code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
import unittest from transformers import SPIECE_UNDERLINE, XLNetTokenizer, XLNetTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin snake_case : List[str] = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece @require_tokenizers class _snake_case ( _snake_case , unittest.TestCase ): SCREAMING_SNAKE_CASE__ = XLNetTokenizer SCREAMING_SNAKE_CASE__ = XLNetTokenizerFast SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = True def SCREAMING_SNAKE_CASE__ ( self ): super().setUp() # We have a SentencePiece fixture for testing a :Dict = XLNetTokenizer(_lowerCamelCase , keep_accents=_lowerCamelCase ) tokenizer.sanitize_special_tokens() tokenizer.save_pretrained(self.tmpdirname ) def SCREAMING_SNAKE_CASE__ ( self ): a :int = '''<s>''' a :Optional[Any] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowerCamelCase ) , _lowerCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowerCamelCase ) , _lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self ): a :int = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<unk>''' ) self.assertEqual(vocab_keys[1] , '''<s>''' ) self.assertEqual(vocab_keys[-1] , '''<eod>''' ) self.assertEqual(len(_lowerCamelCase ) , 1006 ) def SCREAMING_SNAKE_CASE__ ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 1000 ) def SCREAMING_SNAKE_CASE__ ( self ): a :int = XLNetTokenizer(_lowerCamelCase , keep_accents=_lowerCamelCase ) a :Dict = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(_lowerCamelCase , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCamelCase ) , [285, 46, 10, 170, 382] ) a :Optional[int] = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _lowerCamelCase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) a :Union[str, Any] = tokenizer.convert_tokens_to_ids(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] ) a :int = tokenizer.convert_ids_to_tokens(_lowerCamelCase ) self.assertListEqual( _lowerCamelCase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) def SCREAMING_SNAKE_CASE__ ( self ): a :Optional[Any] = XLNetTokenizer(_lowerCamelCase , do_lower_case=_lowerCamelCase ) a :Dict = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _lowerCamelCase , [ SPIECE_UNDERLINE + '''''', '''i''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''se''', '''.''', ] , ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''▁he''', '''ll''', '''o'''] ) def SCREAMING_SNAKE_CASE__ ( self ): a :List[Any] = XLNetTokenizer(_lowerCamelCase , do_lower_case=_lowerCamelCase ) a :Optional[int] = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _lowerCamelCase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''se''', '''.''', ] , ) @slow def SCREAMING_SNAKE_CASE__ ( self ): a :int = XLNetTokenizer.from_pretrained('''xlnet-base-cased''' ) a :Optional[Any] = tokenizer.encode('''sequence builders''' , add_special_tokens=_lowerCamelCase ) a :Any = tokenizer.encode('''multi-sequence build''' , add_special_tokens=_lowerCamelCase ) a :Dict = tokenizer.build_inputs_with_special_tokens(_lowerCamelCase ) a :Any = tokenizer.build_inputs_with_special_tokens(_lowerCamelCase , _lowerCamelCase ) assert encoded_sentence == text + [4, 3] assert encoded_pair == text + [4] + text_a + [4, 3] @slow def SCREAMING_SNAKE_CASE__ ( self ): # fmt: off a :Dict = {'''input_ids''': [[17, 2_1442, 270, 17, 10, 1_4645, 318, 34, 17, 4546, 3145, 787, 13, 7752, 2_2018, 23, 21, 17, 4546, 3145, 787, 13, 3352, 1_4431, 13, 5500, 11, 1176, 580, 13, 1_6819, 4797, 23, 17, 10, 1_7135, 658, 19, 457, 7932, 13, 184, 19, 3154, 1_7135, 6468, 19, 1404, 1_2269, 19, 4229, 5356, 1_6264, 46, 19, 17, 2_0545, 1_0395, 9, 9, 9, 11, 28, 6421, 9531, 2_0729, 17, 10, 353, 1_7022, 11, 21, 6421, 9531, 1_6949, 17, 10, 1_1509, 753, 11, 33, 95, 2421, 7385, 956, 1_4431, 2626, 25, 842, 7385, 4836, 21, 1429, 2272, 9855, 3120, 161, 2_4738, 19, 1_3203, 658, 218, 787, 21, 430, 1_8482, 847, 2637, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 322, 2_2178, 27, 1064, 22, 956, 13, 1_1101, 1429, 5854, 2_4313, 1_8953, 40, 422, 2_4366, 68, 1758, 37, 1_0483, 1_4257, 31, 207, 263, 21, 203, 3773, 25, 71, 9735, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 32, 2049, 3442, 17, 1_3894, 3380, 23, 95, 18, 1_7634, 2288, 9, 4, 3]], '''token_type_ids''': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_lowerCamelCase , model_name='''xlnet-base-cased''' , revision='''c841166438c31ec7ca9a106dee7bb312b73ae511''' , )
94
from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) snake_case : Any = logging.get_logger(__name__) # pylint: disable=invalid-name snake_case : Union[str, Any] = ''' Examples: ```py >>> from diffusers import KandinskyV22Pipeline, KandinskyV22PriorPipeline >>> import torch >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained("kandinsky-community/kandinsky-2-2-prior") >>> pipe_prior.to("cuda") >>> prompt = "red cat, 4k photo" >>> out = pipe_prior(prompt) >>> image_emb = out.image_embeds >>> zero_image_emb = out.negative_image_embeds >>> pipe = KandinskyV22Pipeline.from_pretrained("kandinsky-community/kandinsky-2-2-decoder") >>> pipe.to("cuda") >>> image = pipe( ... image_embeds=image_emb, ... negative_image_embeds=zero_image_emb, ... height=768, ... width=768, ... num_inference_steps=50, ... ).images >>> image[0].save("cat.png") ``` ''' def __lowerCamelCase ( UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[str]=8 ): """simple docstring""" a :List[str] = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 a :int = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class _snake_case ( _snake_case ): def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ): super().__init__() self.register_modules( unet=_lowerCamelCase , scheduler=_lowerCamelCase , movq=_lowerCamelCase , ) a :Any = 2 ** (len(self.movq.config.block_out_channels ) - 1) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): if latents is None: a :str = randn_tensor(_lowerCamelCase , generator=_lowerCamelCase , device=_lowerCamelCase , dtype=_lowerCamelCase ) else: if latents.shape != shape: raise ValueError(F'''Unexpected latents shape, got {latents.shape}, expected {shape}''' ) a :Any = latents.to(_lowerCamelCase ) a :Dict = latents * scheduler.init_noise_sigma return latents def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase=0 ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''' ) a :int = torch.device(F'''cuda:{gpu_id}''' ) a :int = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(_lowerCamelCase , _lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase=0 ): if is_accelerate_available() and is_accelerate_version('''>=''' , '''0.17.0.dev0''' ): from accelerate import cpu_offload_with_hook else: raise ImportError('''`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.''' ) a :Any = torch.device(F'''cuda:{gpu_id}''' ) if self.device.type != "cpu": self.to('''cpu''' , silence_dtype_warnings=_lowerCamelCase ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) a :Tuple = None for cpu_offloaded_model in [self.unet, self.movq]: a , a :List[str] = cpu_offload_with_hook(_lowerCamelCase , _lowerCamelCase , prev_module_hook=_lowerCamelCase ) # We'll offload the last model manually. a :str = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def SCREAMING_SNAKE_CASE__ ( self ): if not hasattr(self.unet , '''_hf_hook''' ): return self.device for module in self.unet.modules(): if ( hasattr(_lowerCamelCase , '''_hf_hook''' ) and hasattr(module._hf_hook , '''execution_device''' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(_lowerCamelCase ) def __call__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 512 , _lowerCamelCase = 512 , _lowerCamelCase = 100 , _lowerCamelCase = 4.0 , _lowerCamelCase = 1 , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = "pil" , _lowerCamelCase = True , ): a :int = self._execution_device a :Optional[Any] = guidance_scale > 1.0 if isinstance(_lowerCamelCase , _lowerCamelCase ): a :Union[str, Any] = torch.cat(_lowerCamelCase , dim=0 ) a :Any = image_embeds.shape[0] * num_images_per_prompt if isinstance(_lowerCamelCase , _lowerCamelCase ): a :List[str] = torch.cat(_lowerCamelCase , dim=0 ) if do_classifier_free_guidance: a :Union[str, Any] = image_embeds.repeat_interleave(_lowerCamelCase , dim=0 ) a :Optional[int] = negative_image_embeds.repeat_interleave(_lowerCamelCase , dim=0 ) a :Optional[int] = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=_lowerCamelCase ) self.scheduler.set_timesteps(_lowerCamelCase , device=_lowerCamelCase ) a :Optional[Any] = self.scheduler.timesteps a :List[str] = self.unet.config.in_channels a , a :str = downscale_height_and_width(_lowerCamelCase , _lowerCamelCase , self.movq_scale_factor ) # create initial latent a :int = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , self.scheduler , ) for i, t in enumerate(self.progress_bar(_lowerCamelCase ) ): # expand the latents if we are doing classifier free guidance a :Tuple = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents a :Union[str, Any] = {'''image_embeds''': image_embeds} a :Optional[Any] = self.unet( sample=_lowerCamelCase , timestep=_lowerCamelCase , encoder_hidden_states=_lowerCamelCase , added_cond_kwargs=_lowerCamelCase , return_dict=_lowerCamelCase , )[0] if do_classifier_free_guidance: a , a :Any = noise_pred.split(latents.shape[1] , dim=1 ) a , a :List[str] = noise_pred.chunk(2 ) a , a :int = variance_pred.chunk(2 ) a :List[Any] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) a :Optional[int] = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , '''variance_type''' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): a , a :Tuple = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 a :int = self.scheduler.step( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , generator=_lowerCamelCase , )[0] # post-processing a :int = self.movq.decode(_lowerCamelCase , force_not_quantize=_lowerCamelCase )['''sample'''] if output_type not in ["pt", "np", "pil"]: raise ValueError(F'''Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}''' ) if output_type in ["np", "pil"]: a :str = image * 0.5 + 0.5 a :List[Any] = image.clamp(0 , 1 ) a :str = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": a :str = self.numpy_to_pil(_lowerCamelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=_lowerCamelCase )
94
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_torch_available, ) SCREAMING_SNAKE_CASE_: str ={ 'configuration_speecht5': [ 'SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP', 'SpeechT5Config', 'SpeechT5HifiGanConfig', ], 'feature_extraction_speecht5': ['SpeechT5FeatureExtractor'], 'processing_speecht5': ['SpeechT5Processor'], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_: Dict =['SpeechT5Tokenizer'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_: Optional[Any] =[ 'SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST', 'SpeechT5ForSpeechToText', 'SpeechT5ForSpeechToSpeech', 'SpeechT5ForTextToSpeech', 'SpeechT5Model', 'SpeechT5PreTrainedModel', 'SpeechT5HifiGan', ] if TYPE_CHECKING: from .configuration_speechta import ( SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP, SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP, SpeechTaConfig, SpeechTaHifiGanConfig, ) from .feature_extraction_speechta import SpeechTaFeatureExtractor from .processing_speechta import SpeechTaProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speechta import SpeechTaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speechta import ( SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaModel, SpeechTaPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE_: List[Any] =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
356
'''simple docstring''' import unittest from typing import Tuple import torch from diffusers.utils import floats_tensor, randn_tensor, torch_all_close, torch_device from diffusers.utils.testing_utils import require_torch @require_torch class __A : @property def _lowercase (self : int ): return self.get_dummy_input() @property def _lowercase (self : Any ): if self.block_type == "down": return (4, 32, 16, 16) elif self.block_type == "mid": return (4, 32, 32, 32) elif self.block_type == "up": return (4, 32, 64, 64) raise ValueError(f"""'{self.block_type}' is not a supported block_type. Set it to 'up', 'mid', or 'down'.""" ) def _lowercase (self : Tuple , __a : List[str]=True , __a : Any=False , __a : List[Any]=False , __a : Any=False , ): UpperCAmelCase_ = 4 UpperCAmelCase_ = 32 UpperCAmelCase_ = (32, 32) UpperCAmelCase_ = torch.manual_seed(0 ) UpperCAmelCase_ = torch.device(__a ) UpperCAmelCase_ = (batch_size, num_channels) + sizes UpperCAmelCase_ = randn_tensor(__a , generator=__a , device=__a ) UpperCAmelCase_ = {"hidden_states": hidden_states} if include_temb: UpperCAmelCase_ = 128 UpperCAmelCase_ = randn_tensor((batch_size, temb_channels) , generator=__a , device=__a ) if include_res_hidden_states_tuple: UpperCAmelCase_ = torch.manual_seed(1 ) UpperCAmelCase_ = (randn_tensor(__a , generator=__a , device=__a ),) if include_encoder_hidden_states: UpperCAmelCase_ = floats_tensor((batch_size, 32, 32) ).to(__a ) if include_skip_sample: UpperCAmelCase_ = randn_tensor(((batch_size, 3) + sizes) , generator=__a , device=__a ) return dummy_input def _lowercase (self : Tuple ): UpperCAmelCase_ = { "in_channels": 32, "out_channels": 32, "temb_channels": 128, } if self.block_type == "up": UpperCAmelCase_ = 32 if self.block_type == "mid": init_dict.pop("out_channels" ) UpperCAmelCase_ = self.dummy_input return init_dict, inputs_dict def _lowercase (self : Tuple , __a : Any ): UpperCAmelCase_ , UpperCAmelCase_ = self.prepare_init_args_and_inputs_for_common() UpperCAmelCase_ = self.block_class(**__a ) unet_block.to(__a ) unet_block.eval() with torch.no_grad(): UpperCAmelCase_ = unet_block(**__a ) if isinstance(__a , __a ): UpperCAmelCase_ = output[0] self.assertEqual(output.shape , self.output_shape ) UpperCAmelCase_ = output[0, -1, -3:, -3:] UpperCAmelCase_ = torch.tensor(__a ).to(__a ) assert torch_all_close(output_slice.flatten() , __a , atol=5E-3 ) @unittest.skipIf(torch_device == "mps" , "Training is not supported in mps" ) def _lowercase (self : Dict ): UpperCAmelCase_ , UpperCAmelCase_ = self.prepare_init_args_and_inputs_for_common() UpperCAmelCase_ = self.block_class(**__a ) model.to(__a ) model.train() UpperCAmelCase_ = model(**__a ) if isinstance(__a , __a ): UpperCAmelCase_ = output[0] UpperCAmelCase_ = torch.device(__a ) UpperCAmelCase_ = randn_tensor(output.shape , device=__a ) UpperCAmelCase_ = torch.nn.functional.mse_loss(__a , __a ) loss.backward()
106
0
"""simple docstring""" import unittest from transformers import MPNetConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MPNetForMaskedLM, MPNetForMultipleChoice, MPNetForQuestionAnswering, MPNetForSequenceClassification, MPNetForTokenClassification, MPNetModel, ) class _lowerCAmelCase : """simple docstring""" def __init__( self : List[Any], UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : List[Any]=1_3, UpperCAmelCase__ : Union[str, Any]=7, UpperCAmelCase__ : Tuple=True, UpperCAmelCase__ : Optional[Any]=True, UpperCAmelCase__ : Optional[int]=False, UpperCAmelCase__ : Union[str, Any]=True, UpperCAmelCase__ : Tuple=9_9, UpperCAmelCase__ : Optional[Any]=6_4, UpperCAmelCase__ : str=5, UpperCAmelCase__ : Optional[Any]=4, UpperCAmelCase__ : List[str]=6_4, UpperCAmelCase__ : Any="gelu", UpperCAmelCase__ : int=0.1, UpperCAmelCase__ : Tuple=0.1, UpperCAmelCase__ : Optional[Any]=5_1_2, UpperCAmelCase__ : Union[str, Any]=1_6, UpperCAmelCase__ : List[Any]=2, UpperCAmelCase__ : Tuple=0.02, UpperCAmelCase__ : str=3, UpperCAmelCase__ : List[str]=4, UpperCAmelCase__ : Dict=None, ): __lowercase = parent __lowercase = batch_size __lowercase = seq_length __lowercase = is_training __lowercase = use_input_mask __lowercase = use_token_type_ids __lowercase = use_labels __lowercase = vocab_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = type_vocab_size __lowercase = type_sequence_label_size __lowercase = initializer_range __lowercase = num_labels __lowercase = num_choices __lowercase = scope def _lowercase ( self : List[str] ): return MPNetConfig.from_pretrained("microsoft/mpnet-base" ) def _lowercase ( self : Union[str, Any] ): __lowercase = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) __lowercase = None if self.use_input_mask: __lowercase = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase = None __lowercase = None __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size], self.type_sequence_label_size ) __lowercase = ids_tensor([self.batch_size, self.seq_length], self.num_labels ) __lowercase = ids_tensor([self.batch_size], self.num_choices ) __lowercase = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowercase ( self : Dict ): return MPNetConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, initializer_range=self.initializer_range, ) def _lowercase ( self : Optional[int], UpperCAmelCase__ : str, UpperCAmelCase__ : Any, UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : Optional[Any] ): __lowercase = MPNetModel(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() __lowercase = model(UpperCAmelCase__, UpperCAmelCase__ ) __lowercase = model(UpperCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size) ) def _lowercase ( self : Optional[Any], UpperCAmelCase__ : int, UpperCAmelCase__ : str, UpperCAmelCase__ : Any, UpperCAmelCase__ : Tuple, UpperCAmelCase__ : int, UpperCAmelCase__ : str ): __lowercase = MPNetForQuestionAnswering(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() __lowercase = model( UpperCAmelCase__, attention_mask=UpperCAmelCase__, start_positions=UpperCAmelCase__, end_positions=UpperCAmelCase__, ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length) ) def _lowercase ( self : Optional[Any], UpperCAmelCase__ : int, UpperCAmelCase__ : int, UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : List[Any], UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : List[str] ): __lowercase = self.num_labels __lowercase = MPNetForSequenceClassification(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() __lowercase = model(UpperCAmelCase__, attention_mask=UpperCAmelCase__, labels=UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def _lowercase ( self : int, UpperCAmelCase__ : int, UpperCAmelCase__ : List[str], UpperCAmelCase__ : Any, UpperCAmelCase__ : Any, UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : List[str] ): __lowercase = self.num_choices __lowercase = MPNetForMultipleChoice(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() __lowercase = input_ids.unsqueeze(1 ).expand(-1, self.num_choices, -1 ).contiguous() __lowercase = input_mask.unsqueeze(1 ).expand(-1, self.num_choices, -1 ).contiguous() __lowercase = model( UpperCAmelCase__, attention_mask=UpperCAmelCase__, labels=UpperCAmelCase__, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices) ) def _lowercase ( self : Optional[int], UpperCAmelCase__ : Optional[int], UpperCAmelCase__ : int, UpperCAmelCase__ : Tuple, UpperCAmelCase__ : Any, UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : List[Any] ): __lowercase = self.num_labels __lowercase = MPNetForTokenClassification(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() __lowercase = model(UpperCAmelCase__, attention_mask=UpperCAmelCase__, labels=UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels) ) def _lowercase ( self : int ): __lowercase = self.prepare_config_and_inputs() ((__lowercase) ,(__lowercase) ,(__lowercase) ,(__lowercase) ,(__lowercase) ,(__lowercase)) = config_and_inputs __lowercase = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class _lowerCAmelCase ( lowercase ,lowercase ,unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Union[str, Any] = ( ( MPNetForMaskedLM, MPNetForMultipleChoice, MPNetForQuestionAnswering, MPNetForSequenceClassification, MPNetForTokenClassification, MPNetModel, ) if is_torch_available() else () ) __UpperCAmelCase : Optional[int] = ( { "feature-extraction": MPNetModel, "fill-mask": MPNetForMaskedLM, "question-answering": MPNetForQuestionAnswering, "text-classification": MPNetForSequenceClassification, "token-classification": MPNetForTokenClassification, "zero-shot": MPNetForSequenceClassification, } if is_torch_available() else {} ) __UpperCAmelCase : Any = False __UpperCAmelCase : List[Any] = True def _lowercase ( self : int ): __lowercase = MPNetModelTester(self ) __lowercase = ConfigTester(self, config_class=UpperCAmelCase__, hidden_size=3_7 ) def _lowercase ( self : Dict ): self.config_tester.run_common_tests() def _lowercase ( self : Union[str, Any] ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_model(*UpperCAmelCase__ ) def _lowercase ( self : Optional[Any] ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_sequence_classification(*UpperCAmelCase__ ) def _lowercase ( self : Optional[int] ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_multiple_choice(*UpperCAmelCase__ ) def _lowercase ( self : Union[str, Any] ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_token_classification(*UpperCAmelCase__ ) def _lowercase ( self : Optional[int] ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_question_answering(*UpperCAmelCase__ ) @require_torch class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def _lowercase ( self : Dict ): __lowercase = MPNetModel.from_pretrained("microsoft/mpnet-base" ) __lowercase = torch.tensor([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] ) __lowercase = model(UpperCAmelCase__ )[0] __lowercase = torch.Size((1, 1_1, 7_6_8) ) self.assertEqual(output.shape, UpperCAmelCase__ ) __lowercase = torch.tensor( [[[-0.0_550, 0.1_943, -0.0_740], [-0.0_562, 0.2_211, -0.0_579], [-0.0_437, 0.3_337, -0.0_641]]] ) # compare the actual values for a slice. self.assertTrue(torch.allclose(output[:, :3, :3], UpperCAmelCase__, atol=1E-4 ) )
17
"""simple docstring""" # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _UpperCAmelCase = { """configuration_vivit""": ["""VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """VivitConfig"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = ["""VivitImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = [ """VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """VivitModel""", """VivitPreTrainedModel""", """VivitForVideoClassification""", ] if TYPE_CHECKING: from .configuration_vivit import VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, VivitConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_vivit import VivitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vivit import ( VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST, VivitForVideoClassification, VivitModel, VivitPreTrainedModel, ) else: import sys _UpperCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
173
0
"""simple docstring""" def _lowerCamelCase( lowercase__ ) -> list[int]: '''simple docstring''' __lowercase= len(lowercase__ ) for i in range(lowercase__ ): for j in range(i + 1 , lowercase__ ): if numbers[j] < numbers[i]: __lowercase, __lowercase= numbers[j], numbers[i] return numbers if __name__ == "__main__": lowerCAmelCase = input('''Enter numbers separated by a comma:\n''').strip() lowerCAmelCase = [int(item) for item in user_input.split(''',''')] print(exchange_sort(unsorted))
367
from __future__ import annotations import numpy as np def _lowerCamelCase( lowercase__ ) -> str: '''simple docstring''' return np.maximum(0 , lowercase__ ) if __name__ == "__main__": print(np.array(relu([-1, 0, 5]))) # --> [0, 0, 5]
304
0
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=_SCREAMING_SNAKE_CASE ) class lowerCamelCase (_SCREAMING_SNAKE_CASE ): """simple docstring""" lowerCamelCase__ = field(default='''summarization''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) lowerCamelCase__ = Features({'''text''': Value('''string''' )} ) lowerCamelCase__ = Features({'''summary''': Value('''string''' )} ) lowerCamelCase__ = '''text''' lowerCamelCase__ = '''summary''' @property def __A ( self : Tuple ) -> Dict[str, str]: return {self.text_column: "text", self.summary_column: "summary"}
118
"""simple docstring""" from __future__ import annotations import math def _A ( lowercase ): """simple docstring""" if num <= 0: a =f'''{num}: Invalid input, please enter a positive integer.''' raise ValueError(lowercase ) a =[True] * (num + 1) a =[] a =2 a =int(math.sqrt(lowercase ) ) while start <= end: # If start is a prime if sieve[start] is True: prime.append(lowercase ) # Set multiples of start be False for i in range(start * start , num + 1 , lowercase ): if sieve[i] is True: a =False start += 1 for j in range(end + 1 , num + 1 ): if sieve[j] is True: prime.append(lowercase ) return prime if __name__ == "__main__": print(prime_sieve(int(input("""Enter a positive integer: """).strip())))
81
0
from typing import List, Optional, Union import torch from transformers import ( XLMRobertaTokenizer, ) from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) from .text_encoder import MultilingualCLIP _UpperCamelCase = logging.get_logger(__name__) # pylint: disable=invalid-name _UpperCamelCase = ''' Examples: ```py >>> from diffusers import KandinskyPipeline, KandinskyPriorPipeline >>> import torch >>> pipe_prior = KandinskyPriorPipeline.from_pretrained("kandinsky-community/Kandinsky-2-1-prior") >>> pipe_prior.to("cuda") >>> prompt = "red cat, 4k photo" >>> out = pipe_prior(prompt) >>> image_emb = out.image_embeds >>> negative_image_emb = out.negative_image_embeds >>> pipe = KandinskyPipeline.from_pretrained("kandinsky-community/kandinsky-2-1") >>> pipe.to("cuda") >>> image = pipe( ... prompt, ... image_embeds=image_emb, ... negative_image_embeds=negative_image_emb, ... height=768, ... width=768, ... num_inference_steps=100, ... ).images >>> image[0].save("cat.png") ``` ''' def UpperCamelCase_( snake_case__: int , snake_case__: Tuple , snake_case__: str=8 ) -> List[str]: UpperCAmelCase__ = h // scale_factor**2 if h % scale_factor**2 != 0: new_h += 1 UpperCAmelCase__ = w // scale_factor**2 if w % scale_factor**2 != 0: new_w += 1 return new_h * scale_factor, new_w * scale_factor class lowercase ( _UpperCamelCase ): '''simple docstring''' def __init__(self , __a , __a , __a , __a , __a , ) -> Tuple: """simple docstring""" super().__init__() self.register_modules( text_encoder=__a , tokenizer=__a , unet=__a , scheduler=__a , movq=__a , ) UpperCAmelCase__ = 2 ** (len(self.movq.config.block_out_channels ) - 1) def UpperCamelCase__ (self , __a , __a , __a , __a , __a , __a ) -> Optional[Any]: """simple docstring""" if latents is None: UpperCAmelCase__ = randn_tensor(__a , generator=__a , device=__a , dtype=__a ) else: if latents.shape != shape: raise ValueError(F"Unexpected latents shape, got {latents.shape}, expected {shape}" ) UpperCAmelCase__ = latents.to(__a ) UpperCAmelCase__ = latents * scheduler.init_noise_sigma return latents def UpperCamelCase__ (self , __a , __a , __a , __a , __a=None , ) -> Dict: """simple docstring""" UpperCAmelCase__ = len(__a ) if isinstance(__a , __a ) else 1 # get prompt text embeddings UpperCAmelCase__ = self.tokenizer( __a , padding='max_length' , truncation=__a , max_length=77 , return_attention_mask=__a , add_special_tokens=__a , return_tensors='pt' , ) UpperCAmelCase__ = text_inputs.input_ids UpperCAmelCase__ = self.tokenizer(__a , padding='longest' , return_tensors='pt' ).input_ids if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(__a , __a ): UpperCAmelCase__ = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] ) logger.warning( 'The following part of your input was truncated because CLIP can only handle sequences up to' F" {self.tokenizer.model_max_length} tokens: {removed_text}" ) UpperCAmelCase__ = text_input_ids.to(__a ) UpperCAmelCase__ = text_inputs.attention_mask.to(__a ) UpperCAmelCase__ , UpperCAmelCase__ = self.text_encoder( input_ids=__a , attention_mask=__a ) UpperCAmelCase__ = prompt_embeds.repeat_interleave(__a , dim=0 ) UpperCAmelCase__ = text_encoder_hidden_states.repeat_interleave(__a , dim=0 ) UpperCAmelCase__ = text_mask.repeat_interleave(__a , dim=0 ) if do_classifier_free_guidance: UpperCAmelCase__ = 42 if negative_prompt is None: UpperCAmelCase__ = [''] * batch_size elif type(__a ) is not type(__a ): raise TypeError( F"`negative_prompt` should be the same type to `prompt`, but got {type(__a )} !=" F" {type(__a )}." ) elif isinstance(__a , __a ): UpperCAmelCase__ = [negative_prompt] elif batch_size != len(__a ): raise ValueError( F"`negative_prompt`: {negative_prompt} has batch size {len(__a )}, but `prompt`:" F" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" ' the batch size of `prompt`.' ) else: UpperCAmelCase__ = negative_prompt UpperCAmelCase__ = self.tokenizer( __a , padding='max_length' , max_length=77 , truncation=__a , return_attention_mask=__a , add_special_tokens=__a , return_tensors='pt' , ) UpperCAmelCase__ = uncond_input.input_ids.to(__a ) UpperCAmelCase__ = uncond_input.attention_mask.to(__a ) UpperCAmelCase__ , UpperCAmelCase__ = self.text_encoder( input_ids=__a , attention_mask=__a ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method UpperCAmelCase__ = negative_prompt_embeds.shape[1] UpperCAmelCase__ = negative_prompt_embeds.repeat(1 , __a ) UpperCAmelCase__ = negative_prompt_embeds.view(batch_size * num_images_per_prompt , __a ) UpperCAmelCase__ = uncond_text_encoder_hidden_states.shape[1] UpperCAmelCase__ = uncond_text_encoder_hidden_states.repeat(1 , __a , 1 ) UpperCAmelCase__ = uncond_text_encoder_hidden_states.view( batch_size * num_images_per_prompt , __a , -1 ) UpperCAmelCase__ = uncond_text_mask.repeat_interleave(__a , dim=0 ) # done duplicates # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes UpperCAmelCase__ = torch.cat([negative_prompt_embeds, prompt_embeds] ) UpperCAmelCase__ = torch.cat([uncond_text_encoder_hidden_states, text_encoder_hidden_states] ) UpperCAmelCase__ = torch.cat([uncond_text_mask, text_mask] ) return prompt_embeds, text_encoder_hidden_states, text_mask def UpperCamelCase__ (self , __a=0 ) -> str: """simple docstring""" if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('Please install accelerate via `pip install accelerate`' ) UpperCAmelCase__ = torch.device(F"cuda:{gpu_id}" ) UpperCAmelCase__ = [ self.unet, self.text_encoder, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(__a , __a ) def UpperCamelCase__ (self , __a=0 ) -> Dict: """simple docstring""" if is_accelerate_available() and is_accelerate_version('>=' , '0.17.0.dev0' ): from accelerate import cpu_offload_with_hook else: raise ImportError('`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.' ) UpperCAmelCase__ = torch.device(F"cuda:{gpu_id}" ) if self.device.type != "cpu": self.to('cpu' , silence_dtype_warnings=__a ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) UpperCAmelCase__ = None for cpu_offloaded_model in [self.text_encoder, self.unet, self.movq]: UpperCAmelCase__ , UpperCAmelCase__ = cpu_offload_with_hook(__a , __a , prev_module_hook=__a ) if self.safety_checker is not None: UpperCAmelCase__ , UpperCAmelCase__ = cpu_offload_with_hook(self.safety_checker , __a , prev_module_hook=__a ) # We'll offload the last model manually. UpperCAmelCase__ = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def UpperCamelCase__ (self ) -> Optional[int]: """simple docstring""" if not hasattr(self.unet , '_hf_hook' ): return self.device for module in self.unet.modules(): if ( hasattr(__a , '_hf_hook' ) and hasattr(module._hf_hook , 'execution_device' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(__a ) def __call__(self , __a , __a , __a , __a = None , __a = 512 , __a = 512 , __a = 100 , __a = 4.0 , __a = 1 , __a = None , __a = None , __a = "pil" , __a = True , ) -> Tuple: """simple docstring""" if isinstance(__a , __a ): UpperCAmelCase__ = 1 elif isinstance(__a , __a ): UpperCAmelCase__ = len(__a ) else: raise ValueError(F"`prompt` has to be of type `str` or `list` but is {type(__a )}" ) UpperCAmelCase__ = self._execution_device UpperCAmelCase__ = batch_size * num_images_per_prompt UpperCAmelCase__ = guidance_scale > 1.0 UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = self._encode_prompt( __a , __a , __a , __a , __a ) if isinstance(__a , __a ): UpperCAmelCase__ = torch.cat(__a , dim=0 ) if isinstance(__a , __a ): UpperCAmelCase__ = torch.cat(__a , dim=0 ) if do_classifier_free_guidance: UpperCAmelCase__ = image_embeds.repeat_interleave(__a , dim=0 ) UpperCAmelCase__ = negative_image_embeds.repeat_interleave(__a , dim=0 ) UpperCAmelCase__ = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to( dtype=prompt_embeds.dtype , device=__a ) self.scheduler.set_timesteps(__a , device=__a ) UpperCAmelCase__ = self.scheduler.timesteps UpperCAmelCase__ = self.unet.config.in_channels UpperCAmelCase__ , UpperCAmelCase__ = get_new_h_w(__a , __a , self.movq_scale_factor ) # create initial latent UpperCAmelCase__ = self.prepare_latents( (batch_size, num_channels_latents, height, width) , text_encoder_hidden_states.dtype , __a , __a , __a , self.scheduler , ) for i, t in enumerate(self.progress_bar(__a ) ): # expand the latents if we are doing classifier free guidance UpperCAmelCase__ = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents UpperCAmelCase__ = {'text_embeds': prompt_embeds, 'image_embeds': image_embeds} UpperCAmelCase__ = self.unet( sample=__a , timestep=__a , encoder_hidden_states=__a , added_cond_kwargs=__a , return_dict=__a , )[0] if do_classifier_free_guidance: UpperCAmelCase__ , UpperCAmelCase__ = noise_pred.split(latents.shape[1] , dim=1 ) UpperCAmelCase__ , UpperCAmelCase__ = noise_pred.chunk(2 ) UpperCAmelCase__ , UpperCAmelCase__ = variance_pred.chunk(2 ) UpperCAmelCase__ = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) UpperCAmelCase__ = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , 'variance_type' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): UpperCAmelCase__ , UpperCAmelCase__ = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 UpperCAmelCase__ = self.scheduler.step( __a , __a , __a , generator=__a , ).prev_sample # post-processing UpperCAmelCase__ = self.movq.decode(__a , force_not_quantize=__a )['sample'] if output_type not in ["pt", "np", "pil"]: raise ValueError(F"Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}" ) if output_type in ["np", "pil"]: UpperCAmelCase__ = image * 0.5 + 0.5 UpperCAmelCase__ = image.clamp(0 , 1 ) UpperCAmelCase__ = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": UpperCAmelCase__ = self.numpy_to_pil(__a ) if not return_dict: return (image,) return ImagePipelineOutput(images=__a )
335
import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments @require_tf class lowercase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ (self , __a ) -> List[Any]: """simple docstring""" for model_result in results.values(): for batch_size, sequence_length in zip(model_result['bs'] , model_result['ss'] ): UpperCAmelCase__ = model_result['result'][batch_size][sequence_length] self.assertIsNotNone(__a ) def UpperCamelCase__ (self ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = 'sshleifer/tiny-gpt2' UpperCAmelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=__a , multi_process=__a , ) UpperCAmelCase__ = TensorFlowBenchmark(__a ) UpperCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCamelCase__ (self ) -> Tuple: """simple docstring""" UpperCAmelCase__ = 'sgugger/tiny-distilbert-classification' UpperCAmelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__a , only_pretrain_model=__a , ) UpperCAmelCase__ = TensorFlowBenchmark(__a ) UpperCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCamelCase__ (self ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = 'sshleifer/tiny-gpt2' UpperCAmelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__a , ) UpperCAmelCase__ = TensorFlowBenchmark(__a ) UpperCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCamelCase__ (self ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = 'sshleifer/tiny-gpt2' UpperCAmelCase__ = AutoConfig.from_pretrained(__a ) UpperCAmelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=__a , multi_process=__a , ) UpperCAmelCase__ = TensorFlowBenchmark(__a , [config] ) UpperCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCamelCase__ (self ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = 'sshleifer/tiny-gpt2' UpperCAmelCase__ = AutoConfig.from_pretrained(__a ) UpperCAmelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__a , ) UpperCAmelCase__ = TensorFlowBenchmark(__a , [config] ) UpperCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCamelCase__ (self ) -> Dict: """simple docstring""" UpperCAmelCase__ = 'sshleifer/tiny-gpt2' UpperCAmelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__a , ) UpperCAmelCase__ = TensorFlowBenchmark(__a ) UpperCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def UpperCamelCase__ (self ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = 'sshleifer/tiny-gpt2' UpperCAmelCase__ = AutoConfig.from_pretrained(__a ) UpperCAmelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__a , ) UpperCAmelCase__ = TensorFlowBenchmark(__a , [config] ) UpperCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def UpperCamelCase__ (self ) -> Tuple: """simple docstring""" UpperCAmelCase__ = 'patrickvonplaten/t5-tiny-random' UpperCAmelCase__ = AutoConfig.from_pretrained(__a ) UpperCAmelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__a , ) UpperCAmelCase__ = TensorFlowBenchmark(__a , configs=[config] ) UpperCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices('GPU' ) ) == 0 , 'Cannot do xla on CPU.' ) def UpperCamelCase__ (self ) -> List[str]: """simple docstring""" UpperCAmelCase__ = 'sshleifer/tiny-gpt2' UpperCAmelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , use_xla=__a , multi_process=__a , ) UpperCAmelCase__ = TensorFlowBenchmark(__a ) UpperCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCamelCase__ (self ) -> Tuple: """simple docstring""" UpperCAmelCase__ = 'sshleifer/tiny-gpt2' with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=__a , save_to_csv=__a , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(__a , 'inf_time.csv' ) , inference_memory_csv_file=os.path.join(__a , 'inf_mem.csv' ) , env_info_csv_file=os.path.join(__a , 'env.csv' ) , multi_process=__a , ) UpperCAmelCase__ = TensorFlowBenchmark(__a ) benchmark.run() self.assertTrue(Path(os.path.join(__a , 'inf_time.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(__a , 'inf_mem.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(__a , 'env.csv' ) ).exists() ) def UpperCamelCase__ (self ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = 'sshleifer/tiny-gpt2' def _check_summary_is_not_empty(__a ): self.assertTrue(hasattr(__a , 'sequential' ) ) self.assertTrue(hasattr(__a , 'cumulative' ) ) self.assertTrue(hasattr(__a , 'current' ) ) self.assertTrue(hasattr(__a , 'total' ) ) with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(__a , 'log.txt' ) , log_print=__a , trace_memory_line_by_line=__a , eager_mode=__a , multi_process=__a , ) UpperCAmelCase__ = TensorFlowBenchmark(__a ) UpperCAmelCase__ = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) self.assertTrue(Path(os.path.join(__a , 'log.txt' ) ).exists() )
335
1
"""simple docstring""" import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class UpperCAmelCase_ ( unittest.TestCase ): def _lowerCamelCase ( self ) -> int: __lowercase : List[Any] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) __lowercase : Optional[Any] = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(__lowercase ) __lowercase : List[str] = -1 __lowercase : int = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__lowercase ) __lowercase : Tuple = model.generate(__lowercase , max_new_tokens=10 , do_sample=__lowercase ) __lowercase : Any = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: __lowercase : str = TextStreamer(__lowercase ) model.generate(__lowercase , max_new_tokens=10 , do_sample=__lowercase , streamer=__lowercase ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer __lowercase : Optional[Any] = cs.out[:-1] self.assertEqual(__lowercase , __lowercase ) def _lowerCamelCase ( self ) -> str: __lowercase : Optional[int] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) __lowercase : Dict = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(__lowercase ) __lowercase : Union[str, Any] = -1 __lowercase : int = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__lowercase ) __lowercase : Dict = model.generate(__lowercase , max_new_tokens=10 , do_sample=__lowercase ) __lowercase : Dict = tokenizer.decode(greedy_ids[0] ) __lowercase : List[str] = TextIteratorStreamer(__lowercase ) __lowercase : List[Any] = {'''input_ids''': input_ids, '''max_new_tokens''': 10, '''do_sample''': False, '''streamer''': streamer} __lowercase : Any = Thread(target=model.generate , kwargs=__lowercase ) thread.start() __lowercase : int = '''''' for new_text in streamer: streamer_text += new_text self.assertEqual(__lowercase , __lowercase ) def _lowerCamelCase ( self ) -> List[str]: __lowercase : Optional[Any] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) __lowercase : Any = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(__lowercase ) __lowercase : Dict = -1 __lowercase : Union[str, Any] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__lowercase ) __lowercase : int = model.generate(__lowercase , max_new_tokens=10 , do_sample=__lowercase ) __lowercase : Union[str, Any] = greedy_ids[:, input_ids.shape[1] :] __lowercase : Union[str, Any] = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: __lowercase : Dict = TextStreamer(__lowercase , skip_prompt=__lowercase ) model.generate(__lowercase , max_new_tokens=10 , do_sample=__lowercase , streamer=__lowercase ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer __lowercase : Tuple = cs.out[:-1] self.assertEqual(__lowercase , __lowercase ) def _lowerCamelCase ( self ) -> Optional[Any]: __lowercase : Tuple = AutoTokenizer.from_pretrained('''distilgpt2''' ) __lowercase : str = AutoModelForCausalLM.from_pretrained('''distilgpt2''' ).to(__lowercase ) __lowercase : List[Any] = -1 __lowercase : Tuple = torch.ones((1, 5) , device=__lowercase ).long() * model.config.bos_token_id with CaptureStdout() as cs: __lowercase : Union[str, Any] = TextStreamer(__lowercase , skip_special_tokens=__lowercase ) model.generate(__lowercase , max_new_tokens=1 , do_sample=__lowercase , streamer=__lowercase ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token __lowercase : Union[str, Any] = cs.out[:-1] # Remove the final "\n" __lowercase : List[str] = tokenizer(__lowercase , return_tensors='''pt''' ) self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) ) def _lowerCamelCase ( self ) -> str: __lowercase : Optional[Any] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) __lowercase : Tuple = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(__lowercase ) __lowercase : str = -1 __lowercase : Tuple = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__lowercase ) __lowercase : Dict = TextIteratorStreamer(__lowercase , timeout=0.0_0_1 ) __lowercase : Optional[int] = {'''input_ids''': input_ids, '''max_new_tokens''': 10, '''do_sample''': False, '''streamer''': streamer} __lowercase : int = Thread(target=model.generate , kwargs=__lowercase ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(__lowercase ): __lowercase : str = '''''' for new_text in streamer: streamer_text += new_text
249
'''simple docstring''' import unittest from transformers import AutoTokenizer, FalconConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, ) class lowerCAmelCase : def __init__( self : Optional[int] , __lowercase : Dict , __lowercase : Optional[Any]=3 , __lowercase : Union[str, Any]=7 , __lowercase : Any=True , __lowercase : List[Any]=True , __lowercase : Union[str, Any]=False , __lowercase : int=True , __lowercase : List[str]=99 , __lowercase : int=32 , __lowercase : Dict=5 , __lowercase : Union[str, Any]=4 , __lowercase : List[Any]=37 , __lowercase : str="gelu" , __lowercase : int=0.1 , __lowercase : Dict=0.1 , __lowercase : Any=512 , __lowercase : List[str]=16 , __lowercase : Tuple=2 , __lowercase : Tuple=0.0_2 , __lowercase : List[str]=3 , __lowercase : Union[str, Any]=4 , __lowercase : List[Any]=None , ): """simple docstring""" __lowercase =parent __lowercase =batch_size __lowercase =seq_length __lowercase =is_training __lowercase =use_input_mask __lowercase =use_token_type_ids __lowercase =use_labels __lowercase =vocab_size __lowercase =hidden_size __lowercase =num_hidden_layers __lowercase =num_attention_heads __lowercase =intermediate_size __lowercase =hidden_act __lowercase =hidden_dropout_prob __lowercase =attention_probs_dropout_prob __lowercase =max_position_embeddings __lowercase =type_vocab_size __lowercase =type_sequence_label_size __lowercase =initializer_range __lowercase =num_labels __lowercase =num_choices __lowercase =scope def snake_case ( self : List[Any] ): """simple docstring""" __lowercase =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase =None if self.use_input_mask: __lowercase =random_attention_mask([self.batch_size, self.seq_length] ) __lowercase =None __lowercase =None __lowercase =None __lowercase =None if self.use_labels: __lowercase =ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowercase =ids_tensor([self.batch_size] , self.num_choices ) __lowercase =self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case ( self : Tuple ): """simple docstring""" return FalconConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__lowercase , initializer_range=self.initializer_range , pad_token_id=1 , new_decoder_architecture=__lowercase , ) def snake_case ( self : str , __lowercase : Optional[Any] , __lowercase : int , __lowercase : Any , __lowercase : Tuple , __lowercase : Optional[Any] , __lowercase : Union[str, Any] , __lowercase : Optional[Any] ): """simple docstring""" __lowercase =FalconModel(config=__lowercase ) model.to(__lowercase ) model.eval() __lowercase =model(__lowercase , attention_mask=__lowercase ) __lowercase =model(__lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case ( self : Optional[Any] , __lowercase : Any , __lowercase : Union[str, Any] , __lowercase : List[Any] , __lowercase : str , __lowercase : Tuple , __lowercase : Optional[Any] , __lowercase : List[str] , __lowercase : Optional[Any] , __lowercase : List[str] , ): """simple docstring""" __lowercase =True __lowercase =FalconModel(__lowercase ) model.to(__lowercase ) model.eval() __lowercase =model( __lowercase , attention_mask=__lowercase , encoder_hidden_states=__lowercase , encoder_attention_mask=__lowercase , ) __lowercase =model( __lowercase , attention_mask=__lowercase , encoder_hidden_states=__lowercase , ) __lowercase =model(__lowercase , attention_mask=__lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case ( self : Union[str, Any] , __lowercase : int , __lowercase : List[Any] , __lowercase : List[str] , __lowercase : str , __lowercase : List[Any] , __lowercase : Tuple , __lowercase : Union[str, Any] , __lowercase : List[str] , __lowercase : Optional[int] , ): """simple docstring""" __lowercase =FalconForCausalLM(config=__lowercase ) model.to(__lowercase ) model.eval() __lowercase =model(__lowercase , attention_mask=__lowercase , labels=__lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case ( self : str , __lowercase : Union[str, Any] , __lowercase : Union[str, Any] , __lowercase : Optional[Any] , __lowercase : Dict , __lowercase : Optional[int] , __lowercase : Tuple , __lowercase : List[Any] , __lowercase : Dict , __lowercase : Tuple , ): """simple docstring""" __lowercase =True __lowercase =True __lowercase =FalconForCausalLM(config=__lowercase ) model.to(__lowercase ) model.eval() # first forward pass __lowercase =model( __lowercase , attention_mask=__lowercase , encoder_hidden_states=__lowercase , encoder_attention_mask=__lowercase , use_cache=__lowercase , ) __lowercase =outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids __lowercase =ids_tensor((self.batch_size, 3) , config.vocab_size ) __lowercase =ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and __lowercase =torch.cat([input_ids, next_tokens] , dim=-1 ) __lowercase =torch.cat([input_mask, next_mask] , dim=-1 ) __lowercase =model( __lowercase , attention_mask=__lowercase , encoder_hidden_states=__lowercase , encoder_attention_mask=__lowercase , output_hidden_states=__lowercase , )['hidden_states'][0] __lowercase =model( __lowercase , attention_mask=__lowercase , encoder_hidden_states=__lowercase , encoder_attention_mask=__lowercase , past_key_values=__lowercase , output_hidden_states=__lowercase , )['hidden_states'][0] # select random slice __lowercase =ids_tensor((1,) , output_from_past.shape[-1] ).item() __lowercase =output_from_no_past[:, -3:, random_slice_idx].detach() __lowercase =output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__lowercase , __lowercase , atol=1E-3 ) ) def snake_case ( self : Optional[Any] ): """simple docstring""" __lowercase =self.prepare_config_and_inputs() ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) =config_and_inputs __lowercase ={'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class lowerCAmelCase ( A , A , A , unittest.TestCase ): lowerCAmelCase_ = ( ( FalconModel, FalconForCausalLM, FalconForSequenceClassification, FalconForTokenClassification, FalconForQuestionAnswering, ) if is_torch_available() else () ) lowerCAmelCase_ = (FalconForCausalLM,) if is_torch_available() else () lowerCAmelCase_ = ( { "feature-extraction": FalconModel, "text-classification": FalconForSequenceClassification, "text-generation": FalconForCausalLM, "question-answering": FalconForQuestionAnswering, "token-classification": FalconForTokenClassification, "zero-shot": FalconForSequenceClassification, } if is_torch_available() else {} ) lowerCAmelCase_ = False lowerCAmelCase_ = False def snake_case ( self : int ): """simple docstring""" __lowercase =FalconModelTester(self ) __lowercase =ConfigTester(self , config_class=__lowercase , hidden_size=37 ) def snake_case ( self : Dict ): """simple docstring""" self.config_tester.run_common_tests() def snake_case ( self : Optional[Any] ): """simple docstring""" __lowercase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowercase ) def snake_case ( self : Union[str, Any] ): """simple docstring""" __lowercase , *__lowercase =self.model_tester.prepare_config_and_inputs() for alibi in [True, False]: __lowercase =alibi self.model_tester.create_and_check_model(__lowercase , *__lowercase ) def snake_case ( self : str ): """simple docstring""" __lowercase , __lowercase =self.model_tester.prepare_config_and_inputs_for_common() __lowercase =3 __lowercase =input_dict['input_ids'] __lowercase =input_ids.ne(1 ).to(__lowercase ) __lowercase =ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) __lowercase =FalconForSequenceClassification(__lowercase ) model.to(__lowercase ) model.eval() __lowercase =model(__lowercase , attention_mask=__lowercase , labels=__lowercase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def snake_case ( self : Optional[Any] ): """simple docstring""" __lowercase , __lowercase =self.model_tester.prepare_config_and_inputs_for_common() __lowercase =3 __lowercase ='single_label_classification' __lowercase =input_dict['input_ids'] __lowercase =input_ids.ne(1 ).to(__lowercase ) __lowercase =ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) __lowercase =FalconForSequenceClassification(__lowercase ) model.to(__lowercase ) model.eval() __lowercase =model(__lowercase , attention_mask=__lowercase , labels=__lowercase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def snake_case ( self : int ): """simple docstring""" __lowercase , __lowercase =self.model_tester.prepare_config_and_inputs_for_common() __lowercase =input_dict['input_ids'] __lowercase =FalconForCausalLM(__lowercase ) model.to(__lowercase ) model.eval() __lowercase =model(__lowercase , use_cache=__lowercase ) __lowercase =input_ids.shape[0] __lowercase =model._convert_to_rw_cache(result.past_key_values ) __lowercase =model._convert_cache_to_standard_format(__lowercase , __lowercase ) for layer in range(len(__lowercase ) ): for tensor_idx in range(2 ): self.assertTrue(rw_cache[layer][tensor_idx].ndim == 3 ) self.assertTrue(result.past_key_values[layer][tensor_idx].ndim == 4 ) self.assertTrue( torch.all(result.past_key_values[layer][tensor_idx] == standard_cache[layer][tensor_idx] ) ) def snake_case ( self : Union[str, Any] ): """simple docstring""" __lowercase , __lowercase =self.model_tester.prepare_config_and_inputs_for_common() __lowercase =3 __lowercase ='multi_label_classification' __lowercase =input_dict['input_ids'] __lowercase =input_ids.ne(1 ).to(__lowercase ) __lowercase =ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) __lowercase =FalconForSequenceClassification(__lowercase ) model.to(__lowercase ) model.eval() __lowercase =model(__lowercase , attention_mask=__lowercase , labels=__lowercase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def snake_case ( self : Tuple ): """simple docstring""" for model_class in self.all_generative_model_classes: __lowercase , __lowercase =self.model_tester.prepare_config_and_inputs_for_common() # If it doesn't support cache, pass the test if not hasattr(__lowercase , 'use_cache' ): return __lowercase =model_class(__lowercase ).to(__lowercase ) if "use_cache" not in inputs: __lowercase =True __lowercase =model(**__lowercase ) # If "past_key_values" is not returned, pass the test (e.g. RWKV uses a different cache name and format) if "past_key_values" not in outputs: return __lowercase =( getattr(__lowercase , 'decoder_layers' , __lowercase ) or getattr(__lowercase , 'num_decoder_layers' , __lowercase ) or config.num_hidden_layers ) __lowercase =getattr(__lowercase , 'num_kv_heads' , config.num_attention_heads ) __lowercase =getattr(__lowercase , 'd_model' , config.hidden_size ) __lowercase =embed_dim // num_attention_heads __lowercase =outputs['past_key_values'] self.assertEqual(len(__lowercase ) , __lowercase ) __lowercase , __lowercase =inputs['input_ids'].shape for i in range(__lowercase ): if config.new_decoder_architecture: __lowercase =config.num_attention_heads elif config.multi_query: __lowercase =1 self.assertEqual(len(past_kv[0] ) , 2 ) # K V for the decoder = 2 self.assertEqual( past_kv[i][0].shape , (batch_size, num_attention_heads, seq_length, per_head_embed_dim) ) self.assertEqual( past_kv[i][1].shape , (batch_size, num_attention_heads, seq_length, per_head_embed_dim) ) @require_torch class lowerCAmelCase ( unittest.TestCase ): @slow def snake_case ( self : List[str] ): """simple docstring""" __lowercase =AutoTokenizer.from_pretrained('Rocketknight1/falcon-rw-1b' ) __lowercase =FalconForCausalLM.from_pretrained('Rocketknight1/falcon-rw-1b' ) model.eval() model.to(__lowercase ) __lowercase =tokenizer('My favorite food is' , return_tensors='pt' ).to(__lowercase ) __lowercase =( 'My favorite food is pizza. I love it so much that I have a pizza party every year for my birthday.' ) __lowercase =model.generate(**__lowercase , do_sample=__lowercase , max_new_tokens=19 ) __lowercase =tokenizer.batch_decode(__lowercase )[0] self.assertEqual(__lowercase , __lowercase ) @slow def snake_case ( self : Dict ): """simple docstring""" for repo in ["Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b"]: __lowercase =AutoTokenizer.from_pretrained(__lowercase ) __lowercase =FalconForCausalLM.from_pretrained(__lowercase ) model.eval() model.to(__lowercase ) __lowercase =tokenizer('My favorite food is' , return_tensors='pt' ).to(__lowercase ) # We just test that these run without errors - the models are randomly initialized # and so the actual text outputs will be garbage model.generate(**__lowercase , do_sample=__lowercase , max_new_tokens=4 ) model.generate(**__lowercase , do_sample=__lowercase , max_new_tokens=4 ) model.generate(**__lowercase , num_beams=2 , max_new_tokens=4 ) @slow def snake_case ( self : Tuple ): """simple docstring""" with torch.no_grad(): for repo in [ "Rocketknight1/falcon-rw-1b", "Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b", ]: __lowercase =AutoTokenizer.from_pretrained(__lowercase ) __lowercase =FalconForCausalLM.from_pretrained(__lowercase ) model.eval() model.to(device=__lowercase ) __lowercase =tokenizer('My favorite food is' , return_tensors='pt' ).to(__lowercase ) # Test results are the same with and without cache __lowercase =model.generate(**__lowercase , do_sample=__lowercase , max_new_tokens=20 , use_cache=__lowercase ) __lowercase =model.generate(**__lowercase , do_sample=__lowercase , max_new_tokens=20 , use_cache=__lowercase ) self.assertTrue((outputs_cache - outputs_no_cache).sum().item() == 0 )
141
0
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roformer import RoFormerTokenizer from .tokenization_utils import JiebaPreTokenizer __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} __UpperCamelCase = { '''vocab_file''': { '''junnyu/roformer_chinese_small''': '''https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/vocab.txt''', '''junnyu/roformer_chinese_base''': '''https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/vocab.txt''', '''junnyu/roformer_chinese_char_small''': ( '''https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/vocab.txt''' ), '''junnyu/roformer_chinese_char_base''': ( '''https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/vocab.txt''' ), '''junnyu/roformer_small_discriminator''': ( '''https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/vocab.txt''' ), '''junnyu/roformer_small_generator''': ( '''https://huggingface.co/junnyu/roformer_small_generator/resolve/main/vocab.txt''' ), } } __UpperCamelCase = { '''junnyu/roformer_chinese_small''': 1536, '''junnyu/roformer_chinese_base''': 1536, '''junnyu/roformer_chinese_char_small''': 512, '''junnyu/roformer_chinese_char_base''': 512, '''junnyu/roformer_small_discriminator''': 128, '''junnyu/roformer_small_generator''': 128, } __UpperCamelCase = { '''junnyu/roformer_chinese_small''': {'''do_lower_case''': True}, '''junnyu/roformer_chinese_base''': {'''do_lower_case''': True}, '''junnyu/roformer_chinese_char_small''': {'''do_lower_case''': True}, '''junnyu/roformer_chinese_char_base''': {'''do_lower_case''': True}, '''junnyu/roformer_small_discriminator''': {'''do_lower_case''': True}, '''junnyu/roformer_small_generator''': {'''do_lower_case''': True}, } class _A ( lowerCamelCase__ ): lowercase__: Optional[Any] = VOCAB_FILES_NAMES lowercase__: List[Any] = PRETRAINED_VOCAB_FILES_MAP lowercase__: Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__: str = PRETRAINED_INIT_CONFIGURATION lowercase__: Dict = RoFormerTokenizer def __init__( self : Tuple , __magic_name__ : Dict=None , __magic_name__ : Any=None , __magic_name__ : List[str]=True , __magic_name__ : Dict="[UNK]" , __magic_name__ : Optional[Any]="[SEP]" , __magic_name__ : int="[PAD]" , __magic_name__ : Optional[int]="[CLS]" , __magic_name__ : Optional[int]="[MASK]" , __magic_name__ : Optional[Any]=True , __magic_name__ : List[Any]=None , **__magic_name__ : Dict , ) -> List[str]: """simple docstring""" super().__init__( __magic_name__ , tokenizer_file=__magic_name__ , do_lower_case=__magic_name__ , unk_token=__magic_name__ , sep_token=__magic_name__ , pad_token=__magic_name__ , cls_token=__magic_name__ , mask_token=__magic_name__ , tokenize_chinese_chars=__magic_name__ , strip_accents=__magic_name__ , **__magic_name__ , ) __snake_case : Union[str, Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( pre_tok_state.get("""lowercase""" , __magic_name__ ) != do_lower_case or pre_tok_state.get("""strip_accents""" , __magic_name__ ) != strip_accents ): __snake_case : Dict = getattr(__magic_name__ , pre_tok_state.pop("""type""" ) ) __snake_case : str = do_lower_case __snake_case : int = strip_accents __snake_case : Union[str, Any] = pre_tok_class(**__magic_name__ ) __snake_case : Optional[Any] = do_lower_case def __getstate__( self : Any ) -> List[str]: """simple docstring""" __snake_case : str = self.__dict__.copy() __snake_case : Optional[Any] = BertPreTokenizer() return state def __setstate__( self : Tuple , __magic_name__ : Tuple ) -> str: """simple docstring""" __snake_case : Dict = d __snake_case : Optional[int] = self.__dict__["_tokenizer"].get_vocab() __snake_case : int = PreTokenizer.custom(JiebaPreTokenizer(__magic_name__ ) ) def lowercase__ ( self : Any , __magic_name__ : Dict , __magic_name__ : List[str]=None ) -> Dict: """simple docstring""" __snake_case : Union[str, Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowercase__ ( self : Dict , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None ) -> Any: """simple docstring""" __snake_case : Dict = [self.sep_token_id] __snake_case : int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowercase__ ( self : Optional[int] , __magic_name__ : str , __magic_name__ : Optional[str] = None ) -> int: """simple docstring""" __snake_case : str = self._tokenizer.model.save(__magic_name__ , name=__magic_name__ ) return tuple(__magic_name__ ) def lowercase__ ( self : Any , __magic_name__ : Any , __magic_name__ : List[str]=None , __magic_name__ : List[str]=None , __magic_name__ : Dict=False , **__magic_name__ : Any , ) -> Optional[Any]: """simple docstring""" __snake_case : Optional[int] = BertPreTokenizer() return super().save_pretrained(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ )
353
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __UpperCamelCase = { "configuration_conditional_detr": [ "CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP", "ConditionalDetrConfig", "ConditionalDetrOnnxConfig", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = ["ConditionalDetrFeatureExtractor"] __UpperCamelCase = ["ConditionalDetrImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ "CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST", "ConditionalDetrForObjectDetection", "ConditionalDetrForSegmentation", "ConditionalDetrModel", "ConditionalDetrPreTrainedModel", ] if TYPE_CHECKING: from .configuration_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP, ConditionalDetrConfig, ConditionalDetrOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_conditional_detr import ConditionalDetrFeatureExtractor from .image_processing_conditional_detr import ConditionalDetrImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrModel, ConditionalDetrPreTrainedModel, ) else: import sys __UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
13
0
'''simple docstring''' import os from pathlib import Path from unittest.mock import patch import pytest import zstandard as zstd from datasets.download.download_config import DownloadConfig from datasets.utils.file_utils import ( OfflineModeIsEnabled, cached_path, fsspec_get, fsspec_head, ftp_get, ftp_head, get_from_cache, http_get, http_head, ) lowerCamelCase : Dict = "\\n Text data.\n Second line of data." lowerCamelCase : List[str] = "file" @pytest.fixture(scope='session' ) def _lowerCAmelCase ( _UpperCamelCase : Dict ) -> Dict: """simple docstring""" _SCREAMING_SNAKE_CASE =tmp_path_factory.mktemp('data' ) / (FILE_PATH + '.zstd') _SCREAMING_SNAKE_CASE =bytes(_UpperCamelCase , 'utf-8' ) with zstd.open(_UpperCamelCase , 'wb' ) as f: f.write(_UpperCamelCase ) return path @pytest.fixture def _lowerCAmelCase ( _UpperCamelCase : List[str] ) -> Dict: """simple docstring""" with open(os.path.join(tmpfs.local_root_dir , _UpperCamelCase ) , 'w' ) as f: f.write(_UpperCamelCase ) return FILE_PATH @pytest.mark.parametrize('compression_format' , ['gzip', 'xz', 'zstd'] ) def _lowerCAmelCase ( _UpperCamelCase : Optional[int] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Any , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : str ) -> List[str]: """simple docstring""" _SCREAMING_SNAKE_CASE ={'gzip': gz_file, 'xz': xz_file, 'zstd': zstd_path} _SCREAMING_SNAKE_CASE =input_paths[compression_format] _SCREAMING_SNAKE_CASE =tmp_path / 'cache' _SCREAMING_SNAKE_CASE =DownloadConfig(cache_dir=_UpperCamelCase , extract_compressed_file=_UpperCamelCase ) _SCREAMING_SNAKE_CASE =cached_path(_UpperCamelCase , download_config=_UpperCamelCase ) with open(_UpperCamelCase ) as f: _SCREAMING_SNAKE_CASE =f.read() with open(_UpperCamelCase ) as f: _SCREAMING_SNAKE_CASE =f.read() assert extracted_file_content == expected_file_content @pytest.mark.parametrize('default_extracted' , [True, False] ) @pytest.mark.parametrize('default_cache_dir' , [True, False] ) def _lowerCAmelCase ( _UpperCamelCase : List[str] , _UpperCamelCase : str , _UpperCamelCase : Tuple , _UpperCamelCase : List[str] , _UpperCamelCase : Optional[int] ) -> Dict: """simple docstring""" _SCREAMING_SNAKE_CASE ='custom_cache' _SCREAMING_SNAKE_CASE ='custom_extracted_dir' _SCREAMING_SNAKE_CASE =tmp_path / 'custom_extracted_path' if default_extracted: _SCREAMING_SNAKE_CASE =('downloads' if default_cache_dir else custom_cache_dir, 'extracted') else: monkeypatch.setattr('datasets.config.EXTRACTED_DATASETS_DIR' , _UpperCamelCase ) monkeypatch.setattr('datasets.config.EXTRACTED_DATASETS_PATH' , str(_UpperCamelCase ) ) _SCREAMING_SNAKE_CASE =custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir) _SCREAMING_SNAKE_CASE =xz_file _SCREAMING_SNAKE_CASE =( DownloadConfig(extract_compressed_file=_UpperCamelCase ) if default_cache_dir else DownloadConfig(cache_dir=tmp_path / custom_cache_dir , extract_compressed_file=_UpperCamelCase ) ) _SCREAMING_SNAKE_CASE =cached_path(_UpperCamelCase , download_config=_UpperCamelCase ) assert Path(_UpperCamelCase ).parent.parts[-2:] == expected def _lowerCAmelCase ( _UpperCamelCase : Optional[Any] ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE =str(Path(_UpperCamelCase ).resolve() ) assert cached_path(_UpperCamelCase ) == text_file # relative path _SCREAMING_SNAKE_CASE =str(Path(_UpperCamelCase ).resolve().relative_to(Path(os.getcwd() ) ) ) assert cached_path(_UpperCamelCase ) == text_file def _lowerCAmelCase ( _UpperCamelCase : List[str] ) -> List[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =str(tmp_path.resolve() / '__missing_file__.txt' ) with pytest.raises(_UpperCamelCase ): cached_path(_UpperCamelCase ) # relative path _SCREAMING_SNAKE_CASE ='./__missing_file__.txt' with pytest.raises(_UpperCamelCase ): cached_path(_UpperCamelCase ) def _lowerCAmelCase ( _UpperCamelCase : Optional[Any] ) -> List[str]: """simple docstring""" _SCREAMING_SNAKE_CASE =get_from_cache(f"tmp://{tmpfs_file}" ) with open(_UpperCamelCase ) as f: _SCREAMING_SNAKE_CASE =f.read() assert output_file_content == FILE_CONTENT @patch('datasets.config.HF_DATASETS_OFFLINE' , _UpperCamelCase ) def _lowerCAmelCase ( ) -> Union[str, Any]: """simple docstring""" with pytest.raises(_UpperCamelCase ): cached_path('https://huggingface.co' ) @patch('datasets.config.HF_DATASETS_OFFLINE' , _UpperCamelCase ) def _lowerCAmelCase ( _UpperCamelCase : List[str] ) -> Tuple: """simple docstring""" _SCREAMING_SNAKE_CASE =tmp_path_factory.mktemp('data' ) / 'file.html' with pytest.raises(_UpperCamelCase ): http_get('https://huggingface.co' , temp_file=_UpperCamelCase ) with pytest.raises(_UpperCamelCase ): http_head('https://huggingface.co' ) @patch('datasets.config.HF_DATASETS_OFFLINE' , _UpperCamelCase ) def _lowerCAmelCase ( _UpperCamelCase : List[Any] ) -> Union[str, Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =tmp_path_factory.mktemp('data' ) / 'file.html' with pytest.raises(_UpperCamelCase ): ftp_get('ftp://huggingface.co' , temp_file=_UpperCamelCase ) with pytest.raises(_UpperCamelCase ): ftp_head('ftp://huggingface.co' ) @patch('datasets.config.HF_DATASETS_OFFLINE' , _UpperCamelCase ) def _lowerCAmelCase ( _UpperCamelCase : Tuple ) -> Union[str, Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =tmp_path_factory.mktemp('data' ) / 'file.html' with pytest.raises(_UpperCamelCase ): fsspec_get('s3://huggingface.co' , temp_file=_UpperCamelCase ) with pytest.raises(_UpperCamelCase ): fsspec_head('s3://huggingface.co' )
47
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __UpperCamelCase : Optional[Any] = { '''configuration_rag''': ['''RagConfig'''], '''retrieval_rag''': ['''RagRetriever'''], '''tokenization_rag''': ['''RagTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Tuple = [ '''RagModel''', '''RagPreTrainedModel''', '''RagSequenceForGeneration''', '''RagTokenForGeneration''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Union[str, Any] = [ '''TFRagModel''', '''TFRagPreTrainedModel''', '''TFRagSequenceForGeneration''', '''TFRagTokenForGeneration''', ] if TYPE_CHECKING: from .configuration_rag import RagConfig from .retrieval_rag import RagRetriever from .tokenization_rag import RagTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rag import RagModel, RagPreTrainedModel, RagSequenceForGeneration, RagTokenForGeneration try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rag import ( TFRagModel, TFRagPreTrainedModel, TFRagSequenceForGeneration, TFRagTokenForGeneration, ) else: import sys __UpperCamelCase : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
106
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A_ : Any = logging.get_logger(__name__) A_ : Optional[int] = { "facebook/data2vec-text-base": "https://huggingface.co/data2vec/resolve/main/config.json", } class _a (_SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCAmelCase__: Union[str, Any] = '''data2vec-text''' def __init__( self , A__=3_0522 , A__=768 , A__=12 , A__=12 , A__=3072 , A__="gelu" , A__=0.1 , A__=0.1 , A__=512 , A__=2 , A__=0.0_2 , A__=1e-12 , A__=1 , A__=0 , A__=2 , A__="absolute" , A__=True , A__=None , **A__ , ): super().__init__(pad_token_id=A__ , bos_token_id=A__ , eos_token_id=A__ , **A__ ) A__ : Tuple = vocab_size A__ : str = hidden_size A__ : List[Any] = num_hidden_layers A__ : Optional[int] = num_attention_heads A__ : List[str] = hidden_act A__ : Any = intermediate_size A__ : Tuple = hidden_dropout_prob A__ : str = attention_probs_dropout_prob A__ : Optional[int] = max_position_embeddings A__ : int = type_vocab_size A__ : Optional[int] = initializer_range A__ : List[str] = layer_norm_eps A__ : Optional[Any] = position_embedding_type A__ : int = use_cache A__ : Optional[Any] = classifier_dropout class _a (_SCREAMING_SNAKE_CASE ): '''simple docstring''' @property def __A ( self ): if self.task == "multiple-choice": A__ : Dict = {0: """batch""", 1: """choice""", 2: """sequence"""} else: A__ : Optional[Any] = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
351
import warnings from contextlib import contextmanager from ....processing_utils import ProcessorMixin class _a (__magic_name__ ): '''simple docstring''' UpperCAmelCase__: Optional[Any] = '''MCTCTFeatureExtractor''' UpperCAmelCase__: Optional[int] = '''AutoTokenizer''' def __init__( self , A__ , A__ ): super().__init__(A__ , A__ ) A__ : List[str] = self.feature_extractor A__ : Optional[int] = False def __call__( self , *A__ , **A__ ): # For backward compatibility if self._in_target_context_manager: return self.current_processor(*A__ , **A__ ) if "raw_speech" in kwargs: warnings.warn("""Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.""" ) A__ : Dict = kwargs.pop("""raw_speech""" ) else: A__ : Tuple = kwargs.pop("""audio""" , A__ ) A__ : Union[str, Any] = kwargs.pop("""sampling_rate""" , A__ ) A__ : int = kwargs.pop("""text""" , A__ ) if len(A__ ) > 0: A__ : Optional[int] = args[0] A__ : Dict = args[1:] if audio is None and text is None: raise ValueError("""You need to specify either an `audio` or `text` input to process.""" ) if audio is not None: A__ : List[str] = self.feature_extractor(A__ , *A__ , sampling_rate=A__ , **A__ ) if text is not None: A__ : Optional[Any] = self.tokenizer(A__ , **A__ ) if text is None: return inputs elif audio is None: return encodings else: A__ : List[Any] = encodings["""input_ids"""] return inputs def __A ( self , *A__ , **A__ ): return self.tokenizer.batch_decode(*A__ , **A__ ) def __A ( self , *A__ , **A__ ): # For backward compatibility if self._in_target_context_manager: return self.current_processor.pad(*A__ , **A__ ) A__ : Optional[Any] = kwargs.pop("""input_features""" , A__ ) A__ : Union[str, Any] = kwargs.pop("""labels""" , A__ ) if len(A__ ) > 0: A__ : List[Any] = args[0] A__ : Optional[int] = args[1:] if input_features is not None: A__ : Union[str, Any] = self.feature_extractor.pad(A__ , *A__ , **A__ ) if labels is not None: A__ : List[Any] = self.tokenizer.pad(A__ , **A__ ) if labels is None: return input_features elif input_features is None: return labels else: A__ : Dict = labels["""input_ids"""] return input_features def __A ( self , *A__ , **A__ ): return self.tokenizer.decode(*A__ , **A__ ) @contextmanager def __A ( self ): warnings.warn( """`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your """ """labels by using the argument `text` of the regular `__call__` method (either in the same call as """ """your audio inputs, or in a separate call.""" ) A__ : int = True A__ : List[Any] = self.tokenizer yield A__ : Tuple = self.feature_extractor A__ : Dict = False
141
0
def _A ( _lowercase , _lowercase ) -> bool: """simple docstring""" __UpperCamelCase = len(_lowercase ) __UpperCamelCase = [[False] * (required_sum + 1) for _ in range(arr_len + 1 )] # for each arr value, a sum of zero(0) can be formed by not taking any element # hence True/1 for i in range(arr_len + 1 ): __UpperCamelCase = True # sum is not zero and set is empty then false for i in range(1 , required_sum + 1 ): __UpperCamelCase = False for i in range(1 , arr_len + 1 ): for j in range(1 , required_sum + 1 ): if arr[i - 1] > j: __UpperCamelCase = subset[i - 1][j] if arr[i - 1] <= j: __UpperCamelCase = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]] return subset[arr_len][required_sum] if __name__ == "__main__": import doctest doctest.testmod()
310
'''simple docstring''' def __UpperCAmelCase ( A : int ) -> list: # bit count represents no. of bits in the gray code if bit_count < 0: raise ValueError('''The given input must be positive''' ) # get the generated string sequence UpperCAmelCase_ : int = gray_code_sequence_string(A ) # # convert them to integers for i in range(len(A ) ): UpperCAmelCase_ : List[str] = int(sequence[i] , 2 ) return sequence def __UpperCAmelCase ( A : int ) -> list: # The approach is a recursive one # Base case achieved when either n = 0 or n=1 if bit_count == 0: return ["0"] if bit_count == 1: return ["0", "1"] UpperCAmelCase_ : Tuple = 1 << bit_count # defines the length of the sequence # 1<< n is equivalent to 2^n # recursive answer will generate answer for n-1 bits UpperCAmelCase_ : List[str] = gray_code_sequence_string(bit_count - 1 ) UpperCAmelCase_ : int = [] # append 0 to first half of the smaller sequence generated for i in range(seq_len // 2 ): UpperCAmelCase_ : Union[str, Any] = '''0''' + smaller_sequence[i] sequence.append(A ) # append 1 to second half ... start from the end of the list for i in reversed(range(seq_len // 2 ) ): UpperCAmelCase_ : Dict = '''1''' + smaller_sequence[i] sequence.append(A ) return sequence if __name__ == "__main__": import doctest doctest.testmod()
304
0
import json import os import unittest from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _UpperCamelCase ( lowerCAmelCase_ , unittest.TestCase ): _UpperCamelCase : Any = LEDTokenizer _UpperCamelCase : List[Any] = LEDTokenizerFast _UpperCamelCase : List[Any] = True def lowercase ( self: List[Any] ) -> Any: """simple docstring""" super().setUp() UpperCamelCase_ = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", ] UpperCamelCase_ = dict(zip(_SCREAMING_SNAKE_CASE , range(len(_SCREAMING_SNAKE_CASE ) ) ) ) UpperCamelCase_ = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] UpperCamelCase_ = {"unk_token": "<unk>"} UpperCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) UpperCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(_SCREAMING_SNAKE_CASE ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(_SCREAMING_SNAKE_CASE ) ) def lowercase ( self: Any , **_SCREAMING_SNAKE_CASE: Union[str, Any] ) -> Tuple: """simple docstring""" kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **_SCREAMING_SNAKE_CASE ) def lowercase ( self: Optional[int] , **_SCREAMING_SNAKE_CASE: Any ) -> Dict: """simple docstring""" kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **_SCREAMING_SNAKE_CASE ) def lowercase ( self: Optional[int] , _SCREAMING_SNAKE_CASE: Union[str, Any] ) -> List[str]: """simple docstring""" return "lower newer", "lower newer" @cached_property def lowercase ( self: Tuple ) -> List[Any]: """simple docstring""" return LEDTokenizer.from_pretrained("allenai/led-base-16384" ) @cached_property def lowercase ( self: Any ) -> List[Any]: """simple docstring""" return LEDTokenizerFast.from_pretrained("allenai/led-base-16384" ) @require_torch def lowercase ( self: List[Any] ) -> Tuple: """simple docstring""" UpperCamelCase_ = ["A long paragraph for summarization.", "Another paragraph for summarization."] UpperCamelCase_ = [0, 250, 251, 17818, 13, 39186, 1938, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCamelCase_ = tokenizer(_SCREAMING_SNAKE_CASE , max_length=len(_SCREAMING_SNAKE_CASE ) , padding=_SCREAMING_SNAKE_CASE , return_tensors="pt" ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) UpperCamelCase_ = batch.input_ids.tolist()[0] self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) @require_torch def lowercase ( self: int ) -> str: """simple docstring""" UpperCamelCase_ = ["A long paragraph for summarization.", "Another paragraph for summarization."] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCamelCase_ = tokenizer(_SCREAMING_SNAKE_CASE , padding=_SCREAMING_SNAKE_CASE , return_tensors="pt" ) self.assertIn("input_ids" , _SCREAMING_SNAKE_CASE ) self.assertIn("attention_mask" , _SCREAMING_SNAKE_CASE ) self.assertNotIn("labels" , _SCREAMING_SNAKE_CASE ) self.assertNotIn("decoder_attention_mask" , _SCREAMING_SNAKE_CASE ) @require_torch def lowercase ( self: str ) -> List[Any]: """simple docstring""" UpperCamelCase_ = [ "Summary of the text.", "Another summary.", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCamelCase_ = tokenizer(text_target=_SCREAMING_SNAKE_CASE , max_length=32 , padding="max_length" , return_tensors="pt" ) self.assertEqual(32 , targets["input_ids"].shape[1] ) @require_torch def lowercase ( self: Tuple ) -> Optional[int]: """simple docstring""" for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCamelCase_ = tokenizer( ["I am a small frog" * 1024, "I am a small frog"] , padding=_SCREAMING_SNAKE_CASE , truncation=_SCREAMING_SNAKE_CASE , return_tensors="pt" ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) self.assertEqual(batch.input_ids.shape , (2, 5122) ) @require_torch def lowercase ( self: List[Any] ) -> Tuple: """simple docstring""" UpperCamelCase_ = ["A long paragraph for summarization."] UpperCamelCase_ = [ "Summary of the text.", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCamelCase_ = tokenizer(_SCREAMING_SNAKE_CASE , return_tensors="pt" ) UpperCamelCase_ = tokenizer(text_target=_SCREAMING_SNAKE_CASE , return_tensors="pt" ) UpperCamelCase_ = inputs["input_ids"] UpperCamelCase_ = targets["input_ids"] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) @require_torch def lowercase ( self: Optional[Any] ) -> Union[str, Any]: """simple docstring""" for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCamelCase_ = ["Summary of the text.", "Another summary."] UpperCamelCase_ = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]] UpperCamelCase_ = tokenizer(_SCREAMING_SNAKE_CASE , padding=_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = [[0] * len(_SCREAMING_SNAKE_CASE ) for x in encoded_output["input_ids"]] UpperCamelCase_ = tokenizer.pad(_SCREAMING_SNAKE_CASE ) self.assertSequenceEqual(outputs["global_attention_mask"] , _SCREAMING_SNAKE_CASE ) def lowercase ( self: int ) -> int: """simple docstring""" pass def lowercase ( self: str ) -> Union[str, Any]: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): UpperCamelCase_ = self.rust_tokenizer_class.from_pretrained(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = self.tokenizer_class.from_pretrained(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = "A, <mask> AllenNLP sentence." UpperCamelCase_ = tokenizer_r.encode_plus(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE , return_token_type_ids=_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = tokenizer_p.encode_plus(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE , return_token_type_ids=_SCREAMING_SNAKE_CASE ) self.assertEqual(sum(tokens_r["token_type_ids"] ) , sum(tokens_p["token_type_ids"] ) ) self.assertEqual( sum(tokens_r["attention_mask"] ) / len(tokens_r["attention_mask"] ) , sum(tokens_p["attention_mask"] ) / len(tokens_p["attention_mask"] ) , ) UpperCamelCase_ = tokenizer_r.convert_ids_to_tokens(tokens_r["input_ids"] ) UpperCamelCase_ = tokenizer_p.convert_ids_to_tokens(tokens_p["input_ids"] ) self.assertSequenceEqual(tokens_p["input_ids"] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r["input_ids"] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual( _SCREAMING_SNAKE_CASE , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] ) self.assertSequenceEqual( _SCREAMING_SNAKE_CASE , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] )
328
