] ,snake_case : List[Any] ,snake_case : str ,snake_case : Union[str, Any] ): SCREAMING_SNAKE_CASE =SqueezeBertModel(config=snake_case ) model.to(snake_case ) model.eval() SCREAMING_SNAKE_CASE =model(snake_case ,snake_case ) SCREAMING_SNAKE_CASE =model(snake_case ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCAmelCase ( self : Optional[int] ,snake_case : Optional[int] ,snake_case : Union[str, Any] ,snake_case : List[Any] ,snake_case : int ,snake_case : Any ,snake_case : Tuple ): SCREAMING_SNAKE_CASE =SqueezeBertForMaskedLM(config=snake_case ) model.to(snake_case ) model.eval() SCREAMING_SNAKE_CASE =model(snake_case ,attention_mask=snake_case ,labels=snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def _lowerCAmelCase ( self : Tuple ,snake_case : Union[str, Any] ,snake_case : Any ,snake_case : List[str] ,snake_case : List[Any] ,snake_case : Dict ,snake_case : Optional[Any] ): SCREAMING_SNAKE_CASE =SqueezeBertForQuestionAnswering(config=snake_case ) model.to(snake_case ) model.eval() SCREAMING_SNAKE_CASE =model( snake_case ,attention_mask=snake_case ,start_positions=snake_case ,end_positions=snake_case ) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def _lowerCAmelCase ( self : Optional[int] ,snake_case : Tuple ,snake_case : List[str] ,snake_case : List[str] ,snake_case : Any ,snake_case : Tuple ,snake_case : str ): SCREAMING_SNAKE_CASE =self.num_labels SCREAMING_SNAKE_CASE =SqueezeBertForSequenceClassification(snake_case ) model.to(snake_case ) model.eval() SCREAMING_SNAKE_CASE =model(snake_case ,attention_mask=snake_case ,labels=snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def _lowerCAmelCase ( self : Optional[Any] ,snake_case : List[str] ,snake_case : List[str] ,snake_case : Tuple ,snake_case : Dict ,snake_case : str ,snake_case : Tuple ): SCREAMING_SNAKE_CASE =self.num_labels SCREAMING_SNAKE_CASE =SqueezeBertForTokenClassification(config=snake_case ) model.to(snake_case ) model.eval() SCREAMING_SNAKE_CASE =model(snake_case ,attention_mask=snake_case ,labels=snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def _lowerCAmelCase ( self : List[str] ,snake_case : Dict ,snake_case : str ,snake_case : Union[str, Any] ,snake_case : Union[str, Any] ,snake_case : Any ,snake_case : Union[str, Any] ): SCREAMING_SNAKE_CASE =self.num_choices SCREAMING_SNAKE_CASE =SqueezeBertForMultipleChoice(config=snake_case ) model.to(snake_case ) model.eval() SCREAMING_SNAKE_CASE =input_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() SCREAMING_SNAKE_CASE =input_mask.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() SCREAMING_SNAKE_CASE =model( snake_case ,attention_mask=snake_case ,labels=snake_case ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) ) def _lowerCAmelCase ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE =self.prepare_config_and_inputs() ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) =config_and_inputs SCREAMING_SNAKE_CASE ={'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class a_ ( lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): """simple docstring""" __UpperCAmelCase = ( ( SqueezeBertModel, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, ) if is_torch_available() else None ) __UpperCAmelCase = ( { 'feature-extraction': SqueezeBertModel, 'fill-mask': SqueezeBertForMaskedLM, 'question-answering': SqueezeBertForQuestionAnswering, 'text-classification': SqueezeBertForSequenceClassification, 'token-classification': SqueezeBertForTokenClassification, 'zero-shot': SqueezeBertForSequenceClassification, } if is_torch_available() else {} ) __UpperCAmelCase = False __UpperCAmelCase = True __UpperCAmelCase = False def _lowerCAmelCase ( self : List[str] ): SCREAMING_SNAKE_CASE =SqueezeBertModelTester(self ) SCREAMING_SNAKE_CASE =ConfigTester(self ,config_class=snake_case ,dim=37 ) def _lowerCAmelCase ( self : List[str] ): self.config_tester.run_common_tests() def _lowerCAmelCase ( self : Optional[int] ): SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_model(*snake_case ) def _lowerCAmelCase ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_masked_lm(*snake_case ) def _lowerCAmelCase ( self : Optional[Any] ): SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_question_answering(*snake_case ) def _lowerCAmelCase ( self : List[Any] ): SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_sequence_classification(*snake_case ) def _lowerCAmelCase ( self : int ): SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_token_classification(*snake_case ) def _lowerCAmelCase ( self : Tuple ): SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_multiple_choice(*snake_case ) @slow def _lowerCAmelCase ( self : str ): for model_name in SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE =SqueezeBertModel.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) @require_sentencepiece @require_tokenizers @require_torch class a_ ( unittest.TestCase ): """simple docstring""" @slow def _lowerCAmelCase ( self : Any ): SCREAMING_SNAKE_CASE =SqueezeBertForSequenceClassification.from_pretrained('squeezebert/squeezebert-mnli' ) SCREAMING_SNAKE_CASE =torch.tensor([[1, 29414, 232, 328, 740, 1140, 12695, 69, 13, 1588, 2]] ) SCREAMING_SNAKE_CASE =model(snake_case )[0] SCREAMING_SNAKE_CASE =torch.Size((1, 3) ) self.assertEqual(output.shape ,snake_case ) SCREAMING_SNAKE_CASE =torch.tensor([[0.6_401, -0.0_349, -0.6_041]] ) self.assertTrue(torch.allclose(snake_case ,snake_case ,atol=1e-4 ) )
334
1
import os import re import shutil import sys import tempfile import unittest import black lowercase_ = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, 'utils')) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated. lowercase_ = ' \"""\n Output class for the scheduler\'s step function output.\n\n Args:\n prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the\n denoising loop.\n pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n The predicted denoised sample (x_{0}) based on the model output from the current timestep.\n `pred_original_sample` can be used to preview progress or for guidance.\n \"""\n\n prev_sample: torch.FloatTensor\n pred_original_sample: Optional[torch.FloatTensor] = None\n' class A_ ( unittest.TestCase ): '''simple docstring''' def _snake_case ( self: List[str] ): __lowerCamelCase : Optional[int] = tempfile.mkdtemp() os.makedirs(os.path.join(self.diffusers_dir , 'schedulers/' ) ) __lowerCamelCase : Any = self.diffusers_dir shutil.copy( os.path.join(a , 'src/diffusers/schedulers/scheduling_ddpm.py' ) , os.path.join(self.diffusers_dir , 'schedulers/scheduling_ddpm.py' ) , ) def _snake_case ( self: Optional[Any] ): __lowerCamelCase : str = 'src/diffusers' shutil.rmtree(self.diffusers_dir ) def _snake_case ( self: List[Any] , a: Any , a: Dict , a: Any , a: Dict=None ): __lowerCamelCase : List[Any] = comment + F'\nclass {class_name}(nn.Module):\n' + class_code if overwrite_result is not None: __lowerCamelCase : Union[str, Any] = comment + F'\nclass {class_name}(nn.Module):\n' + overwrite_result __lowerCamelCase : Union[str, Any] = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 ) __lowerCamelCase : Optional[int] = black.format_str(a , mode=a ) __lowerCamelCase : str = os.path.join(self.diffusers_dir , 'new_code.py' ) with open(a , 'w' , newline='\n' ) as f: f.write(a ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(a ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=a ) with open(a , 'r' ) as f: self.assertTrue(f.read() , a ) def _snake_case ( self: List[Any] ): __lowerCamelCase : List[Any] = check_copies.find_code_in_diffusers('schedulers.scheduling_ddpm.DDPMSchedulerOutput' ) self.assertEqual(a , a ) def _snake_case ( self: Tuple ): # Base copy consistency self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput' , 'DDPMSchedulerOutput' , REFERENCE_CODE + '\n' , ) # With no empty line at the end self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput' , 'DDPMSchedulerOutput' , a , ) # Copy consistency with rename self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test' , 'TestSchedulerOutput' , re.sub('DDPM' , 'Test' , a ) , ) # Copy consistency with a really long name __lowerCamelCase : str = 'TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason' self.check_copy_consistency( F'# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}' , F'{long_class_name}SchedulerOutput' , re.sub('Bert' , a , a ) , ) # Copy consistency with overwrite self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test' , 'TestSchedulerOutput' , a , overwrite_result=re.sub('DDPM' , 'Test' , a ) , )
194
import os from typing import BinaryIO, Optional, Union import numpy as np import pyarrow.parquet as pq from .. import Audio, Dataset, Features, Image, NamedSplit, Value, config from ..features.features import FeatureType, _visit from ..formatting import query_table from ..packaged_modules import _PACKAGED_DATASETS_MODULES from ..packaged_modules.parquet.parquet import Parquet from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ ): __lowerCamelCase : List[str] = np.inf def set_batch_size(SCREAMING_SNAKE_CASE__ ) -> None: nonlocal batch_size if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): __lowerCamelCase : Union[str, Any] = min(SCREAMING_SNAKE_CASE__ , config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS ) elif isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): __lowerCamelCase : Optional[Any] = min(SCREAMING_SNAKE_CASE__ , config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS ) elif isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and feature.dtype == "binary": __lowerCamelCase : List[str] = min(SCREAMING_SNAKE_CASE__ , config.PARQUET_ROW_GROUP_SIZE_FOR_BINARY_DATASETS ) _visit(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return None if batch_size is np.inf else batch_size class A_ ( __UpperCamelCase ): '''simple docstring''' def __init__( self: Tuple , a: NestedDataStructureLike[PathLike] , a: Optional[NamedSplit] = None , a: Optional[Features] = None , a: str = None , a: bool = False , a: bool = False , a: Optional[int] = None , **a: Optional[Any] , ): super().__init__( a , split=a , features=a , cache_dir=a , keep_in_memory=a , streaming=a , num_proc=a , **a , ) __lowerCamelCase : List[Any] = path_or_paths if isinstance(a , a ) else {self.split: path_or_paths} __lowerCamelCase : Optional[Any] = _PACKAGED_DATASETS_MODULES['parquet'][1] __lowerCamelCase : List[str] = Parquet( cache_dir=a , data_files=a , features=a , hash=a , **a , ) def _snake_case ( self: List[str] ): # Build iterable dataset if self.streaming: __lowerCamelCase : str = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: __lowerCamelCase : str = None __lowerCamelCase : Optional[Any] = None __lowerCamelCase : Union[str, Any] = None __lowerCamelCase : int = None self.builder.download_and_prepare( download_config=a , download_mode=a , verification_mode=a , base_path=a , num_proc=self.num_proc , ) __lowerCamelCase : Tuple = self.builder.as_dataset( split=self.split , verification_mode=a , in_memory=self.keep_in_memory ) return dataset class A_ : '''simple docstring''' def __init__( self: Optional[int] , a: Dataset , a: Union[PathLike, BinaryIO] , a: Optional[int] = None , **a: List[Any] , ): __lowerCamelCase : Optional[int] = dataset __lowerCamelCase : List[Any] = path_or_buf __lowerCamelCase : List[str] = batch_size or get_writer_batch_size(dataset.features ) __lowerCamelCase : List[Any] = parquet_writer_kwargs def _snake_case ( self: Union[str, Any] ): __lowerCamelCase : Optional[int] = self.batch_size if self.batch_size else config.DEFAULT_MAX_BATCH_SIZE if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ): with open(self.path_or_buf , 'wb+' ) as buffer: __lowerCamelCase : Optional[int] = self._write(file_obj=a , batch_size=a , **self.parquet_writer_kwargs ) else: __lowerCamelCase : Any = self._write(file_obj=self.path_or_buf , batch_size=a , **self.parquet_writer_kwargs ) return written def _snake_case ( self: Optional[int] , a: BinaryIO , a: int , **a: str ): __lowerCamelCase : Dict = 0 __lowerCamelCase : Union[str, Any] = parquet_writer_kwargs.pop('path_or_buf' , a ) __lowerCamelCase : str = self.dataset.features.arrow_schema __lowerCamelCase : Any = pq.ParquetWriter(a , schema=a , **a ) for offset in logging.tqdm( range(0 , len(self.dataset ) , a ) , unit='ba' , disable=not logging.is_progress_bar_enabled() , desc='Creating parquet from Arrow format' , ): __lowerCamelCase : Any = query_table( table=self.dataset._data , key=slice(a , offset + batch_size ) , indices=self.dataset._indices if self.dataset._indices is not None else None , ) writer.write_table(a ) written += batch.nbytes writer.close() return written
194
1
'''simple docstring''' def __lowerCAmelCase (__lowerCAmelCase = 4_000_000 ): _UpperCAmelCase : Optional[Any] = [0, 1] _UpperCAmelCase : int = 0 while fib[i] <= n: fib.append(fib[i] + fib[i + 1] ) if fib[i + 2] > n: break i += 1 _UpperCAmelCase : str = 0 for j in range(len(_lowercase ) - 1 ): if fib[j] % 2 == 0: total += fib[j] return total if __name__ == "__main__": print(F'''{solution() = }''')
234
'''simple docstring''' from __future__ import annotations import math class UpperCamelCase_ : def __init__( self , A ) -> None: UpperCAmelCase : Optional[int] = size # approximate the overall size of segment tree with given value UpperCAmelCase : Optional[int] = [0 for i in range(0 , 4 * size )] # create array to store lazy update UpperCAmelCase : Any = [0 for i in range(0 , 4 * size )] UpperCAmelCase : Tuple = [0 for i in range(0 , 4 * size )] # flag for lazy update def _lowercase( self , A ) -> int: return idx * 2 def _lowercase( self , A ) -> int: return idx * 2 + 1 def _lowercase( self , A , A , A , A ) -> None: if left_element == right_element: UpperCAmelCase : str = a[left_element - 1] else: UpperCAmelCase : Tuple = (left_element + right_element) // 2 self.build(self.left(A ) , A , A , A ) self.build(self.right(A ) , mid + 1 , A , A ) UpperCAmelCase : str = max( self.segment_tree[self.left(A )] , self.segment_tree[self.right(A )] ) def _lowercase( self , A , A , A , A , A , A ) -> bool: if self.flag[idx] is True: UpperCAmelCase : Optional[Any] = self.lazy[idx] UpperCAmelCase : int = False if left_element != right_element: UpperCAmelCase : List[str] = self.lazy[idx] UpperCAmelCase : Optional[Any] = self.lazy[idx] UpperCAmelCase : List[str] = True UpperCAmelCase : int = True if right_element < a or left_element > b: return True if left_element >= a and right_element <= b: UpperCAmelCase : Optional[Any] = val if left_element != right_element: UpperCAmelCase : Tuple = val UpperCAmelCase : int = val UpperCAmelCase : Any = True UpperCAmelCase : str = True return True UpperCAmelCase : str = (left_element + right_element) // 2 self.update(self.left(A ) , A , A , A , A , A ) self.update(self.right(A ) , mid + 1 , A , A , A , A ) UpperCAmelCase : List[str] = max( self.segment_tree[self.left(A )] , self.segment_tree[self.right(A )] ) return True def _lowercase( self , A , A , A , A , A ) -> int | float: if self.flag[idx] is True: UpperCAmelCase : Any = self.lazy[idx] UpperCAmelCase : Any = False if left_element != right_element: UpperCAmelCase : Optional[Any] = self.lazy[idx] UpperCAmelCase : Tuple = self.lazy[idx] UpperCAmelCase : List[str] = True UpperCAmelCase : Tuple = True if right_element < a or left_element > b: return -math.inf if left_element >= a and right_element <= b: return self.segment_tree[idx] UpperCAmelCase : Dict = (left_element + right_element) // 2 UpperCAmelCase : List[Any] = self.query(self.left(A ) , A , A , A , A ) UpperCAmelCase : str = self.query(self.right(A ) , mid + 1 , A , A , A ) return max(A , A ) def __str__( self ) -> str: return str([self.query(1 , 1 , self.size , A , A ) for i in range(1 , self.size + 1 )] ) if __name__ == "__main__": a : Optional[int] = [1, 2, -4, 7, 3, -5, 6, 1_1, -2_0, 9, 1_4, 1_5, 5, 2, -8] a : Optional[Any] = 1_5 a : Union[str, Any] = SegmentTree(size) segt.build(1, 1, size, A) print(segt.query(1, 1, size, 4, 6)) print(segt.query(1, 1, size, 7, 1_1)) print(segt.query(1, 1, size, 7, 1_2)) segt.update(1, 1, size, 1, 3, 1_1_1) print(segt.query(1, 1, size, 1, 1_5)) segt.update(1, 1, size, 7, 8, 2_3_5) print(segt)
265
0
import numpy as np import pandas as pd from sklearn.preprocessing import MinMaxScaler from tensorflow.keras.layers import LSTM, Dense from tensorflow.keras.models import Sequential if __name__ == "__main__": _UpperCAmelCase = pd.read_csv("""sample_data.csv""", header=None) _UpperCAmelCase = df.shape[:1][0] # If you're using some other dataset input the target column _UpperCAmelCase = df.iloc[:, 1:2] _UpperCAmelCase = actual_data.values.reshape(len_data, 1) _UpperCAmelCase = MinMaxScaler().fit_transform(actual_data) _UpperCAmelCase = 10 _UpperCAmelCase = 5 _UpperCAmelCase = 20 _UpperCAmelCase = len_data - periods * look_back _UpperCAmelCase = actual_data[:division] _UpperCAmelCase = actual_data[division - look_back :] _UpperCAmelCase ,_UpperCAmelCase = [], [] _UpperCAmelCase ,_UpperCAmelCase = [], [] for i in range(0, len(train_data) - forward_days - look_back + 1): train_x.append(train_data[i : i + look_back]) train_y.append(train_data[i + look_back : i + look_back + forward_days]) for i in range(0, len(test_data) - forward_days - look_back + 1): test_x.append(test_data[i : i + look_back]) test_y.append(test_data[i + look_back : i + look_back + forward_days]) _UpperCAmelCase = np.array(train_x) _UpperCAmelCase = np.array(test_x) _UpperCAmelCase = np.array([list(i.ravel()) for i in train_y]) _UpperCAmelCase = np.array([list(i.ravel()) for i in test_y]) _UpperCAmelCase = Sequential() model.add(LSTM(128, input_shape=(look_back, 1), return_sequences=True)) model.add(LSTM(64, input_shape=(128, 1))) model.add(Dense(forward_days)) model.compile(loss="""mean_squared_error""", optimizer="""adam""") _UpperCAmelCase = model.fit( x_train, y_train, epochs=150, verbose=1, shuffle=True, batch_size=4 ) _UpperCAmelCase = model.predict(x_test)
192
import os import shutil from pathlib import Path from typing import Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ..utils import ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME, is_onnx_available, logging if is_onnx_available(): import onnxruntime as ort _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = { """tensor(bool)""": np.bool_, """tensor(int8)""": np.inta, """tensor(uint8)""": np.uinta, """tensor(int16)""": np.intaa, """tensor(uint16)""": np.uintaa, """tensor(int32)""": np.intaa, """tensor(uint32)""": np.uintaa, """tensor(int64)""": np.intaa, """tensor(uint64)""": np.uintaa, """tensor(float16)""": np.floataa, """tensor(float)""": np.floataa, """tensor(double)""": np.floataa, } class UpperCAmelCase : '''simple docstring''' def __init__( self , lowercase=None , **lowercase ): """simple docstring""" logger.info('`diffusers.OnnxRuntimeModel` is experimental and might change in the future.' ) A_ : List[Any] = model A_ : Dict = kwargs.get('model_save_dir' , lowercase ) A_ : List[str] = kwargs.get('latest_model_name' , lowercase ) def __call__( self , **lowercase ): """simple docstring""" A_ : str = {k: np.array(lowercase ) for k, v in kwargs.items()} return self.model.run(lowercase , lowercase ) @staticmethod def lowerCAmelCase_ ( lowercase , lowercase=None , lowercase=None ): """simple docstring""" if provider is None: logger.info('No onnxruntime provider specified, using CPUExecutionProvider' ) A_ : List[Any] = 'CPUExecutionProvider' return ort.InferenceSession(lowercase , providers=[provider] , sess_options=lowercase ) def lowerCAmelCase_ ( self , lowercase , lowercase = None , **lowercase ): """simple docstring""" A_ : str = file_name if file_name is not None else ONNX_WEIGHTS_NAME A_ : Optional[int] = self.model_save_dir.joinpath(self.latest_model_name ) A_ : int = Path(lowercase ).joinpath(lowercase ) try: shutil.copyfile(lowercase , lowercase ) except shutil.SameFileError: pass # copy external weights (for models >2GB) A_ : Optional[Any] = self.model_save_dir.joinpath(lowercase ) if src_path.exists(): A_ : int = Path(lowercase ).joinpath(lowercase ) try: shutil.copyfile(lowercase , lowercase ) except shutil.SameFileError: pass def lowerCAmelCase_ ( self , lowercase , **lowercase , ): """simple docstring""" if os.path.isfile(lowercase ): logger.error(F'''Provided path ({save_directory}) should be a directory, not a file''' ) return os.makedirs(lowercase , exist_ok=lowercase ) # saving model weights/files self._save_pretrained(lowercase , **lowercase ) @classmethod def lowerCAmelCase_ ( cls , lowercase , lowercase = None , lowercase = None , lowercase = False , lowercase = None , lowercase = None , lowercase = None , lowercase = None , **lowercase , ): """simple docstring""" A_ : Any = file_name if file_name is not None else ONNX_WEIGHTS_NAME # load model from local directory if os.path.isdir(lowercase ): A_ : Optional[int] = OnnxRuntimeModel.load_model( os.path.join(lowercase , lowercase ) , provider=lowercase , sess_options=lowercase ) A_ : Dict = Path(lowercase ) # load model from hub else: # download model A_ : List[str] = hf_hub_download( repo_id=lowercase , filename=lowercase , use_auth_token=lowercase , revision=lowercase , cache_dir=lowercase , force_download=lowercase , ) A_ : int = Path(lowercase ).parent A_ : Optional[Any] = Path(lowercase ).name A_ : Any = OnnxRuntimeModel.load_model(lowercase , provider=lowercase , sess_options=lowercase ) return cls(model=lowercase , **lowercase ) @classmethod def lowerCAmelCase_ ( cls , lowercase , lowercase = True , lowercase = None , lowercase = None , **lowercase , ): """simple docstring""" A_ : List[Any] = None if len(str(lowercase ).split('@' ) ) == 2: A_ , A_ : int = model_id.split('@' ) return cls._from_pretrained( model_id=lowercase , revision=lowercase , cache_dir=lowercase , force_download=lowercase , use_auth_token=lowercase , **lowercase , )
192
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowerCamelCase = { '''configuration_vision_text_dual_encoder''': ['''VisionTextDualEncoderConfig'''], '''processing_vision_text_dual_encoder''': ['''VisionTextDualEncoderProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = ['''VisionTextDualEncoderModel'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = ['''FlaxVisionTextDualEncoderModel'''] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = ['''TFVisionTextDualEncoderModel'''] if TYPE_CHECKING: from .configuration_vision_text_dual_encoder import VisionTextDualEncoderConfig from .processing_vision_text_dual_encoder import VisionTextDualEncoderProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_text_dual_encoder import VisionTextDualEncoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_text_dual_encoder import FlaxVisionTextDualEncoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_text_dual_encoder import TFVisionTextDualEncoderModel else: import sys lowerCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
131
'''simple docstring''' from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import KarrasVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class UpperCAmelCase__ ( lowercase__ ): """simple docstring""" __UpperCAmelCase : UNetaDModel __UpperCAmelCase : KarrasVeScheduler def __init__( self : Union[str, Any] ,_a : UNetaDModel ,_a : KarrasVeScheduler ): '''simple docstring''' super().__init__() self.register_modules(unet=_a ,scheduler=_a ) @torch.no_grad() def __call__( self : List[Any] ,_a : int = 1 ,_a : int = 50 ,_a : Optional[Union[torch.Generator, List[torch.Generator]]] = None ,_a : Optional[str] = "pil" ,_a : bool = True ,**_a : List[Any] ,): '''simple docstring''' _a : Any = self.unet.config.sample_size _a : Optional[int] = (batch_size, 3, img_size, img_size) _a : Dict = self.unet # sample x_0 ~ N(0, sigma_0^2 * I) _a : Dict = randn_tensor(_a ,generator=_a ,device=self.device ) * self.scheduler.init_noise_sigma self.scheduler.set_timesteps(_a ) for t in self.progress_bar(self.scheduler.timesteps ): # here sigma_t == t_i from the paper _a : Optional[int] = self.scheduler.schedule[t] _a : List[str] = self.scheduler.schedule[t - 1] if t > 0 else 0 # 1. Select temporarily increased noise level sigma_hat # 2. Add new noise to move from sample_i to sample_hat _a, _a : List[Any] = self.scheduler.add_noise_to_input(_a ,_a ,generator=_a ) # 3. Predict the noise residual given the noise magnitude `sigma_hat` # The model inputs and output are adjusted by following eq. (213) in [1]. _a : Optional[int] = (sigma_hat / 2) * model((sample_hat + 1) / 2 ,sigma_hat / 2 ).sample # 4. Evaluate dx/dt at sigma_hat # 5. Take Euler step from sigma to sigma_prev _a : Tuple = self.scheduler.step(_a ,_a ,_a ,_a ) if sigma_prev != 0: # 6. Apply 2nd order correction # The model inputs and output are adjusted by following eq. (213) in [1]. _a : Optional[int] = (sigma_prev / 2) * model((step_output.prev_sample + 1) / 2 ,sigma_prev / 2 ).sample _a : Optional[Any] = self.scheduler.step_correct( _a ,_a ,_a ,_a ,step_output.prev_sample ,step_output['derivative'] ,) _a : Dict = step_output.prev_sample _a : Tuple = (sample / 2 + 0.5).clamp(0 ,1 ) _a : Optional[Any] = sample.cpu().permute(0 ,2 ,3 ,1 ).numpy() if output_type == "pil": _a : List[str] = self.numpy_to_pil(_a ) if not return_dict: return (image,) return ImagePipelineOutput(images=_a )
271
0
def UpperCamelCase_( lowerCamelCase_ ) -> set: _lowercase : Any = set() # edges = list of graph's edges _lowercase : int = get_edges(lowerCamelCase_ ) # While there are still elements in edges list, take an arbitrary edge # (from_node, to_node) and add his extremity to chosen_vertices and then # remove all arcs adjacent to the from_node and to_node while edges: _lowercase , _lowercase : Any = edges.pop() chosen_vertices.add(lowerCamelCase_ ) chosen_vertices.add(lowerCamelCase_ ) for edge in edges.copy(): if from_node in edge or to_node in edge: edges.discard(lowerCamelCase_ ) return chosen_vertices def UpperCamelCase_( lowerCamelCase_ ) -> set: _lowercase : int = set() for from_node, to_nodes in graph.items(): for to_node in to_nodes: edges.add((from_node, to_node) ) return edges if __name__ == "__main__": import doctest doctest.testmod() # graph = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} # print(f"Matching vertex cover:\n{matching_min_vertex_cover(graph)}")
84
from typing import List, Optional, Tuple, Union import torch from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class _lowerCamelCase( _a ): def __init__( self, lowerCamelCase, lowerCamelCase) -> Dict: """simple docstring""" super().__init__() # make sure scheduler can always be converted to DDIM _lowercase : List[str] = DDIMScheduler.from_config(scheduler.config) self.register_modules(unet=lowerCamelCase, scheduler=lowerCamelCase) @torch.no_grad() def __call__( self, lowerCamelCase = 1, lowerCamelCase = None, lowerCamelCase = 0.0, lowerCamelCase = 50, lowerCamelCase = None, lowerCamelCase = "pil", lowerCamelCase = True, ) -> Union[ImagePipelineOutput, Tuple]: """simple docstring""" if isinstance(self.unet.config.sample_size, lowerCamelCase): _lowercase : Optional[int] = ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size, ) else: _lowercase : Union[str, Any] = (batch_size, self.unet.config.in_channels, *self.unet.config.sample_size) if isinstance(lowerCamelCase, lowerCamelCase) and len(lowerCamelCase) != batch_size: raise ValueError( F'''You have passed a list of generators of length {len(lowerCamelCase)}, but requested an effective batch''' F''' size of {batch_size}. Make sure the batch size matches the length of the generators.''') _lowercase : str = randn_tensor(lowerCamelCase, generator=lowerCamelCase, device=self.device, dtype=self.unet.dtype) # set step values self.scheduler.set_timesteps(lowerCamelCase) for t in self.progress_bar(self.scheduler.timesteps): # 1. predict noise model_output _lowercase : Union[str, Any] = self.unet(lowerCamelCase, lowerCamelCase).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 _lowercase : Optional[Any] = self.scheduler.step( lowerCamelCase, lowerCamelCase, lowerCamelCase, eta=lowerCamelCase, use_clipped_model_output=lowerCamelCase, generator=lowerCamelCase).prev_sample _lowercase : Any = (image / 2 + 0.5).clamp(0, 1) _lowercase : str = image.cpu().permute(0, 2, 3, 1).numpy() if output_type == "pil": _lowercase : Optional[int] = self.numpy_to_pil(lowerCamelCase) if not return_dict: return (image,) return ImagePipelineOutput(images=lowerCamelCase)
84
1
"""simple docstring""" from typing import Optional import pyspark from .. import Features, NamedSplit from ..download import DownloadMode from ..packaged_modules.spark.spark import Spark from .abc import AbstractDatasetReader class A_ ( A__ ): """simple docstring""" def __init__( self :Optional[int] , lowerCamelCase_ :pyspark.sql.DataFrame , lowerCamelCase_ :Optional[NamedSplit] = None , lowerCamelCase_ :Optional[Features] = None , lowerCamelCase_ :bool = True , lowerCamelCase_ :str = None , lowerCamelCase_ :bool = False , lowerCamelCase_ :str = None , lowerCamelCase_ :bool = True , lowerCamelCase_ :str = "arrow" , **lowerCamelCase_ :Optional[int] , ): """simple docstring""" super().__init__( split=lowerCamelCase_ , features=lowerCamelCase_ , cache_dir=lowerCamelCase_ , keep_in_memory=lowerCamelCase_ , streaming=lowerCamelCase_ , **lowerCamelCase_ , ) lowerCamelCase__ : Union[str, Any] =load_from_cache_file lowerCamelCase__ : Tuple =file_format lowerCamelCase__ : List[str] =Spark( df=lowerCamelCase_ , features=lowerCamelCase_ , cache_dir=lowerCamelCase_ , working_dir=lowerCamelCase_ , **lowerCamelCase_ , ) def UpperCAmelCase__ ( self :List[Any] ): """simple docstring""" if self.streaming: return self.builder.as_streaming_dataset(split=self.split ) lowerCamelCase__ : Union[str, Any] =None if self._load_from_cache_file else DownloadMode.FORCE_REDOWNLOAD self.builder.download_and_prepare( download_mode=lowerCamelCase_ , file_format=self._file_format , ) return self.builder.as_dataset(split=self.split )
126
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = { """microsoft/beit-base-patch16-224-pt22k""": ( """https://huggingface.co/microsoft/beit-base-patch16-224-pt22k/resolve/main/config.json""" ), # See all BEiT models at https://huggingface.co/models?filter=beit } class A_ ( A__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = """beit""" def __init__( self :Union[str, Any] , lowerCamelCase_ :Union[str, Any]=8_192 , lowerCamelCase_ :Dict=768 , lowerCamelCase_ :Dict=12 , lowerCamelCase_ :Optional[int]=12 , lowerCamelCase_ :str=3_072 , lowerCamelCase_ :List[str]="gelu" , lowerCamelCase_ :Union[str, Any]=0.0 , lowerCamelCase_ :Tuple=0.0 , lowerCamelCase_ :Optional[int]=0.02 , lowerCamelCase_ :int=1e-12 , lowerCamelCase_ :str=224 , lowerCamelCase_ :List[str]=16 , lowerCamelCase_ :Union[str, Any]=3 , lowerCamelCase_ :Optional[Any]=False , lowerCamelCase_ :Tuple=False , lowerCamelCase_ :str=False , lowerCamelCase_ :Tuple=False , lowerCamelCase_ :Any=0.1 , lowerCamelCase_ :Union[str, Any]=0.1 , lowerCamelCase_ :str=True , lowerCamelCase_ :Tuple=[3, 5, 7, 11] , lowerCamelCase_ :str=[1, 2, 3, 6] , lowerCamelCase_ :Optional[int]=True , lowerCamelCase_ :Any=0.4 , lowerCamelCase_ :List[str]=256 , lowerCamelCase_ :Optional[Any]=1 , lowerCamelCase_ :List[Any]=False , lowerCamelCase_ :int=255 , **lowerCamelCase_ :List[str] , ): """simple docstring""" super().__init__(**lowerCamelCase_ ) lowerCamelCase__ : Any =vocab_size lowerCamelCase__ : List[str] =hidden_size lowerCamelCase__ : List[Any] =num_hidden_layers lowerCamelCase__ : Tuple =num_attention_heads lowerCamelCase__ : List[str] =intermediate_size lowerCamelCase__ : List[Any] =hidden_act lowerCamelCase__ : Tuple =hidden_dropout_prob lowerCamelCase__ : Optional[int] =attention_probs_dropout_prob lowerCamelCase__ : Optional[int] =initializer_range lowerCamelCase__ : List[str] =layer_norm_eps lowerCamelCase__ : Dict =image_size lowerCamelCase__ : int =patch_size lowerCamelCase__ : Union[str, Any] =num_channels lowerCamelCase__ : Tuple =use_mask_token lowerCamelCase__ : Any =use_absolute_position_embeddings lowerCamelCase__ : str =use_relative_position_bias lowerCamelCase__ : int =use_shared_relative_position_bias lowerCamelCase__ : Optional[int] =layer_scale_init_value lowerCamelCase__ : Any =drop_path_rate lowerCamelCase__ : Dict =use_mean_pooling # decode head attributes (semantic segmentation) lowerCamelCase__ : List[str] =out_indices lowerCamelCase__ : List[Any] =pool_scales # auxiliary head attributes (semantic segmentation) lowerCamelCase__ : Tuple =use_auxiliary_head lowerCamelCase__ : List[str] =auxiliary_loss_weight lowerCamelCase__ : Tuple =auxiliary_channels lowerCamelCase__ : Union[str, Any] =auxiliary_num_convs lowerCamelCase__ : Optional[Any] =auxiliary_concat_input lowerCamelCase__ : Optional[int] =semantic_loss_ignore_index class A_ ( A__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = version.parse("""1.11""" ) @property def UpperCAmelCase__ ( self :List[str] ): """simple docstring""" return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def UpperCAmelCase__ ( self :Union[str, Any] ): """simple docstring""" return 1e-4
126
1
import json import os import tempfile import transformers import datasets from utils import generate_example_dataset, get_duration UpperCamelCase = 50_0000 UpperCamelCase , UpperCamelCase = os.path.split(__file__) UpperCamelCase = os.path.join(RESULTS_BASEPATH, 'results', RESULTS_FILENAME.replace('.py', '.json')) @get_duration def _A ( lowerCAmelCase_ : datasets.Dataset , **lowerCAmelCase_ : str ): """simple docstring""" lowerCAmelCase__ = dataset.map(**lowerCAmelCase_ ) @get_duration def _A ( lowerCAmelCase_ : datasets.Dataset , **lowerCAmelCase_ : str ): """simple docstring""" lowerCAmelCase__ = dataset.filter(**lowerCAmelCase_ ) def _A ( ): """simple docstring""" lowerCAmelCase__ = {"num examples": SPEED_TEST_N_EXAMPLES} with tempfile.TemporaryDirectory() as tmp_dir: lowerCAmelCase__ = datasets.Features({"text": datasets.Value("string" ), "numbers": datasets.Value("float32" )} ) lowerCAmelCase__ = generate_example_dataset( os.path.join(lowerCAmelCase_ , "dataset.arrow" ) , lowerCAmelCase_ , num_examples=lowerCAmelCase_ ) lowerCAmelCase__ = transformers.AutoTokenizer.from_pretrained("bert-base-cased" , use_fast=lowerCAmelCase_ ) def tokenize(lowerCAmelCase_ : int ): return tokenizer(examples["text"] ) lowerCAmelCase__ = map(lowerCAmelCase_ ) lowerCAmelCase__ = map(lowerCAmelCase_ , batched=lowerCAmelCase_ ) lowerCAmelCase__ = map(lowerCAmelCase_ , function=lambda lowerCAmelCase_ : None , batched=lowerCAmelCase_ ) with dataset.formatted_as(type="numpy" ): lowerCAmelCase__ = map(lowerCAmelCase_ , function=lambda lowerCAmelCase_ : None , batched=lowerCAmelCase_ ) with dataset.formatted_as(type="pandas" ): lowerCAmelCase__ = map(lowerCAmelCase_ , function=lambda lowerCAmelCase_ : None , batched=lowerCAmelCase_ ) with dataset.formatted_as(type="torch" , columns="numbers" ): lowerCAmelCase__ = map(lowerCAmelCase_ , function=lambda lowerCAmelCase_ : None , batched=lowerCAmelCase_ ) with dataset.formatted_as(type="tensorflow" , columns="numbers" ): lowerCAmelCase__ = map(lowerCAmelCase_ , function=lambda lowerCAmelCase_ : None , batched=lowerCAmelCase_ ) lowerCAmelCase__ = map(lowerCAmelCase_ , function=lowerCAmelCase_ , batched=lowerCAmelCase_ ) lowerCAmelCase__ = filter(lowerCAmelCase_ ) # Activate later when tokenizer support batched inputs # with dataset.formatted_as(type='numpy'): # times[func.__name__ + " fast-tokenizer batched numpy"] = func(dataset, function=tokenize, batched=True) with open(lowerCAmelCase_ , "wb" ) as f: f.write(json.dumps(lowerCAmelCase_ ).encode("utf-8" ) ) if __name__ == "__main__": # useful to run the profiler benchmark_map_filter()
221
from maths.prime_factors import prime_factors def _A ( lowerCAmelCase_ : int ): """simple docstring""" if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): lowerCAmelCase__ = F'Input value of [number={number}] must be an integer' raise TypeError(lowerCAmelCase_ ) if number < 1: raise ValueError("Input must be a positive integer" ) return -1 if len(prime_factors(lowerCAmelCase_ ) ) % 2 else 1 if __name__ == "__main__": import doctest doctest.testmod()
221
1
"""simple docstring""" def lowerCamelCase__ ( __snake_case ) -> set: """simple docstring""" _UpperCamelCase = set() # edges = list of graph's edges _UpperCamelCase = get_edges(__snake_case ) # While there are still elements in edges list, take an arbitrary edge # (from_node, to_node) and add his extremity to chosen_vertices and then # remove all arcs adjacent to the from_node and to_node while edges: _UpperCamelCase , _UpperCamelCase = edges.pop() chosen_vertices.add(__snake_case ) chosen_vertices.add(__snake_case ) for edge in edges.copy(): if from_node in edge or to_node in edge: edges.discard(__snake_case ) return chosen_vertices def lowerCamelCase__ ( __snake_case ) -> set: """simple docstring""" _UpperCamelCase = set() for from_node, to_nodes in graph.items(): for to_node in to_nodes: edges.add((from_node, to_node) ) return edges if __name__ == "__main__": import doctest doctest.testmod() # graph = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} # print(f"Matching vertex cover:\n{matching_min_vertex_cover(graph)}")
194
"""simple docstring""" from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _a = { """configuration_autoformer""": [ """AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """AutoformerConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = [ """AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """AutoformerForPrediction""", """AutoformerModel""", """AutoformerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_autoformer import ( AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_autoformer import ( AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, AutoformerForPrediction, AutoformerModel, AutoformerPreTrainedModel, ) else: import sys _a = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
194
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowercase__ ={ 'configuration_rembert': ['REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RemBertConfig', 'RemBertOnnxConfig'] } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ =['RemBertTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ =['RemBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ =[ 'REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'RemBertForCausalLM', 'RemBertForMaskedLM', 'RemBertForMultipleChoice', 'RemBertForQuestionAnswering', 'RemBertForSequenceClassification', 'RemBertForTokenClassification', 'RemBertLayer', 'RemBertModel', 'RemBertPreTrainedModel', 'load_tf_weights_in_rembert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ =[ 'TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFRemBertForCausalLM', 'TFRemBertForMaskedLM', 'TFRemBertForMultipleChoice', 'TFRemBertForQuestionAnswering', 'TFRemBertForSequenceClassification', 'TFRemBertForTokenClassification', 'TFRemBertLayer', 'TFRemBertModel', 'TFRemBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_rembert import REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RemBertConfig, RemBertOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert import RemBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert_fast import RemBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rembert import ( REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, RemBertForCausalLM, RemBertForMaskedLM, RemBertForMultipleChoice, RemBertForQuestionAnswering, RemBertForSequenceClassification, RemBertForTokenClassification, RemBertLayer, RemBertModel, RemBertPreTrainedModel, load_tf_weights_in_rembert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rembert import ( TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFRemBertForCausalLM, TFRemBertForMaskedLM, TFRemBertForMultipleChoice, TFRemBertForQuestionAnswering, TFRemBertForSequenceClassification, TFRemBertForTokenClassification, TFRemBertLayer, TFRemBertModel, TFRemBertPreTrainedModel, ) else: import sys lowercase__ =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
90
import argparse import os import re import packaging.version lowercase__ ='examples/' lowercase__ ={ 'examples': (re.compile(R'^check_min_version\("[^"]+"\)\s*$', re.MULTILINE), 'check_min_version("VERSION")\n'), 'init': (re.compile(R'^__version__\s+=\s+"([^"]+)"\s*$', re.MULTILINE), '__version__ = "VERSION"\n'), 'setup': (re.compile(R'^(\s*)version\s*=\s*"[^"]+",', re.MULTILINE), R'\1version="VERSION",'), 'doc': (re.compile(R'^(\s*)release\s*=\s*"[^"]+"$', re.MULTILINE), 'release = "VERSION"\n'), } lowercase__ ={ 'init': 'src/transformers/__init__.py', 'setup': 'setup.py', } lowercase__ ='README.md' def __UpperCamelCase ( lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Tuple ): with open(lowerCAmelCase__ , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: __a : Tuple = f.read() __a , __a : Optional[int] = REPLACE_PATTERNS[pattern] __a : List[Any] = replace.replace('''VERSION''' , lowerCAmelCase__ ) __a : Any = re_pattern.sub(lowerCAmelCase__ , lowerCAmelCase__ ) with open(lowerCAmelCase__ , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.write(lowerCAmelCase__ ) def __UpperCamelCase ( lowerCAmelCase__ : Tuple ): for folder, directories, fnames in os.walk(lowerCAmelCase__ ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove('''research_projects''' ) if "legacy" in directories: directories.remove('''legacy''' ) for fname in fnames: if fname.endswith('''.py''' ): update_version_in_file(os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) , lowerCAmelCase__ , pattern='''examples''' ) def __UpperCamelCase ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Dict=False ): for pattern, fname in REPLACE_FILES.items(): update_version_in_file(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) if not patch: update_version_in_examples(lowerCAmelCase__ ) def __UpperCamelCase ( ): __a : Optional[int] = '''🤗 Transformers currently provides the following architectures''' __a : int = '''1. Want to contribute a new model?''' with open(lowerCAmelCase__ , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: __a : Tuple = f.readlines() # Find the start of the list. __a : Optional[int] = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 __a : Any = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith('''1.''' ): __a : str = lines[index].replace( '''https://huggingface.co/docs/transformers/main/model_doc''' , '''https://huggingface.co/docs/transformers/model_doc''' , ) index += 1 with open(lowerCAmelCase__ , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.writelines(lowerCAmelCase__ ) def __UpperCamelCase ( ): with open(REPLACE_FILES['''init'''] , '''r''' ) as f: __a : Optional[int] = f.read() __a : str = REPLACE_PATTERNS['''init'''][0].search(lowerCAmelCase__ ).groups()[0] return packaging.version.parse(lowerCAmelCase__ ) def __UpperCamelCase ( lowerCAmelCase__ : Union[str, Any]=False ): __a : str = get_version() if patch and default_version.is_devrelease: raise ValueError('''Can\'t create a patch version from the dev branch, checkout a released version!''' ) if default_version.is_devrelease: __a : Union[str, Any] = default_version.base_version elif patch: __a : Tuple = f"{default_version.major}.{default_version.minor}.{default_version.micro + 1}" else: __a : List[str] = f"{default_version.major}.{default_version.minor + 1}.0" # Now let's ask nicely if that's the right one. __a : List[str] = input(f"Which version are you releasing? [{default_version}]" ) if len(lowerCAmelCase__ ) == 0: __a : Tuple = default_version print(f"Updating version to {version}." ) global_version_update(lowerCAmelCase__ , patch=lowerCAmelCase__ ) if not patch: print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() def __UpperCamelCase ( ): __a : Dict = get_version() __a : str = f"{current_version.major}.{current_version.minor + 1}.0.dev0" __a : Any = current_version.base_version # Check with the user we got that right. __a : Any = input(f"Which version are we developing now? [{dev_version}]" ) if len(lowerCAmelCase__ ) == 0: __a : Any = dev_version print(f"Updating version to {version}." ) global_version_update(lowerCAmelCase__ ) print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() if __name__ == "__main__": lowercase__ =argparse.ArgumentParser() parser.add_argument('--post_release', action='store_true', help='Whether this is pre or post release.') parser.add_argument('--patch', action='store_true', help='Whether or not this is a patch release.') lowercase__ =parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print('Nothing to do after a patch :-)') else: post_release_work()
90
1
from ...configuration_utils import PretrainedConfig from ...utils import logging A_ : str = logging.get_logger(__name__) A_ : str = { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json' ), 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json' ), 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json' ), } class _a (__magic_name__ ): '''simple docstring''' UpperCAmelCase__: Optional[int] = '''dpr''' def __init__( self , A__=3_0522 , A__=768 , A__=12 , A__=12 , A__=3072 , A__="gelu" , A__=0.1 , A__=0.1 , A__=512 , A__=2 , A__=0.0_2 , A__=1e-12 , A__=0 , A__="absolute" , A__ = 0 , **A__ , ): super().__init__(pad_token_id=A__ , **A__ ) A__ : Any = vocab_size A__ : Optional[int] = hidden_size A__ : List[Any] = num_hidden_layers A__ : Tuple = num_attention_heads A__ : Union[str, Any] = hidden_act A__ : List[str] = intermediate_size A__ : Tuple = hidden_dropout_prob A__ : Union[str, Any] = attention_probs_dropout_prob A__ : int = max_position_embeddings A__ : List[str] = type_vocab_size A__ : List[str] = initializer_range A__ : Optional[Any] = layer_norm_eps A__ : List[str] = projection_dim A__ : Optional[int] = position_embedding_type
192
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A_ : Optional[int] = {'configuration_ibert': ['IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'IBertConfig', 'IBertOnnxConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : str = [ 'IBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'IBertForMaskedLM', 'IBertForMultipleChoice', 'IBertForQuestionAnswering', 'IBertForSequenceClassification', 'IBertForTokenClassification', 'IBertModel', 'IBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_ibert import IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, IBertConfig, IBertOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ibert import ( IBERT_PRETRAINED_MODEL_ARCHIVE_LIST, IBertForMaskedLM, IBertForMultipleChoice, IBertForQuestionAnswering, IBertForSequenceClassification, IBertForTokenClassification, IBertModel, IBertPreTrainedModel, ) else: import sys A_ : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
192
1
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizer from diffusers import ( AltDiffusionImgaImgPipeline, AutoencoderKL, PNDMScheduler, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class UpperCamelCase ( unittest.TestCase ): """simple docstring""" def lowerCamelCase__ ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def lowerCamelCase__ ( self ): _lowercase : Any = 1 _lowercase : str = 3 _lowercase : Any = (32, 32) _lowercase : Optional[int] = floats_tensor((batch_size, num_channels) + sizes ,rng=random.Random(0 ) ).to(lowerCAmelCase__ ) return image @property def lowerCamelCase__ ( self ): torch.manual_seed(0 ) _lowercase : Optional[int] = UNetaDConditionModel( block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=4 ,out_channels=4 ,down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") ,up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") ,cross_attention_dim=32 ,) return model @property def lowerCamelCase__ ( self ): torch.manual_seed(0 ) _lowercase : Dict = AutoencoderKL( block_out_channels=[32, 64] ,in_channels=3 ,out_channels=3 ,down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] ,up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] ,latent_channels=4 ,) return model @property def lowerCamelCase__ ( self ): torch.manual_seed(0 ) _lowercase : int = RobertaSeriesConfig( hidden_size=32 ,project_dim=32 ,intermediate_size=37 ,layer_norm_eps=1E-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=50_06 ,) return RobertaSeriesModelWithTransformation(lowerCAmelCase__ ) @property def lowerCamelCase__ ( self ): def extract(*UpperCAmelCase_ ,**UpperCAmelCase_ ): class UpperCamelCase : """simple docstring""" def __init__( self ): _lowercase : Dict = torch.ones([0] ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ): self.pixel_values.to(lowerCAmelCase__ ) return self return Out() return extract def lowerCamelCase__ ( self ): _lowercase : Dict = "cpu" # ensure determinism for the device-dependent torch.Generator _lowercase : Any = self.dummy_cond_unet _lowercase : Any = PNDMScheduler(skip_prk_steps=lowerCAmelCase__ ) _lowercase : str = self.dummy_vae _lowercase : List[Any] = self.dummy_text_encoder _lowercase : Union[str, Any] = XLMRobertaTokenizer.from_pretrained("""hf-internal-testing/tiny-xlm-roberta""" ) _lowercase : List[str] = 77 _lowercase : List[str] = self.dummy_image.to(lowerCAmelCase__ ) _lowercase : int = init_image / 2 + 0.5 # make sure here that pndm scheduler skips prk _lowercase : str = AltDiffusionImgaImgPipeline( unet=lowerCAmelCase__ ,scheduler=lowerCAmelCase__ ,vae=lowerCAmelCase__ ,text_encoder=lowerCAmelCase__ ,tokenizer=lowerCAmelCase__ ,safety_checker=lowerCAmelCase__ ,feature_extractor=self.dummy_extractor ,) _lowercase : Optional[Any] = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor ,do_normalize=lowerCAmelCase__ ) _lowercase : Tuple = alt_pipe.to(lowerCAmelCase__ ) alt_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) _lowercase : Dict = "A painting of a squirrel eating a burger" _lowercase : Union[str, Any] = torch.Generator(device=lowerCAmelCase__ ).manual_seed(0 ) _lowercase : List[str] = alt_pipe( [prompt] ,generator=lowerCAmelCase__ ,guidance_scale=6.0 ,num_inference_steps=2 ,output_type="""np""" ,image=lowerCAmelCase__ ,) _lowercase : Tuple = output.images _lowercase : Union[str, Any] = torch.Generator(device=lowerCAmelCase__ ).manual_seed(0 ) _lowercase : List[str] = alt_pipe( [prompt] ,generator=lowerCAmelCase__ ,guidance_scale=6.0 ,num_inference_steps=2 ,output_type="""np""" ,image=lowerCAmelCase__ ,return_dict=lowerCAmelCase__ ,)[0] _lowercase : List[Any] = image[0, -3:, -3:, -1] _lowercase : Optional[int] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _lowercase : List[Any] = np.array([0.4427, 0.3731, 0.4249, 0.4941, 0.4546, 0.4148, 0.4193, 0.4666, 0.4499] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-3 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5E-3 @unittest.skipIf(torch_device != """cuda""" ,"""This test requires a GPU""" ) def lowerCamelCase__ ( self ): _lowercase : Optional[Any] = self.dummy_cond_unet _lowercase : Dict = PNDMScheduler(skip_prk_steps=lowerCAmelCase__ ) _lowercase : List[Any] = self.dummy_vae _lowercase : Tuple = self.dummy_text_encoder _lowercase : str = XLMRobertaTokenizer.from_pretrained("""hf-internal-testing/tiny-xlm-roberta""" ) _lowercase : List[Any] = 77 _lowercase : Tuple = self.dummy_image.to(lowerCAmelCase__ ) # put models in fp16 _lowercase : Optional[int] = unet.half() _lowercase : int = vae.half() _lowercase : Optional[Any] = bert.half() # make sure here that pndm scheduler skips prk _lowercase : Dict = AltDiffusionImgaImgPipeline( unet=lowerCAmelCase__ ,scheduler=lowerCAmelCase__ ,vae=lowerCAmelCase__ ,text_encoder=lowerCAmelCase__ ,tokenizer=lowerCAmelCase__ ,safety_checker=lowerCAmelCase__ ,feature_extractor=self.dummy_extractor ,) _lowercase : List[Any] = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor ,do_normalize=lowerCAmelCase__ ) _lowercase : str = alt_pipe.to(lowerCAmelCase__ ) alt_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) _lowercase : List[Any] = "A painting of a squirrel eating a burger" _lowercase : Optional[Any] = torch.manual_seed(0 ) _lowercase : Union[str, Any] = alt_pipe( [prompt] ,generator=lowerCAmelCase__ ,num_inference_steps=2 ,output_type="""np""" ,image=lowerCAmelCase__ ,).images assert image.shape == (1, 32, 32, 3) @unittest.skipIf(torch_device != """cuda""" ,"""This test requires a GPU""" ) def lowerCamelCase__ ( self ): _lowercase : Any = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/img2img/sketch-mountains-input.jpg""" ) # resize to resolution that is divisible by 8 but not 16 or 32 _lowercase : str = init_image.resize((7_60, 5_04) ) _lowercase : Dict = "BAAI/AltDiffusion" _lowercase : List[str] = AltDiffusionImgaImgPipeline.from_pretrained( lowerCAmelCase__ ,safety_checker=lowerCAmelCase__ ,) pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) pipe.enable_attention_slicing() _lowercase : str = "A fantasy landscape, trending on artstation" _lowercase : str = torch.manual_seed(0 ) _lowercase : Any = pipe( prompt=lowerCAmelCase__ ,image=lowerCAmelCase__ ,strength=0.75 ,guidance_scale=7.5 ,generator=lowerCAmelCase__ ,output_type="""np""" ,) _lowercase : Optional[Any] = output.images[0] _lowercase : List[str] = image[2_55:2_58, 3_83:3_86, -1] assert image.shape == (5_04, 7_60, 3) _lowercase : Dict = np.array([0.9358, 0.9397, 0.9599, 0.9901, 1.0000, 1.0000, 0.9882, 1.0000, 1.0000] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class UpperCamelCase ( unittest.TestCase ): """simple docstring""" def lowerCamelCase__ ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase__ ( self ): _lowercase : Tuple = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/img2img/sketch-mountains-input.jpg""" ) _lowercase : Optional[int] = init_image.resize((7_68, 5_12) ) _lowercase : Union[str, Any] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy""" ) _lowercase : List[str] = "BAAI/AltDiffusion" _lowercase : List[str] = AltDiffusionImgaImgPipeline.from_pretrained( lowerCAmelCase__ ,safety_checker=lowerCAmelCase__ ,) pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) pipe.enable_attention_slicing() _lowercase : Union[str, Any] = "A fantasy landscape, trending on artstation" _lowercase : Optional[Any] = torch.manual_seed(0 ) _lowercase : str = pipe( prompt=lowerCAmelCase__ ,image=lowerCAmelCase__ ,strength=0.75 ,guidance_scale=7.5 ,generator=lowerCAmelCase__ ,output_type="""np""" ,) _lowercase : str = output.images[0] assert image.shape == (5_12, 7_68, 3) # img2img is flaky across GPUs even in fp32, so using MAE here assert np.abs(expected_image - image ).max() < 1E-2
363
"""simple docstring""" UpperCAmelCase: str = """ # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git """ UpperCAmelCase: Any = [{"""type""": """code""", """content""": INSTALL_CONTENT}] UpperCAmelCase: int = { """{processor_class}""": """FakeProcessorClass""", """{model_class}""": """FakeModelClass""", """{object_class}""": """FakeObjectClass""", }
336
0
"""simple docstring""" from math import sqrt import numpy as np from sympy import symbols # Coefficient # Speed of light (m/s) __UpperCAmelCase = 2_99_79_24_58 # Symbols __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = symbols('ct x y z') def _snake_case ( lowercase__ : float ) -> float: '''simple docstring''' if velocity > c: raise ValueError("""Speed must not exceed light speed 299,792,458 [m/s]!""" ) elif velocity < 1: # Usually the speed should be much higher than 1 (c order of magnitude) raise ValueError("""Speed must be greater than or equal to 1!""" ) return velocity / c def _snake_case ( lowercase__ : float ) -> float: '''simple docstring''' return 1 / sqrt(1 - beta(lowercase__ ) ** 2 ) def _snake_case ( lowercase__ : float ) -> np.ndarray: '''simple docstring''' return np.array( [ [gamma(lowercase__ ), -gamma(lowercase__ ) * beta(lowercase__ ), 0, 0], [-gamma(lowercase__ ) * beta(lowercase__ ), gamma(lowercase__ ), 0, 0], [0, 0, 1, 0], [0, 0, 0, 1], ] ) def _snake_case ( lowercase__ : float , lowercase__ : np.ndarray | None = None ) -> np.ndarray: '''simple docstring''' if event is None: lowerCAmelCase_ :Tuple = np.array([ct, x, y, z] ) # Symbolic four vector else: event[0] *= c # x0 is ct (speed of light * time) return transformation_matrix(lowercase__ ) @ event if __name__ == "__main__": import doctest doctest.testmod() # Example of symbolic vector: __UpperCAmelCase = transform(29_97_92_45) print('Example of four vector: ') print(F"""ct' = {four_vector[0]}""") print(F"""x' = {four_vector[1]}""") print(F"""y' = {four_vector[2]}""") print(F"""z' = {four_vector[3]}""") # Substitute symbols with numerical values __UpperCAmelCase = {ct: c, x: 1, y: 1, z: 1} __UpperCAmelCase = [four_vector[i].subs(sub_dict) for i in range(4)] print(F"""\n{numerical_vector}""")
84
"""simple docstring""" from __future__ import annotations from collections.abc import Generator def _snake_case ( ) -> Generator[int, None, None]: '''simple docstring''' lowerCAmelCase_ :dict[int, int] = {} lowerCAmelCase_ :int = 2 while True: lowerCAmelCase_ :List[Any] = factor_map.pop(lowercase__ , lowercase__ ) if factor: lowerCAmelCase_ :Optional[int] = factor + prime while x in factor_map: x += factor lowerCAmelCase_ :List[str] = factor else: lowerCAmelCase_ :Optional[int] = prime yield prime prime += 1 def _snake_case ( lowercase__ : float = 1E10 ) -> int: '''simple docstring''' lowerCAmelCase_ :Optional[Any] = sieve() lowerCAmelCase_ :str = 1 while True: lowerCAmelCase_ :int = next(lowercase__ ) if (2 * prime * n) > limit: return n # Ignore the next prime as the reminder will be 2. next(lowercase__ ) n += 2 if __name__ == "__main__": print(solution())
84
1
"""simple docstring""" from collections.abc import Iterable from typing import Any class lowerCAmelCase__ : def __init__( self : List[Any] , snake_case__ : int | None = None ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = value UpperCAmelCase__ : Node | None = None # Added in order to delete a node easier UpperCAmelCase__ : Node | None = None UpperCAmelCase__ : Node | None = None def __repr__( self : Dict ): '''simple docstring''' from pprint import pformat if self.left is None and self.right is None: return str(self.value ) return pformat({f'{self.value}': (self.left, self.right)} , indent=1 ) class lowerCAmelCase__ : def __init__( self : str , snake_case__ : Node | None = None ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = root def __str__( self : Any ): '''simple docstring''' return str(self.root ) def __a ( self : int , snake_case__ : Node , snake_case__ : Node | None ): '''simple docstring''' if new_children is not None: # reset its kids UpperCAmelCase__ : List[Any] = node.parent if node.parent is not None: # reset its parent if self.is_right(snake_case__ ): # If it is the right children UpperCAmelCase__ : int = new_children else: UpperCAmelCase__ : int = new_children else: UpperCAmelCase__ : Tuple = new_children def __a ( self : Optional[Any] , snake_case__ : Node ): '''simple docstring''' if node.parent and node.parent.right: return node == node.parent.right return False def __a ( self : List[Any] ): '''simple docstring''' return self.root is None def __a ( self : List[Any] , snake_case__ : List[str] ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = Node(snake_case__ ) # create a new Node if self.empty(): # if Tree is empty UpperCAmelCase__ : str = new_node # set its root else: # Tree is not empty UpperCAmelCase__ : Optional[int] = self.root # from root if parent_node is None: return while True: # While we don't get to a leaf if value < parent_node.value: # We go left if parent_node.left is None: UpperCAmelCase__ : Any = new_node # We insert the new node in a leaf break else: UpperCAmelCase__ : List[Any] = parent_node.left else: if parent_node.right is None: UpperCAmelCase__ : List[str] = new_node break else: UpperCAmelCase__ : Any = parent_node.right UpperCAmelCase__ : int = parent_node def __a ( self : Dict , *snake_case__ : Union[str, Any] ): '''simple docstring''' for value in values: self.__insert(snake_case__ ) def __a ( self : Dict , snake_case__ : Optional[Any] ): '''simple docstring''' if self.empty(): raise IndexError("Warning: Tree is empty! please use another." ) else: UpperCAmelCase__ : Union[str, Any] = self.root # use lazy evaluation here to avoid NoneType Attribute error while node is not None and node.value is not value: UpperCAmelCase__ : Union[str, Any] = node.left if value < node.value else node.right return node def __a ( self : str , snake_case__ : Node | None = None ): '''simple docstring''' if node is None: if self.root is None: return None UpperCAmelCase__ : List[Any] = self.root if not self.empty(): while node.right is not None: UpperCAmelCase__ : Any = node.right return node def __a ( self : Optional[int] , snake_case__ : Node | None = None ): '''simple docstring''' if node is None: UpperCAmelCase__ : Union[str, Any] = self.root if self.root is None: return None if not self.empty(): UpperCAmelCase__ : List[Any] = self.root while node.left is not None: UpperCAmelCase__ : List[Any] = node.left return node def __a ( self : Tuple , snake_case__ : int ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = self.search(snake_case__ ) # Look for the node with that label if node is not None: if node.left is None and node.right is None: # If it has no children self.__reassign_nodes(snake_case__ , snake_case__ ) elif node.left is None: # Has only right children self.__reassign_nodes(snake_case__ , node.right ) elif node.right is None: # Has only left children self.__reassign_nodes(snake_case__ , node.left ) else: UpperCAmelCase__ : Optional[int] = self.get_max( node.left ) # Gets the max value of the left branch self.remove(tmp_node.value ) # type: ignore UpperCAmelCase__ : int = ( tmp_node.value # type: ignore ) # Assigns the value to the node to delete and keep tree structure def __a ( self : Union[str, Any] , snake_case__ : Node | None ): '''simple docstring''' if node is not None: yield node # Preorder Traversal yield from self.preorder_traverse(node.left ) yield from self.preorder_traverse(node.right ) def __a ( self : Any , snake_case__ : Tuple=None ): '''simple docstring''' if traversal_function is None: return self.preorder_traverse(self.root ) else: return traversal_function(self.root ) def __a ( self : int , snake_case__ : list , snake_case__ : Node | None ): '''simple docstring''' if node: self.inorder(snake_case__ , node.left ) arr.append(node.value ) self.inorder(snake_case__ , node.right ) def __a ( self : Optional[Any] , snake_case__ : int , snake_case__ : Node ): '''simple docstring''' UpperCAmelCase__ : list[int] = [] self.inorder(snake_case__ , snake_case__ ) # append all values to list using inorder traversal return arr[k - 1] def SCREAMING_SNAKE_CASE__ ( snake_case : Node | None )-> list[Node]: '''simple docstring''' UpperCAmelCase__ : Dict = [] if curr_node is not None: UpperCAmelCase__ : List[str] = postorder(curr_node.left ) + postorder(curr_node.right ) + [curr_node] return node_list def SCREAMING_SNAKE_CASE__ ( )-> None: '''simple docstring''' UpperCAmelCase__ : Dict = (8, 3, 6, 1, 10, 14, 13, 4, 7) UpperCAmelCase__ : Optional[int] = BinarySearchTree() for i in testlist: t.insert(snake_case ) # Prints all the elements of the list in order traversal print(snake_case ) if t.search(6 ) is not None: print("The value 6 exists" ) else: print("The value 6 doesn't exist" ) if t.search(-1 ) is not None: print("The value -1 exists" ) else: print("The value -1 doesn't exist" ) if not t.empty(): print("Max Value: " , t.get_max().value ) # type: ignore print("Min Value: " , t.get_min().value ) # type: ignore for i in testlist: t.remove(snake_case ) print(snake_case ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
351
"""simple docstring""" import inspect import unittest from datasets import load_dataset from packaging import version from transformers import BeitConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_MAPPING, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, ) from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): import PIL from PIL import Image from transformers import BeitImageProcessor class lowerCAmelCase__ : def __init__( self : Any , snake_case__ : Union[str, Any] , snake_case__ : str=1_0_0 , snake_case__ : str=1_3 , snake_case__ : Optional[int]=3_0 , snake_case__ : List[Any]=2 , snake_case__ : Any=3 , snake_case__ : Union[str, Any]=True , snake_case__ : List[Any]=True , snake_case__ : Any=3_2 , snake_case__ : List[str]=4 , snake_case__ : Any=4 , snake_case__ : Dict=3_7 , snake_case__ : str="gelu" , snake_case__ : Union[str, Any]=0.1 , snake_case__ : int=0.1 , snake_case__ : List[Any]=1_0 , snake_case__ : Any=0.02 , snake_case__ : List[str]=3 , snake_case__ : Tuple=None , snake_case__ : Tuple=[0, 1, 2, 3] , ): '''simple docstring''' UpperCAmelCase__ : int = parent UpperCAmelCase__ : List[str] = 1_0_0 UpperCAmelCase__ : List[Any] = batch_size UpperCAmelCase__ : int = image_size UpperCAmelCase__ : List[Any] = patch_size UpperCAmelCase__ : List[Any] = num_channels UpperCAmelCase__ : Any = is_training UpperCAmelCase__ : str = use_labels UpperCAmelCase__ : Any = hidden_size UpperCAmelCase__ : Dict = num_hidden_layers UpperCAmelCase__ : int = num_attention_heads UpperCAmelCase__ : Tuple = intermediate_size UpperCAmelCase__ : Any = hidden_act UpperCAmelCase__ : Optional[int] = hidden_dropout_prob UpperCAmelCase__ : str = attention_probs_dropout_prob UpperCAmelCase__ : Optional[int] = type_sequence_label_size UpperCAmelCase__ : Any = initializer_range UpperCAmelCase__ : Any = scope UpperCAmelCase__ : Optional[Any] = out_indices UpperCAmelCase__ : int = num_labels # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) UpperCAmelCase__ : List[Any] = (image_size // patch_size) ** 2 UpperCAmelCase__ : Optional[int] = num_patches + 1 def __a ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase__ : str = None UpperCAmelCase__ : Optional[int] = None if self.use_labels: UpperCAmelCase__ : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase__ : Any = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) UpperCAmelCase__ : Tuple = self.get_config() return config, pixel_values, labels, pixel_labels def __a ( self : int ): '''simple docstring''' return BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=snake_case__ , initializer_range=self.initializer_range , out_indices=self.out_indices , ) def __a ( self : int , snake_case__ : str , snake_case__ : str , snake_case__ : Dict , snake_case__ : List[str] ): '''simple docstring''' UpperCAmelCase__ : Dict = BeitModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() UpperCAmelCase__ : Dict = model(snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __a ( self : Any , snake_case__ : List[str] , snake_case__ : Union[str, Any] , snake_case__ : Dict , snake_case__ : Any ): '''simple docstring''' UpperCAmelCase__ : int = BeitForMaskedImageModeling(config=snake_case__ ) model.to(snake_case__ ) model.eval() UpperCAmelCase__ : List[Any] = model(snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) ) def __a ( self : Optional[Any] , snake_case__ : Tuple , snake_case__ : Tuple , snake_case__ : str , snake_case__ : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : List[Any] = self.type_sequence_label_size UpperCAmelCase__ : Union[str, Any] = BeitForImageClassification(snake_case__ ) model.to(snake_case__ ) model.eval() UpperCAmelCase__ : Union[str, Any] = model(snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCAmelCase__ : Any = 1 UpperCAmelCase__ : List[Any] = BeitForImageClassification(snake_case__ ) model.to(snake_case__ ) model.eval() UpperCAmelCase__ : Optional[int] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase__ : Optional[Any] = model(snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __a ( self : Union[str, Any] , snake_case__ : int , snake_case__ : str , snake_case__ : Any , snake_case__ : Dict ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = self.num_labels UpperCAmelCase__ : int = BeitForSemanticSegmentation(snake_case__ ) model.to(snake_case__ ) model.eval() UpperCAmelCase__ : int = model(snake_case__ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) UpperCAmelCase__ : Dict = model(snake_case__ , labels=snake_case__ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) def __a ( self : int ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = self.prepare_config_and_inputs() UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : List[str] = config_and_inputs UpperCAmelCase__ : Any = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase__ ( __magic_name__ , __magic_name__ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ =( (BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation) if is_torch_available() else () ) SCREAMING_SNAKE_CASE_ =( { '''feature-extraction''': BeitModel, '''image-classification''': BeitForImageClassification, '''image-segmentation''': BeitForSemanticSegmentation, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE_ =False SCREAMING_SNAKE_CASE_ =False SCREAMING_SNAKE_CASE_ =False def __a ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Dict = BeitModelTester(self ) UpperCAmelCase__ : List[str] = ConfigTester(self , config_class=snake_case__ , has_text_modality=snake_case__ , hidden_size=3_7 ) def __a ( self : List[str] ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="BEiT does not use inputs_embeds" ) def __a ( self : List[Any] ): '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason="BEiT has some layers using `add_module` which doesn't work well with `nn.DataParallel`" ) def __a ( self : List[str] ): '''simple docstring''' pass def __a ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ : Dict = model_class(snake_case__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCAmelCase__ : Tuple = model.get_output_embeddings() self.assertTrue(x is None or isinstance(snake_case__ , nn.Linear ) ) def __a ( self : str ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ : int = model_class(snake_case__ ) UpperCAmelCase__ : int = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase__ : str = [*signature.parameters.keys()] UpperCAmelCase__ : int = ["pixel_values"] self.assertListEqual(arg_names[:1] , snake_case__ ) def __a ( self : str ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def __a ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case__ ) def __a ( self : str ): '''simple docstring''' UpperCAmelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case__ ) def __a ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*snake_case__ ) def __a ( self : List[Any] ): '''simple docstring''' if not self.model_tester.is_training: return UpperCAmelCase__ , UpperCAmelCase__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ : Optional[int] = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if model_class in [*get_values(snake_case__ ), BeitForMaskedImageModeling]: continue UpperCAmelCase__ : Optional[Any] = model_class(snake_case__ ) model.to(snake_case__ ) model.train() UpperCAmelCase__ : Optional[int] = self._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ ) UpperCAmelCase__ : Tuple = model(**snake_case__ ).loss loss.backward() def __a ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return UpperCAmelCase__ : Optional[int] = False UpperCAmelCase__ : List[str] = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if ( model_class in [*get_values(snake_case__ ), BeitForMaskedImageModeling] or not model_class.supports_gradient_checkpointing ): continue UpperCAmelCase__ : List[Any] = model_class(snake_case__ ) model.gradient_checkpointing_enable() model.to(snake_case__ ) model.train() UpperCAmelCase__ : Dict = self._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ ) UpperCAmelCase__ : Optional[Any] = model(**snake_case__ ).loss loss.backward() def __a ( self : str ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ : Union[str, Any] = _config_zero_init(snake_case__ ) for model_class in self.all_model_classes: UpperCAmelCase__ : int = model_class(config=snake_case__ ) for name, param in model.named_parameters(): # we skip lambda parameters as these require special initial values # determined by config.layer_scale_init_value if "lambda" in name: continue if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f'Parameter {name} of model {model_class} seems not properly initialized' , ) @slow def __a ( self : Any ): '''simple docstring''' for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ : Optional[Any] = BeitModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) def SCREAMING_SNAKE_CASE__ ( )-> Optional[Any]: '''simple docstring''' UpperCAmelCase__ : List[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class lowerCAmelCase__ ( unittest.TestCase ): @cached_property def __a ( self : Union[str, Any] ): '''simple docstring''' return BeitImageProcessor.from_pretrained("microsoft/beit-base-patch16-224" ) if is_vision_available() else None @slow def __a ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = BeitForMaskedImageModeling.from_pretrained("microsoft/beit-base-patch16-224-pt22k" ).to(snake_case__ ) UpperCAmelCase__ : int = self.default_image_processor UpperCAmelCase__ : List[Any] = prepare_img() UpperCAmelCase__ : Dict = image_processor(images=snake_case__ , return_tensors="pt" ).pixel_values.to(snake_case__ ) # prepare bool_masked_pos UpperCAmelCase__ : Union[str, Any] = torch.ones((1, 1_9_6) , dtype=torch.bool ).to(snake_case__ ) # forward pass with torch.no_grad(): UpperCAmelCase__ : Optional[int] = model(pixel_values=snake_case__ , bool_masked_pos=snake_case__ ) UpperCAmelCase__ : str = outputs.logits # verify the logits UpperCAmelCase__ : int = torch.Size((1, 1_9_6, 8_1_9_2) ) self.assertEqual(logits.shape , snake_case__ ) UpperCAmelCase__ : Any = torch.tensor( [[-3.2437, 0.5072, -13.9174], [-3.2456, 0.4948, -13.9401], [-3.2033, 0.5121, -13.8550]] ).to(snake_case__ ) self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3] , snake_case__ , atol=1e-2 ) ) @slow def __a ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : Tuple = BeitForImageClassification.from_pretrained("microsoft/beit-base-patch16-224" ).to(snake_case__ ) UpperCAmelCase__ : Tuple = self.default_image_processor UpperCAmelCase__ : Dict = prepare_img() UpperCAmelCase__ : Tuple = image_processor(images=snake_case__ , return_tensors="pt" ).to(snake_case__ ) # forward pass with torch.no_grad(): UpperCAmelCase__ : Union[str, Any] = model(**snake_case__ ) UpperCAmelCase__ : Any = outputs.logits # verify the logits UpperCAmelCase__ : Optional[Any] = torch.Size((1, 1_0_0_0) ) self.assertEqual(logits.shape , snake_case__ ) UpperCAmelCase__ : Optional[Any] = torch.tensor([-1.2385, -1.0987, -1.0108] ).to(snake_case__ ) self.assertTrue(torch.allclose(logits[0, :3] , snake_case__ , atol=1e-4 ) ) UpperCAmelCase__ : List[str] = 2_8_1 self.assertEqual(logits.argmax(-1 ).item() , snake_case__ ) @slow def __a ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : int = BeitForImageClassification.from_pretrained("microsoft/beit-large-patch16-224-pt22k-ft22k" ).to( snake_case__ ) UpperCAmelCase__ : Tuple = self.default_image_processor UpperCAmelCase__ : Any = prepare_img() UpperCAmelCase__ : Union[str, Any] = image_processor(images=snake_case__ , return_tensors="pt" ).to(snake_case__ ) # forward pass with torch.no_grad(): UpperCAmelCase__ : List[Any] = model(**snake_case__ ) UpperCAmelCase__ : int = outputs.logits # verify the logits UpperCAmelCase__ : int = torch.Size((1, 2_1_8_4_1) ) self.assertEqual(logits.shape , snake_case__ ) UpperCAmelCase__ : int = torch.tensor([1.6881, -0.2787, 0.5901] ).to(snake_case__ ) self.assertTrue(torch.allclose(logits[0, :3] , snake_case__ , atol=1e-4 ) ) UpperCAmelCase__ : Any = 2_3_9_6 self.assertEqual(logits.argmax(-1 ).item() , snake_case__ ) @slow def __a ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Dict = BeitForSemanticSegmentation.from_pretrained("microsoft/beit-base-finetuned-ade-640-640" ) UpperCAmelCase__ : List[Any] = model.to(snake_case__ ) UpperCAmelCase__ : int = BeitImageProcessor(do_resize=snake_case__ , size=6_4_0 , do_center_crop=snake_case__ ) UpperCAmelCase__ : Any = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" ) UpperCAmelCase__ : List[Any] = Image.open(ds[0]["file"] ) UpperCAmelCase__ : str = image_processor(images=snake_case__ , return_tensors="pt" ).to(snake_case__ ) # forward pass with torch.no_grad(): UpperCAmelCase__ : List[str] = model(**snake_case__ ) UpperCAmelCase__ : Dict = outputs.logits # verify the logits UpperCAmelCase__ : Any = torch.Size((1, 1_5_0, 1_6_0, 1_6_0) ) self.assertEqual(logits.shape , snake_case__ ) UpperCAmelCase__ : List[str] = version.parse(PIL.__version__ ) < version.parse("9.0.0" ) if is_pillow_less_than_a: UpperCAmelCase__ : Optional[Any] = torch.tensor( [ [[-4.9225, -2.3954, -3.0522], [-2.8822, -1.0046, -1.7561], [-2.9549, -1.3228, -2.1347]], [[-5.8168, -3.4129, -4.0778], [-3.8651, -2.2214, -3.0277], [-3.8356, -2.4643, -3.3535]], [[-0.0078, 3.9952, 4.0754], [2.9856, 4.6944, 5.0035], [3.2413, 4.7813, 4.9969]], ] , device=snake_case__ , ) else: UpperCAmelCase__ : int = torch.tensor( [ [[-4.8960, -2.3688, -3.0355], [-2.8478, -0.9836, -1.7418], [-2.9449, -1.3332, -2.1456]], [[-5.8081, -3.4124, -4.1006], [-3.8561, -2.2081, -3.0323], [-3.8365, -2.4601, -3.3669]], [[-0.0309, 3.9868, 4.0540], [2.9640, 4.6877, 4.9976], [3.2081, 4.7690, 4.9942]], ] , device=snake_case__ , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , snake_case__ , atol=1e-4 ) ) @slow def __a ( self : Any ): '''simple docstring''' UpperCAmelCase__ : str = BeitForSemanticSegmentation.from_pretrained("microsoft/beit-base-finetuned-ade-640-640" ) UpperCAmelCase__ : Any = model.to(snake_case__ ) UpperCAmelCase__ : Dict = BeitImageProcessor(do_resize=snake_case__ , size=6_4_0 , do_center_crop=snake_case__ ) UpperCAmelCase__ : Tuple = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" ) UpperCAmelCase__ : Optional[int] = Image.open(ds[0]["file"] ) UpperCAmelCase__ : Optional[int] = image_processor(images=snake_case__ , return_tensors="pt" ).to(snake_case__ ) # forward pass with torch.no_grad(): UpperCAmelCase__ : Optional[int] = model(**snake_case__ ) UpperCAmelCase__ : int = outputs.logits.detach().cpu() UpperCAmelCase__ : str = image_processor.post_process_semantic_segmentation(outputs=snake_case__ , target_sizes=[(5_0_0, 3_0_0)] ) UpperCAmelCase__ : List[Any] = torch.Size((5_0_0, 3_0_0) ) self.assertEqual(segmentation[0].shape , snake_case__ ) UpperCAmelCase__ : Any = image_processor.post_process_semantic_segmentation(outputs=snake_case__ ) UpperCAmelCase__ : int = torch.Size((1_6_0, 1_6_0) ) self.assertEqual(segmentation[0].shape , snake_case__ )
298
0
"""simple docstring""" from __future__ import annotations def UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): """simple docstring""" if (direction == 1 and array[indexa] > array[indexa]) or ( direction == 0 and array[indexa] < array[indexa] ): A__ , A__ = array[indexa], array[indexa] def UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): """simple docstring""" if length > 1: A__ = int(length / 2 ) for i in range(UpperCamelCase__ , low + middle ): comp_and_swap(UpperCamelCase__ , UpperCamelCase__ , i + middle , UpperCamelCase__ ) bitonic_merge(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) bitonic_merge(UpperCamelCase__ , low + middle , UpperCamelCase__ , UpperCamelCase__ ) def UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): """simple docstring""" if length > 1: A__ = int(length / 2 ) bitonic_sort(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , 1 ) bitonic_sort(UpperCamelCase__ , low + middle , UpperCamelCase__ , 0 ) bitonic_merge(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) if __name__ == "__main__": __lowerCamelCase = input("Enter numbers separated by a comma:\n").strip() __lowerCamelCase = [int(item.strip()) for item in user_input.split(",")] bitonic_sort(unsorted, 0, len(unsorted), 1) print("\nSorted array in ascending order is: ", end="") print(*unsorted, sep=", ") bitonic_merge(unsorted, 0, len(unsorted), 0) print("Sorted array in descending order is: ", end="") print(*unsorted, sep=", ")
221
"""simple docstring""" from io import BytesIO from typing import List, Union import requests from ..utils import add_end_docstrings, is_decord_available, is_torch_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_decord_available(): import numpy as np from decord import VideoReader if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING __lowerCamelCase = logging.get_logger(__name__) @add_end_docstrings(__A ) class UpperCamelCase__( __A ): def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Tuple: super().__init__(*__UpperCAmelCase ,**__UpperCAmelCase ) requires_backends(self ,'decord' ) self.check_model_type(__UpperCAmelCase ) def snake_case__ ( self ,__UpperCAmelCase=None ,__UpperCAmelCase=None ,__UpperCAmelCase=None ) -> int: A__ = {} if frame_sampling_rate is not None: A__ = frame_sampling_rate if num_frames is not None: A__ = num_frames A__ = {} if top_k is not None: A__ = top_k return preprocess_params, {}, postprocess_params def __call__( self ,__UpperCAmelCase ,**__UpperCAmelCase ) -> Dict: return super().__call__(__UpperCAmelCase ,**__UpperCAmelCase ) def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase=None ,__UpperCAmelCase=1 ) -> Union[str, Any]: if num_frames is None: A__ = self.model.config.num_frames if video.startswith('http://' ) or video.startswith('https://' ): A__ = BytesIO(requests.get(__UpperCAmelCase ).content ) A__ = VideoReader(__UpperCAmelCase ) videoreader.seek(0 ) A__ = 0 A__ = num_frames * frame_sampling_rate - 1 A__ = np.linspace(__UpperCAmelCase ,__UpperCAmelCase ,num=__UpperCAmelCase ,dtype=np.intaa ) A__ = videoreader.get_batch(__UpperCAmelCase ).asnumpy() A__ = list(__UpperCAmelCase ) A__ = self.image_processor(__UpperCAmelCase ,return_tensors=self.framework ) return model_inputs def snake_case__ ( self ,__UpperCAmelCase ) -> Dict: A__ = self.model(**__UpperCAmelCase ) return model_outputs def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase=5 ) -> Union[str, Any]: if top_k > self.model.config.num_labels: A__ = self.model.config.num_labels if self.framework == "pt": A__ = model_outputs.logits.softmax(-1 )[0] A__ , A__ = probs.topk(__UpperCAmelCase ) else: raise ValueError(f'''Unsupported framework: {self.framework}''' ) A__ = scores.tolist() A__ = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(__UpperCAmelCase ,__UpperCAmelCase )]
