code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
import argparse import os import gluonnlp as nlp import mxnet as mx import numpy as np import torch from gluonnlp.base import get_home_dir from gluonnlp.model.bert import BERTEncoder from gluonnlp.model.utils import _load_vocab from gluonnlp.vocab import Vocab from packaging import version from torch import nn from transformers import BertConfig, BertForMaskedLM, BertModel, RobertaTokenizer from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging if version.parse(nlp.__version__) != version.parse('''0.8.3'''): raise Exception('''requires gluonnlp == 0.8.3''') if version.parse(mx.__version__) != version.parse('''1.5.0'''): raise Exception('''requires mxnet == 1.5.0''') logging.set_verbosity_info() lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = '''The Nymphenburg Palace is a beautiful palace in Munich!''' def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase ) -> Union[str, Any]: """simple docstring""" snake_case_ : str = { '''attention_cell''': '''multi_head''', '''num_layers''': 4, '''units''': 1_024, '''hidden_size''': 768, '''max_length''': 512, '''num_heads''': 8, '''scaled''': True, '''dropout''': 0.1, '''use_residual''': True, '''embed_size''': 1_024, '''embed_dropout''': 0.1, '''word_embed''': None, '''layer_norm_eps''': 1E-5, '''token_type_vocab_size''': 2, } snake_case_ : Dict = bort_4_8_768_1024_hparams # Let's construct the original Bort model here # Taken from official BERT implementation, see: # https://github.com/alexa/bort/blob/master/bort/bort.py snake_case_ : List[Any] = BERTEncoder( attention_cell=predefined_args['''attention_cell'''] , num_layers=predefined_args['''num_layers'''] , units=predefined_args['''units'''] , hidden_size=predefined_args['''hidden_size'''] , max_length=predefined_args['''max_length'''] , num_heads=predefined_args['''num_heads'''] , scaled=predefined_args['''scaled'''] , dropout=predefined_args['''dropout'''] , output_attention=_UpperCamelCase , output_all_encodings=_UpperCamelCase , use_residual=predefined_args['''use_residual'''] , activation=predefined_args.get('''activation''' , '''gelu''' ) , layer_norm_eps=predefined_args.get('''layer_norm_eps''' , _UpperCamelCase ) , ) # Vocab information needs to be fetched first # It's the same as RoBERTa, so RobertaTokenizer can be used later snake_case_ : Optional[int] = '''openwebtext_ccnews_stories_books_cased''' # Specify download folder to Gluonnlp's vocab snake_case_ : Optional[Any] = os.path.join(get_home_dir() , '''models''' ) snake_case_ : Any = _load_vocab(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , cls=_UpperCamelCase ) snake_case_ : str = nlp.model.BERTModel( _UpperCamelCase , len(_UpperCamelCase ) , units=predefined_args['''units'''] , embed_size=predefined_args['''embed_size'''] , embed_dropout=predefined_args['''embed_dropout'''] , word_embed=predefined_args['''word_embed'''] , use_pooler=_UpperCamelCase , use_token_type_embed=_UpperCamelCase , token_type_vocab_size=predefined_args['''token_type_vocab_size'''] , use_classifier=_UpperCamelCase , use_decoder=_UpperCamelCase , ) original_bort.load_parameters(_UpperCamelCase , cast_dtype=_UpperCamelCase , ignore_extra=_UpperCamelCase ) snake_case_ : Optional[int] = original_bort._collect_params_with_prefix() # Build our config 🤗 snake_case_ : int = { '''architectures''': ['''BertForMaskedLM'''], '''attention_probs_dropout_prob''': predefined_args['''dropout'''], '''hidden_act''': '''gelu''', '''hidden_dropout_prob''': predefined_args['''dropout'''], '''hidden_size''': predefined_args['''embed_size'''], '''initializer_range''': 0.02, '''intermediate_size''': predefined_args['''hidden_size'''], '''layer_norm_eps''': predefined_args['''layer_norm_eps'''], '''max_position_embeddings''': predefined_args['''max_length'''], '''model_type''': '''bort''', '''num_attention_heads''': predefined_args['''num_heads'''], '''num_hidden_layers''': predefined_args['''num_layers'''], '''pad_token_id''': 1, # 2 = BERT, 1 = RoBERTa '''type_vocab_size''': 1, # 2 = BERT, 1 = RoBERTa '''vocab_size''': len(_UpperCamelCase ), } snake_case_ : Optional[Any] = BertConfig.from_dict(_UpperCamelCase ) snake_case_ : Union[str, Any] = BertForMaskedLM(_UpperCamelCase ) hf_bort_model.eval() # Parameter mapping table (Gluonnlp to Transformers) # * denotes layer index # # | Gluon Parameter | Transformers Parameter # | -------------------------------------------------------------- | ---------------------- # | `encoder.layer_norm.beta` | `bert.embeddings.LayerNorm.bias` # | `encoder.layer_norm.gamma` | `bert.embeddings.LayerNorm.weight` # | `encoder.position_weight` | `bert.embeddings.position_embeddings.weight` # | `word_embed.0.weight` | `bert.embeddings.word_embeddings.weight` # | `encoder.transformer_cells.*.attention_cell.proj_key.bias` | `bert.encoder.layer.*.attention.self.key.bias` # | `encoder.transformer_cells.*.attention_cell.proj_key.weight` | `bert.encoder.layer.*.attention.self.key.weight` # | `encoder.transformer_cells.*.attention_cell.proj_query.bias` | `bert.encoder.layer.*.attention.self.query.bias` # | `encoder.transformer_cells.*.attention_cell.proj_query.weight` | `bert.encoder.layer.*.attention.self.query.weight` # | `encoder.transformer_cells.*.attention_cell.proj_value.bias` | `bert.encoder.layer.*.attention.self.value.bias` # | `encoder.transformer_cells.*.attention_cell.proj_value.weight` | `bert.encoder.layer.*.attention.self.value.weight` # | `encoder.transformer_cells.*.ffn.ffn_2.bias` | `bert.encoder.layer.*.attention.output.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_2.weight` | `bert.encoder.layer.*.attention.output.dense.weight` # | `encoder.transformer_cells.*.layer_norm.beta` | `bert.encoder.layer.*.attention.output.LayerNorm.bias` # | `encoder.transformer_cells.*.layer_norm.gamma` | `bert.encoder.layer.*.attention.output.LayerNorm.weight` # | `encoder.transformer_cells.*.ffn.ffn_1.bias` | `bert.encoder.layer.*.intermediate.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_1.weight` | `bert.encoder.layer.*.intermediate.dense.weight` # | `encoder.transformer_cells.*.ffn.layer_norm.beta` | `bert.encoder.layer.*.output.LayerNorm.bias` # | `encoder.transformer_cells.*.ffn.layer_norm.gamma` | `bert.encoder.layer.*.output.LayerNorm.weight` # | `encoder.transformer_cells.*.proj.bias` | `bert.encoder.layer.*.output.dense.bias` # | `encoder.transformer_cells.*.proj.weight` | `bert.encoder.layer.*.output.dense.weight` # Helper function to convert MXNET Arrays to PyTorch def to_torch(_UpperCamelCase ) -> nn.Parameter: return nn.Parameter(torch.FloatTensor(mx_array.data().asnumpy() ) ) # Check param shapes and map new HF param back def check_and_map_params(_UpperCamelCase , _UpperCamelCase ): snake_case_ : Optional[Any] = hf_param.shape snake_case_ : Any = to_torch(params[gluon_param] ) snake_case_ : Any = gluon_param.shape assert ( shape_hf == shape_gluon ), f'''The gluon parameter {gluon_param} has shape {shape_gluon}, but expects shape {shape_hf} for Transformers''' return gluon_param snake_case_ : str = check_and_map_params( hf_bort_model.bert.embeddings.word_embeddings.weight , '''word_embed.0.weight''' ) snake_case_ : Any = check_and_map_params( hf_bort_model.bert.embeddings.position_embeddings.weight , '''encoder.position_weight''' ) snake_case_ : List[str] = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.bias , '''encoder.layer_norm.beta''' ) snake_case_ : Dict = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.weight , '''encoder.layer_norm.gamma''' ) # Inspired by RoBERTa conversion script, we just zero them out (Bort does not use them) snake_case_ : Union[str, Any] = torch.zeros_like( hf_bort_model.bert.embeddings.token_type_embeddings.weight.data ) for i in range(hf_bort_config.num_hidden_layers ): snake_case_ : BertLayer = hf_bort_model.bert.encoder.layer[i] # self attention snake_case_ : BertSelfAttention = layer.attention.self snake_case_ : Dict = check_and_map_params( self_attn.key.bias.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_key.bias''' ) snake_case_ : List[Any] = check_and_map_params( self_attn.key.weight.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_key.weight''' ) snake_case_ : Union[str, Any] = check_and_map_params( self_attn.query.bias.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_query.bias''' ) snake_case_ : Union[str, Any] = check_and_map_params( self_attn.query.weight.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_query.weight''' ) snake_case_ : str = check_and_map_params( self_attn.value.bias.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_value.bias''' ) snake_case_ : Optional[Any] = check_and_map_params( self_attn.value.weight.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_value.weight''' ) # self attention output snake_case_ : BertSelfOutput = layer.attention.output snake_case_ : List[str] = check_and_map_params( self_output.dense.bias , f'''encoder.transformer_cells.{i}.proj.bias''' ) snake_case_ : int = check_and_map_params( self_output.dense.weight , f'''encoder.transformer_cells.{i}.proj.weight''' ) snake_case_ : Tuple = check_and_map_params( self_output.LayerNorm.bias , f'''encoder.transformer_cells.{i}.layer_norm.beta''' ) snake_case_ : Any = check_and_map_params( self_output.LayerNorm.weight , f'''encoder.transformer_cells.{i}.layer_norm.gamma''' ) # intermediate snake_case_ : BertIntermediate = layer.intermediate snake_case_ : List[Any] = check_and_map_params( intermediate.dense.bias , f'''encoder.transformer_cells.{i}.ffn.ffn_1.bias''' ) snake_case_ : List[Any] = check_and_map_params( intermediate.dense.weight , f'''encoder.transformer_cells.{i}.ffn.ffn_1.weight''' ) # output snake_case_ : BertOutput = layer.output snake_case_ : int = check_and_map_params( bert_output.dense.bias , f'''encoder.transformer_cells.{i}.ffn.ffn_2.bias''' ) snake_case_ : Dict = check_and_map_params( bert_output.dense.weight , f'''encoder.transformer_cells.{i}.ffn.ffn_2.weight''' ) snake_case_ : Dict = check_and_map_params( bert_output.LayerNorm.bias , f'''encoder.transformer_cells.{i}.ffn.layer_norm.beta''' ) snake_case_ : Tuple = check_and_map_params( bert_output.LayerNorm.weight , f'''encoder.transformer_cells.{i}.ffn.layer_norm.gamma''' ) # Save space and energy 🎄 hf_bort_model.half() # Compare output of both models snake_case_ : int = RobertaTokenizer.from_pretrained('''roberta-base''' ) snake_case_ : str = tokenizer.encode_plus(_UpperCamelCase )['''input_ids'''] # Get gluon output snake_case_ : Optional[Any] = mx.nd.array([input_ids] ) snake_case_ : str = original_bort(inputs=_UpperCamelCase , token_types=[] ) # Get Transformer output (save and reload model again) hf_bort_model.save_pretrained(_UpperCamelCase ) snake_case_ : str = BertModel.from_pretrained(_UpperCamelCase ) hf_bort_model.eval() snake_case_ : Dict = tokenizer.encode_plus(_UpperCamelCase , return_tensors='''pt''' ) snake_case_ : List[Any] = hf_bort_model(**_UpperCamelCase )[0] snake_case_ : List[Any] = output_gluon[0].asnumpy() snake_case_ : Tuple = output_hf[0].detach().numpy() snake_case_ : Tuple = np.max(np.abs(hf_layer - gluon_layer ) ).item() snake_case_ : Tuple = np.allclose(_UpperCamelCase , _UpperCamelCase , atol=1E-3 ) if success: print('''✔️ Both model do output the same tensors''' ) else: print('''❌ Both model do **NOT** output the same tensors''' ) print('''Absolute difference is:''' , _UpperCamelCase ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--bort_checkpoint_path''', default=None, type=str, required=True, help='''Path the official Bort params file.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) lowerCAmelCase_ = parser.parse_args() convert_bort_checkpoint_to_pytorch(args.bort_checkpoint_path, args.pytorch_dump_folder_path)
279
import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand lowerCAmelCase_ = ( '''4S 3H 2C 7S 5H''', '''9D 8H 2C 6S 7H''', '''2D 6D 9D TH 7D''', '''TC 8C 2S JH 6C''', '''JH 8S TH AH QH''', '''TS KS 5S 9S AC''', '''KD 6S 9D TH AD''', '''KS 8D 4D 9S 4S''', # pair '''8C 4S KH JS 4D''', # pair '''QH 8H KD JH 8S''', # pair '''KC 4H KS 2H 8D''', # pair '''KD 4S KC 3H 8S''', # pair '''AH 8S AS KC JH''', # pair '''3H 4C 4H 3S 2H''', # 2 pairs '''5S 5D 2C KH KH''', # 2 pairs '''3C KH 5D 5S KH''', # 2 pairs '''AS 3C KH AD KH''', # 2 pairs '''7C 7S 3S 7H 5S''', # 3 of a kind '''7C 7S KH 2H 7H''', # 3 of a kind '''AC KH QH AH AS''', # 3 of a kind '''2H 4D 3C AS 5S''', # straight (low ace) '''3C 5C 4C 2C 6H''', # straight '''6S 8S 7S 5H 9H''', # straight '''JS QS 9H TS KH''', # straight '''QC KH TS JS AH''', # straight (high ace) '''8C 9C 5C 3C TC''', # flush '''3S 8S 9S 5S KS''', # flush '''4C 5C 9C 8C KC''', # flush '''JH 8H AH KH QH''', # flush '''3D 2H 3H 2C 2D''', # full house '''2H 2C 3S 3H 3D''', # full house '''KH KC 3S 3H 3D''', # full house '''JC 6H JS JD JH''', # 4 of a kind '''JC 7H JS JD JH''', # 4 of a kind '''JC KH JS JD JH''', # 4 of a kind '''2S AS 4S 5S 3S''', # straight flush (low ace) '''2D 6D 3D 4D 5D''', # straight flush '''5C 6C 3C 7C 4C''', # straight flush '''JH 9H TH KH QH''', # straight flush '''JH AH TH KH QH''', # royal flush (high ace straight flush) ) lowerCAmelCase_ = ( ('''2H 3H 4H 5H 6H''', '''KS AS TS QS JS''', '''Loss'''), ('''2H 3H 4H 5H 6H''', '''AS AD AC AH JD''', '''Win'''), ('''AS AH 2H AD AC''', '''JS JD JC JH 3D''', '''Win'''), ('''2S AH 2H AS AC''', '''JS JD JC JH AD''', '''Loss'''), ('''2S AH 2H AS AC''', '''2H 3H 5H 6H 7H''', '''Win'''), ('''AS 3S 4S 8S 2S''', '''2H 3H 5H 6H 7H''', '''Win'''), ('''2H 3H 5H 6H 7H''', '''2S 3H 4H 5S 6C''', '''Win'''), ('''2S 3H 4H 5S 6C''', '''3D 4C 5H 6H 2S''', '''Tie'''), ('''2S 3H 4H 5S 6C''', '''AH AC 5H 6H AS''', '''Win'''), ('''2S 2H 4H 5S 4C''', '''AH AC 5H 6H AS''', '''Loss'''), ('''2S 2H 4H 5S 4C''', '''AH AC 5H 6H 7S''', '''Win'''), ('''6S AD 7H 4S AS''', '''AH AC 5H 6H 7S''', '''Loss'''), ('''2S AH 4H 5S KC''', '''AH AC 5H 6H 7S''', '''Loss'''), ('''2S 3H 6H 7S 9C''', '''7H 3C TH 6H 9S''', '''Loss'''), ('''4S 5H 6H TS AC''', '''3S 5H 6H TS AC''', '''Win'''), ('''2S AH 4H 5S 6C''', '''AD 4C 5H 6H 2C''', '''Tie'''), ('''AS AH 3H AD AC''', '''AS AH 2H AD AC''', '''Win'''), ('''AH AC 5H 5C QS''', '''AH AC 5H 5C KS''', '''Loss'''), ('''AH AC 5H 5C QS''', '''KH KC 5H 5C QS''', '''Win'''), ('''7C 7S KH 2H 7H''', '''3C 3S AH 2H 3H''', '''Win'''), ('''3C 3S AH 2H 3H''', '''7C 7S KH 2H 7H''', '''Loss'''), ('''6H 5H 4H 3H 2H''', '''5H 4H 3H 2H AH''', '''Win'''), ('''5H 4H 3H 2H AH''', '''5H 4H 3H 2H AH''', '''Tie'''), ('''5H 4H 3H 2H AH''', '''6H 5H 4H 3H 2H''', '''Loss'''), ('''AH AD KS KC AC''', '''AH KD KH AC KC''', '''Win'''), ('''2H 4D 3C AS 5S''', '''2H 4D 3C 6S 5S''', '''Loss'''), ('''2H 3S 3C 3H 2S''', '''3S 3C 2S 2H 2D''', '''Win'''), ('''4D 6D 5D 2D JH''', '''3S 8S 3H TC KH''', '''Loss'''), ('''4S 6C 8S 3S 7S''', '''AD KS 2D 7D 7C''', '''Loss'''), ('''6S 4C 7H 8C 3H''', '''5H JC AH 9D 9C''', '''Loss'''), ('''9D 9H JH TC QH''', '''3C 2S JS 5C 7H''', '''Win'''), ('''2H TC 8S AD 9S''', '''4H TS 7H 2C 5C''', '''Win'''), ('''9D 3S 2C 7S 7C''', '''JC TD 3C TC 9H''', '''Loss'''), ) lowerCAmelCase_ = ( ('''2H 3H 4H 5H 6H''', True), ('''AS AH 2H AD AC''', False), ('''2H 3H 5H 6H 7H''', True), ('''KS AS TS QS JS''', True), ('''8H 9H QS JS TH''', False), ('''AS 3S 4S 8S 2S''', True), ) lowerCAmelCase_ = ( ('''2H 3H 4H 5H 6H''', True), ('''AS AH 2H AD AC''', False), ('''2H 3H 5H 6H 7H''', False), ('''KS AS TS QS JS''', True), ('''8H 9H QS JS TH''', True), ) lowerCAmelCase_ = ( ('''2H 4D 3C AS 5S''', True, [5, 4, 3, 2, 1_4]), ('''2H 5D 3C AS 5S''', False, [1_4, 5, 5, 3, 2]), ('''JH QD KC AS TS''', False, [1_4, 1_3, 1_2, 1_1, 1_0]), ('''9D 3S 2C 7S 7C''', False, [9, 7, 7, 3, 2]), ) lowerCAmelCase_ = ( ('''JH AH TH KH QH''', 0), ('''JH 9H TH KH QH''', 0), ('''JC KH JS JD JH''', 7), ('''KH KC 3S 3H 3D''', 6), ('''8C 9C 5C 3C TC''', 0), ('''JS QS 9H TS KH''', 0), ('''7C 7S KH 2H 7H''', 3), ('''3C KH 5D 5S KH''', 2), ('''QH 8H KD JH 8S''', 1), ('''2D 6D 9D TH 7D''', 0), ) lowerCAmelCase_ = ( ('''JH AH TH KH QH''', 2_3), ('''JH 9H TH KH QH''', 2_2), ('''JC KH JS JD JH''', 2_1), ('''KH KC 3S 3H 3D''', 2_0), ('''8C 9C 5C 3C TC''', 1_9), ('''JS QS 9H TS KH''', 1_8), ('''7C 7S KH 2H 7H''', 1_7), ('''3C KH 5D 5S KH''', 1_6), ('''QH 8H KD JH 8S''', 1_5), ('''2D 6D 9D TH 7D''', 1_4), ) def lowerCamelCase_ ( ) -> Dict: """simple docstring""" snake_case_ , snake_case_ : Any = randrange(len(_UpperCamelCase ) ), randrange(len(_UpperCamelCase ) ) snake_case_ : Any = ['''Loss''', '''Tie''', '''Win'''][(play >= oppo) + (play > oppo)] snake_case_ , snake_case_ : Tuple = SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def lowerCamelCase_ ( _UpperCamelCase = 100 ) -> str: """simple docstring""" return (generate_random_hand() for _ in range(_UpperCamelCase )) @pytest.mark.parametrize('''hand, expected''' , _UpperCamelCase ) def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase ) -> int: """simple docstring""" assert PokerHand(_UpperCamelCase )._is_flush() == expected @pytest.mark.parametrize('''hand, expected''' , _UpperCamelCase ) def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase ) -> Optional[int]: """simple docstring""" assert PokerHand(_UpperCamelCase )._is_straight() == expected @pytest.mark.parametrize('''hand, expected, card_values''' , _UpperCamelCase ) def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Tuple: """simple docstring""" snake_case_ : str = PokerHand(_UpperCamelCase ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize('''hand, expected''' , _UpperCamelCase ) def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase ) -> int: """simple docstring""" assert PokerHand(_UpperCamelCase )._is_same_kind() == expected @pytest.mark.parametrize('''hand, expected''' , _UpperCamelCase ) def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase ) -> Optional[int]: """simple docstring""" assert PokerHand(_UpperCamelCase )._hand_type == expected @pytest.mark.parametrize('''hand, other, expected''' , _UpperCamelCase ) def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Any: """simple docstring""" assert PokerHand(_UpperCamelCase ).compare_with(PokerHand(_UpperCamelCase ) ) == expected @pytest.mark.parametrize('''hand, other, expected''' , generate_random_hands() ) def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Optional[Any]: """simple docstring""" assert PokerHand(_UpperCamelCase ).compare_with(PokerHand(_UpperCamelCase ) ) == expected def lowerCamelCase_ ( ) -> str: """simple docstring""" snake_case_ : Dict = [PokerHand(_UpperCamelCase ) for hand in SORTED_HANDS] snake_case_ : str = poker_hands.copy() shuffle(_UpperCamelCase ) snake_case_ : List[str] = chain(sorted(_UpperCamelCase ) ) for index, hand in enumerate(_UpperCamelCase ): assert hand == poker_hands[index] def lowerCamelCase_ ( ) -> Dict: """simple docstring""" snake_case_ : Union[str, Any] = [PokerHand('''2D AC 3H 4H 5S''' ), PokerHand('''2S 3H 4H 5S 6C''' )] pokerhands.sort(reverse=_UpperCamelCase ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def lowerCamelCase_ ( ) -> str: """simple docstring""" snake_case_ : Dict = PokerHand('''2C 4S AS 3D 5C''' ) snake_case_ : str = True snake_case_ : Tuple = [5, 4, 3, 2, 14] for _ in range(10 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def lowerCamelCase_ ( ) -> List[str]: """simple docstring""" snake_case_ : List[str] = 0 snake_case_ : Union[str, Any] = os.path.abspath(os.path.dirname(_UpperCamelCase ) ) snake_case_ : Dict = os.path.join(_UpperCamelCase , '''poker_hands.txt''' ) with open(_UpperCamelCase ) as file_hand: for line in file_hand: snake_case_ : Dict = line[:14].strip() snake_case_ : List[str] = line[15:].strip() snake_case_ , snake_case_ : str = PokerHand(_UpperCamelCase ), PokerHand(_UpperCamelCase ) snake_case_ : int = player.compare_with(_UpperCamelCase ) if output == "Win": answer += 1 assert answer == 376
279
1
def lowerCamelCase ( a_ ) -> list[list[float]]: lowerCAmelCase_ = [] for data in source_data: for i, el in enumerate(a_ ): if len(a_ ) < i + 1: data_lists.append([] ) data_lists[i].append(float(a_ ) ) return data_lists def lowerCamelCase ( a_ , a_ ) -> list[list[float]]: lowerCAmelCase_ = [] for dlist, weight in zip(a_ , a_ ): lowerCAmelCase_ = min(a_ ) lowerCAmelCase_ = max(a_ ) lowerCAmelCase_ = [] # for weight 0 score is 1 - actual score if weight == 0: for item in dlist: try: score.append(1 - ((item - mind) / (maxd - mind)) ) except ZeroDivisionError: score.append(1 ) elif weight == 1: for item in dlist: try: score.append((item - mind) / (maxd - mind) ) except ZeroDivisionError: score.append(0 ) # weight not 0 or 1 else: lowerCAmelCase_ = F'''Invalid weight of {weight:f} provided''' raise ValueError(a_ ) score_lists.append(a_ ) return score_lists def lowerCamelCase ( a_ ) -> list[float]: lowerCAmelCase_ = [0 for i in range(len(score_lists[0] ) )] for slist in score_lists: for j, ele in enumerate(a_ ): lowerCAmelCase_ = final_scores[j] + ele return final_scores def lowerCamelCase ( a_ , a_ ) -> list[list[float]]: lowerCAmelCase_ = get_data(a_ ) lowerCAmelCase_ = calculate_each_score(a_ , a_ ) lowerCAmelCase_ = generate_final_scores(a_ ) # append scores to source data for i, ele in enumerate(a_ ): source_data[i].append(a_ ) return source_data
14
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class a_ ( a_ , a_ , a_ , unittest.TestCase ): '''simple docstring''' __a: int = StableDiffusionInpaintPipeline __a: int = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS __a: Tuple = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS __a: int = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess __a: List[str] = frozenset([] ) def _lowercase ( self ) -> Dict: '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase_ = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=9 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=3_2 , attention_head_dim=(2, 4) , use_linear_projection=lowercase_ , ) lowerCAmelCase_ = PNDMScheduler(skip_prk_steps=lowercase_ ) torch.manual_seed(0 ) lowerCAmelCase_ = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , sample_size=1_2_8 , ) torch.manual_seed(0 ) lowerCAmelCase_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , hidden_act='gelu' , projection_dim=5_1_2 , ) lowerCAmelCase_ = CLIPTextModel(lowercase_ ) lowerCAmelCase_ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) lowerCAmelCase_ = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def _lowercase ( self , lowercase_ , lowercase_=0 ) -> int: '''simple docstring''' lowerCAmelCase_ = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(lowercase_ ) ).to(lowercase_ ) lowerCAmelCase_ = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCAmelCase_ = Image.fromarray(np.uinta(lowercase_ ) ).convert('RGB' ).resize((6_4, 6_4) ) lowerCAmelCase_ = Image.fromarray(np.uinta(image + 4 ) ).convert('RGB' ).resize((6_4, 6_4) ) if str(lowercase_ ).startswith('mps' ): lowerCAmelCase_ = torch.manual_seed(lowercase_ ) else: lowerCAmelCase_ = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ ) lowerCAmelCase_ = { 'prompt': 'A painting of a squirrel eating a burger', 'image': init_image, 'mask_image': mask_image, 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def _lowercase ( self ) -> str: '''simple docstring''' lowerCAmelCase_ = 'cpu' # ensure determinism for the device-dependent torch.Generator lowerCAmelCase_ = self.get_dummy_components() lowerCAmelCase_ = StableDiffusionInpaintPipeline(**lowercase_ ) lowerCAmelCase_ = sd_pipe.to(lowercase_ ) sd_pipe.set_progress_bar_config(disable=lowercase_ ) lowerCAmelCase_ = self.get_dummy_inputs(lowercase_ ) lowerCAmelCase_ = sd_pipe(**lowercase_ ).images lowerCAmelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) lowerCAmelCase_ = np.array([0.47_27, 0.57_35, 0.39_41, 0.54_46, 0.59_26, 0.43_94, 0.50_62, 0.46_54, 0.44_76] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _lowercase ( self ) -> Any: '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class a_ ( unittest.TestCase ): '''simple docstring''' def _lowercase ( self ) -> Tuple: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowercase ( self ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-inpaint/init_image.png' ) lowerCAmelCase_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png' ) lowerCAmelCase_ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint' '/yellow_cat_sitting_on_a_park_bench.npy' ) lowerCAmelCase_ = 'stabilityai/stable-diffusion-2-inpainting' lowerCAmelCase_ = StableDiffusionInpaintPipeline.from_pretrained(lowercase_ , safety_checker=lowercase_ ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) pipe.enable_attention_slicing() lowerCAmelCase_ = 'Face of a yellow cat, high resolution, sitting on a park bench' lowerCAmelCase_ = torch.manual_seed(0 ) lowerCAmelCase_ = pipe( prompt=lowercase_ , image=lowercase_ , mask_image=lowercase_ , generator=lowercase_ , output_type='np' , ) lowerCAmelCase_ = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert np.abs(expected_image - image ).max() < 9e-3 def _lowercase ( self ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-inpaint/init_image.png' ) lowerCAmelCase_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png' ) lowerCAmelCase_ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint' '/yellow_cat_sitting_on_a_park_bench_fp16.npy' ) lowerCAmelCase_ = 'stabilityai/stable-diffusion-2-inpainting' lowerCAmelCase_ = StableDiffusionInpaintPipeline.from_pretrained( lowercase_ , torch_dtype=torch.floataa , safety_checker=lowercase_ , ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) pipe.enable_attention_slicing() lowerCAmelCase_ = 'Face of a yellow cat, high resolution, sitting on a park bench' lowerCAmelCase_ = torch.manual_seed(0 ) lowerCAmelCase_ = pipe( prompt=lowercase_ , image=lowercase_ , mask_image=lowercase_ , generator=lowercase_ , output_type='np' , ) lowerCAmelCase_ = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert np.abs(expected_image - image ).max() < 5e-1 def _lowercase ( self ) -> List[str]: '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowerCAmelCase_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-inpaint/init_image.png' ) lowerCAmelCase_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png' ) lowerCAmelCase_ = 'stabilityai/stable-diffusion-2-inpainting' lowerCAmelCase_ = PNDMScheduler.from_pretrained(lowercase_ , subfolder='scheduler' ) lowerCAmelCase_ = StableDiffusionInpaintPipeline.from_pretrained( lowercase_ , safety_checker=lowercase_ , scheduler=lowercase_ , torch_dtype=torch.floataa , ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() lowerCAmelCase_ = 'Face of a yellow cat, high resolution, sitting on a park bench' lowerCAmelCase_ = torch.manual_seed(0 ) lowerCAmelCase_ = pipe( prompt=lowercase_ , image=lowercase_ , mask_image=lowercase_ , generator=lowercase_ , num_inference_steps=2 , output_type='np' , ) lowerCAmelCase_ = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.65 * 1_0**9
14
1
'''simple docstring''' import argparse import fairseq import torch from torch import nn from transformers import ( MBartaaTokenizer, MBartConfig, MBartForCausalLM, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() __snake_case = logging.get_logger(__name__) __snake_case = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''lm_head''', '''mask_emb''': '''masked_spec_embed''', } __snake_case = [ '''lm_head''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', ] def a ( __a , __a , __a , __a , __a ) -> Dict: '''simple docstring''' for attribute in key.split('''.''' ): UpperCamelCase__ :int = getattr(__a , __a ) if weight_type is not None: UpperCamelCase__ :Tuple = getattr(__a , __a ).shape else: UpperCamelCase__ :Union[str, Any] = hf_pointer.shape assert hf_shape == value.shape, ( f'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' f''' {value.shape} for {full_name}''' ) if weight_type == "weight": UpperCamelCase__ :str = value elif weight_type == "weight_g": UpperCamelCase__ :int = value elif weight_type == "weight_v": UpperCamelCase__ :List[str] = value elif weight_type == "bias": UpperCamelCase__ :Union[str, Any] = value else: UpperCamelCase__ :Dict = value logger.info(f'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def a ( __a , __a ) -> Any: '''simple docstring''' UpperCamelCase__ :Tuple = [] UpperCamelCase__ :str = fairseq_model.state_dict() UpperCamelCase__ :List[Any] = hf_model.feature_extractor UpperCamelCase__ :Dict = hf_model.adapter for name, value in fairseq_dict.items(): UpperCamelCase__ :Tuple = False if "conv_layers" in name: load_conv_layer( __a , __a , __a , __a , hf_model.config.feat_extract_norm == '''group''' , ) UpperCamelCase__ :Any = True elif any(x in name for x in ['''adaptor''', '''w2v_encoder.proj.''', '''w2v_proj_ln.'''] ): load_adapter(__a , __a , __a , __a ) UpperCamelCase__ :List[Any] = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: UpperCamelCase__ :Tuple = True if "*" in mapped_key: UpperCamelCase__ :Any = name.split(__a )[0].split('''.''' )[-2] UpperCamelCase__ :Optional[Any] = mapped_key.replace('''*''' , __a ) if "weight_g" in name: UpperCamelCase__ :List[Any] = '''weight_g''' elif "weight_v" in name: UpperCamelCase__ :Optional[Any] = '''weight_v''' elif "bias" in name: UpperCamelCase__ :Tuple = '''bias''' elif "weight" in name: UpperCamelCase__ :Optional[Any] = '''weight''' else: UpperCamelCase__ :str = None set_recursively(__a , __a , __a , __a , __a ) continue if not is_used: unused_weights.append(__a ) logger.warning(f'''Unused weights: {unused_weights}''' ) def a ( __a , __a , __a , __a , __a ) -> Optional[int]: '''simple docstring''' UpperCamelCase__ :int = full_name.split('''conv_layers.''' )[-1] UpperCamelCase__ :str = name.split('''.''' ) UpperCamelCase__ :int = int(items[0] ) UpperCamelCase__ :Optional[int] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) UpperCamelCase__ :Any = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) UpperCamelCase__ :List[Any] = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) UpperCamelCase__ :Any = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) UpperCamelCase__ :int = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(__a ) def a ( __a , __a , __a , __a ) -> Tuple: '''simple docstring''' UpperCamelCase__ :Tuple = full_name.split('''adaptor.''' )[-1] UpperCamelCase__ :int = name.split('''.''' ) if items[1].isdigit(): UpperCamelCase__ :List[str] = int(items[1] ) else: UpperCamelCase__ :List[Any] = None if "adaptor" not in full_name: if "proj_ln" in full_name: # has to be layer norm if "bias" in name: assert ( value.shape == adapter.proj_layer_norm.bias.data.shape ), f'''{full_name} has size {value.shape}, but {adapter.proj_layer_norm.bias.data.shape} was found.''' UpperCamelCase__ :List[str] = value logger.info(f'''Adapter proj layer norm bias was initialized from {full_name}.''' ) if "weight" in name: assert ( value.shape == adapter.proj_layer_norm.weight.data.shape ), f'''{full_name} has size {value.shape}, but {adapter.proj_layer_norm.weight.data.shape} was found.''' UpperCamelCase__ :int = value else: # has to be projection layer if "bias" in name: assert ( value.shape == adapter.proj.bias.data.shape ), f'''{full_name} has size {value.shape}, but {adapter.proj.bias.data.shape} was found.''' UpperCamelCase__ :Optional[Any] = value logger.info(f'''Adapter proj layer bias was initialized from {full_name}.''' ) if "weight" in name: assert ( value.shape == adapter.proj.weight.data.shape ), f'''{full_name} has size {value.shape}, but {adapter.proj.weight.data.shape} was found.''' UpperCamelCase__ :List[str] = value logger.info(f'''Adapter proj layer weight was initialized from {full_name}.''' ) elif isinstance(__a , __a ): if "bias" in name: assert ( value.shape == adapter.layers[layer_id].conv.bias.data.shape ), f'''{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.bias.data.shape} was found.''' UpperCamelCase__ :Dict = value logger.info(f'''Adapter layer {layer_id} bias was initialized from {full_name}.''' ) elif "weight" in name: assert ( value.shape == adapter.layers[layer_id].conv.weight.data.shape ), f'''{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.weight.data.shape} was found.''' UpperCamelCase__ :str = value logger.info(f'''Adapter layer {layer_id} bias was initialized from {full_name}.''' ) else: unused_weights.append(__a ) def a ( __a ) -> Any: '''simple docstring''' UpperCamelCase__ , UpperCamelCase__ :Any = emb.weight.shape UpperCamelCase__ :int = nn.Linear(__a , __a , bias=__a ) UpperCamelCase__ :Dict = emb.weight.data return lin_layer @torch.no_grad() def a ( __a , __a , __a , __a , __a , __a , __a , __a , __a , __a , __a , ) -> List[Any]: '''simple docstring''' UpperCamelCase__ :str = WavaVecaConfig.from_pretrained( __a , add_adapter=__a , adapter_stride=__a , adapter_kernel_size=__a , use_auth_token=__a , output_hidden_size=__a , ) UpperCamelCase__ :Dict = MBartConfig.from_pretrained(__a ) # load model UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :Union[str, Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={ '''config_yaml''': config_yaml_path, '''data''': '''/'''.join(dict_path.split('''/''' )[:-1] ), '''w2v_path''': checkpoint_path, '''load_pretrained_decoder_from''': None, } , ) UpperCamelCase__ :List[str] = model[0].eval() # load feature extractor UpperCamelCase__ :Optional[Any] = WavaVecaFeatureExtractor.from_pretrained(__a , use_auth_token=__a ) # set weights for wav2vec2 encoder UpperCamelCase__ :List[str] = WavaVecaModel(__a ) recursively_load_weights_wavaveca(model.encoder , __a ) # load decoder weights UpperCamelCase__ :Tuple = MBartForCausalLM(__a ) UpperCamelCase__ , UpperCamelCase__ :int = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=__a ) logger.warning(f'''The following keys are missing when loading the decoder weights: {missing_keys}''' ) logger.warning(f'''The following keys are unexpected when loading the decoder weights: {unexpected_keys}''' ) UpperCamelCase__ :str = SpeechEncoderDecoderModel(encoder=__a , decoder=__a ) UpperCamelCase__ :Tuple = False UpperCamelCase__ :List[Any] = MBartaaTokenizer(__a ) tokenizer.save_pretrained(__a ) UpperCamelCase__ :Dict = hf_wavavec.config.to_dict() UpperCamelCase__ :Optional[int] = tokenizer.pad_token_id UpperCamelCase__ :Tuple = tokenizer.bos_token_id UpperCamelCase__ :Union[str, Any] = tokenizer.eos_token_id UpperCamelCase__ :Any = '''mbart50''' UpperCamelCase__ :Optional[Any] = '''wav2vec2''' UpperCamelCase__ :List[Any] = tokenizer.eos_token_id UpperCamelCase__ :Optional[int] = 250004 UpperCamelCase__ :Tuple = tokenizer.eos_token_id UpperCamelCase__ :int = SpeechEncoderDecoderConfig.from_dict(__a ) hf_wavavec.save_pretrained(__a ) feature_extractor.save_pretrained(__a ) if __name__ == "__main__": __snake_case = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_yaml_path''', default=None, type=str, help='''Path to yaml file of fine-tuned model''') parser.add_argument( '''--encoder_config_path''', default='''facebook/wav2vec2-xls-r-1b''', type=str, help='''Path to hf encoder wav2vec2 checkpoint config''', ) parser.add_argument( '''--decoder_config_path''', default='''facebook/mbart-large-50-one-to-many-mmt''', type=str, help='''Path to hf decoder checkpoint config''', ) parser.add_argument('''--add_adapter''', default=True, type=bool, help='''whethere to add model adapter layers''') parser.add_argument('''--adapter_stride''', default=2, type=int, help='''stride of adapter layers''') parser.add_argument('''--adapter_kernel_size''', default=3, type=int, help='''kernel size of adapter layers''') parser.add_argument('''--encoder_output_dim''', default=1024, type=int, help='''encoder output dim''') parser.add_argument('''--start_token_id''', default=250004, type=int, help='''`decoder_start_token_id` of model config''') __snake_case = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, args.config_yaml_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, add_adapter=args.add_adapter, adapter_kernel_size=args.adapter_kernel_size, adapter_stride=args.adapter_stride, decoder_start_token_id=args.start_token_id, encoder_output_dim=args.encoder_output_dim, )
97
"""simple docstring""" import json import os import unittest from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES, BioGptTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class _SCREAMING_SNAKE_CASE ( A__ , unittest.TestCase ): UpperCAmelCase_ :Any = BioGptTokenizer UpperCAmelCase_ :str = False def __lowerCAmelCase ( self ) -> List[Any]: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowerCAmelCase_ :Optional[Any] = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """w</w>""", """r</w>""", """t</w>""", """lo""", """low""", """er</w>""", """low</w>""", """lowest</w>""", """newer</w>""", """wider</w>""", """<unk>""", ] lowerCAmelCase_ :str = dict(zip(__A , range(len(__A ) ) ) ) lowerCAmelCase_ :int = ["""l o 123""", """lo w 1456""", """e r</w> 1789""", """"""] lowerCAmelCase_ :Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) lowerCAmelCase_ :Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" ) as fp: fp.write(json.dumps(__A ) ) with open(self.merges_file , """w""" ) as fp: fp.write("""\n""".join(__A ) ) def __lowerCAmelCase ( self , __A ) -> Optional[int]: lowerCAmelCase_ :List[Any] = """lower newer""" lowerCAmelCase_ :Tuple = """lower newer""" return input_text, output_text def __lowerCAmelCase ( self ) -> str: lowerCAmelCase_ :List[str] = BioGptTokenizer(self.vocab_file , self.merges_file ) lowerCAmelCase_ :Union[str, Any] = """lower""" lowerCAmelCase_ :Any = ["""low""", """er</w>"""] lowerCAmelCase_ :Union[str, Any] = tokenizer.tokenize(__A ) self.assertListEqual(__A , __A ) lowerCAmelCase_ :Dict = tokens + ["""<unk>"""] lowerCAmelCase_ :List[str] = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(__A ) , __A ) @slow def __lowerCAmelCase ( self ) -> List[Any]: lowerCAmelCase_ :Optional[Any] = BioGptTokenizer.from_pretrained("""microsoft/biogpt""" ) lowerCAmelCase_ :List[Any] = tokenizer.encode("""sequence builders""" , add_special_tokens=__A ) lowerCAmelCase_ :List[str] = tokenizer.encode("""multi-sequence build""" , add_special_tokens=__A ) lowerCAmelCase_ :Optional[int] = tokenizer.build_inputs_with_special_tokens(__A ) lowerCAmelCase_ :List[str] = tokenizer.build_inputs_with_special_tokens(__A , __A ) self.assertTrue(encoded_sentence == [2] + text ) self.assertTrue(encoded_pair == [2] + text + [2] + text_a )
84
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available lowerCAmelCase__ = { 'configuration_gpt_neo': ['GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GPTNeoConfig', 'GPTNeoOnnxConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ 'GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST', 'GPTNeoForCausalLM', 'GPTNeoForQuestionAnswering', 'GPTNeoForSequenceClassification', 'GPTNeoForTokenClassification', 'GPTNeoModel', 'GPTNeoPreTrainedModel', 'load_tf_weights_in_gpt_neo', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ 'FlaxGPTNeoForCausalLM', 'FlaxGPTNeoModel', 'FlaxGPTNeoPreTrainedModel', ] if TYPE_CHECKING: from .configuration_gpt_neo import GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoConfig, GPTNeoOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neo import ( GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoForCausalLM, GPTNeoForQuestionAnswering, GPTNeoForSequenceClassification, GPTNeoForTokenClassification, GPTNeoModel, GPTNeoPreTrainedModel, load_tf_weights_in_gpt_neo, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_gpt_neo import FlaxGPTNeoForCausalLM, FlaxGPTNeoModel, FlaxGPTNeoPreTrainedModel else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