import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import SeqaSeqTrainer from seqaseq_training_args import SeqaSeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( SeqaSeqDataCollator, SeqaSeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) _UpperCAmelCase = logging.getLogger(__name__) @dataclass class _UpperCamelCase : _UpperCamelCase : str = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) _UpperCamelCase : Optional[str] = field( default=lowerCAmelCase_ , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) _UpperCamelCase : Optional[str] = field( default=lowerCAmelCase_ , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) _UpperCamelCase : Optional[str] = field( default=lowerCAmelCase_ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) _UpperCamelCase : bool = field(default=lowerCAmelCase_ , metadata={'''help''': '''Whether tp freeze the encoder.'''} ) _UpperCamelCase : bool = field(default=lowerCAmelCase_ , metadata={'''help''': '''Whether to freeze the embeddings.'''} ) @dataclass class _UpperCamelCase : _UpperCamelCase : str = field( metadata={'''help''': '''The input data dir. Should contain the .tsv files (or other data files) for the task.'''} ) _UpperCamelCase : Optional[str] = field( default='''summarization''' , metadata={'''help''': '''Task name, summarization (or summarization_{dataset} for pegasus) or translation'''} , ) _UpperCamelCase : Optional[int] = field( default=1_0_2_4 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) _UpperCamelCase : Optional[int] = field( default=1_2_8 , metadata={ '''help''': ( '''The maximum total sequence length for target text after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) _UpperCamelCase : Optional[int] = field( default=1_4_2 , metadata={ '''help''': ( '''The maximum total sequence length for validation target text after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded. ''' '''This argument is also used to override the ``max_length`` param of ``model.generate``, which is used ''' '''during ``evaluate`` and ``predict``.''' ) } , ) _UpperCamelCase : Optional[int] = field( default=1_4_2 , metadata={ '''help''': ( '''The maximum total sequence length for test target text after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) _UpperCamelCase : Optional[int] = field(default=-1 , metadata={'''help''': '''# training examples. -1 means use all.'''} ) _UpperCamelCase : Optional[int] = field(default=-1 , metadata={'''help''': '''# validation examples. -1 means use all.'''} ) _UpperCamelCase : Optional[int] = field(default=-1 , metadata={'''help''': '''# test examples. -1 means use all.'''} ) _UpperCamelCase : Optional[str] = field(default=lowerCAmelCase_ , metadata={'''help''': '''Source language id for translation.'''} ) _UpperCamelCase : Optional[str] = field(default=lowerCAmelCase_ , metadata={'''help''': '''Target language id for translation.'''} ) _UpperCamelCase : Optional[int] = field(default=lowerCAmelCase_ , metadata={'''help''': '''# num_beams to use for evaluation.'''} ) _UpperCamelCase : bool = field( default=lowerCAmelCase_ , metadata={'''help''': '''If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined.'''} , ) def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> Optional[int]: logger.info(F'''***** {split} metrics *****''' ) for key in sorted(metrics.keys() ): logger.info(F''' {key} = {metrics[key]}''' ) save_json(UpperCamelCase_ , os.path.join(UpperCamelCase_ , F'''{split}_results.json''' ) ) def lowerCAmelCase_ ( ) -> Optional[int]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. UpperCamelCase_ = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = parser.parse_args_into_dataclasses() check_output_dir(UpperCamelCase_ ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info("Training/evaluation parameters %s" , UpperCamelCase_ ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. UpperCamelCase_ = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) UpperCamelCase_ = ("encoder_layerdrop", "decoder_layerdrop", "dropout", "attention_dropout") for p in extra_model_params: if getattr(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): assert hasattr(UpperCamelCase_ , UpperCamelCase_ ), F'''({config.__class__.__name__}) doesn\'t have a `{p}` attribute''' setattr(UpperCamelCase_ , UpperCamelCase_ , getattr(UpperCamelCase_ , UpperCamelCase_ ) ) UpperCamelCase_ = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) UpperCamelCase_ = AutoModelForSeqaSeqLM.from_pretrained( model_args.model_name_or_path , from_tf=".ckpt" in model_args.model_name_or_path , config=UpperCamelCase_ , cache_dir=model_args.cache_dir , ) # use task specific params use_task_specific_params(UpperCamelCase_ , data_args.task ) # set num_beams for evaluation if data_args.eval_beams is None: UpperCamelCase_ = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(UpperCamelCase_ , (MBartTokenizer, MBartTokenizerFast) ): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(UpperCamelCase_ , UpperCamelCase_ ): UpperCamelCase_ = tokenizer.lang_code_to_id[data_args.tgt_lang] else: UpperCamelCase_ = tokenizer.convert_tokens_to_ids(data_args.tgt_lang ) if model_args.freeze_embeds: freeze_embeds(UpperCamelCase_ ) if model_args.freeze_encoder: freeze_params(model.get_encoder() ) assert_all_frozen(model.get_encoder() ) UpperCamelCase_ = SeqaSeqDataset # Get datasets UpperCamelCase_ = ( dataset_class( UpperCamelCase_ , type_path="train" , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or "" , ) if training_args.do_train else None ) UpperCamelCase_ = ( dataset_class( UpperCamelCase_ , type_path="val" , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or "" , ) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) UpperCamelCase_ = ( dataset_class( UpperCamelCase_ , type_path="test" , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or "" , ) if training_args.do_predict else None ) # Initialize our Trainer UpperCamelCase_ = ( build_compute_metrics_fn(data_args.task , UpperCamelCase_ ) if training_args.predict_with_generate else None ) UpperCamelCase_ = SeqaSeqTrainer( model=UpperCamelCase_ , args=UpperCamelCase_ , data_args=UpperCamelCase_ , train_dataset=UpperCamelCase_ , eval_dataset=UpperCamelCase_ , data_collator=SeqaSeqDataCollator( UpperCamelCase_ , UpperCamelCase_ , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=UpperCamelCase_ , tokenizer=UpperCamelCase_ , ) UpperCamelCase_ = {} # Training if training_args.do_train: logger.info("*** Train ***" ) UpperCamelCase_ = trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) UpperCamelCase_ = train_result.metrics UpperCamelCase_ = data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics("train" , UpperCamelCase_ , training_args.output_dir ) all_metrics.update(UpperCamelCase_ ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , "trainer_state.json" ) ) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir ) # Evaluation if training_args.do_eval: logger.info("*** Evaluate ***" ) UpperCamelCase_ = trainer.evaluate(metric_key_prefix="val" ) UpperCamelCase_ = data_args.n_val UpperCamelCase_ = round(metrics["val_loss"] , 4 ) if trainer.is_world_process_zero(): handle_metrics("val" , UpperCamelCase_ , training_args.output_dir ) all_metrics.update(UpperCamelCase_ ) if training_args.do_predict: logger.info("*** Predict ***" ) UpperCamelCase_ = trainer.predict(test_dataset=UpperCamelCase_ , metric_key_prefix="test" ) UpperCamelCase_ = test_output.metrics UpperCamelCase_ = data_args.n_test if trainer.is_world_process_zero(): UpperCamelCase_ = round(metrics["test_loss"] , 4 ) handle_metrics("test" , UpperCamelCase_ , training_args.output_dir ) all_metrics.update(UpperCamelCase_ ) if training_args.predict_with_generate: UpperCamelCase_ = tokenizer.batch_decode( test_output.predictions , skip_special_tokens=UpperCamelCase_ , clean_up_tokenization_spaces=UpperCamelCase_ ) UpperCamelCase_ = lmap(str.strip , UpperCamelCase_ ) write_txt_file(UpperCamelCase_ , os.path.join(training_args.output_dir , "test_generations.txt" ) ) if trainer.is_world_process_zero(): save_json(UpperCamelCase_ , os.path.join(training_args.output_dir , "all_results.json" ) ) return all_metrics def lowerCAmelCase_ ( UpperCamelCase_ ) -> Optional[Any]: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
328
1
"""simple docstring""" import darl # noqa import gym import tqdm from diffusers.experimental import ValueGuidedRLPipeline SCREAMING_SNAKE_CASE_ : Dict = { 'n_samples': 6_4, 'horizon': 3_2, 'num_inference_steps': 2_0, 'n_guide_steps': 2, # can set to 0 for faster sampling, does not use value network 'scale_grad_by_std': True, 'scale': 0.1, 'eta': 0.0, 't_grad_cutoff': 2, 'device': 'cpu', } if __name__ == "__main__": SCREAMING_SNAKE_CASE_ : Optional[Any] = 'hopper-medium-v2' SCREAMING_SNAKE_CASE_ : Tuple = gym.make(env_name) SCREAMING_SNAKE_CASE_ : Union[str, Any] = ValueGuidedRLPipeline.from_pretrained( 'bglick13/hopper-medium-v2-value-function-hor32', env=env, ) env.seed(0) SCREAMING_SNAKE_CASE_ : Dict = env.reset() SCREAMING_SNAKE_CASE_ : Tuple = 0 SCREAMING_SNAKE_CASE_ : Optional[int] = 0 SCREAMING_SNAKE_CASE_ : Any = 1_0_0_0 SCREAMING_SNAKE_CASE_ : str = [obs.copy()] try: for t in tqdm.tqdm(range(T)): # call the policy SCREAMING_SNAKE_CASE_ : Optional[Any] = pipeline(obs, planning_horizon=3_2) # execute action in environment SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ : int = env.step(denorm_actions) SCREAMING_SNAKE_CASE_ : List[str] = env.get_normalized_score(total_reward) # update return total_reward += reward total_score += score print( f"""Step: {t}, Reward: {reward}, Total Reward: {total_reward}, Score: {score}, Total Score:""" f""" {total_score}""" ) # save observations for rendering rollout.append(next_observation.copy()) SCREAMING_SNAKE_CASE_ : Optional[Any] = next_observation except KeyboardInterrupt: pass print(f"""Total reward: {total_reward}""")
335
"""simple docstring""" class a : """simple docstring""" def __init__( self: Dict ): """simple docstring""" A__ = {} def UpperCamelCase ( self: List[str] ): """simple docstring""" print(self.vertex ) for i in self.vertex: print(UpperCamelCase , """ -> """ , """ -> """.join([str(UpperCamelCase ) for j in self.vertex[i]] ) ) def UpperCamelCase ( self: Any , UpperCamelCase: int , UpperCamelCase: int ): """simple docstring""" if from_vertex in self.vertex: self.vertex[from_vertex].append(UpperCamelCase ) else: # else make a new vertex A__ = [to_vertex] def UpperCamelCase ( self: Union[str, Any] ): """simple docstring""" A__ = [False] * len(self.vertex ) # call the recursive helper function for i in range(len(self.vertex ) ): if not visited[i]: self.dfs_recursive(UpperCamelCase , UpperCamelCase ) def UpperCamelCase ( self: str , UpperCamelCase: int , UpperCamelCase: list ): """simple docstring""" A__ = True print(UpperCamelCase , end=""" """ ) # Recur for all the vertices that are adjacent to this node for i in self.vertex: if not visited[i]: self.dfs_recursive(UpperCamelCase , UpperCamelCase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ : Optional[int] = Graph() g.add_edge(0, 1) g.add_edge(0, 2) g.add_edge(1, 2) g.add_edge(2, 0) g.add_edge(2, 3) g.add_edge(3, 3) g.print_graph() print('DFS:') g.dfs() # OUTPUT: # 0 -> 1 -> 2 # 1 -> 2 # 2 -> 0 -> 3 # 3 -> 3 # DFS: # 0 1 2 3
335
1
'''simple docstring''' import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TextClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. _lowerCAmelCase = {'''LayoutLMv2Config''', '''LayoutLMv3Config'''} @is_pipeline_test class lowerCAmelCase_( unittest.TestCase ): '''simple docstring''' __lowercase : str = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING __lowercase : Optional[int] = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: __lowercase : Optional[Any] = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: __lowercase : List[Any] = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } @require_torch def UpperCAmelCase_ ( self ) -> List[Any]: lowerCAmelCase__ : Any = pipeline( task="""text-classification""" ,model="""hf-internal-testing/tiny-random-distilbert""" ,framework="""pt""" ) lowerCAmelCase__ : str = text_classifier("""This is great !""" ) self.assertEqual(nested_simplify(__UpperCAmelCase ) ,[{"""label""": """LABEL_0""", """score""": 0.5_0_4}] ) lowerCAmelCase__ : List[str] = text_classifier("""This is great !""" ,top_k=2 ) self.assertEqual( nested_simplify(__UpperCAmelCase ) ,[{"""label""": """LABEL_0""", """score""": 0.5_0_4}, {"""label""": """LABEL_1""", """score""": 0.4_9_6}] ) lowerCAmelCase__ : Tuple = text_classifier(["""This is great !""", """This is bad"""] ,top_k=2 ) self.assertEqual( nested_simplify(__UpperCAmelCase ) ,[ [{"""label""": """LABEL_0""", """score""": 0.5_0_4}, {"""label""": """LABEL_1""", """score""": 0.4_9_6}], [{"""label""": """LABEL_0""", """score""": 0.5_0_4}, {"""label""": """LABEL_1""", """score""": 0.4_9_6}], ] ,) lowerCAmelCase__ : Optional[int] = text_classifier("""This is great !""" ,top_k=1 ) self.assertEqual(nested_simplify(__UpperCAmelCase ) ,[{"""label""": """LABEL_0""", """score""": 0.5_0_4}] ) # Legacy behavior lowerCAmelCase__ : Optional[Any] = text_classifier("""This is great !""" ,return_all_scores=__UpperCAmelCase ) self.assertEqual(nested_simplify(__UpperCAmelCase ) ,[{"""label""": """LABEL_0""", """score""": 0.5_0_4}] ) lowerCAmelCase__ : Union[str, Any] = text_classifier("""This is great !""" ,return_all_scores=__UpperCAmelCase ) self.assertEqual( nested_simplify(__UpperCAmelCase ) ,[[{"""label""": """LABEL_0""", """score""": 0.5_0_4}, {"""label""": """LABEL_1""", """score""": 0.4_9_6}]] ) lowerCAmelCase__ : int = text_classifier(["""This is great !""", """Something else"""] ,return_all_scores=__UpperCAmelCase ) self.assertEqual( nested_simplify(__UpperCAmelCase ) ,[ [{"""label""": """LABEL_0""", """score""": 0.5_0_4}, {"""label""": """LABEL_1""", """score""": 0.4_9_6}], [{"""label""": """LABEL_0""", """score""": 0.5_0_4}, {"""label""": """LABEL_1""", """score""": 0.4_9_6}], ] ,) lowerCAmelCase__ : Dict = text_classifier(["""This is great !""", """Something else"""] ,return_all_scores=__UpperCAmelCase ) self.assertEqual( nested_simplify(__UpperCAmelCase ) ,[ {"""label""": """LABEL_0""", """score""": 0.5_0_4}, {"""label""": """LABEL_0""", """score""": 0.5_0_4}, ] ,) @require_torch def UpperCAmelCase_ ( self ) -> List[Any]: import torch lowerCAmelCase__ : Optional[Any] = pipeline( task="""text-classification""" ,model="""hf-internal-testing/tiny-random-distilbert""" ,framework="""pt""" ,device=torch.device("""cpu""" ) ,) lowerCAmelCase__ : Optional[Any] = text_classifier("""This is great !""" ) self.assertEqual(nested_simplify(__UpperCAmelCase ) ,[{"""label""": """LABEL_0""", """score""": 0.5_0_4}] ) @require_tf def UpperCAmelCase_ ( self ) -> Any: lowerCAmelCase__ : Optional[Any] = pipeline( task="""text-classification""" ,model="""hf-internal-testing/tiny-random-distilbert""" ,framework="""tf""" ) lowerCAmelCase__ : List[Any] = text_classifier("""This is great !""" ) self.assertEqual(nested_simplify(__UpperCAmelCase ) ,[{"""label""": """LABEL_0""", """score""": 0.5_0_4}] ) @slow @require_torch def UpperCAmelCase_ ( self ) -> List[Any]: lowerCAmelCase__ : Tuple = pipeline("""text-classification""" ) lowerCAmelCase__ : Union[str, Any] = text_classifier("""This is great !""" ) self.assertEqual(nested_simplify(__UpperCAmelCase ) ,[{"""label""": """POSITIVE""", """score""": 1.0}] ) lowerCAmelCase__ : Optional[Any] = text_classifier("""This is bad !""" ) self.assertEqual(nested_simplify(__UpperCAmelCase ) ,[{"""label""": """NEGATIVE""", """score""": 1.0}] ) lowerCAmelCase__ : List[str] = text_classifier("""Birds are a type of animal""" ) self.assertEqual(nested_simplify(__UpperCAmelCase ) ,[{"""label""": """POSITIVE""", """score""": 0.9_8_8}] ) @slow @require_tf def UpperCAmelCase_ ( self ) -> Optional[Any]: lowerCAmelCase__ : List[Any] = pipeline("""text-classification""" ,framework="""tf""" ) lowerCAmelCase__ : Any = text_classifier("""This is great !""" ) self.assertEqual(nested_simplify(__UpperCAmelCase ) ,[{"""label""": """POSITIVE""", """score""": 1.0}] ) lowerCAmelCase__ : Any = text_classifier("""This is bad !""" ) self.assertEqual(nested_simplify(__UpperCAmelCase ) ,[{"""label""": """NEGATIVE""", """score""": 1.0}] ) lowerCAmelCase__ : Union[str, Any] = text_classifier("""Birds are a type of animal""" ) self.assertEqual(nested_simplify(__UpperCAmelCase ) ,[{"""label""": """POSITIVE""", """score""": 0.9_8_8}] ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) -> Dict: lowerCAmelCase__ : Any = TextClassificationPipeline(model=__UpperCAmelCase ,tokenizer=__UpperCAmelCase ) return text_classifier, ["HuggingFace is in", "This is another test"] def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase ) -> List[str]: lowerCAmelCase__ : Tuple = text_classifier.model # Small inputs because BartTokenizer tiny has maximum position embeddings = 22 lowerCAmelCase__ : Tuple = """HuggingFace is in""" lowerCAmelCase__ : Union[str, Any] = text_classifier(__UpperCAmelCase ) self.assertEqual(nested_simplify(__UpperCAmelCase ) ,[{"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )}] ) self.assertTrue(outputs[0]["""label"""] in model.config.idalabel.values() ) lowerCAmelCase__ : Tuple = ["""HuggingFace is in """, """Paris is in France"""] lowerCAmelCase__ : List[str] = text_classifier(__UpperCAmelCase ) self.assertEqual( nested_simplify(__UpperCAmelCase ) ,[{"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )}, {"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )}] ,) self.assertTrue(outputs[0]["""label"""] in model.config.idalabel.values() ) self.assertTrue(outputs[1]["""label"""] in model.config.idalabel.values() ) # Forcing to get all results with `top_k=None` # This is NOT the legacy format lowerCAmelCase__ : int = text_classifier(__UpperCAmelCase ,top_k=__UpperCAmelCase ) lowerCAmelCase__ : List[Any] = len(model.config.idalabel.values() ) self.assertEqual( nested_simplify(__UpperCAmelCase ) ,[[{"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )}] * N, [{"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )}] * N] ,) lowerCAmelCase__ : List[str] = {"""text""": """HuggingFace is in """, """text_pair""": """Paris is in France"""} lowerCAmelCase__ : List[Any] = text_classifier(__UpperCAmelCase ) self.assertEqual( nested_simplify(__UpperCAmelCase ) ,{"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )} ,) self.assertTrue(outputs["""label"""] in model.config.idalabel.values() ) # This might be used a text pair, but tokenizer + pipe interaction # makes it hard to understand that it's not using the pair properly # https://github.com/huggingface/transformers/issues/17305 # We disabled this usage instead as it was outputting wrong outputs. lowerCAmelCase__ : Optional[int] = [["""HuggingFace is in """, """Paris is in France"""]] with self.assertRaises(__UpperCAmelCase ): text_classifier(__UpperCAmelCase ) # This used to be valid for doing text pairs # We're keeping it working because of backward compatibility lowerCAmelCase__ : Tuple = text_classifier([[["""HuggingFace is in """, """Paris is in France"""]]] ) self.assertEqual( nested_simplify(__UpperCAmelCase ) ,[{"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )}] ,) self.assertTrue(outputs[0]["""label"""] in model.config.idalabel.values() )
184
'''simple docstring''' import math import random from typing import Any from .hill_climbing import SearchProblem def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase = True , UpperCamelCase = math.inf , UpperCamelCase = -math.inf , UpperCamelCase = math.inf , UpperCamelCase = -math.inf , UpperCamelCase = False , UpperCamelCase = 100 , UpperCamelCase = 0.01 , UpperCamelCase = 1 , ): """simple docstring""" lowerCAmelCase__ : int = False lowerCAmelCase__ : Optional[Any] = search_prob lowerCAmelCase__ : Tuple = start_temperate lowerCAmelCase__ : Optional[Any] = [] lowerCAmelCase__ : str = 0 lowerCAmelCase__ : Tuple = None while not search_end: lowerCAmelCase__ : List[str] = current_state.score() if best_state is None or current_score > best_state.score(): lowerCAmelCase__ : List[str] = current_state scores.append(UpperCamelCase ) iterations += 1 lowerCAmelCase__ : Dict = None lowerCAmelCase__ : List[Any] = current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to lowerCAmelCase__ : Tuple = random.randint(0 , len(UpperCamelCase ) - 1 ) # picking a random neighbor lowerCAmelCase__ : str = neighbors.pop(UpperCamelCase ) lowerCAmelCase__ : Optional[Any] = picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: lowerCAmelCase__ : Union[str, Any] = change * -1 # in case we are finding minimum if change > 0: # improves the solution lowerCAmelCase__ : Tuple = picked_neighbor else: lowerCAmelCase__ : List[Any] = (math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability lowerCAmelCase__ : List[Any] = picked_neighbor lowerCAmelCase__ : Optional[int] = current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor lowerCAmelCase__ : str = True else: lowerCAmelCase__ : Optional[int] = next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(UpperCamelCase ) , UpperCamelCase ) plt.xlabel("""Iterations""" ) plt.ylabel("""Function values""" ) plt.show() return best_state if __name__ == "__main__": def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase ): """simple docstring""" return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) _lowerCAmelCase = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) _lowerCAmelCase = simulated_annealing( prob, find_max=False, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( '''The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 ''' F"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) # starting the problem with initial coordinates (12, 47) _lowerCAmelCase = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) _lowerCAmelCase = simulated_annealing( prob, find_max=True, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( '''The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 ''' F"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase ): """simple docstring""" return (3 * x**2) - (6 * y) _lowerCAmelCase = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) _lowerCAmelCase = simulated_annealing(prob, find_max=False, visualization=True) print( '''The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: ''' F"""{local_min.score()}""" ) _lowerCAmelCase = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) _lowerCAmelCase = simulated_annealing(prob, find_max=True, visualization=True) print( '''The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: ''' F"""{local_min.score()}""" )
184
1
'''simple docstring''' from typing import List, Optional, Tuple, Union import PIL import torch from torchvision import transforms from diffusers.pipeline_utils import DiffusionPipeline, ImagePipelineOutput from diffusers.schedulers import DDIMScheduler from diffusers.utils import randn_tensor A__ : str =transforms.Compose( [ transforms.Resize((2_56, 2_56)), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) def UpperCamelCase__ ( lowerCAmelCase ): """simple docstring""" if isinstance(lowerCAmelCase , torch.Tensor ): return image elif isinstance(lowerCAmelCase , PIL.Image.Image ): _lowerCAmelCase = [image] _lowerCAmelCase = [trans(img.convert("""RGB""" ) ) for img in image] _lowerCAmelCase = torch.stack(lowerCAmelCase ) return image class UpperCAmelCase ( snake_case_ ): def __init__( self : Dict , __snake_case : List[str] , __snake_case : Tuple ) -> Optional[int]: super().__init__() # make sure scheduler can always be converted to DDIM _lowerCAmelCase = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=__snake_case , scheduler=__snake_case ) def lowercase__ ( self : List[Any] , __snake_case : Union[str, Any] ) -> str: if strength < 0 or strength > 1: raise ValueError(f"The value of strength should in [0.0, 1.0] but is {strength}" ) def lowercase__ ( self : Dict , __snake_case : Optional[Any] , __snake_case : str , __snake_case : Any ) -> Any: # get the original timestep using init_timestep _lowerCAmelCase = min(int(num_inference_steps * strength ) , __snake_case ) _lowerCAmelCase = max(num_inference_steps - init_timestep , 0 ) _lowerCAmelCase = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def lowercase__ ( self : str , __snake_case : Optional[Any] , __snake_case : Any , __snake_case : Any , __snake_case : Optional[Any] , __snake_case : List[str] , __snake_case : Optional[Any]=None ) -> Tuple: if not isinstance(__snake_case , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(__snake_case )}" ) _lowerCAmelCase = image.to(device=__snake_case , dtype=__snake_case ) if isinstance(__snake_case , __snake_case ) and len(__snake_case ) != batch_size: raise ValueError( f"You have passed a list of generators of length {len(__snake_case )}, but requested an effective batch" f" size of {batch_size}. Make sure the batch size matches the length of the generators." ) _lowerCAmelCase = init_latents.shape _lowerCAmelCase = randn_tensor(__snake_case , generator=__snake_case , device=__snake_case , dtype=__snake_case ) # get latents print("""add noise to latents at timestep""" , __snake_case ) _lowerCAmelCase = self.scheduler.add_noise(__snake_case , __snake_case , __snake_case ) _lowerCAmelCase = init_latents return latents @torch.no_grad() def __call__( self : Optional[Any] , __snake_case : Union[torch.FloatTensor, PIL.Image.Image] = None , __snake_case : float = 0.8 , __snake_case : int = 1 , __snake_case : Optional[Union[torch.Generator, List[torch.Generator]]] = None , __snake_case : float = 0.0 , __snake_case : int = 50 , __snake_case : Optional[bool] = None , __snake_case : Optional[str] = "pil" , __snake_case : bool = True , ) -> Union[ImagePipelineOutput, Tuple]: self.check_inputs(__snake_case ) # 2. Preprocess image _lowerCAmelCase = preprocess(__snake_case ) # 3. set timesteps self.scheduler.set_timesteps(__snake_case , device=self.device ) _lowerCAmelCase , _lowerCAmelCase = self.get_timesteps(__snake_case , __snake_case , self.device ) _lowerCAmelCase = timesteps[:1].repeat(__snake_case ) # 4. Prepare latent variables _lowerCAmelCase = self.prepare_latents(__snake_case , __snake_case , __snake_case , self.unet.dtype , self.device , __snake_case ) _lowerCAmelCase = latents # 5. Denoising loop for t in self.progress_bar(__snake_case ): # 1. predict noise model_output _lowerCAmelCase = self.unet(__snake_case , __snake_case ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 _lowerCAmelCase = self.scheduler.step( __snake_case , __snake_case , __snake_case , eta=__snake_case , use_clipped_model_output=__snake_case , generator=__snake_case , ).prev_sample _lowerCAmelCase = (image / 2 + 0.5).clamp(0 , 1 ) _lowerCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _lowerCAmelCase = self.numpy_to_pil(__snake_case ) if not return_dict: return (image, latent_timestep.item()) return ImagePipelineOutput(images=__snake_case )
70
import argparse import re import torch from CLAP import create_model from transformers import AutoFeatureExtractor, ClapConfig, ClapModel lowerCAmelCase : Union[str, Any] = { """text_branch""": """text_model""", """audio_branch""": """audio_model.audio_encoder""", """attn""": """attention.self""", """self.proj""": """output.dense""", """attention.self_mask""": """attn_mask""", """mlp.fc1""": """intermediate.dense""", """mlp.fc2""": """output.dense""", """norm1""": """layernorm_before""", """norm2""": """layernorm_after""", """bn0""": """batch_norm""", } lowerCAmelCase : int = AutoFeatureExtractor.from_pretrained("""laion/clap-htsat-unfused""", truncation="""rand_trunc""") def A_ ( _UpperCAmelCase , _UpperCAmelCase=False ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[Any] = create_model( "HTSAT-tiny" , "roberta" , _UpperCAmelCase , precision="fp32" , device="cuda:0" if torch.cuda.is_available() else "cpu" , enable_fusion=_UpperCAmelCase , fusion_type="aff_2d" if enable_fusion else None , ) return model, model_cfg def A_ ( _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Any = {} SCREAMING_SNAKE_CASE_: Tuple = R".*sequential.(\d+).*" SCREAMING_SNAKE_CASE_: Dict = R".*_projection.(\d+).*" for key, value in state_dict.items(): # check if any key needs to be modified for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: SCREAMING_SNAKE_CASE_: Any = key.replace(_UpperCAmelCase , _UpperCAmelCase ) if re.match(_UpperCAmelCase , _UpperCAmelCase ): # replace sequential layers with list SCREAMING_SNAKE_CASE_: Optional[int] = re.match(_UpperCAmelCase , _UpperCAmelCase ).group(1 ) SCREAMING_SNAKE_CASE_: Dict = key.replace(f"sequential.{sequential_layer}." , f"layers.{int(_UpperCAmelCase )//3}.linear." ) elif re.match(_UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Any = int(re.match(_UpperCAmelCase , _UpperCAmelCase ).group(1 ) ) # Because in CLAP they use `nn.Sequential`... SCREAMING_SNAKE_CASE_: Optional[int] = 1 if projecton_layer == 0 else 2 SCREAMING_SNAKE_CASE_: Dict = key.replace(f"_projection.{projecton_layer}." , f"_projection.linear{transformers_projection_layer}." ) if "audio" and "qkv" in key: # split qkv into query key and value SCREAMING_SNAKE_CASE_: Tuple = value SCREAMING_SNAKE_CASE_: List[str] = mixed_qkv.size(0 ) // 3 SCREAMING_SNAKE_CASE_: Any = mixed_qkv[:qkv_dim] SCREAMING_SNAKE_CASE_: Optional[int] = mixed_qkv[qkv_dim : qkv_dim * 2] SCREAMING_SNAKE_CASE_: Optional[Any] = mixed_qkv[qkv_dim * 2 :] SCREAMING_SNAKE_CASE_: str = query_layer SCREAMING_SNAKE_CASE_: int = key_layer SCREAMING_SNAKE_CASE_: List[Any] = value_layer else: SCREAMING_SNAKE_CASE_: int = value return model_state_dict def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=False ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Union[str, Any] = init_clap(_UpperCAmelCase , enable_fusion=_UpperCAmelCase ) clap_model.eval() SCREAMING_SNAKE_CASE_: Union[str, Any] = clap_model.state_dict() SCREAMING_SNAKE_CASE_: Optional[int] = rename_state_dict(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: List[str] = ClapConfig() SCREAMING_SNAKE_CASE_: Tuple = enable_fusion SCREAMING_SNAKE_CASE_: Tuple = ClapModel(_UpperCAmelCase ) # ignore the spectrogram embedding layer model.load_state_dict(_UpperCAmelCase , strict=_UpperCAmelCase ) model.save_pretrained(_UpperCAmelCase ) transformers_config.save_pretrained(_UpperCAmelCase ) if __name__ == "__main__": lowerCAmelCase : Tuple = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument("""--enable_fusion""", action="""store_true""", help="""Whether to enable fusion or not""") lowerCAmelCase : int = parser.parse_args() convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
13
0
'''simple docstring''' import argparse import glob import importlib.util import os import re import black from doc_builder.style_doc import style_docstrings_in_code # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py a_ : Optional[int] = "src/diffusers" a_ : int = "." # This is to make sure the diffusers module imported is the one in the repo. a_ : List[Any] = importlib.util.spec_from_file_location( "diffusers", os.path.join(DIFFUSERS_PATH, "__init__.py"), submodule_search_locations=[DIFFUSERS_PATH], ) a_ : Tuple = spec.loader.load_module() def _A (lowerCAmelCase__ :Optional[int] , lowerCAmelCase__ :Any ) -> Union[str, Any]: '''simple docstring''' return line.startswith(lowerCAmelCase__ ) or len(lowerCAmelCase__ ) <= 1 or re.search(r'^\s*\)(\s*->.*:|:)\s*$' , lowerCAmelCase__ ) is not None def _A (lowerCAmelCase__ :List[str] ) -> str: '''simple docstring''' _a = object_name.split('.' ) _a = 0 # First let's find the module where our object lives. _a = parts[i] while i < len(lowerCAmelCase__ ) and not os.path.isfile(os.path.join(lowerCAmelCase__ , f'{module}.py' ) ): i += 1 if i < len(lowerCAmelCase__ ): _a = os.path.join(lowerCAmelCase__ , parts[i] ) if i >= len(lowerCAmelCase__ ): raise ValueError(f'`object_name` should begin with the name of a module of diffusers but got {object_name}.' ) with open(os.path.join(lowerCAmelCase__ , f'{module}.py' ) , 'r' , encoding='utf-8' , newline='\n' ) as f: _a = f.readlines() # Now let's find the class / func in the code! _a = '' _a = 0 for name in parts[i + 1 :]: while ( line_index < len(lowerCAmelCase__ ) and re.search(rf'^{indent}(class|def)\s+{name}(\(|\:)' , lines[line_index] ) is None ): line_index += 1 indent += " " line_index += 1 if line_index >= len(lowerCAmelCase__ ): raise ValueError(f' {object_name} does not match any function or class in {module}.' ) # We found the beginning of the class / func, now let's find the end (when the indent diminishes). _a = line_index while line_index < len(lowerCAmelCase__ ) and _should_continue(lines[line_index] , lowerCAmelCase__ ): line_index += 1 # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 _a = lines[start_index:line_index] return "".join(lowerCAmelCase__ ) a_ : Union[str, Any] = re.compile(R"^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)") a_ : Tuple = re.compile(R"^\s*(\S+)->(\S+)(\s+.*|$)") a_ : Dict = re.compile(R"<FILL\s+[^>]*>") def _A (lowerCAmelCase__ :List[Any] ) -> int: '''simple docstring''' _a = code.split('\n' ) _a = 0 while idx < len(lowerCAmelCase__ ) and len(lines[idx] ) == 0: idx += 1 if idx < len(lowerCAmelCase__ ): return re.search(r'^(\s*)\S' , lines[idx] ).groups()[0] return "" def _A (lowerCAmelCase__ :List[Any] ) -> Dict: '''simple docstring''' _a = len(get_indent(lowerCAmelCase__ ) ) > 0 if has_indent: _a = f'class Bla:\n{code}' _a = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_19 , preview=lowerCAmelCase__ ) _a = black.format_str(lowerCAmelCase__ , mode=lowerCAmelCase__ ) _a , _a = style_docstrings_in_code(lowerCAmelCase__ ) return result[len('class Bla:\n' ) :] if has_indent else result def _A (lowerCAmelCase__ :Any , lowerCAmelCase__ :Dict=False ) -> Union[str, Any]: '''simple docstring''' with open(lowerCAmelCase__ , 'r' , encoding='utf-8' , newline='\n' ) as f: _a = f.readlines() _a = [] _a = 0 # Not a for loop cause `lines` is going to change (if `overwrite=True`). while line_index < len(lowerCAmelCase__ ): _a = _re_copy_warning.search(lines[line_index] ) if search is None: line_index += 1 continue # There is some copied code here, let's retrieve the original. _a , _a , _a = search.groups() _a = find_code_in_diffusers(lowerCAmelCase__ ) _a = get_indent(lowerCAmelCase__ ) _a = line_index + 1 if indent == theoretical_indent else line_index + 2 _a = theoretical_indent _a = start_index # Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment. _a = True while line_index < len(lowerCAmelCase__ ) and should_continue: line_index += 1 if line_index >= len(lowerCAmelCase__ ): break _a = lines[line_index] _a = _should_continue(lowerCAmelCase__ , lowerCAmelCase__ ) and re.search(f'^{indent}# End copy' , lowerCAmelCase__ ) is None # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 _a = lines[start_index:line_index] _a = ''.join(lowerCAmelCase__ ) # Remove any nested `Copied from` comments to avoid circular copies _a = [line for line in theoretical_code.split('\n' ) if _re_copy_warning.search(lowerCAmelCase__ ) is None] _a = '\n'.join(lowerCAmelCase__ ) # Before comparing, use the `replace_pattern` on the original code. if len(lowerCAmelCase__ ) > 0: _a = replace_pattern.replace('with' , '' ).split(',' ) _a = [_re_replace_pattern.search(lowerCAmelCase__ ) for p in patterns] for pattern in patterns: if pattern is None: continue _a , _a , _a = pattern.groups() _a = re.sub(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) if option.strip() == "all-casing": _a = re.sub(obja.lower() , obja.lower() , lowerCAmelCase__ ) _a = re.sub(obja.upper() , obja.upper() , lowerCAmelCase__ ) # Blackify after replacement. To be able to do that, we need the header (class or function definition) # from the previous line _a = blackify(lines[start_index - 1] + theoretical_code ) _a = theoretical_code[len(lines[start_index - 1] ) :] # Test for a diff and act accordingly. if observed_code != theoretical_code: diffs.append([object_name, start_index] ) if overwrite: _a = lines[:start_index] + [theoretical_code] + lines[line_index:] _a = start_index + 1 if overwrite and len(lowerCAmelCase__ ) > 0: # Warn the user a file has been modified. print(f'Detected changes, rewriting {filename}.' ) with open(lowerCAmelCase__ , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(lowerCAmelCase__ ) return diffs def _A (lowerCAmelCase__ :bool = False ) -> Any: '''simple docstring''' _a = glob.glob(os.path.join(lowerCAmelCase__ , '**/*.py' ) , recursive=lowerCAmelCase__ ) _a = [] for filename in all_files: _a = is_copy_consistent(lowerCAmelCase__ , lowerCAmelCase__ ) diffs += [f'- {filename}: copy does not match {d[0]} at line {d[1]}' for d in new_diffs] if not overwrite and len(lowerCAmelCase__ ) > 0: _a = '\n'.join(lowerCAmelCase__ ) raise Exception( 'Found the following copy inconsistencies:\n' + diff + '\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them.' ) if __name__ == "__main__": a_ : List[str] = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") a_ : Optional[Any] = parser.parse_args() check_copies(args.fix_and_overwrite)
104
'''simple docstring''' from __future__ import annotations def _A (lowerCAmelCase__ :int ) -> list[int]: '''simple docstring''' _a = 2 _a = [] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(lowerCAmelCase__ ) if n > 1: factors.append(lowerCAmelCase__ ) return factors if __name__ == "__main__": import doctest doctest.testmod()
104
1
"""simple docstring""" import tempfile import unittest import numpy as np import transformers from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax import jax.numpy as jnp from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel if is_torch_available(): import torch class A__ : def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=14 , _SCREAMING_SNAKE_CASE=7 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=99 , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=37 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=5_12 , _SCREAMING_SNAKE_CASE=0.02 , ): __lowerCAmelCase : Union[str, Any] = parent __lowerCAmelCase : Any = batch_size __lowerCAmelCase : Any = seq_length __lowerCAmelCase : Optional[Any] = is_training __lowerCAmelCase : Any = use_input_mask __lowerCAmelCase : Any = use_token_type_ids __lowerCAmelCase : Tuple = use_labels __lowerCAmelCase : Optional[Any] = vocab_size __lowerCAmelCase : Tuple = hidden_size __lowerCAmelCase : str = rotary_dim __lowerCAmelCase : Union[str, Any] = num_hidden_layers __lowerCAmelCase : Union[str, Any] = num_attention_heads __lowerCAmelCase : int = intermediate_size __lowerCAmelCase : List[str] = hidden_act __lowerCAmelCase : int = hidden_dropout_prob __lowerCAmelCase : Any = attention_probs_dropout_prob __lowerCAmelCase : List[Any] = max_position_embeddings __lowerCAmelCase : Optional[Any] = initializer_range __lowerCAmelCase : Tuple = None __lowerCAmelCase : int = vocab_size - 1 __lowerCAmelCase : Dict = vocab_size - 1 __lowerCAmelCase : int = vocab_size - 1 def __lowerCamelCase ( self ): __lowerCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCAmelCase : List[str] = None if self.use_input_mask: __lowerCAmelCase : Dict = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCAmelCase : Optional[int] = GPTJConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=_SCREAMING_SNAKE_CASE , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , ) return (config, input_ids, input_mask) def __lowerCamelCase ( self ): __lowerCAmelCase : Optional[int] = self.prepare_config_and_inputs() __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : Any = config_and_inputs __lowerCAmelCase : Dict = {'input_ids': input_ids, 'attention_mask': attention_mask} return config, inputs_dict def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowerCAmelCase : List[str] = 20 __lowerCAmelCase : List[str] = model_class_name(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Optional[int] = model.init_cache(input_ids.shape[0] , _SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Optional[Any] = jnp.ones((input_ids.shape[0], max_decoder_length) , dtype='i4' ) __lowerCAmelCase : Optional[Any] = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) __lowerCAmelCase : Any = model( input_ids[:, :-1] , attention_mask=_SCREAMING_SNAKE_CASE , past_key_values=_SCREAMING_SNAKE_CASE , position_ids=_SCREAMING_SNAKE_CASE , ) __lowerCAmelCase : Any = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='i4' ) __lowerCAmelCase : int = model( input_ids[:, -1:] , attention_mask=_SCREAMING_SNAKE_CASE , past_key_values=outputs_cache.past_key_values , position_ids=_SCREAMING_SNAKE_CASE , ) __lowerCAmelCase : Any = model(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : List[str] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=f"Max diff is {diff}" ) def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Tuple = 20 __lowerCAmelCase : List[str] = model_class_name(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Union[str, Any] = jnp.concatenate( [attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]) )] , axis=-1 , ) __lowerCAmelCase : List[str] = model.init_cache(input_ids.shape[0] , _SCREAMING_SNAKE_CASE ) __lowerCAmelCase : str = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) __lowerCAmelCase : Optional[Any] = model( input_ids[:, :-1] , attention_mask=_SCREAMING_SNAKE_CASE , past_key_values=_SCREAMING_SNAKE_CASE , position_ids=_SCREAMING_SNAKE_CASE , ) __lowerCAmelCase : str = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='i4' ) __lowerCAmelCase : Tuple = model( input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=_SCREAMING_SNAKE_CASE , position_ids=_SCREAMING_SNAKE_CASE , ) __lowerCAmelCase : Union[str, Any] = model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : List[str] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=f"Max diff is {diff}" ) @require_flax class A__ ( _lowerCamelCase , _lowerCamelCase , unittest.TestCase): A_ : Tuple = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else () A_ : str = (FlaxGPTJForCausalLM,) if is_flax_available() else () def __lowerCamelCase ( self ): __lowerCAmelCase : int = FlaxGPTJModelTester(self ) def __lowerCamelCase ( self ): for model_class_name in self.all_model_classes: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self ): for model_class_name in self.all_model_classes: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward_with_attn_mask( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) @tooslow def __lowerCamelCase ( self ): __lowerCAmelCase : Tuple = GPTaTokenizer.from_pretrained('gpt2' , pad_token='<|endoftext|>' , padding_side='left' ) __lowerCAmelCase : Optional[int] = tokenizer(['Hello this is a long string', 'Hey'] , return_tensors='np' , padding=_SCREAMING_SNAKE_CASE , truncation=_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : int = FlaxGPTJForCausalLM.from_pretrained('EleutherAI/gpt-j-6B' ) __lowerCAmelCase : Any = False __lowerCAmelCase : Any = model.config.eos_token_id __lowerCAmelCase : Union[str, Any] = jax.jit(model.generate ) __lowerCAmelCase : Optional[Any] = jit_generate( inputs['input_ids'] , attention_mask=inputs['attention_mask'] , pad_token_id=tokenizer.pad_token_id ).sequences __lowerCAmelCase : str = tokenizer.batch_decode(_SCREAMING_SNAKE_CASE , skip_special_tokens=_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Optional[Any] = [ 'Hello this is a long string of text.\n\nI\'m trying to get the text of the', 'Hey, I\'m a little late to the party. I\'m going to', ] self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) @is_pt_flax_cross_test def __lowerCamelCase ( self ): __lowerCAmelCase , __lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs __lowerCAmelCase : str = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Union[str, Any] = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class __lowerCAmelCase : Dict = model_class.__name__[4:] # Skip the "Flax" at the beginning __lowerCAmelCase : Optional[int] = getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __lowerCAmelCase , __lowerCAmelCase : List[Any] = pt_inputs['input_ids'].shape __lowerCAmelCase : int = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(_SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Tuple = 0 __lowerCAmelCase : Tuple = 1 __lowerCAmelCase : List[str] = 0 __lowerCAmelCase : Any = 1 __lowerCAmelCase : Optional[Any] = pt_model_class(_SCREAMING_SNAKE_CASE ).eval() __lowerCAmelCase : Any = model_class(_SCREAMING_SNAKE_CASE , dtype=jnp.floataa ) __lowerCAmelCase : int = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , _SCREAMING_SNAKE_CASE ) __lowerCAmelCase : str = fx_state with torch.no_grad(): __lowerCAmelCase : Union[str, Any] = pt_model(**_SCREAMING_SNAKE_CASE ).to_tuple() __lowerCAmelCase : str = fx_model(**_SCREAMING_SNAKE_CASE ).to_tuple() self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , len(_SCREAMING_SNAKE_CASE ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output, pt_output in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Tuple = model_class.from_pretrained(_SCREAMING_SNAKE_CASE , from_pt=_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Optional[Any] = fx_model_loaded(**_SCREAMING_SNAKE_CASE ).to_tuple() self.assertEqual( len(_SCREAMING_SNAKE_CASE ) , len(_SCREAMING_SNAKE_CASE ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output_loaded, pt_output in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) @is_pt_flax_cross_test def __lowerCamelCase ( self ): __lowerCAmelCase , __lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs __lowerCAmelCase : List[str] = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __lowerCAmelCase : List[str] = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class __lowerCAmelCase : Dict = model_class.__name__[4:] # Skip the "Flax" at the beginning __lowerCAmelCase : str = getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Optional[int] = pt_model_class(_SCREAMING_SNAKE_CASE ).eval() __lowerCAmelCase : Tuple = model_class(_SCREAMING_SNAKE_CASE , dtype=jnp.floataa ) __lowerCAmelCase : List[str] = load_flax_weights_in_pytorch_model(_SCREAMING_SNAKE_CASE , fx_model.params ) __lowerCAmelCase , __lowerCAmelCase : int = pt_inputs['input_ids'].shape __lowerCAmelCase : List[str] = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(_SCREAMING_SNAKE_CASE ): __lowerCAmelCase : str = 0 __lowerCAmelCase : Optional[Any] = 1 __lowerCAmelCase : Optional[int] = 0 __lowerCAmelCase : Optional[Any] = 1 # make sure weights are tied in PyTorch pt_model.tie_weights() with torch.no_grad(): __lowerCAmelCase : List[str] = pt_model(**_SCREAMING_SNAKE_CASE ).to_tuple() __lowerCAmelCase : Optional[int] = fx_model(**_SCREAMING_SNAKE_CASE ).to_tuple() self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , len(_SCREAMING_SNAKE_CASE ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output, pt_output in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Dict = pt_model_class.from_pretrained(_SCREAMING_SNAKE_CASE , from_flax=_SCREAMING_SNAKE_CASE ) with torch.no_grad(): __lowerCAmelCase : Any = pt_model_loaded(**_SCREAMING_SNAKE_CASE ).to_tuple() self.assertEqual( len(_SCREAMING_SNAKE_CASE ) , len(_SCREAMING_SNAKE_CASE ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output, pt_output in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) @tooslow def __lowerCamelCase ( self ): for model_class_name in self.all_model_classes: __lowerCAmelCase : Optional[int] = model_class_name.from_pretrained('EleutherAI/gpt-j-6B' ) __lowerCAmelCase : List[Any] = model(np.ones((1, 1) ) ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE )
86
'''simple docstring''' def __UpperCamelCase ( lowercase__ : Union[str, Any]=2_81_23 ): '''simple docstring''' __lowercase =[1] * (limit + 1) for i in range(2, int(limit**0.5 ) + 1 ): sum_divs[i * i] += i for k in range(i + 1, limit // i + 1 ): sum_divs[k * i] += k + i __lowercase =set() __lowercase =0 for n in range(1, limit + 1 ): if sum_divs[n] > n: abundants.add(lowercase__ ) if not any((n - a in abundants) for a in abundants ): res += n return res if __name__ == "__main__": print(solution())
141
0
'''simple docstring''' def a_ ( lowerCamelCase : int , lowerCamelCase : float , lowerCamelCase : float ): return round(float(moles / volume ) * nfactor ) def a_ ( lowerCamelCase : float , lowerCamelCase : float , lowerCamelCase : float ): return round(float((moles * 0.0_821 * temperature) / (volume) ) ) def a_ ( lowerCamelCase : float , lowerCamelCase : float , lowerCamelCase : float ): return round(float((moles * 0.0_821 * temperature) / (pressure) ) ) def a_ ( lowerCamelCase : float , lowerCamelCase : float , lowerCamelCase : float ): return round(float((pressure * volume) / (0.0_821 * moles) ) ) if __name__ == "__main__": import doctest doctest.testmod()
55
'''simple docstring''' import copy import unittest from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_MULTIPLE_CHOICE_MAPPING, MODEL_FOR_QUESTION_ANSWERING_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, ) from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class UpperCAmelCase_ : def __init__( self : Dict , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : List[str]=2 , UpperCAmelCase__ : Dict=3 , UpperCAmelCase__ : Optional[Any]=4 , UpperCAmelCase__ : Optional[int]=2 , UpperCAmelCase__ : int=7 , UpperCAmelCase__ : Any=True , UpperCAmelCase__ : str=True , UpperCAmelCase__ : int=True , UpperCAmelCase__ : str=True , UpperCAmelCase__ : Any=9_9 , UpperCAmelCase__ : Any=3_6 , UpperCAmelCase__ : str=3 , UpperCAmelCase__ : Optional[Any]=4 , UpperCAmelCase__ : int=3_7 , UpperCAmelCase__ : Any="gelu" , UpperCAmelCase__ : Dict=0.1 , UpperCAmelCase__ : List[str]=0.1 , UpperCAmelCase__ : Dict=5_1_2 , UpperCAmelCase__ : Optional[Any]=1_6 , UpperCAmelCase__ : Union[str, Any]=2 , UpperCAmelCase__ : Any=0.02 , UpperCAmelCase__ : str=6 , UpperCAmelCase__ : List[str]=6 , UpperCAmelCase__ : List[str]=3 , UpperCAmelCase__ : Any=4 , UpperCAmelCase__ : List[str]=None , UpperCAmelCase__ : List[Any]=1_0_0_0 , ) -> int: lowerCAmelCase = parent lowerCAmelCase = batch_size lowerCAmelCase = num_channels lowerCAmelCase = image_size lowerCAmelCase = patch_size lowerCAmelCase = text_seq_length lowerCAmelCase = is_training lowerCAmelCase = use_input_mask lowerCAmelCase = use_token_type_ids lowerCAmelCase = use_labels lowerCAmelCase = vocab_size lowerCAmelCase = hidden_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_act lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = max_position_embeddings lowerCAmelCase = type_vocab_size lowerCAmelCase = type_sequence_label_size lowerCAmelCase = initializer_range lowerCAmelCase = coordinate_size lowerCAmelCase = shape_size lowerCAmelCase = num_labels lowerCAmelCase = num_choices lowerCAmelCase = scope lowerCAmelCase = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) lowerCAmelCase = text_seq_length lowerCAmelCase = (image_size // patch_size) ** 2 + 1 lowerCAmelCase = self.text_seq_length + self.image_seq_length def __UpperCAmelCase ( self : str ) -> Dict: lowerCAmelCase = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) lowerCAmelCase = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: lowerCAmelCase = bbox[i, j, 3] lowerCAmelCase = bbox[i, j, 1] lowerCAmelCase = t if bbox[i, j, 2] < bbox[i, j, 0]: lowerCAmelCase = bbox[i, j, 2] lowerCAmelCase = bbox[i, j, 0] lowerCAmelCase = t lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase = None if self.use_input_mask: lowerCAmelCase = random_attention_mask([self.batch_size, self.text_seq_length] ) lowerCAmelCase = None if self.use_token_type_ids: lowerCAmelCase = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) lowerCAmelCase = None lowerCAmelCase = None if self.use_labels: lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) lowerCAmelCase = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def __UpperCAmelCase ( self : Union[str, Any] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : str ) -> str: lowerCAmelCase = LayoutLMvaModel(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() # text + image lowerCAmelCase = model(UpperCAmelCase__ , pixel_values=UpperCAmelCase__ ) lowerCAmelCase = model( UpperCAmelCase__ , bbox=UpperCAmelCase__ , pixel_values=UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ ) lowerCAmelCase = model(UpperCAmelCase__ , bbox=UpperCAmelCase__ , pixel_values=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ ) lowerCAmelCase = model(UpperCAmelCase__ , bbox=UpperCAmelCase__ , pixel_values=UpperCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only lowerCAmelCase = model(UpperCAmelCase__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only lowerCAmelCase = model(pixel_values=UpperCAmelCase__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def __UpperCAmelCase ( self : Any , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : str , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Any , UpperCAmelCase__ : str , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Optional[Any] ) -> Optional[int]: lowerCAmelCase = self.num_labels lowerCAmelCase = LayoutLMvaForSequenceClassification(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() lowerCAmelCase = model( UpperCAmelCase__ , bbox=UpperCAmelCase__ , pixel_values=UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ , labels=UpperCAmelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __UpperCAmelCase ( self : Any , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Any , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : str , UpperCAmelCase__ : Any , UpperCAmelCase__ : int , UpperCAmelCase__ : Optional[Any] ) -> Optional[Any]: lowerCAmelCase = self.num_labels lowerCAmelCase = LayoutLMvaForTokenClassification(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() lowerCAmelCase = model( UpperCAmelCase__ , bbox=UpperCAmelCase__ , pixel_values=UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ , labels=UpperCAmelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def __UpperCAmelCase ( self : Dict , UpperCAmelCase__ : str , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Any , UpperCAmelCase__ : Any , UpperCAmelCase__ : int , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Dict ) -> Optional[Any]: lowerCAmelCase = LayoutLMvaForQuestionAnswering(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() lowerCAmelCase = model( UpperCAmelCase__ , bbox=UpperCAmelCase__ , pixel_values=UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ , start_positions=UpperCAmelCase__ , end_positions=UpperCAmelCase__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __UpperCAmelCase ( self : Tuple ) -> Any: lowerCAmelCase = self.prepare_config_and_inputs() ( ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ) = config_and_inputs lowerCAmelCase = { 'input_ids': input_ids, 'bbox': bbox, 'pixel_values': pixel_values, 'token_type_ids': token_type_ids, 'attention_mask': input_mask, } return config, inputs_dict @require_torch class UpperCAmelCase_ ( __lowercase , __lowercase , unittest.TestCase ): lowerCamelCase : List[str] = False lowerCamelCase : Tuple = False lowerCamelCase : int = False lowerCamelCase : Optional[int] = ( ( LayoutLMvaModel, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaForQuestionAnswering, ) if is_torch_available() else () ) lowerCamelCase : int = ( {'''document-question-answering''': LayoutLMvaForQuestionAnswering, '''feature-extraction''': LayoutLMvaModel} if is_torch_available() else {} ) def __UpperCAmelCase ( self : List[str] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : int , UpperCAmelCase__ : int ) -> str: # `DocumentQuestionAnsweringPipeline` is expected to work with this model, but it combines the text and visual # embedding along the sequence dimension (dim 1), which causes an error during post-processing as `p_mask` has # the sequence dimension of the text embedding only. # (see the line `embedding_output = torch.cat([embedding_output, visual_embeddings], dim=1)`) return True def __UpperCAmelCase ( self : List[Any] ) -> Optional[Any]: lowerCAmelCase = LayoutLMvaModelTester(self ) lowerCAmelCase = ConfigTester(self , config_class=UpperCAmelCase__ , hidden_size=3_7 ) def __UpperCAmelCase ( self : Any , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Optional[int]=False ) -> Optional[int]: lowerCAmelCase = copy.deepcopy(UpperCAmelCase__ ) if model_class in get_values(UpperCAmelCase__ ): lowerCAmelCase = { k: v.unsqueeze(1 ).expand(-1 , self.model_tester.num_choices , -1 ).contiguous() if isinstance(UpperCAmelCase__ , torch.Tensor ) and v.ndim > 1 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(UpperCAmelCase__ ): lowerCAmelCase = torch.ones(self.model_tester.batch_size , dtype=torch.long , device=UpperCAmelCase__ ) elif model_class in get_values(UpperCAmelCase__ ): lowerCAmelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCAmelCase__ ) lowerCAmelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCAmelCase__ ) elif model_class in [ *get_values(UpperCAmelCase__ ), ]: lowerCAmelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCAmelCase__ ) elif model_class in [ *get_values(UpperCAmelCase__ ), ]: lowerCAmelCase = torch.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=torch.long , device=UpperCAmelCase__ , ) return inputs_dict def __UpperCAmelCase ( self : Tuple ) -> Any: self.config_tester.run_common_tests() def __UpperCAmelCase ( self : Dict ) -> List[Any]: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase__ ) def __UpperCAmelCase ( self : str ) -> Union[str, Any]: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowerCAmelCase = type self.model_tester.create_and_check_model(*UpperCAmelCase__ ) def __UpperCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCAmelCase__ ) def __UpperCAmelCase ( self : Any ) -> Dict: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase__ ) def __UpperCAmelCase ( self : Tuple ) -> List[str]: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase__ ) @slow def __UpperCAmelCase ( self : Any ) -> Any: for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase = LayoutLMvaModel.from_pretrained(UpperCAmelCase__ ) self.assertIsNotNone(UpperCAmelCase__ ) def a_ ( ): lowerCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch class UpperCAmelCase_ ( unittest.TestCase ): @cached_property def __UpperCAmelCase ( self : int ) -> str: return LayoutLMvaImageProcessor(apply_ocr=UpperCAmelCase__ ) if is_vision_available() else None @slow def __UpperCAmelCase ( self : int ) -> Any: lowerCAmelCase = LayoutLMvaModel.from_pretrained('microsoft/layoutlmv3-base' ).to(UpperCAmelCase__ ) lowerCAmelCase = self.default_image_processor lowerCAmelCase = prepare_img() lowerCAmelCase = image_processor(images=UpperCAmelCase__ , return_tensors='pt' ).pixel_values.to(UpperCAmelCase__ ) lowerCAmelCase = torch.tensor([[1, 2]] ) lowerCAmelCase = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]] ).unsqueeze(0 ) # forward pass lowerCAmelCase = model( input_ids=input_ids.to(UpperCAmelCase__ ) , bbox=bbox.to(UpperCAmelCase__ ) , pixel_values=pixel_values.to(UpperCAmelCase__ ) , ) # verify the logits lowerCAmelCase = torch.Size((1, 1_9_9, 7_6_8) ) self.assertEqual(outputs.last_hidden_state.shape , UpperCAmelCase__ ) lowerCAmelCase = torch.tensor( [[-0.0_529, 0.3_618, 0.1_632], [-0.1_587, -0.1_667, -0.0_400], [-0.1_557, -0.1_671, -0.0_505]] ).to(UpperCAmelCase__ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , UpperCAmelCase__ , atol=1E-4 ) )
55
1
from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo lowercase__ : Optional[int] = "\\n@misc{wu2016googles,\n title={Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation},\n author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey\n and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin\n Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto\n Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and\n Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes\n and Jeffrey Dean},\n year={2016},\n eprint={1609.08144},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n" lowercase__ : Union[str, Any] = "\\nThe BLEU score has some undesirable properties when used for single\nsentences, as it was designed to be a corpus measure. We therefore\nuse a slightly different score for our RL experiments which we call\nthe 'GLEU score'. For the GLEU score, we record all sub-sequences of\n1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then\ncompute a recall, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the target (ground truth) sequence,\nand a precision, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the generated output sequence. Then\nGLEU score is simply the minimum of recall and precision. This GLEU\nscore's range is always between 0 (no matches) and 1 (all match) and\nit is symmetrical when switching output and target. According to\nour experiments, GLEU score correlates quite well with the BLEU\nmetric on a corpus level but does not have its drawbacks for our per\nsentence reward objective.\n" lowercase__ : List[str] = "\\nComputes corpus-level Google BLEU (GLEU) score of translated segments against one or more references.\nInstead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching\ntokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values.\n\nArgs:\n predictions (list of str): list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references (list of list of str): list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n min_len (int): The minimum order of n-gram this function should extract. Defaults to 1.\n max_len (int): The maximum order of n-gram this function should extract. Defaults to 4.\n\nReturns:\n 'google_bleu': google_bleu score\n\nExamples:\n Example 1:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.44\n\n Example 2:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.61\n\n Example 3:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.53\n\n Example 4:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.4\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE__ ( datasets.Metric ): """simple docstring""" def A__ ( self )-> MetricInfo: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''string''' , id='''token''' ) , id='''sequence''' ), '''references''': datasets.Sequence( datasets.Sequence(datasets.Value('''string''' , id='''token''' ) , id='''sequence''' ) , id='''references''' ), } ) , ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = 1 , SCREAMING_SNAKE_CASE_ = 4 , )-> Dict[str, float]: '''simple docstring''' return { "google_bleu": gleu_score.corpus_gleu( list_of_references=SCREAMING_SNAKE_CASE_ , hypotheses=SCREAMING_SNAKE_CASE_ , min_len=SCREAMING_SNAKE_CASE_ , max_len=SCREAMING_SNAKE_CASE_ ) }
328
import inspect import logging import os import random import shutil import tempfile import unittest import pytest import torch from torch import nn from torch.utils.data import DataLoader, TensorDataset from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_cuda from accelerate.utils import ProjectConfiguration, set_seed lowercase__ : Optional[Any] = logging.getLogger(__name__) def A_ ( snake_case : Any=2 , snake_case : Union[str, Any]=3 , snake_case : Union[str, Any]=16 , snake_case : int = 10 , snake_case : int = 2 ) -> int: '''simple docstring''' def get_dataset(snake_case : Optional[int] ): __UpperCamelCase = torch.randn(batch_size * n_batches , 1 ) return TensorDataset(snake_case , a * x + b + 0.1 * torch.randn(batch_size * n_batches , 1 ) ) __UpperCamelCase = get_dataset(snake_case ) __UpperCamelCase = get_dataset(snake_case ) __UpperCamelCase = DataLoader(snake_case , shuffle=snake_case , batch_size=snake_case , num_workers=4 ) __UpperCamelCase = DataLoader(snake_case , shuffle=snake_case , batch_size=snake_case , num_workers=4 ) return (train_dataloader, valid_dataloader) def A_ ( snake_case : List[str] , snake_case : int , snake_case : List[str] , snake_case : Optional[int] , snake_case : int , snake_case : str=None ) -> Any: '''simple docstring''' __UpperCamelCase = [] for epoch in range(snake_case ): # Train quickly model.train() for batch in dataloader: __UpperCamelCase , __UpperCamelCase = batch __UpperCamelCase = model(snake_case ) __UpperCamelCase = torch.nn.functional.mse_loss(snake_case , snake_case ) accelerator.backward(snake_case ) optimizer.step() optimizer.zero_grad() rands.append(random.random() ) # Introduce some randomness if scheduler is not None: scheduler.step() return rands class SCREAMING_SNAKE_CASE__ ( nn.Module ): """simple docstring""" def __init__( self )-> Tuple: '''simple docstring''' super().__init__() __UpperCamelCase = nn.Parameter(torch.randn(1 ) ) __UpperCamelCase = nn.Parameter(torch.randn(1 ) ) def A__ ( self , SCREAMING_SNAKE_CASE_ )-> Dict: '''simple docstring''' return x * self.a + self.b class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def A__ ( self )-> Tuple: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) __UpperCamelCase = DummyModel() __UpperCamelCase = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) __UpperCamelCase , __UpperCamelCase = dummy_dataloaders() __UpperCamelCase = ProjectConfiguration(total_limit=1 , project_dir=SCREAMING_SNAKE_CASE_ , automatic_checkpoint_naming=SCREAMING_SNAKE_CASE_ ) # Train baseline __UpperCamelCase = Accelerator(project_config=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = accelerator.prepare( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Save initial accelerator.save_state() # Save second state accelerator.save_state() self.assertEqual(len(os.listdir(accelerator.project_dir ) ) , 1 ) def A__ ( self )-> Optional[int]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) __UpperCamelCase = DummyModel() __UpperCamelCase = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) __UpperCamelCase , __UpperCamelCase = dummy_dataloaders() # Train baseline __UpperCamelCase = Accelerator() __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = accelerator.prepare( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Save initial __UpperCamelCase = os.path.join(SCREAMING_SNAKE_CASE_ , '''initial''' ) accelerator.save_state(SCREAMING_SNAKE_CASE_ ) ((__UpperCamelCase) , (__UpperCamelCase)) = model.a.item(), model.b.item() __UpperCamelCase = optimizer.state_dict() __UpperCamelCase = train(3 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ((__UpperCamelCase) , (__UpperCamelCase)) = model.a.item(), model.b.item() __UpperCamelCase = optimizer.state_dict() # Train partially set_seed(42 ) __UpperCamelCase = DummyModel() __UpperCamelCase = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) __UpperCamelCase , __UpperCamelCase = dummy_dataloaders() __UpperCamelCase = Accelerator() __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = accelerator.prepare( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) accelerator.load_state(SCREAMING_SNAKE_CASE_ ) ((__UpperCamelCase) , (__UpperCamelCase)) = model.a.item(), model.b.item() __UpperCamelCase = optimizer.state_dict() self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = train(2 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Save everything __UpperCamelCase = os.path.join(SCREAMING_SNAKE_CASE_ , '''checkpoint''' ) accelerator.save_state(SCREAMING_SNAKE_CASE_ ) # Load everything back in and make sure all states work accelerator.load_state(SCREAMING_SNAKE_CASE_ ) test_rands += train(1 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ((__UpperCamelCase) , (__UpperCamelCase)) = model.a.item(), model.b.item() __UpperCamelCase = optimizer.state_dict() self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def A__ ( self )-> List[str]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) __UpperCamelCase = DummyModel() __UpperCamelCase = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) __UpperCamelCase , __UpperCamelCase = dummy_dataloaders() __UpperCamelCase = ProjectConfiguration(automatic_checkpoint_naming=SCREAMING_SNAKE_CASE_ ) # Train baseline __UpperCamelCase = Accelerator(project_dir=SCREAMING_SNAKE_CASE_ , project_config=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = accelerator.prepare( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Save initial accelerator.save_state() ((__UpperCamelCase) , (__UpperCamelCase)) = model.a.item(), model.b.item() __UpperCamelCase = optimizer.state_dict() __UpperCamelCase = train(3 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ((__UpperCamelCase) , (__UpperCamelCase)) = model.a.item(), model.b.item() __UpperCamelCase = optimizer.state_dict() # Train partially set_seed(42 ) __UpperCamelCase = DummyModel() __UpperCamelCase = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) __UpperCamelCase , __UpperCamelCase = dummy_dataloaders() __UpperCamelCase = ProjectConfiguration(iteration=1 , automatic_checkpoint_naming=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = Accelerator(project_dir=SCREAMING_SNAKE_CASE_ , project_config=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = accelerator.prepare( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) accelerator.load_state(os.path.join(SCREAMING_SNAKE_CASE_ , '''checkpoints''' , '''checkpoint_0''' ) ) ((__UpperCamelCase) , (__UpperCamelCase)) = model.a.item(), model.b.item() __UpperCamelCase = optimizer.state_dict() self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = train(2 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Save everything accelerator.save_state() # Load everything back in and make sure all states work accelerator.load_state(os.path.join(SCREAMING_SNAKE_CASE_ , '''checkpoints''' , '''checkpoint_1''' ) ) test_rands += train(1 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ((__UpperCamelCase) , (__UpperCamelCase)) = model.a.item(), model.b.item() __UpperCamelCase = optimizer.state_dict() self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def A__ ( self )-> Tuple: '''simple docstring''' __UpperCamelCase = torch.tensor([1, 2, 3] ) __UpperCamelCase = torch.tensor([2, 3, 4] ) __UpperCamelCase = DummyModel() __UpperCamelCase = torch.optim.Adam(net.parameters() ) __UpperCamelCase = Accelerator() with self.assertRaises(SCREAMING_SNAKE_CASE_ ) as ve: accelerator.register_for_checkpointing(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = str(ve.exception ) self.assertTrue('''Item at index 0''' in message ) self.assertTrue('''Item at index 1''' in message ) self.assertFalse('''Item at index 2''' in message ) self.assertFalse('''Item at index 3''' in message ) def A__ ( self )-> Union[str, Any]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) __UpperCamelCase = DummyModel() __UpperCamelCase = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) __UpperCamelCase = torch.optim.lr_scheduler.StepLR(SCREAMING_SNAKE_CASE_ , step_size=1 , gamma=0.9_9 ) __UpperCamelCase , __UpperCamelCase = dummy_dataloaders() __UpperCamelCase = ProjectConfiguration(automatic_checkpoint_naming=SCREAMING_SNAKE_CASE_ ) # Train baseline __UpperCamelCase = Accelerator(project_dir=SCREAMING_SNAKE_CASE_ , project_config=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = accelerator.prepare( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Save initial accelerator.save_state() __UpperCamelCase = scheduler.state_dict() train(3 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertNotEqual(SCREAMING_SNAKE_CASE_ , scheduler.state_dict() ) # Load everything back in and make sure all states work accelerator.load_state(os.path.join(SCREAMING_SNAKE_CASE_ , '''checkpoints''' , '''checkpoint_0''' ) ) self.assertEqual(SCREAMING_SNAKE_CASE_ , scheduler.state_dict() ) def A__ ( self )-> List[str]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) __UpperCamelCase = DummyModel() __UpperCamelCase = ProjectConfiguration(automatic_checkpoint_naming=SCREAMING_SNAKE_CASE_ , total_limit=2 ) # Train baseline __UpperCamelCase = Accelerator(project_dir=SCREAMING_SNAKE_CASE_ , project_config=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = accelerator.prepare(SCREAMING_SNAKE_CASE_ ) # Save 3 states: for _ in range(11 ): accelerator.save_state() self.assertTrue(not os.path.exists(os.path.join(SCREAMING_SNAKE_CASE_ , '''checkpoints''' , '''checkpoint_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(SCREAMING_SNAKE_CASE_ , '''checkpoints''' , '''checkpoint_9''' ) ) ) self.assertTrue(os.path.exists(os.path.join(SCREAMING_SNAKE_CASE_ , '''checkpoints''' , '''checkpoint_10''' ) ) ) @require_cuda def A__ ( self )-> Optional[int]: '''simple docstring''' __UpperCamelCase = ['''torchrun''', F"--nproc_per_node={torch.cuda.device_count()}", inspect.getfile(self.__class__ )] execute_subprocess_async(SCREAMING_SNAKE_CASE_ , env=os.environ.copy() ) if __name__ == "__main__": lowercase__ : Optional[int] = "/tmp/accelerate/state_checkpointing" lowercase__ : List[Any] = DummyModel() lowercase__ : Tuple = torch.optim.Adam(params=model.parameters(), lr=1e-3) lowercase__ : int = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.99) lowercase__ , lowercase__ : str = dummy_dataloaders() lowercase__ : Union[str, Any] = ProjectConfiguration(automatic_checkpoint_naming=True) # Train baseline lowercase__ : List[str] = Accelerator(project_dir=savedir, project_config=project_config, mixed_precision="no") if accelerator.process_index == 0: if os.path.exists(savedir): shutil.rmtree(savedir) os.makedirs(savedir) lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : Dict = accelerator.prepare( model, optimizer, train_dataloader, valid_dataloader, scheduler ) lowercase__ , lowercase__ : str = accelerator.prepare(model, optimizer) train(3, model, train_dataloader, optimizer, accelerator, scheduler) # Check that the intial optimizer is loaded on the GPU for group in optimizer.param_groups: lowercase__ : int = group["params"][0].device break assert param_device.type == accelerator.device.type lowercase__ : Union[str, Any] = model.cpu() accelerator.wait_for_everyone() accelerator.save_state() accelerator.wait_for_everyone() # Check CPU state accelerator.load_state(os.path.join(savedir, "checkpoints", "checkpoint_0"), map_location="cpu") for group in optimizer.param_groups: lowercase__ : Any = group["params"][0].device break assert ( param_device.type == torch.device("cpu").type ), F"Loaded optimizer states did not match, expected to be loaded on the CPU but got {param_device}" # Check device state model.to(accelerator.device) accelerator.load_state(os.path.join(savedir, "checkpoints", "checkpoint_0"), map_location="on_device") for group in optimizer.param_groups: lowercase__ : List[Any] = group["params"][0].device break assert ( param_device.type == accelerator.device.type ), F"Loaded optimizer states did not match, expected to be loaded on {accelerator.device} but got {param_device}" # Check error with pytest.raises(TypeError, match="Unsupported optimizer map location passed"): accelerator.load_state(os.path.join(savedir, "checkpoints", "checkpoint_0"), map_location="invalid") accelerator.wait_for_everyone() if accelerator.process_index == 0: shutil.rmtree(savedir) accelerator.wait_for_everyone()
328
1
'''simple docstring''' __UpperCAmelCase :dict[str, float] = { "km/h": 1.0, "m/s": 3.6, "mph": 1.60_9344, "knot": 1.852, } __UpperCAmelCase :dict[str, float] = { "km/h": 1.0, "m/s": 0.2_7777_7778, "mph": 0.6_2137_1192, "knot": 0.5_3995_6803, } def _a ( _lowercase : float , _lowercase : str , _lowercase : str ): '''simple docstring''' if unit_to not in speed_chart or unit_from not in speed_chart_inverse: __UpperCAmelCase : Dict = ( F'Incorrect \'from_type\' or \'to_type\' value: {unit_from!r}, {unit_to!r}\n' F'Valid values are: {", ".join(UpperCamelCase__ )}' ) raise ValueError(UpperCamelCase__ ) return round(speed * speed_chart[unit_from] * speed_chart_inverse[unit_to] , 3 ) if __name__ == "__main__": import doctest doctest.testmod()
367
'''simple docstring''' def _a ( _lowercase : int = 600851475143 ): '''simple docstring''' try: __UpperCAmelCase : str = int(_lowercase ) except (TypeError, ValueError): raise TypeError('''Parameter n must be int or castable to int.''' ) if n <= 0: raise ValueError('''Parameter n must be greater than or equal to one.''' ) __UpperCAmelCase : Dict = 1 __UpperCAmelCase : List[str] = 2 while i * i <= n: while n % i == 0: __UpperCAmelCase : int = i n //= i i += 1 if n > 1: __UpperCAmelCase : List[str] = n return int(_lowercase ) if __name__ == "__main__": print(f"""{solution() = }""")
240
0
from __future__ import annotations import unittest from transformers import DebertaVaConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, TFDebertaVaModel, ) class _lowercase : """simple docstring""" def __init__( self : Any , __lowerCamelCase : Optional[int] , __lowerCamelCase : Any=13 , __lowerCamelCase : Union[str, Any]=7 , __lowerCamelCase : Dict=True , __lowerCamelCase : Optional[int]=True , __lowerCamelCase : Dict=True , __lowerCamelCase : int=True , __lowerCamelCase : str=99 , __lowerCamelCase : Tuple=32 , __lowerCamelCase : int=2 , __lowerCamelCase : Dict=4 , __lowerCamelCase : int=37 , __lowerCamelCase : Optional[int]="gelu" , __lowerCamelCase : Union[str, Any]=0.1 , __lowerCamelCase : int=0.1 , __lowerCamelCase : Any=512 , __lowerCamelCase : List[Any]=16 , __lowerCamelCase : List[Any]=2 , __lowerCamelCase : Dict=0.0_2 , __lowerCamelCase : Any=False , __lowerCamelCase : Any=True , __lowerCamelCase : Any="None" , __lowerCamelCase : List[Any]=3 , __lowerCamelCase : Any=4 , __lowerCamelCase : int=None , ): '''simple docstring''' lowerCamelCase__ : Any = parent lowerCamelCase__ : List[Any] = batch_size lowerCamelCase__ : Union[str, Any] = seq_length lowerCamelCase__ : List[str] = is_training lowerCamelCase__ : Tuple = use_input_mask lowerCamelCase__ : str = use_token_type_ids lowerCamelCase__ : int = use_labels lowerCamelCase__ : str = vocab_size lowerCamelCase__ : Union[str, Any] = hidden_size lowerCamelCase__ : Any = num_hidden_layers lowerCamelCase__ : Tuple = num_attention_heads lowerCamelCase__ : Dict = intermediate_size lowerCamelCase__ : str = hidden_act lowerCamelCase__ : Tuple = hidden_dropout_prob lowerCamelCase__ : Union[str, Any] = attention_probs_dropout_prob lowerCamelCase__ : int = max_position_embeddings lowerCamelCase__ : Union[str, Any] = type_vocab_size lowerCamelCase__ : List[str] = type_sequence_label_size lowerCamelCase__ : Optional[Any] = initializer_range lowerCamelCase__ : List[Any] = num_labels lowerCamelCase__ : Tuple = num_choices lowerCamelCase__ : List[Any] = relative_attention lowerCamelCase__ : Dict = position_biased_input lowerCamelCase__ : Dict = pos_att_type lowerCamelCase__ : Tuple = scope def lowerCAmelCase ( self : List[Any] ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase__ : Optional[Any] = None if self.use_input_mask: lowerCamelCase__ : int = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase__ : List[str] = None if self.use_token_type_ids: lowerCamelCase__ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCamelCase__ : Optional[int] = None lowerCamelCase__ : Dict = None lowerCamelCase__ : List[str] = None if self.use_labels: lowerCamelCase__ : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase__ : int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCamelCase__ : int = DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , initializer_range=self.initializer_range , return_dict=__lowerCamelCase , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase ( self : Any , __lowerCamelCase : Any , __lowerCamelCase : Dict , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Dict , __lowerCamelCase : List[Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : str ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = TFDebertaVaModel(config=__lowerCamelCase ) lowerCamelCase__ : Any = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} lowerCamelCase__ : List[str] = [input_ids, input_mask] lowerCamelCase__ : List[str] = model(__lowerCamelCase ) lowerCamelCase__ : str = model(__lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase ( self : Tuple , __lowerCamelCase : Tuple , __lowerCamelCase : Any , __lowerCamelCase : Optional[int] , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[int] ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = TFDebertaVaForMaskedLM(config=__lowerCamelCase ) lowerCamelCase__ : Optional[int] = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } lowerCamelCase__ : Union[str, Any] = model(__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase ( self : Optional[int] , __lowerCamelCase : str , __lowerCamelCase : Optional[int] , __lowerCamelCase : List[str] , __lowerCamelCase : List[Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : int , __lowerCamelCase : Optional[Any] ): '''simple docstring''' lowerCamelCase__ : Optional[int] = self.num_labels lowerCamelCase__ : Any = TFDebertaVaForSequenceClassification(config=__lowerCamelCase ) lowerCamelCase__ : Dict = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } lowerCamelCase__ : List[str] = model(__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase ( self : Dict , __lowerCamelCase : str , __lowerCamelCase : int , __lowerCamelCase : List[Any] , __lowerCamelCase : List[Any] , __lowerCamelCase : int , __lowerCamelCase : str , __lowerCamelCase : List[Any] ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = self.num_labels lowerCamelCase__ : Optional[Any] = TFDebertaVaForTokenClassification(config=__lowerCamelCase ) lowerCamelCase__ : Optional[Any] = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } lowerCamelCase__ : List[Any] = model(__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase ( self : int , __lowerCamelCase : List[str] , __lowerCamelCase : List[Any] , __lowerCamelCase : List[Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : str , __lowerCamelCase : Tuple , __lowerCamelCase : List[Any] ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = TFDebertaVaForQuestionAnswering(config=__lowerCamelCase ) lowerCamelCase__ : Dict = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } lowerCamelCase__ : List[Any] = model(__lowerCamelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCAmelCase ( self : Dict ): '''simple docstring''' lowerCamelCase__ : int = self.prepare_config_and_inputs() ( ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ) : Union[str, Any] = config_and_inputs lowerCamelCase__ : Tuple = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class _lowercase ( lowercase__ , lowercase__ , unittest.TestCase): """simple docstring""" A__ = ( ( TFDebertaVaModel, TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, ) if is_tf_available() else () ) A__ = ( { "feature-extraction": TFDebertaVaModel, "fill-mask": TFDebertaVaForMaskedLM, "question-answering": TFDebertaVaForQuestionAnswering, "text-classification": TFDebertaVaForSequenceClassification, "token-classification": TFDebertaVaForTokenClassification, "zero-shot": TFDebertaVaForSequenceClassification, } if is_tf_available() else {} ) A__ = False A__ = False def lowerCAmelCase ( self : Tuple ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = TFDebertaVaModelTester(self ) lowerCamelCase__ : int = ConfigTester(self , config_class=__lowerCamelCase , hidden_size=37 ) def lowerCAmelCase ( self : Tuple ): '''simple docstring''' self.config_tester.run_common_tests() def lowerCAmelCase ( self : int ): '''simple docstring''' lowerCamelCase__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase ) def lowerCAmelCase ( self : List[Any] ): '''simple docstring''' lowerCamelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__lowerCamelCase ) def lowerCAmelCase ( self : Any ): '''simple docstring''' lowerCamelCase__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__lowerCamelCase ) def lowerCAmelCase ( self : str ): '''simple docstring''' lowerCamelCase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__lowerCamelCase ) def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCamelCase__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__lowerCamelCase ) @slow def lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' lowerCamelCase__ : Optional[int] = TFDebertaVaModel.from_pretrained("kamalkraj/deberta-v2-xlarge" ) self.assertIsNotNone(__lowerCamelCase ) @require_tf class _lowercase ( unittest.TestCase): """simple docstring""" @unittest.skip(reason="Model not available yet" ) def lowerCAmelCase ( self : Dict ): '''simple docstring''' pass @slow def lowerCAmelCase ( self : Tuple ): '''simple docstring''' lowerCamelCase__ : Any = TFDebertaVaModel.from_pretrained("kamalkraj/deberta-v2-xlarge" ) lowerCamelCase__ : int = tf.constant([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]] ) lowerCamelCase__ : Optional[Any] = tf.constant([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) lowerCamelCase__ : Tuple = model(__lowerCamelCase , attention_mask=__lowerCamelCase )[0] lowerCamelCase__ : Tuple = tf.constant( [[[0.2_3_5_6, 0.1_9_4_8, 0.0_3_6_9], [-0.1_0_6_3, 0.3_5_8_6, -0.5_1_5_2], [-0.6_3_9_9, -0.0_2_5_9, -0.2_5_2_5]]] ) tf.debugging.assert_near(output[:, 1:4, 1:4] , __lowerCamelCase , atol=1E-4 )