221
1
'''simple docstring''' import socket def _A ( ) -> Union[str, Any]: _lowercase : Any = socket.socket(socket.AF_INET , socket.SOCK_STREAM ) _lowercase : Optional[Any] = socket.gethostname() _lowercase : Union[str, Any] = 1_23_12 sock.connect((host, port) ) sock.send(B"Hello server!" ) with open("Received_file" , "wb" ) as out_file: print("File opened" ) print("Receiving data..." ) while True: _lowercase : List[Any] = sock.recv(10_24 ) if not data: break out_file.write(snake_case ) print("Successfully received the file" ) sock.close() print("Connection closed" ) if __name__ == "__main__": main()
199
'''simple docstring''' from . import __version__ # Backward compatibility imports, to make sure all those objects can be found in file_utils from .utils import ( CLOUDFRONT_DISTRIB_PREFIX, CONFIG_NAME, DISABLE_TELEMETRY, DUMMY_INPUTS, DUMMY_MASK, ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, FEATURE_EXTRACTOR_NAME, FLAX_WEIGHTS_NAME, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, MODEL_CARD_NAME, MULTIPLE_CHOICE_DUMMY_INPUTS, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, SENTENCEPIECE_UNDERLINE, SPIECE_UNDERLINE, TF2_WEIGHTS_NAME, TF_WEIGHTS_NAME, TORCH_FX_REQUIRED_VERSION, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, USE_JAX, USE_TF, USE_TORCH, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ContextManagers, DummyObject, EntryNotFoundError, ExplicitEnum, ModelOutput, PaddingStrategy, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, TensorType, _LazyModule, add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, cached_property, copy_func, default_cache_path, define_sagemaker_information, get_cached_models, get_file_from_repo, get_full_repo_name, get_torch_version, has_file, http_user_agent, is_apex_available, is_bsa_available, is_coloredlogs_available, is_datasets_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_librosa_available, is_offline_mode, is_onnx_available, is_pandas_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytorch_quantization_available, is_rjieba_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_tensor, is_tensorflow_probability_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_training_run_on_sagemaker, is_vision_available, replace_return_docstrings, requires_backends, to_numpy, to_py_obj, torch_only_method, )
199
1
from __future__ import annotations import unittest from transformers import MobileBertConfig, is_tf_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_MODEL_FOR_PRETRAINING_MAPPING, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertModel, ) @require_tf class __lowerCAmelCase ( __magic_name__ , __magic_name__ , unittest.TestCase ): """simple docstring""" snake_case_ = ( ( TFMobileBertModel, TFMobileBertForMaskedLM, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertForMultipleChoice, ) if is_tf_available() else () ) snake_case_ = ( { '''feature-extraction''': TFMobileBertModel, '''fill-mask''': TFMobileBertForMaskedLM, '''question-answering''': TFMobileBertForQuestionAnswering, '''text-classification''': TFMobileBertForSequenceClassification, '''token-classification''': TFMobileBertForTokenClassification, '''zero-shot''': TFMobileBertForSequenceClassification, } if is_tf_available() else {} ) snake_case_ = False snake_case_ = False def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=False ) -> str: '''simple docstring''' __lowerCamelCase = super()._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ , return_labels=lowerCamelCase__ ) if return_labels: if model_class in get_values(lowerCamelCase__ ): __lowerCamelCase = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) return inputs_dict class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" def __init__( self , lowerCamelCase__ , lowerCamelCase__=13 , lowerCamelCase__=7 , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=99 , lowerCamelCase__=32 , lowerCamelCase__=32 , lowerCamelCase__=2 , lowerCamelCase__=4 , lowerCamelCase__=37 , lowerCamelCase__="gelu" , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=512 , lowerCamelCase__=16 , lowerCamelCase__=2 , lowerCamelCase__=0.02 , lowerCamelCase__=3 , lowerCamelCase__=4 , lowerCamelCase__=None , ) -> List[str]: '''simple docstring''' __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = seq_length __lowerCamelCase = is_training __lowerCamelCase = use_input_mask __lowerCamelCase = use_token_type_ids __lowerCamelCase = use_labels __lowerCamelCase = vocab_size __lowerCamelCase = hidden_size __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = intermediate_size __lowerCamelCase = hidden_act __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = max_position_embeddings __lowerCamelCase = type_vocab_size __lowerCamelCase = type_sequence_label_size __lowerCamelCase = initializer_range __lowerCamelCase = num_labels __lowerCamelCase = num_choices __lowerCamelCase = scope __lowerCamelCase = embedding_size def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCamelCase = None if self.use_input_mask: __lowerCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCamelCase = None if self.use_token_type_ids: __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowerCamelCase = None __lowerCamelCase = None __lowerCamelCase = None if self.use_labels: __lowerCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowerCamelCase = ids_tensor([self.batch_size] , self.num_choices ) __lowerCamelCase = MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , embedding_size=self.embedding_size , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Optional[int]: '''simple docstring''' __lowerCamelCase = TFMobileBertModel(config=lowerCamelCase__ ) __lowerCamelCase = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} __lowerCamelCase = model(lowerCamelCase__ ) __lowerCamelCase = [input_ids, input_mask] __lowerCamelCase = model(lowerCamelCase__ ) __lowerCamelCase = model(lowerCamelCase__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> List[Any]: '''simple docstring''' __lowerCamelCase = TFMobileBertForMaskedLM(config=lowerCamelCase__ ) __lowerCamelCase = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} __lowerCamelCase = model(lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> List[str]: '''simple docstring''' __lowerCamelCase = TFMobileBertForNextSentencePrediction(config=lowerCamelCase__ ) __lowerCamelCase = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} __lowerCamelCase = model(lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Any: '''simple docstring''' __lowerCamelCase = TFMobileBertForPreTraining(config=lowerCamelCase__ ) __lowerCamelCase = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} __lowerCamelCase = model(lowerCamelCase__ ) self.parent.assertEqual( result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Any: '''simple docstring''' __lowerCamelCase = self.num_labels __lowerCamelCase = TFMobileBertForSequenceClassification(config=lowerCamelCase__ ) __lowerCamelCase = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} __lowerCamelCase = model(lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Dict: '''simple docstring''' __lowerCamelCase = self.num_choices __lowerCamelCase = TFMobileBertForMultipleChoice(config=lowerCamelCase__ ) __lowerCamelCase = tf.tile(tf.expand_dims(lowerCamelCase__ , 1 ) , (1, self.num_choices, 1) ) __lowerCamelCase = tf.tile(tf.expand_dims(lowerCamelCase__ , 1 ) , (1, self.num_choices, 1) ) __lowerCamelCase = tf.tile(tf.expand_dims(lowerCamelCase__ , 1 ) , (1, self.num_choices, 1) ) __lowerCamelCase = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } __lowerCamelCase = model(lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Any: '''simple docstring''' __lowerCamelCase = self.num_labels __lowerCamelCase = TFMobileBertForTokenClassification(config=lowerCamelCase__ ) __lowerCamelCase = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} __lowerCamelCase = model(lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Dict: '''simple docstring''' __lowerCamelCase = TFMobileBertForQuestionAnswering(config=lowerCamelCase__ ) __lowerCamelCase = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} __lowerCamelCase = model(lowerCamelCase__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase_ ( self ) -> int: '''simple docstring''' __lowerCamelCase = self.prepare_config_and_inputs() ( ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ) = config_and_inputs __lowerCamelCase = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = TFMobileBertModelTest.TFMobileBertModelTester(self ) __lowerCamelCase = ConfigTester(self , config_class=lowerCamelCase__ , hidden_size=37 ) def lowercase_ ( self ) -> Tuple: '''simple docstring''' self.config_tester.run_common_tests() def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*lowerCamelCase__ ) def lowercase_ ( self ) -> List[Any]: '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*lowerCamelCase__ ) def lowercase_ ( self ) -> Dict: '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*lowerCamelCase__ ) def lowercase_ ( self ) -> List[str]: '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*lowerCamelCase__ ) def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*lowerCamelCase__ ) def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*lowerCamelCase__ ) def lowercase_ ( self ) -> Dict: '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*lowerCamelCase__ ) def lowercase_ ( self ) -> Dict: '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*lowerCamelCase__ ) @slow def lowercase_ ( self ) -> List[Any]: '''simple docstring''' # for model_name in TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["google/mobilebert-uncased"]: __lowerCamelCase = TFMobileBertModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) @require_tf class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def lowercase_ ( self ) -> List[Any]: '''simple docstring''' __lowerCamelCase = TFMobileBertForPreTraining.from_pretrained('google/mobilebert-uncased' ) __lowerCamelCase = tf.constant([[0, 1, 2, 3, 4, 5]] ) __lowerCamelCase = model(lowerCamelCase__ )[0] __lowerCamelCase = [1, 6, 30_522] self.assertEqual(output.shape , lowerCamelCase__ ) __lowerCamelCase = tf.constant( [ [ [-4.5_91_95_47, -9.24_82_95, -9.64_52_56], [-6.7_30_61_75, -6.44_02_84, -6.6_05_28_37], [-7.2_74_35_06, -6.7_84_79_15, -6.02_46_73], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , lowerCamelCase__ , atol=1e-4 )
90
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __A = logging.get_logger(__name__) __A = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} __A = { "tokenizer_file": { "EleutherAI/gpt-neox-20b": "https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json", }, } __A = { "gpt-neox-20b": 20_48, } class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" snake_case_ = VOCAB_FILES_NAMES snake_case_ = PRETRAINED_VOCAB_FILES_MAP snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ = ['''input_ids''', '''attention_mask'''] def __init__( self , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__="<|endoftext|>" , lowerCamelCase__="<|endoftext|>" , lowerCamelCase__="<|endoftext|>" , lowerCamelCase__=False , **lowerCamelCase__ , ) -> int: '''simple docstring''' super().__init__( lowerCamelCase__ , lowerCamelCase__ , tokenizer_file=lowerCamelCase__ , unk_token=lowerCamelCase__ , bos_token=lowerCamelCase__ , eos_token=lowerCamelCase__ , add_prefix_space=lowerCamelCase__ , **lowerCamelCase__ , ) __lowerCamelCase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , lowerCamelCase__ ) != add_prefix_space: __lowerCamelCase = getattr(lowerCamelCase__ , pre_tok_state.pop('type' ) ) __lowerCamelCase = add_prefix_space __lowerCamelCase = pre_tok_class(**lowerCamelCase__ ) __lowerCamelCase = add_prefix_space def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ = None ) -> Tuple[str]: '''simple docstring''' __lowerCamelCase = self._tokenizer.model.save(lowerCamelCase__ , name=lowerCamelCase__ ) return tuple(lowerCamelCase__ ) def lowercase_ ( self , lowerCamelCase__ ) -> List[int]: '''simple docstring''' __lowerCamelCase = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) + [self.eos_token_id] ) if len(lowerCamelCase__ ) > self.model_max_length: __lowerCamelCase = input_ids[-self.model_max_length :] return input_ids
90
1
import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = (UnCLIPScheduler,) def SCREAMING_SNAKE_CASE_ (self : Optional[int] , **UpperCAmelCase_ : Any) ->List[Any]: '''simple docstring''' lowerCamelCase__: List[Any] ={ "num_train_timesteps": 1_000, "variance_type": "fixed_small_log", "clip_sample": True, "clip_sample_range": 1.0, "prediction_type": "epsilon", } config.update(**UpperCAmelCase_) return config def SCREAMING_SNAKE_CASE_ (self : Tuple) ->int: '''simple docstring''' for timesteps in [1, 5, 100, 1_000]: self.check_over_configs(num_train_timesteps=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : str) ->Optional[Any]: '''simple docstring''' for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : str) ->Any: '''simple docstring''' for clip_sample in [True, False]: self.check_over_configs(clip_sample=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Dict) ->List[Any]: '''simple docstring''' for clip_sample_range in [1, 5, 10, 20]: self.check_over_configs(clip_sample_range=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->str: '''simple docstring''' for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Tuple) ->int: '''simple docstring''' for time_step in [0, 500, 999]: for prev_timestep in [None, 5, 100, 250, 500, 750]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=UpperCAmelCase_ , prev_timestep=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->List[Any]: '''simple docstring''' lowerCamelCase__: List[Any] =self.scheduler_classes[0] lowerCamelCase__: Optional[Any] =self.get_scheduler_config(variance_type="fixed_small_log") lowerCamelCase__: Optional[int] =scheduler_class(**UpperCAmelCase_) assert torch.sum(torch.abs(scheduler._get_variance(0) - 1.0_0_0_0E-1_0)) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487) - 0.054_9625)) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999) - 0.999_4987)) < 1E-5 def SCREAMING_SNAKE_CASE_ (self : List[str]) ->Any: '''simple docstring''' lowerCamelCase__: Dict =self.scheduler_classes[0] lowerCamelCase__: Dict =self.get_scheduler_config(variance_type="learned_range") lowerCamelCase__: List[str] =scheduler_class(**UpperCAmelCase_) lowerCamelCase__: Dict =0.5 assert scheduler._get_variance(1 , predicted_variance=UpperCAmelCase_) - -10.171_2790 < 1E-5 assert scheduler._get_variance(487 , predicted_variance=UpperCAmelCase_) - -5.799_8052 < 1E-5 assert scheduler._get_variance(999 , predicted_variance=UpperCAmelCase_) - -0.001_0011 < 1E-5 def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->List[Any]: '''simple docstring''' lowerCamelCase__: str =self.scheduler_classes[0] lowerCamelCase__: List[str] =self.get_scheduler_config() lowerCamelCase__: Dict =scheduler_class(**UpperCAmelCase_) lowerCamelCase__: Optional[int] =scheduler.timesteps lowerCamelCase__: Dict =self.dummy_model() lowerCamelCase__: List[str] =self.dummy_sample_deter lowerCamelCase__: Any =torch.manual_seed(0) for i, t in enumerate(UpperCAmelCase_): # 1. predict noise residual lowerCamelCase__: Dict =model(UpperCAmelCase_ , UpperCAmelCase_) # 2. predict previous mean of sample x_t-1 lowerCamelCase__: Union[str, Any] =scheduler.step(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , generator=UpperCAmelCase_).prev_sample lowerCamelCase__: int =pred_prev_sample lowerCamelCase__: Dict =torch.sum(torch.abs(UpperCAmelCase_)) lowerCamelCase__: List[Any] =torch.mean(torch.abs(UpperCAmelCase_)) assert abs(result_sum.item() - 252.268_2495) < 1E-2 assert abs(result_mean.item() - 0.328_4743) < 1E-3 def SCREAMING_SNAKE_CASE_ (self : Tuple) ->Dict: '''simple docstring''' lowerCamelCase__: Optional[Any] =self.scheduler_classes[0] lowerCamelCase__: str =self.get_scheduler_config() lowerCamelCase__: Dict =scheduler_class(**UpperCAmelCase_) scheduler.set_timesteps(25) lowerCamelCase__: Tuple =scheduler.timesteps lowerCamelCase__: Tuple =self.dummy_model() lowerCamelCase__: Dict =self.dummy_sample_deter lowerCamelCase__: Tuple =torch.manual_seed(0) for i, t in enumerate(UpperCAmelCase_): # 1. predict noise residual lowerCamelCase__: List[str] =model(UpperCAmelCase_ , UpperCAmelCase_) if i + 1 == timesteps.shape[0]: lowerCamelCase__: Optional[Any] =None else: lowerCamelCase__: Dict =timesteps[i + 1] # 2. predict previous mean of sample x_t-1 lowerCamelCase__: Any =scheduler.step( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , prev_timestep=UpperCAmelCase_ , generator=UpperCAmelCase_).prev_sample lowerCamelCase__: str =pred_prev_sample lowerCamelCase__: Optional[Any] =torch.sum(torch.abs(UpperCAmelCase_)) lowerCamelCase__: Any =torch.mean(torch.abs(UpperCAmelCase_)) assert abs(result_sum.item() - 258.204_4983) < 1E-2 assert abs(result_mean.item() - 0.336_2038) < 1E-3 def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->Optional[int]: '''simple docstring''' pass def SCREAMING_SNAKE_CASE_ (self : int) ->Tuple: '''simple docstring''' pass
273
from __future__ import annotations from typing import Any class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__(self : Tuple , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : float = 0) ->None: '''simple docstring''' lowerCamelCase__ , lowerCamelCase__: Any =row, column lowerCamelCase__: List[str] =[[default_value for c in range(UpperCAmelCase_)] for r in range(UpperCAmelCase_)] def __str__(self : Tuple) ->str: '''simple docstring''' lowerCamelCase__: Union[str, Any] =F"""Matrix consist of {self.row} rows and {self.column} columns\n""" # Make string identifier lowerCamelCase__: List[str] =0 for row_vector in self.array: for obj in row_vector: lowerCamelCase__: int =max(UpperCAmelCase_ , len(str(UpperCAmelCase_))) lowerCamelCase__: Any =F"""%{max_element_length}s""" # Make string and return def single_line(UpperCAmelCase_ : list[float]) -> str: nonlocal string_format_identifier lowerCamelCase__: Tuple ="[" line += ", ".join(string_format_identifier % (obj,) for obj in row_vector) line += "]" return line s += "\n".join(single_line(UpperCAmelCase_) for row_vector in self.array) return s def __repr__(self : Optional[int]) ->str: '''simple docstring''' return str(self) def SCREAMING_SNAKE_CASE_ (self : Optional[int] , UpperCAmelCase_ : tuple[int, int]) ->bool: '''simple docstring''' if not (isinstance(UpperCAmelCase_ , (list, tuple)) and len(UpperCAmelCase_) == 2): return False elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column): return False else: return True def __getitem__(self : int , UpperCAmelCase_ : tuple[int, int]) ->Any: '''simple docstring''' assert self.validate_indicies(UpperCAmelCase_) return self.array[loc[0]][loc[1]] def __setitem__(self : Optional[Any] , UpperCAmelCase_ : tuple[int, int] , UpperCAmelCase_ : float) ->None: '''simple docstring''' assert self.validate_indicies(UpperCAmelCase_) lowerCamelCase__: str =value def __add__(self : Dict , UpperCAmelCase_ : Matrix) ->Matrix: '''simple docstring''' assert isinstance(UpperCAmelCase_ , UpperCAmelCase_) assert self.row == another.row and self.column == another.column # Add lowerCamelCase__: Dict =Matrix(self.row , self.column) for r in range(self.row): for c in range(self.column): lowerCamelCase__: List[str] =self[r, c] + another[r, c] return result def __neg__(self : str) ->Matrix: '''simple docstring''' lowerCamelCase__: List[Any] =Matrix(self.row , self.column) for r in range(self.row): for c in range(self.column): lowerCamelCase__: Union[str, Any] =-self[r, c] return result def __sub__(self : str , UpperCAmelCase_ : Matrix) ->Matrix: '''simple docstring''' return self + (-another) def __mul__(self : List[str] , UpperCAmelCase_ : int | float | Matrix) ->Matrix: '''simple docstring''' if isinstance(UpperCAmelCase_ , (int, float)): # Scalar multiplication lowerCamelCase__: List[Any] =Matrix(self.row , self.column) for r in range(self.row): for c in range(self.column): lowerCamelCase__: Union[str, Any] =self[r, c] * another return result elif isinstance(UpperCAmelCase_ , UpperCAmelCase_): # Matrix multiplication assert self.column == another.row lowerCamelCase__: Dict =Matrix(self.row , another.column) for r in range(self.row): for c in range(another.column): for i in range(self.column): result[r, c] += self[r, i] * another[i, c] return result else: lowerCamelCase__: int =F"""Unsupported type given for another ({type(UpperCAmelCase_)})""" raise TypeError(UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Matrix: '''simple docstring''' lowerCamelCase__: Optional[Any] =Matrix(self.column , self.row) for r in range(self.row): for c in range(self.column): lowerCamelCase__: Optional[int] =self[r, c] return result def SCREAMING_SNAKE_CASE_ (self : Optional[Any] , UpperCAmelCase_ : Matrix , UpperCAmelCase_ : Matrix) ->Any: '''simple docstring''' assert isinstance(UpperCAmelCase_ , UpperCAmelCase_) and isinstance(UpperCAmelCase_ , UpperCAmelCase_) assert self.row == self.column == u.row == v.row # u, v should be column vector assert u.column == v.column == 1 # u, v should be column vector # Calculate lowerCamelCase__: Tuple =v.transpose() lowerCamelCase__: Optional[Any] =(v_t * self * u)[0, 0] + 1 if numerator_factor == 0: return None # It's not invertable return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor)) # Testing if __name__ == "__main__": def lowerCAmelCase_ ( ) -> None: """simple docstring""" lowerCamelCase__: List[str] =Matrix(3 , 3 , 0 ) for i in range(3 ): lowerCamelCase__: Union[str, Any] =1 print(F"""a^(-1) is {ainv}""" ) # u, v lowerCamelCase__: Optional[int] =Matrix(3 , 1 , 0 ) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: int =1, 2, -3 lowerCamelCase__: Optional[Any] =Matrix(3 , 1 , 0 ) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Any =4, -2, 5 print(F"""u is {u}""" ) print(F"""v is {v}""" ) print(F"""uv^T is {u * v.transpose()}""" ) # Sherman Morrison print(F"""(a + uv^T)^(-1) is {ainv.sherman_morrison(__a , __a )}""" ) def lowerCAmelCase_ ( ) -> None: """simple docstring""" import doctest doctest.testmod() testa()
273
1
def A ( a_ = 1_000_000 ) -> int: __UpperCamelCase : List[Any] =limit + 1 __UpperCamelCase : Any =[0] * limit for first_term in range(1 ,a_ ): for n in range(a_ ,a_ ,a_ ): __UpperCamelCase : str =first_term + n / first_term if common_difference % 4: # d must be divisble by 4 continue else: common_difference /= 4 if ( first_term > common_difference and first_term < 4 * common_difference ): # since x,y,z are positive integers frequency[n] += 1 # so z>0 and a>d ,also 4d<a __UpperCamelCase : Dict =sum(1 for x in frequency[1:limit] if x == 10 ) return count if __name__ == "__main__": print(f"{solution() = }")
71
import inspect import tempfile from collections import OrderedDict, UserDict from collections.abc import MutableMapping from contextlib import ExitStack, contextmanager from dataclasses import fields from enum import Enum from typing import Any, ContextManager, List, Tuple import numpy as np from .import_utils import is_flax_available, is_tf_available, is_torch_available, is_torch_fx_proxy if is_flax_available(): import jax.numpy as jnp class __UpperCAmelCase ( lowerCamelCase__ ): def __get__( self : Tuple, __A : Optional[Any], __A : Optional[int]=None ): # See docs.python.org/3/howto/descriptor.html#properties if obj is None: return self if self.fget is None: raise AttributeError('''unreadable attribute''' ) UpperCAmelCase : str = '''__cached_''' + self.fget.__name__ UpperCAmelCase : int = getattr(__A, __A, __A ) if cached is None: UpperCAmelCase : Any = self.fget(__A ) setattr(__A, __A, __A ) return cached def a__ ( UpperCAmelCase : Optional[Any] ) -> Any: UpperCAmelCase : Any = val.lower() if val in {"y", "yes", "t", "true", "on", "1"}: return 1 if val in {"n", "no", "f", "false", "off", "0"}: return 0 raise ValueError(f'''invalid truth value {val!r}''' ) def a__ ( UpperCAmelCase : Dict ) -> List[str]: if is_torch_fx_proxy(UpperCAmelCase ): return True if is_torch_available(): import torch if isinstance(UpperCAmelCase , torch.Tensor ): return True if is_tf_available(): import tensorflow as tf if isinstance(UpperCAmelCase , tf.Tensor ): return True if is_flax_available(): import jax.numpy as jnp from jax.core import Tracer if isinstance(UpperCAmelCase , (jnp.ndarray, Tracer) ): return True return isinstance(UpperCAmelCase , np.ndarray ) def a__ ( UpperCAmelCase : List[Any] ) -> Union[str, Any]: return isinstance(UpperCAmelCase , np.ndarray ) def a__ ( UpperCAmelCase : str ) -> Tuple: return _is_numpy(UpperCAmelCase ) def a__ ( UpperCAmelCase : str ) -> List[Any]: import torch return isinstance(UpperCAmelCase , torch.Tensor ) def a__ ( UpperCAmelCase : str ) -> List[Any]: return False if not is_torch_available() else _is_torch(UpperCAmelCase ) def a__ ( UpperCAmelCase : Tuple ) -> List[str]: import torch return isinstance(UpperCAmelCase , torch.device ) def a__ ( UpperCAmelCase : Any ) -> Any: return False if not is_torch_available() else _is_torch_device(UpperCAmelCase ) def a__ ( UpperCAmelCase : Dict ) -> List[str]: import torch if isinstance(UpperCAmelCase , UpperCAmelCase ): if hasattr(UpperCAmelCase , UpperCAmelCase ): UpperCAmelCase : Union[str, Any] = getattr(UpperCAmelCase , UpperCAmelCase ) else: return False return isinstance(UpperCAmelCase , torch.dtype ) def a__ ( UpperCAmelCase : Optional[Any] ) -> Union[str, Any]: return False if not is_torch_available() else _is_torch_dtype(UpperCAmelCase ) def a__ ( UpperCAmelCase : Any ) -> str: import tensorflow as tf return isinstance(UpperCAmelCase , tf.Tensor ) def a__ ( UpperCAmelCase : int ) -> Union[str, Any]: return False if not is_tf_available() else _is_tensorflow(UpperCAmelCase ) def a__ ( UpperCAmelCase : List[str] ) -> Tuple: import tensorflow as tf # the `is_symbolic_tensor` predicate is only available starting with TF 2.14 if hasattr(UpperCAmelCase , '''is_symbolic_tensor''' ): return tf.is_symbolic_tensor(UpperCAmelCase ) return type(UpperCAmelCase ) == tf.Tensor def a__ ( UpperCAmelCase : int ) -> List[Any]: return False if not is_tf_available() else _is_tf_symbolic_tensor(UpperCAmelCase ) def a__ ( UpperCAmelCase : List[Any] ) -> Dict: import jax.numpy as jnp # noqa: F811 return isinstance(UpperCAmelCase , jnp.ndarray ) def a__ ( UpperCAmelCase : List[Any] ) -> Optional[int]: return False if not is_flax_available() else _is_jax(UpperCAmelCase ) def a__ ( UpperCAmelCase : int ) -> Tuple: if isinstance(UpperCAmelCase , (dict, UserDict) ): return {k: to_py_obj(UpperCAmelCase ) for k, v in obj.items()} elif isinstance(UpperCAmelCase , (list, tuple) ): return [to_py_obj(UpperCAmelCase ) for o in obj] elif is_tf_tensor(UpperCAmelCase ): return obj.numpy().tolist() elif is_torch_tensor(UpperCAmelCase ): return obj.detach().cpu().tolist() elif is_jax_tensor(UpperCAmelCase ): return np.asarray(UpperCAmelCase ).tolist() elif isinstance(UpperCAmelCase , (np.ndarray, np.number) ): # tolist also works on 0d np arrays return obj.tolist() else: return obj def a__ ( UpperCAmelCase : Any ) -> List[str]: if isinstance(UpperCAmelCase , (dict, UserDict) ): return {k: to_numpy(UpperCAmelCase ) for k, v in obj.items()} elif isinstance(UpperCAmelCase , (list, tuple) ): return np.array(UpperCAmelCase ) elif is_tf_tensor(UpperCAmelCase ): return obj.numpy() elif is_torch_tensor(UpperCAmelCase ): return obj.detach().cpu().numpy() elif is_jax_tensor(UpperCAmelCase ): return np.asarray(UpperCAmelCase ) else: return obj class __UpperCAmelCase ( lowerCamelCase__ ): def __magic_name__ ( self : Optional[int] ): UpperCAmelCase : Optional[Any] = fields(self ) # Safety and consistency checks if not len(__A ): raise ValueError(F'''{self.__class__.__name__} has no fields.''' ) if not all(field.default is None for field in class_fields[1:] ): raise ValueError(F'''{self.__class__.__name__} should not have more than one required field.''' ) UpperCAmelCase : int = getattr(self, class_fields[0].name ) UpperCAmelCase : str = all(getattr(self, field.name ) is None for field in class_fields[1:] ) if other_fields_are_none and not is_tensor(__A ): if isinstance(__A, __A ): UpperCAmelCase : Tuple = first_field.items() UpperCAmelCase : Any = True else: try: UpperCAmelCase : Optional[Any] = iter(__A ) UpperCAmelCase : Optional[Any] = True except TypeError: UpperCAmelCase : Optional[int] = False # if we provided an iterator as first field and the iterator is a (key, value) iterator # set the associated fields if first_field_iterator: for idx, element in enumerate(__A ): if ( not isinstance(__A, (list, tuple) ) or not len(__A ) == 2 or not isinstance(element[0], __A ) ): if idx == 0: # If we do not have an iterator of key/values, set it as attribute UpperCAmelCase : Any = first_field else: # If we have a mixed iterator, raise an error raise ValueError( F'''Cannot set key/value for {element}. It needs to be a tuple (key, value).''' ) break setattr(self, element[0], element[1] ) if element[1] is not None: UpperCAmelCase : Union[str, Any] = element[1] elif first_field is not None: UpperCAmelCase : Union[str, Any] = first_field else: for field in class_fields: UpperCAmelCase : Optional[Any] = getattr(self, field.name ) if v is not None: UpperCAmelCase : Optional[int] = v def __delitem__( self : Union[str, Any], *__A : str, **__A : Tuple ): raise Exception(F'''You cannot use ``__delitem__`` on a {self.__class__.__name__} instance.''' ) def __magic_name__ ( self : List[str], *__A : Union[str, Any], **__A : Optional[Any] ): raise Exception(F'''You cannot use ``setdefault`` on a {self.__class__.__name__} instance.''' ) def __magic_name__ ( self : Any, *__A : Dict, **__A : str ): raise Exception(F'''You cannot use ``pop`` on a {self.__class__.__name__} instance.''' ) def __magic_name__ ( self : Dict, *__A : int, **__A : Dict ): raise Exception(F'''You cannot use ``update`` on a {self.__class__.__name__} instance.''' ) def __getitem__( self : List[str], __A : List[str] ): if isinstance(__A, __A ): UpperCAmelCase : int = dict(self.items() ) return inner_dict[k] else: return self.to_tuple()[k] def __setattr__( self : Optional[Any], __A : Dict, __A : Union[str, Any] ): if name in self.keys() and value is not None: # Don't call self.__setitem__ to avoid recursion errors super().__setitem__(__A, __A ) super().__setattr__(__A, __A ) def __setitem__( self : Dict, __A : List[Any], __A : Union[str, Any] ): # Will raise a KeyException if needed super().__setitem__(__A, __A ) # Don't call self.__setattr__ to avoid recursion errors super().__setattr__(__A, __A ) def __magic_name__ ( self : List[str] ): return tuple(self[k] for k in self.keys() ) class __UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ): @classmethod def __magic_name__ ( cls : List[Any], __A : Tuple ): raise ValueError( F'''{value} is not a valid {cls.__name__}, please select one of {list(cls._valueamember_map_.keys() )}''' ) class __UpperCAmelCase ( lowerCamelCase__ ): UpperCamelCase = """longest""" UpperCamelCase = """max_length""" UpperCamelCase = """do_not_pad""" class __UpperCAmelCase ( lowerCamelCase__ ): UpperCamelCase = """pt""" UpperCamelCase = """tf""" UpperCamelCase = """np""" UpperCamelCase = """jax""" class __UpperCAmelCase : def __init__( self : Any, __A : List[ContextManager] ): UpperCAmelCase : Tuple = context_managers UpperCAmelCase : Tuple = ExitStack() def __enter__( self : Any ): for context_manager in self.context_managers: self.stack.enter_context(__A ) def __exit__( self : List[Any], *__A : Union[str, Any], **__A : Dict ): self.stack.__exit__(*__A, **__A ) def a__ ( UpperCAmelCase : Union[str, Any] ) -> str: UpperCAmelCase : int = infer_framework(UpperCAmelCase ) if framework == "tf": UpperCAmelCase : List[str] = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": UpperCAmelCase : List[Any] = inspect.signature(model_class.forward ) # PyTorch models else: UpperCAmelCase : Tuple = inspect.signature(model_class.__call__ ) # Flax models for p in signature.parameters: if p == "return_loss" and signature.parameters[p].default is True: return True return False def a__ ( UpperCAmelCase : Dict ) -> Any: UpperCAmelCase : List[Any] = model_class.__name__ UpperCAmelCase : Union[str, Any] = infer_framework(UpperCAmelCase ) if framework == "tf": UpperCAmelCase : Tuple = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": UpperCAmelCase : Dict = inspect.signature(model_class.forward ) # PyTorch models else: UpperCAmelCase : Dict = inspect.signature(model_class.__call__ ) # Flax models if "QuestionAnswering" in model_name: return [p for p in signature.parameters if "label" in p or p in ("start_positions", "end_positions")] else: return [p for p in signature.parameters if "label" in p] def a__ ( UpperCAmelCase : MutableMapping , UpperCAmelCase : str = "" , UpperCAmelCase : str = "." ) -> Union[str, Any]: def _flatten_dict(UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[str]="" , UpperCAmelCase : Any="." ): for k, v in d.items(): UpperCAmelCase : List[str] = str(UpperCAmelCase ) + delimiter + str(UpperCAmelCase ) if parent_key else k if v and isinstance(UpperCAmelCase , UpperCAmelCase ): yield from flatten_dict(UpperCAmelCase , UpperCAmelCase , delimiter=UpperCAmelCase ).items() else: yield key, v return dict(_flatten_dict(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ) @contextmanager def a__ ( UpperCAmelCase : Dict , UpperCAmelCase : bool = False ) -> Optional[Any]: if use_temp_dir: with tempfile.TemporaryDirectory() as tmp_dir: yield tmp_dir else: yield working_dir def a__ ( UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[str]=None ) -> Optional[Any]: if is_numpy_array(UpperCAmelCase ): return np.transpose(UpperCAmelCase , axes=UpperCAmelCase ) elif is_torch_tensor(UpperCAmelCase ): return array.T if axes is None else array.permute(*UpperCAmelCase ) elif is_tf_tensor(UpperCAmelCase ): import tensorflow as tf return tf.transpose(UpperCAmelCase , perm=UpperCAmelCase ) elif is_jax_tensor(UpperCAmelCase ): return jnp.transpose(UpperCAmelCase , axes=UpperCAmelCase ) else: raise ValueError(f'''Type not supported for transpose: {type(UpperCAmelCase )}.''' ) def a__ ( UpperCAmelCase : str , UpperCAmelCase : Optional[int] ) -> List[str]: if is_numpy_array(UpperCAmelCase ): return np.reshape(UpperCAmelCase , UpperCAmelCase ) elif is_torch_tensor(UpperCAmelCase ): return array.reshape(*UpperCAmelCase ) elif is_tf_tensor(UpperCAmelCase ): import tensorflow as tf return tf.reshape(UpperCAmelCase , UpperCAmelCase ) elif is_jax_tensor(UpperCAmelCase ): return jnp.reshape(UpperCAmelCase , UpperCAmelCase ) else: raise ValueError(f'''Type not supported for reshape: {type(UpperCAmelCase )}.''' ) def a__ ( UpperCAmelCase : Tuple , UpperCAmelCase : Optional[int]=None ) -> Any: if is_numpy_array(UpperCAmelCase ): return np.squeeze(UpperCAmelCase , axis=UpperCAmelCase ) elif is_torch_tensor(UpperCAmelCase ): return array.squeeze() if axis is None else array.squeeze(dim=UpperCAmelCase ) elif is_tf_tensor(UpperCAmelCase ): import tensorflow as tf return tf.squeeze(UpperCAmelCase , axis=UpperCAmelCase ) elif is_jax_tensor(UpperCAmelCase ): return jnp.squeeze(UpperCAmelCase , axis=UpperCAmelCase ) else: raise ValueError(f'''Type not supported for squeeze: {type(UpperCAmelCase )}.''' ) def a__ ( UpperCAmelCase : str , UpperCAmelCase : int ) -> str: if is_numpy_array(UpperCAmelCase ): return np.expand_dims(UpperCAmelCase , UpperCAmelCase ) elif is_torch_tensor(UpperCAmelCase ): return array.unsqueeze(dim=UpperCAmelCase ) elif is_tf_tensor(UpperCAmelCase ): import tensorflow as tf return tf.expand_dims(UpperCAmelCase , axis=UpperCAmelCase ) elif is_jax_tensor(UpperCAmelCase ): return jnp.expand_dims(UpperCAmelCase , axis=UpperCAmelCase ) else: raise ValueError(f'''Type not supported for expand_dims: {type(UpperCAmelCase )}.''' ) def a__ ( UpperCAmelCase : Dict ) -> List[str]: if is_numpy_array(UpperCAmelCase ): return np.size(UpperCAmelCase ) elif is_torch_tensor(UpperCAmelCase ): return array.numel() elif is_tf_tensor(UpperCAmelCase ): import tensorflow as tf return tf.size(UpperCAmelCase ) elif is_jax_tensor(UpperCAmelCase ): return array.size else: raise ValueError(f'''Type not supported for expand_dims: {type(UpperCAmelCase )}.''' ) def a__ ( UpperCAmelCase : List[str] , UpperCAmelCase : List[str] ) -> Dict: for key, value in auto_map.items(): if isinstance(UpperCAmelCase , (tuple, list) ): UpperCAmelCase : List[Any] = [f'''{repo_id}--{v}''' if (v is not None and '''--''' not in v) else v for v in value] elif value is not None and "--" not in value: UpperCAmelCase : List[Any] = f'''{repo_id}--{value}''' return auto_map def a__ ( UpperCAmelCase : Tuple ) -> Union[str, Any]: for base_class in inspect.getmro(UpperCAmelCase ): UpperCAmelCase : Any = base_class.__module__ UpperCAmelCase : Dict = base_class.__name__ if module.startswith('''tensorflow''' ) or module.startswith('''keras''' ) or name == "TFPreTrainedModel": return "tf" elif module.startswith('''torch''' ) or name == "PreTrainedModel": return "pt" elif module.startswith('''flax''' ) or module.startswith('''jax''' ) or name == "FlaxPreTrainedModel": return "flax" else: raise TypeError(f'''Could not infer framework from class {model_class}.''' )
336
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging snake_case : Optional[Any] = logging.get_logger(__name__) if is_vision_available(): import PIL class _snake_case ( _snake_case ): SCREAMING_SNAKE_CASE__ = ['pixel_values'] def __init__( self , _lowerCamelCase = True , _lowerCamelCase = None , _lowerCamelCase = PILImageResampling.BICUBIC , _lowerCamelCase = True , _lowerCamelCase = None , _lowerCamelCase = True , _lowerCamelCase = 1 / 255 , _lowerCamelCase = True , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = True , **_lowerCamelCase , ): super().__init__(**_lowerCamelCase ) a :str = size if size is not None else {'''shortest_edge''': 224} a :int = get_size_dict(_lowerCamelCase , default_to_square=_lowerCamelCase ) a :Optional[int] = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} a :Union[str, Any] = get_size_dict(_lowerCamelCase , default_to_square=_lowerCamelCase , param_name='''crop_size''' ) a :Dict = do_resize a :Optional[int] = size a :Optional[int] = resample a :Dict = do_center_crop a :List[str] = crop_size a :Any = do_rescale a :Optional[int] = rescale_factor a :str = do_normalize a :Tuple = image_mean if image_mean is not None else OPENAI_CLIP_MEAN a :Any = image_std if image_std is not None else OPENAI_CLIP_STD a :List[Any] = do_convert_rgb def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = PILImageResampling.BICUBIC , _lowerCamelCase = None , **_lowerCamelCase , ): a :Union[str, Any] = get_size_dict(_lowerCamelCase , default_to_square=_lowerCamelCase ) if "shortest_edge" not in size: raise ValueError(F'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' ) a :List[str] = get_resize_output_image_size(_lowerCamelCase , size=size['''shortest_edge'''] , default_to_square=_lowerCamelCase ) return resize(_lowerCamelCase , size=_lowerCamelCase , resample=_lowerCamelCase , data_format=_lowerCamelCase , **_lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = None , **_lowerCamelCase , ): a :Union[str, Any] = get_size_dict(_lowerCamelCase ) if "height" not in size or "width" not in size: raise ValueError(F'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' ) return center_crop(_lowerCamelCase , size=(size['''height'''], size['''width''']) , data_format=_lowerCamelCase , **_lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = None , **_lowerCamelCase , ): return rescale(_lowerCamelCase , scale=_lowerCamelCase , data_format=_lowerCamelCase , **_lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = None , **_lowerCamelCase , ): return normalize(_lowerCamelCase , mean=_lowerCamelCase , std=_lowerCamelCase , data_format=_lowerCamelCase , **_lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = ChannelDimension.FIRST , **_lowerCamelCase , ): a :List[Any] = do_resize if do_resize is not None else self.do_resize a :Any = size if size is not None else self.size a :Any = get_size_dict(_lowerCamelCase , param_name='''size''' , default_to_square=_lowerCamelCase ) a :str = resample if resample is not None else self.resample a :int = do_center_crop if do_center_crop is not None else self.do_center_crop a :Dict = crop_size if crop_size is not None else self.crop_size a :int = get_size_dict(_lowerCamelCase , param_name='''crop_size''' , default_to_square=_lowerCamelCase ) a :Optional[Any] = do_rescale if do_rescale is not None else self.do_rescale a :List[str] = rescale_factor if rescale_factor is not None else self.rescale_factor a :Optional[Any] = do_normalize if do_normalize is not None else self.do_normalize a :List[str] = image_mean if image_mean is not None else self.image_mean a :Dict = image_std if image_std is not None else self.image_std a :List[Any] = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb a :Optional[Any] = make_list_of_images(_lowerCamelCase ) if not valid_images(_lowerCamelCase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # PIL RGBA images are converted to RGB if do_convert_rgb: a :int = [convert_to_rgb(_lowerCamelCase ) for image in images] # All transformations expect numpy arrays. a :Union[str, Any] = [to_numpy_array(_lowerCamelCase ) for image in images] if do_resize: a :Optional[int] = [self.resize(image=_lowerCamelCase , size=_lowerCamelCase , resample=_lowerCamelCase ) for image in images] if do_center_crop: a :List[Any] = [self.center_crop(image=_lowerCamelCase , size=_lowerCamelCase ) for image in images] if do_rescale: a :str = [self.rescale(image=_lowerCamelCase , scale=_lowerCamelCase ) for image in images] if do_normalize: a :Union[str, Any] = [self.normalize(image=_lowerCamelCase , mean=_lowerCamelCase , std=_lowerCamelCase ) for image in images] a :Dict = [to_channel_dimension_format(_lowerCamelCase , _lowerCamelCase ) for image in images] a :List[str] = {'''pixel_values''': images} return BatchFeature(data=_lowerCamelCase , tensor_type=_lowerCamelCase )
357
def __lowerCamelCase ( UpperCAmelCase_ : int = 100 ): """simple docstring""" a :List[Any] = 0 a :List[Any] = 0 for i in range(1 , n + 1 ): sum_of_squares += i**2 sum_of_ints += i return sum_of_ints**2 - sum_of_squares if __name__ == "__main__": print(F"""{solution() = }""")
281
0
import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class __lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _SCREAMING_SNAKE_CASE = (PNDMScheduler,) _SCREAMING_SNAKE_CASE = (('num_inference_steps', 50),) def lowerCAmelCase__ ( self : Union[str, Any] , **_lowerCAmelCase : int ) -> str: """simple docstring""" snake_case_ = { "num_train_timesteps": 1_0_0_0, "beta_start": 0.0_001, "beta_end": 0.02, "beta_schedule": "linear", } config.update(**_UpperCAmelCase ) return config def lowerCAmelCase__ ( self : List[str] , _lowerCAmelCase : List[Any]=0 , **_lowerCAmelCase : List[Any] ) -> Optional[int]: """simple docstring""" snake_case_ = dict(self.forward_default_kwargs ) snake_case_ = kwargs.pop("num_inference_steps" , _UpperCAmelCase ) snake_case_ = self.dummy_sample snake_case_ = 0.1 * sample snake_case_ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: snake_case_ = self.get_scheduler_config(**_UpperCAmelCase ) snake_case_ = scheduler_class(**_UpperCAmelCase ) scheduler.set_timesteps(_UpperCAmelCase ) # copy over dummy past residuals snake_case_ = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_UpperCAmelCase ) snake_case_ = scheduler_class.from_pretrained(_UpperCAmelCase ) new_scheduler.set_timesteps(_UpperCAmelCase ) # copy over dummy past residuals snake_case_ = dummy_past_residuals[:] snake_case_ = scheduler.step_prk(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample snake_case_ = new_scheduler.step_prk(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" snake_case_ = scheduler.step_plms(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample snake_case_ = new_scheduler.step_plms(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def lowerCAmelCase__ ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" pass def lowerCAmelCase__ ( self : Optional[int] , _lowerCAmelCase : Optional[int]=0 , **_lowerCAmelCase : int ) -> int: """simple docstring""" snake_case_ = dict(self.forward_default_kwargs ) snake_case_ = kwargs.pop("num_inference_steps" , _UpperCAmelCase ) snake_case_ = self.dummy_sample snake_case_ = 0.1 * sample snake_case_ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: snake_case_ = self.get_scheduler_config() snake_case_ = scheduler_class(**_UpperCAmelCase ) scheduler.set_timesteps(_UpperCAmelCase ) # copy over dummy past residuals (must be after setting timesteps) snake_case_ = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_UpperCAmelCase ) snake_case_ = scheduler_class.from_pretrained(_UpperCAmelCase ) # copy over dummy past residuals new_scheduler.set_timesteps(_UpperCAmelCase ) # copy over dummy past residual (must be after setting timesteps) snake_case_ = dummy_past_residuals[:] snake_case_ = scheduler.step_prk(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample snake_case_ = new_scheduler.step_prk(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" snake_case_ = scheduler.step_plms(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample snake_case_ = new_scheduler.step_plms(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def lowerCAmelCase__ ( self : List[Any] , **_lowerCAmelCase : Tuple ) -> Optional[Any]: """simple docstring""" snake_case_ = self.scheduler_classes[0] snake_case_ = self.get_scheduler_config(**_UpperCAmelCase ) snake_case_ = scheduler_class(**_UpperCAmelCase ) snake_case_ = 1_0 snake_case_ = self.dummy_model() snake_case_ = self.dummy_sample_deter scheduler.set_timesteps(_UpperCAmelCase ) for i, t in enumerate(scheduler.prk_timesteps ): snake_case_ = model(_UpperCAmelCase , _UpperCAmelCase ) snake_case_ = scheduler.step_prk(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ).prev_sample for i, t in enumerate(scheduler.plms_timesteps ): snake_case_ = model(_UpperCAmelCase , _UpperCAmelCase ) snake_case_ = scheduler.step_plms(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ).prev_sample return sample def lowerCAmelCase__ ( self : Union[str, Any] ) -> Tuple: """simple docstring""" snake_case_ = dict(self.forward_default_kwargs ) snake_case_ = kwargs.pop("num_inference_steps" , _UpperCAmelCase ) for scheduler_class in self.scheduler_classes: snake_case_ = self.get_scheduler_config() snake_case_ = scheduler_class(**_UpperCAmelCase ) snake_case_ = self.dummy_sample snake_case_ = 0.1 * sample if num_inference_steps is not None and hasattr(_UpperCAmelCase , "set_timesteps" ): scheduler.set_timesteps(_UpperCAmelCase ) elif num_inference_steps is not None and not hasattr(_UpperCAmelCase , "set_timesteps" ): snake_case_ = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) snake_case_ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] snake_case_ = dummy_past_residuals[:] snake_case_ = scheduler.step_prk(_UpperCAmelCase , 0 , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample snake_case_ = scheduler.step_prk(_UpperCAmelCase , 1 , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) snake_case_ = scheduler.step_plms(_UpperCAmelCase , 0 , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample snake_case_ = scheduler.step_plms(_UpperCAmelCase , 1 , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def lowerCAmelCase__ ( self : Union[str, Any] ) -> str: """simple docstring""" for timesteps in [1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=_UpperCAmelCase ) def lowerCAmelCase__ ( self : str ) -> int: """simple docstring""" for steps_offset in [0, 1]: self.check_over_configs(steps_offset=_UpperCAmelCase ) snake_case_ = self.scheduler_classes[0] snake_case_ = self.get_scheduler_config(steps_offset=1 ) snake_case_ = scheduler_class(**_UpperCAmelCase ) scheduler.set_timesteps(1_0 ) assert torch.equal( scheduler.timesteps , torch.LongTensor( [9_0_1, 8_5_1, 8_5_1, 8_0_1, 8_0_1, 7_5_1, 7_5_1, 7_0_1, 7_0_1, 6_5_1, 6_5_1, 6_0_1, 6_0_1, 5_0_1, 4_0_1, 3_0_1, 2_0_1, 1_0_1, 1] ) , ) def lowerCAmelCase__ ( self : Any ) -> List[Any]: """simple docstring""" for beta_start, beta_end in zip([0.0_001, 0.001] , [0.002, 0.02] ): self.check_over_configs(beta_start=_UpperCAmelCase , beta_end=_UpperCAmelCase ) def lowerCAmelCase__ ( self : Any ) -> List[str]: """simple docstring""" for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_UpperCAmelCase ) def lowerCAmelCase__ ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_UpperCAmelCase ) def lowerCAmelCase__ ( self : List[str] ) -> List[Any]: """simple docstring""" for t in [1, 5, 1_0]: self.check_over_forward(time_step=_UpperCAmelCase ) def lowerCAmelCase__ ( self : int ) -> int: """simple docstring""" for t, num_inference_steps in zip([1, 5, 1_0] , [1_0, 5_0, 1_0_0] ): self.check_over_forward(num_inference_steps=_UpperCAmelCase ) def lowerCAmelCase__ ( self : Dict ) -> str: """simple docstring""" # earlier version of set_timesteps() caused an error indexing alpha's with inference steps as power of 3 snake_case_ = 2_7 for scheduler_class in self.scheduler_classes: snake_case_ = self.dummy_sample snake_case_ = 0.1 * sample snake_case_ = self.get_scheduler_config() snake_case_ = scheduler_class(**_UpperCAmelCase ) scheduler.set_timesteps(_UpperCAmelCase ) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2] ): snake_case_ = scheduler.step_prk(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ).prev_sample def lowerCAmelCase__ ( self : Union[str, Any] ) -> List[str]: """simple docstring""" with self.assertRaises(_UpperCAmelCase ): snake_case_ = self.scheduler_classes[0] snake_case_ = self.get_scheduler_config() snake_case_ = scheduler_class(**_UpperCAmelCase ) scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample ).prev_sample def lowerCAmelCase__ ( self : List[Any] ) -> List[Any]: """simple docstring""" snake_case_ = self.full_loop() snake_case_ = torch.sum(torch.abs(_UpperCAmelCase ) ) snake_case_ = torch.mean(torch.abs(_UpperCAmelCase ) ) assert abs(result_sum.item() - 198.1_318 ) < 1e-2 assert abs(result_mean.item() - 0.2_580 ) < 1e-3 def lowerCAmelCase__ ( self : Optional[int] ) -> Tuple: """simple docstring""" snake_case_ = self.full_loop(prediction_type="v_prediction" ) snake_case_ = torch.sum(torch.abs(_UpperCAmelCase ) ) snake_case_ = torch.mean(torch.abs(_UpperCAmelCase ) ) assert abs(result_sum.item() - 67.3_986 ) < 1e-2 assert abs(result_mean.item() - 0.0_878 ) < 1e-3 def lowerCAmelCase__ ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" # We specify different beta, so that the first alpha is 0.99 snake_case_ = self.full_loop(set_alpha_to_one=_UpperCAmelCase , beta_start=0.01 ) snake_case_ = torch.sum(torch.abs(_UpperCAmelCase ) ) snake_case_ = torch.mean(torch.abs(_UpperCAmelCase ) ) assert abs(result_sum.item() - 230.0_399 ) < 1e-2 assert abs(result_mean.item() - 0.2_995 ) < 1e-3 def lowerCAmelCase__ ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" # We specify different beta, so that the first alpha is 0.99 snake_case_ = self.full_loop(set_alpha_to_one=_UpperCAmelCase , beta_start=0.01 ) snake_case_ = torch.sum(torch.abs(_UpperCAmelCase ) ) snake_case_ = torch.mean(torch.abs(_UpperCAmelCase ) ) assert abs(result_sum.item() - 186.9_482 ) < 1e-2 assert abs(result_mean.item() - 0.2_434 ) < 1e-3
159
'''simple docstring''' def __lowerCAmelCase ( snake_case__ ): return [ txt[:a] + txt[a].upper() + txt[a + 1 :] for a in range(len(snake_case__ ) ) if txt[a].isalpha() ] if __name__ == "__main__": __import__('''doctest''').testmod()
298
0
from PIL import Image def UpperCamelCase_( _snake_case : Image , _snake_case : float ): """simple docstring""" def brightness(_snake_case : int ) -> float: return 128 + level + (c - 128) if not -255.0 <= level <= 255.0: raise ValueError('level must be between -255.0 (black) and 255.0 (white)' ) return img.point(_snake_case ) if __name__ == "__main__": # Load image with Image.open("image_data/lena.jpg") as img: # Change brightness to 100 _lowerCAmelCase : str = change_brightness(img, 100) brigt_img.save("image_data/lena_brightness.png", format="png")
308
import argparse import logging from collections import namedtuple import torch from model_bertabs import BertAbsSummarizer from models.model_builder import AbsSummarizer # The authors' implementation from transformers import BertTokenizer logging.basicConfig(level=logging.INFO) _lowerCAmelCase : List[Any] = logging.getLogger(__name__) _lowerCAmelCase : Optional[Any] = "Hello world! cécé herlolip" _lowerCAmelCase : str = namedtuple( "BertAbsConfig", [ "temp_dir", "large", "use_bert_emb", "finetune_bert", "encoder", "share_emb", "max_pos", "enc_layers", "enc_hidden_size", "enc_heads", "enc_ff_size", "enc_dropout", "dec_layers", "dec_hidden_size", "dec_heads", "dec_ff_size", "dec_dropout", ], ) def UpperCamelCase_( _snake_case : str , _snake_case : List[Any] ): """simple docstring""" __a =BertAbsConfig( temp_dir='.' , finetune_bert=_snake_case , large=_snake_case , share_emb=_snake_case , use_bert_emb=_snake_case , encoder='bert' , max_pos=512 , enc_layers=6 , enc_hidden_size=512 , enc_heads=8 , enc_ff_size=512 , enc_dropout=0.2 , dec_layers=6 , dec_hidden_size=768 , dec_heads=8 , dec_ff_size=2048 , dec_dropout=0.2 , ) __a =torch.load(_snake_case , lambda _snake_case , _snake_case : storage ) __a =AbsSummarizer(_snake_case , torch.device('cpu' ) , _snake_case ) original.eval() __a =BertAbsSummarizer(_snake_case , torch.device('cpu' ) ) new_model.eval() # ------------------- # Convert the weights # ------------------- logging.info('convert the model' ) new_model.bert.load_state_dict(original.bert.state_dict() ) new_model.decoder.load_state_dict(original.decoder.state_dict() ) new_model.generator.load_state_dict(original.generator.state_dict() ) # ---------------------------------- # Make sure the outpus are identical # ---------------------------------- logging.info('Make sure that the models\' outputs are identical' ) __a =BertTokenizer.from_pretrained('bert-base-uncased' ) # prepare the model inputs __a =tokenizer.encode('This is sample éàalj\'-.' ) encoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(_snake_case )) ) __a =torch.tensor(_snake_case ).unsqueeze(0 ) __a =tokenizer.encode('This is sample 3 éàalj\'-.' ) decoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(_snake_case )) ) __a =torch.tensor(_snake_case ).unsqueeze(0 ) # failsafe to make sure the weights reset does not affect the # loaded weights. assert torch.max(torch.abs(original.generator[0].weight - new_model.generator[0].weight ) ) == 0 # forward pass __a =encoder_input_ids __a =decoder_input_ids __a =__a =None __a =None __a =__a =None __a =__a =None __a =None # The original model does not apply the geneator layer immediatly but rather in # the beam search (where it combines softmax + linear layer). Since we already # apply the softmax in our generation process we only apply the linear layer here. # We make sure that the outputs of the full stack are identical __a =original(_snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case )[0] __a =original.generator(_snake_case ) __a =new_model( _snake_case , _snake_case , _snake_case , _snake_case , _snake_case )[0] __a =new_model.generator(_snake_case ) __a =torch.max(torch.abs(output_converted_model - output_original_model ) ).item() print('Maximum absolute difference beween weights: {:.2f}'.format(_snake_case ) ) __a =torch.max(torch.abs(output_converted_generator - output_original_generator ) ).item() print('Maximum absolute difference beween weights: {:.2f}'.format(_snake_case ) ) __a =torch.allclose(_snake_case , _snake_case , atol=1e-3 ) if are_identical: logging.info('all weights are equal up to 1e-3' ) else: raise ValueError('the weights are different. The new model is likely different from the original one.' ) # The model has been saved with torch.save(model) and this is bound to the exact # directory structure. We save the state_dict instead. logging.info('saving the model\'s state dictionary' ) torch.save( new_model.state_dict() , './bertabs-finetuned-cnndm-extractive-abstractive-summarization/pytorch_model.bin' ) if __name__ == "__main__": _lowerCAmelCase : Optional[int] = argparse.ArgumentParser() parser.add_argument( "--bertabs_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model.", ) _lowerCAmelCase : Optional[Any] = parser.parse_args() convert_bertabs_checkpoints( args.bertabs_checkpoint_path, args.pytorch_dump_folder_path, )
308
1
# using dfs for finding eulerian path traversal def a_ ( SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[int]=None ): '''simple docstring''' _lowerCamelCase : Optional[Any] =(path or []) + [u] for v in graph[u]: if visited_edge[u][v] is False: _lowerCamelCase , _lowerCamelCase : Dict =True, True _lowerCamelCase : Optional[Any] =dfs(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return path def a_ ( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[Any] ): '''simple docstring''' _lowerCamelCase : Union[str, Any] =0 _lowerCamelCase : Union[str, Any] =-1 for i in range(SCREAMING_SNAKE_CASE__ ): if i not in graph.keys(): continue if len(graph[i] ) % 2 == 1: odd_degree_nodes += 1 _lowerCamelCase : Tuple =i if odd_degree_nodes == 0: return 1, odd_node if odd_degree_nodes == 2: return 2, odd_node return 3, odd_node def a_ ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Any ): '''simple docstring''' _lowerCamelCase : Tuple =[[False for _ in range(max_node + 1 )] for _ in range(max_node + 1 )] _lowerCamelCase , _lowerCamelCase : Optional[int] =check_circuit_or_path(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if check == 3: print('graph is not Eulerian' ) print('no path' ) return _lowerCamelCase : Any =1 if check == 2: _lowerCamelCase : Tuple =odd_node print('graph has a Euler path' ) if check == 1: print('graph has a Euler cycle' ) _lowerCamelCase : int =dfs(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) print(SCREAMING_SNAKE_CASE__ ) def a_ ( ): '''simple docstring''' _lowerCamelCase : Union[str, Any] ={1: [2, 3, 4], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [4]} _lowerCamelCase : str ={1: [2, 3, 4, 5], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [1, 4]} _lowerCamelCase : List[Any] ={1: [2, 3, 4], 2: [1, 3, 4], 3: [1, 2], 4: [1, 2, 5], 5: [4]} _lowerCamelCase : Any ={1: [2, 3], 2: [1, 3], 3: [1, 2]} _lowerCamelCase : Dict ={ 1: [], 2: [] # all degree is zero } _lowerCamelCase : str =10 check_euler(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) check_euler(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) check_euler(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) check_euler(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) check_euler(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": main()
199
import json import logging import os import re import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import datasets import numpy as np import torch import torchaudio from packaging import version from torch import nn import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaProcessor, is_apex_available, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse('1.6'): lowerCamelCase = True from torch.cuda.amp import autocast lowerCamelCase = logging.getLogger(__name__) def a_ ( SCREAMING_SNAKE_CASE__ : Optional[Any]=None , SCREAMING_SNAKE_CASE__ : List[Any]=None ): '''simple docstring''' return field(default_factory=lambda: default , metadata=SCREAMING_SNAKE_CASE__ ) @dataclass class A : UpperCamelCase__ : str =field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) UpperCamelCase__ : Optional[str] =field( default=UpperCamelCase_ , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) UpperCamelCase__ : Optional[bool] =field( default=UpperCamelCase_ , metadata={'help': 'Whether to freeze the feature extractor layers of the model.'} ) UpperCamelCase__ : Optional[float] =field( default=0.1 , metadata={'help': 'The dropout ratio for the attention probabilities.'} ) UpperCamelCase__ : Optional[float] =field( default=0.1 , metadata={'help': 'The dropout ratio for activations inside the fully connected layer.'} ) UpperCamelCase__ : Optional[float] =field( default=0.1 , metadata={ 'help': 'The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler.' } , ) UpperCamelCase__ : Optional[float] =field( default=0.1 , metadata={'help': 'The dropout probabilitiy for all 1D convolutional layers in feature extractor.'} , ) UpperCamelCase__ : Optional[float] =field( default=0.05 , metadata={ 'help': ( 'Propability of each feature vector along the time axis to be chosen as the start of the vector' 'span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature' 'vectors will be masked along the time axis. This is only relevant if ``apply_spec_augment is True``.' ) } , ) UpperCamelCase__ : Optional[float] =field(default=0.0 , metadata={'help': 'The LayerDrop probability.'} ) @dataclass class A : UpperCamelCase__ : Optional[str] =field( default=UpperCamelCase_ , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} ) UpperCamelCase__ : Optional[str] =field( default='train+validation' , metadata={ 'help': 'The name of the training data set split to use (via the datasets library). Defaults to \'train\'' } , ) UpperCamelCase__ : bool =field( default=UpperCamelCase_ , metadata={'help': 'Overwrite the cached preprocessed datasets or not.'} ) UpperCamelCase__ : Optional[int] =field( default=UpperCamelCase_ , metadata={'help': 'The number of processes to use for the preprocessing.'} , ) UpperCamelCase__ : Optional[int] =field( default=UpperCamelCase_ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) UpperCamelCase__ : Optional[int] =field( default=UpperCamelCase_ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of validation examples to this ' 'value if set.' ) } , ) UpperCamelCase__ : List[str] =list_field( default=[',', '?', '.', '!', '-', ';', ':', '""', '%', '\'', '"', '�'] , metadata={'help': 'A list of characters to remove from the transcripts.'} , ) @dataclass class A : UpperCamelCase__ : WavaVecaProcessor UpperCamelCase__ : Union[bool, str] =True UpperCamelCase__ : Optional[int] =None UpperCamelCase__ : Optional[int] =None UpperCamelCase__ : Optional[int] =None UpperCamelCase__ : Optional[int] =None def __call__( self : str , lowercase_ : List[Dict[str, Union[List[int], torch.Tensor]]] ) -> Dict[str, torch.Tensor]: """simple docstring""" _lowerCamelCase : List[Any] =[{'input_values': feature['input_values']} for feature in features] _lowerCamelCase : str =[{'input_ids': feature['labels']} for feature in features] _lowerCamelCase : Union[str, Any] =self.processor.pad( lowercase_ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='pt' , ) _lowerCamelCase : Any =self.processor.pad( labels=lowercase_ , padding=self.padding , max_length=self.max_length_labels , pad_to_multiple_of=self.pad_to_multiple_of_labels , return_tensors='pt' , ) # replace padding with -100 to ignore loss correctly _lowerCamelCase : str =labels_batch['input_ids'].masked_fill(labels_batch.attention_mask.ne(1 ) , -100 ) _lowerCamelCase : List[Any] =labels return batch class A ( UpperCamelCase_ ): def lowerCamelCase ( self : Optional[Any] , lowercase_ : nn.Module , lowercase_ : Dict[str, Union[torch.Tensor, Any]] ) -> torch.Tensor: """simple docstring""" model.train() _lowerCamelCase : List[Any] =self._prepare_inputs(lowercase_ ) if self.use_amp: with autocast(): _lowerCamelCase : List[Any] =self.compute_loss(lowercase_ , lowercase_ ) else: _lowerCamelCase : Optional[int] =self.compute_loss(lowercase_ , lowercase_ ) if self.args.n_gpu > 1: if model.module.config.ctc_loss_reduction == "mean": _lowerCamelCase : Optional[Any] =loss.mean() elif model.module.config.ctc_loss_reduction == "sum": _lowerCamelCase : int =loss.sum() / (inputs['labels'] >= 0).sum() else: raise ValueError(F'''{model.config.ctc_loss_reduction} is not valid. Choose one of [\'mean\', \'sum\']''' ) if self.args.gradient_accumulation_steps > 1: _lowerCamelCase : Dict =loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(lowercase_ ).backward() elif self.use_apex: with amp.scale_loss(lowercase_ , self.optimizer ) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(lowercase_ ) else: loss.backward() return loss.detach() def a_ ( ): '''simple docstring''' _lowerCamelCase : Union[str, Any] =HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Tuple =parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Any =parser.parse_args_into_dataclasses() # Detecting last checkpoint. _lowerCamelCase : Dict =None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _lowerCamelCase : List[str] =get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info('Training/evaluation parameters %s' , SCREAMING_SNAKE_CASE__ ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: _lowerCamelCase : str =datasets.load_dataset( 'common_voice' , data_args.dataset_config_name , split=data_args.train_split_name ) _lowerCamelCase : int =datasets.load_dataset('common_voice' , data_args.dataset_config_name , split='test' ) # Create and save tokenizer _lowerCamelCase : Dict =F'''[{''.join(data_args.chars_to_ignore )}]''' def remove_special_characters(SCREAMING_SNAKE_CASE__ : Tuple ): _lowerCamelCase : Optional[Any] =re.sub(SCREAMING_SNAKE_CASE__ , '' , batch['sentence'] ).lower() + ' ' return batch _lowerCamelCase : int =train_dataset.map(SCREAMING_SNAKE_CASE__ , remove_columns=['sentence'] ) _lowerCamelCase : Tuple =eval_dataset.map(SCREAMING_SNAKE_CASE__ , remove_columns=['sentence'] ) def extract_all_chars(SCREAMING_SNAKE_CASE__ : Tuple ): _lowerCamelCase : int =' '.join(batch['text'] ) _lowerCamelCase : Union[str, Any] =list(set(SCREAMING_SNAKE_CASE__ ) ) return {"vocab": [vocab], "all_text": [all_text]} _lowerCamelCase : Tuple =train_dataset.map( SCREAMING_SNAKE_CASE__ , batched=SCREAMING_SNAKE_CASE__ , batch_size=-1 , keep_in_memory=SCREAMING_SNAKE_CASE__ , remove_columns=train_dataset.column_names , ) _lowerCamelCase : Union[str, Any] =train_dataset.map( SCREAMING_SNAKE_CASE__ , batched=SCREAMING_SNAKE_CASE__ , batch_size=-1 , keep_in_memory=SCREAMING_SNAKE_CASE__ , remove_columns=eval_dataset.column_names , ) _lowerCamelCase : Optional[int] =list(set(vocab_train['vocab'][0] ) | set(vocab_test['vocab'][0] ) ) _lowerCamelCase : Tuple ={v: k for k, v in enumerate(SCREAMING_SNAKE_CASE__ )} _lowerCamelCase : int =vocab_dict[' '] del vocab_dict[" "] _lowerCamelCase : Optional[Any] =len(SCREAMING_SNAKE_CASE__ ) _lowerCamelCase : int =len(SCREAMING_SNAKE_CASE__ ) with open('vocab.json' , 'w' ) as vocab_file: json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _lowerCamelCase : int =WavaVecaCTCTokenizer( 'vocab.json' , unk_token='[UNK]' , pad_token='[PAD]' , word_delimiter_token='|' , ) _lowerCamelCase : Optional[int] =WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0.0 , do_normalize=SCREAMING_SNAKE_CASE__ , return_attention_mask=SCREAMING_SNAKE_CASE__ ) _lowerCamelCase : Optional[int] =WavaVecaProcessor(feature_extractor=SCREAMING_SNAKE_CASE__ , tokenizer=SCREAMING_SNAKE_CASE__ ) _lowerCamelCase : Any =WavaVecaForCTC.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , activation_dropout=model_args.activation_dropout , attention_dropout=model_args.attention_dropout , hidden_dropout=model_args.hidden_dropout , feat_proj_dropout=model_args.feat_proj_dropout , mask_time_prob=model_args.mask_time_prob , gradient_checkpointing=training_args.gradient_checkpointing , layerdrop=model_args.layerdrop , ctc_loss_reduction='mean' , pad_token_id=processor.tokenizer.pad_token_id , vocab_size=len(processor.tokenizer ) , ) if data_args.max_train_samples is not None: _lowerCamelCase : List[str] =min(len(SCREAMING_SNAKE_CASE__ ) , data_args.max_train_samples ) _lowerCamelCase : Any =train_dataset.select(range(SCREAMING_SNAKE_CASE__ ) ) if data_args.max_val_samples is not None: _lowerCamelCase : Optional[int] =eval_dataset.select(range(data_args.max_val_samples ) ) _lowerCamelCase : str =torchaudio.transforms.Resample(48_000 , 16_000 ) # Preprocessing the datasets. # We need to read the aduio files as arrays and tokenize the targets. def speech_file_to_array_fn(SCREAMING_SNAKE_CASE__ : List[Any] ): _lowerCamelCase , _lowerCamelCase : Tuple =torchaudio.load(batch['path'] ) _lowerCamelCase : Optional[int] =resampler(SCREAMING_SNAKE_CASE__ ).squeeze().numpy() _lowerCamelCase : Optional[Any] =16_000 _lowerCamelCase : Tuple =batch['text'] return batch _lowerCamelCase : Any =train_dataset.map( SCREAMING_SNAKE_CASE__ , remove_columns=train_dataset.column_names , num_proc=data_args.preprocessing_num_workers , ) _lowerCamelCase : Optional[int] =eval_dataset.map( SCREAMING_SNAKE_CASE__ , remove_columns=eval_dataset.column_names , num_proc=data_args.preprocessing_num_workers , ) def prepare_dataset(SCREAMING_SNAKE_CASE__ : Union[str, Any] ): # check that all files have the correct sampling rate assert ( len(set(batch['sampling_rate'] ) ) == 1 ), F'''Make sure all inputs have the same sampling rate of {processor.feature_extractor.sampling_rate}.''' _lowerCamelCase : int =processor( audio=batch['speech'] , text=batch['target_text'] , sampling_rate=batch['sampling_rate'][0] ) batch.update(SCREAMING_SNAKE_CASE__ ) return batch _lowerCamelCase : str =train_dataset.map( SCREAMING_SNAKE_CASE__ , remove_columns=train_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=SCREAMING_SNAKE_CASE__ , num_proc=data_args.preprocessing_num_workers , ) _lowerCamelCase : Tuple =eval_dataset.map( SCREAMING_SNAKE_CASE__ , remove_columns=eval_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=SCREAMING_SNAKE_CASE__ , num_proc=data_args.preprocessing_num_workers , ) # Metric _lowerCamelCase : Union[str, Any] =datasets.load_metric('wer' ) def compute_metrics(SCREAMING_SNAKE_CASE__ : str ): _lowerCamelCase : Union[str, Any] =pred.predictions _lowerCamelCase : Optional[int] =np.argmax(SCREAMING_SNAKE_CASE__ , axis=-1 ) _lowerCamelCase : Any =processor.tokenizer.pad_token_id _lowerCamelCase : Any =processor.batch_decode(SCREAMING_SNAKE_CASE__ ) # we do not want to group tokens when computing the metrics _lowerCamelCase : List[Any] =processor.batch_decode(pred.label_ids , group_tokens=SCREAMING_SNAKE_CASE__ ) _lowerCamelCase : Any =wer_metric.compute(predictions=SCREAMING_SNAKE_CASE__ , references=SCREAMING_SNAKE_CASE__ ) return {"wer": wer} if model_args.freeze_feature_extractor: model.freeze_feature_extractor() # Data collator _lowerCamelCase : Optional[int] =DataCollatorCTCWithPadding(processor=SCREAMING_SNAKE_CASE__ , padding=SCREAMING_SNAKE_CASE__ ) # Initialize our Trainer _lowerCamelCase : Optional[Any] =CTCTrainer( model=SCREAMING_SNAKE_CASE__ , data_collator=SCREAMING_SNAKE_CASE__ , args=SCREAMING_SNAKE_CASE__ , compute_metrics=SCREAMING_SNAKE_CASE__ , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=processor.feature_extractor , ) # Training if training_args.do_train: if last_checkpoint is not None: _lowerCamelCase : Optional[Any] =last_checkpoint elif os.path.isdir(model_args.model_name_or_path ): _lowerCamelCase : Dict =model_args.model_name_or_path else: _lowerCamelCase : int =None # Save the feature_extractor and the tokenizer if is_main_process(training_args.local_rank ): processor.save_pretrained(training_args.output_dir ) _lowerCamelCase : Optional[int] =trainer.train(resume_from_checkpoint=SCREAMING_SNAKE_CASE__ ) trainer.save_model() _lowerCamelCase : Any =train_result.metrics _lowerCamelCase : Optional[int] =( data_args.max_train_samples if data_args.max_train_samples is not None else len(SCREAMING_SNAKE_CASE__ ) ) _lowerCamelCase : List[Any] =min(SCREAMING_SNAKE_CASE__ , len(SCREAMING_SNAKE_CASE__ ) ) trainer.log_metrics('train' , SCREAMING_SNAKE_CASE__ ) trainer.save_metrics('train' , SCREAMING_SNAKE_CASE__ ) trainer.save_state() # Evaluation _lowerCamelCase : str ={} if training_args.do_eval: logger.info('*** Evaluate ***' ) _lowerCamelCase : Tuple =trainer.evaluate() _lowerCamelCase : List[Any] =data_args.max_val_samples if data_args.max_val_samples is not None else len(SCREAMING_SNAKE_CASE__ ) _lowerCamelCase : Union[str, Any] =min(SCREAMING_SNAKE_CASE__ , len(SCREAMING_SNAKE_CASE__ ) ) trainer.log_metrics('eval' , SCREAMING_SNAKE_CASE__ ) trainer.save_metrics('eval' , SCREAMING_SNAKE_CASE__ ) return results if __name__ == "__main__": main()
199
1
import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor _lowercase : Union[str, Any] =logging.get_logger(__name__) class snake_case__ (A__ ): """simple docstring""" def __init__( self , *__lowercase , **__lowercase ) -> None: """simple docstring""" warnings.warn( """The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use MobileViTImageProcessor instead.""" , __lowercase , ) super().__init__(*__lowercase , **__lowercase )
365
import torch from diffusers import StableDiffusionPipeline _lowercase : Optional[int] ="path-to-your-trained-model" _lowercase : Union[str, Any] =StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.floataa).to("cuda") _lowercase : Any ="A photo of sks dog in a bucket" _lowercase : Any =pipe(prompt, num_inference_steps=50, guidance_scale=7.5).images[0] image.save("dog-bucket.png")
266
0
def __SCREAMING_SNAKE_CASE ( ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31] UpperCAmelCase = 6 UpperCAmelCase = 1 UpperCAmelCase = 1901 UpperCAmelCase = 0 while year < 2001: day += 7 if (year % 4 == 0 and year % 100 != 0) or (year % 400 == 0): if day > days_per_month[month - 1] and month != 2: month += 1 UpperCAmelCase = day - days_per_month[month - 2] elif day > 29 and month == 2: month += 1 UpperCAmelCase = day - 29 else: if day > days_per_month[month - 1]: month += 1 UpperCAmelCase = day - days_per_month[month - 2] if month > 12: year += 1 UpperCAmelCase = 1 if year < 2001 and day == 1: sundays += 1 return sundays if __name__ == "__main__": print(solution())
273
from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import TensorType, logging if TYPE_CHECKING: from ...onnx.config import PatchingSpec from ...tokenization_utils_base import PreTrainedTokenizerBase __A : Dict = logging.get_logger(__name__) __A : str = { "allenai/longformer-base-4096": "https://huggingface.co/allenai/longformer-base-4096/resolve/main/config.json", "allenai/longformer-large-4096": "https://huggingface.co/allenai/longformer-large-4096/resolve/main/config.json", "allenai/longformer-large-4096-finetuned-triviaqa": ( "https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/config.json" ), "allenai/longformer-base-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/config.json" ), "allenai/longformer-large-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/config.json" ), } class A_ (a_ ): UpperCAmelCase__ = '''longformer''' def __init__( self , _A = 5_1_2 , _A = 2 , _A = 1 , _A = 0 , _A = 2 , _A = 3_0_5_2_2 , _A = 7_6_8 , _A = 1_2 , _A = 1_2 , _A = 3_0_7_2 , _A = "gelu" , _A = 0.1 , _A = 0.1 , _A = 5_1_2 , _A = 2 , _A = 0.02 , _A = 1E-12 , _A = False , **_A , ): '''simple docstring''' super().__init__(pad_token_id=_A , **_A ) UpperCAmelCase = attention_window UpperCAmelCase = sep_token_id UpperCAmelCase = bos_token_id UpperCAmelCase = eos_token_id UpperCAmelCase = vocab_size UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = hidden_act UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = max_position_embeddings UpperCAmelCase = type_vocab_size UpperCAmelCase = initializer_range UpperCAmelCase = layer_norm_eps UpperCAmelCase = onnx_export class A_ (a_ ): def __init__( self , _A , _A = "default" , _A = None ): '''simple docstring''' super().__init__(_A , _A , _A ) UpperCAmelCase = True @property def _lowercase ( self ): '''simple docstring''' if self.task == "multiple-choice": UpperCAmelCase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: UpperCAmelCase = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''global_attention_mask''', dynamic_axis), ] ) @property def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = super().outputs if self.task == "default": UpperCAmelCase = {0: '''batch'''} return outputs @property def _lowercase ( self ): '''simple docstring''' return 1E-4 @property def _lowercase ( self ): '''simple docstring''' return max(super().default_onnx_opset , 1_4 ) def _lowercase ( self , _A , _A = -1 , _A = -1 , _A = False , _A = None , ): '''simple docstring''' UpperCAmelCase = super().generate_dummy_inputs( preprocessor=_A , batch_size=_A , seq_length=_A , is_pair=_A , framework=_A ) import torch # for some reason, replacing this code by inputs["global_attention_mask"] = torch.randint(2, inputs["input_ids"].shape, dtype=torch.int64) # makes the export fail randomly UpperCAmelCase = torch.zeros_like(inputs['''input_ids'''] ) # make every second token global UpperCAmelCase = 1 return inputs
273
1
"""simple docstring""" import os import warnings from typing import List, Optional from ...tokenization_utils_base import BatchEncoding from ...utils import logging from .configuration_rag import RagConfig lowercase__ : Optional[Any] = logging.get_logger(__name__) class _UpperCAmelCase : def __init__( self : Union[str, Any] , lowercase_ : Any , lowercase_ : Dict ): snake_case_ : Any = question_encoder snake_case_ : int = generator snake_case_ : Optional[Any] = self.question_encoder def _snake_case ( self : Any , lowercase_ : str ): if os.path.isfile(lowercase_ ): raise ValueError(f"Provided path ({save_directory}) should be a directory, not a file" ) os.makedirs(lowercase_ , exist_ok=lowercase_ ) snake_case_ : Dict = os.path.join(lowercase_ , '''question_encoder_tokenizer''' ) snake_case_ : int = os.path.join(lowercase_ , '''generator_tokenizer''' ) self.question_encoder.save_pretrained(lowercase_ ) self.generator.save_pretrained(lowercase_ ) @classmethod def _snake_case ( cls : List[str] , lowercase_ : Any , **lowercase_ : Any ): # dynamically import AutoTokenizer from ..auto.tokenization_auto import AutoTokenizer snake_case_ : Optional[Any] = kwargs.pop('''config''' , lowercase_ ) if config is None: snake_case_ : int = RagConfig.from_pretrained(lowercase_ ) snake_case_ : int = AutoTokenizer.from_pretrained( lowercase_ , config=config.question_encoder , subfolder='''question_encoder_tokenizer''' ) snake_case_ : Optional[int] = AutoTokenizer.from_pretrained( lowercase_ , config=config.generator , subfolder='''generator_tokenizer''' ) return cls(question_encoder=lowercase_ , generator=lowercase_ ) def __call__( self : Optional[int] , *lowercase_ : Dict , **lowercase_ : Optional[Any] ): return self.current_tokenizer(*lowercase_ , **lowercase_ ) def _snake_case ( self : str , *lowercase_ : List[str] , **lowercase_ : Dict ): return self.generator.batch_decode(*lowercase_ , **lowercase_ ) def _snake_case ( self : str , *lowercase_ : Optional[int] , **lowercase_ : Optional[Any] ): return self.generator.decode(*lowercase_ , **lowercase_ ) def _snake_case ( self : List[str] ): snake_case_ : Union[str, Any] = self.question_encoder def _snake_case ( self : Optional[Any] ): snake_case_ : List[Any] = self.generator def _snake_case ( self : Optional[int] , lowercase_ : List[str] , lowercase_ : Optional[List[str]] = None , lowercase_ : Optional[int] = None , lowercase_ : Optional[int] = None , lowercase_ : str = "longest" , lowercase_ : str = None , lowercase_ : bool = True , **lowercase_ : Union[str, Any] , ): warnings.warn( '''`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the ''' '''regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` ''' '''context manager to prepare your targets. See the documentation of your specific tokenizer for more ''' '''details''' , lowercase_ , ) if max_length is None: snake_case_ : str = self.current_tokenizer.model_max_length snake_case_ : str = self( lowercase_ , add_special_tokens=lowercase_ , return_tensors=lowercase_ , max_length=lowercase_ , padding=lowercase_ , truncation=lowercase_ , **lowercase_ , ) if tgt_texts is None: return model_inputs # Process tgt_texts if max_target_length is None: snake_case_ : Union[str, Any] = self.current_tokenizer.model_max_length snake_case_ : Any = self( text_target=lowercase_ , add_special_tokens=lowercase_ , return_tensors=lowercase_ , padding=lowercase_ , max_length=lowercase_ , truncation=lowercase_ , **lowercase_ , ) snake_case_ : List[Any] = labels['''input_ids'''] return model_inputs
360