359
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) if is_sentencepiece_available(): from ..ta.tokenization_ta import TaTokenizer else: from ...utils.dummy_sentencepiece_objects import TaTokenizer lowerCAmelCase__ = TaTokenizer if is_tokenizers_available(): from ..ta.tokenization_ta_fast import TaTokenizerFast else: from ...utils.dummy_tokenizers_objects import TaTokenizerFast lowerCAmelCase__ = TaTokenizerFast lowerCAmelCase__ = {'configuration_mt5': ['MT5Config', 'MT5OnnxConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ 'MT5EncoderModel', 'MT5ForConditionalGeneration', 'MT5ForQuestionAnswering', 'MT5Model', 'MT5PreTrainedModel', 'MT5Stack', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ['TFMT5EncoderModel', 'TFMT5ForConditionalGeneration', 'TFMT5Model'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ['FlaxMT5EncoderModel', 'FlaxMT5ForConditionalGeneration', 'FlaxMT5Model'] if TYPE_CHECKING: from .configuration_mta import MTaConfig, MTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mta import ( MTaEncoderModel, MTaForConditionalGeneration, MTaForQuestionAnswering, MTaModel, MTaPreTrainedModel, MTaStack, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel else: import sys lowerCAmelCase__ = _LazyModule( __name__, globals()['__file__'], _import_structure, extra_objects={'MT5Tokenizer': MTaTokenizer, 'MT5TokenizerFast': MTaTokenizerFast}, module_spec=__spec__, )
119
0
from ..utils import DummyObject, requires_backends class _UpperCamelCase ( metaclass=__A ): '''simple docstring''' lowerCamelCase__ =['speech'] def __init__( self : List[Any] , *a : Tuple , **a : Union[str, Any] ) -> Tuple: """simple docstring""" requires_backends(self , ["speech"] ) class _UpperCamelCase ( metaclass=__A ): '''simple docstring''' lowerCamelCase__ =['speech'] def __init__( self : Optional[int] , *a : int , **a : List[str] ) -> Union[str, Any]: """simple docstring""" requires_backends(self , ["speech"] )
76
'''simple docstring''' from pathlib import Path import cva import numpy as np from matplotlib import pyplot as plt def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> np.ndarray: _a : Union[str, Any] = cva.getAffineTransform(lowerCAmelCase_ , lowerCAmelCase_ ) return cva.warpAffine(lowerCAmelCase_ , lowerCAmelCase_ , (rows, cols) ) if __name__ == "__main__": # read original image __lowerCAmelCase = cva.imread( str(Path(__file__).resolve().parent.parent / '''image_data''' / '''lena.jpg''') ) # turn image in gray scale value __lowerCAmelCase = cva.cvtColor(image, cva.COLOR_BGR2GRAY) # get image shape __lowerCAmelCase , __lowerCAmelCase = gray_img.shape # set different points to rotate image __lowerCAmelCase = np.array([[50, 50], [200, 50], [50, 200]], np.floataa) __lowerCAmelCase = np.array([[10, 100], [200, 50], [100, 250]], np.floataa) __lowerCAmelCase = np.array([[50, 50], [150, 50], [120, 200]], np.floataa) __lowerCAmelCase = np.array([[10, 100], [80, 50], [180, 250]], np.floataa) # add all rotated images in a list __lowerCAmelCase = [ gray_img, get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), ] # plot different image rotations __lowerCAmelCase = plt.figure(1) __lowerCAmelCase = ['''Original''', '''Rotation 1''', '''Rotation 2''', '''Rotation 3'''] for i, image in enumerate(images): plt.subplot(2, 2, i + 1), plt.imshow(image, '''gray''') plt.title(titles[i]) plt.axis('''off''') plt.subplots_adjust(left=0.0, bottom=0.05, right=1.0, top=0.95) plt.show()
89
0
import argparse import torch from transformers import OpenAIGPTConfig, OpenAIGPTModel, load_tf_weights_in_openai_gpt from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def __lowercase ( snake_case_ : Tuple ,snake_case_ : Union[str, Any] ,snake_case_ : List[str] ) ->Dict: '''simple docstring''' if openai_config_file == "": __A : Optional[int] = OpenAIGPTConfig() else: __A : List[Any] = OpenAIGPTConfig.from_json_file(a_ ) __A : Dict = OpenAIGPTModel(a_ ) # Load weights from numpy load_tf_weights_in_openai_gpt(a_ ,a_ ,a_ ) # Save pytorch-model __A : Any = pytorch_dump_folder_path + "/" + WEIGHTS_NAME __A : Optional[Any] = pytorch_dump_folder_path + "/" + CONFIG_NAME print(F"""Save PyTorch model to {pytorch_weights_dump_path}""" ) torch.save(model.state_dict() ,a_ ) print(F"""Save configuration file to {pytorch_config_dump_path}""" ) with open(a_ ,'''w''' ,encoding='''utf-8''' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": a_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--openai_checkpoint_folder_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--openai_config_file""", default="""""", type=str, help=( """An optional config json file corresponding to the pre-trained OpenAI model. \n""" """This specifies the model architecture.""" ), ) a_ = parser.parse_args() convert_openai_checkpoint_to_pytorch( args.openai_checkpoint_folder_path, args.openai_config_file, args.pytorch_dump_folder_path )
367
"""simple docstring""" from typing import TYPE_CHECKING from ..utils import _LazyModule a_ = { """config""": [ """EXTERNAL_DATA_FORMAT_SIZE_LIMIT""", """OnnxConfig""", """OnnxConfigWithPast""", """OnnxSeq2SeqConfigWithPast""", """PatchingSpec""", ], """convert""": ["""export""", """validate_model_outputs"""], """features""": ["""FeaturesManager"""], """utils""": ["""ParameterFormat""", """compute_serialized_parameters_size"""], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys a_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
291
0
import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer import diffusers from diffusers import ( AutoencoderKL, EulerDiscreteScheduler, StableDiffusionLatentUpscalePipeline, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.schedulers import KarrasDiffusionSchedulers from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() def UpperCamelCase_( lowerCamelCase_ ) -> Tuple: _lowercase : Dict = [tensor.shape for tensor in tensor_list] return all(shape == shapes[0] for shape in shapes[1:] ) class _lowerCamelCase( _a, _a, _a, unittest.TestCase ): lowercase_ : str = StableDiffusionLatentUpscalePipeline lowercase_ : Optional[int] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { """height""", """width""", """cross_attention_kwargs""", """negative_prompt_embeds""", """prompt_embeds""", } lowercase_ : Dict = PipelineTesterMixin.required_optional_params - {"""num_images_per_prompt"""} lowercase_ : Union[str, Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS lowercase_ : Tuple = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess lowercase_ : Dict = frozenset([] ) lowercase_ : Dict = True @property def UpperCamelCase ( self) -> Optional[Any]: """simple docstring""" _lowercase : int = 1 _lowercase : List[str] = 4 _lowercase : Optional[Any] = (16, 16) _lowercase : List[Any] = floats_tensor((batch_size, num_channels) + sizes, rng=random.Random(0)).to(lowerCamelCase) return image def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" torch.manual_seed(0) _lowercase : Optional[Any] = UNetaDConditionModel( act_fn='gelu', attention_head_dim=8, norm_num_groups=lowerCamelCase, block_out_channels=[32, 32, 64, 64], time_cond_proj_dim=1_60, conv_in_kernel=1, conv_out_kernel=1, cross_attention_dim=32, down_block_types=( 'KDownBlock2D', 'KCrossAttnDownBlock2D', 'KCrossAttnDownBlock2D', 'KCrossAttnDownBlock2D', ), in_channels=8, mid_block_type=lowerCamelCase, only_cross_attention=lowerCamelCase, out_channels=5, resnet_time_scale_shift='scale_shift', time_embedding_type='fourier', timestep_post_act='gelu', up_block_types=('KCrossAttnUpBlock2D', 'KCrossAttnUpBlock2D', 'KCrossAttnUpBlock2D', 'KUpBlock2D'), ) _lowercase : Dict = AutoencoderKL( block_out_channels=[32, 32, 64, 64], in_channels=3, out_channels=3, down_block_types=[ 'DownEncoderBlock2D', 'DownEncoderBlock2D', 'DownEncoderBlock2D', 'DownEncoderBlock2D', ], up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D', 'UpDecoderBlock2D', 'UpDecoderBlock2D'], latent_channels=4, ) _lowercase : Optional[Any] = EulerDiscreteScheduler(prediction_type='sample') _lowercase : Union[str, Any] = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1E-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=10_00, hidden_act='quick_gelu', projection_dim=5_12, ) _lowercase : Optional[Any] = CLIPTextModel(lowerCamelCase) _lowercase : Optional[int] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') _lowercase : Optional[int] = { 'unet': model.eval(), 'vae': vae.eval(), 'scheduler': scheduler, 'text_encoder': text_encoder, 'tokenizer': tokenizer, } return components def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase=0) -> Union[str, Any]: """simple docstring""" if str(lowerCamelCase).startswith('mps'): _lowercase : List[Any] = torch.manual_seed(lowerCamelCase) else: _lowercase : Optional[Any] = torch.Generator(device=lowerCamelCase).manual_seed(lowerCamelCase) _lowercase : Tuple = { 'prompt': 'A painting of a squirrel eating a burger', 'image': self.dummy_image.cpu(), 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs def UpperCamelCase ( self) -> Tuple: """simple docstring""" _lowercase : Union[str, Any] = 'cpu' _lowercase : int = self.get_dummy_components() _lowercase : Optional[Any] = self.pipeline_class(**lowerCamelCase) pipe.to(lowerCamelCase) pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : int = self.get_dummy_inputs(lowerCamelCase) _lowercase : List[Any] = pipe(**lowerCamelCase).images _lowercase : List[Any] = image[0, -3:, -3:, -1] self.assertEqual(image.shape, (1, 2_56, 2_56, 3)) _lowercase : Union[str, Any] = np.array( [0.4_7_2_2_2_4_1_2, 0.4_1_9_2_1_6_3_3, 0.4_4_7_1_7_4_3_4, 0.4_6_8_7_4_1_9_2, 0.4_2_5_8_8_2_5_8, 0.4_6_1_5_0_7_2_6, 0.4_6_7_7_5_3_4, 0.4_5_5_8_3_8_3_2, 0.4_8_5_7_9_0_5_5]) _lowercase : List[Any] = np.abs(image_slice.flatten() - expected_slice).max() self.assertLessEqual(lowerCamelCase, 1E-3) def UpperCamelCase ( self) -> Dict: """simple docstring""" super().test_attention_slicing_forward_pass(expected_max_diff=7E-3) def UpperCamelCase ( self) -> Tuple: """simple docstring""" super().test_cpu_offload_forward_pass(expected_max_diff=3E-3) def UpperCamelCase ( self) -> Any: """simple docstring""" super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3) def UpperCamelCase ( self) -> List[str]: """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=7E-3) def UpperCamelCase ( self) -> Dict: """simple docstring""" super().test_pt_np_pil_outputs_equivalent(expected_max_diff=3E-3) def UpperCamelCase ( self) -> Dict: """simple docstring""" super().test_save_load_local(expected_max_difference=3E-3) def UpperCamelCase ( self) -> Tuple: """simple docstring""" super().test_save_load_optional_components(expected_max_difference=3E-3) def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" _lowercase : List[Any] = [ 'DDIMScheduler', 'DDPMScheduler', 'PNDMScheduler', 'HeunDiscreteScheduler', 'EulerAncestralDiscreteScheduler', 'KDPM2DiscreteScheduler', 'KDPM2AncestralDiscreteScheduler', 'DPMSolverSDEScheduler', ] _lowercase : List[Any] = self.get_dummy_components() _lowercase : Dict = self.pipeline_class(**lowerCamelCase) # make sure that PNDM does not need warm-up pipe.scheduler.register_to_config(skip_prk_steps=lowerCamelCase) pipe.to(lowerCamelCase) pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : str = self.get_dummy_inputs(lowerCamelCase) _lowercase : List[Any] = 2 _lowercase : List[str] = [] for scheduler_enum in KarrasDiffusionSchedulers: if scheduler_enum.name in skip_schedulers: # no sigma schedulers are not supported # no schedulers continue _lowercase : int = getattr(lowerCamelCase, scheduler_enum.name) _lowercase : Dict = scheduler_cls.from_config(pipe.scheduler.config) _lowercase : str = pipe(**lowerCamelCase)[0] outputs.append(lowerCamelCase) assert check_same_shape(lowerCamelCase) @require_torch_gpu @slow class _lowerCamelCase( unittest.TestCase ): def UpperCamelCase ( self) -> Tuple: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase ( self) -> int: """simple docstring""" _lowercase : Tuple = torch.manual_seed(33) _lowercase : Optional[Any] = StableDiffusionPipeline.from_pretrained('CompVis/stable-diffusion-v1-4', torch_dtype=torch.floataa) pipe.to('cuda') _lowercase : Optional[Any] = StableDiffusionLatentUpscalePipeline.from_pretrained( 'stabilityai/sd-x2-latent-upscaler', torch_dtype=torch.floataa) upscaler.to('cuda') _lowercase : List[str] = 'a photo of an astronaut high resolution, unreal engine, ultra realistic' _lowercase : Any = pipe(lowerCamelCase, generator=lowerCamelCase, output_type='latent').images _lowercase : List[Any] = upscaler( prompt=lowerCamelCase, image=lowerCamelCase, num_inference_steps=20, guidance_scale=0, generator=lowerCamelCase, output_type='np', ).images[0] _lowercase : Any = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/astronaut_1024.npy') assert np.abs((expected_image - image).mean()) < 5E-2 def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" _lowercase : Optional[int] = torch.manual_seed(33) _lowercase : Optional[Any] = StableDiffusionLatentUpscalePipeline.from_pretrained( 'stabilityai/sd-x2-latent-upscaler', torch_dtype=torch.floataa) upscaler.to('cuda') _lowercase : Any = 'the temple of fire by Ross Tran and Gerardo Dottori, oil on canvas' _lowercase : Tuple = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_512.png') _lowercase : int = upscaler( prompt=lowerCamelCase, image=lowerCamelCase, num_inference_steps=20, guidance_scale=0, generator=lowerCamelCase, output_type='np', ).images[0] _lowercase : Any = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_1024.npy') assert np.abs((expected_image - image).max()) < 5E-2
21
def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> float: _lowercase : Tuple = (num_of_terms / 2) * (2 * first_term + (num_of_terms - 1) * common_diff) # formula for sum of series return total def UpperCamelCase_( ) -> Optional[int]: print(sum_of_series(1 , 1 , 10 ) ) if __name__ == "__main__": import doctest doctest.testmod()
21
1
import logging import os from typing import Dict, List, Optional, Union import torch import torch.nn as nn from accelerate.utils.imports import ( is_abit_bnb_available, is_abit_bnb_available, is_bnb_available, ) from ..big_modeling import dispatch_model, init_empty_weights from .dataclasses import BnbQuantizationConfig from .modeling import ( find_tied_parameters, get_balanced_memory, infer_auto_device_map, load_checkpoint_in_model, offload_weight, set_module_tensor_to_device, ) if is_bnb_available(): import bitsandbytes as bnb from copy import deepcopy lowercase : List[str] = logging.getLogger(__name__) def A_ ( A__ , A__ , A__ = None , A__ = None , A__ = None , A__ = None , A__ = None , A__ = False , ) -> int: a__ : int = bnb_quantization_config.load_in_abit a__ : int = bnb_quantization_config.load_in_abit if load_in_abit and not is_abit_bnb_available(): raise ImportError( 'You have a version of `bitsandbytes` that is not compatible with 8bit quantization,' ' make sure you have the latest version of `bitsandbytes` installed.' ) if load_in_abit and not is_abit_bnb_available(): raise ValueError( 'You have a version of `bitsandbytes` that is not compatible with 4bit quantization,' 'make sure you have the latest version of `bitsandbytes` installed.' ) a__ : Any = [] # custom device map if isinstance(A__ , A__ ) and len(device_map.keys() ) > 1: a__ : Any = [key for key, value in device_map.items() if value in ['disk', 'cpu']] # We keep some modules such as the lm_head in their original dtype for numerical stability reasons if bnb_quantization_config.skip_modules is None: a__ : Any = get_keys_to_not_convert(A__ ) # add cpu modules to skip modules only for 4-bit modules if load_in_abit: bnb_quantization_config.skip_modules.extend(A__ ) a__ : int = bnb_quantization_config.skip_modules # We add the modules we want to keep in full precision if bnb_quantization_config.keep_in_fpaa_modules is None: a__ : Union[str, Any] = [] a__ : List[str] = bnb_quantization_config.keep_in_fpaa_modules modules_to_not_convert.extend(A__ ) # compatibility with peft a__ : Optional[Any] = load_in_abit a__ : Optional[int] = load_in_abit a__ : str = get_parameter_device(A__ ) if model_device.type != "meta": # quantization of an already loaded model logger.warning( 'It is not recommended to quantize a loaded model. ' 'The model should be instantiated under the `init_empty_weights` context manager.' ) a__ : Optional[Any] = replace_with_bnb_layers(A__ , A__ , modules_to_not_convert=A__ ) # convert param to the right dtype a__ : Optional[int] = bnb_quantization_config.torch_dtype for name, param in model.state_dict().items(): if any(module_to_keep_in_fpaa in name for module_to_keep_in_fpaa in keep_in_fpaa_modules ): param.to(torch.floataa ) if param.dtype != torch.floataa: a__ : Tuple = name.replace('.weight' , '' ).replace('.bias' , '' ) a__ : List[str] = getattr(A__ , A__ , A__ ) if param is not None: param.to(torch.floataa ) elif torch.is_floating_point(A__ ): param.to(A__ ) if model_device.type == "cuda": # move everything to cpu in the first place because we can't do quantization if the weights are already on cuda model.cuda(torch.cuda.current_device() ) torch.cuda.empty_cache() elif torch.cuda.is_available(): model.to(torch.cuda.current_device() ) else: raise RuntimeError('No GPU found. A GPU is needed for quantization.' ) logger.info( F'The model device type is {model_device.type}. However, cuda is needed for quantization.' 'We move the model to cuda.' ) return model elif weights_location is None: raise RuntimeError( F'`weights_location` needs to be the folder path containing the weights of the model, but we found {weights_location} ' ) else: with init_empty_weights(): a__ : List[str] = replace_with_bnb_layers( A__ , A__ , modules_to_not_convert=A__ ) a__ : Optional[Any] = get_quantized_model_device_map( A__ , A__ , A__ , max_memory=A__ , no_split_module_classes=A__ , ) if offload_state_dict is None and device_map is not None and "disk" in device_map.values(): a__ : Union[str, Any] = True a__ : Optional[int] = any(x in list(device_map.values() ) for x in ['cpu', 'disk'] ) load_checkpoint_in_model( A__ , A__ , A__ , dtype=bnb_quantization_config.torch_dtype , offload_folder=A__ , offload_state_dict=A__ , keep_in_fpaa_modules=bnb_quantization_config.keep_in_fpaa_modules , offload_abit_bnb=load_in_abit and offload , ) return dispatch_model(A__ , device_map=A__ , offload_dir=A__ ) def A_ ( A__ , A__ , A__=None , A__=None , A__=None ) -> Optional[Any]: if device_map is None: if torch.cuda.is_available(): a__ : Dict = {'': torch.cuda.current_device()} else: raise RuntimeError('No GPU found. A GPU is needed for quantization.' ) logger.info('The device_map was not initialized.' 'Setting device_map to `{\'\':torch.cuda.current_device()}`.' ) if isinstance(A__ , A__ ): if device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]: raise ValueError( 'If passing a string for `device_map`, please choose \'auto\', \'balanced\', \'balanced_low_0\' or ' '\'sequential\'.' ) a__ : Union[str, Any] = {} special_dtypes.update( { name: bnb_quantization_config.torch_dtype for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.skip_modules ) } ) special_dtypes.update( { name: torch.floataa for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.keep_in_fpaa_modules ) } ) a__ : Any = {} a__ : Union[str, Any] = special_dtypes a__ : Any = no_split_module_classes a__ : Any = bnb_quantization_config.target_dtype # get max_memory for each device. if device_map != "sequential": a__ : List[Any] = get_balanced_memory( A__ , low_zero=(device_map == 'balanced_low_0') , max_memory=A__ , **A__ , ) a__ : str = max_memory a__ : List[str] = infer_auto_device_map(A__ , **A__ ) if isinstance(A__ , A__ ): # check if don't have any quantized module on the cpu a__ : str = bnb_quantization_config.skip_modules + bnb_quantization_config.keep_in_fpaa_modules a__ : Tuple = { key: device_map[key] for key in device_map.keys() if key not in modules_not_to_convert } for device in ["cpu", "disk"]: if device in device_map_without_some_modules.values(): if bnb_quantization_config.load_in_abit: raise ValueError( '\n Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit\n the quantized model. If you want to dispatch the model on the CPU or the disk while keeping\n these modules in `torch_dtype`, you need to pass a custom `device_map` to\n `load_and_quantize_model`. Check\n https://huggingface.co/docs/accelerate/main/en/usage_guides/quantization#offload-modules-to-cpu-and-disk\n for more details.\n ' ) else: logger.info( 'Some modules are are offloaded to the CPU or the disk. Note that these modules will be converted to 8-bit' ) del device_map_without_some_modules return device_map def A_ ( A__ , A__ , A__=None , A__=None ) -> Union[str, Any]: if modules_to_not_convert is None: a__ : Optional[Any] = [] a__ , a__ : Tuple = _replace_with_bnb_layers( A__ , A__ , A__ , A__ ) if not has_been_replaced: logger.warning( 'You are loading your model in 8bit or 4bit but no linear modules were found in your model.' ' this can happen for some architectures such as gpt2 that uses Conv1D instead of Linear layers.' ' Please double check your model architecture, or submit an issue on github if you think this is' ' a bug.' ) return model def A_ ( A__ , A__ , A__=None , A__=None , ) -> List[Any]: a__ : Optional[Any] = False for name, module in model.named_children(): if current_key_name is None: a__ : Optional[Any] = [] current_key_name.append(A__ ) if isinstance(A__ , nn.Linear ) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` a__ : Dict = '.'.join(A__ ) a__ : List[Any] = True for key in modules_to_not_convert: if ( (key in current_key_name_str) and (key + "." in current_key_name_str) ) or key == current_key_name_str: a__ : Any = False break if proceed: # Load bnb module with empty weight and replace ``nn.Linear` module if bnb_quantization_config.load_in_abit: a__ : Tuple = bnb.nn.LinearabitLt( module.in_features , module.out_features , module.bias is not None , has_fpaa_weights=A__ , threshold=bnb_quantization_config.llm_inta_threshold , ) elif bnb_quantization_config.load_in_abit: a__ : Any = bnb.nn.Linearabit( module.in_features , module.out_features , module.bias is not None , bnb_quantization_config.bnb_abit_compute_dtype , compress_statistics=bnb_quantization_config.bnb_abit_use_double_quant , quant_type=bnb_quantization_config.bnb_abit_quant_type , ) else: raise ValueError('load_in_8bit and load_in_4bit can\'t be both False' ) a__ : Union[str, Any] = module.weight.data if module.bias is not None: a__ : str = module.bias.data bnb_module.requires_grad_(A__ ) setattr(A__ , A__ , A__ ) a__ : List[Any] = True if len(list(module.children() ) ) > 0: a__ , a__ : int = _replace_with_bnb_layers( A__ , A__ , A__ , A__ ) a__ : Optional[int] = has_been_replaced | _has_been_replaced # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def A_ ( A__ ) -> str: # Create a copy of the model with init_empty_weights(): a__ : Any = deepcopy(A__ ) # this has 0 cost since it is done inside `init_empty_weights` context manager` a__ : str = find_tied_parameters(A__ ) # For compatibility with Accelerate < 0.18 if isinstance(A__ , A__ ): a__ : Optional[int] = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: a__ : Union[str, Any] = sum(A__ , [] ) a__ : List[Any] = len(A__ ) > 0 # Check if it is a base model a__ : Dict = False if hasattr(A__ , 'base_model_prefix' ): a__ : Tuple = not hasattr(A__ , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head a__ : List[Any] = list(model.named_children() ) a__ : Optional[int] = [list_modules[-1][0]] # add last module together with tied weights a__ : Tuple = set(A__ ) - set(A__ ) a__ : List[str] = list(set(A__ ) ) + list(A__ ) # remove ".weight" from the keys a__ : str = ['.weight', '.bias'] a__ : List[Any] = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: a__ : int = name.replace(A__ , '' ) filtered_module_names.append(A__ ) return filtered_module_names def A_ ( A__ ) -> Union[str, Any]: for m in model.modules(): if isinstance(A__ , bnb.nn.Linearabit ): return True return False def A_ ( A__ ) -> int: return next(parameter.parameters() ).device def A_ ( A__ , A__ , A__ , A__ , A__ , A__ , A__ ) -> Optional[Any]: # if it is not quantized, we quantize and offload the quantized weights and the SCB stats if fpaa_statistics is None: set_module_tensor_to_device(A__ , A__ , 0 , dtype=A__ , value=A__ ) a__ : Optional[Any] = param_name a__ : Tuple = model if "." in tensor_name: a__ : Any = tensor_name.split('.' ) for split in splits[:-1]: a__ : str = getattr(A__ , A__ ) if new_module is None: raise ValueError(F'{module} has no attribute {split}.' ) a__ : str = new_module a__ : List[Any] = splits[-1] # offload weights a__ : List[str] = False offload_weight(module._parameters[tensor_name] , A__ , A__ , index=A__ ) if hasattr(module._parameters[tensor_name] , 'SCB' ): offload_weight( module._parameters[tensor_name].SCB , param_name.replace('weight' , 'SCB' ) , A__ , index=A__ , ) else: offload_weight(A__ , A__ , A__ , index=A__ ) offload_weight(A__ , param_name.replace('weight' , 'SCB' ) , A__ , index=A__ ) set_module_tensor_to_device(A__ , A__ , 'meta' , dtype=A__ , value=torch.empty(*param.size() ) )
225
import unittest import numpy as np from transformers import BertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.bert.modeling_flax_bert import ( FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, ) class A__ ( unittest.TestCase ): """simple docstring""" def __init__( self , lowercase , lowercase=13 , lowercase=7 , lowercase=True , lowercase=True , lowercase=True , lowercase=True , lowercase=99 , lowercase=32 , lowercase=5 , lowercase=4 , lowercase=37 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=512 , lowercase=16 , lowercase=2 , lowercase=0.02 , lowercase=4 , ) -> Tuple: '''simple docstring''' a__ : str = parent a__ : Optional[Any] = batch_size a__ : str = seq_length a__ : int = is_training a__ : str = use_attention_mask a__ : List[str] = use_token_type_ids a__ : Optional[Any] = use_labels a__ : List[Any] = vocab_size a__ : Tuple = hidden_size a__ : Dict = num_hidden_layers a__ : List[str] = num_attention_heads a__ : int = intermediate_size a__ : Any = hidden_act a__ : Optional[int] = hidden_dropout_prob a__ : Tuple = attention_probs_dropout_prob a__ : Tuple = max_position_embeddings a__ : Optional[int] = type_vocab_size a__ : List[Any] = type_sequence_label_size a__ : Union[str, Any] = initializer_range a__ : str = num_choices def __lowercase ( self) -> Optional[Any]: '''simple docstring''' a__ : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) a__ : Dict = None if self.use_attention_mask: a__ : Optional[int] = random_attention_mask([self.batch_size, self.seq_length]) a__ : Dict = None if self.use_token_type_ids: a__ : int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) a__ : Dict = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowercase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def __lowercase ( self) -> Optional[Any]: '''simple docstring''' a__ : Tuple = self.prepare_config_and_inputs() a__ , a__ , a__ , a__ : Optional[int] = config_and_inputs a__ : str = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask} return config, inputs_dict def __lowercase ( self) -> Optional[int]: '''simple docstring''' a__ : Union[str, Any] = self.prepare_config_and_inputs() a__ , a__ , a__ , a__ : int = config_and_inputs a__ : str = True a__ : Any = floats_tensor([self.batch_size, self.seq_length, self.hidden_size]) a__ : List[str] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2) return ( config, input_ids, attention_mask, encoder_hidden_states, encoder_attention_mask, ) @require_flax class A__ ( __UpperCAmelCase , unittest.TestCase ): """simple docstring""" __A : Optional[Any] = True __A : Tuple = ( ( FlaxBertModel, FlaxBertForPreTraining, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForQuestionAnswering, FlaxBertForNextSentencePrediction, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertForQuestionAnswering, ) if is_flax_available() else () ) def __lowercase ( self) -> Tuple: '''simple docstring''' a__ : Optional[Any] = FlaxBertModelTester(self) @slow def __lowercase ( self) -> Optional[Any]: '''simple docstring''' a__ : Union[str, Any] = FlaxBertModel.from_pretrained('bert-base-cased') a__ : Optional[Any] = model(np.ones((1, 1))) self.assertIsNotNone(lowercase)
225
1
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> list[list[float]]: """simple docstring""" A__ = [] for data in source_data: for i, el in enumerate(lowercase_ ): if len(lowercase_ ) < i + 1: data_lists.append([] ) data_lists[i].append(float(lowercase_ ) ) return data_lists def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> list[list[float]]: """simple docstring""" A__ = [] for dlist, weight in zip(lowercase_ , lowercase_ ): A__ = min(lowercase_ ) A__ = max(lowercase_ ) A__ = [] # for weight 0 score is 1 - actual score if weight == 0: for item in dlist: try: score.append(1 - ((item - mind) / (maxd - mind)) ) except ZeroDivisionError: score.append(1 ) elif weight == 1: for item in dlist: try: score.append((item - mind) / (maxd - mind) ) except ZeroDivisionError: score.append(0 ) # weight not 0 or 1 else: A__ = f"""Invalid weight of {weight:f} provided""" raise ValueError(lowercase_ ) score_lists.append(lowercase_ ) return score_lists def SCREAMING_SNAKE_CASE ( lowercase_ ) -> list[float]: """simple docstring""" A__ = [0 for i in range(len(score_lists[0] ) )] for slist in score_lists: for j, ele in enumerate(lowercase_ ): A__ = final_scores[j] + ele return final_scores def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> list[list[float]]: """simple docstring""" A__ = get_data(lowercase_ ) A__ = calculate_each_score(lowercase_ , lowercase_ ) A__ = generate_final_scores(lowercase_ ) # append scores to source data for i, ele in enumerate(lowercase_ ): source_data[i].append(lowercase_ ) return source_data
14
import os import pytest from transformers.dynamic_module_utils import get_imports _lowerCamelCase : Any = """ import os """ _lowerCamelCase : Optional[int] = """ def foo(): import os return False """ _lowerCamelCase : List[Any] = """ def foo(): def bar(): if True: import os return False return bar() """ _lowerCamelCase : List[Any] = """ import os try: import bar except ImportError: raise ValueError() """ _lowerCamelCase : Union[str, Any] = """ import os def foo(): try: import bar except ImportError: raise ValueError() """ _lowerCamelCase : List[Any] = """ import os try: import bar except (ImportError, AttributeError): raise ValueError() """ _lowerCamelCase : List[Any] = """ import os try: import bar except ImportError as e: raise ValueError() """ _lowerCamelCase : str = """ import os try: import bar except: raise ValueError() """ _lowerCamelCase : Optional[Any] = """ import os try: import bar import baz except ImportError: raise ValueError() """ _lowerCamelCase : Any = """ import os try: import bar import baz except ImportError: x = 1 raise ValueError() """ _lowerCamelCase : Dict = [ TOP_LEVEL_IMPORT, IMPORT_IN_FUNCTION, DEEPLY_NESTED_IMPORT, TOP_LEVEL_TRY_IMPORT, GENERIC_EXCEPT_IMPORT, MULTILINE_TRY_IMPORT, MULTILINE_BOTH_IMPORT, MULTIPLE_EXCEPTS_IMPORT, EXCEPT_AS_IMPORT, TRY_IMPORT_IN_FUNCTION, ] @pytest.mark.parametrize('''case''' , lowercase_ ) def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> int: """simple docstring""" A__ = os.path.join(lowercase_ , '''test_file.py''' ) with open(lowercase_ , '''w''' ) as _tmp_file: _tmp_file.write(lowercase_ ) A__ = get_imports(lowercase_ ) assert parsed_imports == ["os"]
14
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCAmelCase_ = { "configuration_biogpt": ["BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BioGptConfig"], "tokenization_biogpt": ["BioGptTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ "BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST", "BioGptForCausalLM", "BioGptForTokenClassification", "BioGptForSequenceClassification", "BioGptModel", "BioGptPreTrainedModel", ] if TYPE_CHECKING: from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig from .tokenization_biogpt import BioGptTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_biogpt import ( BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
371
'''simple docstring''' import os from typing import Optional import fsspec from fsspec.archive import AbstractArchiveFileSystem from fsspec.utils import DEFAULT_BLOCK_SIZE class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = '''''' snake_case_ = ( None # protocol passed in prefix to the url. ex: "gzip", for gzip://file.txt::http://foo.bar/file.txt.gz ) snake_case_ = None # compression type in fsspec. ex: "gzip" snake_case_ = None # extension of the filename to strip. ex: "".gz" to get file.txt from file.txt.gz def __init__( self, lowercase_ = "", lowercase_ = None, lowercase_ = None, **lowercase_ ) -> str: super().__init__(self, **lowercase_ ) # always open as "rb" since fsspec can then use the TextIOWrapper to make it work for "r" mode snake_case = fsspec.open( lowercase_, mode='rb', protocol=lowercase_, compression=self.compression, client_kwargs={ 'requote_redirect_url': False, # see https://github.com/huggingface/datasets/pull/5459 'trust_env': True, # Enable reading proxy env variables. **(target_options or {}).pop('client_kwargs', {} ), # To avoid issues if it was already passed. }, **(target_options or {}), ) snake_case = os.path.basename(self.file.path.split('::' )[0] ) snake_case = ( self.compressed_name[: self.compressed_name.rindex('.' )] if '.' in self.compressed_name else self.compressed_name ) snake_case = None @classmethod def _lowerCamelCase ( cls, lowercase_ ) -> Any: # compressed file paths are always relative to the archive root return super()._strip_protocol(lowercase_ ).lstrip('/' ) def _lowerCamelCase ( self ) -> Optional[Any]: if self.dir_cache is None: snake_case = {**self.file.fs.info(self.file.path ), 'name': self.uncompressed_name} snake_case = {f['name']: f} def _lowerCamelCase ( self, lowercase_ ) -> str: return self.file.open().read() def _lowerCamelCase ( self, lowercase_, lowercase_ = "rb", lowercase_=None, lowercase_=True, lowercase_=None, **lowercase_, ) -> Any: snake_case = self._strip_protocol(lowercase_ ) if mode != "rb": raise ValueError(F'''Tried to read with mode {mode} on file {self.file.path} opened with mode \'rb\'''' ) return self.file.open() class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = '''bz2''' snake_case_ = '''bz2''' snake_case_ = '''.bz2''' class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = '''gzip''' snake_case_ = '''gzip''' snake_case_ = '''.gz''' class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = '''lz4''' snake_case_ = '''lz4''' snake_case_ = '''.lz4''' class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = '''xz''' snake_case_ = '''xz''' snake_case_ = '''.xz''' class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = '''zstd''' snake_case_ = '''zstd''' snake_case_ = '''.zst''' def __init__( self, lowercase_, lowercase_ = "rb", lowercase_ = None, lowercase_ = None, lowercase_ = DEFAULT_BLOCK_SIZE, **lowercase_, ) -> Union[str, Any]: super().__init__( fo=lowercase_, mode=lowercase_, target_protocol=lowercase_, target_options=lowercase_, block_size=lowercase_, **lowercase_, ) # We need to wrap the zstd decompressor to avoid this error in fsspec==2021.7.0 and zstandard==0.15.2: # # File "/Users/user/.virtualenvs/hf-datasets/lib/python3.7/site-packages/fsspec/core.py", line 145, in open # out.close = close # AttributeError: 'zstd.ZstdDecompressionReader' object attribute 'close' is read-only # # see https://github.com/intake/filesystem_spec/issues/725 snake_case = self.file.__enter__ class lowerCamelCase : def __init__( self, lowercase_ ) -> List[Any]: snake_case = file_ def __enter__( self ) -> Dict: self._file.__enter__() return self def __exit__( self, *lowercase_, **lowercase_ ) -> Dict: self._file.__exit__(*lowercase_, **lowercase_ ) def __iter__( self ) -> List[str]: return iter(self._file ) def _lowerCamelCase ( self ) -> List[str]: return next(self._file ) def __getattr__( self, lowercase_ ) -> List[Any]: return getattr(self._file, lowercase_ ) def fixed_enter(*lowercase_, **lowercase_ ): return WrappedFile(_enter(*lowercase_, **lowercase_ ) ) snake_case = fixed_enter
332
0
"""simple docstring""" import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Image from .base import TaskTemplate @dataclass(frozen=_lowercase) class __snake_case ( _lowercase): snake_case__ : str = field(default="image-classification" , metadata={"include_in_asdict_even_if_is_default": True}) snake_case__ : ClassVar[Features] = Features({"image": Image()}) snake_case__ : ClassVar[Features] = Features({"labels": ClassLabel}) snake_case__ : str = "image" snake_case__ : str = "labels" def SCREAMING_SNAKE_CASE ( self : str , __lowerCAmelCase : Dict ): """simple docstring""" if self.label_column not in features: raise ValueError(f'''Column {self.label_column} is not present in features.''' ) if not isinstance(features[self.label_column] , __lowerCAmelCase ): raise ValueError(f'''Column {self.label_column} is not a ClassLabel.''' ) _lowerCamelCase : List[Any] = copy.deepcopy(self ) _lowerCamelCase : str = self.label_schema.copy() _lowerCamelCase : Union[str, Any] = features[self.label_column] _lowerCamelCase : List[str] = label_schema return task_template @property def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" return { self.image_column: "image", self.label_column: "labels", }
72
from __future__ import annotations from itertools import permutations from random import randint from timeit import repeat def UpperCamelCase ( ) -> tuple[list[int], int]: UpperCamelCase : int = [randint(-1000 , 1000 ) for i in range(10 )] UpperCamelCase : Dict = randint(-5000 , 5000 ) return (arr, r) __UpperCAmelCase = make_dataset() def UpperCamelCase ( snake_case__ : list[int] , snake_case__ : int ) -> tuple[int, ...]: for triplet in permutations(snake_case__ , 3 ): if sum(snake_case__ ) == target: return tuple(sorted(snake_case__ ) ) return (0, 0, 0) def UpperCamelCase ( snake_case__ : list[int] , snake_case__ : int ) -> tuple[int, int, int]: arr.sort() UpperCamelCase : List[str] = len(snake_case__ ) for i in range(n - 1 ): UpperCamelCase , UpperCamelCase : Optional[Any] = i + 1, n - 1 while left < right: if arr[i] + arr[left] + arr[right] == target: return (arr[i], arr[left], arr[right]) elif arr[i] + arr[left] + arr[right] < target: left += 1 elif arr[i] + arr[left] + arr[right] > target: right -= 1 return (0, 0, 0) def UpperCamelCase ( ) -> tuple[float, float]: UpperCamelCase : Any = '\nfrom __main__ import dataset, triplet_sum1, triplet_sum2\n' UpperCamelCase : Optional[Any] = '\ntriplet_sum1(*dataset)\n' UpperCamelCase : Dict = '\ntriplet_sum2(*dataset)\n' UpperCamelCase : Optional[int] = repeat(setup=snake_case__ , stmt=snake_case__ , repeat=5 , number=10000 ) UpperCamelCase : Any = repeat(setup=snake_case__ , stmt=snake_case__ , repeat=5 , number=10000 ) return (min(snake_case__ ), min(snake_case__ )) if __name__ == "__main__": from doctest import testmod testmod() __UpperCAmelCase = solution_times() print(F"""The time for naive implementation is {times[0]}.""") print(F"""The time for optimized implementation is {times[1]}.""")