184
import math import os import sys def lowercase_ ( _A : str ): """simple docstring""" lowerCamelCase__ : str = "" try: with open(_A , "rb" ) as binary_file: lowerCamelCase__ : Union[str, Any] = binary_file.read() for dat in data: lowerCamelCase__ : Optional[Any] = F"{dat:08b}" result += curr_byte return result except OSError: print("File not accessible" ) sys.exit() def lowercase_ ( _A : dict[str, str] , _A : str , _A : int , _A : str ): """simple docstring""" lexicon.pop(_A ) lowerCamelCase__ : List[Any] = last_match_id if math.loga(_A ).is_integer(): for curr_key in lexicon: lowerCamelCase__ : Any = "0" + lexicon[curr_key] lowerCamelCase__ : Tuple = bin(_A )[2:] def lowercase_ ( _A : str ): """simple docstring""" lowerCamelCase__ : Tuple = {"0": "0", "1": "1"} lowerCamelCase__ , lowerCamelCase__ : int = "", "" lowerCamelCase__ : int = len(_A ) for i in range(len(_A ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue lowerCamelCase__ : Optional[Any] = lexicon[curr_string] result += last_match_id add_key_to_lexicon(_A , _A , _A , _A ) index += 1 lowerCamelCase__ : Dict = "" while curr_string != "" and curr_string not in lexicon: curr_string += "0" if curr_string != "": lowerCamelCase__ : int = lexicon[curr_string] result += last_match_id return result def lowercase_ ( _A : str , _A : str ): """simple docstring""" lowerCamelCase__ : List[str] = os.path.getsize(_A ) lowerCamelCase__ : Dict = bin(_A )[2:] lowerCamelCase__ : List[Any] = len(_A ) return "0" * (length_length - 1) + file_length_binary + compressed def lowercase_ ( _A : str , _A : str ): """simple docstring""" lowerCamelCase__ : Dict = 8 try: with open(_A , "wb" ) as opened_file: lowerCamelCase__ : Any = [ to_write[i : i + byte_length] for i in range(0 , len(_A ) , _A ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append("10000000" ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array: opened_file.write(int(_A , 2 ).to_bytes(1 , byteorder="big" ) ) except OSError: print("File not accessible" ) sys.exit() def lowercase_ ( _A : str , _A : str ): """simple docstring""" lowerCamelCase__ : Dict = read_file_binary(_A ) lowerCamelCase__ : List[Any] = compress_data(_A ) lowerCamelCase__ : str = add_file_length(_A , _A ) write_file_binary(_A , _A ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
184
1
'''simple docstring''' # limitations under the License. # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from .pipelines import DiffusionPipeline, ImagePipelineOutput # noqa: F401 from .utils import deprecate deprecate( """pipelines_utils""", """0.22.0""", """Importing `DiffusionPipeline` or `ImagePipelineOutput` from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead.""", standard_warn=False, stacklevel=3, )
91
'''simple docstring''' # limitations under the License. # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from .pipelines import DiffusionPipeline, ImagePipelineOutput # noqa: F401 from .utils import deprecate deprecate( """pipelines_utils""", """0.22.0""", """Importing `DiffusionPipeline` or `ImagePipelineOutput` from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead.""", standard_warn=False, stacklevel=3, )
91
1
'''simple docstring''' from __future__ import annotations from decimal import Decimal from numpy import array def _A ( A__ ): """simple docstring""" __lowercase = Decimal # Check if the provided matrix has 2 rows and 2 columns # since this implementation only works for 2x2 matrices if len(A__ ) == 2 and len(matrix[0] ) == 2 and len(matrix[1] ) == 2: # Calculate the determinant of the matrix __lowercase = float( d(matrix[0][0] ) * d(matrix[1][1] ) - d(matrix[1][0] ) * d(matrix[0][1] ) ) if determinant == 0: raise ValueError('''This matrix has no inverse.''' ) # Creates a copy of the matrix with swapped positions of the elements __lowercase = [[0.0, 0.0], [0.0, 0.0]] __lowercase , __lowercase = matrix[1][1], matrix[0][0] __lowercase , __lowercase = -matrix[1][0], -matrix[0][1] # Calculate the inverse of the matrix return [ [(float(d(A__ ) ) / determinant) or 0.0 for n in row] for row in swapped_matrix ] elif ( len(A__ ) == 3 and len(matrix[0] ) == 3 and len(matrix[1] ) == 3 and len(matrix[2] ) == 3 ): # Calculate the determinant of the matrix using Sarrus rule __lowercase = float( ( (d(matrix[0][0] ) * d(matrix[1][1] ) * d(matrix[2][2] )) + (d(matrix[0][1] ) * d(matrix[1][2] ) * d(matrix[2][0] )) + (d(matrix[0][2] ) * d(matrix[1][0] ) * d(matrix[2][1] )) ) - ( (d(matrix[0][2] ) * d(matrix[1][1] ) * d(matrix[2][0] )) + (d(matrix[0][1] ) * d(matrix[1][0] ) * d(matrix[2][2] )) + (d(matrix[0][0] ) * d(matrix[1][2] ) * d(matrix[2][1] )) ) ) if determinant == 0: raise ValueError('''This matrix has no inverse.''' ) # Creating cofactor matrix __lowercase = [ [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], ] __lowercase = (d(matrix[1][1] ) * d(matrix[2][2] )) - ( d(matrix[1][2] ) * d(matrix[2][1] ) ) __lowercase = -( (d(matrix[1][0] ) * d(matrix[2][2] )) - (d(matrix[1][2] ) * d(matrix[2][0] )) ) __lowercase = (d(matrix[1][0] ) * d(matrix[2][1] )) - ( d(matrix[1][1] ) * d(matrix[2][0] ) ) __lowercase = -( (d(matrix[0][1] ) * d(matrix[2][2] )) - (d(matrix[0][2] ) * d(matrix[2][1] )) ) __lowercase = (d(matrix[0][0] ) * d(matrix[2][2] )) - ( d(matrix[0][2] ) * d(matrix[2][0] ) ) __lowercase = -( (d(matrix[0][0] ) * d(matrix[2][1] )) - (d(matrix[0][1] ) * d(matrix[2][0] )) ) __lowercase = (d(matrix[0][1] ) * d(matrix[1][2] )) - ( d(matrix[0][2] ) * d(matrix[1][1] ) ) __lowercase = -( (d(matrix[0][0] ) * d(matrix[1][2] )) - (d(matrix[0][2] ) * d(matrix[1][0] )) ) __lowercase = (d(matrix[0][0] ) * d(matrix[1][1] )) - ( d(matrix[0][1] ) * d(matrix[1][0] ) ) # Transpose the cofactor matrix (Adjoint matrix) __lowercase = array(A__ ) for i in range(3 ): for j in range(3 ): __lowercase = cofactor_matrix[j][i] # Inverse of the matrix using the formula (1/determinant) * adjoint matrix __lowercase = array(A__ ) for i in range(3 ): for j in range(3 ): inverse_matrix[i][j] /= d(A__ ) # Calculate the inverse of the matrix return [[float(d(A__ ) ) or 0.0 for n in row] for row in inverse_matrix] raise ValueError('''Please provide a matrix of size 2x2 or 3x3.''' )
104
'''simple docstring''' def _A ( A__ = 10 , A__ = 22 ): """simple docstring""" __lowercase = range(1 , A__ ) __lowercase = range(1 , A__ ) return sum( 1 for power in powers for base in bases if len(str(base**power ) ) == power ) if __name__ == "__main__": print(f'{solution(10, 22) = }')
104
1
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE_:Optional[Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_:List[str] = { """microsoft/unispeech-large-1500h-cv""": ( """https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json""" ), # See all UniSpeech models at https://huggingface.co/models?filter=unispeech } class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __lowerCamelCase : Optional[Any] = "unispeech" def __init__( self, lowerCamelCase__=32, lowerCamelCase__=768, lowerCamelCase__=12, lowerCamelCase__=12, lowerCamelCase__=3072, lowerCamelCase__="gelu", lowerCamelCase__=0.1, lowerCamelCase__=0.1, lowerCamelCase__=0.1, lowerCamelCase__=0.0, lowerCamelCase__=0.0, lowerCamelCase__=0.1, lowerCamelCase__=0.1, lowerCamelCase__=0.02, lowerCamelCase__=1e-5, lowerCamelCase__="group", lowerCamelCase__="gelu", lowerCamelCase__=(512, 512, 512, 512, 512, 512, 512), lowerCamelCase__=(5, 2, 2, 2, 2, 2, 2), lowerCamelCase__=(10, 3, 3, 3, 3, 2, 2), lowerCamelCase__=False, lowerCamelCase__=128, lowerCamelCase__=16, lowerCamelCase__=False, lowerCamelCase__=True, lowerCamelCase__=0.05, lowerCamelCase__=10, lowerCamelCase__=2, lowerCamelCase__=0.0, lowerCamelCase__=10, lowerCamelCase__=0, lowerCamelCase__=320, lowerCamelCase__=2, lowerCamelCase__=0.1, lowerCamelCase__=100, lowerCamelCase__=256, lowerCamelCase__=256, lowerCamelCase__=0.1, lowerCamelCase__="mean", lowerCamelCase__=False, lowerCamelCase__=False, lowerCamelCase__=256, lowerCamelCase__=80, lowerCamelCase__=0, lowerCamelCase__=1, lowerCamelCase__=2, lowerCamelCase__=0.5, **lowerCamelCase__, ): super().__init__(**lowerCamelCase__, pad_token_id=lowerCamelCase__, bos_token_id=lowerCamelCase__, eos_token_id=lowerCamelCase__ ) A : str = hidden_size A : Optional[Any] = feat_extract_norm A : Union[str, Any] = feat_extract_activation A : Optional[Any] = list(lowerCamelCase__ ) A : str = list(lowerCamelCase__ ) A : List[Any] = list(lowerCamelCase__ ) A : Optional[int] = conv_bias A : List[Any] = num_conv_pos_embeddings A : str = num_conv_pos_embedding_groups A : Union[str, Any] = len(self.conv_dim ) A : Optional[int] = num_hidden_layers A : Any = intermediate_size A : Optional[int] = hidden_act A : str = num_attention_heads A : Optional[Any] = hidden_dropout A : int = attention_dropout A : Any = activation_dropout A : Optional[Any] = feat_proj_dropout A : List[str] = final_dropout A : Optional[Any] = layerdrop A : str = layer_norm_eps A : int = initializer_range A : Tuple = num_ctc_classes A : Union[str, Any] = vocab_size A : Optional[int] = do_stable_layer_norm A : str = use_weighted_layer_sum A : List[str] = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( """Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==""" """ `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =""" f''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' f''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 A : int = apply_spec_augment A : Optional[int] = mask_time_prob A : int = mask_time_length A : str = mask_time_min_masks A : List[Any] = mask_feature_prob A : Tuple = mask_feature_length A : int = mask_feature_min_masks # parameters for pretraining with codevector quantized representations A : Optional[Any] = num_codevectors_per_group A : Union[str, Any] = num_codevector_groups A : Any = contrastive_logits_temperature A : Dict = feat_quantizer_dropout A : Union[str, Any] = num_negatives A : List[Any] = codevector_dim A : Optional[Any] = proj_codevector_dim A : List[Any] = diversity_loss_weight # ctc loss A : List[str] = ctc_loss_reduction A : List[str] = ctc_zero_infinity # pretraining loss A : List[Any] = replace_prob @property def _lowerCAmelCase ( self ): return functools.reduce(operator.mul, self.conv_stride, 1 )
115
from argparse import ArgumentParser from .env import EnvironmentCommand def __UpperCamelCase ( ) -> Dict: """simple docstring""" A : str = ArgumentParser("""Diffusers CLI tool""" , usage="""diffusers-cli <command> [<args>]""" ) A : int = parser.add_subparsers(help="""diffusers-cli command helpers""" ) # Register commands EnvironmentCommand.register_subcommand(_lowerCAmelCase ) # Let's go A : str = parser.parse_args() if not hasattr(_lowerCAmelCase , """func""" ): parser.print_help() exit(1 ) # Run A : Any = args.func(_lowerCAmelCase ) service.run() if __name__ == "__main__": main()
115
1
'''simple docstring''' from collections.abc import Iterator, MutableMapping from dataclasses import dataclass from typing import Generic, TypeVar a_ : Union[str, Any] = TypeVar("""KEY""") a_ : Tuple = TypeVar("""VAL""") @dataclass(frozen=lowercase , slots=lowercase ) class snake_case ( Generic[KEY, VAL] ): """simple docstring""" _lowerCamelCase = 42 _lowerCamelCase = 42 class snake_case ( _Item ): """simple docstring""" def __init__( self ): """simple docstring""" super().__init__(UpperCamelCase , UpperCamelCase ) def __bool__( self ): """simple docstring""" return False a_ : Optional[int] = _DeletedItem() class snake_case ( MutableMapping[KEY, VAL] ): """simple docstring""" def __init__( self , UpperCamelCase = 8 , UpperCamelCase = 0.75 ): """simple docstring""" lowerCamelCase_ = initial_block_size lowerCamelCase_ = [None] * initial_block_size assert 0.0 < capacity_factor < 1.0 lowerCamelCase_ = capacity_factor lowerCamelCase_ = 0 def snake_case ( self , UpperCamelCase ): """simple docstring""" return hash(UpperCamelCase ) % len(self._buckets ) def snake_case ( self , UpperCamelCase ): """simple docstring""" return (ind + 1) % len(self._buckets ) def snake_case ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase ): """simple docstring""" lowerCamelCase_ = self._buckets[ind] if not stored: lowerCamelCase_ = _Item(UpperCamelCase , UpperCamelCase ) self._len += 1 return True elif stored.key == key: lowerCamelCase_ = _Item(UpperCamelCase , UpperCamelCase ) return True else: return False def snake_case ( self ): """simple docstring""" lowerCamelCase_ = len(self._buckets ) * self._capacity_factor return len(self ) >= int(UpperCamelCase ) def snake_case ( self ): """simple docstring""" if len(self._buckets ) <= self._initial_block_size: return False lowerCamelCase_ = len(self._buckets ) * self._capacity_factor / 2 return len(self ) < limit def snake_case ( self , UpperCamelCase ): """simple docstring""" lowerCamelCase_ = self._buckets lowerCamelCase_ = [None] * new_size lowerCamelCase_ = 0 for item in old_buckets: if item: self._add_item(item.key , item.val ) def snake_case ( self ): """simple docstring""" self._resize(len(self._buckets ) * 2 ) def snake_case ( self ): """simple docstring""" self._resize(len(self._buckets ) // 2 ) def snake_case ( self , UpperCamelCase ): """simple docstring""" lowerCamelCase_ = self._get_bucket_index(UpperCamelCase ) for _ in range(len(self._buckets ) ): yield ind lowerCamelCase_ = self._get_next_ind(UpperCamelCase ) def snake_case ( self , UpperCamelCase , UpperCamelCase ): """simple docstring""" for ind in self._iterate_buckets(UpperCamelCase ): if self._try_set(UpperCamelCase , UpperCamelCase , UpperCamelCase ): break def __setitem__( self , UpperCamelCase , UpperCamelCase ): """simple docstring""" if self._is_full(): self._size_up() self._add_item(UpperCamelCase , UpperCamelCase ) def __delitem__( self , UpperCamelCase ): """simple docstring""" for ind in self._iterate_buckets(UpperCamelCase ): lowerCamelCase_ = self._buckets[ind] if item is None: raise KeyError(UpperCamelCase ) if item is _deleted: continue if item.key == key: lowerCamelCase_ = _deleted self._len -= 1 break if self._is_sparse(): self._size_down() def __getitem__( self , UpperCamelCase ): """simple docstring""" for ind in self._iterate_buckets(UpperCamelCase ): lowerCamelCase_ = self._buckets[ind] if item is None: break if item is _deleted: continue if item.key == key: return item.val raise KeyError(UpperCamelCase ) def __len__( self ): """simple docstring""" return self._len def __iter__( self ): """simple docstring""" yield from (item.key for item in self._buckets if item) def __repr__( self ): """simple docstring""" lowerCamelCase_ = " ,".join( f'''{item.key}: {item.val}''' for item in self._buckets if item ) return f'''HashMap({val_string})'''
55
'''simple docstring''' import json import os import unittest from transformers.models.blenderbot_small.tokenization_blenderbot_small import ( VOCAB_FILES_NAMES, BlenderbotSmallTokenizer, ) from ...test_tokenization_common import TokenizerTesterMixin class snake_case ( lowercase , unittest.TestCase ): """simple docstring""" _lowerCamelCase = BlenderbotSmallTokenizer _lowerCamelCase = False def snake_case ( self ): """simple docstring""" super().setUp() lowerCamelCase_ = ["__start__", "adapt", "act", "ap@@", "te", "__end__", "__unk__"] lowerCamelCase_ = dict(zip(UpperCamelCase , range(len(UpperCamelCase ) ) ) ) lowerCamelCase_ = ["#version: 0.2", "a p", "t e</w>", "ap t</w>", "a d", "ad apt</w>", "a c", "ac t</w>", ""] lowerCamelCase_ = {"unk_token": "__unk__", "bos_token": "__start__", "eos_token": "__end__"} lowerCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) lowerCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(UpperCamelCase ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(UpperCamelCase ) ) def snake_case ( self , **UpperCamelCase ): """simple docstring""" kwargs.update(self.special_tokens_map ) return BlenderbotSmallTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase ) def snake_case ( self , UpperCamelCase ): """simple docstring""" lowerCamelCase_ = "adapt act apte" lowerCamelCase_ = "adapt act apte" return input_text, output_text def snake_case ( self ): """simple docstring""" lowerCamelCase_ = BlenderbotSmallTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) lowerCamelCase_ = "adapt act apte" lowerCamelCase_ = ["adapt", "act", "ap@@", "te"] lowerCamelCase_ = tokenizer.tokenize(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowerCamelCase_ = [tokenizer.bos_token] + tokens + [tokenizer.eos_token] lowerCamelCase_ = [0, 1, 2, 3, 4, 5] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase ) , UpperCamelCase ) def snake_case ( self ): """simple docstring""" lowerCamelCase_ = BlenderbotSmallTokenizer.from_pretrained("facebook/blenderbot-90M" ) assert tok("sam" ).input_ids == [1384] lowerCamelCase_ = "I am a small frog." lowerCamelCase_ = tok([src_text] , padding=UpperCamelCase , truncation=UpperCamelCase )["input_ids"] lowerCamelCase_ = tok.batch_decode(UpperCamelCase , skip_special_tokens=UpperCamelCase , clean_up_tokenization_spaces=UpperCamelCase )[0] assert src_text != decoded # I wish it did! assert decoded == "i am a small frog ." def snake_case ( self ): """simple docstring""" lowerCamelCase_ = BlenderbotSmallTokenizer.from_pretrained("facebook/blenderbot-90M" ) lowerCamelCase_ = "I am a small frog ." lowerCamelCase_ = "." lowerCamelCase_ = tok(UpperCamelCase )["input_ids"] lowerCamelCase_ = tok(UpperCamelCase )["input_ids"] assert encoded[-1] == encoded_dot[0]
55
1
"""simple docstring""" from __future__ import annotations def _A (__a , __a ) -> bool: """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = get_failure_array(__a ) # 2) Step through text searching for pattern SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : int = 0, 0 # index into text, pattern while i < len(__a ): if pattern[j] == text[i]: if j == (len(__a ) - 1): return True j += 1 # if this is a prefix in our pattern # just go back far enough to continue elif j > 0: SCREAMING_SNAKE_CASE_ : Optional[int] = failure[j - 1] continue i += 1 return False def _A (__a ) -> list[int]: """simple docstring""" SCREAMING_SNAKE_CASE_ : int = [0] SCREAMING_SNAKE_CASE_ : Tuple = 0 SCREAMING_SNAKE_CASE_ : Dict = 1 while j < len(__a ): if pattern[i] == pattern[j]: i += 1 elif i > 0: SCREAMING_SNAKE_CASE_ : Tuple = failure[i - 1] continue j += 1 failure.append(__a ) return failure if __name__ == "__main__": # Test 1) UpperCAmelCase_ : Any = """abc1abc12""" UpperCAmelCase_ : List[Any] = """alskfjaldsabc1abc1abc12k23adsfabcabc""" UpperCAmelCase_ : Union[str, Any] = """alskfjaldsk23adsfabcabc""" assert kmp(pattern, texta) and not kmp(pattern, texta) # Test 2) UpperCAmelCase_ : Optional[Any] = """ABABX""" UpperCAmelCase_ : List[Any] = """ABABZABABYABABX""" assert kmp(pattern, text) # Test 3) UpperCAmelCase_ : Tuple = """AAAB""" UpperCAmelCase_ : Optional[Any] = """ABAAAAAB""" assert kmp(pattern, text) # Test 4) UpperCAmelCase_ : Dict = """abcdabcy""" UpperCAmelCase_ : Dict = """abcxabcdabxabcdabcdabcy""" assert kmp(pattern, text) # Test 5) UpperCAmelCase_ : Any = """aabaabaaa""" assert get_failure_array(pattern) == [0, 1, 0, 1, 2, 3, 4, 5, 2]
318
"""simple docstring""" import random import unittest import numpy as np import torch from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionUpscalePipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class lowerCAmelCase__ ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase = "ssube/stable-diffusion-x4-upscaler-onnx" def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowercase_ : Union[str, Any]=0): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[int] = floats_tensor((1, 3, 128, 128) , rng=random.Random(lowercase_)) SCREAMING_SNAKE_CASE_ : List[str] = torch.manual_seed(lowercase_) SCREAMING_SNAKE_CASE_ : List[str] = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 3, '''guidance_scale''': 7.5, '''output_type''': '''numpy''', } return inputs def _SCREAMING_SNAKE_CASE ( self : int): '''simple docstring''' SCREAMING_SNAKE_CASE_ : str = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''') pipe.set_progress_bar_config(disable=lowercase_) SCREAMING_SNAKE_CASE_ : Tuple = self.get_dummy_inputs() SCREAMING_SNAKE_CASE_ : Union[str, Any] = pipe(**lowercase_).images SCREAMING_SNAKE_CASE_ : Dict = image[0, -3:, -3:, -1].flatten() # started as 128, should now be 512 assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE_ : Any = np.array( [0.6_97_47_82, 0.68_90_20_93, 0.70_13_58_85, 0.7_58_36_18, 0.7_80_45_45, 0.7_85_49_12, 0.78_66_74_26, 0.78_74_38_63, 0.78_07_02_23]) assert np.abs(image_slice - expected_slice).max() < 1e-1 def _SCREAMING_SNAKE_CASE ( self : List[str]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : int = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''') SCREAMING_SNAKE_CASE_ : Optional[int] = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=lowercase_) pipe.set_progress_bar_config(disable=lowercase_) SCREAMING_SNAKE_CASE_ : Any = self.get_dummy_inputs() SCREAMING_SNAKE_CASE_ : Optional[Any] = pipe(**lowercase_).images SCREAMING_SNAKE_CASE_ : int = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE_ : Any = np.array( [0.6_89_88_92, 0.59_24_05_56, 0.52_49_95_27, 0.58_86_62_15, 0.52_25_82_35, 0.52_57_27_15, 0.62_41_44_73, 0.6_17_43_87, 0.6_21_49_64]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 def _SCREAMING_SNAKE_CASE ( self : str): '''simple docstring''' SCREAMING_SNAKE_CASE_ : str = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''') SCREAMING_SNAKE_CASE_ : Union[str, Any] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=lowercase_) SCREAMING_SNAKE_CASE_ : List[str] = self.get_dummy_inputs() SCREAMING_SNAKE_CASE_ : Tuple = pipe(**lowercase_).images SCREAMING_SNAKE_CASE_ : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE_ : Tuple = np.array( [0.7_65_92_78, 0.76_43_76_64, 0.75_57_91_07, 0.7_69_11_16, 0.77_66_69_86, 0.7_72_76_72, 0.7_75_86_64, 0.7_81_22_26, 0.76_94_25_15]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 def _SCREAMING_SNAKE_CASE ( self : str): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[Any] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''') SCREAMING_SNAKE_CASE_ : List[Any] = EulerDiscreteScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=lowercase_) SCREAMING_SNAKE_CASE_ : Any = self.get_dummy_inputs() SCREAMING_SNAKE_CASE_ : Optional[Any] = pipe(**lowercase_).images SCREAMING_SNAKE_CASE_ : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE_ : Optional[Any] = np.array( [0.6_97_47_82, 0.68_90_20_93, 0.70_13_58_85, 0.7_58_36_18, 0.7_80_45_45, 0.7_85_49_12, 0.78_66_74_26, 0.78_74_38_63, 0.78_07_02_23]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 def _SCREAMING_SNAKE_CASE ( self : Optional[int]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Tuple = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''') SCREAMING_SNAKE_CASE_ : int = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=lowercase_) SCREAMING_SNAKE_CASE_ : List[str] = self.get_dummy_inputs() SCREAMING_SNAKE_CASE_ : Optional[int] = pipe(**lowercase_).images SCREAMING_SNAKE_CASE_ : str = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE_ : int = np.array( [0.77_42_44_96, 0.77_36_01, 0.7_64_52_88, 0.7_76_95_98, 0.7_77_27_39, 0.7_73_86_88, 0.78_18_72_33, 0.77_87_95_84, 0.76_70_43]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 @nightly @require_onnxruntime @require_torch_gpu class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' @property def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): '''simple docstring''' return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def _SCREAMING_SNAKE_CASE ( self : str): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[Any] = ort.SessionOptions() SCREAMING_SNAKE_CASE_ : Optional[int] = False return options def _SCREAMING_SNAKE_CASE ( self : str): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Tuple = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''') SCREAMING_SNAKE_CASE_ : Tuple = init_image.resize((128, 128)) # using the PNDM scheduler by default SCREAMING_SNAKE_CASE_ : List[str] = OnnxStableDiffusionUpscalePipeline.from_pretrained( '''ssube/stable-diffusion-x4-upscaler-onnx''' , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=lowercase_) SCREAMING_SNAKE_CASE_ : Union[str, Any] = '''A fantasy landscape, trending on artstation''' SCREAMING_SNAKE_CASE_ : Union[str, Any] = torch.manual_seed(0) SCREAMING_SNAKE_CASE_ : List[Any] = pipe( prompt=lowercase_ , image=lowercase_ , guidance_scale=7.5 , num_inference_steps=10 , generator=lowercase_ , output_type='''np''' , ) SCREAMING_SNAKE_CASE_ : Optional[int] = output.images SCREAMING_SNAKE_CASE_ : Optional[int] = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE_ : int = np.array([0.48_83, 0.49_47, 0.49_80, 0.49_75, 0.49_82, 0.49_80, 0.50_00, 0.50_06, 0.49_72]) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice).max() < 2e-2 def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Any = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''') SCREAMING_SNAKE_CASE_ : Tuple = init_image.resize((128, 128)) SCREAMING_SNAKE_CASE_ : Tuple = LMSDiscreteScheduler.from_pretrained( '''ssube/stable-diffusion-x4-upscaler-onnx''' , subfolder='''scheduler''') SCREAMING_SNAKE_CASE_ : str = OnnxStableDiffusionUpscalePipeline.from_pretrained( '''ssube/stable-diffusion-x4-upscaler-onnx''' , scheduler=lowercase_ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=lowercase_) SCREAMING_SNAKE_CASE_ : int = '''A fantasy landscape, trending on artstation''' SCREAMING_SNAKE_CASE_ : List[Any] = torch.manual_seed(0) SCREAMING_SNAKE_CASE_ : int = pipe( prompt=lowercase_ , image=lowercase_ , guidance_scale=7.5 , num_inference_steps=20 , generator=lowercase_ , output_type='''np''' , ) SCREAMING_SNAKE_CASE_ : Optional[int] = output.images SCREAMING_SNAKE_CASE_ : Dict = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE_ : List[str] = np.array( [0.50_17_37_53, 0.50_22_33_56, 0.50_20_39, 0.50_23_30_36, 0.5_02_37_25, 0.5_02_26_01, 0.5_01_87_58, 0.50_23_40_85, 0.50_24_15_66]) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice).max() < 2e-2
318
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __A : List[str] = { '''configuration_mobilenet_v2''': [ '''MOBILENET_V2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MobileNetV2Config''', '''MobileNetV2OnnxConfig''', ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Dict = ['''MobileNetV2FeatureExtractor'''] __A : Optional[int] = ['''MobileNetV2ImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Optional[Any] = [ '''MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MobileNetV2ForImageClassification''', '''MobileNetV2ForSemanticSegmentation''', '''MobileNetV2Model''', '''MobileNetV2PreTrainedModel''', '''load_tf_weights_in_mobilenet_v2''', ] if TYPE_CHECKING: from .configuration_mobilenet_va import ( MOBILENET_V2_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileNetVaConfig, MobileNetVaOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilenet_va import MobileNetVaFeatureExtractor from .image_processing_mobilenet_va import MobileNetVaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilenet_va import ( MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST, MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation, MobileNetVaModel, MobileNetVaPreTrainedModel, load_tf_weights_in_mobilenet_va, ) else: import sys __A : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
33
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, is_batched, to_numpy_array, valid_images, ) from ...utils import TensorType, logging snake_case : Union[str, Any] = logging.get_logger(__name__) class snake_case_ (lowerCamelCase_ ): UpperCAmelCase__ : List[Any] = ['''pixel_values'''] def __init__( self :Optional[int] ,__snake_case :bool = True ,__snake_case :Optional[Dict[str, int]] = None ,__snake_case :PILImageResampling = PILImageResampling.BICUBIC ,__snake_case :bool = True ,__snake_case :bool = True ,__snake_case :Union[int, float] = 1 / 2_55 ,__snake_case :Dict[str, int] = None ,__snake_case :bool = True ,__snake_case :Optional[Union[float, List[float]]] = None ,__snake_case :Optional[Union[float, List[float]]] = None ,**__snake_case :Dict ,) -> None: super().__init__(**__snake_case ) a__ = size if size is not None else {'height': 2_24, 'width': 2_24} a__ = get_size_dict(__snake_case ) a__ = crop_size if crop_size is not None else {'height': 2_24, 'width': 2_24} a__ = get_size_dict(__snake_case ,default_to_square=__snake_case ,param_name='crop_size' ) a__ = do_resize a__ = do_rescale a__ = do_normalize a__ = do_center_crop a__ = crop_size a__ = size a__ = resample a__ = rescale_factor a__ = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN a__ = image_std if image_std is not None else IMAGENET_DEFAULT_STD def lowerCamelCase__( self :Dict ,__snake_case :np.ndarray ,__snake_case :Dict[str, int] ,__snake_case :PILImageResampling = PILImageResampling.BILINEAR ,__snake_case :Optional[Union[str, ChannelDimension]] = None ,**__snake_case :List[Any] ,) -> np.ndarray: a__ = get_size_dict(__snake_case ) if "shortest_edge" in size: a__ = get_resize_output_image_size(__snake_case ,size=size['shortest_edge'] ,default_to_square=__snake_case ) # size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"]) elif "height" in size and "width" in size: a__ = (size['height'], size['width']) else: raise ValueError(F'Size must contain \'height\' and \'width\' keys or \'shortest_edge\' key. Got {size.keys()}' ) return resize(__snake_case ,size=__snake_case ,resample=__snake_case ,data_format=__snake_case ,**__snake_case ) def lowerCamelCase__( self :Dict ,__snake_case :np.ndarray ,__snake_case :Dict[str, int] ,__snake_case :Optional[Union[str, ChannelDimension]] = None ,**__snake_case :Any ,) -> np.ndarray: a__ = get_size_dict(__snake_case ) if "height" not in size or "width" not in size: raise ValueError(F'The `size` parameter must contain the keys (height, width). Got {size.keys()}' ) return center_crop(__snake_case ,size=(size['height'], size['width']) ,data_format=__snake_case ,**__snake_case ) def lowerCamelCase__( self :List[Any] ,__snake_case :np.ndarray ,__snake_case :float ,__snake_case :Optional[Union[str, ChannelDimension]] = None ,**__snake_case :int ) -> np.ndarray: return rescale(__snake_case ,scale=__snake_case ,data_format=__snake_case ,**__snake_case ) def lowerCamelCase__( self :Tuple ,__snake_case :np.ndarray ,__snake_case :Union[float, List[float]] ,__snake_case :Union[float, List[float]] ,__snake_case :Optional[Union[str, ChannelDimension]] = None ,**__snake_case :Any ,) -> np.ndarray: return normalize(__snake_case ,mean=__snake_case ,std=__snake_case ,data_format=__snake_case ,**__snake_case ) def lowerCamelCase__( self :Any ,__snake_case :ImageInput ,__snake_case :Optional[bool] = None ,__snake_case :Dict[str, int] = None ,__snake_case :PILImageResampling = None ,__snake_case :bool = None ,__snake_case :int = None ,__snake_case :Optional[bool] = None ,__snake_case :Optional[float] = None ,__snake_case :Optional[bool] = None ,__snake_case :Optional[Union[float, List[float]]] = None ,__snake_case :Optional[Union[float, List[float]]] = None ,__snake_case :Optional[Union[str, TensorType]] = None ,__snake_case :Union[str, ChannelDimension] = ChannelDimension.FIRST ,**__snake_case :Optional[int] ,) -> BatchFeature: a__ = do_resize if do_resize is not None else self.do_resize a__ = do_rescale if do_rescale is not None else self.do_rescale a__ = do_normalize if do_normalize is not None else self.do_normalize a__ = do_center_crop if do_center_crop is not None else self.do_center_crop a__ = crop_size if crop_size is not None else self.crop_size a__ = get_size_dict(__snake_case ,param_name='crop_size' ,default_to_square=__snake_case ) a__ = resample if resample is not None else self.resample a__ = rescale_factor if rescale_factor is not None else self.rescale_factor a__ = image_mean if image_mean is not None else self.image_mean a__ = image_std if image_std is not None else self.image_std a__ = size if size is not None else self.size a__ = get_size_dict(__snake_case ) if not is_batched(__snake_case ): a__ = [images] if not valid_images(__snake_case ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) # All transformations expect numpy arrays. a__ = [to_numpy_array(__snake_case ) for image in images] if do_resize: a__ = [self.resize(image=__snake_case ,size=__snake_case ,resample=__snake_case ) for image in images] if do_center_crop: a__ = [self.center_crop(image=__snake_case ,size=__snake_case ) for image in images] if do_rescale: a__ = [self.rescale(image=__snake_case ,scale=__snake_case ) for image in images] if do_normalize: a__ = [self.normalize(image=__snake_case ,mean=__snake_case ,std=__snake_case ) for image in images] a__ = [to_channel_dimension_format(__snake_case ,__snake_case ) for image in images] a__ = {'pixel_values': images} return BatchFeature(data=__snake_case ,tensor_type=__snake_case )
240
0
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = { 'facebook/convnextv2-tiny-1k-224': 'https://huggingface.co/facebook/convnextv2-tiny-1k-224/resolve/main/config.json', } class _UpperCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ): _UpperCamelCase : str = '''convnextv2''' def __init__( self: List[str] , _SCREAMING_SNAKE_CASE: str=3 , _SCREAMING_SNAKE_CASE: Optional[Any]=4 , _SCREAMING_SNAKE_CASE: Union[str, Any]=4 , _SCREAMING_SNAKE_CASE: Union[str, Any]=None , _SCREAMING_SNAKE_CASE: Optional[int]=None , _SCREAMING_SNAKE_CASE: List[str]="gelu" , _SCREAMING_SNAKE_CASE: Dict=0.02 , _SCREAMING_SNAKE_CASE: List[Any]=1e-12 , _SCREAMING_SNAKE_CASE: List[str]=0.0 , _SCREAMING_SNAKE_CASE: Union[str, Any]=224 , _SCREAMING_SNAKE_CASE: Any=None , _SCREAMING_SNAKE_CASE: str=None , **_SCREAMING_SNAKE_CASE: Tuple , ) -> Dict: """simple docstring""" super().__init__(**_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = num_channels UpperCamelCase_ = patch_size UpperCamelCase_ = num_stages UpperCamelCase_ = [96, 192, 384, 768] if hidden_sizes is None else hidden_sizes UpperCamelCase_ = [3, 3, 9, 3] if depths is None else depths UpperCamelCase_ = hidden_act UpperCamelCase_ = initializer_range UpperCamelCase_ = layer_norm_eps UpperCamelCase_ = drop_path_rate UpperCamelCase_ = image_size UpperCamelCase_ = ["stem"] + [f'''stage{idx}''' for idx in range(1 , len(self.depths ) + 1 )] UpperCamelCase_ , UpperCamelCase_ = get_aligned_output_features_output_indices( out_features=_SCREAMING_SNAKE_CASE , out_indices=_SCREAMING_SNAKE_CASE , stage_names=self.stage_names )
366
def lowerCAmelCase_ ( UpperCamelCase_ ) -> int: UpperCamelCase_ = len(UpperCamelCase_ ) UpperCamelCase_ = len(matrix[0] ) UpperCamelCase_ = min(UpperCamelCase_ , UpperCamelCase_ ) for row in range(UpperCamelCase_ ): # Check if diagonal element is not zero if matrix[row][row] != 0: # Eliminate all the elements below the diagonal for col in range(row + 1 , UpperCamelCase_ ): UpperCamelCase_ = matrix[col][row] / matrix[row][row] for i in range(UpperCamelCase_ , UpperCamelCase_ ): matrix[col][i] -= multiplier * matrix[row][i] else: # Find a non-zero diagonal element to swap rows UpperCamelCase_ = True for i in range(row + 1 , UpperCamelCase_ ): if matrix[i][row] != 0: UpperCamelCase_ , UpperCamelCase_ = matrix[i], matrix[row] UpperCamelCase_ = False break if reduce: rank -= 1 for i in range(UpperCamelCase_ ): UpperCamelCase_ = matrix[i][rank] # Reduce the row pointer by one to stay on the same row row -= 1 return rank if __name__ == "__main__": import doctest doctest.testmod()
328
0
"""simple docstring""" import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowerCAmelCase__ : '''simple docstring''' def __init__( self : str , lowercase_ : str , lowercase_ : Union[str, Any]=13 , lowercase_ : Dict=32 , lowercase_ : str=2 , lowercase_ : Union[str, Any]=3 , lowercase_ : List[str]=16 , lowercase_ : int=[32, 64, 128] , lowercase_ : List[Any]=[1, 2, 1] , lowercase_ : int=[2, 2, 4] , lowercase_ : str=2 , lowercase_ : Optional[Any]=2.0 , lowercase_ : List[str]=True , lowercase_ : List[str]=0.0 , lowercase_ : List[Any]=0.0 , lowercase_ : Tuple=0.1 , lowercase_ : Union[str, Any]="gelu" , lowercase_ : int=False , lowercase_ : Dict=True , lowercase_ : int=0.02 , lowercase_ : Optional[Any]=1e-5 , lowercase_ : int=True , lowercase_ : Union[str, Any]=None , lowercase_ : List[str]=True , lowercase_ : Tuple=10 , lowercase_ : Any=8 , lowercase_ : Any=["stage1", "stage2"] , lowercase_ : str=[1, 2] , ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Any = parent SCREAMING_SNAKE_CASE_ : Optional[int] = batch_size SCREAMING_SNAKE_CASE_ : Optional[int] = image_size SCREAMING_SNAKE_CASE_ : Union[str, Any] = patch_size SCREAMING_SNAKE_CASE_ : Union[str, Any] = num_channels SCREAMING_SNAKE_CASE_ : Optional[int] = embed_dim SCREAMING_SNAKE_CASE_ : Dict = hidden_sizes SCREAMING_SNAKE_CASE_ : str = depths SCREAMING_SNAKE_CASE_ : Any = num_heads SCREAMING_SNAKE_CASE_ : Optional[Any] = window_size SCREAMING_SNAKE_CASE_ : List[str] = mlp_ratio SCREAMING_SNAKE_CASE_ : Any = qkv_bias SCREAMING_SNAKE_CASE_ : Dict = hidden_dropout_prob SCREAMING_SNAKE_CASE_ : List[str] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ : str = drop_path_rate SCREAMING_SNAKE_CASE_ : Union[str, Any] = hidden_act SCREAMING_SNAKE_CASE_ : Optional[Any] = use_absolute_embeddings SCREAMING_SNAKE_CASE_ : Optional[Any] = patch_norm SCREAMING_SNAKE_CASE_ : Any = layer_norm_eps SCREAMING_SNAKE_CASE_ : Optional[int] = initializer_range SCREAMING_SNAKE_CASE_ : str = is_training SCREAMING_SNAKE_CASE_ : Any = scope SCREAMING_SNAKE_CASE_ : str = use_labels SCREAMING_SNAKE_CASE_ : Tuple = type_sequence_label_size SCREAMING_SNAKE_CASE_ : str = encoder_stride SCREAMING_SNAKE_CASE_ : Any = out_features SCREAMING_SNAKE_CASE_ : List[str] = out_indices def _SCREAMING_SNAKE_CASE ( self : Any): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) SCREAMING_SNAKE_CASE_ : Any = None if self.use_labels: SCREAMING_SNAKE_CASE_ : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size) SCREAMING_SNAKE_CASE_ : str = self.get_config() return config, pixel_values, labels def _SCREAMING_SNAKE_CASE ( self : Tuple): '''simple docstring''' return FocalNetConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , hidden_sizes=self.hidden_sizes , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def _SCREAMING_SNAKE_CASE ( self : Tuple , lowercase_ : List[str] , lowercase_ : Dict , lowercase_ : Optional[int]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[int] = FocalNetModel(config=lowercase_) model.to(lowercase_) model.eval() SCREAMING_SNAKE_CASE_ : Optional[Any] = model(lowercase_) SCREAMING_SNAKE_CASE_ : Tuple = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths) - 1)) SCREAMING_SNAKE_CASE_ : Any = int(config.embed_dim * 2 ** (len(config.depths) - 1)) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim)) def _SCREAMING_SNAKE_CASE ( self : int , lowercase_ : Optional[Any] , lowercase_ : List[Any] , lowercase_ : Dict): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[Any] = FocalNetBackbone(config=lowercase_) model.to(lowercase_) model.eval() SCREAMING_SNAKE_CASE_ : int = model(lowercase_) # verify feature maps self.parent.assertEqual(len(result.feature_maps) , len(config.out_features)) self.parent.assertListEqual(list(result.feature_maps[0].shape) , [self.batch_size, self.image_size, 8, 8]) # verify channels self.parent.assertEqual(len(model.channels) , len(config.out_features)) self.parent.assertListEqual(model.channels , config.hidden_sizes[:-1]) # verify backbone works with out_features=None SCREAMING_SNAKE_CASE_ : List[Any] = None SCREAMING_SNAKE_CASE_ : str = FocalNetBackbone(config=lowercase_) model.to(lowercase_) model.eval() SCREAMING_SNAKE_CASE_ : str = model(lowercase_) # verify feature maps self.parent.assertEqual(len(result.feature_maps) , 1) self.parent.assertListEqual(list(result.feature_maps[0].shape) , [self.batch_size, self.image_size * 2, 4, 4]) # verify channels self.parent.assertEqual(len(model.channels) , 1) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]]) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowercase_ : Union[str, Any] , lowercase_ : List[Any] , lowercase_ : Tuple): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Union[str, Any] = FocalNetForMaskedImageModeling(config=lowercase_) model.to(lowercase_) model.eval() SCREAMING_SNAKE_CASE_ : Tuple = model(lowercase_) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size)) # test greyscale images SCREAMING_SNAKE_CASE_ : List[str] = 1 SCREAMING_SNAKE_CASE_ : Any = FocalNetForMaskedImageModeling(lowercase_) model.to(lowercase_) model.eval() SCREAMING_SNAKE_CASE_ : Optional[int] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) SCREAMING_SNAKE_CASE_ : Dict = model(lowercase_) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size)) def _SCREAMING_SNAKE_CASE ( self : int , lowercase_ : Tuple , lowercase_ : str , lowercase_ : str): '''simple docstring''' SCREAMING_SNAKE_CASE_ : int = self.type_sequence_label_size SCREAMING_SNAKE_CASE_ : Optional[int] = FocalNetForImageClassification(lowercase_) model.to(lowercase_) model.eval() SCREAMING_SNAKE_CASE_ : Tuple = model(lowercase_ , labels=lowercase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) # test greyscale images SCREAMING_SNAKE_CASE_ : Optional[int] = 1 SCREAMING_SNAKE_CASE_ : Optional[int] = FocalNetForImageClassification(lowercase_) model.to(lowercase_) model.eval() SCREAMING_SNAKE_CASE_ : int = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) SCREAMING_SNAKE_CASE_ : str = model(lowercase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) def _SCREAMING_SNAKE_CASE ( self : Tuple): '''simple docstring''' SCREAMING_SNAKE_CASE_ : int = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[str] = config_and_inputs SCREAMING_SNAKE_CASE_ : Optional[int] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase__ ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase = ( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) __UpperCamelCase = ( {"feature-extraction": FocalNetModel, "image-classification": FocalNetForImageClassification} if is_torch_available() else {} ) __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False def _SCREAMING_SNAKE_CASE ( self : Any): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[int] = FocalNetModelTester(self) SCREAMING_SNAKE_CASE_ : List[str] = ConfigTester(self , config_class=lowercase_ , embed_dim=37 , has_text_modality=lowercase_) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _SCREAMING_SNAKE_CASE ( self : List[str]): '''simple docstring''' return def _SCREAMING_SNAKE_CASE ( self : List[str]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_) def _SCREAMING_SNAKE_CASE ( self : List[str]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*lowercase_) def _SCREAMING_SNAKE_CASE ( self : Tuple): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowercase_) def _SCREAMING_SNAKE_CASE ( self : int): '''simple docstring''' SCREAMING_SNAKE_CASE_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowercase_) @unittest.skip(reason='''FocalNet does not use inputs_embeds''') def _SCREAMING_SNAKE_CASE ( self : List[Any]): '''simple docstring''' pass @unittest.skip(reason='''FocalNet does not use feedforward chunking''') def _SCREAMING_SNAKE_CASE ( self : str): '''simple docstring''' pass def _SCREAMING_SNAKE_CASE ( self : Tuple): '''simple docstring''' SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: SCREAMING_SNAKE_CASE_ : Any = model_class(lowercase_) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) SCREAMING_SNAKE_CASE_ : Optional[int] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowercase_ , nn.Linear)) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: SCREAMING_SNAKE_CASE_ : List[Any] = model_class(lowercase_) SCREAMING_SNAKE_CASE_ : List[Any] = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE_ : Optional[int] = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE_ : List[Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowercase_) def _SCREAMING_SNAKE_CASE ( self : str , lowercase_ : str , lowercase_ : List[str] , lowercase_ : Optional[int] , lowercase_ : List[Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Union[str, Any] = model_class(lowercase_) model.to(lowercase_) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE_ : Optional[Any] = model(**self._prepare_for_class(lowercase_ , lowercase_)) SCREAMING_SNAKE_CASE_ : List[str] = outputs.hidden_states SCREAMING_SNAKE_CASE_ : List[Any] = getattr( self.model_tester , '''expected_num_hidden_layers''' , len(self.model_tester.depths) + 1) self.assertEqual(len(lowercase_) , lowercase_) # FocalNet has a different seq_length SCREAMING_SNAKE_CASE_ : List[Any] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable) else (config.patch_size, config.patch_size) ) SCREAMING_SNAKE_CASE_ : List[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:]) , [num_patches, self.model_tester.embed_dim] , ) SCREAMING_SNAKE_CASE_ : Optional[int] = outputs.reshaped_hidden_states self.assertEqual(len(lowercase_) , lowercase_) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[Any] = reshaped_hidden_states[0].shape SCREAMING_SNAKE_CASE_ : int = ( reshaped_hidden_states[0].view(lowercase_ , lowercase_ , height * width).permute(0 , 2 , 1) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:]) , [num_patches, self.model_tester.embed_dim] , ) def _SCREAMING_SNAKE_CASE ( self : List[str]): '''simple docstring''' SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Any = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ : Optional[int] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: SCREAMING_SNAKE_CASE_ : List[Any] = True self.check_hidden_states_output(lowercase_ , lowercase_ , lowercase_ , lowercase_) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE_ : List[str] = True self.check_hidden_states_output(lowercase_ , lowercase_ , lowercase_ , lowercase_) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ : List[str] = 3 SCREAMING_SNAKE_CASE_ : Any = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable) else (self.model_tester.image_size, self.model_tester.image_size) ) SCREAMING_SNAKE_CASE_ : Tuple = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable) else (config.patch_size, config.patch_size) ) SCREAMING_SNAKE_CASE_ : Any = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) SCREAMING_SNAKE_CASE_ : List[str] = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: SCREAMING_SNAKE_CASE_ : Any = True self.check_hidden_states_output(lowercase_ , lowercase_ , lowercase_ , (padded_height, padded_width)) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE_ : Dict = True self.check_hidden_states_output(lowercase_ , lowercase_ , lowercase_ , (padded_height, padded_width)) @slow def _SCREAMING_SNAKE_CASE ( self : Optional[int]): '''simple docstring''' for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE_ : Union[str, Any] = FocalNetModel.from_pretrained(lowercase_) self.assertIsNotNone(lowercase_) def _SCREAMING_SNAKE_CASE ( self : Tuple): '''simple docstring''' SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Dict = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ : Dict = _config_zero_init(lowercase_) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ : List[str] = model_class(config=lowercase_) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , ) @require_vision @require_torch class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' @cached_property def _SCREAMING_SNAKE_CASE ( self : int): '''simple docstring''' return AutoImageProcessor.from_pretrained('''microsoft/focalnet-tiny''') if is_vision_available() else None @slow def _SCREAMING_SNAKE_CASE ( self : List[Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Any = FocalNetForImageClassification.from_pretrained('''microsoft/focalnet-tiny''').to(lowercase_) SCREAMING_SNAKE_CASE_ : List[str] = self.default_image_processor SCREAMING_SNAKE_CASE_ : List[str] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''') SCREAMING_SNAKE_CASE_ : str = image_processor(images=lowercase_ , return_tensors='''pt''').to(lowercase_) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE_ : Union[str, Any] = model(**lowercase_) # verify the logits SCREAMING_SNAKE_CASE_ : Optional[Any] = torch.Size((1, 1000)) self.assertEqual(outputs.logits.shape , lowercase_) SCREAMING_SNAKE_CASE_ : List[str] = torch.tensor([0.21_66, -0.43_68, 0.21_91]).to(lowercase_) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowercase_ , atol=1e-4)) self.assertTrue(outputs.logits.argmax(dim=-1).item() , 281) @require_torch class lowerCAmelCase__ ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase = (FocalNetBackbone,) if is_torch_available() else () __UpperCamelCase = FocalNetConfig __UpperCamelCase = False def _SCREAMING_SNAKE_CASE ( self : Tuple): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[Any] = FocalNetModelTester(self)
91
"""simple docstring""" import copy import tempfile import unittest from huggingface_hub import HfFolder, delete_repo from parameterized import parameterized from requests.exceptions import HTTPError from transformers import AutoConfig, GenerationConfig from transformers.testing_utils import TOKEN, USER, is_staging_test class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' @parameterized.expand([(None,), ('''foo.json''',)]) def _SCREAMING_SNAKE_CASE ( self : Dict , lowercase_ : Union[str, Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[str] = GenerationConfig( do_sample=lowercase_ , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowercase_ , config_name=lowercase_) SCREAMING_SNAKE_CASE_ : Tuple = GenerationConfig.from_pretrained(lowercase_ , config_name=lowercase_) # Checks parameters that were specified self.assertEqual(loaded_config.do_sample , lowercase_) self.assertEqual(loaded_config.temperature , 0.7) self.assertEqual(loaded_config.length_penalty , 1.0) self.assertEqual(loaded_config.bad_words_ids , [[1, 2, 3], [4, 5]]) # Checks parameters that were not specified (defaults) self.assertEqual(loaded_config.top_k , 50) self.assertEqual(loaded_config.max_length , 20) self.assertEqual(loaded_config.max_time , lowercase_) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[Any] = AutoConfig.from_pretrained('''gpt2''') SCREAMING_SNAKE_CASE_ : int = GenerationConfig.from_model_config(lowercase_) SCREAMING_SNAKE_CASE_ : int = GenerationConfig() # The generation config has loaded a few non-default parameters from the model config self.assertNotEqual(lowercase_ , lowercase_) # One of those parameters is eos_token_id -- check if it matches self.assertNotEqual(generation_config_from_model.eos_token_id , default_generation_config.eos_token_id) self.assertEqual(generation_config_from_model.eos_token_id , model_config.eos_token_id) def _SCREAMING_SNAKE_CASE ( self : Dict): '''simple docstring''' SCREAMING_SNAKE_CASE_ : str = GenerationConfig() SCREAMING_SNAKE_CASE_ : Any = { '''max_new_tokens''': 1024, '''foo''': '''bar''', } SCREAMING_SNAKE_CASE_ : str = copy.deepcopy(lowercase_) SCREAMING_SNAKE_CASE_ : Tuple = generation_config.update(**lowercase_) # update_kwargs was not modified (no side effects) self.assertEqual(lowercase_ , lowercase_) # update_kwargs was used to update the config on valid attributes self.assertEqual(generation_config.max_new_tokens , 1024) # `.update()` returns a dictionary of unused kwargs self.assertEqual(lowercase_ , {'''foo''': '''bar'''}) def _SCREAMING_SNAKE_CASE ( self : Any): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[Any] = GenerationConfig() SCREAMING_SNAKE_CASE_ : List[str] = '''bar''' with tempfile.TemporaryDirectory('''test-generation-config''') as tmp_dir: generation_config.save_pretrained(lowercase_) SCREAMING_SNAKE_CASE_ : List[Any] = GenerationConfig.from_pretrained(lowercase_) # update_kwargs was used to update the config on valid attributes self.assertEqual(new_config.foo , '''bar''') SCREAMING_SNAKE_CASE_ : Optional[Any] = GenerationConfig.from_model_config(lowercase_) assert not hasattr(lowercase_ , '''foo''') # no new kwargs should be initialized if from config def _SCREAMING_SNAKE_CASE ( self : Tuple): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Tuple = GenerationConfig() self.assertEqual(default_config.temperature , 1.0) self.assertEqual(default_config.do_sample , lowercase_) self.assertEqual(default_config.num_beams , 1) SCREAMING_SNAKE_CASE_ : Dict = GenerationConfig( do_sample=lowercase_ , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) self.assertEqual(config.temperature , 0.7) self.assertEqual(config.do_sample , lowercase_) self.assertEqual(config.num_beams , 1) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowercase_) SCREAMING_SNAKE_CASE_ : Tuple = GenerationConfig.from_pretrained(lowercase_ , temperature=1.0) self.assertEqual(loaded_config.temperature , 1.0) self.assertEqual(loaded_config.do_sample , lowercase_) self.assertEqual(loaded_config.num_beams , 1) # default value @is_staging_test class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' @classmethod def _SCREAMING_SNAKE_CASE ( cls : Any): '''simple docstring''' SCREAMING_SNAKE_CASE_ : str = TOKEN HfFolder.save_token(lowercase_) @classmethod def _SCREAMING_SNAKE_CASE ( cls : List[str]): '''simple docstring''' try: delete_repo(token=cls._token , repo_id='''test-generation-config''') except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-generation-config-org''') except HTTPError: pass def _SCREAMING_SNAKE_CASE ( self : Dict): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Tuple = GenerationConfig( do_sample=lowercase_ , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub('''test-generation-config''' , use_auth_token=self._token) SCREAMING_SNAKE_CASE_ : int = GenerationConfig.from_pretrained(F'{USER}/test-generation-config') for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowercase_ , getattr(lowercase_ , lowercase_)) # Reset repo delete_repo(token=self._token , repo_id='''test-generation-config''') # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( lowercase_ , repo_id='''test-generation-config''' , push_to_hub=lowercase_ , use_auth_token=self._token) SCREAMING_SNAKE_CASE_ : Optional[int] = GenerationConfig.from_pretrained(F'{USER}/test-generation-config') for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowercase_ , getattr(lowercase_ , lowercase_)) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Dict = GenerationConfig( do_sample=lowercase_ , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub('''valid_org/test-generation-config-org''' , use_auth_token=self._token) SCREAMING_SNAKE_CASE_ : Any = GenerationConfig.from_pretrained('''valid_org/test-generation-config-org''') for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowercase_ , getattr(lowercase_ , lowercase_)) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-generation-config-org''') # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( lowercase_ , repo_id='''valid_org/test-generation-config-org''' , push_to_hub=lowercase_ , use_auth_token=self._token) SCREAMING_SNAKE_CASE_ : Any = GenerationConfig.from_pretrained('''valid_org/test-generation-config-org''') for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowercase_ , getattr(lowercase_ , lowercase_))
91
1
from __future__ import annotations import time from collections.abc import Sequence from random import randint from matplotlib import pyplot as plt def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): if not arr: return None, None, 0 if low == high: return low, high, arr[low] __snake_case : Optional[int] = (low + high) // 2 __snake_case : Union[str, Any] = max_subarray(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) __snake_case : int = max_subarray(__lowerCamelCase , mid + 1 , __lowerCamelCase ) __snake_case : List[Any] = max_cross_sum(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) if left_sum >= right_sum and left_sum >= cross_sum: return left_low, left_high, left_sum elif right_sum >= left_sum and right_sum >= cross_sum: return right_low, right_high, right_sum return cross_left, cross_right, cross_sum def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): __snake_case : int = float("-inf" ), -1 __snake_case : Tuple = float("-inf" ), -1 __snake_case : int | float = 0 for i in range(__lowerCamelCase , low - 1 , -1 ): summ += arr[i] if summ > left_sum: __snake_case : int = summ __snake_case : str = i __snake_case : Dict = 0 for i in range(mid + 1 , high + 1 ): summ += arr[i] if summ > right_sum: __snake_case : Any = summ __snake_case : Dict = i return max_left, max_right, (left_sum + right_sum) def lowerCAmelCase_ ( __lowerCamelCase ): __snake_case : Union[str, Any] = [randint(1 , __lowerCamelCase ) for _ in range(__lowerCamelCase )] __snake_case : Dict = time.time() max_subarray(__lowerCamelCase , 0 , input_size - 1 ) __snake_case : Dict = time.time() return end - start def lowerCAmelCase_ ( ): __snake_case : Dict = [1_0, 1_0_0, 1_0_0_0, 1_0_0_0_0, 5_0_0_0_0, 1_0_0_0_0_0, 2_0_0_0_0_0, 3_0_0_0_0_0, 4_0_0_0_0_0, 5_0_0_0_0_0] __snake_case : Optional[Any] = [time_max_subarray(__lowerCamelCase ) for input_size in input_sizes] print("No of Inputs\t\tTime Taken" ) for input_size, runtime in zip(__lowerCamelCase , __lowerCamelCase ): print(__lowerCamelCase , "\t\t" , __lowerCamelCase ) plt.plot(__lowerCamelCase , __lowerCamelCase ) plt.xlabel("Number of Inputs" ) plt.ylabel("Time taken in seconds" ) plt.show() if __name__ == "__main__": from doctest import testmod testmod()
357
from typing import Dict import numpy as np import torch from . import residue_constants as rc from .tensor_utils import tensor_tree_map, tree_map def lowerCAmelCase_ ( __lowerCamelCase ): __snake_case : Any = [] __snake_case : Optional[Any] = [] __snake_case : List[Any] = [] for rt in rc.restypes: __snake_case : Any = rc.restype_name_to_atomaa_names[rc.restype_atoa[rt]] restype_atomaa_to_atomaa_list.append([(rc.atom_order[name] if name else 0) for name in atom_names] ) __snake_case : Tuple = {name: i for i, name in enumerate(__lowerCamelCase )} restype_atomaa_to_atomaa_list.append( [(atom_name_to_idxaa[name] if name in atom_name_to_idxaa else 0) for name in rc.atom_types] ) restype_atomaa_mask_list.append([(1.0 if name else 0.0) for name in atom_names] ) # Add dummy mapping for restype 'UNK' restype_atomaa_to_atomaa_list.append([0] * 1_4 ) restype_atomaa_to_atomaa_list.append([0] * 3_7 ) restype_atomaa_mask_list.append([0.0] * 1_4 ) __snake_case : int = torch.tensor( __lowerCamelCase , dtype=torch.intaa , device=protein["aatype"].device , ) __snake_case : List[str] = torch.tensor( __lowerCamelCase , dtype=torch.intaa , device=protein["aatype"].device , ) __snake_case : Optional[Any] = torch.tensor( __lowerCamelCase , dtype=torch.floataa , device=protein["aatype"].device , ) __snake_case : Optional[int] = protein["aatype"].to(torch.long ) # create the mapping for (residx, atom14) --> atom37, i.e. an array # with shape (num_res, 14) containing the atom37 indices for this protein __snake_case : Optional[Any] = restype_atomaa_to_atomaa[protein_aatype] __snake_case : Tuple = restype_atomaa_mask[protein_aatype] __snake_case : Optional[Any] = residx_atomaa_mask __snake_case : Union[str, Any] = residx_atomaa_to_atomaa.long() # create the gather indices for mapping back __snake_case : Dict = restype_atomaa_to_atomaa[protein_aatype] __snake_case : Dict = residx_atomaa_to_atomaa.long() # create the corresponding mask __snake_case : List[str] = torch.zeros([2_1, 3_7] , dtype=torch.floataa , device=protein["aatype"].device ) for restype, restype_letter in enumerate(rc.restypes ): __snake_case : List[str] = rc.restype_atoa[restype_letter] __snake_case : List[Any] = rc.residue_atoms[restype_name] for atom_name in atom_names: __snake_case : Union[str, Any] = rc.atom_order[atom_name] __snake_case : str = 1 __snake_case : List[str] = restype_atomaa_mask[protein_aatype] __snake_case : List[str] = residx_atomaa_mask return protein def lowerCAmelCase_ ( __lowerCamelCase ): __snake_case : str = tree_map(lambda __lowerCamelCase : torch.tensor(__lowerCamelCase , device=batch["aatype"].device ) , __lowerCamelCase , np.ndarray ) __snake_case : str = tensor_tree_map(lambda __lowerCamelCase : np.array(__lowerCamelCase ) , make_atomaa_masks(__lowerCamelCase ) ) return out
134
0
"""simple docstring""" from collections.abc import Callable def lowerCamelCase ( _UpperCamelCase : Callable[[float], float] , _UpperCamelCase : float , _UpperCamelCase : float ) -> float: '''simple docstring''' __UpperCAmelCase : float = a __UpperCAmelCase : float = b if function(_UpperCamelCase ) == 0: # one of the a or b is a root for the function return a elif function(_UpperCamelCase ) == 0: return b elif ( function(_UpperCamelCase ) * function(_UpperCamelCase ) > 0 ): # if none of these are root and they are both positive or negative, # then this algorithm can't find the root raise ValueError("""could not find root in given interval.""" ) else: __UpperCAmelCase : float = start + (end - start) / 2.0 while abs(start - mid ) > 1_0**-7: # until precisely equals to 10^-7 if function(_UpperCamelCase ) == 0: return mid elif function(_UpperCamelCase ) * function(_UpperCamelCase ) < 0: __UpperCAmelCase : Union[str, Any] = mid else: __UpperCAmelCase : List[Any] = mid __UpperCAmelCase : Optional[Any] = start + (end - start) / 2.0 return mid def lowerCamelCase ( _UpperCamelCase : float ) -> float: '''simple docstring''' return x**3 - 2 * x - 5 if __name__ == "__main__": print(bisection(f, 1, 1000)) import doctest doctest.testmod()
115
"""simple docstring""" import os import sys from contextlib import contextmanager # Windows only if os.name == "nt": import ctypes import msvcrt # noqa class lowerCamelCase__ ( ctypes.Structure ): """simple docstring""" __a = [("""size""", ctypes.c_int), ("""visible""", ctypes.c_byte)] def lowerCamelCase ( ) -> Optional[int]: '''simple docstring''' if os.name == "nt": __UpperCAmelCase : Dict = CursorInfo() __UpperCAmelCase : Any = ctypes.windll.kernelaa.GetStdHandle(-1_1 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(_UpperCamelCase , ctypes.byref(_UpperCamelCase ) ) __UpperCAmelCase : Tuple = False ctypes.windll.kernelaa.SetConsoleCursorInfo(_UpperCamelCase , ctypes.byref(_UpperCamelCase ) ) elif os.name == "posix": sys.stdout.write("""\033[?25l""" ) sys.stdout.flush() def lowerCamelCase ( ) -> Optional[int]: '''simple docstring''' if os.name == "nt": __UpperCAmelCase : str = CursorInfo() __UpperCAmelCase : int = ctypes.windll.kernelaa.GetStdHandle(-1_1 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(_UpperCamelCase , ctypes.byref(_UpperCamelCase ) ) __UpperCAmelCase : Union[str, Any] = True ctypes.windll.kernelaa.SetConsoleCursorInfo(_UpperCamelCase , ctypes.byref(_UpperCamelCase ) ) elif os.name == "posix": sys.stdout.write("""\033[?25h""" ) sys.stdout.flush() @contextmanager def lowerCamelCase ( ) -> str: '''simple docstring''' try: hide_cursor() yield finally: show_cursor()
115
1
"""simple docstring""" from collections.abc import Callable import numpy as np def _A ( _a : Callable , _a : float , _a : float , _a : float , _a : float ): """simple docstring""" A = int(np.ceil((x_end - xa) / step_size ) ) A = np.zeros((n + 1,) ) A = ya A = xa for k in range(_a ): A = y[k] + step_size * ode_func(_a , y[k] ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
77
"""simple docstring""" class lowerCamelCase__ : '''simple docstring''' def __init__( self ) -> Any: A = 0 A = 0 A = {} def UpperCamelCase__ ( self ,lowerCamelCase_ ) -> List[str]: if vertex not in self.adjacency: A = {} self.num_vertices += 1 def UpperCamelCase__ ( self ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) -> Optional[Any]: self.add_vertex(lowerCamelCase_ ) self.add_vertex(lowerCamelCase_ ) if head == tail: return A = weight A = weight def UpperCamelCase__ ( self ) -> List[str]: A = self.get_edges() for edge in edges: A , A , A = edge edges.remove((tail, head, weight) ) for i in range(len(lowerCamelCase_ ) ): A = list(edges[i] ) edges.sort(key=lambda lowerCamelCase_ : e[2] ) for i in range(len(lowerCamelCase_ ) - 1 ): if edges[i][2] >= edges[i + 1][2]: A = edges[i][2] + 1 for edge in edges: A , A , A = edge A = weight A = weight def __str__( self ) -> Dict: A = """""" for tail in self.adjacency: for head in self.adjacency[tail]: A = self.adjacency[head][tail] string += f'{head} -> {tail} == {weight}\n' return string.rstrip("""\n""" ) def UpperCamelCase__ ( self ) -> Optional[Any]: A = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail]) ) return output def UpperCamelCase__ ( self ) -> List[str]: return self.adjacency.keys() @staticmethod def UpperCamelCase__ ( lowerCamelCase_=None ,lowerCamelCase_=None ) -> Optional[Any]: A = Graph() if vertices is None: A = [] if edges is None: A = [] for vertex in vertices: g.add_vertex(lowerCamelCase_ ) for edge in edges: g.add_edge(*lowerCamelCase_ ) return g class lowerCamelCase__ : '''simple docstring''' def __init__( self ) -> List[str]: A = {} A = {} def __len__( self ) -> List[str]: return len(self.parent ) def UpperCamelCase__ ( self ,lowerCamelCase_ ) -> List[str]: if item in self.parent: return self.find(lowerCamelCase_ ) A = item A = 0 return item def UpperCamelCase__ ( self ,lowerCamelCase_ ) -> Union[str, Any]: if item not in self.parent: return self.make_set(lowerCamelCase_ ) if item != self.parent[item]: A = self.find(self.parent[item] ) return self.parent[item] def UpperCamelCase__ ( self ,lowerCamelCase_ ,lowerCamelCase_ ) -> Any: A = self.find(lowerCamelCase_ ) A = self.find(lowerCamelCase_ ) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: A = roota return roota if self.rank[roota] < self.rank[roota]: A = roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 A = roota return roota return None @staticmethod def UpperCamelCase__ ( lowerCamelCase_ ) -> List[str]: A = graph.num_vertices A = Graph.UnionFind() A = [] while num_components > 1: A = {} for vertex in graph.get_vertices(): A = -1 A = graph.get_edges() for edge in edges: A , A , A = edge edges.remove((tail, head, weight) ) for edge in edges: A , A , A = edge A = union_find.find(lowerCamelCase_ ) A = union_find.find(lowerCamelCase_ ) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: A = [head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: A = [head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: A , A , A = cheap_edge[vertex] if union_find.find(lowerCamelCase_ ) != union_find.find(lowerCamelCase_ ): union_find.union(lowerCamelCase_ ,lowerCamelCase_ ) mst_edges.append(cheap_edge[vertex] ) A = num_components - 1 A = Graph.build(edges=lowerCamelCase_ ) return mst
77
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __lowercase : Tuple = logging.get_logger(__name__) __lowercase : Tuple = { '''facebook/xmod-base''': '''https://huggingface.co/facebook/xmod-base/resolve/main/config.json''', '''facebook/xmod-large-prenorm''': '''https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json''', '''facebook/xmod-base-13-125k''': '''https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json''', '''facebook/xmod-base-30-125k''': '''https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json''', '''facebook/xmod-base-30-195k''': '''https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json''', '''facebook/xmod-base-60-125k''': '''https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json''', '''facebook/xmod-base-60-265k''': '''https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json''', '''facebook/xmod-base-75-125k''': '''https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json''', '''facebook/xmod-base-75-269k''': '''https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json''', } class __lowercase ( _lowercase ): lowerCamelCase : Any = "xmod" def __init__(self , A=3_0_5_2_2 , A=7_6_8 , A=1_2 , A=1_2 , A=3_0_7_2 , A="gelu" , A=0.1 , A=0.1 , A=5_1_2 , A=2 , A=0.02 , A=1E-12 , A=1 , A=0 , A=2 , A="absolute" , A=True , A=None , A=False , A=2 , A=False , A=True , A=True , A=("en_XX",) , A=None , **A , ): super().__init__(pad_token_id=A , bos_token_id=A , eos_token_id=A , **A ) lowerCamelCase_ : List[str] = vocab_size lowerCamelCase_ : Optional[int] = hidden_size lowerCamelCase_ : Optional[int] = num_hidden_layers lowerCamelCase_ : List[Any] = num_attention_heads lowerCamelCase_ : Tuple = hidden_act lowerCamelCase_ : Any = intermediate_size lowerCamelCase_ : Dict = hidden_dropout_prob lowerCamelCase_ : Optional[int] = attention_probs_dropout_prob lowerCamelCase_ : str = max_position_embeddings lowerCamelCase_ : List[Any] = type_vocab_size lowerCamelCase_ : Dict = initializer_range lowerCamelCase_ : Dict = layer_norm_eps lowerCamelCase_ : str = position_embedding_type lowerCamelCase_ : Tuple = use_cache lowerCamelCase_ : List[Any] = classifier_dropout lowerCamelCase_ : Dict = pre_norm lowerCamelCase_ : Union[str, Any] = adapter_reduction_factor lowerCamelCase_ : Optional[int] = adapter_layer_norm lowerCamelCase_ : List[str] = adapter_reuse_layer_norm lowerCamelCase_ : Any = ln_before_adapter lowerCamelCase_ : Tuple = list(A ) lowerCamelCase_ : int = default_language class __lowercase ( _lowercase ): @property def UpperCAmelCase__ (self ): if self.task == "multiple-choice": lowerCamelCase_ : str = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: lowerCamelCase_ : Any = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
318
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __lowercase : str = logging.get_logger(__name__) __lowercase : Tuple = {'''ctrl''': '''https://huggingface.co/ctrl/resolve/main/config.json'''} class __lowercase ( _lowercase ): lowerCamelCase : int = "ctrl" lowerCamelCase : Optional[int] = ["past_key_values"] lowerCamelCase : Optional[int] = { "max_position_embeddings": "n_positions", "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__(self , A=2_4_6_5_3_4 , A=2_5_6 , A=1_2_8_0 , A=8_1_9_2 , A=4_8 , A=1_6 , A=0.1 , A=0.1 , A=1E-6 , A=0.02 , A=True , **A , ): lowerCamelCase_ : List[str] = vocab_size lowerCamelCase_ : Optional[Any] = n_positions lowerCamelCase_ : List[Any] = n_embd lowerCamelCase_ : Optional[Any] = n_layer lowerCamelCase_ : Any = n_head lowerCamelCase_ : int = dff lowerCamelCase_ : str = resid_pdrop lowerCamelCase_ : List[Any] = embd_pdrop lowerCamelCase_ : List[Any] = layer_norm_epsilon lowerCamelCase_ : Any = initializer_range lowerCamelCase_ : Dict = use_cache super().__init__(**A )
318
1
import warnings from ...utils import logging from .image_processing_segformer import SegformerImageProcessor __a :List[str] = logging.get_logger(__name__) class _a ( snake_case_ ): """simple docstring""" def __init__( self : str , *UpperCAmelCase : int , **UpperCAmelCase : List[Any] ): warnings.warn( "The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use SegformerImageProcessor instead." , UpperCAmelCase , ) super().__init__(*UpperCAmelCase , **UpperCAmelCase )
329
import warnings from ...utils import logging from .image_processing_videomae import VideoMAEImageProcessor __a :Optional[Any] = logging.get_logger(__name__) class _a ( snake_case_ ): """simple docstring""" def __init__( self : List[str] , *UpperCAmelCase : int , **UpperCAmelCase : Optional[int] ): warnings.warn( "The class VideoMAEFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use VideoMAEImageProcessor instead." , UpperCAmelCase , ) super().__init__(*UpperCAmelCase , **UpperCAmelCase )
329
1
def __snake_case ( __UpperCamelCase : int ,__UpperCamelCase : list[int] ,__UpperCamelCase : int ): """simple docstring""" def count_of_possible_combinations(__UpperCamelCase : int ) -> int: if target < 0: return 0 if target == 0: return 1 return sum(count_of_possible_combinations(target - item ) for item in array ) return count_of_possible_combinations(__UpperCamelCase ) def __snake_case ( __UpperCamelCase : int ,__UpperCamelCase : list[int] ,__UpperCamelCase : int ): """simple docstring""" def count_of_possible_combinations_with_dp_array( __UpperCamelCase : int ,__UpperCamelCase : list[int] ) -> int: if target < 0: return 0 if target == 0: return 1 if dp_array[target] != -1: return dp_array[target] A_ = sum( count_of_possible_combinations_with_dp_array(target - item ,__UpperCamelCase ) for item in array ) A_ = answer return answer A_ = [-1] * (target + 1) return count_of_possible_combinations_with_dp_array(__UpperCamelCase ,__UpperCamelCase ) def __snake_case ( __UpperCamelCase : int ,__UpperCamelCase : list[int] ,__UpperCamelCase : int ): """simple docstring""" A_ = [0] * (target + 1) A_ = 1 for i in range(1 ,target + 1 ): for j in range(__UpperCamelCase ): if i - array[j] >= 0: dp_array[i] += dp_array[i - array[j]] return dp_array[target] if __name__ == "__main__": import doctest doctest.testmod() __a :int = 3 __a :Any = 5 __a :List[Any] = [1, 2, 5] print(combination_sum_iv(n, array, target))
312
import math def A_ ( snake_case : int ) -> bool: '''simple docstring''' return math.sqrt(snake_case ) * math.sqrt(snake_case ) == num def A_ ( snake_case : int ) -> bool: '''simple docstring''' __UpperCamelCase = 0 __UpperCamelCase = n while left <= right: __UpperCamelCase = (left + right) // 2 if mid**2 == n: return True elif mid**2 > n: __UpperCamelCase = mid - 1 else: __UpperCamelCase = mid + 1 return False if __name__ == "__main__": import doctest doctest.testmod()
328
0
'''simple docstring''' import inspect import unittest from transformers import ViTHybridConfig from transformers.testing_utils import require_accelerate, require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel from transformers.models.vit_hybrid.modeling_vit_hybrid import VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class A : def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=13 , SCREAMING_SNAKE_CASE=64 , SCREAMING_SNAKE_CASE=2 , SCREAMING_SNAKE_CASE=3 , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=32 , SCREAMING_SNAKE_CASE=5 , SCREAMING_SNAKE_CASE=4 , SCREAMING_SNAKE_CASE=37 , SCREAMING_SNAKE_CASE="gelu" , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=10 , SCREAMING_SNAKE_CASE=0.02 , SCREAMING_SNAKE_CASE=[1, 16, 4, 4] , SCREAMING_SNAKE_CASE=None , ) -> Union[str, Any]: """simple docstring""" A : Any = parent A : str = batch_size A : Optional[Any] = image_size A : Dict = patch_size A : List[str] = num_channels A : Optional[int] = is_training A : List[str] = use_labels A : Tuple = hidden_size A : Optional[int] = num_hidden_layers A : Optional[Any] = num_attention_heads A : int = intermediate_size A : Union[str, Any] = hidden_act A : Dict = hidden_dropout_prob A : Union[str, Any] = attention_probs_dropout_prob A : Dict = type_sequence_label_size A : List[Any] = initializer_range A : int = scope A : Dict = backbone_featmap_shape # in ViT hybrid, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) # the number of patches is based on the feature map of the backbone, which by default uses an output stride # of 32, which means that the feature map has a spatial resolution of 1/32 of the input image size A : Tuple = (self.image_size // 32) ** 2 A : Union[str, Any] = num_patches + 1 def __lowerCAmelCase ( self ) -> Optional[int]: """simple docstring""" A : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A : Optional[int] = None if self.use_labels: A : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A : Union[str, Any] = self.get_config() return config, pixel_values, labels def __lowerCAmelCase ( self ) -> Any: """simple docstring""" A : Union[str, Any] = { '''global_padding''': '''same''', '''layer_type''': '''bottleneck''', '''depths''': [3, 4, 9], '''out_features''': ['''stage1''', '''stage2''', '''stage3'''], '''embedding_dynamic_padding''': True, '''hidden_sizes''': [4, 8, 16, 32], '''num_groups''': 2, } return ViTHybridConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , backbone_featmap_shape=self.backbone_featmap_shape , backbone_config=SCREAMING_SNAKE_CASE , ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" A : Optional[int] = ViTHybridModel(config=SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() A : Union[str, Any] = model(SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" A : Optional[int] = self.type_sequence_label_size A : Dict = ViTHybridForImageClassification(SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() A : Dict = model(SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __lowerCAmelCase ( self ) -> List[str]: """simple docstring""" A : Union[str, Any] = self.prepare_config_and_inputs() A : Tuple = config_and_inputs A : Union[str, Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class A ( __snake_case , __snake_case , unittest.TestCase ): __magic_name__ = (ViTHybridModel, ViTHybridForImageClassification) if is_torch_available() else () __magic_name__ = ( {'''feature-extraction''': ViTHybridModel, '''image-classification''': ViTHybridForImageClassification} if is_torch_available() else {} ) __magic_name__ = False __magic_name__ = False __magic_name__ = False def __lowerCAmelCase ( self ) -> Dict: """simple docstring""" A : Optional[int] = ViTHybridModelTester(self ) A : str = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE , has_text_modality=SCREAMING_SNAKE_CASE , hidden_size=37 ) def __lowerCAmelCase ( self ) -> Optional[Any]: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='''ViT does not use inputs_embeds''' ) def __lowerCAmelCase ( self ) -> int: """simple docstring""" pass def __lowerCAmelCase ( self ) -> List[Any]: """simple docstring""" A : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A : List[Any] = model_class(SCREAMING_SNAKE_CASE ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) A : str = model.get_output_embeddings() self.assertTrue(x is None or isinstance(SCREAMING_SNAKE_CASE , nn.Linear ) ) def __lowerCAmelCase ( self ) -> str: """simple docstring""" A : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A : int = model_class(SCREAMING_SNAKE_CASE ) A : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A : Tuple = [*signature.parameters.keys()] A : int = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> Any: """simple docstring""" A : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> List[Any]: """simple docstring""" A : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> Union[str, Any]: """simple docstring""" A : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() A : Union[str, Any] = _config_zero_init(SCREAMING_SNAKE_CASE ) for model_class in self.all_model_classes: A : Union[str, Any] = model_class(config=SCREAMING_SNAKE_CASE ) # Skip the check for the backbone for name, module in model.named_modules(): if module.__class__.__name__ == "ViTHybridPatchEmbeddings": A : List[Any] = [F'{name}.{key}' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , ) @slow def __lowerCAmelCase ( self ) -> Optional[Any]: """simple docstring""" for model_name in VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A : Optional[int] = ViTHybridModel.from_pretrained(SCREAMING_SNAKE_CASE ) self.assertIsNotNone(SCREAMING_SNAKE_CASE ) def lowerCAmelCase_ ( ): '''simple docstring''' A : Optional[Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class A ( unittest.TestCase ): @cached_property def __lowerCAmelCase ( self ) -> Dict: """simple docstring""" return ( ViTHybridImageProcessor.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def __lowerCAmelCase ( self ) -> Tuple: """simple docstring""" A : Optional[int] = ViTHybridForImageClassification.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( SCREAMING_SNAKE_CASE ) A : List[str] = self.default_image_processor A : Any = prepare_img() A : List[str] = image_processor(images=SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).to(SCREAMING_SNAKE_CASE ) # forward pass with torch.no_grad(): A : List[str] = model(**SCREAMING_SNAKE_CASE ) # verify the logits A : Union[str, Any] = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE ) A : Dict = torch.tensor([-1.9_090, -0.4_993, -0.2_389] ).to(SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE , atol=1e-4 ) ) @slow @require_accelerate def __lowerCAmelCase ( self ) -> Any: """simple docstring""" A : Optional[int] = ViTHybridImageProcessor.from_pretrained('''google/vit-hybrid-base-bit-384''' ) A : Union[str, Any] = ViTHybridForImageClassification.from_pretrained('''google/vit-hybrid-base-bit-384''' , device_map='''auto''' ) A : Any = prepare_img() A : List[Any] = image_processor(images=SCREAMING_SNAKE_CASE , return_tensors='''pt''' ) A : Optional[int] = model(**SCREAMING_SNAKE_CASE ) A : List[Any] = outputs.logits # model predicts one of the 1000 ImageNet classes A : Any = logits.argmax(-1 ).item() self.assertTrue(model.config.idalabel[predicted_class_idx] , '''tabby, tabby cat''' )