"""simple docstring""" import math import sys def __lowercase ( _a ): if number != int(_a ): raise ValueError('''the value of input must be a natural number''' ) if number < 0: raise ValueError('''the value of input must not be a negative number''' ) if number == 0: return 1 snake_case_ : int = [-1] * (number + 1) snake_case_ : int = 0 for i in range(1 , number + 1 ): snake_case_ : Tuple = sys.maxsize snake_case_ : List[Any] = int(math.sqrt(_a ) ) for j in range(1 , root + 1 ): snake_case_ : Dict = 1 + answers[i - (j**2)] snake_case_ : int = min(_a , _a ) snake_case_ : Any = answer return answers[number] if __name__ == "__main__": import doctest doctest.testmod()
155
0
"""simple docstring""" import os import re from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { "vocab_file": "vocab.txt", "merges_file": "bpe.codes", } lowerCamelCase__ = { "vocab_file": { "vinai/phobert-base": "https://huggingface.co/vinai/phobert-base/resolve/main/vocab.txt", "vinai/phobert-large": "https://huggingface.co/vinai/phobert-large/resolve/main/vocab.txt", }, "merges_file": { "vinai/phobert-base": "https://huggingface.co/vinai/phobert-base/resolve/main/bpe.codes", "vinai/phobert-large": "https://huggingface.co/vinai/phobert-large/resolve/main/bpe.codes", }, } lowerCamelCase__ = { "vinai/phobert-base": 256, "vinai/phobert-large": 256, } def __lowerCAmelCase (_UpperCamelCase ): __lowerCAmelCase : List[str] = set() __lowerCAmelCase : Any = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __lowerCAmelCase : int = char __lowerCAmelCase : List[str] = set(_snake_case ) return pairs class A__ ( _lowerCamelCase): A_ : Union[str, Any] = VOCAB_FILES_NAMES A_ : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP A_ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE="<s>" , _SCREAMING_SNAKE_CASE="</s>" , _SCREAMING_SNAKE_CASE="</s>" , _SCREAMING_SNAKE_CASE="<s>" , _SCREAMING_SNAKE_CASE="<unk>" , _SCREAMING_SNAKE_CASE="<pad>" , _SCREAMING_SNAKE_CASE="<mask>" , **_SCREAMING_SNAKE_CASE , ): super().__init__( bos_token=_a , eos_token=_a , unk_token=_a , sep_token=_a , cls_token=_a , pad_token=_a , mask_token=_a , **_a , ) __lowerCAmelCase : Dict = vocab_file __lowerCAmelCase : Tuple = merges_file __lowerCAmelCase : List[Any] = {} __lowerCAmelCase : List[Any] = 0 __lowerCAmelCase : Tuple = 1 __lowerCAmelCase : int = 2 __lowerCAmelCase : Union[str, Any] = 3 self.add_from_file(_a ) __lowerCAmelCase : Optional[int] = {v: k for k, v in self.encoder.items()} with open(_a , encoding='utf-8' ) as merges_handle: __lowerCAmelCase : List[str] = merges_handle.read().split('\n' )[:-1] __lowerCAmelCase : Union[str, Any] = [tuple(merge.split()[:-1] ) for merge in merges] __lowerCAmelCase : Union[str, Any] = dict(zip(_a , range(len(_a ) ) ) ) __lowerCAmelCase : Optional[int] = {} def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __lowerCAmelCase : Optional[Any] = [self.cls_token_id] __lowerCAmelCase : Union[str, Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_a , token_ids_a=_a , already_has_special_tokens=_a ) if token_ids_a is None: return [1] + ([0] * len(_a )) + [1] return [1] + ([0] * len(_a )) + [1, 1] + ([0] * len(_a )) + [1] def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ): __lowerCAmelCase : Optional[Any] = [self.sep_token_id] __lowerCAmelCase : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def __lowerCamelCase ( self ): return len(self.encoder ) def __lowerCamelCase ( self ): return dict(self.encoder , **self.added_tokens_encoder ) def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE ): if token in self.cache: return self.cache[token] __lowerCAmelCase : List[Any] = tuple(_a ) __lowerCAmelCase : List[Any] = tuple(list(word[:-1] ) + [word[-1] + '</w>'] ) __lowerCAmelCase : Any = get_pairs(_a ) if not pairs: return token while True: __lowerCAmelCase : str = min(_a , key=lambda _SCREAMING_SNAKE_CASE : self.bpe_ranks.get(_a , float('inf' ) ) ) if bigram not in self.bpe_ranks: break __lowerCAmelCase : List[str] = bigram __lowerCAmelCase : List[str] = [] __lowerCAmelCase : List[str] = 0 while i < len(_a ): try: __lowerCAmelCase : Any = word.index(_a , _a ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __lowerCAmelCase : Tuple = j if word[i] == first and i < len(_a ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __lowerCAmelCase : Union[str, Any] = tuple(_a ) __lowerCAmelCase : Optional[int] = new_word if len(_a ) == 1: break else: __lowerCAmelCase : List[Any] = get_pairs(_a ) __lowerCAmelCase : Optional[int] = "@@ ".join(_a ) __lowerCAmelCase : Tuple = word[:-4] __lowerCAmelCase : str = word return word def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Optional[Any] = [] __lowerCAmelCase : Dict = re.findall(R'\S+\n?' , _a ) for token in words: split_tokens.extend(list(self.bpe(_a ).split(' ' ) ) ) return split_tokens def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE ): return self.encoder.get(_a , self.encoder.get(self.unk_token ) ) def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE ): return self.decoder.get(_a , self.unk_token ) def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Tuple = " ".join(_a ).replace('@@ ' , '' ).strip() return out_string def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ): if not os.path.isdir(_a ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return __lowerCAmelCase : Optional[int] = os.path.join( _a , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) __lowerCAmelCase : Union[str, Any] = os.path.join( _a , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_a ): copyfile(self.vocab_file , _a ) if os.path.abspath(self.merges_file ) != os.path.abspath(_a ): copyfile(self.merges_file , _a ) return out_vocab_file, out_merge_file def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE ): if isinstance(_a , _a ): try: with open(_a , 'r' , encoding='utf-8' ) as fd: self.add_from_file(_a ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception(f"Incorrect encoding detected in {f}, please rebuild the dataset" ) return __lowerCAmelCase : List[Any] = f.readlines() for lineTmp in lines: __lowerCAmelCase : Optional[Any] = lineTmp.strip() __lowerCAmelCase : Union[str, Any] = line.rfind(' ' ) if idx == -1: raise ValueError('Incorrect dictionary format, expected \'<token> <cnt>\'' ) __lowerCAmelCase : Optional[int] = line[:idx] __lowerCAmelCase : Dict = len(self.encoder )
86
import unicodedata from dataclasses import dataclass from typing import Optional, Union import numpy as np from transformers.data.data_collator import DataCollatorMixin from transformers.file_utils import PaddingStrategy from transformers.tokenization_utils_base import PreTrainedTokenizerBase def lowerCAmelCase_ ( _snake_case : List[str] , _snake_case : Tuple , _snake_case : List[Any] , _snake_case : Optional[Any] ) -> Optional[Any]: '''simple docstring''' if isinstance(_snake_case , _snake_case ): __magic_name__ : Union[str, Any] = np.full((len(_snake_case ), sequence_length, 2) , _snake_case ) else: __magic_name__ : List[Any] = np.full((len(_snake_case ), sequence_length) , _snake_case ) for i, tensor in enumerate(_snake_case ): if padding_side == "right": if isinstance(_snake_case , _snake_case ): __magic_name__ : Optional[Any] = tensor[:sequence_length] else: __magic_name__ : Union[str, Any] = tensor[:sequence_length] else: if isinstance(_snake_case , _snake_case ): __magic_name__ : List[Any] = tensor[:sequence_length] else: __magic_name__ : Optional[Any] = tensor[:sequence_length] return out_tensor.tolist() def lowerCAmelCase_ ( _snake_case : Optional[int] ) -> Tuple: '''simple docstring''' __magic_name__ : Union[str, Any] = ord(_snake_case ) if (cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (cp >= 91 and cp <= 96) or (cp >= 123 and cp <= 126): return True __magic_name__ : Any = unicodedata.category(_snake_case ) if cat.startswith("P" ): return True return False @dataclass class _snake_case ( snake_case ): UpperCamelCase__ = 42 UpperCamelCase__ = True UpperCamelCase__ = None UpperCamelCase__ = None UpperCamelCase__ = -100 UpperCamelCase__ = "pt" def SCREAMING_SNAKE_CASE ( self , _a ): import torch __magic_name__ : List[str] = "label" if "label" in features[0].keys() else "labels" __magic_name__ : Union[str, Any] = [feature[label_name] for feature in features] if label_name in features[0].keys() else None __magic_name__ : Optional[int] = self.tokenizer.pad( _a , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="pt" if labels is None else None , ) if labels is None: return batch __magic_name__ : Dict = torch.tensor(batch["entity_ids"] ).shape[1] __magic_name__ : List[Any] = self.tokenizer.padding_side if padding_side == "right": __magic_name__ : str = [ list(_a ) + [self.label_pad_token_id] * (sequence_length - len(_a )) for label in labels ] else: __magic_name__ : int = [ [self.label_pad_token_id] * (sequence_length - len(_a )) + list(_a ) for label in labels ] __magic_name__ : Dict = [feature["ner_tags"] for feature in features] __magic_name__ : List[Any] = padding_tensor(_a , -1 , _a , _a ) __magic_name__ : Any = [feature["original_entity_spans"] for feature in features] __magic_name__ : Any = padding_tensor(_a , (-1, -1) , _a , _a ) __magic_name__ : List[Any] = {k: torch.tensor(_a , dtype=torch.intaa ) for k, v in batch.items()} return batch
281
0
'''simple docstring''' def lowerCamelCase ( lowerCAmelCase : Any , lowerCAmelCase : Any ): """simple docstring""" return int(input_a == input_a == 0 ) def lowerCamelCase ( ): """simple docstring""" print('Truth Table of NOR Gate:' ) print('| Input 1 | Input 2 | Output |' ) print(f'| 0 | 0 | {nor_gate(0 , 0 )} |' ) print(f'| 0 | 1 | {nor_gate(0 , 1 )} |' ) print(f'| 1 | 0 | {nor_gate(1 , 0 )} |' ) print(f'| 1 | 1 | {nor_gate(1 , 1 )} |' ) if __name__ == "__main__": import doctest doctest.testmod() main()
354
'''simple docstring''' import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor lowerCAmelCase :Tuple = logging.get_logger(__name__) class _lowerCamelCase ( lowercase__ ): '''simple docstring''' def __init__( self : Any , *_A : List[Any] , **_A : str ) -> None: warnings.warn( 'The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use BeitImageProcessor instead.' , _A , ) super().__init__(*_A , **_A )
275
0
import argparse import logging import pickle import random import time import numpy as np from transformers import BertTokenizer, GPTaTokenizer, RobertaTokenizer logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) lowerCAmelCase_ = logging.getLogger(__name__) def snake_case( ) -> int: '''simple docstring''' lowercase : Union[str, Any] = argparse.ArgumentParser( description='''Preprocess the data to avoid re-doing it several times by (tokenization + token_to_ids).''' ) parser.add_argument('''--file_path''' , type=__magic_name__ , default='''data/dump.txt''' , help='''The path to the data.''' ) parser.add_argument('''--tokenizer_type''' , type=__magic_name__ , default='''bert''' , choices=['''bert''', '''roberta''', '''gpt2'''] ) parser.add_argument('''--tokenizer_name''' , type=__magic_name__ , default='''bert-base-uncased''' , help='''The tokenizer to use.''' ) parser.add_argument('''--dump_file''' , type=__magic_name__ , default='''data/dump''' , help='''The dump file prefix.''' ) lowercase : Tuple = parser.parse_args() logger.info(F"""Loading Tokenizer ({args.tokenizer_name})""" ) if args.tokenizer_type == "bert": lowercase : Dict = BertTokenizer.from_pretrained(args.tokenizer_name ) lowercase : List[str] = tokenizer.special_tokens_map['''cls_token'''] # `[CLS]` lowercase : Any = tokenizer.special_tokens_map['''sep_token'''] # `[SEP]` elif args.tokenizer_type == "roberta": lowercase : Optional[Any] = RobertaTokenizer.from_pretrained(args.tokenizer_name ) lowercase : List[Any] = tokenizer.special_tokens_map['''cls_token'''] # `<s>` lowercase : int = tokenizer.special_tokens_map['''sep_token'''] # `</s>` elif args.tokenizer_type == "gpt2": lowercase : int = GPTaTokenizer.from_pretrained(args.tokenizer_name ) lowercase : List[Any] = tokenizer.special_tokens_map['''bos_token'''] # `<|endoftext|>` lowercase : List[str] = tokenizer.special_tokens_map['''eos_token'''] # `<|endoftext|>` logger.info(F"""Loading text from {args.file_path}""" ) with open(args.file_path , '''r''' , encoding='''utf8''' ) as fp: lowercase : Dict = fp.readlines() logger.info('''Start encoding''' ) logger.info(F"""{len(__magic_name__ )} examples to process.""" ) lowercase : Optional[int] = [] lowercase : int = 0 lowercase : List[str] = 1_00_00 lowercase : List[str] = time.time() for text in data: lowercase : Optional[Any] = F"""{bos} {text.strip()} {sep}""" lowercase : int = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) rslt.append(__magic_name__ ) iter += 1 if iter % interval == 0: lowercase : Optional[int] = time.time() logger.info(F"""{iter} examples processed. - {(end-start):.2f}s/{interval}expl""" ) lowercase : Optional[int] = time.time() logger.info('''Finished binarization''' ) logger.info(F"""{len(__magic_name__ )} examples processed.""" ) lowercase : Dict = F"""{args.dump_file}.{args.tokenizer_name}.pickle""" lowercase : List[Any] = tokenizer.vocab_size if vocab_size < (1 << 16): lowercase : Any = [np.uintaa(__magic_name__ ) for d in rslt] else: lowercase : Any = [np.intaa(__magic_name__ ) for d in rslt] random.shuffle(rslt_ ) logger.info(F"""Dump to {dp_file}""" ) with open(__magic_name__ , '''wb''' ) as handle: pickle.dump(rslt_ , __magic_name__ , protocol=pickle.HIGHEST_PROTOCOL ) if __name__ == "__main__": main()
308
import collections import os from typing import List, Optional, Tuple from transformers.utils import is_jieba_available, requires_backends if is_jieba_available(): import jieba from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = {'vocab_file': 'vocab.txt'} lowerCAmelCase_ = { 'vocab_file': { 'openbmb/cpm-ant-10b': 'https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt', }, } lowerCAmelCase_ = { 'openbmb/cpm-ant-10b': 10_24, } def snake_case( __magic_name__ ) -> int: '''simple docstring''' lowercase : Optional[int] = collections.OrderedDict() with open(__magic_name__ , '''r''' , encoding='''utf-8''' ) as reader: lowercase : str = reader.readlines() for index, token in enumerate(__magic_name__ ): lowercase : Union[str, Any] = token.rstrip('''\n''' ) lowercase : List[Any] = index return vocab class _A ( _lowerCamelCase ): def __init__( self : List[str] , _A : Any , _A : List[str]="<unk>" , _A : Union[str, Any]=200 ) -> List[Any]: """simple docstring""" lowercase : Optional[int] = vocab lowercase : List[str] = unk_token lowercase : Any = max_input_chars_per_word def __a ( self : List[str] , _A : Tuple ) -> str: """simple docstring""" lowercase : Dict = list(_A ) if len(_A ) > self.max_input_chars_per_word: return [self.unk_token] lowercase : int = 0 lowercase : Dict = [] while start < len(_A ): lowercase : Optional[Any] = len(_A ) lowercase : List[str] = None while start < end: lowercase : List[Any] = ''''''.join(chars[start:end] ) if substr in self.vocab: lowercase : Union[str, Any] = substr break end -= 1 if cur_substr is None: sub_tokens.append(self.unk_token ) start += 1 else: sub_tokens.append(_A ) lowercase : Dict = end return sub_tokens class _A ( _lowerCamelCase ): _UpperCamelCase : List[str] = VOCAB_FILES_NAMES _UpperCamelCase : Optional[int] = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase : List[Any] = ['''input_ids''', '''attention_mask'''] _UpperCamelCase : int = False def __init__( self : List[str] , _A : int , _A : Optional[Any]="<d>" , _A : Any="</d>" , _A : Optional[Any]="<s>" , _A : Any="</s>" , _A : Any="<pad>" , _A : List[Any]="<unk>" , _A : Optional[Any]="</n>" , _A : List[str]="</_>" , _A : Optional[Any]="left" , **_A : str , ) -> Tuple: """simple docstring""" requires_backends(self , ['''jieba'''] ) super().__init__( bod_token=_A , eod_token=_A , bos_token=_A , eos_token=_A , pad_token=_A , unk_token=_A , line_token=_A , space_token=_A , padding_side=_A , **_A , ) lowercase : str = bod_token lowercase : str = eod_token lowercase : Any = load_vocab(_A ) lowercase : List[Any] = self.encoder[space_token] lowercase : Tuple = self.encoder[line_token] del self.encoder[space_token] del self.encoder[line_token] lowercase : Any = collections.OrderedDict(sorted(self.encoder.items() , key=lambda _A : x[1] ) ) lowercase : int = {v: k for k, v in self.encoder.items()} lowercase : Optional[Any] = WordpieceTokenizer(vocab=self.encoder , unk_token=self.unk_token ) @property def __a ( self : Dict ) -> Optional[int]: """simple docstring""" return self.encoder[self.bod_token] @property def __a ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" return self.encoder[self.eod_token] @property def __a ( self : List[str] ) -> List[str]: """simple docstring""" return self.encoder["\n"] @property def __a ( self : List[Any] ) -> int: """simple docstring""" return len(self.encoder ) def __a ( self : Union[str, Any] ) -> Dict: """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def __a ( self : str , _A : List[str] ) -> Tuple: """simple docstring""" lowercase : int = [] for x in jieba.cut(_A , cut_all=_A ): output_tokens.extend(self.wordpiece_tokenizer.tokenize(_A ) ) return output_tokens def __a ( self : List[Any] , _A : Tuple , **_A : Optional[int] ) -> Any: """simple docstring""" lowercase : List[str] = [i for i in token_ids if i >= 0] lowercase : Any = [ x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id ] return super()._decode(_A , **_A ) def __a ( self : List[Any] , _A : int ) -> Optional[Any]: """simple docstring""" return token in self.encoder def __a ( self : Dict , _A : List[str] ) -> str: """simple docstring""" return "".join(_A ) def __a ( self : List[str] , _A : List[str] ) -> Any: """simple docstring""" return self.encoder.get(_A , self.encoder.get(self.unk_token ) ) def __a ( self : Tuple , _A : Union[str, Any] ) -> Tuple: """simple docstring""" return self.decoder.get(_A , self.unk_token ) def __a ( self : List[Any] , _A : str , _A : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if os.path.isdir(_A ): lowercase : str = os.path.join( _A , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) else: lowercase : Optional[int] = (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory lowercase : Any = 0 if " " in self.encoder: lowercase : List[Any] = self.encoder[''' '''] del self.encoder[" "] if "\n" in self.encoder: lowercase : Dict = self.encoder['''\n'''] del self.encoder["\n"] lowercase : Union[str, Any] = collections.OrderedDict(sorted(self.encoder.items() , key=lambda _A : x[1] ) ) with open(_A , '''w''' , encoding='''utf-8''' ) as writer: for token, token_index in self.encoder.items(): if index != token_index: logger.warning( f"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.""" ''' Please check that the vocabulary is not corrupted!''' ) lowercase : Any = token_index writer.write(token + '''\n''' ) index += 1 return (vocab_file,) def __a ( self : str , _A : List[int] , _A : List[int] = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return [self.bos_token_id] + token_ids_a return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a def __a ( self : int , _A : List[int] , _A : Optional[List[int]] = None , _A : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_A , token_ids_a=_A , already_has_special_tokens=_A ) if token_ids_a is not None: return [1] + ([0] * len(_A )) + [1] + ([0] * len(_A )) return [1] + ([0] * len(_A ))
308
1
from __future__ import annotations import random # Maximum size of the population. Bigger could be faster but is more memory expensive. __UpperCAmelCase = 2_00 # Number of elements selected in every generation of evolution. The selection takes # place from best to worst of that generation and must be smaller than N_POPULATION. __UpperCAmelCase = 50 # Probability that an element of a generation can mutate, changing one of its genes. # This will guarantee that all genes will be used during evolution. __UpperCAmelCase = 0.4 # Just a seed to improve randomness required by the algorithm. random.seed(random.randint(0, 10_00)) def __lowerCamelCase ( __magic_name__ : str , __magic_name__ : str ): a__: int =len([g for position, g in enumerate(__magic_name__ ) if g == main_target[position]] ) return (item, float(__magic_name__ )) def __lowerCamelCase ( __magic_name__ : str , __magic_name__ : str ): a__: Any =random.randint(0 , len(__magic_name__ ) - 1 ) a__: Tuple =parent_a[:random_slice] + parent_a[random_slice:] a__: List[str] =parent_a[:random_slice] + parent_a[random_slice:] return (child_a, child_a) def __lowerCamelCase ( __magic_name__ : str , __magic_name__ : list[str] ): a__: str =list(__magic_name__ ) if random.uniform(0 , 1 ) < MUTATION_PROBABILITY: a__: Union[str, Any] =random.choice(__magic_name__ ) return "".join(__magic_name__ ) def __lowerCamelCase ( __magic_name__ : tuple[str, float] , __magic_name__ : list[tuple[str, float]] , __magic_name__ : list[str] , ): a__: List[Any] =[] # Generate more children proportionally to the fitness score. a__: Dict =int(parent_a[1] * 100 ) + 1 a__: Tuple =10 if child_n >= 10 else child_n for _ in range(__magic_name__ ): a__: List[str] =population_score[random.randint(0 , __magic_name__ )][0] a__ , a__: Dict =crossover(parent_a[0] , __magic_name__ ) # Append new string to the population list. pop.append(mutate(__magic_name__ , __magic_name__ ) ) pop.append(mutate(__magic_name__ , __magic_name__ ) ) return pop def __lowerCamelCase ( __magic_name__ : str , __magic_name__ : list[str] , __magic_name__ : bool = True ): # Verify if N_POPULATION is bigger than N_SELECTED if N_POPULATION < N_SELECTED: a__: Any =F"{N_POPULATION} must be bigger than {N_SELECTED}" raise ValueError(__magic_name__ ) # Verify that the target contains no genes besides the ones inside genes variable. a__: int =sorted({c for c in target if c not in genes} ) if not_in_genes_list: a__: str =F"{not_in_genes_list} is not in genes list, evolution cannot converge" raise ValueError(__magic_name__ ) # Generate random starting population. a__: Tuple =[] for _ in range(__magic_name__ ): population.append("".join([random.choice(__magic_name__ ) for i in range(len(__magic_name__ ) )] ) ) # Just some logs to know what the algorithms is doing. a__ , a__: Any =0, 0 # This loop will end when we find a perfect match for our target. while True: generation += 1 total_population += len(__magic_name__ ) # Random population created. Now it's time to evaluate. # Adding a bit of concurrency can make everything faster, # # import concurrent.futures # population_score: list[tuple[str, float]] = [] # with concurrent.futures.ThreadPoolExecutor( # max_workers=NUM_WORKERS) as executor: # futures = {executor.submit(evaluate, item) for item in population} # concurrent.futures.wait(futures) # population_score = [item.result() for item in futures] # # but with a simple algorithm like this, it will probably be slower. # We just need to call evaluate for every item inside the population. a__: Dict =[evaluate(__magic_name__ , __magic_name__ ) for item in population] # Check if there is a matching evolution. a__: Any =sorted(__magic_name__ , key=lambda __magic_name__ : x[1] , reverse=__magic_name__ ) if population_score[0][0] == target: return (generation, total_population, population_score[0][0]) # Print the best result every 10 generation. # Just to know that the algorithm is working. if debug and generation % 10 == 0: print( F"\nGeneration: {generation}" F"\nTotal Population:{total_population}" F"\nBest score: {population_score[0][1]}" F"\nBest string: {population_score[0][0]}" ) # Flush the old population, keeping some of the best evolutions. # Keeping this avoid regression of evolution. a__: Optional[int] =population[: int(N_POPULATION / 3 )] population.clear() population.extend(__magic_name__ ) # Normalize population score to be between 0 and 1. a__: List[str] =[ (item, score / len(__magic_name__ )) for item, score in population_score ] # This is selection for i in range(__magic_name__ ): population.extend(select(population_score[int(__magic_name__ )] , __magic_name__ , __magic_name__ ) ) # Check if the population has already reached the maximum value and if so, # break the cycle. If this check is disabled, the algorithm will take # forever to compute large strings, but will also calculate small strings in # a far fewer generations. if len(__magic_name__ ) > N_POPULATION: break if __name__ == "__main__": __UpperCAmelCase = ( '''This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!''' ) __UpperCAmelCase = list( ''' ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm''' '''nopqrstuvwxyz.,;!?+-*#@^\'èéòà€ù=)(&%$£/\\''' ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = basic(target_str, genes_list) print( f"""\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}""" )
42
import json import os import torch from diffusers import UNetaDModel os.makedirs('''hub/hopper-medium-v2/unet/hor32''', exist_ok=True) os.makedirs('''hub/hopper-medium-v2/unet/hor128''', exist_ok=True) os.makedirs('''hub/hopper-medium-v2/value_function''', exist_ok=True) def __lowerCamelCase ( __magic_name__ : List[Any] ): if hor == 128: a__: Union[str, Any] =("DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D") a__: Optional[int] =(32, 128, 256) a__: Tuple =("UpResnetBlock1D", "UpResnetBlock1D") elif hor == 32: a__: Tuple =("DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D") a__: List[Any] =(32, 64, 128, 256) a__: List[str] =("UpResnetBlock1D", "UpResnetBlock1D", "UpResnetBlock1D") a__: Dict =torch.load(F"/Users/bglickenhaus/Documents/diffuser/temporal_unet-hopper-mediumv2-hor{hor}.torch" ) a__: Optional[int] =model.state_dict() a__: str ={ "down_block_types": down_block_types, "block_out_channels": block_out_channels, "up_block_types": up_block_types, "layers_per_block": 1, "use_timestep_embedding": True, "out_block_type": "OutConv1DBlock", "norm_num_groups": 8, "downsample_each_block": False, "in_channels": 14, "out_channels": 14, "extra_in_channels": 0, "time_embedding_type": "positional", "flip_sin_to_cos": False, "freq_shift": 1, "sample_size": 65_536, "mid_block_type": "MidResTemporalBlock1D", "act_fn": "mish", } a__: List[Any] =UNetaDModel(**__magic_name__ ) print(F"length of state dict: {len(state_dict.keys() )}" ) print(F"length of value function dict: {len(hf_value_function.state_dict().keys() )}" ) a__: Tuple =dict(zip(model.state_dict().keys() , hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): a__: Dict =state_dict.pop(__magic_name__ ) hf_value_function.load_state_dict(__magic_name__ ) torch.save(hf_value_function.state_dict() , F"hub/hopper-medium-v2/unet/hor{hor}/diffusion_pytorch_model.bin" ) with open(F"hub/hopper-medium-v2/unet/hor{hor}/config.json" , "w" ) as f: json.dump(__magic_name__ , __magic_name__ ) def __lowerCamelCase ( ): a__: Union[str, Any] ={ "in_channels": 14, "down_block_types": ("DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D"), "up_block_types": (), "out_block_type": "ValueFunction", "mid_block_type": "ValueFunctionMidBlock1D", "block_out_channels": (32, 64, 128, 256), "layers_per_block": 1, "downsample_each_block": True, "sample_size": 65_536, "out_channels": 14, "extra_in_channels": 0, "time_embedding_type": "positional", "use_timestep_embedding": True, "flip_sin_to_cos": False, "freq_shift": 1, "norm_num_groups": 8, "act_fn": "mish", } a__: Union[str, Any] =torch.load("/Users/bglickenhaus/Documents/diffuser/value_function-hopper-mediumv2-hor32.torch" ) a__: Any =model a__: str =UNetaDModel(**__magic_name__ ) print(F"length of state dict: {len(state_dict.keys() )}" ) print(F"length of value function dict: {len(hf_value_function.state_dict().keys() )}" ) a__: List[str] =dict(zip(state_dict.keys() , hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): a__: List[Any] =state_dict.pop(__magic_name__ ) hf_value_function.load_state_dict(__magic_name__ ) torch.save(hf_value_function.state_dict() , "hub/hopper-medium-v2/value_function/diffusion_pytorch_model.bin" ) with open("hub/hopper-medium-v2/value_function/config.json" , "w" ) as f: json.dump(__magic_name__ , __magic_name__ ) if __name__ == "__main__": unet(32) # unet(128) value_function()
42
1
from ..utils import DummyObject, requires_backends class _lowercase ( metaclass=_lowerCAmelCase ): lowercase = ["sentencepiece"] def __init__( self : int , *snake_case : Optional[Any] , **snake_case : Tuple ) -> Optional[Any]: """simple docstring""" requires_backends(self , ['sentencepiece'] ) class _lowercase ( metaclass=_lowerCAmelCase ): lowercase = ["sentencepiece"] def __init__( self : Optional[int] , *snake_case : Optional[Any] , **snake_case : Union[str, Any] ) -> Any: """simple docstring""" requires_backends(self , ['sentencepiece'] ) class _lowercase ( metaclass=_lowerCAmelCase ): lowercase = ["sentencepiece"] def __init__( self : List[Any] , *snake_case : Any , **snake_case : int ) -> List[str]: """simple docstring""" requires_backends(self , ['sentencepiece'] ) class _lowercase ( metaclass=_lowerCAmelCase ): lowercase = ["sentencepiece"] def __init__( self : Optional[int] , *snake_case : Any , **snake_case : Any ) -> Dict: """simple docstring""" requires_backends(self , ['sentencepiece'] ) class _lowercase ( metaclass=_lowerCAmelCase ): lowercase = ["sentencepiece"] def __init__( self : Tuple , *snake_case : List[Any] , **snake_case : Any ) -> Any: """simple docstring""" requires_backends(self , ['sentencepiece'] ) class _lowercase ( metaclass=_lowerCAmelCase ): lowercase = ["sentencepiece"] def __init__( self : List[Any] , *snake_case : str , **snake_case : Tuple ) -> List[str]: """simple docstring""" requires_backends(self , ['sentencepiece'] ) class _lowercase ( metaclass=_lowerCAmelCase ): lowercase = ["sentencepiece"] def __init__( self : int , *snake_case : Optional[int] , **snake_case : int ) -> Tuple: """simple docstring""" requires_backends(self , ['sentencepiece'] ) class _lowercase ( metaclass=_lowerCAmelCase ): lowercase = ["sentencepiece"] def __init__( self : Union[str, Any] , *snake_case : Union[str, Any] , **snake_case : Optional[int] ) -> Any: """simple docstring""" requires_backends(self , ['sentencepiece'] ) class _lowercase ( metaclass=_lowerCAmelCase ): lowercase = ["sentencepiece"] def __init__( self : int , *snake_case : Optional[Any] , **snake_case : Tuple ) -> Optional[Any]: """simple docstring""" requires_backends(self , ['sentencepiece'] ) class _lowercase ( metaclass=_lowerCAmelCase ): lowercase = ["sentencepiece"] def __init__( self : Any , *snake_case : Tuple , **snake_case : List[Any] ) -> Any: """simple docstring""" requires_backends(self , ['sentencepiece'] ) class _lowercase ( metaclass=_lowerCAmelCase ): lowercase = ["sentencepiece"] def __init__( self : Union[str, Any] , *snake_case : str , **snake_case : Dict ) -> int: """simple docstring""" requires_backends(self , ['sentencepiece'] ) class _lowercase ( metaclass=_lowerCAmelCase ): lowercase = ["sentencepiece"] def __init__( self : Union[str, Any] , *snake_case : Optional[Any] , **snake_case : Optional[Any] ) -> List[Any]: """simple docstring""" requires_backends(self , ['sentencepiece'] ) class _lowercase ( metaclass=_lowerCAmelCase ): lowercase = ["sentencepiece"] def __init__( self : str , *snake_case : Optional[int] , **snake_case : Dict ) -> Any: """simple docstring""" requires_backends(self , ['sentencepiece'] ) class _lowercase ( metaclass=_lowerCAmelCase ): lowercase = ["sentencepiece"] def __init__( self : List[Any] , *snake_case : List[str] , **snake_case : int ) -> Optional[Any]: """simple docstring""" requires_backends(self , ['sentencepiece'] ) class _lowercase ( metaclass=_lowerCAmelCase ): lowercase = ["sentencepiece"] def __init__( self : List[Any] , *snake_case : Tuple , **snake_case : List[Any] ) -> Optional[int]: """simple docstring""" requires_backends(self , ['sentencepiece'] ) class _lowercase ( metaclass=_lowerCAmelCase ): lowercase = ["sentencepiece"] def __init__( self : List[Any] , *snake_case : List[str] , **snake_case : Optional[int] ) -> List[Any]: """simple docstring""" requires_backends(self , ['sentencepiece'] ) class _lowercase ( metaclass=_lowerCAmelCase ): lowercase = ["sentencepiece"] def __init__( self : Union[str, Any] , *snake_case : Optional[int] , **snake_case : Any ) -> Optional[int]: """simple docstring""" requires_backends(self , ['sentencepiece'] ) class _lowercase ( metaclass=_lowerCAmelCase ): lowercase = ["sentencepiece"] def __init__( self : int , *snake_case : Union[str, Any] , **snake_case : List[str] ) -> int: """simple docstring""" requires_backends(self , ['sentencepiece'] ) class _lowercase ( metaclass=_lowerCAmelCase ): lowercase = ["sentencepiece"] def __init__( self : List[str] , *snake_case : Dict , **snake_case : Dict ) -> Tuple: """simple docstring""" requires_backends(self , ['sentencepiece'] ) class _lowercase ( metaclass=_lowerCAmelCase ): lowercase = ["sentencepiece"] def __init__( self : Optional[int] , *snake_case : Optional[int] , **snake_case : Optional[int] ) -> Tuple: """simple docstring""" requires_backends(self , ['sentencepiece'] ) class _lowercase ( metaclass=_lowerCAmelCase ): lowercase = ["sentencepiece"] def __init__( self : Union[str, Any] , *snake_case : Optional[Any] , **snake_case : Any ) -> Union[str, Any]: """simple docstring""" requires_backends(self , ['sentencepiece'] ) class _lowercase ( metaclass=_lowerCAmelCase ): lowercase = ["sentencepiece"] def __init__( self : int , *snake_case : Optional[Any] , **snake_case : Optional[int] ) -> Optional[Any]: """simple docstring""" requires_backends(self , ['sentencepiece'] ) class _lowercase ( metaclass=_lowerCAmelCase ): lowercase = ["sentencepiece"] def __init__( self : Union[str, Any] , *snake_case : Union[str, Any] , **snake_case : Dict ) -> Optional[int]: """simple docstring""" requires_backends(self , ['sentencepiece'] ) class _lowercase ( metaclass=_lowerCAmelCase ): lowercase = ["sentencepiece"] def __init__( self : List[Any] , *snake_case : Optional[Any] , **snake_case : int ) -> Tuple: """simple docstring""" requires_backends(self , ['sentencepiece'] ) class _lowercase ( metaclass=_lowerCAmelCase ): lowercase = ["sentencepiece"] def __init__( self : Tuple , *snake_case : Union[str, Any] , **snake_case : int ) -> Tuple: """simple docstring""" requires_backends(self , ['sentencepiece'] ) class _lowercase ( metaclass=_lowerCAmelCase ): lowercase = ["sentencepiece"] def __init__( self : List[Any] , *snake_case : Optional[int] , **snake_case : Union[str, Any] ) -> List[Any]: """simple docstring""" requires_backends(self , ['sentencepiece'] ) class _lowercase ( metaclass=_lowerCAmelCase ): lowercase = ["sentencepiece"] def __init__( self : Dict , *snake_case : List[str] , **snake_case : List[Any] ) -> Dict: """simple docstring""" requires_backends(self , ['sentencepiece'] ) class _lowercase ( metaclass=_lowerCAmelCase ): lowercase = ["sentencepiece"] def __init__( self : Union[str, Any] , *snake_case : Optional[int] , **snake_case : List[str] ) -> Optional[int]: """simple docstring""" requires_backends(self , ['sentencepiece'] ) class _lowercase ( metaclass=_lowerCAmelCase ): lowercase = ["sentencepiece"] def __init__( self : Tuple , *snake_case : Optional[Any] , **snake_case : Optional[int] ) -> Dict: """simple docstring""" requires_backends(self , ['sentencepiece'] ) class _lowercase ( metaclass=_lowerCAmelCase ): lowercase = ["sentencepiece"] def __init__( self : Any , *snake_case : Dict , **snake_case : List[Any] ) -> Optional[Any]: """simple docstring""" requires_backends(self , ['sentencepiece'] ) class _lowercase ( metaclass=_lowerCAmelCase ): lowercase = ["sentencepiece"] def __init__( self : Dict , *snake_case : Any , **snake_case : Optional[int] ) -> Any: """simple docstring""" requires_backends(self , ['sentencepiece'] )
175
"""simple docstring""" from typing import List, Optional, Union import numpy as np import torch import torchaudio.compliance.kaldi as ta_kaldi from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging lowercase_ = logging.get_logger(__name__) class snake_case ( _lowerCAmelCase ): '''simple docstring''' A_ : int = ["input_features", "attention_mask"] def __init__( self : Optional[Any], _lowerCamelCase : Union[str, Any]=80, _lowerCamelCase : int=1_60_00, _lowerCamelCase : Any=80, _lowerCamelCase : List[str]=0.0, _lowerCamelCase : int=True, _lowerCamelCase : Optional[Any]=True, _lowerCamelCase : Optional[int]=True, **_lowerCamelCase : List[str], ): '''simple docstring''' super().__init__(feature_size=_lowerCamelCase, sampling_rate=_lowerCamelCase, padding_value=_lowerCamelCase, **_lowerCamelCase ) __A = num_mel_bins __A = do_ceptral_normalize __A = normalize_means __A = normalize_vars __A = True def _SCREAMING_SNAKE_CASE ( self : Dict, _lowerCamelCase : np.ndarray, ): '''simple docstring''' __A = waveform * (2**15) # Kaldi compliance: 16-bit signed integers __A = torch.from_numpy(_lowerCamelCase ).unsqueeze(0 ) __A = ta_kaldi.fbank(_lowerCamelCase, num_mel_bins=self.num_mel_bins, sample_frequency=self.sampling_rate ) return features.numpy() @staticmethod def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : np.ndarray, _lowerCamelCase : int, _lowerCamelCase : Optional[bool] = True, _lowerCamelCase : Optional[bool] = True, _lowerCamelCase : float = 0.0, ): '''simple docstring''' # make sure we normalize float32 arrays if normalize_means: __A = x[:input_length].mean(axis=0 ) __A = np.subtract(_lowerCamelCase, _lowerCamelCase ) if normalize_vars: __A = x[:input_length].std(axis=0 ) __A = np.divide(_lowerCamelCase, _lowerCamelCase ) if input_length < x.shape[0]: __A = padding_value # make sure array is in float32 __A = x.astype(np.floataa ) return x def _SCREAMING_SNAKE_CASE ( self : str, _lowerCamelCase : List[np.ndarray], _lowerCamelCase : Optional[np.ndarray] = None ): '''simple docstring''' __A = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [ self.utterance_cmvn(_lowerCamelCase, _lowerCamelCase, self.normalize_means, self.normalize_vars, self.padding_value ) for x, n in zip(_lowerCamelCase, _lowerCamelCase ) ] def __call__( self : Optional[Any], _lowerCamelCase : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]], _lowerCamelCase : Union[bool, str, PaddingStrategy] = False, _lowerCamelCase : Optional[int] = None, _lowerCamelCase : bool = False, _lowerCamelCase : Optional[int] = None, _lowerCamelCase : Optional[Union[str, TensorType]] = None, _lowerCamelCase : Optional[int] = None, _lowerCamelCase : Optional[bool] = None, **_lowerCamelCase : Optional[Any], ): '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'The model corresponding to this feature extractor: {self} was trained using a sampling rate of' f' {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with' f' {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) __A = isinstance(_lowerCamelCase, np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'Only mono-channel audio is supported for input to {self}' ) __A = is_batched_numpy or ( isinstance(_lowerCamelCase, (list, tuple) ) and (isinstance(raw_speech[0], (np.ndarray, tuple, list) )) ) if is_batched: __A = [np.asarray(_lowerCamelCase, dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(_lowerCamelCase, np.ndarray ): __A = np.asarray(_lowerCamelCase, dtype=np.floataa ) elif isinstance(_lowerCamelCase, np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): __A = raw_speech.astype(np.floataa ) # always return batch if not is_batched: __A = [raw_speech] # extract fbank features __A = [self._extract_fbank_features(_lowerCamelCase ) for waveform in raw_speech] # convert into correct format for padding __A = BatchFeature({'''input_features''': features} ) __A = self.pad( _lowerCamelCase, padding=_lowerCamelCase, max_length=_lowerCamelCase, truncation=_lowerCamelCase, pad_to_multiple_of=_lowerCamelCase, return_attention_mask=_lowerCamelCase, **_lowerCamelCase, ) # make sure list is in array format __A = padded_inputs.get('''input_features''' ) if isinstance(input_features[0], _lowerCamelCase ): __A = [np.asarray(_lowerCamelCase, dtype=np.floataa ) for feature in input_features] __A = padded_inputs.get('''attention_mask''' ) if attention_mask is not None: __A = [np.asarray(_lowerCamelCase, dtype=np.intaa ) for array in attention_mask] # Utterance-level cepstral mean and variance normalization if self.do_ceptral_normalize: __A = ( np.array(_lowerCamelCase, dtype=np.intaa ) if self._get_padding_strategies(_lowerCamelCase, max_length=_lowerCamelCase ) is not PaddingStrategy.DO_NOT_PAD else None ) __A = self.normalize( padded_inputs['''input_features'''], attention_mask=_lowerCamelCase ) if return_tensors is not None: __A = padded_inputs.convert_to_tensors(_lowerCamelCase ) return padded_inputs
266
0
import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def snake_case__ ( self : Dict ): __snake_case : str = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) __snake_case : int = AutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ).to(_lowerCAmelCase ) __snake_case : Dict = -1 __snake_case : Tuple = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowerCAmelCase ) __snake_case : List[Any] = model.generate(_lowerCAmelCase , max_new_tokens=10 , do_sample=_lowerCAmelCase ) __snake_case : Dict = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: __snake_case : Tuple = TextStreamer(_lowerCAmelCase ) model.generate(_lowerCAmelCase , max_new_tokens=10 , do_sample=_lowerCAmelCase , streamer=_lowerCAmelCase ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer __snake_case : List[Any] = cs.out[:-1] self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) def snake_case__ ( self : str ): __snake_case : Optional[int] = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) __snake_case : Tuple = AutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ).to(_lowerCAmelCase ) __snake_case : List[Any] = -1 __snake_case : Optional[int] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowerCAmelCase ) __snake_case : str = model.generate(_lowerCAmelCase , max_new_tokens=10 , do_sample=_lowerCAmelCase ) __snake_case : Optional[int] = tokenizer.decode(greedy_ids[0] ) __snake_case : List[Any] = TextIteratorStreamer(_lowerCAmelCase ) __snake_case : Optional[int] = {"""input_ids""": input_ids, """max_new_tokens""": 10, """do_sample""": False, """streamer""": streamer} __snake_case : str = Thread(target=model.generate , kwargs=_lowerCAmelCase ) thread.start() __snake_case : Optional[Any] = """""" for new_text in streamer: streamer_text += new_text self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) def snake_case__ ( self : int ): __snake_case : Tuple = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) __snake_case : Optional[Any] = AutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ).to(_lowerCAmelCase ) __snake_case : Any = -1 __snake_case : Optional[int] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowerCAmelCase ) __snake_case : Dict = model.generate(_lowerCAmelCase , max_new_tokens=10 , do_sample=_lowerCAmelCase ) __snake_case : Optional[int] = greedy_ids[:, input_ids.shape[1] :] __snake_case : List[Any] = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: __snake_case : int = TextStreamer(_lowerCAmelCase , skip_prompt=_lowerCAmelCase ) model.generate(_lowerCAmelCase , max_new_tokens=10 , do_sample=_lowerCAmelCase , streamer=_lowerCAmelCase ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer __snake_case : Dict = cs.out[:-1] self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) def snake_case__ ( self : Optional[int] ): # Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested # with actual models -- the dummy models' tokenizers are not aligned with their models, and # `skip_special_tokens=True` has no effect on them __snake_case : Union[str, Any] = AutoTokenizer.from_pretrained("""distilgpt2""" ) __snake_case : Optional[int] = AutoModelForCausalLM.from_pretrained("""distilgpt2""" ).to(_lowerCAmelCase ) __snake_case : List[str] = -1 __snake_case : List[Any] = torch.ones((1, 5) , device=_lowerCAmelCase ).long() * model.config.bos_token_id with CaptureStdout() as cs: __snake_case : int = TextStreamer(_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase ) model.generate(_lowerCAmelCase , max_new_tokens=1 , do_sample=_lowerCAmelCase , streamer=_lowerCAmelCase ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token __snake_case : Dict = cs.out[:-1] # Remove the final "\n" __snake_case : List[Any] = tokenizer(_lowerCAmelCase , return_tensors="""pt""" ) self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) ) def snake_case__ ( self : Optional[int] ): __snake_case : int = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) __snake_case : Tuple = AutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ).to(_lowerCAmelCase ) __snake_case : Union[str, Any] = -1 __snake_case : Optional[int] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowerCAmelCase ) __snake_case : List[str] = TextIteratorStreamer(_lowerCAmelCase , timeout=0.001 ) __snake_case : List[Any] = {"""input_ids""": input_ids, """max_new_tokens""": 10, """do_sample""": False, """streamer""": streamer} __snake_case : List[str] = Thread(target=model.generate , kwargs=_lowerCAmelCase ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(_lowerCAmelCase ): __snake_case : Tuple = """""" for new_text in streamer: streamer_text += new_text
20
from .constants import ( MODEL_NAME, OPTIMIZER_NAME, RNG_STATE_NAME, SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, SCALER_NAME, SCHEDULER_NAME, TORCH_LAUNCH_PARAMS, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ) from .dataclasses import ( BnbQuantizationConfig, ComputeEnvironment, CustomDtype, DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, DynamoBackend, FPaRecipeKwargs, FullyShardedDataParallelPlugin, GradientAccumulationPlugin, GradScalerKwargs, InitProcessGroupKwargs, KwargsHandler, LoggerType, MegatronLMPlugin, PrecisionType, ProjectConfiguration, RNGType, SageMakerDistributedType, TensorInformation, TorchDynamoPlugin, ) from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env from .imports import ( get_ccl_version, is_abit_bnb_available, is_abit_bnb_available, is_aim_available, is_bfaa_available, is_bnb_available, is_botoa_available, is_ccl_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_fpa_available, is_ipex_available, is_megatron_lm_available, is_mlflow_available, is_mps_available, is_npu_available, is_rich_available, is_safetensors_available, is_sagemaker_available, is_tensorboard_available, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) from .modeling import ( check_device_map, check_tied_parameters_in_config, check_tied_parameters_on_same_device, compute_module_sizes, convert_file_size_to_int, dtype_byte_size, find_tied_parameters, get_balanced_memory, get_max_layer_size, get_max_memory, get_mixed_precision_context_manager, id_tensor_storage, infer_auto_device_map, load_checkpoint_in_model, load_offloaded_weights, load_state_dict, named_module_tensors, retie_parameters, set_module_tensor_to_device, shard_checkpoint, ) from .offload import ( OffloadedWeightsLoader, PrefixedDataset, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, save_offload_index, ) from .operations import ( broadcast, broadcast_object_list, concatenate, convert_outputs_to_fpaa, convert_to_fpaa, find_batch_size, find_device, gather, gather_object, get_data_structure, honor_type, initialize_tensors, is_namedtuple, is_tensor_information, is_torch_tensor, listify, pad_across_processes, recursively_apply, reduce, send_to_device, slice_tensors, ) from .versions import compare_versions, is_torch_version if is_deepspeed_available(): from .deepspeed import ( DeepSpeedEngineWrapper, DeepSpeedOptimizerWrapper, DeepSpeedSchedulerWrapper, DummyOptim, DummyScheduler, HfDeepSpeedConfig, ) from .bnb import has_abit_bnb_layers, load_and_quantize_model from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer from .launch import ( PrepareForLaunch, _filter_args, prepare_deepspeed_cmd_env, prepare_multi_gpu_env, prepare_sagemager_args_inputs, prepare_simple_launcher_cmd_env, prepare_tpu, ) from .megatron_lm import ( AbstractTrainStep, BertTrainStep, GPTTrainStep, MegatronEngine, MegatronLMDummyDataLoader, MegatronLMDummyScheduler, MegatronLMOptimizerWrapper, MegatronLMSchedulerWrapper, TaTrainStep, avg_losses_across_data_parallel_group, gather_across_data_parallel_groups, ) from .megatron_lm import initialize as megatron_lm_initialize from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader from .megatron_lm import prepare_model as megatron_lm_prepare_model from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler from .memory import find_executable_batch_size, release_memory from .other import ( extract_model_from_parallel, get_pretty_name, is_port_in_use, merge_dicts, patch_environment, save, wait_for_everyone, write_basic_config, ) from .random import set_seed, synchronize_rng_state, synchronize_rng_states from .torch_xla import install_xla from .tqdm import tqdm from .transformer_engine import convert_model, has_transformer_engine_layers
20
1
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { 'microsoft/deberta-v2-xlarge': 'https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json', 'microsoft/deberta-v2-xxlarge': 'https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json', 'microsoft/deberta-v2-xlarge-mnli': ( 'https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json' ), 'microsoft/deberta-v2-xxlarge-mnli': ( 'https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json' ), } class a_ ( _a ): lowercase = """deberta-v2""" def __init__( self , _SCREAMING_SNAKE_CASE=128100 , _SCREAMING_SNAKE_CASE=1536 , _SCREAMING_SNAKE_CASE=24 , _SCREAMING_SNAKE_CASE=24 , _SCREAMING_SNAKE_CASE=6144 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=512 , _SCREAMING_SNAKE_CASE=0 , _SCREAMING_SNAKE_CASE=0.0_2 , _SCREAMING_SNAKE_CASE=1e-7 , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=-1 , _SCREAMING_SNAKE_CASE=0 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=0 , _SCREAMING_SNAKE_CASE="gelu" , **_SCREAMING_SNAKE_CASE , ) -> Optional[int]: """simple docstring""" super().__init__(**_SCREAMING_SNAKE_CASE ) UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = intermediate_size UpperCamelCase = hidden_act UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = max_position_embeddings UpperCamelCase = type_vocab_size UpperCamelCase = initializer_range UpperCamelCase = relative_attention UpperCamelCase = max_relative_positions UpperCamelCase = pad_token_id UpperCamelCase = position_biased_input # Backwards compatibility if type(_SCREAMING_SNAKE_CASE ) == str: UpperCamelCase = [x.strip() for x in pos_att_type.lower().split("""|""" )] UpperCamelCase = pos_att_type UpperCamelCase = vocab_size UpperCamelCase = layer_norm_eps UpperCamelCase = kwargs.get("""pooler_hidden_size""" , _SCREAMING_SNAKE_CASE ) UpperCamelCase = pooler_dropout UpperCamelCase = pooler_hidden_act class a_ ( _a ): @property def A__ ( self ) -> Tuple: """simple docstring""" if self.task == "multiple-choice": UpperCamelCase = {0: """batch""", 1: """choice""", 2: """sequence"""} else: UpperCamelCase = {0: """batch""", 1: """sequence"""} if self._config.type_vocab_size > 0: return OrderedDict( [("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis)] ) else: return OrderedDict([("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis)] ) @property def A__ ( self ) -> Any: """simple docstring""" return 12 def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = -1 , _SCREAMING_SNAKE_CASE = -1 , _SCREAMING_SNAKE_CASE = -1 , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 3 , _SCREAMING_SNAKE_CASE = 40 , _SCREAMING_SNAKE_CASE = 40 , _SCREAMING_SNAKE_CASE = None , ) -> Union[str, Any]: """simple docstring""" UpperCamelCase = super().generate_dummy_inputs(preprocessor=_SCREAMING_SNAKE_CASE , framework=_SCREAMING_SNAKE_CASE ) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
321
"""simple docstring""" import argparse import gc import json import os import re import torch from huggingface_hub import hf_hub_download from transformers import AutoModelForCausalLM, AutoTokenizer, PreTrainedTokenizerFast, RwkvConfig from transformers.modeling_utils import WEIGHTS_INDEX_NAME, shard_checkpoint a = { '169M': 1_2, '430M': 2_4, '1B5': 2_4, '3B': 3_2, '7B': 3_2, '14B': 4_0, } a = { '169M': 7_6_8, '430M': 1_0_2_4, '1B5': 2_0_4_8, '3B': 2_5_6_0, '7B': 4_0_9_6, '14B': 5_1_2_0, } def lowercase (snake_case__ : str ) -> List[Any]: '''simple docstring''' lowerCAmelCase = list(state_dict.keys() ) for name in state_dict_keys: lowerCAmelCase = state_dict.pop(snake_case__ ) # emb -> embedding if name.startswith("""emb.""" ): lowerCAmelCase = name.replace("""emb.""" , """embeddings.""" ) # ln_0 -> pre_ln (only present at block 0) if name.startswith("""blocks.0.ln0""" ): lowerCAmelCase = name.replace("""blocks.0.ln0""" , """blocks.0.pre_ln""" ) # att -> attention lowerCAmelCase = re.sub(R"""blocks\.(\d+)\.att""" , R"""blocks.\1.attention""" , snake_case__ ) # ffn -> feed_forward lowerCAmelCase = re.sub(R"""blocks\.(\d+)\.ffn""" , R"""blocks.\1.feed_forward""" , snake_case__ ) # time_mix_k -> time_mix_key and reshape if name.endswith(""".time_mix_k""" ): lowerCAmelCase = name.replace(""".time_mix_k""" , """.time_mix_key""" ) # time_mix_v -> time_mix_value and reshape if name.endswith(""".time_mix_v""" ): lowerCAmelCase = name.replace(""".time_mix_v""" , """.time_mix_value""" ) # time_mix_r -> time_mix_key and reshape if name.endswith(""".time_mix_r""" ): lowerCAmelCase = name.replace(""".time_mix_r""" , """.time_mix_receptance""" ) if name != "head.weight": lowerCAmelCase = """rwkv.""" + name lowerCAmelCase = weight return state_dict def lowercase (snake_case__ : List[str] , snake_case__ : Optional[Any] , snake_case__ : Any , snake_case__ : int=None , snake_case__ : Any=None , snake_case__ : Optional[int]=False , snake_case__ : List[str]=None ) -> Optional[Any]: '''simple docstring''' if tokenizer_file is None: print("""No `--tokenizer_file` provided, we will use the default tokenizer.""" ) lowerCAmelCase = 50_277 lowerCAmelCase = AutoTokenizer.from_pretrained("""EleutherAI/gpt-neox-20b""" ) else: lowerCAmelCase = PreTrainedTokenizerFast(tokenizer_file=snake_case__ ) lowerCAmelCase = len(snake_case__ ) tokenizer.save_pretrained(snake_case__ ) # 2. Build the config lowerCAmelCase = list(NUM_HIDDEN_LAYERS_MAPPING.keys() ) if size is None: # Try to infer size from the checkpoint name for candidate in possible_sizes: if candidate in checkpoint_file: lowerCAmelCase = candidate break if size is None: raise ValueError("""Could not infer the size, please provide it with the `--size` argument.""" ) if size not in possible_sizes: raise ValueError(f'''`size` should be one of {possible_sizes}, got {size}.''' ) lowerCAmelCase = RwkvConfig( vocab_size=snake_case__ , num_hidden_layers=NUM_HIDDEN_LAYERS_MAPPING[size] , hidden_size=HIDEN_SIZE_MAPPING[size] , ) config.save_pretrained(snake_case__ ) # 3. Download model file then convert state_dict lowerCAmelCase = hf_hub_download(snake_case__ , snake_case__ ) lowerCAmelCase = torch.load(snake_case__ , map_location="""cpu""" ) lowerCAmelCase = convert_state_dict(snake_case__ ) # 4. Split in shards and save lowerCAmelCase , lowerCAmelCase = shard_checkpoint(snake_case__ ) for shard_file, shard in shards.items(): torch.save(snake_case__ , os.path.join(snake_case__ , snake_case__ ) ) if index is not None: lowerCAmelCase = os.path.join(snake_case__ , snake_case__ ) # Save the index as well with open(snake_case__ , """w""" , encoding="""utf-8""" ) as f: lowerCAmelCase = json.dumps(snake_case__ , indent=2 , sort_keys=snake_case__ ) + """\n""" f.write(snake_case__ ) # 5. Clean up shards (for some reason the file PyTorch saves take the same space as the whole state_dict print( """Cleaning up shards. This may error with an OOM error, it this is the case don't worry you still have converted the model.""" ) lowerCAmelCase = list(shards.keys() ) del state_dict del shards gc.collect() for shard_file in shard_files: lowerCAmelCase = torch.load(os.path.join(snake_case__ , snake_case__ ) ) torch.save({k: v.cpu().clone() for k, v in state_dict.items()} , os.path.join(snake_case__ , snake_case__ ) ) del state_dict gc.collect() if push_to_hub: if model_name is None: raise ValueError("""Please provide a `model_name` to push the model to the Hub.""" ) lowerCAmelCase = AutoModelForCausalLM.from_pretrained(snake_case__ ) model.push_to_hub(snake_case__ , max_shard_size="""2GB""" ) tokenizer.push_to_hub(snake_case__ ) if __name__ == "__main__": a = argparse.ArgumentParser() # Required parameters parser.add_argument( '--repo_id', default=None, type=str, required=True, help='Repo ID from which to pull the checkpoint.' ) parser.add_argument( '--checkpoint_file', default=None, type=str, required=True, help='Name of the checkpoint file in the repo.' ) parser.add_argument( '--output_dir', default=None, type=str, required=True, help='Where to save the converted model.' ) parser.add_argument( '--tokenizer_file', default=None, type=str, help='Path to the tokenizer file to use (if not provided, only the model is converted).', ) parser.add_argument( '--size', default=None, type=str, help='Size of the model. Will be inferred from the `checkpoint_file` if not passed.', ) parser.add_argument( '--push_to_hub', action='store_true', help='Push to the Hub the converted model.', ) parser.add_argument( '--model_name', default=None, type=str, help='Name of the pushed model on the Hub, including the username / organization.', ) a = parser.parse_args() convert_rmkv_checkpoint_to_hf_format( args.repo_id, args.checkpoint_file, args.output_dir, size=args.size, tokenizer_file=args.tokenizer_file, push_to_hub=args.push_to_hub, model_name=args.model_name, )
155
0
import argparse import collections import os import re import tempfile import pandas as pd from datasets import Dataset from huggingface_hub import hf_hub_download, upload_folder from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/update_metadata.py lowerCamelCase : List[Any] = "src/transformers" # This is to make sure the transformers module imported is the one in the repo. lowerCamelCase : List[Any] = direct_transformers_import(TRANSFORMERS_PATH) # Regexes that match TF/Flax/PT model names. lowerCamelCase : Optional[Any] = re.compile(r"TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") lowerCamelCase : List[Any] = re.compile(r"Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. lowerCamelCase : Union[str, Any] = re.compile(r"(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") # Fill this with tuples (pipeline_tag, model_mapping, auto_model) lowerCamelCase : Tuple = [ ("pretraining", "MODEL_FOR_PRETRAINING_MAPPING_NAMES", "AutoModelForPreTraining"), ("feature-extraction", "MODEL_MAPPING_NAMES", "AutoModel"), ("audio-classification", "MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES", "AutoModelForAudioClassification"), ("text-generation", "MODEL_FOR_CAUSAL_LM_MAPPING_NAMES", "AutoModelForCausalLM"), ("automatic-speech-recognition", "MODEL_FOR_CTC_MAPPING_NAMES", "AutoModelForCTC"), ("image-classification", "MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES", "AutoModelForImageClassification"), ("image-segmentation", "MODEL_FOR_IMAGE_SEGMENTATION_MAPPING_NAMES", "AutoModelForImageSegmentation"), ("fill-mask", "MODEL_FOR_MASKED_LM_MAPPING_NAMES", "AutoModelForMaskedLM"), ("object-detection", "MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES", "AutoModelForObjectDetection"), ( "zero-shot-object-detection", "MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING_NAMES", "AutoModelForZeroShotObjectDetection", ), ("question-answering", "MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES", "AutoModelForQuestionAnswering"), ("text2text-generation", "MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES", "AutoModelForSeq2SeqLM"), ("text-classification", "MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES", "AutoModelForSequenceClassification"), ("automatic-speech-recognition", "MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES", "AutoModelForSpeechSeq2Seq"), ( "table-question-answering", "MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES", "AutoModelForTableQuestionAnswering", ), ("token-classification", "MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES", "AutoModelForTokenClassification"), ("multiple-choice", "MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES", "AutoModelForMultipleChoice"), ( "next-sentence-prediction", "MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES", "AutoModelForNextSentencePrediction", ), ( "audio-frame-classification", "MODEL_FOR_AUDIO_FRAME_CLASSIFICATION_MAPPING_NAMES", "AutoModelForAudioFrameClassification", ), ("audio-xvector", "MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES", "AutoModelForAudioXVector"), ( "document-question-answering", "MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES", "AutoModelForDocumentQuestionAnswering", ), ( "visual-question-answering", "MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING_NAMES", "AutoModelForVisualQuestionAnswering", ), ("image-to-text", "MODEL_FOR_FOR_VISION_2_SEQ_MAPPING_NAMES", "AutoModelForVision2Seq"), ( "zero-shot-image-classification", "MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING_NAMES", "AutoModelForZeroShotImageClassification", ), ("depth-estimation", "MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES", "AutoModelForDepthEstimation"), ("video-classification", "MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES", "AutoModelForVideoClassification"), ("mask-generation", "MODEL_FOR_MASK_GENERATION_MAPPING_NAMES", "AutoModelForMaskGeneration"), ] def _SCREAMING_SNAKE_CASE ( lowercase : int ): '''simple docstring''' lowerCamelCase_ = re.finditer('.+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)' , lowercase ) return [m.group(0 ) for m in matches] def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES lowerCamelCase_ = { config.replace('Config' , '' ): model_type for model_type, config in config_maping_names.items() } # Dictionaries flagging if each model prefix has a backend in PT/TF/Flax. lowerCamelCase_ = collections.defaultdict(lowercase ) lowerCamelCase_ = collections.defaultdict(lowercase ) lowerCamelCase_ = collections.defaultdict(lowercase ) # Let's lookup through all transformers object (once) and find if models are supported by a given backend. for attr_name in dir(lowercase ): lowerCamelCase_ = None if _re_tf_models.match(lowercase ) is not None: lowerCamelCase_ = tf_models lowerCamelCase_ = _re_tf_models.match(lowercase ).groups()[0] elif _re_flax_models.match(lowercase ) is not None: lowerCamelCase_ = flax_models lowerCamelCase_ = _re_flax_models.match(lowercase ).groups()[0] elif _re_pt_models.match(lowercase ) is not None: lowerCamelCase_ = pt_models lowerCamelCase_ = _re_pt_models.match(lowercase ).groups()[0] if lookup_dict is not None: while len(lowercase ) > 0: if attr_name in model_prefix_to_model_type: lowerCamelCase_ = True break # Try again after removing the last word in the name lowerCamelCase_ = ''.join(camel_case_split(lowercase )[:-1] ) lowerCamelCase_ = set(list(pt_models.keys() ) + list(tf_models.keys() ) + list(flax_models.keys() ) ) lowerCamelCase_ = list(lowercase ) all_models.sort() lowerCamelCase_ = {'model_type': all_models} lowerCamelCase_ = [pt_models[t] for t in all_models] lowerCamelCase_ = [tf_models[t] for t in all_models] lowerCamelCase_ = [flax_models[t] for t in all_models] # Now let's use the auto-mapping names to make sure lowerCamelCase_ = {} for t in all_models: if t in transformers_module.models.auto.processing_auto.PROCESSOR_MAPPING_NAMES: lowerCamelCase_ = 'AutoProcessor' elif t in transformers_module.models.auto.tokenization_auto.TOKENIZER_MAPPING_NAMES: lowerCamelCase_ = 'AutoTokenizer' elif t in transformers_module.models.auto.feature_extraction_auto.FEATURE_EXTRACTOR_MAPPING_NAMES: lowerCamelCase_ = 'AutoFeatureExtractor' else: # Default to AutoTokenizer if a model has nothing, for backward compatibility. lowerCamelCase_ = 'AutoTokenizer' lowerCamelCase_ = [processors[t] for t in all_models] return pd.DataFrame(lowercase ) def _SCREAMING_SNAKE_CASE ( lowercase : str ): '''simple docstring''' lowerCamelCase_ = [ transformers_module.models.auto.modeling_auto, transformers_module.models.auto.modeling_tf_auto, transformers_module.models.auto.modeling_flax_auto, ] for pipeline_tag, model_mapping, auto_class in PIPELINE_TAGS_AND_AUTO_MODELS: lowerCamelCase_ = [model_mapping, f"""TF_{model_mapping}""", f"""FLAX_{model_mapping}"""] lowerCamelCase_ = [auto_class, f"""TF_{auto_class}""", f"""Flax_{auto_class}"""] # Loop through all three frameworks for module, cls, mapping in zip(lowercase , lowercase , lowercase ): # The type of pipeline may not exist in this framework if not hasattr(lowercase , lowercase ): continue # First extract all model_names lowerCamelCase_ = [] for name in getattr(lowercase , lowercase ).values(): if isinstance(lowercase , lowercase ): model_names.append(lowercase ) else: model_names.extend(list(lowercase ) ) # Add pipeline tag and auto model class for those models table.update({model_name: (pipeline_tag, cls) for model_name in model_names} ) return table def _SCREAMING_SNAKE_CASE ( lowercase : str , lowercase : Optional[int] ): '''simple docstring''' lowerCamelCase_ = get_frameworks_table() lowerCamelCase_ = Dataset.from_pandas(lowercase ) lowerCamelCase_ = hf_hub_download( 'huggingface/transformers-metadata' , 'pipeline_tags.json' , repo_type='dataset' , token=lowercase ) lowerCamelCase_ = Dataset.from_json(lowercase ) lowerCamelCase_ = { tags_dataset[i]['model_class']: (tags_dataset[i]['pipeline_tag'], tags_dataset[i]['auto_class']) for i in range(len(lowercase ) ) } lowerCamelCase_ = update_pipeline_and_auto_class_table(lowercase ) # Sort the model classes to avoid some nondeterministic updates to create false update commits. lowerCamelCase_ = sorted(table.keys() ) lowerCamelCase_ = pd.DataFrame( { 'model_class': model_classes, 'pipeline_tag': [table[m][0] for m in model_classes], 'auto_class': [table[m][1] for m in model_classes], } ) lowerCamelCase_ = Dataset.from_pandas(lowercase ) with tempfile.TemporaryDirectory() as tmp_dir: frameworks_dataset.to_json(os.path.join(lowercase , 'frameworks.json' ) ) tags_dataset.to_json(os.path.join(lowercase , 'pipeline_tags.json' ) ) if commit_sha is not None: lowerCamelCase_ = ( f"""Update with commit {commit_sha}\n\nSee: """ f"""https://github.com/huggingface/transformers/commit/{commit_sha}""" ) else: lowerCamelCase_ = 'Update' upload_folder( repo_id='huggingface/transformers-metadata' , folder_path=lowercase , repo_type='dataset' , token=lowercase , commit_message=lowercase , ) def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = {tag: cls for tag, _, cls in PIPELINE_TAGS_AND_AUTO_MODELS} lowerCamelCase_ = transformers_module.pipelines.SUPPORTED_TASKS lowerCamelCase_ = [] for key in pipeline_tasks: if key not in in_table: lowerCamelCase_ = pipeline_tasks[key]['pt'] if isinstance(lowercase , (list, tuple) ): lowerCamelCase_ = model[0] lowerCamelCase_ = model.__name__ if model not in in_table.values(): missing.append(lowercase ) if len(lowercase ) > 0: lowerCamelCase_ = ', '.join(lowercase ) raise ValueError( 'The following pipeline tags are not present in the `PIPELINE_TAGS_AND_AUTO_MODELS` constant inside ' f"""`utils/update_metadata.py`: {msg}. Please add them!""" ) if __name__ == "__main__": lowerCamelCase : List[str] = argparse.ArgumentParser() parser.add_argument("--token", type=str, help="The token to use to push to the transformers-metadata dataset.") parser.add_argument("--commit_sha", type=str, help="The sha of the commit going with this update.") parser.add_argument("--check-only", action="store_true", help="Activate to just check all pipelines are present.") lowerCamelCase : Optional[int] = parser.parse_args() if args.check_only: check_pipeline_tags() else: update_metadata(args.token, args.commit_sha)
362
import json import logging import os import sys from pathlib import Path import finetune_rag from transformers.file_utils import is_apex_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, require_ray, require_torch_gpu, require_torch_multi_gpu, ) logging.basicConfig(level=logging.DEBUG) lowerCamelCase : int = logging.getLogger() lowerCamelCase : Tuple = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class A( UpperCamelCase ): '''simple docstring''' def a__ ( self : List[str] , A_ : Optional[Any] ) -> int: """simple docstring""" os.makedirs(A_ , exist_ok=A_ ) lowerCamelCase_ = {'source': 'What is love ?', 'target': 'life'} lowerCamelCase_ = {'train': 12, 'val': 2, 'test': 2} for split in ["train", "test", "val"]: for field in ["source", "target"]: lowerCamelCase_ = '\n'.join([contents[field]] * n_lines[split] ) with open(os.path.join(A_ , f"""{split}.{field}""" ) , 'w' ) as f: f.write(A_ ) def a__ ( self : Optional[Any] , A_ : int , A_ : str = "pytorch" ) -> Any: """simple docstring""" lowerCamelCase_ = self.get_auto_remove_tmp_dir() lowerCamelCase_ = os.path.join(A_ , 'output' ) lowerCamelCase_ = os.path.join(A_ , 'data' ) self._create_dummy_data(data_dir=A_ ) lowerCamelCase_ = f""" --data_dir {data_dir} \ --output_dir {output_dir} \ --model_name_or_path facebook/rag-sequence-base \ --model_type rag_sequence \ --do_train \ --do_predict \ --n_val -1 \ --val_check_interval 1.0 \ --train_batch_size 2 \ --eval_batch_size 1 \ --max_source_length 25 \ --max_target_length 25 \ --val_max_target_length 25 \ --test_max_target_length 25 \ --label_smoothing 0.1 \ --dropout 0.1 \ --attention_dropout 0.1 \ --weight_decay 0.001 \ --adam_epsilon 1e-08 \ --max_grad_norm 0.1 \ --lr_scheduler polynomial \ --learning_rate 3e-04 \ --num_train_epochs 1 \ --warmup_steps 4 \ --gradient_accumulation_steps 1 \ --distributed-port 8787 \ --use_dummy_dataset 1 \ --distributed_retriever {distributed_retriever} \ """.split() if gpus > 0: testargs.append(f"""--gpus={gpus}""" ) if is_apex_available(): testargs.append('--fp16' ) else: testargs.append('--gpus=0' ) testargs.append('--distributed_backend=ddp_cpu' ) testargs.append('--num_processes=2' ) lowerCamelCase_ = [sys.executable, str(Path(finetune_rag.__file__ ).resolve() )] + testargs execute_subprocess_async(A_ , env=self.get_env() ) lowerCamelCase_ = os.path.join(A_ , 'metrics.json' ) with open(A_ ) as f: lowerCamelCase_ = json.load(A_ ) return result @require_torch_gpu def a__ ( self : List[Any] ) -> Any: """simple docstring""" lowerCamelCase_ = self._run_finetune(gpus=1 ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 ) @require_torch_multi_gpu def a__ ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = self._run_finetune(gpus=2 ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 ) @require_torch_gpu @require_ray def a__ ( self : Tuple ) -> int: """simple docstring""" lowerCamelCase_ = self._run_finetune(gpus=1 , distributed_retriever='ray' ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 ) @require_torch_multi_gpu @require_ray def a__ ( self : Dict ) -> Dict: """simple docstring""" lowerCamelCase_ = self._run_finetune(gpus=1 , distributed_retriever='ray' ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 )
208
0
'''simple docstring''' class _lowercase : def __init__( self: Dict , UpperCamelCase__: int , UpperCamelCase__: Dict , UpperCamelCase__: List[Any] ): lowerCamelCase__ : Dict = name lowerCamelCase__ : Union[str, Any] = value lowerCamelCase__ : str = weight def __repr__( self: Dict ): return F'''{self.__class__.__name__}({self.name}, {self.value}, {self.weight})''' def lowerCamelCase_ ( self: int ): return self.value def lowerCamelCase_ ( self: Tuple ): return self.name def lowerCamelCase_ ( self: str ): return self.weight def lowerCamelCase_ ( self: Any ): return self.value / self.weight def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> Tuple: lowerCamelCase__ : List[str] = [] for i in range(len(UpperCamelCase ) ): menu.append(Things(name[i] , value[i] , weight[i] ) ) return menu def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> Union[str, Any]: lowerCamelCase__ : List[Any] = sorted(UpperCamelCase , key=UpperCamelCase , reverse=UpperCamelCase ) lowerCamelCase__ : Optional[int] = [] lowerCamelCase__ , lowerCamelCase__ : Dict = 0.0, 0.0 for i in range(len(UpperCamelCase ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def SCREAMING_SNAKE_CASE_ () -> Tuple: pass if __name__ == "__main__": import doctest doctest.testmod()
41
from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass class __lowercase (_UpperCAmelCase ): _UpperCamelCase = 42 _UpperCamelCase = 42 _UpperCamelCase = None class __lowercase (_UpperCAmelCase , _UpperCAmelCase ): _UpperCamelCase = 2 @register_to_config def __init__( self , A_ = 0.02 , A_ = 100 , A_ = 1.007 , A_ = 80 , A_ = 0.05 , A_ = 50 , ) ->int: '''simple docstring''' __lowerCAmelCase : Optional[int] = sigma_max # setable values __lowerCAmelCase : int = None __lowerCAmelCase : np.IntTensor = None __lowerCAmelCase : torch.FloatTensor = None # sigma(t_i) def UpperCamelCase__ ( self , A_ , A_ = None ) ->torch.FloatTensor: '''simple docstring''' return sample def UpperCamelCase__ ( self , A_ , A_ = None ) ->List[str]: '''simple docstring''' __lowerCAmelCase : str = num_inference_steps __lowerCAmelCase : Dict = np.arange(0 , self.num_inference_steps )[::-1].copy() __lowerCAmelCase : Optional[Any] = torch.from_numpy(A_ ).to(A_ ) __lowerCAmelCase : Tuple = [ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in self.timesteps ] __lowerCAmelCase : Optional[int] = torch.tensor(A_ , dtype=torch.floataa , device=A_ ) def UpperCamelCase__ ( self , A_ , A_ , A_ = None ) ->Tuple[torch.FloatTensor, float]: '''simple docstring''' if self.config.s_min <= sigma <= self.config.s_max: __lowerCAmelCase : List[str] = min(self.config.s_churn / self.num_inference_steps , 2**0.5 - 1 ) else: __lowerCAmelCase : List[str] = 0 # sample eps ~ N(0, S_noise^2 * I) __lowerCAmelCase : int = self.config.s_noise * randn_tensor(sample.shape , generator=A_ ).to(sample.device ) __lowerCAmelCase : str = sigma + gamma * sigma __lowerCAmelCase : Any = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def UpperCamelCase__ ( self , A_ , A_ , A_ , A_ , A_ = True , ) ->Union[KarrasVeOutput, Tuple]: '''simple docstring''' __lowerCAmelCase : Union[str, Any] = sample_hat + sigma_hat * model_output __lowerCAmelCase : int = (sample_hat - pred_original_sample) / sigma_hat __lowerCAmelCase : Tuple = sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=A_ , derivative=A_ , pred_original_sample=A_ ) def UpperCamelCase__ ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ = True , ) ->Union[KarrasVeOutput, Tuple]: '''simple docstring''' __lowerCAmelCase : str = sample_prev + sigma_prev * model_output __lowerCAmelCase : List[Any] = (sample_prev - pred_original_sample) / sigma_prev __lowerCAmelCase : Any = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=A_ , derivative=A_ , pred_original_sample=A_ ) def UpperCamelCase__ ( self , A_ , A_ , A_ ) ->Any: '''simple docstring''' raise NotImplementedError()
275
0
import gc import unittest from parameterized import parameterized from diffusers import FlaxUNetaDConditionModel from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import load_hf_numpy, require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp @slow @require_flax class a_ ( unittest.TestCase ): '''simple docstring''' def __snake_case ( self : List[str] , lowercase__ : int , lowercase__ : Tuple): '''simple docstring''' return F"""gaussian_noise_s={seed}_shape={'_'.join([str(lowercase__) for s in shape])}.npy""" def __snake_case ( self : List[Any]): '''simple docstring''' super().tearDown() gc.collect() def __snake_case ( self : int , lowercase__ : str=0 , lowercase__ : List[str]=(4, 4, 64, 64) , lowercase__ : List[Any]=False): '''simple docstring''' lowerCAmelCase__ = jnp.bfloataa if fpaa else jnp.floataa lowerCAmelCase__ = jnp.array(load_hf_numpy(self.get_file_format(lowercase__ , lowercase__)) , dtype=lowercase__) return image def __snake_case ( self : Any , lowercase__ : Optional[Any]=False , lowercase__ : Dict="CompVis/stable-diffusion-v1-4"): '''simple docstring''' lowerCAmelCase__ = jnp.bfloataa if fpaa else jnp.floataa lowerCAmelCase__ = 'bf16' if fpaa else None lowerCAmelCase__ , lowerCAmelCase__ = FlaxUNetaDConditionModel.from_pretrained( lowercase__ , subfolder='unet' , dtype=lowercase__ , revision=lowercase__) return model, params def __snake_case ( self : str , lowercase__ : Optional[int]=0 , lowercase__ : Any=(4, 77, 768) , lowercase__ : Optional[int]=False): '''simple docstring''' lowerCAmelCase__ = jnp.bfloataa if fpaa else jnp.floataa lowerCAmelCase__ = jnp.array(load_hf_numpy(self.get_file_format(lowercase__ , lowercase__)) , dtype=lowercase__) return hidden_states @parameterized.expand( [ # fmt: off [83, 4, [-0.2_323, -0.1_304, 0.0_813, -0.3_093, -0.0_919, -0.1_571, -0.1_125, -0.5_806]], [17, 0.55, [-0.0_831, -0.2_443, 0.0_901, -0.0_919, 0.3_396, 0.0_103, -0.3_743, 0.0_701]], [8, 0.89, [-0.4_863, 0.0_859, 0.0_875, -0.1_658, 0.9_199, -0.0_114, 0.4_839, 0.4_639]], [3, 1_000, [-0.5_649, 0.2_402, -0.5_518, 0.1_248, 1.1_328, -0.2_443, -0.0_325, -1.0_078]], # fmt: on ]) def __snake_case ( self : Tuple , lowercase__ : str , lowercase__ : Any , lowercase__ : Any): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ = self.get_unet_model(model_id='CompVis/stable-diffusion-v1-4' , fpaa=lowercase__) lowerCAmelCase__ = self.get_latents(lowercase__ , fpaa=lowercase__) lowerCAmelCase__ = self.get_encoder_hidden_states(lowercase__ , fpaa=lowercase__) lowerCAmelCase__ = model.apply( {'params': params} , lowercase__ , jnp.array(lowercase__ , dtype=jnp.intaa) , encoder_hidden_states=lowercase__ , ).sample assert sample.shape == latents.shape lowerCAmelCase__ = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten())) , dtype=jnp.floataa) lowerCAmelCase__ = jnp.array(lowercase__ , dtype=jnp.floataa) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, in the same hardware assert jnp.allclose(lowercase__ , lowercase__ , atol=1e-2) @parameterized.expand( [ # fmt: off [83, 4, [0.1_514, 0.0_807, 0.1_624, 0.1_016, -0.1_896, 0.0_263, 0.0_677, 0.2_310]], [17, 0.55, [0.1_164, -0.0_216, 0.0_170, 0.1_589, -0.3_120, 0.1_005, -0.0_581, -0.1_458]], [8, 0.89, [-0.1_758, -0.0_169, 0.1_004, -0.1_411, 0.1_312, 0.1_103, -0.1_996, 0.2_139]], [3, 1_000, [0.1_214, 0.0_352, -0.0_731, -0.1_562, -0.0_994, -0.0_906, -0.2_340, -0.0_539]], # fmt: on ]) def __snake_case ( self : Tuple , lowercase__ : Tuple , lowercase__ : List[str] , lowercase__ : Any): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ = self.get_unet_model(model_id='stabilityai/stable-diffusion-2' , fpaa=lowercase__) lowerCAmelCase__ = self.get_latents(lowercase__ , shape=(4, 4, 96, 96) , fpaa=lowercase__) lowerCAmelCase__ = self.get_encoder_hidden_states(lowercase__ , shape=(4, 77, 1_024) , fpaa=lowercase__) lowerCAmelCase__ = model.apply( {'params': params} , lowercase__ , jnp.array(lowercase__ , dtype=jnp.intaa) , encoder_hidden_states=lowercase__ , ).sample assert sample.shape == latents.shape lowerCAmelCase__ = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten())) , dtype=jnp.floataa) lowerCAmelCase__ = jnp.array(lowercase__ , dtype=jnp.floataa) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, on the same hardware assert jnp.allclose(lowercase__ , lowercase__ , atol=1e-2)
119