119
0
'''simple docstring''' from typing import List, Optional, TypeVar from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .info import DatasetInfo from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets from .splits import NamedSplit from .utils import logging from .utils.py_utils import Literal SCREAMING_SNAKE_CASE_: Tuple =logging.get_logger(__name__) SCREAMING_SNAKE_CASE_: Dict =TypeVar('DatasetType', Dataset, IterableDataset) def lowerCAmelCase_ ( snake_case_ : List[DatasetType] , snake_case_ : Optional[List[float]] = None , snake_case_ : Optional[int] = None , snake_case_ : Optional[DatasetInfo] = None , snake_case_ : Optional[NamedSplit] = None , snake_case_ : Literal["first_exhausted", "all_exhausted"] = "first_exhausted" , ) -> DatasetType: '''simple docstring''' from .arrow_dataset import Dataset from .iterable_dataset import IterableDataset if not datasets: raise ValueError("Unable to interleave an empty list of datasets." ) for i, dataset in enumerate(snake_case_ ): if not isinstance(snake_case_ , (Dataset, IterableDataset) ): if isinstance(snake_case_ , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( f"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} """ "is an empty dataset dictionary." ) raise ValueError( f"""Dataset at position {i} has at least one split: {list(snake_case_ )}\n""" f"""Please pick one to interleave with the other datasets, for example: dataset['{next(iter(snake_case_ ) )}']""" ) raise ValueError( f"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(snake_case_ ).__name__}.""" ) if i == 0: UpperCAmelCase_ , UpperCAmelCase_ = ( (Dataset, IterableDataset) if isinstance(snake_case_ , snake_case_ ) else (IterableDataset, Dataset) ) elif not isinstance(snake_case_ , snake_case_ ): raise ValueError( f"""Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.""" ) if stopping_strategy not in ["first_exhausted", "all_exhausted"]: raise ValueError(f"""{stopping_strategy} is not supported. Please enter a valid stopping_strategy.""" ) if dataset_type is Dataset: return _interleave_map_style_datasets( snake_case_ , snake_case_ , snake_case_ , info=snake_case_ , split=snake_case_ , stopping_strategy=snake_case_ ) else: return _interleave_iterable_datasets( snake_case_ , snake_case_ , snake_case_ , info=snake_case_ , split=snake_case_ , stopping_strategy=snake_case_ ) def lowerCAmelCase_ ( snake_case_ : List[DatasetType] , snake_case_ : Optional[DatasetInfo] = None , snake_case_ : Optional[NamedSplit] = None , snake_case_ : int = 0 , ) -> DatasetType: '''simple docstring''' if not dsets: raise ValueError("Unable to concatenate an empty list of datasets." ) for i, dataset in enumerate(snake_case_ ): if not isinstance(snake_case_ , (Dataset, IterableDataset) ): if isinstance(snake_case_ , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( f"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} """ "is an empty dataset dictionary." ) raise ValueError( f"""Dataset at position {i} has at least one split: {list(snake_case_ )}\n""" f"""Please pick one to interleave with the other datasets, for example: dataset['{next(iter(snake_case_ ) )}']""" ) raise ValueError( f"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(snake_case_ ).__name__}.""" ) if i == 0: UpperCAmelCase_ , UpperCAmelCase_ = ( (Dataset, IterableDataset) if isinstance(snake_case_ , snake_case_ ) else (IterableDataset, Dataset) ) elif not isinstance(snake_case_ , snake_case_ ): raise ValueError( f"""Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.""" ) if dataset_type is Dataset: return _concatenate_map_style_datasets(snake_case_ , info=snake_case_ , split=snake_case_ , axis=snake_case_ ) else: return _concatenate_iterable_datasets(snake_case_ , info=snake_case_ , split=snake_case_ , axis=snake_case_ )
106
'''simple docstring''' import unittest from transformers import load_tool from transformers.utils import is_torch_available if is_torch_available(): import torch from transformers.testing_utils import require_torch from .test_tools_common import ToolTesterMixin @require_torch class __A ( unittest.TestCase , UpperCamelCase__ ): def _lowercase (self : Tuple ): UpperCAmelCase_ = load_tool("text-to-speech" ) self.tool.setup() def _lowercase (self : Union[str, Any] ): # SpeechT5 isn't deterministic torch.manual_seed(0 ) UpperCAmelCase_ = self.tool("hey" ) UpperCAmelCase_ = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0_00_59_66_66_88_32_11_58_29, -0.0_00_36_57_64_01_90_79_50_64, -0.00_01_34_39_50_27_99_88_34_85] ) , ) ) def _lowercase (self : List[str] ): # SpeechT5 isn't deterministic torch.manual_seed(0 ) UpperCAmelCase_ = self.tool("hey" ) UpperCAmelCase_ = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0_00_59_66_66_88_32_11_58_29, -0.0_00_36_57_64_01_90_79_50_64, -0.00_01_34_39_50_27_99_88_34_85] ) , ) )
106
1
import os from tempfile import TemporaryDirectory from unittest import TestCase import pytest from absl.testing import parameterized from datasets import config from datasets.arrow_reader import HF_GCP_BASE_URL from datasets.builder import DatasetBuilder from datasets.dataset_dict import IterableDatasetDict from datasets.iterable_dataset import IterableDataset from datasets.load import dataset_module_factory, import_main_class from datasets.utils.file_utils import cached_path __A = [ {"dataset": "wikipedia", "config_name": "20220301.de"}, {"dataset": "wikipedia", "config_name": "20220301.en"}, {"dataset": "wikipedia", "config_name": "20220301.fr"}, {"dataset": "wikipedia", "config_name": "20220301.frr"}, {"dataset": "wikipedia", "config_name": "20220301.it"}, {"dataset": "wikipedia", "config_name": "20220301.simple"}, {"dataset": "snli", "config_name": "plain_text"}, {"dataset": "eli5", "config_name": "LFQA_reddit"}, {"dataset": "wiki40b", "config_name": "en"}, {"dataset": "wiki_dpr", "config_name": "psgs_w100.nq.compressed"}, {"dataset": "wiki_dpr", "config_name": "psgs_w100.nq.no_index"}, {"dataset": "wiki_dpr", "config_name": "psgs_w100.multiset.no_index"}, {"dataset": "natural_questions", "config_name": "default"}, ] def lowerCAmelCase_ ( __a=True ) -> int: """simple docstring""" if with_config: return [ { "testcase_name": d["dataset"] + "/" + d["config_name"], "dataset": d["dataset"], "config_name": d["config_name"], } for d in DATASETS_ON_HF_GCP ] else: return [ {"testcase_name": dataset, "dataset": dataset} for dataset in {d["dataset"] for d in DATASETS_ON_HF_GCP} ] @parameterized.named_parameters(list_datasets_on_hf_gcp_parameters(with_config=__SCREAMING_SNAKE_CASE ) ) class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = None lowercase_ = None def SCREAMING_SNAKE_CASE_ (self : Tuple , UpperCAmelCase_ : Any , UpperCAmelCase_ : Tuple) ->Optional[int]: '''simple docstring''' with TemporaryDirectory() as tmp_dir: lowerCamelCase__: List[str] =dataset_module_factory(UpperCAmelCase_ , cache_dir=UpperCAmelCase_) lowerCamelCase__: List[Any] =import_main_class(dataset_module.module_path , dataset=UpperCAmelCase_) lowerCamelCase__: DatasetBuilder =builder_cls( cache_dir=UpperCAmelCase_ , config_name=UpperCAmelCase_ , hash=dataset_module.hash , ) lowerCamelCase__: int ="/".join( [ HF_GCP_BASE_URL, builder_instance._relative_data_dir(with_hash=UpperCAmelCase_).replace(os.sep , "/"), config.DATASET_INFO_FILENAME, ]) lowerCamelCase__: str =cached_path(UpperCAmelCase_ , cache_dir=UpperCAmelCase_) self.assertTrue(os.path.exists(UpperCAmelCase_)) @pytest.mark.integration def lowerCAmelCase_ ( __a ) -> Dict: """simple docstring""" lowerCamelCase__: int =tmp_path_factory.mktemp("test_hf_gcp" ) / "test_wikipedia_simple" lowerCamelCase__: List[str] =dataset_module_factory("wikipedia" , cache_dir=__a ) lowerCamelCase__: Optional[Any] =import_main_class(dataset_module.module_path ) lowerCamelCase__: DatasetBuilder =builder_cls( cache_dir=__a , config_name="20220301.frr" , hash=dataset_module.hash , ) # use the HF cloud storage, not the original download_and_prepare that uses apache-beam lowerCamelCase__: Union[str, Any] =None builder_instance.download_and_prepare() lowerCamelCase__: int =builder_instance.as_dataset() assert ds @pytest.mark.integration def lowerCAmelCase_ ( __a ) -> List[str]: """simple docstring""" lowerCamelCase__: int =dataset_module_factory("wikipedia" , cache_dir=__a ) lowerCamelCase__: Dict =import_main_class(dataset_module.module_path , dataset=__a ) lowerCamelCase__: DatasetBuilder =builder_cls( cache_dir=__a , config_name="20220301.frr" , hash=dataset_module.hash , ) lowerCamelCase__: Tuple =builder_instance.as_streaming_dataset() assert ds assert isinstance(__a , __a ) assert "train" in ds assert isinstance(ds["train"] , __a ) assert next(iter(ds["train"] ) )
10
"""simple docstring""" import unittest from transformers import ( MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TextaTextGenerationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, require_tf, require_torch from transformers.utils import is_torch_available from .test_pipelines_common import ANY if is_torch_available(): import torch @is_pipeline_test class __magic_name__ ( unittest.TestCase ): '''simple docstring''' __UpperCamelCase = MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING __UpperCamelCase = TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING def _lowerCAmelCase ( self , _a , _a , _a ): """simple docstring""" lowerCamelCase = TextaTextGenerationPipeline(model=_a , tokenizer=_a ) return generator, ["Something to write", "Something else"] def _lowerCAmelCase ( self , _a , _a ): """simple docstring""" lowerCamelCase = generator("""Something there""" ) self.assertEqual(_a , [{"""generated_text""": ANY(_a )}] ) # These are encoder decoder, they don't just append to incoming string self.assertFalse(outputs[0]["""generated_text"""].startswith("""Something there""" ) ) lowerCamelCase = generator(["""This is great !""", """Something else"""] , num_return_sequences=2 , do_sample=_a ) self.assertEqual( _a , [ [{"""generated_text""": ANY(_a )}, {"""generated_text""": ANY(_a )}], [{"""generated_text""": ANY(_a )}, {"""generated_text""": ANY(_a )}], ] , ) lowerCamelCase = generator( ["""This is great !""", """Something else"""] , num_return_sequences=2 , batch_size=2 , do_sample=_a ) self.assertEqual( _a , [ [{"""generated_text""": ANY(_a )}, {"""generated_text""": ANY(_a )}], [{"""generated_text""": ANY(_a )}, {"""generated_text""": ANY(_a )}], ] , ) with self.assertRaises(_a ): generator(4 ) @require_torch def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = pipeline("""text2text-generation""" , model="""patrickvonplaten/t5-tiny-random""" , framework="""pt""" ) # do_sample=False necessary for reproducibility lowerCamelCase = generator("""Something there""" , do_sample=_a ) self.assertEqual(_a , [{"""generated_text""": """"""}] ) lowerCamelCase = 3 lowerCamelCase = generator( """Something there""" , num_return_sequences=_a , num_beams=_a , ) lowerCamelCase = [ {"""generated_text""": """Beide Beide Beide Beide Beide Beide Beide Beide Beide"""}, {"""generated_text""": """Beide Beide Beide Beide Beide Beide Beide Beide"""}, {"""generated_text""": """"""}, ] self.assertEqual(_a , _a ) lowerCamelCase = generator("""This is a test""" , do_sample=_a , num_return_sequences=2 , return_tensors=_a ) self.assertEqual( _a , [ {"""generated_token_ids""": ANY(torch.Tensor )}, {"""generated_token_ids""": ANY(torch.Tensor )}, ] , ) lowerCamelCase = generator.model.config.eos_token_id lowerCamelCase = """<pad>""" lowerCamelCase = generator( ["""This is a test""", """This is a second test"""] , do_sample=_a , num_return_sequences=2 , batch_size=2 , return_tensors=_a , ) self.assertEqual( _a , [ [ {"""generated_token_ids""": ANY(torch.Tensor )}, {"""generated_token_ids""": ANY(torch.Tensor )}, ], [ {"""generated_token_ids""": ANY(torch.Tensor )}, {"""generated_token_ids""": ANY(torch.Tensor )}, ], ] , ) @require_tf def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = pipeline("""text2text-generation""" , model="""patrickvonplaten/t5-tiny-random""" , framework="""tf""" ) # do_sample=False necessary for reproducibility lowerCamelCase = generator("""Something there""" , do_sample=_a ) self.assertEqual(_a , [{"""generated_text""": """"""}] )
291
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __SCREAMING_SNAKE_CASE : Optional[Any] = { '''configuration_xlm''': ['''XLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XLMConfig''', '''XLMOnnxConfig'''], '''tokenization_xlm''': ['''XLMTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : List[str] = [ '''XLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XLMForMultipleChoice''', '''XLMForQuestionAnswering''', '''XLMForQuestionAnsweringSimple''', '''XLMForSequenceClassification''', '''XLMForTokenClassification''', '''XLMModel''', '''XLMPreTrainedModel''', '''XLMWithLMHeadModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : List[Any] = [ '''TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXLMForMultipleChoice''', '''TFXLMForQuestionAnsweringSimple''', '''TFXLMForSequenceClassification''', '''TFXLMForTokenClassification''', '''TFXLMMainLayer''', '''TFXLMModel''', '''TFXLMPreTrainedModel''', '''TFXLMWithLMHeadModel''', ] if TYPE_CHECKING: from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig from .tokenization_xlm import XLMTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) else: import sys __SCREAMING_SNAKE_CASE : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
363
"""simple docstring""" import argparse from collections import defaultdict def lowerCAmelCase_( lowercase_ : str , lowercase_ : Dict , lowercase_ : Tuple , lowercase_ : str , lowercase_ : str ) -> Optional[int]: _lowerCamelCase = F"""{file}_{class_name}_{test_name}""" done_test[_id] += 1 with open(lowercase_ , '''r''' ) as f: _lowerCamelCase = f.readlines() _lowerCamelCase = F"""class {class_name}(""" _lowerCamelCase = F"""{4 * " "}def {test_name}(""" _lowerCamelCase = F"""{8 * " "}{correct_line.split()[0]}""" _lowerCamelCase = F"""{16 * " "}{correct_line.split()[0]}""" _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = 0 _lowerCamelCase = 0 _lowerCamelCase = [] for line in lines: if line.startswith(lowercase_ ): _lowerCamelCase = True elif in_class and line.startswith(lowercase_ ): _lowerCamelCase = True elif in_class and in_func and (line.startswith(lowercase_ ) or line.startswith(lowercase_ )): _lowerCamelCase = len(line.split(correct_line.split()[0] )[0] ) count += 1 if count == done_test[_id]: _lowerCamelCase = True if in_class and in_func and in_line: if ")" not in line: continue else: _lowerCamelCase = True if in_class and in_func and in_line and insert_line: new_lines.append(F"""{spaces * " "}{correct_line}""" ) _lowerCamelCase = _lowerCamelCase = _lowerCamelCase = _lowerCamelCase = False else: new_lines.append(lowercase_ ) with open(lowercase_ , '''w''' ) as f: for line in new_lines: f.write(lowercase_ ) def lowerCAmelCase_( lowercase_ : str , lowercase_ : Union[str, Any]=None ) -> Any: if fail is not None: with open(lowercase_ , '''r''' ) as f: _lowerCamelCase = {l.strip() for l in f.readlines()} else: _lowerCamelCase = None with open(lowercase_ , '''r''' ) as f: _lowerCamelCase = f.readlines() _lowerCamelCase = defaultdict(lowercase_ ) for line in correct_lines: _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = line.split(''';''' ) if test_failures is None or "::".join([file, class_name, test_name] ) in test_failures: overwrite_file(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE : Optional[Any] = argparse.ArgumentParser() parser.add_argument('''--correct_filename''', help='''filename of tests with expected result''') parser.add_argument('''--fail_filename''', help='''filename of test failures''', type=str, default=None) __SCREAMING_SNAKE_CASE : Dict = parser.parse_args() main(args.correct_filename, args.fail_filename)
73
0
from typing import Dict import numpy as np import torch from . import residue_constants as rc from .tensor_utils import tensor_tree_map, tree_map def UpperCAmelCase_ ( __UpperCAmelCase : Dict[str, torch.Tensor] ) -> Dict[str, torch.Tensor]: SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = [] for rt in rc.restypes: SCREAMING_SNAKE_CASE_ = rc.restype_name_to_atomaa_names[rc.restype_atoa[rt]] restype_atomaa_to_atomaa_list.append([(rc.atom_order[name] if name else 0) for name in atom_names] ) SCREAMING_SNAKE_CASE_ = {name: i for i, name in enumerate(__UpperCAmelCase )} restype_atomaa_to_atomaa_list.append( [(atom_name_to_idxaa[name] if name in atom_name_to_idxaa else 0) for name in rc.atom_types] ) restype_atomaa_mask_list.append([(1.0 if name else 0.0) for name in atom_names] ) # Add dummy mapping for restype 'UNK' restype_atomaa_to_atomaa_list.append([0] * 14 ) restype_atomaa_to_atomaa_list.append([0] * 37 ) restype_atomaa_mask_list.append([0.0] * 14 ) SCREAMING_SNAKE_CASE_ = torch.tensor( __UpperCAmelCase , dtype=torch.intaa , device=protein['aatype'].device , ) SCREAMING_SNAKE_CASE_ = torch.tensor( __UpperCAmelCase , dtype=torch.intaa , device=protein['aatype'].device , ) SCREAMING_SNAKE_CASE_ = torch.tensor( __UpperCAmelCase , dtype=torch.floataa , device=protein['aatype'].device , ) SCREAMING_SNAKE_CASE_ = protein['aatype'].to(torch.long ) # create the mapping for (residx, atom14) --> atom37, i.e. an array # with shape (num_res, 14) containing the atom37 indices for this protein SCREAMING_SNAKE_CASE_ = restype_atomaa_to_atomaa[protein_aatype] SCREAMING_SNAKE_CASE_ = restype_atomaa_mask[protein_aatype] SCREAMING_SNAKE_CASE_ = residx_atomaa_mask SCREAMING_SNAKE_CASE_ = residx_atomaa_to_atomaa.long() # create the gather indices for mapping back SCREAMING_SNAKE_CASE_ = restype_atomaa_to_atomaa[protein_aatype] SCREAMING_SNAKE_CASE_ = residx_atomaa_to_atomaa.long() # create the corresponding mask SCREAMING_SNAKE_CASE_ = torch.zeros([21, 37] , dtype=torch.floataa , device=protein['aatype'].device ) for restype, restype_letter in enumerate(rc.restypes ): SCREAMING_SNAKE_CASE_ = rc.restype_atoa[restype_letter] SCREAMING_SNAKE_CASE_ = rc.residue_atoms[restype_name] for atom_name in atom_names: SCREAMING_SNAKE_CASE_ = rc.atom_order[atom_name] SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = restype_atomaa_mask[protein_aatype] SCREAMING_SNAKE_CASE_ = residx_atomaa_mask return protein def UpperCAmelCase_ ( __UpperCAmelCase : Dict[str, torch.Tensor] ) -> Dict[str, np.ndarray]: SCREAMING_SNAKE_CASE_ = tree_map(lambda __UpperCAmelCase : torch.tensor(__UpperCAmelCase , device=batch['aatype'].device ) , __UpperCAmelCase , np.ndarray ) SCREAMING_SNAKE_CASE_ = tensor_tree_map(lambda __UpperCAmelCase : np.array(__UpperCAmelCase ) , make_atomaa_masks(__UpperCAmelCase ) ) return out
225
import re from filelock import FileLock try: import nltk lowerCamelCase__ : str = True except (ImportError, ModuleNotFoundError): lowerCamelCase__ : Union[str, Any] = False if NLTK_AVAILABLE: with FileLock('.lock') as lock: nltk.download('punkt', quiet=True) def UpperCAmelCase_ ( __UpperCAmelCase : str ) -> str: re.sub('<n>' , '' , __UpperCAmelCase ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(__UpperCAmelCase ) )
225
1
from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = { '''EleutherAI/gpt-j-6B''': '''https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json''', # See all GPT-J models at https://huggingface.co/models?filter=gpt_j } class _a ( _lowercase): _a : List[str] = '''gptj''' _a : Any = { '''max_position_embeddings''': '''n_positions''', '''hidden_size''': '''n_embd''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self : Tuple , _SCREAMING_SNAKE_CASE : int=5_0400 , _SCREAMING_SNAKE_CASE : Tuple=2048 , _SCREAMING_SNAKE_CASE : Optional[int]=4096 , _SCREAMING_SNAKE_CASE : Tuple=28 , _SCREAMING_SNAKE_CASE : Tuple=16 , _SCREAMING_SNAKE_CASE : List[str]=64 , _SCREAMING_SNAKE_CASE : str=None , _SCREAMING_SNAKE_CASE : int="gelu_new" , _SCREAMING_SNAKE_CASE : Any=0.0 , _SCREAMING_SNAKE_CASE : Union[str, Any]=0.0 , _SCREAMING_SNAKE_CASE : Optional[int]=0.0 , _SCREAMING_SNAKE_CASE : Any=1E-5 , _SCREAMING_SNAKE_CASE : List[str]=0.02 , _SCREAMING_SNAKE_CASE : Tuple=True , _SCREAMING_SNAKE_CASE : List[Any]=5_0256 , _SCREAMING_SNAKE_CASE : Optional[int]=5_0256 , _SCREAMING_SNAKE_CASE : Union[str, Any]=False , **_SCREAMING_SNAKE_CASE : int , )-> Optional[int]: lowerCAmelCase__ : Optional[Any] = vocab_size lowerCAmelCase__ : str = n_positions lowerCAmelCase__ : List[str] = n_embd lowerCAmelCase__ : Any = n_layer lowerCAmelCase__ : Optional[Any] = n_head lowerCAmelCase__ : Union[str, Any] = n_inner lowerCAmelCase__ : Tuple = rotary_dim lowerCAmelCase__ : Optional[int] = activation_function lowerCAmelCase__ : List[Any] = resid_pdrop lowerCAmelCase__ : Optional[Any] = embd_pdrop lowerCAmelCase__ : List[Any] = attn_pdrop lowerCAmelCase__ : Optional[int] = layer_norm_epsilon lowerCAmelCase__ : Tuple = initializer_range lowerCAmelCase__ : Union[str, Any] = use_cache lowerCAmelCase__ : List[Any] = bos_token_id lowerCAmelCase__ : Dict = eos_token_id super().__init__( bos_token_id=_SCREAMING_SNAKE_CASE , eos_token_id=_SCREAMING_SNAKE_CASE , tie_word_embeddings=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) class _a ( _lowercase): def __init__( self : Union[str, Any] , _SCREAMING_SNAKE_CASE : PretrainedConfig , _SCREAMING_SNAKE_CASE : str = "default" , _SCREAMING_SNAKE_CASE : List[PatchingSpec] = None , _SCREAMING_SNAKE_CASE : bool = False , )-> Union[str, Any]: super().__init__(_SCREAMING_SNAKE_CASE , task=_SCREAMING_SNAKE_CASE , patching_specs=_SCREAMING_SNAKE_CASE , use_past=_SCREAMING_SNAKE_CASE ) if not getattr(self._config , '''pad_token_id''' , _SCREAMING_SNAKE_CASE ): # TODO: how to do that better? lowerCAmelCase__ : Dict = 0 @property def UpperCAmelCase__( self : Dict )-> Mapping[str, Mapping[int, str]]: lowerCAmelCase__ : Optional[int] = OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}} ) if self.use_past: self.fill_with_past_key_values_(_SCREAMING_SNAKE_CASE , direction='''inputs''' ) lowerCAmelCase__ : Optional[Any] = {0: '''batch''', 1: '''past_sequence + sequence'''} else: lowerCAmelCase__ : Optional[int] = {0: '''batch''', 1: '''sequence'''} return common_inputs @property def UpperCAmelCase__( self : str )-> int: return self._config.n_layer @property def UpperCAmelCase__( self : Tuple )-> int: return self._config.n_head def UpperCAmelCase__( self : Union[str, Any] , _SCREAMING_SNAKE_CASE : PreTrainedTokenizer , _SCREAMING_SNAKE_CASE : int = -1 , _SCREAMING_SNAKE_CASE : int = -1 , _SCREAMING_SNAKE_CASE : bool = False , _SCREAMING_SNAKE_CASE : Optional[TensorType] = None , )-> Mapping[str, Any]: lowerCAmelCase__ : Tuple = super(_SCREAMING_SNAKE_CASE , self ).generate_dummy_inputs( _SCREAMING_SNAKE_CASE , batch_size=_SCREAMING_SNAKE_CASE , seq_length=_SCREAMING_SNAKE_CASE , is_pair=_SCREAMING_SNAKE_CASE , framework=_SCREAMING_SNAKE_CASE ) # We need to order the input in the way they appears in the forward() lowerCAmelCase__ : List[str] = OrderedDict({'''input_ids''': common_inputs['''input_ids''']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch lowerCAmelCase__ , lowerCAmelCase__ : Optional[int] = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values lowerCAmelCase__ : List[Any] = seqlen + 2 lowerCAmelCase__ : str = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) lowerCAmelCase__ : List[Any] = [ (torch.zeros(_SCREAMING_SNAKE_CASE ), torch.zeros(_SCREAMING_SNAKE_CASE )) for _ in range(self.num_layers ) ] lowerCAmelCase__ : List[str] = common_inputs['''attention_mask'''] if self.use_past: lowerCAmelCase__ : Union[str, Any] = ordered_inputs['''attention_mask'''].dtype lowerCAmelCase__ : Optional[int] = torch.cat( [ordered_inputs['''attention_mask'''], torch.ones(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , dtype=_SCREAMING_SNAKE_CASE )] , dim=1 ) return ordered_inputs @property def UpperCAmelCase__( self : List[Any] )-> int: return 13
211
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTImageProcessor, ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase = logging.get_logger(__name__) def lowerCamelCase_ ( _a , _a=False ): """simple docstring""" lowerCAmelCase__ : int = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'blocks.{i}.norm1.weight', f'vit.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((f'blocks.{i}.norm1.bias', f'vit.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append((f'blocks.{i}.attn.proj.weight', f'vit.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append((f'blocks.{i}.attn.proj.bias', f'vit.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append((f'blocks.{i}.norm2.weight', f'vit.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((f'blocks.{i}.norm2.bias', f'vit.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append((f'blocks.{i}.mlp.fc1.weight', f'vit.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append((f'blocks.{i}.mlp.fc1.bias', f'vit.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append((f'blocks.{i}.mlp.fc2.weight', f'vit.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((f'blocks.{i}.mlp.fc2.bias', f'vit.encoder.layer.{i}.output.dense.bias') ) # projection layer + position embeddings rename_keys.extend( [ ('''cls_token''', '''vit.embeddings.cls_token'''), ('''patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight'''), ('''patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias'''), ('''pos_embed''', '''vit.embeddings.position_embeddings'''), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ('''pre_logits.fc.weight''', '''pooler.dense.weight'''), ('''pre_logits.fc.bias''', '''pooler.dense.bias'''), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" lowerCAmelCase__ : Tuple = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('''norm.weight''', '''vit.layernorm.weight'''), ('''norm.bias''', '''vit.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) return rename_keys def lowerCamelCase_ ( _a , _a , _a=False ): """simple docstring""" for i in range(config.num_hidden_layers ): if base_model: lowerCAmelCase__ : Dict = '''''' else: lowerCAmelCase__ : List[str] = '''vit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCAmelCase__ : Dict = state_dict.pop(f'blocks.{i}.attn.qkv.weight' ) lowerCAmelCase__ : Dict = state_dict.pop(f'blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict lowerCAmelCase__ : Any = in_proj_weight[ : config.hidden_size, : ] lowerCAmelCase__ : Optional[Any] = in_proj_bias[: config.hidden_size] lowerCAmelCase__ : int = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCAmelCase__ : Dict = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCAmelCase__ : Dict = in_proj_weight[ -config.hidden_size :, : ] lowerCAmelCase__ : Any = in_proj_bias[-config.hidden_size :] def lowerCamelCase_ ( _a ): """simple docstring""" lowerCAmelCase__ : Union[str, Any] = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(_a , _a ) def lowerCamelCase_ ( _a , _a , _a ): """simple docstring""" lowerCAmelCase__ : Any = dct.pop(_a ) lowerCAmelCase__ : Optional[Any] = val def lowerCamelCase_ ( ): """simple docstring""" lowerCAmelCase__ : Dict = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowerCAmelCase__ : Tuple = Image.open(requests.get(_a , stream=_a ).raw ) return im @torch.no_grad() def lowerCamelCase_ ( _a , _a ): """simple docstring""" lowerCAmelCase__ : List[str] = ViTConfig() lowerCAmelCase__ : Optional[Any] = False # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size if vit_name[-5:] == "in21k": lowerCAmelCase__ : List[Any] = True lowerCAmelCase__ : Any = int(vit_name[-12:-10] ) lowerCAmelCase__ : int = int(vit_name[-9:-6] ) else: lowerCAmelCase__ : Dict = 1_000 lowerCAmelCase__ : str = '''huggingface/label-files''' lowerCAmelCase__ : Dict = '''imagenet-1k-id2label.json''' lowerCAmelCase__ : str = json.load(open(hf_hub_download(_a , _a , repo_type='''dataset''' ) , '''r''' ) ) lowerCAmelCase__ : Any = {int(_a ): v for k, v in idalabel.items()} lowerCAmelCase__ : Optional[Any] = idalabel lowerCAmelCase__ : List[str] = {v: k for k, v in idalabel.items()} lowerCAmelCase__ : Tuple = int(vit_name[-6:-4] ) lowerCAmelCase__ : Union[str, Any] = int(vit_name[-3:] ) # size of the architecture if "deit" in vit_name: if vit_name[9:].startswith('''tiny''' ): lowerCAmelCase__ : List[str] = 192 lowerCAmelCase__ : Tuple = 768 lowerCAmelCase__ : Optional[int] = 12 lowerCAmelCase__ : List[Any] = 3 elif vit_name[9:].startswith('''small''' ): lowerCAmelCase__ : Any = 384 lowerCAmelCase__ : Optional[int] = 1_536 lowerCAmelCase__ : List[Any] = 12 lowerCAmelCase__ : Tuple = 6 else: pass else: if vit_name[4:].startswith('''small''' ): lowerCAmelCase__ : List[str] = 768 lowerCAmelCase__ : Tuple = 2_304 lowerCAmelCase__ : Any = 8 lowerCAmelCase__ : Union[str, Any] = 8 elif vit_name[4:].startswith('''base''' ): pass elif vit_name[4:].startswith('''large''' ): lowerCAmelCase__ : str = 1_024 lowerCAmelCase__ : Optional[Any] = 4_096 lowerCAmelCase__ : Optional[int] = 24 lowerCAmelCase__ : Tuple = 16 elif vit_name[4:].startswith('''huge''' ): lowerCAmelCase__ : Tuple = 1_280 lowerCAmelCase__ : Tuple = 5_120 lowerCAmelCase__ : Optional[int] = 32 lowerCAmelCase__ : List[Any] = 16 # load original model from timm lowerCAmelCase__ : Tuple = timm.create_model(_a , pretrained=_a ) timm_model.eval() # load state_dict of original model, remove and rename some keys lowerCAmelCase__ : Any = timm_model.state_dict() if base_model: remove_classification_head_(_a ) lowerCAmelCase__ : List[Any] = create_rename_keys(_a , _a ) for src, dest in rename_keys: rename_key(_a , _a , _a ) read_in_q_k_v(_a , _a , _a ) # load HuggingFace model if vit_name[-5:] == "in21k": lowerCAmelCase__ : List[str] = ViTModel(_a ).eval() else: lowerCAmelCase__ : Any = ViTForImageClassification(_a ).eval() model.load_state_dict(_a ) # Check outputs on an image, prepared by ViTImageProcessor/DeiTImageProcessor if "deit" in vit_name: lowerCAmelCase__ : Dict = DeiTImageProcessor(size=config.image_size ) else: lowerCAmelCase__ : int = ViTImageProcessor(size=config.image_size ) lowerCAmelCase__ : Optional[Any] = image_processor(images=prepare_img() , return_tensors='''pt''' ) lowerCAmelCase__ : List[str] = encoding['''pixel_values'''] lowerCAmelCase__ : List[Any] = model(_a ) if base_model: lowerCAmelCase__ : Optional[Any] = timm_model.forward_features(_a ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(_a , outputs.pooler_output , atol=1e-3 ) else: lowerCAmelCase__ : Union[str, Any] = timm_model(_a ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(_a , outputs.logits , atol=1e-3 ) Path(_a ).mkdir(exist_ok=_a ) print(f'Saving model {vit_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(_a ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(_a ) if __name__ == "__main__": lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--vit_name''', default='''vit_base_patch16_224''', type=str, help='''Name of the ViT timm model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) lowerCamelCase = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path)
211
1
"""simple docstring""" import argparse import os import re import packaging.version A : Any = "examples/" A : Optional[Any] = { "examples": (re.compile(R"^check_min_version\(\"[^\"]+\"\)\s*$", re.MULTILINE), "check_min_version(\"VERSION\")\n"), "init": (re.compile(R"^__version__\s+=\s+\"([^\"]+)\"\s*$", re.MULTILINE), "__version__ = \"VERSION\"\n"), "setup": (re.compile(R"^(\s*)version\s*=\s*\"[^\"]+\",", re.MULTILINE), R"\1version=\"VERSION\","), "doc": (re.compile(R"^(\s*)release\s*=\s*\"[^\"]+\"$", re.MULTILINE), "release = \"VERSION\"\n"), } A : Optional[int] = { "init": "src/transformers/__init__.py", "setup": "setup.py", } A : List[Any] = "README.md" def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' with open(_UpperCamelCase , "r" , encoding="utf-8" , newline="\n" ) as f: __lowerCAmelCase = f.read() __lowerCAmelCase , __lowerCAmelCase = REPLACE_PATTERNS[pattern] __lowerCAmelCase = replace.replace("VERSION" , _UpperCamelCase ) __lowerCAmelCase = re_pattern.sub(_UpperCamelCase , _UpperCamelCase ) with open(_UpperCamelCase , "w" , encoding="utf-8" , newline="\n" ) as f: f.write(_UpperCamelCase ) def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' for folder, directories, fnames in os.walk(_UpperCamelCase ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove("research_projects" ) if "legacy" in directories: directories.remove("legacy" ) for fname in fnames: if fname.endswith(".py" ): update_version_in_file(os.path.join(_UpperCamelCase , _UpperCamelCase ) , _UpperCamelCase , pattern="examples" ) def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase=False ): '''simple docstring''' for pattern, fname in REPLACE_FILES.items(): update_version_in_file(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) if not patch: update_version_in_examples(_UpperCamelCase ) def _lowerCamelCase ( ): '''simple docstring''' __lowerCAmelCase = "🤗 Transformers currently provides the following architectures" __lowerCAmelCase = "1. Want to contribute a new model?" with open(_UpperCamelCase , "r" , encoding="utf-8" , newline="\n" ) as f: __lowerCAmelCase = f.readlines() # Find the start of the list. __lowerCAmelCase = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 __lowerCAmelCase = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith("1." ): __lowerCAmelCase = lines[index].replace( "https://huggingface.co/docs/transformers/main/model_doc" , "https://huggingface.co/docs/transformers/model_doc" , ) index += 1 with open(_UpperCamelCase , "w" , encoding="utf-8" , newline="\n" ) as f: f.writelines(_UpperCamelCase ) def _lowerCamelCase ( ): '''simple docstring''' with open(REPLACE_FILES["init"] , "r" ) as f: __lowerCAmelCase = f.read() __lowerCAmelCase = REPLACE_PATTERNS["init"][0].search(_UpperCamelCase ).groups()[0] return packaging.version.parse(_UpperCamelCase ) def _lowerCamelCase ( _UpperCamelCase=False ): '''simple docstring''' __lowerCAmelCase = get_version() if patch and default_version.is_devrelease: raise ValueError("Can't create a patch version from the dev branch, checkout a released version!" ) if default_version.is_devrelease: __lowerCAmelCase = default_version.base_version elif patch: __lowerCAmelCase = f"{default_version.major}.{default_version.minor}.{default_version.micro + 1}" else: __lowerCAmelCase = f"{default_version.major}.{default_version.minor + 1}.0" # Now let's ask nicely if that's the right one. __lowerCAmelCase = input(f"Which version are you releasing? [{default_version}]" ) if len(_UpperCamelCase ) == 0: __lowerCAmelCase = default_version print(f"Updating version to {version}." ) global_version_update(_UpperCamelCase , patch=_UpperCamelCase ) if not patch: print("Cleaning main README, don't forget to run `make fix-copies`." ) clean_main_ref_in_model_list() def _lowerCamelCase ( ): '''simple docstring''' __lowerCAmelCase = get_version() __lowerCAmelCase = f"{current_version.major}.{current_version.minor + 1}.0.dev0" __lowerCAmelCase = current_version.base_version # Check with the user we got that right. __lowerCAmelCase = input(f"Which version are we developing now? [{dev_version}]" ) if len(_UpperCamelCase ) == 0: __lowerCAmelCase = dev_version print(f"Updating version to {version}." ) global_version_update(_UpperCamelCase ) print("Cleaning main README, don't forget to run `make fix-copies`." ) clean_main_ref_in_model_list() if __name__ == "__main__": A : Union[str, Any] = argparse.ArgumentParser() parser.add_argument("--post_release", action="store_true", help="Whether this is pre or post release.") parser.add_argument("--patch", action="store_true", help="Whether or not this is a patch release.") A : Dict = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print("Nothing to do after a patch :-)") else: post_release_work()
57
"""simple docstring""" import pprint import requests _lowercase : Optional[Any] = 'https://zenquotes.io/api' def lowercase__ ( ): return requests.get(API_ENDPOINT_URL + '''/today''' ).json() def lowercase__ ( ): return requests.get(API_ENDPOINT_URL + '''/random''' ).json() if __name__ == "__main__": _lowercase : int = random_quotes() pprint.pprint(response)
332
0
import os from math import logaa def UpperCamelCase ( _A : str = "base_exp.txt" )-> int: """simple docstring""" A__ = 0 A__ = 0 for i, line in enumerate(open(os.path.join(os.path.dirname(_A ) , _A ) ) ): A__ , A__ = list(map(_A , line.split("," ) ) ) if x * logaa(_A ) > largest: A__ = x * logaa(_A ) A__ = i + 1 return result if __name__ == "__main__": print(solution())
371
import multiprocessing import os from typing import BinaryIO, Optional, Union import fsspec from .. import Dataset, Features, NamedSplit, config from ..formatting import query_table from ..packaged_modules.json.json import Json from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class UpperCamelCase ( _UpperCAmelCase ): def __init__( self , UpperCAmelCase__ , UpperCAmelCase__ = None , UpperCAmelCase__ = None , UpperCAmelCase__ = None , UpperCAmelCase__ = False , UpperCAmelCase__ = False , UpperCAmelCase__ = None , UpperCAmelCase__ = None , **UpperCAmelCase__ , ): super().__init__( UpperCAmelCase__ , split=UpperCAmelCase__ , features=UpperCAmelCase__ , cache_dir=UpperCAmelCase__ , keep_in_memory=UpperCAmelCase__ , streaming=UpperCAmelCase__ , num_proc=UpperCAmelCase__ , **UpperCAmelCase__ , ) A__ = field A__ = path_or_paths if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else {self.split: path_or_paths} A__ = Json( cache_dir=UpperCAmelCase__ , data_files=UpperCAmelCase__ , features=UpperCAmelCase__ , field=UpperCAmelCase__ , **UpperCAmelCase__ , ) def __A ( self ): # Build iterable dataset if self.streaming: A__ = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: A__ = None A__ = None A__ = None A__ = None self.builder.download_and_prepare( download_config=UpperCAmelCase__ , download_mode=UpperCAmelCase__ , verification_mode=UpperCAmelCase__ , base_path=UpperCAmelCase__ , num_proc=self.num_proc , ) A__ = self.builder.as_dataset( split=self.split , verification_mode=UpperCAmelCase__ , in_memory=self.keep_in_memory ) return dataset class UpperCamelCase : def __init__( self , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = None , UpperCAmelCase__ = None , **UpperCAmelCase__ , ): if num_proc is not None and num_proc <= 0: raise ValueError(F"""num_proc {num_proc} must be an integer > 0.""" ) A__ = dataset A__ = path_or_buf A__ = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE A__ = num_proc A__ = "utf-8" A__ = to_json_kwargs def __A ( self ): A__ = self.to_json_kwargs.pop("path_or_buf" , UpperCAmelCase__ ) A__ = self.to_json_kwargs.pop("orient" , "records" ) A__ = self.to_json_kwargs.pop("lines" , True if orient == "records" else False ) A__ = self.to_json_kwargs.pop("index" , False if orient in ["split", "table"] else True ) A__ = self.to_json_kwargs.pop("compression" , UpperCAmelCase__ ) if compression not in [None, "infer", "gzip", "bz2", "xz"]: raise NotImplementedError(F"""`datasets` currently does not support {compression} compression""" ) if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ): with fsspec.open(self.path_or_buf , "wb" , compression=UpperCAmelCase__ ) as buffer: A__ = self._write(file_obj=UpperCAmelCase__ , orient=UpperCAmelCase__ , lines=UpperCAmelCase__ , index=UpperCAmelCase__ , **self.to_json_kwargs ) else: if compression: raise NotImplementedError( F"""The compression parameter is not supported when writing to a buffer, but compression={compression}""" " was passed. Please provide a local path instead." ) A__ = self._write( file_obj=self.path_or_buf , orient=UpperCAmelCase__ , lines=UpperCAmelCase__ , index=UpperCAmelCase__ , **self.to_json_kwargs ) return written def __A ( self , UpperCAmelCase__ ): A__ , A__ , A__ , A__ , A__ = args A__ = query_table( table=self.dataset.data , key=slice(UpperCAmelCase__ , offset + self.batch_size ) , indices=self.dataset._indices , ) A__ = batch.to_pandas().to_json( path_or_buf=UpperCAmelCase__ , orient=UpperCAmelCase__ , lines=UpperCAmelCase__ , index=UpperCAmelCase__ , **UpperCAmelCase__ ) if not json_str.endswith("\n" ): json_str += "\n" return json_str.encode(self.encoding ) def __A ( self , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , **UpperCAmelCase__ , ): A__ = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit="ba" , disable=not logging.is_progress_bar_enabled() , desc="Creating json from Arrow format" , ): A__ = self._batch_json((offset, orient, lines, index, to_json_kwargs) ) written += file_obj.write(UpperCAmelCase__ ) else: A__ , A__ = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for json_str in logging.tqdm( pool.imap( self._batch_json , [(offset, orient, lines, index, to_json_kwargs) for offset in range(0 , UpperCAmelCase__ , UpperCAmelCase__ )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit="ba" , disable=not logging.is_progress_bar_enabled() , desc="Creating json from Arrow format" , ): written += file_obj.write(UpperCAmelCase__ ) return written
198
0
"""simple docstring""" # flake8: noqa # Lint as: python3 __UpperCamelCase : List[Any] = [ '''VerificationMode''', '''Version''', '''disable_progress_bar''', '''enable_progress_bar''', '''is_progress_bar_enabled''', '''experimental''', ] from .info_utils import VerificationMode from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled from .version import Version from .experimental import experimental
106