357
'''simple docstring''' import unittest from transformers import BertGenerationConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import BertGenerationDecoder, BertGenerationEncoder class A : def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=13 , SCREAMING_SNAKE_CASE=7 , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=99 , SCREAMING_SNAKE_CASE=32 , SCREAMING_SNAKE_CASE=5 , SCREAMING_SNAKE_CASE=4 , SCREAMING_SNAKE_CASE=37 , SCREAMING_SNAKE_CASE="gelu" , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=50 , SCREAMING_SNAKE_CASE=0.02 , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=None , ) -> str: """simple docstring""" A : Any = parent A : List[Any] = batch_size A : Union[str, Any] = seq_length A : Any = is_training A : int = use_input_mask A : Union[str, Any] = vocab_size A : List[Any] = hidden_size A : List[Any] = num_hidden_layers A : Optional[int] = num_attention_heads A : str = intermediate_size A : Tuple = hidden_act A : Union[str, Any] = hidden_dropout_prob A : Union[str, Any] = attention_probs_dropout_prob A : int = max_position_embeddings A : Optional[int] = initializer_range A : Any = use_labels A : Optional[int] = scope def __lowerCAmelCase ( self ) -> List[Any]: """simple docstring""" A : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A : Optional[int] = None if self.use_input_mask: A : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) if self.use_labels: A : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A : Dict = self.get_config() return config, input_ids, input_mask, token_labels def __lowerCAmelCase ( self ) -> Tuple: """simple docstring""" return BertGenerationConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , is_decoder=SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , ) def __lowerCAmelCase ( self ) -> List[str]: """simple docstring""" ( ( A ), ( A ), ( A ), ( A ), ) : Any = self.prepare_config_and_inputs() A : Tuple = True A : int = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) A : str = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, input_mask, token_labels, encoder_hidden_states, encoder_attention_mask, ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , ) -> Any: """simple docstring""" A : List[str] = BertGenerationEncoder(config=SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() A : List[Any] = model(SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE ) A : int = model(SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , ) -> Union[str, Any]: """simple docstring""" A : List[str] = True A : Union[str, Any] = BertGenerationEncoder(config=SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() A : str = model( SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , encoder_hidden_states=SCREAMING_SNAKE_CASE , encoder_attention_mask=SCREAMING_SNAKE_CASE , ) A : List[Any] = model( SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , encoder_hidden_states=SCREAMING_SNAKE_CASE , ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , ) -> List[str]: """simple docstring""" A : Optional[Any] = True A : Tuple = True A : Optional[int] = BertGenerationDecoder(config=SCREAMING_SNAKE_CASE ).to(SCREAMING_SNAKE_CASE ).eval() # first forward pass A : str = model( SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , encoder_hidden_states=SCREAMING_SNAKE_CASE , encoder_attention_mask=SCREAMING_SNAKE_CASE , use_cache=SCREAMING_SNAKE_CASE , ) A : Optional[int] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids A : List[str] = ids_tensor((self.batch_size, 3) , config.vocab_size ) A : Tuple = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and A : Dict = torch.cat([input_ids, next_tokens] , dim=-1 ) A : List[str] = torch.cat([input_mask, next_mask] , dim=-1 ) A : str = model( SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , encoder_hidden_states=SCREAMING_SNAKE_CASE , encoder_attention_mask=SCREAMING_SNAKE_CASE , output_hidden_states=SCREAMING_SNAKE_CASE , )['''hidden_states'''][0] A : Any = model( SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , encoder_hidden_states=SCREAMING_SNAKE_CASE , encoder_attention_mask=SCREAMING_SNAKE_CASE , past_key_values=SCREAMING_SNAKE_CASE , output_hidden_states=SCREAMING_SNAKE_CASE , )['''hidden_states'''][0] # select random slice A : int = ids_tensor((1,) , output_from_past.shape[-1] ).item() A : List[Any] = output_from_no_past[:, -3:, random_slice_idx].detach() A : str = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , atol=1e-3 ) ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , *SCREAMING_SNAKE_CASE , ) -> Any: """simple docstring""" A : Optional[Any] = BertGenerationDecoder(SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() A : Optional[Any] = model(SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCAmelCase ( self ) -> str: """simple docstring""" A, A, A, A : Optional[int] = self.prepare_config_and_inputs() A : str = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class A ( __snake_case , __snake_case , __snake_case , unittest.TestCase ): __magic_name__ = (BertGenerationEncoder, BertGenerationDecoder) if is_torch_available() else () __magic_name__ = (BertGenerationDecoder,) if is_torch_available() else () __magic_name__ = ( {'''feature-extraction''': BertGenerationEncoder, '''text-generation''': BertGenerationDecoder} if is_torch_available() else {} ) def __lowerCAmelCase ( self ) -> Optional[Any]: """simple docstring""" A : List[str] = BertGenerationEncoderTester(self ) A : Union[str, Any] = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE , hidden_size=37 ) def __lowerCAmelCase ( self ) -> List[Any]: """simple docstring""" self.config_tester.run_common_tests() def __lowerCAmelCase ( self ) -> Dict: """simple docstring""" A : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> Any: """simple docstring""" A, A, A, A : Tuple = self.model_tester.prepare_config_and_inputs() A : str = '''bert''' self.model_tester.create_and_check_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> int: """simple docstring""" A : int = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> List[Any]: """simple docstring""" A : List[str] = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_decoder_model_past_large_inputs(*SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> Tuple: """simple docstring""" ( ( A ), ( A ), ( A ), ( A ), ( A ), ( A ), ) : Tuple = self.model_tester.prepare_config_and_inputs_for_decoder() A : Union[str, Any] = None self.model_tester.create_and_check_model_as_decoder( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , ) def __lowerCAmelCase ( self ) -> List[Any]: """simple docstring""" A : Dict = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_for_causal_lm(*SCREAMING_SNAKE_CASE ) @slow def __lowerCAmelCase ( self ) -> Any: """simple docstring""" A : Optional[Any] = BertGenerationEncoder.from_pretrained('''google/bert_for_seq_generation_L-24_bbc_encoder''' ) self.assertIsNotNone(SCREAMING_SNAKE_CASE ) @require_torch class A ( unittest.TestCase ): @slow def __lowerCAmelCase ( self ) -> Optional[Any]: """simple docstring""" A : Tuple = BertGenerationEncoder.from_pretrained('''google/bert_for_seq_generation_L-24_bbc_encoder''' ) A : Optional[Any] = torch.tensor([[101, 7592, 1010, 2026, 3899, 2003, 10140, 102]] ) with torch.no_grad(): A : Dict = model(SCREAMING_SNAKE_CASE )[0] A : Optional[Any] = torch.Size([1, 8, 1024] ) self.assertEqual(output.shape , SCREAMING_SNAKE_CASE ) A : Dict = torch.tensor( [[[0.1_775, 0.0_083, -0.0_321], [1.6_002, 0.1_287, 0.3_912], [2.1_473, 0.5_791, 0.6_066]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , SCREAMING_SNAKE_CASE , atol=1e-4 ) ) @require_torch class A ( unittest.TestCase ): @slow def __lowerCAmelCase ( self ) -> Optional[int]: """simple docstring""" A : Optional[Any] = BertGenerationDecoder.from_pretrained('''google/bert_for_seq_generation_L-24_bbc_encoder''' ) A : Dict = torch.tensor([[101, 7592, 1010, 2026, 3899, 2003, 10140, 102]] ) with torch.no_grad(): A : Optional[Any] = model(SCREAMING_SNAKE_CASE )[0] A : Optional[Any] = torch.Size([1, 8, 50358] ) self.assertEqual(output.shape , SCREAMING_SNAKE_CASE ) A : Any = torch.tensor( [[[-0.5_788, -2.5_994, -3.7_054], [0.0_438, 4.7_997, 1.8_795], [1.5_862, 6.6_409, 4.4_638]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , SCREAMING_SNAKE_CASE , atol=1e-4 ) )
311
0
import logging from transformers.configuration_utils import PretrainedConfig lowercase__ : List[str] = logging.getLogger(__name__) class UpperCAmelCase ( lowercase_ ): '''simple docstring''' lowerCAmelCase_ = '''masked_bert''' def __init__( self : int , __lowercase : List[Any]=3_05_22 , __lowercase : str=7_68 , __lowercase : Dict=12 , __lowercase : Optional[Any]=12 , __lowercase : int=30_72 , __lowercase : Any="gelu" , __lowercase : int=0.1 , __lowercase : Any=0.1 , __lowercase : Union[str, Any]=5_12 , __lowercase : Union[str, Any]=2 , __lowercase : Optional[Any]=0.02 , __lowercase : int=1E-12 , __lowercase : Any=0 , __lowercase : Union[str, Any]="topK" , __lowercase : str="constant" , __lowercase : List[Any]=0.0 , **__lowercase : str , ): """simple docstring""" super().__init__(pad_token_id=lowerCAmelCase_ , **lowerCAmelCase_ ) snake_case_ = vocab_size snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = hidden_act snake_case_ = intermediate_size snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = max_position_embeddings snake_case_ = type_vocab_size snake_case_ = initializer_range snake_case_ = layer_norm_eps snake_case_ = pruning_method snake_case_ = mask_init snake_case_ = mask_scale
187
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __snake_case : Union[str, Any] = logging.get_logger(__name__) __snake_case : int = { 'xlm-roberta-base': 'https://huggingface.co/xlm-roberta-base/resolve/main/config.json', 'xlm-roberta-large': 'https://huggingface.co/xlm-roberta-large/resolve/main/config.json', 'xlm-roberta-large-finetuned-conll02-dutch': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json' ), 'xlm-roberta-large-finetuned-conll02-spanish': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json' ), 'xlm-roberta-large-finetuned-conll03-english': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json' ), 'xlm-roberta-large-finetuned-conll03-german': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json' ), } class lowerCamelCase ( lowercase_ ): '''simple docstring''' __snake_case = 'xlm-roberta' def __init__( self : List[Any] , lowerCAmelCase_ : str=3_05_22 , lowerCAmelCase_ : Any=7_68 , lowerCAmelCase_ : Any=12 , lowerCAmelCase_ : Tuple=12 , lowerCAmelCase_ : List[Any]=30_72 , lowerCAmelCase_ : Tuple="gelu" , lowerCAmelCase_ : int=0.1 , lowerCAmelCase_ : List[str]=0.1 , lowerCAmelCase_ : Any=5_12 , lowerCAmelCase_ : int=2 , lowerCAmelCase_ : List[str]=0.02 , lowerCAmelCase_ : str=1e-12 , lowerCAmelCase_ : Optional[Any]=1 , lowerCAmelCase_ : Optional[int]=0 , lowerCAmelCase_ : Optional[Any]=2 , lowerCAmelCase_ : Any="absolute" , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : Dict=None , **lowerCAmelCase_ : int , ) -> Optional[Any]: '''simple docstring''' super().__init__(pad_token_id=lowerCAmelCase_ , bos_token_id=lowerCAmelCase_ , eos_token_id=lowerCAmelCase_ , **lowerCAmelCase_ ) A__ : Any =vocab_size A__ : Any =hidden_size A__ : Any =num_hidden_layers A__ : str =num_attention_heads A__ : Union[str, Any] =hidden_act A__ : Union[str, Any] =intermediate_size A__ : Optional[Any] =hidden_dropout_prob A__ : List[Any] =attention_probs_dropout_prob A__ : Dict =max_position_embeddings A__ : int =type_vocab_size A__ : Any =initializer_range A__ : Union[str, Any] =layer_norm_eps A__ : str =position_embedding_type A__ : str =use_cache A__ : Any =classifier_dropout class lowerCamelCase ( lowercase_ ): '''simple docstring''' @property def lowercase__ ( self : Optional[int] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": A__ : Union[str, Any] ={0: """batch""", 1: """choice""", 2: """sequence"""} else: A__ : str ={0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
134
0
from typing import Union import fire import torch from tqdm import tqdm def lowerCAmelCase( __lowerCamelCase , __lowerCamelCase = "cpu" , __lowerCamelCase = None ): __a = torch.load(__a , map_location=__a ) for k, v in tqdm(state_dict.items() ): if not isinstance(__a , torch.Tensor ): raise TypeError('FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin' ) __a = v.half() if save_path is None: # overwrite src_path __a = src_path torch.save(__a , __a ) if __name__ == "__main__": fire.Fire(convert)
350
def lowerCAmelCase( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): # Return True if there is node that has not iterated. __a = [False] * len(__lowerCamelCase ) __a = [] queue.append(__lowerCamelCase ) __a = True while queue: __a = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(__lowerCamelCase ) __a = True __a = u return visited[t] def lowerCAmelCase( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): # This array is filled by BFS and to store path __a = [-1] * (len(__lowerCamelCase )) __a = 0 while bfs(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): __a = float('Inf' ) __a = sink while s != source: # Find the minimum value in select path __a = min(__lowerCamelCase , graph[parent[s]][s] ) __a = parent[s] max_flow += path_flow __a = sink while v != source: __a = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow __a = parent[v] return max_flow lowerCamelCase_ : str = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] lowerCamelCase_ , lowerCamelCase_ : Union[str, Any] = 0, 5 print(ford_fulkerson(graph, source, sink))
197
0
"""simple docstring""" from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING _UpperCamelCase : Optional[int] = logging.get_logger(__name__) @add_end_docstrings(_a) class UpperCAmelCase_ ( _a): def __init__( self , *a , **a ) -> Union[str, Any]: super().__init__(*a , **a ) requires_backends(self , 'vision' ) self.check_model_type( TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == 'tf' else MODEL_FOR_VISION_2_SEQ_MAPPING ) def _UpperCAmelCase ( self , a=None , a=None , a=None ) -> Dict: lowercase__ : int = {} lowercase__ : List[str] = {} if prompt is not None: lowercase__ : Any = prompt if generate_kwargs is not None: lowercase__ : Dict = generate_kwargs if max_new_tokens is not None: if "generate_kwargs" not in forward_kwargs: lowercase__ : str = {} if "max_new_tokens" in forward_kwargs["generate_kwargs"]: raise ValueError( '\'max_new_tokens\' is defined twice, once in \'generate_kwargs\' and once as a direct parameter,' ' please use only one' ) lowercase__ : List[str] = max_new_tokens return preprocess_params, forward_kwargs, {} def __call__( self , a , **a ) -> List[str]: return super().__call__(a , **a ) def _UpperCAmelCase ( self , a , a=None ) -> Optional[Any]: lowercase__ : List[Any] = load_image(a ) if prompt is not None: if not isinstance(a , a ): raise ValueError( f"""Received an invalid text input, got - {type(a )} - but expected a single string. """ 'Note also that one single text can be provided for conditional image to text generation.' ) lowercase__ : Optional[Any] = self.model.config.model_type if model_type == "git": lowercase__ : List[str] = self.image_processor(images=a , return_tensors=self.framework ) lowercase__ : List[Any] = self.tokenizer(text=a , add_special_tokens=a ).input_ids lowercase__ : int = [self.tokenizer.cls_token_id] + input_ids lowercase__ : Tuple = torch.tensor(a ).unsqueeze(0 ) model_inputs.update({'input_ids': input_ids} ) elif model_type == "pix2struct": lowercase__ : Dict = self.image_processor(images=a , header_text=a , return_tensors=self.framework ) elif model_type != "vision-encoder-decoder": # vision-encoder-decoder does not support conditional generation lowercase__ : int = self.image_processor(images=a , return_tensors=self.framework ) lowercase__ : Optional[int] = self.tokenizer(a , return_tensors=self.framework ) model_inputs.update(a ) else: raise ValueError(f"""Model type {model_type} does not support conditional text generation""" ) else: lowercase__ : Any = self.image_processor(images=a , return_tensors=self.framework ) if self.model.config.model_type == "git" and prompt is None: lowercase__ : Optional[int] = None return model_inputs def _UpperCAmelCase ( self , a , a=None ) -> Dict: # Git model sets `model_inputs["input_ids"] = None` in `preprocess` (when `prompt=None`). In batch model, the # pipeline will group them into a list of `None`, which fail `_forward`. Avoid this by checking it first. if ( "input_ids" in model_inputs and isinstance(model_inputs['input_ids'] , a ) and all(x is None for x in model_inputs['input_ids'] ) ): lowercase__ : Tuple = None if generate_kwargs is None: lowercase__ : Optional[Any] = {} # FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py` # parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas # the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name` # in the `_prepare_model_inputs` method. lowercase__ : Optional[int] = model_inputs.pop(self.model.main_input_name ) lowercase__ : List[Any] = self.model.generate(a , **a , **a ) return model_outputs def _UpperCAmelCase ( self , a ) -> Optional[Any]: lowercase__ : List[str] = [] for output_ids in model_outputs: lowercase__ : str = { 'generated_text': self.tokenizer.decode( a , skip_special_tokens=a , ) } records.append(a ) return records
77
"""simple docstring""" from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL from PIL import Image from ...utils import ( BaseOutput, OptionalDependencyNotAvailable, is_flax_available, is_k_diffusion_available, is_k_diffusion_version, is_onnx_available, is_torch_available, is_transformers_available, is_transformers_version, ) @dataclass class UpperCAmelCase_ ( _a): lowerCamelCase__ : Union[List[PIL.Image.Image], np.ndarray] lowerCamelCase__ : Optional[List[bool]] try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_cycle_diffusion import CycleDiffusionPipeline from .pipeline_stable_diffusion import StableDiffusionPipeline from .pipeline_stable_diffusion_attend_and_excite import StableDiffusionAttendAndExcitePipeline from .pipeline_stable_diffusion_imgaimg import StableDiffusionImgaImgPipeline from .pipeline_stable_diffusion_inpaint import StableDiffusionInpaintPipeline from .pipeline_stable_diffusion_inpaint_legacy import StableDiffusionInpaintPipelineLegacy from .pipeline_stable_diffusion_instruct_pixapix import StableDiffusionInstructPixaPixPipeline from .pipeline_stable_diffusion_latent_upscale import StableDiffusionLatentUpscalePipeline from .pipeline_stable_diffusion_ldmad import StableDiffusionLDMaDPipeline from .pipeline_stable_diffusion_model_editing import StableDiffusionModelEditingPipeline from .pipeline_stable_diffusion_panorama import StableDiffusionPanoramaPipeline from .pipeline_stable_diffusion_paradigms import StableDiffusionParadigmsPipeline from .pipeline_stable_diffusion_sag import StableDiffusionSAGPipeline from .pipeline_stable_diffusion_upscale import StableDiffusionUpscalePipeline from .pipeline_stable_unclip import StableUnCLIPPipeline from .pipeline_stable_unclip_imgaimg import StableUnCLIPImgaImgPipeline from .safety_checker import StableDiffusionSafetyChecker from .stable_unclip_image_normalizer import StableUnCLIPImageNormalizer try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(">=", "4.25.0")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import StableDiffusionImageVariationPipeline else: from .pipeline_stable_diffusion_image_variation import StableDiffusionImageVariationPipeline try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(">=", "4.26.0")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionPixaPixZeroPipeline, ) else: from .pipeline_stable_diffusion_depthaimg import StableDiffusionDepthaImgPipeline from .pipeline_stable_diffusion_diffedit import StableDiffusionDiffEditPipeline from .pipeline_stable_diffusion_pixapix_zero import StableDiffusionPixaPixZeroPipeline try: if not ( is_torch_available() and is_transformers_available() and is_k_diffusion_available() and is_k_diffusion_version(">=", "0.0.12") ): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipeline_stable_diffusion_k_diffusion import StableDiffusionKDiffusionPipeline try: if not (is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_onnx_objects import * # noqa F403 else: from .pipeline_onnx_stable_diffusion import OnnxStableDiffusionPipeline, StableDiffusionOnnxPipeline from .pipeline_onnx_stable_diffusion_imgaimg import OnnxStableDiffusionImgaImgPipeline from .pipeline_onnx_stable_diffusion_inpaint import OnnxStableDiffusionInpaintPipeline from .pipeline_onnx_stable_diffusion_inpaint_legacy import OnnxStableDiffusionInpaintPipelineLegacy from .pipeline_onnx_stable_diffusion_upscale import OnnxStableDiffusionUpscalePipeline if is_transformers_available() and is_flax_available(): import flax @flax.struct.dataclass class UpperCAmelCase_ ( _a): lowerCamelCase__ : np.ndarray lowerCamelCase__ : List[bool] from ...schedulers.scheduling_pndm_flax import PNDMSchedulerState from .pipeline_flax_stable_diffusion import FlaxStableDiffusionPipeline from .pipeline_flax_stable_diffusion_imgaimg import FlaxStableDiffusionImgaImgPipeline from .pipeline_flax_stable_diffusion_inpaint import FlaxStableDiffusionInpaintPipeline from .safety_checker_flax import FlaxStableDiffusionSafetyChecker
77
1
import json import os from typing import Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = {'''vocab_file''': '''vocab.json'''} _UpperCamelCase = { '''vocab_file''': { '''mgp-str''': '''https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json''', } } _UpperCamelCase = {'''mgp-str''': 27} class lowercase ( _UpperCamelCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__(self , __a , __a="[GO]" , __a="[GO]" , __a="[s]" , __a="[GO]" , **__a ) -> Optional[int]: """simple docstring""" super().__init__( unk_token=__a , bos_token=__a , eos_token=__a , pad_token=__a , **__a , ) with open(__a , encoding='utf-8' ) as vocab_handle: UpperCAmelCase__ = json.load(__a ) UpperCAmelCase__ = {v: k for k, v in self.vocab.items()} @property def UpperCamelCase__ (self ) -> Optional[Any]: """simple docstring""" return len(self.vocab ) def UpperCamelCase__ (self ) -> Dict: """simple docstring""" return dict(self.vocab , **self.added_tokens_encoder ) def UpperCamelCase__ (self , __a ) -> str: """simple docstring""" UpperCAmelCase__ = [] for s in text: char_tokens.extend(__a ) return char_tokens def UpperCamelCase__ (self , __a ) -> str: """simple docstring""" return self.vocab.get(__a , self.vocab.get(self.unk_token ) ) def UpperCamelCase__ (self , __a ) -> str: """simple docstring""" return self.decoder.get(__a ) def UpperCamelCase__ (self , __a , __a = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(__a ): logger.error('Vocabulary path ({}) should be a directory'.format(__a ) ) return UpperCAmelCase__ = os.path.join( __a , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) with open(__a , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.vocab , indent=2 , sort_keys=__a , ensure_ascii=__a ) + '\n' ) return (vocab_file,)
365
import unittest import numpy as np from transformers import RobertaConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.roberta.modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, ) class lowercase ( unittest.TestCase ): '''simple docstring''' def __init__(self , __a , __a=13 , __a=7 , __a=True , __a=True , __a=True , __a=True , __a=99 , __a=32 , __a=5 , __a=4 , __a=37 , __a="gelu" , __a=0.1 , __a=0.1 , __a=512 , __a=16 , __a=2 , __a=0.02 , __a=4 , ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = parent UpperCAmelCase__ = batch_size UpperCAmelCase__ = seq_length UpperCAmelCase__ = is_training UpperCAmelCase__ = use_attention_mask UpperCAmelCase__ = use_token_type_ids UpperCAmelCase__ = use_labels UpperCAmelCase__ = vocab_size UpperCAmelCase__ = hidden_size UpperCAmelCase__ = num_hidden_layers UpperCAmelCase__ = num_attention_heads UpperCAmelCase__ = intermediate_size UpperCAmelCase__ = hidden_act UpperCAmelCase__ = hidden_dropout_prob UpperCAmelCase__ = attention_probs_dropout_prob UpperCAmelCase__ = max_position_embeddings UpperCAmelCase__ = type_vocab_size UpperCAmelCase__ = type_sequence_label_size UpperCAmelCase__ = initializer_range UpperCAmelCase__ = num_choices def UpperCamelCase__ (self ) -> List[Any]: """simple docstring""" UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase__ = None if self.use_attention_mask: UpperCAmelCase__ = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase__ = None if self.use_token_type_ids: UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase__ = RobertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__a , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def UpperCamelCase__ (self ) -> List[str]: """simple docstring""" UpperCAmelCase__ = self.prepare_config_and_inputs() UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = config_and_inputs UpperCAmelCase__ = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask} return config, inputs_dict def UpperCamelCase__ (self ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = self.prepare_config_and_inputs() UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = config_and_inputs UpperCAmelCase__ = True UpperCAmelCase__ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax class lowercase ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = ( ( FlaxRobertaModel, FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, ) if is_flax_available() else () ) def UpperCamelCase__ (self ) -> str: """simple docstring""" UpperCAmelCase__ = FlaxRobertaModelTester(self ) @slow def UpperCamelCase__ (self ) -> str: """simple docstring""" for model_class_name in self.all_model_classes: UpperCAmelCase__ = model_class_name.from_pretrained('roberta-base' , from_pt=__a ) UpperCAmelCase__ = model(np.ones((1, 1) ) ) self.assertIsNotNone(__a )
335
0
from pickle import UnpicklingError import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict from ..utils import logging lowerCAmelCase__ :str = logging.get_logger(__name__) def lowerCAmelCase__ ( a__: Any , a__: List[str] ) -> List[Any]: '''simple docstring''' try: with open(a__ , 'rb' ) as flax_state_f: _UpperCAmelCase = from_bytes(a__ , flax_state_f.read() ) except UnpicklingError as e: try: with open(a__ ) as f: if f.read().startswith('version' ): raise OSError( 'You seem to have cloned a repository without having git-lfs installed. Please' ' install git-lfs and run `git lfs install` followed by `git lfs pull` in the' ' folder you cloned.' ) else: raise ValueError from e except (UnicodeDecodeError, ValueError): raise EnvironmentError(F'''Unable to convert {model_file} to Flax deserializable object. ''' ) return load_flax_weights_in_pytorch_model(a__ , a__ ) def lowerCAmelCase__ ( a__: Union[str, Any] , a__: Any ) -> Any: '''simple docstring''' try: import torch # noqa: F401 except ImportError: logger.error( 'Loading Flax weights in PyTorch requires both PyTorch and Flax to be installed. Please see' ' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation' ' instructions.' ) raise # check if we have bf16 weights _UpperCAmelCase = flatten_dict(jax.tree_util.tree_map(lambda a__ : x.dtype == jnp.bfloataa , a__ ) ).values() if any(a__ ): # convert all weights to fp32 if they are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( 'Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` ' 'before loading those in PyTorch model.' ) _UpperCAmelCase = jax.tree_util.tree_map( lambda a__ : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , a__ ) _UpperCAmelCase = '' _UpperCAmelCase = flatten_dict(a__ , sep='.' ) _UpperCAmelCase = pt_model.state_dict() # keep track of unexpected & missing keys _UpperCAmelCase = [] _UpperCAmelCase = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): _UpperCAmelCase = flax_key_tuple.split('.' ) if flax_key_tuple_array[-1] == "kernel" and flax_tensor.ndim == 4: _UpperCAmelCase = flax_key_tuple_array[:-1] + ['weight'] _UpperCAmelCase = jnp.transpose(a__ , (3, 2, 0, 1) ) elif flax_key_tuple_array[-1] == "kernel": _UpperCAmelCase = flax_key_tuple_array[:-1] + ['weight'] _UpperCAmelCase = flax_tensor.T elif flax_key_tuple_array[-1] == "scale": _UpperCAmelCase = flax_key_tuple_array[:-1] + ['weight'] if "time_embedding" not in flax_key_tuple_array: for i, flax_key_tuple_string in enumerate(a__ ): _UpperCAmelCase = ( flax_key_tuple_string.replace('_0' , '.0' ) .replace('_1' , '.1' ) .replace('_2' , '.2' ) .replace('_3' , '.3' ) .replace('_4' , '.4' ) .replace('_5' , '.5' ) .replace('_6' , '.6' ) .replace('_7' , '.7' ) .replace('_8' , '.8' ) .replace('_9' , '.9' ) ) _UpperCAmelCase = '.'.join(a__ ) if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( F'''Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected ''' F'''to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.''' ) else: # add weight to pytorch dict _UpperCAmelCase = np.asarray(a__ ) if not isinstance(a__ , np.ndarray ) else flax_tensor _UpperCAmelCase = torch.from_numpy(a__ ) # remove from missing keys missing_keys.remove(a__ ) else: # weight is not expected by PyTorch model unexpected_keys.append(a__ ) pt_model.load_state_dict(a__ ) # re-transform missing_keys to list _UpperCAmelCase = list(a__ ) if len(a__ ) > 0: logger.warning( 'Some weights of the Flax model were not used when initializing the PyTorch model' F''' {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing''' F''' {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture''' ' (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This' F''' IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect''' ' to be exactly identical (e.g. initializing a BertForSequenceClassification model from a' ' FlaxBertForSequenceClassification model).' ) if len(a__ ) > 0: logger.warning( F'''Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly''' F''' initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to''' ' use it for predictions and inference.' ) return pt_model
329
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ :Dict = logging.get_logger(__name__) lowerCAmelCase__ :Optional[int] = {'''openai-gpt''': '''https://huggingface.co/openai-gpt/resolve/main/config.json'''} class __a ( UpperCAmelCase ): _a : List[str] = 'openai-gpt' _a : int = { 'max_position_embeddings': 'n_positions', 'hidden_size': 'n_embd', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self , _SCREAMING_SNAKE_CASE=40478 , _SCREAMING_SNAKE_CASE=512 , _SCREAMING_SNAKE_CASE=768 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=1e-5 , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE="cls_index" , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=0.1 , **_SCREAMING_SNAKE_CASE , ) -> str: """simple docstring""" _UpperCAmelCase = vocab_size _UpperCAmelCase = n_positions _UpperCAmelCase = n_embd _UpperCAmelCase = n_layer _UpperCAmelCase = n_head _UpperCAmelCase = afn _UpperCAmelCase = resid_pdrop _UpperCAmelCase = embd_pdrop _UpperCAmelCase = attn_pdrop _UpperCAmelCase = layer_norm_epsilon _UpperCAmelCase = initializer_range _UpperCAmelCase = summary_type _UpperCAmelCase = summary_use_proj _UpperCAmelCase = summary_activation _UpperCAmelCase = summary_first_dropout _UpperCAmelCase = summary_proj_to_labels super().__init__(**_SCREAMING_SNAKE_CASE )
329
1
"""simple docstring""" def __SCREAMING_SNAKE_CASE ( A_ , A_ ): while second != 0: lowerCAmelCase__ : List[Any] = first & second first ^= second lowerCAmelCase__ : Optional[Any] = c << 1 return first if __name__ == "__main__": import doctest doctest.testmod() __UpperCamelCase : List[str] = int(input('''Enter the first number: ''').strip()) __UpperCamelCase : Tuple = int(input('''Enter the second number: ''').strip()) print(F'''{add(first, second) = }''')
74
"""simple docstring""" from __future__ import annotations import math __UpperCamelCase : Dict = '''2020.9.26''' __UpperCamelCase : Tuple = '''xcodz-dot, cclaus, dhruvmanila''' def __SCREAMING_SNAKE_CASE ( A_ , A_ , A_ , A_ , A_ ): if not all(isinstance(A_ , (float, int) ) for val in locals().values() ): lowerCAmelCase__ : Optional[Any] = f'Input values must either be float or int: {list(locals().values() )}' raise TypeError(A_ ) lowerCAmelCase__ : Optional[Any] = ((x * distance) / (z + distance)) * scale lowerCAmelCase__ : Optional[int] = ((y * distance) / (z + distance)) * scale return projected_x, projected_y def __SCREAMING_SNAKE_CASE ( A_ , A_ , A_ , A_ , A_ ): if not isinstance(A_ , A_ ): raise TypeError('''Axis must be a str''' ) lowerCAmelCase__ : str = locals() del input_variables["axis"] if not all(isinstance(A_ , (float, int) ) for val in input_variables.values() ): lowerCAmelCase__ : int = ( '''Input values except axis must either be float or int: ''' f'{list(input_variables.values() )}' ) raise TypeError(A_ ) lowerCAmelCase__ : Any = (angle % 3_60) / 4_50 * 1_80 / math.pi if axis == "z": lowerCAmelCase__ : Tuple = x * math.cos(A_ ) - y * math.sin(A_ ) lowerCAmelCase__ : List[str] = y * math.cos(A_ ) + x * math.sin(A_ ) lowerCAmelCase__ : Optional[Any] = z elif axis == "x": lowerCAmelCase__ : List[str] = y * math.cos(A_ ) - z * math.sin(A_ ) lowerCAmelCase__ : str = z * math.cos(A_ ) + y * math.sin(A_ ) lowerCAmelCase__ : Union[str, Any] = x elif axis == "y": lowerCAmelCase__ : Optional[int] = x * math.cos(A_ ) - z * math.sin(A_ ) lowerCAmelCase__ : Tuple = z * math.cos(A_ ) + x * math.sin(A_ ) lowerCAmelCase__ : Optional[int] = y else: raise ValueError('''not a valid axis, choose one of \'x\', \'y\', \'z\'''' ) return new_x, new_y, new_z if __name__ == "__main__": import doctest doctest.testmod() print(F'''{convert_to_ad(1.0, 2.0, 3.0, 1_0.0, 1_0.0) = }''') print(F'''{rotate(1.0, 2.0, 3.0, 'y', 9_0.0) = }''')
74
1
import re from ..utils import cached_file # docstyle-ignore _lowercase : str ="\nHuman: <<task>>\n\nAssistant: " _lowercase : int ="huggingface-tools/default-prompts" _lowercase : List[str] ={"chat": "chat_prompt_template.txt", "run": "run_prompt_template.txt"} def lowerCAmelCase_ ( _lowercase : Optional[int] , _lowercase : Union[str, Any] , _lowercase : Dict="run") -> List[Any]: """simple docstring""" if prompt_or_repo_id is None: a__ : str = DEFAULT_PROMPTS_REPO # prompt is considered a repo ID when it does not contain any kind of space if re.search("""\\s""" , _lowercase) is not None: return prompt_or_repo_id a__ : List[str] = cached_file( _lowercase , PROMPT_FILES[mode] , repo_type="""dataset""" , user_agent={"""agent""": agent_name}) with open(_lowercase , """r""" , encoding="""utf-8""") as f: return f.read()
170
'''simple docstring''' from datetime import datetime import matplotlib.pyplot as plt import torch def lowercase ( __magic_name__ ): '''simple docstring''' for param in module.parameters(): UpperCAmelCase : Any = False def lowercase ( ): '''simple docstring''' UpperCAmelCase : int = "cuda" if torch.cuda.is_available() else "cpu" if torch.backends.mps.is_available() and torch.backends.mps.is_built(): UpperCAmelCase : int = "mps" if device == "mps": print( "WARNING: MPS currently doesn't seem to work, and messes up backpropagation without any visible torch" " errors. I recommend using CUDA on a colab notebook or CPU instead if you're facing inexplicable issues" " with generations." ) return device def lowercase ( __magic_name__ ): '''simple docstring''' UpperCAmelCase : str = plt.imshow(__magic_name__ ) fig.axes.get_xaxis().set_visible(__magic_name__ ) fig.axes.get_yaxis().set_visible(__magic_name__ ) plt.show() def lowercase ( ): '''simple docstring''' UpperCAmelCase : str = datetime.now() UpperCAmelCase : Tuple = current_time.strftime("%H:%M:%S" ) return timestamp
311
0
'''simple docstring''' def __lowercase ( __lowercase , __lowercase ) -> bool: '''simple docstring''' return numa ^ numa < 0 if __name__ == "__main__": import doctest doctest.testmod()
368
'''simple docstring''' import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments @require_tf class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def lowerCAmelCase ( self : str , __UpperCAmelCase : List[Any] ): '''simple docstring''' for model_result in results.values(): for batch_size, sequence_length in zip(model_result["bs"] , model_result["ss"] ): _A = model_result["result"][batch_size][sequence_length] self.assertIsNotNone(__UpperCAmelCase ) def lowerCAmelCase ( self : List[str] ): '''simple docstring''' _A = "sshleifer/tiny-gpt2" _A = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__UpperCAmelCase , inference=__UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=__UpperCAmelCase , multi_process=__UpperCAmelCase , ) _A = TensorFlowBenchmark(__UpperCAmelCase ) _A = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowerCAmelCase ( self : Tuple ): '''simple docstring''' _A = "sgugger/tiny-distilbert-classification" _A = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__UpperCAmelCase , inference=__UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__UpperCAmelCase , only_pretrain_model=__UpperCAmelCase , ) _A = TensorFlowBenchmark(__UpperCAmelCase ) _A = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' _A = "sshleifer/tiny-gpt2" _A = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__UpperCAmelCase , inference=__UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__UpperCAmelCase , ) _A = TensorFlowBenchmark(__UpperCAmelCase ) _A = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowerCAmelCase ( self : str ): '''simple docstring''' _A = "sshleifer/tiny-gpt2" _A = AutoConfig.from_pretrained(__UpperCAmelCase ) _A = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__UpperCAmelCase , inference=__UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=__UpperCAmelCase , multi_process=__UpperCAmelCase , ) _A = TensorFlowBenchmark(__UpperCAmelCase , [config] ) _A = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowerCAmelCase ( self : str ): '''simple docstring''' _A = "sshleifer/tiny-gpt2" _A = AutoConfig.from_pretrained(__UpperCAmelCase ) _A = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__UpperCAmelCase , inference=__UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__UpperCAmelCase , ) _A = TensorFlowBenchmark(__UpperCAmelCase , [config] ) _A = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowerCAmelCase ( self : Any ): '''simple docstring''' _A = "sshleifer/tiny-gpt2" _A = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__UpperCAmelCase , inference=__UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__UpperCAmelCase , ) _A = TensorFlowBenchmark(__UpperCAmelCase ) _A = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' _A = "sshleifer/tiny-gpt2" _A = AutoConfig.from_pretrained(__UpperCAmelCase ) _A = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__UpperCAmelCase , inference=__UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__UpperCAmelCase , ) _A = TensorFlowBenchmark(__UpperCAmelCase , [config] ) _A = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def lowerCAmelCase ( self : int ): '''simple docstring''' _A = "patrickvonplaten/t5-tiny-random" _A = AutoConfig.from_pretrained(__UpperCAmelCase ) _A = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__UpperCAmelCase , inference=__UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__UpperCAmelCase , ) _A = TensorFlowBenchmark(__UpperCAmelCase , configs=[config] ) _A = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices("GPU" ) ) == 0 , "Cannot do xla on CPU." ) def lowerCAmelCase ( self : str ): '''simple docstring''' _A = "sshleifer/tiny-gpt2" _A = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__UpperCAmelCase , inference=__UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , use_xla=__UpperCAmelCase , multi_process=__UpperCAmelCase , ) _A = TensorFlowBenchmark(__UpperCAmelCase ) _A = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowerCAmelCase ( self : Dict ): '''simple docstring''' _A = "sshleifer/tiny-gpt2" with tempfile.TemporaryDirectory() as tmp_dir: _A = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=__UpperCAmelCase , save_to_csv=__UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(__UpperCAmelCase , "inf_time.csv" ) , inference_memory_csv_file=os.path.join(__UpperCAmelCase , "inf_mem.csv" ) , env_info_csv_file=os.path.join(__UpperCAmelCase , "env.csv" ) , multi_process=__UpperCAmelCase , ) _A = TensorFlowBenchmark(__UpperCAmelCase ) benchmark.run() self.assertTrue(Path(os.path.join(__UpperCAmelCase , "inf_time.csv" ) ).exists() ) self.assertTrue(Path(os.path.join(__UpperCAmelCase , "inf_mem.csv" ) ).exists() ) self.assertTrue(Path(os.path.join(__UpperCAmelCase , "env.csv" ) ).exists() ) def lowerCAmelCase ( self : List[Any] ): '''simple docstring''' _A = "sshleifer/tiny-gpt2" def _check_summary_is_not_empty(__UpperCAmelCase : Any ): self.assertTrue(hasattr(__UpperCAmelCase , "sequential" ) ) self.assertTrue(hasattr(__UpperCAmelCase , "cumulative" ) ) self.assertTrue(hasattr(__UpperCAmelCase , "current" ) ) self.assertTrue(hasattr(__UpperCAmelCase , "total" ) ) with tempfile.TemporaryDirectory() as tmp_dir: _A = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=__UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(__UpperCAmelCase , "log.txt" ) , log_print=__UpperCAmelCase , trace_memory_line_by_line=__UpperCAmelCase , eager_mode=__UpperCAmelCase , multi_process=__UpperCAmelCase , ) _A = TensorFlowBenchmark(__UpperCAmelCase ) _A = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) self.assertTrue(Path(os.path.join(__UpperCAmelCase , "log.txt" ) ).exists() )
174
0
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = '▁' __UpperCAmelCase = {'vocab_file': 'sentencepiece.bpe.model'} __UpperCAmelCase = { 'vocab_file': { 'xlm-roberta-base': 'https://huggingface.co/xlm-roberta-base/resolve/main/sentencepiece.bpe.model', 'xlm-roberta-large': 'https://huggingface.co/xlm-roberta-large/resolve/main/sentencepiece.bpe.model', 'xlm-roberta-large-finetuned-conll02-dutch': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/sentencepiece.bpe.model' ), 'xlm-roberta-large-finetuned-conll02-spanish': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/sentencepiece.bpe.model' ), 'xlm-roberta-large-finetuned-conll03-english': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/sentencepiece.bpe.model' ), 'xlm-roberta-large-finetuned-conll03-german': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/sentencepiece.bpe.model' ), } } __UpperCAmelCase = { 'xlm-roberta-base': 5_12, 'xlm-roberta-large': 5_12, 'xlm-roberta-large-finetuned-conll02-dutch': 5_12, 'xlm-roberta-large-finetuned-conll02-spanish': 5_12, 'xlm-roberta-large-finetuned-conll03-english': 5_12, 'xlm-roberta-large-finetuned-conll03-german': 5_12, } class _SCREAMING_SNAKE_CASE ( A__ ): UpperCAmelCase_ :str = VOCAB_FILES_NAMES UpperCAmelCase_ :int = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase_ :Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase_ :Optional[int] = ["input_ids", "attention_mask"] def __init__( self , __A , __A="<s>" , __A="</s>" , __A="</s>" , __A="<s>" , __A="<unk>" , __A="<pad>" , __A="<mask>" , __A = None , **__A , ) -> None: # Mask token behave like a normal word, i.e. include the space before it lowerCAmelCase_ :int = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else mask_token lowerCAmelCase_ :Dict = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__A , eos_token=__A , unk_token=__A , sep_token=__A , cls_token=__A , pad_token=__A , mask_token=__A , sp_model_kwargs=self.sp_model_kwargs , **__A , ) lowerCAmelCase_ :Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__A ) ) lowerCAmelCase_ :Optional[Any] = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token lowerCAmelCase_ :Dict = {"""<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab lowerCAmelCase_ :List[str] = 1 lowerCAmelCase_ :int = len(self.sp_model ) + self.fairseq_offset lowerCAmelCase_ :int = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ) -> Dict: lowerCAmelCase_ :List[str] = self.__dict__.copy() lowerCAmelCase_ :Tuple = None lowerCAmelCase_ :Dict = self.sp_model.serialized_model_proto() return state def __setstate__( self , __A ) -> Optional[int]: lowerCAmelCase_ :Union[str, Any] = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): lowerCAmelCase_ :str = {} lowerCAmelCase_ :List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def __lowerCAmelCase ( self , __A , __A = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowerCAmelCase_ :Union[str, Any] = [self.cls_token_id] lowerCAmelCase_ :List[str] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __lowerCAmelCase ( self , __A , __A = None , __A = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__A , token_ids_a=__A , already_has_special_tokens=__A ) if token_ids_a is None: return [1] + ([0] * len(__A )) + [1] return [1] + ([0] * len(__A )) + [1, 1] + ([0] * len(__A )) + [1] def __lowerCAmelCase ( self , __A , __A = None ) -> List[int]: lowerCAmelCase_ :Optional[Any] = [self.sep_token_id] lowerCAmelCase_ :Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def __lowerCAmelCase ( self ) -> Tuple: return len(self.sp_model ) + self.fairseq_offset + 1 # Add the <mask> token def __lowerCAmelCase ( self ) -> Union[str, Any]: lowerCAmelCase_ :Any = {self.convert_ids_to_tokens(__A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __lowerCAmelCase ( self , __A ) -> List[str]: return self.sp_model.encode(__A , out_type=__A ) def __lowerCAmelCase ( self , __A ) -> Optional[int]: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] lowerCAmelCase_ :Optional[Any] = self.sp_model.PieceToId(__A ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def __lowerCAmelCase ( self , __A ) -> Optional[Any]: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def __lowerCAmelCase ( self , __A ) -> Tuple: lowerCAmelCase_ :List[str] = """""".join(__A ).replace(__A , """ """ ).strip() return out_string def __lowerCAmelCase ( self , __A , __A = None ) -> Tuple[str]: if not os.path.isdir(__A ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return lowerCAmelCase_ :Tuple = os.path.join( __A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __A ) elif not os.path.isfile(self.vocab_file ): with open(__A , """wb""" ) as fi: lowerCAmelCase_ :int = self.sp_model.serialized_model_proto() fi.write(__A ) return (out_vocab_file,)
84
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase : List[Any] =logging.get_logger(__name__) __lowerCAmelCase : Union[str, Any] ={ """s-JoL/Open-Llama-V1""": """https://huggingface.co/s-JoL/Open-Llama-V1/blob/main/config.json""", } class _A ( lowerCAmelCase ): snake_case__ : Union[str, Any] = 'open-llama' def __init__( self , __lowerCAmelCase=10_0000 , __lowerCAmelCase=4096 , __lowerCAmelCase=1_1008 , __lowerCAmelCase=32 , __lowerCAmelCase=32 , __lowerCAmelCase="silu" , __lowerCAmelCase=2048 , __lowerCAmelCase=0.0_2 , __lowerCAmelCase=1E-6 , __lowerCAmelCase=True , __lowerCAmelCase=0 , __lowerCAmelCase=1 , __lowerCAmelCase=2 , __lowerCAmelCase=False , __lowerCAmelCase=True , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.1 , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=None , **__lowerCAmelCase , ): """simple docstring""" lowercase = vocab_size lowercase = max_position_embeddings lowercase = hidden_size lowercase = intermediate_size lowercase = num_hidden_layers lowercase = num_attention_heads lowercase = hidden_act lowercase = initializer_range lowercase = rms_norm_eps lowercase = use_cache lowercase = kwargs.pop( """use_memorry_efficient_attention""" , __lowerCAmelCase ) lowercase = hidden_dropout_prob lowercase = attention_dropout_prob lowercase = use_stable_embedding lowercase = shared_input_output_embedding lowercase = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=__lowerCAmelCase , bos_token_id=__lowerCAmelCase , eos_token_id=__lowerCAmelCase , tie_word_embeddings=__lowerCAmelCase , **__lowerCAmelCase , ) def A__ ( self ): """simple docstring""" if self.rope_scaling is None: return if not isinstance(self.rope_scaling , __lowerCAmelCase ) or len(self.rope_scaling ) != 2: raise ValueError( """`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, """ f'got {self.rope_scaling}' ) lowercase = self.rope_scaling.get("""type""" , __lowerCAmelCase ) lowercase = self.rope_scaling.get("""factor""" , __lowerCAmelCase ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f'`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}' ) if rope_scaling_factor is None or not isinstance(__lowerCAmelCase , __lowerCAmelCase ) or rope_scaling_factor <= 1.0: raise ValueError(f'`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}' )
197
0
import os from typing import List, Optional, Union from ...image_processing_utils import BatchFeature from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType from ..auto import AutoTokenizer class lowerCamelCase (_UpperCAmelCase ): '''simple docstring''' _snake_case : Tuple = ['''image_processor''', '''tokenizer'''] _snake_case : Dict = '''BlipImageProcessor''' _snake_case : List[Any] = '''AutoTokenizer''' def __init__( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Optional[Any]: super().__init__(lowercase_ , lowercase_ ) # add QFormer tokenizer UpperCAmelCase_ : Optional[int] = qformer_tokenizer def __call__( self , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = True , _UpperCamelCase = False , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = 0 , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = False , _UpperCamelCase = False , _UpperCamelCase = False , _UpperCamelCase = False , _UpperCamelCase = False , _UpperCamelCase = True , _UpperCamelCase = None , **_UpperCamelCase , ) -> Tuple: if images is None and text is None: raise ValueError('You have to specify at least images or text.' ) UpperCAmelCase_ : List[str] = BatchFeature() if text is not None: UpperCAmelCase_ : Optional[Any] = self.tokenizer( text=lowercase_ , add_special_tokens=lowercase_ , padding=lowercase_ , truncation=lowercase_ , max_length=lowercase_ , stride=lowercase_ , pad_to_multiple_of=lowercase_ , return_attention_mask=lowercase_ , return_overflowing_tokens=lowercase_ , return_special_tokens_mask=lowercase_ , return_offsets_mapping=lowercase_ , return_token_type_ids=lowercase_ , return_length=lowercase_ , verbose=lowercase_ , return_tensors=lowercase_ , **lowercase_ , ) encoding.update(lowercase_ ) UpperCAmelCase_ : Tuple = self.qformer_tokenizer( text=lowercase_ , add_special_tokens=lowercase_ , padding=lowercase_ , truncation=lowercase_ , max_length=lowercase_ , stride=lowercase_ , pad_to_multiple_of=lowercase_ , return_attention_mask=lowercase_ , return_overflowing_tokens=lowercase_ , return_special_tokens_mask=lowercase_ , return_offsets_mapping=lowercase_ , return_token_type_ids=lowercase_ , return_length=lowercase_ , verbose=lowercase_ , return_tensors=lowercase_ , **lowercase_ , ) UpperCAmelCase_ : List[Any] = qformer_text_encoding.pop('input_ids' ) UpperCAmelCase_ : List[Any] = qformer_text_encoding.pop('attention_mask' ) if images is not None: UpperCAmelCase_ : str = self.image_processor(lowercase_ , return_tensors=lowercase_ ) encoding.update(lowercase_ ) return encoding def __UpperCAmelCase ( self , *_UpperCamelCase , **_UpperCamelCase ) -> int: return self.tokenizer.batch_decode(*lowercase_ , **lowercase_ ) def __UpperCAmelCase ( self , *_UpperCamelCase , **_UpperCamelCase ) -> Any: return self.tokenizer.decode(*lowercase_ , **lowercase_ ) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def __UpperCAmelCase ( self ) -> List[str]: UpperCAmelCase_ : Tuple = self.tokenizer.model_input_names UpperCAmelCase_ : Optional[Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) def __UpperCAmelCase ( self , _UpperCamelCase , **_UpperCamelCase ) -> Union[str, Any]: if os.path.isfile(lowercase_ ): raise ValueError(f"Provided path ({save_directory}) should be a directory, not a file" ) os.makedirs(lowercase_ , exist_ok=lowercase_ ) UpperCAmelCase_ : List[Any] = os.path.join(lowercase_ , 'qformer_tokenizer' ) self.qformer_tokenizer.save_pretrained(lowercase_ ) return super().save_pretrained(lowercase_ , **lowercase_ ) @classmethod def __UpperCAmelCase ( cls , _UpperCamelCase , **_UpperCamelCase ) -> Union[str, Any]: UpperCAmelCase_ : Tuple = AutoTokenizer.from_pretrained(lowercase_ , subfolder='qformer_tokenizer' ) UpperCAmelCase_ : List[Any] = cls._get_arguments_from_pretrained(lowercase_ , **lowercase_ ) args.append(lowercase_ ) return cls(*lowercase_ )
371
from collections import defaultdict from math import ceil, sqrt def lowercase__ ( __snake_case : int = 1_000_000 , __snake_case : int = 10 ): '''simple docstring''' UpperCAmelCase_ : defaultdict = defaultdict(__snake_case ) for outer_width in range(3 , (t_limit // 4) + 2 ): if outer_width * outer_width > t_limit: UpperCAmelCase_ : Union[str, Any] = max( ceil(sqrt(outer_width * outer_width - t_limit ) ) , 1 ) else: UpperCAmelCase_ : int = 1 hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2 for hole_width in range(__snake_case , outer_width - 1 , 2 ): count[outer_width * outer_width - hole_width * hole_width] += 1 return sum(1 for n in count.values() if 1 <= n <= 10 ) if __name__ == "__main__": print(F'{solution() = }')
145
0
'''simple docstring''' from __future__ import absolute_import, division, print_function, unicode_literals from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers import RobertaConfig from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.roberta.modeling_roberta import ( ROBERTA_INPUTS_DOCSTRING, ROBERTA_START_DOCSTRING, RobertaEmbeddings, ) from .modeling_highway_bert import BertPreTrainedModel, DeeBertModel, HighwayException, entropy @add_start_docstrings( "The RoBERTa Model transformer with early exiting (DeeRoBERTa). " ,_lowerCamelCase ,) class lowerCAmelCase_ ( _lowerCamelCase ): __lowerCamelCase : List[Any] = RobertaConfig __lowerCamelCase : List[str] = "roberta" def __init__( self , _lowerCAmelCase ) -> Any: super().__init__(_lowerCAmelCase ) _lowerCAmelCase = RobertaEmbeddings(_lowerCAmelCase ) self.init_weights() @add_start_docstrings( "RoBERTa Model (with early exiting - DeeRoBERTa) with a classifier on top,\n also takes care of multi-layer training. " ,_lowerCamelCase ,) class lowerCAmelCase_ ( _lowerCamelCase ): __lowerCamelCase : List[str] = RobertaConfig __lowerCamelCase : Tuple = "roberta" def __init__( self , _lowerCAmelCase ) -> Optional[int]: super().__init__(_lowerCAmelCase ) _lowerCAmelCase = config.num_labels _lowerCAmelCase = config.num_hidden_layers _lowerCAmelCase = DeeRobertaModel(_lowerCAmelCase ) _lowerCAmelCase = nn.Dropout(config.hidden_dropout_prob ) _lowerCAmelCase = nn.Linear(config.hidden_size , self.config.num_labels ) @add_start_docstrings_to_model_forward(_lowerCAmelCase ) def _snake_case ( self , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=-1 , _lowerCAmelCase=False , ) -> Dict: _lowerCAmelCase = self.num_layers try: _lowerCAmelCase = self.roberta( _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , position_ids=_lowerCAmelCase , head_mask=_lowerCAmelCase , inputs_embeds=_lowerCAmelCase , ) _lowerCAmelCase = outputs[1] _lowerCAmelCase = self.dropout(_lowerCAmelCase ) _lowerCAmelCase = self.classifier(_lowerCAmelCase ) _lowerCAmelCase = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: _lowerCAmelCase = e.message _lowerCAmelCase = e.exit_layer _lowerCAmelCase = outputs[0] if not self.training: _lowerCAmelCase = entropy(_lowerCAmelCase ) _lowerCAmelCase = [] _lowerCAmelCase = [] if labels is not None: if self.num_labels == 1: # We are doing regression _lowerCAmelCase = MSELoss() _lowerCAmelCase = loss_fct(logits.view(-1 ) , labels.view(-1 ) ) else: _lowerCAmelCase = CrossEntropyLoss() _lowerCAmelCase = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) # work with highway exits _lowerCAmelCase = [] for highway_exit in outputs[-1]: _lowerCAmelCase = highway_exit[0] if not self.training: highway_logits_all.append(_lowerCAmelCase ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression _lowerCAmelCase = MSELoss() _lowerCAmelCase = loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) ) else: _lowerCAmelCase = CrossEntropyLoss() _lowerCAmelCase = loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) highway_losses.append(_lowerCAmelCase ) if train_highway: _lowerCAmelCase = (sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: _lowerCAmelCase = (loss,) + outputs if not self.training: _lowerCAmelCase = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: _lowerCAmelCase = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), entropy
158
"""simple docstring""" import importlib.metadata from typing import Union from packaging.version import Version, parse from .constants import STR_OPERATION_TO_FUNC SCREAMING_SNAKE_CASE_ : str = parse(importlib.metadata.version('torch')) def _snake_case ( UpperCAmelCase_ : Union[str, Version] , UpperCAmelCase_ : str , UpperCAmelCase_ : str ): if operation not in STR_OPERATION_TO_FUNC.keys(): raise ValueError(F"""`operation` must be one of {list(STR_OPERATION_TO_FUNC.keys() )}, received {operation}""" ) A__ = STR_OPERATION_TO_FUNC[operation] if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): A__ = parse(importlib.metadata.version(UpperCAmelCase_ ) ) return operation(UpperCAmelCase_ , parse(UpperCAmelCase_ ) ) def _snake_case ( UpperCAmelCase_ : str , UpperCAmelCase_ : str ): return compare_versions(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )
335
0
"""simple docstring""" class UpperCAmelCase_ : def __init__( self : Optional[Any] ) -> None: _UpperCamelCase = {} # Mapping from char to TrieNode _UpperCamelCase = False def _UpperCamelCase ( self : List[str] , __UpperCamelCase : list[str] ) -> None: for word in words: self.insert(__UpperCamelCase ) def _UpperCamelCase ( self : str , __UpperCamelCase : str ) -> None: _UpperCamelCase = self for char in word: if char not in curr.nodes: _UpperCamelCase = TrieNode() _UpperCamelCase = curr.nodes[char] _UpperCamelCase = True def _UpperCamelCase ( self : List[Any] , __UpperCamelCase : str ) -> bool: _UpperCamelCase = self for char in word: if char not in curr.nodes: return False _UpperCamelCase = curr.nodes[char] return curr.is_leaf def _UpperCamelCase ( self : Optional[int] , __UpperCamelCase : str ) -> None: def _delete(__UpperCamelCase : TrieNode , __UpperCamelCase : str , __UpperCamelCase : int ) -> bool: if index == len(__UpperCamelCase ): # If word does not exist if not curr.is_leaf: return False _UpperCamelCase = False return len(curr.nodes ) == 0 _UpperCamelCase = word[index] _UpperCamelCase = curr.nodes.get(__UpperCamelCase ) # If char not in current trie node if not char_node: return False # Flag to check if node can be deleted _UpperCamelCase = _delete(__UpperCamelCase , __UpperCamelCase , index + 1 ) if delete_curr: del curr.nodes[char] return len(curr.nodes ) == 0 return delete_curr _delete(self , __UpperCamelCase , 0 ) def lowercase ( a__ : TrieNode , a__ : str ) -> None: if node.is_leaf: print(a__ , end=''' ''' ) for key, value in node.nodes.items(): print_words(a__ , word + key ) def lowercase ( ) -> bool: _UpperCamelCase = '''banana bananas bandana band apple all beast'''.split() _UpperCamelCase = TrieNode() root.insert_many(a__ ) # print_words(root, "") assert all(root.find(a__ ) for word in words ) assert root.find('''banana''' ) assert not root.find('''bandanas''' ) assert not root.find('''apps''' ) assert root.find('''apple''' ) assert root.find('''all''' ) root.delete('''all''' ) assert not root.find('''all''' ) root.delete('''banana''' ) assert not root.find('''banana''' ) assert root.find('''bananas''' ) return True def lowercase ( a__ : str , a__ : bool ) -> None: print(str(a__ ) , '''works!''' if passes else '''doesn\'t work :(''' ) def lowercase ( ) -> None: assert test_trie() def lowercase ( ) -> None: print_results('''Testing trie functionality''' , test_trie() ) if __name__ == "__main__": main()
54
"""simple docstring""" import unittest from huggingface_hub import hf_hub_download from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor from transformers.pipelines import VideoClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_decord, require_tf, require_torch, require_torch_or_tf, require_vision, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf @require_vision @require_decord class UpperCAmelCase_ ( unittest.TestCase): snake_case__ = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING def _UpperCamelCase ( self : Any , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Any , __UpperCamelCase : List[Any] ) -> Optional[Any]: _UpperCamelCase = hf_hub_download( repo_id='''nateraw/video-demo''' , filename='''archery.mp4''' , repo_type='''dataset''' ) _UpperCamelCase = VideoClassificationPipeline(model=__UpperCamelCase , image_processor=__UpperCamelCase , top_k=2 ) _UpperCamelCase = [ example_video_filepath, '''https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4''', ] return video_classifier, examples def _UpperCamelCase ( self : Union[str, Any] , __UpperCamelCase : Tuple , __UpperCamelCase : List[Any] ) -> str: for example in examples: _UpperCamelCase = video_classifier(__UpperCamelCase ) self.assertEqual( __UpperCamelCase , [ {'''score''': ANY(__UpperCamelCase ), '''label''': ANY(__UpperCamelCase )}, {'''score''': ANY(__UpperCamelCase ), '''label''': ANY(__UpperCamelCase )}, ] , ) @require_torch def _UpperCamelCase ( self : Tuple ) -> List[Any]: _UpperCamelCase = '''hf-internal-testing/tiny-random-VideoMAEForVideoClassification''' _UpperCamelCase = VideoMAEFeatureExtractor( size={'''shortest_edge''': 10} , crop_size={'''height''': 10, '''width''': 10} ) _UpperCamelCase = pipeline( '''video-classification''' , model=__UpperCamelCase , feature_extractor=__UpperCamelCase , frame_sampling_rate=4 ) _UpperCamelCase = hf_hub_download(repo_id='''nateraw/video-demo''' , filename='''archery.mp4''' , repo_type='''dataset''' ) _UpperCamelCase = video_classifier(__UpperCamelCase , top_k=2 ) self.assertEqual( nested_simplify(__UpperCamelCase , decimals=4 ) , [{'''score''': 0.5_1_9_9, '''label''': '''LABEL_0'''}, {'''score''': 0.4_8_0_1, '''label''': '''LABEL_1'''}] , ) _UpperCamelCase = video_classifier( [ video_file_path, video_file_path, ] , top_k=2 , ) self.assertEqual( nested_simplify(__UpperCamelCase , decimals=4 ) , [ [{'''score''': 0.5_1_9_9, '''label''': '''LABEL_0'''}, {'''score''': 0.4_8_0_1, '''label''': '''LABEL_1'''}], [{'''score''': 0.5_1_9_9, '''label''': '''LABEL_0'''}, {'''score''': 0.4_8_0_1, '''label''': '''LABEL_1'''}], ] , ) @require_tf def _UpperCamelCase ( self : Tuple ) -> Union[str, Any]: pass
54
1
"""simple docstring""" from math import pow, sqrt def _snake_case ( *snake_case__ : float ): A = len(snake_case__ ) > 0 and all(value > 0.0 for value in values ) return result def _snake_case ( snake_case__ : float , snake_case__ : float ): return ( round(sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(snake_case__ , snake_case__ ) else ValueError('Input Error: Molar mass values must greater than 0.' ) ) def _snake_case ( snake_case__ : float , snake_case__ : float , snake_case__ : float ): return ( round(effusion_rate * sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(snake_case__ , snake_case__ , snake_case__ ) else ValueError( 'Input Error: Molar mass and effusion rate values must greater than 0.' ) ) def _snake_case ( snake_case__ : float , snake_case__ : float , snake_case__ : float ): return ( round(effusion_rate / sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(snake_case__ , snake_case__ , snake_case__ ) else ValueError( 'Input Error: Molar mass and effusion rate values must greater than 0.' ) ) def _snake_case ( snake_case__ : float , snake_case__ : float , snake_case__ : float ): return ( round(molar_mass / pow(effusion_rate_a / effusion_rate_a , 2 ) , 6 ) if validate(snake_case__ , snake_case__ , snake_case__ ) else ValueError( 'Input Error: Molar mass and effusion rate values must greater than 0.' ) ) def _snake_case ( snake_case__ : float , snake_case__ : float , snake_case__ : float ): return ( round(pow(effusion_rate_a / effusion_rate_a , 2 ) / molar_mass , 6 ) if validate(snake_case__ , snake_case__ , snake_case__ ) else ValueError( 'Input Error: Molar mass and effusion rate values must greater than 0.' ) )
74
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) _lowercase = {'''configuration_deit''': ['''DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''DeiTConfig''', '''DeiTOnnxConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = ['''DeiTFeatureExtractor'''] _lowercase = ['''DeiTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''DEIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''DeiTForImageClassification''', '''DeiTForImageClassificationWithTeacher''', '''DeiTForMaskedImageModeling''', '''DeiTModel''', '''DeiTPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFDeiTForImageClassification''', '''TFDeiTForImageClassificationWithTeacher''', '''TFDeiTForMaskedImageModeling''', '''TFDeiTModel''', '''TFDeiTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig, DeiTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_deit import DeiTFeatureExtractor from .image_processing_deit import DeiTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deit import ( DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, DeiTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deit import ( TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, TFDeiTPreTrainedModel, ) else: import sys _lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
74
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_torch_available, ) _A = { """configuration_speecht5""": [ """SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP""", """SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP""", """SpeechT5Config""", """SpeechT5HifiGanConfig""", ], """feature_extraction_speecht5""": ["""SpeechT5FeatureExtractor"""], """processing_speecht5""": ["""SpeechT5Processor"""], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = ["""SpeechT5Tokenizer"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ """SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST""", """SpeechT5ForSpeechToText""", """SpeechT5ForSpeechToSpeech""", """SpeechT5ForTextToSpeech""", """SpeechT5Model""", """SpeechT5PreTrainedModel""", """SpeechT5HifiGan""", ] if TYPE_CHECKING: from .configuration_speechta import ( SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP, SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP, SpeechTaConfig, SpeechTaHifiGanConfig, ) from .feature_extraction_speechta import SpeechTaFeatureExtractor from .processing_speechta import SpeechTaProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speechta import SpeechTaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speechta import ( SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaModel, SpeechTaPreTrainedModel, ) else: import sys _A = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
369
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) _A = { """configuration_layoutlmv3""": [ """LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP""", """LayoutLMv3Config""", """LayoutLMv3OnnxConfig""", ], """processing_layoutlmv3""": ["""LayoutLMv3Processor"""], """tokenization_layoutlmv3""": ["""LayoutLMv3Tokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = ["""LayoutLMv3TokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ """LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST""", """LayoutLMv3ForQuestionAnswering""", """LayoutLMv3ForSequenceClassification""", """LayoutLMv3ForTokenClassification""", """LayoutLMv3Model""", """LayoutLMv3PreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ """TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFLayoutLMv3ForQuestionAnswering""", """TFLayoutLMv3ForSequenceClassification""", """TFLayoutLMv3ForTokenClassification""", """TFLayoutLMv3Model""", """TFLayoutLMv3PreTrainedModel""", ] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = ["""LayoutLMv3FeatureExtractor"""] _A = ["""LayoutLMv3ImageProcessor"""] if TYPE_CHECKING: from .configuration_layoutlmva import ( LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig, LayoutLMvaOnnxConfig, ) from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_layoutlmva import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, TFLayoutLMvaPreTrainedModel, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor from .image_processing_layoutlmva import LayoutLMvaImageProcessor else: import sys _A = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
166
0
import absl # noqa: F401 # Here to have a nice missing dependency error message early on import nltk # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import six # noqa: F401 # Here to have a nice missing dependency error message early on from rouge_score import rouge_scorer, scoring import datasets A__ : List[str] = '''\ @inproceedings{lin-2004-rouge, title = "{ROUGE}: A Package for Automatic Evaluation of Summaries", author = "Lin, Chin-Yew", booktitle = "Text Summarization Branches Out", month = jul, year = "2004", address = "Barcelona, Spain", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/W04-1013", pages = "74--81", } ''' A__ : Any = '''\ ROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for evaluating automatic summarization and machine translation software in natural language processing. The metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation. Note that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters. This metrics is a wrapper around Google Research reimplementation of ROUGE: https://github.com/google-research/google-research/tree/master/rouge ''' A__ : Union[str, Any] = ''' Calculates average rouge scores for a list of hypotheses and references Args: predictions: list of predictions to score. Each prediction should be a string with tokens separated by spaces. references: list of reference for each prediction. Each reference should be a string with tokens separated by spaces. rouge_types: A list of rouge types to calculate. Valid names: `"rouge{n}"` (e.g. `"rouge1"`, `"rouge2"`) where: {n} is the n-gram based scoring, `"rougeL"`: Longest common subsequence based scoring. `"rougeLSum"`: rougeLsum splits text using `"\n"`. See details in https://github.com/huggingface/datasets/issues/617 use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes. use_aggregator: Return aggregates if this is set to True Returns: rouge1: rouge_1 (precision, recall, f1), rouge2: rouge_2 (precision, recall, f1), rougeL: rouge_l (precision, recall, f1), rougeLsum: rouge_lsum (precision, recall, f1) Examples: >>> rouge = datasets.load_metric(\'rouge\') >>> predictions = ["hello there", "general kenobi"] >>> references = ["hello there", "general kenobi"] >>> results = rouge.compute(predictions=predictions, references=references) >>> print(list(results.keys())) [\'rouge1\', \'rouge2\', \'rougeL\', \'rougeLsum\'] >>> print(results["rouge1"]) AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0)) >>> print(results["rouge1"].mid.fmeasure) 1.0 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class __snake_case ( datasets.Metric ): def UpperCAmelCase__ ( self : Any): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence'''), '''references''': datasets.Value('''string''' , id='''sequence'''), }) , codebase_urls=['''https://github.com/google-research/google-research/tree/master/rouge'''] , reference_urls=[ '''https://en.wikipedia.org/wiki/ROUGE_(metric)''', '''https://github.com/google-research/google-research/tree/master/rouge''', ] , ) def UpperCAmelCase__ ( self : int , A_ : Optional[int] , A_ : Union[str, Any] , A_ : Optional[int]=None , A_ : Optional[Any]=True , A_ : Optional[int]=False): if rouge_types is None: lowerCAmelCase_ : Dict = ['''rouge1''', '''rouge2''', '''rougeL''', '''rougeLsum'''] lowerCAmelCase_ : List[str] = rouge_scorer.RougeScorer(rouge_types=A_ , use_stemmer=A_) if use_aggregator: lowerCAmelCase_ : List[Any] = scoring.BootstrapAggregator() else: lowerCAmelCase_ : int = [] for ref, pred in zip(A_ , A_): lowerCAmelCase_ : List[Any] = scorer.score(A_ , A_) if use_aggregator: aggregator.add_scores(A_) else: scores.append(A_) if use_aggregator: lowerCAmelCase_ : Optional[int] = aggregator.aggregate() else: lowerCAmelCase_ : Union[str, Any] = {} for key in scores[0]: lowerCAmelCase_ : List[Any] = [score[key] for score in scores] return result
103
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _UpperCAmelCase : Optional[Any] = { """configuration_distilbert""": [ """DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """DistilBertConfig""", """DistilBertOnnxConfig""", ], """tokenization_distilbert""": ["""DistilBertTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Union[str, Any] = ["""DistilBertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Tuple = [ """DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """DistilBertForMaskedLM""", """DistilBertForMultipleChoice""", """DistilBertForQuestionAnswering""", """DistilBertForSequenceClassification""", """DistilBertForTokenClassification""", """DistilBertModel""", """DistilBertPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Dict = [ """TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFDistilBertForMaskedLM""", """TFDistilBertForMultipleChoice""", """TFDistilBertForQuestionAnswering""", """TFDistilBertForSequenceClassification""", """TFDistilBertForTokenClassification""", """TFDistilBertMainLayer""", """TFDistilBertModel""", """TFDistilBertPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Tuple = [ """FlaxDistilBertForMaskedLM""", """FlaxDistilBertForMultipleChoice""", """FlaxDistilBertForQuestionAnswering""", """FlaxDistilBertForSequenceClassification""", """FlaxDistilBertForTokenClassification""", """FlaxDistilBertModel""", """FlaxDistilBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_distilbert import ( DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DistilBertConfig, DistilBertOnnxConfig, ) from .tokenization_distilbert import DistilBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_distilbert_fast import DistilBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_distilbert import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, DistilBertPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertMainLayer, TFDistilBertModel, TFDistilBertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, FlaxDistilBertPreTrainedModel, ) else: import sys _UpperCAmelCase : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
174
0
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { "EleutherAI/gpt-neo-1.3B": "https://huggingface.co/EleutherAI/gpt-neo-1.3B/resolve/main/config.json", # See all GPTNeo models at https://huggingface.co/models?filter=gpt_neo } class _lowerCAmelCase ( A__ ): """simple docstring""" snake_case_ = "gpt_neo" snake_case_ = ["past_key_values"] snake_case_ = {"num_attention_heads": "num_heads", "num_hidden_layers": "num_layers"} def __init__( self : Optional[int] , __snake_case : Dict=5_02_57 , __snake_case : Tuple=20_48 , __snake_case : Any=20_48 , __snake_case : Optional[Any]=24 , __snake_case : Optional[Any]=[[["global", "local"], 12]] , __snake_case : Optional[Any]=16 , __snake_case : str=None , __snake_case : List[str]=2_56 , __snake_case : Optional[Any]="gelu_new" , __snake_case : Optional[int]=0.0 , __snake_case : str=0.0 , __snake_case : List[Any]=0.0 , __snake_case : str=0.1 , __snake_case : Union[str, Any]=1e-5 , __snake_case : Optional[int]=0.02 , __snake_case : str=True , __snake_case : Tuple=5_02_56 , __snake_case : Dict=5_02_56 , **__snake_case : Tuple , )-> List[str]: snake_case = vocab_size snake_case = max_position_embeddings snake_case = hidden_size snake_case = num_layers snake_case = num_heads snake_case = intermediate_size snake_case = window_size snake_case = activation_function snake_case = resid_dropout snake_case = embed_dropout snake_case = attention_dropout snake_case = classifier_dropout snake_case = layer_norm_epsilon snake_case = initializer_range snake_case = use_cache snake_case = bos_token_id snake_case = eos_token_id snake_case = attention_types snake_case = self.expand_attention_types_params(__snake_case ) if len(self.attention_layers ) != self.num_layers: raise ValueError( """Configuration for convolutional module is incorrect. """ """It is required that `len(config.attention_layers)` == `config.num_layers` """ f'''but is `len(config.attention_layers) = {len(self.attention_layers )}`, ''' f'''`config.num_layers = {self.num_layers}`. ''' """`config.attention_layers` is prepared using `config.attention_types`. """ """Please verify the value of `config.attention_types` argument.""" ) super().__init__(bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case ) @staticmethod def lowerCAmelCase ( __snake_case : Any )-> Optional[int]: snake_case = [] for item in attention_types: for _ in range(item[1] ): attentions.extend(item[0] ) return attentions def __lowerCamelCase ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Tuple , __lowerCAmelCase : List[Any] , __lowerCAmelCase : int ) -> Tuple: import torch snake_case = input.size() snake_case = len(__lowerCAmelCase ) snake_case = shape[dimension] snake_case = torch.arange(0 , __lowerCAmelCase , __lowerCAmelCase ) snake_case = torch.div(sizedim - size , __lowerCAmelCase , rounding_mode="""floor""" ) + 1 snake_case = torch.arange(__lowerCAmelCase ) + low_indices[:min_length][:, None] snake_case = [slice(__lowerCAmelCase )] * rank snake_case = indices snake_case = input[s] snake_case = list(range(0 , rank + 1 ) ) perm.append(perm.pop(dimension + 1 ) ) return sliced.permute(__lowerCAmelCase ) def __lowerCamelCase ( __lowerCAmelCase : List[str] , __lowerCAmelCase : str ) -> List[Any]: import torch snake_case = torch.arange(1 , __lowerCAmelCase ) snake_case = torch.remainder(__lowerCAmelCase , __lowerCAmelCase ) snake_case = remainders == 0 snake_case = candidates[divisor_indices] snake_case = torch.max(__lowerCAmelCase ) return largest_divisor, torch.div(__lowerCAmelCase , __lowerCAmelCase , rounding_mode="""floor""" ) class _lowerCAmelCase ( A__ ): """simple docstring""" @property def lowerCAmelCase ( self : Dict )-> Mapping[str, Mapping[int, str]]: snake_case = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} ) if self.use_past: self.fill_with_past_key_values_(__snake_case , direction="""inputs""" ) snake_case = {0: """batch""", 1: """past_sequence + sequence"""} else: snake_case = {0: """batch""", 1: """sequence"""} return common_inputs @property def lowerCAmelCase ( self : Tuple )-> int: return self._config.num_heads def lowerCAmelCase ( self : Any , __snake_case : PreTrainedTokenizer , __snake_case : int = -1 , __snake_case : int = -1 , __snake_case : bool = False , __snake_case : Optional[TensorType] = None , )-> Mapping[str, Any]: snake_case = super(__snake_case , self ).generate_dummy_inputs( __snake_case , batch_size=__snake_case , seq_length=__snake_case , is_pair=__snake_case , framework=__snake_case ) # We need to order the input in the way they appears in the forward() snake_case = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch snake_case , snake_case = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values snake_case = seqlen + 2 snake_case = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) snake_case = [ (torch.zeros(__snake_case ), torch.zeros(__snake_case )) for _ in range(self.num_layers ) ] snake_case = common_inputs["""attention_mask"""] if self.use_past: snake_case = ordered_inputs["""attention_mask"""].dtype snake_case = torch.cat( [ordered_inputs["""attention_mask"""], torch.ones(__snake_case , __snake_case , dtype=__snake_case )] , dim=1 ) return ordered_inputs @property def lowerCAmelCase ( self : Dict )-> int: return 13
371