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import convert_to_rgb, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCAmelCase__ = logging.get_logger(__name__) class a_ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCAmelCase_ = ['pixel_values'] def __init__( self : Tuple , lowercase__ : bool = True , lowercase__ : Dict[str, int] = None , lowercase__ : PILImageResampling = PILImageResampling.BICUBIC , lowercase__ : bool = True , lowercase__ : Union[int, float] = 1 / 255 , lowercase__ : bool = True , lowercase__ : Optional[Union[float, List[float]]] = None , lowercase__ : Optional[Union[float, List[float]]] = None , lowercase__ : bool = True , **lowercase__ : List[Any] , ): '''simple docstring''' super().__init__(**lowercase__) lowerCAmelCase__ = size if size is not None else {'height': 384, 'width': 384} lowerCAmelCase__ = get_size_dict(lowercase__ , default_to_square=lowercase__) lowerCAmelCase__ = do_resize lowerCAmelCase__ = size lowerCAmelCase__ = resample lowerCAmelCase__ = do_rescale lowerCAmelCase__ = rescale_factor lowerCAmelCase__ = do_normalize lowerCAmelCase__ = image_mean if image_mean is not None else OPENAI_CLIP_MEAN lowerCAmelCase__ = image_std if image_std is not None else OPENAI_CLIP_STD lowerCAmelCase__ = do_convert_rgb def __snake_case ( self : List[str] , lowercase__ : np.ndarray , lowercase__ : Dict[str, int] , lowercase__ : PILImageResampling = PILImageResampling.BICUBIC , lowercase__ : Optional[Union[str, ChannelDimension]] = None , **lowercase__ : Dict , ): '''simple docstring''' lowerCAmelCase__ = get_size_dict(lowercase__ , default_to_square=lowercase__) if "height" not in size or "width" not in size: raise ValueError(F"""The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}""") lowerCAmelCase__ = (size['height'], size['width']) return resize(lowercase__ , size=lowercase__ , resample=lowercase__ , data_format=lowercase__ , **lowercase__) def __snake_case ( self : List[str] , lowercase__ : np.ndarray , lowercase__ : Union[int, float] , lowercase__ : Optional[Union[str, ChannelDimension]] = None , **lowercase__ : Union[str, Any] , ): '''simple docstring''' return rescale(lowercase__ , scale=lowercase__ , data_format=lowercase__ , **lowercase__) def __snake_case ( self : Optional[Any] , lowercase__ : np.ndarray , lowercase__ : Union[float, List[float]] , lowercase__ : Union[float, List[float]] , lowercase__ : Optional[Union[str, ChannelDimension]] = None , **lowercase__ : Any , ): '''simple docstring''' return normalize(lowercase__ , mean=lowercase__ , std=lowercase__ , data_format=lowercase__ , **lowercase__) def __snake_case ( self : Any , lowercase__ : ImageInput , lowercase__ : Optional[bool] = None , lowercase__ : Optional[Dict[str, int]] = None , lowercase__ : PILImageResampling = None , lowercase__ : Optional[bool] = None , lowercase__ : Optional[float] = None , lowercase__ : Optional[bool] = None , lowercase__ : Optional[Union[float, List[float]]] = None , lowercase__ : Optional[Union[float, List[float]]] = None , lowercase__ : Optional[Union[str, TensorType]] = None , lowercase__ : bool = None , lowercase__ : ChannelDimension = ChannelDimension.FIRST , **lowercase__ : Dict , ): '''simple docstring''' lowerCAmelCase__ = do_resize if do_resize is not None else self.do_resize lowerCAmelCase__ = resample if resample is not None else self.resample lowerCAmelCase__ = do_rescale if do_rescale is not None else self.do_rescale lowerCAmelCase__ = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCAmelCase__ = do_normalize if do_normalize is not None else self.do_normalize lowerCAmelCase__ = image_mean if image_mean is not None else self.image_mean lowerCAmelCase__ = image_std if image_std is not None else self.image_std lowerCAmelCase__ = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb lowerCAmelCase__ = size if size is not None else self.size lowerCAmelCase__ = get_size_dict(lowercase__ , default_to_square=lowercase__) lowerCAmelCase__ = make_list_of_images(lowercase__) if not valid_images(lowercase__): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.') if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.') if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.') if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.') # PIL RGBA images are converted to RGB if do_convert_rgb: lowerCAmelCase__ = [convert_to_rgb(lowercase__) for image in images] # All transformations expect numpy arrays. lowerCAmelCase__ = [to_numpy_array(lowercase__) for image in images] if do_resize: lowerCAmelCase__ = [self.resize(image=lowercase__ , size=lowercase__ , resample=lowercase__) for image in images] if do_rescale: lowerCAmelCase__ = [self.rescale(image=lowercase__ , scale=lowercase__) for image in images] if do_normalize: lowerCAmelCase__ = [self.normalize(image=lowercase__ , mean=lowercase__ , std=lowercase__) for image in images] lowerCAmelCase__ = [to_channel_dimension_format(lowercase__ , lowercase__) for image in images] lowerCAmelCase__ = BatchFeature(data={'pixel_values': images} , tensor_type=lowercase__) return encoded_outputs
119
1
'''simple docstring''' from __future__ import annotations def SCREAMING_SNAKE_CASE__ ( __A ) -> list[int]: # This function is recursive _snake_case = len(__A ) # If the array contains only one element, we return it (it's the stop condition of # recursion) if array_length <= 1: return array # Else _snake_case = array[0] _snake_case = False _snake_case = 1 _snake_case = [] while not is_found and i < array_length: if array[i] < pivot: _snake_case = True _snake_case = [element for element in array[i:] if element >= array[i]] _snake_case = longest_subsequence(__A ) if len(__A ) > len(__A ): _snake_case = temp_array else: i += 1 _snake_case = [element for element in array[1:] if element >= pivot] _snake_case = [pivot, *longest_subsequence(__A )] if len(__A ) > len(__A ): return temp_array else: return longest_subseq if __name__ == "__main__": import doctest doctest.testmod()
42
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowercase : List[str] = { "configuration_pix2struct": [ "PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP", "Pix2StructConfig", "Pix2StructTextConfig", "Pix2StructVisionConfig", ], "processing_pix2struct": ["Pix2StructProcessor"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Optional[int] = ["Pix2StructImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Tuple = [ "PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST", "Pix2StructPreTrainedModel", "Pix2StructForConditionalGeneration", "Pix2StructVisionModel", "Pix2StructTextModel", ] if TYPE_CHECKING: from .configuration_pixastruct import ( PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP, PixaStructConfig, PixaStructTextConfig, PixaStructVisionConfig, ) from .processing_pixastruct import PixaStructProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_pixastruct import PixaStructImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pixastruct import ( PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST, PixaStructForConditionalGeneration, PixaStructPreTrainedModel, PixaStructTextModel, PixaStructVisionModel, ) else: import sys lowercase : List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
42
1
import math class _snake_case : def A__ ( self : str, __lowercase : list[list[float]], __lowercase : list[int] ): lowercase__ = 0.0 lowercase__ = 0.0 for i in range(len(__lowercase ) ): da += math.pow((sample[i] - weights[0][i]), 2 ) da += math.pow((sample[i] - weights[1][i]), 2 ) return 0 if da > da else 1 return 0 def A__ ( self : int, __lowercase : list[list[int | float]], __lowercase : list[int], __lowercase : int, __lowercase : float ): for i in range(len(__lowercase ) ): weights[j][i] += alpha * (sample[i] - weights[j][i]) return weights def __lowerCAmelCase ( ): # Training Examples ( m, n ) lowercase__ = [[1, 1, 0, 0], [0, 0, 0, 1], [1, 0, 0, 0], [0, 0, 1, 1]] # weight initialization ( n, C ) lowercase__ = [[0.2, 0.6, 0.5, 0.9], [0.8, 0.4, 0.7, 0.3]] # training lowercase__ = SelfOrganizingMap() lowercase__ = 3 lowercase__ = 0.5 for _ in range(SCREAMING_SNAKE_CASE_ ): for j in range(len(SCREAMING_SNAKE_CASE_ ) ): # training sample lowercase__ = training_samples[j] # Compute the winning vector lowercase__ = self_organizing_map.get_winner(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Update the winning vector lowercase__ = self_organizing_map.update(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # classify test sample lowercase__ = [0, 0, 0, 1] lowercase__ = self_organizing_map.get_winner(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # results print(f'''Clusters that the test sample belongs to : {winner}''' ) print(f'''Weights that have been trained : {weights}''' ) # running the main() function if __name__ == "__main__": main()
224
import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging lowercase_ = logging.get_logger(__name__) def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ ): lowercase__ = r"\w+[.]\d+" lowercase__ = re.findall(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for pat in pats: lowercase__ = key.replace(SCREAMING_SNAKE_CASE_ , "_".join(pat.split("." ) ) ) return key def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): lowercase__ = pt_tuple_key[:-1] + ("scale",) if ( any("norm" in str_ for str_ in pt_tuple_key ) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): lowercase__ = pt_tuple_key[:-1] + ("scale",) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: lowercase__ = pt_tuple_key[:-1] + ("scale",) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: lowercase__ = pt_tuple_key[:-1] + ("embedding",) return renamed_pt_tuple_key, pt_tensor # conv layer lowercase__ = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: lowercase__ = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer lowercase__ = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight": lowercase__ = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight lowercase__ = pt_tuple_key[:-1] + ("weight",) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias lowercase__ = pt_tuple_key[:-1] + ("bias",) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=42 ): # Step 1: Convert pytorch tensor to numpy lowercase__ = {k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params lowercase__ = flax_model.init_weights(PRNGKey(SCREAMING_SNAKE_CASE_ ) ) lowercase__ = flatten_dict(SCREAMING_SNAKE_CASE_ ) lowercase__ = {} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): lowercase__ = rename_key(SCREAMING_SNAKE_CASE_ ) lowercase__ = tuple(renamed_pt_key.split("." ) ) # Correctly rename weight parameters lowercase__ , lowercase__ = rename_key_and_reshape_tensor(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( f'''PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ''' f'''{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.''' ) # also add unexpected weight so that warning is thrown lowercase__ = jnp.asarray(SCREAMING_SNAKE_CASE_ ) return unflatten_dict(SCREAMING_SNAKE_CASE_ )
224
1
from __future__ import annotations import unittest from transformers import RoFormerConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerModel, ) from transformers.models.roformer.modeling_tf_roformer import ( TFRoFormerSelfAttention, TFRoFormerSinusoidalPositionalEmbedding, ) class __snake_case : def __init__( self ,snake_case ,snake_case=13 ,snake_case=7 ,snake_case=True ,snake_case=True ,snake_case=True ,snake_case=True ,snake_case=99 ,snake_case=32 ,snake_case=2 ,snake_case=4 ,snake_case=37 ,snake_case="gelu" ,snake_case=0.1 ,snake_case=0.1 ,snake_case=512 ,snake_case=16 ,snake_case=2 ,snake_case=0.02 ,snake_case=3 ,snake_case=4 ,snake_case=None ,): '''simple docstring''' lowercase : Optional[Any] = parent lowercase : List[Any] = 13 lowercase : Any = 7 lowercase : Union[str, Any] = True lowercase : Dict = True lowercase : List[Any] = True lowercase : List[str] = True lowercase : Any = 99 lowercase : Tuple = 32 lowercase : Optional[Any] = 2 lowercase : Tuple = 4 lowercase : Tuple = 37 lowercase : Optional[int] = """gelu""" lowercase : List[str] = 0.1 lowercase : Tuple = 0.1 lowercase : Union[str, Any] = 512 lowercase : List[str] = 16 lowercase : Optional[int] = 2 lowercase : str = 0.02 lowercase : int = 3 lowercase : Optional[Any] = 4 lowercase : str = None def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) lowercase : Tuple = None if self.use_input_mask: lowercase : Dict = random_attention_mask([self.batch_size, self.seq_length] ) lowercase : Any = None if self.use_token_type_ids: lowercase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) lowercase : List[str] = None lowercase : Optional[int] = None lowercase : Any = None if self.use_labels: lowercase : Union[str, Any] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) lowercase : Any = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) lowercase : str = ids_tensor([self.batch_size] ,self.num_choices ) lowercase : Any = RoFormerConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,initializer_range=self.initializer_range ,return_dict=snake_case ,) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ): '''simple docstring''' lowercase : Union[str, Any] = TFRoFormerModel(config=snake_case ) lowercase : List[str] = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} lowercase : Tuple = [input_ids, input_mask] lowercase : Any = model(snake_case ) lowercase : Any = model(snake_case ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ): '''simple docstring''' lowercase : str = True lowercase : Dict = TFRoFormerForCausalLM(config=snake_case ) lowercase : Dict = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } lowercase : Optional[int] = model(snake_case )["""logits"""] self.parent.assertListEqual( list(prediction_scores.numpy().shape ) ,[self.batch_size, self.seq_length, self.vocab_size] ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ): '''simple docstring''' lowercase : Dict = TFRoFormerForMaskedLM(config=snake_case ) lowercase : List[Any] = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } lowercase : Dict = model(snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ): '''simple docstring''' lowercase : int = self.num_labels lowercase : Any = TFRoFormerForSequenceClassification(config=snake_case ) lowercase : int = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } lowercase : Tuple = model(snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ): '''simple docstring''' lowercase : int = self.num_choices lowercase : Tuple = TFRoFormerForMultipleChoice(config=snake_case ) lowercase : Any = tf.tile(tf.expand_dims(snake_case ,1 ) ,(1, self.num_choices, 1) ) lowercase : Union[str, Any] = tf.tile(tf.expand_dims(snake_case ,1 ) ,(1, self.num_choices, 1) ) lowercase : Optional[Any] = tf.tile(tf.expand_dims(snake_case ,1 ) ,(1, self.num_choices, 1) ) lowercase : Optional[Any] = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, """token_type_ids""": multiple_choice_token_type_ids, } lowercase : Dict = model(snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ): '''simple docstring''' lowercase : List[Any] = self.num_labels lowercase : List[str] = TFRoFormerForTokenClassification(config=snake_case ) lowercase : int = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } lowercase : List[str] = model(snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ): '''simple docstring''' lowercase : Any = TFRoFormerForQuestionAnswering(config=snake_case ) lowercase : Optional[Any] = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } lowercase : Dict = model(snake_case ) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Union[str, Any] = self.prepare_config_and_inputs() ( ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ) : List[str] = config_and_inputs lowercase : List[str] = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class __snake_case ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): _a : Tuple= ( ( TFRoFormerModel, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerForMultipleChoice, ) if is_tf_available() else () ) _a : Dict= ( { "feature-extraction": TFRoFormerModel, "fill-mask": TFRoFormerForMaskedLM, "question-answering": TFRoFormerForQuestionAnswering, "text-classification": TFRoFormerForSequenceClassification, "text-generation": TFRoFormerForCausalLM, "token-classification": TFRoFormerForTokenClassification, "zero-shot": TFRoFormerForSequenceClassification, } if is_tf_available() else {} ) _a : List[Any]= False _a : Optional[Any]= False def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ): '''simple docstring''' if pipeline_test_casse_name == "TextGenerationPipelineTests": return True return False def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Optional[Any] = TFRoFormerModelTester(self ) lowercase : Optional[Any] = ConfigTester(self ,config_class=snake_case ,hidden_size=37 ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' self.config_tester.run_common_tests() def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head(*snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*snake_case ) @slow def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Any = TFRoFormerModel.from_pretrained("""junnyu/roformer_chinese_base""" ) self.assertIsNotNone(snake_case ) @require_tf class __snake_case ( unittest.TestCase ): @slow def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Any = TFRoFormerForMaskedLM.from_pretrained("""junnyu/roformer_chinese_base""" ) lowercase : Optional[int] = tf.constant([[0, 1, 2, 3, 4, 5]] ) lowercase : Tuple = model(snake_case )[0] # TODO Replace vocab size lowercase : int = 50000 lowercase : Optional[Any] = [1, 6, vocab_size] self.assertEqual(output.shape ,snake_case ) print(output[:, :3, :3] ) # TODO Replace values below with what was printed above. lowercase : Any = tf.constant( [ [ [-0.12_053_341, -1.0_264_901, 0.29_221_946], [-1.5_133_783, 0.197_433, 0.15_190_607], [-5.0_135_403, -3.900_256, -0.84_038_764], ] ] ) tf.debugging.assert_near(output[:, :3, :3] ,snake_case ,atol=1e-4 ) @require_tf class __snake_case ( unittest.TestCase ): _a : Dict= 1E-4 def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Dict = tf.constant([[4, 10]] ) lowercase : int = TFRoFormerSinusoidalPositionalEmbedding(num_positions=6 ,embedding_dim=6 ) lowercase : Optional[Any] = emba(input_ids.shape ) lowercase : Optional[int] = tf.constant( [[0.0_000, 0.0_000, 0.0_000, 1.0_000, 1.0_000, 1.0_000], [0.8_415, 0.0_464, 0.0_022, 0.5_403, 0.9_989, 1.0_000]] ) tf.debugging.assert_near(snake_case ,snake_case ,atol=self.tolerance ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Optional[Any] = tf.constant( [ [0.0_000, 0.0_000, 0.0_000, 0.0_000, 0.0_000], [0.8_415, 0.8_219, 0.8_020, 0.7_819, 0.7_617], [0.9_093, 0.9_364, 0.9_581, 0.9_749, 0.9_870], ] ) lowercase : str = TFRoFormerSinusoidalPositionalEmbedding(num_positions=512 ,embedding_dim=512 ) emba([2, 16, 512] ) lowercase : Union[str, Any] = emba.weight[:3, :5] tf.debugging.assert_near(snake_case ,snake_case ,atol=self.tolerance ) @require_tf class __snake_case ( unittest.TestCase ): _a : int= 1E-4 def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Optional[int] = tf.reshape(tf.range(2 * 12 * 16 * 64 ,dtype=tf.floataa ) ,shape=(2, 12, 16, 64) ) / 100 lowercase : Tuple = -tf.reshape(tf.range(2 * 12 * 16 * 64 ,dtype=tf.floataa ) ,shape=(2, 12, 16, 64) ) / 100 lowercase : Tuple = TFRoFormerSinusoidalPositionalEmbedding(num_positions=32 ,embedding_dim=64 ) lowercase : Union[str, Any] = embed_positions([2, 16, 768] )[None, None, :, :] lowercase , lowercase : Union[str, Any] = TFRoFormerSelfAttention.apply_rotary_position_embeddings( snake_case ,snake_case ,snake_case ) lowercase : Optional[Any] = tf.constant( [ [0.0_000, 0.0_100, 0.0_200, 0.0_300, 0.0_400, 0.0_500, 0.0_600, 0.0_700], [-0.2_012, 0.8_897, 0.0_263, 0.9_401, 0.2_074, 0.9_463, 0.3_481, 0.9_343], [-1.7_057, 0.6_271, -1.2_145, 1.3_897, -0.6_303, 1.7_647, -0.1_173, 1.8_985], [-2.1_731, -1.6_397, -2.7_358, 0.2_854, -2.1_840, 1.7_183, -1.3_018, 2.4_871], [0.2_717, -3.6_173, -2.9_206, -2.1_988, -3.6_638, 0.3_858, -2.9_155, 2.2_980], [3.9_859, -2.1_580, -0.7_984, -4.4_904, -4.1_181, -2.0_252, -4.4_782, 1.1_253], ] ) lowercase : Optional[Any] = tf.constant( [ [0.0_000, -0.0_100, -0.0_200, -0.0_300, -0.0_400, -0.0_500, -0.0_600, -0.0_700], [0.2_012, -0.8_897, -0.0_263, -0.9_401, -0.2_074, -0.9_463, -0.3_481, -0.9_343], [1.7_057, -0.6_271, 1.2_145, -1.3_897, 0.6_303, -1.7_647, 0.1_173, -1.8_985], [2.1_731, 1.6_397, 2.7_358, -0.2_854, 2.1_840, -1.7_183, 1.3_018, -2.4_871], [-0.2_717, 3.6_173, 2.9_206, 2.1_988, 3.6_638, -0.3_858, 2.9_155, -2.2_980], [-3.9_859, 2.1_580, 0.7_984, 4.4_904, 4.1_181, 2.0_252, 4.4_782, -1.1_253], ] ) tf.debugging.assert_near(query_layer[0, 0, :6, :8] ,snake_case ,atol=self.tolerance ) tf.debugging.assert_near(key_layer[0, 0, :6, :8] ,snake_case ,atol=self.tolerance )
20
import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def _snake_case( SCREAMING_SNAKE_CASE__ ) -> Tuple: lowercase : Union[str, Any] = [] embed.append( ( f"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight", f"stage{idx}.patch_embed.proj.weight", ) ) embed.append( ( f"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias", f"stage{idx}.patch_embed.proj.bias", ) ) embed.append( ( f"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight", f"stage{idx}.patch_embed.norm.weight", ) ) embed.append( ( f"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias", f"stage{idx}.patch_embed.norm.bias", ) ) return embed def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> str: lowercase : Optional[Any] = [] attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight", f"stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight", f"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias", f"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean", f"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var", f"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked", f"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight", f"stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight", f"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias", f"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean", f"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var", f"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked", f"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight", f"stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight", f"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias", f"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean", f"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var", f"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked", f"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight", f"stage{idx}.blocks.{cnt}.attn.proj_q.weight", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias", f"stage{idx}.blocks.{cnt}.attn.proj_q.bias", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight", f"stage{idx}.blocks.{cnt}.attn.proj_k.weight", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias", f"stage{idx}.blocks.{cnt}.attn.proj_k.bias", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight", f"stage{idx}.blocks.{cnt}.attn.proj_v.weight", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias", f"stage{idx}.blocks.{cnt}.attn.proj_v.bias", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight", f"stage{idx}.blocks.{cnt}.attn.proj.weight", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias", f"stage{idx}.blocks.{cnt}.attn.proj.bias", ) ) attention_weights.append( (f"cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight", f"stage{idx}.blocks.{cnt}.mlp.fc1.weight") ) attention_weights.append( (f"cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias", f"stage{idx}.blocks.{cnt}.mlp.fc1.bias") ) attention_weights.append( (f"cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight", f"stage{idx}.blocks.{cnt}.mlp.fc2.weight") ) attention_weights.append( (f"cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias", f"stage{idx}.blocks.{cnt}.mlp.fc2.bias") ) attention_weights.append( (f"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight", f"stage{idx}.blocks.{cnt}.norm1.weight") ) attention_weights.append( (f"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias", f"stage{idx}.blocks.{cnt}.norm1.bias") ) attention_weights.append( (f"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight", f"stage{idx}.blocks.{cnt}.norm2.weight") ) attention_weights.append( (f"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias", f"stage{idx}.blocks.{cnt}.norm2.bias") ) return attention_weights def _snake_case( SCREAMING_SNAKE_CASE__ ) -> Optional[Any]: lowercase : Optional[Any] = [] token.append((f"cvt.encoder.stages.{idx}.cls_token", """stage2.cls_token""") ) return token def _snake_case( ) -> Dict: lowercase : Optional[Any] = [] head.append(("""layernorm.weight""", """norm.weight""") ) head.append(("""layernorm.bias""", """norm.bias""") ) head.append(("""classifier.weight""", """head.weight""") ) head.append(("""classifier.bias""", """head.bias""") ) return head def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> str: lowercase : Any = """imagenet-1k-id2label.json""" lowercase : List[str] = 1_000 lowercase : int = """huggingface/label-files""" lowercase : Union[str, Any] = num_labels lowercase : Optional[Any] = json.load(open(cached_download(hf_hub_url(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , repo_type="""dataset""" ) ) , """r""" ) ) lowercase : List[Any] = {int(SCREAMING_SNAKE_CASE__ ): v for k, v in idalabel.items()} lowercase : Dict = idalabel lowercase : List[str] = {v: k for k, v in idalabel.items()} lowercase : List[str] = CvtConfig(num_labels=SCREAMING_SNAKE_CASE__ , idalabel=SCREAMING_SNAKE_CASE__ , labelaid=SCREAMING_SNAKE_CASE__ ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit("""/""" , 1 )[-1][4:6] == "13": lowercase : Tuple = [1, 2, 10] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit("""/""" , 1 )[-1][4:6] == "21": lowercase : Dict = [1, 4, 16] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: lowercase : int = [2, 2, 20] lowercase : Optional[int] = [3, 12, 16] lowercase : str = [192, 768, 1_024] lowercase : Union[str, Any] = CvtForImageClassification(SCREAMING_SNAKE_CASE__ ) lowercase : Union[str, Any] = AutoImageProcessor.from_pretrained("""facebook/convnext-base-224-22k-1k""" ) lowercase : Optional[Any] = image_size lowercase : Union[str, Any] = torch.load(SCREAMING_SNAKE_CASE__ , map_location=torch.device("""cpu""" ) ) lowercase : Optional[Any] = OrderedDict() lowercase : Tuple = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: lowercase : Optional[Any] = list_of_state_dict + cls_token(SCREAMING_SNAKE_CASE__ ) lowercase : str = list_of_state_dict + embeddings(SCREAMING_SNAKE_CASE__ ) for cnt in range(config.depth[idx] ): lowercase : List[str] = list_of_state_dict + attention(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowercase : List[str] = list_of_state_dict + final() for gg in list_of_state_dict: print(SCREAMING_SNAKE_CASE__ ) for i in range(len(SCREAMING_SNAKE_CASE__ ) ): lowercase : Optional[Any] = original_weights[list_of_state_dict[i][1]] model.load_state_dict(SCREAMING_SNAKE_CASE__ ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE__ ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": lowercase : Tuple = argparse.ArgumentParser() parser.add_argument( """--cvt_model""", default="""cvt-w24""", type=str, help="""Name of the cvt model you'd like to convert.""", ) parser.add_argument( """--image_size""", default=384, type=int, help="""Input Image Size""", ) parser.add_argument( """--cvt_file_name""", default=R"""cvtmodels\CvT-w24-384x384-IN-22k.pth""", type=str, help="""Input Image Size""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) lowercase : Optional[int] = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
20
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { 'facebook/s2t-wav2vec2-large-en-de': ( 'https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/config.json' ), # See all Speech2Text models at https://huggingface.co/models?filter=speech2text2 } class snake_case ( SCREAMING_SNAKE_CASE_ ): a_ : Optional[int] = """speech_to_text_2""" a_ : Tuple = ["""past_key_values"""] a_ : List[str] = {"""num_attention_heads""": """decoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self , __UpperCAmelCase=1_00_00 , __UpperCAmelCase=6 , __UpperCAmelCase=20_48 , __UpperCAmelCase=4 , __UpperCAmelCase=0.0 , __UpperCAmelCase=True , __UpperCAmelCase="relu" , __UpperCAmelCase=2_56 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.02 , __UpperCAmelCase=2 , __UpperCAmelCase=True , __UpperCAmelCase=1 , __UpperCAmelCase=0 , __UpperCAmelCase=2 , __UpperCAmelCase=10_24 , **__UpperCAmelCase , ) ->Any: a_ = vocab_size a_ = d_model a_ = decoder_ffn_dim a_ = decoder_layers a_ = decoder_attention_heads a_ = dropout a_ = attention_dropout a_ = activation_dropout a_ = activation_function a_ = init_std a_ = decoder_layerdrop a_ = use_cache a_ = decoder_layers a_ = scale_embedding # scale factor will be sqrt(d_model) if True a_ = max_target_positions super().__init__( pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , decoder_start_token_id=__UpperCAmelCase , **__UpperCAmelCase , )
351
"""simple docstring""" def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->int: """simple docstring""" if n == 0: return 1 elif n % 2 == 1: return (binary_exponentiation(UpperCAmelCase , n - 1 , UpperCAmelCase ) * a) % mod else: a_ = binary_exponentiation(UpperCAmelCase , n / 2 , UpperCAmelCase ) return (b * b) % mod # a prime number UpperCamelCase_ = 701 UpperCamelCase_ = 1000000000 UpperCamelCase_ = 10 # using binary exponentiation function, O(log(p)): print((a / b) % p == (a * binary_exponentiation(b, p - 2, p)) % p) print((a / b) % p == (a * b ** (p - 2)) % p)
303
0
'''simple docstring''' import json import os import shutil import warnings from argparse import ArgumentParser, Namespace from pathlib import Path from typing import List from ..utils import logging from . import BaseTransformersCLICommand try: from cookiecutter.main import cookiecutter lowerCamelCase :Tuple = True except ImportError: lowerCamelCase :List[Any] = False lowerCamelCase :Optional[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name def a ( lowerCamelCase__ ): '''simple docstring''' return AddNewModelCommand(args.testing , args.testing_file , path=args.path ) class _lowerCAmelCase ( SCREAMING_SNAKE_CASE_ ): @staticmethod def _a (lowercase ): A_ : List[str] = parser.add_parser("""add-new-model""" ) add_new_model_parser.add_argument("""--testing""" , action="""store_true""" , help="""If in testing mode.""" ) add_new_model_parser.add_argument("""--testing_file""" , type=_a , help="""Configuration file on which to run.""" ) add_new_model_parser.add_argument( """--path""" , type=_a , help="""Path to cookiecutter. Should only be used for testing purposes.""" ) add_new_model_parser.set_defaults(func=_a ) def __init__(self , lowercase , lowercase , lowercase=None , *lowercase ): A_ : str = testing A_ : List[Any] = testing_file A_ : Tuple = path def _a (self ): warnings.warn( """The command `transformers-cli add-new-model` is deprecated and will be removed in v5 of Transformers. """ """It is not actively maintained anymore, so might give a result that won\'t pass all tests and quality """ """checks, you should use `transformers-cli add-new-model-like` instead.""" ) if not _has_cookiecutter: raise ImportError( """Model creation dependencies are required to use the `add_new_model` command. Install them by running """ """the following at the root of your `transformers` clone:\n\n\t$ pip install -e .[modelcreation]\n""" ) # Ensure that there is no other `cookiecutter-template-xxx` directory in the current working directory A_ : Any = [directory for directory in os.listdir() if 'cookiecutter-template-' == directory[:22]] if len(_a ) > 0: raise ValueError( """Several directories starting with `cookiecutter-template-` in current working directory. """ """Please clean your directory by removing all folders starting with `cookiecutter-template-` or """ """change your working directory.""" ) A_ : List[Any] = ( Path(_a ).parent.parent.parent.parent if self._path is None else Path(self._path ).parent.parent ) A_ : List[str] = path_to_transformer_root / 'templates' / 'adding_a_new_model' # Execute cookiecutter if not self._testing: cookiecutter(str(_a ) ) else: with open(self._testing_file , """r""" ) as configuration_file: A_ : List[Any] = json.load(_a ) cookiecutter( str(path_to_cookiecutter if self._path is None else self._path ) , no_input=_a , extra_context=_a , ) A_ : List[str] = [directory for directory in os.listdir() if 'cookiecutter-template-' in directory[:22]][0] # Retrieve configuration with open(directory + """/configuration.json""" , """r""" ) as configuration_file: A_ : Optional[int] = json.load(_a ) A_ : Tuple = configuration['lowercase_modelname'] A_ : List[Any] = configuration['generate_tensorflow_pytorch_and_flax'] os.remove(F'{directory}/configuration.json' ) A_ : Optional[Any] = 'PyTorch' in generate_tensorflow_pytorch_and_flax A_ : List[Any] = 'TensorFlow' in generate_tensorflow_pytorch_and_flax A_ : Optional[Any] = 'Flax' in generate_tensorflow_pytorch_and_flax A_ : Tuple = F'{path_to_transformer_root}/src/transformers/models/{lowercase_model_name}' os.makedirs(_a , exist_ok=_a ) os.makedirs(F'{path_to_transformer_root}/tests/models/{lowercase_model_name}' , exist_ok=_a ) # Tests require submodules as they have parent imports with open(F'{path_to_transformer_root}/tests/models/{lowercase_model_name}/__init__.py' , """w""" ): pass shutil.move( F'{directory}/__init__.py' , F'{model_dir}/__init__.py' , ) shutil.move( F'{directory}/configuration_{lowercase_model_name}.py' , F'{model_dir}/configuration_{lowercase_model_name}.py' , ) def remove_copy_lines(lowercase ): with open(_a , """r""" ) as f: A_ : List[str] = f.readlines() with open(_a , """w""" ) as f: for line in lines: if "# Copied from transformers." not in line: f.write(_a ) if output_pytorch: if not self._testing: remove_copy_lines(F'{directory}/modeling_{lowercase_model_name}.py' ) shutil.move( F'{directory}/modeling_{lowercase_model_name}.py' , F'{model_dir}/modeling_{lowercase_model_name}.py' , ) shutil.move( F'{directory}/test_modeling_{lowercase_model_name}.py' , F'{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_{lowercase_model_name}.py' , ) else: os.remove(F'{directory}/modeling_{lowercase_model_name}.py' ) os.remove(F'{directory}/test_modeling_{lowercase_model_name}.py' ) if output_tensorflow: if not self._testing: remove_copy_lines(F'{directory}/modeling_tf_{lowercase_model_name}.py' ) shutil.move( F'{directory}/modeling_tf_{lowercase_model_name}.py' , F'{model_dir}/modeling_tf_{lowercase_model_name}.py' , ) shutil.move( F'{directory}/test_modeling_tf_{lowercase_model_name}.py' , F'{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_tf_{lowercase_model_name}.py' , ) else: os.remove(F'{directory}/modeling_tf_{lowercase_model_name}.py' ) os.remove(F'{directory}/test_modeling_tf_{lowercase_model_name}.py' ) if output_flax: if not self._testing: remove_copy_lines(F'{directory}/modeling_flax_{lowercase_model_name}.py' ) shutil.move( F'{directory}/modeling_flax_{lowercase_model_name}.py' , F'{model_dir}/modeling_flax_{lowercase_model_name}.py' , ) shutil.move( F'{directory}/test_modeling_flax_{lowercase_model_name}.py' , F'{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_flax_{lowercase_model_name}.py' , ) else: os.remove(F'{directory}/modeling_flax_{lowercase_model_name}.py' ) os.remove(F'{directory}/test_modeling_flax_{lowercase_model_name}.py' ) shutil.move( F'{directory}/{lowercase_model_name}.md' , F'{path_to_transformer_root}/docs/source/en/model_doc/{lowercase_model_name}.md' , ) shutil.move( F'{directory}/tokenization_{lowercase_model_name}.py' , F'{model_dir}/tokenization_{lowercase_model_name}.py' , ) shutil.move( F'{directory}/tokenization_fast_{lowercase_model_name}.py' , F'{model_dir}/tokenization_{lowercase_model_name}_fast.py' , ) from os import fdopen, remove from shutil import copymode, move from tempfile import mkstemp def replace(lowercase , lowercase , lowercase ): # Create temp file A_ : Any = mkstemp() A_ : int = False with fdopen(_a , """w""" ) as new_file: with open(_a ) as old_file: for line in old_file: new_file.write(_a ) if line_to_copy_below in line: A_ : int = True for line_to_copy in lines_to_copy: new_file.write(_a ) if not line_found: raise ValueError(F'Line {line_to_copy_below} was not found in file.' ) # Copy the file permissions from the old file to the new file copymode(_a , _a ) # Remove original file remove(_a ) # Move new file move(_a , _a ) def skip_units(lowercase ): return ( ("generating PyTorch" in line and not output_pytorch) or ("generating TensorFlow" in line and not output_tensorflow) or ("generating Flax" in line and not output_flax) ) def replace_in_files(lowercase ): with open(_a ) as datafile: A_ : int = [] A_ : Optional[Any] = False A_ : Optional[int] = False for line in datafile: if "# To replace in: " in line and "##" not in line: A_ : Any = line.split("""\"""" )[1] A_ : List[str] = skip_units(_a ) elif "# Below: " in line and "##" not in line: A_ : str = line.split("""\"""" )[1] A_ : Any = skip_units(_a ) elif "# End." in line and "##" not in line: if not skip_file and not skip_snippet: replace(_a , _a , _a ) A_ : str = [] elif "# Replace with" in line and "##" not in line: A_ : int = [] elif "##" not in line: lines_to_copy.append(_a ) remove(_a ) replace_in_files(F'{directory}/to_replace_{lowercase_model_name}.py' ) os.rmdir(_a )
206
'''simple docstring''' import argparse import io import requests import torch from omegaconf import OmegaConf from diffusers import AutoencoderKL from diffusers.pipelines.stable_diffusion.convert_from_ckpt import ( assign_to_checkpoint, conv_attn_to_linear, create_vae_diffusers_config, renew_vae_attention_paths, renew_vae_resnet_paths, ) def a_ ( _lowerCAmelCase ,_lowerCAmelCase ) -> Dict: __lowerCamelCase : Any = checkpoint __lowerCamelCase : List[str] = {} __lowerCamelCase : List[str] = vae_state_dict['encoder.conv_in.weight'] __lowerCamelCase : Dict = vae_state_dict['encoder.conv_in.bias'] __lowerCamelCase : Optional[Any] = vae_state_dict['encoder.conv_out.weight'] __lowerCamelCase : Optional[int] = vae_state_dict['encoder.conv_out.bias'] __lowerCamelCase : Optional[int] = vae_state_dict['encoder.norm_out.weight'] __lowerCamelCase : Optional[int] = vae_state_dict['encoder.norm_out.bias'] __lowerCamelCase : Dict = vae_state_dict['decoder.conv_in.weight'] __lowerCamelCase : List[str] = vae_state_dict['decoder.conv_in.bias'] __lowerCamelCase : Tuple = vae_state_dict['decoder.conv_out.weight'] __lowerCamelCase : List[str] = vae_state_dict['decoder.conv_out.bias'] __lowerCamelCase : Dict = vae_state_dict['decoder.norm_out.weight'] __lowerCamelCase : Union[str, Any] = vae_state_dict['decoder.norm_out.bias'] __lowerCamelCase : Any = vae_state_dict['quant_conv.weight'] __lowerCamelCase : Union[str, Any] = vae_state_dict['quant_conv.bias'] __lowerCamelCase : Tuple = vae_state_dict['post_quant_conv.weight'] __lowerCamelCase : List[Any] = vae_state_dict['post_quant_conv.bias'] # Retrieves the keys for the encoder down blocks only __lowerCamelCase : str = len({'.'.join(layer.split('.' )[:3] ) for layer in vae_state_dict if 'encoder.down' in layer} ) __lowerCamelCase : int = { layer_id: [key for key in vae_state_dict if F'down.{layer_id}' in key] for layer_id in range(_lowerCAmelCase ) } # Retrieves the keys for the decoder up blocks only __lowerCamelCase : Dict = len({'.'.join(layer.split('.' )[:3] ) for layer in vae_state_dict if 'decoder.up' in layer} ) __lowerCamelCase : Dict = { layer_id: [key for key in vae_state_dict if F'up.{layer_id}' in key] for layer_id in range(_lowerCAmelCase ) } for i in range(_lowerCAmelCase ): __lowerCamelCase : List[str] = [key for key in down_blocks[i] if F'down.{i}' in key and F'down.{i}.downsample' not in key] if F'encoder.down.{i}.downsample.conv.weight' in vae_state_dict: __lowerCamelCase : Any = vae_state_dict.pop( F'encoder.down.{i}.downsample.conv.weight' ) __lowerCamelCase : Any = vae_state_dict.pop( F'encoder.down.{i}.downsample.conv.bias' ) __lowerCamelCase : Optional[int] = renew_vae_resnet_paths(_lowerCAmelCase ) __lowerCamelCase : Any = {'old': F'down.{i}.block', 'new': F'down_blocks.{i}.resnets'} assign_to_checkpoint(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,additional_replacements=[meta_path] ,config=_lowerCAmelCase ) __lowerCamelCase : List[Any] = [key for key in vae_state_dict if 'encoder.mid.block' in key] __lowerCamelCase : str = 2 for i in range(1 ,num_mid_res_blocks + 1 ): __lowerCamelCase : int = [key for key in mid_resnets if F'encoder.mid.block_{i}' in key] __lowerCamelCase : Optional[Any] = renew_vae_resnet_paths(_lowerCAmelCase ) __lowerCamelCase : Dict = {'old': F'mid.block_{i}', 'new': F'mid_block.resnets.{i - 1}'} assign_to_checkpoint(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,additional_replacements=[meta_path] ,config=_lowerCAmelCase ) __lowerCamelCase : Optional[Any] = [key for key in vae_state_dict if 'encoder.mid.attn' in key] __lowerCamelCase : int = renew_vae_attention_paths(_lowerCAmelCase ) __lowerCamelCase : Optional[Any] = {'old': 'mid.attn_1', 'new': 'mid_block.attentions.0'} assign_to_checkpoint(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,additional_replacements=[meta_path] ,config=_lowerCAmelCase ) conv_attn_to_linear(_lowerCAmelCase ) for i in range(_lowerCAmelCase ): __lowerCamelCase : Optional[Any] = num_up_blocks - 1 - i __lowerCamelCase : Any = [ key for key in up_blocks[block_id] if F'up.{block_id}' in key and F'up.{block_id}.upsample' not in key ] if F'decoder.up.{block_id}.upsample.conv.weight' in vae_state_dict: __lowerCamelCase : Optional[int] = vae_state_dict[ F'decoder.up.{block_id}.upsample.conv.weight' ] __lowerCamelCase : Optional[Any] = vae_state_dict[ F'decoder.up.{block_id}.upsample.conv.bias' ] __lowerCamelCase : Tuple = renew_vae_resnet_paths(_lowerCAmelCase ) __lowerCamelCase : Any = {'old': F'up.{block_id}.block', 'new': F'up_blocks.{i}.resnets'} assign_to_checkpoint(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,additional_replacements=[meta_path] ,config=_lowerCAmelCase ) __lowerCamelCase : Optional[Any] = [key for key in vae_state_dict if 'decoder.mid.block' in key] __lowerCamelCase : Union[str, Any] = 2 for i in range(1 ,num_mid_res_blocks + 1 ): __lowerCamelCase : List[str] = [key for key in mid_resnets if F'decoder.mid.block_{i}' in key] __lowerCamelCase : str = renew_vae_resnet_paths(_lowerCAmelCase ) __lowerCamelCase : Any = {'old': F'mid.block_{i}', 'new': F'mid_block.resnets.{i - 1}'} assign_to_checkpoint(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,additional_replacements=[meta_path] ,config=_lowerCAmelCase ) __lowerCamelCase : Any = [key for key in vae_state_dict if 'decoder.mid.attn' in key] __lowerCamelCase : List[str] = renew_vae_attention_paths(_lowerCAmelCase ) __lowerCamelCase : Optional[Any] = {'old': 'mid.attn_1', 'new': 'mid_block.attentions.0'} assign_to_checkpoint(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,additional_replacements=[meta_path] ,config=_lowerCAmelCase ) conv_attn_to_linear(_lowerCAmelCase ) return new_checkpoint def a_ ( _lowerCAmelCase ,_lowerCAmelCase ,) -> List[Any]: # Only support V1 __lowerCamelCase : Any = requests.get( ' https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml' ) __lowerCamelCase : str = io.BytesIO(r.content ) __lowerCamelCase : Any = OmegaConf.load(_lowerCAmelCase ) __lowerCamelCase : List[Any] = 512 __lowerCamelCase : Dict = 'cuda' if torch.cuda.is_available() else 'cpu' if checkpoint_path.endswith('safetensors' ): from safetensors import safe_open __lowerCamelCase : Optional[Any] = {} with safe_open(_lowerCAmelCase ,framework='pt' ,device='cpu' ) as f: for key in f.keys(): __lowerCamelCase : int = f.get_tensor(_lowerCAmelCase ) else: __lowerCamelCase : int = torch.load(_lowerCAmelCase ,map_location=_lowerCAmelCase )['state_dict'] # Convert the VAE model. __lowerCamelCase : int = create_vae_diffusers_config(_lowerCAmelCase ,image_size=_lowerCAmelCase ) __lowerCamelCase : int = custom_convert_ldm_vae_checkpoint(_lowerCAmelCase ,_lowerCAmelCase ) __lowerCamelCase : Any = AutoencoderKL(**_lowerCAmelCase ) vae.load_state_dict(_lowerCAmelCase ) vae.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() parser.add_argument('--vae_pt_path', default=None, type=str, required=True, help='Path to the VAE.pt to convert.') parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the VAE.pt to convert.') _UpperCamelCase = parser.parse_args() vae_pt_to_vae_diffuser(args.vae_pt_path, args.dump_path)
208
0
from . import __version__ # Backward compatibility imports, to make sure all those objects can be found in file_utils from .utils import ( CLOUDFRONT_DISTRIB_PREFIX, CONFIG_NAME, DISABLE_TELEMETRY, DUMMY_INPUTS, DUMMY_MASK, ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, FEATURE_EXTRACTOR_NAME, FLAX_WEIGHTS_NAME, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, MODEL_CARD_NAME, MULTIPLE_CHOICE_DUMMY_INPUTS, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, SENTENCEPIECE_UNDERLINE, SPIECE_UNDERLINE, TF2_WEIGHTS_NAME, TF_WEIGHTS_NAME, TORCH_FX_REQUIRED_VERSION, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, USE_JAX, USE_TF, USE_TORCH, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ContextManagers, DummyObject, EntryNotFoundError, ExplicitEnum, ModelOutput, PaddingStrategy, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, TensorType, _LazyModule, add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, cached_property, copy_func, default_cache_path, define_sagemaker_information, get_cached_models, get_file_from_repo, get_full_repo_name, get_torch_version, has_file, http_user_agent, is_apex_available, is_bsa_available, is_coloredlogs_available, is_datasets_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_librosa_available, is_offline_mode, is_onnx_available, is_pandas_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytorch_quantization_available, is_rjieba_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_tensor, is_tensorflow_probability_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_training_run_on_sagemaker, is_vision_available, replace_return_docstrings, requires_backends, to_numpy, to_py_obj, torch_only_method, )
14
import argparse import torch from safetensors.torch import load_file from diffusers import StableDiffusionPipeline def lowerCamelCase ( a_ , a_ , a_ , a_ , a_ ) -> List[Any]: # load base model lowerCAmelCase_ = StableDiffusionPipeline.from_pretrained(a_ , torch_dtype=torch.floataa ) # load LoRA weight from .safetensors lowerCAmelCase_ = load_file(a_ ) lowerCAmelCase_ = [] # directly update weight in diffusers model for key in state_dict: # it is suggested to print out the key, it usually will be something like below # "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight" # as we have set the alpha beforehand, so just skip if ".alpha" in key or key in visited: continue if "text" in key: lowerCAmelCase_ = key.split('.' )[0].split(LORA_PREFIX_TEXT_ENCODER + '_' )[-1].split('_' ) lowerCAmelCase_ = pipeline.text_encoder else: lowerCAmelCase_ = key.split('.' )[0].split(LORA_PREFIX_UNET + '_' )[-1].split('_' ) lowerCAmelCase_ = pipeline.unet # find the target layer lowerCAmelCase_ = layer_infos.pop(0 ) while len(a_ ) > -1: try: lowerCAmelCase_ = curr_layer.__getattr__(a_ ) if len(a_ ) > 0: lowerCAmelCase_ = layer_infos.pop(0 ) elif len(a_ ) == 0: break except Exception: if len(a_ ) > 0: temp_name += "_" + layer_infos.pop(0 ) else: lowerCAmelCase_ = layer_infos.pop(0 ) lowerCAmelCase_ = [] if "lora_down" in key: pair_keys.append(key.replace('lora_down' , 'lora_up' ) ) pair_keys.append(a_ ) else: pair_keys.append(a_ ) pair_keys.append(key.replace('lora_up' , 'lora_down' ) ) # update weight if len(state_dict[pair_keys[0]].shape ) == 4: lowerCAmelCase_ = state_dict[pair_keys[0]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) lowerCAmelCase_ = state_dict[pair_keys[1]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(a_ , a_ ).unsqueeze(2 ).unsqueeze(3 ) else: lowerCAmelCase_ = state_dict[pair_keys[0]].to(torch.floataa ) lowerCAmelCase_ = state_dict[pair_keys[1]].to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(a_ , a_ ) # update visited list for item in pair_keys: visited.append(a_ ) return pipeline if __name__ == "__main__": lowerCamelCase_ = argparse.ArgumentParser() parser.add_argument( """--base_model_path""", default=None, type=str, required=True, help="""Path to the base model in diffusers format.""" ) parser.add_argument( """--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert.""" ) parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") parser.add_argument( """--lora_prefix_unet""", default="""lora_unet""", type=str, help="""The prefix of UNet weight in safetensors""" ) parser.add_argument( """--lora_prefix_text_encoder""", default="""lora_te""", type=str, help="""The prefix of text encoder weight in safetensors""", ) parser.add_argument("""--alpha""", default=0.75, type=float, help="""The merging ratio in W = W0 + alpha * deltaW""") parser.add_argument( """--to_safetensors""", action="""store_true""", help="""Whether to store pipeline in safetensors format or not.""" ) parser.add_argument("""--device""", type=str, help="""Device to use (e.g. cpu, cuda:0, cuda:1, etc.)""") lowerCamelCase_ = parser.parse_args() lowerCamelCase_ = args.base_model_path lowerCamelCase_ = args.checkpoint_path lowerCamelCase_ = args.dump_path lowerCamelCase_ = args.lora_prefix_unet lowerCamelCase_ = args.lora_prefix_text_encoder lowerCamelCase_ = args.alpha lowerCamelCase_ = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha) lowerCamelCase_ = pipe.to(args.device) pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
14
1
def UpperCamelCase ( snake_case__ : int , snake_case__ : int ) -> str: if a < 0 or b < 0: raise ValueError('the value of both inputs must be positive' ) UpperCamelCase : Optional[int] = str(bin(snake_case__ ) )[2:] # remove the leading "0b" UpperCamelCase : str = str(bin(snake_case__ ) )[2:] # remove the leading "0b" UpperCamelCase : Union[str, Any] = max(len(snake_case__ ) , len(snake_case__ ) ) return "0b" + "".join( str(int(char_a == '1' and char_b == '1' ) ) for char_a, char_b in zip(a_binary.zfill(snake_case__ ) , b_binary.zfill(snake_case__ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
119
import argparse import os from pathlib import Path import fairseq import torch from packaging import version from torch import nn from transformers import ( BartConfig, BartForConditionalGeneration, BartForSequenceClassification, BartModel, BartTokenizer, ) from transformers.utils import logging __UpperCAmelCase = ['''bart.large''', '''bart.large.mnli''', '''bart.large.cnn''', '''bart_xsum/model.pt'''] __UpperCAmelCase = {'''bart.large''': BartModel, '''bart.large.mnli''': BartForSequenceClassification} if version.parse(fairseq.__version__) < version.parse('''0.9.0'''): raise Exception('''requires fairseq >= 0.9.0''') logging.set_verbosity_info() __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = ''' Hello world! cécé herlolip''' __UpperCAmelCase = [ ('''model.classification_heads.mnli.dense.weight''', '''classification_head.dense.weight'''), ('''model.classification_heads.mnli.dense.bias''', '''classification_head.dense.bias'''), ('''model.classification_heads.mnli.out_proj.weight''', '''classification_head.out_proj.weight'''), ('''model.classification_heads.mnli.out_proj.bias''', '''classification_head.out_proj.bias'''), ] def UpperCamelCase ( snake_case__ : Union[str, Any] ) -> List[str]: UpperCamelCase : int = [ 'encoder.version', 'decoder.version', 'model.encoder.version', 'model.decoder.version', '_float_tensor', ] for k in ignore_keys: state_dict.pop(snake_case__ , snake_case__ ) def UpperCamelCase ( snake_case__ : int , snake_case__ : List[str] , snake_case__ : int ) -> Any: UpperCamelCase : Dict = dct.pop(snake_case__ ) UpperCamelCase : Optional[Any] = val def UpperCamelCase ( snake_case__ : Dict ) -> Tuple: UpperCamelCase : int = torch.load(snake_case__ , map_location='cpu' ) UpperCamelCase : Dict = torch.hub.load('pytorch/fairseq' , 'bart.large.cnn' ).eval() hub_interface.model.load_state_dict(sd['model'] ) return hub_interface def UpperCamelCase ( snake_case__ : List[str] ) -> Dict: UpperCamelCase , UpperCamelCase : str = emb.weight.shape UpperCamelCase : Optional[int] = nn.Linear(snake_case__ , snake_case__ , bias=snake_case__ ) UpperCamelCase : List[str] = emb.weight.data return lin_layer @torch.no_grad() def UpperCamelCase ( snake_case__ : Optional[int] , snake_case__ : Optional[int] , snake_case__ : str=None ) -> Optional[Any]: if not os.path.exists(snake_case__ ): UpperCamelCase : List[str] = torch.hub.load('pytorch/fairseq' , snake_case__ ).eval() else: UpperCamelCase : int = load_xsum_checkpoint(snake_case__ ) bart.model.upgrade_state_dict(bart.model.state_dict() ) if hf_checkpoint_name is None: UpperCamelCase : Tuple = checkpoint_path.replace('.' , '-' ) UpperCamelCase : Optional[int] = BartConfig.from_pretrained(snake_case__ ) UpperCamelCase : Optional[Any] = bart.encode(snake_case__ ).unsqueeze(0 ) UpperCamelCase : Any = BartTokenizer.from_pretrained(snake_case__ ).encode(snake_case__ , return_tensors='pt' ).unsqueeze(0 ) if not torch.eq(snake_case__ , snake_case__ ).all(): raise ValueError( F"""converted tokenizer and pretrained tokenizer returned different output: {tokens} != {tokensa}""" ) if checkpoint_path == "bart.large.mnli": UpperCamelCase : Union[str, Any] = bart.state_dict() remove_ignore_keys_(snake_case__ ) UpperCamelCase : int = state_dict['model.decoder.embed_tokens.weight'] for src, dest in mnli_rename_keys: rename_key(snake_case__ , snake_case__ , snake_case__ ) UpperCamelCase : Any = BartForSequenceClassification(snake_case__ ).eval() model.load_state_dict(snake_case__ ) UpperCamelCase : Any = bart.predict('mnli' , snake_case__ , return_logits=snake_case__ ) UpperCamelCase : Tuple = model(snake_case__ )[0] # logits else: # no classification heads to worry about UpperCamelCase : List[str] = bart.model.state_dict() remove_ignore_keys_(snake_case__ ) UpperCamelCase : List[str] = state_dict['decoder.embed_tokens.weight'] UpperCamelCase : Union[str, Any] = bart.extract_features(snake_case__ ) if hf_checkpoint_name == "facebook/bart-large": UpperCamelCase : List[str] = BartModel(snake_case__ ).eval() model.load_state_dict(snake_case__ ) UpperCamelCase : Optional[int] = model(snake_case__ ).model[0] else: UpperCamelCase : Union[str, Any] = BartForConditionalGeneration(snake_case__ ).eval() # an existing summarization ckpt model.model.load_state_dict(snake_case__ ) if hasattr(snake_case__ , 'lm_head' ): UpperCamelCase : Optional[int] = make_linear_from_emb(model.model.shared ) UpperCamelCase : Dict = model.model(snake_case__ )[0] # Check results if fairseq_output.shape != new_model_outputs.shape: raise ValueError( F"""`fairseq_output` shape and `new_model_output` shape are different: {fairseq_output.shape=}, {new_model_outputs.shape}""" ) if (fairseq_output != new_model_outputs).any().item(): raise ValueError('Some values in `fairseq_output` are different from `new_model_outputs`' ) Path(snake_case__ ).mkdir(exist_ok=snake_case__ ) model.save_pretrained(snake_case__ ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''fairseq_path''', type=str, help='''bart.large, bart.large.cnn or a path to a model.pt on local filesystem.''' ) parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument( '''--hf_config''', default=None, type=str, help='''Which huggingface architecture to use: bart-large-xsum''' ) __UpperCAmelCase = parser.parse_args() convert_bart_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, hf_checkpoint_name=args.hf_config)
119
1
"""simple docstring""" import asyncio import os import shutil import subprocess import sys import tempfile import unittest from distutils.util import strtobool from functools import partial from pathlib import Path from typing import List, Union from unittest import mock import torch from ..state import AcceleratorState, PartialState from ..utils import ( gather, is_bnb_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_mps_available, is_safetensors_available, is_tensorboard_available, is_torch_version, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: List[str] , lowerCAmelCase: Union[str, Any]=False ) -> List[Any]: try: _UpperCAmelCase : Optional[int] = os.environ[key] except KeyError: # KEY isn't set, default to `default`. _UpperCAmelCase : List[Any] = default else: # KEY is set, convert it to True or False. try: _UpperCAmelCase : str = strtobool(lowerCamelCase__ ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(F'If set, {key} must be yes or no.' ) return _value SCREAMING_SNAKE_CASE_ = parse_flag_from_env('RUN_SLOW', default=False) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Optional[int] ) -> Optional[int]: return unittest.skip("Test was skipped" )(lowerCamelCase__ ) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Tuple ) -> str: return unittest.skipUnless(_run_slow_tests , "test is slow" )(lowerCamelCase__ ) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: str ) -> Optional[int]: return unittest.skipUnless(not torch.cuda.is_available() , "test requires only a CPU" )(lowerCamelCase__ ) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Tuple ) -> List[Any]: return unittest.skipUnless(torch.cuda.is_available() , "test requires a GPU" )(lowerCamelCase__ ) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Any ) -> Optional[int]: return unittest.skipUnless(is_xpu_available() , "test requires a XPU" )(lowerCamelCase__ ) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: List[Any] ) -> List[Any]: return unittest.skipUnless(is_mps_available() , "test requires a `mps` backend support in `torch`" )(lowerCamelCase__ ) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Tuple ) -> Any: return unittest.skipUnless( is_transformers_available() and is_datasets_available() , "test requires the Hugging Face suite" )(lowerCamelCase__ ) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Union[str, Any] ) -> Dict: return unittest.skipUnless(is_bnb_available() , "test requires the bitsandbytes library" )(lowerCamelCase__ ) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: str ) -> int: return unittest.skipUnless(is_tpu_available() , "test requires TPU" )(lowerCamelCase__ ) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: int ) -> Union[str, Any]: return unittest.skipUnless(torch.cuda.device_count() == 1 , "test requires a GPU" )(lowerCamelCase__ ) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Optional[Any] ) -> int: return unittest.skipUnless(torch.xpu.device_count() == 1 , "test requires a XPU" )(lowerCamelCase__ ) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: List[str] ) -> Any: return unittest.skipUnless(torch.cuda.device_count() > 1 , "test requires multiple GPUs" )(lowerCamelCase__ ) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Optional[Any] ) -> Dict: return unittest.skipUnless(torch.xpu.device_count() > 1 , "test requires multiple XPUs" )(lowerCamelCase__ ) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Tuple ) -> Union[str, Any]: return unittest.skipUnless(is_safetensors_available() , "test requires safetensors" )(lowerCamelCase__ ) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Optional[int] ) -> Any: return unittest.skipUnless(is_deepspeed_available() , "test requires DeepSpeed" )(lowerCamelCase__ ) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Dict ) -> List[str]: return unittest.skipUnless(is_torch_version(">=" , "1.12.0" ) , "test requires torch version >= 1.12.0" )(lowerCamelCase__ ) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Optional[Any]=None , lowerCAmelCase: int=None ) -> Dict: if test_case is None: return partial(lowerCamelCase__ , version=lowerCamelCase__ ) return unittest.skipUnless(is_torch_version(">=" , lowerCamelCase__ ) , F'test requires torch version >= {version}' )(lowerCamelCase__ ) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Optional[int] ) -> Optional[Any]: return unittest.skipUnless(is_tensorboard_available() , "test requires Tensorboard" )(lowerCamelCase__ ) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Dict ) -> Optional[int]: return unittest.skipUnless(is_wandb_available() , "test requires wandb" )(lowerCamelCase__ ) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Optional[Any] ) -> int: return unittest.skipUnless(is_comet_ml_available() , "test requires comet_ml" )(lowerCamelCase__ ) SCREAMING_SNAKE_CASE_ = ( any([is_wandb_available(), is_tensorboard_available()]) and not is_comet_ml_available() ) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Tuple ) -> Optional[Any]: return unittest.skipUnless( _atleast_one_tracker_available , "test requires at least one tracker to be available and for `comet_ml` to not be installed" , )(lowerCamelCase__ ) class a ( unittest.TestCase ): _lowercase = True @classmethod def _UpperCAmelCase ( cls ): '''simple docstring''' _UpperCAmelCase : Any = tempfile.mkdtemp() @classmethod def _UpperCAmelCase ( cls ): '''simple docstring''' if os.path.exists(cls.tmpdir ): shutil.rmtree(cls.tmpdir ) def _UpperCAmelCase ( self ): '''simple docstring''' if self.clear_on_setup: for path in Path(self.tmpdir ).glob("**/*" ): if path.is_file(): path.unlink() elif path.is_dir(): shutil.rmtree(A_ ) class a ( unittest.TestCase ): def _UpperCAmelCase ( self ): '''simple docstring''' super().tearDown() # Reset the state of the AcceleratorState singleton. AcceleratorState._reset_state() PartialState._reset_state() class a ( unittest.TestCase ): def _UpperCAmelCase ( self , A_ ): '''simple docstring''' _UpperCAmelCase : Optional[int] = mocks if isinstance(A_ , (tuple, list) ) else [mocks] for m in self.mocks: m.start() self.addCleanup(m.stop ) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Dict ) -> Optional[int]: _UpperCAmelCase : Tuple = AcceleratorState() _UpperCAmelCase : List[str] = tensor[None].clone().to(state.device ) _UpperCAmelCase : Dict = gather(lowerCamelCase__ ).cpu() _UpperCAmelCase : List[Any] = tensor[0].cpu() for i in range(tensors.shape[0] ): if not torch.equal(tensors[i] , lowerCamelCase__ ): return False return True class a : def __init__( self , A_ , A_ , A_ ): '''simple docstring''' _UpperCAmelCase : str = returncode _UpperCAmelCase : Optional[Any] = stdout _UpperCAmelCase : Union[str, Any] = stderr async def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: int , lowerCAmelCase: str ) -> int: while True: _UpperCAmelCase : Dict = await stream.readline() if line: callback(lowerCamelCase__ ) else: break async def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: List[Any] , lowerCAmelCase: Dict=None , lowerCAmelCase: Union[str, Any]=None , lowerCAmelCase: List[str]=None , lowerCAmelCase: Dict=False , lowerCAmelCase: Union[str, Any]=False ) -> Tuple: if echo: print("\nRunning: " , " ".join(lowerCamelCase__ ) ) _UpperCAmelCase : Any = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=lowerCamelCase__ , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=lowerCamelCase__ , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) _UpperCAmelCase : Union[str, Any] = [] _UpperCAmelCase : Optional[Any] = [] def tee(lowerCAmelCase: List[Any] , lowerCAmelCase: List[str] , lowerCAmelCase: Tuple , lowerCAmelCase: Optional[Any]="" ): _UpperCAmelCase : List[str] = line.decode("utf-8" ).rstrip() sink.append(lowerCamelCase__ ) if not quiet: print(lowerCamelCase__ , lowerCamelCase__ , file=lowerCamelCase__ ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ asyncio.create_task(_read_stream(p.stdout , lambda lowerCAmelCase : tee(lowerCamelCase__ , lowerCamelCase__ , sys.stdout , label="stdout:" ) ) ), asyncio.create_task(_read_stream(p.stderr , lambda lowerCAmelCase : tee(lowerCamelCase__ , lowerCamelCase__ , sys.stderr , label="stderr:" ) ) ), ] , timeout=lowerCamelCase__ , ) return _RunOutput(await p.wait() , lowerCamelCase__ , lowerCamelCase__ ) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Optional[int] , lowerCAmelCase: Dict=None , lowerCAmelCase: Union[str, Any]=None , lowerCAmelCase: str=180 , lowerCAmelCase: Tuple=False , lowerCAmelCase: Optional[int]=True ) -> str: _UpperCAmelCase : List[Any] = asyncio.get_event_loop() _UpperCAmelCase : Union[str, Any] = loop.run_until_complete( _stream_subprocess(lowerCamelCase__ , env=lowerCamelCase__ , stdin=lowerCamelCase__ , timeout=lowerCamelCase__ , quiet=lowerCamelCase__ , echo=lowerCamelCase__ ) ) _UpperCAmelCase : Union[str, Any] = " ".join(lowerCamelCase__ ) if result.returncode > 0: _UpperCAmelCase : Any = "\n".join(result.stderr ) raise RuntimeError( F'\'{cmd_str}\' failed with returncode {result.returncode}\n\n' F'The combined stderr from workers follows:\n{stderr}' ) return result class a ( snake_case_ ): pass def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Union[str, Any] , lowerCAmelCase: Dict=False ) -> List[Any]: try: _UpperCAmelCase : Optional[Any] = subprocess.check_output(lowerCamelCase__ , stderr=subprocess.STDOUT ) if return_stdout: if hasattr(lowerCamelCase__ , "decode" ): _UpperCAmelCase : Dict = output.decode("utf-8" ) return output except subprocess.CalledProcessError as e: raise SubprocessCallException( F'Command `{" ".join(lowerCamelCase__ )}` failed with the following error:\n\n{e.output.decode()}' ) from e
353
from typing import List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = { 'huggingface/autoformer-tourism-monthly': 'https://huggingface.co/huggingface/autoformer-tourism-monthly/resolve/main/config.json', } class a ( UpperCAmelCase ): _lowercase = "autoformer" _lowercase = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", "num_hidden_layers": "encoder_layers", } def __init__( self , A_ = None , A_ = None , A_ = "student_t" , A_ = "nll" , A_ = 1 , A_ = [1, 2, 3, 4, 5, 6, 7] , A_ = True , A_ = 0 , A_ = 0 , A_ = 0 , A_ = 0 , A_ = None , A_ = None , A_ = 64 , A_ = 2 , A_ = 2 , A_ = 2 , A_ = 2 , A_ = 32 , A_ = 32 , A_ = "gelu" , A_ = 0.1 , A_ = 0.1 , A_ = 0.1 , A_ = 0.1 , A_ = 0.1 , A_ = 100 , A_ = 0.02 , A_ = True , A_=True , A_ = 10 , A_ = 25 , A_ = 3 , **A_ , ): '''simple docstring''' _UpperCAmelCase : List[Any] = prediction_length _UpperCAmelCase : Dict = context_length if context_length is not None else prediction_length _UpperCAmelCase : Tuple = distribution_output _UpperCAmelCase : List[Any] = loss _UpperCAmelCase : Optional[Any] = input_size _UpperCAmelCase : int = num_time_features _UpperCAmelCase : str = lags_sequence _UpperCAmelCase : Union[str, Any] = scaling _UpperCAmelCase : Union[str, Any] = num_dynamic_real_features _UpperCAmelCase : int = num_static_real_features _UpperCAmelCase : int = num_static_categorical_features if cardinality is not None and num_static_categorical_features > 0: if len(A_ ) != num_static_categorical_features: raise ValueError( "The cardinality should be a list of the same length as `num_static_categorical_features`" ) _UpperCAmelCase : Union[str, Any] = cardinality else: _UpperCAmelCase : Any = [0] if embedding_dimension is not None and num_static_categorical_features > 0: if len(A_ ) != num_static_categorical_features: raise ValueError( "The embedding dimension should be a list of the same length as `num_static_categorical_features`" ) _UpperCAmelCase : int = embedding_dimension else: _UpperCAmelCase : int = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] _UpperCAmelCase : Union[str, Any] = num_parallel_samples # Transformer architecture configuration _UpperCAmelCase : Union[str, Any] = input_size * len(self.lags_sequence ) + self._number_of_features _UpperCAmelCase : int = d_model _UpperCAmelCase : Any = encoder_attention_heads _UpperCAmelCase : str = decoder_attention_heads _UpperCAmelCase : Union[str, Any] = encoder_ffn_dim _UpperCAmelCase : Any = decoder_ffn_dim _UpperCAmelCase : Any = encoder_layers _UpperCAmelCase : Optional[int] = decoder_layers _UpperCAmelCase : Optional[Any] = dropout _UpperCAmelCase : Union[str, Any] = attention_dropout _UpperCAmelCase : Dict = activation_dropout _UpperCAmelCase : Dict = encoder_layerdrop _UpperCAmelCase : int = decoder_layerdrop _UpperCAmelCase : Union[str, Any] = activation_function _UpperCAmelCase : str = init_std _UpperCAmelCase : Tuple = use_cache # Autoformer _UpperCAmelCase : str = label_length _UpperCAmelCase : Any = moving_average _UpperCAmelCase : Optional[Any] = autocorrelation_factor super().__init__(is_encoder_decoder=A_ , **A_ ) @property def _UpperCAmelCase ( self ): '''simple docstring''' return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
189
0
"""simple docstring""" import pytest import datasets.config from datasets.utils.info_utils import is_small_dataset @pytest.mark.parametrize('dataset_size' , [None, 400 * 2**20, 600 * 2**20] ) @pytest.mark.parametrize('input_in_memory_max_size' , ['default', 0, 100 * 2**20, 900 * 2**20] ) def UpperCamelCase_ ( lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : int ) -> Union[str, Any]: """simple docstring""" if input_in_memory_max_size != "default": monkeypatch.setattr(datasets.config , 'IN_MEMORY_MAX_SIZE' , lowerCAmelCase__ ) lowerCAmelCase_ : Optional[Any] = datasets.config.IN_MEMORY_MAX_SIZE if input_in_memory_max_size == "default": assert in_memory_max_size == 0 else: assert in_memory_max_size == input_in_memory_max_size if dataset_size and in_memory_max_size: lowerCAmelCase_ : int = dataset_size < in_memory_max_size else: lowerCAmelCase_ : str = False lowerCAmelCase_ : Union[str, Any] = is_small_dataset(lowerCAmelCase__ ) assert result == expected
224
"""simple docstring""" import math from enum import Enum from typing import Optional, Union from torch.optim import Optimizer from torch.optim.lr_scheduler import LambdaLR from .utils import logging lowercase__ : Optional[Any] = logging.get_logger(__name__) class UpperCamelCase__ ( lowercase_ ): """simple docstring""" _SCREAMING_SNAKE_CASE = """linear""" _SCREAMING_SNAKE_CASE = """cosine""" _SCREAMING_SNAKE_CASE = """cosine_with_restarts""" _SCREAMING_SNAKE_CASE = """polynomial""" _SCREAMING_SNAKE_CASE = """constant""" _SCREAMING_SNAKE_CASE = """constant_with_warmup""" _SCREAMING_SNAKE_CASE = """piecewise_constant""" def UpperCamelCase_ ( lowerCAmelCase__ : Optimizer , lowerCAmelCase__ : int = -1 ) -> Tuple: """simple docstring""" return LambdaLR(lowerCAmelCase__ , lambda lowerCAmelCase__ : 1 , last_epoch=lowerCAmelCase__ ) def UpperCamelCase_ ( lowerCAmelCase__ : Optimizer , lowerCAmelCase__ : int , lowerCAmelCase__ : int = -1 ) -> str: """simple docstring""" def lr_lambda(lowerCAmelCase__ : int ): if current_step < num_warmup_steps: return float(lowerCAmelCase__ ) / float(max(1.0 , lowerCAmelCase__ ) ) return 1.0 return LambdaLR(lowerCAmelCase__ , lowerCAmelCase__ , last_epoch=lowerCAmelCase__ ) def UpperCamelCase_ ( lowerCAmelCase__ : Optimizer , lowerCAmelCase__ : str , lowerCAmelCase__ : int = -1 ) -> int: """simple docstring""" lowerCAmelCase_ : str = {} lowerCAmelCase_ : Optional[Any] = step_rules.split(',' ) for rule_str in rule_list[:-1]: lowerCAmelCase_ ,lowerCAmelCase_ : Optional[int] = rule_str.split(':' ) lowerCAmelCase_ : List[str] = int(lowerCAmelCase__ ) lowerCAmelCase_ : Optional[int] = float(lowerCAmelCase__ ) lowerCAmelCase_ : Optional[Any] = value lowerCAmelCase_ : str = float(rule_list[-1] ) def create_rules_function(lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : int ): def rule_func(lowerCAmelCase__ : int ) -> float: lowerCAmelCase_ : str = sorted(rules_dict.keys() ) for i, sorted_step in enumerate(lowerCAmelCase__ ): if steps < sorted_step: return rules_dict[sorted_steps[i]] return last_lr_multiple return rule_func lowerCAmelCase_ : Dict = create_rules_function(lowerCAmelCase__ , lowerCAmelCase__ ) return LambdaLR(lowerCAmelCase__ , lowerCAmelCase__ , last_epoch=lowerCAmelCase__ ) def UpperCamelCase_ ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Union[str, Any]=-1 ) -> Any: """simple docstring""" def lr_lambda(lowerCAmelCase__ : int ): if current_step < num_warmup_steps: return float(lowerCAmelCase__ ) / float(max(1 , lowerCAmelCase__ ) ) return max( 0.0 , float(num_training_steps - current_step ) / float(max(1 , num_training_steps - num_warmup_steps ) ) ) return LambdaLR(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def UpperCamelCase_ ( lowerCAmelCase__ : Optimizer , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : float = 0.5 , lowerCAmelCase__ : int = -1 ) -> Union[str, Any]: """simple docstring""" def lr_lambda(lowerCAmelCase__ : Any ): if current_step < num_warmup_steps: return float(lowerCAmelCase__ ) / float(max(1 , lowerCAmelCase__ ) ) lowerCAmelCase_ : List[Any] = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * float(lowerCAmelCase__ ) * 2.0 * progress )) ) return LambdaLR(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def UpperCamelCase_ ( lowerCAmelCase__ : Optimizer , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int = 1 , lowerCAmelCase__ : int = -1 ) -> int: """simple docstring""" def lr_lambda(lowerCAmelCase__ : str ): if current_step < num_warmup_steps: return float(lowerCAmelCase__ ) / float(max(1 , lowerCAmelCase__ ) ) lowerCAmelCase_ : Dict = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) if progress >= 1.0: return 0.0 return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * ((float(lowerCAmelCase__ ) * progress) % 1.0) )) ) return LambdaLR(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def UpperCamelCase_ ( lowerCAmelCase__ : str , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Tuple=1e-7 , lowerCAmelCase__ : Union[str, Any]=1.0 , lowerCAmelCase__ : int=-1 ) -> Optional[Any]: """simple docstring""" lowerCAmelCase_ : Any = optimizer.defaults['lr'] if not (lr_init > lr_end): raise ValueError(f"lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})" ) def lr_lambda(lowerCAmelCase__ : int ): if current_step < num_warmup_steps: return float(lowerCAmelCase__ ) / float(max(1 , lowerCAmelCase__ ) ) elif current_step > num_training_steps: return lr_end / lr_init # as LambdaLR multiplies by lr_init else: lowerCAmelCase_ : Any = lr_init - lr_end lowerCAmelCase_ : int = num_training_steps - num_warmup_steps lowerCAmelCase_ : Dict = 1 - (current_step - num_warmup_steps) / decay_steps lowerCAmelCase_ : Dict = lr_range * pct_remaining**power + lr_end return decay / lr_init # as LambdaLR multiplies by lr_init return LambdaLR(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) lowercase__ : Any = { SchedulerType.LINEAR: get_linear_schedule_with_warmup, SchedulerType.COSINE: get_cosine_schedule_with_warmup, SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup, SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup, SchedulerType.CONSTANT: get_constant_schedule, SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup, SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule, } def UpperCamelCase_ ( lowerCAmelCase__ : Union[str, SchedulerType] , lowerCAmelCase__ : Optimizer , lowerCAmelCase__ : Optional[str] = None , lowerCAmelCase__ : Optional[int] = None , lowerCAmelCase__ : Optional[int] = None , lowerCAmelCase__ : int = 1 , lowerCAmelCase__ : float = 1.0 , lowerCAmelCase__ : int = -1 , ) -> int: """simple docstring""" lowerCAmelCase_ : List[str] = SchedulerType(lowerCAmelCase__ ) lowerCAmelCase_ : List[Any] = TYPE_TO_SCHEDULER_FUNCTION[name] if name == SchedulerType.CONSTANT: return schedule_func(lowerCAmelCase__ , last_epoch=lowerCAmelCase__ ) if name == SchedulerType.PIECEWISE_CONSTANT: return schedule_func(lowerCAmelCase__ , step_rules=lowerCAmelCase__ , last_epoch=lowerCAmelCase__ ) # All other schedulers require `num_warmup_steps` if num_warmup_steps is None: raise ValueError(f"{name} requires `num_warmup_steps`, please provide that argument." ) if name == SchedulerType.CONSTANT_WITH_WARMUP: return schedule_func(lowerCAmelCase__ , num_warmup_steps=lowerCAmelCase__ , last_epoch=lowerCAmelCase__ ) # All other schedulers require `num_training_steps` if num_training_steps is None: raise ValueError(f"{name} requires `num_training_steps`, please provide that argument." ) if name == SchedulerType.COSINE_WITH_RESTARTS: return schedule_func( lowerCAmelCase__ , num_warmup_steps=lowerCAmelCase__ , num_training_steps=lowerCAmelCase__ , num_cycles=lowerCAmelCase__ , last_epoch=lowerCAmelCase__ , ) if name == SchedulerType.POLYNOMIAL: return schedule_func( lowerCAmelCase__ , num_warmup_steps=lowerCAmelCase__ , num_training_steps=lowerCAmelCase__ , power=lowerCAmelCase__ , last_epoch=lowerCAmelCase__ , ) return schedule_func( lowerCAmelCase__ , num_warmup_steps=lowerCAmelCase__ , num_training_steps=lowerCAmelCase__ , last_epoch=lowerCAmelCase__ )
224
1
import dataclasses import json import warnings from dataclasses import dataclass, field from time import time from typing import List from ..utils import logging _lowerCamelCase = logging.get_logger(__name__) def a__ ( _SCREAMING_SNAKE_CASE : Union[str, Any]=None , _SCREAMING_SNAKE_CASE : Optional[int]=None ) -> Optional[int]: """simple docstring""" return field(default_factory=lambda: default , metadata=_SCREAMING_SNAKE_CASE ) @dataclass class _snake_case : __A : List[str] =list_field( default=[] , metadata={ "help": ( "Model checkpoints to be provided to the AutoModel classes. Leave blank to benchmark the base version" " of all available models" ) } , ) __A : List[int] =list_field( default=[8] , metadata={"help": "List of batch sizes for which memory and time performance will be evaluated"}) __A : List[int] =list_field( default=[8, 32, 1_28, 5_12] , metadata={"help": "List of sequence lengths for which memory and time performance will be evaluated"} , ) __A : bool =field( default=__SCREAMING_SNAKE_CASE , metadata={"help": "Whether to benchmark inference of model. Inference can be disabled via --no-inference."} , ) __A : bool =field( default=__SCREAMING_SNAKE_CASE , metadata={"help": "Whether to run on available cuda devices. Cuda can be disabled via --no-cuda."} , ) __A : bool =field( default=__SCREAMING_SNAKE_CASE , metadata={"help": "Whether to run on available tpu devices. TPU can be disabled via --no-tpu."}) __A : bool =field(default=__SCREAMING_SNAKE_CASE , metadata={"help": "Use FP16 to accelerate inference."}) __A : bool =field(default=__SCREAMING_SNAKE_CASE , metadata={"help": "Benchmark training of model"}) __A : bool =field(default=__SCREAMING_SNAKE_CASE , metadata={"help": "Verbose memory tracing"}) __A : bool =field( default=__SCREAMING_SNAKE_CASE , metadata={"help": "Whether to perform speed measurements. Speed measurements can be disabled via --no-speed."} , ) __A : bool =field( default=__SCREAMING_SNAKE_CASE , metadata={ "help": "Whether to perform memory measurements. Memory measurements can be disabled via --no-memory" } , ) __A : bool =field(default=__SCREAMING_SNAKE_CASE , metadata={"help": "Trace memory line by line"}) __A : bool =field(default=__SCREAMING_SNAKE_CASE , metadata={"help": "Save result to a CSV file"}) __A : bool =field(default=__SCREAMING_SNAKE_CASE , metadata={"help": "Save all print statements in a log file"}) __A : bool =field(default=__SCREAMING_SNAKE_CASE , metadata={"help": "Whether to print environment information"}) __A : bool =field( default=__SCREAMING_SNAKE_CASE , metadata={ "help": ( "Whether to use multiprocessing for memory and speed measurement. It is highly recommended to use" " multiprocessing for accurate CPU and GPU memory measurements. This option should only be disabled" " for debugging / testing and on TPU." ) } , ) __A : str =field( default=F'''inference_time_{round(time())}.csv''' , metadata={"help": "CSV filename used if saving time results to csv."} , ) __A : str =field( default=F'''inference_memory_{round(time())}.csv''' , metadata={"help": "CSV filename used if saving memory results to csv."} , ) __A : str =field( default=F'''train_time_{round(time())}.csv''' , metadata={"help": "CSV filename used if saving time results to csv for training."} , ) __A : str =field( default=F'''train_memory_{round(time())}.csv''' , metadata={"help": "CSV filename used if saving memory results to csv for training."} , ) __A : str =field( default=F'''env_info_{round(time())}.csv''' , metadata={"help": "CSV filename used if saving environment information."} , ) __A : str =field( default=F'''log_{round(time())}.csv''' , metadata={"help": "Log filename used if print statements are saved in log."} , ) __A : int =field(default=3 , metadata={"help": "Times an experiment will be run."}) __A : bool =field( default=__SCREAMING_SNAKE_CASE , metadata={ "help": ( "Instead of loading the model as defined in `config.architectures` if exists, just load the pretrain" " model weights." ) } , ) def UpperCamelCase__ ( self ): warnings.warn( f'''The class {self.__class__} is deprecated. Hugging Face Benchmarking utils''' " are deprecated in general and it is advised to use external Benchmarking libraries " " to benchmark Transformer models." ,_snake_case ,) def UpperCamelCase__ ( self ): return json.dumps(dataclasses.asdict(self ) ,indent=2 ) @property def UpperCamelCase__ ( self ): if len(self.models ) <= 0: raise ValueError( "Please make sure you provide at least one model name / model identifier, *e.g.* `--models" " bert-base-cased` or `args.models = ['bert-base-cased']." ) return self.models @property def UpperCamelCase__ ( self ): if not self.multi_process: return False elif self.is_tpu: logger.info("Multiprocessing is currently not possible on TPU." ) return False else: return True
354
'''simple docstring''' from __future__ import annotations from itertools import permutations from random import randint from timeit import repeat def a__ ( ) -> tuple[list[int], int]: """simple docstring""" UpperCAmelCase_ : Tuple = [randint(-10_00 , 10_00 ) for i in range(10 )] UpperCAmelCase_ : str = randint(-50_00 , 50_00 ) return (arr, r) _lowerCamelCase = make_dataset() def a__ ( _SCREAMING_SNAKE_CASE : list[int] , _SCREAMING_SNAKE_CASE : int ) -> tuple[int, ...]: """simple docstring""" for triplet in permutations(_SCREAMING_SNAKE_CASE , 3 ): if sum(_SCREAMING_SNAKE_CASE ) == target: return tuple(sorted(_SCREAMING_SNAKE_CASE ) ) return (0, 0, 0) def a__ ( _SCREAMING_SNAKE_CASE : list[int] , _SCREAMING_SNAKE_CASE : int ) -> tuple[int, int, int]: """simple docstring""" arr.sort() UpperCAmelCase_ : Optional[int] = len(_SCREAMING_SNAKE_CASE ) for i in range(n - 1 ): UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = i + 1, n - 1 while left < right: if arr[i] + arr[left] + arr[right] == target: return (arr[i], arr[left], arr[right]) elif arr[i] + arr[left] + arr[right] < target: left += 1 elif arr[i] + arr[left] + arr[right] > target: right -= 1 return (0, 0, 0) def a__ ( ) -> tuple[float, float]: """simple docstring""" UpperCAmelCase_ : Tuple = "\nfrom __main__ import dataset, triplet_sum1, triplet_sum2\n" UpperCAmelCase_ : Optional[Any] = "\ntriplet_sum1(*dataset)\n" UpperCAmelCase_ : str = "\ntriplet_sum2(*dataset)\n" UpperCAmelCase_ : Dict = repeat(setup=_SCREAMING_SNAKE_CASE , stmt=_SCREAMING_SNAKE_CASE , repeat=5 , number=1_00_00 ) UpperCAmelCase_ : Dict = repeat(setup=_SCREAMING_SNAKE_CASE , stmt=_SCREAMING_SNAKE_CASE , repeat=5 , number=1_00_00 ) return (min(_SCREAMING_SNAKE_CASE ), min(_SCREAMING_SNAKE_CASE )) if __name__ == "__main__": from doctest import testmod testmod() _lowerCamelCase = solution_times() print(f"""The time for naive implementation is {times[0]}.""") print(f"""The time for optimized implementation is {times[1]}.""")