"""simple docstring""" import math import os from copy import deepcopy import datasets import evaluate import torch import transformers from datasets import load_dataset from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer from accelerate import Accelerator from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import is_tpu_available, set_seed __UpperCamelCase : List[str] = '''true''' def __SCREAMING_SNAKE_CASE ( A_ , A_=82 , A_=16 ): set_seed(42 ) lowerCAmelCase__ : Union[str, Any] = RegressionModel() lowerCAmelCase__ : Optional[int] = deepcopy(A_ ) lowerCAmelCase__ : Any = RegressionDataset(length=A_ ) lowerCAmelCase__ : List[str] = DataLoader(A_ , batch_size=A_ ) model.to(accelerator.device ) lowerCAmelCase__ ,lowerCAmelCase__ : Dict = accelerator.prepare(A_ , A_ ) return model, ddp_model, dataloader def __SCREAMING_SNAKE_CASE ( A_ , A_=False ): lowerCAmelCase__ : List[str] = AutoTokenizer.from_pretrained('''hf-internal-testing/mrpc-bert-base-cased''' ) lowerCAmelCase__ : List[str] = load_dataset('''glue''' , '''mrpc''' , split='''validation''' ) def tokenize_function(A_ ): lowerCAmelCase__ : Optional[Any] = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=A_ , max_length=A_ ) return outputs with accelerator.main_process_first(): lowerCAmelCase__ : Dict = dataset.map( A_ , batched=A_ , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) lowerCAmelCase__ : int = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(A_ ): if use_longest: return tokenizer.pad(A_ , padding='''longest''' , return_tensors='''pt''' ) return tokenizer.pad(A_ , padding='''max_length''' , max_length=1_28 , return_tensors='''pt''' ) return DataLoader(A_ , shuffle=A_ , collate_fn=A_ , batch_size=16 ) def __SCREAMING_SNAKE_CASE ( A_ , A_ ): lowerCAmelCase__ : Union[str, Any] = Accelerator(dispatch_batches=A_ , split_batches=A_ ) lowerCAmelCase__ : str = get_dataloader(A_ , not dispatch_batches ) lowerCAmelCase__ : Optional[int] = AutoModelForSequenceClassification.from_pretrained( '''hf-internal-testing/mrpc-bert-base-cased''' , return_dict=A_ ) lowerCAmelCase__ ,lowerCAmelCase__ : Union[str, Any] = accelerator.prepare(A_ , A_ ) return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator def __SCREAMING_SNAKE_CASE ( A_ , A_ , A_ ): lowerCAmelCase__ : Union[str, Any] = [] for batch in dataloader: lowerCAmelCase__ ,lowerCAmelCase__ : Optional[Any] = batch.values() with torch.no_grad(): lowerCAmelCase__ : List[str] = model(A_ ) lowerCAmelCase__ ,lowerCAmelCase__ : str = accelerator.gather_for_metrics((logit, target) ) logits_and_targets.append((logit, target) ) lowerCAmelCase__ ,lowerCAmelCase__ : int = [], [] for logit, targ in logits_and_targets: logits.append(A_ ) targs.append(A_ ) lowerCAmelCase__ ,lowerCAmelCase__ : List[str] = torch.cat(A_ ), torch.cat(A_ ) return logits, targs def __SCREAMING_SNAKE_CASE ( A_ , A_=82 , A_=False , A_=False , A_=16 ): lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ : Union[str, Any] = get_basic_setup(A_ , A_ , A_ ) lowerCAmelCase__ ,lowerCAmelCase__ : Optional[int] = generate_predictions(A_ , A_ , A_ ) assert ( len(A_ ) == num_samples ), f'Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(A_ )}' def __SCREAMING_SNAKE_CASE ( A_ = False , A_ = False ): lowerCAmelCase__ : Optional[Any] = evaluate.load('''glue''' , '''mrpc''' ) lowerCAmelCase__ ,lowerCAmelCase__ : Optional[int] = get_mrpc_setup(A_ , A_ ) # First do baseline lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ : Any = setup['''no'''] model.to(A_ ) model.eval() for batch in dataloader: batch.to(A_ ) with torch.inference_mode(): lowerCAmelCase__ : Optional[int] = model(**A_ ) lowerCAmelCase__ : Dict = outputs.logits.argmax(dim=-1 ) metric.add_batch(predictions=A_ , references=batch['''labels'''] ) lowerCAmelCase__ : Dict = metric.compute() # Then do distributed lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ : Optional[Any] = setup['''ddp'''] model.eval() for batch in dataloader: with torch.inference_mode(): lowerCAmelCase__ : Union[str, Any] = model(**A_ ) lowerCAmelCase__ : int = outputs.logits.argmax(dim=-1 ) lowerCAmelCase__ : int = batch['''labels'''] lowerCAmelCase__ ,lowerCAmelCase__ : int = accelerator.gather_for_metrics((preds, references) ) metric.add_batch(predictions=A_ , references=A_ ) lowerCAmelCase__ : List[Any] = metric.compute() for key in "accuracy f1".split(): assert math.isclose( baseline[key] , distributed[key] ), f'Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n' def __SCREAMING_SNAKE_CASE ( ): lowerCAmelCase__ : List[str] = Accelerator(split_batches=A_ , dispatch_batches=A_ ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # These are a bit slower so they should only be ran on the GPU or TPU if torch.cuda.is_available() or is_tpu_available(): if accelerator.is_local_main_process: print('''**Testing gather_for_metrics**''' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: if accelerator.is_local_main_process: print(f'With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`' ) test_mrpc(A_ , A_ ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('''**Test torch metrics**''' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: lowerCAmelCase__ : Optional[Any] = Accelerator(split_batches=A_ , dispatch_batches=A_ ) if accelerator.is_local_main_process: print(f'With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99' ) test_torch_metrics(A_ , 99 ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('''**Test last batch is not dropped when perfectly divisible**''' ) lowerCAmelCase__ : List[str] = Accelerator() test_torch_metrics(A_ , 5_12 ) accelerator.state._reset_state() def __SCREAMING_SNAKE_CASE ( A_ ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
106
1
def lowerCamelCase__ ( A__ : list[int] ): '''simple docstring''' if not numbers: return 0 if not isinstance(A__ , (list, tuple) ) or not all( isinstance(A__ , A__ ) for number in numbers ): raise ValueError("""numbers must be an iterable of integers""" ) __lowerCamelCase = __lowerCamelCase = __lowerCamelCase = numbers[0] for i in range(1 , len(A__ ) ): # update the maximum and minimum subarray products __lowerCamelCase = numbers[i] if number < 0: __lowerCamelCase, __lowerCamelCase = min_till_now, max_till_now __lowerCamelCase = max(A__ , max_till_now * number ) __lowerCamelCase = min(A__ , min_till_now * number ) # update the maximum product found till now __lowerCamelCase = max(A__ , A__ ) return max_prod
29
from __future__ import annotations UpperCAmelCase_ = { 'A': ['B', 'C', 'E'], 'B': ['A', 'D', 'E'], 'C': ['A', 'F', 'G'], 'D': ['B'], 'E': ['A', 'B', 'D'], 'F': ['C'], 'G': ['C'], } class lowerCamelCase__: def __init__( self: Tuple , UpperCamelCase_: dict[str, list[str]] , UpperCamelCase_: str ): __lowerCamelCase = graph # mapping node to its parent in resulting breadth first tree __lowerCamelCase = {} __lowerCamelCase = source_vertex def lowerCAmelCase__ ( self: Union[str, Any] ): __lowerCamelCase = {self.source_vertex} __lowerCamelCase = None __lowerCamelCase = [self.source_vertex] # first in first out queue while queue: __lowerCamelCase = queue.pop(0 ) for adjacent_vertex in self.graph[vertex]: if adjacent_vertex not in visited: visited.add(UpperCamelCase_ ) __lowerCamelCase = vertex queue.append(UpperCamelCase_ ) def lowerCAmelCase__ ( self: Union[str, Any] , UpperCamelCase_: str ): if target_vertex == self.source_vertex: return self.source_vertex __lowerCamelCase = self.parent.get(UpperCamelCase_ ) if target_vertex_parent is None: __lowerCamelCase = ( F'No path from vertex: {self.source_vertex} to vertex: {target_vertex}' ) raise ValueError(UpperCamelCase_ ) return self.shortest_path(UpperCamelCase_ ) + F'->{target_vertex}' if __name__ == "__main__": UpperCAmelCase_ = Graph(graph, 'G') g.breath_first_search() print(g.shortest_path('D')) print(g.shortest_path('G')) print(g.shortest_path('Foo'))
29
1
import argparse import requests import torch from PIL import Image from transformers import ViTMAEConfig, ViTMAEForPreTraining, ViTMAEImageProcessor def __lowerCamelCase ( snake_case__ ) -> Optional[int]: """simple docstring""" if "cls_token" in name: _SCREAMING_SNAKE_CASE = name.replace("""cls_token""" ,"""vit.embeddings.cls_token""" ) if "mask_token" in name: _SCREAMING_SNAKE_CASE = name.replace("""mask_token""" ,"""decoder.mask_token""" ) if "decoder_pos_embed" in name: _SCREAMING_SNAKE_CASE = name.replace("""decoder_pos_embed""" ,"""decoder.decoder_pos_embed""" ) if "pos_embed" in name and "decoder" not in name: _SCREAMING_SNAKE_CASE = name.replace("""pos_embed""" ,"""vit.embeddings.position_embeddings""" ) if "patch_embed.proj" in name: _SCREAMING_SNAKE_CASE = name.replace("""patch_embed.proj""" ,"""vit.embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: _SCREAMING_SNAKE_CASE = name.replace("""patch_embed.norm""" ,"""vit.embeddings.norm""" ) if "decoder_blocks" in name: _SCREAMING_SNAKE_CASE = name.replace("""decoder_blocks""" ,"""decoder.decoder_layers""" ) if "blocks" in name: _SCREAMING_SNAKE_CASE = name.replace("""blocks""" ,"""vit.encoder.layer""" ) if "attn.proj" in name: _SCREAMING_SNAKE_CASE = name.replace("""attn.proj""" ,"""attention.output.dense""" ) if "attn" in name: _SCREAMING_SNAKE_CASE = name.replace("""attn""" ,"""attention.self""" ) if "norm1" in name: _SCREAMING_SNAKE_CASE = name.replace("""norm1""" ,"""layernorm_before""" ) if "norm2" in name: _SCREAMING_SNAKE_CASE = name.replace("""norm2""" ,"""layernorm_after""" ) if "mlp.fc1" in name: _SCREAMING_SNAKE_CASE = name.replace("""mlp.fc1""" ,"""intermediate.dense""" ) if "mlp.fc2" in name: _SCREAMING_SNAKE_CASE = name.replace("""mlp.fc2""" ,"""output.dense""" ) if "decoder_embed" in name: _SCREAMING_SNAKE_CASE = name.replace("""decoder_embed""" ,"""decoder.decoder_embed""" ) if "decoder_norm" in name: _SCREAMING_SNAKE_CASE = name.replace("""decoder_norm""" ,"""decoder.decoder_norm""" ) if "decoder_pred" in name: _SCREAMING_SNAKE_CASE = name.replace("""decoder_pred""" ,"""decoder.decoder_pred""" ) if "norm.weight" in name and "decoder" not in name: _SCREAMING_SNAKE_CASE = name.replace("""norm.weight""" ,"""vit.layernorm.weight""" ) if "norm.bias" in name and "decoder" not in name: _SCREAMING_SNAKE_CASE = name.replace("""norm.bias""" ,"""vit.layernorm.bias""" ) return name def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> List[Any]: """simple docstring""" for key in orig_state_dict.copy().keys(): _SCREAMING_SNAKE_CASE = orig_state_dict.pop(lowerCamelCase__ ) if "qkv" in key: _SCREAMING_SNAKE_CASE = key.split(""".""" ) _SCREAMING_SNAKE_CASE = int(key_split[1] ) if "decoder_blocks" in key: _SCREAMING_SNAKE_CASE = config.decoder_hidden_size _SCREAMING_SNAKE_CASE = 'decoder.decoder_layers.' if "weight" in key: _SCREAMING_SNAKE_CASE = val[:dim, :] _SCREAMING_SNAKE_CASE = val[dim : dim * 2, :] _SCREAMING_SNAKE_CASE = val[-dim:, :] elif "bias" in key: _SCREAMING_SNAKE_CASE = val[:dim] _SCREAMING_SNAKE_CASE = val[dim : dim * 2] _SCREAMING_SNAKE_CASE = val[-dim:] else: _SCREAMING_SNAKE_CASE = config.hidden_size _SCREAMING_SNAKE_CASE = 'vit.encoder.layer.' if "weight" in key: _SCREAMING_SNAKE_CASE = val[:dim, :] _SCREAMING_SNAKE_CASE = val[dim : dim * 2, :] _SCREAMING_SNAKE_CASE = val[-dim:, :] elif "bias" in key: _SCREAMING_SNAKE_CASE = val[:dim] _SCREAMING_SNAKE_CASE = val[dim : dim * 2] _SCREAMING_SNAKE_CASE = val[-dim:] else: _SCREAMING_SNAKE_CASE = val return orig_state_dict def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> Any: """simple docstring""" _SCREAMING_SNAKE_CASE = ViTMAEConfig() if "large" in checkpoint_url: _SCREAMING_SNAKE_CASE = 10_24 _SCREAMING_SNAKE_CASE = 40_96 _SCREAMING_SNAKE_CASE = 24 _SCREAMING_SNAKE_CASE = 16 elif "huge" in checkpoint_url: _SCREAMING_SNAKE_CASE = 14 _SCREAMING_SNAKE_CASE = 12_80 _SCREAMING_SNAKE_CASE = 51_20 _SCREAMING_SNAKE_CASE = 32 _SCREAMING_SNAKE_CASE = 16 _SCREAMING_SNAKE_CASE = ViTMAEForPreTraining(lowerCamelCase__ ) _SCREAMING_SNAKE_CASE = torch.hub.load_state_dict_from_url(lowerCamelCase__ ,map_location="""cpu""" )['model'] _SCREAMING_SNAKE_CASE = ViTMAEImageProcessor(size=config.image_size ) _SCREAMING_SNAKE_CASE = convert_state_dict(lowerCamelCase__ ,lowerCamelCase__ ) model.load_state_dict(lowerCamelCase__ ) model.eval() _SCREAMING_SNAKE_CASE = 'https://user-images.githubusercontent.com/11435359/147738734-196fd92f-9260-48d5-ba7e-bf103d29364d.jpg' _SCREAMING_SNAKE_CASE = Image.open(requests.get(lowerCamelCase__ ,stream=lowerCamelCase__ ).raw ) _SCREAMING_SNAKE_CASE = ViTMAEImageProcessor(size=config.image_size ) _SCREAMING_SNAKE_CASE = image_processor(images=lowerCamelCase__ ,return_tensors="""pt""" ) # forward pass torch.manual_seed(2 ) _SCREAMING_SNAKE_CASE = model(**lowerCamelCase__ ) _SCREAMING_SNAKE_CASE = outputs.logits if "large" in checkpoint_url: _SCREAMING_SNAKE_CASE = torch.tensor( [[-0.7_309, -0.7_128, -1.0_169], [-1.0_161, -0.9_058, -1.1_878], [-1.0_478, -0.9_411, -1.1_911]] ) elif "huge" in checkpoint_url: _SCREAMING_SNAKE_CASE = torch.tensor( [[-1.1_599, -0.9_199, -1.2_221], [-1.1_952, -0.9_269, -1.2_307], [-1.2_143, -0.9_337, -1.2_262]] ) else: _SCREAMING_SNAKE_CASE = torch.tensor( [[-0.9_192, -0.8_481, -1.1_259], [-1.1_349, -1.0_034, -1.2_599], [-1.1_757, -1.0_429, -1.2_726]] ) # verify logits assert torch.allclose(logits[0, :3, :3] ,lowerCamelCase__ ,atol=1e-4 ) print(F'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(lowerCamelCase__ ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(lowerCamelCase__ ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://dl.fbaipublicfiles.com/mae/visualize/mae_visualize_vit_base.pth''', type=str, help='''URL of the checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) UpperCamelCase = parser.parse_args() convert_vit_mae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
306
from __future__ import annotations import time a =list[tuple[int, int]] a =[ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] a =[[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right class A_ : def __init__( self : List[str] ,SCREAMING_SNAKE_CASE__ : int ,SCREAMING_SNAKE_CASE__ : int ,SCREAMING_SNAKE_CASE__ : int ,SCREAMING_SNAKE_CASE__ : int ,SCREAMING_SNAKE_CASE__ : Node | None): __lowerCamelCase : Tuple = pos_x __lowerCamelCase : List[str] = pos_y __lowerCamelCase : str = (pos_y, pos_x) __lowerCamelCase : str = goal_x __lowerCamelCase : int = goal_y __lowerCamelCase : List[Any] = parent class A_ : def __init__( self : Union[str, Any] ,SCREAMING_SNAKE_CASE__ : tuple[int, int] ,SCREAMING_SNAKE_CASE__ : tuple[int, int]): __lowerCamelCase : Any = Node(start[1] ,start[0] ,goal[1] ,goal[0] ,SCREAMING_SNAKE_CASE__) __lowerCamelCase : List[Any] = Node(goal[1] ,goal[0] ,goal[1] ,goal[0] ,SCREAMING_SNAKE_CASE__) __lowerCamelCase : Union[str, Any] = [self.start] __lowerCamelCase : List[str] = False def lowerCAmelCase ( self : List[Any]): while self.node_queue: __lowerCamelCase : Any = self.node_queue.pop(0) if current_node.pos == self.target.pos: __lowerCamelCase : Dict = True return self.retrace_path(SCREAMING_SNAKE_CASE__) __lowerCamelCase : Tuple = self.get_successors(SCREAMING_SNAKE_CASE__) for node in successors: self.node_queue.append(SCREAMING_SNAKE_CASE__) if not self.reached: return [self.start.pos] return None def lowerCAmelCase ( self : str ,SCREAMING_SNAKE_CASE__ : Node): __lowerCamelCase : Union[str, Any] = [] for action in delta: __lowerCamelCase : Optional[Any] = parent.pos_x + action[1] __lowerCamelCase : Optional[int] = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0]) - 1 and 0 <= pos_y <= len(SCREAMING_SNAKE_CASE__) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,self.target.pos_y ,self.target.pos_x ,SCREAMING_SNAKE_CASE__)) return successors def lowerCAmelCase ( self : Optional[int] ,SCREAMING_SNAKE_CASE__ : Node | None): __lowerCamelCase : List[Any] = node __lowerCamelCase : int = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x)) __lowerCamelCase : int = current_node.parent path.reverse() return path class A_ : def __init__( self : Optional[Any] ,SCREAMING_SNAKE_CASE__ : Union[str, Any] ,SCREAMING_SNAKE_CASE__ : int): __lowerCamelCase : int = BreadthFirstSearch(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) __lowerCamelCase : Optional[Any] = BreadthFirstSearch(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) __lowerCamelCase : Optional[Any] = False def lowerCAmelCase ( self : str): while self.fwd_bfs.node_queue or self.bwd_bfs.node_queue: __lowerCamelCase : Any = self.fwd_bfs.node_queue.pop(0) __lowerCamelCase : Any = self.bwd_bfs.node_queue.pop(0) if current_bwd_node.pos == current_fwd_node.pos: __lowerCamelCase : List[str] = True return self.retrace_bidirectional_path( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) __lowerCamelCase : Optional[Any] = current_bwd_node __lowerCamelCase : int = current_fwd_node __lowerCamelCase : str = { self.fwd_bfs: self.fwd_bfs.get_successors(SCREAMING_SNAKE_CASE__), self.bwd_bfs: self.bwd_bfs.get_successors(SCREAMING_SNAKE_CASE__), } for bfs in [self.fwd_bfs, self.bwd_bfs]: for node in successors[bfs]: bfs.node_queue.append(SCREAMING_SNAKE_CASE__) if not self.reached: return [self.fwd_bfs.start.pos] return None def lowerCAmelCase ( self : Dict ,SCREAMING_SNAKE_CASE__ : Node ,SCREAMING_SNAKE_CASE__ : Node): __lowerCamelCase : List[Any] = self.fwd_bfs.retrace_path(SCREAMING_SNAKE_CASE__) __lowerCamelCase : str = self.bwd_bfs.retrace_path(SCREAMING_SNAKE_CASE__) bwd_path.pop() bwd_path.reverse() __lowerCamelCase : List[Any] = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] import doctest doctest.testmod() a =(0, 0) a =(len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) a =time.time() a =BreadthFirstSearch(init, goal) a =bfs.search() a =time.time() - start_bfs_time print("""Unidirectional BFS computation time : """, bfs_time) a =time.time() a =BidirectionalBreadthFirstSearch(init, goal) a =bd_bfs.search() a =time.time() - start_bd_bfs_time print("""Bidirectional BFS computation time : """, bd_bfs_time)
73
0
from typing import List, Optional, Union import numpy as np from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging __snake_case : Union[str, Any] =logging.get_logger(__name__) class lowerCamelCase__ ( lowerCamelCase__): '''simple docstring''' snake_case_ =["""input_values""", """padding_mask"""] def __init__(self ,__lowerCamelCase = 1 ,__lowerCamelCase = 2_40_00 ,__lowerCamelCase = 0.0 ,__lowerCamelCase = None ,__lowerCamelCase = None ,**__lowerCamelCase ,) -> str: """simple docstring""" super().__init__(feature_size=__lowerCamelCase ,sampling_rate=__lowerCamelCase ,padding_value=__lowerCamelCase ,**__lowerCamelCase ) lowerCAmelCase__ : List[Any] = chunk_length_s lowerCAmelCase__ : List[Any] = overlap @property def lowerCAmelCase__ (self ) -> Optional[int]: """simple docstring""" if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def lowerCAmelCase__ (self ) -> Optional[int]: """simple docstring""" if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 ,int((1.0 - self.overlap) * self.chunk_length ) ) def __call__(self ,__lowerCamelCase ,__lowerCamelCase = None ,__lowerCamelCase = False ,__lowerCamelCase = None ,__lowerCamelCase = None ,__lowerCamelCase = None ,) -> BatchFeature: """simple docstring""" if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"""The model corresponding to this feature extractor: {self} was trained using a sampling rate of""" f""" {self.sampling_rate}. Please make sure that the provided audio input was sampled with""" f""" {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) if padding and truncation: raise ValueError('''Both padding and truncation were set. Make sure you only set one.''' ) elif padding is None: # by default let's pad the inputs lowerCAmelCase__ : Any = True lowerCAmelCase__ : Dict = bool( isinstance(__lowerCamelCase ,(list, tuple) ) and (isinstance(raw_audio[0] ,(np.ndarray, tuple, list) )) ) if is_batched: lowerCAmelCase__ : Any = [np.asarray(__lowerCamelCase ,dtype=np.floataa ).T for audio in raw_audio] elif not is_batched and not isinstance(__lowerCamelCase ,np.ndarray ): lowerCAmelCase__ : str = np.asarray(__lowerCamelCase ,dtype=np.floataa ) elif isinstance(__lowerCamelCase ,np.ndarray ) and raw_audio.dtype is np.dtype(np.floataa ): lowerCAmelCase__ : Union[str, Any] = raw_audio.astype(np.floataa ) # always return batch if not is_batched: lowerCAmelCase__ : List[str] = [np.asarray(__lowerCamelCase ).T] # verify inputs are valid for idx, example in enumerate(__lowerCamelCase ): if example.ndim > 2: raise ValueError(f"""Expected input shape (channels, length) but got shape {example.shape}""" ) if self.feature_size == 1 and example.ndim != 1: raise ValueError(f"""Expected mono audio but example has {example.shape[-1]} channels""" ) if self.feature_size == 2 and example.shape[-1] != 2: raise ValueError(f"""Expected stereo audio but example has {example.shape[-1]} channels""" ) lowerCAmelCase__ : Any = None lowerCAmelCase__ : Optional[Any] = BatchFeature({'''input_values''': raw_audio} ) if self.chunk_stride is not None and self.chunk_length is not None and max_length is None: if truncation: lowerCAmelCase__ : str = min(array.shape[0] for array in raw_audio ) lowerCAmelCase__ : Optional[int] = int(np.floor(max_length / self.chunk_stride ) ) lowerCAmelCase__ : Optional[int] = (nb_step - 1) * self.chunk_stride + self.chunk_length elif padding: lowerCAmelCase__ : Tuple = max(array.shape[0] for array in raw_audio ) lowerCAmelCase__ : Optional[int] = int(np.ceil(max_length / self.chunk_stride ) ) lowerCAmelCase__ : Optional[Any] = (nb_step - 1) * self.chunk_stride + self.chunk_length lowerCAmelCase__ : Tuple = '''max_length''' else: lowerCAmelCase__ : int = input_values # normal padding on batch if padded_inputs is None: lowerCAmelCase__ : Any = self.pad( __lowerCamelCase ,max_length=__lowerCamelCase ,truncation=__lowerCamelCase ,padding=__lowerCamelCase ,return_attention_mask=__lowerCamelCase ,) if padding: lowerCAmelCase__ : Union[str, Any] = padded_inputs.pop('''attention_mask''' ) lowerCAmelCase__ : Union[str, Any] = [] for example in padded_inputs.pop('''input_values''' ): if self.feature_size == 1: lowerCAmelCase__ : Tuple = example[..., None] input_values.append(example.T ) lowerCAmelCase__ : str = input_values if return_tensors is not None: lowerCAmelCase__ : str = padded_inputs.convert_to_tensors(__lowerCamelCase ) return padded_inputs
94
from math import factorial def lowerCAmelCase__ ( lowerCamelCase_ : int = 100): '''simple docstring''' return sum(map(lowerCamelCase_ ,str(factorial(lowerCamelCase_)))) if __name__ == "__main__": print(solution(int(input('Enter the Number: ').strip())))
94
1
'''simple docstring''' import argparse import collections import os import re import tempfile import pandas as pd from datasets import Dataset from huggingface_hub import hf_hub_download, upload_folder from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/update_metadata.py lowercase_ = "src/transformers" # This is to make sure the transformers module imported is the one in the repo. lowercase_ = direct_transformers_import(TRANSFORMERS_PATH) # Regexes that match TF/Flax/PT model names. lowercase_ = re.compile(R"TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") lowercase_ = re.compile(R"Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. lowercase_ = re.compile(R"(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") # Fill this with tuples (pipeline_tag, model_mapping, auto_model) lowercase_ = [ ("pretraining", "MODEL_FOR_PRETRAINING_MAPPING_NAMES", "AutoModelForPreTraining"), ("feature-extraction", "MODEL_MAPPING_NAMES", "AutoModel"), ("audio-classification", "MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES", "AutoModelForAudioClassification"), ("text-generation", "MODEL_FOR_CAUSAL_LM_MAPPING_NAMES", "AutoModelForCausalLM"), ("automatic-speech-recognition", "MODEL_FOR_CTC_MAPPING_NAMES", "AutoModelForCTC"), ("image-classification", "MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES", "AutoModelForImageClassification"), ("image-segmentation", "MODEL_FOR_IMAGE_SEGMENTATION_MAPPING_NAMES", "AutoModelForImageSegmentation"), ("fill-mask", "MODEL_FOR_MASKED_LM_MAPPING_NAMES", "AutoModelForMaskedLM"), ("object-detection", "MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES", "AutoModelForObjectDetection"), ( "zero-shot-object-detection", "MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING_NAMES", "AutoModelForZeroShotObjectDetection", ), ("question-answering", "MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES", "AutoModelForQuestionAnswering"), ("text2text-generation", "MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES", "AutoModelForSeq2SeqLM"), ("text-classification", "MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES", "AutoModelForSequenceClassification"), ("automatic-speech-recognition", "MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES", "AutoModelForSpeechSeq2Seq"), ( "table-question-answering", "MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES", "AutoModelForTableQuestionAnswering", ), ("token-classification", "MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES", "AutoModelForTokenClassification"), ("multiple-choice", "MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES", "AutoModelForMultipleChoice"), ( "next-sentence-prediction", "MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES", "AutoModelForNextSentencePrediction", ), ( "audio-frame-classification", "MODEL_FOR_AUDIO_FRAME_CLASSIFICATION_MAPPING_NAMES", "AutoModelForAudioFrameClassification", ), ("audio-xvector", "MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES", "AutoModelForAudioXVector"), ( "document-question-answering", "MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES", "AutoModelForDocumentQuestionAnswering", ), ( "visual-question-answering", "MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING_NAMES", "AutoModelForVisualQuestionAnswering", ), ("image-to-text", "MODEL_FOR_FOR_VISION_2_SEQ_MAPPING_NAMES", "AutoModelForVision2Seq"), ( "zero-shot-image-classification", "MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING_NAMES", "AutoModelForZeroShotImageClassification", ), ("depth-estimation", "MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES", "AutoModelForDepthEstimation"), ("video-classification", "MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES", "AutoModelForVideoClassification"), ("mask-generation", "MODEL_FOR_MASK_GENERATION_MAPPING_NAMES", "AutoModelForMaskGeneration"), ] def lowerCAmelCase (__A): """simple docstring""" _a = re.finditer('''.+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)''' , __A) return [m.group(0) for m in matches] def lowerCAmelCase (): """simple docstring""" _a = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES _a = { config.replace('''Config''' , ''''''): model_type for model_type, config in config_maping_names.items() } # Dictionaries flagging if each model prefix has a backend in PT/TF/Flax. _a = collections.defaultdict(__A) _a = collections.defaultdict(__A) _a = collections.defaultdict(__A) # Let's lookup through all transformers object (once) and find if models are supported by a given backend. for attr_name in dir(__A): _a = None if _re_tf_models.match(__A) is not None: _a = tf_models _a = _re_tf_models.match(__A).groups()[0] elif _re_flax_models.match(__A) is not None: _a = flax_models _a = _re_flax_models.match(__A).groups()[0] elif _re_pt_models.match(__A) is not None: _a = pt_models _a = _re_pt_models.match(__A).groups()[0] if lookup_dict is not None: while len(__A) > 0: if attr_name in model_prefix_to_model_type: _a = True break # Try again after removing the last word in the name _a = ''''''.join(camel_case_split(__A)[:-1]) _a = set(list(pt_models.keys()) + list(tf_models.keys()) + list(flax_models.keys())) _a = list(__A) all_models.sort() _a = {'''model_type''': all_models} _a = [pt_models[t] for t in all_models] _a = [tf_models[t] for t in all_models] _a = [flax_models[t] for t in all_models] # Now let's use the auto-mapping names to make sure _a = {} for t in all_models: if t in transformers_module.models.auto.processing_auto.PROCESSOR_MAPPING_NAMES: _a = '''AutoProcessor''' elif t in transformers_module.models.auto.tokenization_auto.TOKENIZER_MAPPING_NAMES: _a = '''AutoTokenizer''' elif t in transformers_module.models.auto.feature_extraction_auto.FEATURE_EXTRACTOR_MAPPING_NAMES: _a = '''AutoFeatureExtractor''' else: # Default to AutoTokenizer if a model has nothing, for backward compatibility. _a = '''AutoTokenizer''' _a = [processors[t] for t in all_models] return pd.DataFrame(__A) def lowerCAmelCase (__A): """simple docstring""" _a = [ transformers_module.models.auto.modeling_auto, transformers_module.models.auto.modeling_tf_auto, transformers_module.models.auto.modeling_flax_auto, ] for pipeline_tag, model_mapping, auto_class in PIPELINE_TAGS_AND_AUTO_MODELS: _a = [model_mapping, F'''TF_{model_mapping}''', F'''FLAX_{model_mapping}'''] _a = [auto_class, F'''TF_{auto_class}''', F'''Flax_{auto_class}'''] # Loop through all three frameworks for module, cls, mapping in zip(__A , __A , __A): # The type of pipeline may not exist in this framework if not hasattr(__A , __A): continue # First extract all model_names _a = [] for name in getattr(__A , __A).values(): if isinstance(__A , __A): model_names.append(__A) else: model_names.extend(list(__A)) # Add pipeline tag and auto model class for those models table.update({model_name: (pipeline_tag, cls) for model_name in model_names}) return table def lowerCAmelCase (__A , __A): """simple docstring""" _a = get_frameworks_table() _a = Dataset.from_pandas(__A) _a = hf_hub_download( '''huggingface/transformers-metadata''' , '''pipeline_tags.json''' , repo_type='''dataset''' , token=__A) _a = Dataset.from_json(__A) _a = { tags_dataset[i]['''model_class''']: (tags_dataset[i]['''pipeline_tag'''], tags_dataset[i]['''auto_class''']) for i in range(len(__A)) } _a = update_pipeline_and_auto_class_table(__A) # Sort the model classes to avoid some nondeterministic updates to create false update commits. _a = sorted(table.keys()) _a = pd.DataFrame( { '''model_class''': model_classes, '''pipeline_tag''': [table[m][0] for m in model_classes], '''auto_class''': [table[m][1] for m in model_classes], }) _a = Dataset.from_pandas(__A) with tempfile.TemporaryDirectory() as tmp_dir: frameworks_dataset.to_json(os.path.join(__A , '''frameworks.json''')) tags_dataset.to_json(os.path.join(__A , '''pipeline_tags.json''')) if commit_sha is not None: _a = ( F'''Update with commit {commit_sha}\n\nSee: ''' F'''https://github.com/huggingface/transformers/commit/{commit_sha}''' ) else: _a = '''Update''' upload_folder( repo_id='''huggingface/transformers-metadata''' , folder_path=__A , repo_type='''dataset''' , token=__A , commit_message=__A , ) def lowerCAmelCase (): """simple docstring""" _a = {tag: cls for tag, _, cls in PIPELINE_TAGS_AND_AUTO_MODELS} _a = transformers_module.pipelines.SUPPORTED_TASKS _a = [] for key in pipeline_tasks: if key not in in_table: _a = pipeline_tasks[key]['''pt'''] if isinstance(__A , (list, tuple)): _a = model[0] _a = model.__name__ if model not in in_table.values(): missing.append(__A) if len(__A) > 0: _a = ''', '''.join(__A) raise ValueError( '''The following pipeline tags are not present in the `PIPELINE_TAGS_AND_AUTO_MODELS` constant inside ''' F'''`utils/update_metadata.py`: {msg}. Please add them!''') if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() parser.add_argument("--token", type=str, help="The token to use to push to the transformers-metadata dataset.") parser.add_argument("--commit_sha", type=str, help="The sha of the commit going with this update.") parser.add_argument("--check-only", action="store_true", help="Activate to just check all pipelines are present.") lowercase_ = parser.parse_args() if args.check_only: check_pipeline_tags() else: update_metadata(args.token, args.commit_sha)
211
'''simple docstring''' from typing import Dict, Optional import numpy as np import datasets lowercase_ = "\nIoU is the area of overlap between the predicted segmentation and the ground truth divided by the area of union\nbetween the predicted segmentation and the ground truth. For binary (two classes) or multi-class segmentation,\nthe mean IoU of the image is calculated by taking the IoU of each class and averaging them.\n" lowercase_ = "\nArgs:\n predictions (`List[ndarray]`):\n List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.\n references (`List[ndarray]`):\n List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.\n num_labels (`int`):\n Number of classes (categories).\n ignore_index (`int`):\n Index that will be ignored during evaluation.\n nan_to_num (`int`, *optional*):\n If specified, NaN values will be replaced by the number defined by the user.\n label_map (`dict`, *optional*):\n If specified, dictionary mapping old label indices to new label indices.\n reduce_labels (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background,\n and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255.\n\nReturns:\n `Dict[str, float | ndarray]` comprising various elements:\n - *mean_iou* (`float`):\n Mean Intersection-over-Union (IoU averaged over all categories).\n - *mean_accuracy* (`float`):\n Mean accuracy (averaged over all categories).\n - *overall_accuracy* (`float`):\n Overall accuracy on all images.\n - *per_category_accuracy* (`ndarray` of shape `(num_labels,)`):\n Per category accuracy.\n - *per_category_iou* (`ndarray` of shape `(num_labels,)`):\n Per category IoU.\n\nExamples:\n\n >>> import numpy as np\n\n >>> mean_iou = datasets.load_metric(\"mean_iou\")\n\n >>> # suppose one has 3 different segmentation maps predicted\n >>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]])\n >>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]])\n\n >>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]])\n >>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]])\n\n >>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]])\n >>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]])\n\n >>> predicted = [predicted_1, predicted_2, predicted_3]\n >>> ground_truth = [actual_1, actual_2, actual_3]\n\n >>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False)\n >>> print(results) # doctest: +NORMALIZE_WHITESPACE\n {'mean_iou': 0.47750000000000004, 'mean_accuracy': 0.5916666666666666, 'overall_accuracy': 0.5263157894736842, 'per_category_iou': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), 'per_category_accuracy': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])}\n" lowercase_ = "\\n@software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020,\nauthor = {{MMSegmentation Contributors}},\nlicense = {Apache-2.0},\nmonth = {7},\ntitle = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}},\nurl = {https://github.com/open-mmlab/mmsegmentation},\nyear = {2020}\n}" def lowerCAmelCase (__A , __A , __A , __A , __A = None , __A = False , ): """simple docstring""" if label_map is not None: for old_id, new_id in label_map.items(): _a = new_id # turn into Numpy arrays _a = np.array(__A) _a = np.array(__A) if reduce_labels: _a = 255 _a = label - 1 _a = 255 _a = label != ignore_index _a = np.not_equal(__A , __A) _a = pred_label[mask] _a = np.array(__A)[mask] _a = pred_label[pred_label == label] _a = np.histogram(__A , bins=__A , range=(0, num_labels - 1))[0] _a = np.histogram(__A , bins=__A , range=(0, num_labels - 1))[0] _a = np.histogram(__A , bins=__A , range=(0, num_labels - 1))[0] _a = area_pred_label + area_label - area_intersect return area_intersect, area_union, area_pred_label, area_label def lowerCAmelCase (__A , __A , __A , __A , __A = None , __A = False , ): """simple docstring""" _a = np.zeros((num_labels,) , dtype=np.floataa) _a = np.zeros((num_labels,) , dtype=np.floataa) _a = np.zeros((num_labels,) , dtype=np.floataa) _a = np.zeros((num_labels,) , dtype=np.floataa) for result, gt_seg_map in zip(__A , __A): _a , _a , _a , _a = intersect_and_union( __A , __A , __A , __A , __A , __A) total_area_intersect += area_intersect total_area_union += area_union total_area_pred_label += area_pred_label total_area_label += area_label return total_area_intersect, total_area_union, total_area_pred_label, total_area_label def lowerCAmelCase (__A , __A , __A , __A , __A = None , __A = None , __A = False , ): """simple docstring""" _a , _a , _a , _a = total_intersect_and_union( __A , __A , __A , __A , __A , __A) # compute metrics _a = {} _a = total_area_intersect.sum() / total_area_label.sum() _a = total_area_intersect / total_area_union _a = total_area_intersect / total_area_label _a = np.nanmean(__A) _a = np.nanmean(__A) _a = all_acc _a = iou _a = acc if nan_to_num is not None: _a = {metric: np.nan_to_num(__A , nan=__A) for metric, metric_value in metrics.items()} return metrics @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __A ( datasets.Metric ): '''simple docstring''' def a__ (self ) -> List[str]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( # 1st Seq - height dim, 2nd - width dim { '''predictions''': datasets.Sequence(datasets.Sequence(datasets.Value('''uint16''' ) ) ), '''references''': datasets.Sequence(datasets.Sequence(datasets.Value('''uint16''' ) ) ), } ) , reference_urls=[ '''https://github.com/open-mmlab/mmsegmentation/blob/71c201b1813267d78764f306a297ca717827c4bf/mmseg/core/evaluation/metrics.py''' ] , ) def a__ (self , A , A , A , A , A = None , A = None , A = False , ) -> List[Any]: """simple docstring""" _a = mean_iou( results=A , gt_seg_maps=A , num_labels=A , ignore_index=A , nan_to_num=A , label_map=A , reduce_labels=A , ) return iou_result
211
1
'''simple docstring''' import numpy as np import datasets __lowerCAmelCase = '\nCompute the Mahalanobis Distance\n\nMahalonobis distance is the distance between a point and a distribution.\nAnd not between two distinct points. It is effectively a multivariate equivalent of the Euclidean distance.\nIt was introduced by Prof. P. C. Mahalanobis in 1936\nand has been used in various statistical applications ever since\n[source: https://www.machinelearningplus.com/statistics/mahalanobis-distance/]\n' __lowerCAmelCase = '\\n@article{de2000mahalanobis,\n title={The mahalanobis distance},\n author={De Maesschalck, Roy and Jouan-Rimbaud, Delphine and Massart, D{\'e}sir{\'e} L},\n journal={Chemometrics and intelligent laboratory systems},\n volume={50},\n number={1},\n pages={1--18},\n year={2000},\n publisher={Elsevier}\n}\n' __lowerCAmelCase = '\nArgs:\n X: List of datapoints to be compared with the `reference_distribution`.\n reference_distribution: List of datapoints from the reference distribution we want to compare to.\nReturns:\n mahalanobis: The Mahalonobis distance for each datapoint in `X`.\nExamples:\n\n >>> mahalanobis_metric = datasets.load_metric("mahalanobis")\n >>> results = mahalanobis_metric.compute(reference_distribution=[[0, 1], [1, 0]], X=[[0, 1]])\n >>> print(results)\n {\'mahalanobis\': array([0.5])}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _lowerCAmelCase ( datasets.Metric ): '''simple docstring''' def lowercase (self ) -> str: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """X""": datasets.Sequence(datasets.Value("""float""" , id="""sequence""" ) , id="""X""" ), } ) , ) def lowercase (self , UpperCAmelCase , UpperCAmelCase ) -> Union[str, Any]: # convert to numpy arrays _snake_case = np.array(UpperCAmelCase ) _snake_case = np.array(UpperCAmelCase ) # Assert that arrays are 2D if len(X.shape ) != 2: raise ValueError("""Expected `X` to be a 2D vector""" ) if len(reference_distribution.shape ) != 2: raise ValueError("""Expected `reference_distribution` to be a 2D vector""" ) if reference_distribution.shape[0] < 2: raise ValueError( """Expected `reference_distribution` to be a 2D vector with more than one element in the first dimension""" ) # Get mahalanobis distance for each prediction _snake_case = X - np.mean(UpperCAmelCase ) _snake_case = np.cov(reference_distribution.T ) try: _snake_case = np.linalg.inv(UpperCAmelCase ) except np.linalg.LinAlgError: _snake_case = np.linalg.pinv(UpperCAmelCase ) _snake_case = np.dot(UpperCAmelCase , UpperCAmelCase ) _snake_case = np.dot(UpperCAmelCase , X_minus_mu.T ).diagonal() return {"mahalanobis": mahal_dist}
270
'''simple docstring''' import inspect import os import torch from transformers import AutoModel from transformers.testing_utils import mockenv_context from transformers.trainer_utils import set_seed import accelerate from accelerate.accelerator import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils.testing import ( AccelerateTestCase, TempDirTestCase, execute_subprocess_async, require_cuda, require_fsdp, require_multi_gpu, slow, ) from accelerate.utils.constants import ( FSDP_AUTO_WRAP_POLICY, FSDP_BACKWARD_PREFETCH, FSDP_SHARDING_STRATEGY, FSDP_STATE_DICT_TYPE, ) from accelerate.utils.dataclasses import FullyShardedDataParallelPlugin from accelerate.utils.other import patch_environment set_seed(42) __lowerCAmelCase = 'bert-base-cased' __lowerCAmelCase = 'fp16' __lowerCAmelCase = 'bf16' __lowerCAmelCase = [FPaa, BFaa] @require_fsdp @require_cuda class _lowerCAmelCase ( __snake_case ): '''simple docstring''' def lowercase (self ) -> Optional[Any]: super().setUp() _snake_case = dict( ACCELERATE_USE_FSDP="""true""" , MASTER_ADDR="""localhost""" , MASTER_PORT="""10999""" , RANK="""0""" , LOCAL_RANK="""0""" , WORLD_SIZE="""1""" , ) def lowercase (self ) -> Optional[int]: from torch.distributed.fsdp.fully_sharded_data_parallel import ShardingStrategy for i, strategy in enumerate(UpperCAmelCase ): _snake_case = self.dist_env.copy() _snake_case = f"""{i + 1}""" _snake_case = strategy with mockenv_context(**UpperCAmelCase ): _snake_case = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.sharding_strategy , ShardingStrategy(i + 1 ) ) def lowercase (self ) -> List[str]: from torch.distributed.fsdp.fully_sharded_data_parallel import BackwardPrefetch for i, prefetch_policy in enumerate(UpperCAmelCase ): _snake_case = self.dist_env.copy() _snake_case = prefetch_policy with mockenv_context(**UpperCAmelCase ): _snake_case = FullyShardedDataParallelPlugin() if prefetch_policy == "NO_PREFETCH": self.assertIsNone(fsdp_plugin.backward_prefetch ) else: self.assertEqual(fsdp_plugin.backward_prefetch , BackwardPrefetch(i + 1 ) ) def lowercase (self ) -> int: from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType for i, state_dict_type in enumerate(UpperCAmelCase ): _snake_case = self.dist_env.copy() _snake_case = state_dict_type with mockenv_context(**UpperCAmelCase ): _snake_case = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.state_dict_type , StateDictType(i + 1 ) ) if state_dict_type == "FULL_STATE_DICT": self.assertTrue(fsdp_plugin.state_dict_config.offload_to_cpu ) self.assertTrue(fsdp_plugin.state_dict_config.ranka_only ) def lowercase (self ) -> Optional[Any]: _snake_case = AutoModel.from_pretrained(UpperCAmelCase ) for policy in FSDP_AUTO_WRAP_POLICY: _snake_case = self.dist_env.copy() _snake_case = policy if policy == "TRANSFORMER_BASED_WRAP": _snake_case = """BertLayer""" elif policy == "SIZE_BASED_WRAP": _snake_case = """2000""" with mockenv_context(**UpperCAmelCase ): _snake_case = FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(UpperCAmelCase ) if policy == "NO_WRAP": self.assertIsNone(fsdp_plugin.auto_wrap_policy ) else: self.assertIsNotNone(fsdp_plugin.auto_wrap_policy ) _snake_case = self.dist_env.copy() _snake_case = """TRANSFORMER_BASED_WRAP""" _snake_case = """T5Layer""" with mockenv_context(**UpperCAmelCase ): _snake_case = FullyShardedDataParallelPlugin() with self.assertRaises(UpperCAmelCase ) as cm: fsdp_plugin.set_auto_wrap_policy(UpperCAmelCase ) self.assertTrue("""Could not find the transformer layer class to wrap in the model.""" in str(cm.exception ) ) _snake_case = self.dist_env.copy() _snake_case = """SIZE_BASED_WRAP""" _snake_case = """0""" with mockenv_context(**UpperCAmelCase ): _snake_case = FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(UpperCAmelCase ) self.assertIsNone(fsdp_plugin.auto_wrap_policy ) def lowercase (self ) -> int: from torch.distributed.fsdp.fully_sharded_data_parallel import MixedPrecision from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler for mp_dtype in dtypes: _snake_case = self.dist_env.copy() _snake_case = mp_dtype with mockenv_context(**UpperCAmelCase ): _snake_case = Accelerator() if mp_dtype == "fp16": _snake_case = torch.floataa elif mp_dtype == "bf16": _snake_case = torch.bfloataa _snake_case = MixedPrecision(param_dtype=UpperCAmelCase , reduce_dtype=UpperCAmelCase , buffer_dtype=UpperCAmelCase ) self.assertEqual(accelerator.state.fsdp_plugin.mixed_precision_policy , UpperCAmelCase ) if mp_dtype == FPaa: self.assertTrue(isinstance(accelerator.scaler , UpperCAmelCase ) ) elif mp_dtype == BFaa: self.assertIsNone(accelerator.scaler ) AcceleratorState._reset_state(UpperCAmelCase ) def lowercase (self ) -> Optional[int]: from torch.distributed.fsdp.fully_sharded_data_parallel import CPUOffload for flag in [True, False]: _snake_case = self.dist_env.copy() _snake_case = str(UpperCAmelCase ).lower() with mockenv_context(**UpperCAmelCase ): _snake_case = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.cpu_offload , CPUOffload(offload_params=UpperCAmelCase ) ) @require_fsdp @require_multi_gpu @slow class _lowerCAmelCase ( __snake_case ): '''simple docstring''' def lowercase (self ) -> List[Any]: super().setUp() _snake_case = 0.82 _snake_case = [ """fsdp_shard_grad_op_transformer_based_wrap""", """fsdp_full_shard_transformer_based_wrap""", ] _snake_case = { """multi_gpu_fp16""": 3200, """fsdp_shard_grad_op_transformer_based_wrap_fp16""": 2000, """fsdp_full_shard_transformer_based_wrap_fp16""": 1900, # Disabling below test as it overwhelms the RAM memory usage # on CI self-hosted runner leading to tests getting killed. # "fsdp_full_shard_cpu_offload_transformer_based_wrap_fp32": 1500, # fp16 was leading to indefinite hang } _snake_case = 160 _snake_case = 160 _snake_case = inspect.getfile(accelerate.test_utils ) _snake_case = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["""scripts""", """external_deps"""] ) def lowercase (self ) -> Any: _snake_case = os.path.join(self.test_scripts_folder , """test_performance.py""" ) _snake_case = ["""accelerate""", """launch""", """--num_processes=2""", """--num_machines=1""", """--machine_rank=0""", """--use_fsdp"""] for config in self.performance_configs: _snake_case = cmd.copy() for i, strategy in enumerate(UpperCAmelCase ): if strategy.lower() in config: cmd_config.append(f"""--fsdp_sharding_strategy={i+1}""" ) break if "fp32" in config: cmd_config.append("""--mixed_precision=no""" ) else: cmd_config.append("""--mixed_precision=fp16""" ) if "cpu_offload" in config: cmd_config.append("""--fsdp_offload_params=True""" ) for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in config: cmd_config.append(f"""--fsdp_auto_wrap_policy={policy}""" ) break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append("""--fsdp_transformer_layer_cls_to_wrap=BertLayer""" ) elif policy == "SIZE_BASED_WRAP": cmd_config.append("""--fsdp_min_num_params=2000""" ) cmd_config.extend( [ self.test_file_path, f"""--output_dir={self.tmpdir}""", f"""--performance_lower_bound={self.performance_lower_bound}""", ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(UpperCAmelCase , env=os.environ.copy() ) def lowercase (self ) -> Union[str, Any]: _snake_case = os.path.join(self.test_scripts_folder , """test_checkpointing.py""" ) _snake_case = [ """accelerate""", """launch""", """--num_processes=2""", """--num_machines=1""", """--machine_rank=0""", """--use_fsdp""", """--mixed_precision=fp16""", """--fsdp_transformer_layer_cls_to_wrap=BertLayer""", ] for i, strategy in enumerate(UpperCAmelCase ): _snake_case = cmd.copy() cmd_config.append(f"""--fsdp_sharding_strategy={i+1}""" ) if strategy != "FULL_SHARD": continue _snake_case = len(UpperCAmelCase ) for state_dict_type in FSDP_STATE_DICT_TYPE: _snake_case = cmd_config[:state_dict_config_index] cmd_config.append(f"""--fsdp_state_dict_type={state_dict_type}""" ) cmd_config.extend( [ self.test_file_path, f"""--output_dir={self.tmpdir}""", """--partial_train_epoch=1""", ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(UpperCAmelCase , env=os.environ.copy() ) _snake_case = cmd_config[:-1] _snake_case = os.path.join(self.tmpdir , """epoch_0""" ) cmd_config.extend( [ f"""--resume_from_checkpoint={resume_from_checkpoint}""", ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(UpperCAmelCase , env=os.environ.copy() ) def lowercase (self ) -> Optional[Any]: _snake_case = os.path.join(self.test_scripts_folder , """test_peak_memory_usage.py""" ) _snake_case = [ """accelerate""", """launch""", """--num_processes=2""", """--num_machines=1""", """--machine_rank=0""", ] for spec, peak_mem_upper_bound in self.peak_memory_usage_upper_bound.items(): _snake_case = cmd.copy() if "fp16" in spec: cmd_config.extend(["""--mixed_precision=fp16"""] ) else: cmd_config.extend(["""--mixed_precision=no"""] ) if "multi_gpu" in spec: continue else: cmd_config.extend(["""--use_fsdp"""] ) for i, strategy in enumerate(UpperCAmelCase ): if strategy.lower() in spec: cmd_config.append(f"""--fsdp_sharding_strategy={i+1}""" ) break if "cpu_offload" in spec: cmd_config.append("""--fsdp_offload_params=True""" ) for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in spec: cmd_config.append(f"""--fsdp_auto_wrap_policy={policy}""" ) break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append("""--fsdp_transformer_layer_cls_to_wrap=BertLayer""" ) elif policy == "SIZE_BASED_WRAP": cmd_config.append("""--fsdp_min_num_params=2000""" ) cmd_config.extend( [ self.test_file_path, f"""--output_dir={self.tmpdir}""", f"""--peak_memory_upper_bound={peak_mem_upper_bound}""", f"""--n_train={self.n_train}""", f"""--n_val={self.n_val}""", ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(UpperCAmelCase , env=os.environ.copy() )