'''simple docstring''' import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def lowerCAmelCase ( self : Tuple )-> Optional[Any]: snake_case = 0 def lowerCAmelCase ( self : str )-> Any: snake_case = AutoImageProcessor.from_pretrained("""openai/clip-vit-base-patch32""" ) self.assertIsInstance(__snake_case , __snake_case ) def lowerCAmelCase ( self : List[Any] )-> str: with tempfile.TemporaryDirectory() as tmpdirname: snake_case = Path(__snake_case ) / """preprocessor_config.json""" snake_case = Path(__snake_case ) / """config.json""" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(__snake_case , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(__snake_case , """w""" ) ) snake_case = AutoImageProcessor.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) def lowerCAmelCase ( self : List[str] )-> Optional[Any]: # Ensure we can load the image processor from the feature extractor config with tempfile.TemporaryDirectory() as tmpdirname: snake_case = Path(__snake_case ) / """preprocessor_config.json""" snake_case = Path(__snake_case ) / """config.json""" json.dump( {"""feature_extractor_type""": """CLIPFeatureExtractor""", """processor_class""": """CLIPProcessor"""} , open(__snake_case , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(__snake_case , """w""" ) ) snake_case = AutoImageProcessor.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) def lowerCAmelCase ( self : Tuple )-> Optional[int]: with tempfile.TemporaryDirectory() as tmpdirname: snake_case = CLIPConfig() # Create a dummy config file with image_proceesor_type snake_case = Path(__snake_case ) / """preprocessor_config.json""" snake_case = Path(__snake_case ) / """config.json""" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(__snake_case , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(__snake_case , """w""" ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally snake_case = AutoImageProcessor.from_pretrained(__snake_case ).to_dict() config_dict.pop("""image_processor_type""" ) snake_case = CLIPImageProcessor(**__snake_case ) # save in new folder model_config.save_pretrained(__snake_case ) config.save_pretrained(__snake_case ) snake_case = AutoImageProcessor.from_pretrained(__snake_case ) # make sure private variable is not incorrectly saved snake_case = json.loads(config.to_json_string() ) self.assertTrue("""_processor_class""" not in dict_as_saved ) self.assertIsInstance(__snake_case , __snake_case ) def lowerCAmelCase ( self : List[Any] )-> Optional[Any]: with tempfile.TemporaryDirectory() as tmpdirname: snake_case = Path(__snake_case ) / """preprocessor_config.json""" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(__snake_case , """w""" ) , ) snake_case = AutoImageProcessor.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) def lowerCAmelCase ( self : int )-> Dict: with self.assertRaisesRegex( __snake_case , """clip-base is not a local folder and is not a valid model identifier""" ): snake_case = AutoImageProcessor.from_pretrained("""clip-base""" ) def lowerCAmelCase ( self : Tuple )-> int: with self.assertRaisesRegex( __snake_case , r"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): snake_case = AutoImageProcessor.from_pretrained(__snake_case , revision="""aaaaaa""" ) def lowerCAmelCase ( self : str )-> Union[str, Any]: with self.assertRaisesRegex( __snake_case , """hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.""" , ): snake_case = AutoImageProcessor.from_pretrained("""hf-internal-testing/config-no-model""" ) def lowerCAmelCase ( self : List[str] )-> List[str]: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(__snake_case ): snake_case = AutoImageProcessor.from_pretrained("""hf-internal-testing/test_dynamic_image_processor""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(__snake_case ): snake_case = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=__snake_case ) snake_case = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=__snake_case ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(__snake_case ) snake_case = AutoImageProcessor.from_pretrained(__snake_case , trust_remote_code=__snake_case ) self.assertEqual(reloaded_image_processor.__class__.__name__ , """NewImageProcessor""" ) def lowerCAmelCase ( self : List[str] )-> Dict: try: AutoConfig.register("""custom""" , __snake_case ) AutoImageProcessor.register(__snake_case , __snake_case ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__snake_case ): AutoImageProcessor.register(__snake_case , __snake_case ) with tempfile.TemporaryDirectory() as tmpdirname: snake_case = Path(__snake_case ) / """preprocessor_config.json""" snake_case = Path(__snake_case ) / """config.json""" json.dump( {"""feature_extractor_type""": """CLIPFeatureExtractor""", """processor_class""": """CLIPProcessor"""} , open(__snake_case , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(__snake_case , """w""" ) ) snake_case = CustomImageProcessor.from_pretrained(__snake_case ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(__snake_case ) snake_case = AutoImageProcessor.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def lowerCAmelCase ( self : Dict )-> Optional[int]: class _lowerCAmelCase ( A__ ): """simple docstring""" snake_case_ = True try: AutoConfig.register("""custom""" , __snake_case ) AutoImageProcessor.register(__snake_case , __snake_case ) # If remote code is not set, the default is to use local snake_case = AutoImageProcessor.from_pretrained("""hf-internal-testing/test_dynamic_image_processor""" ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. snake_case = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=__snake_case ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub snake_case = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=__snake_case ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) self.assertTrue(not hasattr(__snake_case , """is_local""" ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
3
0
from collections import OrderedDict from typing import Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...feature_extraction_utils import FeatureExtractionMixin from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType, logging __lowerCamelCase : Optional[int] = logging.get_logger(__name__) __lowerCamelCase : Tuple = { '''deepmind/language-perceiver''': '''https://huggingface.co/deepmind/language-perceiver/resolve/main/config.json''', # See all Perceiver models at https://huggingface.co/models?filter=perceiver } class a__ ( A__ ): A = 'perceiver' def __init__( self : List[Any],_A : Tuple=256,_A : str=1280,_A : List[Any]=768,_A : Union[str, Any]=1,_A : Union[str, Any]=26,_A : List[str]=8,_A : List[Any]=8,_A : List[Any]=None,_A : List[Any]=None,_A : Union[str, Any]="kv",_A : Any=1,_A : int=1,_A : Dict="gelu",_A : Any=0.1,_A : int=0.02,_A : int=1E-12,_A : Any=True,_A : Optional[Any]=262,_A : List[Any]=2048,_A : str=56,_A : Optional[int]=[368, 496],_A : Dict=16,_A : Tuple=1920,_A : List[Any]=16,_A : str=[1, 16, 224, 224],**_A : Optional[Any],): """simple docstring""" super().__init__(**_A ) SCREAMING_SNAKE_CASE_ : Dict = num_latents SCREAMING_SNAKE_CASE_ : List[Any] = d_latents SCREAMING_SNAKE_CASE_ : Union[str, Any] = d_model SCREAMING_SNAKE_CASE_ : Optional[int] = num_blocks SCREAMING_SNAKE_CASE_ : List[Any] = num_self_attends_per_block SCREAMING_SNAKE_CASE_ : Tuple = num_self_attention_heads SCREAMING_SNAKE_CASE_ : List[str] = num_cross_attention_heads SCREAMING_SNAKE_CASE_ : List[Any] = qk_channels SCREAMING_SNAKE_CASE_ : Any = v_channels SCREAMING_SNAKE_CASE_ : Any = cross_attention_shape_for_attention SCREAMING_SNAKE_CASE_ : List[str] = self_attention_widening_factor SCREAMING_SNAKE_CASE_ : Any = cross_attention_widening_factor SCREAMING_SNAKE_CASE_ : List[Any] = hidden_act SCREAMING_SNAKE_CASE_ : List[str] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ : Any = initializer_range SCREAMING_SNAKE_CASE_ : List[Any] = layer_norm_eps SCREAMING_SNAKE_CASE_ : Tuple = use_query_residual # masked language modeling attributes SCREAMING_SNAKE_CASE_ : List[str] = vocab_size SCREAMING_SNAKE_CASE_ : Union[str, Any] = max_position_embeddings # image classification attributes SCREAMING_SNAKE_CASE_ : Dict = image_size # flow attributes SCREAMING_SNAKE_CASE_ : List[Any] = train_size # multimodal autoencoding attributes SCREAMING_SNAKE_CASE_ : str = num_frames SCREAMING_SNAKE_CASE_ : Any = audio_samples_per_frame SCREAMING_SNAKE_CASE_ : Tuple = samples_per_patch SCREAMING_SNAKE_CASE_ : Optional[Any] = output_shape class a__ ( A__ ): @property def __UpperCamelCase ( self : List[str] ): """simple docstring""" if self.task == "multiple-choice": SCREAMING_SNAKE_CASE_ : List[str] = {0: "batch", 1: "choice", 2: "sequence"} else: SCREAMING_SNAKE_CASE_ : str = {0: "batch", 1: "sequence"} return OrderedDict( [ ("inputs", dynamic_axis), ("attention_mask", dynamic_axis), ] ) @property def __UpperCamelCase ( self : List[Any] ): """simple docstring""" return 1E-4 def __UpperCamelCase ( self : List[str],_A : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"],_A : int = -1,_A : int = -1,_A : int = -1,_A : bool = False,_A : Optional[TensorType] = None,_A : int = 3,_A : int = 40,_A : int = 40,): """simple docstring""" if isinstance(_A,_A ): # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX SCREAMING_SNAKE_CASE_ : Tuple = compute_effective_axis_dimension( _A,fixed_dimension=OnnxConfig.default_fixed_batch,num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX SCREAMING_SNAKE_CASE_ : Tuple = preprocessor.num_special_tokens_to_add(_A ) SCREAMING_SNAKE_CASE_ : Any = compute_effective_axis_dimension( _A,fixed_dimension=OnnxConfig.default_fixed_sequence,num_token_to_add=_A ) # Generate dummy inputs according to compute batch and sequence SCREAMING_SNAKE_CASE_ : Optional[Any] = [" ".join(["a"] ) * seq_length] * batch_size SCREAMING_SNAKE_CASE_ : str = dict(preprocessor(_A,return_tensors=_A ) ) SCREAMING_SNAKE_CASE_ : List[str] = inputs.pop("input_ids" ) return inputs elif isinstance(_A,_A ) and preprocessor.model_input_names[0] == "pixel_values": # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX SCREAMING_SNAKE_CASE_ : Any = compute_effective_axis_dimension(_A,fixed_dimension=OnnxConfig.default_fixed_batch ) SCREAMING_SNAKE_CASE_ : Optional[int] = self._generate_dummy_images(_A,_A,_A,_A ) SCREAMING_SNAKE_CASE_ : Any = dict(preprocessor(images=_A,return_tensors=_A ) ) SCREAMING_SNAKE_CASE_ : Any = inputs.pop("pixel_values" ) return inputs else: raise ValueError( "Unable to generate dummy inputs for the model. Please provide a tokenizer or a preprocessor." )
18
'''simple docstring''' import heapq as hq import math from collections.abc import Iterator class A__ : """simple docstring""" def __init__( self : Any , lowerCAmelCase__ : Any ) -> Dict: """simple docstring""" _UpperCAmelCase : Union[str, Any] = str(id_ ) _UpperCAmelCase : Union[str, Any] = None _UpperCAmelCase : Dict = None _UpperCAmelCase : Tuple = [] _UpperCAmelCase : int = {} # {vertex:distance} def __lt__( self : List[str] , lowerCAmelCase__ : str ) -> List[str]: """simple docstring""" return self.key < other.key def __repr__( self : int ) -> Any: """simple docstring""" return self.id def _lowerCAmelCase ( self : Union[str, Any] , lowerCAmelCase__ : Optional[Any] ) -> Any: """simple docstring""" self.neighbors.append(lowerCAmelCase__ ) def _lowerCAmelCase ( self : Any , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Optional[int] ) -> Tuple: """simple docstring""" _UpperCAmelCase : Optional[Any] = weight def __UpperCAmelCase ( a_: Any, a_: Optional[Any], a_: Optional[Any], a_: List[str] ): # add the neighbors: graph[a - 1].add_neighbor(graph[b - 1] ) graph[b - 1].add_neighbor(graph[a - 1] ) # add the edges: graph[a - 1].add_edge(graph[b - 1], a_ ) graph[b - 1].add_edge(graph[a - 1], a_ ) def __UpperCAmelCase ( a_: list, a_: Vertex ): _UpperCAmelCase : Optional[int] = [] for u in graph: _UpperCAmelCase : Dict = math.inf _UpperCAmelCase : Any = None _UpperCAmelCase : List[str] = 0 _UpperCAmelCase : Union[str, Any] = graph[:] while q: _UpperCAmelCase : List[Any] = min(a_ ) q.remove(a_ ) for v in u.neighbors: if (v in q) and (u.edges[v.id] < v.key): _UpperCAmelCase : Optional[Any] = u _UpperCAmelCase : List[Any] = u.edges[v.id] for i in range(1, len(a_ ) ): a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) ) return a def __UpperCAmelCase ( a_: list, a_: Vertex ): for u in graph: _UpperCAmelCase : Optional[Any] = math.inf _UpperCAmelCase : str = None _UpperCAmelCase : Optional[Any] = 0 _UpperCAmelCase : List[str] = list(a_ ) hq.heapify(a_ ) while h: _UpperCAmelCase : str = hq.heappop(a_ ) for v in u.neighbors: if (v in h) and (u.edges[v.id] < v.key): _UpperCAmelCase : Any = u _UpperCAmelCase : Optional[int] = u.edges[v.id] hq.heapify(a_ ) for i in range(1, len(a_ ) ): yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) def __UpperCAmelCase ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
145
0
"""simple docstring""" from __future__ import annotations from collections.abc import Callable def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = 100 , ) -> Optional[int]: snake_case_ = x_start snake_case_ = fnc(lowerCamelCase_ ) snake_case_ = 0.0 for _ in range(lowerCamelCase_ ): # Approximates small segments of curve as linear and solve # for trapezoidal area snake_case_ = (x_end - x_start) / steps + xa snake_case_ = fnc(lowerCamelCase_ ) area += abs(fxa + fxa ) * (xa - xa) / 2 # Increment step snake_case_ = xa snake_case_ = fxa return area if __name__ == "__main__": def UpperCAmelCase ( UpperCAmelCase ) -> List[Any]: return x**3 + x**2 print('''f(x) = x^3 + x^2''') print('''The area between the curve, x = -5, x = 5 and the x axis is:''') __UpperCamelCase = 10 while i <= 10_0000: print(F"""with {i} steps: {trapezoidal_area(f, -5, 5, i)}""") i *= 10
358
"""simple docstring""" import os import pytest import yaml from datasets.features.features import Features, Value from datasets.info import DatasetInfo, DatasetInfosDict @pytest.mark.parametrize( 'files' , [ ['full:README.md', 'dataset_infos.json'], ['empty:README.md', 'dataset_infos.json'], ['dataset_infos.json'], ['full:README.md'], ] , ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> List[str]: snake_case_ = tmp_path_factory.mktemp('dset_infos_dir' ) if "full:README.md" in files: with open(dataset_infos_dir / 'README.md' , 'w' ) as f: f.write('---\ndataset_info:\n dataset_size: 42\n---' ) if "empty:README.md" in files: with open(dataset_infos_dir / 'README.md' , 'w' ) as f: f.write('' ) # we want to support dataset_infos.json for backward compatibility if "dataset_infos.json" in files: with open(dataset_infos_dir / 'dataset_infos.json' , 'w' ) as f: f.write('{"default": {"dataset_size": 42}}' ) snake_case_ = DatasetInfosDict.from_directory(UpperCAmelCase ) assert dataset_infos assert dataset_infos["default"].dataset_size == 42 @pytest.mark.parametrize( 'dataset_info' , [ DatasetInfo(), DatasetInfo( description='foo' , features=Features({'a': Value('int32' )} ) , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train'}] , download_size=42 , ), ] , ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> Optional[Any]: snake_case_ = str(UpperCAmelCase ) dataset_info.write_to_directory(UpperCAmelCase ) snake_case_ = DatasetInfo.from_directory(UpperCAmelCase ) assert dataset_info == reloaded assert os.path.exists(os.path.join(UpperCAmelCase , 'dataset_info.json' ) ) def UpperCAmelCase ( ) -> Union[str, Any]: snake_case_ = DatasetInfo( description='foo' , citation='bar' , homepage='https://foo.bar' , license='CC0' , features=Features({'a': Value('int32' )} ) , post_processed={} , supervised_keys=() , task_templates=[] , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train', 'num_examples': 42}] , download_checksums={} , download_size=1337 , post_processing_size=442 , dataset_size=1234 , size_in_bytes=1337 + 442 + 1234 , ) snake_case_ = dataset_info._to_yaml_dict() assert sorted(UpperCAmelCase ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML ) for key in DatasetInfo._INCLUDED_INFO_IN_YAML: assert key in dataset_info_yaml_dict assert isinstance(dataset_info_yaml_dict[key] , (list, dict, int, str) ) snake_case_ = yaml.safe_dump(UpperCAmelCase ) snake_case_ = yaml.safe_load(UpperCAmelCase ) assert dataset_info_yaml_dict == reloaded def UpperCAmelCase ( ) -> Optional[Any]: snake_case_ = DatasetInfo() snake_case_ = dataset_info._to_yaml_dict() assert dataset_info_yaml_dict == {} @pytest.mark.parametrize( 'dataset_infos_dict' , [ DatasetInfosDict(), DatasetInfosDict({'default': DatasetInfo()} ), DatasetInfosDict({'my_config_name': DatasetInfo()} ), DatasetInfosDict( { 'default': DatasetInfo( description='foo' , features=Features({'a': Value('int32' )} ) , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train'}] , download_size=42 , ) } ), DatasetInfosDict( { 'v1': DatasetInfo(dataset_size=42 ), 'v2': DatasetInfo(dataset_size=1337 ), } ), ] , ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> List[str]: snake_case_ = str(UpperCAmelCase ) dataset_infos_dict.write_to_directory(UpperCAmelCase ) snake_case_ = DatasetInfosDict.from_directory(UpperCAmelCase ) # the config_name of the dataset_infos_dict take over the attribute for config_name, dataset_info in dataset_infos_dict.items(): snake_case_ = config_name # the yaml representation doesn't include fields like description or citation # so we just test that we can recover what we can from the yaml snake_case_ = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() ) assert dataset_infos_dict == reloaded if dataset_infos_dict: assert os.path.exists(os.path.join(UpperCAmelCase , 'README.md' ) )
312
0
"""simple docstring""" import unittest import numpy as np from transformers import RoFormerConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roformer.modeling_flax_roformer import ( FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, ) class UpperCamelCase_ ( unittest.TestCase): """simple docstring""" def __init__( self : List[Any] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Optional[int]=1_3 , UpperCAmelCase__ : Optional[int]=7 , UpperCAmelCase__ : str=True , UpperCAmelCase__ : int=True , UpperCAmelCase__ : Any=True , UpperCAmelCase__ : Tuple=True , UpperCAmelCase__ : List[Any]=9_9 , UpperCAmelCase__ : Dict=3_2 , UpperCAmelCase__ : List[str]=5 , UpperCAmelCase__ : Tuple=4 , UpperCAmelCase__ : Dict=3_7 , UpperCAmelCase__ : Optional[Any]="gelu" , UpperCAmelCase__ : List[Any]=0.1 , UpperCAmelCase__ : Optional[int]=0.1 , UpperCAmelCase__ : List[Any]=5_1_2 , UpperCAmelCase__ : Optional[Any]=1_6 , UpperCAmelCase__ : str=2 , UpperCAmelCase__ : Dict=0.02 , UpperCAmelCase__ : str=4 , ) -> List[Any]: __SCREAMING_SNAKE_CASE = parent __SCREAMING_SNAKE_CASE = batch_size __SCREAMING_SNAKE_CASE = seq_length __SCREAMING_SNAKE_CASE = is_training __SCREAMING_SNAKE_CASE = use_attention_mask __SCREAMING_SNAKE_CASE = use_token_type_ids __SCREAMING_SNAKE_CASE = use_labels __SCREAMING_SNAKE_CASE = vocab_size __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = hidden_dropout_prob __SCREAMING_SNAKE_CASE = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE = max_position_embeddings __SCREAMING_SNAKE_CASE = type_vocab_size __SCREAMING_SNAKE_CASE = type_sequence_label_size __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = num_choices def UpperCAmelCase_ ( self : Tuple ) -> Tuple: __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __SCREAMING_SNAKE_CASE = None if self.use_attention_mask: __SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.seq_length] ) __SCREAMING_SNAKE_CASE = None if self.use_token_type_ids: __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __SCREAMING_SNAKE_CASE = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCAmelCase__ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def UpperCAmelCase_ ( self : str ) -> Tuple: __SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = config_and_inputs __SCREAMING_SNAKE_CASE = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict @require_flax class UpperCamelCase_ ( UpperCamelCase , unittest.TestCase): """simple docstring""" snake_case__ : Union[str, Any] = True snake_case__ : Optional[int] = ( ( FlaxRoFormerModel, FlaxRoFormerForMaskedLM, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, ) if is_flax_available() else () ) def UpperCAmelCase_ ( self : str ) -> Tuple: __SCREAMING_SNAKE_CASE = FlaxRoFormerModelTester(self ) @slow def UpperCAmelCase_ ( self : int ) -> Any: for model_class_name in self.all_model_classes: __SCREAMING_SNAKE_CASE = model_class_name.from_pretrained("junnyu/roformer_chinese_small" , from_pt=UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = model(np.ones((1, 1) ) ) self.assertIsNotNone(UpperCAmelCase__ ) @require_flax class UpperCamelCase_ ( unittest.TestCase): """simple docstring""" @slow def UpperCAmelCase_ ( self : Optional[int] ) -> Optional[Any]: __SCREAMING_SNAKE_CASE = FlaxRoFormerForMaskedLM.from_pretrained("junnyu/roformer_chinese_base" ) __SCREAMING_SNAKE_CASE = jnp.array([[0, 1, 2, 3, 4, 5]] ) __SCREAMING_SNAKE_CASE = model(UpperCAmelCase__ )[0] __SCREAMING_SNAKE_CASE = 5_0_0_0_0 __SCREAMING_SNAKE_CASE = (1, 6, vocab_size) self.assertEqual(output.shape , UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = jnp.array( [[[-0.1_205, -1.0_265, 0.2_922], [-1.5_134, 0.1_974, 0.1_519], [-5.0_135, -3.9_003, -0.8_404]]] ) self.assertTrue(jnp.allclose(output[:, :3, :3] , UpperCAmelCase__ , atol=1E-4 ) )
54
"""simple docstring""" import unittest import numpy as np import torch from diffusers import VersatileDiffusionImageVariationPipeline from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device a__ : Tuple = False class UpperCamelCase_ ( unittest.TestCase): """simple docstring""" pass @slow @require_torch_gpu class UpperCamelCase_ ( unittest.TestCase): """simple docstring""" def UpperCAmelCase_ ( self : int ) -> int: __SCREAMING_SNAKE_CASE = VersatileDiffusionImageVariationPipeline.from_pretrained("shi-labs/versatile-diffusion" ) pipe.to(UpperCAmelCase__ ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg" ) __SCREAMING_SNAKE_CASE = torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = pipe( image=UpperCAmelCase__ , generator=UpperCAmelCase__ , guidance_scale=7.5 , num_inference_steps=5_0 , output_type="numpy" , ).images __SCREAMING_SNAKE_CASE = image[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) __SCREAMING_SNAKE_CASE = np.array([0.0_441, 0.0_469, 0.0_507, 0.0_575, 0.0_632, 0.0_650, 0.0_865, 0.0_909, 0.0_945] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
54
1
import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration lowerCAmelCase_ = [ # tf -> hf ('''/''', '''.'''), ('''layer_''', '''layers.'''), ('''kernel''', '''weight'''), ('''beta''', '''bias'''), ('''gamma''', '''weight'''), ('''pegasus''', '''model'''), ] lowerCAmelCase_ = [ ('''.output.dense''', '''.fc2'''), ('''intermediate.LayerNorm''', '''final_layer_norm'''), ('''intermediate.dense''', '''fc1'''), ] lowerCAmelCase_ = ( INIT_COMMON + [ ('''attention.self.LayerNorm''', '''self_attn_layer_norm'''), ('''attention.output.dense''', '''self_attn.out_proj'''), ('''attention.self''', '''self_attn'''), ('''attention.encdec.LayerNorm''', '''encoder_attn_layer_norm'''), ('''attention.encdec_output.dense''', '''encoder_attn.out_proj'''), ('''attention.encdec''', '''encoder_attn'''), ('''key''', '''k_proj'''), ('''value''', '''v_proj'''), ('''query''', '''q_proj'''), ('''decoder.LayerNorm''', '''decoder.layernorm_embedding'''), ] + END_COMMON ) lowerCAmelCase_ = ( INIT_COMMON + [ ('''embeddings.word_embeddings''', '''shared.weight'''), ('''embeddings.position_embeddings''', '''embed_positions.weight'''), ('''attention.self.LayerNorm''', '''self_attn_layer_norm'''), ('''attention.output.dense''', '''self_attn.output'''), ('''attention.self''', '''self_attn.self'''), ('''encoder.LayerNorm''', '''encoder.layernorm_embedding'''), ] + END_COMMON ) lowerCAmelCase_ = [ '''encdec/key/bias''', '''encdec/query/bias''', '''encdec/value/bias''', '''self/key/bias''', '''self/query/bias''', '''self/value/bias''', '''encdec_output/dense/bias''', '''attention/output/dense/bias''', ] def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase ) -> int: """simple docstring""" for tf_name, hf_name in patterns: snake_case_ : Any = k.replace(_UpperCamelCase , _UpperCamelCase ) return k def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase ) -> BigBirdPegasusForConditionalGeneration: """simple docstring""" snake_case_ : int = BigBirdPegasusConfig(**_UpperCamelCase ) snake_case_ : Any = BigBirdPegasusForConditionalGeneration(_UpperCamelCase ) snake_case_ : Any = torch_model.state_dict() snake_case_ : Optional[int] = {} # separating decoder weights snake_case_ : int = {k: tf_weights[k] for k in tf_weights if k.startswith('''pegasus/decoder''' )} snake_case_ : Union[str, Any] = {k: tf_weights[k] for k in tf_weights if not k.startswith('''pegasus/decoder''' )} for k, v in tqdm(decoder_weights.items() , '''tf -> hf conversion''' ): snake_case_ : int = [k.endswith(_UpperCamelCase ) for ending in KEYS_TO_IGNORE] if any(_UpperCamelCase ): continue snake_case_ : Tuple = DECODER_PATTERNS snake_case_ : List[str] = rename_state_dict_key(_UpperCamelCase , _UpperCamelCase ) if new_k not in state_dict: raise ValueError(f'''could not find new key {new_k} in state dict. (converted from {k})''' ) if any(True if i in k else False for i in ['''dense''', '''query''', '''key''', '''value'''] ): snake_case_ : int = v.T snake_case_ : Optional[int] = torch.from_numpy(_UpperCamelCase ) assert v.shape == state_dict[new_k].shape, f'''{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}''' for k, v in tqdm(remaining_weights.items() , '''tf -> hf conversion''' ): snake_case_ : Union[str, Any] = [k.endswith(_UpperCamelCase ) for ending in KEYS_TO_IGNORE] if any(_UpperCamelCase ): continue snake_case_ : Union[str, Any] = REMAINING_PATTERNS snake_case_ : Union[str, Any] = rename_state_dict_key(_UpperCamelCase , _UpperCamelCase ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(f'''could not find new key {new_k} in state dict. (converted from {k})''' ) if any(True if i in k else False for i in ['''dense''', '''query''', '''key''', '''value'''] ): snake_case_ : List[Any] = v.T snake_case_ : Union[str, Any] = torch.from_numpy(_UpperCamelCase ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, f'''{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}''' snake_case_ : Tuple = mapping['''model.embed_positions.weight'''] snake_case_ : Any = mapping.pop('''model.embed_positions.weight''' ) snake_case_ , snake_case_ : List[str] = torch_model.load_state_dict(_UpperCamelCase , strict=_UpperCamelCase ) snake_case_ : Union[str, Any] = [ k for k in missing if k not in [ '''final_logits_bias''', '''model.encoder.embed_tokens.weight''', '''model.decoder.embed_tokens.weight''', '''lm_head.weight''', ] ] assert unexpected_missing == [], f'''no matches found for the following torch keys {unexpected_missing}''' assert extra == [], f'''no matches found for the following tf keys {extra}''' return torch_model def lowerCamelCase_ ( _UpperCamelCase ) -> Dict: """simple docstring""" snake_case_ : List[Any] = tf.train.list_variables(_UpperCamelCase ) snake_case_ : Optional[Any] = {} snake_case_ : List[Any] = ['''global_step'''] for name, shape in tqdm(_UpperCamelCase , desc='''converting tf checkpoint to dict''' ): snake_case_ : List[str] = any(pat in name for pat in ignore_name ) if skip_key: continue snake_case_ : int = tf.train.load_variable(_UpperCamelCase , _UpperCamelCase ) snake_case_ : Union[str, Any] = array return tf_weights def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Optional[Any]: """simple docstring""" snake_case_ : Union[str, Any] = get_tf_weights_as_numpy(_UpperCamelCase ) snake_case_ : Dict = convert_bigbird_pegasus(_UpperCamelCase , _UpperCamelCase ) torch_model.save_pretrained(_UpperCamelCase ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() parser.add_argument('''--tf_ckpt_path''', type=str, help='''passed to tf.train.list_variables''') parser.add_argument('''--save_dir''', default=None, type=str, help='''Path to the output PyTorch model.''') lowerCAmelCase_ = parser.parse_args() lowerCAmelCase_ = {} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
279
import random from .binary_exp_mod import bin_exp_mod def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase=1_000 ) -> str: """simple docstring""" if n < 2: return False if n % 2 == 0: return n == 2 # this means n is odd snake_case_ : int = n - 1 snake_case_ : Union[str, Any] = 0 while d % 2 == 0: d /= 2 exp += 1 # n - 1=d*(2**exp) snake_case_ : List[Any] = 0 while count < prec: snake_case_ : Tuple = random.randint(2 , n - 1 ) snake_case_ : List[Any] = bin_exp_mod(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) if b != 1: snake_case_ : Any = True for _ in range(_UpperCamelCase ): if b == n - 1: snake_case_ : Tuple = False break snake_case_ : List[Any] = b * b b %= n if flag: return False count += 1 return True if __name__ == "__main__": lowerCAmelCase_ = abs(int(input('''Enter bound : ''').strip())) print('''Here\'s the list of primes:''') print(''', '''.join(str(i) for i in range(n + 1) if is_prime_big(i)))
279
1
import unittest from typing import Dict, List, Optional, Union import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BridgeTowerImageProcessor class __snake_case ( unittest.TestCase ): def __init__( self : List[str] , A_ : Dict , A_ : bool = True , A_ : Dict[str, int] = None , A_ : int = 3_2 , A_ : bool = True , A_ : Union[int, float] = 1 / 2_5_5 , A_ : bool = True , A_ : bool = True , A_ : Optional[Union[float, List[float]]] = [0.4814_5466, 0.457_8275, 0.4082_1073] , A_ : Optional[Union[float, List[float]]] = [0.2686_2954, 0.2613_0258, 0.2757_7711] , A_ : bool = True , A_ : List[str]=7 , A_ : Any=3_0 , A_ : Dict=4_0_0 , A_ : str=3 , ): lowerCAmelCase_ : Optional[int] = parent lowerCAmelCase_ : List[Any] = do_resize lowerCAmelCase_ : Dict = size if size is not None else {'''shortest_edge''': 2_8_8} lowerCAmelCase_ : int = size_divisor lowerCAmelCase_ : List[str] = do_rescale lowerCAmelCase_ : List[Any] = rescale_factor lowerCAmelCase_ : List[Any] = do_normalize lowerCAmelCase_ : Optional[Any] = do_center_crop lowerCAmelCase_ : Optional[Any] = image_mean lowerCAmelCase_ : Dict = image_std lowerCAmelCase_ : List[Any] = do_pad lowerCAmelCase_ : List[Any] = batch_size lowerCAmelCase_ : Optional[int] = num_channels lowerCAmelCase_ : Any = min_resolution lowerCAmelCase_ : Optional[int] = max_resolution def UpperCAmelCase__ ( self : int): return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "size_divisor": self.size_divisor, } def UpperCAmelCase__ ( self : Dict , A_ : Tuple , A_ : str=False): if not batched: lowerCAmelCase_ : Optional[int] = self.size['''shortest_edge'''] lowerCAmelCase_ : List[str] = image_inputs[0] if isinstance(A_ , Image.Image): lowerCAmelCase_ , lowerCAmelCase_ : str = image.size else: lowerCAmelCase_ , lowerCAmelCase_ : Tuple = image.shape[1], image.shape[2] lowerCAmelCase_ : str = size / min(A_ , A_) if h < w: lowerCAmelCase_ , lowerCAmelCase_ : Union[str, Any] = size, scale * w else: lowerCAmelCase_ , lowerCAmelCase_ : Dict = scale * h, size lowerCAmelCase_ : Union[str, Any] = int((1_3_3_3 / 8_0_0) * size) if max(A_ , A_) > max_size: lowerCAmelCase_ : Tuple = max_size / max(A_ , A_) lowerCAmelCase_ : int = newh * scale lowerCAmelCase_ : int = neww * scale lowerCAmelCase_ , lowerCAmelCase_ : List[Any] = int(newh + 0.5), int(neww + 0.5) lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = ( newh // self.size_divisor * self.size_divisor, neww // self.size_divisor * self.size_divisor, ) else: lowerCAmelCase_ : Any = [] for image in image_inputs: lowerCAmelCase_ , lowerCAmelCase_ : int = self.get_expected_values([image]) expected_values.append((expected_height, expected_width)) lowerCAmelCase_ : List[str] = max(A_ , key=lambda A_: item[0])[0] lowerCAmelCase_ : List[str] = max(A_ , key=lambda A_: item[1])[1] return expected_height, expected_width @require_torch @require_vision class __snake_case ( UpperCamelCase_ ,unittest.TestCase ): _a = BridgeTowerImageProcessor if is_vision_available() else None def UpperCAmelCase__ ( self : List[str]): lowerCAmelCase_ : Tuple = BridgeTowerImageProcessingTester(self) @property def UpperCAmelCase__ ( self : str): return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase__ ( self : Union[str, Any]): lowerCAmelCase_ : Dict = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(A_ , '''image_mean''')) self.assertTrue(hasattr(A_ , '''image_std''')) self.assertTrue(hasattr(A_ , '''do_normalize''')) self.assertTrue(hasattr(A_ , '''do_resize''')) self.assertTrue(hasattr(A_ , '''size''')) self.assertTrue(hasattr(A_ , '''size_divisor''')) def UpperCAmelCase__ ( self : List[Any]): pass def UpperCAmelCase__ ( self : Union[str, Any]): # Initialize image processor lowerCAmelCase_ : List[Any] = self.image_processing_class(**self.image_processor_dict) # create random PIL images lowerCAmelCase_ : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_) for image in image_inputs: self.assertIsInstance(A_ , Image.Image) # Test not batched input lowerCAmelCase_ : int = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = self.image_processor_tester.get_expected_values(A_) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCAmelCase_ : Optional[int] = image_processing(A_ , return_tensors='''pt''').pixel_values lowerCAmelCase_ , lowerCAmelCase_ : str = self.image_processor_tester.get_expected_values(A_ , batched=A_) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCAmelCase__ ( self : Optional[int]): # Initialize image processor lowerCAmelCase_ : Any = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors lowerCAmelCase_ : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , numpify=A_) for image in image_inputs: self.assertIsInstance(A_ , np.ndarray) # Test not batched input lowerCAmelCase_ : Optional[Any] = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values lowerCAmelCase_ , lowerCAmelCase_ : List[Any] = self.image_processor_tester.get_expected_values(A_) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCAmelCase_ : List[str] = image_processing(A_ , return_tensors='''pt''').pixel_values lowerCAmelCase_ , lowerCAmelCase_ : List[Any] = self.image_processor_tester.get_expected_values(A_ , batched=A_) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCAmelCase__ ( self : Dict): # Initialize image processor lowerCAmelCase_ : Optional[Any] = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors lowerCAmelCase_ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , torchify=A_) for image in image_inputs: self.assertIsInstance(A_ , torch.Tensor) # Test not batched input lowerCAmelCase_ : List[str] = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values lowerCAmelCase_ , lowerCAmelCase_ : int = self.image_processor_tester.get_expected_values(A_) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCAmelCase_ : str = image_processing(A_ , return_tensors='''pt''').pixel_values lowerCAmelCase_ , lowerCAmelCase_ : int = self.image_processor_tester.get_expected_values(A_ , batched=A_) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , )
103
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = { """alibaba-damo/mgp-str-base""": """https://huggingface.co/alibaba-damo/mgp-str-base/resolve/main/config.json""", } class _UpperCamelCase ( A ): '''simple docstring''' lowerCAmelCase__ = """mgp-str""" def __init__( self : int , _lowerCAmelCase : str=[3_2, 1_2_8] , _lowerCAmelCase : Dict=4 , _lowerCAmelCase : int=3 , _lowerCAmelCase : str=2_7 , _lowerCAmelCase : List[str]=3_8 , _lowerCAmelCase : Tuple=5_0_2_5_7 , _lowerCAmelCase : str=3_0_5_2_2 , _lowerCAmelCase : Optional[int]=7_6_8 , _lowerCAmelCase : Optional[int]=1_2 , _lowerCAmelCase : Optional[Any]=1_2 , _lowerCAmelCase : Optional[int]=4.0 , _lowerCAmelCase : List[Any]=True , _lowerCAmelCase : Tuple=False , _lowerCAmelCase : List[Any]=1e-5 , _lowerCAmelCase : List[Any]=0.0 , _lowerCAmelCase : str=0.0 , _lowerCAmelCase : Tuple=0.0 , _lowerCAmelCase : str=False , _lowerCAmelCase : List[Any]=0.02 , **_lowerCAmelCase : Optional[Any] , ): '''simple docstring''' super().__init__(**_lowerCAmelCase) __lowercase =image_size __lowercase =patch_size __lowercase =num_channels __lowercase =max_token_length __lowercase =num_character_labels __lowercase =num_bpe_labels __lowercase =num_wordpiece_labels __lowercase =hidden_size __lowercase =num_hidden_layers __lowercase =num_attention_heads __lowercase =mlp_ratio __lowercase =distilled __lowercase =layer_norm_eps __lowercase =drop_rate __lowercase =qkv_bias __lowercase =attn_drop_rate __lowercase =drop_path_rate __lowercase =output_aa_attentions __lowercase =initializer_range
166
0
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyImgaImgPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class A_ ( _lowerCamelCase , unittest.TestCase ): lowerCAmelCase__ = KandinskyImgaImgPipeline lowerCAmelCase__ = ["""prompt""", """image_embeds""", """negative_image_embeds""", """image"""] lowerCAmelCase__ = [ """prompt""", """negative_prompt""", """image_embeds""", """negative_image_embeds""", """image""", ] lowerCAmelCase__ = [ """generator""", """height""", """width""", """strength""", """guidance_scale""", """negative_prompt""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] lowerCAmelCase__ = False @property def _lowerCAmelCase (self :Optional[int] )-> int: return 32 @property def _lowerCAmelCase (self :Optional[Any] )-> List[Any]: return 32 @property def _lowerCAmelCase (self :Tuple )-> Dict: return self.time_input_dim @property def _lowerCAmelCase (self :int )-> str: return self.time_input_dim * 4 @property def _lowerCAmelCase (self :Optional[Any] )-> Any: return 100 @property def _lowerCAmelCase (self :Union[str, Any] )-> List[str]: __A = XLMRobertaTokenizerFast.from_pretrained('''YiYiXu/tiny-random-mclip-base''' ) return tokenizer @property def _lowerCAmelCase (self :Union[str, Any] )-> str: torch.manual_seed(0 ) __A = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1005 , ) __A = MultilingualCLIP(_UpperCamelCase ) __A = text_encoder.eval() return text_encoder @property def _lowerCAmelCase (self :Union[str, Any] )-> Tuple: torch.manual_seed(0 ) __A = { '''in_channels''': 4, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''text_image''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''text_image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } __A = UNetaDConditionModel(**_UpperCamelCase ) return model @property def _lowerCAmelCase (self :List[Any] )-> List[str]: return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def _lowerCAmelCase (self :Optional[int] )-> Optional[Any]: torch.manual_seed(0 ) __A = VQModel(**self.dummy_movq_kwargs ) return model def _lowerCAmelCase (self :List[str] )-> Any: __A = self.dummy_text_encoder __A = self.dummy_tokenizer __A = self.dummy_unet __A = self.dummy_movq __A = { '''num_train_timesteps''': 1000, '''beta_schedule''': '''linear''', '''beta_start''': 0.0_0_0_8_5, '''beta_end''': 0.0_1_2, '''clip_sample''': False, '''set_alpha_to_one''': False, '''steps_offset''': 0, '''prediction_type''': '''epsilon''', '''thresholding''': False, } __A = DDIMScheduler(**_UpperCamelCase ) __A = { '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def _lowerCAmelCase (self :Union[str, Any] , _UpperCamelCase :int , _UpperCamelCase :str=0 )-> Optional[int]: __A = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(_UpperCamelCase ) ).to(_UpperCamelCase ) __A = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(_UpperCamelCase ) # create init_image __A = floats_tensor((1, 3, 64, 64) , rng=random.Random(_UpperCamelCase ) ).to(_UpperCamelCase ) __A = image.cpu().permute(0 , 2 , 3 , 1 )[0] __A = Image.fromarray(np.uinta(_UpperCamelCase ) ).convert('''RGB''' ).resize((256, 256) ) if str(_UpperCamelCase ).startswith('''mps''' ): __A = torch.manual_seed(_UpperCamelCase ) else: __A = torch.Generator(device=_UpperCamelCase ).manual_seed(_UpperCamelCase ) __A = { '''prompt''': '''horse''', '''image''': init_image, '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''generator''': generator, '''height''': 64, '''width''': 64, '''num_inference_steps''': 10, '''guidance_scale''': 7.0, '''strength''': 0.2, '''output_type''': '''np''', } return inputs def _lowerCAmelCase (self :Optional[Any] )-> Optional[int]: __A = '''cpu''' __A = self.get_dummy_components() __A = self.pipeline_class(**_UpperCamelCase ) __A = pipe.to(_UpperCamelCase ) pipe.set_progress_bar_config(disable=_UpperCamelCase ) __A = pipe(**self.get_dummy_inputs(_UpperCamelCase ) ) __A = output.images __A = pipe( **self.get_dummy_inputs(_UpperCamelCase ) , return_dict=_UpperCamelCase , )[0] __A = image[0, -3:, -3:, -1] __A = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __A = np.array( [0.6_1_4_7_4_9_4_3, 0.6_0_7_3_5_3_9, 0.4_3_3_0_8_5_4_4, 0.5_9_2_8_2_6_9, 0.4_7_4_9_3_5_9_5, 0.4_6_7_5_5_9_7_3, 0.4_6_1_3_8_3_8, 0.4_5_3_6_8_7_9_7, 0.5_0_1_1_9_2_3_3] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" @slow @require_torch_gpu class A_ ( unittest.TestCase ): def _lowerCAmelCase (self :Optional[Any] )-> Union[str, Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCAmelCase (self :Optional[Any] )-> Any: __A = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/kandinsky_img2img_frog.npy''' ) __A = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''' ) __A = '''A red cartoon frog, 4k''' __A = KandinskyPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-1-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(_UpperCamelCase ) __A = KandinskyImgaImgPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-1''' , torch_dtype=torch.floataa ) __A = pipeline.to(_UpperCamelCase ) pipeline.set_progress_bar_config(disable=_UpperCamelCase ) __A = torch.Generator(device='''cpu''' ).manual_seed(0 ) __A , __A = pipe_prior( _UpperCamelCase , generator=_UpperCamelCase , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple() __A = pipeline( _UpperCamelCase , image=_UpperCamelCase , image_embeds=_UpperCamelCase , negative_image_embeds=_UpperCamelCase , generator=_UpperCamelCase , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type='''np''' , ) __A = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_UpperCamelCase , _UpperCamelCase )
250
import sys def _a ( lowerCamelCase: Tuple ) -> Tuple: '''simple docstring''' __A = len(lowerCamelCase ) __A = [[0 for x in range(lowerCamelCase )] for x in range(lowerCamelCase )] __A = [[0 for x in range(lowerCamelCase )] for x in range(lowerCamelCase )] for chain_length in range(2 , lowerCamelCase ): for a in range(1 , n - chain_length + 1 ): __A = a + chain_length - 1 __A = sys.maxsize for c in range(lowerCamelCase , lowerCamelCase ): __A = ( matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b] ) if cost < matrix[a][b]: __A = cost __A = c return matrix, sol def _a ( lowerCamelCase: Optional[int] , lowerCamelCase: Optional[Any] , lowerCamelCase: List[str] ) -> Tuple: '''simple docstring''' if i == j: print('''A''' + str(lowerCamelCase ) , end=''' ''' ) else: print('''(''' , end=''' ''' ) print_optiomal_solution(lowerCamelCase , lowerCamelCase , optimal_solution[i][j] ) print_optiomal_solution(lowerCamelCase , optimal_solution[i][j] + 1 , lowerCamelCase ) print(''')''' , end=''' ''' ) def _a ( ) -> List[str]: '''simple docstring''' __A = [30, 35, 15, 5, 10, 20, 25] __A = len(lowerCamelCase ) # Size of matrix created from above array will be # 30*35 35*15 15*5 5*10 10*20 20*25 __A , __A = matrix_chain_order(lowerCamelCase ) print('''No. of Operation required: ''' + str(matrix[1][n - 1] ) ) print_optiomal_solution(lowerCamelCase , 1 , n - 1 ) if __name__ == "__main__": main()
250
1
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_rembert import RemBertTokenizer else: _a : Optional[Any] = None _a : Tuple = logging.get_logger(__name__) _a : Dict = {'vocab_file': 'sentencepiece.model', 'tokenizer_file': 'tokenizer.json'} _a : Tuple = { 'vocab_file': { 'google/rembert': 'https://huggingface.co/google/rembert/resolve/main/sentencepiece.model', }, 'tokenizer_file': { 'google/rembert': 'https://huggingface.co/google/rembert/resolve/main/tokenizer.json', }, } _a : List[str] = { 'google/rembert': 256, } _a : Dict = '▁' class __A ( __snake_case ): _UpperCamelCase : List[Any] = VOCAB_FILES_NAMES _UpperCamelCase : Any = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase : Union[str, Any] = RemBertTokenizer def __init__( self , a__=None , a__=None , a__=True , a__=True , a__=False , a__="[CLS]" , a__="[SEP]" , a__="<unk>" , a__="[SEP]" , a__="<pad>" , a__="[CLS]" , a__="[MASK]" , **a__ , ): _lowerCAmelCase : Optional[Any] = AddedToken(a__ , lstrip=a__ , rstrip=a__ ) if isinstance(a__ , a__ ) else mask_token super().__init__( a__ , tokenizer_file=a__ , do_lower_case=a__ , remove_space=a__ , keep_accents=a__ , bos_token=a__ , eos_token=a__ , unk_token=a__ , sep_token=a__ , pad_token=a__ , cls_token=a__ , mask_token=a__ , **a__ , ) _lowerCAmelCase : List[Any] = do_lower_case _lowerCAmelCase : str = remove_space _lowerCAmelCase : int = keep_accents _lowerCAmelCase : Union[str, Any] = vocab_file _lowerCAmelCase : List[Any] = False if not self.vocab_file else True def __A ( self , a__ , a__ = None ): _lowerCAmelCase : List[Any] = [self.sep_token_id] _lowerCAmelCase : Tuple = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def __A ( self , a__ , a__ = None , a__ = False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( """You should not supply a second sequence if the provided sequence of """ """ids is already formatted with special tokens for the model.""" ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(a__ )) + [1] + ([0] * len(a__ )) + [1] return [1] + ([0] * len(a__ )) + [1] def __A ( self , a__ , a__ = None ): _lowerCAmelCase : Tuple = [self.sep_token_id] _lowerCAmelCase : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __A ( self , a__ , a__ = None ): if not os.path.isdir(a__ ): logger.error("""Vocabulary path ({}) should be a directory""".format(a__ ) ) return _lowerCAmelCase : Any = os.path.join( a__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(a__ ): copyfile(self.vocab_file , a__ ) return (out_vocab_file,)
44
'''simple docstring''' import requests from bsa import BeautifulSoup def lowerCAmelCase_ ( snake_case__ , snake_case__ ): '''simple docstring''' A : str = BeautifulSoup(requests.get(snake_case__ , params=snake_case__ ).content , '''html.parser''' ) A : Dict = soup.find('''div''' , attrs={'''class''': '''gs_ri'''} ) A : Optional[int] = div.find('''div''' , attrs={'''class''': '''gs_fl'''} ).find_all('''a''' ) return anchors[2].get_text() if __name__ == "__main__": lowercase : str = { 'title': ( 'Precisely geometry controlled microsupercapacitors for ultrahigh areal ' 'capacitance, volumetric capacitance, and energy density' ), 'journal': 'Chem. Mater.', 'volume': 30, 'pages': '3979-3990', 'year': 20_18, 'hl': 'en', } print(get_citation('https://scholar.google.com/scholar_lookup', params=params))
3
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available snake_case_ = { """configuration_bigbird_pegasus""": [ """BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BigBirdPegasusConfig""", """BigBirdPegasusOnnxConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ = [ """BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST""", """BigBirdPegasusForCausalLM""", """BigBirdPegasusForConditionalGeneration""", """BigBirdPegasusForQuestionAnswering""", """BigBirdPegasusForSequenceClassification""", """BigBirdPegasusModel""", """BigBirdPegasusPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP, BigBirdPegasusConfig, BigBirdPegasusOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST, BigBirdPegasusForCausalLM, BigBirdPegasusForConditionalGeneration, BigBirdPegasusForQuestionAnswering, BigBirdPegasusForSequenceClassification, BigBirdPegasusModel, BigBirdPegasusPreTrainedModel, ) else: import sys snake_case_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
181
"""simple docstring""" def _lowerCAmelCase ( ): for n in range(1 , 1000000 ): yield n * (n + 1) // 2 def _lowerCAmelCase ( lowercase_ ): UpperCAmelCase = 1 UpperCAmelCase = 2 while i * i <= n: UpperCAmelCase = 0 while n % i == 0: n //= i multiplicity += 1 divisors_count *= multiplicity + 1 i += 1 if n > 1: divisors_count *= 2 return divisors_count def _lowerCAmelCase ( ): return next(i for i in triangle_number_generator() if count_divisors(lowercase_ ) > 500 ) if __name__ == "__main__": print(solution())
181
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) if is_sentencepiece_available(): from ..ta.tokenization_ta import TaTokenizer else: from ...utils.dummy_sentencepiece_objects import TaTokenizer UpperCAmelCase__ = TaTokenizer if is_tokenizers_available(): from ..ta.tokenization_ta_fast import TaTokenizerFast else: from ...utils.dummy_tokenizers_objects import TaTokenizerFast UpperCAmelCase__ = TaTokenizerFast UpperCAmelCase__ = {"configuration_mt5": ["MT5Config", "MT5OnnxConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "MT5EncoderModel", "MT5ForConditionalGeneration", "MT5ForQuestionAnswering", "MT5Model", "MT5PreTrainedModel", "MT5Stack", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = ["TFMT5EncoderModel", "TFMT5ForConditionalGeneration", "TFMT5Model"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = ["FlaxMT5EncoderModel", "FlaxMT5ForConditionalGeneration", "FlaxMT5Model"] if TYPE_CHECKING: from .configuration_mta import MTaConfig, MTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mta import ( MTaEncoderModel, MTaForConditionalGeneration, MTaForQuestionAnswering, MTaModel, MTaPreTrainedModel, MTaStack, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel else: import sys UpperCAmelCase__ = _LazyModule( __name__, globals()["__file__"], _import_structure, extra_objects={"MT5Tokenizer": MTaTokenizer, "MT5TokenizerFast": MTaTokenizerFast}, module_spec=__spec__, )
0
import copy import fnmatch import json import os import pickle as pkl import shutil import sys import tarfile import tempfile from collections import OrderedDict from contextlib import contextmanager from functools import partial from hashlib import shaaaa from io import BytesIO from pathlib import Path from urllib.parse import urlparse from zipfile import ZipFile, is_zipfile import cva import numpy as np import requests import wget from filelock import FileLock from PIL import Image from tqdm.auto import tqdm from yaml import Loader, dump, load try: import torch __a :int = True except ImportError: __a :Optional[Any] = False try: from torch.hub import _get_torch_home __a :Optional[Any] = _get_torch_home() except ImportError: __a :Tuple = os.path.expanduser( os.getenv('TORCH_HOME', os.path.join(os.getenv('XDG_CACHE_HOME', '~/.cache'), 'torch')) ) __a :Optional[Any] = os.path.join(torch_cache_home, 'transformers') __a :int = 'https://cdn.huggingface.co' __a :Any = 'https://s3.amazonaws.com/models.huggingface.co/bert' __a :Optional[Any] = '/'.join(str(Path(__file__).resolve()).split('/')[:-1]) __a :str = os.path.join(PATH, 'config.yaml') __a :str = os.path.join(PATH, 'attributes.txt') __a :Optional[Any] = os.path.join(PATH, 'objects.txt') __a :Optional[int] = os.getenv('PYTORCH_PRETRAINED_BERT_CACHE', default_cache_path) __a :Dict = os.getenv('PYTORCH_TRANSFORMERS_CACHE', PYTORCH_PRETRAINED_BERT_CACHE) __a :List[Any] = os.getenv('TRANSFORMERS_CACHE', PYTORCH_TRANSFORMERS_CACHE) __a :List[str] = 'pytorch_model.bin' __a :Tuple = 'config.yaml' def __snake_case ( __UpperCamelCase : Optional[Any]=OBJECTS ,__UpperCamelCase : List[str]=ATTRIBUTES ): """simple docstring""" A_ = [] with open(__UpperCamelCase ) as f: for object in f.readlines(): vg_classes.append(object.split("," )[0].lower().strip() ) A_ = [] with open(__UpperCamelCase ) as f: for object in f.readlines(): vg_attrs.append(object.split("," )[0].lower().strip() ) return vg_classes, vg_attrs def __snake_case ( __UpperCamelCase : List[Any] ): """simple docstring""" A_ = OrderedDict() with open(__UpperCamelCase ,"rb" ) as f: A_ = pkl.load(__UpperCamelCase )["model"] for k in copy.deepcopy(list(ckp.keys() ) ): A_ = ckp.pop(__UpperCamelCase ) if isinstance(__UpperCamelCase ,np.ndarray ): A_ = torch.tensor(__UpperCamelCase ) else: assert isinstance(__UpperCamelCase ,torch.tensor ), type(__UpperCamelCase ) A_ = v return r class _a : """simple docstring""" _lowerCamelCase : Union[str, Any] = {} def __init__( self : str , UpperCAmelCase : dict , UpperCAmelCase : str = "root" , UpperCAmelCase : List[str]=0 ): A_ = name A_ = level A_ = {} for k, v in dictionary.items(): if v is None: raise ValueError() A_ = copy.deepcopy(UpperCAmelCase ) A_ = copy.deepcopy(UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ): A_ = Config(UpperCAmelCase , name=UpperCAmelCase , level=level + 1 ) A_ = v setattr(self , UpperCAmelCase , UpperCAmelCase ) A_ = d def __repr__( self : Optional[Any] ): return str(list((self._pointer.keys()) ) ) def __setattr__( self : Any , UpperCAmelCase : Any , UpperCAmelCase : Any ): A_ = val A_ = val A_ = key.split("." ) A_ = len(UpperCAmelCase ) - 1 A_ = self._pointer if len(UpperCAmelCase ) > 1: for i, l in enumerate(UpperCAmelCase ): if hasattr(self , UpperCAmelCase ) and isinstance(getattr(self , UpperCAmelCase ) , UpperCAmelCase ): setattr(getattr(self , UpperCAmelCase ) , ".".join(levels[i:] ) , UpperCAmelCase ) if l == last_level: A_ = val else: A_ = pointer[l] def __A ( self : List[str] ): return self._pointer def __A ( self : int , UpperCAmelCase : Tuple , UpperCAmelCase : int ): with open(f'''{file_name}''' , "w" ) as stream: dump(UpperCAmelCase , UpperCAmelCase ) def __A ( self : List[Any] , UpperCAmelCase : str , UpperCAmelCase : Tuple ): with open(f'''{file_name}''' , "w" ) as stream: json.dump(UpperCAmelCase , UpperCAmelCase ) @staticmethod def __A ( UpperCAmelCase : Optional[int] ): with open(UpperCAmelCase ) as stream: A_ = load(UpperCAmelCase , Loader=UpperCAmelCase ) return data def __str__( self : str ): A_ = " " if self._name != "root": A_ = f'''{t * (self._level-1)}{self._name}:\n''' else: A_ = "" A_ = self._level for i, (k, v) in enumerate(self._pointer.items() ): if isinstance(UpperCAmelCase , UpperCAmelCase ): r += f'''{t * (self._level)}{v}\n''' self._level += 1 else: r += f'''{t * (self._level)}{k}: {v} ({type(UpperCAmelCase ).__name__})\n''' A_ = level return r[:-1] @classmethod def __A ( cls : Optional[Any] , UpperCAmelCase : str , **UpperCAmelCase : str ): A_ , A_ = cls.get_config_dict(UpperCAmelCase , **UpperCAmelCase ) return cls(UpperCAmelCase ) @classmethod def __A ( cls : int , UpperCAmelCase : str , **UpperCAmelCase : int ): A_ = kwargs.pop("cache_dir" , UpperCAmelCase ) A_ = kwargs.pop("force_download" , UpperCAmelCase ) A_ = kwargs.pop("resume_download" , UpperCAmelCase ) A_ = kwargs.pop("proxies" , UpperCAmelCase ) A_ = kwargs.pop("local_files_only" , UpperCAmelCase ) if os.path.isdir(UpperCAmelCase ): A_ = os.path.join(UpperCAmelCase , UpperCAmelCase ) elif os.path.isfile(UpperCAmelCase ) or is_remote_url(UpperCAmelCase ): A_ = pretrained_model_name_or_path else: A_ = hf_bucket_url(UpperCAmelCase , filename=UpperCAmelCase , use_cdn=UpperCAmelCase ) try: # Load from URL or cache if already cached A_ = cached_path( UpperCAmelCase , cache_dir=UpperCAmelCase , force_download=UpperCAmelCase , proxies=UpperCAmelCase , resume_download=UpperCAmelCase , local_files_only=UpperCAmelCase , ) # Load config dict if resolved_config_file is None: raise EnvironmentError A_ = Config.load_yaml(UpperCAmelCase ) except EnvironmentError: A_ = "Can't load config for" raise EnvironmentError(UpperCAmelCase ) if resolved_config_file == config_file: print("loading configuration file from path" ) else: print("loading configuration file cache" ) return Config.load_yaml(UpperCAmelCase ), kwargs def __snake_case ( __UpperCamelCase : Union[str, Any] ): """simple docstring""" A_ = torch.load("dump.pt" ,map_location=in_tensor.device ) A_ = in_tensor.numpy() A_ = out_tensor.numpy()[0] print(na.shape ,na[0, 0, :5] ) print(na.shape ,na[0, 0, :5] ) assert np.allclose(__UpperCamelCase ,__UpperCamelCase ,rtol=0.01 ,atol=0.1 ), ( f'''{sum([1 for x in np.isclose(__UpperCamelCase ,__UpperCamelCase ,rtol=0.01 ,atol=0.1 ).flatten() if x is False] )/len(na.flatten() )*100:.4f} %''' " element-wise mismatch" ) raise Exception("tensors are all good" ) # Hugging face functions below def __snake_case ( __UpperCamelCase : Optional[int] ): """simple docstring""" A_ = urlparse(__UpperCamelCase ) return parsed.scheme in ("http", "https") def __snake_case ( __UpperCamelCase : str ,__UpperCamelCase : str ,__UpperCamelCase : str=True ): """simple docstring""" A_ = CLOUDFRONT_DISTRIB_PREFIX if use_cdn else S3_BUCKET_PREFIX A_ = "/" not in model_id if legacy_format: return f'''{endpoint}/{model_id}-{filename}''' else: return f'''{endpoint}/{model_id}/{filename}''' def __snake_case ( __UpperCamelCase : List[str] ,__UpperCamelCase : Union[str, Any] ,__UpperCamelCase : List[str]=None ,__UpperCamelCase : int=0 ,__UpperCamelCase : int=None ,): """simple docstring""" A_ = "python/{}".format(sys.version.split()[0] ) if _torch_available: ua += "; torch/{}".format(torch.__version__ ) if isinstance(__UpperCamelCase ,__UpperCamelCase ): ua += "; " + "; ".join("{}/{}".format(__UpperCamelCase ,__UpperCamelCase ) for k, v in user_agent.items() ) elif isinstance(__UpperCamelCase ,__UpperCamelCase ): ua += "; " + user_agent A_ = {"user-agent": ua} if resume_size > 0: A_ = "bytes=%d-" % (resume_size,) A_ = requests.get(__UpperCamelCase ,stream=__UpperCamelCase ,proxies=__UpperCamelCase ,headers=__UpperCamelCase ) if response.status_code == 416: # Range not satisfiable return A_ = response.headers.get("Content-Length" ) A_ = resume_size + int(__UpperCamelCase ) if content_length is not None else None A_ = tqdm( unit="B" ,unit_scale=__UpperCamelCase ,total=__UpperCamelCase ,initial=__UpperCamelCase ,desc="Downloading" ,) for chunk in response.iter_content(chunk_size=1024 ): if chunk: # filter out keep-alive new chunks progress.update(len(__UpperCamelCase ) ) temp_file.write(__UpperCamelCase ) progress.close() def __snake_case ( __UpperCamelCase : str ,__UpperCamelCase : Any=None ,__UpperCamelCase : Dict=False ,__UpperCamelCase : Union[str, Any]=None ,__UpperCamelCase : Any=10 ,__UpperCamelCase : int=False ,__UpperCamelCase : Optional[Any]=None ,__UpperCamelCase : str=False ,): """simple docstring""" if cache_dir is None: A_ = TRANSFORMERS_CACHE if isinstance(__UpperCamelCase ,__UpperCamelCase ): A_ = str(__UpperCamelCase ) os.makedirs(__UpperCamelCase ,exist_ok=__UpperCamelCase ) A_ = None if not local_files_only: try: A_ = requests.head(__UpperCamelCase ,allow_redirects=__UpperCamelCase ,proxies=__UpperCamelCase ,timeout=__UpperCamelCase ) if response.status_code == 200: A_ = response.headers.get("ETag" ) except (EnvironmentError, requests.exceptions.Timeout): # etag is already None pass A_ = url_to_filename(__UpperCamelCase ,__UpperCamelCase ) # get cache path to put the file A_ = os.path.join(__UpperCamelCase ,__UpperCamelCase ) # etag is None = we don't have a connection, or url doesn't exist, or is otherwise inaccessible. # try to get the last downloaded one if etag is None: if os.path.exists(__UpperCamelCase ): return cache_path else: A_ = [ file for file in fnmatch.filter(os.listdir(__UpperCamelCase ) ,filename + ".*" ) if not file.endswith(".json" ) and not file.endswith(".lock" ) ] if len(__UpperCamelCase ) > 0: return os.path.join(__UpperCamelCase ,matching_files[-1] ) else: # If files cannot be found and local_files_only=True, # the models might've been found if local_files_only=False # Notify the user about that if local_files_only: raise ValueError( "Cannot find the requested files in the cached path and outgoing traffic has been" " disabled. To enable model look-ups and downloads online, set 'local_files_only'" " to False." ) return None # From now on, etag is not None. if os.path.exists(__UpperCamelCase ) and not force_download: return cache_path # Prevent parallel downloads of the same file with a lock. A_ = cache_path + ".lock" with FileLock(__UpperCamelCase ): # If the download just completed while the lock was activated. if os.path.exists(__UpperCamelCase ) and not force_download: # Even if returning early like here, the lock will be released. return cache_path if resume_download: A_ = cache_path + ".incomplete" @contextmanager def _resumable_file_manager(): with open(__UpperCamelCase ,"a+b" ) as f: yield f A_ = _resumable_file_manager if os.path.exists(__UpperCamelCase ): A_ = os.stat(__UpperCamelCase ).st_size else: A_ = 0 else: A_ = partial(tempfile.NamedTemporaryFile ,dir=__UpperCamelCase ,delete=__UpperCamelCase ) A_ = 0 # Download to temporary file, then copy to cache dir once finished. # Otherwise you get corrupt cache entries if the download gets interrupted. with temp_file_manager() as temp_file: print( "%s not found in cache or force_download set to True, downloading to %s" ,__UpperCamelCase ,temp_file.name ,) http_get( __UpperCamelCase ,__UpperCamelCase ,proxies=__UpperCamelCase ,resume_size=__UpperCamelCase ,user_agent=__UpperCamelCase ,) os.replace(temp_file.name ,__UpperCamelCase ) A_ = {"url": url, "etag": etag} A_ = cache_path + ".json" with open(__UpperCamelCase ,"w" ) as meta_file: json.dump(__UpperCamelCase ,__UpperCamelCase ) return cache_path def __snake_case ( __UpperCamelCase : List[Any] ,__UpperCamelCase : str=None ): """simple docstring""" A_ = url.encode("utf-8" ) A_ = shaaaa(__UpperCamelCase ) A_ = url_hash.hexdigest() if etag: A_ = etag.encode("utf-8" ) A_ = shaaaa(__UpperCamelCase ) filename += "." + etag_hash.hexdigest() if url.endswith(".h5" ): filename += ".h5" return filename def __snake_case ( __UpperCamelCase : Union[str, Any] ,__UpperCamelCase : Union[str, Any]=None ,__UpperCamelCase : List[Any]=False ,__UpperCamelCase : List[str]=None ,__UpperCamelCase : Any=False ,__UpperCamelCase : Optional[int]=None ,__UpperCamelCase : Optional[Any]=False ,__UpperCamelCase : Dict=False ,__UpperCamelCase : Optional[Any]=False ,): """simple docstring""" if cache_dir is None: A_ = TRANSFORMERS_CACHE if isinstance(__UpperCamelCase ,__UpperCamelCase ): A_ = str(__UpperCamelCase ) if isinstance(__UpperCamelCase ,__UpperCamelCase ): A_ = str(__UpperCamelCase ) if is_remote_url(__UpperCamelCase ): # URL, so get it from the cache (downloading if necessary) A_ = get_from_cache( __UpperCamelCase ,cache_dir=__UpperCamelCase ,force_download=__UpperCamelCase ,proxies=__UpperCamelCase ,resume_download=__UpperCamelCase ,user_agent=__UpperCamelCase ,local_files_only=__UpperCamelCase ,) elif os.path.exists(__UpperCamelCase ): # File, and it exists. A_ = url_or_filename elif urlparse(__UpperCamelCase ).scheme == "": # File, but it doesn't exist. raise EnvironmentError("file {} not found".format(__UpperCamelCase ) ) else: # Something unknown raise ValueError("unable to parse {} as a URL or as a local path".format(__UpperCamelCase ) ) if extract_compressed_file: if not is_zipfile(__UpperCamelCase ) and not tarfile.is_tarfile(__UpperCamelCase ): return output_path # Path where we extract compressed archives # We avoid '.' in dir name and add "-extracted" at the end: "./model.zip" => "./model-zip-extracted/" A_ , A_ = os.path.split(__UpperCamelCase ) A_ = output_file.replace("." ,"-" ) + "-extracted" A_ = os.path.join(__UpperCamelCase ,__UpperCamelCase ) if os.path.isdir(__UpperCamelCase ) and os.listdir(__UpperCamelCase ) and not force_extract: return output_path_extracted # Prevent parallel extractions A_ = output_path + ".lock" with FileLock(__UpperCamelCase ): shutil.rmtree(__UpperCamelCase ,ignore_errors=__UpperCamelCase ) os.makedirs(__UpperCamelCase ) if is_zipfile(__UpperCamelCase ): with ZipFile(__UpperCamelCase ,"r" ) as zip_file: zip_file.extractall(__UpperCamelCase ) zip_file.close() elif tarfile.is_tarfile(__UpperCamelCase ): A_ = tarfile.open(__UpperCamelCase ) tar_file.extractall(__UpperCamelCase ) tar_file.close() else: raise EnvironmentError("Archive format of {} could not be identified".format(__UpperCamelCase ) ) return output_path_extracted return output_path def __snake_case ( __UpperCamelCase : str ,__UpperCamelCase : Any="," ): """simple docstring""" assert isinstance(__UpperCamelCase ,__UpperCamelCase ) if os.path.isfile(__UpperCamelCase ): with open(__UpperCamelCase ) as f: A_ = eval(f.read() ) else: A_ = requests.get(__UpperCamelCase ) try: A_ = requests.json() except Exception: A_ = req.content.decode() assert data is not None, "could not connect" try: A_ = eval(__UpperCamelCase ) except Exception: A_ = data.split("\n" ) req.close() return data def __snake_case ( __UpperCamelCase : int ): """simple docstring""" A_ = requests.get(__UpperCamelCase ) A_ = np.array(Image.open(BytesIO(response.content ) ) ) return img def __snake_case ( __UpperCamelCase : Tuple ): """simple docstring""" A_ = url.split("/" )[-1] if fn not in os.listdir(os.getcwd() ): wget.download(__UpperCamelCase ) with open(__UpperCamelCase ,"rb" ) as stream: A_ = pkl.load(__UpperCamelCase ) A_ = weights.pop("model" ) A_ = {} for k, v in model.items(): A_ = torch.from_numpy(__UpperCamelCase ) if "running_var" in k: A_ = torch.tensor([0] ) A_ = k.replace("running_var" ,"num_batches_tracked" ) A_ = zero return new def __snake_case ( ): """simple docstring""" print(f'''{os.path.abspath(os.path.join(__UpperCamelCase ,os.pardir ) )}/demo.ipynb''' ) def __snake_case ( __UpperCamelCase : Optional[Any] ,__UpperCamelCase : Optional[int]="RGB" ): """simple docstring""" assert isinstance(__UpperCamelCase ,__UpperCamelCase ) if os.path.isfile(__UpperCamelCase ): A_ = cva.imread(__UpperCamelCase ) else: A_ = get_image_from_url(__UpperCamelCase ) assert img is not None, f'''could not connect to: {im}''' A_ = cva.cvtColor(__UpperCamelCase ,cva.COLOR_BGR2RGB ) if input_format == "RGB": A_ = img[:, :, ::-1] return img def __snake_case ( __UpperCamelCase : List[str] ,__UpperCamelCase : List[str]=1 ): """simple docstring""" return (images[i : i + batch] for i in range(0 ,len(__UpperCamelCase ) ,__UpperCamelCase ))
312
0
import tempfile import unittest from transformers import TaConfig, is_torch_available from transformers.testing_utils import ( require_sentencepiece, require_tokenizers, require_torch, slow, torch_device, ) from ...generation.test_utils import GenerationTesterMixin from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel class lowerCAmelCase : '''simple docstring''' def __init__( self : List[Any] , __a : Optional[Any] , __a : List[str]=99 , __a : str=13 , __a : Dict=7 , __a : List[str]=9 , __a : Union[str, Any]=True , __a : Any=True , __a : str=False , __a : str=32 , __a : Dict=5 , __a : str=4 , __a : Optional[Any]=37 , __a : List[str]=8 , __a : int=0.1 , __a : str=0.002 , __a : Optional[int]=1 , __a : Dict=0 , __a : Optional[Any]=0 , __a : List[str]=None , __a : Tuple=None , ) -> Optional[Any]: """simple docstring""" __lowercase : List[str] = parent __lowercase : Dict = batch_size __lowercase : str = encoder_seq_length __lowercase : int = decoder_seq_length # For common tests __lowercase : Dict = self.decoder_seq_length __lowercase : str = is_training __lowercase : Union[str, Any] = use_attention_mask __lowercase : Optional[Any] = use_labels __lowercase : List[Any] = vocab_size __lowercase : int = hidden_size __lowercase : Optional[int] = num_hidden_layers __lowercase : Union[str, Any] = num_attention_heads __lowercase : str = d_ff __lowercase : Tuple = relative_attention_num_buckets __lowercase : Optional[int] = dropout_rate __lowercase : str = initializer_factor __lowercase : str = eos_token_id __lowercase : Dict = pad_token_id __lowercase : Union[str, Any] = decoder_start_token_id __lowercase : Optional[Any] = None __lowercase : str = decoder_layers def lowerCAmelCase ( self : Tuple ) -> int: """simple docstring""" return TaConfig.from_pretrained("""google/umt5-base""" ) def lowerCAmelCase ( self : Dict , __a : Any , __a : Optional[Any] , __a : Optional[int] , __a : Optional[int]=None , __a : Dict=None , __a : List[Any]=None , __a : int=None , __a : Any=None , ) -> Optional[int]: """simple docstring""" if attention_mask is None: __lowercase : Optional[int] = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: __lowercase : List[Any] = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: __lowercase : str = torch.ones(config.num_hidden_layers , config.num_attention_heads , device=__a ) if decoder_head_mask is None: __lowercase : Any = torch.ones(config.num_decoder_layers , config.num_attention_heads , device=__a ) if cross_attn_head_mask is None: __lowercase : str = torch.ones( config.num_decoder_layers , config.num_attention_heads , device=__a ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } def lowerCAmelCase ( self : List[str] ) -> str: """simple docstring""" __lowercase : str = ids_tensor([self.batch_size, self.encoder_seq_length] , self.vocab_size ) __lowercase : Tuple = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for NllbMoe the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input __lowercase : Any = input_ids.clamp(self.pad_token_id + 1 ) __lowercase : str = decoder_input_ids.clamp(self.pad_token_id + 1 ) __lowercase : Union[str, Any] = self.get_config() __lowercase : Optional[int] = config.num_attention_heads __lowercase : List[Any] = self.prepare_inputs_dict(__a , __a , __a ) return config, input_dict def lowerCAmelCase ( self : List[Any] ) -> Dict: """simple docstring""" __lowercase , __lowercase : str = self.prepare_config_and_inputs() return config, inputs_dict def lowerCAmelCase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" return TaConfig( vocab_size=166 , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def lowerCAmelCase ( self : Union[str, Any] ) -> List[str]: """simple docstring""" return TaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def lowerCAmelCase ( self : Tuple , __a : List[str] , __a : List[Any] , __a : Any , __a : Any , __a : Tuple , __a : List[str] , ) -> str: """simple docstring""" __lowercase : Dict = UMTaModel(config=__a ) model.to(__a ) model.eval() __lowercase : Any = model( input_ids=__a , decoder_input_ids=__a , attention_mask=__a , decoder_attention_mask=__a , ) __lowercase : Any = model(input_ids=__a , decoder_input_ids=__a ) __lowercase : Optional[int] = result.last_hidden_state __lowercase : Tuple = result.past_key_values __lowercase : str = result.encoder_last_hidden_state self.parent.assertEqual(encoder_output.size() , (self.batch_size, self.encoder_seq_length, self.hidden_size) ) self.parent.assertEqual(decoder_output.size() , (self.batch_size, self.decoder_seq_length, self.hidden_size) ) # There should be `num_layers` key value embeddings stored in decoder_past self.parent.assertEqual(len(__a ) , config.num_layers ) # There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple self.parent.assertEqual(len(decoder_past[0] ) , 4 ) def lowerCAmelCase ( self : Dict , __a : Tuple , __a : Any , __a : str , __a : List[Any] , __a : str , __a : List[str] , ) -> Dict: """simple docstring""" __lowercase : Union[str, Any] = UMTaModel(config=__a ).get_decoder().to(__a ).eval() # first forward pass __lowercase : List[Any] = model(__a , use_cache=__a ) __lowercase : Dict = model(__a ) __lowercase : List[Any] = model(__a , use_cache=__a ) self.parent.assertTrue(len(__a ) == len(__a ) ) self.parent.assertTrue(len(__a ) == len(__a ) + 1 ) __lowercase , __lowercase : Union[str, Any] = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids __lowercase : Optional[Any] = ids_tensor((self.batch_size, 1) , config.vocab_size ) # append to next input_ids and __lowercase : int = torch.cat([input_ids, next_tokens] , dim=-1 ) __lowercase : Dict = model(__a )["""last_hidden_state"""] __lowercase : List[str] = model(__a , past_key_values=__a )["""last_hidden_state"""] # select random slice __lowercase : Tuple = ids_tensor((1,) , output_from_past.shape[-1] ).item() __lowercase : Optional[Any] = output_from_no_past[:, -1, random_slice_idx].detach() __lowercase : List[str] = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__a , __a , atol=1E-3 ) ) def lowerCAmelCase ( self : Tuple , __a : Dict , __a : Tuple , ) -> List[str]: """simple docstring""" __lowercase : Dict = UMTaModel(config=__a ).to(__a ).half().eval() __lowercase : Tuple = model(**__a )["""last_hidden_state"""] self.parent.assertFalse(torch.isnan(__a ).any().item() ) @require_torch class lowerCAmelCase ( __a , __a , __a , unittest.TestCase ): '''simple docstring''' _A : int = ( (UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else () ) _A : Union[str, Any] = (UMTaForConditionalGeneration,) if is_torch_available() else () _A : Tuple = ( { '''conversational''': UMTaForConditionalGeneration, '''feature-extraction''': UMTaModel, '''summarization''': UMTaForConditionalGeneration, '''text2text-generation''': UMTaForConditionalGeneration, '''translation''': UMTaForConditionalGeneration, '''question-answering''': UMTaForQuestionAnswering, } if is_torch_available() else {} ) _A : str = True _A : Tuple = False _A : List[Any] = False _A : List[Any] = True _A : str = True # The small UMT5 model needs higher percentages for CPU/MP tests _A : str = [0.8, 0.9] def lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" __lowercase : Optional[Any] = UMTaModelTester(self ) @unittest.skip("""Test has a segmentation fault on torch 1.8.0""" ) def lowerCAmelCase ( self : Any ) -> List[str]: """simple docstring""" __lowercase : str = self.model_tester.prepare_config_and_inputs() __lowercase : List[str] = UMTaModel(config_and_inputs[0] ).to(__a ) with tempfile.TemporaryDirectory() as tmpdirname: torch.onnx.export( __a , (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]) , F"{tmpdirname}/t5_test.onnx" , export_params=__a , opset_version=9 , input_names=["""input_ids""", """decoder_input_ids"""] , ) @unittest.skipIf(torch_device == """cpu""" , """Cant do half precision""" ) def lowerCAmelCase ( self : Dict ) -> int: """simple docstring""" __lowercase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model_fpaa_forward(*__a ) def lowerCAmelCase ( self : Union[str, Any] ) -> int: """simple docstring""" __lowercase : List[str] = ["""encoder_attentions""", """decoder_attentions""", """cross_attentions"""] __lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() __lowercase : Any = config_and_inputs[0] __lowercase : Tuple = UMTaForConditionalGeneration(__a ).eval() model.to(__a ) __lowercase : Dict = { """head_mask""": torch.zeros(config.num_layers , config.num_heads , device=__a ), """decoder_head_mask""": torch.zeros(config.num_decoder_layers , config.num_heads , device=__a ), """cross_attn_head_mask""": torch.zeros(config.num_decoder_layers , config.num_heads , device=__a ), } for attn_name, (name, mask) in zip(__a , head_masking.items() ): __lowercase : Dict = {name: mask} # Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified if name == "head_mask": __lowercase : Tuple = torch.ones( config.num_decoder_layers , config.num_heads , device=__a ) __lowercase : int = model.generate( config_and_inputs[1]["""input_ids"""] , num_beams=1 , max_length=3 , output_attentions=__a , return_dict_in_generate=__a , **__a , ) # We check the state of decoder_attentions and cross_attentions just from the last step __lowercase : Union[str, Any] = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1] self.assertEqual(sum([w.sum().item() for w in attn_weights] ) , 0.0 ) @unittest.skip("""Does not work on the tiny model as we keep hitting edge cases.""" ) def lowerCAmelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" pass @require_torch @require_sentencepiece @require_tokenizers class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow @unittest.skip( """Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged""" ) def lowerCAmelCase ( self : Optional[int] ) -> List[Any]: """simple docstring""" __lowercase : int = UMTaForConditionalGeneration.from_pretrained("""google/umt5-small""" , return_dict=__a ).to(__a ) __lowercase : List[Any] = AutoTokenizer.from_pretrained("""google/umt5-small""" , use_fast=__a , legacy=__a ) __lowercase : List[str] = [ """Bonjour monsieur <extra_id_0> bien <extra_id_1>.""", """No se como puedo <extra_id_0>.""", """This is the reason why we <extra_id_0> them.""", """The <extra_id_0> walks in <extra_id_1>, seats""", """A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.""", ] __lowercase : Dict = tokenizer(__a , return_tensors="""pt""" , padding=__a ).input_ids # fmt: off __lowercase : Tuple = torch.tensor( [ [ 38530, 210703, 256299, 1410, 256298, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 826, 321, 671, 25922, 256299, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 1460, 339, 312, 19014, 10620, 758, 256299, 2355,274, 1, 0, 0, 0, 0, 0, 0,0, 0], [ 517, 256299, 14869, 281, 301, 256298, 275, 119983,1, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 320, 256299, 14869, 281, 2234, 289, 2275, 333,61391, 289, 256298, 543, 256297, 168714, 329, 256296,274, 1], ] ) # fmt: on torch.testing.assert_allclose(__a , __a ) __lowercase : Union[str, Any] = model.generate(input_ids.to(__a ) ) __lowercase : Optional[int] = [ """<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 <extra_id_56>ajšietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajšie</s>""", """<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>""", """<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>""", """<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> 피해[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>""", """<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>""", ] __lowercase : int = tokenizer.batch_decode(__a ) self.assertEqual(__a , __a )
306
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging lowerCamelCase : Optional[Any] = logging.get_logger(__name__) if is_vision_available(): import PIL class lowerCAmelCase ( __a ): '''simple docstring''' _A : List[str] = ['''pixel_values'''] def __init__( self : Any , __a : bool = True , __a : Dict[str, int] = None , __a : PILImageResampling = PILImageResampling.BICUBIC , __a : bool = True , __a : Dict[str, int] = None , __a : bool = True , __a : Union[int, float] = 1 / 255 , __a : bool = True , __a : Optional[Union[float, List[float]]] = None , __a : Optional[Union[float, List[float]]] = None , __a : bool = True , **__a : str , ) -> None: """simple docstring""" super().__init__(**__a ) __lowercase : Dict = size if size is not None else {"""shortest_edge""": 224} __lowercase : Union[str, Any] = get_size_dict(__a , default_to_square=__a ) __lowercase : int = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} __lowercase : Any = get_size_dict(__a , default_to_square=__a , param_name="""crop_size""" ) __lowercase : Optional[int] = do_resize __lowercase : Union[str, Any] = size __lowercase : List[Any] = resample __lowercase : Any = do_center_crop __lowercase : Dict = crop_size __lowercase : int = do_rescale __lowercase : Tuple = rescale_factor __lowercase : List[Any] = do_normalize __lowercase : Union[str, Any] = image_mean if image_mean is not None else OPENAI_CLIP_MEAN __lowercase : int = image_std if image_std is not None else OPENAI_CLIP_STD __lowercase : Union[str, Any] = do_convert_rgb def lowerCAmelCase ( self : Union[str, Any] , __a : np.ndarray , __a : Dict[str, int] , __a : PILImageResampling = PILImageResampling.BICUBIC , __a : Optional[Union[str, ChannelDimension]] = None , **__a : List[Any] , ) -> np.ndarray: """simple docstring""" __lowercase : Dict = get_size_dict(__a , default_to_square=__a ) if "shortest_edge" not in size: raise ValueError(F"The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}" ) __lowercase : str = get_resize_output_image_size(__a , size=size["""shortest_edge"""] , default_to_square=__a ) return resize(__a , size=__a , resample=__a , data_format=__a , **__a ) def lowerCAmelCase ( self : Tuple , __a : np.ndarray , __a : Dict[str, int] , __a : Optional[Union[str, ChannelDimension]] = None , **__a : Any , ) -> np.ndarray: """simple docstring""" __lowercase : Tuple = get_size_dict(__a ) if "height" not in size or "width" not in size: raise ValueError(F"The `size` parameter must contain the keys (height, width). Got {size.keys()}" ) return center_crop(__a , size=(size["""height"""], size["""width"""]) , data_format=__a , **__a ) def lowerCAmelCase ( self : Tuple , __a : np.ndarray , __a : Union[int, float] , __a : Optional[Union[str, ChannelDimension]] = None , **__a : Optional[Any] , ) -> List[str]: """simple docstring""" return rescale(__a , scale=__a , data_format=__a , **__a ) def lowerCAmelCase ( self : Optional[int] , __a : np.ndarray , __a : Union[float, List[float]] , __a : Union[float, List[float]] , __a : Optional[Union[str, ChannelDimension]] = None , **__a : List[str] , ) -> np.ndarray: """simple docstring""" return normalize(__a , mean=__a , std=__a , data_format=__a , **__a ) def lowerCAmelCase ( self : Optional[int] , __a : ImageInput , __a : bool = None , __a : Dict[str, int] = None , __a : PILImageResampling = None , __a : bool = None , __a : int = None , __a : bool = None , __a : float = None , __a : bool = None , __a : Optional[Union[float, List[float]]] = None , __a : Optional[Union[float, List[float]]] = None , __a : bool = None , __a : Optional[Union[str, TensorType]] = None , __a : Optional[ChannelDimension] = ChannelDimension.FIRST , **__a : List[Any] , ) -> PIL.Image.Image: """simple docstring""" __lowercase : List[Any] = do_resize if do_resize is not None else self.do_resize __lowercase : Dict = size if size is not None else self.size __lowercase : Tuple = get_size_dict(__a , param_name="""size""" , default_to_square=__a ) __lowercase : int = resample if resample is not None else self.resample __lowercase : Optional[int] = do_center_crop if do_center_crop is not None else self.do_center_crop __lowercase : List[Any] = crop_size if crop_size is not None else self.crop_size __lowercase : List[str] = get_size_dict(__a , param_name="""crop_size""" , default_to_square=__a ) __lowercase : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale __lowercase : str = rescale_factor if rescale_factor is not None else self.rescale_factor __lowercase : Dict = do_normalize if do_normalize is not None else self.do_normalize __lowercase : Tuple = image_mean if image_mean is not None else self.image_mean __lowercase : str = image_std if image_std is not None else self.image_std __lowercase : str = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb __lowercase : Union[str, Any] = make_list_of_images(__a ) if not valid_images(__a ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # PIL RGBA images are converted to RGB if do_convert_rgb: __lowercase : Union[str, Any] = [convert_to_rgb(__a ) for image in images] # All transformations expect numpy arrays. __lowercase : Any = [to_numpy_array(__a ) for image in images] if do_resize: __lowercase : str = [self.resize(image=__a , size=__a , resample=__a ) for image in images] if do_center_crop: __lowercase : str = [self.center_crop(image=__a , size=__a ) for image in images] if do_rescale: __lowercase : Dict = [self.rescale(image=__a , scale=__a ) for image in images] if do_normalize: __lowercase : Optional[Any] = [self.normalize(image=__a , mean=__a , std=__a ) for image in images] __lowercase : Any = [to_channel_dimension_format(__a , __a ) for image in images] __lowercase : Optional[int] = {"""pixel_values""": images} return BatchFeature(data=__a , tensor_type=__a )