67
0
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = ['image_processor', 'tokenizer'] SCREAMING_SNAKE_CASE : Union[str, Any] = 'CLIPImageProcessor' SCREAMING_SNAKE_CASE : Union[str, Any] = ('CLIPTokenizer', 'CLIPTokenizerFast') def __init__( self : List[Any] ,lowercase__ : Dict=None ,lowercase__ : Union[str, Any]=None ,**lowercase__ : Tuple ): __lowercase = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' ,lowercase__ ,) __lowercase = kwargs.pop('''feature_extractor''' ) __lowercase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(lowercase__ ,lowercase__ ) def __call__( self : List[Any] ,lowercase__ : str=None ,lowercase__ : List[Any]=None ,lowercase__ : Optional[Any]=None ,**lowercase__ : int ): if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: __lowercase = self.tokenizer(lowercase__ ,return_tensors=lowercase__ ,**lowercase__ ) if images is not None: __lowercase = self.image_processor(lowercase__ ,return_tensors=lowercase__ ,**lowercase__ ) if text is not None and images is not None: __lowercase = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**lowercase__ ) ,tensor_type=lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ,*lowercase__ : List[str] ,**lowercase__ : int ): return self.tokenizer.batch_decode(*lowercase__ ,**lowercase__ ) def SCREAMING_SNAKE_CASE ( self : List[Any] ,*lowercase__ : Optional[int] ,**lowercase__ : Union[str, Any] ): return self.tokenizer.decode(*lowercase__ ,**lowercase__ ) @property def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): __lowercase = self.tokenizer.model_input_names __lowercase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def SCREAMING_SNAKE_CASE ( self : List[str] ): warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' ,lowercase__ ,) return self.image_processor_class @property def SCREAMING_SNAKE_CASE ( self : Optional[int] ): warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' ,lowercase__ ,) return self.image_processor
104
import argparse import json import os import pickle import shutil import numpy as np import torch from distiller import Distiller from lm_seqs_dataset import LmSeqsDataset from transformers import ( BertConfig, BertForMaskedLM, BertTokenizer, DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer, GPTaConfig, GPTaLMHeadModel, GPTaTokenizer, RobertaConfig, RobertaForMaskedLM, RobertaTokenizer, ) from utils import git_log, init_gpu_params, logger, set_seed lowercase_ = { """distilbert""": (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer), """roberta""": (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer), """bert""": (BertConfig, BertForMaskedLM, BertTokenizer), """gpt2""": (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer), } def a__ ( snake_case ): """simple docstring""" assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0) assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0) if args.mlm: assert os.path.isfile(args.token_counts ) assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"]) else: assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"]) assert args.teacher_type == args.student_type or ( args.student_type == "distilbert" and args.teacher_type == "bert" ) assert os.path.isfile(args.student_config ) if args.student_pretrained_weights is not None: assert os.path.isfile(args.student_pretrained_weights ) if args.freeze_token_type_embds: assert args.student_type in ["roberta"] assert args.alpha_ce >= 0.0 assert args.alpha_mlm >= 0.0 assert args.alpha_clm >= 0.0 assert args.alpha_mse >= 0.0 assert args.alpha_cos >= 0.0 assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0 def a__ ( snake_case , snake_case ): """simple docstring""" if args.student_type == "roberta": __SCREAMING_SNAKE_CASE : int = False elif args.student_type == "gpt2": __SCREAMING_SNAKE_CASE : Optional[int] = False def a__ ( snake_case , snake_case ): """simple docstring""" if args.student_type == "roberta": __SCREAMING_SNAKE_CASE : Dict = False def a__ ( ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = argparse.ArgumentParser(description='''Training''' ) parser.add_argument('''--force''' , action='''store_true''' , help='''Overwrite dump_path if it already exists.''' ) parser.add_argument( '''--dump_path''' , type=snake_case , required=snake_case , help='''The output directory (log, checkpoints, parameters, etc.)''' ) parser.add_argument( '''--data_file''' , type=snake_case , required=snake_case , help='''The binarized file (tokenized + tokens_to_ids) and grouped by sequence.''' , ) parser.add_argument( '''--student_type''' , type=snake_case , choices=['''distilbert''', '''roberta''', '''gpt2'''] , required=snake_case , help='''The student type (DistilBERT, RoBERTa).''' , ) parser.add_argument('''--student_config''' , type=snake_case , required=snake_case , help='''Path to the student configuration.''' ) parser.add_argument( '''--student_pretrained_weights''' , default=snake_case , type=snake_case , help='''Load student initialization checkpoint.''' ) parser.add_argument( '''--teacher_type''' , choices=['''bert''', '''roberta''', '''gpt2'''] , required=snake_case , help='''Teacher type (BERT, RoBERTa).''' ) parser.add_argument('''--teacher_name''' , type=snake_case , required=snake_case , help='''The teacher model.''' ) parser.add_argument('''--temperature''' , default=2.0 , type=snake_case , help='''Temperature for the softmax temperature.''' ) parser.add_argument( '''--alpha_ce''' , default=0.5 , type=snake_case , help='''Linear weight for the distillation loss. Must be >=0.''' ) parser.add_argument( '''--alpha_mlm''' , default=0.0 , type=snake_case , help='''Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag.''' , ) parser.add_argument('''--alpha_clm''' , default=0.5 , type=snake_case , help='''Linear weight for the CLM loss. Must be >=0.''' ) parser.add_argument('''--alpha_mse''' , default=0.0 , type=snake_case , help='''Linear weight of the MSE loss. Must be >=0.''' ) parser.add_argument( '''--alpha_cos''' , default=0.0 , type=snake_case , help='''Linear weight of the cosine embedding loss. Must be >=0.''' ) parser.add_argument( '''--mlm''' , action='''store_true''' , help='''The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM.''' ) parser.add_argument( '''--mlm_mask_prop''' , default=0.15 , type=snake_case , help='''Proportion of tokens for which we need to make a prediction.''' , ) parser.add_argument('''--word_mask''' , default=0.8 , type=snake_case , help='''Proportion of tokens to mask out.''' ) parser.add_argument('''--word_keep''' , default=0.1 , type=snake_case , help='''Proportion of tokens to keep.''' ) parser.add_argument('''--word_rand''' , default=0.1 , type=snake_case , help='''Proportion of tokens to randomly replace.''' ) parser.add_argument( '''--mlm_smoothing''' , default=0.7 , type=snake_case , help='''Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec).''' , ) parser.add_argument('''--token_counts''' , type=snake_case , help='''The token counts in the data_file for MLM.''' ) parser.add_argument( '''--restrict_ce_to_mask''' , action='''store_true''' , help='''If true, compute the distillation loss only the [MLM] prediction distribution.''' , ) parser.add_argument( '''--freeze_pos_embs''' , action='''store_true''' , help='''Freeze positional embeddings during distillation. For student_type in [\'roberta\', \'gpt2\'] only.''' , ) parser.add_argument( '''--freeze_token_type_embds''' , action='''store_true''' , help='''Freeze token type embeddings during distillation if existent. For student_type in [\'roberta\'] only.''' , ) parser.add_argument('''--n_epoch''' , type=snake_case , default=3 , help='''Number of pass on the whole dataset.''' ) parser.add_argument('''--batch_size''' , type=snake_case , default=5 , help='''Batch size (for each process).''' ) parser.add_argument( '''--group_by_size''' , action='''store_false''' , help='''If true, group sequences that have similar length into the same batch. Default is true.''' , ) parser.add_argument( '''--gradient_accumulation_steps''' , type=snake_case , default=50 , help='''Gradient accumulation for larger training batches.''' , ) parser.add_argument('''--warmup_prop''' , default=0.05 , type=snake_case , help='''Linear warmup proportion.''' ) parser.add_argument('''--weight_decay''' , default=0.0 , type=snake_case , help='''Weight decay if we apply some.''' ) parser.add_argument('''--learning_rate''' , default=5E-4 , type=snake_case , help='''The initial learning rate for Adam.''' ) parser.add_argument('''--adam_epsilon''' , default=1E-6 , type=snake_case , help='''Epsilon for Adam optimizer.''' ) parser.add_argument('''--max_grad_norm''' , default=5.0 , type=snake_case , help='''Max gradient norm.''' ) parser.add_argument('''--initializer_range''' , default=0.02 , type=snake_case , help='''Random initialization range.''' ) parser.add_argument( '''--fp16''' , action='''store_true''' , help='''Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit''' , ) parser.add_argument( '''--fp16_opt_level''' , type=snake_case , default='''O1''' , help=( '''For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].''' '''See details at https://nvidia.github.io/apex/amp.html''' ) , ) parser.add_argument('''--n_gpu''' , type=snake_case , default=1 , help='''Number of GPUs in the node.''' ) parser.add_argument('''--local_rank''' , type=snake_case , default=-1 , help='''Distributed training - Local rank''' ) parser.add_argument('''--seed''' , type=snake_case , default=56 , help='''Random seed''' ) parser.add_argument('''--log_interval''' , type=snake_case , default=500 , help='''Tensorboard logging interval.''' ) parser.add_argument('''--checkpoint_interval''' , type=snake_case , default=4_000 , help='''Checkpoint interval.''' ) __SCREAMING_SNAKE_CASE : Optional[int] = parser.parse_args() sanity_checks(snake_case ) # ARGS # init_gpu_params(snake_case ) set_seed(snake_case ) if args.is_master: if os.path.exists(args.dump_path ): if not args.force: raise ValueError( F'''Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite''' ''' itUse `--force` if you want to overwrite it''' ) else: shutil.rmtree(args.dump_path ) if not os.path.exists(args.dump_path ): os.makedirs(args.dump_path ) logger.info(F'''Experiment will be dumped and logged in {args.dump_path}''' ) # SAVE PARAMS # logger.info(F'''Param: {args}''' ) with open(os.path.join(args.dump_path , '''parameters.json''' ) , '''w''' ) as f: json.dump(vars(snake_case ) , snake_case , indent=4 ) git_log(args.dump_path ) __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : str = MODEL_CLASSES[args.student_type] __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Tuple = MODEL_CLASSES[args.teacher_type] # TOKENIZER # __SCREAMING_SNAKE_CASE : Optional[int] = teacher_tokenizer_class.from_pretrained(args.teacher_name ) __SCREAMING_SNAKE_CASE : Optional[Any] = {} for tok_name, tok_symbol in tokenizer.special_tokens_map.items(): __SCREAMING_SNAKE_CASE : Any = tokenizer.all_special_tokens.index(snake_case ) __SCREAMING_SNAKE_CASE : List[Any] = tokenizer.all_special_ids[idx] logger.info(F'''Special tokens {special_tok_ids}''' ) __SCREAMING_SNAKE_CASE : Any = special_tok_ids __SCREAMING_SNAKE_CASE : List[Any] = tokenizer.max_model_input_sizes[args.teacher_name] # DATA LOADER # logger.info(F'''Loading data from {args.data_file}''' ) with open(args.data_file , '''rb''' ) as fp: __SCREAMING_SNAKE_CASE : List[str] = pickle.load(snake_case ) if args.mlm: logger.info(F'''Loading token counts from {args.token_counts} (already pre-computed)''' ) with open(args.token_counts , '''rb''' ) as fp: __SCREAMING_SNAKE_CASE : Optional[Any] = pickle.load(snake_case ) __SCREAMING_SNAKE_CASE : List[Any] = np.maximum(snake_case , 1 ) ** -args.mlm_smoothing for idx in special_tok_ids.values(): __SCREAMING_SNAKE_CASE : Any = 0.0 # do not predict special tokens __SCREAMING_SNAKE_CASE : Union[str, Any] = torch.from_numpy(snake_case ) else: __SCREAMING_SNAKE_CASE : Optional[int] = None __SCREAMING_SNAKE_CASE : Optional[Any] = LmSeqsDataset(params=snake_case , data=snake_case ) logger.info('''Data loader created.''' ) # STUDENT # logger.info(F'''Loading student config from {args.student_config}''' ) __SCREAMING_SNAKE_CASE : Optional[Any] = student_config_class.from_pretrained(args.student_config ) __SCREAMING_SNAKE_CASE : Dict = True if args.student_pretrained_weights is not None: logger.info(F'''Loading pretrained weights from {args.student_pretrained_weights}''' ) __SCREAMING_SNAKE_CASE : Optional[Any] = student_model_class.from_pretrained(args.student_pretrained_weights , config=snake_case ) else: __SCREAMING_SNAKE_CASE : str = student_model_class(snake_case ) if args.n_gpu > 0: student.to(F'''cuda:{args.local_rank}''' ) logger.info('''Student loaded.''' ) # TEACHER # __SCREAMING_SNAKE_CASE : List[str] = teacher_model_class.from_pretrained(args.teacher_name , output_hidden_states=snake_case ) if args.n_gpu > 0: teacher.to(F'''cuda:{args.local_rank}''' ) logger.info(F'''Teacher loaded from {args.teacher_name}.''' ) # FREEZING # if args.freeze_pos_embs: freeze_pos_embeddings(snake_case , snake_case ) if args.freeze_token_type_embds: freeze_token_type_embeddings(snake_case , snake_case ) # SANITY CHECKS # assert student.config.vocab_size == teacher.config.vocab_size assert student.config.hidden_size == teacher.config.hidden_size assert student.config.max_position_embeddings == teacher.config.max_position_embeddings if args.mlm: assert token_probs.size(0 ) == stu_architecture_config.vocab_size # DISTILLER # torch.cuda.empty_cache() __SCREAMING_SNAKE_CASE : int = Distiller( params=snake_case , dataset=snake_case , token_probs=snake_case , student=snake_case , teacher=snake_case ) distiller.train() logger.info('''Let\'s go get some drinks.''' ) if __name__ == "__main__": main()
303
0
"""simple docstring""" A_ : Dict = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : Dict = [False] * len(_lowerCamelCase ) lowerCamelCase__ : Any = [s] lowerCamelCase__ : Dict = True while queue: lowerCamelCase__ : List[Any] = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(_lowerCamelCase ) lowerCamelCase__ : Optional[Any] = True lowerCamelCase__ : List[str] = u return visited[t] def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : Optional[Any] = [-1] * (len(_lowerCamelCase )) lowerCamelCase__ : Optional[Any] = 0 lowerCamelCase__ : Optional[int] = [] lowerCamelCase__ : List[Any] = [i[:] for i in graph] # Record original cut, copy. while bfs(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : List[Any] = float('Inf' ) lowerCamelCase__ : List[str] = sink while s != source: # Find the minimum value in select path lowerCamelCase__ : int = min(_lowerCamelCase , graph[parent[s]][s] ) lowerCamelCase__ : Tuple = parent[s] max_flow += path_flow lowerCamelCase__ : Optional[int] = sink while v != source: lowerCamelCase__ : str = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow lowerCamelCase__ : Tuple = parent[v] for i in range(len(_lowerCamelCase ) ): for j in range(len(graph[0] ) ): if graph[i][j] == 0 and temp[i][j] > 0: res.append((i, j) ) return res if __name__ == "__main__": print(mincut(test_graph, source=0, sink=5))
370
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) A_ : List[str] = {"configuration_encoder_decoder": ["EncoderDecoderConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Dict = ["EncoderDecoderModel"] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : List[Any] = ["TFEncoderDecoderModel"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : List[Any] = ["FlaxEncoderDecoderModel"] if TYPE_CHECKING: from .configuration_encoder_decoder import EncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encoder_decoder import EncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_encoder_decoder import TFEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_encoder_decoder import FlaxEncoderDecoderModel else: import sys A_ : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
316
0
from . import __version__ # Backward compatibility imports, to make sure all those objects can be found in file_utils from .utils import ( CLOUDFRONT_DISTRIB_PREFIX, CONFIG_NAME, DISABLE_TELEMETRY, DUMMY_INPUTS, DUMMY_MASK, ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, FEATURE_EXTRACTOR_NAME, FLAX_WEIGHTS_NAME, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, MODEL_CARD_NAME, MULTIPLE_CHOICE_DUMMY_INPUTS, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, SENTENCEPIECE_UNDERLINE, SPIECE_UNDERLINE, TF2_WEIGHTS_NAME, TF_WEIGHTS_NAME, TORCH_FX_REQUIRED_VERSION, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, USE_JAX, USE_TF, USE_TORCH, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ContextManagers, DummyObject, EntryNotFoundError, ExplicitEnum, ModelOutput, PaddingStrategy, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, TensorType, _LazyModule, add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, cached_property, copy_func, default_cache_path, define_sagemaker_information, get_cached_models, get_file_from_repo, get_full_repo_name, get_torch_version, has_file, http_user_agent, is_apex_available, is_bsa_available, is_coloredlogs_available, is_datasets_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_librosa_available, is_offline_mode, is_onnx_available, is_pandas_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytorch_quantization_available, is_rjieba_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_tensor, is_tensorflow_probability_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_training_run_on_sagemaker, is_vision_available, replace_return_docstrings, requires_backends, to_numpy, to_py_obj, torch_only_method, )
14
import inspect import unittest from typing import List import numpy as np from transformers import EfficientFormerConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, ) from transformers.models.efficientformer.modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_vision_available(): from PIL import Image from transformers import EfficientFormerImageProcessor class UpperCamelCase_ : '''simple docstring''' def __init__( self : Optional[int] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : int = 13 , UpperCAmelCase__ : int = 64 , UpperCAmelCase__ : int = 2 , UpperCAmelCase__ : int = 3 , UpperCAmelCase__ : int = 3 , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : int = 128 , UpperCAmelCase__ : Optional[Any]=[16, 32, 64, 128] , UpperCAmelCase__ : int = 7 , UpperCAmelCase__ : int = 4 , UpperCAmelCase__ : int = 37 , UpperCAmelCase__ : str = "gelu" , UpperCAmelCase__ : float = 0.1 , UpperCAmelCase__ : float = 0.1 , UpperCAmelCase__ : int = 10 , UpperCAmelCase__ : float = 0.02 , UpperCAmelCase__ : int = 2 , UpperCAmelCase__ : int = 1 , UpperCAmelCase__ : int = 128 , UpperCAmelCase__ : List[int] = [2, 2, 2, 2] , UpperCAmelCase__ : int = 2 , UpperCAmelCase__ : int = 2 , ) ->List[Any]: '''simple docstring''' A__ = parent A__ = batch_size A__ = image_size A__ = patch_size A__ = num_channels A__ = is_training A__ = use_labels A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_size A__ = hidden_act A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = type_sequence_label_size A__ = initializer_range A__ = encoder_stride A__ = num_attention_outputs A__ = embed_dim A__ = embed_dim + 1 A__ = resolution A__ = depths A__ = hidden_sizes A__ = dim A__ = mlp_expansion_ratio def SCREAMING_SNAKE_CASE ( self : List[Any]) ->str: '''simple docstring''' A__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) A__ = None if self.use_labels: A__ = ids_tensor([self.batch_size] , self.type_sequence_label_size) A__ = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE ( self : int) ->str: '''simple docstring''' return EfficientFormerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCAmelCase__ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , resolution=self.resolution , depths=self.depths , hidden_sizes=self.hidden_sizes , dim=self.dim , mlp_expansion_ratio=self.mlp_expansion_ratio , ) def SCREAMING_SNAKE_CASE ( self : Optional[int] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Dict) ->Dict: '''simple docstring''' A__ = TFEfficientFormerModel(config=UpperCAmelCase__) A__ = model(UpperCAmelCase__ , training=UpperCAmelCase__) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def SCREAMING_SNAKE_CASE ( self : int , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Dict , UpperCAmelCase__ : str) ->Union[str, Any]: '''simple docstring''' A__ = self.type_sequence_label_size A__ = TFEfficientFormerForImageClassification(UpperCAmelCase__) A__ = model(UpperCAmelCase__ , labels=UpperCAmelCase__ , training=UpperCAmelCase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) # test greyscale images A__ = 1 A__ = TFEfficientFormerForImageClassification(UpperCAmelCase__) A__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) A__ = model(UpperCAmelCase__ , labels=UpperCAmelCase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) def SCREAMING_SNAKE_CASE ( self : int) ->List[str]: '''simple docstring''' A__ = self.prepare_config_and_inputs() A__ , A__ , A__ = config_and_inputs A__ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class UpperCamelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' UpperCAmelCase__ = ( ( TFEfficientFormerModel, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerForImageClassification, ) if is_tf_available() else () ) UpperCAmelCase__ = ( { '''feature-extraction''': TFEfficientFormerModel, '''image-classification''': ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, ), } if is_tf_available() else {} ) UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = False def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->List[str]: '''simple docstring''' A__ = TFEfficientFormerModelTester(self) A__ = ConfigTester( self , config_class=UpperCAmelCase__ , has_text_modality=UpperCAmelCase__ , hidden_size=37) def SCREAMING_SNAKE_CASE ( self : int) ->Any: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='''EfficientFormer does not use inputs_embeds''') def SCREAMING_SNAKE_CASE ( self : List[str]) ->Dict: '''simple docstring''' pass @unittest.skip(reason='''EfficientFormer does not support input and output embeddings''') def SCREAMING_SNAKE_CASE ( self : List[Any]) ->Optional[Any]: '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( self : Any) ->Optional[Any]: '''simple docstring''' A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ = model_class(UpperCAmelCase__) A__ = inspect.signature(model.call) # signature.parameters is an OrderedDict => so arg_names order is deterministic A__ = [*signature.parameters.keys()] A__ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : str) ->Any: '''simple docstring''' def check_hidden_states_output(UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Any , UpperCAmelCase__ : Dict): A__ = model_class(UpperCAmelCase__) A__ = model(**self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__) , training=UpperCAmelCase__) A__ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states A__ = getattr( self.model_tester , '''expected_num_hidden_layers''' , self.model_tester.num_hidden_layers + 1) self.assertEqual(len(UpperCAmelCase__) , UpperCAmelCase__) if hasattr(self.model_tester , '''encoder_seq_length'''): A__ = self.model_tester.encoder_seq_length if hasattr(self.model_tester , '''chunk_length''') and self.model_tester.chunk_length > 1: A__ = seq_length * self.model_tester.chunk_length else: A__ = self.model_tester.seq_length self.assertListEqual( list(hidden_states[-1].shape[-2:]) , [seq_length, self.model_tester.hidden_size] , ) if config.is_encoder_decoder: A__ = outputs.decoder_hidden_states self.asseretIsInstance(UpperCAmelCase__ , (list, tuple)) self.assertEqual(len(UpperCAmelCase__) , UpperCAmelCase__) A__ = getattr(self.model_tester , '''seq_length''' , UpperCAmelCase__) A__ = getattr(self.model_tester , '''decoder_seq_length''' , UpperCAmelCase__) self.assertListEqual( list(hidden_states[-1].shape[-2:]) , [decoder_seq_length, self.model_tester.hidden_size] , ) A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ = True check_hidden_states_output(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] A__ = True check_hidden_states_output(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Dict=False) ->int: '''simple docstring''' A__ = super()._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__ , return_labels=UpperCAmelCase__) if return_labels: if model_class.__name__ == "TFEfficientFormerForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Union[str, Any]: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase__) @unittest.skip(reason='''EfficientFormer does not implement masked image modeling yet''') def SCREAMING_SNAKE_CASE ( self : str) ->str: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Any) ->Tuple: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase__) @slow def SCREAMING_SNAKE_CASE ( self : Tuple) ->Optional[int]: '''simple docstring''' for model_name in TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ = TFEfficientFormerModel.from_pretrained(UpperCAmelCase__) self.assertIsNotNone(UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Any) ->str: '''simple docstring''' A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() A__ = True A__ = getattr(self.model_tester , '''seq_length''' , UpperCAmelCase__) A__ = getattr(self.model_tester , '''encoder_seq_length''' , UpperCAmelCase__) A__ = getattr(self.model_tester , '''key_length''' , UpperCAmelCase__) A__ = getattr(self.model_tester , '''chunk_length''' , UpperCAmelCase__) if chunk_length is not None and hasattr(self.model_tester , '''num_hashes'''): A__ = encoder_seq_length * self.model_tester.num_hashes for model_class in self.all_model_classes: A__ = True A__ = False A__ = True A__ = model_class(UpperCAmelCase__) A__ = model(**self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__) , training=UpperCAmelCase__) A__ = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(UpperCAmelCase__) , self.model_tester.num_attention_outputs) # check that output_attentions also work using config del inputs_dict["output_attentions"] A__ = True A__ = model_class(UpperCAmelCase__) A__ = model(**self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__) , training=UpperCAmelCase__) A__ = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(UpperCAmelCase__) , self.model_tester.num_attention_outputs) if chunk_length is not None: self.assertListEqual( list(attentions[0].shape[-4:]) , [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length] , ) else: self.assertListEqual( list(attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length] , ) def SCREAMING_SNAKE_CASE ( self : List[str]) ->Optional[Any]: '''simple docstring''' A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # Prepare our model A__ = model_class(UpperCAmelCase__) # These are maximally general inputs for the model, with multiple None dimensions # Hopefully this will catch any conditionals that fail for flexible shapes A__ = { key: tf.keras.Input(shape=val.shape[1:] , dtype=val.dtype , name=UpperCAmelCase__) for key, val in model.input_signature.items() if key in model.dummy_inputs } A__ = model(UpperCAmelCase__) self.assertTrue(outputs_dict is not None) def SCREAMING_SNAKE_CASE ( ) -> Any: """simple docstring""" A__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class UpperCamelCase_ ( unittest.TestCase ): '''simple docstring''' @cached_property def SCREAMING_SNAKE_CASE ( self : List[str]) ->List[str]: '''simple docstring''' return ( EfficientFormerImageProcessor.from_pretrained('''snap-research/efficientformer-l1-300''') if is_vision_available() else None ) @slow def SCREAMING_SNAKE_CASE ( self : List[str]) ->Any: '''simple docstring''' A__ = TFEfficientFormerForImageClassification.from_pretrained('''snap-research/efficientformer-l1-300''') A__ = self.default_image_processor A__ = prepare_img() A__ = image_processor(images=UpperCAmelCase__ , return_tensors='''tf''') # forward pass A__ = model(**UpperCAmelCase__ , training=UpperCAmelCase__) # verify the logits A__ = tf.TensorShape((1, 1_000)) self.assertEqual(outputs.logits.shape , UpperCAmelCase__) A__ = tf.constant([-0.0555, 0.4825, -0.0852]) self.assertTrue(np.allclose(outputs.logits[0, :3] , UpperCAmelCase__ , atol=1e-4)) @slow def SCREAMING_SNAKE_CASE ( self : Dict) ->int: '''simple docstring''' A__ = TFEfficientFormerForImageClassificationWithTeacher.from_pretrained( '''snap-research/efficientformer-l1-300''') A__ = self.default_image_processor A__ = prepare_img() A__ = image_processor(images=UpperCAmelCase__ , return_tensors='''tf''') # forward pass A__ = model(**UpperCAmelCase__ , training=UpperCAmelCase__) # verify the logits A__ = tf.TensorShape((1, 1_000)) self.assertEqual(outputs.logits.shape , UpperCAmelCase__) A__ = tf.constant([-0.1312, 0.4353, -1.0499]) self.assertTrue(np.allclose(outputs.logits[0, :3] , UpperCAmelCase__ , atol=1e-4))
14
1
'''simple docstring''' import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("TEST_SAGEMAKER" , "False" ) ) is not True , reason="Skipping test because should only be run when releasing minor transformers version" , ) @pytest.mark.usefixtures("sm_env" ) @parameterized_class( [ { "framework": "pytorch", "script": "run_glue_model_parallelism.py", "model_name_or_path": "roberta-large", "instance_type": "ml.p3dn.24xlarge", "results": {"train_runtime": 1_6_0_0, "eval_accuracy": 0.3, "eval_loss": 1.2}, }, { "framework": "pytorch", "script": "run_glue.py", "model_name_or_path": "roberta-large", "instance_type": "ml.p3dn.24xlarge", "results": {"train_runtime": 1_6_0_0, "eval_accuracy": 0.3, "eval_loss": 1.2}, }, ] ) class a__ ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self : Tuple ): """simple docstring""" if self.framework == "pytorch": subprocess.run( f"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split() , encoding='''utf-8''' , check=a , ) assert hasattr(self , '''env''' ) def SCREAMING_SNAKE_CASE__ ( self : str , a : int ): """simple docstring""" __lowerCamelCase = { '''enabled''': True, '''processes_per_host''': 8, } __lowerCamelCase = { '''enabled''': True, '''parameters''': { '''microbatches''': 4, '''placement_strategy''': '''spread''', '''pipeline''': '''interleaved''', '''optimize''': '''speed''', '''partitions''': 4, '''ddp''': True, }, } __lowerCamelCase = {'''smdistributed''': {'''modelparallel''': smp_options}, '''mpi''': mpi_options} __lowerCamelCase = '''trainer''' if self.script == '''run_glue.py''' else '''smtrainer''' # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=f"""{self.env.base_job_name}-{instance_count}-smp-{name_extension}""" , instance_count=a , instance_type=self.instance_type , debugger_hook_config=a , hyperparameters={ **self.env.hyperparameters, '''model_name_or_path''': self.model_name_or_path, '''max_steps''': 5_00, } , metric_definitions=self.env.metric_definitions , distribution=a , py_version='''py36''' , ) def SCREAMING_SNAKE_CASE__ ( self : int , a : Dict ): """simple docstring""" TrainingJobAnalytics(a ).export_csv(f"""{self.env.test_path}/{job_name}_metrics.csv""" ) @parameterized.expand([(1,)] ) def SCREAMING_SNAKE_CASE__ ( self : Dict , a : int ): """simple docstring""" __lowerCamelCase = self.create_estimator(a ) # run training estimator.fit() # result dataframe __lowerCamelCase = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis __lowerCamelCase = list(result_metrics_df[result_metrics_df.metric_name == '''eval_accuracy''']['''value'''] ) __lowerCamelCase = list(result_metrics_df[result_metrics_df.metric_name == '''eval_loss''']['''value'''] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping __lowerCamelCase = ( Session().describe_training_job(estimator.latest_training_job.name ).get('''TrainingTimeInSeconds''' , 99_99_99 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results['''eval_accuracy'''] for t in eval_accuracy ) assert all(t <= self.results['''eval_loss'''] for t in eval_loss ) # dump tests result into json file to share in PR with open(f"""{estimator.latest_training_job.name}.json""" , '''w''' ) as outfile: json.dump({'''train_time''': train_runtime, '''eval_accuracy''': eval_accuracy, '''eval_loss''': eval_loss} , a )
357
'''simple docstring''' import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase =logging.get_logger(__name__) __UpperCAmelCase ={ "microsoft/unispeech-sat-base-100h-libri-ft": ( "https://huggingface.co/microsoft/unispeech-sat-base-100h-libri-ft/resolve/main/config.json" ), # See all UniSpeechSat models at https://huggingface.co/models?filter=unispeech_sat } class a__ ( UpperCAmelCase__ ): lowerCamelCase : List[Any] ="unispeech-sat" def __init__( self : Dict , a : str=32 , a : Any=7_68 , a : Optional[Any]=12 , a : Optional[int]=12 , a : int=30_72 , a : int="gelu" , a : Dict=0.1 , a : Dict=0.1 , a : List[Any]=0.1 , a : Tuple=0.0 , a : Optional[Any]=0.0 , a : Tuple=0.1 , a : List[Any]=0.1 , a : str=0.02 , a : List[Any]=1e-5 , a : int="group" , a : Union[str, Any]="gelu" , a : Optional[int]=(5_12, 5_12, 5_12, 5_12, 5_12, 5_12, 5_12) , a : List[Any]=(5, 2, 2, 2, 2, 2, 2) , a : int=(10, 3, 3, 3, 3, 2, 2) , a : Optional[Any]=False , a : Any=1_28 , a : Tuple=16 , a : str=False , a : Optional[Any]=True , a : Dict=0.05 , a : List[Any]=10 , a : Any=2 , a : Optional[Any]=0.0 , a : Optional[Any]=10 , a : Any=0 , a : Any=3_20 , a : str=2 , a : List[str]=0.1 , a : List[str]=1_00 , a : List[str]=2_56 , a : str=2_56 , a : Dict=0.1 , a : Optional[Any]="mean" , a : str=False , a : Tuple=False , a : Optional[Any]=2_56 , a : int=(5_12, 5_12, 5_12, 5_12, 15_00) , a : int=(5, 3, 3, 1, 1) , a : Any=(1, 2, 3, 1, 1) , a : Union[str, Any]=5_12 , a : Optional[int]=0 , a : Optional[int]=1 , a : Optional[int]=2 , a : int=5_04 , **a : Dict , ): """simple docstring""" super().__init__(**a , pad_token_id=a , bos_token_id=a , eos_token_id=a ) __lowerCamelCase = hidden_size __lowerCamelCase = feat_extract_norm __lowerCamelCase = feat_extract_activation __lowerCamelCase = list(a ) __lowerCamelCase = list(a ) __lowerCamelCase = list(a ) __lowerCamelCase = conv_bias __lowerCamelCase = num_conv_pos_embeddings __lowerCamelCase = num_conv_pos_embedding_groups __lowerCamelCase = len(self.conv_dim ) __lowerCamelCase = num_hidden_layers __lowerCamelCase = intermediate_size __lowerCamelCase = hidden_act __lowerCamelCase = num_attention_heads __lowerCamelCase = hidden_dropout __lowerCamelCase = attention_dropout __lowerCamelCase = activation_dropout __lowerCamelCase = feat_proj_dropout __lowerCamelCase = final_dropout __lowerCamelCase = layerdrop __lowerCamelCase = layer_norm_eps __lowerCamelCase = initializer_range __lowerCamelCase = vocab_size __lowerCamelCase = num_clusters __lowerCamelCase = do_stable_layer_norm __lowerCamelCase = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' f""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,""" f""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __lowerCamelCase = apply_spec_augment __lowerCamelCase = mask_time_prob __lowerCamelCase = mask_time_length __lowerCamelCase = mask_time_min_masks __lowerCamelCase = mask_feature_prob __lowerCamelCase = mask_feature_length __lowerCamelCase = mask_feature_min_masks # parameters for pretraining with codevector quantized representations __lowerCamelCase = num_codevectors_per_group __lowerCamelCase = num_codevector_groups __lowerCamelCase = contrastive_logits_temperature __lowerCamelCase = feat_quantizer_dropout __lowerCamelCase = num_negatives __lowerCamelCase = codevector_dim __lowerCamelCase = proj_codevector_dim __lowerCamelCase = diversity_loss_weight # ctc loss __lowerCamelCase = ctc_loss_reduction __lowerCamelCase = ctc_zero_infinity # SequenceClassification-specific parameter. Feel free to ignore for other classes. __lowerCamelCase = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. __lowerCamelCase = list(a ) __lowerCamelCase = list(a ) __lowerCamelCase = list(a ) __lowerCamelCase = xvector_output_dim @property def SCREAMING_SNAKE_CASE__ ( self : Any ): """simple docstring""" return functools.reduce(operator.mul , self.conv_stride , 1 )
237
0
def lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' if number > 0: raise ValueError('''input must be a negative integer''' ) __UpperCamelCase :str = len(bin(SCREAMING_SNAKE_CASE )[3:] ) __UpperCamelCase :Optional[Any] = bin(abs(SCREAMING_SNAKE_CASE ) - (1 << binary_number_length) )[3:] __UpperCamelCase :Optional[Any] = ( ( '''1''' + '''0''' * (binary_number_length - len(SCREAMING_SNAKE_CASE )) + twos_complement_number ) if number < 0 else '''0''' ) return "0b" + twos_complement_number if __name__ == "__main__": import doctest doctest.testmod()
43
import json import os import pickle import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers import is_faiss_available from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bart.tokenization_bart import BartTokenizer from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.dpr.tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.retrieval_rag import CustomHFIndex, RagRetriever from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_sentencepiece, require_tokenizers, require_torch if is_faiss_available(): import faiss @require_faiss class __a ( A__ ): def __lowercase ( self : Any ): '''simple docstring''' UpperCamelCase__ : List[str] = tempfile.mkdtemp() UpperCamelCase__ : Any = 8 # DPR tok UpperCamelCase__ : List[Any] = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] UpperCamelCase__ : Any = os.path.join(self.tmpdirname , "dpr_tokenizer" ) os.makedirs(SCREAMING_SNAKE_CASE , exist_ok=SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Optional[int] = os.path.join(SCREAMING_SNAKE_CASE , DPR_VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) # BART tok UpperCamelCase__ : str = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", ] UpperCamelCase__ : int = dict(zip(SCREAMING_SNAKE_CASE , range(len(SCREAMING_SNAKE_CASE ) ) ) ) UpperCamelCase__ : Optional[Any] = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] UpperCamelCase__ : Union[str, Any] = {"unk_token": "<unk>"} UpperCamelCase__ : Dict = os.path.join(self.tmpdirname , "bart_tokenizer" ) os.makedirs(SCREAMING_SNAKE_CASE , exist_ok=SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[str] = os.path.join(SCREAMING_SNAKE_CASE , BART_VOCAB_FILES_NAMES["vocab_file"] ) UpperCamelCase__ : str = os.path.join(SCREAMING_SNAKE_CASE , BART_VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(SCREAMING_SNAKE_CASE ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(SCREAMING_SNAKE_CASE ) ) def __lowercase ( self : int ): '''simple docstring''' return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , "dpr_tokenizer" ) ) def __lowercase ( self : Tuple ): '''simple docstring''' return DPRContextEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , "dpr_tokenizer" ) ) def __lowercase ( self : Optional[int] ): '''simple docstring''' return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , "bart_tokenizer" ) ) def __lowercase ( self : Optional[Any] ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def __lowercase ( self : Tuple ): '''simple docstring''' UpperCamelCase__ : Tuple = Dataset.from_dict( { "id": ["0", "1"], "text": ["foo", "bar"], "title": ["Foo", "Bar"], "embeddings": [np.ones(self.retrieval_vector_size ), 2 * np.ones(self.retrieval_vector_size )], } ) dataset.add_faiss_index("embeddings" , string_factory="Flat" , metric_type=faiss.METRIC_INNER_PRODUCT ) return dataset def __lowercase ( self : Optional[int] ): '''simple docstring''' UpperCamelCase__ : int = self.get_dummy_dataset() UpperCamelCase__ : List[Any] = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , ) with patch("transformers.models.rag.retrieval_rag.load_dataset" ) as mock_load_dataset: UpperCamelCase__ : str = dataset UpperCamelCase__ : Optional[int] = RagRetriever( SCREAMING_SNAKE_CASE , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) return retriever def __lowercase ( self : int , SCREAMING_SNAKE_CASE : bool ): '''simple docstring''' UpperCamelCase__ : Dict = self.get_dummy_dataset() UpperCamelCase__ : Tuple = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name="custom" , ) if from_disk: UpperCamelCase__ : Optional[int] = os.path.join(self.tmpdirname , "dataset" ) UpperCamelCase__ : List[str] = os.path.join(self.tmpdirname , "index.faiss" ) dataset.get_index("embeddings" ).save(os.path.join(self.tmpdirname , "index.faiss" ) ) dataset.drop_index("embeddings" ) dataset.save_to_disk(os.path.join(self.tmpdirname , "dataset" ) ) del dataset UpperCamelCase__ : str = RagRetriever( SCREAMING_SNAKE_CASE , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) else: UpperCamelCase__ : List[Any] = RagRetriever( SCREAMING_SNAKE_CASE , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , index=CustomHFIndex(config.retrieval_vector_size , SCREAMING_SNAKE_CASE ) , ) return retriever def __lowercase ( self : int ): '''simple docstring''' UpperCamelCase__ : int = Dataset.from_dict( { "id": ["0", "1"], "text": ["foo", "bar"], "title": ["Foo", "Bar"], "embeddings": [np.ones(self.retrieval_vector_size + 1 ), 2 * np.ones(self.retrieval_vector_size + 1 )], } ) dataset.add_faiss_index("embeddings" , string_factory="Flat" , metric_type=faiss.METRIC_INNER_PRODUCT ) UpperCamelCase__ : List[str] = os.path.join(self.tmpdirname , "hf_bert_base.hnswSQ8_correct_phi_128.c_index" ) dataset.save_faiss_index("embeddings" , index_file_name + ".index.dpr" ) pickle.dump(dataset["id"] , open(index_file_name + ".index_meta.dpr" , "wb" ) ) UpperCamelCase__ : Optional[int] = os.path.join(self.tmpdirname , "psgs_w100.tsv.pkl" ) UpperCamelCase__ : Tuple = {sample["id"]: [sample["text"], sample["title"]] for sample in dataset} pickle.dump(SCREAMING_SNAKE_CASE , open(SCREAMING_SNAKE_CASE , "wb" ) ) UpperCamelCase__ : List[str] = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name="legacy" , index_path=self.tmpdirname , ) UpperCamelCase__ : List[str] = RagRetriever( SCREAMING_SNAKE_CASE , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() ) return retriever def __lowercase ( self : Optional[Any] ): '''simple docstring''' UpperCamelCase__ : Union[str, Any] = 1 UpperCamelCase__ : Tuple = self.get_dummy_canonical_hf_index_retriever() UpperCamelCase__ : str = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ : List[str] = retriever.retrieve(SCREAMING_SNAKE_CASE , n_docs=SCREAMING_SNAKE_CASE ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(SCREAMING_SNAKE_CASE ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ["embeddings", "id", "text", "title"] ) self.assertEqual(len(doc_dicts[0]["id"] ) , SCREAMING_SNAKE_CASE ) self.assertEqual(doc_dicts[0]["id"][0] , "1" ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]["id"][0] , "0" ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def __lowercase ( self : Tuple ): '''simple docstring''' UpperCamelCase__ : Optional[int] = self.get_dummy_canonical_hf_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: with patch("transformers.models.rag.retrieval_rag.load_dataset" ) as mock_load_dataset: UpperCamelCase__ : Optional[int] = self.get_dummy_dataset() retriever.save_pretrained(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Any = RagRetriever.from_pretrained(SCREAMING_SNAKE_CASE ) self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) UpperCamelCase__ : str = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) UpperCamelCase__ : Any = retriever.retrieve(SCREAMING_SNAKE_CASE , n_docs=1 ) self.assertTrue(out is not None ) def __lowercase ( self : Tuple ): '''simple docstring''' UpperCamelCase__ : int = 1 UpperCamelCase__ : Dict = self.get_dummy_custom_hf_index_retriever(from_disk=SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Tuple = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ : List[str] = retriever.retrieve(SCREAMING_SNAKE_CASE , n_docs=SCREAMING_SNAKE_CASE ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(SCREAMING_SNAKE_CASE ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ["embeddings", "id", "text", "title"] ) self.assertEqual(len(doc_dicts[0]["id"] ) , SCREAMING_SNAKE_CASE ) self.assertEqual(doc_dicts[0]["id"][0] , "1" ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]["id"][0] , "0" ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def __lowercase ( self : str ): '''simple docstring''' UpperCamelCase__ : Any = self.get_dummy_custom_hf_index_retriever(from_disk=SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Tuple = RagRetriever.from_pretrained(SCREAMING_SNAKE_CASE ) self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Optional[int] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) UpperCamelCase__ : Any = retriever.retrieve(SCREAMING_SNAKE_CASE , n_docs=1 ) self.assertTrue(out is not None ) def __lowercase ( self : List[str] ): '''simple docstring''' UpperCamelCase__ : int = 1 UpperCamelCase__ : List[str] = self.get_dummy_custom_hf_index_retriever(from_disk=SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Dict = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ : List[str] = retriever.retrieve(SCREAMING_SNAKE_CASE , n_docs=SCREAMING_SNAKE_CASE ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(SCREAMING_SNAKE_CASE ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ["embeddings", "id", "text", "title"] ) self.assertEqual(len(doc_dicts[0]["id"] ) , SCREAMING_SNAKE_CASE ) self.assertEqual(doc_dicts[0]["id"][0] , "1" ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]["id"][0] , "0" ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def __lowercase ( self : Union[str, Any] ): '''simple docstring''' UpperCamelCase__ : List[str] = self.get_dummy_custom_hf_index_retriever(from_disk=SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Optional[int] = RagRetriever.from_pretrained(SCREAMING_SNAKE_CASE ) self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Dict = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) UpperCamelCase__ : Union[str, Any] = retriever.retrieve(SCREAMING_SNAKE_CASE , n_docs=1 ) self.assertTrue(out is not None ) def __lowercase ( self : Tuple ): '''simple docstring''' UpperCamelCase__ : List[str] = 1 UpperCamelCase__ : Any = self.get_dummy_legacy_index_retriever() UpperCamelCase__ : Optional[int] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ : Tuple = retriever.retrieve(SCREAMING_SNAKE_CASE , n_docs=SCREAMING_SNAKE_CASE ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(SCREAMING_SNAKE_CASE ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ["text", "title"] ) self.assertEqual(len(doc_dicts[0]["text"] ) , SCREAMING_SNAKE_CASE ) self.assertEqual(doc_dicts[0]["text"][0] , "bar" ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]["text"][0] , "foo" ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def __lowercase ( self : List[Any] ): '''simple docstring''' UpperCamelCase__ : Union[str, Any] = self.get_dummy_legacy_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : str = RagRetriever.from_pretrained(SCREAMING_SNAKE_CASE ) self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) UpperCamelCase__ : int = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) UpperCamelCase__ : int = retriever.retrieve(SCREAMING_SNAKE_CASE , n_docs=1 ) self.assertTrue(out is not None ) @require_torch @require_tokenizers @require_sentencepiece def __lowercase ( self : int ): '''simple docstring''' import torch UpperCamelCase__ : Optional[Any] = 1 UpperCamelCase__ : Optional[int] = self.get_dummy_canonical_hf_index_retriever() UpperCamelCase__ : Optional[Any] = [[5, 7], [10, 11]] UpperCamelCase__ : List[str] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) UpperCamelCase__ : int = retriever(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , prefix=retriever.config.generator.prefix , n_docs=SCREAMING_SNAKE_CASE ) UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ : List[str] = ( out["context_input_ids"], out["context_attention_mask"], out["retrieved_doc_embeds"], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) self.assertIsInstance(SCREAMING_SNAKE_CASE , np.ndarray ) UpperCamelCase__ : List[Any] = retriever( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , prefix=retriever.config.generator.prefix , n_docs=SCREAMING_SNAKE_CASE , return_tensors="pt" , ) UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ : List[Any] = ( # noqa: F841 out["context_input_ids"], out["context_attention_mask"], out["retrieved_doc_embeds"], out["doc_ids"], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(SCREAMING_SNAKE_CASE , torch.Tensor ) self.assertIsInstance(SCREAMING_SNAKE_CASE , torch.Tensor ) self.assertIsInstance(SCREAMING_SNAKE_CASE , torch.Tensor ) @require_torch @require_tokenizers @require_sentencepiece def __lowercase ( self : Union[str, Any] ): '''simple docstring''' UpperCamelCase__ : Optional[int] = self.get_dpr_ctx_encoder_tokenizer() UpperCamelCase__ : Union[str, Any] = 1 UpperCamelCase__ : Tuple = self.get_dummy_custom_hf_index_retriever(from_disk=SCREAMING_SNAKE_CASE ) retriever.set_ctx_encoder_tokenizer(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Tuple = [[5, 7], [10, 11]] UpperCamelCase__ : List[str] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) UpperCamelCase__ : Optional[int] = retriever(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , prefix=retriever.config.generator.prefix , n_docs=SCREAMING_SNAKE_CASE ) self.assertEqual( len(SCREAMING_SNAKE_CASE ) , 6 ) # check whether the retriever output consist of 6 attributes including tokenized docs self.assertEqual( all(k in out for k in ("tokenized_doc_ids", "tokenized_doc_attention_mask") ) , SCREAMING_SNAKE_CASE ) # check for doc token related keys in dictionary.
189
0
"""simple docstring""" from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class __SCREAMING_SNAKE_CASE : snake_case_ = 42 snake_case_ = None # Automatically constructed snake_case_ = 'dict' snake_case_ = None snake_case_ = field(default='Translation' , init=lowerCamelCase__ , repr=lowerCamelCase__ ) def __call__( self : Union[str, Any] ): '''simple docstring''' return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def _UpperCamelCase ( self : Tuple ): '''simple docstring''' from .features import Value return {k: Value("""string""" ) for k in sorted(self.languages )} @dataclass class __SCREAMING_SNAKE_CASE : snake_case_ = None snake_case_ = None snake_case_ = None # Automatically constructed snake_case_ = 'dict' snake_case_ = None snake_case_ = field(default='TranslationVariableLanguages' , init=lowerCamelCase__ , repr=lowerCamelCase__ ) def _UpperCamelCase ( self : Optional[int] ): '''simple docstring''' A__ : Dict = sorted(set(self.languages ) ) if self.languages else None A__ : int = len(self.languages ) if self.languages else None def __call__( self : Optional[int] ): '''simple docstring''' return pa.struct({"""language""": pa.list_(pa.string() ), """translation""": pa.list_(pa.string() )} ) def _UpperCamelCase ( self : List[str] , snake_case : List[str] ): '''simple docstring''' A__ : List[Any] = set(self.languages ) if self.languages and set(snake_case ) - lang_set: raise ValueError( F'Some languages in example ({", ".join(sorted(set(snake_case ) - lang_set ) )}) are not in valid set ({", ".join(snake_case )}).' ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. A__ : Union[str, Any] = [] for lang, text in translation_dict.items(): if isinstance(snake_case , snake_case ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. A__ : Optional[int] = zip(*sorted(snake_case ) ) return {"language": languages, "translation": translations} def _UpperCamelCase ( self : Optional[int] ): '''simple docstring''' from .features import Sequence, Value return { "language": Sequence(Value("""string""" ) ), "translation": Sequence(Value("""string""" ) ), }
354
"""simple docstring""" import cva import numpy as np class __SCREAMING_SNAKE_CASE : def __init__( self : Union[str, Any] , snake_case : float , snake_case : int ): '''simple docstring''' if k in (0.04, 0.06): A__ : Optional[int] = k A__ : int = window_size else: raise ValueError("""invalid k value""" ) def __str__( self : List[Any] ): '''simple docstring''' return str(self.k ) def _UpperCamelCase ( self : int , snake_case : str ): '''simple docstring''' A__ : List[str] = cva.imread(snake_case , 0 ) A__ , A__ : Union[str, Any] = img.shape A__ : list[list[int]] = [] A__ : Optional[Any] = img.copy() A__ : List[str] = cva.cvtColor(snake_case , cva.COLOR_GRAY2RGB ) A__ , A__ : List[Any] = np.gradient(snake_case ) A__ : List[Any] = dx**2 A__ : Any = dy**2 A__ : Dict = dx * dy A__ : Any = 0.04 A__ : Optional[Any] = self.window_size // 2 for y in range(snake_case , h - offset ): for x in range(snake_case , w - offset ): A__ : List[str] = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() A__ : Tuple = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() A__ : Optional[int] = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() A__ : int = (wxx * wyy) - (wxy**2) A__ : Any = wxx + wyy A__ : List[str] = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) , 0 ) color_img.itemset((y, x, 1) , 0 ) color_img.itemset((y, x, 2) , 255 ) return color_img, corner_list if __name__ == "__main__": A_ = HarrisCorner(0.04, 3) A_ , A_ = edge_detect.detect('''path_to_image''') cva.imwrite('''detect.png''', color_img)
296
0
import os # noqa: this is just for tests import os as renamed_os # noqa: this is just for tests from os import path # noqa: this is just for tests from os import path as renamed_path # noqa: this is just for tests from os.path import join # noqa: this is just for tests from os.path import join as renamed_join # noqa: this is just for tests _SCREAMING_SNAKE_CASE = open # noqa: we just need to have a builtin inside this module to test it properly
343
'''simple docstring''' from . import ( albert, align, altclip, audio_spectrogram_transformer, auto, autoformer, bark, bart, barthez, bartpho, beit, bert, bert_generation, bert_japanese, bertweet, big_bird, bigbird_pegasus, biogpt, bit, blenderbot, blenderbot_small, blip, blip_a, bloom, bridgetower, byta, camembert, canine, chinese_clip, clap, clip, clipseg, codegen, conditional_detr, convbert, convnext, convnextva, cpm, cpmant, ctrl, cvt, dataavec, deberta, deberta_va, decision_transformer, deformable_detr, deit, deprecated, deta, detr, dialogpt, dinat, distilbert, dit, donut, dpr, dpt, efficientformer, efficientnet, electra, encodec, encoder_decoder, ernie, ernie_m, esm, falcon, flaubert, flava, fnet, focalnet, fsmt, funnel, git, glpn, gpta, gpt_bigcode, gpt_neo, gpt_neox, gpt_neox_japanese, gpt_swa, gptj, gptsan_japanese, graphormer, groupvit, herbert, hubert, ibert, imagegpt, informer, instructblip, jukebox, layoutlm, layoutlmva, layoutlmva, layoutxlm, led, levit, lilt, llama, longformer, longta, luke, lxmert, mam_aaa, marian, markuplm, maskaformer, maskformer, mbart, mbartaa, mega, megatron_bert, megatron_gpta, mgp_str, mluke, mobilebert, mobilenet_va, mobilenet_va, mobilevit, mobilevitva, mpnet, mra, mta, musicgen, mvp, nat, nezha, nllb, nllb_moe, nystromformer, oneformer, open_llama, openai, opt, owlvit, pegasus, pegasus_x, perceiver, phobert, pixastruct, plbart, poolformer, prophetnet, qdqbert, rag, realm, reformer, regnet, rembert, resnet, roberta, roberta_prelayernorm, roc_bert, roformer, rwkv, sam, segformer, sew, sew_d, speech_encoder_decoder, speech_to_text, speech_to_text_a, speechta, splinter, squeezebert, swiftformer, swin, swinasr, swinva, switch_transformers, ta, table_transformer, tapas, time_series_transformer, timesformer, timm_backbone, transfo_xl, trocr, tvlt, umta, unispeech, unispeech_sat, upernet, videomae, vilt, vision_encoder_decoder, vision_text_dual_encoder, visual_bert, vit, vit_hybrid, vit_mae, vit_msn, vivit, wavaveca, wavaveca_conformer, wavaveca_phoneme, wavaveca_with_lm, wavlm, whisper, x_clip, xglm, xlm, xlm_prophetnet, xlm_roberta, xlm_roberta_xl, xlnet, xmod, yolos, yoso, )
67
0
"""simple docstring""" import warnings from functools import wraps from typing import Callable def lowerCAmelCase (__UpperCamelCase : Callable ): """simple docstring""" @wraps(__UpperCamelCase ) def _inner_fn(*__UpperCamelCase : Any , **__UpperCamelCase : List[Any] ): warnings.warn( (F"""'{fn.__name__}' is experimental and might be subject to breaking changes in the future.""") , __UpperCamelCase , ) return fn(*__UpperCamelCase , **__UpperCamelCase ) return _inner_fn
85
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig __lowercase = { '''albert-base-v1''': '''https://huggingface.co/albert-base-v1/resolve/main/config.json''', '''albert-large-v1''': '''https://huggingface.co/albert-large-v1/resolve/main/config.json''', '''albert-xlarge-v1''': '''https://huggingface.co/albert-xlarge-v1/resolve/main/config.json''', '''albert-xxlarge-v1''': '''https://huggingface.co/albert-xxlarge-v1/resolve/main/config.json''', '''albert-base-v2''': '''https://huggingface.co/albert-base-v2/resolve/main/config.json''', '''albert-large-v2''': '''https://huggingface.co/albert-large-v2/resolve/main/config.json''', '''albert-xlarge-v2''': '''https://huggingface.co/albert-xlarge-v2/resolve/main/config.json''', '''albert-xxlarge-v2''': '''https://huggingface.co/albert-xxlarge-v2/resolve/main/config.json''', } class _lowercase ( __a ): """simple docstring""" lowercase__ = '''albert''' def __init__( self : List[Any] , UpperCamelCase__ : List[Any]=30000 , UpperCamelCase__ : int=128 , UpperCamelCase__ : str=4096 , UpperCamelCase__ : Optional[Any]=12 , UpperCamelCase__ : Dict=1 , UpperCamelCase__ : Union[str, Any]=64 , UpperCamelCase__ : Any=16384 , UpperCamelCase__ : Any=1 , UpperCamelCase__ : Optional[int]="gelu_new" , UpperCamelCase__ : int=0 , UpperCamelCase__ : List[Any]=0 , UpperCamelCase__ : Dict=512 , UpperCamelCase__ : Optional[Any]=2 , UpperCamelCase__ : str=0.02 , UpperCamelCase__ : Tuple=1E-12 , UpperCamelCase__ : Tuple=0.1 , UpperCamelCase__ : Dict="absolute" , UpperCamelCase__ : List[Any]=0 , UpperCamelCase__ : int=2 , UpperCamelCase__ : Optional[Any]=3 , **UpperCamelCase__ : List[str] , ) -> Dict: '''simple docstring''' super().__init__(pad_token_id=UpperCamelCase__ , bos_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__ , **UpperCamelCase__ ) __UpperCamelCase =vocab_size __UpperCamelCase =embedding_size __UpperCamelCase =hidden_size __UpperCamelCase =num_hidden_layers __UpperCamelCase =num_hidden_groups __UpperCamelCase =num_attention_heads __UpperCamelCase =inner_group_num __UpperCamelCase =hidden_act __UpperCamelCase =intermediate_size __UpperCamelCase =hidden_dropout_prob __UpperCamelCase =attention_probs_dropout_prob __UpperCamelCase =max_position_embeddings __UpperCamelCase =type_vocab_size __UpperCamelCase =initializer_range __UpperCamelCase =layer_norm_eps __UpperCamelCase =classifier_dropout_prob __UpperCamelCase =position_embedding_type class _lowercase ( __a ): """simple docstring""" @property def UpperCAmelCase_ ( self : Union[str, Any] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": __UpperCamelCase ={0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __UpperCamelCase ={0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ] )
85
1
'''simple docstring''' import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class a ( unittest.TestCase ): def A_ ( self : List[str] ): snake_case_ = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) snake_case_ = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(lowercase_ ) snake_case_ = -1 snake_case_ = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(lowercase_ ) snake_case_ = model.generate(lowercase_ , max_new_tokens=10 , do_sample=lowercase_ ) snake_case_ = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: snake_case_ = TextStreamer(lowercase_ ) model.generate(lowercase_ , max_new_tokens=10 , do_sample=lowercase_ , streamer=lowercase_ ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer snake_case_ = cs.out[:-1] self.assertEqual(lowercase_ , lowercase_ ) def A_ ( self : Tuple ): snake_case_ = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) snake_case_ = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(lowercase_ ) snake_case_ = -1 snake_case_ = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(lowercase_ ) snake_case_ = model.generate(lowercase_ , max_new_tokens=10 , do_sample=lowercase_ ) snake_case_ = tokenizer.decode(greedy_ids[0] ) snake_case_ = TextIteratorStreamer(lowercase_ ) snake_case_ = {'''input_ids''': input_ids, '''max_new_tokens''': 10, '''do_sample''': False, '''streamer''': streamer} snake_case_ = Thread(target=model.generate , kwargs=lowercase_ ) thread.start() snake_case_ = '''''' for new_text in streamer: streamer_text += new_text self.assertEqual(lowercase_ , lowercase_ ) def A_ ( self : Dict ): snake_case_ = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) snake_case_ = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(lowercase_ ) snake_case_ = -1 snake_case_ = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(lowercase_ ) snake_case_ = model.generate(lowercase_ , max_new_tokens=10 , do_sample=lowercase_ ) snake_case_ = greedy_ids[:, input_ids.shape[1] :] snake_case_ = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: snake_case_ = TextStreamer(lowercase_ , skip_prompt=lowercase_ ) model.generate(lowercase_ , max_new_tokens=10 , do_sample=lowercase_ , streamer=lowercase_ ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer snake_case_ = cs.out[:-1] self.assertEqual(lowercase_ , lowercase_ ) def A_ ( self : List[Any] ): # Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested # with actual models -- the dummy models' tokenizers are not aligned with their models, and # `skip_special_tokens=True` has no effect on them snake_case_ = AutoTokenizer.from_pretrained('''distilgpt2''' ) snake_case_ = AutoModelForCausalLM.from_pretrained('''distilgpt2''' ).to(lowercase_ ) snake_case_ = -1 snake_case_ = torch.ones((1, 5) , device=lowercase_ ).long() * model.config.bos_token_id with CaptureStdout() as cs: snake_case_ = TextStreamer(lowercase_ , skip_special_tokens=lowercase_ ) model.generate(lowercase_ , max_new_tokens=1 , do_sample=lowercase_ , streamer=lowercase_ ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token snake_case_ = cs.out[:-1] # Remove the final "\n" snake_case_ = tokenizer(lowercase_ , return_tensors='''pt''' ) self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) ) def A_ ( self : str ): snake_case_ = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) snake_case_ = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(lowercase_ ) snake_case_ = -1 snake_case_ = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(lowercase_ ) snake_case_ = TextIteratorStreamer(lowercase_ , timeout=0.001 ) snake_case_ = {'''input_ids''': input_ids, '''max_new_tokens''': 10, '''do_sample''': False, '''streamer''': streamer} snake_case_ = Thread(target=model.generate , kwargs=lowercase_ ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(lowercase_ ): snake_case_ = '''''' for new_text in streamer: streamer_text += new_text
56
"""simple docstring""" import argparse from pathlib import Path import torch from packaging import version from torch.onnx import export from diffusers import AutoencoderKL UpperCamelCase : Union[str, Any] = version.parse(version.parse(torch.__version__).base_version) < version.parse("1.11") def A ( snake_case :str , snake_case :tuple , snake_case :Path , snake_case :Dict , snake_case :int , snake_case :List[str] , snake_case :Union[str, Any] , snake_case :Union[str, Any]=False , ) -> str: output_path.parent.mkdir(parents=snake_case , exist_ok=snake_case ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( snake_case , snake_case , f=output_path.as_posix() , input_names=snake_case , output_names=snake_case , dynamic_axes=snake_case , do_constant_folding=snake_case , use_external_data_format=snake_case , enable_onnx_checker=snake_case , opset_version=snake_case , ) else: export( snake_case , snake_case , f=output_path.as_posix() , input_names=snake_case , output_names=snake_case , dynamic_axes=snake_case , do_constant_folding=snake_case , opset_version=snake_case , ) @torch.no_grad() def A ( snake_case :str , snake_case :str , snake_case :int , snake_case :bool = False ) -> List[str]: __UpperCamelCase = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): __UpperCamelCase = 'cuda' elif fpaa and not torch.cuda.is_available(): raise ValueError('`float16` model export is only supported on GPUs with CUDA' ) else: __UpperCamelCase = 'cpu' __UpperCamelCase = Path(snake_case ) # VAE DECODER __UpperCamelCase = AutoencoderKL.from_pretrained(model_path + '/vae' ) __UpperCamelCase = vae_decoder.config.latent_channels # forward only through the decoder part __UpperCamelCase = vae_decoder.decode onnx_export( snake_case , model_args=( torch.randn(1 , snake_case , 2_5 , 2_5 ).to(device=snake_case , dtype=snake_case ), False, ) , output_path=output_path / 'vae_decoder' / 'model.onnx' , ordered_input_names=['latent_sample', 'return_dict'] , output_names=['sample'] , dynamic_axes={ 'latent_sample': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, } , opset=snake_case , ) del vae_decoder if __name__ == "__main__": UpperCamelCase : Dict = argparse.ArgumentParser() parser.add_argument( "--model_path", type=str, required=True, help="Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).", ) parser.add_argument("--output_path", type=str, required=True, help="Path to the output model.") parser.add_argument( "--opset", default=1_4, type=int, help="The version of the ONNX operator set to use.", ) parser.add_argument("--fp16", action="store_true", default=False, help="Export the models in `float16` mode") UpperCamelCase : List[Any] = parser.parse_args() print(args.output_path) convert_models(args.model_path, args.output_path, args.opset, args.fpaa) print("SD: Done: ONNX")
316
0
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { "uclanlp/visualbert-vqa": "https://huggingface.co/uclanlp/visualbert-vqa/resolve/main/config.json", "uclanlp/visualbert-vqa-pre": "https://huggingface.co/uclanlp/visualbert-vqa-pre/resolve/main/config.json", "uclanlp/visualbert-vqa-coco-pre": ( "https://huggingface.co/uclanlp/visualbert-vqa-coco-pre/resolve/main/config.json" ), "uclanlp/visualbert-vcr": "https://huggingface.co/uclanlp/visualbert-vcr/resolve/main/config.json", "uclanlp/visualbert-vcr-pre": "https://huggingface.co/uclanlp/visualbert-vcr-pre/resolve/main/config.json", "uclanlp/visualbert-vcr-coco-pre": ( "https://huggingface.co/uclanlp/visualbert-vcr-coco-pre/resolve/main/config.json" ), "uclanlp/visualbert-nlvr2": "https://huggingface.co/uclanlp/visualbert-nlvr2/resolve/main/config.json", "uclanlp/visualbert-nlvr2-pre": "https://huggingface.co/uclanlp/visualbert-nlvr2-pre/resolve/main/config.json", "uclanlp/visualbert-nlvr2-coco-pre": ( "https://huggingface.co/uclanlp/visualbert-nlvr2-coco-pre/resolve/main/config.json" ) # See all VisualBERT models at https://huggingface.co/models?filter=visual_bert } class lowercase_ ( lowercase ): '''simple docstring''' __snake_case = '''visual_bert''' def __init__( self : Any , __UpperCAmelCase : Tuple=30_522 , __UpperCAmelCase : Dict=768 , __UpperCAmelCase : Optional[Any]=512 , __UpperCAmelCase : Optional[Any]=12 , __UpperCAmelCase : str=12 , __UpperCAmelCase : Union[str, Any]=3_072 , __UpperCAmelCase : int="gelu" , __UpperCAmelCase : Dict=0.1 , __UpperCAmelCase : Optional[int]=0.1 , __UpperCAmelCase : str=512 , __UpperCAmelCase : int=2 , __UpperCAmelCase : List[Any]=0.02 , __UpperCAmelCase : Tuple=1e-1_2 , __UpperCAmelCase : Any=False , __UpperCAmelCase : Dict=True , __UpperCAmelCase : List[Any]=1 , __UpperCAmelCase : str=0 , __UpperCAmelCase : Dict=2 , **__UpperCAmelCase : Dict , ) ->str: """simple docstring""" super().__init__(pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , **__UpperCAmelCase ) a = vocab_size a = max_position_embeddings a = hidden_size a = visual_embedding_dim a = num_hidden_layers a = num_attention_heads a = intermediate_size a = hidden_act a = hidden_dropout_prob a = attention_probs_dropout_prob a = initializer_range a = type_vocab_size a = layer_norm_eps a = bypass_transformer a = special_visual_initialize
26
def _a ( a :list ) -> list: if len(a ) <= 1: return lst a = 1 while i < len(a ): if lst[i - 1] <= lst[i]: i += 1 else: a , a = lst[i], lst[i - 1] i -= 1 if i == 0: a = 1 return lst if __name__ == "__main__": UpperCAmelCase__ = input("Enter numbers separated by a comma:\n").strip() UpperCAmelCase__ = [int(item) for item in user_input.split(",")] print(gnome_sort(unsorted))
26
1
"""simple docstring""" class SCREAMING_SNAKE_CASE__ : def __init__( self : List[str] ): lowerCAmelCase = {} def __lowercase ( self : Optional[int] ): print(self.vertex ) for i in self.vertex: print(lowercase_ , """ -> """ , """ -> """.join([str(lowercase_ ) for j in self.vertex[i]] ) ) def __lowercase ( self : Any , lowerCAmelCase : int , lowerCAmelCase : int ): # check if vertex is already present, if from_vertex in self.vertex: self.vertex[from_vertex].append(lowercase_ ) else: # else make a new vertex lowerCAmelCase = [to_vertex] def __lowercase ( self : Tuple ): # visited array for storing already visited nodes lowerCAmelCase = [False] * len(self.vertex ) # call the recursive helper function for i in range(len(self.vertex ) ): if not visited[i]: self.dfs_recursive(lowercase_ , lowercase_ ) def __lowercase ( self : List[str] , lowerCAmelCase : int , lowerCAmelCase : list ): # mark start vertex as visited lowerCAmelCase = True print(lowercase_ , end=""" """ ) # Recur for all the vertices that are adjacent to this node for i in self.vertex: if not visited[i]: self.dfs_recursive(lowercase_ , lowercase_ ) if __name__ == "__main__": a = Graph() g.add_edge(0, 1) g.add_edge(0, 2) g.add_edge(1, 2) g.add_edge(2, 0) g.add_edge(2, 3) g.add_edge(3, 3) g.print_graph() print('DFS:') g.dfs() # OUTPUT: # 0 -> 1 -> 2 # 1 -> 2 # 2 -> 0 -> 3 # 3 -> 3 # DFS: # 0 1 2 3
155
'''simple docstring''' from ..utils import DummyObject, requires_backends class UpperCAmelCase ( metaclass=UpperCamelCase__ ): __lowercase = ["""note_seq"""] def __init__( self :Optional[Any] , *lowercase_ :List[Any] , **lowercase_ :List[str] )-> int: requires_backends(self , ["note_seq"] ) @classmethod def UpperCAmelCase_ ( cls :str , *lowercase_ :Union[str, Any] , **lowercase_ :Any )-> Optional[int]: requires_backends(cls , ["note_seq"] ) @classmethod def UpperCAmelCase_ ( cls :Dict , *lowercase_ :Tuple , **lowercase_ :List[Any] )-> Optional[Any]: requires_backends(cls , ["note_seq"] )
237
0
'''simple docstring''' import argparse import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_dummies.py a_ = 'src/diffusers' # Matches is_xxx_available() a_ = re.compile(R'is\_([a-z_]*)_available\(\)') # Matches from xxx import bla a_ = re.compile(R'\s+from\s+\S*\s+import\s+([^\(\s].*)\n') a_ = '\n{0} = None\n' a_ = '\nclass {0}(metaclass=DummyObject):\n _backends = {1}\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, {1})\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, {1})\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, {1})\n' a_ = '\ndef {0}(*args, **kwargs):\n requires_backends({0}, {1})\n' def _a( UpperCamelCase__ : Any ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict =_re_backend.findall(UpperCamelCase__ ) if len(UpperCamelCase__ ) == 0: return None return "_and_".join(UpperCamelCase__ ) def _a( ): '''simple docstring''' with open(os.path.join(UpperCamelCase__, '''__init__.py''' ), '''r''', encoding='''utf-8''', newline='''\n''' ) as f: SCREAMING_SNAKE_CASE__ : List[str] =f.readlines() # Get to the point we do the actual imports for type checking SCREAMING_SNAKE_CASE__ : Optional[int] =0 SCREAMING_SNAKE_CASE__ : List[str] ={} # Go through the end of the file while line_index < len(UpperCamelCase__ ): # If the line contains is_backend_available, we grab all objects associated with the `else` block SCREAMING_SNAKE_CASE__ : List[Any] =find_backend(lines[line_index] ) if backend is not None: while not lines[line_index].startswith('''else:''' ): line_index += 1 line_index += 1 SCREAMING_SNAKE_CASE__ : List[Any] =[] # Until we unindent, add backend objects to the list while line_index < len(UpperCamelCase__ ) and len(lines[line_index] ) > 1: SCREAMING_SNAKE_CASE__ : Optional[Any] =lines[line_index] SCREAMING_SNAKE_CASE__ : Optional[Any] =_re_single_line_import.search(UpperCamelCase__ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''' ) ) elif line.startswith(''' ''' * 8 ): objects.append(line[8:-2] ) line_index += 1 if len(UpperCamelCase__ ) > 0: SCREAMING_SNAKE_CASE__ : Any =objects else: line_index += 1 return backend_specific_objects def _a( UpperCamelCase__ : Union[str, Any], UpperCamelCase__ : List[Any] ): '''simple docstring''' if name.isupper(): return DUMMY_CONSTANT.format(UpperCamelCase__ ) elif name.islower(): return DUMMY_FUNCTION.format(UpperCamelCase__, UpperCamelCase__ ) else: return DUMMY_CLASS.format(UpperCamelCase__, UpperCamelCase__ ) def _a( UpperCamelCase__ : Any=None ): '''simple docstring''' if backend_specific_objects is None: SCREAMING_SNAKE_CASE__ : int =read_init() # For special correspondence backend to module name as used in the function requires_modulename SCREAMING_SNAKE_CASE__ : Optional[int] ={} for backend, objects in backend_specific_objects.items(): SCREAMING_SNAKE_CASE__ : Tuple ='''[''' + ''', '''.join(f"\"{b}\"" for b in backend.split('''_and_''' ) ) + ''']''' SCREAMING_SNAKE_CASE__ : List[str] ='''# This file is autogenerated by the command `make fix-copies`, do not edit.\n''' dummy_file += "from ..utils import DummyObject, requires_backends\n\n" dummy_file += "\n".join([create_dummy_object(UpperCamelCase__, UpperCamelCase__ ) for o in objects] ) SCREAMING_SNAKE_CASE__ : Tuple =dummy_file return dummy_files def _a( UpperCamelCase__ : Any=False ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Tuple =create_dummy_files() # For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py SCREAMING_SNAKE_CASE__ : List[str] ={'''torch''': '''pt'''} # Locate actual dummy modules and read their content. SCREAMING_SNAKE_CASE__ : List[str] =os.path.join(UpperCamelCase__, '''utils''' ) SCREAMING_SNAKE_CASE__ : Union[str, Any] ={ backend: os.path.join(UpperCamelCase__, f"dummy_{short_names.get(UpperCamelCase__, UpperCamelCase__ )}_objects.py" ) for backend in dummy_files.keys() } SCREAMING_SNAKE_CASE__ : str ={} for backend, file_path in dummy_file_paths.items(): if os.path.isfile(UpperCamelCase__ ): with open(UpperCamelCase__, '''r''', encoding='''utf-8''', newline='''\n''' ) as f: SCREAMING_SNAKE_CASE__ : List[Any] =f.read() else: SCREAMING_SNAKE_CASE__ : int ='''''' for backend in dummy_files.keys(): if dummy_files[backend] != actual_dummies[backend]: if overwrite: print( f"Updating diffusers.utils.dummy_{short_names.get(UpperCamelCase__, UpperCamelCase__ )}_objects.py as the main " '''__init__ has new objects.''' ) with open(dummy_file_paths[backend], '''w''', encoding='''utf-8''', newline='''\n''' ) as f: f.write(dummy_files[backend] ) else: raise ValueError( '''The main __init__ has objects that are not present in ''' f"diffusers.utils.dummy_{short_names.get(UpperCamelCase__, UpperCamelCase__ )}_objects.py. Run `make fix-copies` " '''to fix this.''' ) if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') a_ = parser.parse_args() check_dummies(args.fix_and_overwrite)
354