270
1
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ShapEPipeline else: from .camera import create_pan_cameras from .pipeline_shap_e import ShapEPipeline from .pipeline_shap_e_img2img import ShapEImgaImgPipeline from .renderer import ( BoundingBoxVolume, ImportanceRaySampler, MLPNeRFModelOutput, MLPNeRSTFModel, ShapEParamsProjModel, ShapERenderer, StratifiedRaySampler, VoidNeRFModel, )
174
'''simple docstring''' import inspect import unittest from transformers import MobileViTVaConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel from transformers.models.mobilevitva.modeling_mobilevitva import ( MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST, make_divisible, ) if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class UpperCAmelCase ( a__ ): '''simple docstring''' def _lowerCAmelCase( self ) -> List[str]: lowercase__ : Union[str, Any] = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__lowerCAmelCase , '''width_multiplier''' ) ) class UpperCAmelCase : '''simple docstring''' def __init__( self , __lowerCAmelCase , __lowerCAmelCase=13 , __lowerCAmelCase=64 , __lowerCAmelCase=2 , __lowerCAmelCase=3 , __lowerCAmelCase="swish" , __lowerCAmelCase=3 , __lowerCAmelCase=32 , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.0_2 , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=10 , __lowerCAmelCase=None , __lowerCAmelCase=0.2_5 , __lowerCAmelCase=0.0 , __lowerCAmelCase=0.0 , ) -> List[Any]: lowercase__ : List[str] = parent lowercase__ : List[Any] = batch_size lowercase__ : List[str] = image_size lowercase__ : Optional[int] = patch_size lowercase__ : Tuple = num_channels lowercase__ : List[str] = make_divisible(512 * width_multiplier , divisor=8 ) lowercase__ : Optional[int] = hidden_act lowercase__ : List[Any] = conv_kernel_size lowercase__ : Dict = output_stride lowercase__ : List[Any] = classifier_dropout_prob lowercase__ : str = use_labels lowercase__ : List[Any] = is_training lowercase__ : Tuple = num_labels lowercase__ : Optional[int] = initializer_range lowercase__ : Tuple = scope lowercase__ : List[Any] = width_multiplier lowercase__ : Optional[int] = ffn_dropout lowercase__ : int = attn_dropout def _lowerCAmelCase( self ) -> Optional[int]: lowercase__ : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__ : Any = None lowercase__ : Tuple = None if self.use_labels: lowercase__ : str = ids_tensor([self.batch_size] , self.num_labels ) lowercase__ : int = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) lowercase__ : Dict = self.get_config() return config, pixel_values, labels, pixel_labels def _lowerCAmelCase( self ) -> Tuple: return MobileViTVaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , width_multiplier=self.width_multiplier , ffn_dropout=self.ffn_dropout_prob , attn_dropout=self.attn_dropout_prob , ) def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Any: lowercase__ : Optional[int] = MobileViTVaModel(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() lowercase__ : str = model(__lowerCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Optional[Any]: lowercase__ : Optional[Any] = self.num_labels lowercase__ : Dict = MobileViTVaForImageClassification(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() lowercase__ : Optional[Any] = model(__lowerCAmelCase , labels=__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Tuple: lowercase__ : str = self.num_labels lowercase__ : List[Any] = MobileViTVaForSemanticSegmentation(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() lowercase__ : int = model(__lowerCAmelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) lowercase__ : Union[str, Any] = model(__lowerCAmelCase , labels=__lowerCAmelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def _lowerCAmelCase( self ) -> int: lowercase__ : Union[str, Any] = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ , lowercase__ : List[str] = config_and_inputs lowercase__ : List[Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase ( a__ , a__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE = ( (MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation) if is_torch_available() else () ) SCREAMING_SNAKE_CASE = ( { "feature-extraction": MobileViTVaModel, "image-classification": MobileViTVaForImageClassification, "image-segmentation": MobileViTVaForSemanticSegmentation, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False def _lowerCAmelCase( self ) -> int: lowercase__ : Tuple = MobileViTVaModelTester(self ) lowercase__ : Any = MobileViTVaConfigTester(self , config_class=__lowerCAmelCase , has_text_modality=__lowerCAmelCase ) def _lowerCAmelCase( self ) -> List[Any]: self.config_tester.run_common_tests() @unittest.skip(reason='''MobileViTV2 does not use inputs_embeds''' ) def _lowerCAmelCase( self ) -> str: pass @unittest.skip(reason='''MobileViTV2 does not support input and output embeddings''' ) def _lowerCAmelCase( self ) -> Optional[Any]: pass @unittest.skip(reason='''MobileViTV2 does not output attentions''' ) def _lowerCAmelCase( self ) -> Optional[int]: pass @require_torch_multi_gpu @unittest.skip(reason='''Got `CUDA error: misaligned address` for tests after this one being run.''' ) def _lowerCAmelCase( self ) -> Any: pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def _lowerCAmelCase( self ) -> str: pass def _lowerCAmelCase( self ) -> Optional[Any]: lowercase__ , lowercase__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : str = model_class(__lowerCAmelCase ) lowercase__ : List[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ : str = [*signature.parameters.keys()] lowercase__ : Dict = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __lowerCAmelCase ) def _lowerCAmelCase( self ) -> str: lowercase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCAmelCase ) def _lowerCAmelCase( self ) -> Union[str, Any]: def check_hidden_states_output(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): lowercase__ : Optional[int] = model_class(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() with torch.no_grad(): lowercase__ : List[str] = model(**self._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase ) ) lowercase__ : List[Any] = outputs.hidden_states lowercase__ : Optional[int] = 5 self.assertEqual(len(__lowerCAmelCase ) , __lowerCAmelCase ) # MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. lowercase__ : str = 2 for i in range(len(__lowerCAmelCase ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) lowercase__ , lowercase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : List[str] = True check_hidden_states_output(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ : Tuple = True check_hidden_states_output(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) def _lowerCAmelCase( self ) -> List[Any]: lowercase__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__lowerCAmelCase ) def _lowerCAmelCase( self ) -> Dict: lowercase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__lowerCAmelCase ) @slow def _lowerCAmelCase( self ) -> List[str]: for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : Dict = MobileViTVaModel.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) def __UpperCamelCase ( ): lowercase__ : Tuple = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def _lowerCAmelCase( self ) -> int: return ( MobileViTImageProcessor.from_pretrained('''apple/mobilevitv2-1.0-imagenet1k-256''' ) if is_vision_available() else None ) @slow def _lowerCAmelCase( self ) -> List[Any]: lowercase__ : Dict = MobileViTVaForImageClassification.from_pretrained('''apple/mobilevitv2-1.0-imagenet1k-256''' ).to( __lowerCAmelCase ) lowercase__ : List[Any] = self.default_image_processor lowercase__ : Optional[int] = prepare_img() lowercase__ : int = image_processor(images=__lowerCAmelCase , return_tensors='''pt''' ).to(__lowerCAmelCase ) # forward pass with torch.no_grad(): lowercase__ : List[str] = model(**__lowerCAmelCase ) # verify the logits lowercase__ : Optional[Any] = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , __lowerCAmelCase ) lowercase__ : int = torch.tensor([-1.6_336E00, -7.3_204E-02, -5.1_883E-01] ).to(__lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowerCAmelCase , atol=1E-4 ) ) @slow def _lowerCAmelCase( self ) -> Optional[int]: lowercase__ : Dict = MobileViTVaForSemanticSegmentation.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) lowercase__ : int = model.to(__lowerCAmelCase ) lowercase__ : Any = MobileViTImageProcessor.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) lowercase__ : str = prepare_img() lowercase__ : Optional[int] = image_processor(images=__lowerCAmelCase , return_tensors='''pt''' ).to(__lowerCAmelCase ) # forward pass with torch.no_grad(): lowercase__ : str = model(**__lowerCAmelCase ) lowercase__ : Tuple = outputs.logits # verify the logits lowercase__ : List[Any] = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape , __lowerCAmelCase ) lowercase__ : Union[str, Any] = torch.tensor( [ [[7.0_8_6_3, 7.1_5_2_5, 6.8_2_0_1], [6.6_9_3_1, 6.8_7_7_0, 6.8_9_3_3], [6.2_9_7_8, 7.0_3_6_6, 6.9_6_3_6]], [[-3.7_1_3_4, -3.6_7_1_2, -3.6_6_7_5], [-3.5_8_2_5, -3.3_5_4_9, -3.4_7_7_7], [-3.3_4_3_5, -3.3_9_7_9, -3.2_8_5_7]], [[-2.9_3_2_9, -2.8_0_0_3, -2.7_3_6_9], [-3.0_5_6_4, -2.4_7_8_0, -2.0_2_0_7], [-2.6_8_8_9, -1.9_2_9_8, -1.7_6_4_0]], ] , device=__lowerCAmelCase , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , __lowerCAmelCase , atol=1E-4 ) ) @slow def _lowerCAmelCase( self ) -> Any: lowercase__ : Optional[int] = MobileViTVaForSemanticSegmentation.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) lowercase__ : List[str] = model.to(__lowerCAmelCase ) lowercase__ : Optional[int] = MobileViTImageProcessor.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) lowercase__ : int = prepare_img() lowercase__ : List[str] = image_processor(images=__lowerCAmelCase , return_tensors='''pt''' ).to(__lowerCAmelCase ) # forward pass with torch.no_grad(): lowercase__ : Optional[Any] = model(**__lowerCAmelCase ) lowercase__ : Optional[int] = outputs.logits.detach().cpu() lowercase__ : Any = image_processor.post_process_semantic_segmentation(outputs=__lowerCAmelCase , target_sizes=[(50, 60)] ) lowercase__ : Optional[int] = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape , __lowerCAmelCase ) lowercase__ : Optional[Any] = image_processor.post_process_semantic_segmentation(outputs=__lowerCAmelCase ) lowercase__ : Union[str, Any] = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape , __lowerCAmelCase )
198
0
from operator import delitem, getitem, setitem import pytest from data_structures.hashing.hash_map import HashMap def __UpperCAmelCase ( __a : List[str] ) -> str: """simple docstring""" return getitem, k def __UpperCAmelCase ( __a : int ,__a : List[Any] ) -> Optional[int]: """simple docstring""" return setitem, k, v def __UpperCAmelCase ( __a : Any ) -> Optional[Any]: """simple docstring""" return delitem, k def __UpperCAmelCase ( __a : Any ,__a : List[str] ,*__a : Any ) -> Dict: """simple docstring""" try: return fun(__a ,*__a ), None except Exception as e: return None, e a__ = ( _set('''key_a''', '''val_a'''), _set('''key_b''', '''val_b'''), ) a__ = [ _set('''key_a''', '''val_a'''), _set('''key_a''', '''val_b'''), ] a__ = [ _set('''key_a''', '''val_a'''), _set('''key_b''', '''val_b'''), _del('''key_a'''), _del('''key_b'''), _set('''key_a''', '''val_a'''), _del('''key_a'''), ] a__ = [ _get('''key_a'''), _del('''key_a'''), _set('''key_a''', '''val_a'''), _del('''key_a'''), _del('''key_a'''), _get('''key_a'''), ] a__ = [ *[_set(x, x) for x in range(5)], # guaranteed upsize ] a__ = [ *[_set(x, x) for x in range(5)], # guaranteed upsize *[_del(x) for x in range(5)], _set('''key_a''', '''val_b'''), ] @pytest.mark.parametrize( '''operations''' ,( pytest.param(_add_items ,id='''add items''' ), pytest.param(_overwrite_items ,id='''overwrite items''' ), pytest.param(_delete_items ,id='''delete items''' ), pytest.param(_access_absent_items ,id='''access absent items''' ), pytest.param(_add_with_resize_up ,id='''add with resize up''' ), pytest.param(_add_with_resize_down ,id='''add with resize down''' ), ) ,) def __UpperCAmelCase ( __a : int ) -> int: """simple docstring""" _a : str = HashMap(initial_block_size=4 ) _a : Union[str, Any] = {} for _, (fun, *args) in enumerate(__a ): _a , _a : List[Any] = _run_operation(__a ,__a ,*__a ) _a , _a : List[Any] = _run_operation(__a ,__a ,*__a ) assert my_res == py_res assert str(__a ) == str(__a ) assert set(__a ) == set(__a ) assert len(__a ) == len(__a ) assert set(my.items() ) == set(py.items() ) def __UpperCAmelCase ( ) -> Optional[Any]: """simple docstring""" def is_public(__a : str ) -> bool: return not name.startswith('''_''' ) _a : List[Any] = {name for name in dir({} ) if is_public(__a )} _a : Tuple = {name for name in dir(HashMap() ) if is_public(__a )} assert dict_public_names > hash_public_names
15
from typing import Dict, Iterable, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract a__ = logging.get_logger(__name__) def __UpperCAmelCase ( __a : Union[str, Any] ,__a : str ,__a : Union[str, Any] ) -> List[str]: """simple docstring""" return [ int(1_000 * (box[0] / width) ), int(1_000 * (box[1] / height) ), int(1_000 * (box[2] / width) ), int(1_000 * (box[3] / height) ), ] def __UpperCAmelCase ( __a : np.ndarray ,__a : Optional[str] ,__a : Optional[str] ) -> List[Any]: """simple docstring""" _a : str = to_pil_image(__a ) _a , _a : Optional[Any] = pil_image.size _a : Tuple = pytesseract.image_to_data(__a ,lang=__a ,output_type='''dict''' ,config=__a ) _a , _a , _a , _a , _a : List[str] = data['''text'''], data['''left'''], data['''top'''], data['''width'''], data['''height'''] # filter empty words and corresponding coordinates _a : Dict = [idx for idx, word in enumerate(__a ) if not word.strip()] _a : str = [word for idx, word in enumerate(__a ) if idx not in irrelevant_indices] _a : List[str] = [coord for idx, coord in enumerate(__a ) if idx not in irrelevant_indices] _a : Union[str, Any] = [coord for idx, coord in enumerate(__a ) if idx not in irrelevant_indices] _a : str = [coord for idx, coord in enumerate(__a ) if idx not in irrelevant_indices] _a : Union[str, Any] = [coord for idx, coord in enumerate(__a ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format _a : int = [] for x, y, w, h in zip(__a ,__a ,__a ,__a ): _a : List[str] = [x, y, x + w, y + h] actual_boxes.append(__a ) # finally, normalize the bounding boxes _a : Dict = [] for box in actual_boxes: normalized_boxes.append(normalize_box(__a ,__a ,__a ) ) assert len(__a ) == len(__a ), "Not as many words as there are bounding boxes" return words, normalized_boxes class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : Optional[int] = ["pixel_values"] def __init__( self , _a = True , _a = None , _a = PILImageResampling.BILINEAR , _a = True , _a = 1 / 2_5_5 , _a = True , _a = None , _a = None , _a = True , _a = None , _a = "" , **_a , ) -> None: super().__init__(**_a ) _a : List[str] = size if size is not None else {'''height''': 2_2_4, '''width''': 2_2_4} _a : Union[str, Any] = get_size_dict(_a ) _a : int = do_resize _a : Optional[int] = size _a : str = resample _a : str = do_rescale _a : Any = rescale_value _a : Optional[Any] = do_normalize _a : int = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _a : List[str] = image_std if image_std is not None else IMAGENET_STANDARD_STD _a : List[Any] = apply_ocr _a : Optional[int] = ocr_lang _a : Tuple = tesseract_config def __lowercase ( self , _a , _a , _a = PILImageResampling.BILINEAR , _a = None , **_a , ) -> np.ndarray: _a : Any = get_size_dict(_a ) if "height" not in size or "width" not in size: raise ValueError(F"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""" ) _a : Optional[int] = (size['''height'''], size['''width''']) return resize(_a , size=_a , resample=_a , data_format=_a , **_a ) def __lowercase ( self , _a , _a , _a = None , **_a , ) -> np.ndarray: return rescale(_a , scale=_a , data_format=_a , **_a ) def __lowercase ( self , _a , _a , _a , _a = None , **_a , ) -> np.ndarray: return normalize(_a , mean=_a , std=_a , data_format=_a , **_a ) def __lowercase ( self , _a , _a = None , _a = None , _a=None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = ChannelDimension.FIRST , **_a , ) -> PIL.Image.Image: _a : Optional[int] = do_resize if do_resize is not None else self.do_resize _a : Union[str, Any] = size if size is not None else self.size _a : Any = get_size_dict(_a ) _a : List[str] = resample if resample is not None else self.resample _a : int = do_rescale if do_rescale is not None else self.do_rescale _a : Union[str, Any] = rescale_factor if rescale_factor is not None else self.rescale_factor _a : int = do_normalize if do_normalize is not None else self.do_normalize _a : str = image_mean if image_mean is not None else self.image_mean _a : Tuple = image_std if image_std is not None else self.image_std _a : Any = apply_ocr if apply_ocr is not None else self.apply_ocr _a : int = ocr_lang if ocr_lang is not None else self.ocr_lang _a : Optional[int] = tesseract_config if tesseract_config is not None else self.tesseract_config _a : List[Any] = make_list_of_images(_a ) if not valid_images(_a ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''If do_normalize is True, image_mean and image_std must be specified.''' ) # All transformations expect numpy arrays. _a : Any = [to_numpy_array(_a ) for image in images] # Tesseract OCR to get words + normalized bounding boxes if apply_ocr: requires_backends(self , '''pytesseract''' ) _a : str = [] _a : str = [] for image in images: _a , _a : Union[str, Any] = apply_tesseract(_a , _a , _a ) words_batch.append(_a ) boxes_batch.append(_a ) if do_resize: _a : List[str] = [self.resize(image=_a , size=_a , resample=_a ) for image in images] if do_rescale: _a : Optional[Any] = [self.rescale(image=_a , scale=_a ) for image in images] if do_normalize: _a : List[Any] = [self.normalize(image=_a , mean=_a , std=_a ) for image in images] _a : List[str] = [to_channel_dimension_format(_a , _a ) for image in images] _a : List[str] = BatchFeature(data={'''pixel_values''': images} , tensor_type=_a ) if apply_ocr: _a : Optional[int] = words_batch _a : List[Any] = boxes_batch return data
15
1
from typing import List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { 'huggingface/autoformer-tourism-monthly': 'https://huggingface.co/huggingface/autoformer-tourism-monthly/resolve/main/config.json', } class lowerCamelCase (_snake_case ): '''simple docstring''' _snake_case : Tuple = '''autoformer''' _snake_case : Tuple = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', '''num_hidden_layers''': '''encoder_layers''', } def __init__( self , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = "student_t" , _UpperCamelCase = "nll" , _UpperCamelCase = 1 , _UpperCamelCase = [1, 2, 3, 4, 5, 6, 7] , _UpperCamelCase = True , _UpperCamelCase = 0 , _UpperCamelCase = 0 , _UpperCamelCase = 0 , _UpperCamelCase = 0 , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = 6_4 , _UpperCamelCase = 2 , _UpperCamelCase = 2 , _UpperCamelCase = 2 , _UpperCamelCase = 2 , _UpperCamelCase = 3_2 , _UpperCamelCase = 3_2 , _UpperCamelCase = "gelu" , _UpperCamelCase = 0.1 , _UpperCamelCase = 0.1 , _UpperCamelCase = 0.1 , _UpperCamelCase = 0.1 , _UpperCamelCase = 0.1 , _UpperCamelCase = 1_0_0 , _UpperCamelCase = 0.02 , _UpperCamelCase = True , _UpperCamelCase=True , _UpperCamelCase = 1_0 , _UpperCamelCase = 2_5 , _UpperCamelCase = 3 , **_UpperCamelCase , ) -> Union[str, Any]: # time series specific configuration UpperCAmelCase_ : str = prediction_length UpperCAmelCase_ : str = context_length if context_length is not None else prediction_length UpperCAmelCase_ : Union[str, Any] = distribution_output UpperCAmelCase_ : List[Any] = loss UpperCAmelCase_ : Any = input_size UpperCAmelCase_ : List[str] = num_time_features UpperCAmelCase_ : Optional[Any] = lags_sequence UpperCAmelCase_ : Optional[int] = scaling UpperCAmelCase_ : Union[str, Any] = num_dynamic_real_features UpperCAmelCase_ : Union[str, Any] = num_static_real_features UpperCAmelCase_ : int = num_static_categorical_features if cardinality is not None and num_static_categorical_features > 0: if len(_UpperCamelCase ) != num_static_categorical_features: raise ValueError( 'The cardinality should be a list of the same length as `num_static_categorical_features`' ) UpperCAmelCase_ : Union[str, Any] = cardinality else: UpperCAmelCase_ : int = [0] if embedding_dimension is not None and num_static_categorical_features > 0: if len(_UpperCamelCase ) != num_static_categorical_features: raise ValueError( 'The embedding dimension should be a list of the same length as `num_static_categorical_features`' ) UpperCAmelCase_ : Tuple = embedding_dimension else: UpperCAmelCase_ : List[str] = [min(5_0 , (cat + 1) // 2 ) for cat in self.cardinality] UpperCAmelCase_ : Optional[Any] = num_parallel_samples # Transformer architecture configuration UpperCAmelCase_ : List[str] = input_size * len(self.lags_sequence ) + self._number_of_features UpperCAmelCase_ : List[Any] = d_model UpperCAmelCase_ : List[str] = encoder_attention_heads UpperCAmelCase_ : List[Any] = decoder_attention_heads UpperCAmelCase_ : Optional[int] = encoder_ffn_dim UpperCAmelCase_ : Dict = decoder_ffn_dim UpperCAmelCase_ : str = encoder_layers UpperCAmelCase_ : Union[str, Any] = decoder_layers UpperCAmelCase_ : Union[str, Any] = dropout UpperCAmelCase_ : int = attention_dropout UpperCAmelCase_ : Optional[Any] = activation_dropout UpperCAmelCase_ : List[Any] = encoder_layerdrop UpperCAmelCase_ : Union[str, Any] = decoder_layerdrop UpperCAmelCase_ : Union[str, Any] = activation_function UpperCAmelCase_ : Union[str, Any] = init_std UpperCAmelCase_ : Optional[int] = use_cache # Autoformer UpperCAmelCase_ : int = label_length UpperCAmelCase_ : List[Any] = moving_average UpperCAmelCase_ : Optional[int] = autocorrelation_factor super().__init__(is_encoder_decoder=_UpperCamelCase , **_UpperCamelCase ) @property def __UpperCAmelCase ( self ) -> int: return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
29
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_convbert import ConvBertTokenizer __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = {'vocab_file': 'vocab.txt'} __UpperCAmelCase = { 'vocab_file': { 'YituTech/conv-bert-base': 'https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt', 'YituTech/conv-bert-medium-small': ( 'https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt' ), 'YituTech/conv-bert-small': 'https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt', } } __UpperCAmelCase = { 'YituTech/conv-bert-base': 512, 'YituTech/conv-bert-medium-small': 512, 'YituTech/conv-bert-small': 512, } __UpperCAmelCase = { 'YituTech/conv-bert-base': {'do_lower_case': True}, 'YituTech/conv-bert-medium-small': {'do_lower_case': True}, 'YituTech/conv-bert-small': {'do_lower_case': True}, } class lowerCamelCase (_snake_case ): '''simple docstring''' _snake_case : Optional[int] = VOCAB_FILES_NAMES _snake_case : int = PRETRAINED_VOCAB_FILES_MAP _snake_case : Dict = PRETRAINED_INIT_CONFIGURATION _snake_case : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case : Any = ConvBertTokenizer def __init__( self , _UpperCamelCase=None , _UpperCamelCase=None , _UpperCamelCase=True , _UpperCamelCase="[UNK]" , _UpperCamelCase="[SEP]" , _UpperCamelCase="[PAD]" , _UpperCamelCase="[CLS]" , _UpperCamelCase="[MASK]" , _UpperCamelCase=True , _UpperCamelCase=None , **_UpperCamelCase , ) -> Dict: super().__init__( _UpperCamelCase , tokenizer_file=_UpperCamelCase , do_lower_case=_UpperCamelCase , unk_token=_UpperCamelCase , sep_token=_UpperCamelCase , pad_token=_UpperCamelCase , cls_token=_UpperCamelCase , mask_token=_UpperCamelCase , tokenize_chinese_chars=_UpperCamelCase , strip_accents=_UpperCamelCase , **_UpperCamelCase , ) UpperCAmelCase_ : Optional[int] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , _UpperCamelCase ) != do_lower_case or normalizer_state.get('strip_accents' , _UpperCamelCase ) != strip_accents or normalizer_state.get('handle_chinese_chars' , _UpperCamelCase ) != tokenize_chinese_chars ): UpperCAmelCase_ : Any = getattr(_UpperCamelCase , normalizer_state.pop('type' ) ) UpperCAmelCase_ : str = do_lower_case UpperCAmelCase_ : List[Any] = strip_accents UpperCAmelCase_ : str = tokenize_chinese_chars UpperCAmelCase_ : Tuple = normalizer_class(**_UpperCamelCase ) UpperCAmelCase_ : Any = do_lower_case def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase=None ) -> List[str]: UpperCAmelCase_ : int = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase = None ) -> List[int]: UpperCAmelCase_ : Union[str, Any] = [self.sep_token_id] UpperCAmelCase_ : int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase = None ) -> Tuple[str]: UpperCAmelCase_ : Any = self._tokenizer.model.save(_UpperCamelCase , name=_UpperCamelCase ) return tuple(_UpperCamelCase )
29
1
from __future__ import annotations from cmath import sqrt def SCREAMING_SNAKE_CASE ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase) -> tuple[complex, complex]: if a == 0: raise ValueError("Coefficient 'a' must not be zero.") a = b * b - 4 * a * c a = (-b + sqrt(__UpperCamelCase)) / (2 * a) a = (-b - sqrt(__UpperCamelCase)) / (2 * a) return ( root_a.real if not root_a.imag else root_a, root_a.real if not root_a.imag else root_a, ) def SCREAMING_SNAKE_CASE ( ) -> int: a , a = quadratic_roots(a=5 , b=6 , c=1) print(f'''The solutions are: {solutiona} and {solutiona}''') if __name__ == "__main__": main()
180
lowercase__ : Optional[int] = [ "DownloadConfig", "DownloadManager", "DownloadMode", "StreamingDownloadManager", ] from .download_config import DownloadConfig from .download_manager import DownloadManager, DownloadMode from .streaming_download_manager import StreamingDownloadManager
180
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices snake_case : Optional[int] = logging.get_logger(__name__) snake_case : Any = { '''microsoft/swin-tiny-patch4-window7-224''': ( '''https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json''' ), # See all Swin models at https://huggingface.co/models?filter=swin } class _snake_case ( _snake_case , _snake_case ): SCREAMING_SNAKE_CASE__ = 'swin' SCREAMING_SNAKE_CASE__ = { 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self , _lowerCamelCase=224 , _lowerCamelCase=4 , _lowerCamelCase=3 , _lowerCamelCase=96 , _lowerCamelCase=[2, 2, 6, 2] , _lowerCamelCase=[3, 6, 12, 24] , _lowerCamelCase=7 , _lowerCamelCase=4.0 , _lowerCamelCase=True , _lowerCamelCase=0.0 , _lowerCamelCase=0.0 , _lowerCamelCase=0.1 , _lowerCamelCase="gelu" , _lowerCamelCase=False , _lowerCamelCase=0.02 , _lowerCamelCase=1e-5 , _lowerCamelCase=32 , _lowerCamelCase=None , _lowerCamelCase=None , **_lowerCamelCase , ): super().__init__(**_lowerCamelCase ) a :Optional[Any] = image_size a :List[Any] = patch_size a :Any = num_channels a :str = embed_dim a :str = depths a :Optional[Any] = len(_lowerCamelCase ) a :int = num_heads a :str = window_size a :List[Any] = mlp_ratio a :Union[str, Any] = qkv_bias a :Optional[Any] = hidden_dropout_prob a :List[Any] = attention_probs_dropout_prob a :Any = drop_path_rate a :Dict = hidden_act a :Union[str, Any] = use_absolute_embeddings a :Tuple = layer_norm_eps a :Optional[Any] = initializer_range a :List[str] = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model a :List[str] = int(embed_dim * 2 ** (len(_lowerCamelCase ) - 1) ) a :List[Any] = ['''stem'''] + [F'''stage{idx}''' for idx in range(1 , len(_lowerCamelCase ) + 1 )] a , a :Dict = get_aligned_output_features_output_indices( out_features=_lowerCamelCase , out_indices=_lowerCamelCase , stage_names=self.stage_names ) class _snake_case ( _snake_case ): SCREAMING_SNAKE_CASE__ = version.parse('1.11' ) @property def SCREAMING_SNAKE_CASE__ ( self ): return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def SCREAMING_SNAKE_CASE__ ( self ): return 1e-4
94
import sys from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers snake_case : Union[str, Any] = '''python tqdm regex requests packaging filelock numpy tokenizers'''.split() if sys.version_info < (3, 7): pkgs_to_check_at_runtime.append('''dataclasses''') if sys.version_info < (3, 8): pkgs_to_check_at_runtime.append('''importlib_metadata''') for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(F"""can't find {pkg} in {deps.keys()}, check dependency_versions_table.py""") def __lowerCamelCase ( UpperCAmelCase_ : Any , UpperCAmelCase_ : Optional[int]=None ): """simple docstring""" require_version(deps[pkg] , UpperCAmelCase_ )
94
1
"""simple docstring""" import argparse import os import re UpperCAmelCase : Union[str, Any] = "src/transformers" # Pattern that looks at the indentation in a line. UpperCAmelCase : Any = re.compile(r"^(\s*)\S") # Pattern that matches `"key":" and puts `key` in group 0. UpperCAmelCase : int = re.compile(r"^\s*\"([^\"]+)\":") # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. UpperCAmelCase : List[str] = re.compile(r"^\s*_import_structure\[\"([^\"]+)\"\]") # Pattern that matches `"key",` and puts `key` in group 0. UpperCAmelCase : Union[str, Any] = re.compile(r"^\s*\"([^\"]+)\",\s*$") # Pattern that matches any `[stuff]` and puts `stuff` in group 0. UpperCAmelCase : List[str] = re.compile(r"\[([^\]]+)\]") def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> Optional[int]: '''simple docstring''' lowercase_ = _re_indent.search(__lowerCAmelCase ) return "" if search is None else search.groups()[0] def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase="" , __lowerCAmelCase=None , __lowerCAmelCase=None ) -> List[Any]: '''simple docstring''' lowercase_ = 0 lowercase_ = code.split("""\n""" ) if start_prompt is not None: while not lines[index].startswith(__lowerCAmelCase ): index += 1 lowercase_ = ["""\n""".join(lines[:index] )] else: lowercase_ = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). lowercase_ = [lines[index]] index += 1 while index < len(__lowerCAmelCase ) and (end_prompt is None or not lines[index].startswith(__lowerCAmelCase )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(__lowerCAmelCase ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + """ """ ): current_block.append(lines[index] ) blocks.append("""\n""".join(__lowerCAmelCase ) ) if index < len(__lowerCAmelCase ) - 1: lowercase_ = [lines[index + 1]] index += 1 else: lowercase_ = [] else: blocks.append("""\n""".join(__lowerCAmelCase ) ) lowercase_ = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(__lowerCAmelCase ) > 0: blocks.append("""\n""".join(__lowerCAmelCase ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(__lowerCAmelCase ): blocks.append("""\n""".join(lines[index:] ) ) return blocks def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> Optional[Any]: '''simple docstring''' def _inner(__lowerCAmelCase ): return key(__lowerCAmelCase ).lower().replace("""_""" , """""" ) return _inner def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase=None ) -> Optional[Any]: '''simple docstring''' def noop(__lowerCAmelCase ): return x if key is None: lowercase_ = noop # Constants are all uppercase, they go first. lowercase_ = [obj for obj in objects if key(__lowerCAmelCase ).isupper()] # Classes are not all uppercase but start with a capital, they go second. lowercase_ = [obj for obj in objects if key(__lowerCAmelCase )[0].isupper() and not key(__lowerCAmelCase ).isupper()] # Functions begin with a lowercase, they go last. lowercase_ = [obj for obj in objects if not key(__lowerCAmelCase )[0].isupper()] lowercase_ = ignore_underscore(__lowerCAmelCase ) return sorted(__lowerCAmelCase , key=__lowerCAmelCase ) + sorted(__lowerCAmelCase , key=__lowerCAmelCase ) + sorted(__lowerCAmelCase , key=__lowerCAmelCase ) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> Optional[Any]: '''simple docstring''' def _replace(__lowerCAmelCase ): lowercase_ = match.groups()[0] if "," not in imports: return F'''[{imports}]''' lowercase_ = [part.strip().replace("""\"""" , """""" ) for part in imports.split(""",""" )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: lowercase_ = keys[:-1] return "[" + ", ".join([F'''"{k}"''' for k in sort_objects(__lowerCAmelCase )] ) + "]" lowercase_ = import_statement.split("""\n""" ) if len(__lowerCAmelCase ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. lowercase_ = 2 if lines[1].strip() == """[""" else 1 lowercase_ = [(i, _re_strip_line.search(__lowerCAmelCase ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] lowercase_ = sort_objects(__lowerCAmelCase , key=lambda __lowerCAmelCase : x[1] ) lowercase_ = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(__lowerCAmelCase ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: lowercase_ = _re_bracket_content.sub(_replace , lines[1] ) else: lowercase_ = [part.strip().replace("""\"""" , """""" ) for part in lines[1].split(""",""" )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: lowercase_ = keys[:-1] lowercase_ = get_indent(lines[1] ) + """, """.join([F'''"{k}"''' for k in sort_objects(__lowerCAmelCase )] ) return "\n".join(__lowerCAmelCase ) else: # Finally we have to deal with imports fitting on one line lowercase_ = _re_bracket_content.sub(_replace , __lowerCAmelCase ) return import_statement def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase=True ) -> Dict: '''simple docstring''' with open(__lowerCAmelCase , encoding="""utf-8""" ) as f: lowercase_ = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 lowercase_ = split_code_in_indented_blocks( __lowerCAmelCase , start_prompt="""_import_structure = {""" , end_prompt="""if TYPE_CHECKING:""" ) # We ignore block 0 (everything untils start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(__lowerCAmelCase ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. lowercase_ = main_blocks[block_idx] lowercase_ = block.split("""\n""" ) # Get to the start of the imports. lowercase_ = 0 while line_idx < len(__lowerCAmelCase ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: lowercase_ = len(__lowerCAmelCase ) else: line_idx += 1 if line_idx >= len(__lowerCAmelCase ): continue # Ignore beginning and last line: they don't contain anything. lowercase_ = """\n""".join(block_lines[line_idx:-1] ) lowercase_ = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. lowercase_ = split_code_in_indented_blocks(__lowerCAmelCase , indent_level=__lowerCAmelCase ) # We have two categories of import key: list or _import_structure[key].append/extend lowercase_ = _re_direct_key if """_import_structure = {""" in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. lowercase_ = [(pattern.search(__lowerCAmelCase ).groups()[0] if pattern.search(__lowerCAmelCase ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. lowercase_ = [(i, key) for i, key in enumerate(__lowerCAmelCase ) if key is not None] lowercase_ = [x[0] for x in sorted(__lowerCAmelCase , key=lambda __lowerCAmelCase : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. lowercase_ = 0 lowercase_ = [] for i in range(len(__lowerCAmelCase ) ): if keys[i] is None: reorderded_blocks.append(internal_blocks[i] ) else: lowercase_ = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reorderded_blocks.append(__lowerCAmelCase ) count += 1 # And we put our main block back together with its first and last line. lowercase_ = """\n""".join(block_lines[:line_idx] + reorderded_blocks + [block_lines[-1]] ) if code != "\n".join(__lowerCAmelCase ): if check_only: return True else: print(F'''Overwriting {file}.''' ) with open(__lowerCAmelCase , """w""" , encoding="""utf-8""" ) as f: f.write("""\n""".join(__lowerCAmelCase ) ) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase=True ) -> int: '''simple docstring''' lowercase_ = [] for root, _, files in os.walk(__lowerCAmelCase ): if "__init__.py" in files: lowercase_ = sort_imports(os.path.join(__lowerCAmelCase , """__init__.py""" ) , check_only=__lowerCAmelCase ) if result: lowercase_ = [os.path.join(__lowerCAmelCase , """__init__.py""" )] if len(__lowerCAmelCase ) > 0: raise ValueError(F'''Would overwrite {len(__lowerCAmelCase )} files, run `make style`.''' ) if __name__ == "__main__": UpperCAmelCase : Any = argparse.ArgumentParser() parser.add_argument("--check_only", action="store_true", help="Whether to only check or fix style.") UpperCAmelCase : Optional[Any] = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
370
"""simple docstring""" from collections import OrderedDict from typing import Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...feature_extraction_utils import FeatureExtractionMixin from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType, logging UpperCAmelCase : Tuple = logging.get_logger(__name__) UpperCAmelCase : Optional[int] = { "deepmind/language-perceiver": "https://huggingface.co/deepmind/language-perceiver/resolve/main/config.json", # See all Perceiver models at https://huggingface.co/models?filter=perceiver } class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): lowercase__ = "perceiver" def __init__( self : Optional[int] , lowerCAmelCase_ : List[str]=2_5_6 , lowerCAmelCase_ : Dict=1_2_8_0 , lowerCAmelCase_ : List[Any]=7_6_8 , lowerCAmelCase_ : Optional[Any]=1 , lowerCAmelCase_ : List[Any]=2_6 , lowerCAmelCase_ : Optional[Any]=8 , lowerCAmelCase_ : Tuple=8 , lowerCAmelCase_ : Tuple=None , lowerCAmelCase_ : Optional[int]=None , lowerCAmelCase_ : Optional[Any]="kv" , lowerCAmelCase_ : Dict=1 , lowerCAmelCase_ : Optional[Any]=1 , lowerCAmelCase_ : List[str]="gelu" , lowerCAmelCase_ : Dict=0.1 , lowerCAmelCase_ : Union[str, Any]=0.02 , lowerCAmelCase_ : List[Any]=1E-12 , lowerCAmelCase_ : str=True , lowerCAmelCase_ : Union[str, Any]=2_6_2 , lowerCAmelCase_ : Union[str, Any]=2_0_4_8 , lowerCAmelCase_ : Any=5_6 , lowerCAmelCase_ : int=[3_6_8, 4_9_6] , lowerCAmelCase_ : Optional[int]=1_6 , lowerCAmelCase_ : Dict=1_9_2_0 , lowerCAmelCase_ : Optional[Any]=1_6 , lowerCAmelCase_ : Tuple=[1, 1_6, 2_2_4, 2_2_4] , **lowerCAmelCase_ : Union[str, Any] , ): """simple docstring""" super().__init__(**lowerCAmelCase_) lowercase_ = num_latents lowercase_ = d_latents lowercase_ = d_model lowercase_ = num_blocks lowercase_ = num_self_attends_per_block lowercase_ = num_self_attention_heads lowercase_ = num_cross_attention_heads lowercase_ = qk_channels lowercase_ = v_channels lowercase_ = cross_attention_shape_for_attention lowercase_ = self_attention_widening_factor lowercase_ = cross_attention_widening_factor lowercase_ = hidden_act lowercase_ = attention_probs_dropout_prob lowercase_ = initializer_range lowercase_ = layer_norm_eps lowercase_ = use_query_residual # masked language modeling attributes lowercase_ = vocab_size lowercase_ = max_position_embeddings # image classification attributes lowercase_ = image_size # flow attributes lowercase_ = train_size # multimodal autoencoding attributes lowercase_ = num_frames lowercase_ = audio_samples_per_frame lowercase_ = samples_per_patch lowercase_ = output_shape class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): @property def _UpperCAmelCase ( self : str): """simple docstring""" if self.task == "multiple-choice": lowercase_ = {0: """batch""", 1: """choice""", 2: """sequence"""} else: lowercase_ = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""inputs""", dynamic_axis), ("""attention_mask""", dynamic_axis), ]) @property def _UpperCAmelCase ( self : Optional[int]): """simple docstring""" return 1E-4 def _UpperCAmelCase ( self : List[str] , lowerCAmelCase_ : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , lowerCAmelCase_ : int = -1 , lowerCAmelCase_ : int = -1 , lowerCAmelCase_ : int = -1 , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : Optional[TensorType] = None , lowerCAmelCase_ : int = 3 , lowerCAmelCase_ : int = 4_0 , lowerCAmelCase_ : int = 4_0 , ): """simple docstring""" if isinstance(lowerCAmelCase_ , lowerCAmelCase_): # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX lowercase_ = compute_effective_axis_dimension( lowerCAmelCase_ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX lowercase_ = preprocessor.num_special_tokens_to_add(lowerCAmelCase_) lowercase_ = compute_effective_axis_dimension( lowerCAmelCase_ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=lowerCAmelCase_) # Generate dummy inputs according to compute batch and sequence lowercase_ = [""" """.join(["""a"""]) * seq_length] * batch_size lowercase_ = dict(preprocessor(lowerCAmelCase_ , return_tensors=lowerCAmelCase_)) lowercase_ = inputs.pop("""input_ids""") return inputs elif isinstance(lowerCAmelCase_ , lowerCAmelCase_) and preprocessor.model_input_names[0] == "pixel_values": # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX lowercase_ = compute_effective_axis_dimension(lowerCAmelCase_ , fixed_dimension=OnnxConfig.default_fixed_batch) lowercase_ = self._generate_dummy_images(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_) lowercase_ = dict(preprocessor(images=lowerCAmelCase_ , return_tensors=lowerCAmelCase_)) lowercase_ = inputs.pop("""pixel_values""") return inputs else: raise ValueError( """Unable to generate dummy inputs for the model. Please provide a tokenizer or a preprocessor.""")