306
1
import unittest from transformers import load_tool from transformers.utils import is_torch_available if is_torch_available(): import torch from transformers.testing_utils import require_torch from .test_tools_common import ToolTesterMixin @require_torch class __lowerCAmelCase ( unittest.TestCase, _a ): def lowerCamelCase (self ) -> str: '''simple docstring''' snake_case_ : Union[str, Any] = load_tool('''text-to-speech''' ) self.tool.setup() def lowerCamelCase (self ) -> List[str]: '''simple docstring''' torch.manual_seed(0 ) snake_case_ : Tuple = self.tool('''hey''' ) snake_case_ : Optional[Any] = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0_005_966_668_832_115_829, -0.0_003_657_640_190_795_064, -0.00_013_439_502_799_883_485] ) , ) ) def lowerCamelCase (self ) -> List[Any]: '''simple docstring''' torch.manual_seed(0 ) snake_case_ : Dict = self.tool('''hey''' ) snake_case_ : int = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0_005_966_668_832_115_829, -0.0_003_657_640_190_795_064, -0.00_013_439_502_799_883_485] ) , ) )
279
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import GLPNImageProcessor class __lowerCAmelCase ( unittest.TestCase ): def __init__(self , __magic_name__ , __magic_name__=7 , __magic_name__=3 , __magic_name__=18 , __magic_name__=30 , __magic_name__=400 , __magic_name__=True , __magic_name__=32 , __magic_name__=True , ) -> Dict: '''simple docstring''' snake_case_ : Tuple = parent snake_case_ : Union[str, Any] = batch_size snake_case_ : Union[str, Any] = num_channels snake_case_ : Optional[Any] = image_size snake_case_ : int = min_resolution snake_case_ : Any = max_resolution snake_case_ : Tuple = do_resize snake_case_ : str = size_divisor snake_case_ : Optional[Any] = do_rescale def lowerCamelCase (self ) -> Dict: '''simple docstring''' return { "do_resize": self.do_resize, "size_divisor": self.size_divisor, "do_rescale": self.do_rescale, } @require_torch @require_vision class __lowerCAmelCase ( _a, unittest.TestCase ): lowerCamelCase_ : Optional[Any] = GLPNImageProcessor if is_vision_available() else None def lowerCamelCase (self ) -> Optional[Any]: '''simple docstring''' snake_case_ : str = GLPNImageProcessingTester(self ) @property def lowerCamelCase (self ) -> Union[str, Any]: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def lowerCamelCase (self ) -> List[str]: '''simple docstring''' snake_case_ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__magic_name__ , '''do_resize''' ) ) self.assertTrue(hasattr(__magic_name__ , '''size_divisor''' ) ) self.assertTrue(hasattr(__magic_name__ , '''resample''' ) ) self.assertTrue(hasattr(__magic_name__ , '''do_rescale''' ) ) def lowerCamelCase (self ) -> List[Any]: '''simple docstring''' pass def lowerCamelCase (self ) -> int: '''simple docstring''' snake_case_ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case_ : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__magic_name__ ) for image in image_inputs: self.assertIsInstance(__magic_name__ , Image.Image ) # Test not batched input (GLPNImageProcessor doesn't support batching) snake_case_ : Optional[int] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def lowerCamelCase (self ) -> Dict: '''simple docstring''' snake_case_ : str = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case_ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__magic_name__ , numpify=__magic_name__ ) for image in image_inputs: self.assertIsInstance(__magic_name__ , np.ndarray ) # Test not batched input (GLPNImageProcessor doesn't support batching) snake_case_ : Any = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def lowerCamelCase (self ) -> Optional[Any]: '''simple docstring''' snake_case_ : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case_ : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__magic_name__ , torchify=__magic_name__ ) for image in image_inputs: self.assertIsInstance(__magic_name__ , torch.Tensor ) # Test not batched input (GLPNImageProcessor doesn't support batching) snake_case_ : Dict = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 )
279
1
"""simple docstring""" def a__ ( __SCREAMING_SNAKE_CASE ) -> float: if not nums: # Makes sure that the list is not empty raise ValueError("List is empty" ) __lowerCAmelCase: Optional[int] = sum(__SCREAMING_SNAKE_CASE ) / len(__SCREAMING_SNAKE_CASE ) # Calculate the average return sum(abs(x - average ) for x in nums ) / len(__SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod()
364
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor class snake_case ( unittest.TestCase ): def __init__( self : Any , UpperCamelCase__ : int , UpperCamelCase__ : Any=7 , UpperCamelCase__ : List[str]=3 , UpperCamelCase__ : List[Any]=1_8 , UpperCamelCase__ : List[Any]=3_0 , UpperCamelCase__ : List[str]=4_0_0 , UpperCamelCase__ : Optional[int]=True , UpperCamelCase__ : Optional[Any]=None , UpperCamelCase__ : List[str]=True , UpperCamelCase__ : List[str]=None , UpperCamelCase__ : Optional[int]=True , UpperCamelCase__ : int=[0.48145466, 0.4578275, 0.40821073] , UpperCamelCase__ : str=[0.26862954, 0.26130258, 0.27577711] , UpperCamelCase__ : List[str]=True , )-> Union[str, Any]: '''simple docstring''' __lowerCAmelCase: Dict = size if size is not None else {"height": 2_2_4, "width": 2_2_4} __lowerCAmelCase: Union[str, Any] = crop_size if crop_size is not None else {"height": 1_8, "width": 1_8} __lowerCAmelCase: Optional[int] = parent __lowerCAmelCase: List[str] = batch_size __lowerCAmelCase: Union[str, Any] = num_channels __lowerCAmelCase: Optional[Any] = image_size __lowerCAmelCase: Tuple = min_resolution __lowerCAmelCase: List[str] = max_resolution __lowerCAmelCase: List[Any] = do_resize __lowerCAmelCase: Union[str, Any] = size __lowerCAmelCase: List[Any] = do_center_crop __lowerCAmelCase: Optional[int] = crop_size __lowerCAmelCase: Dict = do_normalize __lowerCAmelCase: List[str] = image_mean __lowerCAmelCase: Optional[int] = image_std __lowerCAmelCase: str = do_convert_rgb def lowercase_ ( self : Tuple)-> str: '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_convert_rgb": self.do_convert_rgb, } def lowercase_ ( self : Any , UpperCamelCase__ : Tuple=False , UpperCamelCase__ : List[str]=False , UpperCamelCase__ : Dict=False)-> List[str]: '''simple docstring''' assert not (numpify and torchify), "You cannot specify both numpy and PyTorch tensors at the same time" if equal_resolution: __lowerCAmelCase: Optional[int] = [] for i in range(self.batch_size): image_inputs.append( np.random.randint( 2_5_5 , size=(self.num_channels, self.max_resolution, self.max_resolution) , dtype=np.uinta)) else: __lowerCAmelCase: List[str] = [] for i in range(self.batch_size): __lowerCAmelCase , __lowerCAmelCase: List[str] = np.random.choice(np.arange(self.min_resolution , self.max_resolution) , 2) image_inputs.append(np.random.randint(2_5_5 , size=(self.num_channels, width, height) , dtype=np.uinta)) if not numpify and not torchify: # PIL expects the channel dimension as last dimension __lowerCAmelCase: Union[str, Any] = [Image.fromarray(np.moveaxis(UpperCamelCase__ , 0 , -1)) for x in image_inputs] if torchify: __lowerCAmelCase: str = [torch.from_numpy(UpperCamelCase__) for x in image_inputs] return image_inputs @require_torch @require_vision class snake_case ( __snake_case, unittest.TestCase ): SCREAMING_SNAKE_CASE_ : str = ChineseCLIPImageProcessor if is_vision_available() else None def lowercase_ ( self : Any)-> List[Any]: '''simple docstring''' __lowerCAmelCase: Tuple = ChineseCLIPImageProcessingTester(self , do_center_crop=UpperCamelCase__) @property def lowercase_ ( self : Any)-> Optional[Any]: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def lowercase_ ( self : Union[str, Any])-> Optional[int]: '''simple docstring''' __lowerCAmelCase: Tuple = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(UpperCamelCase__ , "do_resize")) self.assertTrue(hasattr(UpperCamelCase__ , "size")) self.assertTrue(hasattr(UpperCamelCase__ , "do_center_crop")) self.assertTrue(hasattr(UpperCamelCase__ , "center_crop")) self.assertTrue(hasattr(UpperCamelCase__ , "do_normalize")) self.assertTrue(hasattr(UpperCamelCase__ , "image_mean")) self.assertTrue(hasattr(UpperCamelCase__ , "image_std")) self.assertTrue(hasattr(UpperCamelCase__ , "do_convert_rgb")) def lowercase_ ( self : List[Any])-> str: '''simple docstring''' __lowerCAmelCase: Tuple = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size , {"height": 2_2_4, "width": 2_2_4}) self.assertEqual(image_processor.crop_size , {"height": 1_8, "width": 1_8}) __lowerCAmelCase: List[str] = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2 , crop_size=8_4) self.assertEqual(image_processor.size , {"shortest_edge": 4_2}) self.assertEqual(image_processor.crop_size , {"height": 8_4, "width": 8_4}) def lowercase_ ( self : List[str])-> Optional[int]: '''simple docstring''' pass def lowercase_ ( self : Any)-> Optional[int]: '''simple docstring''' __lowerCAmelCase: int = self.image_processing_class(**self.image_processor_dict) # create random PIL images __lowerCAmelCase: Union[str, Any] = self.image_processor_tester.prepare_inputs(equal_resolution=UpperCamelCase__) for image in image_inputs: self.assertIsInstance(UpperCamelCase__ , Image.Image) # Test not batched input __lowerCAmelCase: Optional[int] = image_processing(image_inputs[0] , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched __lowerCAmelCase: int = image_processing(UpperCamelCase__ , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def lowercase_ ( self : int)-> Optional[Any]: '''simple docstring''' __lowerCAmelCase: Union[str, Any] = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors __lowerCAmelCase: List[Any] = self.image_processor_tester.prepare_inputs(equal_resolution=UpperCamelCase__ , numpify=UpperCamelCase__) for image in image_inputs: self.assertIsInstance(UpperCamelCase__ , np.ndarray) # Test not batched input __lowerCAmelCase: List[Any] = image_processing(image_inputs[0] , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched __lowerCAmelCase: Any = image_processing(UpperCamelCase__ , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def lowercase_ ( self : int)-> str: '''simple docstring''' __lowerCAmelCase: Union[str, Any] = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors __lowerCAmelCase: Dict = self.image_processor_tester.prepare_inputs(equal_resolution=UpperCamelCase__ , torchify=UpperCamelCase__) for image in image_inputs: self.assertIsInstance(UpperCamelCase__ , torch.Tensor) # Test not batched input __lowerCAmelCase: Tuple = image_processing(image_inputs[0] , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched __lowerCAmelCase: Optional[int] = image_processing(UpperCamelCase__ , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) @require_torch @require_vision class snake_case ( __snake_case, unittest.TestCase ): SCREAMING_SNAKE_CASE_ : List[str] = ChineseCLIPImageProcessor if is_vision_available() else None def lowercase_ ( self : int)-> Dict: '''simple docstring''' __lowerCAmelCase: Optional[int] = ChineseCLIPImageProcessingTester(self , num_channels=4 , do_center_crop=UpperCamelCase__) __lowerCAmelCase: Union[str, Any] = 3 @property def lowercase_ ( self : Union[str, Any])-> Any: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def lowercase_ ( self : int)-> str: '''simple docstring''' __lowerCAmelCase: int = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(UpperCamelCase__ , "do_resize")) self.assertTrue(hasattr(UpperCamelCase__ , "size")) self.assertTrue(hasattr(UpperCamelCase__ , "do_center_crop")) self.assertTrue(hasattr(UpperCamelCase__ , "center_crop")) self.assertTrue(hasattr(UpperCamelCase__ , "do_normalize")) self.assertTrue(hasattr(UpperCamelCase__ , "image_mean")) self.assertTrue(hasattr(UpperCamelCase__ , "image_std")) self.assertTrue(hasattr(UpperCamelCase__ , "do_convert_rgb")) def lowercase_ ( self : Tuple)-> Any: '''simple docstring''' pass def lowercase_ ( self : Tuple)-> Union[str, Any]: '''simple docstring''' __lowerCAmelCase: Any = self.image_processing_class(**self.image_processor_dict) # create random PIL images __lowerCAmelCase: int = self.image_processor_tester.prepare_inputs(equal_resolution=UpperCamelCase__) for image in image_inputs: self.assertIsInstance(UpperCamelCase__ , Image.Image) # Test not batched input __lowerCAmelCase: List[Any] = image_processing(image_inputs[0] , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.expected_encoded_image_num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched __lowerCAmelCase: Optional[int] = image_processing(UpperCamelCase__ , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.expected_encoded_image_num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , )
108
0
'''simple docstring''' import copy import fnmatch import json import os import pickle as pkl import shutil import sys import tarfile import tempfile from collections import OrderedDict from contextlib import contextmanager from functools import partial from hashlib import shaaaa from io import BytesIO from pathlib import Path from urllib.parse import urlparse from zipfile import ZipFile, is_zipfile import cva import numpy as np import requests import wget from filelock import FileLock from PIL import Image from tqdm.auto import tqdm from yaml import Loader, dump, load try: import torch _snake_case = True except ImportError: _snake_case = False try: from torch.hub import _get_torch_home _snake_case = _get_torch_home() except ImportError: _snake_case = os.path.expanduser( os.getenv('TORCH_HOME', os.path.join(os.getenv('XDG_CACHE_HOME', '~/.cache'), 'torch')) ) _snake_case = os.path.join(torch_cache_home, 'transformers') _snake_case = 'https://cdn.huggingface.co' _snake_case = 'https://s3.amazonaws.com/models.huggingface.co/bert' _snake_case = '/'.join(str(Path(__file__).resolve()).split('/')[:-1]) _snake_case = os.path.join(PATH, 'config.yaml') _snake_case = os.path.join(PATH, 'attributes.txt') _snake_case = os.path.join(PATH, 'objects.txt') _snake_case = os.getenv('PYTORCH_PRETRAINED_BERT_CACHE', default_cache_path) _snake_case = os.getenv('PYTORCH_TRANSFORMERS_CACHE', PYTORCH_PRETRAINED_BERT_CACHE) _snake_case = os.getenv('TRANSFORMERS_CACHE', PYTORCH_TRANSFORMERS_CACHE) _snake_case = 'pytorch_model.bin' _snake_case = 'config.yaml' def _A ( snake_case=OBJECTS , snake_case=ATTRIBUTES ) -> Optional[int]: _lowercase : List[Any] = [] with open(snake_case ) as f: for object in f.readlines(): vg_classes.append(object.split("," )[0].lower().strip() ) _lowercase : List[str] = [] with open(snake_case ) as f: for object in f.readlines(): vg_attrs.append(object.split("," )[0].lower().strip() ) return vg_classes, vg_attrs def _A ( snake_case ) -> int: _lowercase : List[str] = OrderedDict() with open(snake_case , "rb" ) as f: _lowercase : Dict = pkl.load(snake_case )["model"] for k in copy.deepcopy(list(ckp.keys() ) ): _lowercase : Optional[int] = ckp.pop(snake_case ) if isinstance(snake_case , np.ndarray ): _lowercase : List[Any] = torch.tensor(snake_case ) else: assert isinstance(snake_case , torch.tensor ), type(snake_case ) _lowercase : Dict = v return r class a__ : _SCREAMING_SNAKE_CASE : Dict = {} def __init__( self , _UpperCamelCase , _UpperCamelCase = "root" , _UpperCamelCase=0 ): """simple docstring""" _lowercase : Dict = name _lowercase : List[Any] = level _lowercase : Any = {} for k, v in dictionary.items(): if v is None: raise ValueError() _lowercase : int = copy.deepcopy(_UpperCamelCase ) _lowercase : int = copy.deepcopy(_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ): _lowercase : List[Any] = Config(_UpperCamelCase , name=_UpperCamelCase , level=level + 1 ) _lowercase : str = v setattr(self , _UpperCamelCase , _UpperCamelCase ) _lowercase : int = d def __repr__( self ): """simple docstring""" return str(list((self._pointer.keys()) ) ) def __setattr__( self , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" _lowercase : int = val _lowercase : str = val _lowercase : List[Any] = key.split("." ) _lowercase : Optional[int] = len(_UpperCamelCase ) - 1 _lowercase : str = self._pointer if len(_UpperCamelCase ) > 1: for i, l in enumerate(_UpperCamelCase ): if hasattr(self , _UpperCamelCase ) and isinstance(getattr(self , _UpperCamelCase ) , _UpperCamelCase ): setattr(getattr(self , _UpperCamelCase ) , ".".join(levels[i:] ) , _UpperCamelCase ) if l == last_level: _lowercase : str = val else: _lowercase : Optional[Any] = pointer[l] def _lowerCamelCase ( self ): """simple docstring""" return self._pointer def _lowerCamelCase ( self , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" with open(f'''{file_name}''' , "w" ) as stream: dump(_UpperCamelCase , _UpperCamelCase ) def _lowerCamelCase ( self , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" with open(f'''{file_name}''' , "w" ) as stream: json.dump(_UpperCamelCase , _UpperCamelCase ) @staticmethod def _lowerCamelCase ( _UpperCamelCase ): """simple docstring""" with open(_UpperCamelCase ) as stream: _lowercase : Union[str, Any] = load(_UpperCamelCase , Loader=_UpperCamelCase ) return data def __str__( self ): """simple docstring""" _lowercase : Optional[Any] = " " if self._name != "root": _lowercase : List[str] = f'''{t * (self._level-1)}{self._name}:\n''' else: _lowercase : str = "" _lowercase : int = self._level for i, (k, v) in enumerate(self._pointer.items() ): if isinstance(_UpperCamelCase , _UpperCamelCase ): r += f'''{t * (self._level)}{v}\n''' self._level += 1 else: r += f'''{t * (self._level)}{k}: {v} ({type(_UpperCamelCase ).__name__})\n''' _lowercase : List[Any] = level return r[:-1] @classmethod def _lowerCamelCase ( cls , _UpperCamelCase , **_UpperCamelCase ): """simple docstring""" _lowercase , _lowercase : str = cls.get_config_dict(_UpperCamelCase , **_UpperCamelCase ) return cls(_UpperCamelCase ) @classmethod def _lowerCamelCase ( cls , _UpperCamelCase , **_UpperCamelCase ): """simple docstring""" _lowercase : List[str] = kwargs.pop("cache_dir" , _UpperCamelCase ) _lowercase : List[Any] = kwargs.pop("force_download" , _UpperCamelCase ) _lowercase : Union[str, Any] = kwargs.pop("resume_download" , _UpperCamelCase ) _lowercase : str = kwargs.pop("proxies" , _UpperCamelCase ) _lowercase : Tuple = kwargs.pop("local_files_only" , _UpperCamelCase ) if os.path.isdir(_UpperCamelCase ): _lowercase : Dict = os.path.join(_UpperCamelCase , _UpperCamelCase ) elif os.path.isfile(_UpperCamelCase ) or is_remote_url(_UpperCamelCase ): _lowercase : List[Any] = pretrained_model_name_or_path else: _lowercase : Tuple = hf_bucket_url(_UpperCamelCase , filename=_UpperCamelCase , use_cdn=_UpperCamelCase ) try: # Load from URL or cache if already cached _lowercase : str = cached_path( _UpperCamelCase , cache_dir=_UpperCamelCase , force_download=_UpperCamelCase , proxies=_UpperCamelCase , resume_download=_UpperCamelCase , local_files_only=_UpperCamelCase , ) # Load config dict if resolved_config_file is None: raise EnvironmentError _lowercase : Union[str, Any] = Config.load_yaml(_UpperCamelCase ) except EnvironmentError: _lowercase : Union[str, Any] = "Can't load config for" raise EnvironmentError(_UpperCamelCase ) if resolved_config_file == config_file: print("loading configuration file from path" ) else: print("loading configuration file cache" ) return Config.load_yaml(_UpperCamelCase ), kwargs def _A ( snake_case ) -> Optional[Any]: _lowercase : List[str] = torch.load("dump.pt" , map_location=in_tensor.device ) _lowercase : Any = in_tensor.numpy() _lowercase : Any = out_tensor.numpy()[0] print(na.shape , na[0, 0, :5] ) print(na.shape , na[0, 0, :5] ) assert np.allclose(snake_case , snake_case , rtol=0.01 , atol=0.1 ), ( F'''{sum([1 for x in np.isclose(snake_case , snake_case , rtol=0.01 , atol=0.1 ).flatten() if x is False] )/len(na.flatten() )*1_00:.4f} %''' " element-wise mismatch" ) raise Exception("tensors are all good" ) # Hugging face functions below def _A ( snake_case ) -> Optional[Any]: _lowercase : str = urlparse(snake_case ) return parsed.scheme in ("http", "https") def _A ( snake_case , snake_case , snake_case=True ) -> str: _lowercase : Union[str, Any] = CLOUDFRONT_DISTRIB_PREFIX if use_cdn else S3_BUCKET_PREFIX _lowercase : Optional[Any] = "/" not in model_id if legacy_format: return F'''{endpoint}/{model_id}-{filename}''' else: return F'''{endpoint}/{model_id}/{filename}''' def _A ( snake_case , snake_case , snake_case=None , snake_case=0 , snake_case=None , ) -> List[str]: _lowercase : Any = "python/{}".format(sys.version.split()[0] ) if _torch_available: ua += "; torch/{}".format(torch.__version__ ) if isinstance(snake_case , snake_case ): ua += "; " + "; ".join("{}/{}".format(snake_case , snake_case ) for k, v in user_agent.items() ) elif isinstance(snake_case , snake_case ): ua += "; " + user_agent _lowercase : Tuple = {"user-agent": ua} if resume_size > 0: _lowercase : Optional[Any] = "bytes=%d-" % (resume_size,) _lowercase : Union[str, Any] = requests.get(snake_case , stream=snake_case , proxies=snake_case , headers=snake_case ) if response.status_code == 4_16: # Range not satisfiable return _lowercase : List[Any] = response.headers.get("Content-Length" ) _lowercase : Dict = resume_size + int(snake_case ) if content_length is not None else None _lowercase : Any = tqdm( unit="B" , unit_scale=snake_case , total=snake_case , initial=snake_case , desc="Downloading" , ) for chunk in response.iter_content(chunk_size=10_24 ): if chunk: # filter out keep-alive new chunks progress.update(len(snake_case ) ) temp_file.write(snake_case ) progress.close() def _A ( snake_case , snake_case=None , snake_case=False , snake_case=None , snake_case=10 , snake_case=False , snake_case=None , snake_case=False , ) -> Optional[Any]: if cache_dir is None: _lowercase : Any = TRANSFORMERS_CACHE if isinstance(snake_case , snake_case ): _lowercase : Union[str, Any] = str(snake_case ) os.makedirs(snake_case , exist_ok=snake_case ) _lowercase : Any = None if not local_files_only: try: _lowercase : Dict = requests.head(snake_case , allow_redirects=snake_case , proxies=snake_case , timeout=snake_case ) if response.status_code == 2_00: _lowercase : Union[str, Any] = response.headers.get("ETag" ) except (EnvironmentError, requests.exceptions.Timeout): # etag is already None pass _lowercase : int = url_to_filename(snake_case , snake_case ) # get cache path to put the file _lowercase : Dict = os.path.join(snake_case , snake_case ) # etag is None = we don't have a connection, or url doesn't exist, or is otherwise inaccessible. # try to get the last downloaded one if etag is None: if os.path.exists(snake_case ): return cache_path else: _lowercase : Union[str, Any] = [ file for file in fnmatch.filter(os.listdir(snake_case ) , filename + ".*" ) if not file.endswith(".json" ) and not file.endswith(".lock" ) ] if len(snake_case ) > 0: return os.path.join(snake_case , matching_files[-1] ) else: # If files cannot be found and local_files_only=True, # the models might've been found if local_files_only=False # Notify the user about that if local_files_only: raise ValueError( "Cannot find the requested files in the cached path and outgoing traffic has been" " disabled. To enable model look-ups and downloads online, set 'local_files_only'" " to False." ) return None # From now on, etag is not None. if os.path.exists(snake_case ) and not force_download: return cache_path # Prevent parallel downloads of the same file with a lock. _lowercase : Optional[int] = cache_path + ".lock" with FileLock(snake_case ): # If the download just completed while the lock was activated. if os.path.exists(snake_case ) and not force_download: # Even if returning early like here, the lock will be released. return cache_path if resume_download: _lowercase : List[str] = cache_path + ".incomplete" @contextmanager def _resumable_file_manager(): with open(snake_case , "a+b" ) as f: yield f _lowercase : Any = _resumable_file_manager if os.path.exists(snake_case ): _lowercase : Tuple = os.stat(snake_case ).st_size else: _lowercase : str = 0 else: _lowercase : Tuple = partial(tempfile.NamedTemporaryFile , dir=snake_case , delete=snake_case ) _lowercase : str = 0 # Download to temporary file, then copy to cache dir once finished. # Otherwise you get corrupt cache entries if the download gets interrupted. with temp_file_manager() as temp_file: print( "%s not found in cache or force_download set to True, downloading to %s" , snake_case , temp_file.name , ) http_get( snake_case , snake_case , proxies=snake_case , resume_size=snake_case , user_agent=snake_case , ) os.replace(temp_file.name , snake_case ) _lowercase : int = {"url": url, "etag": etag} _lowercase : Union[str, Any] = cache_path + ".json" with open(snake_case , "w" ) as meta_file: json.dump(snake_case , snake_case ) return cache_path def _A ( snake_case , snake_case=None ) -> int: _lowercase : int = url.encode("utf-8" ) _lowercase : int = shaaaa(snake_case ) _lowercase : Any = url_hash.hexdigest() if etag: _lowercase : Tuple = etag.encode("utf-8" ) _lowercase : List[str] = shaaaa(snake_case ) filename += "." + etag_hash.hexdigest() if url.endswith(".h5" ): filename += ".h5" return filename def _A ( snake_case , snake_case=None , snake_case=False , snake_case=None , snake_case=False , snake_case=None , snake_case=False , snake_case=False , snake_case=False , ) -> Optional[Any]: if cache_dir is None: _lowercase : List[str] = TRANSFORMERS_CACHE if isinstance(snake_case , snake_case ): _lowercase : int = str(snake_case ) if isinstance(snake_case , snake_case ): _lowercase : Optional[Any] = str(snake_case ) if is_remote_url(snake_case ): # URL, so get it from the cache (downloading if necessary) _lowercase : Tuple = get_from_cache( snake_case , cache_dir=snake_case , force_download=snake_case , proxies=snake_case , resume_download=snake_case , user_agent=snake_case , local_files_only=snake_case , ) elif os.path.exists(snake_case ): # File, and it exists. _lowercase : int = url_or_filename elif urlparse(snake_case ).scheme == "": # File, but it doesn't exist. raise EnvironmentError("file {} not found".format(snake_case ) ) else: # Something unknown raise ValueError("unable to parse {} as a URL or as a local path".format(snake_case ) ) if extract_compressed_file: if not is_zipfile(snake_case ) and not tarfile.is_tarfile(snake_case ): return output_path # Path where we extract compressed archives # We avoid '.' in dir name and add "-extracted" at the end: "./model.zip" => "./model-zip-extracted/" _lowercase , _lowercase : Tuple = os.path.split(snake_case ) _lowercase : Any = output_file.replace("." , "-" ) + "-extracted" _lowercase : Tuple = os.path.join(snake_case , snake_case ) if os.path.isdir(snake_case ) and os.listdir(snake_case ) and not force_extract: return output_path_extracted # Prevent parallel extractions _lowercase : List[Any] = output_path + ".lock" with FileLock(snake_case ): shutil.rmtree(snake_case , ignore_errors=snake_case ) os.makedirs(snake_case ) if is_zipfile(snake_case ): with ZipFile(snake_case , "r" ) as zip_file: zip_file.extractall(snake_case ) zip_file.close() elif tarfile.is_tarfile(snake_case ): _lowercase : int = tarfile.open(snake_case ) tar_file.extractall(snake_case ) tar_file.close() else: raise EnvironmentError("Archive format of {} could not be identified".format(snake_case ) ) return output_path_extracted return output_path def _A ( snake_case , snake_case="," ) -> Optional[int]: assert isinstance(snake_case , snake_case ) if os.path.isfile(snake_case ): with open(snake_case ) as f: _lowercase : List[Any] = eval(f.read() ) else: _lowercase : str = requests.get(snake_case ) try: _lowercase : Optional[Any] = requests.json() except Exception: _lowercase : List[Any] = req.content.decode() assert data is not None, "could not connect" try: _lowercase : Dict = eval(snake_case ) except Exception: _lowercase : Dict = data.split("\n" ) req.close() return data def _A ( snake_case ) -> Optional[Any]: _lowercase : Optional[int] = requests.get(snake_case ) _lowercase : Dict = np.array(Image.open(BytesIO(response.content ) ) ) return img def _A ( snake_case ) -> List[Any]: _lowercase : List[Any] = url.split("/" )[-1] if fn not in os.listdir(os.getcwd() ): wget.download(snake_case ) with open(snake_case , "rb" ) as stream: _lowercase : int = pkl.load(snake_case ) _lowercase : Any = weights.pop("model" ) _lowercase : int = {} for k, v in model.items(): _lowercase : Optional[Any] = torch.from_numpy(snake_case ) if "running_var" in k: _lowercase : List[str] = torch.tensor([0] ) _lowercase : Any = k.replace("running_var" , "num_batches_tracked" ) _lowercase : List[str] = zero return new def _A ( ) -> Any: print(F'''{os.path.abspath(os.path.join(snake_case , os.pardir ) )}/demo.ipynb''' ) def _A ( snake_case , snake_case="RGB" ) -> List[Any]: assert isinstance(snake_case , snake_case ) if os.path.isfile(snake_case ): _lowercase : Optional[Any] = cva.imread(snake_case ) else: _lowercase : List[Any] = get_image_from_url(snake_case ) assert img is not None, F'''could not connect to: {im}''' _lowercase : Optional[int] = cva.cvtColor(snake_case , cva.COLOR_BGR2RGB ) if input_format == "RGB": _lowercase : List[Any] = img[:, :, ::-1] return img def _A ( snake_case , snake_case=1 ) -> Union[str, Any]: return (images[i : i + batch] for i in range(0 , len(snake_case ) , snake_case ))
250
'''simple docstring''' import inspect import os import sys import unittest import accelerate from accelerate.test_utils import execute_subprocess_async, require_tpu class a__ ( unittest.TestCase ): def _lowerCamelCase ( self ): """simple docstring""" _lowercase : str = inspect.getfile(accelerate.test_utils ) _lowercase : List[str] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["scripts", "test_script.py"] ) _lowercase : str = os.path.sep.join(inspect.getfile(self.__class__ ).split(os.path.sep )[:-1] ) @require_tpu def _lowerCamelCase ( self ): """simple docstring""" _lowercase : Optional[Any] = f''' {self.test_dir}/xla_spawn.py --num_cores 8 {self.test_file_path} '''.split() _lowercase : Tuple = [sys.executable] + distributed_args execute_subprocess_async(_UpperCamelCase , env=os.environ.copy() )
250
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) snake_case : List[str] = {'''configuration_vit_mae''': ['''VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ViTMAEConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : Dict = [ '''VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ViTMAEForPreTraining''', '''ViTMAELayer''', '''ViTMAEModel''', '''ViTMAEPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : Union[str, Any] = [ '''TFViTMAEForPreTraining''', '''TFViTMAEModel''', '''TFViTMAEPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_mae import ( VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMAEForPreTraining, ViTMAELayer, ViTMAEModel, ViTMAEPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel else: import sys snake_case : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
281
import math def __lowerCamelCase ( UpperCAmelCase_ : float , UpperCAmelCase_ : float ): """simple docstring""" return math.pow(UpperCAmelCase_ , 2 ) - a def __lowerCamelCase ( UpperCAmelCase_ : float ): """simple docstring""" return 2 * x def __lowerCamelCase ( UpperCAmelCase_ : float ): """simple docstring""" a :int = 2.0 while start <= a: a :int = math.pow(UpperCAmelCase_ , 2 ) return start def __lowerCamelCase ( UpperCAmelCase_ : float , UpperCAmelCase_ : int = 9999 , UpperCAmelCase_ : float = 0.00000000000001 ): """simple docstring""" if a < 0: raise ValueError('''math domain error''' ) a :List[Any] = get_initial_point(UpperCAmelCase_ ) for _ in range(UpperCAmelCase_ ): a :Optional[int] = value a :int = value - fx(UpperCAmelCase_ , UpperCAmelCase_ ) / fx_derivative(UpperCAmelCase_ ) if abs(prev_value - value ) < tolerance: return value return value if __name__ == "__main__": from doctest import testmod testmod()
281
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) UpperCamelCase__ = {'''configuration_reformer''': ['''REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ReformerConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = ['''ReformerTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = ['''ReformerTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = [ '''REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ReformerAttention''', '''ReformerForMaskedLM''', '''ReformerForQuestionAnswering''', '''ReformerForSequenceClassification''', '''ReformerLayer''', '''ReformerModel''', '''ReformerModelWithLMHead''', '''ReformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer import ReformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer_fast import ReformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_reformer import ( REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ReformerAttention, ReformerForMaskedLM, ReformerForQuestionAnswering, ReformerForSequenceClassification, ReformerLayer, ReformerModel, ReformerModelWithLMHead, ReformerPreTrainedModel, ) else: import sys UpperCamelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
181
'''simple docstring''' import re from filelock import FileLock try: import nltk UpperCamelCase__ = True except (ImportError, ModuleNotFoundError): UpperCamelCase__ = False if NLTK_AVAILABLE: with FileLock('''.lock''') as lock: nltk.download('''punkt''', quiet=True) def a__ ( lowerCAmelCase__ ) -> str: re.sub('''<n>''' , '''''' , lowerCAmelCase__ ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(lowerCAmelCase__ ) )
181
1
def __lowerCamelCase ( snake_case__ = 1 ,snake_case__ = 10_00 ): """simple docstring""" _SCREAMING_SNAKE_CASE = 1 _SCREAMING_SNAKE_CASE = 0 for divide_by_number in range(UpperCAmelCase_ ,digit + 1 ): _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = numerator for _ in range(1 ,digit + 1 ): if now_divide in has_been_divided: if longest_list_length < len(UpperCAmelCase_ ): _SCREAMING_SNAKE_CASE = len(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = divide_by_number else: has_been_divided.append(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = now_divide * 10 % divide_by_number return the_digit # Tests if __name__ == "__main__": import doctest doctest.testmod()
357
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) UpperCamelCase = { '''configuration_layoutlmv3''': [ '''LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LayoutLMv3Config''', '''LayoutLMv3OnnxConfig''', ], '''processing_layoutlmv3''': ['''LayoutLMv3Processor'''], '''tokenization_layoutlmv3''': ['''LayoutLMv3Tokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ['''LayoutLMv3TokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST''', '''LayoutLMv3ForQuestionAnswering''', '''LayoutLMv3ForSequenceClassification''', '''LayoutLMv3ForTokenClassification''', '''LayoutLMv3Model''', '''LayoutLMv3PreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFLayoutLMv3ForQuestionAnswering''', '''TFLayoutLMv3ForSequenceClassification''', '''TFLayoutLMv3ForTokenClassification''', '''TFLayoutLMv3Model''', '''TFLayoutLMv3PreTrainedModel''', ] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ['''LayoutLMv3FeatureExtractor'''] UpperCamelCase = ['''LayoutLMv3ImageProcessor'''] if TYPE_CHECKING: from .configuration_layoutlmva import ( LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig, LayoutLMvaOnnxConfig, ) from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_layoutlmva import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, TFLayoutLMvaPreTrainedModel, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor from .image_processing_layoutlmva import LayoutLMvaImageProcessor else: import sys UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
125
0
from __future__ import annotations from random import random from typing import Generic, TypeVar _SCREAMING_SNAKE_CASE = TypeVar("""KT""") _SCREAMING_SNAKE_CASE = TypeVar("""VT""") class SCREAMING_SNAKE_CASE_ ( Generic[KT, VT] ): def __init__( self : List[Any] , _A : KT | str = "root" , _A : VT | None = None ) -> List[str]: """simple docstring""" snake_case_ : Optional[int] = key snake_case_ : Union[str, Any] = value snake_case_ : Tuple = [] def __repr__( self : List[Any] ) -> str: """simple docstring""" return F"""Node({self.key}: {self.value})""" @property def UpperCAmelCase_ ( self : Optional[Any] ) -> int: """simple docstring""" return len(self.forward ) class SCREAMING_SNAKE_CASE_ ( Generic[KT, VT] ): def __init__( self : Tuple , _A : float = 0.5 , _A : int = 16 ) -> int: """simple docstring""" snake_case_ : Any = Node[KT, VT]() snake_case_ : List[str] = 0 snake_case_ : Union[str, Any] = p snake_case_ : Dict = max_level def __str__( self : Optional[int] ) -> str: """simple docstring""" snake_case_ : Optional[int] = list(self ) if len(_UpperCAmelCase ) == 0: return F"""SkipList(level={self.level})""" snake_case_ : Optional[int] = max((len(str(_UpperCAmelCase ) ) for item in items) , default=4 ) snake_case_ : List[Any] = max(_UpperCAmelCase , 4 ) + 4 snake_case_ : int = self.head snake_case_ : List[Any] = [] snake_case_ : Tuple = node.forward.copy() lines.append(F"""[{node.key}]""".ljust(_UpperCAmelCase , '-' ) + '* ' * len(_UpperCAmelCase ) ) lines.append(' ' * label_size + '| ' * len(_UpperCAmelCase ) ) while len(node.forward ) != 0: snake_case_ : int = node.forward[0] lines.append( F"""[{node.key}]""".ljust(_UpperCAmelCase , '-' ) + ' '.join(str(n.key ) if n.key == node.key else '|' for n in forwards ) ) lines.append(' ' * label_size + '| ' * len(_UpperCAmelCase ) ) snake_case_ : str = node.forward lines.append('None'.ljust(_UpperCAmelCase ) + '* ' * len(_UpperCAmelCase ) ) return F"""SkipList(level={self.level})\n""" + "\n".join(_UpperCAmelCase ) def __iter__( self : Any ) -> Any: """simple docstring""" snake_case_ : List[Any] = self.head while len(node.forward ) != 0: yield node.forward[0].key snake_case_ : List[str] = node.forward[0] def UpperCAmelCase_ ( self : Any ) -> int: """simple docstring""" snake_case_ : Any = 1 while random() < self.p and level < self.max_level: level += 1 return level def UpperCAmelCase_ ( self : Optional[Any] , _A : Union[str, Any] ) -> tuple[Node[KT, VT] | None, list[Node[KT, VT]]]: """simple docstring""" snake_case_ : List[Any] = [] snake_case_ : Tuple = self.head for i in reversed(range(self.level ) ): # i < node.level - When node level is lesser than `i` decrement `i`. # node.forward[i].key < key - Jumping to node with key value higher # or equal to searched key would result # in skipping searched key. while i < node.level and node.forward[i].key < key: snake_case_ : str = node.forward[i] # Each leftmost node (relative to searched node) will potentially have to # be updated. update_vector.append(_UpperCAmelCase ) update_vector.reverse() # Note that we were inserting values in reverse order. # len(node.forward) != 0 - If current node doesn't contain any further # references then searched key is not present. # node.forward[0].key == key - Next node key should be equal to search key # if key is present. if len(node.forward ) != 0 and node.forward[0].key == key: return node.forward[0], update_vector else: return None, update_vector def UpperCAmelCase_ ( self : List[str] , _A : KT ) -> Optional[Any]: """simple docstring""" snake_case_ ,snake_case_ : Any = self._locate_node(_UpperCAmelCase ) if node is not None: for i, update_node in enumerate(_UpperCAmelCase ): # Remove or replace all references to removed node. if update_node.level > i and update_node.forward[i].key == key: if node.level > i: snake_case_ : List[str] = node.forward[i] else: snake_case_ : Dict = update_node.forward[:i] def UpperCAmelCase_ ( self : Optional[Any] , _A : KT , _A : VT ) -> str: """simple docstring""" snake_case_ ,snake_case_ : int = self._locate_node(_UpperCAmelCase ) if node is not None: snake_case_ : Optional[Any] = value else: snake_case_ : Tuple = self.random_level() if level > self.level: # After level increase we have to add additional nodes to head. for _ in range(self.level - 1 , _UpperCAmelCase ): update_vector.append(self.head ) snake_case_ : Tuple = level snake_case_ : Optional[Any] = Node(_UpperCAmelCase , _UpperCAmelCase ) for i, update_node in enumerate(update_vector[:level] ): # Change references to pass through new node. if update_node.level > i: new_node.forward.append(update_node.forward[i] ) if update_node.level < i + 1: update_node.forward.append(_UpperCAmelCase ) else: snake_case_ : Union[str, Any] = new_node def UpperCAmelCase_ ( self : Any , _A : VT ) -> VT | None: """simple docstring""" snake_case_ ,snake_case_ : Optional[Any] = self._locate_node(_UpperCAmelCase ) if node is not None: return node.value return None def SCREAMING_SNAKE_CASE__ ( ): snake_case_ : Optional[Any] = SkipList() skip_list.insert('Key1' , 3 ) skip_list.insert('Key2' , 12 ) skip_list.insert('Key3' , 41 ) skip_list.insert('Key4' , -19 ) snake_case_ : List[Any] = skip_list.head snake_case_ : str = {} while node.level != 0: snake_case_ : str = node.forward[0] snake_case_ : int = node.value assert len(__a ) == 4 assert all_values["Key1"] == 3 assert all_values["Key2"] == 12 assert all_values["Key3"] == 41 assert all_values["Key4"] == -19 def SCREAMING_SNAKE_CASE__ ( ): snake_case_ : int = SkipList() skip_list.insert('Key1' , 10 ) skip_list.insert('Key1' , 12 ) skip_list.insert('Key5' , 7 ) skip_list.insert('Key7' , 10 ) skip_list.insert('Key10' , 5 ) skip_list.insert('Key7' , 7 ) skip_list.insert('Key5' , 5 ) skip_list.insert('Key10' , 10 ) snake_case_ : Tuple = skip_list.head snake_case_ : str = {} while node.level != 0: snake_case_ : Union[str, Any] = node.forward[0] snake_case_ : Optional[int] = node.value if len(__a ) != 4: print() assert len(__a ) == 4 assert all_values["Key1"] == 12 assert all_values["Key7"] == 7 assert all_values["Key5"] == 5 assert all_values["Key10"] == 10 def SCREAMING_SNAKE_CASE__ ( ): snake_case_ : str = SkipList() assert skip_list.find('Some key' ) is None def SCREAMING_SNAKE_CASE__ ( ): snake_case_ : List[str] = SkipList() skip_list.insert('Key2' , 20 ) assert skip_list.find('Key2' ) == 20 skip_list.insert('Some Key' , 10 ) skip_list.insert('Key2' , 8 ) skip_list.insert('V' , 13 ) assert skip_list.find('Y' ) is None assert skip_list.find('Key2' ) == 8 assert skip_list.find('Some Key' ) == 10 assert skip_list.find('V' ) == 13 def SCREAMING_SNAKE_CASE__ ( ): snake_case_ : Union[str, Any] = SkipList() skip_list.delete('Some key' ) assert len(skip_list.head.forward ) == 0 def SCREAMING_SNAKE_CASE__ ( ): snake_case_ : int = SkipList() skip_list.insert('Key1' , 12 ) skip_list.insert('V' , 13 ) skip_list.insert('X' , 14 ) skip_list.insert('Key2' , 15 ) skip_list.delete('V' ) skip_list.delete('Key2' ) assert skip_list.find('V' ) is None assert skip_list.find('Key2' ) is None def SCREAMING_SNAKE_CASE__ ( ): snake_case_ : Union[str, Any] = SkipList() skip_list.insert('Key1' , 12 ) skip_list.insert('V' , 13 ) skip_list.insert('X' , 14 ) skip_list.insert('Key2' , 15 ) skip_list.delete('V' ) assert skip_list.find('V' ) is None assert skip_list.find('X' ) == 14 assert skip_list.find('Key1' ) == 12 assert skip_list.find('Key2' ) == 15 skip_list.delete('X' ) assert skip_list.find('V' ) is None assert skip_list.find('X' ) is None assert skip_list.find('Key1' ) == 12 assert skip_list.find('Key2' ) == 15 skip_list.delete('Key1' ) assert skip_list.find('V' ) is None assert skip_list.find('X' ) is None assert skip_list.find('Key1' ) is None assert skip_list.find('Key2' ) == 15 skip_list.delete('Key2' ) assert skip_list.find('V' ) is None assert skip_list.find('X' ) is None assert skip_list.find('Key1' ) is None assert skip_list.find('Key2' ) is None def SCREAMING_SNAKE_CASE__ ( ): snake_case_ : Any = SkipList() skip_list.insert('Key1' , 12 ) skip_list.insert('V' , 13 ) skip_list.insert('X' , 1_42 ) skip_list.insert('Key2' , 15 ) skip_list.delete('X' ) def traverse_keys(__a ): yield node.key for forward_node in node.forward: yield from traverse_keys(__a ) assert len(set(traverse_keys(skip_list.head ) ) ) == 4 def SCREAMING_SNAKE_CASE__ ( ): def is_sorted(__a ): return all(next_item >= item for item, next_item in zip(__a , lst[1:] ) ) snake_case_ : Optional[int] = SkipList() for i in range(10 ): skip_list.insert(__a , __a ) assert is_sorted(list(__a ) ) skip_list.delete(5 ) skip_list.delete(8 ) skip_list.delete(2 ) assert is_sorted(list(__a ) ) skip_list.insert(-12 , -12 ) skip_list.insert(77 , 77 ) assert is_sorted(list(__a ) ) def SCREAMING_SNAKE_CASE__ ( ): for _ in range(1_00 ): # Repeat test 100 times due to the probabilistic nature of skip list # random values == random bugs test_insert() test_insert_overrides_existing_value() test_searching_empty_list_returns_none() test_search() test_deleting_item_from_empty_list_do_nothing() test_deleted_items_are_not_founded_by_find_method() test_delete_removes_only_given_key() test_delete_doesnt_leave_dead_nodes() test_iter_always_yields_sorted_values() def SCREAMING_SNAKE_CASE__ ( ): snake_case_ : Union[str, Any] = SkipList() skip_list.insert(2 , '2' ) skip_list.insert(4 , '4' ) skip_list.insert(6 , '4' ) skip_list.insert(4 , '5' ) skip_list.insert(8 , '4' ) skip_list.insert(9 , '4' ) skip_list.delete(4 ) print(__a ) if __name__ == "__main__": import doctest doctest.testmod() main()
327
from __future__ import annotations import math def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list ) -> list: """simple docstring""" if len(__magic_name__ ) != 2 or len(a[0] ) != 2 or len(__magic_name__ ) != 2 or len(b[0] ) != 2: raise Exception("""Matrices are not 2x2""" ) lowercase__ = [ [a[0][0] * b[0][0] + a[0][1] * b[1][0], a[0][0] * b[0][1] + a[0][1] * b[1][1]], [a[1][0] * b[0][0] + a[1][1] * b[1][0], a[1][0] * b[0][1] + a[1][1] * b[1][1]], ] return new_matrix def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list ) -> Union[str, Any]: """simple docstring""" return [ [matrix_a[row][col] + matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(__magic_name__ ) ) ] def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list ) -> int: """simple docstring""" return [ [matrix_a[row][col] - matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(__magic_name__ ) ) ] def UpperCamelCase ( __magic_name__ : list ) -> tuple[list, list, list, list]: """simple docstring""" if len(__magic_name__ ) % 2 != 0 or len(a[0] ) % 2 != 0: raise Exception("""Odd matrices are not supported!""" ) lowercase__ = len(__magic_name__ ) lowercase__ = matrix_length // 2 lowercase__ = [[a[i][j] for j in range(__magic_name__ , __magic_name__ )] for i in range(__magic_name__ )] lowercase__ = [ [a[i][j] for j in range(__magic_name__ , __magic_name__ )] for i in range(__magic_name__ , __magic_name__ ) ] lowercase__ = [[a[i][j] for j in range(__magic_name__ )] for i in range(__magic_name__ )] lowercase__ = [[a[i][j] for j in range(__magic_name__ )] for i in range(__magic_name__ , __magic_name__ )] return top_left, top_right, bot_left, bot_right def UpperCamelCase ( __magic_name__ : list ) -> tuple[int, int]: """simple docstring""" return len(__magic_name__ ), len(matrix[0] ) def UpperCamelCase ( __magic_name__ : list ) -> None: """simple docstring""" print("""\n""".join(str(__magic_name__ ) for line in matrix ) ) def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list ) -> list: """simple docstring""" if matrix_dimensions(__magic_name__ ) == (2, 2): return default_matrix_multiplication(__magic_name__ , __magic_name__ ) lowercase__ , lowercase__ , lowercase__ , lowercase__ = split_matrix(__magic_name__ ) lowercase__ , lowercase__ , lowercase__ , lowercase__ = split_matrix(__magic_name__ ) lowercase__ = actual_strassen(__magic_name__ , matrix_subtraction(__magic_name__ , __magic_name__ ) ) lowercase__ = actual_strassen(matrix_addition(__magic_name__ , __magic_name__ ) , __magic_name__ ) lowercase__ = actual_strassen(matrix_addition(__magic_name__ , __magic_name__ ) , __magic_name__ ) lowercase__ = actual_strassen(__magic_name__ , matrix_subtraction(__magic_name__ , __magic_name__ ) ) lowercase__ = actual_strassen(matrix_addition(__magic_name__ , __magic_name__ ) , matrix_addition(__magic_name__ , __magic_name__ ) ) lowercase__ = actual_strassen(matrix_subtraction(__magic_name__ , __magic_name__ ) , matrix_addition(__magic_name__ , __magic_name__ ) ) lowercase__ = actual_strassen(matrix_subtraction(__magic_name__ , __magic_name__ ) , matrix_addition(__magic_name__ , __magic_name__ ) ) lowercase__ = matrix_addition(matrix_subtraction(matrix_addition(__magic_name__ , __magic_name__ ) , __magic_name__ ) , __magic_name__ ) lowercase__ = matrix_addition(__magic_name__ , __magic_name__ ) lowercase__ = matrix_addition(__magic_name__ , __magic_name__ ) lowercase__ = matrix_subtraction(matrix_subtraction(matrix_addition(__magic_name__ , __magic_name__ ) , __magic_name__ ) , __magic_name__ ) # construct the new matrix from our 4 quadrants lowercase__ = [] for i in range(len(__magic_name__ ) ): new_matrix.append(top_left[i] + top_right[i] ) for i in range(len(__magic_name__ ) ): new_matrix.append(bot_left[i] + bot_right[i] ) return new_matrix def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list ) -> list: """simple docstring""" if matrix_dimensions(__magic_name__ )[1] != matrix_dimensions(__magic_name__ )[0]: lowercase__ = ( """Unable to multiply these matrices, please check the dimensions.\n""" f'''Matrix A: {matrixa}\n''' f'''Matrix B: {matrixa}''' ) raise Exception(__magic_name__ ) lowercase__ = matrix_dimensions(__magic_name__ ) lowercase__ = matrix_dimensions(__magic_name__ ) if dimensiona[0] == dimensiona[1] and dimensiona[0] == dimensiona[1]: return [matrixa, matrixa] lowercase__ = max(*__magic_name__ , *__magic_name__ ) lowercase__ = int(math.pow(2 , math.ceil(math.loga(__magic_name__ ) ) ) ) lowercase__ = matrixa lowercase__ = matrixa # Adding zeros to the matrices so that the arrays dimensions are the same and also # power of 2 for i in range(0 , __magic_name__ ): if i < dimensiona[0]: for _ in range(dimensiona[1] , __magic_name__ ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) if i < dimensiona[0]: for _ in range(dimensiona[1] , __magic_name__ ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) lowercase__ = actual_strassen(__magic_name__ , __magic_name__ ) # Removing the additional zeros for i in range(0 , __magic_name__ ): if i < dimensiona[0]: for _ in range(dimensiona[1] , __magic_name__ ): final_matrix[i].pop() else: final_matrix.pop() return final_matrix if __name__ == "__main__": A : Optional[Any] = [ [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 2, 3, 1], ] A : List[Any] = [[0, 2, 1, 1], [1_6, 2, 3, 3], [2, 2, 7, 7], [1_3, 1_1, 2_2, 4]] print(strassen(matrixa, matrixa))
305
0
"""simple docstring""" import math from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->UnCLIP class __lowerCAmelCase ( _a ): lowerCamelCase_ : torch.FloatTensor lowerCamelCase_ : Optional[torch.FloatTensor] = None def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase=0.999 , _UpperCamelCase="cosine" , ) -> Union[str, Any]: """simple docstring""" if alpha_transform_type == "cosine": def alpha_bar_fn(_UpperCamelCase ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(_UpperCamelCase ): return math.exp(t * -12.0 ) else: raise ValueError(f'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) snake_case_ : Union[str, Any] = [] for i in range(_UpperCamelCase ): snake_case_ : Any = i / num_diffusion_timesteps snake_case_ : List[str] = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(_UpperCamelCase ) / alpha_bar_fn(_UpperCamelCase ) , _UpperCamelCase ) ) return torch.tensor(_UpperCamelCase , dtype=torch.floataa ) class __lowerCAmelCase ( _a, _a ): @register_to_config def __init__(self , __magic_name__ = 1000 , __magic_name__ = "fixed_small_log" , __magic_name__ = True , __magic_name__ = 1.0 , __magic_name__ = "epsilon" , __magic_name__ = "squaredcos_cap_v2" , ) -> int: '''simple docstring''' if beta_schedule != "squaredcos_cap_v2": raise ValueError('''UnCLIPScheduler only supports `beta_schedule`: \'squaredcos_cap_v2\'''' ) snake_case_ : Optional[int] = betas_for_alpha_bar(__magic_name__ ) snake_case_ : int = 1.0 - self.betas snake_case_ : List[Any] = torch.cumprod(self.alphas , dim=0 ) snake_case_ : str = torch.tensor(1.0 ) # standard deviation of the initial noise distribution snake_case_ : Union[str, Any] = 1.0 # setable values snake_case_ : int = None snake_case_ : Optional[int] = torch.from_numpy(np.arange(0 , __magic_name__ )[::-1].copy() ) snake_case_ : str = variance_type def lowerCamelCase (self , __magic_name__ , __magic_name__ = None ) -> torch.FloatTensor: '''simple docstring''' return sample def lowerCamelCase (self , __magic_name__ , __magic_name__ = None ) -> Dict: '''simple docstring''' snake_case_ : Any = num_inference_steps snake_case_ : List[str] = (self.config.num_train_timesteps - 1) / (self.num_inference_steps - 1) snake_case_ : Dict = (np.arange(0 , __magic_name__ ) * step_ratio).round()[::-1].copy().astype(np.intaa ) snake_case_ : int = torch.from_numpy(__magic_name__ ).to(__magic_name__ ) def lowerCamelCase (self , __magic_name__ , __magic_name__=None , __magic_name__=None , __magic_name__=None ) -> Dict: '''simple docstring''' if prev_timestep is None: snake_case_ : List[str] = t - 1 snake_case_ : Tuple = self.alphas_cumprod[t] snake_case_ : Any = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one snake_case_ : Any = 1 - alpha_prod_t snake_case_ : Any = 1 - alpha_prod_t_prev if prev_timestep == t - 1: snake_case_ : Any = self.betas[t] else: snake_case_ : Optional[int] = 1 - alpha_prod_t / alpha_prod_t_prev # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample snake_case_ : List[str] = beta_prod_t_prev / beta_prod_t * beta if variance_type is None: snake_case_ : Tuple = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small_log": snake_case_ : Tuple = torch.log(torch.clamp(__magic_name__ , min=1e-20 ) ) snake_case_ : Optional[Any] = torch.exp(0.5 * variance ) elif variance_type == "learned_range": # NOTE difference with DDPM scheduler snake_case_ : int = variance.log() snake_case_ : List[Any] = beta.log() snake_case_ : Optional[int] = (predicted_variance + 1) / 2 snake_case_ : Optional[int] = frac * max_log + (1 - frac) * min_log return variance def lowerCamelCase (self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ = None , __magic_name__=None , __magic_name__ = True , ) -> Union[UnCLIPSchedulerOutput, Tuple]: '''simple docstring''' snake_case_ : List[str] = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type == "learned_range": snake_case_ : Any = torch.split(__magic_name__ , sample.shape[1] , dim=1 ) else: snake_case_ : Optional[Any] = None # 1. compute alphas, betas if prev_timestep is None: snake_case_ : Dict = t - 1 snake_case_ : Optional[int] = self.alphas_cumprod[t] snake_case_ : int = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one snake_case_ : str = 1 - alpha_prod_t snake_case_ : List[str] = 1 - alpha_prod_t_prev if prev_timestep == t - 1: snake_case_ : List[Any] = self.betas[t] snake_case_ : Union[str, Any] = self.alphas[t] else: snake_case_ : List[str] = 1 - alpha_prod_t / alpha_prod_t_prev snake_case_ : Tuple = 1 - beta # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": snake_case_ : str = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": snake_case_ : Tuple = model_output else: raise ValueError( F'''prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `sample`''' ''' for the UnCLIPScheduler.''' ) # 3. Clip "predicted x_0" if self.config.clip_sample: snake_case_ : Optional[Any] = torch.clamp( __magic_name__ , -self.config.clip_sample_range , self.config.clip_sample_range ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf snake_case_ : Optional[Any] = (alpha_prod_t_prev ** 0.5 * beta) / beta_prod_t snake_case_ : Optional[Any] = alpha ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf snake_case_ : List[Any] = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise snake_case_ : Optional[Any] = 0 if t > 0: snake_case_ : Union[str, Any] = randn_tensor( model_output.shape , dtype=model_output.dtype , generator=__magic_name__ , device=model_output.device ) snake_case_ : Union[str, Any] = self._get_variance( __magic_name__ , predicted_variance=__magic_name__ , prev_timestep=__magic_name__ , ) if self.variance_type == "fixed_small_log": snake_case_ : Dict = variance elif self.variance_type == "learned_range": snake_case_ : Any = (0.5 * variance).exp() else: raise ValueError( F'''variance_type given as {self.variance_type} must be one of `fixed_small_log` or `learned_range`''' ''' for the UnCLIPScheduler.''' ) snake_case_ : Dict = variance * variance_noise snake_case_ : str = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return UnCLIPSchedulerOutput(prev_sample=__magic_name__ , pred_original_sample=__magic_name__ ) def lowerCamelCase (self , __magic_name__ , __magic_name__ , __magic_name__ , ) -> torch.FloatTensor: '''simple docstring''' snake_case_ : Any = self.alphas_cumprod.to(device=original_samples.device , dtype=original_samples.dtype ) snake_case_ : List[str] = timesteps.to(original_samples.device ) snake_case_ : int = alphas_cumprod[timesteps] ** 0.5 snake_case_ : List[str] = sqrt_alpha_prod.flatten() while len(sqrt_alpha_prod.shape ) < len(original_samples.shape ): snake_case_ : int = sqrt_alpha_prod.unsqueeze(-1 ) snake_case_ : Any = (1 - alphas_cumprod[timesteps]) ** 0.5 snake_case_ : Any = sqrt_one_minus_alpha_prod.flatten() while len(sqrt_one_minus_alpha_prod.shape ) < len(original_samples.shape ): snake_case_ : Union[str, Any] = sqrt_one_minus_alpha_prod.unsqueeze(-1 ) snake_case_ : Union[str, Any] = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples
357
def lowerCamelCase_ ( _UpperCamelCase ) -> int: """simple docstring""" if not isinstance(_UpperCamelCase , _UpperCamelCase ): raise ValueError('''multiplicative_persistence() only accepts integral values''' ) if num < 0: raise ValueError('''multiplicative_persistence() does not accept negative values''' ) snake_case_ : List[Any] = 0 snake_case_ : Tuple = str(_UpperCamelCase ) while len(_UpperCamelCase ) != 1: snake_case_ : Tuple = [int(_UpperCamelCase ) for i in num_string] snake_case_ : Dict = 1 for i in range(0 , len(_UpperCamelCase ) ): total *= numbers[i] snake_case_ : str = str(_UpperCamelCase ) steps += 1 return steps def lowerCamelCase_ ( _UpperCamelCase ) -> int: """simple docstring""" if not isinstance(_UpperCamelCase , _UpperCamelCase ): raise ValueError('''additive_persistence() only accepts integral values''' ) if num < 0: raise ValueError('''additive_persistence() does not accept negative values''' ) snake_case_ : Any = 0 snake_case_ : Tuple = str(_UpperCamelCase ) while len(_UpperCamelCase ) != 1: snake_case_ : List[str] = [int(_UpperCamelCase ) for i in num_string] snake_case_ : Optional[int] = 0 for i in range(0 , len(_UpperCamelCase ) ): total += numbers[i] snake_case_ : Tuple = str(_UpperCamelCase ) steps += 1 return steps if __name__ == "__main__": import doctest doctest.testmod()
279
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _snake_case = { "configuration_swinv2": ["SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP", "Swinv2Config"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST", "Swinv2ForImageClassification", "Swinv2ForMaskedImageModeling", "Swinv2Model", "Swinv2PreTrainedModel", ] if TYPE_CHECKING: from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swinva import ( SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST, SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel, SwinvaPreTrainedModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
26
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''facebook/dpr-ctx_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json''' ), '''facebook/dpr-question_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json''' ), '''facebook/dpr-reader-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json''' ), '''facebook/dpr-ctx_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json''' ), '''facebook/dpr-question_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json''' ), '''facebook/dpr-reader-multiset-base''': ( '''https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json''' ), } class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" a : int ="dpr" def __init__( self , snake_case__=30_522 , snake_case__=768 , snake_case__=12 , snake_case__=12 , snake_case__=3_072 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=512 , snake_case__=2 , snake_case__=0.02 , snake_case__=1e-12 , snake_case__=0 , snake_case__="absolute" , snake_case__ = 0 , **snake_case__ , ): """simple docstring""" super().__init__(pad_token_id=snake_case__ , **snake_case__ ) lowerCAmelCase : Union[str, Any] = vocab_size lowerCAmelCase : str = hidden_size lowerCAmelCase : Any = num_hidden_layers lowerCAmelCase : Optional[int] = num_attention_heads lowerCAmelCase : Union[str, Any] = hidden_act lowerCAmelCase : Dict = intermediate_size lowerCAmelCase : Union[str, Any] = hidden_dropout_prob lowerCAmelCase : Dict = attention_probs_dropout_prob lowerCAmelCase : Dict = max_position_embeddings lowerCAmelCase : Tuple = type_vocab_size lowerCAmelCase : Any = initializer_range lowerCAmelCase : Any = layer_norm_eps lowerCAmelCase : Dict = projection_dim lowerCAmelCase : Dict = position_embedding_type
108
0
'''simple docstring''' import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__=0.9_9_9 , UpperCamelCase__="cosine" , ) -> Tuple: if alpha_transform_type == "cosine": def alpha_bar_fn(UpperCamelCase__ ): return math.cos((t + 0.0_0_8) / 1.0_0_8 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(UpperCamelCase__ ): return math.exp(t * -1_2.0 ) else: raise ValueError(f"""Unsupported alpha_tranform_type: {alpha_transform_type}""" ) __lowerCamelCase = [] for i in range(UpperCamelCase__ ): __lowerCamelCase = i / num_diffusion_timesteps __lowerCamelCase = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(UpperCamelCase__ ) / alpha_bar_fn(UpperCamelCase__ ) , UpperCamelCase__ ) ) return torch.tensor(UpperCamelCase__ , dtype=torch.floataa ) class a__ ( UpperCAmelCase__ , UpperCAmelCase__ ): lowerCamelCase : Tuple =[e.name for e in KarrasDiffusionSchedulers] lowerCamelCase : Tuple =2 @register_to_config def __init__( self : Any , a : int = 10_00 , a : float = 0.0_00_85 , a : float = 0.0_12 , a : str = "linear" , a : Optional[Union[np.ndarray, List[float]]] = None , a : str = "epsilon" , a : Optional[bool] = False , a : Optional[bool] = False , a : float = 1.0 , a : str = "linspace" , a : int = 0 , ): """simple docstring""" if trained_betas is not None: __lowerCamelCase = torch.tensor(a , dtype=torch.floataa ) elif beta_schedule == "linear": __lowerCamelCase = torch.linspace(a , a , a , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. __lowerCamelCase = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , a , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule __lowerCamelCase = betas_for_alpha_bar(a , alpha_transform_type='''cosine''' ) elif beta_schedule == "exp": __lowerCamelCase = betas_for_alpha_bar(a , alpha_transform_type='''exp''' ) else: raise NotImplementedError(f"""{beta_schedule} does is not implemented for {self.__class__}""" ) __lowerCamelCase = 1.0 - self.betas __lowerCamelCase = torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(a , a , a ) __lowerCamelCase = use_karras_sigmas def SCREAMING_SNAKE_CASE__ ( self : List[Any] , a : str , a : Optional[int]=None ): """simple docstring""" if schedule_timesteps is None: __lowerCamelCase = self.timesteps __lowerCamelCase = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: __lowerCamelCase = 1 if len(a ) > 1 else 0 else: __lowerCamelCase = timestep.cpu().item() if torch.is_tensor(a ) else timestep __lowerCamelCase = self._index_counter[timestep_int] return indices[pos].item() @property def SCREAMING_SNAKE_CASE__ ( self : Tuple ): """simple docstring""" if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def SCREAMING_SNAKE_CASE__ ( self : List[str] , a : torch.FloatTensor , a : Union[float, torch.FloatTensor] , ): """simple docstring""" __lowerCamelCase = self.index_for_timestep(a ) __lowerCamelCase = self.sigmas[step_index] __lowerCamelCase = sample / ((sigma**2 + 1) ** 0.5) return sample def SCREAMING_SNAKE_CASE__ ( self : int , a : int , a : Union[str, torch.device] = None , a : Optional[int] = None , ): """simple docstring""" __lowerCamelCase = num_inference_steps __lowerCamelCase = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": __lowerCamelCase = np.linspace(0 , num_train_timesteps - 1 , a , dtype=a )[::-1].copy() elif self.config.timestep_spacing == "leading": __lowerCamelCase = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 __lowerCamelCase = (np.arange(0 , a ) * step_ratio).round()[::-1].copy().astype(a ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": __lowerCamelCase = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 __lowerCamelCase = (np.arange(a , 0 , -step_ratio )).round().copy().astype(a ) timesteps -= 1 else: raise ValueError( f"""{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'.""" ) __lowerCamelCase = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) __lowerCamelCase = np.log(a ) __lowerCamelCase = np.interp(a , np.arange(0 , len(a ) ) , a ) if self.config.use_karras_sigmas: __lowerCamelCase = self._convert_to_karras(in_sigmas=a , num_inference_steps=self.num_inference_steps ) __lowerCamelCase = np.array([self._sigma_to_t(a , a ) for sigma in sigmas] ) __lowerCamelCase = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) __lowerCamelCase = torch.from_numpy(a ).to(device=a ) __lowerCamelCase = torch.cat([sigmas[:1], sigmas[1:-1].repeat_interleave(2 ), sigmas[-1:]] ) __lowerCamelCase = torch.from_numpy(a ) __lowerCamelCase = torch.cat([timesteps[:1], timesteps[1:].repeat_interleave(2 )] ) if str(a ).startswith('''mps''' ): # mps does not support float64 __lowerCamelCase = timesteps.to(a , dtype=torch.floataa ) else: __lowerCamelCase = timesteps.to(device=a ) # empty dt and derivative __lowerCamelCase = None __lowerCamelCase = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter __lowerCamelCase = defaultdict(a ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , a : Tuple , a : Optional[Any] ): """simple docstring""" __lowerCamelCase = np.log(a ) # get distribution __lowerCamelCase = log_sigma - log_sigmas[:, np.newaxis] # get sigmas range __lowerCamelCase = np.cumsum((dists >= 0) , axis=0 ).argmax(axis=0 ).clip(max=log_sigmas.shape[0] - 2 ) __lowerCamelCase = low_idx + 1 __lowerCamelCase = log_sigmas[low_idx] __lowerCamelCase = log_sigmas[high_idx] # interpolate sigmas __lowerCamelCase = (low - log_sigma) / (low - high) __lowerCamelCase = np.clip(a , 0 , 1 ) # transform interpolation to time range __lowerCamelCase = (1 - w) * low_idx + w * high_idx __lowerCamelCase = t.reshape(sigma.shape ) return t def SCREAMING_SNAKE_CASE__ ( self : str , a : torch.FloatTensor , a : str ): """simple docstring""" __lowerCamelCase = in_sigmas[-1].item() __lowerCamelCase = in_sigmas[0].item() __lowerCamelCase = 7.0 # 7.0 is the value used in the paper __lowerCamelCase = np.linspace(0 , 1 , a ) __lowerCamelCase = sigma_min ** (1 / rho) __lowerCamelCase = sigma_max ** (1 / rho) __lowerCamelCase = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho return sigmas @property def SCREAMING_SNAKE_CASE__ ( self : str ): """simple docstring""" return self.dt is None def SCREAMING_SNAKE_CASE__ ( self : Any , a : Union[torch.FloatTensor, np.ndarray] , a : Union[float, torch.FloatTensor] , a : Union[torch.FloatTensor, np.ndarray] , a : bool = True , ): """simple docstring""" __lowerCamelCase = self.index_for_timestep(a ) # advance index counter by 1 __lowerCamelCase = timestep.cpu().item() if torch.is_tensor(a ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: __lowerCamelCase = self.sigmas[step_index] __lowerCamelCase = self.sigmas[step_index + 1] else: # 2nd order / Heun's method __lowerCamelCase = self.sigmas[step_index - 1] __lowerCamelCase = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API __lowerCamelCase = 0 __lowerCamelCase = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": __lowerCamelCase = sigma_hat if self.state_in_first_order else sigma_next __lowerCamelCase = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": __lowerCamelCase = sigma_hat if self.state_in_first_order else sigma_next __lowerCamelCase = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": __lowerCamelCase = model_output else: raise ValueError( f"""prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`""" ) if self.config.clip_sample: __lowerCamelCase = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order __lowerCamelCase = (sample - pred_original_sample) / sigma_hat # 3. delta timestep __lowerCamelCase = sigma_next - sigma_hat # store for 2nd order step __lowerCamelCase = derivative __lowerCamelCase = dt __lowerCamelCase = sample else: # 2. 2nd order / Heun's method __lowerCamelCase = (sample - pred_original_sample) / sigma_next __lowerCamelCase = (self.prev_derivative + derivative) / 2 # 3. take prev timestep & sample __lowerCamelCase = self.dt __lowerCamelCase = self.sample # free dt and derivative # Note, this puts the scheduler in "first order mode" __lowerCamelCase = None __lowerCamelCase = None __lowerCamelCase = None __lowerCamelCase = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=a ) def SCREAMING_SNAKE_CASE__ ( self : int , a : torch.FloatTensor , a : torch.FloatTensor , a : torch.FloatTensor , ): """simple docstring""" __lowerCamelCase = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(a ): # mps does not support float64 __lowerCamelCase = self.timesteps.to(original_samples.device , dtype=torch.floataa ) __lowerCamelCase = timesteps.to(original_samples.device , dtype=torch.floataa ) else: __lowerCamelCase = self.timesteps.to(original_samples.device ) __lowerCamelCase = timesteps.to(original_samples.device ) __lowerCamelCase = [self.index_for_timestep(a , a ) for t in timesteps] __lowerCamelCase = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): __lowerCamelCase = sigma.unsqueeze(-1 ) __lowerCamelCase = original_samples + noise * sigma return noisy_samples def __len__( self : int ): """simple docstring""" return self.config.num_train_timesteps
237
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool __UpperCAmelCase ={ "Acehnese Arabic": "ace_Arab", "Acehnese Latin": "ace_Latn", "Mesopotamian Arabic": "acm_Arab", "Ta'izzi-Adeni Arabic": "acq_Arab", "Tunisian Arabic": "aeb_Arab", "Afrikaans": "afr_Latn", "South Levantine Arabic": "ajp_Arab", "Akan": "aka_Latn", "Amharic": "amh_Ethi", "North Levantine Arabic": "apc_Arab", "Modern Standard Arabic": "arb_Arab", "Modern Standard Arabic Romanized": "arb_Latn", "Najdi Arabic": "ars_Arab", "Moroccan Arabic": "ary_Arab", "Egyptian Arabic": "arz_Arab", "Assamese": "asm_Beng", "Asturian": "ast_Latn", "Awadhi": "awa_Deva", "Central Aymara": "ayr_Latn", "South Azerbaijani": "azb_Arab", "North Azerbaijani": "azj_Latn", "Bashkir": "bak_Cyrl", "Bambara": "bam_Latn", "Balinese": "ban_Latn", "Belarusian": "bel_Cyrl", "Bemba": "bem_Latn", "Bengali": "ben_Beng", "Bhojpuri": "bho_Deva", "Banjar Arabic": "bjn_Arab", "Banjar Latin": "bjn_Latn", "Standard Tibetan": "bod_Tibt", "Bosnian": "bos_Latn", "Buginese": "bug_Latn", "Bulgarian": "bul_Cyrl", "Catalan": "cat_Latn", "Cebuano": "ceb_Latn", "Czech": "ces_Latn", "Chokwe": "cjk_Latn", "Central Kurdish": "ckb_Arab", "Crimean Tatar": "crh_Latn", "Welsh": "cym_Latn", "Danish": "dan_Latn", "German": "deu_Latn", "Southwestern Dinka": "dik_Latn", "Dyula": "dyu_Latn", "Dzongkha": "dzo_Tibt", "Greek": "ell_Grek", "English": "eng_Latn", "Esperanto": "epo_Latn", "Estonian": "est_Latn", "Basque": "eus_Latn", "Ewe": "ewe_Latn", "Faroese": "fao_Latn", "Fijian": "fij_Latn", "Finnish": "fin_Latn", "Fon": "fon_Latn", "French": "fra_Latn", "Friulian": "fur_Latn", "Nigerian Fulfulde": "fuv_Latn", "Scottish Gaelic": "gla_Latn", "Irish": "gle_Latn", "Galician": "glg_Latn", "Guarani": "grn_Latn", "Gujarati": "guj_Gujr", "Haitian Creole": "hat_Latn", "Hausa": "hau_Latn", "Hebrew": "heb_Hebr", "Hindi": "hin_Deva", "Chhattisgarhi": "hne_Deva", "Croatian": "hrv_Latn", "Hungarian": "hun_Latn", "Armenian": "hye_Armn", "Igbo": "ibo_Latn", "Ilocano": "ilo_Latn", "Indonesian": "ind_Latn", "Icelandic": "isl_Latn", "Italian": "ita_Latn", "Javanese": "jav_Latn", "Japanese": "jpn_Jpan", "Kabyle": "kab_Latn", "Jingpho": "kac_Latn", "Kamba": "kam_Latn", "Kannada": "kan_Knda", "Kashmiri Arabic": "kas_Arab", "Kashmiri Devanagari": "kas_Deva", "Georgian": "kat_Geor", "Central Kanuri Arabic": "knc_Arab", "Central Kanuri Latin": "knc_Latn", "Kazakh": "kaz_Cyrl", "Kabiyè": "kbp_Latn", "Kabuverdianu": "kea_Latn", "Khmer": "khm_Khmr", "Kikuyu": "kik_Latn", "Kinyarwanda": "kin_Latn", "Kyrgyz": "kir_Cyrl", "Kimbundu": "kmb_Latn", "Northern Kurdish": "kmr_Latn", "Kikongo": "kon_Latn", "Korean": "kor_Hang", "Lao": "lao_Laoo", "Ligurian": "lij_Latn", "Limburgish": "lim_Latn", "Lingala": "lin_Latn", "Lithuanian": "lit_Latn", "Lombard": "lmo_Latn", "Latgalian": "ltg_Latn", "Luxembourgish": "ltz_Latn", "Luba-Kasai": "lua_Latn", "Ganda": "lug_Latn", "Luo": "luo_Latn", "Mizo": "lus_Latn", "Standard Latvian": "lvs_Latn", "Magahi": "mag_Deva", "Maithili": "mai_Deva", "Malayalam": "mal_Mlym", "Marathi": "mar_Deva", "Minangkabau Arabic ": "min_Arab", "Minangkabau Latin": "min_Latn", "Macedonian": "mkd_Cyrl", "Plateau Malagasy": "plt_Latn", "Maltese": "mlt_Latn", "Meitei Bengali": "mni_Beng", "Halh Mongolian": "khk_Cyrl", "Mossi": "mos_Latn", "Maori": "mri_Latn", "Burmese": "mya_Mymr", "Dutch": "nld_Latn", "Norwegian Nynorsk": "nno_Latn", "Norwegian Bokmål": "nob_Latn", "Nepali": "npi_Deva", "Northern Sotho": "nso_Latn", "Nuer": "nus_Latn", "Nyanja": "nya_Latn", "Occitan": "oci_Latn", "West Central Oromo": "gaz_Latn", "Odia": "ory_Orya", "Pangasinan": "pag_Latn", "Eastern Panjabi": "pan_Guru", "Papiamento": "pap_Latn", "Western Persian": "pes_Arab", "Polish": "pol_Latn", "Portuguese": "por_Latn", "Dari": "prs_Arab", "Southern Pashto": "pbt_Arab", "Ayacucho Quechua": "quy_Latn", "Romanian": "ron_Latn", "Rundi": "run_Latn", "Russian": "rus_Cyrl", "Sango": "sag_Latn", "Sanskrit": "san_Deva", "Santali": "sat_Olck", "Sicilian": "scn_Latn", "Shan": "shn_Mymr", "Sinhala": "sin_Sinh", "Slovak": "slk_Latn", "Slovenian": "slv_Latn", "Samoan": "smo_Latn", "Shona": "sna_Latn", "Sindhi": "snd_Arab", "Somali": "som_Latn", "Southern Sotho": "sot_Latn", "Spanish": "spa_Latn", "Tosk Albanian": "als_Latn", "Sardinian": "srd_Latn", "Serbian": "srp_Cyrl", "Swati": "ssw_Latn", "Sundanese": "sun_Latn", "Swedish": "swe_Latn", "Swahili": "swh_Latn", "Silesian": "szl_Latn", "Tamil": "tam_Taml", "Tatar": "tat_Cyrl", "Telugu": "tel_Telu", "Tajik": "tgk_Cyrl", "Tagalog": "tgl_Latn", "Thai": "tha_Thai", "Tigrinya": "tir_Ethi", "Tamasheq Latin": "taq_Latn", "Tamasheq Tifinagh": "taq_Tfng", "Tok Pisin": "tpi_Latn", "Tswana": "tsn_Latn", "Tsonga": "tso_Latn", "Turkmen": "tuk_Latn", "Tumbuka": "tum_Latn", "Turkish": "tur_Latn", "Twi": "twi_Latn", "Central Atlas Tamazight": "tzm_Tfng", "Uyghur": "uig_Arab", "Ukrainian": "ukr_Cyrl", "Umbundu": "umb_Latn", "Urdu": "urd_Arab", "Northern Uzbek": "uzn_Latn", "Venetian": "vec_Latn", "Vietnamese": "vie_Latn", "Waray": "war_Latn", "Wolof": "wol_Latn", "Xhosa": "xho_Latn", "Eastern Yiddish": "ydd_Hebr", "Yoruba": "yor_Latn", "Yue Chinese": "yue_Hant", "Chinese Simplified": "zho_Hans", "Chinese Traditional": "zho_Hant", "Standard Malay": "zsm_Latn", "Zulu": "zul_Latn", } class a__ ( UpperCAmelCase__ ): lowerCamelCase : Any ="facebook/nllb-200-distilled-600M" lowerCamelCase : Optional[Any] =( "This is a tool that translates text from a language to another. It takes three inputs: `text`, which should " "be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, " "which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in " "plain English, such as 'Romanian', or 'Albanian'. It returns the text translated in `tgt_lang`." ) lowerCamelCase : Tuple ="translator" lowerCamelCase : Any =AutoTokenizer lowerCamelCase : Dict =AutoModelForSeqaSeqLM lowerCamelCase : Union[str, Any] =LANGUAGE_CODES lowerCamelCase : Any =["text", "text", "text"] lowerCamelCase : Union[str, Any] =["text"] def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , a : Any , a : List[str] , a : Any ): """simple docstring""" if src_lang not in self.lang_to_code: raise ValueError(f"""{src_lang} is not a supported language.""" ) if tgt_lang not in self.lang_to_code: raise ValueError(f"""{tgt_lang} is not a supported language.""" ) __lowerCamelCase = self.lang_to_code[src_lang] __lowerCamelCase = self.lang_to_code[tgt_lang] return self.pre_processor._build_translation_inputs( a , return_tensors='''pt''' , src_lang=a , tgt_lang=a ) def SCREAMING_SNAKE_CASE__ ( self : str , a : Optional[Any] ): """simple docstring""" return self.model.generate(**a ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , a : str ): """simple docstring""" return self.post_processor.decode(outputs[0].tolist() , skip_special_tokens=a )
237
1
import warnings from ..trainer import Trainer from ..utils import logging snake_case : Union[str, Any] = logging.get_logger(__name__) class _snake_case ( snake_case ): def __init__( self , _a=None , **_a ): warnings.warn( "`SageMakerTrainer` is deprecated and will be removed in v5 of Transformers. You can use `Trainer` " "instead." , _a , ) super().__init__(args=_a , **_a )
281
def lowerCAmelCase_ ( _snake_case : str , _snake_case : str ) -> bool: '''simple docstring''' __magic_name__ : Union[str, Any] = len(_snake_case ) + 1 __magic_name__ : List[str] = len(_snake_case ) + 1 # dp is a 2d matrix where dp[i][j] denotes whether prefix string of # length i of input_string matches with prefix string of length j of # given pattern. # "dp" stands for dynamic programming. __magic_name__ : str = [[0 for i in range(_snake_case )] for j in range(_snake_case )] # since string of zero length match pattern of zero length __magic_name__ : Optional[int] = 1 # since pattern of zero length will never match with string of non-zero length for i in range(1 , _snake_case ): __magic_name__ : Optional[int] = 0 # since string of zero length will match with pattern where there # is at least one * alternatively for j in range(1 , _snake_case ): __magic_name__ : Union[str, Any] = dp[0][j - 2] if pattern[j - 1] == "*" else 0 # now using bottom-up approach to find for all remaining lengths for i in range(1 , _snake_case ): for j in range(1 , _snake_case ): if input_string[i - 1] == pattern[j - 1] or pattern[j - 1] == ".": __magic_name__ : Optional[int] = dp[i - 1][j - 1] elif pattern[j - 1] == "*": if dp[i][j - 2] == 1: __magic_name__ : Optional[Any] = 1 elif pattern[j - 2] in (input_string[i - 1], "."): __magic_name__ : List[Any] = dp[i - 1][j] else: __magic_name__ : Union[str, Any] = 0 else: __magic_name__ : Dict = 0 return bool(dp[-1][-1] ) if __name__ == "__main__": import doctest doctest.testmod() # inputing the strings # input_string = input("input a string :") # pattern = input("input a pattern :") snake_case : Optional[Any] = "aab" snake_case : List[str] = "c*a*b" # using function to check whether given string matches the given pattern if match_pattern(input_string, pattern): print(F"{input_string} matches the given pattern {pattern}") else: print(F"{input_string} does not match with the given pattern {pattern}")
281
1