'''simple docstring''' from __future__ import annotations import unittest from transformers import AutoTokenizer, PegasusConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFPegasusForConditionalGeneration, TFPegasusModel @require_tf class __SCREAMING_SNAKE_CASE : snake_case_ = PegasusConfig snake_case_ = {} snake_case_ = """gelu""" def __init__( self : int , __lowercase : Optional[Any] , __lowercase : int=13 , __lowercase : List[str]=7 , __lowercase : Dict=True , __lowercase : Tuple=False , __lowercase : Optional[Any]=99 , __lowercase : str=32 , __lowercase : List[str]=2 , __lowercase : str=4 , __lowercase : Optional[int]=37 , __lowercase : List[Any]=0.1 , __lowercase : List[Any]=0.1 , __lowercase : List[Any]=40 , __lowercase : str=2 , __lowercase : List[Any]=1 , __lowercase : Optional[Any]=0 , ) -> Tuple: SCREAMING_SNAKE_CASE__ : Optional[Any] =parent SCREAMING_SNAKE_CASE__ : List[Any] =batch_size SCREAMING_SNAKE_CASE__ : Optional[int] =seq_length SCREAMING_SNAKE_CASE__ : Optional[Any] =is_training SCREAMING_SNAKE_CASE__ : Union[str, Any] =use_labels SCREAMING_SNAKE_CASE__ : str =vocab_size SCREAMING_SNAKE_CASE__ : Optional[Any] =hidden_size SCREAMING_SNAKE_CASE__ : List[str] =num_hidden_layers SCREAMING_SNAKE_CASE__ : int =num_attention_heads SCREAMING_SNAKE_CASE__ : List[str] =intermediate_size SCREAMING_SNAKE_CASE__ : List[Any] =hidden_dropout_prob SCREAMING_SNAKE_CASE__ : List[Any] =attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ : List[Any] =max_position_embeddings SCREAMING_SNAKE_CASE__ : Optional[Any] =eos_token_id SCREAMING_SNAKE_CASE__ : Any =pad_token_id SCREAMING_SNAKE_CASE__ : Union[str, Any] =bos_token_id def __magic_name__ ( self : Any ) -> str: SCREAMING_SNAKE_CASE__ : List[str] =ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) SCREAMING_SNAKE_CASE__ : Optional[int] =tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) SCREAMING_SNAKE_CASE__ : Any =tf.concat([input_ids, eos_tensor] , axis=1 ) SCREAMING_SNAKE_CASE__ : Dict =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE__ : Optional[int] =self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) SCREAMING_SNAKE_CASE__ : Union[str, Any] =prepare_pegasus_inputs_dict(__lowercase , __lowercase , __lowercase ) return config, inputs_dict def __magic_name__ ( self : Optional[int] , __lowercase : List[str] , __lowercase : Optional[int] ) -> Tuple: SCREAMING_SNAKE_CASE__ : List[Any] =TFPegasusModel(config=__lowercase ).get_decoder() SCREAMING_SNAKE_CASE__ : List[str] =inputs_dict['''input_ids'''] SCREAMING_SNAKE_CASE__ : Tuple =input_ids[:1, :] SCREAMING_SNAKE_CASE__ : Tuple =inputs_dict['''attention_mask'''][:1, :] SCREAMING_SNAKE_CASE__ : Tuple =inputs_dict['''head_mask'''] SCREAMING_SNAKE_CASE__ : List[str] =1 # first forward pass SCREAMING_SNAKE_CASE__ : Any =model(__lowercase , attention_mask=__lowercase , head_mask=__lowercase , use_cache=__lowercase ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Tuple =outputs.to_tuple() # create hypothetical next token and extent to next_input_ids SCREAMING_SNAKE_CASE__ : str =ids_tensor((self.batch_size, 3) , config.vocab_size ) SCREAMING_SNAKE_CASE__ : List[Any] =tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and SCREAMING_SNAKE_CASE__ : Tuple =tf.concat([input_ids, next_tokens] , axis=-1 ) SCREAMING_SNAKE_CASE__ : Optional[Any] =tf.concat([attention_mask, next_attn_mask] , axis=-1 ) SCREAMING_SNAKE_CASE__ : int =model(__lowercase , attention_mask=__lowercase )[0] SCREAMING_SNAKE_CASE__ : Any =model(__lowercase , attention_mask=__lowercase , past_key_values=__lowercase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice SCREAMING_SNAKE_CASE__ : Optional[Any] =int(ids_tensor((1,) , output_from_past.shape[-1] ) ) SCREAMING_SNAKE_CASE__ : Any =output_from_no_past[:, -3:, random_slice_idx] SCREAMING_SNAKE_CASE__ : List[str] =output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(__lowercase , __lowercase , rtol=1e-3 ) def _a( UpperCamelCase__ : Any, UpperCamelCase__ : Union[str, Any], UpperCamelCase__ : Union[str, Any], UpperCamelCase__ : Optional[Any]=None, UpperCamelCase__ : Optional[Any]=None, UpperCamelCase__ : Union[str, Any]=None, UpperCamelCase__ : Any=None, UpperCamelCase__ : Optional[Any]=None, ): '''simple docstring''' if attention_mask is None: SCREAMING_SNAKE_CASE__ : str =tf.cast(tf.math.not_equal(UpperCamelCase__, config.pad_token_id ), tf.inta ) if decoder_attention_mask is None: SCREAMING_SNAKE_CASE__ : Any =tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape, dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:], config.pad_token_id ), tf.inta ), ], axis=-1, ) if head_mask is None: SCREAMING_SNAKE_CASE__ : int =tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: SCREAMING_SNAKE_CASE__ : List[Any] =tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: SCREAMING_SNAKE_CASE__ : List[str] =tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class __SCREAMING_SNAKE_CASE ( lowerCamelCase , lowerCamelCase , unittest.TestCase ): snake_case_ = (TFPegasusForConditionalGeneration, TFPegasusModel) if is_tf_available() else () snake_case_ = (TFPegasusForConditionalGeneration,) if is_tf_available() else () snake_case_ = ( { """conversational""": TFPegasusForConditionalGeneration, """feature-extraction""": TFPegasusModel, """summarization""": TFPegasusForConditionalGeneration, """text2text-generation""": TFPegasusForConditionalGeneration, """translation""": TFPegasusForConditionalGeneration, } if is_tf_available() else {} ) snake_case_ = True snake_case_ = False snake_case_ = False def __magic_name__ ( self : Union[str, Any] ) -> str: SCREAMING_SNAKE_CASE__ : List[Any] =TFPegasusModelTester(self ) SCREAMING_SNAKE_CASE__ : Dict =ConfigTester(self , config_class=__lowercase ) def __magic_name__ ( self : int ) -> Any: self.config_tester.run_common_tests() def __magic_name__ ( self : Optional[Any] ) -> List[Any]: SCREAMING_SNAKE_CASE__ : Tuple =self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*__lowercase ) @require_sentencepiece @require_tokenizers @require_tf class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): snake_case_ = [ """ PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.""", """ The London trio are up for best UK act and best album, as well as getting two nominations in the best song category.\"We got told like this morning 'Oh I think you're nominated'\", said Dappy.\"And I was like 'Oh yeah, which one?' And now we've got nominated for four awards. I mean, wow!\"Bandmate Fazer added: \"We thought it's best of us to come down and mingle with everyone and say hello to the cameras. And now we find we've got four nominations.\"The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn't be too disappointed if they didn't win this time around.\"At the end of the day we're grateful to be where we are in our careers.\"If it don't happen then it don't happen - live to fight another day and keep on making albums and hits for the fans.\"Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers' All These Things That I've Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year's Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border.\"We just done Edinburgh the other day,\" said Dappy.\"We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!\" """, ] snake_case_ = [ """California's largest electricity provider has cut power to hundreds of thousands of customers in an effort to""" """ reduce the risk of wildfires.""", """N-Dubz have revealed they\'re \"grateful\" to have been nominated for four Mobo Awards.""", ] # differs slightly from pytorch, likely due to numerical differences in linear layers snake_case_ = """google/pegasus-xsum""" @cached_property def __magic_name__ ( self : Optional[int] ) -> Tuple: return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def __magic_name__ ( self : List[Any] ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ : Optional[int] =TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def __magic_name__ ( self : List[str] , **__lowercase : Any ) -> Optional[int]: SCREAMING_SNAKE_CASE__ : Union[str, Any] =self.translate_src_text(**__lowercase ) assert self.expected_text == generated_words def __magic_name__ ( self : Optional[Any] , **__lowercase : List[str] ) -> Optional[int]: SCREAMING_SNAKE_CASE__ : Union[str, Any] =self.tokenizer(self.src_text , **__lowercase , padding=__lowercase , return_tensors='''tf''' ) SCREAMING_SNAKE_CASE__ : Union[str, Any] =self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=__lowercase , ) SCREAMING_SNAKE_CASE__ : Any =self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=__lowercase ) return generated_words @slow def __magic_name__ ( self : Optional[Any] ) -> Optional[int]: self._assert_generated_batch_equal_expected()
222
0
'''simple docstring''' import argparse import torch from transformers import OpenAIGPTConfig, OpenAIGPTModel, load_tf_weights_in_openai_gpt from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def _lowerCamelCase ( lowercase : Any , lowercase : Optional[int] , lowercase : Dict ) -> Optional[Any]: # Construct model if openai_config_file == "": _a = OpenAIGPTConfig() else: _a = OpenAIGPTConfig.from_json_file(lowercase ) _a = OpenAIGPTModel(lowercase ) # Load weights from numpy load_tf_weights_in_openai_gpt(lowercase , lowercase , lowercase ) # Save pytorch-model _a = pytorch_dump_folder_path + "/" + WEIGHTS_NAME _a = pytorch_dump_folder_path + "/" + CONFIG_NAME print(F'Save PyTorch model to {pytorch_weights_dump_path}' ) torch.save(model.state_dict() , lowercase ) print(F'Save configuration file to {pytorch_config_dump_path}' ) with open(lowercase , "w" , encoding="utf-8" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": lowerCAmelCase_ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--openai_checkpoint_folder_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--openai_config_file', default='', type=str, help=( 'An optional config json file corresponding to the pre-trained OpenAI model. \n' 'This specifies the model architecture.' ), ) lowerCAmelCase_ : List[Any] = parser.parse_args() convert_openai_checkpoint_to_pytorch( args.openai_checkpoint_folder_path, args.openai_config_file, args.pytorch_dump_folder_path )
63
from typing import Callable, Optional from .. import Features from ..packaged_modules.generator.generator import Generator from .abc import AbstractDatasetInputStream class UpperCamelCase__ ( lowerCAmelCase_ ): '''simple docstring''' def __init__( self : Union[str, Any] ,lowerCamelCase__ : Callable ,lowerCamelCase__ : Optional[Features] = None ,lowerCamelCase__ : str = None ,lowerCamelCase__ : bool = False ,lowerCamelCase__ : bool = False ,lowerCamelCase__ : Optional[dict] = None ,lowerCamelCase__ : Optional[int] = None ,**lowerCamelCase__ : Optional[Any] ,) -> List[str]: '''simple docstring''' super().__init__( features=lowerCamelCase__ ,cache_dir=lowerCamelCase__ ,keep_in_memory=lowerCamelCase__ ,streaming=lowerCamelCase__ ,num_proc=lowerCamelCase__ ,**lowerCamelCase__ ,) SCREAMING_SNAKE_CASE = Generator( cache_dir=lowerCamelCase__ ,features=lowerCamelCase__ ,generator=lowerCamelCase__ ,gen_kwargs=lowerCamelCase__ ,**lowerCamelCase__ ,) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' if self.streaming: SCREAMING_SNAKE_CASE = self.builder.as_streaming_dataset(split="""train""" ) # Build regular (map-style) dataset else: SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None self.builder.download_and_prepare( download_config=lowerCamelCase__ ,download_mode=lowerCamelCase__ ,verification_mode=lowerCamelCase__ ,base_path=lowerCamelCase__ ,num_proc=self.num_proc ,) SCREAMING_SNAKE_CASE = self.builder.as_dataset( split="""train""" ,verification_mode=lowerCamelCase__ ,in_memory=self.keep_in_memory ) return dataset
296
0
from __future__ import annotations import typing from collections.abc import Iterable import numpy as np a =typing.Union[Iterable[float], Iterable[int], np.ndarray] # noqa: UP007 a =typing.Union[np.floataa, int, float] # noqa: UP007 def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ ) -> VectorOut: return np.sqrt(np.sum((np.asarray(lowerCamelCase__ ) - np.asarray(lowerCamelCase__ )) ** 2 ) ) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ ) -> VectorOut: return sum((va - va) ** 2 for va, va in zip(lowerCamelCase__ , lowerCamelCase__ ) ) ** (1 / 2) if __name__ == "__main__": def SCREAMING_SNAKE_CASE__ ( ) -> None: from timeit import timeit print('Without Numpy' ) print( timeit( 'euclidean_distance_no_np([1, 2, 3], [4, 5, 6])' , number=1_0_0_0_0 , globals=globals() , ) ) print('With Numpy' ) print( timeit( 'euclidean_distance([1, 2, 3], [4, 5, 6])' , number=1_0_0_0_0 , globals=globals() , ) ) benchmark()
354
from __future__ import annotations def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ ) -> bool: if len(lowerCamelCase__ ) == 0: return False __lowerCamelCase : List[Any] = len(lowerCamelCase__ ) // 2 if a_list[midpoint] == item: return True if item < a_list[midpoint]: return binary_search(a_list[:midpoint] , lowerCamelCase__ ) else: return binary_search(a_list[midpoint + 1 :] , lowerCamelCase__ ) if __name__ == "__main__": a =input("""Enter numbers separated by comma:\n""").strip() a =[int(item.strip()) for item in user_input.split(""",""")] a =int(input("""Enter the number to be found in the list:\n""").strip()) a ="""""" if binary_search(sequence, target) else """not """ print(F"""{target} was {not_str}found in {sequence}""")
113
0
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto.configuration_auto import CONFIG_MAPPING _SCREAMING_SNAKE_CASE : Optional[int] = logging.get_logger(__name__) class _snake_case ( lowercase_ ): lowerCAmelCase_ : Any = "upernet" def __init__( self , a__=None , a__=512 , a__=0.0_2 , a__=[1, 2, 3, 6] , a__=True , a__=0.4 , a__=384 , a__=256 , a__=1 , a__=False , a__=255 , **a__ , ) -> Union[str, Any]: '''simple docstring''' super().__init__(**a__ ) if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) snake_case_ = CONFIG_MAPPING["resnet"](out_features=["stage1", "stage2", "stage3", "stage4"] ) elif isinstance(a__ , a__ ): snake_case_ = backbone_config.get("model_type" ) snake_case_ = CONFIG_MAPPING[backbone_model_type] snake_case_ = config_class.from_dict(a__ ) snake_case_ = backbone_config snake_case_ = hidden_size snake_case_ = initializer_range snake_case_ = pool_scales snake_case_ = use_auxiliary_head snake_case_ = auxiliary_loss_weight snake_case_ = auxiliary_in_channels snake_case_ = auxiliary_channels snake_case_ = auxiliary_num_convs snake_case_ = auxiliary_concat_input snake_case_ = loss_ignore_index def lowerCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' snake_case_ = copy.deepcopy(self.__dict__ ) snake_case_ = self.backbone_config.to_dict() snake_case_ = self.__class__.model_type return output
85
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _SCREAMING_SNAKE_CASE : Tuple = { "configuration_conditional_detr": [ "CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP", "ConditionalDetrConfig", "ConditionalDetrOnnxConfig", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Union[str, Any] = ["ConditionalDetrFeatureExtractor"] _SCREAMING_SNAKE_CASE : List[Any] = ["ConditionalDetrImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Dict = [ "CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST", "ConditionalDetrForObjectDetection", "ConditionalDetrForSegmentation", "ConditionalDetrModel", "ConditionalDetrPreTrainedModel", ] if TYPE_CHECKING: from .configuration_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP, ConditionalDetrConfig, ConditionalDetrOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_conditional_detr import ConditionalDetrFeatureExtractor from .image_processing_conditional_detr import ConditionalDetrImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrModel, ConditionalDetrPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
85
1
'''simple docstring''' # Imports import numpy as np class a__: def __init__( self : Dict , __snake_case : Union[str, Any]=None , __snake_case : Tuple=None , __snake_case : Optional[Any]=None , __snake_case : int=None , __snake_case : Optional[int]=None ): self.set_matricies(red=__snake_case , green=__snake_case , blue=__snake_case , red_edge=__snake_case , nir=__snake_case ) def lowercase_ ( self : List[str] , __snake_case : str=None , __snake_case : int=None , __snake_case : List[Any]=None , __snake_case : Any=None , __snake_case : Any=None ): if red is not None: a : Optional[int] = red if green is not None: a : Optional[Any] = green if blue is not None: a : Tuple = blue if red_edge is not None: a : str = red_edge if nir is not None: a : List[Any] = nir return True def lowercase_ ( self : List[str] , __snake_case : List[str]="" , __snake_case : Dict=None , __snake_case : List[Any]=None , __snake_case : List[Any]=None , __snake_case : Optional[int]=None , __snake_case : Union[str, Any]=None ): self.set_matricies(red=__snake_case , green=__snake_case , blue=__snake_case , red_edge=__snake_case , nir=__snake_case ) a : int = { 'ARVI2': self.arvaa, 'CCCI': self.ccci, 'CVI': self.cvi, 'GLI': self.gli, 'NDVI': self.ndvi, 'BNDVI': self.bndvi, 'redEdgeNDVI': self.red_edge_ndvi, 'GNDVI': self.gndvi, 'GBNDVI': self.gbndvi, 'GRNDVI': self.grndvi, 'RBNDVI': self.rbndvi, 'PNDVI': self.pndvi, 'ATSAVI': self.atsavi, 'BWDRVI': self.bwdrvi, 'CIgreen': self.ci_green, 'CIrededge': self.ci_rededge, 'CI': self.ci, 'CTVI': self.ctvi, 'GDVI': self.gdvi, 'EVI': self.evi, 'GEMI': self.gemi, 'GOSAVI': self.gosavi, 'GSAVI': self.gsavi, 'Hue': self.hue, 'IVI': self.ivi, 'IPVI': self.ipvi, 'I': self.i, 'RVI': self.rvi, 'MRVI': self.mrvi, 'MSAVI': self.m_savi, 'NormG': self.norm_g, 'NormNIR': self.norm_nir, 'NormR': self.norm_r, 'NGRDI': self.ngrdi, 'RI': self.ri, 'S': self.s, 'IF': self._if, 'DVI': self.dvi, 'TVI': self.tvi, 'NDRE': self.ndre, } try: return funcs[index]() except KeyError: print('Index not in the list!' ) return False def lowercase_ ( self : Tuple ): return -0.18 + (1.17 * ((self.nir - self.red) / (self.nir + self.red))) def lowercase_ ( self : Tuple ): return ((self.nir - self.redEdge) / (self.nir + self.redEdge)) / ( (self.nir - self.red) / (self.nir + self.red) ) def lowercase_ ( self : Dict ): return self.nir * (self.red / (self.green**2)) def lowercase_ ( self : Union[str, Any] ): return (2 * self.green - self.red - self.blue) / ( 2 * self.green + self.red + self.blue ) def lowercase_ ( self : Any ): return (self.nir - self.red) / (self.nir + self.red) def lowercase_ ( self : Dict ): return (self.nir - self.blue) / (self.nir + self.blue) def lowercase_ ( self : Any ): return (self.redEdge - self.red) / (self.redEdge + self.red) def lowercase_ ( self : str ): return (self.nir - self.green) / (self.nir + self.green) def lowercase_ ( self : Optional[Any] ): return (self.nir - (self.green + self.blue)) / ( self.nir + (self.green + self.blue) ) def lowercase_ ( self : List[Any] ): return (self.nir - (self.green + self.red)) / ( self.nir + (self.green + self.red) ) def lowercase_ ( self : Optional[int] ): return (self.nir - (self.blue + self.red)) / (self.nir + (self.blue + self.red)) def lowercase_ ( self : int ): return (self.nir - (self.green + self.red + self.blue)) / ( self.nir + (self.green + self.red + self.blue) ) def lowercase_ ( self : List[Any] , __snake_case : Tuple=0.08 , __snake_case : List[str]=1.22 , __snake_case : int=0.03 ): return a * ( (self.nir - a * self.red - b) / (a * self.nir + self.red - a * b + x * (1 + a**2)) ) def lowercase_ ( self : Any ): return (0.1 * self.nir - self.blue) / (0.1 * self.nir + self.blue) def lowercase_ ( self : int ): return (self.nir / self.green) - 1 def lowercase_ ( self : Dict ): return (self.nir / self.redEdge) - 1 def lowercase_ ( self : Tuple ): return (self.red - self.blue) / self.red def lowercase_ ( self : Tuple ): a : List[Any] = self.ndvi() return ((ndvi + 0.5) / (abs(ndvi + 0.5 ))) * (abs(ndvi + 0.5 ) ** (1 / 2)) def lowercase_ ( self : Tuple ): return self.nir - self.green def lowercase_ ( self : int ): return 2.5 * ( (self.nir - self.red) / (self.nir + 6 * self.red - 7.5 * self.blue + 1) ) def lowercase_ ( self : Any ): a : Union[str, Any] = (2 * (self.nir**2 - self.red**2) + 1.5 * self.nir + 0.5 * self.red) / ( self.nir + self.red + 0.5 ) return n * (1 - 0.25 * n) - (self.red - 0.125) / (1 - self.red) def lowercase_ ( self : Dict , __snake_case : Any=0.16 ): return (self.nir - self.green) / (self.nir + self.green + y) def lowercase_ ( self : str , __snake_case : Dict=0.5 ): return ((self.nir - self.green) / (self.nir + self.green + n)) * (1 + n) def lowercase_ ( self : Union[str, Any] ): return np.arctan( ((2 * self.red - self.green - self.blue) / 30.5) * (self.green - self.blue) ) def lowercase_ ( self : Optional[Any] , __snake_case : int=None , __snake_case : List[str]=None ): return (self.nir - b) / (a * self.red) def lowercase_ ( self : List[str] ): return (self.nir / ((self.nir + self.red) / 2)) * (self.ndvi() + 1) def lowercase_ ( self : Optional[Any] ): return (self.red + self.green + self.blue) / 30.5 def lowercase_ ( self : List[Any] ): return self.nir / self.red def lowercase_ ( self : int ): return (self.rvi() - 1) / (self.rvi() + 1) def lowercase_ ( self : Any ): return ( (2 * self.nir + 1) - ((2 * self.nir + 1) ** 2 - 8 * (self.nir - self.red)) ** (1 / 2) ) / 2 def lowercase_ ( self : int ): return self.green / (self.nir + self.red + self.green) def lowercase_ ( self : Tuple ): return self.nir / (self.nir + self.red + self.green) def lowercase_ ( self : Any ): return self.red / (self.nir + self.red + self.green) def lowercase_ ( self : Optional[int] ): return (self.green - self.red) / (self.green + self.red) def lowercase_ ( self : int ): return (self.red - self.green) / (self.red + self.green) def lowercase_ ( self : int ): a : Optional[Any] = np.max([np.max(self.red ), np.max(self.green ), np.max(self.blue )] ) a : Union[str, Any] = np.min([np.min(self.red ), np.min(self.green ), np.min(self.blue )] ) return (max_value - min_value) / max_value def lowercase_ ( self : Dict ): return (2 * self.red - self.green - self.blue) / (self.green - self.blue) def lowercase_ ( self : Any ): return self.nir / self.red def lowercase_ ( self : Any ): return (self.ndvi() + 0.5) ** (1 / 2) def lowercase_ ( self : Optional[int] ): return (self.nir - self.redEdge) / (self.nir + self.redEdge)
96
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCAmelCase: Optional[int] = { 'configuration_graphormer': ['GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GraphormerConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase: int = [ 'GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'GraphormerForGraphClassification', 'GraphormerModel', 'GraphormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_graphormer import GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, GraphormerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_graphormer import ( GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST, GraphormerForGraphClassification, GraphormerModel, GraphormerPreTrainedModel, ) else: import sys lowerCAmelCase: str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
96
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _snake_case = { "configuration_x_clip": [ "XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "XCLIPConfig", "XCLIPTextConfig", "XCLIPVisionConfig", ], "processing_x_clip": ["XCLIPProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "XCLIPModel", "XCLIPPreTrainedModel", "XCLIPTextModel", "XCLIPVisionModel", ] if TYPE_CHECKING: from .configuration_x_clip import ( XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, XCLIPConfig, XCLIPTextConfig, XCLIPVisionConfig, ) from .processing_x_clip import XCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_x_clip import ( XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, XCLIPModel, XCLIPPreTrainedModel, XCLIPTextModel, XCLIPVisionModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
26
import argparse import shutil import time from json import JSONDecodeError from logging import getLogger from pathlib import Path from typing import Dict, List import torch from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import ( SeqaSeqDataset, calculate_bleu, calculate_rouge, chunks, lmap, load_json, parse_numeric_n_bool_cl_kwargs, save_json, use_task_specific_params, write_txt_file, ) _snake_case = getLogger(__name__) def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_ = 8,snake_case_ = 1024,snake_case_="val",snake_case_=None,snake_case_=False,snake_case_="summarization",snake_case_=None,snake_case_=1,snake_case_ = None,snake_case_="",**snake_case_,): _A : Dict = str(snake_case_ ) assert local_rank is not None torch.distributed.init_process_group(backend="""nccl""",rank=snake_case_ ) _A : Tuple = Path(snake_case_ ) _A : List[Any] = save_dir.joinpath(f'''rank_{local_rank}_output.json''' ) torch.cuda.set_device(snake_case_ ) _A : Union[str, Any] = AutoModelForSeqaSeqLM.from_pretrained(snake_case_ ).cuda() if fpaa: _A : Any = model.half() # determine if we need to increase num_beams use_task_specific_params(snake_case_,snake_case_ ) # update config with task specific params _A : str = generate_kwargs.pop("""num_beams""",model.config.num_beams ) # AttributeError risk? if num_return_sequences > num_beams: _A : int = num_return_sequences _A : Optional[Any] = AutoTokenizer.from_pretrained(snake_case_ ) logger.info(f'''Inferred tokenizer type: {tokenizer.__class__}''' ) # if this is wrong, check config.model_type. if max_source_length is None: _A : Optional[int] = tokenizer.model_max_length if prefix is None: _A : Tuple = prefix or getattr(model.config,"""prefix""","""""" ) or """""" _A : Optional[int] = SeqaSeqDataset( snake_case_,snake_case_,snake_case_,max_target_length=1024,type_path=snake_case_,n_obs=snake_case_,prefix=snake_case_,**snake_case_,) # I set shuffle=True for a more accurate progress bar. # If all the longest samples are first, the prog bar estimate is too high at the beginning. _A : Optional[int] = ds.make_sortish_sampler(snake_case_,distributed=snake_case_,add_extra_examples=snake_case_,shuffle=snake_case_ ) _A : Dict = DataLoader(snake_case_,sampler=snake_case_,batch_size=snake_case_,collate_fn=ds.collate_fn ) _A : Optional[Any] = [] for batch in tqdm(snake_case_ ): _A : Tuple = model.generate( input_ids=batch["""input_ids"""].to(model.device ),attention_mask=batch["""attention_mask"""].to(model.device ),num_return_sequences=snake_case_,num_beams=snake_case_,**snake_case_,) _A : Any = tokenizer.batch_decode(snake_case_,skip_special_tokens=snake_case_,clean_up_tokenization_spaces=snake_case_ ) _A : Dict = batch["""ids"""] if num_return_sequences > 1: _A : Any = chunks(snake_case_,snake_case_ ) # batch size chunks, each of size num_return_seq for i, pred in enumerate(snake_case_ ): results.append({"""pred""": pred, """id""": ids[i].item()} ) save_json(snake_case_,snake_case_ ) return results, sampler.num_replicas def lowerCAmelCase_ ( ): _A : Tuple = argparse.ArgumentParser( epilog="""Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate""" ) parser.add_argument("""--data_dir""",type=snake_case_,help="""like cnn_dm/test.source""" ) parser.add_argument( """--model_name""",type=snake_case_,help="""like facebook/bart-large-cnn,t5-base, etc.""",default="""sshleifer/distilbart-xsum-12-3""",) parser.add_argument("""--save_dir""",type=snake_case_,help="""where to save""",default="""tmp_gen""" ) parser.add_argument("""--max_source_length""",type=snake_case_,default=snake_case_ ) parser.add_argument( """--type_path""",type=snake_case_,default="""test""",help="""which subset to evaluate typically train/val/test""" ) parser.add_argument("""--task""",type=snake_case_,default="""summarization""",help="""used for task_specific_params + metrics""" ) parser.add_argument("""--bs""",type=snake_case_,default=8,required=snake_case_,help="""batch size""" ) parser.add_argument( """--local_rank""",type=snake_case_,default=-1,required=snake_case_,help="""should be passed by distributed.launch""" ) parser.add_argument( """--n_obs""",type=snake_case_,default=snake_case_,required=snake_case_,help="""How many observations. Defaults to all.""" ) parser.add_argument( """--num_return_sequences""",type=snake_case_,default=1,required=snake_case_,help="""How many sequences to return""" ) parser.add_argument( """--sync_timeout""",type=snake_case_,default=600,required=snake_case_,help="""How long should master process wait for other processes to finish.""",) parser.add_argument("""--src_lang""",type=snake_case_,default=snake_case_,required=snake_case_ ) parser.add_argument("""--tgt_lang""",type=snake_case_,default=snake_case_,required=snake_case_ ) parser.add_argument( """--prefix""",type=snake_case_,required=snake_case_,default=snake_case_,help="""will be added to the begininng of src examples""" ) parser.add_argument("""--fp16""",action="""store_true""" ) parser.add_argument("""--debug""",action="""store_true""" ) _A : Union[str, Any] = time.time() _A , _A : List[str] = parser.parse_known_args() _A : List[str] = parse_numeric_n_bool_cl_kwargs(snake_case_ ) if generate_kwargs and args.local_rank <= 0: print(f'''parsed the following generate kwargs: {generate_kwargs}''' ) _A : Dict = Path(args.save_dir + """_tmp""" ) Path(snake_case_ ).mkdir(exist_ok=snake_case_ ) # this handles locking. _A : int = list(json_save_dir.glob("""rank_*.json""" ) ) if intermediate_files: raise ValueError(f'''Found files at {json_save_dir} please move or remove them.''' ) # In theory, a node could finish and save before another node hits this. If this happens, we can address later. _A : Any = {} if args.src_lang is not None: _A : int = args.src_lang if args.tgt_lang is not None: _A : Dict = args.tgt_lang Path(args.save_dir ).mkdir(exist_ok=snake_case_ ) _A , _A : str = eval_data_dir( args.data_dir,snake_case_,args.model_name,type_path=args.type_path,bs=args.bs,fpaa=args.fpaa,task=args.task,local_rank=args.local_rank,n_obs=args.n_obs,max_source_length=args.max_source_length,num_return_sequences=args.num_return_sequences,prefix=args.prefix,dataset_kwargs=snake_case_,**snake_case_,) if args.local_rank <= 0: _A : List[Any] = Path(args.save_dir ) save_dir.mkdir(exist_ok=snake_case_ ) _A : Tuple = gather_results_from_each_node(snake_case_,snake_case_,args.sync_timeout ) _A : Optional[int] = combine_partial_results(snake_case_ ) if args.num_return_sequences > 1: _A : Optional[Any] = save_dir.joinpath("""pseudolabel_results.json""" ) print(f'''Saving aggregated results at {save_path}, intermediate in {json_save_dir}/''' ) save_json(snake_case_,snake_case_ ) return _A : List[str] = Path(args.data_dir ).joinpath(args.type_path + """.target""" ) with open(snake_case_ ) as f: _A : int = [x.rstrip() for x in f.readlines()][: len(snake_case_ )] # Calculate metrics, save metrics, and save _generations.txt _A : Dict = """translation""" in args.task _A : Optional[Any] = calculate_bleu if calc_bleu else calculate_rouge _A : Tuple = """bleu""" if calc_bleu else """rouge""" _A : Dict = score_fn(snake_case_,snake_case_ ) _A : List[Any] = len(snake_case_ ) _A : Optional[int] = time.time() - start_time _A : Dict = round(runtime / metrics["""n_obs"""],4 ) _A : Dict = num_replicas # TODO(@stas00): add whatever metadata to metrics _A : Any = save_dir.joinpath(f'''{args.type_path}_{metric_name}.json''' ) save_json(snake_case_,snake_case_,indent=snake_case_ ) print(snake_case_ ) write_txt_file(snake_case_,save_dir.joinpath(f'''{args.type_path}_generations.txt''' ) ) if args.debug: write_txt_file(snake_case_,save_dir.joinpath(f'''{args.type_path}.target''' ) ) else: shutil.rmtree(snake_case_ ) def lowerCAmelCase_ ( snake_case_ ): _A : Dict = [] for partial_result in partial_results: records.extend(snake_case_ ) _A : Optional[Any] = sorted(snake_case_,key=lambda snake_case_ : x["id"] ) _A : List[str] = [x["""pred"""] for x in records] return preds def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ): # WAIT FOR lots of .json files _A : Optional[Any] = time.time() logger.info("""waiting for all nodes to finish""" ) _A : List[str] = None while (time.time() - start_wait) < timeout: _A : str = list(save_dir.glob("""rank_*.json""" ) ) if len(snake_case_ ) < num_replicas: continue try: # make sure all json files are fully saved _A : List[str] = lmap(snake_case_,snake_case_ ) return json_data except JSONDecodeError: continue else: raise TimeoutError("""Rank 0 gave up on waiting for other processes""" ) # Unreachable if __name__ == "__main__": # Usage for MT: run_generate()
26
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase : Tuple = {"configuration_fnet": ["FNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "FNetConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : List[Any] = ["FNetTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Optional[int] = ["FNetTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : str = [ "FNET_PRETRAINED_MODEL_ARCHIVE_LIST", "FNetForMaskedLM", "FNetForMultipleChoice", "FNetForNextSentencePrediction", "FNetForPreTraining", "FNetForQuestionAnswering", "FNetForSequenceClassification", "FNetForTokenClassification", "FNetLayer", "FNetModel", "FNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet import FNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet_fast import FNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_fnet import ( FNET_PRETRAINED_MODEL_ARCHIVE_LIST, FNetForMaskedLM, FNetForMultipleChoice, FNetForNextSentencePrediction, FNetForPreTraining, FNetForQuestionAnswering, FNetForSequenceClassification, FNetForTokenClassification, FNetLayer, FNetModel, FNetPreTrainedModel, ) else: import sys lowerCamelCase : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
114
'''simple docstring''' def _lowerCAmelCase ( _UpperCamelCase : float , _UpperCamelCase : float ) -> float: """simple docstring""" if mass < 0: raise ValueError('The mass of a body cannot be negative' ) return 0.5 * mass * abs(_UpperCamelCase ) * abs(_UpperCamelCase ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
114
1
'''simple docstring''' def snake_case_ ( _lowerCAmelCase : Optional[Any] = 50 ) -> int: UpperCAmelCase : int = [1] * (length + 1) for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): ways_number[row_length] += ways_number[ row_length - tile_start - tile_length ] return ways_number[length] if __name__ == "__main__": print(F"{solution() = }")
23
from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCAmelCase : Union[str, Any] = logging.get_logger(__name__) _UpperCAmelCase : List[str] = { "EleutherAI/gpt-neox-20b": "https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/config.json", # See all GPTNeoX models at https://huggingface.co/models?filter=gpt_neox } class lowercase ( _SCREAMING_SNAKE_CASE ): __lowercase : List[str] = "gpt_neox" def __init__( self , A_=50_432 , A_=6_144 , A_=44 , A_=64 , A_=24_576 , A_="gelu" , A_=0.25 , A_=10_000 , A_=0.0 , A_=0.0 , A_=0.1 , A_=2_048 , A_=0.02 , A_=1e-5 , A_=True , A_=0 , A_=2 , A_=False , A_=True , A_=None , **A_ , ) -> Tuple: """simple docstring""" super().__init__(bos_token_id=A_ , eos_token_id=A_ , **A_ ) UpperCamelCase = vocab_size UpperCamelCase = max_position_embeddings UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = intermediate_size UpperCamelCase = hidden_act UpperCamelCase = rotary_pct UpperCamelCase = rotary_emb_base UpperCamelCase = attention_dropout UpperCamelCase = hidden_dropout UpperCamelCase = classifier_dropout UpperCamelCase = initializer_range UpperCamelCase = layer_norm_eps UpperCamelCase = use_cache UpperCamelCase = tie_word_embeddings UpperCamelCase = use_parallel_residual UpperCamelCase = rope_scaling self._rope_scaling_validation() if self.hidden_size % self.num_attention_heads != 0: raise ValueError( 'The hidden size is not divisble by the number of attention heads! Make sure to update them!' ) def __UpperCamelCase ( self ) -> Tuple: """simple docstring""" if self.rope_scaling is None: return if not isinstance(self.rope_scaling , A_ ) or len(self.rope_scaling ) != 2: raise ValueError( '`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ' F'''got {self.rope_scaling}''' ) UpperCamelCase = self.rope_scaling.get('type' , A_ ) UpperCamelCase = self.rope_scaling.get('factor' , A_ ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( F'''`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}''' ) if rope_scaling_factor is None or not isinstance(A_ , A_ ) or rope_scaling_factor <= 1.0: raise ValueError(F'''`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}''' )
222
0
"""simple docstring""" import warnings from ...utils import logging from .image_processing_layoutlmva import LayoutLMvaImageProcessor lowerCamelCase_ : str = logging.get_logger(__name__) class __A ( _SCREAMING_SNAKE_CASE ): """simple docstring""" def __init__( self , *__A , **__A ) -> None: warnings.warn( '''The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use LayoutLMv2ImageProcessor instead.''' , __A , ) super().__init__(*__A , **__A )
215
"""simple docstring""" import inspect import unittest from transformers import YolosConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import YolosForObjectDetection, YolosModel from transformers.models.yolos.modeling_yolos import YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __A : """simple docstring""" def __init__( self , __A , __A=13 , __A=[30, 30] , __A=2 , __A=3 , __A=True , __A=True , __A=32 , __A=5 , __A=4 , __A=37 , __A="gelu" , __A=0.1 , __A=0.1 , __A=10 , __A=0.02 , __A=3 , __A=None , __A=8 , __A=10 , ) -> List[Any]: a =parent a =batch_size a =image_size a =patch_size a =num_channels a =is_training a =use_labels a =hidden_size a =num_hidden_layers a =num_attention_heads a =intermediate_size a =hidden_act a =hidden_dropout_prob a =attention_probs_dropout_prob a =type_sequence_label_size a =initializer_range a =num_labels a =scope a =n_targets a =num_detection_tokens # we set the expected sequence length (which is used in several tests) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) + num_detection_tokens a =(image_size[1] // patch_size) * (image_size[0] // patch_size) a =num_patches + 1 + self.num_detection_tokens def SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: a =floats_tensor([self.batch_size, self.num_channels, self.image_size[0], self.image_size[1]] ) a =None if self.use_labels: # labels is a list of Dict (each Dict being the labels for a given example in the batch) a =[] for i in range(self.batch_size ): a ={} a =torch.randint( high=self.num_labels , size=(self.n_targets,) , device=__A ) a =torch.rand(self.n_targets , 4 , device=__A ) labels.append(__A ) a =self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE ( self ) -> int: return YolosConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__A , initializer_range=self.initializer_range , num_detection_tokens=self.num_detection_tokens , num_labels=self.num_labels , ) def SCREAMING_SNAKE_CASE ( self , __A , __A , __A ) -> List[Any]: a =YolosModel(config=__A ) model.to(__A ) model.eval() a =model(__A ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.expected_seq_len, self.hidden_size) ) def SCREAMING_SNAKE_CASE ( self , __A , __A , __A ) -> Dict: a =YolosForObjectDetection(__A ) model.to(__A ) model.eval() a =model(pixel_values=__A ) a =model(__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) a =model(pixel_values=__A , labels=__A ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) def SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: a =self.prepare_config_and_inputs() a , a , a =config_and_inputs a ={'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __A ( _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE, unittest.TestCase ): """simple docstring""" __lowerCAmelCase = (YolosModel, YolosForObjectDetection) if is_torch_available() else () __lowerCAmelCase = ( {"feature-extraction": YolosModel, "object-detection": YolosForObjectDetection} if is_torch_available() else {} ) __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False def SCREAMING_SNAKE_CASE ( self , __A , __A , __A=False ) -> Any: a =super()._prepare_for_class(__A , __A , return_labels=__A ) if return_labels: if model_class.__name__ == "YolosForObjectDetection": a =[] for i in range(self.model_tester.batch_size ): a ={} a =torch.ones( size=(self.model_tester.n_targets,) , device=__A , dtype=torch.long ) a =torch.ones( self.model_tester.n_targets , 4 , device=__A , dtype=torch.float ) labels.append(__A ) a =labels return inputs_dict def SCREAMING_SNAKE_CASE ( self ) -> List[str]: a =YolosModelTester(self ) a =ConfigTester(self , config_class=__A , has_text_modality=__A , hidden_size=37 ) def SCREAMING_SNAKE_CASE ( self ) -> Dict: self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self ) -> List[Any]: # YOLOS does not use inputs_embeds pass def SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: a , a =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a =model_class(__A ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) a =model.get_output_embeddings() self.assertTrue(x is None or isinstance(__A , nn.Linear ) ) def SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: a , a =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a =model_class(__A ) a =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic a =[*signature.parameters.keys()] a =['''pixel_values'''] self.assertListEqual(arg_names[:1] , __A ) def SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__A ) def SCREAMING_SNAKE_CASE ( self ) -> List[Any]: a , a =self.model_tester.prepare_config_and_inputs_for_common() a =True # in YOLOS, the seq_len is different a =self.model_tester.expected_seq_len for model_class in self.all_model_classes: a =True a =False a =True a =model_class(__A ) model.to(__A ) model.eval() with torch.no_grad(): a =model(**self._prepare_for_class(__A , __A ) ) a =outputs.attentions self.assertEqual(len(__A ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] a =True a =model_class(__A ) model.to(__A ) model.eval() with torch.no_grad(): a =model(**self._prepare_for_class(__A , __A ) ) a =outputs.attentions self.assertEqual(len(__A ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) a =len(__A ) # Check attention is always last and order is fine a =True a =True a =model_class(__A ) model.to(__A ) model.eval() with torch.no_grad(): a =model(**self._prepare_for_class(__A , __A ) ) a =1 self.assertEqual(out_len + added_hidden_states , len(__A ) ) a =outputs.attentions self.assertEqual(len(__A ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def SCREAMING_SNAKE_CASE ( self ) -> str: def check_hidden_states_output(__A , __A , __A ): a =model_class(__A ) model.to(__A ) model.eval() with torch.no_grad(): a =model(**self._prepare_for_class(__A , __A ) ) a =outputs.hidden_states a =getattr( self.model_tester , '''expected_num_hidden_layers''' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(__A ) , __A ) # YOLOS has a different seq_length a =self.model_tester.expected_seq_len self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) a , a =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a =True check_hidden_states_output(__A , __A , __A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] a =True check_hidden_states_output(__A , __A , __A ) def SCREAMING_SNAKE_CASE ( self ) -> int: a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_object_detection(*__A ) @slow def SCREAMING_SNAKE_CASE ( self ) -> List[Any]: for model_name in YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a =YolosModel.from_pretrained(__A ) self.assertIsNotNone(__A ) def _A ( ): """simple docstring""" a =Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class __A ( unittest.TestCase ): """simple docstring""" @cached_property def SCREAMING_SNAKE_CASE ( self ) -> Dict: return AutoImageProcessor.from_pretrained('''hustvl/yolos-small''' ) if is_vision_available() else None @slow def SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: a =YolosForObjectDetection.from_pretrained('''hustvl/yolos-small''' ).to(__A ) a =self.default_image_processor a =prepare_img() a =image_processor(images=__A , return_tensors='''pt''' ).to(__A ) # forward pass with torch.no_grad(): a =model(inputs.pixel_values ) # verify outputs a =torch.Size((1, 100, 92) ) self.assertEqual(outputs.logits.shape , __A ) a =torch.tensor( [[-24.0_248, -10.3_024, -14.8_290], [-42.0_392, -16.8_200, -27.4_334], [-27.2_743, -11.8_154, -18.7_148]] , device=__A , ) a =torch.tensor( [[0.2_559, 0.5_455, 0.4_706], [0.2_989, 0.7_279, 0.1_875], [0.7_732, 0.4_017, 0.4_462]] , device=__A ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , __A , atol=1E-4 ) ) self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3] , __A , atol=1E-4 ) ) # verify postprocessing a =image_processor.post_process_object_detection( __A , threshold=0.3 , target_sizes=[image.size[::-1]] )[0] a =torch.tensor([0.9_994, 0.9_790, 0.9_964, 0.9_972, 0.9_861] ).to(__A ) a =[75, 75, 17, 63, 17] a =torch.tensor([335.0_609, 79.3_848, 375.4_216, 187.2_495] ).to(__A ) self.assertEqual(len(results['''scores'''] ) , 5 ) self.assertTrue(torch.allclose(results['''scores'''] , __A , atol=1E-4 ) ) self.assertSequenceEqual(results['''labels'''].tolist() , __A ) self.assertTrue(torch.allclose(results['''boxes'''][0, :] , __A ) )
215
1
"""simple docstring""" from __future__ import annotations from collections.abc import Callable __UpperCamelCase : Optional[Any] = list[list[float | int]] def __SCREAMING_SNAKE_CASE ( A_ , A_ ): lowerCAmelCase__ : List[str] = len(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : int = [[0 for _ in range(size + 1 )] for _ in range(SCREAMING_SNAKE_CASE_ )] lowerCAmelCase__ : List[Any] = 42 lowerCAmelCase__ : Optional[Any] = 42 lowerCAmelCase__ : List[Any] = 42 lowerCAmelCase__ : int = 42 lowerCAmelCase__ : str = 42 lowerCAmelCase__ : List[str] = 42 for row in range(SCREAMING_SNAKE_CASE_ ): for col in range(SCREAMING_SNAKE_CASE_ ): lowerCAmelCase__ : Any = matrix[row][col] lowerCAmelCase__ : int = vector[row][0] lowerCAmelCase__ : Any = 0 lowerCAmelCase__ : Tuple = 0 while row < size and col < size: # pivoting lowerCAmelCase__ : int = max((abs(augmented[rowa][col] ), rowa) for rowa in range(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: lowerCAmelCase__ ,lowerCAmelCase__ : Tuple = augmented[pivot_row], augmented[row] for rowa in range(row + 1 , SCREAMING_SNAKE_CASE_ ): lowerCAmelCase__ : Tuple = augmented[rowa][col] / augmented[row][col] lowerCAmelCase__ : List[str] = 0 for cola in range(col + 1 , size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1 , SCREAMING_SNAKE_CASE_ ): for row in range(SCREAMING_SNAKE_CASE_ ): lowerCAmelCase__ : Any = augmented[row][col] / augmented[col][col] for cola in range(SCREAMING_SNAKE_CASE_ , size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(SCREAMING_SNAKE_CASE_ ) ] def __SCREAMING_SNAKE_CASE ( A_ ): lowerCAmelCase__ : Any = len(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Dict = [[0 for _ in range(SCREAMING_SNAKE_CASE_ )] for _ in range(SCREAMING_SNAKE_CASE_ )] lowerCAmelCase__ : Optional[int] = [[0] for _ in range(SCREAMING_SNAKE_CASE_ )] lowerCAmelCase__ : List[str] = 42 lowerCAmelCase__ : Any = 42 lowerCAmelCase__ : int = 42 lowerCAmelCase__ : int = 42 for x_val, y_val in enumerate(SCREAMING_SNAKE_CASE_ ): for col in range(SCREAMING_SNAKE_CASE_ ): lowerCAmelCase__ : Optional[Any] = (x_val + 1) ** (size - col - 1) lowerCAmelCase__ : Union[str, Any] = y_val lowerCAmelCase__ : Dict = solve(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def interpolated_func(A_ ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(SCREAMING_SNAKE_CASE_ ) ) return interpolated_func def __SCREAMING_SNAKE_CASE ( A_ ): return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def __SCREAMING_SNAKE_CASE ( A_ = question_function , A_ = 10 ): lowerCAmelCase__ : Optional[Any] = [func(SCREAMING_SNAKE_CASE_ ) for x_val in range(1 , order + 1 )] lowerCAmelCase__ : Union[str, Any] = [ interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 ) ] lowerCAmelCase__ : str = 0 lowerCAmelCase__ : Any = 42 lowerCAmelCase__ : Optional[Any] = 42 for poly in polynomials: lowerCAmelCase__ : Optional[Any] = 1 while func(SCREAMING_SNAKE_CASE_ ) == poly(SCREAMING_SNAKE_CASE_ ): x_val += 1 ret += poly(SCREAMING_SNAKE_CASE_ ) return ret if __name__ == "__main__": print(F'''{solution() = }''')
106
"""simple docstring""" # This is the module that test_patching.py uses to test patch_submodule() import os # noqa: this is just for tests import os as renamed_os # noqa: this is just for tests from os import path # noqa: this is just for tests from os import path as renamed_path # noqa: this is just for tests from os.path import join # noqa: this is just for tests from os.path import join as renamed_join # noqa: this is just for tests __UpperCamelCase = open # noqa: we just need to have a builtin inside this module to test it properly
113
0
import argparse import os import torch from transformers.utils import WEIGHTS_NAME _snake_case = ['''small''', '''medium''', '''large'''] _snake_case = '''lm_head.decoder.weight''' _snake_case = '''lm_head.weight''' def _UpperCamelCase ( snake_case__, snake_case__ ) -> List[Any]: __UpperCAmelCase : str = torch.load(snake_case__ ) __UpperCAmelCase : str = d.pop(snake_case__ ) os.makedirs(snake_case__, exist_ok=snake_case__ ) torch.save(snake_case__, os.path.join(snake_case__, snake_case__ ) ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() parser.add_argument('''--dialogpt_path''', default='''.''', type=str) _snake_case = parser.parse_args() for MODEL in DIALOGPT_MODELS: _snake_case = os.path.join(args.dialogpt_path, F'{MODEL}_ft.pkl') _snake_case = F'./DialoGPT-{MODEL}' convert_dialogpt_checkpoint( checkpoint_path, pytorch_dump_folder_path, )
342
import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration _snake_case = [ # tf -> hf ('''/''', '''.'''), ('''layer_''', '''layers.'''), ('''kernel''', '''weight'''), ('''beta''', '''bias'''), ('''gamma''', '''weight'''), ('''pegasus''', '''model'''), ] _snake_case = [ ('''.output.dense''', '''.fc2'''), ('''intermediate.LayerNorm''', '''final_layer_norm'''), ('''intermediate.dense''', '''fc1'''), ] _snake_case = ( INIT_COMMON + [ ('''attention.self.LayerNorm''', '''self_attn_layer_norm'''), ('''attention.output.dense''', '''self_attn.out_proj'''), ('''attention.self''', '''self_attn'''), ('''attention.encdec.LayerNorm''', '''encoder_attn_layer_norm'''), ('''attention.encdec_output.dense''', '''encoder_attn.out_proj'''), ('''attention.encdec''', '''encoder_attn'''), ('''key''', '''k_proj'''), ('''value''', '''v_proj'''), ('''query''', '''q_proj'''), ('''decoder.LayerNorm''', '''decoder.layernorm_embedding'''), ] + END_COMMON ) _snake_case = ( INIT_COMMON + [ ('''embeddings.word_embeddings''', '''shared.weight'''), ('''embeddings.position_embeddings''', '''embed_positions.weight'''), ('''attention.self.LayerNorm''', '''self_attn_layer_norm'''), ('''attention.output.dense''', '''self_attn.output'''), ('''attention.self''', '''self_attn.self'''), ('''encoder.LayerNorm''', '''encoder.layernorm_embedding'''), ] + END_COMMON ) _snake_case = [ '''encdec/key/bias''', '''encdec/query/bias''', '''encdec/value/bias''', '''self/key/bias''', '''self/query/bias''', '''self/value/bias''', '''encdec_output/dense/bias''', '''attention/output/dense/bias''', ] def _UpperCamelCase ( snake_case__, snake_case__ ) -> Any: for tf_name, hf_name in patterns: __UpperCAmelCase : Optional[int] = k.replace(snake_case__, snake_case__ ) return k def _UpperCamelCase ( snake_case__, snake_case__ ) -> BigBirdPegasusForConditionalGeneration: __UpperCAmelCase : Dict = BigBirdPegasusConfig(**snake_case__ ) __UpperCAmelCase : Dict = BigBirdPegasusForConditionalGeneration(snake_case__ ) __UpperCAmelCase : Optional[Any] = torch_model.state_dict() __UpperCAmelCase : Optional[int] = {} # separating decoder weights __UpperCAmelCase : List[Any] = {k: tf_weights[k] for k in tf_weights if k.startswith("pegasus/decoder" )} __UpperCAmelCase : str = {k: tf_weights[k] for k in tf_weights if not k.startswith("pegasus/decoder" )} for k, v in tqdm(decoder_weights.items(), "tf -> hf conversion" ): __UpperCAmelCase : Optional[int] = [k.endswith(snake_case__ ) for ending in KEYS_TO_IGNORE] if any(snake_case__ ): continue __UpperCAmelCase : List[str] = DECODER_PATTERNS __UpperCAmelCase : str = rename_state_dict_key(snake_case__, snake_case__ ) if new_k not in state_dict: raise ValueError(f'''could not find new key {new_k} in state dict. (converted from {k})''' ) if any(True if i in k else False for i in ["dense", "query", "key", "value"] ): __UpperCAmelCase : Optional[int] = v.T __UpperCAmelCase : str = torch.from_numpy(snake_case__ ) assert v.shape == state_dict[new_k].shape, f'''{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}''' for k, v in tqdm(remaining_weights.items(), "tf -> hf conversion" ): __UpperCAmelCase : int = [k.endswith(snake_case__ ) for ending in KEYS_TO_IGNORE] if any(snake_case__ ): continue __UpperCAmelCase : Optional[Any] = REMAINING_PATTERNS __UpperCAmelCase : Optional[int] = rename_state_dict_key(snake_case__, snake_case__ ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(f'''could not find new key {new_k} in state dict. (converted from {k})''' ) if any(True if i in k else False for i in ["dense", "query", "key", "value"] ): __UpperCAmelCase : List[Any] = v.T __UpperCAmelCase : List[str] = torch.from_numpy(snake_case__ ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, f'''{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}''' __UpperCAmelCase : List[Any] = mapping["model.embed_positions.weight"] __UpperCAmelCase : Optional[Any] = mapping.pop("model.embed_positions.weight" ) __UpperCAmelCase , __UpperCAmelCase : Any = torch_model.load_state_dict(snake_case__, strict=snake_case__ ) __UpperCAmelCase : str = [ k for k in missing if k not in [ "final_logits_bias", "model.encoder.embed_tokens.weight", "model.decoder.embed_tokens.weight", "lm_head.weight", ] ] assert unexpected_missing == [], f'''no matches found for the following torch keys {unexpected_missing}''' assert extra == [], f'''no matches found for the following tf keys {extra}''' return torch_model def _UpperCamelCase ( snake_case__ ) -> Dict: __UpperCAmelCase : Tuple = tf.train.list_variables(snake_case__ ) __UpperCAmelCase : List[str] = {} __UpperCAmelCase : str = ["global_step"] for name, shape in tqdm(snake_case__, desc="converting tf checkpoint to dict" ): __UpperCAmelCase : Tuple = any(pat in name for pat in ignore_name ) if skip_key: continue __UpperCAmelCase : Optional[Any] = tf.train.load_variable(snake_case__, snake_case__ ) __UpperCAmelCase : Tuple = array return tf_weights def _UpperCamelCase ( snake_case__, snake_case__, snake_case__ ) -> Dict: __UpperCAmelCase : str = get_tf_weights_as_numpy(snake_case__ ) __UpperCAmelCase : List[Any] = convert_bigbird_pegasus(snake_case__, snake_case__ ) torch_model.save_pretrained(snake_case__ ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() parser.add_argument('''--tf_ckpt_path''', type=str, help='''passed to tf.train.list_variables''') parser.add_argument('''--save_dir''', default=None, type=str, help='''Path to the output PyTorch model.''') _snake_case = parser.parse_args() _snake_case = {} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
342
1
"""simple docstring""" import socket def _snake_case ( ): _lowerCamelCase : List[Any] = socket.socket(socket.AF_INET , socket.SOCK_STREAM ) _lowerCamelCase : Union[str, Any] = socket.gethostname() _lowerCamelCase : List[Any] = 12312 sock.connect((host, port) ) sock.send(B'Hello server!' ) with open('Received_file' , 'wb' ) as out_file: print('File opened' ) print('Receiving data...' ) while True: _lowerCamelCase : int = sock.recv(1024 ) if not data: break out_file.write(lowercase__ ) print('Successfully received the file' ) sock.close() print('Connection closed' ) if __name__ == "__main__": main()
96
"""simple docstring""" # Imports import numpy as np class lowerCAmelCase__ : '''simple docstring''' def __init__( self , lowercase=None , lowercase=None , lowercase=None , lowercase=None , lowercase=None ): self.set_matricies(red=lowercase , green=lowercase , blue=lowercase , red_edge=lowercase , nir=lowercase ) def A_ ( self , lowercase=None , lowercase=None , lowercase=None , lowercase=None , lowercase=None ): if red is not None: _lowerCamelCase : Optional[int] = red if green is not None: _lowerCamelCase : Optional[Any] = green if blue is not None: _lowerCamelCase : Tuple = blue if red_edge is not None: _lowerCamelCase : Optional[Any] = red_edge if nir is not None: _lowerCamelCase : Union[str, Any] = nir return True def A_ ( self , lowercase="" , lowercase=None , lowercase=None , lowercase=None , lowercase=None , lowercase=None ): self.set_matricies(red=lowercase , green=lowercase , blue=lowercase , red_edge=lowercase , nir=lowercase ) _lowerCamelCase : str = { 'ARVI2': self.arvaa, 'CCCI': self.ccci, 'CVI': self.cvi, 'GLI': self.gli, 'NDVI': self.ndvi, 'BNDVI': self.bndvi, 'redEdgeNDVI': self.red_edge_ndvi, 'GNDVI': self.gndvi, 'GBNDVI': self.gbndvi, 'GRNDVI': self.grndvi, 'RBNDVI': self.rbndvi, 'PNDVI': self.pndvi, 'ATSAVI': self.atsavi, 'BWDRVI': self.bwdrvi, 'CIgreen': self.ci_green, 'CIrededge': self.ci_rededge, 'CI': self.ci, 'CTVI': self.ctvi, 'GDVI': self.gdvi, 'EVI': self.evi, 'GEMI': self.gemi, 'GOSAVI': self.gosavi, 'GSAVI': self.gsavi, 'Hue': self.hue, 'IVI': self.ivi, 'IPVI': self.ipvi, 'I': self.i, 'RVI': self.rvi, 'MRVI': self.mrvi, 'MSAVI': self.m_savi, 'NormG': self.norm_g, 'NormNIR': self.norm_nir, 'NormR': self.norm_r, 'NGRDI': self.ngrdi, 'RI': self.ri, 'S': self.s, 'IF': self._if, 'DVI': self.dvi, 'TVI': self.tvi, 'NDRE': self.ndre, } try: return funcs[index]() except KeyError: print('Index not in the list!' ) return False def A_ ( self ): return -0.18 + (1.17 * ((self.nir - self.red) / (self.nir + self.red))) def A_ ( self ): return ((self.nir - self.redEdge) / (self.nir + self.redEdge)) / ( (self.nir - self.red) / (self.nir + self.red) ) def A_ ( self ): return self.nir * (self.red / (self.green**2)) def A_ ( self ): return (2 * self.green - self.red - self.blue) / ( 2 * self.green + self.red + self.blue ) def A_ ( self ): return (self.nir - self.red) / (self.nir + self.red) def A_ ( self ): return (self.nir - self.blue) / (self.nir + self.blue) def A_ ( self ): return (self.redEdge - self.red) / (self.redEdge + self.red) def A_ ( self ): return (self.nir - self.green) / (self.nir + self.green) def A_ ( self ): return (self.nir - (self.green + self.blue)) / ( self.nir + (self.green + self.blue) ) def A_ ( self ): return (self.nir - (self.green + self.red)) / ( self.nir + (self.green + self.red) ) def A_ ( self ): return (self.nir - (self.blue + self.red)) / (self.nir + (self.blue + self.red)) def A_ ( self ): return (self.nir - (self.green + self.red + self.blue)) / ( self.nir + (self.green + self.red + self.blue) ) def A_ ( self , lowercase=0.08 , lowercase=1.22 , lowercase=0.03 ): return a * ( (self.nir - a * self.red - b) / (a * self.nir + self.red - a * b + x * (1 + a**2)) ) def A_ ( self ): return (0.1 * self.nir - self.blue) / (0.1 * self.nir + self.blue) def A_ ( self ): return (self.nir / self.green) - 1 def A_ ( self ): return (self.nir / self.redEdge) - 1 def A_ ( self ): return (self.red - self.blue) / self.red def A_ ( self ): _lowerCamelCase : Any = self.ndvi() return ((ndvi + 0.5) / (abs(ndvi + 0.5 ))) * (abs(ndvi + 0.5 ) ** (1 / 2)) def A_ ( self ): return self.nir - self.green def A_ ( self ): return 2.5 * ( (self.nir - self.red) / (self.nir + 6 * self.red - 7.5 * self.blue + 1) ) def A_ ( self ): _lowerCamelCase : Any = (2 * (self.nir**2 - self.red**2) + 1.5 * self.nir + 0.5 * self.red) / ( self.nir + self.red + 0.5 ) return n * (1 - 0.25 * n) - (self.red - 0.1_25) / (1 - self.red) def A_ ( self , lowercase=0.16 ): return (self.nir - self.green) / (self.nir + self.green + y) def A_ ( self , lowercase=0.5 ): return ((self.nir - self.green) / (self.nir + self.green + n)) * (1 + n) def A_ ( self ): return np.arctan( ((2 * self.red - self.green - self.blue) / 30.5) * (self.green - self.blue) ) def A_ ( self , lowercase=None , lowercase=None ): return (self.nir - b) / (a * self.red) def A_ ( self ): return (self.nir / ((self.nir + self.red) / 2)) * (self.ndvi() + 1) def A_ ( self ): return (self.red + self.green + self.blue) / 30.5 def A_ ( self ): return self.nir / self.red def A_ ( self ): return (self.rvi() - 1) / (self.rvi() + 1) def A_ ( self ): return ( (2 * self.nir + 1) - ((2 * self.nir + 1) ** 2 - 8 * (self.nir - self.red)) ** (1 / 2) ) / 2 def A_ ( self ): return self.green / (self.nir + self.red + self.green) def A_ ( self ): return self.nir / (self.nir + self.red + self.green) def A_ ( self ): return self.red / (self.nir + self.red + self.green) def A_ ( self ): return (self.green - self.red) / (self.green + self.red) def A_ ( self ): return (self.red - self.green) / (self.red + self.green) def A_ ( self ): _lowerCamelCase : Union[str, Any] = np.max([np.max(self.red ), np.max(self.green ), np.max(self.blue )] ) _lowerCamelCase : Dict = np.min([np.min(self.red ), np.min(self.green ), np.min(self.blue )] ) return (max_value - min_value) / max_value def A_ ( self ): return (2 * self.red - self.green - self.blue) / (self.green - self.blue) def A_ ( self ): return self.nir / self.red def A_ ( self ): return (self.ndvi() + 0.5) ** (1 / 2) def A_ ( self ): return (self.nir - self.redEdge) / (self.nir + self.redEdge)
96
1
"""simple docstring""" from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __snake_case : Dict = {'''configuration_mra''': ['''MRA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MraConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Optional[int] = [ '''MRA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MraForMaskedLM''', '''MraForMultipleChoice''', '''MraForQuestionAnswering''', '''MraForSequenceClassification''', '''MraForTokenClassification''', '''MraLayer''', '''MraModel''', '''MraPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mra import ( MRA_PRETRAINED_MODEL_ARCHIVE_LIST, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraLayer, MraModel, MraPreTrainedModel, ) else: import sys __snake_case : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
357
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __snake_case : Dict = {"""configuration_focalnet""": ["""FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FocalNetConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : str = [ """FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """FocalNetForImageClassification""", """FocalNetForMaskedImageModeling""", """FocalNetBackbone""", """FocalNetModel""", """FocalNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys __snake_case : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
122
0
# this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys a : List[str] = subprocess.check_output("git merge-base main HEAD".split()).decode("utf-8") a : Tuple = subprocess.check_output(f"""git diff --name-only {fork_point_sha}""".split()).decode("utf-8").split() a : Optional[int] = "|".join(sys.argv[1:]) a : str = re.compile(rf"""^({joined_dirs}).*?\.py$""") a : int = [x for x in modified_files if regex.match(x)] print(" ".join(relevant_modified_files), end="")
114
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_download, hf_hub_url from PIL import Image from transformers import DetaConfig, DetaForObjectDetection, DetaImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() a : Dict = logging.get_logger(__name__) def lowerCamelCase__ ( __lowerCamelCase : str ): __UpperCAmelCase : Tuple = SwinConfig( embed_dim=192 , depths=(2, 2, 18, 2) , num_heads=(6, 12, 24, 48) , window_size=12 , out_features=["""stage2""", """stage3""", """stage4"""] , ) __UpperCAmelCase : Union[str, Any] = DetaConfig( backbone_config=__lowerCamelCase , num_queries=900 , encoder_ffn_dim=2048 , decoder_ffn_dim=2048 , num_feature_levels=5 , assign_first_stage=__lowerCamelCase , with_box_refine=__lowerCamelCase , two_stage=__lowerCamelCase , ) # set labels __UpperCAmelCase : List[str] = """huggingface/label-files""" if "o365" in model_name: __UpperCAmelCase : Any = 366 __UpperCAmelCase : Union[str, Any] = """object365-id2label.json""" else: __UpperCAmelCase : Tuple = 91 __UpperCAmelCase : str = """coco-detection-id2label.json""" __UpperCAmelCase : Any = num_labels __UpperCAmelCase : Union[str, Any] = json.load(open(cached_download(hf_hub_url(__lowerCamelCase , __lowerCamelCase , repo_type="""dataset""" ) ) , """r""" ) ) __UpperCAmelCase : Optional[Any] = {int(__lowerCamelCase ): v for k, v in idalabel.items()} __UpperCAmelCase : List[str] = idalabel __UpperCAmelCase : List[str] = {v: k for k, v in idalabel.items()} return config def lowerCamelCase__ ( __lowerCamelCase : Union[str, Any] ): __UpperCAmelCase : Dict = [] # stem # fmt: off rename_keys.append(("""backbone.0.body.patch_embed.proj.weight""", """model.backbone.model.embeddings.patch_embeddings.projection.weight""") ) rename_keys.append(("""backbone.0.body.patch_embed.proj.bias""", """model.backbone.model.embeddings.patch_embeddings.projection.bias""") ) rename_keys.append(("""backbone.0.body.patch_embed.norm.weight""", """model.backbone.model.embeddings.norm.weight""") ) rename_keys.append(("""backbone.0.body.patch_embed.norm.bias""", """model.backbone.model.embeddings.norm.bias""") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f"""backbone.0.body.layers.{i}.blocks.{j}.norm1.weight""", f"""model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight""") ) rename_keys.append((f"""backbone.0.body.layers.{i}.blocks.{j}.norm1.bias""", f"""model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias""") ) rename_keys.append((f"""backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_bias_table""", f"""model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table""") ) rename_keys.append((f"""backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_index""", f"""model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index""") ) rename_keys.append((f"""backbone.0.body.layers.{i}.blocks.{j}.attn.proj.weight""", f"""model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight""") ) rename_keys.append((f"""backbone.0.body.layers.{i}.blocks.{j}.attn.proj.bias""", f"""model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias""") ) rename_keys.append((f"""backbone.0.body.layers.{i}.blocks.{j}.norm2.weight""", f"""model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight""") ) rename_keys.append((f"""backbone.0.body.layers.{i}.blocks.{j}.norm2.bias""", f"""model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias""") ) rename_keys.append((f"""backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.weight""", f"""model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight""") ) rename_keys.append((f"""backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.bias""", f"""model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias""") ) rename_keys.append((f"""backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.weight""", f"""model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.weight""") ) rename_keys.append((f"""backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.bias""", f"""model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.bias""") ) if i < 3: rename_keys.append((f"""backbone.0.body.layers.{i}.downsample.reduction.weight""", f"""model.backbone.model.encoder.layers.{i}.downsample.reduction.weight""") ) rename_keys.append((f"""backbone.0.body.layers.{i}.downsample.norm.weight""", f"""model.backbone.model.encoder.layers.{i}.downsample.norm.weight""") ) rename_keys.append((f"""backbone.0.body.layers.{i}.downsample.norm.bias""", f"""model.backbone.model.encoder.layers.{i}.downsample.norm.bias""") ) rename_keys.append(("""backbone.0.body.norm1.weight""", """model.backbone.model.hidden_states_norms.stage2.weight""") ) rename_keys.append(("""backbone.0.body.norm1.bias""", """model.backbone.model.hidden_states_norms.stage2.bias""") ) rename_keys.append(("""backbone.0.body.norm2.weight""", """model.backbone.model.hidden_states_norms.stage3.weight""") ) rename_keys.append(("""backbone.0.body.norm2.bias""", """model.backbone.model.hidden_states_norms.stage3.bias""") ) rename_keys.append(("""backbone.0.body.norm3.weight""", """model.backbone.model.hidden_states_norms.stage4.weight""") ) rename_keys.append(("""backbone.0.body.norm3.bias""", """model.backbone.model.hidden_states_norms.stage4.bias""") ) # transformer encoder for i in range(config.encoder_layers ): rename_keys.append((f"""transformer.encoder.layers.{i}.self_attn.sampling_offsets.weight""", f"""model.encoder.layers.{i}.self_attn.sampling_offsets.weight""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.self_attn.sampling_offsets.bias""", f"""model.encoder.layers.{i}.self_attn.sampling_offsets.bias""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.self_attn.attention_weights.weight""", f"""model.encoder.layers.{i}.self_attn.attention_weights.weight""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.self_attn.attention_weights.bias""", f"""model.encoder.layers.{i}.self_attn.attention_weights.bias""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.self_attn.value_proj.weight""", f"""model.encoder.layers.{i}.self_attn.value_proj.weight""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.self_attn.value_proj.bias""", f"""model.encoder.layers.{i}.self_attn.value_proj.bias""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.self_attn.output_proj.weight""", f"""model.encoder.layers.{i}.self_attn.output_proj.weight""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.self_attn.output_proj.bias""", f"""model.encoder.layers.{i}.self_attn.output_proj.bias""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.norm1.weight""", f"""model.encoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.norm1.bias""", f"""model.encoder.layers.{i}.self_attn_layer_norm.bias""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.linear1.weight""", f"""model.encoder.layers.{i}.fc1.weight""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.linear1.bias""", f"""model.encoder.layers.{i}.fc1.bias""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.linear2.weight""", f"""model.encoder.layers.{i}.fc2.weight""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.linear2.bias""", f"""model.encoder.layers.{i}.fc2.bias""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.norm2.weight""", f"""model.encoder.layers.{i}.final_layer_norm.weight""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.norm2.bias""", f"""model.encoder.layers.{i}.final_layer_norm.bias""") ) # transformer decoder for i in range(config.decoder_layers ): rename_keys.append((f"""transformer.decoder.layers.{i}.cross_attn.sampling_offsets.weight""", f"""model.decoder.layers.{i}.encoder_attn.sampling_offsets.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.cross_attn.sampling_offsets.bias""", f"""model.decoder.layers.{i}.encoder_attn.sampling_offsets.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.cross_attn.attention_weights.weight""", f"""model.decoder.layers.{i}.encoder_attn.attention_weights.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.cross_attn.attention_weights.bias""", f"""model.decoder.layers.{i}.encoder_attn.attention_weights.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.cross_attn.value_proj.weight""", f"""model.decoder.layers.{i}.encoder_attn.value_proj.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.cross_attn.value_proj.bias""", f"""model.decoder.layers.{i}.encoder_attn.value_proj.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.cross_attn.output_proj.weight""", f"""model.decoder.layers.{i}.encoder_attn.output_proj.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.cross_attn.output_proj.bias""", f"""model.decoder.layers.{i}.encoder_attn.output_proj.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.norm1.weight""", f"""model.decoder.layers.{i}.encoder_attn_layer_norm.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.norm1.bias""", f"""model.decoder.layers.{i}.encoder_attn_layer_norm.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.self_attn.out_proj.weight""", f"""model.decoder.layers.{i}.self_attn.out_proj.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.self_attn.out_proj.bias""", f"""model.decoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.norm2.weight""", f"""model.decoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.norm2.bias""", f"""model.decoder.layers.{i}.self_attn_layer_norm.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.linear1.weight""", f"""model.decoder.layers.{i}.fc1.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.linear1.bias""", f"""model.decoder.layers.{i}.fc1.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.linear2.weight""", f"""model.decoder.layers.{i}.fc2.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.linear2.bias""", f"""model.decoder.layers.{i}.fc2.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.norm3.weight""", f"""model.decoder.layers.{i}.final_layer_norm.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.norm3.bias""", f"""model.decoder.layers.{i}.final_layer_norm.bias""") ) # fmt: on return rename_keys def lowerCamelCase__ ( __lowerCamelCase : List[str] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Union[str, Any] ): __UpperCAmelCase : Union[str, Any] = dct.pop(__lowerCamelCase ) __UpperCAmelCase : List[Any] = val def lowerCamelCase__ ( __lowerCamelCase : Tuple , __lowerCamelCase : Optional[Any] ): __UpperCAmelCase : List[Any] = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): __UpperCAmelCase : Any = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) __UpperCAmelCase : int = state_dict.pop(f"""backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.weight""" ) __UpperCAmelCase : str = state_dict.pop(f"""backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict __UpperCAmelCase : str = in_proj_weight[:dim, :] __UpperCAmelCase : Union[str, Any] = in_proj_bias[: dim] __UpperCAmelCase : List[str] = in_proj_weight[ dim : dim * 2, : ] __UpperCAmelCase : Dict = in_proj_bias[ dim : dim * 2 ] __UpperCAmelCase : List[str] = in_proj_weight[ -dim :, : ] __UpperCAmelCase : Optional[Any] = in_proj_bias[-dim :] # fmt: on def lowerCamelCase__ ( __lowerCamelCase : int , __lowerCamelCase : Any ): # transformer decoder self-attention layers __UpperCAmelCase : Union[str, Any] = config.d_model for i in range(config.decoder_layers ): # read in weights + bias of input projection layer of self-attention __UpperCAmelCase : List[Any] = state_dict.pop(f"""transformer.decoder.layers.{i}.self_attn.in_proj_weight""" ) __UpperCAmelCase : Union[str, Any] = state_dict.pop(f"""transformer.decoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict __UpperCAmelCase : int = in_proj_weight[:hidden_size, :] __UpperCAmelCase : Any = in_proj_bias[:hidden_size] __UpperCAmelCase : Dict = in_proj_weight[ hidden_size : hidden_size * 2, : ] __UpperCAmelCase : Union[str, Any] = in_proj_bias[hidden_size : hidden_size * 2] __UpperCAmelCase : List[Any] = in_proj_weight[-hidden_size:, :] __UpperCAmelCase : int = in_proj_bias[-hidden_size:] def lowerCamelCase__ ( ): __UpperCAmelCase : Tuple = """http://images.cocodataset.org/val2017/000000039769.jpg""" __UpperCAmelCase : Tuple = Image.open(requests.get(__lowerCamelCase , stream=__lowerCamelCase ).raw ) return im @torch.no_grad() def lowerCamelCase__ ( __lowerCamelCase : str , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[int] ): __UpperCAmelCase : Any = get_deta_config(__lowerCamelCase ) # load original state dict if model_name == "deta-swin-large": __UpperCAmelCase : Optional[Any] = hf_hub_download(repo_id="""nielsr/deta-checkpoints""" , filename="""adet_swin_ft.pth""" ) elif model_name == "deta-swin-large-o365": __UpperCAmelCase : Any = hf_hub_download(repo_id="""jozhang97/deta-swin-l-o365""" , filename="""deta_swin_pt_o365.pth""" ) else: raise ValueError(f"""Model name {model_name} not supported""" ) __UpperCAmelCase : int = torch.load(__lowerCamelCase , map_location="""cpu""" )["""model"""] # original state dict for name, param in state_dict.items(): print(__lowerCamelCase , param.shape ) # rename keys __UpperCAmelCase : Dict = create_rename_keys(__lowerCamelCase ) for src, dest in rename_keys: rename_key(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) read_in_swin_q_k_v(__lowerCamelCase , config.backbone_config ) read_in_decoder_q_k_v(__lowerCamelCase , __lowerCamelCase ) # fix some prefixes for key in state_dict.copy().keys(): if "transformer.decoder.class_embed" in key or "transformer.decoder.bbox_embed" in key: __UpperCAmelCase : str = state_dict.pop(__lowerCamelCase ) __UpperCAmelCase : Optional[Any] = val if "input_proj" in key: __UpperCAmelCase : Any = state_dict.pop(__lowerCamelCase ) __UpperCAmelCase : Union[str, Any] = val if "level_embed" in key or "pos_trans" in key or "pix_trans" in key or "enc_output" in key: __UpperCAmelCase : Dict = state_dict.pop(__lowerCamelCase ) __UpperCAmelCase : Optional[int] = val # finally, create HuggingFace model and load state dict __UpperCAmelCase : Optional[Any] = DetaForObjectDetection(__lowerCamelCase ) model.load_state_dict(__lowerCamelCase ) model.eval() __UpperCAmelCase : Optional[int] = """cuda""" if torch.cuda.is_available() else """cpu""" model.to(__lowerCamelCase ) # load image processor __UpperCAmelCase : int = DetaImageProcessor(format="""coco_detection""" ) # verify our conversion on image __UpperCAmelCase : Dict = prepare_img() __UpperCAmelCase : Tuple = processor(images=__lowerCamelCase , return_tensors="""pt""" ) __UpperCAmelCase : Optional[int] = encoding["""pixel_values"""] __UpperCAmelCase : List[str] = model(pixel_values.to(__lowerCamelCase ) ) # verify logits print("""Logits:""" , outputs.logits[0, :3, :3] ) print("""Boxes:""" , outputs.pred_boxes[0, :3, :3] ) if model_name == "deta-swin-large": __UpperCAmelCase : List[Any] = torch.tensor( [[-7.6_3_0_8, -2.8_4_8_5, -5.3_7_3_7], [-7.2_0_3_7, -4.5_5_0_5, -4.8_0_2_7], [-7.2_9_4_3, -4.2_6_1_1, -4.6_6_1_7]] ) __UpperCAmelCase : int = torch.tensor([[0.4_9_8_7, 0.4_9_6_9, 0.9_9_9_9], [0.2_5_4_9, 0.5_4_9_8, 0.4_8_0_5], [0.5_4_9_8, 0.2_7_5_7, 0.0_5_6_9]] ) elif model_name == "deta-swin-large-o365": __UpperCAmelCase : Optional[int] = torch.tensor( [[-8.0_1_2_2, -3.5_7_2_0, -4.9_7_1_7], [-8.1_5_4_7, -3.6_8_8_6, -4.6_3_8_9], [-7.6_6_1_0, -3.6_1_9_4, -5.0_1_3_4]] ) __UpperCAmelCase : List[Any] = torch.tensor([[0.2_5_2_3, 0.5_5_4_9, 0.4_8_8_1], [0.7_7_1_5, 0.4_1_4_9, 0.4_6_0_1], [0.5_5_0_3, 0.2_7_5_3, 0.0_5_7_5]] ) assert torch.allclose(outputs.logits[0, :3, :3] , expected_logits.to(__lowerCamelCase ) , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , expected_boxes.to(__lowerCamelCase ) , atol=1E-4 ) print("""Everything ok!""" ) if pytorch_dump_folder_path: # Save model and processor logger.info(f"""Saving PyTorch model and processor to {pytorch_dump_folder_path}...""" ) Path(__lowerCamelCase ).mkdir(exist_ok=__lowerCamelCase ) model.save_pretrained(__lowerCamelCase ) processor.save_pretrained(__lowerCamelCase ) # Push to hub if push_to_hub: print("""Pushing model and processor to hub...""" ) model.push_to_hub(f"""jozhang97/{model_name}""" ) processor.push_to_hub(f"""jozhang97/{model_name}""" ) if __name__ == "__main__": a : List[str] = argparse.ArgumentParser() parser.add_argument( "--model_name", type=str, default="deta-swin-large", choices=["deta-swin-large", "deta-swin-large-o365"], help="Name of the model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model.", ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) a : List[Any] = parser.parse_args() convert_deta_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
114
1
"""simple docstring""" from ..utils import DummyObject, requires_backends class UpperCAmelCase_ ( metaclass=_lowercase): snake_case__ = ['''keras_nlp'''] def __init__( self : Any , *__UpperCamelCase : Union[str, Any] , **__UpperCamelCase : int ) -> str: requires_backends(self , ['''keras_nlp'''] )
357