313
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging SCREAMING_SNAKE_CASE__ : Optional[int] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : Optional[Any] = { "facebook/deit-base-distilled-patch16-224": ( "https://huggingface.co/facebook/deit-base-patch16-224/resolve/main/config.json" ), # See all DeiT models at https://huggingface.co/models?filter=deit } class lowerCAmelCase__ ( __lowercase ): a__ : List[str] = """deit""" def __init__( self : str , SCREAMING_SNAKE_CASE__ : Dict=7_68 , SCREAMING_SNAKE_CASE__ : Optional[int]=12 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=12 , SCREAMING_SNAKE_CASE__ : Optional[Any]=30_72 , SCREAMING_SNAKE_CASE__ : Dict="gelu" , SCREAMING_SNAKE_CASE__ : Any=0.0 , SCREAMING_SNAKE_CASE__ : Optional[int]=0.0 , SCREAMING_SNAKE_CASE__ : List[str]=0.02 , SCREAMING_SNAKE_CASE__ : int=1e-12 , SCREAMING_SNAKE_CASE__ : Optional[int]=2_24 , SCREAMING_SNAKE_CASE__ : Any=16 , SCREAMING_SNAKE_CASE__ : Any=3 , SCREAMING_SNAKE_CASE__ : Tuple=True , SCREAMING_SNAKE_CASE__ : str=16 , **SCREAMING_SNAKE_CASE__ : Any , ) -> Dict: super().__init__(**SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = hidden_size __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = intermediate_size __lowerCamelCase = hidden_act __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = initializer_range __lowerCamelCase = layer_norm_eps __lowerCamelCase = image_size __lowerCamelCase = patch_size __lowerCamelCase = num_channels __lowerCamelCase = qkv_bias __lowerCamelCase = encoder_stride class lowerCAmelCase__ ( __lowercase ): a__ : List[str] = version.parse("""1.11""" ) @property def __A ( self : List[str] ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def __A ( self : Dict ) -> float: return 1e-4
270
import argparse import collections import json import os import re import string import sys import numpy as np SCREAMING_SNAKE_CASE__ : Union[str, Any] = re.compile(r"\b(a|an|the)\b", re.UNICODE) SCREAMING_SNAKE_CASE__ : int = None def __magic_name__ ( ) -> str: __lowerCamelCase = argparse.ArgumentParser('''Official evaluation script for SQuAD version 2.0.''' ) parser.add_argument('''data_file''' , metavar='''data.json''' , help='''Input data JSON file.''' ) parser.add_argument('''pred_file''' , metavar='''pred.json''' , help='''Model predictions.''' ) parser.add_argument( '''--out-file''' , '''-o''' , metavar='''eval.json''' , help='''Write accuracy metrics to file (default is stdout).''' ) parser.add_argument( '''--na-prob-file''' , '''-n''' , metavar='''na_prob.json''' , help='''Model estimates of probability of no answer.''' ) parser.add_argument( '''--na-prob-thresh''' , '''-t''' , type=__lowerCAmelCase , default=1.0 , help='''Predict "" if no-answer probability exceeds this (default = 1.0).''' , ) parser.add_argument( '''--out-image-dir''' , '''-p''' , metavar='''out_images''' , default=__lowerCAmelCase , help='''Save precision-recall curves to directory.''' ) parser.add_argument('''--verbose''' , '''-v''' , action='''store_true''' ) if len(sys.argv ) == 1: parser.print_help() sys.exit(1 ) return parser.parse_args() def __magic_name__ ( __lowerCAmelCase : List[str] ) -> Union[str, Any]: __lowerCamelCase = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: __lowerCamelCase = bool(qa['''answers''']['''text'''] ) return qid_to_has_ans def __magic_name__ ( __lowerCAmelCase : Dict ) -> Optional[Any]: def remove_articles(__lowerCAmelCase : Optional[int] ): return ARTICLES_REGEX.sub(''' ''' , __lowerCAmelCase ) def white_space_fix(__lowerCAmelCase : Optional[int] ): return " ".join(text.split() ) def remove_punc(__lowerCAmelCase : Union[str, Any] ): __lowerCamelCase = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(__lowerCAmelCase : Dict ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(__lowerCAmelCase ) ) ) ) def __magic_name__ ( __lowerCAmelCase : List[Any] ) -> Optional[int]: if not s: return [] return normalize_answer(__lowerCAmelCase ).split() def __magic_name__ ( __lowerCAmelCase : Tuple , __lowerCAmelCase : Tuple ) -> int: return int(normalize_answer(__lowerCAmelCase ) == normalize_answer(__lowerCAmelCase ) ) def __magic_name__ ( __lowerCAmelCase : Any , __lowerCAmelCase : Tuple ) -> str: __lowerCamelCase = get_tokens(__lowerCAmelCase ) __lowerCamelCase = get_tokens(__lowerCAmelCase ) __lowerCamelCase = collections.Counter(__lowerCAmelCase ) & collections.Counter(__lowerCAmelCase ) __lowerCamelCase = sum(common.values() ) if len(__lowerCAmelCase ) == 0 or len(__lowerCAmelCase ) == 0: # If either is no-answer, then F1 is 1 if they agree, 0 otherwise return int(gold_toks == pred_toks ) if num_same == 0: return 0 __lowerCamelCase = 1.0 * num_same / len(__lowerCAmelCase ) __lowerCamelCase = 1.0 * num_same / len(__lowerCAmelCase ) __lowerCamelCase = (2 * precision * recall) / (precision + recall) return fa def __magic_name__ ( __lowerCAmelCase : Dict , __lowerCAmelCase : List[str] ) -> Optional[Any]: __lowerCamelCase = {} __lowerCamelCase = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: __lowerCamelCase = qa['''id'''] __lowerCamelCase = [t for t in qa['''answers''']['''text'''] if normalize_answer(__lowerCAmelCase )] if not gold_answers: # For unanswerable questions, only correct answer is empty string __lowerCamelCase = [''''''] if qid not in preds: print(f'''Missing prediction for {qid}''' ) continue __lowerCamelCase = preds[qid] # Take max over all gold answers __lowerCamelCase = max(compute_exact(__lowerCAmelCase , __lowerCAmelCase ) for a in gold_answers ) __lowerCamelCase = max(compute_fa(__lowerCAmelCase , __lowerCAmelCase ) for a in gold_answers ) return exact_scores, fa_scores def __magic_name__ ( __lowerCAmelCase : Tuple , __lowerCAmelCase : str , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Union[str, Any] ) -> List[str]: __lowerCamelCase = {} for qid, s in scores.items(): __lowerCamelCase = na_probs[qid] > na_prob_thresh if pred_na: __lowerCamelCase = float(not qid_to_has_ans[qid] ) else: __lowerCamelCase = s return new_scores def __magic_name__ ( __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Optional[Any]=None ) -> Union[str, Any]: if not qid_list: __lowerCamelCase = len(__lowerCAmelCase ) return collections.OrderedDict( [ ('''exact''', 100.0 * sum(exact_scores.values() ) / total), ('''f1''', 100.0 * sum(fa_scores.values() ) / total), ('''total''', total), ] ) else: __lowerCamelCase = len(__lowerCAmelCase ) return collections.OrderedDict( [ ('''exact''', 100.0 * sum(exact_scores[k] for k in qid_list ) / total), ('''f1''', 100.0 * sum(fa_scores[k] for k in qid_list ) / total), ('''total''', total), ] ) def __magic_name__ ( __lowerCAmelCase : Any , __lowerCAmelCase : str , __lowerCAmelCase : Optional[Any] ) -> int: for k in new_eval: __lowerCamelCase = new_eval[k] def __magic_name__ ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : Union[str, Any] ) -> Optional[Any]: plt.step(__lowerCAmelCase , __lowerCAmelCase , color='''b''' , alpha=0.2 , where='''post''' ) plt.fill_between(__lowerCAmelCase , __lowerCAmelCase , step='''post''' , alpha=0.2 , color='''b''' ) plt.xlabel('''Recall''' ) plt.ylabel('''Precision''' ) plt.xlim([0.0, 1.05] ) plt.ylim([0.0, 1.05] ) plt.title(__lowerCAmelCase ) plt.savefig(__lowerCAmelCase ) plt.clf() def __magic_name__ ( __lowerCAmelCase : Any , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Tuple , __lowerCAmelCase : Tuple , __lowerCAmelCase : Optional[Any]=None , __lowerCAmelCase : Tuple=None ) -> int: __lowerCamelCase = sorted(__lowerCAmelCase , key=lambda __lowerCAmelCase : na_probs[k] ) __lowerCamelCase = 0.0 __lowerCamelCase = 1.0 __lowerCamelCase = 0.0 __lowerCamelCase = [1.0] __lowerCamelCase = [0.0] __lowerCamelCase = 0.0 for i, qid in enumerate(__lowerCAmelCase ): if qid_to_has_ans[qid]: true_pos += scores[qid] __lowerCamelCase = true_pos / float(i + 1 ) __lowerCamelCase = true_pos / float(__lowerCAmelCase ) if i == len(__lowerCAmelCase ) - 1 or na_probs[qid] != na_probs[qid_list[i + 1]]: # i.e., if we can put a threshold after this point avg_prec += cur_p * (cur_r - recalls[-1]) precisions.append(__lowerCAmelCase ) recalls.append(__lowerCAmelCase ) if out_image: plot_pr_curve(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) return {"ap": 100.0 * avg_prec} def __magic_name__ ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : List[str] , __lowerCAmelCase : Tuple , __lowerCAmelCase : List[str] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : List[Any] ) -> List[Any]: if out_image_dir and not os.path.exists(__lowerCAmelCase ): os.makedirs(__lowerCAmelCase ) __lowerCamelCase = sum(1 for v in qid_to_has_ans.values() if v ) if num_true_pos == 0: return __lowerCamelCase = make_precision_recall_eval( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , out_image=os.path.join(__lowerCAmelCase , '''pr_exact.png''' ) , title='''Precision-Recall curve for Exact Match score''' , ) __lowerCamelCase = make_precision_recall_eval( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , out_image=os.path.join(__lowerCAmelCase , '''pr_f1.png''' ) , title='''Precision-Recall curve for F1 score''' , ) __lowerCamelCase = {k: float(__lowerCAmelCase ) for k, v in qid_to_has_ans.items()} __lowerCamelCase = make_precision_recall_eval( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , out_image=os.path.join(__lowerCAmelCase , '''pr_oracle.png''' ) , title='''Oracle Precision-Recall curve (binary task of HasAns vs. NoAns)''' , ) merge_eval(__lowerCAmelCase , __lowerCAmelCase , '''pr_exact''' ) merge_eval(__lowerCAmelCase , __lowerCAmelCase , '''pr_f1''' ) merge_eval(__lowerCAmelCase , __lowerCAmelCase , '''pr_oracle''' ) def __magic_name__ ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Any , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : int ) -> Optional[Any]: if not qid_list: return __lowerCamelCase = [na_probs[k] for k in qid_list] __lowerCamelCase = np.ones_like(__lowerCAmelCase ) / float(len(__lowerCAmelCase ) ) plt.hist(__lowerCAmelCase , weights=__lowerCAmelCase , bins=20 , range=(0.0, 1.0) ) plt.xlabel('''Model probability of no-answer''' ) plt.ylabel('''Proportion of dataset''' ) plt.title(f'''Histogram of no-answer probability: {name}''' ) plt.savefig(os.path.join(__lowerCAmelCase , f'''na_prob_hist_{name}.png''' ) ) plt.clf() def __magic_name__ ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : List[str] , __lowerCAmelCase : Union[str, Any] ) -> Optional[int]: __lowerCamelCase = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k] ) __lowerCamelCase = num_no_ans __lowerCamelCase = cur_score __lowerCamelCase = 0.0 __lowerCamelCase = sorted(__lowerCAmelCase , key=lambda __lowerCAmelCase : na_probs[k] ) for i, qid in enumerate(__lowerCAmelCase ): if qid not in scores: continue if qid_to_has_ans[qid]: __lowerCamelCase = scores[qid] else: if preds[qid]: __lowerCamelCase = -1 else: __lowerCamelCase = 0 cur_score += diff if cur_score > best_score: __lowerCamelCase = cur_score __lowerCamelCase = na_probs[qid] return 100.0 * best_score / len(__lowerCAmelCase ), best_thresh def __magic_name__ ( __lowerCAmelCase : Dict , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : int , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : int , __lowerCAmelCase : Optional[Any] ) -> int: __lowerCamelCase , __lowerCamelCase = find_best_thresh(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) __lowerCamelCase , __lowerCamelCase = find_best_thresh(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) __lowerCamelCase = best_exact __lowerCamelCase = exact_thresh __lowerCamelCase = best_fa __lowerCamelCase = fa_thresh def __magic_name__ ( ) -> Optional[int]: with open(OPTS.data_file ) as f: __lowerCamelCase = json.load(__lowerCAmelCase ) __lowerCamelCase = dataset_json['''data'''] with open(OPTS.pred_file ) as f: __lowerCamelCase = json.load(__lowerCAmelCase ) if OPTS.na_prob_file: with open(OPTS.na_prob_file ) as f: __lowerCamelCase = json.load(__lowerCAmelCase ) else: __lowerCamelCase = {k: 0.0 for k in preds} __lowerCamelCase = make_qid_to_has_ans(__lowerCAmelCase ) # maps qid to True/False __lowerCamelCase = [k for k, v in qid_to_has_ans.items() if v] __lowerCamelCase = [k for k, v in qid_to_has_ans.items() if not v] __lowerCamelCase , __lowerCamelCase = get_raw_scores(__lowerCAmelCase , __lowerCAmelCase ) __lowerCamelCase = apply_no_ans_threshold(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , OPTS.na_prob_thresh ) __lowerCamelCase = apply_no_ans_threshold(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , OPTS.na_prob_thresh ) __lowerCamelCase = make_eval_dict(__lowerCAmelCase , __lowerCAmelCase ) if has_ans_qids: __lowerCamelCase = make_eval_dict(__lowerCAmelCase , __lowerCAmelCase , qid_list=__lowerCAmelCase ) merge_eval(__lowerCAmelCase , __lowerCAmelCase , '''HasAns''' ) if no_ans_qids: __lowerCamelCase = make_eval_dict(__lowerCAmelCase , __lowerCAmelCase , qid_list=__lowerCAmelCase ) merge_eval(__lowerCAmelCase , __lowerCAmelCase , '''NoAns''' ) if OPTS.na_prob_file: find_all_best_thresh(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) if OPTS.na_prob_file and OPTS.out_image_dir: run_precision_recall_analysis(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , OPTS.out_image_dir ) histogram_na_prob(__lowerCAmelCase , __lowerCAmelCase , OPTS.out_image_dir , '''hasAns''' ) histogram_na_prob(__lowerCAmelCase , __lowerCAmelCase , OPTS.out_image_dir , '''noAns''' ) if OPTS.out_file: with open(OPTS.out_file , '''w''' ) as f: json.dump(__lowerCAmelCase , __lowerCAmelCase ) else: print(json.dumps(__lowerCAmelCase , indent=2 ) ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ : Any = parse_args() if OPTS.out_image_dir: import matplotlib matplotlib.use("Agg") import matplotlib.pyplot as plt main()
270
1
'''simple docstring''' UpperCAmelCase_ = { 'Pillow': 'Pillow', 'accelerate': 'accelerate>=0.11.0', 'compel': 'compel==0.1.8', 'black': 'black~=23.1', 'datasets': 'datasets', 'filelock': 'filelock', 'flax': 'flax>=0.4.1', 'hf-doc-builder': 'hf-doc-builder>=0.3.0', 'huggingface-hub': 'huggingface-hub>=0.13.2', 'requests-mock': 'requests-mock==1.10.0', 'importlib_metadata': 'importlib_metadata', 'invisible-watermark': 'invisible-watermark', 'isort': 'isort>=5.5.4', 'jax': 'jax>=0.2.8,!=0.3.2', 'jaxlib': 'jaxlib>=0.1.65', 'Jinja2': 'Jinja2', 'k-diffusion': 'k-diffusion>=0.0.12', 'torchsde': 'torchsde', 'note_seq': 'note_seq', 'librosa': 'librosa', 'numpy': 'numpy', 'omegaconf': 'omegaconf', 'parameterized': 'parameterized', 'protobuf': 'protobuf>=3.20.3,<4', 'pytest': 'pytest', 'pytest-timeout': 'pytest-timeout', 'pytest-xdist': 'pytest-xdist', 'ruff': 'ruff>=0.0.241', 'safetensors': 'safetensors', 'sentencepiece': 'sentencepiece>=0.1.91,!=0.1.92', 'scipy': 'scipy', 'onnx': 'onnx', 'regex': 'regex!=2019.12.17', 'requests': 'requests', 'tensorboard': 'tensorboard', 'torch': 'torch>=1.4', 'torchvision': 'torchvision', 'transformers': 'transformers>=4.25.1', 'urllib3': 'urllib3<=2.0.0', }
350
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { 'microsoft/cvt-13': 'https://huggingface.co/microsoft/cvt-13/resolve/main/config.json', # See all Cvt models at https://huggingface.co/models?filter=cvt } class lowerCAmelCase_ ( lowerCamelCase_ ): '''simple docstring''' lowerCAmelCase_ : List[str] = """cvt""" def __init__( self : List[Any] , _UpperCAmelCase : List[Any]=3 , _UpperCAmelCase : int=[7, 3, 3] , _UpperCAmelCase : Optional[Any]=[4, 2, 2] , _UpperCAmelCase : List[Any]=[2, 1, 1] , _UpperCAmelCase : Optional[int]=[64, 1_92, 3_84] , _UpperCAmelCase : Any=[1, 3, 6] , _UpperCAmelCase : Tuple=[1, 2, 10] , _UpperCAmelCase : Union[str, Any]=[4.0, 4.0, 4.0] , _UpperCAmelCase : Optional[int]=[0.0, 0.0, 0.0] , _UpperCAmelCase : Dict=[0.0, 0.0, 0.0] , _UpperCAmelCase : Dict=[0.0, 0.0, 0.1] , _UpperCAmelCase : Optional[int]=[True, True, True] , _UpperCAmelCase : Dict=[False, False, True] , _UpperCAmelCase : Dict=["dw_bn", "dw_bn", "dw_bn"] , _UpperCAmelCase : int=[3, 3, 3] , _UpperCAmelCase : Optional[int]=[1, 1, 1] , _UpperCAmelCase : List[Any]=[2, 2, 2] , _UpperCAmelCase : Union[str, Any]=[1, 1, 1] , _UpperCAmelCase : str=[1, 1, 1] , _UpperCAmelCase : Dict=0.02 , _UpperCAmelCase : Dict=1E-12 , **_UpperCAmelCase : Any , ): """simple docstring""" super().__init__(**_UpperCAmelCase ) UpperCAmelCase__ = num_channels UpperCAmelCase__ = patch_sizes UpperCAmelCase__ = patch_stride UpperCAmelCase__ = patch_padding UpperCAmelCase__ = embed_dim UpperCAmelCase__ = num_heads UpperCAmelCase__ = depth UpperCAmelCase__ = mlp_ratio UpperCAmelCase__ = attention_drop_rate UpperCAmelCase__ = drop_rate UpperCAmelCase__ = drop_path_rate UpperCAmelCase__ = qkv_bias UpperCAmelCase__ = cls_token UpperCAmelCase__ = qkv_projection_method UpperCAmelCase__ = kernel_qkv UpperCAmelCase__ = padding_kv UpperCAmelCase__ = stride_kv UpperCAmelCase__ = padding_q UpperCAmelCase__ = stride_q UpperCAmelCase__ = initializer_range UpperCAmelCase__ = layer_norm_eps
61
0
from operator import delitem, getitem, setitem import pytest from data_structures.hashing.hash_map import HashMap def UpperCAmelCase ( a_ ) -> Union[str, Any]: """simple docstring""" return getitem, k def UpperCAmelCase ( a_ , a_ ) -> Any: """simple docstring""" return setitem, k, v def UpperCAmelCase ( a_ ) -> Any: """simple docstring""" return delitem, k def UpperCAmelCase ( a_ , a_ , *a_ ) -> Any: """simple docstring""" try: return fun(a_ , *a_ ), None except Exception as e: return None, e SCREAMING_SNAKE_CASE :int = ( _set('key_a', 'val_a'), _set('key_b', 'val_b'), ) SCREAMING_SNAKE_CASE :int = [ _set('key_a', 'val_a'), _set('key_a', 'val_b'), ] SCREAMING_SNAKE_CASE :str = [ _set('key_a', 'val_a'), _set('key_b', 'val_b'), _del('key_a'), _del('key_b'), _set('key_a', 'val_a'), _del('key_a'), ] SCREAMING_SNAKE_CASE :List[str] = [ _get('key_a'), _del('key_a'), _set('key_a', 'val_a'), _del('key_a'), _del('key_a'), _get('key_a'), ] SCREAMING_SNAKE_CASE :str = [ *[_set(x, x) for x in range(5)], # guaranteed upsize ] SCREAMING_SNAKE_CASE :str = [ *[_set(x, x) for x in range(5)], # guaranteed upsize *[_del(x) for x in range(5)], _set('key_a', 'val_b'), ] @pytest.mark.parametrize( "operations" , ( pytest.param(_add_items , id="add items" ), pytest.param(_overwrite_items , id="overwrite items" ), pytest.param(_delete_items , id="delete items" ), pytest.param(_access_absent_items , id="access absent items" ), pytest.param(_add_with_resize_up , id="add with resize up" ), pytest.param(_add_with_resize_down , id="add with resize down" ), ) , ) def UpperCAmelCase ( a_ ) -> Any: """simple docstring""" __A = HashMap(initial_block_size=4 ) __A = {} for _, (fun, *args) in enumerate(a_ ): __A , __A = _run_operation(a_ , a_ , *a_ ) __A , __A = _run_operation(a_ , a_ , *a_ ) assert my_res == py_res assert str(a_ ) == str(a_ ) assert set(a_ ) == set(a_ ) assert len(a_ ) == len(a_ ) assert set(my.items() ) == set(py.items() ) def UpperCAmelCase ( ) -> List[str]: """simple docstring""" def is_public(a_ ) -> bool: return not name.startswith("_" ) __A = {name for name in dir({} ) if is_public(a_ )} __A = {name for name in dir(HashMap() ) if is_public(a_ )} assert dict_public_names > hash_public_names
15
def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" __A = [0] * len(a_ ) __A = [] __A = [1] * len(a_ ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(a_ ) ): if indegree[i] == 0: queue.append(a_ ) while queue: __A = queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: __A = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(a_ ) print(max(a_ ) ) # Adjacency list of Graph SCREAMING_SNAKE_CASE :List[Any] = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
15
1
'''simple docstring''' from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _a ( __lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : Optional[Any] = """ClapFeatureExtractor""" SCREAMING_SNAKE_CASE_ : Dict = ("""RobertaTokenizer""", """RobertaTokenizerFast""") def __init__( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> Any: super().__init__(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) def __call__( self ,_SCREAMING_SNAKE_CASE=None ,_SCREAMING_SNAKE_CASE=None ,_SCREAMING_SNAKE_CASE=None ,**_SCREAMING_SNAKE_CASE ) -> Optional[Any]: _snake_case = kwargs.pop("sampling_rate" ,_SCREAMING_SNAKE_CASE ) if text is None and audios is None: raise ValueError("You have to specify either text or audios. Both cannot be none." ) if text is not None: _snake_case = self.tokenizer(_SCREAMING_SNAKE_CASE ,return_tensors=_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) if audios is not None: _snake_case = self.feature_extractor( _SCREAMING_SNAKE_CASE ,sampling_rate=_SCREAMING_SNAKE_CASE ,return_tensors=_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) if text is not None and audios is not None: _snake_case = audio_features.input_features return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**_SCREAMING_SNAKE_CASE ) ,tensor_type=_SCREAMING_SNAKE_CASE ) def _lowercase ( self ,*_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) -> str: return self.tokenizer.batch_decode(*_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) def _lowercase ( self ,*_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) -> Union[str, Any]: return self.tokenizer.decode(*_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) @property def _lowercase ( self ) -> Union[str, Any]: _snake_case = self.tokenizer.model_input_names _snake_case = self.feature_extractor.model_input_names return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names ) )
142
'''simple docstring''' # Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from packaging import version from .. import __version__ from .constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD from .doc import ( add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, copy_func, replace_return_docstrings, ) from .generic import ( ContextManagers, ExplicitEnum, ModelOutput, PaddingStrategy, TensorType, add_model_info_to_auto_map, cached_property, can_return_loss, expand_dims, find_labels, flatten_dict, infer_framework, is_jax_tensor, is_numpy_array, is_tensor, is_tf_symbolic_tensor, is_tf_tensor, is_torch_device, is_torch_dtype, is_torch_tensor, reshape, squeeze, strtobool, tensor_size, to_numpy, to_py_obj, transpose, working_or_temp_dir, ) from .hub import ( CLOUDFRONT_DISTRIB_PREFIX, DISABLE_TELEMETRY, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, EntryNotFoundError, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, cached_file, default_cache_path, define_sagemaker_information, download_url, extract_commit_hash, get_cached_models, get_file_from_repo, get_full_repo_name, has_file, http_user_agent, is_offline_mode, is_remote_url, move_cache, send_example_telemetry, try_to_load_from_cache, ) from .import_utils import ( ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, TORCH_FX_REQUIRED_VERSION, USE_JAX, USE_TF, USE_TORCH, DummyObject, OptionalDependencyNotAvailable, _LazyModule, ccl_version, direct_transformers_import, get_torch_version, is_accelerate_available, is_apex_available, is_bitsandbytes_available, is_bsa_available, is_coloredlogs_available, is_cython_available, is_datasets_available, is_decord_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_jieba_available, is_jumanpp_available, is_kenlm_available, is_keras_nlp_available, is_librosa_available, is_natten_available, is_ninja_available, is_onnx_available, is_openai_available, is_optimum_available, is_pandas_available, is_peft_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytest_available, is_pytorch_quantization_available, is_rjieba_available, is_sacremoses_available, is_safetensors_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_sudachi_available, is_tensorflow_probability_available, is_tensorflow_text_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_bfaa_cpu_available, is_torch_bfaa_gpu_available, is_torch_compile_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_neuroncore_available, is_torch_tensorrt_fx_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_torchdistx_available, is_torchdynamo_available, is_torchvision_available, is_training_run_on_sagemaker, is_vision_available, requires_backends, torch_only_method, ) UpperCamelCase_ : int = '''pytorch_model.bin''' UpperCamelCase_ : str = '''pytorch_model.bin.index.json''' UpperCamelCase_ : int = '''adapter_config.json''' UpperCamelCase_ : str = '''adapter_model.bin''' UpperCamelCase_ : str = '''adapter_model.safetensors''' UpperCamelCase_ : List[Any] = '''tf_model.h5''' UpperCamelCase_ : Union[str, Any] = '''tf_model.h5.index.json''' UpperCamelCase_ : Tuple = '''model.ckpt''' UpperCamelCase_ : Union[str, Any] = '''flax_model.msgpack''' UpperCamelCase_ : Union[str, Any] = '''flax_model.msgpack.index.json''' UpperCamelCase_ : Dict = '''model.safetensors''' UpperCamelCase_ : List[Any] = '''model.safetensors.index.json''' UpperCamelCase_ : Tuple = '''config.json''' UpperCamelCase_ : List[str] = '''preprocessor_config.json''' UpperCamelCase_ : List[Any] = FEATURE_EXTRACTOR_NAME UpperCamelCase_ : Union[str, Any] = '''generation_config.json''' UpperCamelCase_ : str = '''modelcard.json''' UpperCamelCase_ : List[Any] = '''▁''' UpperCamelCase_ : Tuple = SENTENCEPIECE_UNDERLINE # Kept for backward compatibility UpperCamelCase_ : Any = [ [[0, 1, 0, 1], [1, 0, 0, 1]] ] * 2 # Needs to have 0s and 1s only since XLM uses it for langs too. UpperCamelCase_ : Tuple = [[7, 6, 0, 0, 1], [1, 2, 3, 0, 0], [0, 0, 0, 4, 5]] UpperCamelCase_ : str = [[1, 1, 1, 1, 1], [1, 1, 1, 0, 0], [0, 0, 0, 1, 1]] def __a ( _UpperCamelCase: Optional[Any] ) -> int: """simple docstring""" if version.parse(_UpperCamelCase ) < version.parse(_UpperCamelCase ): if "dev" in min_version: _snake_case = ( "This example requires a source install from HuggingFace Transformers (see " "`https://huggingface.co/docs/transformers/installation#install-from-source`)," ) else: _snake_case = F"""This example requires a minimum version of {min_version},""" error_message += F""" but the version found is {__version__}.\n""" raise ImportError( error_message + "Check out https://github.com/huggingface/transformers/tree/main/examples#important-note for the examples corresponding to other " "versions of HuggingFace Transformers." )
142
1
from __future__ import annotations def snake_case ( snake_case__ :list[list[int]]) -> int: # preprocessing the first row for i in range(1 , len(matrix[0])): matrix[0][i] += matrix[0][i - 1] # preprocessing the first column for i in range(1 , len(snake_case__)): matrix[i][0] += matrix[i - 1][0] # updating the path cost for current position for i in range(1 , len(snake_case__)): for j in range(1 , len(matrix[0])): matrix[i][j] += min(matrix[i - 1][j] , matrix[i][j - 1]) return matrix[-1][-1] if __name__ == "__main__": import doctest doctest.testmod()
180
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bert import BertTokenizer _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} _SCREAMING_SNAKE_CASE = { 'vocab_file': { 'bert-base-uncased': 'https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt', 'bert-large-uncased': 'https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt', 'bert-base-cased': 'https://huggingface.co/bert-base-cased/resolve/main/vocab.txt', 'bert-large-cased': 'https://huggingface.co/bert-large-cased/resolve/main/vocab.txt', 'bert-base-multilingual-uncased': ( 'https://huggingface.co/bert-base-multilingual-uncased/resolve/main/vocab.txt' ), 'bert-base-multilingual-cased': 'https://huggingface.co/bert-base-multilingual-cased/resolve/main/vocab.txt', 'bert-base-chinese': 'https://huggingface.co/bert-base-chinese/resolve/main/vocab.txt', 'bert-base-german-cased': 'https://huggingface.co/bert-base-german-cased/resolve/main/vocab.txt', 'bert-large-uncased-whole-word-masking': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/vocab.txt' ), 'bert-large-cased-whole-word-masking': ( 'https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/vocab.txt' ), 'bert-large-uncased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt' ), 'bert-large-cased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt' ), 'bert-base-cased-finetuned-mrpc': ( 'https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/vocab.txt' ), 'bert-base-german-dbmdz-cased': 'https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/vocab.txt', 'bert-base-german-dbmdz-uncased': ( 'https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/vocab.txt' ), 'TurkuNLP/bert-base-finnish-cased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/vocab.txt' ), 'TurkuNLP/bert-base-finnish-uncased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/vocab.txt' ), 'wietsedv/bert-base-dutch-cased': ( 'https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'bert-base-uncased': 'https://huggingface.co/bert-base-uncased/resolve/main/tokenizer.json', 'bert-large-uncased': 'https://huggingface.co/bert-large-uncased/resolve/main/tokenizer.json', 'bert-base-cased': 'https://huggingface.co/bert-base-cased/resolve/main/tokenizer.json', 'bert-large-cased': 'https://huggingface.co/bert-large-cased/resolve/main/tokenizer.json', 'bert-base-multilingual-uncased': ( 'https://huggingface.co/bert-base-multilingual-uncased/resolve/main/tokenizer.json' ), 'bert-base-multilingual-cased': ( 'https://huggingface.co/bert-base-multilingual-cased/resolve/main/tokenizer.json' ), 'bert-base-chinese': 'https://huggingface.co/bert-base-chinese/resolve/main/tokenizer.json', 'bert-base-german-cased': 'https://huggingface.co/bert-base-german-cased/resolve/main/tokenizer.json', 'bert-large-uncased-whole-word-masking': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/tokenizer.json' ), 'bert-large-cased-whole-word-masking': ( 'https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/tokenizer.json' ), 'bert-large-uncased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json' ), 'bert-large-cased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json' ), 'bert-base-cased-finetuned-mrpc': ( 'https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/tokenizer.json' ), 'bert-base-german-dbmdz-cased': ( 'https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/tokenizer.json' ), 'bert-base-german-dbmdz-uncased': ( 'https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/tokenizer.json' ), 'TurkuNLP/bert-base-finnish-cased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/tokenizer.json' ), 'TurkuNLP/bert-base-finnish-uncased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/tokenizer.json' ), 'wietsedv/bert-base-dutch-cased': ( 'https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/tokenizer.json' ), }, } _SCREAMING_SNAKE_CASE = { 'bert-base-uncased': 512, 'bert-large-uncased': 512, 'bert-base-cased': 512, 'bert-large-cased': 512, 'bert-base-multilingual-uncased': 512, 'bert-base-multilingual-cased': 512, 'bert-base-chinese': 512, 'bert-base-german-cased': 512, 'bert-large-uncased-whole-word-masking': 512, 'bert-large-cased-whole-word-masking': 512, 'bert-large-uncased-whole-word-masking-finetuned-squad': 512, 'bert-large-cased-whole-word-masking-finetuned-squad': 512, 'bert-base-cased-finetuned-mrpc': 512, 'bert-base-german-dbmdz-cased': 512, 'bert-base-german-dbmdz-uncased': 512, 'TurkuNLP/bert-base-finnish-cased-v1': 512, 'TurkuNLP/bert-base-finnish-uncased-v1': 512, 'wietsedv/bert-base-dutch-cased': 512, } _SCREAMING_SNAKE_CASE = { 'bert-base-uncased': {'do_lower_case': True}, 'bert-large-uncased': {'do_lower_case': True}, 'bert-base-cased': {'do_lower_case': False}, 'bert-large-cased': {'do_lower_case': False}, 'bert-base-multilingual-uncased': {'do_lower_case': True}, 'bert-base-multilingual-cased': {'do_lower_case': False}, 'bert-base-chinese': {'do_lower_case': False}, 'bert-base-german-cased': {'do_lower_case': False}, 'bert-large-uncased-whole-word-masking': {'do_lower_case': True}, 'bert-large-cased-whole-word-masking': {'do_lower_case': False}, 'bert-large-uncased-whole-word-masking-finetuned-squad': {'do_lower_case': True}, 'bert-large-cased-whole-word-masking-finetuned-squad': {'do_lower_case': False}, 'bert-base-cased-finetuned-mrpc': {'do_lower_case': False}, 'bert-base-german-dbmdz-cased': {'do_lower_case': False}, 'bert-base-german-dbmdz-uncased': {'do_lower_case': True}, 'TurkuNLP/bert-base-finnish-cased-v1': {'do_lower_case': False}, 'TurkuNLP/bert-base-finnish-uncased-v1': {'do_lower_case': True}, 'wietsedv/bert-base-dutch-cased': {'do_lower_case': False}, } class a ( __lowerCAmelCase ): """simple docstring""" lowerCamelCase :Tuple = VOCAB_FILES_NAMES lowerCamelCase :Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase :Dict = PRETRAINED_INIT_CONFIGURATION lowerCamelCase :Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase :Optional[Any] = BertTokenizer def __init__( self , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=True , lowerCAmelCase_="[UNK]" , lowerCAmelCase_="[SEP]" , lowerCAmelCase_="[PAD]" , lowerCAmelCase_="[CLS]" , lowerCAmelCase_="[MASK]" , lowerCAmelCase_=True , lowerCAmelCase_=None , **lowerCAmelCase_ , ) -> List[str]: super().__init__( lowerCAmelCase_ , tokenizer_file=lowerCAmelCase_ , do_lower_case=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , sep_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , cls_token=lowerCAmelCase_ , mask_token=lowerCAmelCase_ , tokenize_chinese_chars=lowerCAmelCase_ , strip_accents=lowerCAmelCase_ , **lowerCAmelCase_ , ) _A = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , lowerCAmelCase_ ) != do_lower_case or normalizer_state.get("""strip_accents""" , lowerCAmelCase_ ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , lowerCAmelCase_ ) != tokenize_chinese_chars ): _A = getattr(lowerCAmelCase_ , normalizer_state.pop("""type""" ) ) _A = do_lower_case _A = strip_accents _A = tokenize_chinese_chars _A = normalizer_class(**lowerCAmelCase_ ) _A = do_lower_case def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_=None ) -> List[str]: _A = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None ) -> List[int]: _A = [self.sep_token_id] _A = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None ) -> Tuple[str]: _A = self._tokenizer.model.save(lowerCAmelCase_ , name=lowerCAmelCase_ ) return tuple(lowerCAmelCase_ )
180
1
def UpperCamelCase ( _A ): """simple docstring""" return " ".join( """""".join(word[::-1] ) if len(_A ) > 4 else word for word in sentence.split() ) if __name__ == "__main__": import doctest doctest.testmod() print(reverse_long_words("Hey wollef sroirraw"))
138
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import OwlViTImageProcessor, OwlViTProcessor @require_vision class snake_case__ ( unittest.TestCase ): def __magic_name__ ( self ) -> int: __magic_name__ : List[str] = tempfile.mkdtemp() # fmt: off __magic_name__ : Union[str, Any] = ["""""", """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """lo""", """l</w>""", """w</w>""", """r</w>""", """t</w>""", """low</w>""", """er</w>""", """lowest</w>""", """newer</w>""", """wider""", """<unk>""", """<|startoftext|>""", """<|endoftext|>"""] # fmt: on __magic_name__ : Any = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__ ) ) ) ) __magic_name__ : int = ["""#version: 0.2""", """l o""", """lo w</w>""", """e r</w>""", """"""] __magic_name__ : Any = {"""unk_token""": """<unk>"""} __magic_name__ : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) __magic_name__ : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(lowerCAmelCase__ ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(lowerCAmelCase__ ) ) __magic_name__ : int = { """do_resize""": True, """size""": 20, """do_center_crop""": True, """crop_size""": 18, """do_normalize""": True, """image_mean""": [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3], """image_std""": [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1], } __magic_name__ : List[str] = os.path.join(self.tmpdirname , lowerCAmelCase__ ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(lowerCAmelCase__ , lowerCAmelCase__ ) def __magic_name__ ( self , **lowerCAmelCase__ ) -> List[str]: return CLIPTokenizer.from_pretrained(self.tmpdirname , pad_token="""!""" , **lowerCAmelCase__ ) def __magic_name__ ( self , **lowerCAmelCase__ ) -> Any: return CLIPTokenizerFast.from_pretrained(self.tmpdirname , pad_token="""!""" , **lowerCAmelCase__ ) def __magic_name__ ( self , **lowerCAmelCase__ ) -> Optional[Any]: return OwlViTImageProcessor.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ) def __magic_name__ ( self ) -> int: shutil.rmtree(self.tmpdirname ) def __magic_name__ ( self ) -> int: __magic_name__ : str = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] __magic_name__ : Any = [Image.fromarray(np.moveaxis(lowerCAmelCase__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def __magic_name__ ( self ) -> Union[str, Any]: __magic_name__ : Any = self.get_tokenizer() __magic_name__ : str = self.get_rust_tokenizer() __magic_name__ : Tuple = self.get_image_processor() __magic_name__ : List[str] = OwlViTProcessor(tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ ) processor_slow.save_pretrained(self.tmpdirname ) __magic_name__ : Optional[int] = OwlViTProcessor.from_pretrained(self.tmpdirname , use_fast=lowerCAmelCase__ ) __magic_name__ : int = OwlViTProcessor(tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ ) processor_fast.save_pretrained(self.tmpdirname ) __magic_name__ : List[Any] = OwlViTProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , lowerCAmelCase__ ) self.assertIsInstance(processor_fast.tokenizer , lowerCAmelCase__ ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , lowerCAmelCase__ ) self.assertIsInstance(processor_fast.image_processor , lowerCAmelCase__ ) def __magic_name__ ( self ) -> Optional[int]: __magic_name__ : Optional[Any] = OwlViTProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __magic_name__ : str = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) __magic_name__ : Any = self.get_image_processor(do_normalize=lowerCAmelCase__ ) __magic_name__ : Tuple = OwlViTProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=lowerCAmelCase__ ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , lowerCAmelCase__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , lowerCAmelCase__ ) def __magic_name__ ( self ) -> Dict: __magic_name__ : int = self.get_image_processor() __magic_name__ : int = self.get_tokenizer() __magic_name__ : Union[str, Any] = OwlViTProcessor(tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ ) __magic_name__ : Dict = self.prepare_image_inputs() __magic_name__ : Any = image_processor(lowerCAmelCase__ , return_tensors="""np""" ) __magic_name__ : str = processor(images=lowerCAmelCase__ , return_tensors="""np""" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __magic_name__ ( self ) -> Tuple: __magic_name__ : Union[str, Any] = self.get_image_processor() __magic_name__ : int = self.get_tokenizer() __magic_name__ : int = OwlViTProcessor(tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ ) __magic_name__ : Optional[int] = """lower newer""" __magic_name__ : Tuple = processor(text=lowerCAmelCase__ , return_tensors="""np""" ) __magic_name__ : Optional[int] = tokenizer(lowerCAmelCase__ , return_tensors="""np""" ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key][0].tolist() , encoded_processor[key][0].tolist() ) def __magic_name__ ( self ) -> Tuple: __magic_name__ : Tuple = self.get_image_processor() __magic_name__ : Union[str, Any] = self.get_tokenizer() __magic_name__ : List[str] = OwlViTProcessor(tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ ) __magic_name__ : Any = """lower newer""" __magic_name__ : Union[str, Any] = self.prepare_image_inputs() __magic_name__ : int = processor(text=lowerCAmelCase__ , images=lowerCAmelCase__ ) self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(lowerCAmelCase__ ): processor() def __magic_name__ ( self ) -> Optional[Any]: __magic_name__ : Dict = """google/owlvit-base-patch32""" __magic_name__ : int = OwlViTProcessor.from_pretrained(lowerCAmelCase__ ) __magic_name__ : List[Any] = ["""cat""", """nasa badge"""] __magic_name__ : Any = processor(text=lowerCAmelCase__ ) __magic_name__ : Dict = 16 self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """attention_mask"""] ) self.assertEqual(inputs["""input_ids"""].shape , (2, seq_length) ) # test if it raises when no input is passed with pytest.raises(lowerCAmelCase__ ): processor() def __magic_name__ ( self ) -> List[Any]: __magic_name__ : List[str] = """google/owlvit-base-patch32""" __magic_name__ : Optional[Any] = OwlViTProcessor.from_pretrained(lowerCAmelCase__ ) __magic_name__ : Tuple = [["""cat""", """nasa badge"""], ["""person"""]] __magic_name__ : Tuple = processor(text=lowerCAmelCase__ ) __magic_name__ : str = 16 __magic_name__ : str = len(lowerCAmelCase__ ) __magic_name__ : int = max([len(lowerCAmelCase__ ) for texts in input_texts] ) self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """attention_mask"""] ) self.assertEqual(inputs["""input_ids"""].shape , (batch_size * num_max_text_queries, seq_length) ) # test if it raises when no input is passed with pytest.raises(lowerCAmelCase__ ): processor() def __magic_name__ ( self ) -> Any: __magic_name__ : Optional[int] = """google/owlvit-base-patch32""" __magic_name__ : Any = OwlViTProcessor.from_pretrained(lowerCAmelCase__ ) __magic_name__ : str = ["""cat""", """nasa badge"""] __magic_name__ : List[str] = processor(text=lowerCAmelCase__ ) __magic_name__ : List[Any] = 16 __magic_name__ : Any = inputs["""input_ids"""] __magic_name__ : Optional[Any] = [ [4_94_06, 23_68, 4_94_07, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [4_94_06, 68_41, 1_13_01, 4_94_07, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """attention_mask"""] ) self.assertEqual(inputs["""input_ids"""].shape , (2, seq_length) ) self.assertListEqual(list(input_ids[0] ) , predicted_ids[0] ) self.assertListEqual(list(input_ids[1] ) , predicted_ids[1] ) def __magic_name__ ( self ) -> Tuple: __magic_name__ : List[str] = self.get_image_processor() __magic_name__ : Dict = self.get_tokenizer() __magic_name__ : Tuple = OwlViTProcessor(tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ ) __magic_name__ : Tuple = self.prepare_image_inputs() __magic_name__ : List[Any] = self.prepare_image_inputs() __magic_name__ : List[str] = processor(images=lowerCAmelCase__ , query_images=lowerCAmelCase__ ) self.assertListEqual(list(inputs.keys() ) , ["""query_pixel_values""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(lowerCAmelCase__ ): processor() def __magic_name__ ( self ) -> Any: __magic_name__ : Optional[Any] = self.get_image_processor() __magic_name__ : List[Any] = self.get_tokenizer() __magic_name__ : Tuple = OwlViTProcessor(tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ ) __magic_name__ : Union[str, Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __magic_name__ : Optional[Any] = processor.batch_decode(lowerCAmelCase__ ) __magic_name__ : Optional[int] = tokenizer.batch_decode(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ )
138
1
'''simple docstring''' def UpperCAmelCase_ ( __lowerCamelCase : Any ): if n == 1 or not isinstance(a__ ,a__ ): return 0 elif n == 2: return 1 else: lowercase_ :List[Any] = [0, 1] for i in range(2 ,n + 1 ): sequence.append(sequence[i - 1] + sequence[i - 2] ) return sequence[n] def UpperCAmelCase_ ( __lowerCamelCase : List[Any] ): lowercase_ :Any = 0 lowercase_ :str = 2 while digits < n: index += 1 lowercase_ :Any = len(str(fibonacci(a__ ) ) ) return index def UpperCAmelCase_ ( __lowerCamelCase : Union[str, Any] = 10_00 ): return fibonacci_digits_index(a__ ) if __name__ == "__main__": print(solution(int(str(input()).strip())))
223
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING a__ : int = logging.get_logger(__name__) a__ : Optional[Any] = { '''SenseTime/deformable-detr''': '''https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json''', # See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr } class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = 'deformable_detr' __SCREAMING_SNAKE_CASE : Union[str, Any] = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self , _lowerCamelCase=True , _lowerCamelCase=None , _lowerCamelCase=3 , _lowerCamelCase=300 , _lowerCamelCase=1024 , _lowerCamelCase=6 , _lowerCamelCase=1024 , _lowerCamelCase=8 , _lowerCamelCase=6 , _lowerCamelCase=1024 , _lowerCamelCase=8 , _lowerCamelCase=0.0 , _lowerCamelCase=True , _lowerCamelCase="relu" , _lowerCamelCase=256 , _lowerCamelCase=0.1 , _lowerCamelCase=0.0 , _lowerCamelCase=0.0 , _lowerCamelCase=0.0_2 , _lowerCamelCase=1.0 , _lowerCamelCase=True , _lowerCamelCase=False , _lowerCamelCase="sine" , _lowerCamelCase="resnet50" , _lowerCamelCase=True , _lowerCamelCase=False , _lowerCamelCase=4 , _lowerCamelCase=4 , _lowerCamelCase=4 , _lowerCamelCase=False , _lowerCamelCase=300 , _lowerCamelCase=False , _lowerCamelCase=1 , _lowerCamelCase=5 , _lowerCamelCase=2 , _lowerCamelCase=1 , _lowerCamelCase=1 , _lowerCamelCase=5 , _lowerCamelCase=2 , _lowerCamelCase=0.1 , _lowerCamelCase=0.2_5 , _lowerCamelCase=False , **_lowerCamelCase , ) ->Optional[Any]: if backbone_config is not None and use_timm_backbone: raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''' ) if not use_timm_backbone: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) SCREAMING_SNAKE_CASE : Dict = CONFIG_MAPPING['''resnet'''](out_features=['''stage4'''] ) elif isinstance(_lowerCamelCase , _lowerCamelCase ): SCREAMING_SNAKE_CASE : List[Any] = backbone_config.get('''model_type''' ) SCREAMING_SNAKE_CASE : Optional[Any] = CONFIG_MAPPING[backbone_model_type] SCREAMING_SNAKE_CASE : int = config_class.from_dict(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = use_timm_backbone SCREAMING_SNAKE_CASE : Optional[int] = backbone_config SCREAMING_SNAKE_CASE : Union[str, Any] = num_channels SCREAMING_SNAKE_CASE : Optional[Any] = num_queries SCREAMING_SNAKE_CASE : Optional[int] = max_position_embeddings SCREAMING_SNAKE_CASE : Optional[int] = d_model SCREAMING_SNAKE_CASE : str = encoder_ffn_dim SCREAMING_SNAKE_CASE : str = encoder_layers SCREAMING_SNAKE_CASE : str = encoder_attention_heads SCREAMING_SNAKE_CASE : Optional[int] = decoder_ffn_dim SCREAMING_SNAKE_CASE : int = decoder_layers SCREAMING_SNAKE_CASE : Union[str, Any] = decoder_attention_heads SCREAMING_SNAKE_CASE : List[str] = dropout SCREAMING_SNAKE_CASE : Optional[int] = attention_dropout SCREAMING_SNAKE_CASE : str = activation_dropout SCREAMING_SNAKE_CASE : Optional[int] = activation_function SCREAMING_SNAKE_CASE : Optional[int] = init_std SCREAMING_SNAKE_CASE : List[str] = init_xavier_std SCREAMING_SNAKE_CASE : Optional[Any] = encoder_layerdrop SCREAMING_SNAKE_CASE : Union[str, Any] = auxiliary_loss SCREAMING_SNAKE_CASE : List[Any] = position_embedding_type SCREAMING_SNAKE_CASE : str = backbone SCREAMING_SNAKE_CASE : Dict = use_pretrained_backbone SCREAMING_SNAKE_CASE : Dict = dilation # deformable attributes SCREAMING_SNAKE_CASE : str = num_feature_levels SCREAMING_SNAKE_CASE : Optional[Any] = encoder_n_points SCREAMING_SNAKE_CASE : Any = decoder_n_points SCREAMING_SNAKE_CASE : str = two_stage SCREAMING_SNAKE_CASE : List[str] = two_stage_num_proposals SCREAMING_SNAKE_CASE : Dict = with_box_refine if two_stage is True and with_box_refine is False: raise ValueError('''If two_stage is True, with_box_refine must be True.''' ) # Hungarian matcher SCREAMING_SNAKE_CASE : int = class_cost SCREAMING_SNAKE_CASE : Union[str, Any] = bbox_cost SCREAMING_SNAKE_CASE : Optional[int] = giou_cost # Loss coefficients SCREAMING_SNAKE_CASE : Dict = mask_loss_coefficient SCREAMING_SNAKE_CASE : Union[str, Any] = dice_loss_coefficient SCREAMING_SNAKE_CASE : str = bbox_loss_coefficient SCREAMING_SNAKE_CASE : Tuple = giou_loss_coefficient SCREAMING_SNAKE_CASE : Optional[int] = eos_coefficient SCREAMING_SNAKE_CASE : Tuple = focal_alpha SCREAMING_SNAKE_CASE : Optional[int] = disable_custom_kernels super().__init__(is_encoder_decoder=_lowerCamelCase , **_lowerCamelCase ) @property def __lowerCAmelCase ( self ) ->int: return self.encoder_attention_heads @property def __lowerCAmelCase ( self ) ->int: return self.d_model def __lowerCAmelCase ( self ) ->Any: SCREAMING_SNAKE_CASE : str = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: SCREAMING_SNAKE_CASE : Optional[int] = self.backbone_config.to_dict() SCREAMING_SNAKE_CASE : Any = self.__class__.model_type return output
313
0
import re from filelock import FileLock try: import nltk a_ = True except (ImportError, ModuleNotFoundError): a_ = False if NLTK_AVAILABLE: with FileLock(""".lock""") as lock: nltk.download("""punkt""", quiet=True) def __lowercase ( snake_case_ : str ) ->Tuple: '''simple docstring''' re.sub('''<n>''' ,'''''' ,lowerCamelCase__ ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(lowerCamelCase__ ) )
350
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { """asapp/sew-d-tiny-100k""": """https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json""", # See all SEW-D models at https://huggingface.co/models?filter=sew-d } class __snake_case ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = """sew-d""" def __init__( self , __lowerCamelCase=32 , __lowerCamelCase=768 , __lowerCamelCase=12 , __lowerCamelCase=12 , __lowerCamelCase=3072 , __lowerCamelCase=2 , __lowerCamelCase=512 , __lowerCamelCase=256 , __lowerCamelCase=True , __lowerCamelCase=True , __lowerCamelCase=("p2c", "c2p") , __lowerCamelCase="layer_norm" , __lowerCamelCase="gelu_python" , __lowerCamelCase=0.1 , __lowerCamelCase=0.1 , __lowerCamelCase=0.1 , __lowerCamelCase=0.0 , __lowerCamelCase=0.1 , __lowerCamelCase=0.0_2 , __lowerCamelCase=1e-7 , __lowerCamelCase=1e-5 , __lowerCamelCase="group" , __lowerCamelCase="gelu" , __lowerCamelCase=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , __lowerCamelCase=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , __lowerCamelCase=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , __lowerCamelCase=False , __lowerCamelCase=128 , __lowerCamelCase=16 , __lowerCamelCase=True , __lowerCamelCase=0.0_5 , __lowerCamelCase=10 , __lowerCamelCase=2 , __lowerCamelCase=0.0 , __lowerCamelCase=10 , __lowerCamelCase=0 , __lowerCamelCase="mean" , __lowerCamelCase=False , __lowerCamelCase=False , __lowerCamelCase=256 , __lowerCamelCase=0 , __lowerCamelCase=1 , __lowerCamelCase=2 , **__lowerCamelCase , ): '''simple docstring''' super().__init__(**__lowerCamelCase , pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase ) __A : str = hidden_size __A : List[Any] = feat_extract_norm __A : Tuple = feat_extract_activation __A : Dict = list(__lowerCamelCase ) __A : int = list(__lowerCamelCase ) __A : List[Any] = list(__lowerCamelCase ) __A : Any = conv_bias __A : List[Any] = num_conv_pos_embeddings __A : Any = num_conv_pos_embedding_groups __A : Optional[Any] = len(self.conv_dim ) __A : int = num_hidden_layers __A : Union[str, Any] = intermediate_size __A : Union[str, Any] = squeeze_factor __A : int = max_position_embeddings __A : Tuple = position_buckets __A : Tuple = share_att_key __A : List[str] = relative_attention __A : Optional[Any] = norm_rel_ebd __A : Dict = list(__lowerCamelCase ) __A : str = hidden_act __A : List[str] = num_attention_heads __A : Union[str, Any] = hidden_dropout __A : Optional[int] = attention_dropout __A : Optional[Any] = activation_dropout __A : List[str] = feat_proj_dropout __A : str = final_dropout __A : Tuple = layer_norm_eps __A : int = feature_layer_norm_eps __A : Optional[int] = initializer_range __A : Dict = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect.''' '''It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,''' F"""but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)""" F"""= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __A : int = apply_spec_augment __A : Any = mask_time_prob __A : Optional[int] = mask_time_length __A : Any = mask_time_min_masks __A : int = mask_feature_prob __A : Tuple = mask_feature_length __A : Dict = mask_feature_min_masks # ctc loss __A : Tuple = ctc_loss_reduction __A : Union[str, Any] = ctc_zero_infinity # sequence classification __A : Tuple = use_weighted_layer_sum __A : List[str] = classifier_proj_size @property def UpperCamelCase__( self ): '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1 )
291
0
'''simple docstring''' import os from datetime import datetime as dt from github import Github lowercase : List[str] = [ "good first issue", "good second issue", "good difficult issue", "enhancement", "new pipeline/model", "new scheduler", "wip", ] def SCREAMING_SNAKE_CASE__ ( ) -> Tuple: _snake_case = Github(os.environ['GITHUB_TOKEN'] ) _snake_case = g.get_repo('huggingface/diffusers' ) _snake_case = repo.get_issues(state='open' ) for issue in open_issues: _snake_case = sorted(issue.get_comments() , key=lambda __A : i.created_at , reverse=__A ) _snake_case = comments[0] if len(__A ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Closes the issue after 7 days of inactivity since the Stalebot notification. issue.edit(state='closed' ) elif ( "stale" in issue.get_labels() and last_comment is not None and last_comment.user.login != "github-actions[bot]" ): # Opens the issue if someone other than Stalebot commented. issue.edit(state='open' ) issue.remove_from_labels('stale' ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Post a Stalebot notification after 23 days of inactivity. issue.create_comment( 'This issue has been automatically marked as stale because it has not had ' 'recent activity. If you think this still needs to be addressed ' 'please comment on this thread.\n\nPlease note that issues that do not follow the ' '[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) ' 'are likely to be ignored.' ) issue.add_to_labels('stale' ) if __name__ == "__main__": main()
42
"""simple docstring""" import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() _a = logging.get_logger(__name__) def __a ( __lowerCamelCase ): UpperCAmelCase_ : Optional[Any] = SwinConfig.from_pretrained( "microsoft/swin-tiny-patch4-window7-224", out_features=["stage1", "stage2", "stage3", "stage4"] ) UpperCAmelCase_ : Dict = MaskFormerConfig(backbone_config=__lowerCamelCase ) UpperCAmelCase_ : int = "huggingface/label-files" if "ade20k-full" in model_name: # this should be ok UpperCAmelCase_ : Dict = 847 UpperCAmelCase_ : str = "maskformer-ade20k-full-id2label.json" elif "ade" in model_name: # this should be ok UpperCAmelCase_ : Tuple = 150 UpperCAmelCase_ : int = "ade20k-id2label.json" elif "coco-stuff" in model_name: # this should be ok UpperCAmelCase_ : str = 171 UpperCAmelCase_ : Optional[int] = "maskformer-coco-stuff-id2label.json" elif "coco" in model_name: # TODO UpperCAmelCase_ : int = 133 UpperCAmelCase_ : Tuple = "coco-panoptic-id2label.json" elif "cityscapes" in model_name: # this should be ok UpperCAmelCase_ : List[Any] = 19 UpperCAmelCase_ : Optional[int] = "cityscapes-id2label.json" elif "vistas" in model_name: # this should be ok UpperCAmelCase_ : Any = 65 UpperCAmelCase_ : Union[str, Any] = "mapillary-vistas-id2label.json" UpperCAmelCase_ : Any = json.load(open(hf_hub_download(__lowerCamelCase, __lowerCamelCase, repo_type="dataset" ), "r" ) ) UpperCAmelCase_ : int = {int(__lowerCamelCase ): v for k, v in idalabel.items()} return config def __a ( __lowerCamelCase ): UpperCAmelCase_ : Dict = [] # stem # fmt: off rename_keys.append(("backbone.patch_embed.proj.weight", "model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight") ) rename_keys.append(("backbone.patch_embed.proj.bias", "model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias") ) rename_keys.append(("backbone.patch_embed.norm.weight", "model.pixel_level_module.encoder.model.embeddings.norm.weight") ) rename_keys.append(("backbone.patch_embed.norm.bias", "model.pixel_level_module.encoder.model.embeddings.norm.bias") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.norm1.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.norm1.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.attn.relative_position_index""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.attn.proj.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.attn.proj.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.norm2.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.norm2.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.mlp.fc1.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.mlp.fc1.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.mlp.fc2.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.mlp.fc2.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias""") ) if i < 3: rename_keys.append((f"""backbone.layers.{i}.downsample.reduction.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight""") ) rename_keys.append((f"""backbone.layers.{i}.downsample.norm.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight""") ) rename_keys.append((f"""backbone.layers.{i}.downsample.norm.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias""") ) rename_keys.append((f"""backbone.norm{i}.weight""", f"""model.pixel_level_module.encoder.hidden_states_norms.{i}.weight""") ) rename_keys.append((f"""backbone.norm{i}.bias""", f"""model.pixel_level_module.encoder.hidden_states_norms.{i}.bias""") ) # FPN rename_keys.append(("sem_seg_head.layer_4.weight", "model.pixel_level_module.decoder.fpn.stem.0.weight") ) rename_keys.append(("sem_seg_head.layer_4.norm.weight", "model.pixel_level_module.decoder.fpn.stem.1.weight") ) rename_keys.append(("sem_seg_head.layer_4.norm.bias", "model.pixel_level_module.decoder.fpn.stem.1.bias") ) for source_index, target_index in zip(range(3, 0, -1 ), range(0, 3 ) ): rename_keys.append((f"""sem_seg_head.adapter_{source_index}.weight""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight""") ) rename_keys.append((f"""sem_seg_head.adapter_{source_index}.norm.weight""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight""") ) rename_keys.append((f"""sem_seg_head.adapter_{source_index}.norm.bias""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias""") ) rename_keys.append((f"""sem_seg_head.layer_{source_index}.weight""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight""") ) rename_keys.append((f"""sem_seg_head.layer_{source_index}.norm.weight""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight""") ) rename_keys.append((f"""sem_seg_head.layer_{source_index}.norm.bias""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias""") ) rename_keys.append(("sem_seg_head.mask_features.weight", "model.pixel_level_module.decoder.mask_projection.weight") ) rename_keys.append(("sem_seg_head.mask_features.bias", "model.pixel_level_module.decoder.mask_projection.bias") ) # Transformer decoder for idx in range(config.decoder_config.decoder_layers ): # self-attention out projection rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight""", f"""model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias""", f"""model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias""") ) # cross-attention out projection rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight""", f"""model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias""", f"""model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias""") ) # MLP 1 rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight""", f"""model.transformer_module.decoder.layers.{idx}.fc1.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias""", f"""model.transformer_module.decoder.layers.{idx}.fc1.bias""") ) # MLP 2 rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight""", f"""model.transformer_module.decoder.layers.{idx}.fc2.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias""", f"""model.transformer_module.decoder.layers.{idx}.fc2.bias""") ) # layernorm 1 (self-attention layernorm) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight""", f"""model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias""", f"""model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias""") ) # layernorm 2 (cross-attention layernorm) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight""", f"""model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias""", f"""model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias""") ) # layernorm 3 (final layernorm) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight""", f"""model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias""", f"""model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias""") ) rename_keys.append(("sem_seg_head.predictor.transformer.decoder.norm.weight", "model.transformer_module.decoder.layernorm.weight") ) rename_keys.append(("sem_seg_head.predictor.transformer.decoder.norm.bias", "model.transformer_module.decoder.layernorm.bias") ) # heads on top rename_keys.append(("sem_seg_head.predictor.query_embed.weight", "model.transformer_module.queries_embedder.weight") ) rename_keys.append(("sem_seg_head.predictor.input_proj.weight", "model.transformer_module.input_projection.weight") ) rename_keys.append(("sem_seg_head.predictor.input_proj.bias", "model.transformer_module.input_projection.bias") ) rename_keys.append(("sem_seg_head.predictor.class_embed.weight", "class_predictor.weight") ) rename_keys.append(("sem_seg_head.predictor.class_embed.bias", "class_predictor.bias") ) for i in range(3 ): rename_keys.append((f"""sem_seg_head.predictor.mask_embed.layers.{i}.weight""", f"""mask_embedder.{i}.0.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.mask_embed.layers.{i}.bias""", f"""mask_embedder.{i}.0.bias""") ) # fmt: on return rename_keys def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : Union[str, Any] = dct.pop(__lowerCamelCase ) UpperCAmelCase_ : str = val def __a ( __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : int = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): UpperCAmelCase_ : List[Any] = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) UpperCAmelCase_ : Tuple = state_dict.pop(f"""backbone.layers.{i}.blocks.{j}.attn.qkv.weight""" ) UpperCAmelCase_ : Optional[int] = state_dict.pop(f"""backbone.layers.{i}.blocks.{j}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase_ : Tuple = in_proj_weight[:dim, :] UpperCAmelCase_ : List[Any] = in_proj_bias[: dim] UpperCAmelCase_ : Any = in_proj_weight[ dim : dim * 2, : ] UpperCAmelCase_ : Optional[int] = in_proj_bias[ dim : dim * 2 ] UpperCAmelCase_ : Tuple = in_proj_weight[ -dim :, : ] UpperCAmelCase_ : Tuple = in_proj_bias[-dim :] # fmt: on def __a ( __lowerCamelCase, __lowerCamelCase ): # fmt: off UpperCAmelCase_ : Dict = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers ): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) UpperCAmelCase_ : int = state_dict.pop(f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight""" ) UpperCAmelCase_ : int = state_dict.pop(f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase_ : Any = in_proj_weight[: hidden_size, :] UpperCAmelCase_ : int = in_proj_bias[:config.hidden_size] UpperCAmelCase_ : Any = in_proj_weight[hidden_size : hidden_size * 2, :] UpperCAmelCase_ : List[Any] = in_proj_bias[hidden_size : hidden_size * 2] UpperCAmelCase_ : Dict = in_proj_weight[-hidden_size :, :] UpperCAmelCase_ : List[Any] = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) UpperCAmelCase_ : str = state_dict.pop(f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight""" ) UpperCAmelCase_ : Dict = state_dict.pop(f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase_ : str = in_proj_weight[: hidden_size, :] UpperCAmelCase_ : Tuple = in_proj_bias[:config.hidden_size] UpperCAmelCase_ : int = in_proj_weight[hidden_size : hidden_size * 2, :] UpperCAmelCase_ : List[str] = in_proj_bias[hidden_size : hidden_size * 2] UpperCAmelCase_ : List[Any] = in_proj_weight[-hidden_size :, :] UpperCAmelCase_ : Optional[Any] = in_proj_bias[-hidden_size :] # fmt: on def __a ( ): UpperCAmelCase_ : List[Any] = "http://images.cocodataset.org/val2017/000000039769.jpg" UpperCAmelCase_ : Tuple = Image.open(requests.get(__lowerCamelCase, stream=__lowerCamelCase ).raw ) return im @torch.no_grad() def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = False ): UpperCAmelCase_ : List[str] = get_maskformer_config(__lowerCamelCase ) # load original state_dict with open(__lowerCamelCase, "rb" ) as f: UpperCAmelCase_ : Union[str, Any] = pickle.load(__lowerCamelCase ) UpperCAmelCase_ : str = data["model"] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys UpperCAmelCase_ : int = create_rename_keys(__lowerCamelCase ) for src, dest in rename_keys: rename_key(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) read_in_swin_q_k_v(__lowerCamelCase, config.backbone_config ) read_in_decoder_q_k_v(__lowerCamelCase, __lowerCamelCase ) # update to torch tensors for key, value in state_dict.items(): UpperCAmelCase_ : Optional[int] = torch.from_numpy(__lowerCamelCase ) # load 🤗 model UpperCAmelCase_ : Dict = MaskFormerForInstanceSegmentation(__lowerCamelCase ) model.eval() for name, param in model.named_parameters(): print(__lowerCamelCase, param.shape ) UpperCAmelCase_ , UpperCAmelCase_ : str = model.load_state_dict(__lowerCamelCase, strict=__lowerCamelCase ) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(__lowerCamelCase ) == 0, f"""Unexpected keys: {unexpected_keys}""" # verify results UpperCAmelCase_ : Optional[int] = prepare_img() if "vistas" in model_name: UpperCAmelCase_ : List[str] = 65 elif "cityscapes" in model_name: UpperCAmelCase_ : Tuple = 6_5535 else: UpperCAmelCase_ : Dict = 255 UpperCAmelCase_ : Optional[Any] = True if "ade" in model_name else False UpperCAmelCase_ : Dict = MaskFormerImageProcessor(ignore_index=__lowerCamelCase, reduce_labels=__lowerCamelCase ) UpperCAmelCase_ : Union[str, Any] = image_processor(__lowerCamelCase, return_tensors="pt" ) UpperCAmelCase_ : Dict = model(**__lowerCamelCase ) print("Logits:", outputs.class_queries_logits[0, :3, :3] ) if model_name == "maskformer-swin-tiny-ade": UpperCAmelCase_ : Any = torch.tensor( [[3.6353, -4.4770, -2.6065], [0.5081, -4.2394, -3.5343], [2.1909, -5.0353, -1.9323]] ) assert torch.allclose(outputs.class_queries_logits[0, :3, :3], __lowerCamelCase, atol=1E-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(f"""Saving model and image processor to {pytorch_dump_folder_path}""" ) Path(__lowerCamelCase ).mkdir(exist_ok=__lowerCamelCase ) model.save_pretrained(__lowerCamelCase ) image_processor.save_pretrained(__lowerCamelCase ) if push_to_hub: print("Pushing model and image processor to the hub..." ) model.push_to_hub(f"""nielsr/{model_name}""" ) image_processor.push_to_hub(f"""nielsr/{model_name}""" ) if __name__ == "__main__": _a = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='maskformer-swin-tiny-ade', type=str, help=('Name of the MaskFormer model you\'d like to convert',), ) parser.add_argument( '--checkpoint_path', default='/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl', type=str, help='Path to the original state dict (.pth file).', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) _a = parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
61
0
import unittest from transformers import AutoTokenizer, FalconConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, ) class UpperCAmelCase__ : """simple docstring""" def __init__( self : Optional[int] , __lowerCamelCase : Any , __lowerCamelCase : str=3 , __lowerCamelCase : Union[str, Any]=7 , __lowerCamelCase : List[Any]=True , __lowerCamelCase : List[str]=True , __lowerCamelCase : List[str]=False , __lowerCamelCase : Tuple=True , __lowerCamelCase : Any=99 , __lowerCamelCase : Tuple=32 , __lowerCamelCase : List[str]=5 , __lowerCamelCase : Optional[int]=4 , __lowerCamelCase : Optional[int]=37 , __lowerCamelCase : Optional[int]="gelu" , __lowerCamelCase : Union[str, Any]=0.1 , __lowerCamelCase : str=0.1 , __lowerCamelCase : str=512 , __lowerCamelCase : List[Any]=16 , __lowerCamelCase : List[str]=2 , __lowerCamelCase : int=0.02 , __lowerCamelCase : Dict=3 , __lowerCamelCase : Union[str, Any]=4 , __lowerCamelCase : Optional[int]=None , ) -> Any: SCREAMING_SNAKE_CASE__ = parent SCREAMING_SNAKE_CASE__ = batch_size SCREAMING_SNAKE_CASE__ = seq_length SCREAMING_SNAKE_CASE__ = is_training SCREAMING_SNAKE_CASE__ = use_input_mask SCREAMING_SNAKE_CASE__ = use_token_type_ids SCREAMING_SNAKE_CASE__ = use_labels SCREAMING_SNAKE_CASE__ = vocab_size SCREAMING_SNAKE_CASE__ = hidden_size SCREAMING_SNAKE_CASE__ = num_hidden_layers SCREAMING_SNAKE_CASE__ = num_attention_heads SCREAMING_SNAKE_CASE__ = intermediate_size SCREAMING_SNAKE_CASE__ = hidden_act SCREAMING_SNAKE_CASE__ = hidden_dropout_prob SCREAMING_SNAKE_CASE__ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ = max_position_embeddings SCREAMING_SNAKE_CASE__ = type_vocab_size SCREAMING_SNAKE_CASE__ = type_sequence_label_size SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = num_labels SCREAMING_SNAKE_CASE__ = num_choices SCREAMING_SNAKE_CASE__ = scope def lowercase_ ( self : List[str] ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE__ = None if self.use_input_mask: SCREAMING_SNAKE_CASE__ = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None if self.use_labels: SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE__ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase_ ( self : Optional[int] ) -> int: return FalconConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__lowerCamelCase , initializer_range=self.initializer_range , pad_token_id=1 , new_decoder_architecture=__lowerCamelCase , ) def lowercase_ ( self : str , __lowerCamelCase : Any , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Tuple , __lowerCamelCase : Dict , __lowerCamelCase : Tuple , __lowerCamelCase : Optional[Any] ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ = FalconModel(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE__ = model(__lowerCamelCase , attention_mask=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = model(__lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase_ ( self : List[Any] , __lowerCamelCase : Dict , __lowerCamelCase : List[Any] , __lowerCamelCase : List[Any] , __lowerCamelCase : List[str] , __lowerCamelCase : str , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Dict , __lowerCamelCase : Dict , ) -> Optional[int]: SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = FalconModel(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE__ = model( __lowerCamelCase , attention_mask=__lowerCamelCase , encoder_hidden_states=__lowerCamelCase , encoder_attention_mask=__lowerCamelCase , ) SCREAMING_SNAKE_CASE__ = model( __lowerCamelCase , attention_mask=__lowerCamelCase , encoder_hidden_states=__lowerCamelCase , ) SCREAMING_SNAKE_CASE__ = model(__lowerCamelCase , attention_mask=__lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase_ ( self : Dict , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[Any] , __lowerCamelCase : int , __lowerCamelCase : Tuple , __lowerCamelCase : Any , __lowerCamelCase : Tuple , __lowerCamelCase : Any , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[str] , ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = FalconForCausalLM(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE__ = model(__lowerCamelCase , attention_mask=__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase_ ( self : Any , __lowerCamelCase : str , __lowerCamelCase : Optional[int] , __lowerCamelCase : List[Any] , __lowerCamelCase : str , __lowerCamelCase : Dict , __lowerCamelCase : str , __lowerCamelCase : Any , __lowerCamelCase : Dict , __lowerCamelCase : List[str] , ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = FalconForCausalLM(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() # first forward pass SCREAMING_SNAKE_CASE__ = model( __lowerCamelCase , attention_mask=__lowerCamelCase , encoder_hidden_states=__lowerCamelCase , encoder_attention_mask=__lowerCamelCase , use_cache=__lowerCamelCase , ) SCREAMING_SNAKE_CASE__ = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids SCREAMING_SNAKE_CASE__ = ids_tensor((self.batch_size, 3) , config.vocab_size ) SCREAMING_SNAKE_CASE__ = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and SCREAMING_SNAKE_CASE__ = torch.cat([input_ids, next_tokens] , dim=-1 ) SCREAMING_SNAKE_CASE__ = torch.cat([input_mask, next_mask] , dim=-1 ) SCREAMING_SNAKE_CASE__ = model( __lowerCamelCase , attention_mask=__lowerCamelCase , encoder_hidden_states=__lowerCamelCase , encoder_attention_mask=__lowerCamelCase , output_hidden_states=__lowerCamelCase , )['''hidden_states'''][0] SCREAMING_SNAKE_CASE__ = model( __lowerCamelCase , attention_mask=__lowerCamelCase , encoder_hidden_states=__lowerCamelCase , encoder_attention_mask=__lowerCamelCase , past_key_values=__lowerCamelCase , output_hidden_states=__lowerCamelCase , )['''hidden_states'''][0] # select random slice SCREAMING_SNAKE_CASE__ = ids_tensor((1,) , output_from_past.shape[-1] ).item() SCREAMING_SNAKE_CASE__ = output_from_no_past[:, -3:, random_slice_idx].detach() SCREAMING_SNAKE_CASE__ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__lowerCamelCase , __lowerCamelCase , atol=1e-3 ) ) def lowercase_ ( self : Optional[int] ) -> Dict: SCREAMING_SNAKE_CASE__ = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE__ ),( SCREAMING_SNAKE_CASE__ ),( SCREAMING_SNAKE_CASE__ ),( SCREAMING_SNAKE_CASE__ ),( SCREAMING_SNAKE_CASE__ ),( SCREAMING_SNAKE_CASE__ ),( SCREAMING_SNAKE_CASE__ ), ) = config_and_inputs SCREAMING_SNAKE_CASE__ = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class UpperCAmelCase__ ( A__ , A__ , A__ , unittest.TestCase ): """simple docstring""" a = ( ( FalconModel, FalconForCausalLM, FalconForSequenceClassification, FalconForTokenClassification, FalconForQuestionAnswering, ) if is_torch_available() else () ) a = (FalconForCausalLM,) if is_torch_available() else () a = ( { "feature-extraction": FalconModel, "text-classification": FalconForSequenceClassification, "text-generation": FalconForCausalLM, "question-answering": FalconForQuestionAnswering, "token-classification": FalconForTokenClassification, "zero-shot": FalconForSequenceClassification, } if is_torch_available() else {} ) a = False a = False def lowercase_ ( self : int ) -> Optional[int]: SCREAMING_SNAKE_CASE__ = FalconModelTester(self ) SCREAMING_SNAKE_CASE__ = ConfigTester(self , config_class=__lowerCamelCase , hidden_size=37 ) def lowercase_ ( self : Any ) -> Union[str, Any]: self.config_tester.run_common_tests() def lowercase_ ( self : int ) -> List[Any]: SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase ) def lowercase_ ( self : Union[str, Any] ) -> List[Any]: SCREAMING_SNAKE_CASE__,*SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() for alibi in [True, False]: SCREAMING_SNAKE_CASE__ = alibi self.model_tester.create_and_check_model(__lowerCamelCase , *__lowerCamelCase ) def lowercase_ ( self : List[Any] ) -> Optional[Any]: SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE__ = 3 SCREAMING_SNAKE_CASE__ = input_dict['''input_ids'''] SCREAMING_SNAKE_CASE__ = input_ids.ne(1 ).to(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) SCREAMING_SNAKE_CASE__ = FalconForSequenceClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE__ = model(__lowerCamelCase , attention_mask=__lowerCamelCase , labels=__lowerCamelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def lowercase_ ( self : List[Any] ) -> Optional[Any]: SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE__ = 3 SCREAMING_SNAKE_CASE__ = '''single_label_classification''' SCREAMING_SNAKE_CASE__ = input_dict['''input_ids'''] SCREAMING_SNAKE_CASE__ = input_ids.ne(1 ).to(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) SCREAMING_SNAKE_CASE__ = FalconForSequenceClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE__ = model(__lowerCamelCase , attention_mask=__lowerCamelCase , labels=__lowerCamelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def lowercase_ ( self : str ) -> List[Any]: SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE__ = input_dict['''input_ids'''] SCREAMING_SNAKE_CASE__ = FalconForCausalLM(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE__ = model(__lowerCamelCase , use_cache=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = input_ids.shape[0] SCREAMING_SNAKE_CASE__ = model._convert_to_rw_cache(result.past_key_values ) SCREAMING_SNAKE_CASE__ = model._convert_cache_to_standard_format(__lowerCamelCase , __lowerCamelCase ) for layer in range(len(__lowerCamelCase ) ): for tensor_idx in range(2 ): self.assertTrue(rw_cache[layer][tensor_idx].ndim == 3 ) self.assertTrue(result.past_key_values[layer][tensor_idx].ndim == 4 ) self.assertTrue( torch.all(result.past_key_values[layer][tensor_idx] == standard_cache[layer][tensor_idx] ) ) def lowercase_ ( self : str ) -> List[Any]: SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE__ = 3 SCREAMING_SNAKE_CASE__ = '''multi_label_classification''' SCREAMING_SNAKE_CASE__ = input_dict['''input_ids'''] SCREAMING_SNAKE_CASE__ = input_ids.ne(1 ).to(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) SCREAMING_SNAKE_CASE__ = FalconForSequenceClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE__ = model(__lowerCamelCase , attention_mask=__lowerCamelCase , labels=__lowerCamelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def lowercase_ ( self : str ) -> Tuple: # Falcon can have different numbers of KV-heads than the number of query heads, so we need # to override this test to use the right head counts. for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs_for_common() # If it doesn't support cache, pass the test if not hasattr(__lowerCamelCase , '''use_cache''' ): return SCREAMING_SNAKE_CASE__ = model_class(__lowerCamelCase ).to(__lowerCamelCase ) if "use_cache" not in inputs: SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = model(**__lowerCamelCase ) # If "past_key_values" is not returned, pass the test (e.g. RWKV uses a different cache name and format) if "past_key_values" not in outputs: return SCREAMING_SNAKE_CASE__ = ( getattr(__lowerCamelCase , '''decoder_layers''' , __lowerCamelCase ) or getattr(__lowerCamelCase , '''num_decoder_layers''' , __lowerCamelCase ) or config.num_hidden_layers ) SCREAMING_SNAKE_CASE__ = getattr(__lowerCamelCase , '''num_kv_heads''' , config.num_attention_heads ) SCREAMING_SNAKE_CASE__ = getattr(__lowerCamelCase , '''d_model''' , config.hidden_size ) SCREAMING_SNAKE_CASE__ = embed_dim // num_attention_heads SCREAMING_SNAKE_CASE__ = outputs['''past_key_values'''] self.assertEqual(len(__lowerCamelCase ) , __lowerCamelCase ) SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = inputs['''input_ids'''].shape for i in range(__lowerCamelCase ): if config.new_decoder_architecture: SCREAMING_SNAKE_CASE__ = config.num_attention_heads elif config.multi_query: SCREAMING_SNAKE_CASE__ = 1 self.assertEqual(len(past_kv[0] ) , 2 ) # K V for the decoder = 2 self.assertEqual( past_kv[i][0].shape , (batch_size, num_attention_heads, seq_length, per_head_embed_dim) ) self.assertEqual( past_kv[i][1].shape , (batch_size, num_attention_heads, seq_length, per_head_embed_dim) ) @require_torch class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" @slow def lowercase_ ( self : str ) -> Tuple: SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained('''Rocketknight1/falcon-rw-1b''' ) SCREAMING_SNAKE_CASE__ = FalconForCausalLM.from_pretrained('''Rocketknight1/falcon-rw-1b''' ) model.eval() model.to(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = tokenizer('''My favorite food is''' , return_tensors='''pt''' ).to(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = ( '''My favorite food is pizza. I love it so much that I have a pizza party every year for my birthday.''' ) SCREAMING_SNAKE_CASE__ = model.generate(**__lowerCamelCase , do_sample=__lowerCamelCase , max_new_tokens=19 ) SCREAMING_SNAKE_CASE__ = tokenizer.batch_decode(__lowerCamelCase )[0] self.assertEqual(__lowerCamelCase , __lowerCamelCase ) @slow def lowercase_ ( self : Optional[Any] ) -> Optional[Any]: # The big models are way too big for the CI, so we use tiny random models that resemble their # architectures but with much smaller and fewer layers for repo in ["Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b"]: SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = FalconForCausalLM.from_pretrained(__lowerCamelCase ) model.eval() model.to(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = tokenizer('''My favorite food is''' , return_tensors='''pt''' ).to(__lowerCamelCase ) # We just test that these run without errors - the models are randomly initialized # and so the actual text outputs will be garbage model.generate(**__lowerCamelCase , do_sample=__lowerCamelCase , max_new_tokens=4 ) model.generate(**__lowerCamelCase , do_sample=__lowerCamelCase , max_new_tokens=4 ) model.generate(**__lowerCamelCase , num_beams=2 , max_new_tokens=4 ) @slow def lowercase_ ( self : Tuple ) -> Optional[Any]: # The big models are way too big for the CI, so we use tiny random models that resemble their # architectures but with much smaller and fewer layers with torch.no_grad(): for repo in [ "Rocketknight1/falcon-rw-1b", "Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b", ]: SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = FalconForCausalLM.from_pretrained(__lowerCamelCase ) model.eval() model.to(device=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = tokenizer('''My favorite food is''' , return_tensors='''pt''' ).to(__lowerCamelCase ) # Test results are the same with and without cache SCREAMING_SNAKE_CASE__ = model.generate(**__lowerCamelCase , do_sample=__lowerCamelCase , max_new_tokens=20 , use_cache=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = model.generate(**__lowerCamelCase , do_sample=__lowerCamelCase , max_new_tokens=20 , use_cache=__lowerCamelCase ) self.assertTrue((outputs_cache - outputs_no_cache).sum().item() == 0 )
361