"""simple docstring""" import tempfile import unittest import numpy as np import transformers from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax import jax.numpy as jnp from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel if is_torch_available(): import torch class lowercase__ : '''simple docstring''' def __init__( self : Optional[int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : List[Any]=14 , _UpperCAmelCase : List[Any]=7 , _UpperCAmelCase : int=True , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : Optional[Any]=False , _UpperCAmelCase : str=True , _UpperCAmelCase : List[str]=99 , _UpperCAmelCase : List[str]=32 , _UpperCAmelCase : int=4 , _UpperCAmelCase : Dict=4 , _UpperCAmelCase : Optional[int]=4 , _UpperCAmelCase : Any=37 , _UpperCAmelCase : Dict="gelu" , _UpperCAmelCase : List[str]=0.1 , _UpperCAmelCase : Union[str, Any]=0.1 , _UpperCAmelCase : str=512 , _UpperCAmelCase : str=0.02 , ) -> int: '''simple docstring''' UpperCAmelCase_ = parent UpperCAmelCase_ = batch_size UpperCAmelCase_ = seq_length UpperCAmelCase_ = is_training UpperCAmelCase_ = use_input_mask UpperCAmelCase_ = use_token_type_ids UpperCAmelCase_ = use_labels UpperCAmelCase_ = vocab_size UpperCAmelCase_ = hidden_size UpperCAmelCase_ = rotary_dim UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_act UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = initializer_range UpperCAmelCase_ = None UpperCAmelCase_ = vocab_size - 1 UpperCAmelCase_ = vocab_size - 1 UpperCAmelCase_ = vocab_size - 1 def lowercase__ ( self : Optional[int] ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase_ = None if self.use_input_mask: UpperCAmelCase_ = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase_ = GPTJConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=_UpperCAmelCase , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , ) return (config, input_ids, input_mask) def lowercase__ ( self : Dict ) -> Any: '''simple docstring''' UpperCAmelCase_ = self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = config_and_inputs UpperCAmelCase_ = {"input_ids": input_ids, "attention_mask": attention_mask} return config, inputs_dict def lowercase__ ( self : Optional[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Any ) -> Any: '''simple docstring''' UpperCAmelCase_ = 20 UpperCAmelCase_ = model_class_name(_UpperCAmelCase ) UpperCAmelCase_ = model.init_cache(input_ids.shape[0] , _UpperCAmelCase ) UpperCAmelCase_ = jnp.ones((input_ids.shape[0], max_decoder_length) , dtype="i4" ) UpperCAmelCase_ = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) UpperCAmelCase_ = model( input_ids[:, :-1] , attention_mask=_UpperCAmelCase , past_key_values=_UpperCAmelCase , position_ids=_UpperCAmelCase , ) UpperCAmelCase_ = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="i4" ) UpperCAmelCase_ = model( input_ids[:, -1:] , attention_mask=_UpperCAmelCase , past_key_values=outputs_cache.past_key_values , position_ids=_UpperCAmelCase , ) UpperCAmelCase_ = model(_UpperCAmelCase ) UpperCAmelCase_ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=F"""Max diff is {diff}""" ) def lowercase__ ( self : str , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = 20 UpperCAmelCase_ = model_class_name(_UpperCAmelCase ) UpperCAmelCase_ = jnp.concatenate( [attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]) )] , axis=-1 , ) UpperCAmelCase_ = model.init_cache(input_ids.shape[0] , _UpperCAmelCase ) UpperCAmelCase_ = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) UpperCAmelCase_ = model( input_ids[:, :-1] , attention_mask=_UpperCAmelCase , past_key_values=_UpperCAmelCase , position_ids=_UpperCAmelCase , ) UpperCAmelCase_ = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="i4" ) UpperCAmelCase_ = model( input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=_UpperCAmelCase , position_ids=_UpperCAmelCase , ) UpperCAmelCase_ = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase ) UpperCAmelCase_ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=F"""Max diff is {diff}""" ) @require_flax class lowercase__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' UpperCamelCase = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else () UpperCamelCase = (FlaxGPTJForCausalLM,) if is_flax_available() else () def lowercase__ ( self : List[str] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ = FlaxGPTJModelTester(self ) def lowercase__ ( self : Optional[int] ) -> int: '''simple docstring''' for model_class_name in self.all_model_classes: UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def lowercase__ ( self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' for model_class_name in self.all_model_classes: UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward_with_attn_mask( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) @tooslow def lowercase__ ( self : Union[str, Any] ) -> Tuple: '''simple docstring''' UpperCAmelCase_ = GPTaTokenizer.from_pretrained("gpt2" , pad_token="<|endoftext|>" , padding_side="left" ) UpperCAmelCase_ = tokenizer(["Hello this is a long string", "Hey"] , return_tensors="np" , padding=_UpperCAmelCase , truncation=_UpperCAmelCase ) UpperCAmelCase_ = FlaxGPTJForCausalLM.from_pretrained("EleutherAI/gpt-j-6B" ) UpperCAmelCase_ = False UpperCAmelCase_ = model.config.eos_token_id UpperCAmelCase_ = jax.jit(model.generate ) UpperCAmelCase_ = jit_generate( inputs["input_ids"] , attention_mask=inputs["attention_mask"] , pad_token_id=tokenizer.pad_token_id ).sequences UpperCAmelCase_ = tokenizer.batch_decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase ) UpperCAmelCase_ = [ "Hello this is a long string of text.\n\nI'm trying to get the text of the", "Hey, I'm a little late to the party. I'm going to", ] self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) @is_pt_flax_cross_test def lowercase__ ( self : Dict ) -> List[str]: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs UpperCAmelCase_ = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) UpperCAmelCase_ = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class UpperCAmelCase_ = model_class.__name__[4:] # Skip the "Flax" at the beginning UpperCAmelCase_ = getattr(_UpperCAmelCase , _UpperCAmelCase ) UpperCAmelCase_ , UpperCAmelCase_ = pt_inputs["input_ids"].shape UpperCAmelCase_ = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(_UpperCAmelCase ): UpperCAmelCase_ = 0 UpperCAmelCase_ = 1 UpperCAmelCase_ = 0 UpperCAmelCase_ = 1 UpperCAmelCase_ = pt_model_class(_UpperCAmelCase ).eval() UpperCAmelCase_ = model_class(_UpperCAmelCase , dtype=jnp.floataa ) UpperCAmelCase_ = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , _UpperCAmelCase ) UpperCAmelCase_ = fx_state with torch.no_grad(): UpperCAmelCase_ = pt_model(**_UpperCAmelCase ).to_tuple() UpperCAmelCase_ = fx_model(**_UpperCAmelCase ).to_tuple() self.assertEqual(len(_UpperCAmelCase ) , len(_UpperCAmelCase ) , "Output lengths differ between Flax and PyTorch" ) for fx_output, pt_output in zip(_UpperCAmelCase , _UpperCAmelCase ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(_UpperCAmelCase ) UpperCAmelCase_ = model_class.from_pretrained(_UpperCAmelCase , from_pt=_UpperCAmelCase ) UpperCAmelCase_ = fx_model_loaded(**_UpperCAmelCase ).to_tuple() self.assertEqual( len(_UpperCAmelCase ) , len(_UpperCAmelCase ) , "Output lengths differ between Flax and PyTorch" ) for fx_output_loaded, pt_output in zip(_UpperCAmelCase , _UpperCAmelCase ): self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) @is_pt_flax_cross_test def lowercase__ ( self : List[str] ) -> List[str]: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs UpperCAmelCase_ = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) UpperCAmelCase_ = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class UpperCAmelCase_ = model_class.__name__[4:] # Skip the "Flax" at the beginning UpperCAmelCase_ = getattr(_UpperCAmelCase , _UpperCAmelCase ) UpperCAmelCase_ = pt_model_class(_UpperCAmelCase ).eval() UpperCAmelCase_ = model_class(_UpperCAmelCase , dtype=jnp.floataa ) UpperCAmelCase_ = load_flax_weights_in_pytorch_model(_UpperCAmelCase , fx_model.params ) UpperCAmelCase_ , UpperCAmelCase_ = pt_inputs["input_ids"].shape UpperCAmelCase_ = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(_UpperCAmelCase ): UpperCAmelCase_ = 0 UpperCAmelCase_ = 1 UpperCAmelCase_ = 0 UpperCAmelCase_ = 1 # make sure weights are tied in PyTorch pt_model.tie_weights() with torch.no_grad(): UpperCAmelCase_ = pt_model(**_UpperCAmelCase ).to_tuple() UpperCAmelCase_ = fx_model(**_UpperCAmelCase ).to_tuple() self.assertEqual(len(_UpperCAmelCase ) , len(_UpperCAmelCase ) , "Output lengths differ between Flax and PyTorch" ) for fx_output, pt_output in zip(_UpperCAmelCase , _UpperCAmelCase ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(_UpperCAmelCase ) UpperCAmelCase_ = pt_model_class.from_pretrained(_UpperCAmelCase , from_flax=_UpperCAmelCase ) with torch.no_grad(): UpperCAmelCase_ = pt_model_loaded(**_UpperCAmelCase ).to_tuple() self.assertEqual( len(_UpperCAmelCase ) , len(_UpperCAmelCase ) , "Output lengths differ between Flax and PyTorch" ) for fx_output, pt_output in zip(_UpperCAmelCase , _UpperCAmelCase ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) @tooslow def lowercase__ ( self : Union[str, Any] ) -> Dict: '''simple docstring''' for model_class_name in self.all_model_classes: UpperCAmelCase_ = model_class_name.from_pretrained("EleutherAI/gpt-j-6B" ) UpperCAmelCase_ = model(np.ones((1, 1) ) ) self.assertIsNotNone(_UpperCAmelCase )
241
"""simple docstring""" from .configuration_bert_masked import MaskedBertConfig from .modeling_bert_masked import ( MaskedBertForMultipleChoice, MaskedBertForQuestionAnswering, MaskedBertForSequenceClassification, MaskedBertForTokenClassification, MaskedBertModel, ) from .modules import *
241
1
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import YolosConfig, YolosForObjectDetection, YolosImageProcessor from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase__ = logging.get_logger(__name__) def _a ( SCREAMING_SNAKE_CASE_ : str ): __lowerCAmelCase = YolosConfig() # size of the architecture if "yolos_ti" in yolos_name: __lowerCAmelCase = 1_92 __lowerCAmelCase = 7_68 __lowerCAmelCase = 12 __lowerCAmelCase = 3 __lowerCAmelCase = [8_00, 13_33] __lowerCAmelCase = False elif yolos_name == "yolos_s_dWr": __lowerCAmelCase = 3_30 __lowerCAmelCase = 14 __lowerCAmelCase = 6 __lowerCAmelCase = 13_20 elif "yolos_s" in yolos_name: __lowerCAmelCase = 3_84 __lowerCAmelCase = 15_36 __lowerCAmelCase = 12 __lowerCAmelCase = 6 elif "yolos_b" in yolos_name: __lowerCAmelCase = [8_00, 13_44] __lowerCAmelCase = 91 __lowerCAmelCase = "huggingface/label-files" __lowerCAmelCase = "coco-detection-id2label.json" __lowerCAmelCase = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , repo_type="dataset" ) , "r" ) ) __lowerCAmelCase = {int(SCREAMING_SNAKE_CASE_ ): v for k, v in idalabel.items()} __lowerCAmelCase = idalabel __lowerCAmelCase = {v: k for k, v in idalabel.items()} return config def _a ( SCREAMING_SNAKE_CASE_ : dict , SCREAMING_SNAKE_CASE_ : YolosConfig , SCREAMING_SNAKE_CASE_ : bool = False ): for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) __lowerCAmelCase = state_dict.pop(F"""blocks.{i}.attn.qkv.weight""" ) __lowerCAmelCase = state_dict.pop(F"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict __lowerCAmelCase = in_proj_weight[: config.hidden_size, :] __lowerCAmelCase = in_proj_bias[: config.hidden_size] __lowerCAmelCase = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __lowerCAmelCase = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] __lowerCAmelCase = in_proj_weight[-config.hidden_size :, :] __lowerCAmelCase = in_proj_bias[-config.hidden_size :] def _a ( SCREAMING_SNAKE_CASE_ : str ): if "backbone" in name: __lowerCAmelCase = name.replace("backbone" , "vit" ) if "cls_token" in name: __lowerCAmelCase = name.replace("cls_token" , "embeddings.cls_token" ) if "det_token" in name: __lowerCAmelCase = name.replace("det_token" , "embeddings.detection_tokens" ) if "mid_pos_embed" in name: __lowerCAmelCase = name.replace("mid_pos_embed" , "encoder.mid_position_embeddings" ) if "pos_embed" in name: __lowerCAmelCase = name.replace("pos_embed" , "embeddings.position_embeddings" ) if "patch_embed.proj" in name: __lowerCAmelCase = name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" ) if "blocks" in name: __lowerCAmelCase = name.replace("blocks" , "encoder.layer" ) if "attn.proj" in name: __lowerCAmelCase = name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name: __lowerCAmelCase = name.replace("attn" , "attention.self" ) if "norm1" in name: __lowerCAmelCase = name.replace("norm1" , "layernorm_before" ) if "norm2" in name: __lowerCAmelCase = name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: __lowerCAmelCase = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: __lowerCAmelCase = name.replace("mlp.fc2" , "output.dense" ) if "class_embed" in name: __lowerCAmelCase = name.replace("class_embed" , "class_labels_classifier" ) if "bbox_embed" in name: __lowerCAmelCase = name.replace("bbox_embed" , "bbox_predictor" ) if "vit.norm" in name: __lowerCAmelCase = name.replace("vit.norm" , "vit.layernorm" ) return name def _a ( SCREAMING_SNAKE_CASE_ : dict , SCREAMING_SNAKE_CASE_ : YolosForObjectDetection ): for key in orig_state_dict.copy().keys(): __lowerCAmelCase = orig_state_dict.pop(SCREAMING_SNAKE_CASE_ ) if "qkv" in key: __lowerCAmelCase = key.split("." ) __lowerCAmelCase = int(key_split[2] ) __lowerCAmelCase = model.vit.encoder.layer[layer_num].attention.attention.all_head_size if "weight" in key: __lowerCAmelCase = val[:dim, :] __lowerCAmelCase = val[ dim : dim * 2, : ] __lowerCAmelCase = val[-dim:, :] else: __lowerCAmelCase = val[:dim] __lowerCAmelCase = val[dim : dim * 2] __lowerCAmelCase = val[-dim:] else: __lowerCAmelCase = val return orig_state_dict def _a ( ): __lowerCAmelCase = "http://images.cocodataset.org/val2017/000000039769.jpg" __lowerCAmelCase = Image.open(requests.get(SCREAMING_SNAKE_CASE_ , stream=SCREAMING_SNAKE_CASE_ ).raw ) return im @torch.no_grad() def _a ( SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : bool = False ): __lowerCAmelCase = get_yolos_config(SCREAMING_SNAKE_CASE_ ) # load original state_dict __lowerCAmelCase = torch.load(SCREAMING_SNAKE_CASE_ , map_location="cpu" )["model"] # load 🤗 model __lowerCAmelCase = YolosForObjectDetection(SCREAMING_SNAKE_CASE_ ) model.eval() __lowerCAmelCase = convert_state_dict(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) model.load_state_dict(SCREAMING_SNAKE_CASE_ ) # Check outputs on an image, prepared by YolosImageProcessor __lowerCAmelCase = 8_00 if yolos_name != "yolos_ti" else 5_12 __lowerCAmelCase = YolosImageProcessor(format="coco_detection" , size=SCREAMING_SNAKE_CASE_ ) __lowerCAmelCase = image_processor(images=prepare_img() , return_tensors="pt" ) __lowerCAmelCase = model(**SCREAMING_SNAKE_CASE_ ) __lowerCAmelCase , __lowerCAmelCase = outputs.logits, outputs.pred_boxes __lowerCAmelCase , __lowerCAmelCase = None, None if yolos_name == "yolos_ti": __lowerCAmelCase = torch.tensor( [[-39.50_22, -11.98_20, -17.68_88], [-29.95_74, -9.97_69, -17.76_91], [-42.32_81, -20.72_00, -30.62_94]] ) __lowerCAmelCase = torch.tensor( [[0.40_21, 0.08_36, 0.79_79], [0.01_84, 0.26_09, 0.03_64], [0.17_81, 0.20_04, 0.20_95]] ) elif yolos_name == "yolos_s_200_pre": __lowerCAmelCase = torch.tensor( [[-24.02_48, -10.30_24, -14.82_90], [-42.03_92, -16.82_00, -27.43_34], [-27.27_43, -11.81_54, -18.71_48]] ) __lowerCAmelCase = torch.tensor( [[0.25_59, 0.54_55, 0.47_06], [0.29_89, 0.72_79, 0.18_75], [0.77_32, 0.40_17, 0.44_62]] ) elif yolos_name == "yolos_s_300_pre": __lowerCAmelCase = torch.tensor( [[-36.22_20, -14.43_85, -23.54_57], [-35.69_70, -14.75_83, -21.39_35], [-31.59_39, -13.60_42, -16.80_49]] ) __lowerCAmelCase = torch.tensor( [[0.76_14, 0.23_16, 0.47_28], [0.71_68, 0.44_95, 0.38_55], [0.49_96, 0.14_66, 0.99_96]] ) elif yolos_name == "yolos_s_dWr": __lowerCAmelCase = torch.tensor( [[-42.86_68, -24.10_49, -41.16_90], [-34.74_56, -14.12_74, -24.91_94], [-33.78_98, -12.19_46, -25.64_95]] ) __lowerCAmelCase = torch.tensor( [[0.55_87, 0.27_73, 0.06_05], [0.50_04, 0.30_14, 0.99_94], [0.49_99, 0.15_48, 0.99_94]] ) elif yolos_name == "yolos_base": __lowerCAmelCase = torch.tensor( [[-40.60_64, -24.30_84, -32.64_47], [-55.19_90, -30.77_19, -35.58_77], [-51.43_11, -33.35_07, -35.64_62]] ) __lowerCAmelCase = torch.tensor( [[0.55_55, 0.27_94, 0.06_55], [0.90_49, 0.26_64, 0.18_94], [0.91_83, 0.19_84, 0.16_35]] ) else: raise ValueError(F"""Unknown yolos_name: {yolos_name}""" ) assert torch.allclose(logits[0, :3, :3] , SCREAMING_SNAKE_CASE_ , atol=1E-4 ) assert torch.allclose(pred_boxes[0, :3, :3] , SCREAMING_SNAKE_CASE_ , atol=1E-4 ) Path(SCREAMING_SNAKE_CASE_ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE_ ) print(F"""Saving model {yolos_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(SCREAMING_SNAKE_CASE_ ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE_ ) if push_to_hub: __lowerCAmelCase = { "yolos_ti": "yolos-tiny", "yolos_s_200_pre": "yolos-small", "yolos_s_300_pre": "yolos-small-300", "yolos_s_dWr": "yolos-small-dwr", "yolos_base": "yolos-base", } print("Pushing to the hub..." ) __lowerCAmelCase = model_mapping[yolos_name] image_processor.push_to_hub(SCREAMING_SNAKE_CASE_ , organization="hustvl" ) model.push_to_hub(SCREAMING_SNAKE_CASE_ , organization="hustvl" ) if __name__ == "__main__": UpperCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--yolos_name""", default="""yolos_s_200_pre""", type=str, help=( """Name of the YOLOS model you'd like to convert. Should be one of 'yolos_ti', 'yolos_s_200_pre',""" """ 'yolos_s_300_pre', 'yolos_s_dWr', 'yolos_base'.""" ), ) parser.add_argument( """--checkpoint_path""", default=None, type=str, help="""Path to the original state dict (.pth file).""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) UpperCamelCase__ = parser.parse_args() convert_yolos_checkpoint(args.yolos_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
92
'''simple docstring''' import argparse import os import re import torch from flax.traverse_util import flatten_dict from tax import checkpoints from transformers import ( AutoTokenizer, PixaStructConfig, PixaStructForConditionalGeneration, PixaStructImageProcessor, PixaStructProcessor, PixaStructTextConfig, PixaStructVisionConfig, ) def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : List[Any] ) -> int: UpperCAmelCase_ : List[Any] = checkpoints.load_tax_checkpoint(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase_ : Optional[Any] = flatten_dict(SCREAMING_SNAKE_CASE__ ) return flax_params def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : int ) -> List[str]: UpperCAmelCase_ : Optional[int] = {} UpperCAmelCase_ : List[Any] = { '''token_embedder''': '''embeddings''', '''encoder_norm''': '''layernorm''', '''kernel''': '''weight''', '''.out''': '''.output''', '''scale''': '''weight''', '''embedders_0.pos_embedding''': '''row_embedder.weight''', '''embedders_1.pos_embedding''': '''column_embedder.weight''', } UpperCAmelCase_ : str = { '''query''': '''attention.query''', '''key''': '''attention.key''', '''value''': '''attention.value''', '''output.dense''': '''output''', '''encoder_decoder_attention.o''': '''encoder_decoder_attention.attention.o''', '''pre_self_attention_layer_norm''': '''self_attention.layer_norm''', '''pre_cross_attention_layer_norm''': '''encoder_decoder_attention.layer_norm''', '''mlp.''': '''mlp.DenseReluDense.''', '''pre_mlp_layer_norm''': '''mlp.layer_norm''', '''self_attention.o''': '''self_attention.attention.o''', '''decoder.embeddings.embedding''': '''decoder.embed_tokens.weight''', '''decoder.relpos_bias.rel_embedding''': '''decoder.layer.0.self_attention.attention.relative_attention_bias.weight''', '''decoder.decoder_norm.weight''': '''decoder.final_layer_norm.weight''', '''decoder.logits_dense.weight''': '''decoder.lm_head.weight''', } for key in flax_dict.keys(): if "target" in key: # remove the first prefix from the key UpperCAmelCase_ : Dict = '''.'''.join(key[1:] ) # rename the key for old, new in CONVERSION_MAPPING.items(): UpperCAmelCase_ : Any = new_key.replace(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) if "decoder" in new_key: for old, new in DECODER_CONVERSION_MAPPING.items(): UpperCAmelCase_ : int = new_key.replace(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) if "layers" in new_key and "decoder" not in new_key: # use regex to replace the layer number UpperCAmelCase_ : Any = re.sub(R'''layers_(\d+)''', R'''layer.\1''', SCREAMING_SNAKE_CASE__ ) UpperCAmelCase_ : Any = new_key.replace('''encoder''', '''encoder.encoder''' ) elif "layers" in new_key and "decoder" in new_key: # use regex to replace the layer number UpperCAmelCase_ : str = re.sub(R'''layers_(\d+)''', R'''layer.\1''', SCREAMING_SNAKE_CASE__ ) UpperCAmelCase_ : Dict = flax_dict[key] UpperCAmelCase_ : List[str] = {} # convert converted_dict into torch format for key in converted_dict.keys(): if ("embed_tokens" not in key) and ("embedder" not in key): UpperCAmelCase_ : Dict = torch.from_numpy(converted_dict[key].T ) else: UpperCAmelCase_ : List[Any] = torch.from_numpy(converted_dict[key] ) return converted_torch_dict def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Optional[Any], SCREAMING_SNAKE_CASE__ : Tuple, SCREAMING_SNAKE_CASE__ : List[str]=False, SCREAMING_SNAKE_CASE__ : Dict=False ) -> int: UpperCAmelCase_ : Optional[Any] = get_flax_param(SCREAMING_SNAKE_CASE__ ) if not use_large: UpperCAmelCase_ : List[str] = PixaStructVisionConfig() UpperCAmelCase_ : List[str] = PixaStructTextConfig() else: UpperCAmelCase_ : Dict = PixaStructVisionConfig( hidden_size=1536, d_ff=3968, num_attention_heads=24, num_hidden_layers=18 ) UpperCAmelCase_ : Optional[int] = PixaStructTextConfig(hidden_size=1536, d_ff=3968, num_heads=24, num_layers=18 ) UpperCAmelCase_ : List[Any] = PixaStructConfig( vision_config=encoder_config.to_dict(), text_config=decoder_config.to_dict(), is_vqa=SCREAMING_SNAKE_CASE__ ) UpperCAmelCase_ : Optional[int] = PixaStructForConditionalGeneration(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase_ : Union[str, Any] = rename_and_convert_flax_params(SCREAMING_SNAKE_CASE__ ) model.load_state_dict(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase_ : List[str] = AutoTokenizer.from_pretrained('''ybelkada/test-pix2struct-tokenizer''' ) UpperCAmelCase_ : Tuple = PixaStructImageProcessor() UpperCAmelCase_ : Optional[int] = PixaStructProcessor(image_processor=SCREAMING_SNAKE_CASE__, tokenizer=SCREAMING_SNAKE_CASE__ ) if use_large: UpperCAmelCase_ : Union[str, Any] = 4096 UpperCAmelCase_ : Union[str, Any] = True # mkdir if needed os.makedirs(SCREAMING_SNAKE_CASE__, exist_ok=SCREAMING_SNAKE_CASE__ ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) processor.save_pretrained(SCREAMING_SNAKE_CASE__ ) print('''Model saved in {}'''.format(SCREAMING_SNAKE_CASE__ ) ) if __name__ == "__main__": snake_case_ : List[str] = argparse.ArgumentParser() parser.add_argument("--t5x_checkpoint_path", default=None, type=str, help="Path to the original T5x checkpoint.") parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--use_large", action="store_true", help="Use large model.") parser.add_argument("--is_vqa", action="store_true", help="Use large model.") snake_case_ : Optional[Any] = parser.parse_args() convert_pixastruct_original_pytorch_checkpoint_to_hf( args.tax_checkpoint_path, args.pytorch_dump_folder_path, args.use_large )
125
0
"""simple docstring""" import sys from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers lowerCamelCase__ = '''python tqdm regex requests packaging filelock numpy tokenizers'''.split() if sys.version_info < (3, 7): pkgs_to_check_at_runtime.append('''dataclasses''') if sys.version_info < (3, 8): pkgs_to_check_at_runtime.append('''importlib_metadata''') for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(F'''can\'t find {pkg} in {deps.keys()}, check dependency_versions_table.py''') def A(__a: Dict , __a: List[str]=None ): require_version(deps[pkg] , __a )
353
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class __magic_name__ (__lowercase ): lowerCamelCase__ = ['''image_processor''', '''tokenizer'''] lowerCamelCase__ = '''ViTImageProcessor''' lowerCamelCase__ = ('''CLIPTokenizer''', '''CLIPTokenizerFast''') def __init__( self , _a=None , _a=None , **_a ) -> Tuple: lowerCAmelCase_ = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , _a , ) lowerCAmelCase_ = kwargs.pop("feature_extractor" ) lowerCAmelCase_ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(_a , _a ) def __call__( self , _a=None , _a=None , _a=None , _a=None , **_a ) -> Dict: if text is None and visual_prompt is None and images is None: raise ValueError("You have to specify either text, visual prompt or images." ) if text is not None and visual_prompt is not None: raise ValueError("You have to specify exactly one type of prompt. Either text or visual prompt." ) if text is not None: lowerCAmelCase_ = self.tokenizer(_a , return_tensors=_a , **_a ) if visual_prompt is not None: lowerCAmelCase_ = self.image_processor(_a , return_tensors=_a , **_a ) if images is not None: lowerCAmelCase_ = self.image_processor(_a , return_tensors=_a , **_a ) if visual_prompt is not None and images is not None: lowerCAmelCase_ = { "pixel_values": image_features.pixel_values, "conditional_pixel_values": prompt_features.pixel_values, } return encoding elif text is not None and images is not None: lowerCAmelCase_ = image_features.pixel_values return encoding elif text is not None: return encoding elif visual_prompt is not None: lowerCAmelCase_ = { "conditional_pixel_values": prompt_features.pixel_values, } return encoding else: return BatchEncoding(data=dict(**_a ) , tensor_type=_a ) def __a ( self , *_a , **_a ) -> List[str]: return self.tokenizer.batch_decode(*_a , **_a ) def __a ( self , *_a , **_a ) -> Optional[int]: return self.tokenizer.decode(*_a , **_a ) @property def __a ( self ) -> List[str]: warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , _a , ) return self.image_processor_class @property def __a ( self ) -> Optional[Any]: warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , _a , ) return self.image_processor
22
0
import unittest import numpy as np def a ( snake_case__: Optional[Any] , snake_case__: List[str] , snake_case__: List[Any] , snake_case__: Any = None , ): '''simple docstring''' lowercase_ = np.shape(_UpperCamelCase ) lowercase_ = np.shape(_UpperCamelCase ) lowercase_ = np.shape(_UpperCamelCase ) if shape_a[0] != shape_b[0]: lowercase_ = ( '''Expected the same number of rows for A and B. ''' F'''Instead found A of size {shape_a} and B of size {shape_b}''' ) raise ValueError(_UpperCamelCase ) if shape_b[1] != shape_c[1]: lowercase_ = ( '''Expected the same number of columns for B and C. ''' F'''Instead found B of size {shape_b} and C of size {shape_c}''' ) raise ValueError(_UpperCamelCase ) lowercase_ = pseudo_inv if a_inv is None: try: lowercase_ = np.linalg.inv(_UpperCamelCase ) except np.linalg.LinAlgError: raise ValueError( '''Input matrix A is not invertible. Cannot compute Schur complement.''' ) return mat_c - mat_b.T @ a_inv @ mat_b class lowercase__( unittest.TestCase ): """simple docstring""" def _lowercase ( self : Tuple ) -> None: lowercase_ = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) lowercase_ = np.array([[0, 3], [3, 0], [2, 3]] ) lowercase_ = np.array([[2, 1], [6, 3]] ) lowercase_ = schur_complement(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowercase_ = np.block([[a, b], [b.T, c]] ) lowercase_ = np.linalg.det(SCREAMING_SNAKE_CASE_ ) lowercase_ = np.linalg.det(SCREAMING_SNAKE_CASE_ ) lowercase_ = np.linalg.det(SCREAMING_SNAKE_CASE_ ) self.assertAlmostEqual(SCREAMING_SNAKE_CASE_ , det_a * det_s ) def _lowercase ( self : int ) -> None: lowercase_ = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) lowercase_ = np.array([[0, 3], [3, 0], [2, 3]] ) lowercase_ = np.array([[2, 1], [6, 3]] ) with self.assertRaises(SCREAMING_SNAKE_CASE_ ): schur_complement(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def _lowercase ( self : Tuple ) -> None: lowercase_ = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) lowercase_ = np.array([[0, 3], [3, 0], [2, 3]] ) lowercase_ = np.array([[2, 1, 3], [6, 3, 5]] ) with self.assertRaises(SCREAMING_SNAKE_CASE_ ): schur_complement(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": import doctest doctest.testmod() unittest.main()
30
import PIL.Image import PIL.ImageOps from packaging import version from PIL import Image if version.parse(version.parse(PIL.__version__).base_version) >= version.parse('''9.1.0'''): lowerCAmelCase_ = { '''linear''': PIL.Image.Resampling.BILINEAR, '''bilinear''': PIL.Image.Resampling.BILINEAR, '''bicubic''': PIL.Image.Resampling.BICUBIC, '''lanczos''': PIL.Image.Resampling.LANCZOS, '''nearest''': PIL.Image.Resampling.NEAREST, } else: lowerCAmelCase_ = { '''linear''': PIL.Image.LINEAR, '''bilinear''': PIL.Image.BILINEAR, '''bicubic''': PIL.Image.BICUBIC, '''lanczos''': PIL.Image.LANCZOS, '''nearest''': PIL.Image.NEAREST, } def lowerCamelCase_ ( _UpperCamelCase ) -> Optional[int]: """simple docstring""" snake_case_ : Dict = (images / 2 + 0.5).clamp(0 , 1 ) snake_case_ : Dict = images.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() snake_case_ : int = numpy_to_pil(_UpperCamelCase ) return images def lowerCamelCase_ ( _UpperCamelCase ) -> List[Any]: """simple docstring""" if images.ndim == 3: snake_case_ : Optional[Any] = images[None, ...] snake_case_ : Any = (images * 255).round().astype('''uint8''' ) if images.shape[-1] == 1: # special case for grayscale (single channel) images snake_case_ : str = [Image.fromarray(image.squeeze() , mode='''L''' ) for image in images] else: snake_case_ : List[Any] = [Image.fromarray(_UpperCamelCase ) for image in images] return pil_images
279
0
'''simple docstring''' from numpy import exp, pi, sqrt def __a ( _UpperCamelCase: Union[str, Any] , _UpperCamelCase: float = 0.0 , _UpperCamelCase: float = 1.0 ) -> int: """simple docstring""" return 1 / sqrt(2 * pi * sigma**2 ) * exp(-((x - mu) ** 2) / (2 * sigma**2) ) if __name__ == "__main__": import doctest doctest.testmod()
357
'''simple docstring''' from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class _a ( __lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : Any = ["""image_processor""", """tokenizer"""] SCREAMING_SNAKE_CASE_ : List[Any] = """BridgeTowerImageProcessor""" SCREAMING_SNAKE_CASE_ : List[Any] = ("""RobertaTokenizer""", """RobertaTokenizerFast""") def __init__( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> Tuple: super().__init__(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) def __call__( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = True ,_SCREAMING_SNAKE_CASE = False ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = 0 ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = False ,_SCREAMING_SNAKE_CASE = False ,_SCREAMING_SNAKE_CASE = False ,_SCREAMING_SNAKE_CASE = False ,_SCREAMING_SNAKE_CASE = True ,_SCREAMING_SNAKE_CASE = None ,**_SCREAMING_SNAKE_CASE ,) -> BatchEncoding: _snake_case = self.tokenizer( text=_SCREAMING_SNAKE_CASE ,add_special_tokens=_SCREAMING_SNAKE_CASE ,padding=_SCREAMING_SNAKE_CASE ,truncation=_SCREAMING_SNAKE_CASE ,max_length=_SCREAMING_SNAKE_CASE ,stride=_SCREAMING_SNAKE_CASE ,pad_to_multiple_of=_SCREAMING_SNAKE_CASE ,return_token_type_ids=_SCREAMING_SNAKE_CASE ,return_attention_mask=_SCREAMING_SNAKE_CASE ,return_overflowing_tokens=_SCREAMING_SNAKE_CASE ,return_special_tokens_mask=_SCREAMING_SNAKE_CASE ,return_offsets_mapping=_SCREAMING_SNAKE_CASE ,return_length=_SCREAMING_SNAKE_CASE ,verbose=_SCREAMING_SNAKE_CASE ,return_tensors=_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ,) # add pixel_values + pixel_mask _snake_case = self.image_processor( _SCREAMING_SNAKE_CASE ,return_tensors=_SCREAMING_SNAKE_CASE ,do_normalize=_SCREAMING_SNAKE_CASE ,do_center_crop=_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) encoding.update(_SCREAMING_SNAKE_CASE ) return encoding def _lowercase ( self ,*_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) -> List[str]: return self.tokenizer.batch_decode(*_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) def _lowercase ( self ,*_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) -> List[str]: return self.tokenizer.decode(*_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) @property def _lowercase ( self ) -> Any: _snake_case = self.tokenizer.model_input_names _snake_case = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
142
0
'''simple docstring''' import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase : Tuple =logging.get_logger(__name__) __lowerCAmelCase : Any ={ "microsoft/unispeech-sat-base-100h-libri-ft": ( "https://huggingface.co/microsoft/unispeech-sat-base-100h-libri-ft/resolve/main/config.json" ), # See all UniSpeechSat models at https://huggingface.co/models?filter=unispeech_sat } class UpperCAmelCase ( UpperCamelCase__ ): __lowercase = """unispeech-sat""" def __init__( self :List[Any] , lowercase_ :Dict=32 , lowercase_ :Union[str, Any]=7_68 , lowercase_ :Any=12 , lowercase_ :Dict=12 , lowercase_ :List[str]=30_72 , lowercase_ :Any="gelu" , lowercase_ :int=0.1 , lowercase_ :Optional[Any]=0.1 , lowercase_ :Optional[int]=0.1 , lowercase_ :Optional[int]=0.0 , lowercase_ :int=0.0 , lowercase_ :Tuple=0.1 , lowercase_ :List[str]=0.1 , lowercase_ :Dict=0.0_2 , lowercase_ :int=1E-5 , lowercase_ :int="group" , lowercase_ :List[Any]="gelu" , lowercase_ :Dict=(5_12, 5_12, 5_12, 5_12, 5_12, 5_12, 5_12) , lowercase_ :Optional[int]=(5, 2, 2, 2, 2, 2, 2) , lowercase_ :Any=(10, 3, 3, 3, 3, 2, 2) , lowercase_ :int=False , lowercase_ :str=1_28 , lowercase_ :Tuple=16 , lowercase_ :Union[str, Any]=False , lowercase_ :Tuple=True , lowercase_ :List[str]=0.0_5 , lowercase_ :Any=10 , lowercase_ :Union[str, Any]=2 , lowercase_ :Dict=0.0 , lowercase_ :Optional[Any]=10 , lowercase_ :List[Any]=0 , lowercase_ :Tuple=3_20 , lowercase_ :int=2 , lowercase_ :List[Any]=0.1 , lowercase_ :int=1_00 , lowercase_ :int=2_56 , lowercase_ :Dict=2_56 , lowercase_ :Optional[int]=0.1 , lowercase_ :str="mean" , lowercase_ :Optional[int]=False , lowercase_ :int=False , lowercase_ :Optional[int]=2_56 , lowercase_ :Union[str, Any]=(5_12, 5_12, 5_12, 5_12, 15_00) , lowercase_ :str=(5, 3, 3, 1, 1) , lowercase_ :int=(1, 2, 3, 1, 1) , lowercase_ :Tuple=5_12 , lowercase_ :Dict=0 , lowercase_ :Union[str, Any]=1 , lowercase_ :Union[str, Any]=2 , lowercase_ :int=5_04 , **lowercase_ :List[Any] , )-> Optional[int]: super().__init__(**lowercase_ , pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ ) A__ = hidden_size A__ = feat_extract_norm A__ = feat_extract_activation A__ = list(lowercase_ ) A__ = list(lowercase_ ) A__ = list(lowercase_ ) A__ = conv_bias A__ = num_conv_pos_embeddings A__ = num_conv_pos_embedding_groups A__ = len(self.conv_dim ) A__ = num_hidden_layers A__ = intermediate_size A__ = hidden_act A__ = num_attention_heads A__ = hidden_dropout A__ = attention_dropout A__ = activation_dropout A__ = feat_proj_dropout A__ = final_dropout A__ = layerdrop A__ = layer_norm_eps A__ = initializer_range A__ = vocab_size A__ = num_clusters A__ = do_stable_layer_norm A__ = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" F" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`," F" `len(config.conv_kernel) = {len(self.conv_kernel )}`." ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 A__ = apply_spec_augment A__ = mask_time_prob A__ = mask_time_length A__ = mask_time_min_masks A__ = mask_feature_prob A__ = mask_feature_length A__ = mask_feature_min_masks # parameters for pretraining with codevector quantized representations A__ = num_codevectors_per_group A__ = num_codevector_groups A__ = contrastive_logits_temperature A__ = feat_quantizer_dropout A__ = num_negatives A__ = codevector_dim A__ = proj_codevector_dim A__ = diversity_loss_weight # ctc loss A__ = ctc_loss_reduction A__ = ctc_zero_infinity # SequenceClassification-specific parameter. Feel free to ignore for other classes. A__ = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. A__ = list(lowercase_ ) A__ = list(lowercase_ ) A__ = list(lowercase_ ) A__ = xvector_output_dim @property def UpperCAmelCase_ ( self :int )-> List[Any]: return functools.reduce(operator.mul , self.conv_stride , 1 )
237
'''simple docstring''' def UpperCamelCase ( _lowerCamelCase : int | float | str ): try: A__ = float(_lowerCamelCase ) except ValueError: raise ValueError("Please enter a valid number" ) A__ = decimal - int(_lowerCamelCase ) if fractional_part == 0: return int(_lowerCamelCase ), 1 else: A__ = len(str(_lowerCamelCase ).split("." )[1] ) A__ = int(decimal * (10**number_of_frac_digits) ) A__ = 10**number_of_frac_digits A__, A__ = denominator, numerator while True: A__ = dividend % divisor if remainder == 0: break A__, A__ = divisor, remainder A__, A__ = numerator / divisor, denominator / divisor return int(_lowerCamelCase ), int(_lowerCamelCase ) if __name__ == "__main__": print(f"""{decimal_to_fraction(2) = }""") print(f"""{decimal_to_fraction(89.0) = }""") print(f"""{decimal_to_fraction("67") = }""") print(f"""{decimal_to_fraction("45.0") = }""") print(f"""{decimal_to_fraction(1.5) = }""") print(f"""{decimal_to_fraction("6.25") = }""") print(f"""{decimal_to_fraction("78td") = }""")
237
1
"""simple docstring""" from scipy.stats import pearsonr import datasets __UpperCamelCase : Any = ''' Pearson correlation coefficient and p-value for testing non-correlation. The Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. ''' __UpperCamelCase : Optional[Any] = ''' Args: predictions (`list` of `int`): Predicted class labels, as returned by a model. references (`list` of `int`): Ground truth labels. return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`. Returns: pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation. p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities. Examples: Example 1-A simple example using only predictions and references. >>> pearsonr_metric = datasets.load_metric(\"pearsonr\") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5]) >>> print(round(results[\'pearsonr\'], 2)) -0.74 Example 2-The same as Example 1, but that also returns the `p-value`. >>> pearsonr_metric = datasets.load_metric(\"pearsonr\") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True) >>> print(sorted(list(results.keys()))) [\'p-value\', \'pearsonr\'] >>> print(round(results[\'pearsonr\'], 2)) -0.74 >>> print(round(results[\'p-value\'], 2)) 0.15 ''' __UpperCamelCase : Tuple = ''' @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, Ilhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Antonio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE ( datasets.Metric ): """simple docstring""" def __lowerCAmelCase ( self : Any ): return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { '''predictions''': datasets.Value('''float''' ), '''references''': datasets.Value('''float''' ), } ) ,reference_urls=['''https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html'''] ,) def __lowerCAmelCase ( self : Union[str, Any] ,lowercase_ : int ,lowercase_ : Optional[Any] ,lowercase_ : List[str]=False ): if return_pvalue: lowerCAmelCase__ : List[str] = pearsonr(_A ,_A ) return {"pearsonr": results[0], "p-value": results[1]} else: return {"pearsonr": float(pearsonr(_A ,_A )[0] )}
363
"""simple docstring""" def __SCREAMING_SNAKE_CASE ( A_ ): if not isinstance(A_ , A_ ): lowerCAmelCase__ : int = f'Input value of [number={number}] must be an integer' raise TypeError(A_ ) if number < 0: return False lowerCAmelCase__ : List[Any] = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
74
0
"""simple docstring""" import json import os import unittest from transformers import AutoTokenizer, GPTaTokenizer, GPTaTokenizerFast from transformers.models.gpta.tokenization_gpta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __lowerCamelCase ( A__ , unittest.TestCase ): '''simple docstring''' a_ : Tuple = GPTaTokenizer a_ : Any = GPTaTokenizerFast a_ : List[Any] = True a_ : List[str] = {"""add_prefix_space""": True} a_ : Any = False def lowerCamelCase ( self : str ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowerCAmelCase_ : str = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", "<|endoftext|>", ] lowerCAmelCase_ : List[Any] = dict(zip(a_ , range(len(a_ ) ) ) ) lowerCAmelCase_ : Tuple = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] lowerCAmelCase_ : List[str] = {"unk_token": "<unk>"} lowerCAmelCase_ : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) lowerCAmelCase_ : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(a_ ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(a_ ) ) def lowerCamelCase ( self : int , **a_ : Any ): kwargs.update(self.special_tokens_map ) return GPTaTokenizer.from_pretrained(self.tmpdirname , **a_ ) def lowerCamelCase ( self : Optional[int] , **a_ : Dict ): kwargs.update(self.special_tokens_map ) return GPTaTokenizerFast.from_pretrained(self.tmpdirname , **a_ ) def lowerCamelCase ( self : int , a_ : Dict ): lowerCAmelCase_ : Optional[Any] = "lower newer" lowerCAmelCase_ : Optional[Any] = "lower newer" return input_text, output_text def lowerCamelCase ( self : Any ): lowerCAmelCase_ : Optional[Any] = GPTaTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) lowerCAmelCase_ : Optional[Any] = "lower newer" lowerCAmelCase_ : Optional[Any] = ["\u0120low", "er", "\u0120", "n", "e", "w", "er"] lowerCAmelCase_ : Union[str, Any] = tokenizer.tokenize(a_ , add_prefix_space=a_ ) self.assertListEqual(a_ , a_ ) lowerCAmelCase_ : Optional[Any] = tokens + [tokenizer.unk_token] lowerCAmelCase_ : Dict = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(a_ ) , a_ ) def lowerCamelCase ( self : str ): if not self.test_rust_tokenizer: return lowerCAmelCase_ : Optional[int] = self.get_tokenizer() lowerCAmelCase_ : List[str] = self.get_rust_tokenizer(add_prefix_space=a_ ) lowerCAmelCase_ : List[str] = "lower newer" # Testing tokenization lowerCAmelCase_ : List[str] = tokenizer.tokenize(a_ , add_prefix_space=a_ ) lowerCAmelCase_ : Union[str, Any] = rust_tokenizer.tokenize(a_ ) self.assertListEqual(a_ , a_ ) # Testing conversion to ids without special tokens lowerCAmelCase_ : List[Any] = tokenizer.encode(a_ , add_special_tokens=a_ , add_prefix_space=a_ ) lowerCAmelCase_ : str = rust_tokenizer.encode(a_ , add_special_tokens=a_ ) self.assertListEqual(a_ , a_ ) # Testing conversion to ids with special tokens lowerCAmelCase_ : int = self.get_rust_tokenizer(add_prefix_space=a_ ) lowerCAmelCase_ : Optional[int] = tokenizer.encode(a_ , add_prefix_space=a_ ) lowerCAmelCase_ : int = rust_tokenizer.encode(a_ ) self.assertListEqual(a_ , a_ ) # Testing the unknown token lowerCAmelCase_ : List[str] = tokens + [rust_tokenizer.unk_token] lowerCAmelCase_ : int = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(a_ ) , a_ ) def lowerCamelCase ( self : int , *a_ : str , **a_ : int ): # It's very difficult to mix/test pretokenization with byte-level # And get both GPT2 and Roberta to work at the same time (mostly an issue of adding a space before the string) pass def lowerCamelCase ( self : List[Any] , a_ : Tuple=15 ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): lowerCAmelCase_ : Any = self.rust_tokenizer_class.from_pretrained(a_ , **a_ ) # Simple input lowerCAmelCase_ : List[Any] = "This is a simple input" lowerCAmelCase_ : Optional[int] = ["This is a simple input 1", "This is a simple input 2"] lowerCAmelCase_ : Optional[Any] = ("This is a simple input", "This is a pair") lowerCAmelCase_ : Optional[int] = [ ("This is a simple input 1", "This is a simple input 2"), ("This is a simple pair 1", "This is a simple pair 2"), ] # Simple input tests self.assertRaises(a_ , tokenizer_r.encode , a_ , max_length=a_ , padding="max_length" ) # Simple input self.assertRaises(a_ , tokenizer_r.encode_plus , a_ , max_length=a_ , padding="max_length" ) # Simple input self.assertRaises( a_ , tokenizer_r.batch_encode_plus , a_ , max_length=a_ , padding="max_length" , ) # Pair input self.assertRaises(a_ , tokenizer_r.encode , a_ , max_length=a_ , padding="max_length" ) # Pair input self.assertRaises(a_ , tokenizer_r.encode_plus , a_ , max_length=a_ , padding="max_length" ) # Pair input self.assertRaises( a_ , tokenizer_r.batch_encode_plus , a_ , max_length=a_ , padding="max_length" , ) def lowerCamelCase ( self : int ): lowerCAmelCase_ : str = GPTaTokenizer.from_pretrained(self.tmpdirname , pad_token="<pad>" ) # Simple input lowerCAmelCase_ : Optional[int] = "This is a simple input" lowerCAmelCase_ : List[str] = ["This is a simple input looooooooong", "This is a simple input"] lowerCAmelCase_ : Any = ("This is a simple input", "This is a pair") lowerCAmelCase_ : Optional[int] = [ ("This is a simple input loooooong", "This is a simple input"), ("This is a simple pair loooooong", "This is a simple pair"), ] lowerCAmelCase_ : int = tokenizer.pad_token_id lowerCAmelCase_ : int = tokenizer(a_ , padding="max_length" , max_length=30 , return_tensors="np" ) lowerCAmelCase_ : Any = tokenizer(a_ , padding=a_ , truncate=a_ , return_tensors="np" ) lowerCAmelCase_ : int = tokenizer(*a_ , padding="max_length" , max_length=60 , return_tensors="np" ) lowerCAmelCase_ : Tuple = tokenizer(a_ , padding=a_ , truncate=a_ , return_tensors="np" ) # s # test single string max_length padding self.assertEqual(out_s["input_ids"].shape[-1] , 30 ) self.assertTrue(pad_token_id in out_s["input_ids"] ) self.assertTrue(0 in out_s["attention_mask"] ) # s2 # test automatic padding self.assertEqual(out_sa["input_ids"].shape[-1] , 33 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa["input_ids"][0] ) self.assertFalse(0 in out_sa["attention_mask"][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa["input_ids"][1] ) self.assertTrue(0 in out_sa["attention_mask"][1] ) # p # test single pair max_length padding self.assertEqual(out_p["input_ids"].shape[-1] , 60 ) self.assertTrue(pad_token_id in out_p["input_ids"] ) self.assertTrue(0 in out_p["attention_mask"] ) # p2 # test automatic padding pair self.assertEqual(out_pa["input_ids"].shape[-1] , 52 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa["input_ids"][0] ) self.assertFalse(0 in out_pa["attention_mask"][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa["input_ids"][1] ) self.assertTrue(0 in out_pa["attention_mask"][1] ) def lowerCamelCase ( self : Optional[Any] ): lowerCAmelCase_ : Union[str, Any] = "$$$" lowerCAmelCase_ : str = GPTaTokenizer.from_pretrained(self.tmpdirname , bos_token=a_ , add_bos_token=a_ ) lowerCAmelCase_ : Dict = "This is a simple input" lowerCAmelCase_ : Dict = ["This is a simple input 1", "This is a simple input 2"] lowerCAmelCase_ : Any = tokenizer.bos_token_id lowerCAmelCase_ : int = tokenizer(a_ ) lowerCAmelCase_ : Dict = tokenizer(a_ ) self.assertEqual(out_s.input_ids[0] , a_ ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) lowerCAmelCase_ : List[str] = tokenizer.decode(out_s.input_ids ) lowerCAmelCase_ : Optional[Any] = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0] , a_ ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) def lowerCamelCase ( self : Union[str, Any] ): pass def lowerCamelCase ( self : Optional[int] ): # TODO: change to self.get_tokenizers() when the fast version is implemented lowerCAmelCase_ : Optional[int] = [self.get_tokenizer(do_lower_case=a_ , add_bos_token=a_ )] for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): lowerCAmelCase_ : Optional[Any] = "Encode this." lowerCAmelCase_ : Optional[Any] = "This one too please." lowerCAmelCase_ : Dict = tokenizer.encode(a_ , add_special_tokens=a_ ) encoded_sequence += tokenizer.encode(a_ , add_special_tokens=a_ ) lowerCAmelCase_ : List[str] = tokenizer.encode_plus( a_ , a_ , add_special_tokens=a_ , return_special_tokens_mask=a_ , ) lowerCAmelCase_ : Optional[Any] = encoded_sequence_dict["input_ids"] lowerCAmelCase_ : List[Any] = encoded_sequence_dict["special_tokens_mask"] self.assertEqual(len(a_ ) , len(a_ ) ) lowerCAmelCase_ : List[str] = [ (x if not special_tokens_mask[i] else None) for i, x in enumerate(a_ ) ] lowerCAmelCase_ : Optional[Any] = [x for x in filtered_sequence if x is not None] self.assertEqual(a_ , a_ ) @require_tokenizers class __lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase ( self : Optional[Any] ): # More context: # https://huggingface.co/wjmcat/opt-350m-paddle/discussions/1 # https://huggingface.slack.com/archives/C01N44FJDHT/p1653511495183519 # https://github.com/huggingface/transformers/pull/17088#discussion_r871246439 lowerCAmelCase_ : int = AutoTokenizer.from_pretrained("facebook/opt-350m" , from_slow=a_ ) lowerCAmelCase_ : Any = "A photo of a cat" lowerCAmelCase_ : List[Any] = tokenizer.encode( a_ , ) self.assertEqual(a_ , [2, 2_50, 13_45, 9, 10, 47_58] ) tokenizer.save_pretrained("test_opt" ) lowerCAmelCase_ : List[str] = AutoTokenizer.from_pretrained("./test_opt" ) lowerCAmelCase_ : Any = tokenizer.encode( a_ , ) self.assertEqual(a_ , [2, 2_50, 13_45, 9, 10, 47_58] ) def lowerCamelCase ( self : Tuple ): lowerCAmelCase_ : Tuple = AutoTokenizer.from_pretrained("facebook/opt-350m" , use_slow=a_ ) lowerCAmelCase_ : Any = "A photo of a cat" lowerCAmelCase_ : Dict = tokenizer.encode( a_ , ) # Same as above self.assertEqual(a_ , [2, 2_50, 13_45, 9, 10, 47_58] ) @unittest.skip("This test is failing because of a bug in the fast tokenizer" ) def lowerCamelCase ( self : Tuple ): lowerCAmelCase_ : Union[str, Any] = AutoTokenizer.from_pretrained("facebook/opt-350m" , from_slow=a_ ) lowerCAmelCase_ : Tuple = "bos" lowerCAmelCase_ : List[Any] = tokenizer.get_vocab()["bos"] lowerCAmelCase_ : Optional[Any] = "A photo of a cat" lowerCAmelCase_ : Optional[int] = tokenizer.encode( a_ , ) # We changed the bos token self.assertEqual(a_ , [3_19_57, 2_50, 13_45, 9, 10, 47_58] ) tokenizer.save_pretrained("./tok" ) lowerCAmelCase_ : List[Any] = AutoTokenizer.from_pretrained("./tok" ) self.assertTrue(tokenizer.is_fast ) lowerCAmelCase_ : Dict = tokenizer.encode( a_ , ) self.assertEqual(a_ , [3_19_57, 2_50, 13_45, 9, 10, 47_58] )
241
"""simple docstring""" from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ = logging.get_logger(__name__) # TODO Update this lowercase__ = { """facebook/esm-1b""": """https://huggingface.co/facebook/esm-1b/resolve/main/config.json""", # See all ESM models at https://huggingface.co/models?filter=esm } class __lowerCamelCase ( A__ ): '''simple docstring''' a_ : str = """esm""" def __init__( self : Union[str, Any] , a_ : int=None , a_ : List[str]=None , a_ : Optional[int]=None , a_ : Optional[int]=7_68 , a_ : List[Any]=12 , a_ : List[str]=12 , a_ : Optional[Any]=30_72 , a_ : Optional[Any]=0.1 , a_ : Tuple=0.1 , a_ : Union[str, Any]=10_26 , a_ : List[str]=0.02 , a_ : Optional[int]=1e-1_2 , a_ : int="absolute" , a_ : Union[str, Any]=True , a_ : int=None , a_ : int=False , a_ : Optional[Any]=False , a_ : Any=None , a_ : List[str]=None , **a_ : int , ): super().__init__(pad_token_id=a_ , mask_token_id=a_ , **a_ ) lowerCAmelCase_ : str = vocab_size lowerCAmelCase_ : List[str] = hidden_size lowerCAmelCase_ : str = num_hidden_layers lowerCAmelCase_ : str = num_attention_heads lowerCAmelCase_ : Tuple = intermediate_size lowerCAmelCase_ : List[str] = hidden_dropout_prob lowerCAmelCase_ : Dict = attention_probs_dropout_prob lowerCAmelCase_ : Dict = max_position_embeddings lowerCAmelCase_ : Optional[Any] = initializer_range lowerCAmelCase_ : Tuple = layer_norm_eps lowerCAmelCase_ : Dict = position_embedding_type lowerCAmelCase_ : str = use_cache lowerCAmelCase_ : str = emb_layer_norm_before lowerCAmelCase_ : Any = token_dropout lowerCAmelCase_ : str = is_folding_model if is_folding_model: if esmfold_config is None: logger.info("No esmfold_config supplied for folding model, using default values." ) lowerCAmelCase_ : int = EsmFoldConfig() elif isinstance(a_ , a_ ): lowerCAmelCase_ : int = EsmFoldConfig(**a_ ) lowerCAmelCase_ : Tuple = esmfold_config if vocab_list is None: logger.warning("No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!" ) lowerCAmelCase_ : Any = get_default_vocab_list() else: lowerCAmelCase_ : Optional[Any] = vocab_list else: lowerCAmelCase_ : List[str] = None lowerCAmelCase_ : Tuple = None if self.esmfold_config is not None and getattr(self.esmfold_config , "use_esm_attn_map" , a_ ): raise ValueError("The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!" ) def lowerCamelCase ( self : Dict ): lowerCAmelCase_ : List[str] = super().to_dict() if isinstance(self.esmfold_config , a_ ): lowerCAmelCase_ : int = self.esmfold_config.to_dict() return output @dataclass class __lowerCamelCase : '''simple docstring''' a_ : str = None a_ : bool = True a_ : bool = False a_ : bool = False a_ : bool = False a_ : float = 0 a_ : bool = True a_ : bool = False a_ : int = 128 a_ : "TrunkConfig" = None def lowerCamelCase ( self : str ): if self.trunk is None: lowerCAmelCase_ : List[Any] = TrunkConfig() elif isinstance(self.trunk , a_ ): lowerCAmelCase_ : str = TrunkConfig(**self.trunk ) def lowerCamelCase ( self : Any ): lowerCAmelCase_ : Any = asdict(self ) lowerCAmelCase_ : int = self.trunk.to_dict() return output @dataclass class __lowerCamelCase : '''simple docstring''' a_ : int = 48 a_ : int = 1024 a_ : int = 128 a_ : int = 32 a_ : int = 32 a_ : int = 32 a_ : float = 0 a_ : float = 0 a_ : bool = False a_ : int = 4 a_ : Optional[int] = 128 a_ : "StructureModuleConfig" = None def lowerCamelCase ( self : Optional[Any] ): if self.structure_module is None: lowerCAmelCase_ : Any = StructureModuleConfig() elif isinstance(self.structure_module , a_ ): lowerCAmelCase_ : Union[str, Any] = StructureModuleConfig(**self.structure_module ) if self.max_recycles <= 0: raise ValueError(f'''`max_recycles` should be positive, got {self.max_recycles}.''' ) if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( "`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got" f''' {self.sequence_state_dim} and {self.sequence_state_dim}.''' ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( "`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got" f''' {self.pairwise_state_dim} and {self.pairwise_state_dim}.''' ) lowerCAmelCase_ : List[str] = self.sequence_state_dim // self.sequence_head_width lowerCAmelCase_ : str = self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( "`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got" f''' {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}.''' ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( "`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got" f''' {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}.''' ) if self.pairwise_state_dim % 2 != 0: raise ValueError(f'''`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.''' ) if self.dropout >= 0.4: raise ValueError(f'''`dropout` should not be greater than 0.4, got {self.dropout}.''' ) def lowerCamelCase ( self : Optional[int] ): lowerCAmelCase_ : Union[str, Any] = asdict(self ) lowerCAmelCase_ : str = self.structure_module.to_dict() return output @dataclass class __lowerCamelCase : '''simple docstring''' a_ : int = 384 a_ : int = 128 a_ : int = 16 a_ : int = 128 a_ : int = 12 a_ : int = 4 a_ : int = 8 a_ : float = 0.1 a_ : int = 8 a_ : int = 1 a_ : int = 2 a_ : int = 7 a_ : int = 10 a_ : float = 1E-8 a_ : float = 1E5 def lowerCamelCase ( self : Optional[int] ): return asdict(self ) def __lowerCamelCase ( ) -> Tuple: """simple docstring""" return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
241
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import _LazyModule A__ : Tuple ={'''processing_wav2vec2_with_lm''': ['''Wav2Vec2ProcessorWithLM''']} if TYPE_CHECKING: from .processing_wavaveca_with_lm import WavaVecaProcessorWithLM else: import sys A__ : str =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
367
'''simple docstring''' import json import os import tempfile import datasets from utils import generate_example_dataset, get_duration A__ : str =5_00_00 A__ : Optional[int] =50_00 A__ , A__ : Optional[int] =os.path.split(__file__) A__ : Tuple =os.path.join(RESULTS_BASEPATH, '''results''', RESULTS_FILENAME.replace('''.py''', '''.json''')) @get_duration def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase ): """simple docstring""" for i in range(lowerCAmelCase ): _lowerCAmelCase = dataset[i] @get_duration def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): """simple docstring""" for i in range(0 , len(lowerCAmelCase ) , lowerCAmelCase ): _lowerCAmelCase = dataset[i : i + batch_size] @get_duration def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): """simple docstring""" with dataset.formatted_as(type=lowerCAmelCase ): for i in range(lowerCAmelCase ): _lowerCAmelCase = dataset[i] @get_duration def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): """simple docstring""" with dataset.formatted_as(type=lowerCAmelCase ): for i in range(0 , lowerCAmelCase , lowerCAmelCase ): _lowerCAmelCase = dataset[i : i + batch_size] def UpperCamelCase__ ( ): """simple docstring""" _lowerCAmelCase = {"""num examples""": SPEED_TEST_N_EXAMPLES} _lowerCAmelCase = [ (read, {"""length""": SMALL_TEST}), (read, {"""length""": SPEED_TEST_N_EXAMPLES}), (read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 10}), (read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 1_00}), (read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 10_00}), (read_formatted, {"""type""": """numpy""", """length""": SMALL_TEST}), (read_formatted, {"""type""": """pandas""", """length""": SMALL_TEST}), (read_formatted, {"""type""": """torch""", """length""": SMALL_TEST}), (read_formatted, {"""type""": """tensorflow""", """length""": SMALL_TEST}), (read_formatted_batch, {"""type""": """numpy""", """length""": SMALL_TEST, """batch_size""": 10}), (read_formatted_batch, {"""type""": """numpy""", """length""": SMALL_TEST, """batch_size""": 10_00}), ] _lowerCAmelCase = [ (read, {"""length""": SMALL_TEST}), (read, {"""length""": SPEED_TEST_N_EXAMPLES}), (read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 10}), (read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 1_00}), (read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 10_00}), (read_formatted, {"""type""": """numpy""", """length""": SMALL_TEST}), (read_formatted_batch, {"""type""": """numpy""", """length""": SMALL_TEST, """batch_size""": 10}), (read_formatted_batch, {"""type""": """numpy""", """length""": SMALL_TEST, """batch_size""": 10_00}), ] with tempfile.TemporaryDirectory() as tmp_dir: print("""generating dataset""" ) _lowerCAmelCase = datasets.Features( {"""list""": datasets.Sequence(datasets.Value("""float32""" ) ), """numbers""": datasets.Value("""float32""" )} ) _lowerCAmelCase = generate_example_dataset( os.path.join(lowerCAmelCase , """dataset.arrow""" ) , lowerCAmelCase , num_examples=lowerCAmelCase , seq_shapes={"""list""": (1_00,)} , ) print("""first set of iterations""" ) for func, kwargs in functions: print(func.__name__ , str(lowerCAmelCase ) ) _lowerCAmelCase = func(lowerCAmelCase , **lowerCAmelCase ) print("""shuffling dataset""" ) _lowerCAmelCase = dataset.shuffle() print("""Second set of iterations (after shuffling""" ) for func, kwargs in functions_shuffled: print("""shuffled """ , func.__name__ , str(lowerCAmelCase ) ) _lowerCAmelCase = func( lowerCAmelCase , **lowerCAmelCase ) with open(lowerCAmelCase , """wb""" ) as f: f.write(json.dumps(lowerCAmelCase ).encode("""utf-8""" ) ) if __name__ == "__main__": # useful to run the profiler benchmark_iterating()
220
0
"""simple docstring""" def _lowercase ( __snake_case ) -> str: if isinstance(__lowercase ,__lowercase ): raise TypeError("'float' object cannot be interpreted as an integer" ) if isinstance(__lowercase ,__lowercase ): raise TypeError("'str' object cannot be interpreted as an integer" ) if num == 0: return "0b0" __lowerCAmelCase : Optional[Any] = False if num < 0: __lowerCAmelCase : Optional[int] = True __lowerCAmelCase : Union[str, Any] = -num __lowerCAmelCase : str = [] while num > 0: binary.insert(0 ,num % 2 ) num >>= 1 if negative: return "-0b" + "".join(str(__lowercase ) for e in binary ) return "0b" + "".join(str(__lowercase ) for e in binary ) if __name__ == "__main__": import doctest doctest.testmod()
269
'''simple docstring''' import os from datetime import datetime as dt from github import Github __SCREAMING_SNAKE_CASE :str = [ '''good first issue''', '''feature request''', '''wip''', ] def UpperCAmelCase_ ( ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase = Github(os.environ["GITHUB_TOKEN"] ) _UpperCAmelCase = g.get_repo("huggingface/accelerate" ) _UpperCAmelCase = repo.get_issues(state="open" ) for issue in open_issues: _UpperCAmelCase = sorted([comment for comment in issue.get_comments()] , key=lambda __lowercase : i.created_at , reverse=__lowercase ) _UpperCAmelCase = comments[0] if len(__lowercase ) > 0 else None _UpperCAmelCase = dt.utcnow() _UpperCAmelCase = (current_time - issue.updated_at).days _UpperCAmelCase = (current_time - issue.created_at).days if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and days_since_updated > 7 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Close issue since it has been 7 days of inactivity since bot mention. issue.edit(state="closed" ) elif ( days_since_updated > 23 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Add stale comment issue.create_comment( "This issue has been automatically marked as stale because it has not had " "recent activity. If you think this still needs to be addressed " "please comment on this thread.\n\nPlease note that issues that do not follow the " "[contributing guidelines](https://github.com/huggingface/accelerate/blob/main/CONTRIBUTING.md) " "are likely to be ignored." ) if __name__ == "__main__": main()
22
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCamelCase : Dict = { "configuration_distilbert": [ "DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DistilBertConfig", "DistilBertOnnxConfig", ], "tokenization_distilbert": ["DistilBertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : str = ["DistilBertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : Union[str, Any] = [ "DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "DistilBertForMaskedLM", "DistilBertForMultipleChoice", "DistilBertForQuestionAnswering", "DistilBertForSequenceClassification", "DistilBertForTokenClassification", "DistilBertModel", "DistilBertPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : int = [ "TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFDistilBertForMaskedLM", "TFDistilBertForMultipleChoice", "TFDistilBertForQuestionAnswering", "TFDistilBertForSequenceClassification", "TFDistilBertForTokenClassification", "TFDistilBertMainLayer", "TFDistilBertModel", "TFDistilBertPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : Optional[Any] = [ "FlaxDistilBertForMaskedLM", "FlaxDistilBertForMultipleChoice", "FlaxDistilBertForQuestionAnswering", "FlaxDistilBertForSequenceClassification", "FlaxDistilBertForTokenClassification", "FlaxDistilBertModel", "FlaxDistilBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_distilbert import ( DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DistilBertConfig, DistilBertOnnxConfig, ) from .tokenization_distilbert import DistilBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_distilbert_fast import DistilBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_distilbert import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, DistilBertPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertMainLayer, TFDistilBertModel, TFDistilBertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, FlaxDistilBertPreTrainedModel, ) else: import sys UpperCamelCase : Optional[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
351
'''simple docstring''' from __future__ import annotations def SCREAMING_SNAKE_CASE__ ( snake_case : list[int | float] , snake_case : int , snake_case : int ) -> int | float: """simple docstring""" if len(snake_case ) == 0: raise ValueError('find_max() arg is an empty sequence' ) if ( left >= len(snake_case ) or left < -len(snake_case ) or right >= len(snake_case ) or right < -len(snake_case ) ): raise IndexError('list index out of range' ) if left == right: return nums[left] a : Union[str, Any] = (left + right) >> 1 # the middle a : List[str] = find_max(snake_case , snake_case , snake_case ) # find max in range[left, mid] a : Dict = find_max(snake_case , mid + 1 , snake_case ) # find max in range[mid + 1, right] return left_max if left_max >= right_max else right_max if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
345
0
"""simple docstring""" def _A ( lowercase ): """simple docstring""" return "".join([hex(lowercase )[2:].zfill(2 ).upper() for byte in list(lowercase )] ) def _A ( lowercase ): """simple docstring""" # Check data validity, following RFC3548 # https://www.ietf.org/rfc/rfc3548.txt if (len(lowercase ) % 2) != 0: raise ValueError( '''Base16 encoded data is invalid: Data does not have an even number of hex digits.''' ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(lowercase ) <= set('''0123456789ABCDEF''' ): raise ValueError( '''Base16 encoded data is invalid: Data is not uppercase hex or it contains invalid characters.''' ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1] , 16 ) for i in range(0 , len(lowercase ) , 2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
81
import datasets from .evaluate import evaluate _A : Optional[int] = '\\n@inproceedings{Rajpurkar2016SQuAD10,\n title={SQuAD: 100, 000+ Questions for Machine Comprehension of Text},\n author={Pranav Rajpurkar and Jian Zhang and Konstantin Lopyrev and Percy Liang},\n booktitle={EMNLP},\n year={2016}\n}\n' _A : int = '\nThis metric wrap the official scoring script for version 1 of the Stanford Question Answering Dataset (SQuAD).\n\nStanford Question Answering Dataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by\ncrowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span,\nfrom the corresponding reading passage, or the question might be unanswerable.\n' _A : int = '\nComputes SQuAD scores (F1 and EM).\nArgs:\n predictions: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair as given in the references (see below)\n - \'prediction_text\': the text of the answer\n references: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair (see above),\n - \'answers\': a Dict in the SQuAD dataset format\n {\n \'text\': list of possible texts for the answer, as a list of strings\n \'answer_start\': list of start positions for the answer, as a list of ints\n }\n Note that answer_start values are not taken into account to compute the metric.\nReturns:\n \'exact_match\': Exact match (the normalized answer exactly match the gold answer)\n \'f1\': The F-score of predicted tokens versus the gold answer\nExamples:\n\n >>> predictions = [{\'prediction_text\': \'1976\', \'id\': \'56e10a3be3433e1400422b22\'}]\n >>> references = [{\'answers\': {\'answer_start\': [97], \'text\': [\'1976\']}, \'id\': \'56e10a3be3433e1400422b22\'}]\n >>> squad_metric = datasets.load_metric("squad")\n >>> results = squad_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'exact_match\': 100.0, \'f1\': 100.0}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class __SCREAMING_SNAKE_CASE ( datasets.Metric ): def __lowerCamelCase ( self : Optional[Any] ) ->List[Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': {'''id''': datasets.Value('''string''' ), '''prediction_text''': datasets.Value('''string''' )}, '''references''': { '''id''': datasets.Value('''string''' ), '''answers''': datasets.features.Sequence( { '''text''': datasets.Value('''string''' ), '''answer_start''': datasets.Value('''int32''' ), } ), }, } ) , codebase_urls=['''https://rajpurkar.github.io/SQuAD-explorer/'''] , reference_urls=['''https://rajpurkar.github.io/SQuAD-explorer/'''] , ) def __lowerCamelCase ( self : Dict , A : Tuple , A : Tuple ) ->int: lowerCamelCase__ : Optional[Any] = {prediction['''id''']: prediction['''prediction_text'''] for prediction in predictions} lowerCamelCase__ : int = [ { '''paragraphs''': [ { '''qas''': [ { '''answers''': [{'''text''': answer_text} for answer_text in ref['''answers''']['''text''']], '''id''': ref['''id'''], } for ref in references ] } ] } ] lowerCamelCase__ : Tuple = evaluate(dataset=A , predictions=A ) return score
142
0
"""simple docstring""" def UpperCamelCase ( _A : Optional[int] )-> str: """simple docstring""" if collection == []: return [] # get some information about the collection A__ = len(_lowercase ) A__ = max(_lowercase ) A__ = min(_lowercase ) # create the counting array A__ = coll_max + 1 - coll_min A__ = [0] * counting_arr_length # count how much a number appears in the collection for number in collection: counting_arr[number - coll_min] += 1 # sum each position with it's predecessors. now, counting_arr[i] tells # us how many elements <= i has in the collection for i in range(1 , _lowercase ): A__ = counting_arr[i] + counting_arr[i - 1] # create the output collection A__ = [0] * coll_len # place the elements in the output, respecting the original order (stable # sort) from end to begin, updating counting_arr for i in reversed(range(0 , _lowercase ) ): A__ = collection[i] counting_arr[collection[i] - coll_min] -= 1 return ordered def UpperCamelCase ( _A : List[str] )-> Any: """simple docstring""" return "".join([chr(_lowercase ) for i in counting_sort([ord(_lowercase ) for c in string] )] ) if __name__ == "__main__": # Test string sort assert counting_sort_string("thisisthestring") == "eghhiiinrsssttt" UpperCAmelCase_ : List[Any] = input("Enter numbers separated by a comma:\n").strip() UpperCAmelCase_ : str = [int(item) for item in user_input.split(",")] print(counting_sort(unsorted))
363
import argparse import json import os import torch from torch import nn from transformers import NllbMoeConfig, NllbMoeModel from transformers.modeling_utils import dtype_byte_size from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME def UpperCamelCase ( _A : Tuple )-> Dict: """simple docstring""" A__ = [ "encoder.version", "decoder.version", "model.encoder.version", "model.decoder.version", "decoder.output_projection.weight", "_float_tensor", "encoder.embed_positions._float_tensor", "decoder.embed_positions._float_tensor", ] for k in ignore_keys: state_dict.pop(_A , _A ) def UpperCamelCase ( _A : int )-> Optional[Any]: """simple docstring""" A__ , A__ = emb.weight.shape A__ = nn.Linear(_A , _A , bias=_A ) A__ = emb.weight.data return lin_layer def UpperCamelCase ( _A : str , _A : Optional[Any]=None )-> str: """simple docstring""" A__ = {} for old_key in state_dict.keys(): A__ = old_key if "moe_layer.experts." in key: if expert_idx is not None: A__ = key.replace("moe_layer.experts.0" , f"""ffn.experts.expert_{expert_idx}""" ) else: A__ = key.replace("moe_layer.experts." , "ffn.experts.expert_" ) if "gate" in key: A__ = key.replace(".moe_layer.gate.wg" , ".ffn.router.classifier" ) if "fc2" and "experts" not in key: A__ = key.replace(".fc2." , ".ffn.fc2." ) if "fc1" and "experts" not in key: A__ = key.replace(".fc1." , ".ffn.fc1." ) if ".encoder_attn." in key: A__ = key.replace(".encoder_attn." , ".cross_attention." ) if "encoder_attn_layer_norm" in key: A__ = key.replace("encoder_attn_layer_norm" , "cross_attention_layer_norm" ) if "final_layer_norm" in key: A__ = key.replace("final_layer_norm" , "ff_layer_norm" ) A__ = state_dict[old_key] return new_dict def UpperCamelCase ( _A : Tuple , _A : Tuple , _A : int , _A : str , _A : str = WEIGHTS_NAME )-> List[str]: """simple docstring""" A__ = [] A__ = 0 os.makedirs(_A , exist_ok=_A ) for expert in range(_A ): A__ = switch_checkpoint_path + f"""-rank-{expert}.pt""" if os.path.isfile(_A ): A__ = torch.load(_A )["model"] remove_ignore_keys_(_A ) A__ = rename_fairseq_keys(_A , _A ) A__ = os.path.join( _A , weights_name.replace(".bin" , f"""-{len(_A )+1:05d}-of-???.bin""" ) ) torch.save(_A , _A ) sharded_state_dicts.append(expert_state.keys() ) total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size( expert_state[list(_A )[0]].dtype ) # Add the last block A__ = os.path.join(_A , weights_name.replace(".bin" , f"""-{len(_A )+1:05d}-of-???.bin""" ) ) A__ = torch.load(switch_checkpoint_path + "-shared.pt" )["model"] remove_ignore_keys_(_A ) A__ = rename_fairseq_keys(_A , _A ) A__ = shared_weights["decoder.embed_tokens.weight"] sharded_state_dicts.append(shared_weights.keys() ) # If we only have the shared weights (dummy model/experts saved on the same file) if len(_A ) == 1: A__ = os.path.join(_A , _A ) torch.save(_A , _A ) return {weights_name: sharded_state_dicts[0]}, None else: torch.save(_A , _A ) # Otherwise, let's build the index A__ = {} for idx, shard in enumerate(_A ): A__ = weights_name.replace(".bin" , f"""-{idx+1:05d}-of-{len(_A ):05d}.bin""" ) A__ = os.path.join(_A , weights_name.replace(".bin" , f"""-{idx+1:05d}-of-???.bin""" ) ) os.rename(_A , os.path.join(_A , _A ) ) for key in shard: A__ = shard_file # Add the metadata A__ = {"total_size": total_size} A__ = {"metadata": metadata, "weight_map": weight_map} with open(os.path.join(_A , _A ) , "w" , encoding="utf-8" ) as f: A__ = json.dumps(_A , indent=2 , sort_keys=_A ) + "\n" f.write(_A ) return metadata, index if __name__ == "__main__": UpperCAmelCase_ : str = argparse.ArgumentParser() # Required parameters parser.add_argument( "--nllb_moe_checkpoint_path", default="/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000", type=str, required=False, help="Path to a directory containing a folder per layer. Follows the original Google format.", ) parser.add_argument("--dtype", default="float32", type=str, required=False, help="dtype of the saved model") parser.add_argument( "--pytorch_dump_folder_path", default="/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b", type=str, required=False, help="Path to the output pytorch model.", ) UpperCAmelCase_ : Union[str, Any] = parser.parse_args() UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = shard_on_the_fly( args.nllb_moe_checkpoint_path, args.pytorch_dump_folder_path, 128, args.dtype, ) UpperCAmelCase_ : Any = NllbMoeConfig.from_pretrained( "facebook/nllb-200-3.3B", encoder_sparse_step=4, decoder_sparse_step=4, num_experts=128 ) config.save_pretrained(args.pytorch_dump_folder_path) UpperCAmelCase_ : Tuple = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path) print("Done") model.save_pretrained(args.pytorch_dump_folder_path)
198
0
"""simple docstring""" import argparse import logging import os import sys import numpy as np import onnxruntime import torch from bart_onnx.generation_onnx import BARTBeamSearchGenerator from bart_onnx.reduce_onnx_size import remove_dup_initializers import transformers from transformers import BartForConditionalGeneration, BartTokenizer logging.basicConfig( format="%(asctime)s | %(levelname)s | %(name)s | [%(filename)s:%(lineno)d] %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=os.environ.get("LOGLEVEL", "INFO").upper(), stream=sys.stdout, ) __magic_name__ = logging.getLogger(__name__) __magic_name__ = {"facebook/bart-base": BartForConditionalGeneration} __magic_name__ = {"facebook/bart-base": BartTokenizer} def _lowerCAmelCase ( ): __SCREAMING_SNAKE_CASE = argparse.ArgumentParser(description="""Export Bart model + Beam Search to ONNX graph.""" ) parser.add_argument( """--validation_file""" , type=UpperCamelCase_ , default=UpperCamelCase_ , help="""A csv or a json file containing the validation data.""" ) parser.add_argument( """--max_length""" , type=UpperCamelCase_ , default=5 , help="""The maximum total input sequence length after tokenization.""" , ) parser.add_argument( """--num_beams""" , type=UpperCamelCase_ , default=UpperCamelCase_ , help=( """Number of beams to use for evaluation. This argument will be """ """passed to ``model.generate``, which is used during ``evaluate`` and ``predict``.""" ) , ) parser.add_argument( """--model_name_or_path""" , type=UpperCamelCase_ , help="""Path to pretrained model or model identifier from huggingface.co/models.""" , required=UpperCamelCase_ , ) parser.add_argument( """--config_name""" , type=UpperCamelCase_ , default=UpperCamelCase_ , help="""Pretrained config name or path if not the same as model_name""" , ) parser.add_argument( """--device""" , type=UpperCamelCase_ , default="""cpu""" , help="""Device where the model will be run""" , ) parser.add_argument("""--output_file_path""" , type=UpperCamelCase_ , default=UpperCamelCase_ , help="""Where to store the final ONNX file.""" ) __SCREAMING_SNAKE_CASE = parser.parse_args() return args def _lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_="cpu" ): __SCREAMING_SNAKE_CASE = model_dict[model_name].from_pretrained(UpperCamelCase_ ).to(UpperCamelCase_ ) __SCREAMING_SNAKE_CASE = tokenizer_dict[model_name].from_pretrained(UpperCamelCase_ ) if model_name in ["facebook/bart-base"]: __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = 0 return huggingface_model, tokenizer def _lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): model.eval() __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = torch.jit.script(BARTBeamSearchGenerator(UpperCamelCase_ ) ) with torch.no_grad(): __SCREAMING_SNAKE_CASE = """My friends are cool but they eat too many carbs.""" __SCREAMING_SNAKE_CASE = tokenizer([ARTICLE_TO_SUMMARIZE] , max_length=1024 , return_tensors="""pt""" ).to(model.device ) __SCREAMING_SNAKE_CASE = model.generate( inputs["""input_ids"""] , attention_mask=inputs["""attention_mask"""] , num_beams=UpperCamelCase_ , max_length=UpperCamelCase_ , early_stopping=UpperCamelCase_ , decoder_start_token_id=model.config.decoder_start_token_id , ) torch.onnx.export( UpperCamelCase_ , ( inputs["""input_ids"""], inputs["""attention_mask"""], num_beams, max_length, model.config.decoder_start_token_id, ) , UpperCamelCase_ , opset_version=14 , input_names=["""input_ids""", """attention_mask""", """num_beams""", """max_length""", """decoder_start_token_id"""] , output_names=["""output_ids"""] , dynamic_axes={ """input_ids""": {0: """batch""", 1: """seq"""}, """output_ids""": {0: """batch""", 1: """seq_out"""}, } , example_outputs=UpperCamelCase_ , ) logger.info("""Model exported to {}""".format(UpperCamelCase_ ) ) __SCREAMING_SNAKE_CASE = remove_dup_initializers(os.path.abspath(UpperCamelCase_ ) ) logger.info("""Deduplicated and optimized model written to {}""".format(UpperCamelCase_ ) ) __SCREAMING_SNAKE_CASE = onnxruntime.InferenceSession(UpperCamelCase_ ) __SCREAMING_SNAKE_CASE = ort_sess.run( UpperCamelCase_ , { """input_ids""": inputs["""input_ids"""].cpu().numpy(), """attention_mask""": inputs["""attention_mask"""].cpu().numpy(), """num_beams""": np.array(UpperCamelCase_ ), """max_length""": np.array(UpperCamelCase_ ), """decoder_start_token_id""": np.array(model.config.decoder_start_token_id ), } , ) np.testing.assert_allclose(summary_ids.cpu().numpy() , ort_out[0] , rtol=1e-3 , atol=1e-3 ) logger.info("""Model outputs from torch and ONNX Runtime are similar.""" ) logger.info("""Success.""" ) def _lowerCAmelCase ( ): __SCREAMING_SNAKE_CASE = parse_args() __SCREAMING_SNAKE_CASE = 5 __SCREAMING_SNAKE_CASE = 4 # Make one log on every process with the configuration for debugging. logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO , ) logger.setLevel(logging.INFO ) transformers.utils.logging.set_verbosity_error() __SCREAMING_SNAKE_CASE = torch.device(args.device ) __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = load_model_tokenizer(args.model_name_or_path , UpperCamelCase_ ) if model.config.decoder_start_token_id is None: raise ValueError("""Make sure that `config.decoder_start_token_id` is correctly defined""" ) model.to(UpperCamelCase_ ) if args.max_length: __SCREAMING_SNAKE_CASE = args.max_length if args.num_beams: __SCREAMING_SNAKE_CASE = args.num_beams if args.output_file_path: __SCREAMING_SNAKE_CASE = args.output_file_path else: __SCREAMING_SNAKE_CASE = """BART.onnx""" logger.info("""Exporting model to ONNX""" ) export_and_validate_model(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) if __name__ == "__main__": main()
100
"""simple docstring""" class lowerCAmelCase_ : '''simple docstring''' def __init__( self : Dict ,A_ : list[int] ) -> None: A = len(A_ ) A = [0] * len_array if len_array > 0: A = array[0] for i in range(1 ,A_ ): A = self.prefix_sum[i - 1] + array[i] def _SCREAMING_SNAKE_CASE ( self : str ,A_ : int ,A_ : int ) -> int: if start == 0: return self.prefix_sum[end] return self.prefix_sum[end] - self.prefix_sum[start - 1] def _SCREAMING_SNAKE_CASE ( self : str ,A_ : int ) -> bool: A = {0} for sum_item in self.prefix_sum: if sum_item - target_sum in sums: return True sums.add(A_ ) return False if __name__ == "__main__": import doctest doctest.testmod()
74
0