"""simple docstring""" from typing import Callable, List, Optional, Tuple, Union import torch from transformers import CLIPTextModel, CLIPTokenizer from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin, TransformeraDModel, VQModel from ...schedulers import VQDiffusionScheduler from ...utils import logging from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput UpperCAmelCase = logging.get_logger(__name__) # pylint: disable=invalid-name class UpperCAmelCase_ ( _lowercase , _lowercase): @register_to_config def __init__( self : Tuple , __UpperCamelCase : bool , __UpperCamelCase : Optional[int] = None , __UpperCamelCase : Optional[int] = None ) -> int: super().__init__() _UpperCamelCase = learnable if self.learnable: assert hidden_size is not None, "learnable=True requires `hidden_size` to be set" assert length is not None, "learnable=True requires `length` to be set" _UpperCamelCase = torch.zeros(__UpperCamelCase , __UpperCamelCase ) else: _UpperCamelCase = None _UpperCamelCase = torch.nn.Parameter(__UpperCamelCase ) class UpperCAmelCase_ ( _lowercase): snake_case__ = 42 snake_case__ = 42 snake_case__ = 42 snake_case__ = 42 snake_case__ = 42 snake_case__ = 42 def __init__( self : List[str] , __UpperCamelCase : VQModel , __UpperCamelCase : CLIPTextModel , __UpperCamelCase : CLIPTokenizer , __UpperCamelCase : TransformeraDModel , __UpperCamelCase : VQDiffusionScheduler , __UpperCamelCase : LearnedClassifierFreeSamplingEmbeddings , ) -> Optional[int]: super().__init__() self.register_modules( vqvae=__UpperCamelCase , transformer=__UpperCamelCase , text_encoder=__UpperCamelCase , tokenizer=__UpperCamelCase , scheduler=__UpperCamelCase , learned_classifier_free_sampling_embeddings=__UpperCamelCase , ) def _UpperCamelCase ( self : Optional[Any] , __UpperCamelCase : Dict , __UpperCamelCase : Dict , __UpperCamelCase : List[str] ) -> str: _UpperCamelCase = len(__UpperCamelCase ) if isinstance(__UpperCamelCase , __UpperCamelCase ) else 1 # get prompt text embeddings _UpperCamelCase = self.tokenizer( __UpperCamelCase , padding='''max_length''' , max_length=self.tokenizer.model_max_length , return_tensors='''pt''' , ) _UpperCamelCase = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: _UpperCamelCase = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( '''The following part of your input was truncated because CLIP can only handle sequences up to''' F''' {self.tokenizer.model_max_length} tokens: {removed_text}''' ) _UpperCamelCase = text_input_ids[:, : self.tokenizer.model_max_length] _UpperCamelCase = self.text_encoder(text_input_ids.to(self.device ) )[0] # NOTE: This additional step of normalizing the text embeddings is from VQ-Diffusion. # While CLIP does normalize the pooled output of the text transformer when combining # the image and text embeddings, CLIP does not directly normalize the last hidden state. # # CLIP normalizing the pooled output. # https://github.com/huggingface/transformers/blob/d92e22d1f28324f513f3080e5c47c071a3916721/src/transformers/models/clip/modeling_clip.py#L1052-L1053 _UpperCamelCase = prompt_embeds / prompt_embeds.norm(dim=-1 , keepdim=__UpperCamelCase ) # duplicate text embeddings for each generation per prompt _UpperCamelCase = prompt_embeds.repeat_interleave(__UpperCamelCase , dim=0 ) if do_classifier_free_guidance: if self.learned_classifier_free_sampling_embeddings.learnable: _UpperCamelCase = self.learned_classifier_free_sampling_embeddings.embeddings _UpperCamelCase = negative_prompt_embeds.unsqueeze(0 ).repeat(__UpperCamelCase , 1 , 1 ) else: _UpperCamelCase = [''''''] * batch_size _UpperCamelCase = text_input_ids.shape[-1] _UpperCamelCase = self.tokenizer( __UpperCamelCase , padding='''max_length''' , max_length=__UpperCamelCase , truncation=__UpperCamelCase , return_tensors='''pt''' , ) _UpperCamelCase = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # See comment for normalizing text embeddings _UpperCamelCase = negative_prompt_embeds / negative_prompt_embeds.norm(dim=-1 , keepdim=__UpperCamelCase ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method _UpperCamelCase = negative_prompt_embeds.shape[1] _UpperCamelCase = negative_prompt_embeds.repeat(1 , __UpperCamelCase , 1 ) _UpperCamelCase = negative_prompt_embeds.view(batch_size * num_images_per_prompt , __UpperCamelCase , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes _UpperCamelCase = torch.cat([negative_prompt_embeds, prompt_embeds] ) return prompt_embeds @torch.no_grad() def __call__( self : List[str] , __UpperCamelCase : Union[str, List[str]] , __UpperCamelCase : int = 100 , __UpperCamelCase : float = 5.0 , __UpperCamelCase : float = 1.0 , __UpperCamelCase : int = 1 , __UpperCamelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , __UpperCamelCase : Optional[torch.FloatTensor] = None , __UpperCamelCase : Optional[str] = "pil" , __UpperCamelCase : bool = True , __UpperCamelCase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __UpperCamelCase : int = 1 , ) -> Union[ImagePipelineOutput, Tuple]: if isinstance(__UpperCamelCase , __UpperCamelCase ): _UpperCamelCase = 1 elif isinstance(__UpperCamelCase , __UpperCamelCase ): _UpperCamelCase = len(__UpperCamelCase ) else: raise ValueError(F'''`prompt` has to be of type `str` or `list` but is {type(__UpperCamelCase )}''' ) _UpperCamelCase = batch_size * num_images_per_prompt _UpperCamelCase = guidance_scale > 1.0 _UpperCamelCase = self._encode_prompt(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(__UpperCamelCase , __UpperCamelCase ) or callback_steps <= 0) ): raise ValueError( F'''`callback_steps` has to be a positive integer but is {callback_steps} of type''' F''' {type(__UpperCamelCase )}.''' ) # get the initial completely masked latents unless the user supplied it _UpperCamelCase = (batch_size, self.transformer.num_latent_pixels) if latents is None: _UpperCamelCase = self.transformer.num_vector_embeds - 1 _UpperCamelCase = torch.full(__UpperCamelCase , __UpperCamelCase ).to(self.device ) else: if latents.shape != latents_shape: raise ValueError(F'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) if (latents < 0).any() or (latents >= self.transformer.num_vector_embeds).any(): raise ValueError( '''Unexpected latents value(s). All latents be valid embedding indices i.e. in the range 0,''' F''' {self.transformer.num_vector_embeds - 1} (inclusive).''' ) _UpperCamelCase = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(__UpperCamelCase , device=self.device ) _UpperCamelCase = self.scheduler.timesteps.to(self.device ) _UpperCamelCase = latents for i, t in enumerate(self.progress_bar(__UpperCamelCase ) ): # expand the sample if we are doing classifier free guidance _UpperCamelCase = torch.cat([sample] * 2 ) if do_classifier_free_guidance else sample # predict the un-noised image # model_output == `log_p_x_0` _UpperCamelCase = self.transformer(__UpperCamelCase , encoder_hidden_states=__UpperCamelCase , timestep=__UpperCamelCase ).sample if do_classifier_free_guidance: _UpperCamelCase , _UpperCamelCase = model_output.chunk(2 ) _UpperCamelCase = model_output_uncond + guidance_scale * (model_output_text - model_output_uncond) model_output -= torch.logsumexp(__UpperCamelCase , dim=1 , keepdim=__UpperCamelCase ) _UpperCamelCase = self.truncate(__UpperCamelCase , __UpperCamelCase ) # remove `log(0)`'s (`-inf`s) _UpperCamelCase = model_output.clamp(-70 ) # compute the previous noisy sample x_t -> x_t-1 _UpperCamelCase = self.scheduler.step(__UpperCamelCase , timestep=__UpperCamelCase , sample=__UpperCamelCase , generator=__UpperCamelCase ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) _UpperCamelCase = self.vqvae.config.vq_embed_dim _UpperCamelCase = (batch_size, self.transformer.height, self.transformer.width, embedding_channels) _UpperCamelCase = self.vqvae.quantize.get_codebook_entry(__UpperCamelCase , shape=__UpperCamelCase ) _UpperCamelCase = self.vqvae.decode(__UpperCamelCase , force_not_quantize=__UpperCamelCase ).sample _UpperCamelCase = (image / 2 + 0.5).clamp(0 , 1 ) _UpperCamelCase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _UpperCamelCase = self.numpy_to_pil(__UpperCamelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=__UpperCamelCase ) def _UpperCamelCase ( self : Optional[Any] , __UpperCamelCase : torch.FloatTensor , __UpperCamelCase : float ) -> torch.FloatTensor: _UpperCamelCase , _UpperCamelCase = torch.sort(__UpperCamelCase , 1 , descending=__UpperCamelCase ) _UpperCamelCase = torch.exp(__UpperCamelCase ) _UpperCamelCase = sorted_p_x_0.cumsum(dim=1 ) < truncation_rate # Ensure that at least the largest probability is not zeroed out _UpperCamelCase = torch.full_like(keep_mask[:, 0:1, :] , __UpperCamelCase ) _UpperCamelCase = torch.cat((all_true, keep_mask) , dim=1 ) _UpperCamelCase = keep_mask[:, :-1, :] _UpperCamelCase = keep_mask.gather(1 , indices.argsort(1 ) ) _UpperCamelCase = log_p_x_0.clone() _UpperCamelCase = -torch.inf # -inf = log(0) return rv
54
0
'''simple docstring''' import pytest import datasets # Import fixture modules as plugins A_ : Dict = ["""tests.fixtures.files""", """tests.fixtures.hub""", """tests.fixtures.fsspec"""] def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> Optional[int]: '''simple docstring''' for item in items: if any(marker in item.keywords for marker in ["""integration""", """unit"""] ): continue item.add_marker(pytest.mark.unit ) def snake_case_ ( lowerCAmelCase_ )-> List[Any]: '''simple docstring''' config.addinivalue_line("""markers""" , """torchaudio_latest: mark test to run with torchaudio>=0.12""" ) @pytest.fixture(autouse=lowerCAmelCase_ ) def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> Union[str, Any]: '''simple docstring''' _UpperCAmelCase : int = tmp_path_factory.getbasetemp() / """cache""" _UpperCAmelCase : List[str] = test_hf_cache_home / """datasets""" _UpperCAmelCase : Dict = test_hf_cache_home / """metrics""" _UpperCAmelCase : Optional[Any] = test_hf_cache_home / """modules""" monkeypatch.setattr("""datasets.config.HF_DATASETS_CACHE""" , str(lowerCAmelCase_ ) ) monkeypatch.setattr("""datasets.config.HF_METRICS_CACHE""" , str(lowerCAmelCase_ ) ) monkeypatch.setattr("""datasets.config.HF_MODULES_CACHE""" , str(lowerCAmelCase_ ) ) _UpperCAmelCase : Tuple = test_hf_datasets_cache / """downloads""" monkeypatch.setattr("""datasets.config.DOWNLOADED_DATASETS_PATH""" , str(lowerCAmelCase_ ) ) _UpperCAmelCase : Dict = test_hf_datasets_cache / """downloads""" / """extracted""" monkeypatch.setattr("""datasets.config.EXTRACTED_DATASETS_PATH""" , str(lowerCAmelCase_ ) ) @pytest.fixture(autouse=lowerCAmelCase_ , scope="""session""" ) def snake_case_ ( )-> Union[str, Any]: '''simple docstring''' datasets.disable_progress_bar() @pytest.fixture(autouse=lowerCAmelCase_ ) def snake_case_ ( lowerCAmelCase_ )-> Union[str, Any]: '''simple docstring''' monkeypatch.setattr("""datasets.config.HF_UPDATE_DOWNLOAD_COUNTS""" , lowerCAmelCase_ ) @pytest.fixture def snake_case_ ( lowerCAmelCase_ )-> List[str]: '''simple docstring''' monkeypatch.setattr("""sqlalchemy.util.deprecations.SILENCE_UBER_WARNING""" , lowerCAmelCase_ )
215
'''simple docstring''' import argparse import json import os import numpy as np import PIL import requests import tensorflow.keras.applications.efficientnet as efficientnet import torch from huggingface_hub import hf_hub_download from PIL import Image from tensorflow.keras.preprocessing import image from transformers import ( EfficientNetConfig, EfficientNetForImageClassification, EfficientNetImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() A_ : List[str] = logging.get_logger(__name__) A_ : Optional[Any] = { """b0""": efficientnet.EfficientNetBa, """b1""": efficientnet.EfficientNetBa, """b2""": efficientnet.EfficientNetBa, """b3""": efficientnet.EfficientNetBa, """b4""": efficientnet.EfficientNetBa, """b5""": efficientnet.EfficientNetBa, """b6""": efficientnet.EfficientNetBa, """b7""": efficientnet.EfficientNetBa, } A_ : Dict = { """b0""": { """hidden_dim""": 1_2_8_0, """width_coef""": 1.0, """depth_coef""": 1.0, """image_size""": 2_2_4, """dropout_rate""": 0.2, """dw_padding""": [], }, """b1""": { """hidden_dim""": 1_2_8_0, """width_coef""": 1.0, """depth_coef""": 1.1, """image_size""": 2_4_0, """dropout_rate""": 0.2, """dw_padding""": [1_6], }, """b2""": { """hidden_dim""": 1_4_0_8, """width_coef""": 1.1, """depth_coef""": 1.2, """image_size""": 2_6_0, """dropout_rate""": 0.3, """dw_padding""": [5, 8, 1_6], }, """b3""": { """hidden_dim""": 1_5_3_6, """width_coef""": 1.2, """depth_coef""": 1.4, """image_size""": 3_0_0, """dropout_rate""": 0.3, """dw_padding""": [5, 1_8], }, """b4""": { """hidden_dim""": 1_7_9_2, """width_coef""": 1.4, """depth_coef""": 1.8, """image_size""": 3_8_0, """dropout_rate""": 0.4, """dw_padding""": [6], }, """b5""": { """hidden_dim""": 2_0_4_8, """width_coef""": 1.6, """depth_coef""": 2.2, """image_size""": 4_5_6, """dropout_rate""": 0.4, """dw_padding""": [1_3, 2_7], }, """b6""": { """hidden_dim""": 2_3_0_4, """width_coef""": 1.8, """depth_coef""": 2.6, """image_size""": 5_2_8, """dropout_rate""": 0.5, """dw_padding""": [3_1], }, """b7""": { """hidden_dim""": 2_5_6_0, """width_coef""": 2.0, """depth_coef""": 3.1, """image_size""": 6_0_0, """dropout_rate""": 0.5, """dw_padding""": [1_8], }, } def snake_case_ ( lowerCAmelCase_ )-> int: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = EfficientNetConfig() _UpperCAmelCase : List[Any] = CONFIG_MAP[model_name]["""hidden_dim"""] _UpperCAmelCase : str = CONFIG_MAP[model_name]["""width_coef"""] _UpperCAmelCase : int = CONFIG_MAP[model_name]["""depth_coef"""] _UpperCAmelCase : Optional[Any] = CONFIG_MAP[model_name]["""image_size"""] _UpperCAmelCase : List[str] = CONFIG_MAP[model_name]["""dropout_rate"""] _UpperCAmelCase : Optional[int] = CONFIG_MAP[model_name]["""dw_padding"""] _UpperCAmelCase : List[str] = """huggingface/label-files""" _UpperCAmelCase : Optional[Any] = """imagenet-1k-id2label.json""" _UpperCAmelCase : List[str] = 1000 _UpperCAmelCase : Optional[int] = json.load(open(hf_hub_download(lowerCAmelCase_ , lowerCAmelCase_ , repo_type="""dataset""" ) , """r""" ) ) _UpperCAmelCase : Dict = {int(lowerCAmelCase_ ): v for k, v in idalabel.items()} _UpperCAmelCase : List[str] = idalabel _UpperCAmelCase : str = {v: k for k, v in idalabel.items()} return config def snake_case_ ( )-> Tuple: '''simple docstring''' _UpperCAmelCase : List[str] = """http://images.cocodataset.org/val2017/000000039769.jpg""" _UpperCAmelCase : Tuple = Image.open(requests.get(lowerCAmelCase_ , stream=lowerCAmelCase_ ).raw ) return im def snake_case_ ( lowerCAmelCase_ )-> Tuple: '''simple docstring''' _UpperCAmelCase : str = CONFIG_MAP[model_name]["""image_size"""] _UpperCAmelCase : Tuple = EfficientNetImageProcessor( size={"""height""": size, """width""": size} , image_mean=[0.4_8_5, 0.4_5_6, 0.4_0_6] , image_std=[0.4_7_8_5_3_9_4_4, 0.4_7_3_2_8_6_4, 0.4_7_4_3_4_1_6_3] , do_center_crop=lowerCAmelCase_ , ) return preprocessor def snake_case_ ( lowerCAmelCase_ )-> List[str]: '''simple docstring''' _UpperCAmelCase : int = [v.split("""_""" )[0].split("""block""" )[1] for v in original_param_names if v.startswith("""block""" )] _UpperCAmelCase : Optional[int] = sorted(set(lowerCAmelCase_ ) ) _UpperCAmelCase : str = len(lowerCAmelCase_ ) _UpperCAmelCase : Optional[Any] = {b: str(lowerCAmelCase_ ) for b, i in zip(lowerCAmelCase_ , range(lowerCAmelCase_ ) )} _UpperCAmelCase : List[str] = [] rename_keys.append(("""stem_conv/kernel:0""", """embeddings.convolution.weight""") ) rename_keys.append(("""stem_bn/gamma:0""", """embeddings.batchnorm.weight""") ) rename_keys.append(("""stem_bn/beta:0""", """embeddings.batchnorm.bias""") ) rename_keys.append(("""stem_bn/moving_mean:0""", """embeddings.batchnorm.running_mean""") ) rename_keys.append(("""stem_bn/moving_variance:0""", """embeddings.batchnorm.running_var""") ) for b in block_names: _UpperCAmelCase : Any = block_name_mapping[b] rename_keys.append((F'''block{b}_expand_conv/kernel:0''', F'''encoder.blocks.{hf_b}.expansion.expand_conv.weight''') ) rename_keys.append((F'''block{b}_expand_bn/gamma:0''', F'''encoder.blocks.{hf_b}.expansion.expand_bn.weight''') ) rename_keys.append((F'''block{b}_expand_bn/beta:0''', F'''encoder.blocks.{hf_b}.expansion.expand_bn.bias''') ) rename_keys.append( (F'''block{b}_expand_bn/moving_mean:0''', F'''encoder.blocks.{hf_b}.expansion.expand_bn.running_mean''') ) rename_keys.append( (F'''block{b}_expand_bn/moving_variance:0''', F'''encoder.blocks.{hf_b}.expansion.expand_bn.running_var''') ) rename_keys.append( (F'''block{b}_dwconv/depthwise_kernel:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight''') ) rename_keys.append((F'''block{b}_bn/gamma:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight''') ) rename_keys.append((F'''block{b}_bn/beta:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias''') ) rename_keys.append( (F'''block{b}_bn/moving_mean:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean''') ) rename_keys.append( (F'''block{b}_bn/moving_variance:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var''') ) rename_keys.append((F'''block{b}_se_reduce/kernel:0''', F'''encoder.blocks.{hf_b}.squeeze_excite.reduce.weight''') ) rename_keys.append((F'''block{b}_se_reduce/bias:0''', F'''encoder.blocks.{hf_b}.squeeze_excite.reduce.bias''') ) rename_keys.append((F'''block{b}_se_expand/kernel:0''', F'''encoder.blocks.{hf_b}.squeeze_excite.expand.weight''') ) rename_keys.append((F'''block{b}_se_expand/bias:0''', F'''encoder.blocks.{hf_b}.squeeze_excite.expand.bias''') ) rename_keys.append( (F'''block{b}_project_conv/kernel:0''', F'''encoder.blocks.{hf_b}.projection.project_conv.weight''') ) rename_keys.append((F'''block{b}_project_bn/gamma:0''', F'''encoder.blocks.{hf_b}.projection.project_bn.weight''') ) rename_keys.append((F'''block{b}_project_bn/beta:0''', F'''encoder.blocks.{hf_b}.projection.project_bn.bias''') ) rename_keys.append( (F'''block{b}_project_bn/moving_mean:0''', F'''encoder.blocks.{hf_b}.projection.project_bn.running_mean''') ) rename_keys.append( (F'''block{b}_project_bn/moving_variance:0''', F'''encoder.blocks.{hf_b}.projection.project_bn.running_var''') ) rename_keys.append(("""top_conv/kernel:0""", """encoder.top_conv.weight""") ) rename_keys.append(("""top_bn/gamma:0""", """encoder.top_bn.weight""") ) rename_keys.append(("""top_bn/beta:0""", """encoder.top_bn.bias""") ) rename_keys.append(("""top_bn/moving_mean:0""", """encoder.top_bn.running_mean""") ) rename_keys.append(("""top_bn/moving_variance:0""", """encoder.top_bn.running_var""") ) _UpperCAmelCase : Union[str, Any] = {} for item in rename_keys: if item[0] in original_param_names: _UpperCAmelCase : str = """efficientnet.""" + item[1] _UpperCAmelCase : Optional[Any] = """classifier.weight""" _UpperCAmelCase : Optional[Any] = """classifier.bias""" return key_mapping def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> Any: '''simple docstring''' for key, value in tf_params.items(): if "normalization" in key: continue _UpperCAmelCase : Union[str, Any] = key_mapping[key] if "_conv" in key and "kernel" in key: _UpperCAmelCase : Optional[int] = torch.from_numpy(lowerCAmelCase_ ).permute(3 , 2 , 0 , 1 ) elif "depthwise_kernel" in key: _UpperCAmelCase : Any = torch.from_numpy(lowerCAmelCase_ ).permute(2 , 3 , 0 , 1 ) elif "kernel" in key: _UpperCAmelCase : int = torch.from_numpy(np.transpose(lowerCAmelCase_ ) ) else: _UpperCAmelCase : List[str] = torch.from_numpy(lowerCAmelCase_ ) # Replace HF parameters with original TF model parameters assert hf_params[hf_key].shape == new_hf_value.shape hf_params[hf_key].copy_(lowerCAmelCase_ ) @torch.no_grad() def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> Any: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = model_classes[model_name]( include_top=lowerCAmelCase_ , weights="""imagenet""" , input_tensor=lowerCAmelCase_ , input_shape=lowerCAmelCase_ , pooling=lowerCAmelCase_ , classes=1000 , classifier_activation="""softmax""" , ) _UpperCAmelCase : List[str] = original_model.trainable_variables _UpperCAmelCase : Any = original_model.non_trainable_variables _UpperCAmelCase : Optional[int] = {param.name: param.numpy() for param in tf_params} for param in tf_non_train_params: _UpperCAmelCase : Dict = param.numpy() _UpperCAmelCase : Optional[Any] = list(tf_params.keys() ) # Load HuggingFace model _UpperCAmelCase : List[Any] = get_efficientnet_config(lowerCAmelCase_ ) _UpperCAmelCase : Optional[Any] = EfficientNetForImageClassification(lowerCAmelCase_ ).eval() _UpperCAmelCase : int = hf_model.state_dict() # Create src-to-dst parameter name mapping dictionary print("""Converting parameters...""" ) _UpperCAmelCase : Optional[int] = rename_keys(lowerCAmelCase_ ) replace_params(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # Initialize preprocessor and preprocess input image _UpperCAmelCase : str = convert_image_processor(lowerCAmelCase_ ) _UpperCAmelCase : List[str] = preprocessor(images=prepare_img() , return_tensors="""pt""" ) # HF model inference hf_model.eval() with torch.no_grad(): _UpperCAmelCase : List[str] = hf_model(**lowerCAmelCase_ ) _UpperCAmelCase : Any = outputs.logits.detach().numpy() # Original model inference _UpperCAmelCase : int = False _UpperCAmelCase : Optional[int] = CONFIG_MAP[model_name]["""image_size"""] _UpperCAmelCase : Dict = prepare_img().resize((image_size, image_size) , resample=PIL.Image.NEAREST ) _UpperCAmelCase : Optional[Any] = image.img_to_array(lowerCAmelCase_ ) _UpperCAmelCase : str = np.expand_dims(lowerCAmelCase_ , axis=0 ) _UpperCAmelCase : str = original_model.predict(lowerCAmelCase_ ) # Check whether original and HF model outputs match -> np.allclose assert np.allclose(lowerCAmelCase_ , lowerCAmelCase_ , atol=1e-3 ), "The predicted logits are not the same." print("""Model outputs match!""" ) if save_model: # Create folder to save model if not os.path.isdir(lowerCAmelCase_ ): os.mkdir(lowerCAmelCase_ ) # Save converted model and image processor hf_model.save_pretrained(lowerCAmelCase_ ) preprocessor.save_pretrained(lowerCAmelCase_ ) if push_to_hub: # Push model and image processor to hub print(F'''Pushing converted {model_name} to the hub...''' ) _UpperCAmelCase : List[Any] = F'''efficientnet-{model_name}''' preprocessor.push_to_hub(lowerCAmelCase_ ) hf_model.push_to_hub(lowerCAmelCase_ ) if __name__ == "__main__": A_ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""b0""", type=str, help="""Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].""", ) parser.add_argument( """--pytorch_dump_folder_path""", default="""hf_model""", type=str, help="""Path to the output PyTorch model directory.""", ) parser.add_argument("""--save_model""", action="""store_true""", help="""Save model to local""") parser.add_argument("""--push_to_hub""", action="""store_true""", help="""Push model and image processor to the hub""") A_ : Optional[Any] = parser.parse_args() convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
215
1
from __future__ import annotations class UpperCAmelCase_ : '''simple docstring''' def __init__( self , _A , _A ): '''simple docstring''' __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = text, pattern __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = len(_A ), len(_A ) def _A ( self , _A ): '''simple docstring''' for i in range(self.patLen - 1 , -1 , -1 ): if char == self.pattern[i]: return i return -1 def _A ( self , _A ): '''simple docstring''' for i in range(self.patLen - 1 , -1 , -1 ): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = [] for i in range(self.textLen - self.patLen + 1 ): __SCREAMING_SNAKE_CASE = self.mismatch_in_text(_A ) if mismatch_index == -1: positions.append(_A ) else: __SCREAMING_SNAKE_CASE = self.match_in_pattern(self.text[mismatch_index] ) __SCREAMING_SNAKE_CASE = ( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions lowerCAmelCase__ : Optional[Any] ='''ABAABA''' lowerCAmelCase__ : List[str] ='''AB''' lowerCAmelCase__ : Tuple =BoyerMooreSearch(text, pattern) lowerCAmelCase__ : Any =bms.bad_character_heuristic() if len(positions) == 0: print('''No match found''') else: print('''Pattern found in following positions: ''') print(positions)
118
def __lowercase ( a__ ) -> int: __SCREAMING_SNAKE_CASE = [[0 for _ in range(a__ )] for _ in range(m + 1 )] for i in range(m + 1 ): __SCREAMING_SNAKE_CASE = 1 for n in range(m + 1 ): for k in range(1 , a__ ): memo[n][k] += memo[n][k - 1] if n - k > 0: memo[n][k] += memo[n - k - 1][k] return memo[m][m - 1] if __name__ == "__main__": import sys if len(sys.argv) == 1: try: lowerCAmelCase__ : Optional[Any] =int(input('''Enter a number: ''').strip()) print(partition(n)) except ValueError: print('''Please enter a number.''') else: try: lowerCAmelCase__ : str =int(sys.argv[1]) print(partition(n)) except ValueError: print('''Please pass a number.''')
118
1
from scipy.stats import spearmanr import datasets __magic_name__: str = "\nThe Spearman rank-order correlation coefficient is a measure of the\nrelationship between two datasets. Like other correlation coefficients,\nthis one varies between -1 and +1 with 0 implying no correlation.\nPositive correlations imply that as data in dataset x increases, so\ndoes data in dataset y. Negative correlations imply that as x increases,\ny decreases. Correlations of -1 or +1 imply an exact monotonic relationship.\n\nUnlike the Pearson correlation, the Spearman correlation does not\nassume that both datasets are normally distributed.\n\nThe p-value roughly indicates the probability of an uncorrelated system\nproducing datasets that have a Spearman correlation at least as extreme\nas the one computed from these datasets. The p-values are not entirely\nreliable but are probably reasonable for datasets larger than 500 or so.\n" __magic_name__: List[Any] = "\nArgs:\n predictions (`List[float]`): Predicted labels, as returned by a model.\n references (`List[float]`): Ground truth labels.\n return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns\n only the spearmanr score. Defaults to `False`.\nReturns:\n spearmanr (`float`): Spearman correlation coefficient.\n p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input.\nExamples:\n Example 1:\n >>> spearmanr_metric = datasets.load_metric(\"spearmanr\")\n >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4])\n >>> print(results)\n {'spearmanr': -0.7}\n\n Example 2:\n >>> spearmanr_metric = datasets.load_metric(\"spearmanr\")\n >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5],\n ... predictions=[10, 9, 2.5, 6, 4],\n ... return_pvalue=True)\n >>> print(results['spearmanr'])\n -0.7\n >>> print(round(results['spearmanr_pvalue'], 2))\n 0.19\n" __magic_name__: Tuple = r"\\n@book{kokoska2000crc,\n title={CRC standard probability and statistics tables and formulae},\n author={Kokoska, Stephen and Zwillinger, Daniel},\n year={2000},\n publisher={Crc Press}\n}\n@article{2020SciPy-NMeth,\n author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\n title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\n journal = {Nature Methods},\n year = {2020},\n volume = {17},\n pages = {261--272},\n adsurl = {https://rdcu.be/b08Wh},\n doi = {10.1038/s41592-019-0686-2},\n}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class snake_case__ ( datasets.Metric ): def __magic_name__ ( self ) -> str: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""float""" ), """references""": datasets.Value("""float""" ), } ) , reference_urls=["""https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html"""] , ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=False ) -> Union[str, Any]: __magic_name__ : str = spearmanr(lowerCAmelCase__ , lowerCAmelCase__ ) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
342
from __future__ import annotations def UpperCamelCase ( _A ): # This function is recursive """simple docstring""" __magic_name__ : str = len(_A ) # If the array contains only one element, we return it (it's the stop condition of # recursion) if array_length <= 1: return array # Else __magic_name__ : Dict = array[0] __magic_name__ : Optional[Any] = False __magic_name__ : Tuple = 1 __magic_name__ : list[int] = [] while not is_found and i < array_length: if array[i] < pivot: __magic_name__ : Union[str, Any] = True __magic_name__ : List[Any] = [element for element in array[i:] if element >= array[i]] __magic_name__ : Dict = longest_subsequence(_A ) if len(_A ) > len(_A ): __magic_name__ : Tuple = temp_array else: i += 1 __magic_name__ : Any = [element for element in array[1:] if element >= pivot] __magic_name__ : Dict = [pivot, *longest_subsequence(_A )] if len(_A ) > len(_A ): return temp_array else: return longest_subseq if __name__ == "__main__": import doctest doctest.testmod()
342
1
"""simple docstring""" def __A ( a_ :int) -> bool: if number < 0: raise ValueError('''number must not be negative''') return number & (number - 1) == 0 if __name__ == "__main__": import doctest doctest.testmod()
188
"""simple docstring""" import hashlib import unittest from typing import Dict import numpy as np from transformers import ( MODEL_FOR_MASK_GENERATION_MAPPING, TF_MODEL_FOR_MASK_GENERATION_MAPPING, is_vision_available, pipeline, ) from transformers.pipelines import MaskGenerationPipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) if is_vision_available(): from PIL import Image else: class __lowercase : '''simple docstring''' @staticmethod def _lowerCamelCase ( *_UpperCAmelCase , **_UpperCAmelCase ): pass def __A ( a_ :Image) -> str: __a : List[str] = hashlib.mda(image.tobytes()) return m.hexdigest()[:10] def __A ( a_ :Image) -> Dict: __a : Any = np.array(a_) __a : Tuple = npimg.shape return {"hash": hashimage(a_), "shape": shape} @is_pipeline_test @require_vision @require_torch class __lowercase ( unittest.TestCase ): '''simple docstring''' __lowerCAmelCase = dict( (list(MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if MODEL_FOR_MASK_GENERATION_MAPPING else []) ) __lowerCAmelCase = dict( (list(TF_MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if TF_MODEL_FOR_MASK_GENERATION_MAPPING else []) ) def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __a : List[str] = MaskGenerationPipeline(model=_UpperCAmelCase , image_processor=_UpperCAmelCase ) return image_segmenter, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase ): pass @require_tf @unittest.skip('''Image segmentation not implemented in TF''' ) def _lowerCamelCase ( self ): pass @slow @require_torch def _lowerCamelCase ( self ): __a : Dict = pipeline('''mask-generation''' , model='''facebook/sam-vit-huge''' ) __a : Optional[Any] = image_segmenter('''http://images.cocodataset.org/val2017/000000039769.jpg''' , points_per_batch=256 ) # Shortening by hashing __a : Optional[int] = [] for i, o in enumerate(outputs['''masks'''] ): new_outupt += [{"mask": mask_to_test_readable(_UpperCAmelCase ), "scores": outputs["scores"][i]}] # fmt: off self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=4 ) , [ {'''mask''': {'''hash''': '''115ad19f5f''', '''shape''': (480, 640)}, '''scores''': 1.0_4_4_4}, {'''mask''': {'''hash''': '''6affa964c6''', '''shape''': (480, 640)}, '''scores''': 1.0_2_1}, {'''mask''': {'''hash''': '''dfe28a0388''', '''shape''': (480, 640)}, '''scores''': 1.0_1_6_7}, {'''mask''': {'''hash''': '''c0a5f4a318''', '''shape''': (480, 640)}, '''scores''': 1.0_1_3_2}, {'''mask''': {'''hash''': '''fe8065c197''', '''shape''': (480, 640)}, '''scores''': 1.0_0_5_3}, {'''mask''': {'''hash''': '''e2d0b7a0b7''', '''shape''': (480, 640)}, '''scores''': 0.9_9_6_7}, {'''mask''': {'''hash''': '''453c7844bd''', '''shape''': (480, 640)}, '''scores''': 0.9_9_3}, {'''mask''': {'''hash''': '''3d44f2926d''', '''shape''': (480, 640)}, '''scores''': 0.9_9_0_9}, {'''mask''': {'''hash''': '''64033ddc3f''', '''shape''': (480, 640)}, '''scores''': 0.9_8_7_9}, {'''mask''': {'''hash''': '''801064ff79''', '''shape''': (480, 640)}, '''scores''': 0.9_8_3_4}, {'''mask''': {'''hash''': '''6172f276ef''', '''shape''': (480, 640)}, '''scores''': 0.9_7_1_6}, {'''mask''': {'''hash''': '''b49e60e084''', '''shape''': (480, 640)}, '''scores''': 0.9_6_1_2}, {'''mask''': {'''hash''': '''a811e775fd''', '''shape''': (480, 640)}, '''scores''': 0.9_5_9_9}, {'''mask''': {'''hash''': '''a6a8ebcf4b''', '''shape''': (480, 640)}, '''scores''': 0.9_5_5_2}, {'''mask''': {'''hash''': '''9d8257e080''', '''shape''': (480, 640)}, '''scores''': 0.9_5_3_2}, {'''mask''': {'''hash''': '''32de6454a8''', '''shape''': (480, 640)}, '''scores''': 0.9_5_1_6}, {'''mask''': {'''hash''': '''af3d4af2c8''', '''shape''': (480, 640)}, '''scores''': 0.9_4_9_9}, {'''mask''': {'''hash''': '''3c6db475fb''', '''shape''': (480, 640)}, '''scores''': 0.9_4_8_3}, {'''mask''': {'''hash''': '''c290813fb9''', '''shape''': (480, 640)}, '''scores''': 0.9_4_6_4}, {'''mask''': {'''hash''': '''b6f0b8f606''', '''shape''': (480, 640)}, '''scores''': 0.9_4_3}, {'''mask''': {'''hash''': '''92ce16bfdf''', '''shape''': (480, 640)}, '''scores''': 0.9_4_3}, {'''mask''': {'''hash''': '''c749b25868''', '''shape''': (480, 640)}, '''scores''': 0.9_4_0_8}, {'''mask''': {'''hash''': '''efb6cab859''', '''shape''': (480, 640)}, '''scores''': 0.9_3_3_5}, {'''mask''': {'''hash''': '''1ff2eafb30''', '''shape''': (480, 640)}, '''scores''': 0.9_3_2_6}, {'''mask''': {'''hash''': '''788b798e24''', '''shape''': (480, 640)}, '''scores''': 0.9_2_6_2}, {'''mask''': {'''hash''': '''abea804f0e''', '''shape''': (480, 640)}, '''scores''': 0.8_9_9_9}, {'''mask''': {'''hash''': '''7b9e8ddb73''', '''shape''': (480, 640)}, '''scores''': 0.8_9_8_6}, {'''mask''': {'''hash''': '''cd24047c8a''', '''shape''': (480, 640)}, '''scores''': 0.8_9_8_4}, {'''mask''': {'''hash''': '''6943e6bcbd''', '''shape''': (480, 640)}, '''scores''': 0.8_8_7_3}, {'''mask''': {'''hash''': '''b5f47c9191''', '''shape''': (480, 640)}, '''scores''': 0.8_8_7_1} ] , ) # fmt: on @require_torch @slow def _lowerCamelCase ( self ): __a : Dict = '''facebook/sam-vit-huge''' __a : Tuple = pipeline('''mask-generation''' , model=_UpperCAmelCase ) __a : List[Any] = image_segmenter( '''http://images.cocodataset.org/val2017/000000039769.jpg''' , pred_iou_thresh=1 , points_per_batch=256 ) # Shortening by hashing __a : Optional[int] = [] for i, o in enumerate(outputs['''masks'''] ): new_outupt += [{"mask": mask_to_test_readable(_UpperCAmelCase ), "scores": outputs["scores"][i]}] self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=4 ) , [ {'''mask''': {'''hash''': '''115ad19f5f''', '''shape''': (480, 640)}, '''scores''': 1.0_4_4_4}, {'''mask''': {'''hash''': '''6affa964c6''', '''shape''': (480, 640)}, '''scores''': 1.0_2_1_0}, {'''mask''': {'''hash''': '''dfe28a0388''', '''shape''': (480, 640)}, '''scores''': 1.0_1_6_7}, {'''mask''': {'''hash''': '''c0a5f4a318''', '''shape''': (480, 640)}, '''scores''': 1.0_1_3_2}, {'''mask''': {'''hash''': '''fe8065c197''', '''shape''': (480, 640)}, '''scores''': 1.0_0_5_3}, ] , )
188
1
'''simple docstring''' import argparse import pickle import numpy as np import torch from torch import nn from transformers import ReformerConfig, ReformerModelWithLMHead from transformers.utils import logging logging.set_verbosity_info() def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase=None ): """simple docstring""" assert torch_layer.weight.shape == weight.shape, f"{torch_layer} layer.weight does not match" _lowerCAmelCase = nn.Parameter(lowerCAmelCase ) if bias is not None: assert torch_layer.bias.shape == bias.shape, f"{torch_layer} layer.bias does not match" _lowerCAmelCase = nn.Parameter(lowerCAmelCase ) def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): """simple docstring""" _lowerCAmelCase = np.asarray(weights[0] ) _lowerCAmelCase = np.asarray(weights[1] ) _lowerCAmelCase = np.asarray(weights[2] ) set_param( torch_layer.self_attention.query_key , torch.tensor(lowerCAmelCase ).transpose(1 , 2 ).contiguous().view(-1 , lowerCAmelCase ) , ) set_param( torch_layer.self_attention.value , torch.tensor(lowerCAmelCase ).transpose(1 , 2 ).contiguous().view(-1 , lowerCAmelCase ) , ) set_param( torch_layer.output.dense , torch.tensor(lowerCAmelCase ).view(-1 , lowerCAmelCase ).contiguous().transpose(0 , 1 ) , ) def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): """simple docstring""" _lowerCAmelCase = np.asarray(weights[0] ) _lowerCAmelCase = np.asarray(weights[1] ) _lowerCAmelCase = np.asarray(weights[2] ) _lowerCAmelCase = np.asarray(weights[3] ) set_param( torch_layer.self_attention.query , torch.tensor(lowerCAmelCase ).transpose(1 , 2 ).contiguous().view(-1 , lowerCAmelCase ) , ) set_param( torch_layer.self_attention.key , torch.tensor(lowerCAmelCase ).transpose(1 , 2 ).contiguous().view(-1 , lowerCAmelCase ) , ) set_param( torch_layer.self_attention.value , torch.tensor(lowerCAmelCase ).transpose(1 , 2 ).contiguous().view(-1 , lowerCAmelCase ) , ) set_param( torch_layer.output.dense , torch.tensor(lowerCAmelCase ).view(-1 , lowerCAmelCase ).contiguous().transpose(0 , 1 ) , ) def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): """simple docstring""" _lowerCAmelCase = weights[0][0][0] _lowerCAmelCase = np.asarray(layer_norm_a[0] ) _lowerCAmelCase = np.asarray(layer_norm_a[1] ) set_param( torch_block.attention.layer_norm , torch.tensor(lowerCAmelCase ) , torch.tensor(lowerCAmelCase ) , ) # lsh weights + output _lowerCAmelCase = weights[0][1] if len(lowerCAmelCase ) < 4: set_layer_weights_in_torch_lsh(lowerCAmelCase , torch_block.attention , lowerCAmelCase ) else: set_layer_weights_in_torch_local(lowerCAmelCase , torch_block.attention , lowerCAmelCase ) # intermediate weighs _lowerCAmelCase = weights[2][0][1][2] # Chunked Feed Forward if len(lowerCAmelCase ) == 4: _lowerCAmelCase = intermediate_weights[2] # layernorm 2 _lowerCAmelCase = np.asarray(intermediate_weights[0][0] ) _lowerCAmelCase = np.asarray(intermediate_weights[0][1] ) set_param( torch_block.feed_forward.layer_norm , torch.tensor(lowerCAmelCase ) , torch.tensor(lowerCAmelCase ) , ) # intermediate dense _lowerCAmelCase = np.asarray(intermediate_weights[1][0] ) _lowerCAmelCase = np.asarray(intermediate_weights[1][1] ) set_param( torch_block.feed_forward.dense.dense , torch.tensor(lowerCAmelCase ).transpose(0 , 1 ).contiguous() , torch.tensor(lowerCAmelCase ) , ) # intermediate out _lowerCAmelCase = np.asarray(intermediate_weights[4][0] ) _lowerCAmelCase = np.asarray(intermediate_weights[4][1] ) set_param( torch_block.feed_forward.output.dense , torch.tensor(lowerCAmelCase ).transpose(0 , 1 ).contiguous() , torch.tensor(lowerCAmelCase ) , ) def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): """simple docstring""" _lowerCAmelCase = torch_model.reformer # word embeds _lowerCAmelCase = np.asarray(weights[1] ) set_param( torch_model_reformer.embeddings.word_embeddings , torch.tensor(lowerCAmelCase ) , ) if isinstance(weights[3] , lowerCAmelCase ): _lowerCAmelCase = torch_model_reformer.embeddings.position_embeddings for emb_idx in range(len(position_embeddings.weights ) ): _lowerCAmelCase = np.asarray(weights[3][emb_idx][0] ) assert ( position_embeddings.weights[emb_idx].shape == emb_weights.shape ), f"{position_embeddings[emb_idx]} emb does not match" _lowerCAmelCase = nn.Parameter(torch.tensor(lowerCAmelCase ) ) _lowerCAmelCase = weights[5] assert len(torch_model_reformer.encoder.layers ) * 4 == len( lowerCAmelCase ), "HF and trax model do not have the same number of layers" for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers ): _lowerCAmelCase = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)] set_block_weights_in_torch(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # output layer norm _lowerCAmelCase = np.asarray(weights[7][0] ) _lowerCAmelCase = np.asarray(weights[7][1] ) set_param( torch_model_reformer.encoder.layer_norm , torch.tensor(lowerCAmelCase ) , torch.tensor(lowerCAmelCase ) , ) # output embeddings _lowerCAmelCase = np.asarray(weights[9][0] ) _lowerCAmelCase = np.asarray(weights[9][1] ) set_param( torch_model.lm_head.decoder , torch.tensor(lowerCAmelCase ).transpose(0 , 1 ).contiguous() , torch.tensor(lowerCAmelCase ) , ) def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): """simple docstring""" _lowerCAmelCase = ReformerConfig.from_json_file(lowerCAmelCase ) print(f"Building PyTorch model from configuration: {config}" ) _lowerCAmelCase = ReformerModelWithLMHead(lowerCAmelCase ) with open(lowerCAmelCase , """rb""" ) as f: _lowerCAmelCase = pickle.load(lowerCAmelCase )["""weights"""] set_model_weights_in_torch(lowerCAmelCase , lowerCAmelCase , config.hidden_size ) # Save pytorch-model print(f"Save PyTorch model to {pytorch_dump_path}" ) torch.save(model.state_dict() , lowerCAmelCase ) if __name__ == "__main__": A__ : int =argparse.ArgumentParser() # Required parameters parser.add_argument( '''--trax_model_pkl_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained Reformer model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) A__ : Dict =parser.parse_args() convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
70
_A = [0, 2, 4, 6, 8] _A = [1, 3, 5, 7, 9] def lowerCamelCase__ ( a__ : int , a__ : int , a__ : list[int] , a__ : int ) -> int: if remaining_length == 0: if digits[0] == 0 or digits[-1] == 0: return 0 for i in range(length // 2 - 1 , -1 , -1 ): remainder += digits[i] + digits[length - i - 1] if remainder % 2 == 0: return 0 remainder //= 10 return 1 if remaining_length == 1: if remainder % 2 == 0: return 0 UpperCamelCase_ = 0 for digit in range(10 ): UpperCamelCase_ = digit result += reversible_numbers( 0 , (remainder + 2 * digit) // 10 , a__ , a__ ) return result UpperCamelCase_ = 0 for digita in range(10 ): UpperCamelCase_ = digita if (remainder + digita) % 2 == 0: UpperCamelCase_ = ODD_DIGITS else: UpperCamelCase_ = EVEN_DIGITS for digita in other_parity_digits: UpperCamelCase_ = digita result += reversible_numbers( remaining_length - 2 , (remainder + digita + digita) // 10 , a__ , a__ , ) return result def lowerCamelCase__ ( a__ : int = 9 ) -> int: UpperCamelCase_ = 0 for length in range(1 , max_power + 1 ): result += reversible_numbers(a__ , 0 , [0] * length , a__ ) return result if __name__ == "__main__": print(F'''{solution() = }''')
122
0
'''simple docstring''' import random import unittest import torch from diffusers import IFImgaImgSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class _lowerCAmelCase ( __A, __A, unittest.TestCase ): """simple docstring""" lowerCamelCase = IFImgaImgSuperResolutionPipeline lowerCamelCase = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''width''', '''height'''} lowerCamelCase = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'''original_image'''} ) lowerCamelCase = PipelineTesterMixin.required_optional_params - {'''latents'''} def UpperCAmelCase_ ( self ) -> Dict: return self._get_superresolution_dummy_components() def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase=0 ) -> List[str]: if str(_lowerCamelCase ).startswith("""mps""" ): A_ : int = torch.manual_seed(_lowerCamelCase ) else: A_ : Union[str, Any] = torch.Generator(device=_lowerCamelCase ).manual_seed(_lowerCamelCase ) A_ : Dict = floats_tensor((1, 3, 32, 32) , rng=random.Random(_lowerCamelCase ) ).to(_lowerCamelCase ) A_ : List[str] = floats_tensor((1, 3, 16, 16) , rng=random.Random(_lowerCamelCase ) ).to(_lowerCamelCase ) A_ : List[Any] = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """original_image""": original_image, """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def UpperCAmelCase_ ( self ) -> int: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def UpperCAmelCase_ ( self ) -> Tuple: self._test_save_load_optional_components() @unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""" ) def UpperCAmelCase_ ( self ) -> List[Any]: # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1 ) def UpperCAmelCase_ ( self ) -> str: self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def UpperCAmelCase_ ( self ) -> Dict: self._test_save_load_local() def UpperCAmelCase_ ( self ) -> List[Any]: self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
164
'''simple docstring''' # XXX: we want transformers master here - in the absense of conftest manipulating sys.path: # hack it in for now: import sys from pathlib import Path UpperCamelCase__ : Optional[Any] = Path(__file__).resolve().parents[3] / 'src' sys.path.insert(1, str(git_repo_path)) import dataclasses # noqa import io # noqa import itertools # noqa import json # noqa import os # noqa import unittest # noqa from copy import deepcopy # noqa from parameterized import parameterized # noqa from transformers import TrainingArguments, is_torch_available # noqa from transformers.deepspeed import is_deepspeed_available # noqa from transformers.file_utils import WEIGHTS_NAME # noqa from transformers.testing_utils import ( # noqa CaptureLogger, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, mockenv_context, require_deepspeed, require_torch_gpu, require_torch_multi_gpu, slow, ) from transformers.trainer_utils import set_seed # noqa set_seed(42) UpperCamelCase__ : Tuple = {'base': 'patrickvonplaten/wav2vec2_tiny_random', 'robust': 'patrickvonplaten/wav2vec2_tiny_random_robust'} UpperCamelCase__ : Optional[Any] = 'zero2' UpperCamelCase__ : Optional[int] = 'zero3' UpperCamelCase__ : Dict = [ZEROa, ZEROa] def UpperCAmelCase ( a_ , a_ , a_ ) -> int: """simple docstring""" A_ : int = parameterized.to_safe_name("""_""".join(str(a_ ) for x in param.args ) ) return F"{func.__name__}_{param_based_name}" # Cartesian-product of zero stages with models to test UpperCamelCase__ : Tuple = list(itertools.product(stages, models.keys())) @slow @require_deepspeed @require_torch_gpu class _lowerCAmelCase ( __A ): """simple docstring""" @parameterized.expand(_lowerCamelCase , name_func=_lowerCamelCase ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase ) -> Tuple: self.run_and_check( stage=_lowerCamelCase , model=_lowerCamelCase , distributed=_lowerCamelCase , fpaa=_lowerCamelCase , ) @require_torch_multi_gpu @parameterized.expand(_lowerCamelCase , name_func=_lowerCamelCase ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase ) -> Optional[int]: self.run_and_check( stage=_lowerCamelCase , model=_lowerCamelCase , distributed=_lowerCamelCase , fpaa=_lowerCamelCase , ) @parameterized.expand(_lowerCamelCase , name_func=_lowerCamelCase ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase ) -> Dict: self.run_and_check( stage=_lowerCamelCase , model=_lowerCamelCase , distributed=_lowerCamelCase , fpaa=_lowerCamelCase , ) @require_torch_multi_gpu @parameterized.expand(_lowerCamelCase , name_func=_lowerCamelCase ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase ) -> int: self.run_and_check( stage=_lowerCamelCase , model=_lowerCamelCase , distributed=_lowerCamelCase , fpaa=_lowerCamelCase , ) def UpperCAmelCase_ ( self , _lowerCamelCase ) -> Optional[Any]: # XXX: run_asr is premature and doesn't save any results # so all we check for now is that the process didn't fail pass def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 10 , _lowerCamelCase = True , _lowerCamelCase = True , _lowerCamelCase = True , ) -> List[str]: A_ : Union[str, Any] = models[model] A_ : Tuple = self.run_trainer( stage=_lowerCamelCase , model_name=_lowerCamelCase , eval_steps=_lowerCamelCase , num_train_epochs=1 , distributed=_lowerCamelCase , fpaa=_lowerCamelCase , ) self.do_checks(_lowerCamelCase ) return output_dir def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 10 , _lowerCamelCase = 1 , _lowerCamelCase = True , _lowerCamelCase = True , ) -> Any: A_ : Dict = self.get_auto_remove_tmp_dir("""./xxx""" , after=_lowerCamelCase ) A_ : str = F"\n --model_name_or_path {model_name}\n --dataset_name hf-internal-testing/librispeech_asr_dummy\n --dataset_config_name clean\n --train_split_name validation\n --validation_split_name validation\n --output_dir {output_dir}\n --num_train_epochs {str(_lowerCamelCase )}\n --per_device_train_batch_size 2\n --per_device_eval_batch_size 2\n --evaluation_strategy steps\n --learning_rate 5e-4\n --warmup_steps 8\n --orthography timit\n --preprocessing_num_workers 1\n --group_by_length\n --freeze_feature_extractor\n --report_to none\n --save_steps 0\n --eval_steps {eval_steps}\n --report_to none\n ".split() if fpaa: args.extend(["""--fp16"""] ) # currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true, # hence the separate config files A_ : List[str] = F"--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json".split() A_ : Union[str, Any] = [F"{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py"] A_ : Tuple = self.get_launcher(_lowerCamelCase ) A_ : Optional[int] = launcher + script + args + ds_args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(_lowerCamelCase , env=self.get_env() ) return output_dir def UpperCAmelCase_ ( self , _lowerCamelCase=False ) -> Any: # 1. explicitly set --num_nodes=1 just in case these tests end up run on a multi-node setup # - it won't be able to handle that # 2. for now testing with just 2 gpus max (since some quality tests may give different # results with mode gpus because we use very little data) A_ : int = min(2 , get_gpu_count() ) if distributed else 1 return F"deepspeed --num_nodes 1 --num_gpus {num_gpus}".split()
164
1
'''simple docstring''' import unittest from parameterized import parameterized from transformers import LlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer class lowercase : """simple docstring""" def __init__( self , UpperCamelCase_ , UpperCamelCase_=13 , UpperCamelCase_=7 , UpperCamelCase_=True , UpperCamelCase_=True , UpperCamelCase_=False , UpperCamelCase_=True , UpperCamelCase_=99 , UpperCamelCase_=32 , UpperCamelCase_=5 , UpperCamelCase_=4 , UpperCamelCase_=37 , UpperCamelCase_="gelu" , UpperCamelCase_=0.1 , UpperCamelCase_=0.1 , UpperCamelCase_=512 , UpperCamelCase_=16 , UpperCamelCase_=2 , UpperCamelCase_=0.02 , UpperCamelCase_=3 , UpperCamelCase_=4 , UpperCamelCase_=None , ): '''simple docstring''' UpperCamelCase__ :List[str] = parent UpperCamelCase__ :List[str] = batch_size UpperCamelCase__ :Dict = seq_length UpperCamelCase__ :Dict = is_training UpperCamelCase__ :Tuple = use_input_mask UpperCamelCase__ :str = use_token_type_ids UpperCamelCase__ :str = use_labels UpperCamelCase__ :Optional[Any] = vocab_size UpperCamelCase__ :Dict = hidden_size UpperCamelCase__ :str = num_hidden_layers UpperCamelCase__ :Optional[int] = num_attention_heads UpperCamelCase__ :Optional[int] = intermediate_size UpperCamelCase__ :List[Any] = hidden_act UpperCamelCase__ :str = hidden_dropout_prob UpperCamelCase__ :int = attention_probs_dropout_prob UpperCamelCase__ :int = max_position_embeddings UpperCamelCase__ :Dict = type_vocab_size UpperCamelCase__ :Optional[Any] = type_sequence_label_size UpperCamelCase__ :str = initializer_range UpperCamelCase__ :List[str] = num_labels UpperCamelCase__ :int = num_choices UpperCamelCase__ :List[Any] = scope def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase__ :Union[str, Any] = None if self.use_input_mask: UpperCamelCase__ :Dict = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase__ :Tuple = None if self.use_token_type_ids: UpperCamelCase__ :Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCamelCase__ :Optional[int] = None UpperCamelCase__ :int = None UpperCamelCase__ :int = None if self.use_labels: UpperCamelCase__ :int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase__ :str = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase__ :Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) UpperCamelCase__ :Tuple = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase__ ( self ): '''simple docstring''' return LlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCAmelCase__ , initializer_range=self.initializer_range , ) def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ :Tuple = LlamaModel(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() UpperCamelCase__ :str = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ ) UpperCamelCase__ :str = model(UpperCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , ): '''simple docstring''' UpperCamelCase__ :Union[str, Any] = True UpperCamelCase__ :int = LlamaModel(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() UpperCamelCase__ :str = model( UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , encoder_hidden_states=UpperCAmelCase__ , encoder_attention_mask=UpperCAmelCase__ , ) UpperCamelCase__ :Any = model( UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , encoder_hidden_states=UpperCAmelCase__ , ) UpperCamelCase__ :Dict = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , ): '''simple docstring''' UpperCamelCase__ :Any = LlamaForCausalLM(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() UpperCamelCase__ :int = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , labels=UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , ): '''simple docstring''' UpperCamelCase__ :str = True UpperCamelCase__ :List[str] = True UpperCamelCase__ :Tuple = LlamaForCausalLM(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() # first forward pass UpperCamelCase__ :int = model( UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , encoder_hidden_states=UpperCAmelCase__ , encoder_attention_mask=UpperCAmelCase__ , use_cache=UpperCAmelCase__ , ) UpperCamelCase__ :List[Any] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids UpperCamelCase__ :Union[str, Any] = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCamelCase__ :Optional[int] = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and UpperCamelCase__ :Optional[Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCamelCase__ :int = torch.cat([input_mask, next_mask] , dim=-1 ) UpperCamelCase__ :List[str] = model( UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , encoder_hidden_states=UpperCAmelCase__ , encoder_attention_mask=UpperCAmelCase__ , output_hidden_states=UpperCAmelCase__ , )['''hidden_states'''][0] UpperCamelCase__ :List[Any] = model( UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , encoder_hidden_states=UpperCAmelCase__ , encoder_attention_mask=UpperCAmelCase__ , past_key_values=UpperCAmelCase__ , output_hidden_states=UpperCAmelCase__ , )['''hidden_states'''][0] # select random slice UpperCamelCase__ :int = ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCamelCase__ :List[str] = output_from_no_past[:, -3:, random_slice_idx].detach() UpperCamelCase__ :int = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(UpperCAmelCase__ , UpperCAmelCase__ , atol=1e-3 ) ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Optional[int] = self.prepare_config_and_inputs() ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ) :List[Any] = config_and_inputs UpperCamelCase__ :Optional[Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class lowercase ( A__ , A__ , A__ , unittest.TestCase ): """simple docstring""" _a = (LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else () _a = (LlamaForCausalLM,) if is_torch_available() else () _a = ( { "feature-extraction": LlamaModel, "text-classification": LlamaForSequenceClassification, "text-generation": LlamaForCausalLM, "zero-shot": LlamaForSequenceClassification, } if is_torch_available() else {} ) _a = False _a = False def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :str = LlamaModelTester(self ) UpperCamelCase__ :List[Any] = ConfigTester(self , config_class=UpperCAmelCase__ , hidden_size=37 ) def lowerCAmelCase__ ( self ): '''simple docstring''' self.config_tester.run_common_tests() def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase__ ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Tuple = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCamelCase__ :Optional[int] = type self.model_tester.create_and_check_model(*UpperCAmelCase__ ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ , UpperCamelCase__ :Tuple = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase__ :List[Any] = 3 UpperCamelCase__ :Optional[Any] = input_dict['''input_ids'''] UpperCamelCase__ :Union[str, Any] = input_ids.ne(1 ).to(UpperCAmelCase__ ) UpperCamelCase__ :int = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) UpperCamelCase__ :Optional[Any] = LlamaForSequenceClassification(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() UpperCamelCase__ :List[Any] = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , labels=UpperCAmelCase__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ , UpperCamelCase__ :Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase__ :Optional[int] = 3 UpperCamelCase__ :int = '''single_label_classification''' UpperCamelCase__ :Union[str, Any] = input_dict['''input_ids'''] UpperCamelCase__ :int = input_ids.ne(1 ).to(UpperCAmelCase__ ) UpperCamelCase__ :Any = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) UpperCamelCase__ :Dict = LlamaForSequenceClassification(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() UpperCamelCase__ :List[Any] = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , labels=UpperCAmelCase__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ , UpperCamelCase__ :Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase__ :Union[str, Any] = 3 UpperCamelCase__ :Optional[int] = '''multi_label_classification''' UpperCamelCase__ :List[Any] = input_dict['''input_ids'''] UpperCamelCase__ :Tuple = input_ids.ne(1 ).to(UpperCAmelCase__ ) UpperCamelCase__ :Dict = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) UpperCamelCase__ :List[str] = LlamaForSequenceClassification(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() UpperCamelCase__ :Dict = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , labels=UpperCAmelCase__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('''LLaMA buffers include complex numbers, which breaks this test''' ) def lowerCAmelCase__ ( self ): '''simple docstring''' pass @parameterized.expand([('''linear''',), ('''dynamic''',)] ) def lowerCAmelCase__ ( self , UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ , UpperCamelCase__ :Tuple = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase__ :int = ids_tensor([1, 10] , config.vocab_size ) UpperCamelCase__ :List[str] = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights UpperCamelCase__ :Union[str, Any] = LlamaModel(UpperCAmelCase__ ) original_model.to(UpperCAmelCase__ ) original_model.eval() UpperCamelCase__ :Dict = original_model(UpperCAmelCase__ ).last_hidden_state UpperCamelCase__ :Tuple = original_model(UpperCAmelCase__ ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights UpperCamelCase__ :Union[str, Any] = {'''type''': scaling_type, '''factor''': 10.0} UpperCamelCase__ :Optional[int] = LlamaModel(UpperCAmelCase__ ) scaled_model.to(UpperCAmelCase__ ) scaled_model.eval() UpperCamelCase__ :Dict = scaled_model(UpperCAmelCase__ ).last_hidden_state UpperCamelCase__ :List[str] = scaled_model(UpperCAmelCase__ ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(UpperCAmelCase__ , UpperCAmelCase__ , atol=1e-5 ) ) else: self.assertFalse(torch.allclose(UpperCAmelCase__ , UpperCAmelCase__ , atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(UpperCAmelCase__ , UpperCAmelCase__ , atol=1e-5 ) ) @require_torch class lowercase ( unittest.TestCase ): """simple docstring""" @unittest.skip('''Logits are not exactly the same, once we fix the instabalities somehow, will update!''' ) @slow def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Any = [1, 306, 4658, 278, 6593, 310, 2834, 338] UpperCamelCase__ :Optional[Any] = LlamaForCausalLM.from_pretrained('''meta-llama/Llama-2-7b-hf''' , device_map='''auto''' ) UpperCamelCase__ :Union[str, Any] = model(torch.tensor([input_ids] ) ) # Expected mean on dim = -1 UpperCamelCase__ :List[Any] = torch.tensor([[-6.6550, -4.1227, -4.9859, -3.2406, 0.8262, -3.0033, 1.2964, -3.3699]] ) torch.testing.assert_close(out.mean(-1 ) , UpperCAmelCase__ , atol=1e-2 , rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off UpperCamelCase__ :List[Any] = torch.tensor([-12.8281, -7.4453, -0.4639, -8.0625, -7.2500, -8.0000, -6.4883, -7.7695, -7.8438, -7.0312, -6.2188, -7.1328, -1.8496, 1.9961, -8.6250, -6.7227, -12.8281, -6.9492, -7.0742, -7.7852, -7.5820, -7.9062, -6.9375, -7.9805, -8.3438, -8.1562, -8.0469, -7.6250, -7.7422, -7.3398,] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , UpperCAmelCase__ , atol=1e-5 , rtol=1e-5 ) @unittest.skip('''Logits are not exactly the same, once we fix the instabalities somehow, will update!''' ) @slow def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :str = [1, 306, 4658, 278, 6593, 310, 2834, 338] UpperCamelCase__ :Any = LlamaForCausalLM.from_pretrained('''meta-llama/Llama-2-13b-hf''' , device_map='''auto''' ) UpperCamelCase__ :str = model(torch.tensor(UpperCAmelCase__ ) ) # Expected mean on dim = -1 UpperCamelCase__ :str = torch.tensor([[-2.0622, -1.2794, -1.1638, -0.9788, -1.4603, -1.0238, -1.7893, -1.4411]] ) torch.testing.assert_close(out.mean(-1 ) , UpperCAmelCase__ , atol=1e-2 , rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off UpperCamelCase__ :str = torch.tensor([-8.1406, -8.0547, 2.7461, -1.2344, -0.1448, -1.8262, -1.0020, -1.8154, -1.6895, -1.8516, -2.3574, -0.9277, 3.7598, 6.5742, -1.2998, -0.1177, -8.1406, -2.9688, -2.9199, -3.1699, -3.5254, -2.3555, -2.7988, -3.4141, -2.8262, -4.5195, -3.3379, -3.3164, -2.7832, -3.0273] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , UpperCAmelCase__ , atol=1e-5 , rtol=1e-5 ) @unittest.skip('''Logits are not exactly the same, once we fix the instabalities somehow, will update!''' ) @slow def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Tuple = [1, 306, 4658, 278, 6593, 310, 2834, 338] UpperCamelCase__ :Dict = LlamaForCausalLM.from_pretrained('''meta-llama/Llama-2-13b-chat-hf''' , device_map='''auto''' ) UpperCamelCase__ :Union[str, Any] = model(torch.tensor(UpperCAmelCase__ ) ) # Expected mean on dim = -1 UpperCamelCase__ :Union[str, Any] = torch.tensor([[-0.8562, -1.8520, -0.7551, -0.4162, -1.5161, -1.2038, -2.4823, -2.3254]] ) torch.testing.assert_close(out.mean(-1 ) , UpperCAmelCase__ , atol=1e-2 , rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off UpperCamelCase__ :Any = torch.tensor([-2.2227, 4.8828, 0.9023, -0.4578, -0.7871, -0.1033, -0.6221, -0.5786, -0.7803, -1.0674, -1.2920, -0.1570, 0.8008, 2.0723, -0.9497, 0.2771, -2.2227, -0.7612, -1.4346, -1.2061, -1.6426, -0.3000, -0.7139, -1.1934, -1.8691, -1.6973, -1.5947, -1.2705, -0.3523, -0.5513] ) # fmt: on torch.testing.assert_close(out.mean(-1 ) , UpperCAmelCase__ , atol=1e-2 , rtol=1e-2 ) @unittest.skip( '''Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test''' ) @slow def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Any = [1, 306, 4658, 278, 6593, 310, 2834, 338] UpperCamelCase__ :Optional[int] = LlamaForCausalLM.from_pretrained('''meta-llama/Llama-2-70b-hf''' , device_map='''auto''' ) UpperCamelCase__ :Any = model(torch.tensor(UpperCAmelCase__ ) ) UpperCamelCase__ :Union[str, Any] = torch.tensor( [[-4.2327, -3.3360, -4.6665, -4.7631, -1.8180, -3.4170, -1.4211, -3.1810]] , dtype=torch.floataa ) torch.testing.assert_close(out.mean(-1 ) , UpperCAmelCase__ , atol=1e-2 , rtol=1e-2 ) # fmt: off UpperCamelCase__ :List[Any] = torch.tensor([-9.4922, -3.9551, 1.7998, -5.6758, -5.1055, -5.8984, -4.8320, -6.8086, -6.5391, -5.6172, -5.5820, -5.5352, 1.7881, 3.6289, -6.5117, -3.4785, -9.5000, -6.0352, -6.8125, -6.0195, -6.6836, -5.4727, -6.2812, -6.0391, -7.3398, -7.4297, -7.4844, -6.5820, -5.8789, -5.5312] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , UpperCAmelCase__ , atol=1e-5 , rtol=1e-5 ) @unittest.skip('''Model is curently gated''' ) @slow def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Dict = '''Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the \"princi''' UpperCamelCase__ :str = '''Simply put, the theory of relativity states that ''' UpperCamelCase__ :Dict = LlamaTokenizer.from_pretrained('''meta-llama/Llama-2-13b-chat-hf''' ) UpperCamelCase__ :str = tokenizer.encode(UpperCAmelCase__ , return_tensors='''pt''' ) UpperCamelCase__ :Dict = LlamaForCausalLM.from_pretrained( '''meta-llama/Llama-2-13b-chat-hf''' , device_map='''sequential''' , use_safetensors=UpperCAmelCase__ ) # greedy generation outputs UpperCamelCase__ :Tuple = model.generate(UpperCAmelCase__ , max_new_tokens=64 , top_p=UpperCAmelCase__ , temperature=1 , do_sample=UpperCAmelCase__ ) UpperCamelCase__ :List[str] = tokenizer.decode(generated_ids[0] , skip_special_tokens=UpperCAmelCase__ ) self.assertEqual(UpperCAmelCase__ , UpperCAmelCase__ )
97
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from .feature_extraction_utils import BatchFeature, FeatureExtractionMixin from .utils import PaddingStrategy, TensorType, is_tf_tensor, is_torch_tensor, logging, to_numpy a__ : Union[str, Any] = logging.get_logger(__name__) class UpperCamelCase_ ( UpperCamelCase): """simple docstring""" def __init__( self : int , UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : float , **UpperCAmelCase__ : List[str] ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE = feature_size __SCREAMING_SNAKE_CASE = sampling_rate __SCREAMING_SNAKE_CASE = padding_value __SCREAMING_SNAKE_CASE = kwargs.pop("padding_side" , "right" ) __SCREAMING_SNAKE_CASE = kwargs.pop("return_attention_mask" , UpperCAmelCase__ ) super().__init__(**UpperCAmelCase__ ) def UpperCAmelCase_ ( self : Optional[int] , UpperCAmelCase__ : Union[ BatchFeature, List[BatchFeature], Dict[str, BatchFeature], Dict[str, List[BatchFeature]], List[Dict[str, BatchFeature]], ] , UpperCAmelCase__ : Union[bool, str, PaddingStrategy] = True , UpperCAmelCase__ : Optional[int] = None , UpperCAmelCase__ : bool = False , UpperCAmelCase__ : Optional[int] = None , UpperCAmelCase__ : Optional[bool] = None , UpperCAmelCase__ : Optional[Union[str, TensorType]] = None , ) -> BatchFeature: # If we have a list of dicts, let's convert it in a dict of lists # We do this to allow using this method as a collate_fn function in PyTorch Dataloader if isinstance(UpperCAmelCase__ , (list, tuple) ) and isinstance(processed_features[0] , (dict, BatchFeature) ): __SCREAMING_SNAKE_CASE = { key: [example[key] for example in processed_features] for key in processed_features[0].keys() } # The model's main input name, usually `input_values`, has be passed for padding if self.model_input_names[0] not in processed_features: raise ValueError( "You should supply an instance of `transformers.BatchFeature` or list of `transformers.BatchFeature`" F""" to this method that includes {self.model_input_names[0]}, but you provided""" F""" {list(processed_features.keys() )}""" ) __SCREAMING_SNAKE_CASE = processed_features[self.model_input_names[0]] __SCREAMING_SNAKE_CASE = ( return_attention_mask if return_attention_mask is not None else self.return_attention_mask ) if len(UpperCAmelCase__ ) == 0: if return_attention_mask: __SCREAMING_SNAKE_CASE = [] return processed_features # If we have PyTorch/TF tensors or lists as inputs, we cast them as Numpy arrays # and rebuild them afterwards if no return_tensors is specified # Note that we lose the specific device the tensor may be on for PyTorch __SCREAMING_SNAKE_CASE = required_input[0] if isinstance(UpperCAmelCase__ , (list, tuple) ): # first_element might be an empty list/tuple in some edge cases so we grab the first non empty element. __SCREAMING_SNAKE_CASE = 0 while len(required_input[index] ) == 0: index += 1 if index < len(UpperCAmelCase__ ): __SCREAMING_SNAKE_CASE = required_input[index][0] if return_tensors is None: if is_tf_tensor(UpperCAmelCase__ ): __SCREAMING_SNAKE_CASE = "tf" elif is_torch_tensor(UpperCAmelCase__ ): __SCREAMING_SNAKE_CASE = "pt" elif isinstance(UpperCAmelCase__ , (int, float, list, tuple, np.ndarray) ): __SCREAMING_SNAKE_CASE = "np" else: raise ValueError( F"""type of {first_element} unknown: {type(UpperCAmelCase__ )}. """ "Should be one of a python, numpy, pytorch or tensorflow object." ) for key, value in processed_features.items(): if isinstance(value[0] , (int, float) ): __SCREAMING_SNAKE_CASE = to_numpy(UpperCAmelCase__ ) else: __SCREAMING_SNAKE_CASE = [to_numpy(UpperCAmelCase__ ) for v in value] # Convert padding_strategy in PaddingStrategy __SCREAMING_SNAKE_CASE = self._get_padding_strategies(padding=UpperCAmelCase__ , max_length=UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = processed_features[self.model_input_names[0]] __SCREAMING_SNAKE_CASE = len(UpperCAmelCase__ ) if not all(len(UpperCAmelCase__ ) == batch_size for v in processed_features.values() ): raise ValueError("Some items in the output dictionary have a different batch size than others." ) __SCREAMING_SNAKE_CASE = [] for i in range(UpperCAmelCase__ ): __SCREAMING_SNAKE_CASE = {k: v[i] for k, v in processed_features.items()} # truncation __SCREAMING_SNAKE_CASE = self._truncate( UpperCAmelCase__ , max_length=UpperCAmelCase__ , pad_to_multiple_of=UpperCAmelCase__ , truncation=UpperCAmelCase__ , ) truncated_inputs.append(UpperCAmelCase__ ) if padding_strategy == PaddingStrategy.LONGEST: # make sure that `max_length` cannot be longer than the longest truncated length __SCREAMING_SNAKE_CASE = max(len(input_slice[self.model_input_names[0]] ) for input_slice in truncated_inputs ) __SCREAMING_SNAKE_CASE = PaddingStrategy.MAX_LENGTH __SCREAMING_SNAKE_CASE = {} for i in range(UpperCAmelCase__ ): # padding __SCREAMING_SNAKE_CASE = self._pad( truncated_inputs[i] , max_length=UpperCAmelCase__ , padding_strategy=UpperCAmelCase__ , pad_to_multiple_of=UpperCAmelCase__ , return_attention_mask=UpperCAmelCase__ , ) for key, value in outputs.items(): if key not in batch_outputs: __SCREAMING_SNAKE_CASE = [] if value.dtype is np.dtype(np.floataa ): __SCREAMING_SNAKE_CASE = value.astype(np.floataa ) batch_outputs[key].append(UpperCAmelCase__ ) return BatchFeature(UpperCAmelCase__ , tensor_type=UpperCAmelCase__ ) def UpperCAmelCase_ ( self : Optional[int] , UpperCAmelCase__ : Union[Dict[str, np.ndarray], BatchFeature] , UpperCAmelCase__ : Optional[int] = None , UpperCAmelCase__ : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , UpperCAmelCase__ : Optional[int] = None , UpperCAmelCase__ : Optional[bool] = None , ) -> dict: __SCREAMING_SNAKE_CASE = processed_features[self.model_input_names[0]] if padding_strategy == PaddingStrategy.LONGEST: __SCREAMING_SNAKE_CASE = len(UpperCAmelCase__ ) if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): __SCREAMING_SNAKE_CASE = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of __SCREAMING_SNAKE_CASE = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(UpperCAmelCase__ ) < max_length if return_attention_mask and "attention_mask" not in processed_features: __SCREAMING_SNAKE_CASE = np.ones(len(UpperCAmelCase__ ) , dtype=np.intaa ) if needs_to_be_padded: __SCREAMING_SNAKE_CASE = max_length - len(UpperCAmelCase__ ) if self.padding_side == "right": if return_attention_mask: __SCREAMING_SNAKE_CASE = np.pad( processed_features["attention_mask"] , (0, difference) ) __SCREAMING_SNAKE_CASE = ((0, difference), (0, 0)) if self.feature_size > 1 else (0, difference) __SCREAMING_SNAKE_CASE = np.pad( UpperCAmelCase__ , UpperCAmelCase__ , "constant" , constant_values=self.padding_value ) elif self.padding_side == "left": if return_attention_mask: __SCREAMING_SNAKE_CASE = np.pad( processed_features["attention_mask"] , (difference, 0) ) __SCREAMING_SNAKE_CASE = ((difference, 0), (0, 0)) if self.feature_size > 1 else (difference, 0) __SCREAMING_SNAKE_CASE = np.pad( UpperCAmelCase__ , UpperCAmelCase__ , "constant" , constant_values=self.padding_value ) else: raise ValueError("Invalid padding strategy:" + str(self.padding_side ) ) return processed_features def UpperCAmelCase_ ( self : Union[str, Any] , UpperCAmelCase__ : Union[Dict[str, np.ndarray], BatchFeature] , UpperCAmelCase__ : Optional[int] = None , UpperCAmelCase__ : Optional[int] = None , UpperCAmelCase__ : Optional[bool] = None , ) -> str: if not truncation: return processed_features elif truncation and max_length is None: raise ValueError("When setting ``truncation=True``, make sure that ``max_length`` is defined." ) __SCREAMING_SNAKE_CASE = processed_features[self.model_input_names[0]] # find `max_length` that fits `pad_to_multiple_of` if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): __SCREAMING_SNAKE_CASE = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of __SCREAMING_SNAKE_CASE = len(UpperCAmelCase__ ) > max_length if needs_to_be_truncated: __SCREAMING_SNAKE_CASE = processed_features[self.model_input_names[0]][:max_length] if "attention_mask" in processed_features: __SCREAMING_SNAKE_CASE = processed_features["attention_mask"][:max_length] return processed_features def UpperCAmelCase_ ( self : Optional[int] , UpperCAmelCase__ : Optional[Any]=False , UpperCAmelCase__ : Optional[int]=None ) -> str: # Get padding strategy if padding is not False: if padding is True: __SCREAMING_SNAKE_CASE = PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch elif not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): __SCREAMING_SNAKE_CASE = PaddingStrategy(UpperCAmelCase__ ) elif isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): __SCREAMING_SNAKE_CASE = padding else: __SCREAMING_SNAKE_CASE = PaddingStrategy.DO_NOT_PAD # Set max length if needed if max_length is None: if padding_strategy == PaddingStrategy.MAX_LENGTH: raise ValueError( F"""When setting ``padding={PaddingStrategy.MAX_LENGTH}``, make sure that max_length is defined""" ) # Test if we have a padding value if padding_strategy != PaddingStrategy.DO_NOT_PAD and (self.padding_value is None): raise ValueError( "Asking to pad but the feature_extractor does not have a padding value. Please select a value to use" " as `padding_value`. For example: `feature_extractor.padding_value = 0.0`." ) return padding_strategy
54
0
'''simple docstring''' import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler __lowerCAmelCase : Optional[int] =16 __lowerCAmelCase : List[str] =32 def UpperCamelCase ( _lowerCamelCase : Accelerator , _lowerCamelCase : int = 16 , _lowerCamelCase : str = "bert-base-cased" ): A__ = AutoTokenizer.from_pretrained(_lowerCamelCase ) A__ = load_dataset("glue" , "mrpc" ) def tokenize_function(_lowerCamelCase : int ): # max_length=None => use the model max length (it's actually the default) A__ = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=_lowerCamelCase , max_length=_lowerCamelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset A__ = datasets.map( _lowerCamelCase , batched=_lowerCamelCase , remove_columns=["idx", "sentence1", "sentence2"] , load_from_cache_file=_lowerCamelCase ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library A__ = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(_lowerCamelCase : str ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(_lowerCamelCase , padding="max_length" , max_length=1_28 , return_tensors="pt" ) return tokenizer.pad(_lowerCamelCase , padding="longest" , return_tensors="pt" ) # Instantiate dataloaders. A__ = DataLoader( tokenized_datasets["train"] , shuffle=_lowerCamelCase , collate_fn=_lowerCamelCase , batch_size=_lowerCamelCase ) A__ = DataLoader( tokenized_datasets["validation"] , shuffle=_lowerCamelCase , collate_fn=_lowerCamelCase , batch_size=_lowerCamelCase ) return train_dataloader, eval_dataloader def UpperCamelCase ( _lowerCamelCase : int , _lowerCamelCase : Dict , _lowerCamelCase : Any , _lowerCamelCase : Any ): model.eval() A__ = 0 for step, batch in enumerate(_lowerCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): A__ = model(**_lowerCamelCase ) A__ = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times A__, A__ = accelerator.gather( (predictions, batch["labels"]) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(_lowerCamelCase ) - 1: A__ = predictions[: len(eval_dataloader.dataset ) - samples_seen] A__ = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=_lowerCamelCase , references=_lowerCamelCase , ) A__ = metric.compute() return eval_metric["accuracy"] def UpperCamelCase ( _lowerCamelCase : Any , _lowerCamelCase : Optional[int] ): # Initialize accelerator A__ = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs A__ = config["lr"] A__ = int(config["num_epochs"] ) A__ = int(config["seed"] ) A__ = int(config["batch_size"] ) A__ = args.model_name_or_path set_seed(_lowerCamelCase ) A__, A__ = get_dataloaders(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) A__ = AutoModelForSequenceClassification.from_pretrained(_lowerCamelCase , return_dict=_lowerCamelCase ) # Instantiate optimizer A__ = ( AdamW if accelerator.state.deepspeed_plugin is None or "optimizer" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) A__ = optimizer_cls(params=model.parameters() , lr=_lowerCamelCase ) if accelerator.state.deepspeed_plugin is not None: A__ = accelerator.state.deepspeed_plugin.deepspeed_config[ "gradient_accumulation_steps" ] else: A__ = 1 A__ = (len(_lowerCamelCase ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): A__ = get_linear_schedule_with_warmup( optimizer=_lowerCamelCase , num_warmup_steps=0 , num_training_steps=_lowerCamelCase , ) else: A__ = DummyScheduler(_lowerCamelCase , total_num_steps=_lowerCamelCase , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. A__, A__, A__, A__, A__ = accelerator.prepare( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # We need to keep track of how many total steps we have iterated over A__ = 0 # We also need to keep track of the stating epoch so files are named properly A__ = 0 A__ = evaluate.load("glue" , "mrpc" ) A__ = num_epochs if args.partial_train_epoch is not None: A__ = args.partial_train_epoch if args.resume_from_checkpoint: accelerator.load_state(args.resume_from_checkpoint ) A__ = args.resume_from_checkpoint.split("epoch_" )[1] A__ = "" for char in epoch_string: if char.isdigit(): state_epoch_num += char else: break A__ = int(_lowerCamelCase ) + 1 A__ = evaluation_loop(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) accelerator.print("resumed checkpoint performance:" , _lowerCamelCase ) accelerator.print("resumed checkpoint's scheduler's lr:" , lr_scheduler.get_lr()[0] ) accelerator.print("resumed optimizers's lr:" , optimizer.param_groups[0]["lr"] ) with open(os.path.join(args.output_dir , F"state_{starting_epoch-1}.json" ) , "r" ) as f: A__ = json.load(_lowerCamelCase ) assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed" assert ( resumed_state["lr"] == lr_scheduler.get_lr()[0] ), "Scheduler learning rate mismatch, loading from checkpoint failed" assert ( resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"] ), "Optimizer learning rate mismatch, loading from checkpoint failed" assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed" return # Now we train the model A__ = {} for epoch in range(_lowerCamelCase , _lowerCamelCase ): model.train() for step, batch in enumerate(_lowerCamelCase ): A__ = model(**_lowerCamelCase ) A__ = outputs.loss A__ = loss / gradient_accumulation_steps accelerator.backward(_lowerCamelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 A__ = F"epoch_{epoch}" A__ = os.path.join(args.output_dir , _lowerCamelCase ) accelerator.save_state(_lowerCamelCase ) A__ = evaluation_loop(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) A__ = accuracy A__ = lr_scheduler.get_lr()[0] A__ = optimizer.param_groups[0]["lr"] A__ = epoch A__ = overall_step accelerator.print(F"epoch {epoch}:" , _lowerCamelCase ) accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , F"state_{epoch}.json" ) , "w" ) as f: json.dump(_lowerCamelCase , _lowerCamelCase ) def UpperCamelCase ( ): A__ = argparse.ArgumentParser(description="Simple example of training script tracking peak GPU memory usage." ) parser.add_argument( "--model_name_or_path" , type=_lowerCamelCase , default="bert-base-cased" , help="Path to pretrained model or model identifier from huggingface.co/models." , required=_lowerCamelCase , ) parser.add_argument( "--output_dir" , type=_lowerCamelCase , default="." , help="Optional save directory where all checkpoint folders will be stored. Default is the current working directory." , ) parser.add_argument( "--resume_from_checkpoint" , type=_lowerCamelCase , default=_lowerCamelCase , help="If the training should continue from a checkpoint folder." , ) parser.add_argument( "--partial_train_epoch" , type=_lowerCamelCase , default=_lowerCamelCase , help="If passed, the training will stop after this number of epochs." , ) parser.add_argument( "--num_epochs" , type=_lowerCamelCase , default=2 , help="Number of train epochs." , ) A__ = parser.parse_args() A__ = {"lr": 2e-5, "num_epochs": args.num_epochs, "seed": 42, "batch_size": 16} training_function(_lowerCamelCase , _lowerCamelCase ) if __name__ == "__main__": main()
123