"""simple docstring""" import collections import inspect import unittest from typing import Dict, List, Tuple from transformers import MaskFormerSwinConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device from transformers.utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MaskFormerSwinBackbone from transformers.models.maskformer import MaskFormerSwinModel class lowercase__ : '''simple docstring''' def __init__( self : Dict , _UpperCAmelCase : int , _UpperCAmelCase : List[str]=13 , _UpperCAmelCase : Dict=32 , _UpperCAmelCase : Any=2 , _UpperCAmelCase : Optional[int]=3 , _UpperCAmelCase : Optional[Any]=16 , _UpperCAmelCase : Optional[int]=[1, 2, 1] , _UpperCAmelCase : int=[2, 2, 4] , _UpperCAmelCase : Optional[Any]=2 , _UpperCAmelCase : Union[str, Any]=2.0 , _UpperCAmelCase : Any=True , _UpperCAmelCase : Optional[Any]=0.0 , _UpperCAmelCase : Dict=0.0 , _UpperCAmelCase : Dict=0.1 , _UpperCAmelCase : str="gelu" , _UpperCAmelCase : List[Any]=False , _UpperCAmelCase : List[Any]=True , _UpperCAmelCase : Optional[Any]=0.02 , _UpperCAmelCase : str=1e-5 , _UpperCAmelCase : str=True , _UpperCAmelCase : Any=None , _UpperCAmelCase : Tuple=True , _UpperCAmelCase : Any=10 , _UpperCAmelCase : int=8 , _UpperCAmelCase : Optional[Any]=["stage1", "stage2", "stage3"] , _UpperCAmelCase : Optional[Any]=[1, 2, 3] , ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ = parent UpperCAmelCase_ = batch_size UpperCAmelCase_ = image_size UpperCAmelCase_ = patch_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = embed_dim UpperCAmelCase_ = depths UpperCAmelCase_ = num_heads UpperCAmelCase_ = window_size UpperCAmelCase_ = mlp_ratio UpperCAmelCase_ = qkv_bias UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = drop_path_rate UpperCAmelCase_ = hidden_act UpperCAmelCase_ = use_absolute_embeddings UpperCAmelCase_ = patch_norm UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = initializer_range UpperCAmelCase_ = is_training UpperCAmelCase_ = scope UpperCAmelCase_ = use_labels UpperCAmelCase_ = type_sequence_label_size UpperCAmelCase_ = encoder_stride UpperCAmelCase_ = out_features UpperCAmelCase_ = out_indices def lowercase__ ( self : int ) -> Any: '''simple docstring''' UpperCAmelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ = None if self.use_labels: UpperCAmelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase_ = self.get_config() return config, pixel_values, labels def lowercase__ ( self : Dict ) -> Union[str, Any]: '''simple docstring''' return MaskFormerSwinConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def lowercase__ ( self : List[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : str , _UpperCAmelCase : int ) -> str: '''simple docstring''' UpperCAmelCase_ = MaskFormerSwinModel(config=_lowercase ) model.to(_lowercase ) model.eval() UpperCAmelCase_ = model(_lowercase ) UpperCAmelCase_ = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) UpperCAmelCase_ = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def lowercase__ ( self : int , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Dict ) -> Dict: '''simple docstring''' UpperCAmelCase_ = MaskFormerSwinBackbone(config=_lowercase ) model.to(_lowercase ) model.eval() UpperCAmelCase_ = model(_lowercase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [13, 16, 16, 16] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , [16, 32, 64] ) # verify ValueError with self.parent.assertRaises(_lowercase ): UpperCAmelCase_ = ["stem"] UpperCAmelCase_ = MaskFormerSwinBackbone(config=_lowercase ) def lowercase__ ( self : Optional[int] ) -> Any: '''simple docstring''' UpperCAmelCase_ = self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = config_and_inputs UpperCAmelCase_ = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class lowercase__ ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase = ( ( MaskFormerSwinModel, MaskFormerSwinBackbone, ) if is_torch_available() else () ) UpperCamelCase = {"feature-extraction": MaskFormerSwinModel} if is_torch_available() else {} UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def lowercase__ ( self : Optional[Any] ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = MaskFormerSwinModelTester(self ) UpperCAmelCase_ = ConfigTester(self , config_class=_lowercase , embed_dim=37 ) @require_torch_multi_gpu @unittest.skip( reason=( "`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn\'t work well with" " `nn.DataParallel`" ) ) def lowercase__ ( self : int ) -> Tuple: '''simple docstring''' pass def lowercase__ ( self : Dict ) -> Tuple: '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase__ ( self : str ) -> Union[str, Any]: '''simple docstring''' return def lowercase__ ( self : Optional[Any] ) -> Any: '''simple docstring''' UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowercase ) def lowercase__ ( self : Optional[int] ) -> Tuple: '''simple docstring''' UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*_lowercase ) @unittest.skip("Swin does not use inputs_embeds" ) def lowercase__ ( self : List[Any] ) -> Dict: '''simple docstring''' pass @unittest.skip("Swin does not support feedforward chunking" ) def lowercase__ ( self : str ) -> List[str]: '''simple docstring''' pass def lowercase__ ( self : Union[str, Any] ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = model_class(_lowercase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCAmelCase_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_lowercase , nn.Linear ) ) def lowercase__ ( self : Union[str, Any] ) -> List[str]: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = model_class(_lowercase ) UpperCAmelCase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ = [*signature.parameters.keys()] UpperCAmelCase_ = ["pixel_values"] self.assertListEqual(arg_names[:1] , _lowercase ) @unittest.skip(reason="MaskFormerSwin is only used as backbone and doesn\'t support output_attentions" ) def lowercase__ ( self : Optional[Any] ) -> str: '''simple docstring''' pass @unittest.skip(reason="MaskFormerSwin is only used as an internal backbone" ) def lowercase__ ( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' pass def lowercase__ ( self : List[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Dict , _UpperCAmelCase : Tuple ) -> Tuple: '''simple docstring''' UpperCAmelCase_ = model_class(_lowercase ) model.to(_lowercase ) model.eval() with torch.no_grad(): UpperCAmelCase_ = model(**self._prepare_for_class(_lowercase , _lowercase ) ) UpperCAmelCase_ = outputs.hidden_states UpperCAmelCase_ = getattr( self.model_tester , "expected_num_hidden_layers" , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(_lowercase ) , _lowercase ) # Swin has a different seq_length UpperCAmelCase_ = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) UpperCAmelCase_ = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def lowercase__ ( self : str ) -> Dict: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: UpperCAmelCase_ = True self.check_hidden_states_output(_lowercase , _lowercase , _lowercase , _lowercase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase_ = True self.check_hidden_states_output(_lowercase , _lowercase , _lowercase , _lowercase ) def lowercase__ ( self : Optional[Any] ) -> Tuple: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ = 3 UpperCAmelCase_ = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) UpperCAmelCase_ = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) UpperCAmelCase_ = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) UpperCAmelCase_ = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: UpperCAmelCase_ = True self.check_hidden_states_output(_lowercase , _lowercase , _lowercase , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase_ = True self.check_hidden_states_output(_lowercase , _lowercase , _lowercase , (padded_height, padded_width) ) @unittest.skip(reason="MaskFormerSwin doesn\'t have pretrained checkpoints" ) def lowercase__ ( self : Any ) -> int: '''simple docstring''' pass @unittest.skip(reason="This will be fixed once MaskFormerSwin is replaced by native Swin" ) def lowercase__ ( self : str ) -> Optional[int]: '''simple docstring''' pass @unittest.skip(reason="This will be fixed once MaskFormerSwin is replaced by native Swin" ) def lowercase__ ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' pass def lowercase__ ( self : Tuple ) -> Dict: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() def set_nan_tensor_to_zero(_UpperCAmelCase : List[str] ): UpperCAmelCase_ = 0 return t def check_equivalence(_UpperCAmelCase : List[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : str , _UpperCAmelCase : List[str]={} ): with torch.no_grad(): UpperCAmelCase_ = model(**_lowercase , return_dict=_lowercase , **_lowercase ) UpperCAmelCase_ = model(**_lowercase , return_dict=_lowercase , **_lowercase ).to_tuple() def recursive_check(_UpperCAmelCase : Dict , _UpperCAmelCase : Optional[Any] ): if isinstance(_lowercase , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(_lowercase , _lowercase ): recursive_check(_lowercase , _lowercase ) elif isinstance(_lowercase , _lowercase ): for tuple_iterable_value, dict_iterable_value in zip( tuple_object.values() , dict_object.values() ): recursive_check(_lowercase , _lowercase ) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(_lowercase ) , set_nan_tensor_to_zero(_lowercase ) , atol=1e-5 ) , msg=( "Tuple and dict output are not equal. Difference:" F""" {torch.max(torch.abs(tuple_object - dict_object ) )}. Tuple has `nan`:""" F""" {torch.isnan(_lowercase ).any()} and `inf`: {torch.isinf(_lowercase )}. Dict has""" F""" `nan`: {torch.isnan(_lowercase ).any()} and `inf`: {torch.isinf(_lowercase )}.""" ) , ) recursive_check(_lowercase , _lowercase ) for model_class in self.all_model_classes: UpperCAmelCase_ = model_class(_lowercase ) model.to(_lowercase ) model.eval() UpperCAmelCase_ = self._prepare_for_class(_lowercase , _lowercase ) UpperCAmelCase_ = self._prepare_for_class(_lowercase , _lowercase ) check_equivalence(_lowercase , _lowercase , _lowercase ) UpperCAmelCase_ = self._prepare_for_class(_lowercase , _lowercase , return_labels=_lowercase ) UpperCAmelCase_ = self._prepare_for_class(_lowercase , _lowercase , return_labels=_lowercase ) check_equivalence(_lowercase , _lowercase , _lowercase ) UpperCAmelCase_ = self._prepare_for_class(_lowercase , _lowercase ) UpperCAmelCase_ = self._prepare_for_class(_lowercase , _lowercase ) check_equivalence(_lowercase , _lowercase , _lowercase , {"output_hidden_states": True} ) UpperCAmelCase_ = self._prepare_for_class(_lowercase , _lowercase , return_labels=_lowercase ) UpperCAmelCase_ = self._prepare_for_class(_lowercase , _lowercase , return_labels=_lowercase ) check_equivalence(_lowercase , _lowercase , _lowercase , {"output_hidden_states": True} ) @require_torch class lowercase__ ( unittest.TestCase , _lowerCAmelCase ): '''simple docstring''' UpperCamelCase = (MaskFormerSwinBackbone,) if is_torch_available() else () UpperCamelCase = MaskFormerSwinConfig def lowercase__ ( self : List[str] ) -> int: '''simple docstring''' UpperCAmelCase_ = MaskFormerSwinModelTester(self ) def lowercase__ ( self : List[Any] ) -> Dict: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ = inputs_dict["pixel_values"].shape[0] for backbone_class in self.all_model_classes: UpperCAmelCase_ = backbone_class(_lowercase ) backbone.to(_lowercase ) backbone.eval() UpperCAmelCase_ = backbone(**_lowercase ) # Test default outputs and verify feature maps self.assertIsInstance(outputs.feature_maps , _lowercase ) self.assertTrue(len(outputs.feature_maps ) == len(backbone.channels ) ) for feature_map, n_channels in zip(outputs.feature_maps , backbone.channels ): self.assertTrue(feature_map.shape[:2] , (batch_size, n_channels) ) self.assertIsNone(outputs.hidden_states ) self.assertIsNone(outputs.attentions ) # Test output_hidden_states=True UpperCAmelCase_ = backbone(**_lowercase , output_hidden_states=_lowercase ) self.assertIsNotNone(outputs.hidden_states ) self.assertTrue(len(outputs.hidden_states ) , len(backbone.stage_names ) ) # We skip the stem layer for hidden_states, n_channels in zip(outputs.hidden_states[1:] , backbone.channels ): for hidden_state in hidden_states: # Hidden states are in the format (batch_size, (height * width), n_channels) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = hidden_state.shape self.assertTrue((h_batch_size, h_n_channels) , (batch_size, n_channels) ) # Test output_attentions=True if self.has_attentions: UpperCAmelCase_ = backbone(**_lowercase , output_attentions=_lowercase ) self.assertIsNotNone(outputs.attentions )
370
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = { """RWKV/rwkv-4-169m-pile""": """https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json""", """RWKV/rwkv-4-430m-pile""": """https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json""", """RWKV/rwkv-4-1b5-pile""": """https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json""", """RWKV/rwkv-4-3b-pile""": """https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json""", """RWKV/rwkv-4-7b-pile""": """https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json""", """RWKV/rwkv-4-14b-pile""": """https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json""", """RWKV/rwkv-raven-1b5""": """https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json""", """RWKV/rwkv-raven-3b""": """https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json""", """RWKV/rwkv-raven-7b""": """https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json""", """RWKV/rwkv-raven-14b""": """https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json""", } class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = '''rwkv''' UpperCamelCase = {'''max_position_embeddings''': '''context_length'''} def __init__( self : str , _UpperCAmelCase : int=50277 , _UpperCAmelCase : Optional[Any]=1024 , _UpperCAmelCase : str=4096 , _UpperCAmelCase : Any=32 , _UpperCAmelCase : Any=None , _UpperCAmelCase : Optional[int]=None , _UpperCAmelCase : Tuple=1e-5 , _UpperCAmelCase : str=0 , _UpperCAmelCase : Any=0 , _UpperCAmelCase : Union[str, Any]=6 , _UpperCAmelCase : Dict=False , _UpperCAmelCase : Any=True , **_UpperCAmelCase : Optional[Any] , ) -> str: '''simple docstring''' UpperCAmelCase_ = vocab_size UpperCAmelCase_ = context_length UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = attention_hidden_size if attention_hidden_size is not None else hidden_size UpperCAmelCase_ = intermediate_size if intermediate_size is not None else 4 * hidden_size UpperCAmelCase_ = layer_norm_epsilon UpperCAmelCase_ = rescale_every UpperCAmelCase_ = use_cache UpperCAmelCase_ = bos_token_id UpperCAmelCase_ = eos_token_id super().__init__( tie_word_embeddings=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase )
241
0
import math def _lowerCAmelCase ( __lowerCAmelCase ) -> Optional[Any]: """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__snake_case ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def _lowerCAmelCase ( __lowerCAmelCase = 0.1 ) -> Dict: """simple docstring""" snake_case__ : Any = 3 snake_case__ : Any = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ): primes += is_prime(__snake_case ) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
230
"""simple docstring""" import requests from bsa import BeautifulSoup def _SCREAMING_SNAKE_CASE ( __snake_case : str = "AAPL" ): '''simple docstring''' lowercase = f'https://in.finance.yahoo.com/quote/{symbol}?s={symbol}' lowercase = BeautifulSoup(requests.get(__snake_case ).text , 'html.parser' ) lowercase = 'My(6px) Pos(r) smartphone_Mt(6px)' return soup.find('div' , class_=class_ ).find('span' ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(F'''Current {symbol:<4} stock price is {stock_price(symbol):>8}''')
220
0
import re import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class __snake_case ( __lowerCAmelCase ): a__ = ["""image_processor""", """tokenizer"""] a__ = """AutoImageProcessor""" a__ = """AutoTokenizer""" def __init__( self , lowercase=None , lowercase=None , **lowercase) -> List[str]: '''simple docstring''' a__: str = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , lowercase , ) a__: Optional[int] = kwargs.pop('feature_extractor') a__: Optional[int] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.') if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.') super().__init__(lowercase , lowercase) a__: Any = self.image_processor a__: str = False def __call__( self , *lowercase , **lowercase) -> str: '''simple docstring''' if self._in_target_context_manager: return self.current_processor(*lowercase , **lowercase) a__: Any = kwargs.pop('images' , lowercase) a__: Any = kwargs.pop('text' , lowercase) if len(lowercase) > 0: a__: int = args[0] a__: Union[str, Any] = args[1:] if images is None and text is None: raise ValueError('You need to specify either an `images` or `text` input to process.') if images is not None: a__: str = self.image_processor(lowercase , *lowercase , **lowercase) if text is not None: a__: List[str] = self.tokenizer(lowercase , **lowercase) if text is None: return inputs elif images is None: return encodings else: a__: Dict = encodings['input_ids'] return inputs def lowerCamelCase_ ( self , *lowercase , **lowercase) -> List[str]: '''simple docstring''' return self.tokenizer.batch_decode(*lowercase , **lowercase) def lowerCamelCase_ ( self , *lowercase , **lowercase) -> str: '''simple docstring''' return self.tokenizer.decode(*lowercase , **lowercase) @contextmanager def lowerCamelCase_ ( self) -> int: '''simple docstring''' warnings.warn( '`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ' 'labels by using the argument `text` of the regular `__call__` method (either in the same call as ' 'your images inputs, or in a separate call.') a__: Any = True a__: Any = self.tokenizer yield a__: Optional[Any] = self.image_processor a__: int = False def lowerCamelCase_ ( self , lowercase , lowercase=False , lowercase=None) -> Union[str, Any]: '''simple docstring''' if added_vocab is None: a__: List[Any] = self.tokenizer.get_added_vocab() a__: List[str] = {} while tokens: a__: Any = re.search(r'<s_(.*?)>' , lowercase , re.IGNORECASE) if start_token is None: break a__: List[str] = start_token.group(1) a__: List[Any] = re.search(rf'</s_{key}>' , lowercase , re.IGNORECASE) a__: Union[str, Any] = start_token.group() if end_token is None: a__: Dict = tokens.replace(lowercase , '') else: a__: Dict = end_token.group() a__: int = re.escape(lowercase) a__: List[str] = re.escape(lowercase) a__: Any = re.search(f'{start_token_escaped}(.*?){end_token_escaped}' , lowercase , re.IGNORECASE) if content is not None: a__: Any = content.group(1).strip() if r"<s_" in content and r"</s_" in content: # non-leaf node a__: List[str] = self.tokenajson(lowercase , is_inner_value=lowercase , added_vocab=lowercase) if value: if len(lowercase) == 1: a__: Tuple = value[0] a__: int = value else: # leaf nodes a__: Any = [] for leaf in content.split(r'<sep/>'): a__: Tuple = leaf.strip() if leaf in added_vocab and leaf[0] == "<" and leaf[-2:] == "/>": a__: Tuple = leaf[1:-2] # for categorical special tokens output[key].append(lowercase) if len(output[key]) == 1: a__: str = output[key][0] a__: str = tokens[tokens.find(lowercase) + len(lowercase) :].strip() if tokens[:6] == r"<sep/>": # non-leaf nodes return [output] + self.tokenajson(tokens[6:] , is_inner_value=lowercase , added_vocab=lowercase) if len(lowercase): return [output] if is_inner_value else output else: return [] if is_inner_value else {"text_sequence": tokens} @property def lowerCamelCase_ ( self) -> Optional[Any]: '''simple docstring''' warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , lowercase , ) return self.image_processor_class @property def lowerCamelCase_ ( self) -> Optional[Any]: '''simple docstring''' warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , lowercase , ) return self.image_processor
358
"""simple docstring""" def __a ( _SCREAMING_SNAKE_CASE ) ->bool: return credit_card_number.startswith(('34', '35', '37', '4', '5', '6') ) def __a ( _SCREAMING_SNAKE_CASE ) ->bool: a__: Any = credit_card_number a__: Tuple = 0 a__: List[str] = len(_SCREAMING_SNAKE_CASE ) - 2 for i in range(_SCREAMING_SNAKE_CASE , -1 , -2 ): # double the value of every second digit a__: Tuple = int(cc_number[i] ) digit *= 2 # If doubling of a number results in a two digit number # i.e greater than 9(e.g., 6 × 2 = 12), # then add the digits of the product (e.g., 12: 1 + 2 = 3, 15: 1 + 5 = 6), # to get a single digit number. if digit > 9: digit %= 10 digit += 1 a__: Optional[Any] = cc_number[:i] + str(_SCREAMING_SNAKE_CASE ) + cc_number[i + 1 :] total += digit # Sum up the remaining digits for i in range(len(_SCREAMING_SNAKE_CASE ) - 1 , -1 , -2 ): total += int(cc_number[i] ) return total % 10 == 0 def __a ( _SCREAMING_SNAKE_CASE ) ->bool: a__: Optional[int] = F'{credit_card_number} is an invalid credit card number because' if not credit_card_number.isdigit(): print(F'{error_message} it has nonnumerical characters.' ) return False if not 13 <= len(_SCREAMING_SNAKE_CASE ) <= 16: print(F'{error_message} of its length.' ) return False if not validate_initial_digits(_SCREAMING_SNAKE_CASE ): print(F'{error_message} of its first two digits.' ) return False if not luhn_validation(_SCREAMING_SNAKE_CASE ): print(F'{error_message} it fails the Luhn check.' ) return False print(F'{credit_card_number} is a valid credit card number.' ) return True if __name__ == "__main__": import doctest doctest.testmod() validate_credit_card_number('4111111111111111') validate_credit_card_number('32323')
203
0
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def _A ( ): """simple docstring""" a =ArgumentParser('''Accelerate CLI tool''' , usage='''accelerate <command> [<args>]''' , allow_abbrev=lowercase ) a =parser.add_subparsers(help='''accelerate command helpers''' ) # Register commands get_config_parser(subparsers=lowercase ) env_command_parser(subparsers=lowercase ) launch_command_parser(subparsers=lowercase ) tpu_command_parser(subparsers=lowercase ) test_command_parser(subparsers=lowercase ) # Let's go a =parser.parse_args() if not hasattr(lowercase , '''func''' ): parser.print_help() exit(1 ) # Run args.func(lowercase ) if __name__ == "__main__": main()
81
from __future__ import annotations from typing import Dict from ...configuration_utils import PretrainedConfig UpperCamelCase_ = { '''susnato/ernie-m-base_pytorch''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/config.json''', '''susnato/ernie-m-large_pytorch''': '''https://huggingface.co/susnato/ernie-m-large_pytorch/blob/main/config.json''', } class _snake_case ( __snake_case ): '''simple docstring''' A__ : Union[str, Any] = "ernie_m" A__ : Dict[str, str] = {"dropout": "classifier_dropout", "num_classes": "num_labels"} def __init__( self: str ,lowerCamelCase_: int = 250002 ,lowerCamelCase_: int = 768 ,lowerCamelCase_: int = 12 ,lowerCamelCase_: int = 12 ,lowerCamelCase_: int = 3072 ,lowerCamelCase_: str = "gelu" ,lowerCamelCase_: float = 0.1 ,lowerCamelCase_: float = 0.1 ,lowerCamelCase_: int = 514 ,lowerCamelCase_: float = 0.0_2 ,lowerCamelCase_: int = 1 ,lowerCamelCase_: float = 1e-05 ,lowerCamelCase_: Any=None ,lowerCamelCase_: List[Any]=False ,lowerCamelCase_: Tuple=0.0 ,**lowerCamelCase_: Optional[int] ,) -> Optional[Any]: super().__init__(pad_token_id=lowerCamelCase_ ,**lowerCamelCase_ ) UpperCAmelCase_ : Optional[Any] = vocab_size UpperCAmelCase_ : Any = hidden_size UpperCAmelCase_ : Optional[Any] = num_hidden_layers UpperCAmelCase_ : Union[str, Any] = num_attention_heads UpperCAmelCase_ : List[Any] = intermediate_size UpperCAmelCase_ : List[Any] = hidden_act UpperCAmelCase_ : Any = hidden_dropout_prob UpperCAmelCase_ : List[Any] = attention_probs_dropout_prob UpperCAmelCase_ : str = max_position_embeddings UpperCAmelCase_ : Union[str, Any] = initializer_range UpperCAmelCase_ : Union[str, Any] = layer_norm_eps UpperCAmelCase_ : List[Any] = classifier_dropout UpperCAmelCase_ : str = is_decoder UpperCAmelCase_ : List[str] = act_dropout
345
0
"""simple docstring""" from timeit import timeit def a__ ( __lowercase ) -> int: if number < 0: raise ValueError("the value of input must not be negative" ) _A = 0 while number: number &= number - 1 result += 1 return result def a__ ( __lowercase ) -> int: if number < 0: raise ValueError("the value of input must not be negative" ) _A = 0 while number: if number % 2 == 1: result += 1 number >>= 1 return result def a__ ( ) -> None: def do_benchmark(__lowercase ) -> None: _A = "import __main__ as z" print(f"""Benchmark when {number = }:""" ) print(f"""{get_set_bits_count_using_modulo_operator(__lowercase ) = }""" ) _A = timeit("z.get_set_bits_count_using_modulo_operator(25)" , setup=__lowercase ) print(f"""timeit() runs in {timing} seconds""" ) print(f"""{get_set_bits_count_using_brian_kernighans_algorithm(__lowercase ) = }""" ) _A = timeit( "z.get_set_bits_count_using_brian_kernighans_algorithm(25)" , setup=__lowercase , ) print(f"""timeit() runs in {timing} seconds""" ) for number in (25, 37, 58, 0): do_benchmark(__lowercase ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
163
"""simple docstring""" def a__ ( __lowercase ) -> int: assert ( isinstance(__lowercase , __lowercase ) and number_of_steps > 0 ), f"""number_of_steps needs to be positive integer, your input {number_of_steps}""" if number_of_steps == 1: return 1 _A , _A = 1, 1 for _ in range(number_of_steps - 1 ): _A , _A = current + previous, current return current if __name__ == "__main__": import doctest doctest.testmod()
163
1
'''simple docstring''' from typing import Dict import numpy as np from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline, PipelineException if is_tf_available(): import tensorflow as tf from ..tf_utils import stable_softmax if is_torch_available(): import torch a_ : Optional[int] = logging.get_logger(__name__) @add_end_docstrings( lowerCamelCase__ , r'\n top_k (`int`, defaults to 5):\n The number of predictions to return.\n targets (`str` or `List[str]`, *optional*):\n When passed, the model will limit the scores to the passed targets instead of looking up in the whole\n vocab. If the provided targets are not in the model vocab, they will be tokenized and the first resulting\n token will be used (with a warning, and that might be slower).\n\n ' , ) class __UpperCamelCase ( lowerCamelCase__ ): def lowercase__ ( self, lowerCAmelCase ): """simple docstring""" if self.framework == "tf": lowerCamelCase_ =tf.where(input_ids == self.tokenizer.mask_token_id ).numpy() elif self.framework == "pt": lowerCamelCase_ =torch.nonzero(input_ids == self.tokenizer.mask_token_id, as_tuple=lowerCAmelCase ) else: raise ValueError('''Unsupported framework''' ) return masked_index def lowercase__ ( self, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =self.get_masked_index(lowerCAmelCase ) lowerCamelCase_ =np.prod(masked_index.shape ) if numel < 1: raise PipelineException( '''fill-mask''', self.model.base_model_prefix, f'''No mask_token ({self.tokenizer.mask_token}) found on the input''', ) def lowercase__ ( self, lowerCAmelCase ): """simple docstring""" if isinstance(lowerCAmelCase, lowerCAmelCase ): for model_input in model_inputs: self._ensure_exactly_one_mask_token(model_input['''input_ids'''][0] ) else: for input_ids in model_inputs["input_ids"]: self._ensure_exactly_one_mask_token(lowerCAmelCase ) def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase=None, **lowerCAmelCase ): """simple docstring""" if return_tensors is None: lowerCamelCase_ =self.framework lowerCamelCase_ =self.tokenizer(lowerCAmelCase, return_tensors=lowerCAmelCase ) self.ensure_exactly_one_mask_token(lowerCAmelCase ) return model_inputs def lowercase__ ( self, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =self.model(**lowerCAmelCase ) lowerCamelCase_ =model_inputs['''input_ids'''] return model_outputs def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase=5, lowerCAmelCase=None ): """simple docstring""" if target_ids is not None and target_ids.shape[0] < top_k: lowerCamelCase_ =target_ids.shape[0] lowerCamelCase_ =model_outputs['''input_ids'''][0] lowerCamelCase_ =model_outputs['''logits'''] if self.framework == "tf": lowerCamelCase_ =tf.where(input_ids == self.tokenizer.mask_token_id ).numpy()[:, 0] lowerCamelCase_ =outputs.numpy() lowerCamelCase_ =outputs[0, masked_index, :] lowerCamelCase_ =stable_softmax(lowerCAmelCase, axis=-1 ) if target_ids is not None: lowerCamelCase_ =tf.gather_nd(tf.squeeze(lowerCAmelCase, 0 ), target_ids.reshape(-1, 1 ) ) lowerCamelCase_ =tf.expand_dims(lowerCAmelCase, 0 ) lowerCamelCase_ =tf.math.top_k(lowerCAmelCase, k=lowerCAmelCase ) lowerCamelCase_, lowerCamelCase_ =topk.values.numpy(), topk.indices.numpy() else: lowerCamelCase_ =torch.nonzero(input_ids == self.tokenizer.mask_token_id, as_tuple=lowerCAmelCase ).squeeze(-1 ) # Fill mask pipeline supports only one ${mask_token} per sample lowerCamelCase_ =outputs[0, masked_index, :] lowerCamelCase_ =logits.softmax(dim=-1 ) if target_ids is not None: lowerCamelCase_ =probs[..., target_ids] lowerCamelCase_, lowerCamelCase_ =probs.topk(lowerCAmelCase ) lowerCamelCase_ =[] lowerCamelCase_ =values.shape[0] == 1 for i, (_values, _predictions) in enumerate(zip(values.tolist(), predictions.tolist() ) ): lowerCamelCase_ =[] for v, p in zip(_values, _predictions ): # Copy is important since we're going to modify this array in place lowerCamelCase_ =input_ids.numpy().copy() if target_ids is not None: lowerCamelCase_ =target_ids[p].tolist() lowerCamelCase_ =p # Filter padding out: lowerCamelCase_ =tokens[np.where(tokens != self.tokenizer.pad_token_id )] # Originally we skip special tokens to give readable output. # For multi masks though, the other [MASK] would be removed otherwise # making the output look odd, so we add them back lowerCamelCase_ =self.tokenizer.decode(lowerCAmelCase, skip_special_tokens=lowerCAmelCase ) lowerCamelCase_ ={'''score''': v, '''token''': p, '''token_str''': self.tokenizer.decode([p] ), '''sequence''': sequence} row.append(lowerCAmelCase ) result.append(lowerCAmelCase ) if single_mask: return result[0] return result def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase=None ): """simple docstring""" if isinstance(lowerCAmelCase, lowerCAmelCase ): lowerCamelCase_ =[targets] try: lowerCamelCase_ =self.tokenizer.get_vocab() except Exception: lowerCamelCase_ ={} lowerCamelCase_ =[] for target in targets: lowerCamelCase_ =vocab.get(lowerCAmelCase, lowerCAmelCase ) if id_ is None: lowerCamelCase_ =self.tokenizer( lowerCAmelCase, add_special_tokens=lowerCAmelCase, return_attention_mask=lowerCAmelCase, return_token_type_ids=lowerCAmelCase, max_length=1, truncation=lowerCAmelCase, )['''input_ids'''] if len(lowerCAmelCase ) == 0: logger.warning( f'''The specified target token `{target}` does not exist in the model vocabulary. ''' '''We cannot replace it with anything meaningful, ignoring it''' ) continue lowerCamelCase_ =input_ids[0] # XXX: If users encounter this pass # it becomes pretty slow, so let's make sure # The warning enables them to fix the input to # get faster performance. logger.warning( f'''The specified target token `{target}` does not exist in the model vocabulary. ''' f'''Replacing with `{self.tokenizer.convert_ids_to_tokens(id_ )}`.''' ) target_ids.append(id_ ) lowerCamelCase_ =list(set(lowerCAmelCase ) ) if len(lowerCAmelCase ) == 0: raise ValueError('''At least one target must be provided when passed.''' ) lowerCamelCase_ =np.array(lowerCAmelCase ) return target_ids def lowercase__ ( self, lowerCAmelCase=None, lowerCAmelCase=None ): """simple docstring""" lowerCamelCase_ ={} if targets is not None: lowerCamelCase_ =self.get_target_ids(lowerCAmelCase, lowerCAmelCase ) lowerCamelCase_ =target_ids if top_k is not None: lowerCamelCase_ =top_k if self.tokenizer.mask_token_id is None: raise PipelineException( '''fill-mask''', self.model.base_model_prefix, '''The tokenizer does not define a `mask_token`.''' ) return {}, {}, postprocess_params def __call__( self, lowerCAmelCase, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =super().__call__(lowerCAmelCase, **lowerCAmelCase ) if isinstance(lowerCAmelCase, lowerCAmelCase ) and len(lowerCAmelCase ) == 1: return outputs[0] return outputs
75
'''simple docstring''' import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class UpperCAmelCase ( a__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE = CTRLTokenizer SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False def _lowerCAmelCase( self ) -> Dict: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowercase__ : Optional[Any] = ['''adapt''', '''re@@''', '''a@@''', '''apt''', '''c@@''', '''t''', '''<unk>'''] lowercase__ : str = dict(zip(__lowerCAmelCase , range(len(__lowerCAmelCase ) ) ) ) lowercase__ : Tuple = ['''#version: 0.2''', '''a p''', '''ap t</w>''', '''r e''', '''a d''', '''ad apt</w>''', ''''''] lowercase__ : Optional[Any] = {'''unk_token''': '''<unk>'''} lowercase__ : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) lowercase__ : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__lowerCAmelCase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__lowerCAmelCase ) ) def _lowerCAmelCase( self , **__lowerCAmelCase ) -> List[str]: kwargs.update(self.special_tokens_map ) return CTRLTokenizer.from_pretrained(self.tmpdirname , **__lowerCAmelCase ) def _lowerCAmelCase( self , __lowerCAmelCase ) -> List[str]: lowercase__ : List[str] = '''adapt react readapt apt''' lowercase__ : Union[str, Any] = '''adapt react readapt apt''' return input_text, output_text def _lowerCAmelCase( self ) -> Optional[Any]: lowercase__ : Union[str, Any] = CTRLTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) lowercase__ : Optional[Any] = '''adapt react readapt apt''' lowercase__ : Dict = '''adapt re@@ a@@ c@@ t re@@ adapt apt'''.split() lowercase__ : Union[str, Any] = tokenizer.tokenize(__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) lowercase__ : int = tokens + [tokenizer.unk_token] lowercase__ : List[str] = [0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) , __lowerCAmelCase )
198
0
'''simple docstring''' from typing import TYPE_CHECKING from ....utils import _LazyModule _UpperCAmelCase : Tuple = {"""tokenization_tapex""": ["""TapexTokenizer"""]} if TYPE_CHECKING: from .tokenization_tapex import TapexTokenizer else: import sys _UpperCAmelCase : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
9
'''simple docstring''' from __future__ import annotations import math def __magic_name__( lowerCamelCase, lowerCamelCase): if len(lowerCamelCase) != 2 or len(a[0]) != 2 or len(lowerCamelCase) != 2 or len(b[0]) != 2: raise Exception('''Matrices are not 2x2''') __lowerCAmelCase = [ [a[0][0] * b[0][0] + a[0][1] * b[1][0], a[0][0] * b[0][1] + a[0][1] * b[1][1]], [a[1][0] * b[0][0] + a[1][1] * b[1][0], a[1][0] * b[0][1] + a[1][1] * b[1][1]], ] return new_matrix def __magic_name__( lowerCamelCase, lowerCamelCase): return [ [matrix_a[row][col] + matrix_b[row][col] for col in range(len(matrix_a[row]))] for row in range(len(lowerCamelCase)) ] def __magic_name__( lowerCamelCase, lowerCamelCase): return [ [matrix_a[row][col] - matrix_b[row][col] for col in range(len(matrix_a[row]))] for row in range(len(lowerCamelCase)) ] def __magic_name__( lowerCamelCase): if len(lowerCamelCase) % 2 != 0 or len(a[0]) % 2 != 0: raise Exception('''Odd matrices are not supported!''') __lowerCAmelCase = len(lowerCamelCase) __lowerCAmelCase = matrix_length // 2 __lowerCAmelCase = [[a[i][j] for j in range(lowerCamelCase, lowerCamelCase)] for i in range(lowerCamelCase)] __lowerCAmelCase = [ [a[i][j] for j in range(lowerCamelCase, lowerCamelCase)] for i in range(lowerCamelCase, lowerCamelCase) ] __lowerCAmelCase = [[a[i][j] for j in range(lowerCamelCase)] for i in range(lowerCamelCase)] __lowerCAmelCase = [[a[i][j] for j in range(lowerCamelCase)] for i in range(lowerCamelCase, lowerCamelCase)] return top_left, top_right, bot_left, bot_right def __magic_name__( lowerCamelCase): return len(lowerCamelCase), len(matrix[0]) def __magic_name__( lowerCamelCase): print('''\n'''.join(str(lowerCamelCase) for line in matrix)) def __magic_name__( lowerCamelCase, lowerCamelCase): if matrix_dimensions(lowerCamelCase) == (2, 2): return default_matrix_multiplication(lowerCamelCase, lowerCamelCase) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = split_matrix(lowerCamelCase) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = split_matrix(lowerCamelCase) __lowerCAmelCase = actual_strassen(lowerCamelCase, matrix_subtraction(lowerCamelCase, lowerCamelCase)) __lowerCAmelCase = actual_strassen(matrix_addition(lowerCamelCase, lowerCamelCase), lowerCamelCase) __lowerCAmelCase = actual_strassen(matrix_addition(lowerCamelCase, lowerCamelCase), lowerCamelCase) __lowerCAmelCase = actual_strassen(lowerCamelCase, matrix_subtraction(lowerCamelCase, lowerCamelCase)) __lowerCAmelCase = actual_strassen(matrix_addition(lowerCamelCase, lowerCamelCase), matrix_addition(lowerCamelCase, lowerCamelCase)) __lowerCAmelCase = actual_strassen(matrix_subtraction(lowerCamelCase, lowerCamelCase), matrix_addition(lowerCamelCase, lowerCamelCase)) __lowerCAmelCase = actual_strassen(matrix_subtraction(lowerCamelCase, lowerCamelCase), matrix_addition(lowerCamelCase, lowerCamelCase)) __lowerCAmelCase = matrix_addition(matrix_subtraction(matrix_addition(lowerCamelCase, lowerCamelCase), lowerCamelCase), lowerCamelCase) __lowerCAmelCase = matrix_addition(lowerCamelCase, lowerCamelCase) __lowerCAmelCase = matrix_addition(lowerCamelCase, lowerCamelCase) __lowerCAmelCase = matrix_subtraction(matrix_subtraction(matrix_addition(lowerCamelCase, lowerCamelCase), lowerCamelCase), lowerCamelCase) # construct the new matrix from our 4 quadrants __lowerCAmelCase = [] for i in range(len(lowerCamelCase)): new_matrix.append(top_left[i] + top_right[i]) for i in range(len(lowerCamelCase)): new_matrix.append(bot_left[i] + bot_right[i]) return new_matrix def __magic_name__( lowerCamelCase, lowerCamelCase): if matrix_dimensions(lowerCamelCase)[1] != matrix_dimensions(lowerCamelCase)[0]: __lowerCAmelCase = ( '''Unable to multiply these matrices, please check the dimensions.\n''' F"""Matrix A: {matrixa}\n""" F"""Matrix B: {matrixa}""" ) raise Exception(lowerCamelCase) __lowerCAmelCase = matrix_dimensions(lowerCamelCase) __lowerCAmelCase = matrix_dimensions(lowerCamelCase) if dimensiona[0] == dimensiona[1] and dimensiona[0] == dimensiona[1]: return [matrixa, matrixa] __lowerCAmelCase = max(*lowerCamelCase, *lowerCamelCase) __lowerCAmelCase = int(math.pow(2, math.ceil(math.loga(lowerCamelCase)))) __lowerCAmelCase = matrixa __lowerCAmelCase = matrixa # Adding zeros to the matrices so that the arrays dimensions are the same and also # power of 2 for i in range(0, lowerCamelCase): if i < dimensiona[0]: for _ in range(dimensiona[1], lowerCamelCase): new_matrixa[i].append(0) else: new_matrixa.append([0] * maxim) if i < dimensiona[0]: for _ in range(dimensiona[1], lowerCamelCase): new_matrixa[i].append(0) else: new_matrixa.append([0] * maxim) __lowerCAmelCase = actual_strassen(lowerCamelCase, lowerCamelCase) # Removing the additional zeros for i in range(0, lowerCamelCase): if i < dimensiona[0]: for _ in range(dimensiona[1], lowerCamelCase): final_matrix[i].pop() else: final_matrix.pop() return final_matrix if __name__ == "__main__": _UpperCAmelCase : List[str] = [ [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 2, 3, 1], ] _UpperCAmelCase : Optional[Any] = [[0, 2, 1, 1], [1_6, 2, 3, 3], [2, 2, 7, 7], [1_3, 1_1, 2_2, 4]] print(strassen(matrixa, matrixa))
9
1
'''simple docstring''' def _UpperCamelCase ( __A , __A , __A ) -> bool: '''simple docstring''' return not any( neighbour == 1 and colored_vertices[i] == color for i, neighbour in enumerate(__A ) ) def _UpperCamelCase ( __A , __A , __A , __A ) -> bool: '''simple docstring''' if index == len(__A ): return True # Recursive Step for i in range(__A ): if valid_coloring(graph[index] , __A , __A ): # Color current vertex UpperCamelCase__ = i # Validate coloring if util_color(__A , __A , __A , index + 1 ): return True # Backtrack UpperCamelCase__ = -1 return False def _UpperCamelCase ( __A , __A ) -> list[int]: '''simple docstring''' UpperCamelCase__ = [-1] * len(__A ) if util_color(__A , __A , __A , 0 ): return colored_vertices return []
80
"""simple docstring""" import copy from typing import Dict, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING from ..detr import DetrConfig from ..swin import SwinConfig lowercase__ = { """facebook/maskformer-swin-base-ade""": ( """https://huggingface.co/facebook/maskformer-swin-base-ade/blob/main/config.json""" ) # See all MaskFormer models at https://huggingface.co/models?filter=maskformer } lowercase__ = logging.get_logger(__name__) class __lowerCamelCase ( A__ ): '''simple docstring''' a_ : Optional[int] = """maskformer""" a_ : Optional[int] = {"""hidden_size""": """mask_feature_size"""} a_ : Optional[int] = ["""resnet""", """swin"""] a_ : int = ["""detr"""] def __init__( self : str , a_ : int = 2_56 , a_ : int = 2_56 , a_ : float = 0.1 , a_ : bool = False , a_ : Optional[Dict] = None , a_ : Optional[Dict] = None , a_ : float = 0.02 , a_ : float = 1.0 , a_ : float = 1.0 , a_ : float = 1.0 , a_ : float = 20.0 , a_ : Optional[bool] = None , **a_ : str , ): if backbone_config is None: # fall back to https://huggingface.co/microsoft/swin-base-patch4-window12-384-in22k lowerCAmelCase_ : Tuple = SwinConfig( image_size=3_84 , in_channels=3 , patch_size=4 , embed_dim=1_28 , depths=[2, 2, 18, 2] , num_heads=[4, 8, 16, 32] , window_size=12 , drop_path_rate=0.3 , out_features=["stage1", "stage2", "stage3", "stage4"] , ) if isinstance(a_ , a_ ): lowerCAmelCase_ : Optional[Any] = backbone_config.pop("model_type" ) lowerCAmelCase_ : Any = CONFIG_MAPPING[backbone_model_type] lowerCAmelCase_ : str = config_class.from_dict(a_ ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( f'''Backbone {backbone_config.model_type} is not a supported model and may not be compatible with MaskFormer. ''' f'''Supported model types: {",".join(self.backbones_supported )}''' ) if decoder_config is None: # fall back to https://huggingface.co/facebook/detr-resnet-50 lowerCAmelCase_ : Union[str, Any] = DetrConfig() else: # verify that the decoder is supported lowerCAmelCase_ : Optional[Any] = ( decoder_config.pop("model_type" ) if isinstance(a_ , a_ ) else decoder_config.model_type ) if decoder_type not in self.decoders_supported: raise ValueError( f'''Transformer Decoder {decoder_type} not supported, please use one of''' f''' {",".join(self.decoders_supported )}''' ) if isinstance(a_ , a_ ): lowerCAmelCase_ : Optional[int] = CONFIG_MAPPING[decoder_type] lowerCAmelCase_ : List[Any] = config_class.from_dict(a_ ) lowerCAmelCase_ : str = backbone_config lowerCAmelCase_ : Tuple = decoder_config # main feature dimension for the model lowerCAmelCase_ : str = fpn_feature_size lowerCAmelCase_ : str = mask_feature_size # initializer lowerCAmelCase_ : List[Any] = init_std lowerCAmelCase_ : Tuple = init_xavier_std # Hungarian matcher && loss lowerCAmelCase_ : int = cross_entropy_weight lowerCAmelCase_ : Dict = dice_weight lowerCAmelCase_ : int = mask_weight lowerCAmelCase_ : Any = use_auxiliary_loss lowerCAmelCase_ : Dict = no_object_weight lowerCAmelCase_ : Optional[int] = output_auxiliary_logits lowerCAmelCase_ : int = self.decoder_config.encoder_attention_heads lowerCAmelCase_ : str = self.decoder_config.num_hidden_layers super().__init__(**a_ ) @classmethod def lowerCamelCase ( cls : int , a_ : PretrainedConfig , a_ : PretrainedConfig , **a_ : Tuple ): return cls( backbone_config=a_ , decoder_config=a_ , **a_ , ) def lowerCamelCase ( self : Any ): lowerCAmelCase_ : Optional[int] = copy.deepcopy(self.__dict__ ) lowerCAmelCase_ : Optional[Any] = self.backbone_config.to_dict() lowerCAmelCase_ : Union[str, Any] = self.decoder_config.to_dict() lowerCAmelCase_ : List[str] = self.__class__.model_type return output
241
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCamelCase_ = { '''configuration_bridgetower''': [ '''BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BridgeTowerConfig''', '''BridgeTowerTextConfig''', '''BridgeTowerVisionConfig''', ], '''processing_bridgetower''': ['''BridgeTowerProcessor'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = ['''BridgeTowerImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = [ '''BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BridgeTowerForContrastiveLearning''', '''BridgeTowerForImageAndTextRetrieval''', '''BridgeTowerForMaskedLM''', '''BridgeTowerModel''', '''BridgeTowerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_bridgetower import ( BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP, BridgeTowerConfig, BridgeTowerTextConfig, BridgeTowerVisionConfig, ) from .processing_bridgetower import BridgeTowerProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_bridgetower import BridgeTowerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bridgetower import ( BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST, BridgeTowerForContrastiveLearning, BridgeTowerForImageAndTextRetrieval, BridgeTowerForMaskedLM, BridgeTowerModel, BridgeTowerPreTrainedModel, ) else: import sys lowerCamelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
253
"""simple docstring""" import re import string import numpy as np import datasets lowerCamelCase_ = ''' Returns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list. ''' lowerCamelCase_ = ''' Args: predictions: List of predicted texts. references: List of reference texts. regexes_to_ignore: List, defaults to None. Regex expressions of characters to ignore when calculating the exact matches. Note: these regexes are removed from the input data before the changes based on the options below (e.g. ignore_case, ignore_punctuation, ignore_numbers) are applied. ignore_case: Boolean, defaults to False. If true, turns everything to lowercase so that capitalization differences are ignored. ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before comparing predictions and references. ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before comparing predictions and references. Returns: exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive. Examples: >>> exact_match = datasets.load_metric("exact_match") >>> refs = ["the cat", "theater", "YELLING", "agent007"] >>> preds = ["cat?", "theater", "yelling", "agent"] >>> results = exact_match.compute(references=refs, predictions=preds) >>> print(round(results["exact_match"], 1)) 25.0 >>> exact_match = datasets.load_metric("exact_match") >>> refs = ["the cat", "theater", "YELLING", "agent007"] >>> preds = ["cat?", "theater", "yelling", "agent"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell"], ignore_case=True, ignore_punctuation=True) >>> print(round(results["exact_match"], 1)) 50.0 >>> exact_match = datasets.load_metric("exact_match") >>> refs = ["the cat", "theater", "YELLING", "agent007"] >>> preds = ["cat?", "theater", "yelling", "agent"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True) >>> print(round(results["exact_match"], 1)) 75.0 >>> exact_match = datasets.load_metric("exact_match") >>> refs = ["the cat", "theater", "YELLING", "agent007"] >>> preds = ["cat?", "theater", "yelling", "agent"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True) >>> print(round(results["exact_match"], 1)) 100.0 >>> exact_match = datasets.load_metric("exact_match") >>> refs = ["The cat sat on the mat.", "Theaters are great.", "It\'s like comparing oranges and apples."] >>> preds = ["The cat sat on the mat?", "Theaters are great.", "It\'s like comparing apples and oranges."] >>> results = exact_match.compute(references=refs, predictions=preds) >>> print(round(results["exact_match"], 1)) 33.3 ''' lowerCamelCase_ = ''' ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase_ (datasets.Metric ): def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> int: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Value("string" , id="sequence" ), } ) , reference_urls=[] , ) def _SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[Any]=None , lowerCAmelCase_ : Tuple=False , lowerCAmelCase_ : Optional[Any]=False , lowerCAmelCase_ : Optional[Any]=False , ) -> str: if regexes_to_ignore is not None: for s in regexes_to_ignore: UpperCAmelCase_ : str = np.array([re.sub(lowerCAmelCase_ , "" , lowerCAmelCase_ ) for x in predictions] ) UpperCAmelCase_ : Dict = np.array([re.sub(lowerCAmelCase_ , "" , lowerCAmelCase_ ) for x in references] ) else: UpperCAmelCase_ : int = np.asarray(lowerCAmelCase_ ) UpperCAmelCase_ : Union[str, Any] = np.asarray(lowerCAmelCase_ ) if ignore_case: UpperCAmelCase_ : Optional[Any] = np.char.lower(lowerCAmelCase_ ) UpperCAmelCase_ : int = np.char.lower(lowerCAmelCase_ ) if ignore_punctuation: UpperCAmelCase_ : Any = string.punctuation.maketrans("" , "" , string.punctuation ) UpperCAmelCase_ : Any = np.char.translate(lowerCAmelCase_ , table=lowerCAmelCase_ ) UpperCAmelCase_ : Any = np.char.translate(lowerCAmelCase_ , table=lowerCAmelCase_ ) if ignore_numbers: UpperCAmelCase_ : Dict = string.digits.maketrans("" , "" , string.digits ) UpperCAmelCase_ : Optional[Any] = np.char.translate(lowerCAmelCase_ , table=lowerCAmelCase_ ) UpperCAmelCase_ : int = np.char.translate(lowerCAmelCase_ , table=lowerCAmelCase_ ) UpperCAmelCase_ : Optional[int] = predictions == references return {"exact_match": np.mean(lowerCAmelCase_ ) * 100}
253
1
'''simple docstring''' import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # and perform gradient accumulation # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowerCAmelCase_ : Optional[int] = 16 lowerCAmelCase_ : Any = 32 def _lowerCamelCase ( lowercase : Accelerator , lowercase : int = 16 ) -> List[Any]: _a = AutoTokenizer.from_pretrained("bert-base-cased" ) _a = load_dataset("glue" , "mrpc" ) def tokenize_function(lowercase : Union[str, Any] ): # max_length=None => use the model max length (it's actually the default) _a = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=lowercase , max_length=lowercase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): _a = datasets.map( lowercase , batched=lowercase , remove_columns=["idx", "sentence1", "sentence2"] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _a = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(lowercase : Dict ): # On TPU it's best to pad everything to the same length or training will be very slow. _a = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": _a = 16 elif accelerator.mixed_precision != "no": _a = 8 else: _a = None return tokenizer.pad( lowercase , padding="longest" , max_length=lowercase , pad_to_multiple_of=lowercase , return_tensors="pt" , ) # Instantiate dataloaders. _a = DataLoader( tokenized_datasets["train"] , shuffle=lowercase , collate_fn=lowercase , batch_size=lowercase ) _a = DataLoader( tokenized_datasets["validation"] , shuffle=lowercase , collate_fn=lowercase , batch_size=lowercase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders lowerCAmelCase_ : str = mocked_dataloaders # noqa: F811 def _lowerCamelCase ( lowercase : List[Any] , lowercase : List[Any] ) -> str: if os.environ.get("TESTING_MOCKED_DATALOADERS" , lowercase ) == "1": _a = 2 # New Code # _a = int(args.gradient_accumulation_steps ) # Initialize accelerator _a = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=lowercase ) if accelerator.distributed_type == DistributedType.TPU and gradient_accumulation_steps > 1: raise NotImplementedError( "Gradient accumulation on TPUs is currently not supported. Pass `gradient_accumulation_steps=1`" ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _a = config["lr"] _a = int(config["num_epochs"] ) _a = int(config["seed"] ) _a = int(config["batch_size"] ) _a = evaluate.load("glue" , "mrpc" ) set_seed(lowercase ) _a = get_dataloaders(lowercase , lowercase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _a = AutoModelForSequenceClassification.from_pretrained("bert-base-cased" , return_dict=lowercase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). _a = model.to(accelerator.device ) # Instantiate optimizer _a = AdamW(params=model.parameters() , lr=lowercase ) # Instantiate scheduler _a = get_linear_schedule_with_warmup( optimizer=lowercase , num_warmup_steps=100 , num_training_steps=(len(lowercase ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _a = accelerator.prepare( lowercase , lowercase , lowercase , lowercase , lowercase ) # Now we train the model for epoch in range(lowercase ): model.train() for step, batch in enumerate(lowercase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(lowercase ): _a = model(**lowercase ) _a = output.loss accelerator.backward(lowercase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(lowercase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _a = model(**lowercase ) _a = outputs.logits.argmax(dim=-1 ) _a = accelerator.gather_for_metrics((predictions, batch["labels"]) ) metric.add_batch( predictions=lowercase , references=lowercase , ) _a = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'epoch {epoch}:' , lowercase ) def _lowerCamelCase ( ) -> Tuple: _a = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument( "--mixed_precision" , type=lowercase , default=lowercase , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." , ) # New Code # parser.add_argument( "--gradient_accumulation_steps" , type=lowercase , default=1 , help="The number of minibatches to be ran before gradients are accumulated." , ) parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." ) _a = parser.parse_args() _a = {"lr": 2E-5, "num_epochs": 3, "seed": 42, "batch_size": 16} training_function(lowercase , lowercase ) if __name__ == "__main__": main()
63
"""simple docstring""" def __lowerCAmelCase ( lowercase : int ) -> bool: """simple docstring""" if p < 2: raise ValueError("p should not be less than 2!" ) elif p == 2: return True snake_case : Dict = 4 snake_case : str = (1 << p) - 1 for _ in range(p - 2 ): snake_case : Any = ((s * s) - 2) % m return s == 0 if __name__ == "__main__": print(lucas_lehmer_test(7)) print(lucas_lehmer_test(11))
203
0
from ..utils import is_flax_available, is_torch_available if is_torch_available(): from .autoencoder_kl import AutoencoderKL from .controlnet import ControlNetModel from .dual_transformer_ad import DualTransformeraDModel from .modeling_utils import ModelMixin from .prior_transformer import PriorTransformer from .ta_film_transformer import TaFilmDecoder from .transformer_ad import TransformeraDModel from .unet_ad import UNetaDModel from .unet_ad import UNetaDModel from .unet_ad_condition import UNetaDConditionModel from .unet_ad_condition import UNetaDConditionModel from .vq_model import VQModel if is_flax_available(): from .controlnet_flax import FlaxControlNetModel from .unet_ad_condition_flax import FlaxUNetaDConditionModel from .vae_flax import FlaxAutoencoderKL
356
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor from ..utils import is_datasets_available from .base import PipelineTool if is_datasets_available(): from datasets import load_dataset class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): A : Optional[int] = "microsoft/speecht5_tts" A : List[Any] = ( "This is a tool that reads an English text out loud. It takes an input named `text` which should contain the " "text to read (in English) and returns a waveform object containing the sound." ) A : str = "text_reader" A : Optional[Any] = SpeechTaProcessor A : Any = SpeechTaForTextToSpeech A : Optional[Any] = SpeechTaHifiGan A : str = ["text"] A : Union[str, Any] = ["audio"] def snake_case__ ( self : List[Any] ): if self.post_processor is None: __snake_case : Tuple = """microsoft/speecht5_hifigan""" super().setup() def snake_case__ ( self : Any , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Tuple=None ): __snake_case : str = self.pre_processor(text=_lowerCAmelCase , return_tensors="""pt""" , truncation=_lowerCAmelCase ) if speaker_embeddings is None: if not is_datasets_available(): raise ImportError("""Datasets needs to be installed if not passing speaker embeddings.""" ) __snake_case : List[Any] = load_dataset("""Matthijs/cmu-arctic-xvectors""" , split="""validation""" ) __snake_case : str = torch.tensor(embeddings_dataset[73_05]["""xvector"""] ).unsqueeze(0 ) return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings} def snake_case__ ( self : List[Any] , _lowerCAmelCase : Dict ): with torch.no_grad(): return self.model.generate_speech(**_lowerCAmelCase ) def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : int ): with torch.no_grad(): return self.post_processor(_lowerCAmelCase ).cpu().detach()
20
0
'''simple docstring''' from __future__ import annotations from typing import Any class _snake_case : def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 0): UpperCAmelCase__ , UpperCAmelCase__ : List[str] = row, column UpperCAmelCase__ : str = [[default_value for c in range(_lowerCamelCase)] for r in range(_lowerCamelCase)] def __str__( self): UpperCAmelCase__ : Tuple = f'''Matrix consist of {self.row} rows and {self.column} columns\n''' # Make string identifier UpperCAmelCase__ : str = 0 for row_vector in self.array: for obj in row_vector: UpperCAmelCase__ : Optional[int] = max(_lowerCamelCase , len(str(_lowerCamelCase))) UpperCAmelCase__ : List[str] = f'''%{max_element_length}s''' # Make string and return def single_line(_lowerCamelCase) -> str: nonlocal string_format_identifier UpperCAmelCase__ : List[str] = """[""" line += ", ".join(string_format_identifier % (obj,) for obj in row_vector) line += "]" return line s += "\n".join(single_line(_lowerCamelCase) for row_vector in self.array) return s def __repr__( self): return str(self) def snake_case__ ( self , _lowerCamelCase): if not (isinstance(_lowerCamelCase , (list, tuple)) and len(_lowerCamelCase) == 2): return False elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column): return False else: return True def __getitem__( self , _lowerCamelCase): assert self.validate_indicies(_lowerCamelCase) return self.array[loc[0]][loc[1]] def __setitem__( self , _lowerCamelCase , _lowerCamelCase): assert self.validate_indicies(_lowerCamelCase) UpperCAmelCase__ : Any = value def __add__( self , _lowerCamelCase): assert isinstance(_lowerCamelCase , _lowerCamelCase) assert self.row == another.row and self.column == another.column # Add UpperCAmelCase__ : List[str] = Matrix(self.row , self.column) for r in range(self.row): for c in range(self.column): UpperCAmelCase__ : List[Any] = self[r, c] + another[r, c] return result def __neg__( self): UpperCAmelCase__ : Any = Matrix(self.row , self.column) for r in range(self.row): for c in range(self.column): UpperCAmelCase__ : List[str] = -self[r, c] return result def __sub__( self , _lowerCamelCase): return self + (-another) def __mul__( self , _lowerCamelCase): if isinstance(_lowerCamelCase , (int, float)): # Scalar multiplication UpperCAmelCase__ : Any = Matrix(self.row , self.column) for r in range(self.row): for c in range(self.column): UpperCAmelCase__ : Optional[int] = self[r, c] * another return result elif isinstance(_lowerCamelCase , _lowerCamelCase): # Matrix multiplication assert self.column == another.row UpperCAmelCase__ : Any = Matrix(self.row , another.column) for r in range(self.row): for c in range(another.column): for i in range(self.column): result[r, c] += self[r, i] * another[i, c] return result else: UpperCAmelCase__ : List[str] = f'''Unsupported type given for another ({type(_lowerCamelCase)})''' raise TypeError(_lowerCamelCase) def snake_case__ ( self): UpperCAmelCase__ : Union[str, Any] = Matrix(self.column , self.row) for r in range(self.row): for c in range(self.column): UpperCAmelCase__ : Union[str, Any] = self[r, c] return result def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase): assert isinstance(_lowerCamelCase , _lowerCamelCase) and isinstance(_lowerCamelCase , _lowerCamelCase) assert self.row == self.column == u.row == v.row # u, v should be column vector assert u.column == v.column == 1 # u, v should be column vector # Calculate UpperCAmelCase__ : Optional[Any] = v.transpose() UpperCAmelCase__ : int = (v_t * self * u)[0, 0] + 1 if numerator_factor == 0: return None # It's not invertable return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor)) # Testing if __name__ == "__main__": def _UpperCamelCase ( ): # a^(-1) UpperCAmelCase__ : Union[str, Any] = Matrix(3 , 3 , 0 ) for i in range(3 ): UpperCAmelCase__ : Any = 1 print(f'''a^(-1) is {ainv}''' ) # u, v UpperCAmelCase__ : Union[str, Any] = Matrix(3 , 1 , 0 ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : List[str] = 1, 2, -3 UpperCAmelCase__ : Union[str, Any] = Matrix(3 , 1 , 0 ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : int = 4, -2, 5 print(f'''u is {u}''' ) print(f'''v is {v}''' ) print(f'''uv^T is {u * v.transpose()}''' ) # Sherman Morrison print(f'''(a + uv^T)^(-1) is {ainv.sherman_morrison(UpperCamelCase__ , UpperCamelCase__ )}''' ) def _UpperCamelCase ( ): import doctest doctest.testmod() testa()
163
'''simple docstring''' import torch from torch import nn class _snake_case ( nn.Module ): def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=1 , _lowerCamelCase=False): super().__init__() UpperCAmelCase__ : List[Any] = n_token UpperCAmelCase__ : Tuple = d_embed UpperCAmelCase__ : str = d_proj UpperCAmelCase__ : str = cutoffs + [n_token] UpperCAmelCase__ : List[Any] = [0] + self.cutoffs UpperCAmelCase__ : Optional[Any] = div_val UpperCAmelCase__ : Optional[int] = self.cutoffs[0] UpperCAmelCase__ : Optional[int] = len(self.cutoffs) - 1 UpperCAmelCase__ : Union[str, Any] = self.shortlist_size + self.n_clusters if self.n_clusters > 0: UpperCAmelCase__ : int = nn.Parameter(torch.zeros(self.n_clusters , self.d_embed)) UpperCAmelCase__ : Optional[Any] = nn.Parameter(torch.zeros(self.n_clusters)) UpperCAmelCase__ : int = nn.ModuleList() UpperCAmelCase__ : List[Any] = nn.ParameterList() if div_val == 1: for i in range(len(self.cutoffs)): if d_proj != d_embed: self.out_projs.append(nn.Parameter(torch.FloatTensor(_lowerCamelCase , _lowerCamelCase))) else: self.out_projs.append(_lowerCamelCase) self.out_layers.append(nn.Linear(_lowerCamelCase , _lowerCamelCase)) else: for i in range(len(self.cutoffs)): UpperCAmelCase__ , UpperCAmelCase__ : List[str] = self.cutoff_ends[i], self.cutoff_ends[i + 1] UpperCAmelCase__ : Union[str, Any] = d_embed // (div_val**i) self.out_projs.append(nn.Parameter(torch.FloatTensor(_lowerCamelCase , _lowerCamelCase))) self.out_layers.append(nn.Linear(_lowerCamelCase , r_idx - l_idx)) UpperCAmelCase__ : Optional[int] = keep_order def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase): if proj is None: UpperCAmelCase__ : Dict = nn.functional.linear(_lowerCamelCase , _lowerCamelCase , bias=_lowerCamelCase) else: # if CUDA_MAJOR <= 9 and CUDA_MINOR <= 1: UpperCAmelCase__ : Optional[int] = nn.functional.linear(_lowerCamelCase , proj.t().contiguous()) UpperCAmelCase__ : List[str] = nn.functional.linear(_lowerCamelCase , _lowerCamelCase , bias=_lowerCamelCase) # else: # logit = torch.einsum('bd,de,ev->bv', (hidden, proj, weight.t())) # if bias is not None: # logit = logit + bias return logit def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=False): if labels is not None: # Shift so that tokens < n predict n UpperCAmelCase__ : Optional[int] = hidden[..., :-1, :].contiguous() UpperCAmelCase__ : int = labels[..., 1:].contiguous() UpperCAmelCase__ : List[str] = hidden.view(-1 , hidden.size(-1)) UpperCAmelCase__ : Optional[int] = labels.view(-1) if hidden.size(0) != labels.size(0): raise RuntimeError("""Input and labels should have the same size in the batch dimension.""") else: UpperCAmelCase__ : Optional[int] = hidden.view(-1 , hidden.size(-1)) if self.n_clusters == 0: UpperCAmelCase__ : Tuple = self._compute_logit(_lowerCamelCase , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0]) if labels is not None: UpperCAmelCase__ : Dict = labels != -100 UpperCAmelCase__ : Tuple = torch.zeros_like(_lowerCamelCase , dtype=hidden.dtype , device=hidden.device) UpperCAmelCase__ : List[Any] = ( -nn.functional.log_softmax(_lowerCamelCase , dim=-1)[mask].gather(1 , labels[mask].unsqueeze(1)).squeeze(1) ) else: UpperCAmelCase__ : List[str] = nn.functional.log_softmax(_lowerCamelCase , dim=-1) else: # construct weights and biases UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = [], [] for i in range(len(self.cutoffs)): if self.div_val == 1: UpperCAmelCase__ , UpperCAmelCase__ : int = self.cutoff_ends[i], self.cutoff_ends[i + 1] UpperCAmelCase__ : Dict = self.out_layers[0].weight[l_idx:r_idx] UpperCAmelCase__ : Any = self.out_layers[0].bias[l_idx:r_idx] else: UpperCAmelCase__ : Union[str, Any] = self.out_layers[i].weight UpperCAmelCase__ : Any = self.out_layers[i].bias if i == 0: UpperCAmelCase__ : Optional[Any] = torch.cat([weight_i, self.cluster_weight] , dim=0) UpperCAmelCase__ : List[Any] = torch.cat([bias_i, self.cluster_bias] , dim=0) weights.append(_lowerCamelCase) biases.append(_lowerCamelCase) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = weights[0], biases[0], self.out_projs[0] UpperCAmelCase__ : Optional[int] = self._compute_logit(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) UpperCAmelCase__ : Union[str, Any] = nn.functional.log_softmax(_lowerCamelCase , dim=1) if labels is None: UpperCAmelCase__ : str = hidden.new_empty((head_logit.size(0), self.n_token)) else: UpperCAmelCase__ : Optional[Any] = torch.zeros_like(_lowerCamelCase , dtype=hidden.dtype , device=hidden.device) UpperCAmelCase__ : Optional[int] = 0 UpperCAmelCase__ : List[str] = [0] + self.cutoffs for i in range(len(_lowerCamelCase) - 1): UpperCAmelCase__ , UpperCAmelCase__ : Dict = cutoff_values[i], cutoff_values[i + 1] if labels is not None: UpperCAmelCase__ : List[str] = (labels >= l_idx) & (labels < r_idx) UpperCAmelCase__ : str = mask_i.nonzero().squeeze() if indices_i.numel() == 0: continue UpperCAmelCase__ : List[Any] = labels.index_select(0 , _lowerCamelCase) - l_idx UpperCAmelCase__ : List[str] = head_logprob.index_select(0 , _lowerCamelCase) UpperCAmelCase__ : Optional[Any] = hidden.index_select(0 , _lowerCamelCase) else: UpperCAmelCase__ : Any = hidden if i == 0: if labels is not None: UpperCAmelCase__ : List[Any] = head_logprob_i.gather(1 , target_i[:, None]).squeeze(1) else: UpperCAmelCase__ : Tuple = head_logprob[:, : self.cutoffs[0]] else: UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : str = weights[i], biases[i], self.out_projs[i] UpperCAmelCase__ : int = self._compute_logit(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) UpperCAmelCase__ : str = nn.functional.log_softmax(_lowerCamelCase , dim=1) UpperCAmelCase__ : int = self.cutoffs[0] + i - 1 # No probability for the head cluster if labels is not None: UpperCAmelCase__ : Dict = head_logprob_i[:, cluster_prob_idx] + tail_logprob_i.gather( 1 , target_i[:, None]).squeeze(1) else: UpperCAmelCase__ : List[str] = head_logprob[:, cluster_prob_idx, None] + tail_logprob_i UpperCAmelCase__ : Tuple = logprob_i if labels is not None: if (hasattr(self , """keep_order""") and self.keep_order) or keep_order: out.index_copy_(0 , _lowerCamelCase , -logprob_i) else: out[offset : offset + logprob_i.size(0)].copy_(-logprob_i) offset += logprob_i.size(0) return out def snake_case__ ( self , _lowerCamelCase): if self.n_clusters == 0: UpperCAmelCase__ : Union[str, Any] = self._compute_logit(_lowerCamelCase , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0]) return nn.functional.log_softmax(_lowerCamelCase , dim=-1) else: # construct weights and biases UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = [], [] for i in range(len(self.cutoffs)): if self.div_val == 1: UpperCAmelCase__ , UpperCAmelCase__ : Any = self.cutoff_ends[i], self.cutoff_ends[i + 1] UpperCAmelCase__ : Union[str, Any] = self.out_layers[0].weight[l_idx:r_idx] UpperCAmelCase__ : Any = self.out_layers[0].bias[l_idx:r_idx] else: UpperCAmelCase__ : int = self.out_layers[i].weight UpperCAmelCase__ : List[str] = self.out_layers[i].bias if i == 0: UpperCAmelCase__ : List[Any] = torch.cat([weight_i, self.cluster_weight] , dim=0) UpperCAmelCase__ : Optional[int] = torch.cat([bias_i, self.cluster_bias] , dim=0) weights.append(_lowerCamelCase) biases.append(_lowerCamelCase) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : str = weights[0], biases[0], self.out_projs[0] UpperCAmelCase__ : List[Any] = self._compute_logit(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) UpperCAmelCase__ : List[Any] = hidden.new_empty((head_logit.size(0), self.n_token)) UpperCAmelCase__ : int = nn.functional.log_softmax(_lowerCamelCase , dim=1) UpperCAmelCase__ : str = [0] + self.cutoffs for i in range(len(_lowerCamelCase) - 1): UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = cutoff_values[i], cutoff_values[i + 1] if i == 0: UpperCAmelCase__ : List[Any] = head_logprob[:, : self.cutoffs[0]] else: UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = weights[i], biases[i], self.out_projs[i] UpperCAmelCase__ : Union[str, Any] = self._compute_logit(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) UpperCAmelCase__ : List[str] = nn.functional.log_softmax(_lowerCamelCase , dim=1) UpperCAmelCase__ : Union[str, Any] = head_logprob[:, -i] + tail_logprob_i UpperCAmelCase__ : Dict = logprob_i return out
163
1
import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import datasets import numpy as np import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, EvalPrediction, HfArgumentParser, PreTrainedTokenizer, TFAutoModelForSequenceClassification, TFTrainer, TFTrainingArguments, ) from transformers.utils import logging as hf_logging hf_logging.set_verbosity_info() hf_logging.enable_default_handler() hf_logging.enable_explicit_format() def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = None , ): """simple docstring""" lowercase__ : List[str] = {} if train_file is not None: lowercase__ : str = [train_file] if eval_file is not None: lowercase__ : int = [eval_file] if test_file is not None: lowercase__ : str = [test_file] lowercase__ : List[Any] = datasets.load_dataset("csv" , data_files=lowerCamelCase__ ) lowercase__ : Optional[int] = list(ds[list(files.keys() )[0]].features.keys() ) lowercase__ : Optional[Any] = features_name.pop(lowerCamelCase__ ) lowercase__ : Dict = list(set(ds[list(files.keys() )[0]][label_name] ) ) lowercase__ : Optional[Any] = {label: i for i, label in enumerate(lowerCamelCase__ )} lowercase__ : List[Any] = tokenizer.model_input_names lowercase__ : int = {} if len(lowerCamelCase__ ) == 1: for k in files.keys(): lowercase__ : int = ds[k].map( lambda lowerCamelCase__ : tokenizer.batch_encode_plus( example[features_name[0]] , truncation=lowerCamelCase__ , max_length=lowerCamelCase__ , padding="max_length" ) , batched=lowerCamelCase__ , ) elif len(lowerCamelCase__ ) == 2: for k in files.keys(): lowercase__ : str = ds[k].map( lambda lowerCamelCase__ : tokenizer.batch_encode_plus( (example[features_name[0]], example[features_name[1]]) , truncation=lowerCamelCase__ , max_length=lowerCamelCase__ , padding="max_length" , ) , batched=lowerCamelCase__ , ) def gen_train(): for ex in transformed_ds[datasets.Split.TRAIN]: lowercase__ : Optional[int] = {k: v for k, v in ex.items() if k in input_names} lowercase__ : str = labelaid[ex[label_name]] yield (d, label) def gen_val(): for ex in transformed_ds[datasets.Split.VALIDATION]: lowercase__ : List[Any] = {k: v for k, v in ex.items() if k in input_names} lowercase__ : List[Any] = labelaid[ex[label_name]] yield (d, label) def gen_test(): for ex in transformed_ds[datasets.Split.TEST]: lowercase__ : Dict = {k: v for k, v in ex.items() if k in input_names} lowercase__ : Any = labelaid[ex[label_name]] yield (d, label) lowercase__ : int = ( tf.data.Dataset.from_generator( lowerCamelCase__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TRAIN in transformed_ds else None ) if train_ds is not None: lowercase__ : Optional[int] = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) ) lowercase__ : Any = ( tf.data.Dataset.from_generator( lowerCamelCase__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.VALIDATION in transformed_ds else None ) if val_ds is not None: lowercase__ : Tuple = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) ) lowercase__ : Optional[int] = ( tf.data.Dataset.from_generator( lowerCamelCase__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TEST in transformed_ds else None ) if test_ds is not None: lowercase__ : Tuple = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) ) return train_ds, val_ds, test_ds, labelaid lowerCAmelCase__ = logging.getLogger(__name__) @dataclass class snake_case__: """simple docstring""" lowercase_ = field(metadata={"""help""": """Which column contains the label"""} ) lowercase_ = field(default=_UpperCamelCase , metadata={"""help""": """The path of the training file"""} ) lowercase_ = field(default=_UpperCamelCase , metadata={"""help""": """The path of the development file"""} ) lowercase_ = field(default=_UpperCamelCase , metadata={"""help""": """The path of the test file"""} ) lowercase_ = field( default=1_2_8 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) lowercase_ = field( default=_UpperCamelCase , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) @dataclass class snake_case__: """simple docstring""" lowercase_ = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) lowercase_ = field( default=_UpperCamelCase , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) lowercase_ = field( default=_UpperCamelCase , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) lowercase_ = field(default=_UpperCamelCase , metadata={"""help""": """Set this flag to use fast tokenization."""} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. lowercase_ = field( default=_UpperCamelCase , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) def __lowerCamelCase ( ): """simple docstring""" lowercase__ : Union[str, Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) ) lowercase__ : List[str] = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" " --overwrite_output_dir to overcome." ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO , ) logger.info( F"""n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, """ F"""16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowercase__ : Tuple = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) lowercase__ : Optional[int] = get_tfds( train_file=data_args.train_file , eval_file=data_args.dev_file , test_file=data_args.test_file , tokenizer=lowerCamelCase__ , label_column_id=data_args.label_column_id , max_seq_length=data_args.max_seq_length , ) lowercase__ : List[str] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=len(lowerCamelCase__ ) , labelaid=lowerCamelCase__ , idalabel={id: label for label, id in labelaid.items()} , finetuning_task="text-classification" , cache_dir=model_args.cache_dir , ) with training_args.strategy.scope(): lowercase__ : Union[str, Any] = TFAutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_pt=bool(".bin" in model_args.model_name_or_path ) , config=lowerCamelCase__ , cache_dir=model_args.cache_dir , ) def compute_metrics(lowerCamelCase__ ) -> Dict: lowercase__ : Dict = np.argmax(p.predictions , axis=1 ) return {"acc": (preds == p.label_ids).mean()} # Initialize our Trainer lowercase__ : List[str] = TFTrainer( model=lowerCamelCase__ , args=lowerCamelCase__ , train_dataset=lowerCamelCase__ , eval_dataset=lowerCamelCase__ , compute_metrics=lowerCamelCase__ , ) # Training if training_args.do_train: trainer.train() trainer.save_model() tokenizer.save_pretrained(training_args.output_dir ) # Evaluation lowercase__ : Optional[Any] = {} if training_args.do_eval: logger.info("*** Evaluate ***" ) lowercase__ : List[Any] = trainer.evaluate() lowercase__ : int = os.path.join(training_args.output_dir , "eval_results.txt" ) with open(lowerCamelCase__ , "w" ) as writer: logger.info("***** Eval results *****" ) for key, value in result.items(): logger.info(F""" {key} = {value}""" ) writer.write(F"""{key} = {value}\n""" ) results.update(lowerCamelCase__ ) return results if __name__ == "__main__": main()
371
from __future__ import annotations import math import random from collections.abc import Collection from typing import overload class snake_case__: """simple docstring""" def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE : Collection[float] | None = None ): if components is None: lowercase__ : List[Any] = [] lowercase__ : str = list(SCREAMING_SNAKE_CASE ) def __len__( self : Tuple ): return len(self.__components ) def __str__( self : int ): return "(" + ",".join(map(SCREAMING_SNAKE_CASE , self.__components ) ) + ")" def __add__( self : List[Any] , SCREAMING_SNAKE_CASE : Vector ): lowercase__ : Optional[Any] = len(self ) if size == len(SCREAMING_SNAKE_CASE ): lowercase__ : int = [self.__components[i] + other.component(SCREAMING_SNAKE_CASE ) for i in range(SCREAMING_SNAKE_CASE )] return Vector(SCREAMING_SNAKE_CASE ) else: raise Exception("must have the same size" ) def __sub__( self : Any , SCREAMING_SNAKE_CASE : Vector ): lowercase__ : Any = len(self ) if size == len(SCREAMING_SNAKE_CASE ): lowercase__ : Any = [self.__components[i] - other.component(SCREAMING_SNAKE_CASE ) for i in range(SCREAMING_SNAKE_CASE )] return Vector(SCREAMING_SNAKE_CASE ) else: # error case raise Exception("must have the same size" ) @overload def __mul__( self : int , SCREAMING_SNAKE_CASE : float ): ... @overload def __mul__( self : Tuple , SCREAMING_SNAKE_CASE : Vector ): ... def __mul__( self : Tuple , SCREAMING_SNAKE_CASE : float | Vector ): if isinstance(SCREAMING_SNAKE_CASE , (float, int) ): lowercase__ : Dict = [c * other for c in self.__components] return Vector(SCREAMING_SNAKE_CASE ) elif isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and len(self ) == len(SCREAMING_SNAKE_CASE ): lowercase__ : List[str] = len(self ) lowercase__ : Union[str, Any] = [self.__components[i] * other.component(SCREAMING_SNAKE_CASE ) for i in range(SCREAMING_SNAKE_CASE )] return sum(SCREAMING_SNAKE_CASE ) else: # error case raise Exception("invalid operand!" ) def snake_case ( self : Any ): return Vector(self.__components ) def snake_case ( self : Optional[int] , SCREAMING_SNAKE_CASE : int ): if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and -len(self.__components ) <= i < len(self.__components ): return self.__components[i] else: raise Exception("index out of range" ) def snake_case ( self : Optional[int] , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : float ): assert -len(self.__components ) <= pos < len(self.__components ) lowercase__ : int = value def snake_case ( self : Any ): if len(self.__components ) == 0: raise Exception("Vector is empty" ) lowercase__ : Union[str, Any] = [c**2 for c in self.__components] return math.sqrt(sum(SCREAMING_SNAKE_CASE ) ) def snake_case ( self : Tuple , SCREAMING_SNAKE_CASE : Vector , SCREAMING_SNAKE_CASE : bool = False ): lowercase__ : Optional[Any] = self * other lowercase__ : Union[str, Any] = self.euclidean_length() * other.euclidean_length() if deg: return math.degrees(math.acos(num / den ) ) else: return math.acos(num / den ) def __lowerCamelCase ( lowerCamelCase__ ): """simple docstring""" assert isinstance(lowerCamelCase__ , lowerCamelCase__ ) return Vector([0] * dimension ) def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" assert isinstance(lowerCamelCase__ , lowerCamelCase__ ) and (isinstance(lowerCamelCase__ , lowerCamelCase__ )) lowercase__ : Tuple = [0] * dimension lowercase__ : Union[str, Any] = 1 return Vector(lowerCamelCase__ ) def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" assert ( isinstance(lowerCamelCase__ , lowerCamelCase__ ) and isinstance(lowerCamelCase__ , lowerCamelCase__ ) and (isinstance(lowerCamelCase__ , (int, float) )) ) return x * scalar + y def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" random.seed(lowerCamelCase__ ) lowercase__ : Optional[Any] = [random.randint(lowerCamelCase__ , lowerCamelCase__ ) for _ in range(lowerCamelCase__ )] return Vector(lowerCamelCase__ ) class snake_case__: """simple docstring""" def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE : list[list[float]] , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ): lowercase__ : List[str] = matrix lowercase__ : int = w lowercase__ : str = h def __str__( self : int ): lowercase__ : int = "" for i in range(self.__height ): ans += "|" for j in range(self.__width ): if j < self.__width - 1: ans += str(self.__matrix[i][j] ) + "," else: ans += str(self.__matrix[i][j] ) + "|\n" return ans def __add__( self : str , SCREAMING_SNAKE_CASE : Matrix ): if self.__width == other.width() and self.__height == other.height(): lowercase__ : Union[str, Any] = [] for i in range(self.__height ): lowercase__ : int = [ self.__matrix[i][j] + other.component(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for j in range(self.__width ) ] matrix.append(SCREAMING_SNAKE_CASE ) return Matrix(SCREAMING_SNAKE_CASE , self.__width , self.__height ) else: raise Exception("matrix must have the same dimension!" ) def __sub__( self : Dict , SCREAMING_SNAKE_CASE : Matrix ): if self.__width == other.width() and self.__height == other.height(): lowercase__ : Dict = [] for i in range(self.__height ): lowercase__ : Optional[Any] = [ self.__matrix[i][j] - other.component(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for j in range(self.__width ) ] matrix.append(SCREAMING_SNAKE_CASE ) return Matrix(SCREAMING_SNAKE_CASE , self.__width , self.__height ) else: raise Exception("matrices must have the same dimension!" ) @overload def __mul__( self : Any , SCREAMING_SNAKE_CASE : float ): ... @overload def __mul__( self : Tuple , SCREAMING_SNAKE_CASE : Vector ): ... def __mul__( self : Optional[Any] , SCREAMING_SNAKE_CASE : float | Vector ): if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): # matrix-vector if len(SCREAMING_SNAKE_CASE ) == self.__width: lowercase__ : Any = zero_vector(self.__height ) for i in range(self.__height ): lowercase__ : Union[str, Any] = [ self.__matrix[i][j] * other.component(SCREAMING_SNAKE_CASE ) for j in range(self.__width ) ] ans.change_component(SCREAMING_SNAKE_CASE , sum(SCREAMING_SNAKE_CASE ) ) return ans else: raise Exception( "vector must have the same size as the " "number of columns of the matrix!" ) elif isinstance(SCREAMING_SNAKE_CASE , (int, float) ): # matrix-scalar lowercase__ : str = [ [self.__matrix[i][j] * other for j in range(self.__width )] for i in range(self.__height ) ] return Matrix(SCREAMING_SNAKE_CASE , self.__width , self.__height ) return None def snake_case ( self : Union[str, Any] ): return self.__height def snake_case ( self : Optional[Any] ): return self.__width def snake_case ( self : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ): if 0 <= x < self.__height and 0 <= y < self.__width: return self.__matrix[x][y] else: raise Exception("change_component: indices out of bounds" ) def snake_case ( self : Optional[Any] , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : float ): if 0 <= x < self.__height and 0 <= y < self.__width: lowercase__ : Union[str, Any] = value else: raise Exception("change_component: indices out of bounds" ) def snake_case ( self : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ): if self.__height != self.__width: raise Exception("Matrix is not square" ) lowercase__ : str = self.__matrix[:x] + self.__matrix[x + 1 :] for i in range(len(SCREAMING_SNAKE_CASE ) ): lowercase__ : Optional[int] = minor[i][:y] + minor[i][y + 1 :] return Matrix(SCREAMING_SNAKE_CASE , self.__width - 1 , self.__height - 1 ).determinant() def snake_case ( self : Dict , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ): if self.__height != self.__width: raise Exception("Matrix is not square" ) if 0 <= x < self.__height and 0 <= y < self.__width: return (-1) ** (x + y) * self.minor(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else: raise Exception("Indices out of bounds" ) def snake_case ( self : List[str] ): if self.__height != self.__width: raise Exception("Matrix is not square" ) if self.__height < 1: raise Exception("Matrix has no element" ) elif self.__height == 1: return self.__matrix[0][0] elif self.__height == 2: return ( self.__matrix[0][0] * self.__matrix[1][1] - self.__matrix[0][1] * self.__matrix[1][0] ) else: lowercase__ : Dict = [ self.__matrix[0][y] * self.cofactor(0 , SCREAMING_SNAKE_CASE ) for y in range(self.__width ) ] return sum(SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( lowerCamelCase__ ): """simple docstring""" lowercase__ : list[list[float]] = [[0] * n for _ in range(lowerCamelCase__ )] return Matrix(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" random.seed(lowerCamelCase__ ) lowercase__ : list[list[float]] = [ [random.randint(lowerCamelCase__ , lowerCamelCase__ ) for _ in range(lowerCamelCase__ )] for _ in range(lowerCamelCase__ ) ] return Matrix(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ )
121
0