'''simple docstring''' import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import TimesformerConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, TimesformerForVideoClassification, TimesformerModel, ) from transformers.models.timesformer.modeling_timesformer import TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class UpperCAmelCase : def __init__( self :Optional[Any] , lowercase_ :int , lowercase_ :Union[str, Any]=13 , lowercase_ :Union[str, Any]=10 , lowercase_ :Any=3 , lowercase_ :Tuple=2 , lowercase_ :List[Any]=2 , lowercase_ :int=True , lowercase_ :int=True , lowercase_ :List[str]=32 , lowercase_ :Dict=5 , lowercase_ :List[Any]=4 , lowercase_ :List[Any]=37 , lowercase_ :List[Any]="gelu" , lowercase_ :int=0.1 , lowercase_ :List[Any]=0.1 , lowercase_ :List[Any]=10 , lowercase_ :int=0.0_2 , lowercase_ :Union[str, Any]="divided_space_time" , lowercase_ :Tuple=None , )-> Tuple: A__ = parent A__ = batch_size A__ = image_size A__ = num_channels A__ = patch_size A__ = num_frames A__ = is_training A__ = use_labels A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_size A__ = hidden_act A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = attention_type A__ = initializer_range A__ = scope A__ = num_labels # in TimeSformer, the number of spatial tokens equals num_frames * num_patches per frame + 1 CLS token A__ = (image_size // patch_size) ** 2 A__ = (num_frames) * self.num_patches_per_frame + 1 def UpperCAmelCase_ ( self :str )-> str: A__ = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) A__ = None if self.use_labels: A__ = ids_tensor([self.batch_size] , self.num_labels ) A__ = self.get_config() return config, pixel_values, labels def UpperCAmelCase_ ( self :int )-> Any: A__ = TimesformerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , attention_type=self.attention_type , ) A__ = self.num_labels return config def UpperCAmelCase_ ( self :Optional[Any] , lowercase_ :List[str] , lowercase_ :List[Any] , lowercase_ :Tuple )-> Optional[int]: A__ = TimesformerModel(config=lowercase_ ) model.to(lowercase_ ) model.eval() A__ = model(lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase_ ( self :List[str] , lowercase_ :Tuple , lowercase_ :Tuple , lowercase_ :Dict )-> Tuple: A__ = TimesformerForVideoClassification(lowercase_ ) model.to(lowercase_ ) model.eval() A__ = model(lowercase_ ) # verify the logits shape A__ = torch.Size((self.batch_size, self.num_labels) ) self.parent.assertEqual(result.logits.shape , lowercase_ ) def UpperCAmelCase_ ( self :Optional[Any] )-> str: A__ = self.prepare_config_and_inputs() A__, A__, A__ = config_and_inputs A__ = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): __lowercase = (TimesformerModel, TimesformerForVideoClassification) if is_torch_available() else () __lowercase = ( {"""feature-extraction""": TimesformerModel, """video-classification""": TimesformerForVideoClassification} if is_torch_available() else {} ) __lowercase = False __lowercase = False __lowercase = False __lowercase = False def UpperCAmelCase_ ( self :Union[str, Any] )-> Optional[int]: A__ = TimesformerModelTester(self ) A__ = ConfigTester( self , config_class=lowercase_ , has_text_modality=lowercase_ , hidden_size=37 ) def UpperCAmelCase_ ( self :Union[str, Any] , lowercase_ :int , lowercase_ :Dict , lowercase_ :int=False )-> str: A__ = copy.deepcopy(lowercase_ ) if return_labels: if model_class in get_values(lowercase_ ): A__ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowercase_ ) return inputs_dict def UpperCAmelCase_ ( self :Union[str, Any] )-> List[Any]: self.config_tester.run_common_tests() @unittest.skip(reason="TimeSformer does not use inputs_embeds" ) def UpperCAmelCase_ ( self :List[Any] )-> Tuple: pass def UpperCAmelCase_ ( self :Dict )-> Optional[Any]: A__, A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ = model_class(lowercase_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) A__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowercase_ , nn.Linear ) ) def UpperCAmelCase_ ( self :Union[str, Any] )-> Dict: A__, A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ = model_class(lowercase_ ) A__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A__ = [*signature.parameters.keys()] A__ = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowercase_ ) def UpperCAmelCase_ ( self :Optional[Any] )-> Optional[int]: A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_ ) def UpperCAmelCase_ ( self :Dict )-> Optional[int]: A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_video_classification(*lowercase_ ) @slow def UpperCAmelCase_ ( self :Any )-> List[Any]: for model_name in TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ = TimesformerModel.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) def UpperCAmelCase_ ( self :List[str] )-> str: if not self.has_attentions: pass else: A__, A__ = self.model_tester.prepare_config_and_inputs_for_common() A__ = True for model_class in self.all_model_classes: A__ = self.model_tester.seq_length A__ = self.model_tester.num_frames A__ = True A__ = False A__ = True A__ = model_class(lowercase_ ) model.to(lowercase_ ) model.eval() with torch.no_grad(): A__ = model(**self._prepare_for_class(lowercase_ , lowercase_ ) ) A__ = outputs.attentions self.assertEqual(len(lowercase_ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] A__ = True A__ = model_class(lowercase_ ) model.to(lowercase_ ) model.eval() with torch.no_grad(): A__ = model(**self._prepare_for_class(lowercase_ , lowercase_ ) ) A__ = outputs.attentions self.assertEqual(len(lowercase_ ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) A__ = len(lowercase_ ) # Check attention is always last and order is fine A__ = True A__ = True A__ = model_class(lowercase_ ) model.to(lowercase_ ) model.eval() with torch.no_grad(): A__ = model(**self._prepare_for_class(lowercase_ , lowercase_ ) ) self.assertEqual(out_len + 1 , len(lowercase_ ) ) A__ = outputs.attentions self.assertEqual(len(lowercase_ ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) def UpperCAmelCase_ ( self :List[Any] )-> List[str]: def check_hidden_states_output(lowercase_ :Dict , lowercase_ :int , lowercase_ :List[Any] ): A__ = model_class(lowercase_ ) model.to(lowercase_ ) model.eval() with torch.no_grad(): A__ = model(**self._prepare_for_class(lowercase_ , lowercase_ ) ) A__ = outputs.hidden_states A__ = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(lowercase_ ) , lowercase_ ) A__ = self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) A__, A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ = True check_hidden_states_output(lowercase_ , lowercase_ , lowercase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] A__ = True check_hidden_states_output(lowercase_ , lowercase_ , lowercase_ ) def UpperCamelCase ( ): A__ = hf_hub_download( repo_id="hf-internal-testing/spaghetti-video" , filename="eating_spaghetti.npy" , repo_type="dataset" ) A__ = np.load(_lowerCamelCase ) return list(_lowerCamelCase ) @require_torch @require_vision class UpperCAmelCase ( unittest.TestCase ): @cached_property def UpperCAmelCase_ ( self :Optional[Any] )-> int: # logits were tested with a different mean and std, so we use the same here return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def UpperCAmelCase_ ( self :int )-> Any: A__ = TimesformerForVideoClassification.from_pretrained("facebook/timesformer-base-finetuned-k400" ).to( lowercase_ ) A__ = self.default_image_processor A__ = prepare_video() A__ = image_processor(video[:8] , return_tensors="pt" ).to(lowercase_ ) # forward pass with torch.no_grad(): A__ = model(**lowercase_ ) # verify the logits A__ = torch.Size((1, 4_00) ) self.assertEqual(outputs.logits.shape , lowercase_ ) A__ = torch.tensor([-0.3_0_1_6, -0.7_7_1_3, -0.4_2_0_5] ).to(lowercase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowercase_ , atol=1E-4 ) )
123
1
from collections import deque from .hash_table import HashTable class lowerCamelCase (SCREAMING_SNAKE_CASE__ ): """simple docstring""" def __init__( self : Dict , *__magic_name__ : Optional[int] , **__magic_name__ : Dict ) -> Optional[Any]: super().__init__(*__magic_name__ , **__magic_name__ ) def __A ( self : List[str] , __magic_name__ : Dict , __magic_name__ : Tuple ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = deque([] ) if self.values[key] is None else self.values[key] self.values[key].appendleft(__magic_name__ ) SCREAMING_SNAKE_CASE_ = self.values[key] def __A ( self : str ) -> int: return ( sum(self.charge_factor - len(__magic_name__ ) for slot in self.values ) / self.size_table * self.charge_factor ) def __A ( self : Union[str, Any] , __magic_name__ : List[str] , __magic_name__ : Optional[int]=None ) -> int: if not ( len(self.values[key] ) == self.charge_factor and self.values.count(__magic_name__ ) == 0 ): return key return super()._collision_resolution(__magic_name__ , __magic_name__ )
118
import json import os import unittest from transformers import DebertaTokenizer, DebertaTokenizerFast from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class lowerCamelCase (SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" lowerCamelCase__ = DebertaTokenizer lowerCamelCase__ = True lowerCamelCase__ = DebertaTokenizerFast def __A ( self : List[Any] ) -> Dict: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt SCREAMING_SNAKE_CASE_ = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "[UNK]", ] SCREAMING_SNAKE_CASE_ = dict(zip(__magic_name__ , range(len(__magic_name__ ) ) ) ) SCREAMING_SNAKE_CASE_ = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] SCREAMING_SNAKE_CASE_ = {"unk_token": "[UNK]"} SCREAMING_SNAKE_CASE_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) SCREAMING_SNAKE_CASE_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(__magic_name__ ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(__magic_name__ ) ) def __A ( self : str , **__magic_name__ : int ) -> Union[str, Any]: kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__magic_name__ ) def __A ( self : str , __magic_name__ : List[Any] ) -> Dict: SCREAMING_SNAKE_CASE_ = "lower newer" SCREAMING_SNAKE_CASE_ = "lower newer" return input_text, output_text def __A ( self : Union[str, Any] ) -> str: SCREAMING_SNAKE_CASE_ = self.get_tokenizer() SCREAMING_SNAKE_CASE_ = "lower newer" SCREAMING_SNAKE_CASE_ = ["l", "o", "w", "er", "\u0120", "n", "e", "w", "er"] SCREAMING_SNAKE_CASE_ = tokenizer.tokenize(__magic_name__ ) self.assertListEqual(__magic_name__ , __magic_name__ ) SCREAMING_SNAKE_CASE_ = tokens + [tokenizer.unk_token] SCREAMING_SNAKE_CASE_ = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(__magic_name__ ) , __magic_name__ ) def __A ( self : Optional[int] ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = self.get_tokenizer() SCREAMING_SNAKE_CASE_ = tokenizer("Hello" , "World" ) SCREAMING_SNAKE_CASE_ = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] self.assertListEqual(tokd["token_type_ids"] , __magic_name__ ) @slow def __A ( self : Any ) -> Any: SCREAMING_SNAKE_CASE_ = self.tokenizer_class.from_pretrained("microsoft/deberta-base" ) SCREAMING_SNAKE_CASE_ = tokenizer.encode("sequence builders" , add_special_tokens=__magic_name__ ) SCREAMING_SNAKE_CASE_ = tokenizer.encode("multi-sequence build" , add_special_tokens=__magic_name__ ) SCREAMING_SNAKE_CASE_ = tokenizer.encode( "sequence builders" , add_special_tokens=__magic_name__ , add_prefix_space=__magic_name__ ) SCREAMING_SNAKE_CASE_ = tokenizer.encode( "sequence builders" , "multi-sequence build" , add_special_tokens=__magic_name__ , add_prefix_space=__magic_name__ ) SCREAMING_SNAKE_CASE_ = tokenizer.build_inputs_with_special_tokens(__magic_name__ ) SCREAMING_SNAKE_CASE_ = tokenizer.build_inputs_with_special_tokens(__magic_name__ , __magic_name__ ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode @slow def __A ( self : Tuple ) -> str: SCREAMING_SNAKE_CASE_ = [self.tokenizer_class] if self.test_rust_tokenizer: tokenizer_classes.append(self.rust_tokenizer_class ) for tokenizer_class in tokenizer_classes: SCREAMING_SNAKE_CASE_ = tokenizer_class.from_pretrained("microsoft/deberta-base" ) SCREAMING_SNAKE_CASE_ = [ "ALBERT: A Lite BERT for Self-supervised Learning of Language Representations", "ALBERT incorporates two parameter reduction techniques", "The first one is a factorized embedding parameterization. By decomposing the large vocabulary" " embedding matrix into two small matrices, we separate the size of the hidden layers from the size of" " vocabulary embedding.", ] SCREAMING_SNAKE_CASE_ = tokenizer(__magic_name__ , padding=__magic_name__ ) SCREAMING_SNAKE_CASE_ = [tokenizer.decode(__magic_name__ , skip_special_tokens=__magic_name__ ) for seq in encoding["input_ids"]] # fmt: off SCREAMING_SNAKE_CASE_ = { "input_ids": [ [1, 2_118, 11_126, 565, 35, 83, 25_191, 163, 18_854, 13, 12_156, 12, 16_101, 25_376, 13_807, 9, 22_205, 27_893, 1_635, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 2_118, 11_126, 565, 24_536, 80, 43_797, 4_878, 7_373, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 133, 78, 65, 16, 10, 3_724, 1_538, 33_183, 11_303, 43_797, 1_938, 4, 870, 24_165, 29_105, 5, 739, 32_644, 33_183, 11_303, 36_173, 88, 80, 650, 7_821, 45_940, 6, 52, 2_559, 5, 1_836, 9, 5, 7_397, 13_171, 31, 5, 1_836, 9, 32_644, 33_183, 11_303, 4, 2] ], "token_type_ids": [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ], "attention_mask": [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ] } # fmt: on SCREAMING_SNAKE_CASE_ = [ "ALBERT: A Lite BERT for Self-supervised Learning of Language Representations", "ALBERT incorporates two parameter reduction techniques", "The first one is a factorized embedding parameterization. By decomposing the large vocabulary" " embedding matrix into two small matrices, we separate the size of the hidden layers from the size of" " vocabulary embedding.", ] self.assertDictEqual(encoding.data , __magic_name__ ) for expected, decoded in zip(__magic_name__ , __magic_name__ ): self.assertEqual(__magic_name__ , __magic_name__ )
118
1
import os import time import warnings from dataclasses import dataclass, field from enum import Enum from typing import List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import logging from ..processors.glue import glue_convert_examples_to_features, glue_output_modes, glue_processors from ..processors.utils import InputFeatures UpperCamelCase__ = logging.get_logger(__name__) @dataclass class A : __UpperCAmelCase : str = field(metadata={'help': 'The name of the task to train on: ' + ', '.join(glue_processors.keys() )} ) __UpperCAmelCase : str = field( metadata={'help': 'The input data dir. Should contain the .tsv files (or other data files) for the task.'} ) __UpperCAmelCase : int = field( default=1_28 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) __UpperCAmelCase : bool = field( default=UpperCAmelCase_ , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) def lowercase_ (self : Optional[Any] ) -> Any: """simple docstring""" UpperCAmelCase__ = self.task_name.lower() class A ( UpperCAmelCase_ ): __UpperCAmelCase : List[Any] = 'train' __UpperCAmelCase : Union[str, Any] = 'dev' __UpperCAmelCase : Optional[Any] = 'test' class A ( UpperCAmelCase_ ): __UpperCAmelCase : GlueDataTrainingArguments __UpperCAmelCase : str __UpperCAmelCase : List[InputFeatures] def __init__(self : Dict , __UpperCAmelCase : GlueDataTrainingArguments , __UpperCAmelCase : PreTrainedTokenizerBase , __UpperCAmelCase : Optional[int] = None , __UpperCAmelCase : Union[str, Split] = Split.train , __UpperCAmelCase : Optional[str] = None , ) -> Optional[Any]: """simple docstring""" warnings.warn( "This dataset will be removed from the library soon, preprocessing should be handled with the 🤗 Datasets " "library. You can have a look at this example script for pointers: " "https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py" , __UpperCAmelCase , ) UpperCAmelCase__ = args UpperCAmelCase__ = glue_processors[args.task_name]() UpperCAmelCase__ = glue_output_modes[args.task_name] if isinstance(__UpperCAmelCase , __UpperCAmelCase ): try: UpperCAmelCase__ = Split[mode] except KeyError: raise KeyError("mode is not a valid split name" ) # Load data features from cache or dataset file UpperCAmelCase__ = os.path.join( cache_dir if cache_dir is not None else args.data_dir , f"""cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{args.task_name}""" , ) UpperCAmelCase__ = self.processor.get_labels() if args.task_name in ["mnli", "mnli-mm"] and tokenizer.__class__.__name__ in ( "RobertaTokenizer", "RobertaTokenizerFast", "XLMRobertaTokenizer", "BartTokenizer", "BartTokenizerFast", ): # HACK(label indices are swapped in RoBERTa pretrained model) UpperCAmelCase__ , UpperCAmelCase__ = label_list[2], label_list[1] UpperCAmelCase__ = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. UpperCAmelCase__ = cached_features_file + ".lock" with FileLock(__UpperCAmelCase ): if os.path.exists(__UpperCAmelCase ) and not args.overwrite_cache: UpperCAmelCase__ = time.time() UpperCAmelCase__ = torch.load(__UpperCAmelCase ) logger.info( f"""Loading features from cached file {cached_features_file} [took %.3f s]""" , time.time() - start ) else: logger.info(f"""Creating features from dataset file at {args.data_dir}""" ) if mode == Split.dev: UpperCAmelCase__ = self.processor.get_dev_examples(args.data_dir ) elif mode == Split.test: UpperCAmelCase__ = self.processor.get_test_examples(args.data_dir ) else: UpperCAmelCase__ = self.processor.get_train_examples(args.data_dir ) if limit_length is not None: UpperCAmelCase__ = examples[:limit_length] UpperCAmelCase__ = glue_convert_examples_to_features( __UpperCAmelCase , __UpperCAmelCase , max_length=args.max_seq_length , label_list=__UpperCAmelCase , output_mode=self.output_mode , ) UpperCAmelCase__ = time.time() torch.save(self.features , __UpperCAmelCase ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f"""Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]""" ) def __len__(self : Any ) -> Any: """simple docstring""" return len(self.features ) def __getitem__(self : int , __UpperCAmelCase : List[Any] ) -> InputFeatures: """simple docstring""" return self.features[i] def lowercase_ (self : Tuple ) -> Any: """simple docstring""" return self.label_list
143
import argparse import gc import json import os import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler UpperCamelCase__ = 1_6 UpperCamelCase__ = 3_2 def lowerCAmelCase_ ( __A ) -> Union[str, Any]: '''simple docstring''' return int(x / 2**20 ) class A : def __enter__(self : Dict ) -> int: """simple docstring""" gc.collect() torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() # reset the peak gauge to zero UpperCAmelCase__ = torch.cuda.memory_allocated() return self def __exit__(self : List[str] , *__UpperCAmelCase : int ) -> Optional[int]: """simple docstring""" gc.collect() torch.cuda.empty_cache() UpperCAmelCase__ = torch.cuda.memory_allocated() UpperCAmelCase__ = torch.cuda.max_memory_allocated() UpperCAmelCase__ = bamb(self.end - self.begin ) UpperCAmelCase__ = bamb(self.peak - self.begin ) # print(f"delta used/peak {self.used:4d}/{self.peaked:4d}") def lowerCAmelCase_ ( __A, __A = 16, __A = "bert-base-cased", __A = 320, __A = 160, ) -> List[Any]: '''simple docstring''' UpperCAmelCase__ = AutoTokenizer.from_pretrained(__A ) UpperCAmelCase__ = load_dataset( "glue", "mrpc", split={"train": f"""train[:{n_train}]""", "validation": f"""validation[:{n_val}]"""} ) def tokenize_function(__A ): # max_length=None => use the model max length (it's actually the default) UpperCAmelCase__ = tokenizer(examples["sentence1"], examples["sentence2"], truncation=__A, max_length=__A ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset UpperCAmelCase__ = datasets.map( __A, batched=__A, remove_columns=["idx", "sentence1", "sentence2"], load_from_cache_file=__A ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library UpperCAmelCase__ = tokenized_datasets.rename_column("label", "labels" ) def collate_fn(__A ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(__A, padding="max_length", max_length=128, return_tensors="pt" ) return tokenizer.pad(__A, padding="longest", return_tensors="pt" ) # Instantiate dataloaders. UpperCAmelCase__ = DataLoader( tokenized_datasets["train"], shuffle=__A, collate_fn=__A, batch_size=__A ) UpperCAmelCase__ = DataLoader( tokenized_datasets["validation"], shuffle=__A, collate_fn=__A, batch_size=__A ) return train_dataloader, eval_dataloader def lowerCAmelCase_ ( __A, __A ) -> Dict: '''simple docstring''' UpperCAmelCase__ = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCAmelCase__ = config["lr"] UpperCAmelCase__ = int(config["num_epochs"] ) UpperCAmelCase__ = int(config["seed"] ) UpperCAmelCase__ = int(config["batch_size"] ) UpperCAmelCase__ = args.model_name_or_path set_seed(__A ) UpperCAmelCase__ , UpperCAmelCase__ = get_dataloaders(__A, __A, __A, args.n_train, args.n_val ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCAmelCase__ = AutoModelForSequenceClassification.from_pretrained(__A, return_dict=__A ) # Instantiate optimizer UpperCAmelCase__ = ( AdamW if accelerator.state.deepspeed_plugin is None or "optimizer" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) UpperCAmelCase__ = optimizer_cls(params=model.parameters(), lr=__A ) if accelerator.state.deepspeed_plugin is not None: UpperCAmelCase__ = accelerator.state.deepspeed_plugin.deepspeed_config[ "gradient_accumulation_steps" ] else: UpperCAmelCase__ = 1 UpperCAmelCase__ = (len(__A ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): UpperCAmelCase__ = get_linear_schedule_with_warmup( optimizer=__A, num_warmup_steps=0, num_training_steps=__A, ) else: UpperCAmelCase__ = DummyScheduler(__A, total_num_steps=__A, warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = accelerator.prepare( __A, __A, __A, __A, __A ) # We need to keep track of how many total steps we have iterated over UpperCAmelCase__ = 0 # We also need to keep track of the stating epoch so files are named properly UpperCAmelCase__ = 0 # Now we train the model UpperCAmelCase__ = {} for epoch in range(__A, __A ): with TorchTracemalloc() as tracemalloc: model.train() for step, batch in enumerate(__A ): UpperCAmelCase__ = model(**__A ) UpperCAmelCase__ = outputs.loss UpperCAmelCase__ = loss / gradient_accumulation_steps accelerator.backward(__A ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 # Printing the GPU memory usage details such as allocated memory, peak memory, and total memory usage accelerator.print("Memory before entering the train : {}".format(bamb(tracemalloc.begin ) ) ) accelerator.print("Memory consumed at the end of the train (end-begin): {}".format(tracemalloc.used ) ) accelerator.print("Peak Memory consumed during the train (max-begin): {}".format(tracemalloc.peaked ) ) accelerator.print( "Total Peak Memory consumed during the train (max): {}".format( tracemalloc.peaked + bamb(tracemalloc.begin ) ) ) UpperCAmelCase__ = tracemalloc.peaked + bamb(tracemalloc.begin ) if args.peak_memory_upper_bound is not None: assert ( train_total_peak_memory[f"""epoch-{epoch}"""] <= args.peak_memory_upper_bound ), "Peak memory usage exceeded the upper bound" accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir, "peak_memory_utilization.json" ), "w" ) as f: json.dump(__A, __A ) def lowerCAmelCase_ ( ) -> Any: '''simple docstring''' UpperCAmelCase__ = argparse.ArgumentParser(description="Simple example of training script tracking peak GPU memory usage." ) parser.add_argument( "--model_name_or_path", type=__A, default="bert-base-cased", help="Path to pretrained model or model identifier from huggingface.co/models.", required=__A, ) parser.add_argument( "--output_dir", type=__A, default=".", help="Optional save directory where all checkpoint folders will be stored. Default is the current working directory.", ) parser.add_argument( "--peak_memory_upper_bound", type=__A, default=__A, help="The upper bound of peak memory usage in MB. If set, the training will throw an error if the peak memory usage exceeds this value.", ) parser.add_argument( "--n_train", type=__A, default=320, help="Number of training examples to use.", ) parser.add_argument( "--n_val", type=__A, default=160, help="Number of validation examples to use.", ) parser.add_argument( "--num_epochs", type=__A, default=1, help="Number of train epochs.", ) UpperCAmelCase__ = parser.parse_args() UpperCAmelCase__ = {"lr": 2e-5, "num_epochs": args.num_epochs, "seed": 42, "batch_size": 16} training_function(__A, __A ) if __name__ == "__main__": main()
143
1
from __future__ import annotations import math from collections import Counter from string import ascii_lowercase def UpperCAmelCase__ ( _A : str ): '''simple docstring''' a__, a__ =analyze_text(_A ) a__ =list(''' ''' + ascii_lowercase ) # what is our total sum of probabilities. a__ =sum(single_char_strings.values() ) # one length string a__ =0 # for each alpha we go in our dict and if it is in it we calculate entropy for ch in my_alphas: if ch in single_char_strings: a__ =single_char_strings[ch] a__ =my_str / all_sum my_fir_sum += prob * math.loga(_A ) # entropy formula. # print entropy print(F"""{round(-1 * my_fir_sum ):.1f}""" ) # two len string a__ =sum(two_char_strings.values() ) a__ =0 # for each alpha (two in size) calculate entropy. for cha in my_alphas: for cha in my_alphas: a__ =cha + cha if sequence in two_char_strings: a__ =two_char_strings[sequence] a__ =int(_A ) / all_sum my_sec_sum += prob * math.loga(_A ) # print second entropy print(F"""{round(-1 * my_sec_sum ):.1f}""" ) # print the difference between them print(F"""{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}""" ) def UpperCAmelCase__ ( _A : str ): '''simple docstring''' a__ =Counter() # type: ignore a__ =Counter() # type: ignore single_char_strings[text[-1]] += 1 # first case when we have space at start. two_char_strings[" " + text[0]] += 1 for i in range(0 , len(_A ) - 1 ): single_char_strings[text[i]] += 1 two_char_strings[text[i : i + 2]] += 1 return single_char_strings, two_char_strings def UpperCAmelCase__ ( ): '''simple docstring''' import doctest doctest.testmod() # text = ( # "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark " # "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest " # "jointure saw horrible. He private he on be imagine suppose. Fertile " # "beloved evident through no service elderly is. Blind there if every no so " # "at. Own neglected you preferred way sincerity delivered his attempted. To " # "of message cottage windows do besides against uncivil. Delightful " # "unreserved impossible few estimating men favourable see entreaties. She " # "propriety immediate was improving. He or entrance humoured likewise " # "moderate. Much nor game son say feel. Fat make met can must form into " # "gate. Me we offending prevailed discovery. " # ) # calculate_prob(text) if __name__ == "__main__": main()
188
from .glue import GlueDataset, GlueDataTrainingArguments from .language_modeling import ( LineByLineTextDataset, LineByLineWithRefDataset, LineByLineWithSOPTextDataset, TextDataset, TextDatasetForNextSentencePrediction, ) from .squad import SquadDataset, SquadDataTrainingArguments
188
1
"""simple docstring""" import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotConfig, is_flax_available from transformers.testing_utils import jax_device, require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html lowerCamelCase__ = """platform""" import jax import jax.numpy as jnp from transformers import BlenderbotTokenizer from transformers.models.blenderbot.modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, shift_tokens_right, ) def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase , _UpperCamelCase=None , _UpperCamelCase=None , _UpperCamelCase=None , _UpperCamelCase=None , _UpperCamelCase=None , _UpperCamelCase=None , ): if attention_mask is None: __lowerCAmelCase : int = np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: __lowerCAmelCase : List[str] = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: __lowerCAmelCase : List[str] = np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: __lowerCAmelCase : List[str] = np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: __lowerCAmelCase : int = np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class A__ : def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=13 , _SCREAMING_SNAKE_CASE=7 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=99 , _SCREAMING_SNAKE_CASE=16 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=1 , _SCREAMING_SNAKE_CASE=0 , _SCREAMING_SNAKE_CASE=0.02 , ): __lowerCAmelCase : Dict = parent __lowerCAmelCase : Dict = batch_size __lowerCAmelCase : Tuple = seq_length __lowerCAmelCase : Optional[int] = is_training __lowerCAmelCase : Optional[int] = use_labels __lowerCAmelCase : Tuple = vocab_size __lowerCAmelCase : Any = hidden_size __lowerCAmelCase : Tuple = num_hidden_layers __lowerCAmelCase : Any = num_attention_heads __lowerCAmelCase : Dict = intermediate_size __lowerCAmelCase : Tuple = hidden_act __lowerCAmelCase : Any = hidden_dropout_prob __lowerCAmelCase : List[str] = attention_probs_dropout_prob __lowerCAmelCase : List[str] = max_position_embeddings __lowerCAmelCase : Optional[Any] = eos_token_id __lowerCAmelCase : int = pad_token_id __lowerCAmelCase : int = bos_token_id __lowerCAmelCase : Optional[Any] = initializer_range def __lowerCamelCase ( self ): __lowerCAmelCase : Union[str, Any] = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size ) __lowerCAmelCase : Tuple = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 ) __lowerCAmelCase : Optional[Any] = shift_tokens_right(_SCREAMING_SNAKE_CASE , 1 , 2 ) __lowerCAmelCase : Dict = BlenderbotConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=_SCREAMING_SNAKE_CASE , ) __lowerCAmelCase : Optional[int] = prepare_blenderbot_inputs_dict(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return config, inputs_dict def __lowerCamelCase ( self ): __lowerCAmelCase , __lowerCAmelCase : int = self.prepare_config_and_inputs() return config, inputs_dict def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Any = 20 __lowerCAmelCase : Union[str, Any] = model_class_name(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : List[str] = model.encode(inputs_dict['input_ids'] ) __lowerCAmelCase , __lowerCAmelCase : List[Any] = ( inputs_dict['decoder_input_ids'], inputs_dict['decoder_attention_mask'], ) __lowerCAmelCase : Tuple = model.init_cache(decoder_input_ids.shape[0] , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __lowerCAmelCase : str = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype='i4' ) __lowerCAmelCase : int = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) __lowerCAmelCase : Dict = model.decode( decoder_input_ids[:, :-1] , _SCREAMING_SNAKE_CASE , decoder_attention_mask=_SCREAMING_SNAKE_CASE , past_key_values=_SCREAMING_SNAKE_CASE , decoder_position_ids=_SCREAMING_SNAKE_CASE , ) __lowerCAmelCase : List[Any] = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='i4' ) __lowerCAmelCase : Optional[Any] = model.decode( decoder_input_ids[:, -1:] , _SCREAMING_SNAKE_CASE , decoder_attention_mask=_SCREAMING_SNAKE_CASE , past_key_values=outputs_cache.past_key_values , decoder_position_ids=_SCREAMING_SNAKE_CASE , ) __lowerCAmelCase : Tuple = model.decode(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __lowerCAmelCase : int = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=f"Max diff is {diff}" ) def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Tuple = 20 __lowerCAmelCase : Any = model_class_name(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : List[Any] = model.encode(inputs_dict['input_ids'] ) __lowerCAmelCase , __lowerCAmelCase : Optional[Any] = ( inputs_dict['decoder_input_ids'], inputs_dict['decoder_attention_mask'], ) __lowerCAmelCase : List[Any] = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) __lowerCAmelCase : Dict = model.init_cache(decoder_input_ids.shape[0] , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __lowerCAmelCase : int = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) __lowerCAmelCase : Optional[Any] = model.decode( decoder_input_ids[:, :-1] , _SCREAMING_SNAKE_CASE , decoder_attention_mask=_SCREAMING_SNAKE_CASE , past_key_values=_SCREAMING_SNAKE_CASE , decoder_position_ids=_SCREAMING_SNAKE_CASE , ) __lowerCAmelCase : Tuple = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='i4' ) __lowerCAmelCase : Any = model.decode( decoder_input_ids[:, -1:] , _SCREAMING_SNAKE_CASE , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=_SCREAMING_SNAKE_CASE , decoder_position_ids=_SCREAMING_SNAKE_CASE , ) __lowerCAmelCase : Dict = model.decode(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , decoder_attention_mask=_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : List[Any] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=f"Max diff is {diff}" ) @require_flax class A__ ( unittest.TestCase): A_ : Optional[Any] = 9_9 def __lowerCamelCase ( self ): __lowerCAmelCase : str = np.array( [ [71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 82, 2], [5, 97, 17, 39, 94, 40, 2], [76, 83, 94, 25, 70, 78, 2], [87, 59, 41, 35, 48, 66, 2], [55, 13, 16, 58, 5, 2, 1], # note padding [64, 27, 31, 51, 12, 75, 2], [52, 64, 86, 17, 83, 39, 2], [48, 61, 9, 24, 71, 82, 2], [26, 1, 60, 48, 22, 13, 2], [21, 5, 62, 28, 14, 76, 2], [45, 98, 37, 86, 59, 48, 2], [70, 70, 50, 9, 28, 0, 2], ] , dtype=np.intaa , ) __lowerCAmelCase : Dict = input_ids.shape[0] __lowerCAmelCase : List[str] = BlenderbotConfig( vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def __lowerCamelCase ( self ): __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : int = self._get_config_and_data() __lowerCAmelCase : Union[str, Any] = FlaxBlenderbotForConditionalGeneration(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : List[str] = lm_model(input_ids=_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : List[Any] = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs['logits'].shape , _SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self ): __lowerCAmelCase : Optional[Any] = BlenderbotConfig( vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , ) __lowerCAmelCase : int = FlaxBlenderbotForConditionalGeneration(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Optional[Any] = np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa ) __lowerCAmelCase : str = np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa ) __lowerCAmelCase : Union[str, Any] = lm_model(input_ids=_SCREAMING_SNAKE_CASE , decoder_input_ids=_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : str = (*summary.shape, config.vocab_size) self.assertEqual(outputs['logits'].shape , _SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self ): __lowerCAmelCase : Optional[int] = np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa ) __lowerCAmelCase : Optional[Any] = shift_tokens_right(_SCREAMING_SNAKE_CASE , 1 , 2 ) __lowerCAmelCase : Dict = np.equal(_SCREAMING_SNAKE_CASE , 1 ).astype(np.floataa ).sum() __lowerCAmelCase : str = np.equal(_SCREAMING_SNAKE_CASE , 1 ).astype(np.floataa ).sum() self.assertEqual(shifted.shape , input_ids.shape ) self.assertEqual(_SCREAMING_SNAKE_CASE , n_pad_before - 1 ) self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() ) @require_flax class A__ ( _lowerCamelCase , unittest.TestCase , _lowerCamelCase): A_ : str = True A_ : int = ( ( FlaxBlenderbotModel, FlaxBlenderbotForConditionalGeneration, ) if is_flax_available() else () ) A_ : List[str] = (FlaxBlenderbotForConditionalGeneration,) if is_flax_available() else () def __lowerCamelCase ( self ): __lowerCAmelCase : List[str] = FlaxBlenderbotModelTester(self ) def __lowerCamelCase ( self ): __lowerCAmelCase , __lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self ): __lowerCAmelCase , __lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self ): __lowerCAmelCase , __lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __lowerCAmelCase : List[str] = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Any = model_class(_SCREAMING_SNAKE_CASE ) @jax.jit def encode_jitted(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , **_SCREAMING_SNAKE_CASE ): return model.encode(input_ids=_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE ) with self.subTest('JIT Enabled' ): __lowerCAmelCase : Any = encode_jitted(**_SCREAMING_SNAKE_CASE ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): __lowerCAmelCase : Union[str, Any] = encode_jitted(**_SCREAMING_SNAKE_CASE ).to_tuple() self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , len(_SCREAMING_SNAKE_CASE ) ) for jitted_output, output in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): self.assertEqual(jitted_output.shape , output.shape ) def __lowerCamelCase ( self ): __lowerCAmelCase , __lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __lowerCAmelCase : List[Any] = model_class(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Union[str, Any] = model.encode(inputs_dict['input_ids'] , inputs_dict['attention_mask'] ) __lowerCAmelCase : Optional[int] = { 'decoder_input_ids': inputs_dict['decoder_input_ids'], 'decoder_attention_mask': inputs_dict['decoder_attention_mask'], 'encoder_outputs': encoder_outputs, } @jax.jit def decode_jitted(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): return model.decode( decoder_input_ids=_SCREAMING_SNAKE_CASE , decoder_attention_mask=_SCREAMING_SNAKE_CASE , encoder_outputs=_SCREAMING_SNAKE_CASE , ) with self.subTest('JIT Enabled' ): __lowerCAmelCase : Dict = decode_jitted(**_SCREAMING_SNAKE_CASE ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): __lowerCAmelCase : Dict = decode_jitted(**_SCREAMING_SNAKE_CASE ).to_tuple() self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , len(_SCREAMING_SNAKE_CASE ) ) for jitted_output, output in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): self.assertEqual(jitted_output.shape , output.shape ) @slow def __lowerCamelCase ( self ): for model_class_name in self.all_model_classes: __lowerCAmelCase : Optional[Any] = model_class_name.from_pretrained('facebook/blenderbot-400M-distill' ) # FlaxBlenderbotForSequenceClassification expects eos token in input_ids __lowerCAmelCase : Any = np.ones((1, 1) ) * model.config.eos_token_id __lowerCAmelCase : int = model(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) @unittest.skipUnless(jax_device != 'cpu' , '3B test too slow on CPU.' ) @slow def __lowerCamelCase ( self ): __lowerCAmelCase : Tuple = {'num_beams': 1, 'early_stopping': True, 'min_length': 15, 'max_length': 25} __lowerCAmelCase : List[Any] = {'skip_special_tokens': True, 'clean_up_tokenization_spaces': True} __lowerCAmelCase : Optional[Any] = FlaxBlenderbotForConditionalGeneration.from_pretrained('facebook/blenderbot-3B' , from_pt=_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Dict = BlenderbotTokenizer.from_pretrained('facebook/blenderbot-3B' ) __lowerCAmelCase : List[str] = ['Sam'] __lowerCAmelCase : int = tokenizer(_SCREAMING_SNAKE_CASE , return_tensors='jax' ) __lowerCAmelCase : Optional[int] = model.generate(**_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Union[str, Any] = 'Sam is a great name. It means "sun" in Gaelic.' __lowerCAmelCase : Dict = tokenizer.batch_decode(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) assert generated_txt[0].strip() == tgt_text
182
"""simple docstring""" import pytest import datasets.config from datasets.utils.info_utils import is_small_dataset @pytest.mark.parametrize('dataset_size' , [None, 400 * 2**20, 600 * 2**20] ) @pytest.mark.parametrize('input_in_memory_max_size' , ['default', 0, 100 * 2**20, 900 * 2**20] ) def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): if input_in_memory_max_size != "default": monkeypatch.setattr(datasets.config , 'IN_MEMORY_MAX_SIZE' , _UpperCamelCase ) __lowerCAmelCase : Union[str, Any] = datasets.config.IN_MEMORY_MAX_SIZE if input_in_memory_max_size == "default": assert in_memory_max_size == 0 else: assert in_memory_max_size == input_in_memory_max_size if dataset_size and in_memory_max_size: __lowerCAmelCase : Tuple = dataset_size < in_memory_max_size else: __lowerCAmelCase : str = False __lowerCAmelCase : Optional[int] = is_small_dataset(_UpperCamelCase ) assert result == expected
182
1
'''simple docstring''' def _A ( lowercase__ = 100 ): lowercase__ = set() lowercase__ = 0 lowercase__ = n + 1 # maximum limit for a in range(2 , lowercase__ ): for b in range(2 , lowercase__ ): lowercase__ = a**b # calculates the current power collect_powers.add(lowercase__ ) # adds the result to the set return len(lowercase__ ) if __name__ == "__main__": print("Number of terms ", solution(int(str(input()).strip())))
164
'''simple docstring''' import heapq as hq import math from collections.abc import Iterator class A : def __init__( self , lowerCamelCase__ ) -> Optional[Any]: '''simple docstring''' lowercase__ = str(id_ ) lowercase__ = None lowercase__ = None lowercase__ = [] lowercase__ = {} # {vertex:distance} def __lt__( self , lowerCamelCase__ ) -> Union[str, Any]: '''simple docstring''' return self.key < other.key def __repr__( self ) -> Optional[Any]: '''simple docstring''' return self.id def A__ ( self , lowerCamelCase__ ) -> Dict: '''simple docstring''' self.neighbors.append(lowerCamelCase__ ) def A__ ( self , lowerCamelCase__ , lowerCamelCase__ ) -> List[Any]: '''simple docstring''' lowercase__ = weight def _A ( lowercase__ , lowercase__ , lowercase__ , lowercase__ ): # add the neighbors: graph[a - 1].add_neighbor(graph[b - 1] ) graph[b - 1].add_neighbor(graph[a - 1] ) # add the edges: graph[a - 1].add_edge(graph[b - 1] , lowercase__ ) graph[b - 1].add_edge(graph[a - 1] , lowercase__ ) def _A ( lowercase__ , lowercase__ ): lowercase__ = [] for u in graph: lowercase__ = math.inf lowercase__ = None lowercase__ = 0 lowercase__ = graph[:] while q: lowercase__ = min(lowercase__ ) q.remove(lowercase__ ) for v in u.neighbors: if (v in q) and (u.edges[v.id] < v.key): lowercase__ = u lowercase__ = u.edges[v.id] for i in range(1 , len(lowercase__ ) ): a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) ) return a def _A ( lowercase__ , lowercase__ ): for u in graph: lowercase__ = math.inf lowercase__ = None lowercase__ = 0 lowercase__ = list(lowercase__ ) hq.heapify(lowercase__ ) while h: lowercase__ = hq.heappop(lowercase__ ) for v in u.neighbors: if (v in h) and (u.edges[v.id] < v.key): lowercase__ = u lowercase__ = u.edges[v.id] hq.heapify(lowercase__ ) for i in range(1 , len(lowercase__ ) ): yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) def _A ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
164
1
from __future__ import annotations import unittest import numpy as np from transformers import BlipTextConfig from transformers.testing_utils import require_tf, slow from transformers.utils import is_tf_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask if is_tf_available(): import tensorflow as tf from transformers import TFBlipTextModel from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCamelCase__ : '''simple docstring''' def __init__(self ,__lowerCamelCase ,__lowerCamelCase=12 ,__lowerCamelCase=7 ,__lowerCamelCase=True ,__lowerCamelCase=True ,__lowerCamelCase=True ,__lowerCamelCase=99 ,__lowerCamelCase=32 ,__lowerCamelCase=32 ,__lowerCamelCase=2 ,__lowerCamelCase=4 ,__lowerCamelCase=37 ,__lowerCamelCase=0.1 ,__lowerCamelCase=0.1 ,__lowerCamelCase=5_12 ,__lowerCamelCase=0.02 ,__lowerCamelCase=0 ,__lowerCamelCase=None ,) -> Optional[Any]: """simple docstring""" lowerCAmelCase__ : Tuple = parent lowerCAmelCase__ : Dict = batch_size lowerCAmelCase__ : Dict = seq_length lowerCAmelCase__ : List[Any] = is_training lowerCAmelCase__ : List[str] = use_input_mask lowerCAmelCase__ : str = use_labels lowerCAmelCase__ : Tuple = vocab_size lowerCAmelCase__ : Dict = hidden_size lowerCAmelCase__ : List[str] = projection_dim lowerCAmelCase__ : Optional[Any] = num_hidden_layers lowerCAmelCase__ : Optional[Any] = num_attention_heads lowerCAmelCase__ : Tuple = intermediate_size lowerCAmelCase__ : Dict = dropout lowerCAmelCase__ : Union[str, Any] = attention_dropout lowerCAmelCase__ : List[Any] = max_position_embeddings lowerCAmelCase__ : Optional[int] = initializer_range lowerCAmelCase__ : Union[str, Any] = scope lowerCAmelCase__ : Optional[int] = bos_token_id def lowerCAmelCase__ (self ) -> Optional[Any]: """simple docstring""" lowerCAmelCase__ : Any = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) lowerCAmelCase__ : List[str] = None if self.use_input_mask: lowerCAmelCase__ : Any = random_attention_mask([self.batch_size, self.seq_length] ) if input_mask is not None: lowerCAmelCase__ : Optional[int] = input_mask.numpy() lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = input_mask.shape lowerCAmelCase__ : List[Any] = np.random.randint(1 ,seq_length - 1 ,size=(batch_size,) ) for batch_idx, start_index in enumerate(__lowerCamelCase ): lowerCAmelCase__ : Dict = 1 lowerCAmelCase__ : Optional[Any] = 0 lowerCAmelCase__ : Optional[int] = self.get_config() return config, input_ids, tf.convert_to_tensor(__lowerCamelCase ) def lowerCAmelCase__ (self ) -> int: """simple docstring""" return BlipTextConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,projection_dim=self.projection_dim ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,dropout=self.dropout ,attention_dropout=self.attention_dropout ,max_position_embeddings=self.max_position_embeddings ,initializer_range=self.initializer_range ,bos_token_id=self.bos_token_id ,) def lowerCAmelCase__ (self ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ) -> List[str]: """simple docstring""" lowerCAmelCase__ : List[str] = TFBlipTextModel(config=__lowerCamelCase ) lowerCAmelCase__ : Union[str, Any] = model(__lowerCamelCase ,attention_mask=__lowerCamelCase ,training=__lowerCamelCase ) lowerCAmelCase__ : Optional[int] = model(__lowerCamelCase ,training=__lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.hidden_size) ) def lowerCAmelCase__ (self ) -> int: """simple docstring""" lowerCAmelCase__ : Dict = self.prepare_config_and_inputs() lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Optional[int] = config_and_inputs lowerCAmelCase__ : Optional[int] = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class lowerCamelCase__ ( lowerCamelCase__ , unittest.TestCase): '''simple docstring''' snake_case_ =(TFBlipTextModel,) if is_tf_available() else () snake_case_ =False snake_case_ =False snake_case_ =False def lowerCAmelCase__ (self ) -> List[str]: """simple docstring""" lowerCAmelCase__ : Any = BlipTextModelTester(self ) lowerCAmelCase__ : int = ConfigTester(self ,config_class=__lowerCamelCase ,hidden_size=37 ) def lowerCAmelCase__ (self ) -> List[Any]: """simple docstring""" self.config_tester.run_common_tests() def lowerCAmelCase__ (self ) -> Optional[Any]: """simple docstring""" lowerCAmelCase__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase ) def lowerCAmelCase__ (self ) -> int: """simple docstring""" pass def lowerCAmelCase__ (self ) -> int: """simple docstring""" pass @unittest.skip(reason='''Blip does not use inputs_embeds''' ) def lowerCAmelCase__ (self ) -> List[Any]: """simple docstring""" pass @unittest.skip(reason='''BlipTextModel has no base class and is not available in MODEL_MAPPING''' ) def lowerCAmelCase__ (self ) -> Any: """simple docstring""" pass @unittest.skip(reason='''BlipTextModel has no base class and is not available in MODEL_MAPPING''' ) def lowerCAmelCase__ (self ) -> Tuple: """simple docstring""" pass @slow def lowerCAmelCase__ (self ) -> Dict: """simple docstring""" for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase__ : Optional[Any] = TFBlipTextModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) def lowerCAmelCase__ (self ,__lowerCamelCase=True ) -> Any: """simple docstring""" super().test_pt_tf_model_equivalence(allow_missing_keys=__lowerCamelCase )
94
def lowerCAmelCase__ ( lowerCamelCase_ : str ,lowerCamelCase_ : str): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = len(lowerCamelCase_) lowerCAmelCase__ : str = len(lowerCamelCase_) lowerCAmelCase__ : Union[str, Any] = [[False for _ in range(m + 1)] for _ in range(n + 1)] lowerCAmelCase__ : List[Any] = True for i in range(lowerCamelCase_): for j in range(m + 1): if dp[i][j]: if j < m and a[i].upper() == b[j]: lowerCAmelCase__ : int = True if a[i].islower(): lowerCAmelCase__ : int = True return dp[n][m] if __name__ == "__main__": import doctest doctest.testmod()
94
1
from collections.abc import Callable class a : """simple docstring""" def __init__( self : str , lowerCamelCase : Callable | None = None ) -> None: # Stores actual heap items. __snake_case : list = [] # Stores indexes of each item for supporting updates and deletion. __snake_case : dict = {} # Stores current size of heap. __snake_case : Tuple = 0 # Stores function used to evaluate the score of an item on which basis ordering # will be done. __snake_case : Optional[Any] = key or (lambda lowerCamelCase : x) def __snake_case ( self : Optional[int] , lowerCamelCase : int ) -> int | None: return int((i - 1) / 2 ) if i > 0 else None def __snake_case ( self : Tuple , lowerCamelCase : int ) -> int | None: __snake_case : int = int(2 * i + 1 ) return left if 0 < left < self.size else None def __snake_case ( self : int , lowerCamelCase : int ) -> int | None: __snake_case : List[str] = int(2 * i + 2 ) return right if 0 < right < self.size else None def __snake_case ( self : str , lowerCamelCase : int , lowerCamelCase : int ) -> None: __snake_case , __snake_case : List[str] = ( self.pos_map[self.arr[j][0]], self.pos_map[self.arr[i][0]], ) # Then swap the items in the list. __snake_case , __snake_case : Dict = self.arr[j], self.arr[i] def __snake_case ( self : List[str] , lowerCamelCase : int , lowerCamelCase : int ) -> bool: return self.arr[i][1] < self.arr[j][1] def __snake_case ( self : Dict , lowerCamelCase : int ) -> int: __snake_case : Union[str, Any] = self._left(lowerCamelCase ) __snake_case : Tuple = self._right(lowerCamelCase ) __snake_case : Optional[int] = i if left is not None and not self._cmp(lowerCamelCase , lowerCamelCase ): __snake_case : int = left if right is not None and not self._cmp(lowerCamelCase , lowerCamelCase ): __snake_case : int = right return valid_parent def __snake_case ( self : Optional[int] , lowerCamelCase : int ) -> None: __snake_case : Tuple = self._parent(lowerCamelCase ) while parent is not None and not self._cmp(lowerCamelCase , lowerCamelCase ): self._swap(lowerCamelCase , lowerCamelCase ) __snake_case , __snake_case : List[str] = parent, self._parent(lowerCamelCase ) def __snake_case ( self : Optional[int] , lowerCamelCase : int ) -> None: __snake_case : Dict = self._get_valid_parent(lowerCamelCase ) while valid_parent != index: self._swap(lowerCamelCase , lowerCamelCase ) __snake_case , __snake_case : Union[str, Any] = valid_parent, self._get_valid_parent(lowerCamelCase ) def __snake_case ( self : str , lowerCamelCase : int , lowerCamelCase : int ) -> None: if item not in self.pos_map: return __snake_case : Optional[int] = self.pos_map[item] __snake_case : Optional[Any] = [item, self.key(lowerCamelCase )] # Make sure heap is right in both up and down direction. # Ideally only one of them will make any change. self._heapify_up(lowerCamelCase ) self._heapify_down(lowerCamelCase ) def __snake_case ( self : Optional[int] , lowerCamelCase : int ) -> None: if item not in self.pos_map: return __snake_case : Optional[Any] = self.pos_map[item] del self.pos_map[item] __snake_case : Optional[int] = self.arr[self.size - 1] __snake_case : Any = index self.size -= 1 # Make sure heap is right in both up and down direction. Ideally only one # of them will make any change- so no performance loss in calling both. if self.size > index: self._heapify_up(lowerCamelCase ) self._heapify_down(lowerCamelCase ) def __snake_case ( self : Dict , lowerCamelCase : int , lowerCamelCase : int ) -> None: __snake_case : Union[str, Any] = len(self.arr ) if arr_len == self.size: self.arr.append([item, self.key(lowerCamelCase )] ) else: __snake_case : Union[str, Any] = [item, self.key(lowerCamelCase )] __snake_case : Dict = self.size self.size += 1 self._heapify_up(self.size - 1 ) def __snake_case ( self : Union[str, Any] ) -> tuple | None: return self.arr[0] if self.size else None def __snake_case ( self : List[str] ) -> tuple | None: __snake_case : Optional[int] = self.get_top() if top_item_tuple: self.delete_item(top_item_tuple[0] ) return top_item_tuple def lowerCAmelCase_ ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
123
import collections import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _snake_case : int = logging.get_logger(__name__) _snake_case : Union[str, Any] = "▁" _snake_case : Any = {"vocab_file": "prophetnet.tokenizer"} _snake_case : Tuple = { "vocab_file": { "microsoft/xprophetnet-large-wiki100-cased": ( "https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/prophetnet.tokenizer" ), } } _snake_case : Any = { "microsoft/xprophetnet-large-wiki100-cased": {"do_lower_case": False}, } _snake_case : Any = { "microsoft/xprophetnet-large-wiki100-cased": 512, } def lowerCAmelCase_ ( __lowerCamelCase ): __snake_case : Union[str, Any] = collections.OrderedDict() with open(__lowerCamelCase , "r" , encoding="utf-8" ) as reader: __snake_case : Dict = reader.readlines() for index, token in enumerate(__lowerCamelCase ): __snake_case : Optional[int] = token.rstrip("\n" ) __snake_case : Union[str, Any] = index return vocab class a (_lowerCAmelCase ): """simple docstring""" __UpperCAmelCase : List[str] = VOCAB_FILES_NAMES __UpperCAmelCase : Dict = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase : Any = ["input_ids", "attention_mask"] def __init__( self : Any , lowerCamelCase : str , lowerCamelCase : Optional[Any]="[SEP]" , lowerCamelCase : List[str]="[SEP]" , lowerCamelCase : Dict="[SEP]" , lowerCamelCase : Optional[int]="[UNK]" , lowerCamelCase : Dict="[PAD]" , lowerCamelCase : str="[CLS]" , lowerCamelCase : str="[MASK]" , lowerCamelCase : Optional[Dict[str, Any]] = None , **lowerCamelCase : int , ) -> None: __snake_case : Any = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=lowerCamelCase , eos_token=lowerCamelCase , sep_token=lowerCamelCase , unk_token=lowerCamelCase , pad_token=lowerCamelCase , cls_token=lowerCamelCase , mask_token=lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , **lowerCamelCase , ) try: import sentencepiece as spm except ImportError: logger.warning( "You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece" " pip install sentencepiece" ) raise __snake_case : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(lowerCamelCase ) ) __snake_case : Optional[Any] = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # put special tokens and [unused] tokens into the vocab __snake_case : List[str] = {"[PAD]": 0, "[CLS]": 1, "[SEP]": 2, "[UNK]": 3, "[MASK]": 4} for i in range(10 ): __snake_case : List[str] = F'[unused{i}]' __snake_case : int = 5 + i # The first "real" token "," has position 15 in the embedding vocab and position 3 in the spm vocab __snake_case : Any = 12 __snake_case : str = {v: k for k, v in self.fairseq_tokens_to_ids.items()} for k in self.fairseq_tokens_to_ids.keys(): self.unique_no_split_tokens.append(lowerCamelCase ) def __getstate__( self : Union[str, Any] ) -> Union[str, Any]: __snake_case : Union[str, Any] = self.__dict__.copy() __snake_case : int = None return state def __setstate__( self : Tuple , lowerCamelCase : List[str] ) -> Tuple: __snake_case : Tuple = d try: import sentencepiece as spm except ImportError: logger.warning( "You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece" " pip install sentencepiece" ) raise # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): __snake_case : Tuple = {} __snake_case : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __snake_case ( self : Dict , lowerCamelCase : List[int] , lowerCamelCase : Optional[List[int]] = None , lowerCamelCase : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase , token_ids_a=lowerCamelCase , already_has_special_tokens=lowerCamelCase ) if token_ids_a is None: return ([0] * len(lowerCamelCase )) + [1] return ([0] * len(lowerCamelCase )) + [1] + ([0] * len(lowerCamelCase )) + [1] def __snake_case ( self : Any , lowerCamelCase : List[int] , lowerCamelCase : Optional[List[int]] = None ) -> List[int]: __snake_case : str = [self.sep_token_id] if token_ids_a is None: return len(token_ids_a + sep ) * [0] return len(token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def __snake_case ( self : str ) -> str: return len(self.sp_model ) + self.fairseq_offset def __snake_case ( self : Any ) -> int: __snake_case : Dict = {self.convert_ids_to_tokens(lowerCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __snake_case ( self : str , lowerCamelCase : str ) -> str: return self.sp_model.encode(lowerCamelCase , out_type=lowerCamelCase ) def __snake_case ( self : List[str] , lowerCamelCase : Dict ) -> Dict: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] __snake_case : List[Any] = self.sp_model.PieceToId(lowerCamelCase ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def __snake_case ( self : Dict , lowerCamelCase : Optional[int] ) -> Optional[Any]: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def __snake_case ( self : int , lowerCamelCase : Union[str, Any] ) -> Optional[Any]: __snake_case : str = "".join(lowerCamelCase ).replace(lowerCamelCase , " " ).strip() return out_string def __snake_case ( self : List[str] , lowerCamelCase : str , lowerCamelCase : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(lowerCamelCase ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return __snake_case : List[str] = os.path.join( lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(lowerCamelCase , "wb" ) as fi: __snake_case : Any = self.sp_model.serialized_model_proto() fi.write(lowerCamelCase ) return (out_vocab_file,) def __snake_case ( self : Union[str, Any] , lowerCamelCase : List[int] , lowerCamelCase : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return token_ids_a + [self.sep_token_id] __snake_case : List[str] = [self.sep_token_id] return token_ids_a + sep + token_ids_a + sep
123
1
from __future__ import annotations def __lowercase ( _UpperCamelCase ) ->Tuple: # This function is recursive """simple docstring""" lowercase : Dict = len(__SCREAMING_SNAKE_CASE ) # If the array contains only one element, we return it (it's the stop condition of # recursion) if array_length <= 1: return array # Else lowercase : Tuple = array[0] lowercase : List[Any] = False lowercase : str = 1 lowercase : list[int] = [] while not is_found and i < array_length: if array[i] < pivot: lowercase : Any = True lowercase : Optional[Any] = [element for element in array[i:] if element >= array[i]] lowercase : Union[str, Any] = longest_subsequence(__SCREAMING_SNAKE_CASE ) if len(__SCREAMING_SNAKE_CASE ) > len(__SCREAMING_SNAKE_CASE ): lowercase : int = temp_array else: i += 1 lowercase : Optional[int] = [element for element in array[1:] if element >= pivot] lowercase : List[str] = [pivot, *longest_subsequence(__SCREAMING_SNAKE_CASE )] if len(__SCREAMING_SNAKE_CASE ) > len(__SCREAMING_SNAKE_CASE ): return temp_array else: return longest_subseq if __name__ == "__main__": import doctest doctest.testmod()
370
from ...utils import is_note_seq_available, is_transformers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .notes_encoder import SpectrogramNotesEncoder from .continous_encoder import SpectrogramContEncoder from .pipeline_spectrogram_diffusion import ( SpectrogramContEncoder, SpectrogramDiffusionPipeline, TaFilmDecoder, ) try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .midi_utils import MidiProcessor
173
0
import copy import os import cva import numpy as np from matplotlib import pyplot as plt class __snake_case : def __init__( self ) -> Dict: '''simple docstring''' snake_case__ : List[str] = '' snake_case__ : int = '' snake_case__ : Union[str, Any] = [] snake_case__ : Dict = 0 snake_case__ : List[str] = 256 snake_case__ : List[Any] = 0 snake_case__ : Tuple = 0 snake_case__ : List[Any] = 0 snake_case__ : Tuple = 0 def __a ( self , __UpperCamelCase ) -> str: '''simple docstring''' snake_case__ : str = cva.imread(__UpperCamelCase , 0 ) snake_case__ : Dict = copy.deepcopy(self.img ) snake_case__ , snake_case__ , snake_case__ : int = plt.hist(self.img.ravel() , 256 , [0, 256] , label='x' ) snake_case__ : List[Any] = np.sum(__UpperCamelCase ) for i in range(len(__UpperCamelCase ) ): snake_case__ : Union[str, Any] = x[i] / self.k self.sk += prk snake_case__ : Optional[int] = (self.L - 1) * self.sk if self.rem != 0: snake_case__ : int = int(last % last ) snake_case__ : Optional[Any] = int(last + 1 if self.rem >= 0.5 else last ) self.last_list.append(__UpperCamelCase ) snake_case__ : Any = int(np.ma.count(self.img ) / self.img[1].size ) snake_case__ : Union[str, Any] = self.img[1].size for i in range(self.number_of_cols ): for j in range(self.number_of_rows ): snake_case__ : int = self.img[j][i] if num != self.last_list[num]: snake_case__ : str = self.last_list[num] cva.imwrite('output_data/output.jpg' , self.img ) def __a ( self ) -> Tuple: '''simple docstring''' plt.hist(self.img.ravel() , 256 , [0, 256] ) def __a ( self ) -> List[Any]: '''simple docstring''' cva.imshow('Output-Image' , self.img ) cva.imshow('Input-Image' , self.original_image ) cva.waitKey(5000 ) cva.destroyAllWindows() if __name__ == "__main__": lowerCAmelCase__ : Any = os.path.join(os.path.basename(__file__), '''image_data/input.jpg''') lowerCAmelCase__ : Optional[Any] = ConstantStretch() stretcher.stretch(file_path) stretcher.plot_histogram() stretcher.show_image()
143
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bart import BartTokenizer lowerCAmelCase__ : Dict = logging.get_logger(__name__) lowerCAmelCase__ : Dict = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} # See all BART models at https://huggingface.co/models?filter=bart lowerCAmelCase__ : Optional[int] = { '''vocab_file''': { '''facebook/bart-base''': '''https://huggingface.co/facebook/bart-base/resolve/main/vocab.json''', '''facebook/bart-large''': '''https://huggingface.co/facebook/bart-large/resolve/main/vocab.json''', '''facebook/bart-large-mnli''': '''https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json''', '''facebook/bart-large-cnn''': '''https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json''', '''facebook/bart-large-xsum''': '''https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json''', '''yjernite/bart_eli5''': '''https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json''', }, '''merges_file''': { '''facebook/bart-base''': '''https://huggingface.co/facebook/bart-base/resolve/main/merges.txt''', '''facebook/bart-large''': '''https://huggingface.co/facebook/bart-large/resolve/main/merges.txt''', '''facebook/bart-large-mnli''': '''https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt''', '''facebook/bart-large-cnn''': '''https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt''', '''facebook/bart-large-xsum''': '''https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt''', '''yjernite/bart_eli5''': '''https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''facebook/bart-base''': '''https://huggingface.co/facebook/bart-base/resolve/main/tokenizer.json''', '''facebook/bart-large''': '''https://huggingface.co/facebook/bart-large/resolve/main/tokenizer.json''', '''facebook/bart-large-mnli''': '''https://huggingface.co/facebook/bart-large-mnli/resolve/main/tokenizer.json''', '''facebook/bart-large-cnn''': '''https://huggingface.co/facebook/bart-large-cnn/resolve/main/tokenizer.json''', '''facebook/bart-large-xsum''': '''https://huggingface.co/facebook/bart-large-xsum/resolve/main/tokenizer.json''', '''yjernite/bart_eli5''': '''https://huggingface.co/yjernite/bart_eli5/resolve/main/tokenizer.json''', }, } lowerCAmelCase__ : Tuple = { '''facebook/bart-base''': 10_24, '''facebook/bart-large''': 10_24, '''facebook/bart-large-mnli''': 10_24, '''facebook/bart-large-cnn''': 10_24, '''facebook/bart-large-xsum''': 10_24, '''yjernite/bart_eli5''': 10_24, } class __snake_case ( _lowerCamelCase ): __lowerCamelCase = VOCAB_FILES_NAMES __lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCamelCase = ["""input_ids""", """attention_mask"""] __lowerCamelCase = BartTokenizer def __init__( self , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase="replace" , __UpperCamelCase="<s>" , __UpperCamelCase="</s>" , __UpperCamelCase="</s>" , __UpperCamelCase="<s>" , __UpperCamelCase="<unk>" , __UpperCamelCase="<pad>" , __UpperCamelCase="<mask>" , __UpperCamelCase=False , __UpperCamelCase=True , **__UpperCamelCase , ) -> int: '''simple docstring''' super().__init__( __UpperCamelCase , __UpperCamelCase , tokenizer_file=__UpperCamelCase , errors=__UpperCamelCase , bos_token=__UpperCamelCase , eos_token=__UpperCamelCase , sep_token=__UpperCamelCase , cls_token=__UpperCamelCase , unk_token=__UpperCamelCase , pad_token=__UpperCamelCase , mask_token=__UpperCamelCase , add_prefix_space=__UpperCamelCase , trim_offsets=__UpperCamelCase , **__UpperCamelCase , ) snake_case__ : Tuple = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , __UpperCamelCase ) != add_prefix_space: snake_case__ : Any = getattr(__UpperCamelCase , pre_tok_state.pop('type' ) ) snake_case__ : List[str] = add_prefix_space snake_case__ : Any = pre_tok_class(**__UpperCamelCase ) snake_case__ : str = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` snake_case__ : Dict = 'post_processor' snake_case__ : Union[str, Any] = getattr(self.backend_tokenizer , __UpperCamelCase , __UpperCamelCase ) if tokenizer_component_instance: snake_case__ : Optional[int] = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: snake_case__ : List[Any] = tuple(state['sep'] ) if "cls" in state: snake_case__ : List[str] = tuple(state['cls'] ) snake_case__ : int = False if state.get('add_prefix_space' , __UpperCamelCase ) != add_prefix_space: snake_case__ : Tuple = add_prefix_space snake_case__ : Any = True if state.get('trim_offsets' , __UpperCamelCase ) != trim_offsets: snake_case__ : Dict = trim_offsets snake_case__ : List[Any] = True if changes_to_apply: snake_case__ : Union[str, Any] = getattr(__UpperCamelCase , state.pop('type' ) ) snake_case__ : int = component_class(**__UpperCamelCase ) setattr(self.backend_tokenizer , __UpperCamelCase , __UpperCamelCase ) @property def __a ( self ) -> str: '''simple docstring''' if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.' ) return None return str(self._mask_token ) @mask_token.setter def __a ( self , __UpperCamelCase ) -> Union[str, Any]: '''simple docstring''' snake_case__ : Tuple = AddedToken(__UpperCamelCase , lstrip=__UpperCamelCase , rstrip=__UpperCamelCase ) if isinstance(__UpperCamelCase , __UpperCamelCase ) else value snake_case__ : Optional[Any] = value def __a ( self , *__UpperCamelCase , **__UpperCamelCase ) -> BatchEncoding: '''simple docstring''' snake_case__ : str = kwargs.get('is_split_into_words' , __UpperCamelCase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ 'to use it with pretokenized inputs.' ) return super()._batch_encode_plus(*__UpperCamelCase , **__UpperCamelCase ) def __a ( self , *__UpperCamelCase , **__UpperCamelCase ) -> BatchEncoding: '''simple docstring''' snake_case__ : Optional[int] = kwargs.get('is_split_into_words' , __UpperCamelCase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ 'to use it with pretokenized inputs.' ) return super()._encode_plus(*__UpperCamelCase , **__UpperCamelCase ) def __a ( self , __UpperCamelCase , __UpperCamelCase = None ) -> Tuple[str]: '''simple docstring''' snake_case__ : Union[str, Any] = self._tokenizer.model.save(__UpperCamelCase , name=__UpperCamelCase ) return tuple(__UpperCamelCase ) def __a ( self , __UpperCamelCase , __UpperCamelCase=None ) -> Union[str, Any]: '''simple docstring''' snake_case__ : int = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def __a ( self , __UpperCamelCase , __UpperCamelCase = None ) -> List[int]: '''simple docstring''' snake_case__ : Union[str, Any] = [self.sep_token_id] snake_case__ : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
143
1
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = {'vocab_file': 'sentencepiece.bpe.model'} _SCREAMING_SNAKE_CASE = { 'vocab_file': { 'moussaKam/mbarthez': 'https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model', 'moussaKam/barthez': 'https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model', 'moussaKam/barthez-orangesum-title': ( 'https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model' ), }, } _SCREAMING_SNAKE_CASE = { 'moussaKam/mbarthez': 1_024, 'moussaKam/barthez': 1_024, 'moussaKam/barthez-orangesum-title': 1_024, } _SCREAMING_SNAKE_CASE = '▁' class a ( __lowerCAmelCase ): """simple docstring""" lowerCamelCase :Union[str, Any] = VOCAB_FILES_NAMES lowerCamelCase :Dict = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase :Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase :Tuple = ['''input_ids''', '''attention_mask'''] def __init__( self , lowerCAmelCase_ , lowerCAmelCase_="<s>" , lowerCAmelCase_="</s>" , lowerCAmelCase_="</s>" , lowerCAmelCase_="<s>" , lowerCAmelCase_="<unk>" , lowerCAmelCase_="<pad>" , lowerCAmelCase_="<mask>" , lowerCAmelCase_ = None , **lowerCAmelCase_ , ) -> None: # Mask token behave like a normal word, i.e. include the space before it _A = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else mask_token _A = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=lowerCAmelCase_ , eos_token=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , sep_token=lowerCAmelCase_ , cls_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , mask_token=lowerCAmelCase_ , sp_model_kwargs=self.sp_model_kwargs , **lowerCAmelCase_ , ) _A = vocab_file _A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(lowerCAmelCase_ ) ) _A = {"""<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3} _A = len(self.sp_model ) - 1 _A = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _A = [self.cls_token_id] _A = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None , lowerCAmelCase_ = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase_ , token_ids_a=lowerCAmelCase_ , already_has_special_tokens=lowerCAmelCase_ ) if token_ids_a is None: return [1] + ([0] * len(lowerCAmelCase_ )) + [1] return [1] + ([0] * len(lowerCAmelCase_ )) + [1, 1] + ([0] * len(lowerCAmelCase_ )) + [1] def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None ) -> List[int]: _A = [self.sep_token_id] _A = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def UpperCAmelCase ( self ) -> Union[str, Any]: return len(self.sp_model ) def UpperCAmelCase ( self ) -> int: _A = {self.convert_ids_to_tokens(lowerCAmelCase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCAmelCase ( self , lowerCAmelCase_ ) -> List[str]: return self.sp_model.encode(lowerCAmelCase_ , out_type=lowerCAmelCase_ ) def UpperCAmelCase ( self , lowerCAmelCase_ ) -> List[Any]: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] _A = self.sp_model.PieceToId(lowerCAmelCase_ ) return spm_id if spm_id else self.unk_token_id def UpperCAmelCase ( self , lowerCAmelCase_ ) -> Union[str, Any]: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(lowerCAmelCase_ ) def UpperCAmelCase ( self , lowerCAmelCase_ ) -> Union[str, Any]: _A = [] _A = """""" _A = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(lowerCAmelCase_ ) + token _A = True _A = [] else: current_sub_tokens.append(lowerCAmelCase_ ) _A = False out_string += self.sp_model.decode(lowerCAmelCase_ ) return out_string.strip() def __getstate__( self ) -> Any: _A = self.__dict__.copy() _A = None return state def __setstate__( self , lowerCAmelCase_ ) -> List[str]: _A = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): _A = {} _A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None ) -> Tuple[str]: if not os.path.isdir(lowerCAmelCase_ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return _A = os.path.join( lowerCAmelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCAmelCase_ ) elif not os.path.isfile(self.vocab_file ): with open(lowerCAmelCase_ , """wb""" ) as fi: _A = self.sp_model.serialized_model_proto() fi.write(lowerCAmelCase_ ) return (out_vocab_file,)
357
import json import os import re import sys import urllib.request import requests from bsa import BeautifulSoup _SCREAMING_SNAKE_CASE = { 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36' ' (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582' } def snake_case ( snake_case__ :str = "dhaka" , snake_case__ :int = 5) -> int: _A = min(snake_case__ , 50) # Prevent abuse! _A = { """q""": query, """tbm""": """isch""", """hl""": """en""", """ijn""": """0""", } _A = requests.get("""https://www.google.com/search""" , params=snake_case__ , headers=snake_case__) _A = BeautifulSoup(html.text , """html.parser""") _A = """""".join( re.findall(R"""AF_initDataCallback\(([^<]+)\);""" , str(soup.select("""script""")))) _A = json.dumps(snake_case__) _A = json.loads(snake_case__) _A = re.findall( R"""\[\"GRID_STATE0\",null,\[\[1,\[0,\".*?\",(.*),\"All\",""" , snake_case__ , ) if not matched_google_image_data: return 0 _A = re.sub( R"""\[\"(https\:\/\/encrypted-tbn0\.gstatic\.com\/images\?.*?)\",\d+,\d+\]""" , """""" , str(snake_case__) , ) _A = re.findall( R"""(?:'|,),\[\"(https:|http.*?)\",\d+,\d+\]""" , snake_case__ , ) for index, fixed_full_res_image in enumerate(snake_case__): if index >= max_images: return index _A = bytes(snake_case__ , """ascii""").decode( """unicode-escape""") _A = bytes(snake_case__ , """ascii""").decode( """unicode-escape""") _A = urllib.request.build_opener() _A = [ ( """User-Agent""", """Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36""" """ (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582""", ) ] urllib.request.install_opener(snake_case__) _A = F'''query_{query.replace(' ' , '_')}''' if not os.path.exists(snake_case__): os.makedirs(snake_case__) urllib.request.urlretrieve( # noqa: S310 snake_case__ , F'''{path_name}/original_size_img_{index}.jpg''') return index if __name__ == "__main__": try: _SCREAMING_SNAKE_CASE = download_images_from_google_query(sys.argv[1]) print(F'''{image_count} images were downloaded to disk.''') except IndexError: print('Please provide a search term.') raise
81
0
import numpy as np from PIL import Image def A ( _lowercase , _lowercase , _lowercase ): SCREAMING_SNAKE_CASE : Any = np.array(_lowercase ) if arr.shape[0] != arr.shape[1]: raise ValueError('''The input array is not a square matrix''' ) SCREAMING_SNAKE_CASE : List[Any] = 0 SCREAMING_SNAKE_CASE : Union[str, Any] = 0 SCREAMING_SNAKE_CASE : Optional[int] = 0 SCREAMING_SNAKE_CASE : List[str] = 0 # compute the shape of the output matrix SCREAMING_SNAKE_CASE : Tuple = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape maxpool_shape SCREAMING_SNAKE_CASE : Optional[Any] = np.zeros((maxpool_shape, maxpool_shape) ) while i < arr.shape[0]: if i + size > arr.shape[0]: # if the end of the matrix is reached, break break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the maximum of the pooling matrix SCREAMING_SNAKE_CASE : Dict = np.max(arr[i : i + size, j : j + size] ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 SCREAMING_SNAKE_CASE : List[Any] = 0 SCREAMING_SNAKE_CASE : str = 0 return updated_arr def A ( _lowercase , _lowercase , _lowercase ): SCREAMING_SNAKE_CASE : Optional[Any] = np.array(_lowercase ) if arr.shape[0] != arr.shape[1]: raise ValueError('''The input array is not a square matrix''' ) SCREAMING_SNAKE_CASE : Dict = 0 SCREAMING_SNAKE_CASE : Union[str, Any] = 0 SCREAMING_SNAKE_CASE : str = 0 SCREAMING_SNAKE_CASE : Dict = 0 # compute the shape of the output matrix SCREAMING_SNAKE_CASE : Tuple = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape avgpool_shape SCREAMING_SNAKE_CASE : Optional[Any] = np.zeros((avgpool_shape, avgpool_shape) ) while i < arr.shape[0]: # if the end of the matrix is reached, break if i + size > arr.shape[0]: break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the average of the pooling matrix SCREAMING_SNAKE_CASE : int = int(np.average(arr[i : i + size, j : j + size] ) ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 SCREAMING_SNAKE_CASE : Union[str, Any] = 0 SCREAMING_SNAKE_CASE : str = 0 return updated_arr # Main Function if __name__ == "__main__": from doctest import testmod testmod(name='avgpooling', verbose=True) # Loading the image __UpperCamelCase : Union[str, Any] = Image.open('path_to_image') # Converting the image to numpy array and maxpooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(maxpooling(np.array(image), size=3, stride=2)).show() # Converting the image to numpy array and averagepooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(avgpooling(np.array(image), size=3, stride=2)).show()
182
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __UpperCamelCase : List[Any] = {'configuration_glpn': ['GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GLPNConfig']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Optional[Any] = ['GLPNFeatureExtractor'] __UpperCamelCase : List[str] = ['GLPNImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : str = [ 'GLPN_PRETRAINED_MODEL_ARCHIVE_LIST', 'GLPNForDepthEstimation', 'GLPNLayer', 'GLPNModel', 'GLPNPreTrainedModel', ] if TYPE_CHECKING: from .configuration_glpn import GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP, GLPNConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_glpn import GLPNFeatureExtractor from .image_processing_glpn import GLPNImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_glpn import ( GLPN_PRETRAINED_MODEL_ARCHIVE_LIST, GLPNForDepthEstimation, GLPNLayer, GLPNModel, GLPNPreTrainedModel, ) else: import sys __UpperCamelCase : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
182
1
from collections.abc import Sequence def UpperCamelCase (lowercase_: Sequence[float] , lowercase_: float ) -> float: return sum(c * (x**i) for i, c in enumerate(lowercase_ ) ) def UpperCamelCase (lowercase_: Sequence[float] , lowercase_: float ) -> float: A__ : Tuple = 0.0 for coeff in reversed(lowercase_ ): A__ : Optional[Any] = result * x + coeff return result if __name__ == "__main__": A_ : Tuple = (0.0, 0.0, 5.0, 9.3, 7.0) A_ : Any = 10.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
355
from __future__ import annotations def UpperCamelCase (lowercase_: float , lowercase_: float , lowercase_: float ) -> dict[str, float]: if (voltage, current, resistance).count(0 ) != 1: raise ValueError("""One and only one argument must be 0""" ) if resistance < 0: raise ValueError("""Resistance cannot be negative""" ) if voltage == 0: return {"voltage": float(current * resistance )} elif current == 0: return {"current": voltage / resistance} elif resistance == 0: return {"resistance": voltage / current} else: raise ValueError("""Exactly one argument must be 0""" ) if __name__ == "__main__": import doctest doctest.testmod()
141
0