def UpperCAmelCase_ ( _A ): '''simple docstring''' if not isinstance(_A , _A ): raise ValueError('''multiplicative_persistence() only accepts integral values''' ) if num < 0: raise ValueError('''multiplicative_persistence() does not accept negative values''' ) SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = str(_A ) while len(_A ) != 1: SCREAMING_SNAKE_CASE__ = [int(_A ) for i in num_string] SCREAMING_SNAKE_CASE__ = 1 for i in range(0 , len(_A ) ): total *= numbers[i] SCREAMING_SNAKE_CASE__ = str(_A ) steps += 1 return steps def UpperCAmelCase_ ( _A ): '''simple docstring''' if not isinstance(_A , _A ): raise ValueError('''additive_persistence() only accepts integral values''' ) if num < 0: raise ValueError('''additive_persistence() does not accept negative values''' ) SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = str(_A ) while len(_A ) != 1: SCREAMING_SNAKE_CASE__ = [int(_A ) for i in num_string] SCREAMING_SNAKE_CASE__ = 0 for i in range(0 , len(_A ) ): total += numbers[i] SCREAMING_SNAKE_CASE__ = str(_A ) steps += 1 return steps if __name__ == "__main__": import doctest doctest.testmod()
218
0
import os import re import warnings from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer if TYPE_CHECKING: from ...tokenization_utils_base import TextInput from ...utils import logging _A : Any = logging.get_logger(__name__) _A : Any = {'vocab_file': 'spiece.model'} _A : List[Any] = { 'vocab_file': { 't5-small': 'https://huggingface.co/t5-small/resolve/main/spiece.model', 't5-base': 'https://huggingface.co/t5-base/resolve/main/spiece.model', 't5-large': 'https://huggingface.co/t5-large/resolve/main/spiece.model', 't5-3b': 'https://huggingface.co/t5-3b/resolve/main/spiece.model', 't5-11b': 'https://huggingface.co/t5-11b/resolve/main/spiece.model', } } # TODO(PVP) - this should be removed in Transformers v5 _A : str = { 't5-small': 5_12, 't5-base': 5_12, 't5-large': 5_12, 't5-3b': 5_12, 't5-11b': 5_12, } _A : List[str] = '▁' class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ): _UpperCAmelCase : Union[str, Any] = VOCAB_FILES_NAMES _UpperCAmelCase : str = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase : str = ["input_ids", "attention_mask"] def __init__( self : Optional[int] , A : Any , A : Dict="</s>" , A : Any="<unk>" , A : int="<pad>" , A : Optional[Any]=1_0_0 , A : Any=None , A : Optional[Dict[str, Any]] = None , A : Tuple=True , **A : List[str] , ) ->None: # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: lowerCamelCase__ : Dict = [F"<extra_id_{i}>" for i in range(A )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra_id special tokens lowerCamelCase__ : Optional[Any] = len(set(filter(lambda A : bool('''extra_id''' in str(A ) ) , A ) ) ) if extra_tokens != extra_ids: raise ValueError( F"Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are" ''' provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids''' ''' tokens''' ) if legacy: logger.warning_once( F"You are using the legacy behaviour of the {self.__class__}. This means that tokens that come after special tokens will not be properly handled. We recommend you to" ''' read the related pull request available at https://github.com/huggingface/transformers/pull/24565''' ) lowerCamelCase__ : List[Any] = legacy lowerCamelCase__ : Optional[Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=A , unk_token=A , pad_token=A , extra_ids=A , additional_special_tokens=A , sp_model_kwargs=self.sp_model_kwargs , legacy=A , **A , ) lowerCamelCase__ : Optional[Any] = vocab_file lowerCamelCase__ : str = extra_ids lowerCamelCase__ : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(A ) @staticmethod def __lowerCamelCase ( A : Dict , A : int , A : Union[str, Any] ) ->Optional[int]: if pretrained_model_name_or_path in TaTokenizer.max_model_input_sizes: lowerCamelCase__ : str = TaTokenizer.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( '''This tokenizer was incorrectly instantiated with a model max length of''' F" {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this" ''' behavior is kept to avoid breaking backwards compatibility when padding/encoding with''' ''' `truncation is True`.\n- Be aware that you SHOULD NOT rely on''' F" {pretrained_model_name_or_path} automatically truncating your input to" F" {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences" F" longer than {deprecated_max_model_length} you can either instantiate this tokenizer with" ''' `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please''' ''' instantiate this tokenizer with `model_max_length` set to your preferred value.''' , A , ) return max_model_length @property def __lowerCamelCase ( self : List[Any] ) ->int: return self.sp_model.get_piece_size() + self._extra_ids def __lowerCamelCase ( self : Tuple ) ->Any: lowerCamelCase__ : Any = {self.convert_ids_to_tokens(A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __lowerCamelCase ( self : Tuple , A : List[int] , A : Optional[List[int]] = None , A : bool = False ) ->List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A , token_ids_a=A , already_has_special_tokens=A ) # normal case: some special tokens if token_ids_a is None: return ([0] * len(A )) + [1] return ([0] * len(A )) + [1] + ([0] * len(A )) + [1] def __lowerCamelCase ( self : Tuple ) ->Union[str, Any]: return list( set(filter(lambda A : bool(re.search(R'''<extra_id_\d+>''' , A ) ) is not None , self.additional_special_tokens ) ) ) def __lowerCamelCase ( self : Optional[int] ) ->int: return [self._convert_token_to_id(A ) for token in self.get_sentinel_tokens()] def __lowerCamelCase ( self : List[Any] , A : List[int] ) ->List[int]: if len(A ) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( F"This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated" ''' eos tokens being added.''' ) return token_ids else: return token_ids + [self.eos_token_id] def __lowerCamelCase ( self : List[Any] , A : List[int] , A : Optional[List[int]] = None ) ->List[int]: lowerCamelCase__ : Any = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def __lowerCamelCase ( self : List[str] , A : List[int] , A : Optional[List[int]] = None ) ->List[int]: lowerCamelCase__ : Dict = self._add_eos_if_not_present(A ) if token_ids_a is None: return token_ids_a else: lowerCamelCase__ : List[Any] = self._add_eos_if_not_present(A ) return token_ids_a + token_ids_a def __getstate__( self : List[str] ) ->Dict: lowerCamelCase__ : Any = self.__dict__.copy() lowerCamelCase__ : Optional[int] = None return state def __setstate__( self : int , A : Tuple ) ->List[str]: lowerCamelCase__ : Union[str, Any] = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): lowerCamelCase__ : List[str] = {} lowerCamelCase__ : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __lowerCamelCase ( self : Dict , A : "TextInput" , **A : Dict ) ->List[str]: # Replace the SPIECE_UNDERLINE with a space to make sure SPIECE_UNDERLINE is only used at # the beginning of the text if not self.legacy: lowerCamelCase__ : int = SPIECE_UNDERLINE + text.replace(A , ''' ''' ) return super().tokenize(A , **A ) def __lowerCamelCase ( self : Any , A : List[str] , **A : List[Any] ) ->List[str]: if not self.legacy: lowerCamelCase__ : Dict = text.startswith(A ) if is_first: lowerCamelCase__ : Tuple = text[1:] lowerCamelCase__ : Any = self.sp_model.encode(A , out_type=A ) if not self.legacy and not is_first and not text.startswith(''' ''' ) and tokens[0].startswith(A ): lowerCamelCase__ : Union[str, Any] = ([tokens[0][1:]] if len(tokens[0] ) > 1 else []) + tokens[1:] return tokens def __lowerCamelCase ( self : List[str] , A : List[str] ) ->List[str]: if token.startswith('''<extra_id_''' ): lowerCamelCase__ : int = re.match(R'''<extra_id_(\d+)>''' , A ) lowerCamelCase__ : Tuple = int(match.group(1 ) ) return self.vocab_size - num - 1 return self.sp_model.piece_to_id(A ) def __lowerCamelCase ( self : List[Any] , A : Union[str, Any] ) ->int: if index < self.sp_model.get_piece_size(): lowerCamelCase__ : Any = self.sp_model.IdToPiece(A ) else: lowerCamelCase__ : List[str] = F"<extra_id_{self.vocab_size - 1 - index}>" return token def __lowerCamelCase ( self : Optional[Any] , A : List[Any] ) ->Optional[Any]: lowerCamelCase__ : Any = [] lowerCamelCase__ : Optional[Any] = '''''' lowerCamelCase__ : List[Any] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(A ) + token lowerCamelCase__ : Dict = True lowerCamelCase__ : Optional[Any] = [] else: current_sub_tokens.append(A ) lowerCamelCase__ : Any = False out_string += self.sp_model.decode(A ) return out_string.strip() def __lowerCamelCase ( self : Dict , A : str , A : Optional[str] = None ) ->Tuple[str]: if not os.path.isdir(A ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return lowerCamelCase__ : Optional[Any] = os.path.join( A , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , A ) elif not os.path.isfile(self.vocab_file ): with open(A , '''wb''' ) as fi: lowerCamelCase__ : Optional[int] = self.sp_model.serialized_model_proto() fi.write(A ) return (out_vocab_file,)
142
from typing import Any, Dict, Optional import torch import torch.nn.functional as F from torch import nn from ..utils import maybe_allow_in_graph from .activations import get_activation from .attention_processor import Attention from .embeddings import CombinedTimestepLabelEmbeddings @maybe_allow_in_graph class __SCREAMING_SNAKE_CASE ( nn.Module ): def __init__( self : Dict , A : int , A : int , A : int , A : Union[str, Any]=0.0 , A : Optional[int] = None , A : str = "geglu" , A : Optional[int] = None , A : bool = False , A : bool = False , A : bool = False , A : bool = False , A : bool = True , A : str = "layer_norm" , A : bool = False , ) ->Any: super().__init__() lowerCamelCase__ : int = only_cross_attention lowerCamelCase__ : Optional[Any] = (num_embeds_ada_norm is not None) and norm_type == '''ada_norm_zero''' lowerCamelCase__ : Union[str, Any] = (num_embeds_ada_norm is not None) and norm_type == '''ada_norm''' if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: raise ValueError( F"`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to" F" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}." ) # Define 3 blocks. Each block has its own normalization layer. # 1. Self-Attn if self.use_ada_layer_norm: lowerCamelCase__ : Optional[Any] = AdaLayerNorm(A , A ) elif self.use_ada_layer_norm_zero: lowerCamelCase__ : int = AdaLayerNormZero(A , A ) else: lowerCamelCase__ : Dict = nn.LayerNorm(A , elementwise_affine=A ) lowerCamelCase__ : Any = Attention( query_dim=A , heads=A , dim_head=A , dropout=A , bias=A , cross_attention_dim=cross_attention_dim if only_cross_attention else None , upcast_attention=A , ) # 2. Cross-Attn if cross_attention_dim is not None or double_self_attention: # We currently only use AdaLayerNormZero for self attention where there will only be one attention block. # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during # the second cross attention block. lowerCamelCase__ : Tuple = ( AdaLayerNorm(A , A ) if self.use_ada_layer_norm else nn.LayerNorm(A , elementwise_affine=A ) ) lowerCamelCase__ : int = Attention( query_dim=A , cross_attention_dim=cross_attention_dim if not double_self_attention else None , heads=A , dim_head=A , dropout=A , bias=A , upcast_attention=A , ) # is self-attn if encoder_hidden_states is none else: lowerCamelCase__ : Dict = None lowerCamelCase__ : Tuple = None # 3. Feed-forward lowerCamelCase__ : Optional[int] = nn.LayerNorm(A , elementwise_affine=A ) lowerCamelCase__ : Union[str, Any] = FeedForward(A , dropout=A , activation_fn=A , final_dropout=A ) # let chunk size default to None lowerCamelCase__ : str = None lowerCamelCase__ : Tuple = 0 def __lowerCamelCase ( self : Any , A : Optional[int] , A : int ) ->List[str]: # Sets chunk feed-forward lowerCamelCase__ : List[Any] = chunk_size lowerCamelCase__ : List[str] = dim def __lowerCamelCase ( self : str , A : torch.FloatTensor , A : Optional[torch.FloatTensor] = None , A : Optional[torch.FloatTensor] = None , A : Optional[torch.FloatTensor] = None , A : Optional[torch.LongTensor] = None , A : Dict[str, Any] = None , A : Optional[torch.LongTensor] = None , ) ->Tuple: # Notice that normalization is always applied before the real computation in the following blocks. # 1. Self-Attention if self.use_ada_layer_norm: lowerCamelCase__ : Union[str, Any] = self.norma(A , A ) elif self.use_ada_layer_norm_zero: lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Any = self.norma( A , A , A , hidden_dtype=hidden_states.dtype ) else: lowerCamelCase__ : List[str] = self.norma(A ) lowerCamelCase__ : str = cross_attention_kwargs if cross_attention_kwargs is not None else {} lowerCamelCase__ : Any = self.attna( A , encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None , attention_mask=A , **A , ) if self.use_ada_layer_norm_zero: lowerCamelCase__ : Any = gate_msa.unsqueeze(1 ) * attn_output lowerCamelCase__ : Optional[int] = attn_output + hidden_states # 2. Cross-Attention if self.attna is not None: lowerCamelCase__ : int = ( self.norma(A , A ) if self.use_ada_layer_norm else self.norma(A ) ) lowerCamelCase__ : int = self.attna( A , encoder_hidden_states=A , attention_mask=A , **A , ) lowerCamelCase__ : Any = attn_output + hidden_states # 3. Feed-forward lowerCamelCase__ : Union[str, Any] = self.norma(A ) if self.use_ada_layer_norm_zero: lowerCamelCase__ : Optional[int] = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] if self._chunk_size is not None: # "feed_forward_chunk_size" can be used to save memory if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0: raise ValueError( F"`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`." ) lowerCamelCase__ : Optional[int] = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size lowerCamelCase__ : Optional[int] = torch.cat( [self.ff(A ) for hid_slice in norm_hidden_states.chunk(A , dim=self._chunk_dim )] , dim=self._chunk_dim , ) else: lowerCamelCase__ : Optional[int] = self.ff(A ) if self.use_ada_layer_norm_zero: lowerCamelCase__ : Optional[Any] = gate_mlp.unsqueeze(1 ) * ff_output lowerCamelCase__ : List[Any] = ff_output + hidden_states return hidden_states class __SCREAMING_SNAKE_CASE ( nn.Module ): def __init__( self : Any , A : int , A : Optional[int] = None , A : int = 4 , A : float = 0.0 , A : str = "geglu" , A : bool = False , ) ->int: super().__init__() lowerCamelCase__ : List[Any] = int(dim * mult ) lowerCamelCase__ : List[Any] = dim_out if dim_out is not None else dim if activation_fn == "gelu": lowerCamelCase__ : int = GELU(A , A ) if activation_fn == "gelu-approximate": lowerCamelCase__ : Optional[int] = GELU(A , A , approximate='''tanh''' ) elif activation_fn == "geglu": lowerCamelCase__ : Any = GEGLU(A , A ) elif activation_fn == "geglu-approximate": lowerCamelCase__ : int = ApproximateGELU(A , A ) lowerCamelCase__ : Union[str, Any] = nn.ModuleList([] ) # project in self.net.append(A ) # project dropout self.net.append(nn.Dropout(A ) ) # project out self.net.append(nn.Linear(A , A ) ) # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout if final_dropout: self.net.append(nn.Dropout(A ) ) def __lowerCamelCase ( self : Dict , A : List[Any] ) ->Optional[Any]: for module in self.net: lowerCamelCase__ : int = module(A ) return hidden_states class __SCREAMING_SNAKE_CASE ( nn.Module ): def __init__( self : Tuple , A : int , A : int , A : str = "none" ) ->Optional[Any]: super().__init__() lowerCamelCase__ : List[Any] = nn.Linear(A , A ) lowerCamelCase__ : Any = approximate def __lowerCamelCase ( self : List[str] , A : Tuple ) ->str: if gate.device.type != "mps": return F.gelu(A , approximate=self.approximate ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) , approximate=self.approximate ).to(dtype=gate.dtype ) def __lowerCamelCase ( self : List[str] , A : str ) ->Optional[int]: lowerCamelCase__ : List[str] = self.proj(A ) lowerCamelCase__ : Optional[int] = self.gelu(A ) return hidden_states class __SCREAMING_SNAKE_CASE ( nn.Module ): def __init__( self : Tuple , A : int , A : int ) ->Dict: super().__init__() lowerCamelCase__ : Optional[Any] = nn.Linear(A , dim_out * 2 ) def __lowerCamelCase ( self : List[Any] , A : List[Any] ) ->Tuple: if gate.device.type != "mps": return F.gelu(A ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) ).to(dtype=gate.dtype ) def __lowerCamelCase ( self : Any , A : Union[str, Any] ) ->Any: lowerCamelCase__ , lowerCamelCase__ : List[Any] = self.proj(A ).chunk(2 , dim=-1 ) return hidden_states * self.gelu(A ) class __SCREAMING_SNAKE_CASE ( nn.Module ): def __init__( self : Any , A : int , A : int ) ->str: super().__init__() lowerCamelCase__ : Optional[int] = nn.Linear(A , A ) def __lowerCamelCase ( self : Union[str, Any] , A : Dict ) ->Optional[Any]: lowerCamelCase__ : List[str] = self.proj(A ) return x * torch.sigmoid(1.7_02 * x ) class __SCREAMING_SNAKE_CASE ( nn.Module ): def __init__( self : int , A : Dict , A : Optional[Any] ) ->str: super().__init__() lowerCamelCase__ : List[str] = nn.Embedding(A , A ) lowerCamelCase__ : str = nn.SiLU() lowerCamelCase__ : int = nn.Linear(A , embedding_dim * 2 ) lowerCamelCase__ : Optional[Any] = nn.LayerNorm(A , elementwise_affine=A ) def __lowerCamelCase ( self : int , A : Union[str, Any] , A : Union[str, Any] ) ->Union[str, Any]: lowerCamelCase__ : Union[str, Any] = self.linear(self.silu(self.emb(A ) ) ) lowerCamelCase__ , lowerCamelCase__ : List[str] = torch.chunk(A , 2 ) lowerCamelCase__ : Any = self.norm(A ) * (1 + scale) + shift return x class __SCREAMING_SNAKE_CASE ( nn.Module ): def __init__( self : str , A : Optional[Any] , A : int ) ->str: super().__init__() lowerCamelCase__ : Union[str, Any] = CombinedTimestepLabelEmbeddings(A , A ) lowerCamelCase__ : int = nn.SiLU() lowerCamelCase__ : List[str] = nn.Linear(A , 6 * embedding_dim , bias=A ) lowerCamelCase__ : str = nn.LayerNorm(A , elementwise_affine=A , eps=1e-6 ) def __lowerCamelCase ( self : List[str] , A : Any , A : List[Any] , A : Tuple , A : Dict=None ) ->Union[str, Any]: lowerCamelCase__ : List[Any] = self.linear(self.silu(self.emb(A , A , hidden_dtype=A ) ) ) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : int = emb.chunk(6 , dim=1 ) lowerCamelCase__ : List[Any] = self.norm(A ) * (1 + scale_msa[:, None]) + shift_msa[:, None] return x, gate_msa, shift_mlp, scale_mlp, gate_mlp class __SCREAMING_SNAKE_CASE ( nn.Module ): def __init__( self : Any , A : int , A : int , A : int , A : Optional[str] = None , A : float = 1e-5 ) ->Any: super().__init__() lowerCamelCase__ : int = num_groups lowerCamelCase__ : List[str] = eps if act_fn is None: lowerCamelCase__ : Tuple = None else: lowerCamelCase__ : Dict = get_activation(A ) lowerCamelCase__ : Any = nn.Linear(A , out_dim * 2 ) def __lowerCamelCase ( self : List[str] , A : Optional[int] , A : str ) ->Tuple: if self.act: lowerCamelCase__ : Union[str, Any] = self.act(A ) lowerCamelCase__ : Optional[Any] = self.linear(A ) lowerCamelCase__ : Optional[Any] = emb[:, :, None, None] lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = emb.chunk(2 , dim=1 ) lowerCamelCase__ : str = F.group_norm(A , self.num_groups , eps=self.eps ) lowerCamelCase__ : Dict = x * (1 + scale) + shift return x
142
1
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = '''philschmid/bart-large-cnn-samsum''' lowerCAmelCase = ( '''This is a tool that summarizes an English text. It takes an input `text` containing the text to summarize, ''' '''and returns a summary of the text.''' ) lowerCAmelCase = '''summarizer''' lowerCAmelCase = AutoTokenizer lowerCAmelCase = AutoModelForSeqaSeqLM lowerCAmelCase = ['''text'''] lowerCAmelCase = ['''text'''] def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' return self.pre_processor(_UpperCAmelCase , return_tensors='pt' , truncation=_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' return self.model.generate(**_UpperCAmelCase)[0] def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' return self.pre_processor.decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase , clean_up_tokenization_spaces=_UpperCAmelCase)
190
'''simple docstring''' import math def _lowerCAmelCase ( __snake_case : int ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__snake_case ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def _lowerCAmelCase ( __snake_case : float = 0.1 ) -> int: __A : Dict = 3 __A : int = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ): primes += is_prime(__snake_case ) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
190
1
import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() __A : List[Any] = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> Tuple: '''simple docstring''' lowerCAmelCase : int = torch.load(_UpperCAmelCase, map_location='cpu' ) if "model" in sd.keys(): lowerCAmelCase : List[str] = torch.load(_UpperCAmelCase, map_location='cpu' )['model'] # pop unnecessary weights lowerCAmelCase : Optional[int] = [ 'decoder.version', 'decoder.output_projection.weight', ] for key in keys_to_delete: if key in sd: sd.pop(_UpperCAmelCase ) lowerCAmelCase : Any = { 'decoder.project_in_dim.weight': 'decoder.project_in.weight', 'decoder.project_out_dim.weight': 'decoder.project_out.weight', 'decoder.layer_norm.weight': 'decoder.final_layer_norm.weight', 'decoder.layer_norm.bias': 'decoder.final_layer_norm.bias', } for old_key, new_key in keys_to_rename.items(): if old_key in sd: lowerCAmelCase : Union[str, Any] = sd.pop(_UpperCAmelCase ) lowerCAmelCase : List[Any] = list(sd.keys() ) for key in keys: if ".qkv_proj." in key: lowerCAmelCase : Any = sd[key] # We split QKV in separate Q,K,V lowerCAmelCase : Optional[int] = key.replace('.qkv_proj.', '.q_proj.' ) lowerCAmelCase : List[str] = key.replace('.qkv_proj.', '.k_proj.' ) lowerCAmelCase : Optional[Any] = key.replace('.qkv_proj.', '.v_proj.' ) lowerCAmelCase : Dict = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : List[str] = torch.split(_UpperCAmelCase, depth // 3, dim=0 ) lowerCAmelCase : List[Any] = q lowerCAmelCase : Optional[int] = k lowerCAmelCase : Optional[Any] = v del sd[key] return sd @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase=None ) -> str: '''simple docstring''' lowerCAmelCase : Optional[int] = load_checkpoint(_UpperCAmelCase ) if config is not None: lowerCAmelCase : str = OPTConfig.from_pretrained(_UpperCAmelCase ) else: lowerCAmelCase : List[Any] = OPTConfig() lowerCAmelCase : int = OPTModel(_UpperCAmelCase ).half().eval() model.load_state_dict(_UpperCAmelCase ) # Check results Path(_UpperCAmelCase ).mkdir(exist_ok=_UpperCAmelCase ) model.save_pretrained(_UpperCAmelCase ) if __name__ == "__main__": __A : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--fairseq_path''', type=str, help=( '''path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:''' ''' https://huggingface.co/models?other=opt_metasq''' ), ) parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--hf_config''', default=None, type=str, help='''Define HF config.''') __A : Optional[int] = parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
138
from pathlib import Path import cva import numpy as np from matplotlib import pyplot as plt def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> np.ndarray: '''simple docstring''' lowerCAmelCase : Dict = cva.getAffineTransform(_UpperCAmelCase, _UpperCAmelCase ) return cva.warpAffine(_UpperCAmelCase, _UpperCAmelCase, (rows, cols) ) if __name__ == "__main__": # read original image __A : List[str] = cva.imread( str(Path(__file__).resolve().parent.parent / '''image_data''' / '''lena.jpg''') ) # turn image in gray scale value __A : int = cva.cvtColor(image, cva.COLOR_BGR2GRAY) # get image shape __A , __A : Optional[Any] = gray_img.shape # set different points to rotate image __A : int = np.array([[50, 50], [200, 50], [50, 200]], np.floataa) __A : Any = np.array([[10, 100], [200, 50], [100, 250]], np.floataa) __A : Optional[int] = np.array([[50, 50], [150, 50], [120, 200]], np.floataa) __A : List[Any] = np.array([[10, 100], [80, 50], [180, 250]], np.floataa) # add all rotated images in a list __A : List[str] = [ gray_img, get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), ] # plot different image rotations __A : Union[str, Any] = plt.figure(1) __A : Optional[Any] = ['''Original''', '''Rotation 1''', '''Rotation 2''', '''Rotation 3'''] for i, image in enumerate(images): plt.subplot(2, 2, i + 1), plt.imshow(image, '''gray''') plt.title(titles[i]) plt.axis('''off''') plt.subplots_adjust(left=0.0, bottom=0.05, right=1.0, top=0.95) plt.show()
138
1
import sys lowerCamelCase__ = ( """73167176531330624919225119674426574742355349194934""" """96983520312774506326239578318016984801869478851843""" """85861560789112949495459501737958331952853208805511""" """12540698747158523863050715693290963295227443043557""" """66896648950445244523161731856403098711121722383113""" """62229893423380308135336276614282806444486645238749""" """30358907296290491560440772390713810515859307960866""" """70172427121883998797908792274921901699720888093776""" """65727333001053367881220235421809751254540594752243""" """52584907711670556013604839586446706324415722155397""" """53697817977846174064955149290862569321978468622482""" """83972241375657056057490261407972968652414535100474""" """82166370484403199890008895243450658541227588666881""" """16427171479924442928230863465674813919123162824586""" """17866458359124566529476545682848912883142607690042""" """24219022671055626321111109370544217506941658960408""" """07198403850962455444362981230987879927244284909188""" """84580156166097919133875499200524063689912560717606""" """05886116467109405077541002256983155200055935729725""" """71636269561882670428252483600823257530420752963450""" ) def A(__a: str ): lowerCAmelCase_ = 1 for digit in s: product *= int(__a ) return product def A(__a: str = N ): lowerCAmelCase_ = -sys.maxsize - 1 lowerCAmelCase_ = n[:13] lowerCAmelCase_ = 13 while cur_index < len(__a ) - 13: if int(n[cur_index] ) >= int(substr[0] ): lowerCAmelCase_ = substr[1:] + n[cur_index] cur_index += 1 else: lowerCAmelCase_ = max(__a , str_eval(__a ) ) lowerCAmelCase_ = n[cur_index : cur_index + 13] cur_index += 13 return largest_product if __name__ == "__main__": print(F'''{solution() = }''')
352
import warnings from ...utils import is_sklearn_available, requires_backends if is_sklearn_available(): from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef lowerCamelCase__ = ( '''This metric will be removed from the library soon, metrics should be handled with the 🤗 Evaluate ''' '''library. You can have a look at this example script for pointers: ''' '''https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py''' ) def A(__a: str , __a: List[Any] ): warnings.warn(__a , __a ) requires_backends(__a , "sklearn" ) return (preds == labels).mean() def A(__a: Any , __a: Any ): warnings.warn(__a , __a ) requires_backends(__a , "sklearn" ) lowerCAmelCase_ = simple_accuracy(__a , __a ) lowerCAmelCase_ = fa_score(y_true=__a , y_pred=__a ) return { "acc": acc, "f1": fa, "acc_and_f1": (acc + fa) / 2, } def A(__a: List[str] , __a: Optional[int] ): warnings.warn(__a , __a ) requires_backends(__a , "sklearn" ) lowerCAmelCase_ = pearsonr(__a , __a )[0] lowerCAmelCase_ = spearmanr(__a , __a )[0] return { "pearson": pearson_corr, "spearmanr": spearman_corr, "corr": (pearson_corr + spearman_corr) / 2, } def A(__a: Union[str, Any] , __a: Any , __a: str ): warnings.warn(__a , __a ) requires_backends(__a , "sklearn" ) assert len(__a ) == len(__a ), F"Predictions and labels have mismatched lengths {len(__a )} and {len(__a )}" if task_name == "cola": return {"mcc": matthews_corrcoef(__a , __a )} elif task_name == "sst-2": return {"acc": simple_accuracy(__a , __a )} elif task_name == "mrpc": return acc_and_fa(__a , __a ) elif task_name == "sts-b": return pearson_and_spearman(__a , __a ) elif task_name == "qqp": return acc_and_fa(__a , __a ) elif task_name == "mnli": return {"mnli/acc": simple_accuracy(__a , __a )} elif task_name == "mnli-mm": return {"mnli-mm/acc": simple_accuracy(__a , __a )} elif task_name == "qnli": return {"acc": simple_accuracy(__a , __a )} elif task_name == "rte": return {"acc": simple_accuracy(__a , __a )} elif task_name == "wnli": return {"acc": simple_accuracy(__a , __a )} elif task_name == "hans": return {"acc": simple_accuracy(__a , __a )} else: raise KeyError(__a ) def A(__a: int , __a: Optional[Any] , __a: Optional[Any] ): warnings.warn(__a , __a ) requires_backends(__a , "sklearn" ) if len(__a ) != len(__a ): raise ValueError(F"Predictions and labels have mismatched lengths {len(__a )} and {len(__a )}" ) if task_name == "xnli": return {"acc": simple_accuracy(__a , __a )} else: raise KeyError(__a )
22
0
import os from glob import glob import imageio import torch import torchvision import wandb from img_processing import custom_to_pil, loop_post_process, preprocess, preprocess_vqgan from loaders import load_vqgan from PIL import Image from torch import nn from transformers import CLIPModel, CLIPTokenizerFast from utils import get_device, get_timestamp, show_pil class UpperCAmelCase : def __init__(self : List[str] , snake_case__ : str = "cpu" , snake_case__ : str = "openai/clip-vit-large-patch14" ) -> None: '''simple docstring''' snake_case : int = device snake_case : str = CLIPTokenizerFast.from_pretrained(snake_case__ ) snake_case : List[Any] = [0.48145466, 0.4578275, 0.40821073] snake_case : Optional[int] = [0.26862954, 0.26130258, 0.27577711] snake_case : List[Any] = torchvision.transforms.Normalize(self.image_mean , self.image_std ) snake_case : List[str] = torchvision.transforms.Resize(2_24 ) snake_case : List[Any] = torchvision.transforms.CenterCrop(2_24 ) def _SCREAMING_SNAKE_CASE (self : Optional[int] , snake_case__ : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' snake_case : List[str] = self.resize(snake_case__ ) snake_case : Union[str, Any] = self.center_crop(snake_case__ ) snake_case : str = self.normalize(snake_case__ ) return images def __call__(self : Optional[int] , snake_case__ : Optional[int]=None , snake_case__ : List[Any]=None , **snake_case__ : int ) -> List[Any]: '''simple docstring''' snake_case : Dict = self.tokenizer(text=snake_case__ , **snake_case__ ) snake_case : str = self.preprocess_img(snake_case__ ) snake_case : Any = {key: value.to(self.device ) for (key, value) in encoding.items()} return encoding class UpperCAmelCase ( nn.Module ): def __init__(self : int , snake_case__ : Tuple=10 , snake_case__ : List[str]=0.01 , snake_case__ : Dict=None , snake_case__ : List[str]=None , snake_case__ : Dict=None , snake_case__ : Optional[Any]=None , snake_case__ : Union[str, Any]=None , snake_case__ : Dict=None , snake_case__ : Any=False , snake_case__ : Optional[Any]=True , snake_case__ : Any="image" , snake_case__ : str=True , snake_case__ : Any=False , snake_case__ : List[str]=False , snake_case__ : Optional[Any]=False , ) -> None: '''simple docstring''' super().__init__() snake_case : List[str] = None snake_case : Optional[int] = device if device else get_device() if vqgan: snake_case : List[Any] = vqgan else: snake_case : Tuple = load_vqgan(self.device , conf_path=snake_case__ , ckpt_path=snake_case__ ) self.vqgan.eval() if clip: snake_case : Any = clip else: snake_case : Optional[Any] = CLIPModel.from_pretrained("openai/clip-vit-base-patch32" ) self.clip.to(self.device ) snake_case : Optional[Any] = ProcessorGradientFlow(device=self.device ) snake_case : Optional[int] = iterations snake_case : str = lr snake_case : List[Any] = log snake_case : Optional[int] = make_grid snake_case : str = return_val snake_case : List[Any] = quantize snake_case : List[str] = self.vqgan.decoder.z_shape def _SCREAMING_SNAKE_CASE (self : Optional[int] , snake_case__ : Dict=None , snake_case__ : Tuple=None , snake_case__ : Any=5 , snake_case__ : Optional[Any]=True ) -> Any: '''simple docstring''' snake_case : List[Any] = [] if output_path is None: snake_case : List[Any] = "./animation.gif" if input_path is None: snake_case : Any = self.save_path snake_case : int = sorted(glob(input_path + "/*" ) ) if not len(snake_case__ ): raise ValueError( "No images found in save path, aborting (did you pass save_intermediate=True to the generate" " function?)" ) if len(snake_case__ ) == 1: print("Only one image found in save path, (did you pass save_intermediate=True to the generate function?)" ) snake_case : List[Any] = total_duration / len(snake_case__ ) snake_case : Union[str, Any] = [frame_duration] * len(snake_case__ ) if extend_frames: snake_case : Union[str, Any] = 1.5 snake_case : int = 3 for file_name in paths: if file_name.endswith(".png" ): images.append(imageio.imread(snake_case__ ) ) imageio.mimsave(snake_case__ , snake_case__ , duration=snake_case__ ) print(f"""gif saved to {output_path}""" ) def _SCREAMING_SNAKE_CASE (self : str , snake_case__ : str=None , snake_case__ : List[Any]=None ) -> Union[str, Any]: '''simple docstring''' if not (path or img): raise ValueError("Input either path or tensor" ) if img is not None: raise NotImplementedError snake_case : Optional[Any] = preprocess(Image.open(snake_case__ ) , target_image_size=2_56 ).to(self.device ) snake_case : Any = preprocess_vqgan(snake_case__ ) snake_case , *snake_case : str = self.vqgan.encode(snake_case__ ) return z def _SCREAMING_SNAKE_CASE (self : List[str] , snake_case__ : Tuple ) -> Optional[Any]: '''simple docstring''' snake_case : Dict = self.latent.detach().requires_grad_() snake_case : Optional[int] = base_latent + transform_vector if self.quantize: snake_case , *snake_case : Any = self.vqgan.quantize(snake_case__ ) else: snake_case : Union[str, Any] = trans_latent return self.vqgan.decode(snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Dict , snake_case__ : str , snake_case__ : Optional[int] , snake_case__ : Optional[int]=None ) -> str: '''simple docstring''' snake_case : Any = self.clip_preprocessor(text=snake_case__ , images=snake_case__ , return_tensors="pt" , padding=snake_case__ ) snake_case : Optional[int] = self.clip(**snake_case__ ) snake_case : List[Any] = clip_outputs.logits_per_image if weights is not None: snake_case : Any = similarity_logits * weights return similarity_logits.sum() def _SCREAMING_SNAKE_CASE (self : Union[str, Any] , snake_case__ : Optional[Any] , snake_case__ : Optional[Any] , snake_case__ : Dict ) -> Optional[Any]: '''simple docstring''' snake_case : Any = self._get_clip_similarity(pos_prompts["prompts"] , snake_case__ , weights=(1 / pos_prompts["weights"]) ) if neg_prompts: snake_case : Union[str, Any] = self._get_clip_similarity(neg_prompts["prompts"] , snake_case__ , weights=neg_prompts["weights"] ) else: snake_case : Union[str, Any] = torch.tensor([1] , device=self.device ) snake_case : List[Any] = -torch.log(snake_case__ ) + torch.log(snake_case__ ) return loss def _SCREAMING_SNAKE_CASE (self : Optional[Any] , snake_case__ : Union[str, Any] , snake_case__ : str , snake_case__ : Optional[Any] ) -> str: '''simple docstring''' snake_case : Union[str, Any] = torch.randn_like(self.latent , requires_grad=snake_case__ , device=self.device ) snake_case : Optional[int] = torch.optim.Adam([vector] , lr=self.lr ) for i in range(self.iterations ): optim.zero_grad() snake_case : Dict = self._add_vector(snake_case__ ) snake_case : Union[str, Any] = loop_post_process(snake_case__ ) snake_case : List[str] = self._get_CLIP_loss(snake_case__ , snake_case__ , snake_case__ ) print("CLIP loss" , snake_case__ ) if self.log: wandb.log({"CLIP Loss": clip_loss} ) clip_loss.backward(retain_graph=snake_case__ ) optim.step() if self.return_val == "image": yield custom_to_pil(transformed_img[0] ) else: yield vector def _SCREAMING_SNAKE_CASE (self : Optional[int] , snake_case__ : str , snake_case__ : Union[str, Any] , snake_case__ : Optional[int] ) -> List[Any]: '''simple docstring''' wandb.init(reinit=snake_case__ , project="face-editor" ) wandb.config.update({"Positive Prompts": positive_prompts} ) wandb.config.update({"Negative Prompts": negative_prompts} ) wandb.config.update({"lr": self.lr, "iterations": self.iterations} ) if image_path: snake_case : Optional[Any] = Image.open(snake_case__ ) snake_case : Dict = image.resize((2_56, 2_56) ) wandb.log("Original Image" , wandb.Image(snake_case__ ) ) def _SCREAMING_SNAKE_CASE (self : Dict , snake_case__ : Union[str, Any] ) -> Optional[int]: '''simple docstring''' if not prompts: return [] snake_case : Tuple = [] snake_case : List[str] = [] if isinstance(snake_case__ , snake_case__ ): snake_case : Union[str, Any] = [prompt.strip() for prompt in prompts.split("|" )] for prompt in prompts: if isinstance(snake_case__ , (tuple, list) ): snake_case : Tuple = prompt[0] snake_case : Optional[int] = float(prompt[1] ) elif ":" in prompt: snake_case , snake_case : Optional[int] = prompt.split(":" ) snake_case : List[str] = float(snake_case__ ) else: snake_case : Optional[Any] = prompt snake_case : Tuple = 1.0 processed_prompts.append(snake_case__ ) weights.append(snake_case__ ) return { "prompts": processed_prompts, "weights": torch.tensor(snake_case__ , device=self.device ), } def _SCREAMING_SNAKE_CASE (self : Dict , snake_case__ : Dict , snake_case__ : Union[str, Any]=None , snake_case__ : str=None , snake_case__ : Union[str, Any]=True , snake_case__ : Any=False , snake_case__ : List[Any]=True , snake_case__ : List[Any]=True , snake_case__ : Dict=None , ) -> Any: '''simple docstring''' if image_path: snake_case : List[Any] = self._get_latent(snake_case__ ) else: snake_case : Optional[int] = torch.randn(self.latent_dim , device=self.device ) if self.log: self._init_logging(snake_case__ , snake_case__ , snake_case__ ) assert pos_prompts, "You must provide at least one positive prompt." snake_case : Optional[Any] = self.process_prompts(snake_case__ ) snake_case : List[Any] = self.process_prompts(snake_case__ ) if save_final and save_path is None: snake_case : Tuple = os.path.join("./outputs/" , "_".join(pos_prompts["prompts"] ) ) if not os.path.exists(snake_case__ ): os.makedirs(snake_case__ ) else: snake_case : int = save_path + "_" + get_timestamp() os.makedirs(snake_case__ ) snake_case : Tuple = save_path snake_case : str = self.vqgan.decode(self.latent )[0] if show_intermediate: print("Original Image" ) show_pil(custom_to_pil(snake_case__ ) ) snake_case : List[str] = loop_post_process(snake_case__ ) for iter, transformed_img in enumerate(self._optimize_CLIP(snake_case__ , snake_case__ , snake_case__ ) ): if show_intermediate: show_pil(snake_case__ ) if save_intermediate: transformed_img.save(os.path.join(self.save_path , f"""iter_{iter:03d}.png""" ) ) if self.log: wandb.log({"Image": wandb.Image(snake_case__ )} ) if show_final: show_pil(snake_case__ ) if save_final: transformed_img.save(os.path.join(self.save_path , f"""iter_{iter:03d}_final.png""" ) )
59
"""simple docstring""" import argparse import collections import numpy as np import torch from flax import traverse_util from tax import checkpoints from transformers import MTaConfig, UMTaEncoderModel, UMTaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def a__ ( snake_case__ , snake_case__ , snake_case__ ) -> List[Any]: return params[F'{prefix}/{prefix}/relpos_bias/rel_embedding'][:, i, :] def a__ ( snake_case__ , snake_case__ , snake_case__ , snake_case__="attention" ) -> List[Any]: lowerCamelCase = lowerCamelCase = np.ascontiguousarray(params[F'{prefix}/{prefix}/{layer_name}/key/kernel'][:, i, :, :] ) lowerCamelCase = k_tmp.reshape(k_tmp.shape[0] , k_tmp.shape[1] * k_tmp.shape[2] ) lowerCamelCase = np.ascontiguousarray(params[F'{prefix}/{prefix}/{layer_name}/out/kernel'][:, i, :, :] ) lowerCamelCase = o_tmp.reshape(o_tmp.shape[0] * o_tmp.shape[1] , o_tmp.shape[2] ) lowerCamelCase = np.ascontiguousarray(params[F'{prefix}/{prefix}/{layer_name}/query/kernel'][:, i, :, :] ) lowerCamelCase = q_tmp.reshape(q_tmp.shape[0] , q_tmp.shape[1] * q_tmp.shape[2] ) lowerCamelCase = np.ascontiguousarray(params[F'{prefix}/{prefix}/{layer_name}/value/kernel'][:, i, :, :] ) lowerCamelCase = v_tmp.reshape(v_tmp.shape[0] , v_tmp.shape[1] * v_tmp.shape[2] ) return k, o, q, v def a__ ( snake_case__ , snake_case__ , snake_case__ , snake_case__=False ) -> List[str]: if split_mlp_wi: lowerCamelCase = params[F'{prefix}/{prefix}/mlp/wi_0/kernel'][:, i, :] lowerCamelCase = params[F'{prefix}/{prefix}/mlp/wi_1/kernel'][:, i, :] lowerCamelCase = (wi_a, wi_a) else: lowerCamelCase = params[F'{prefix}/{prefix}/mlp/wi/kernel'][:, i, :] lowerCamelCase = params[F'{prefix}/{prefix}/mlp/wo/kernel'][:, i, :] return wi, wo def a__ ( snake_case__ , snake_case__ , snake_case__ , snake_case__ ) -> Tuple: return params[F'{prefix}/{prefix}/{layer_name}/scale'][:, i] def a__ ( snake_case__ , *, snake_case__ , snake_case__ , snake_case__ = False ) -> Dict: lowerCamelCase = traverse_util.flatten_dict(variables["""target"""] ) lowerCamelCase = {"""/""".join(snake_case__ ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi lowerCamelCase = """encoder/encoder/mlp/wi_0/kernel""" in old print("""Split MLP:""" , snake_case__ ) lowerCamelCase = collections.OrderedDict() # Shared embeddings. lowerCamelCase = old["""token_embedder/embedding"""] # Encoder. for i in range(snake_case__ ): # Block i, layer 0 (Self Attention). lowerCamelCase = tax_layer_norm_lookup(snake_case__ , snake_case__ , """encoder""" , """pre_attention_layer_norm""" ) lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase = tax_attention_lookup(snake_case__ , snake_case__ , """encoder""" , """attention""" ) lowerCamelCase = layer_norm lowerCamelCase = k.T lowerCamelCase = o.T lowerCamelCase = q.T lowerCamelCase = v.T # Block i, layer 1 (MLP). lowerCamelCase = tax_layer_norm_lookup(snake_case__ , snake_case__ , """encoder""" , """pre_mlp_layer_norm""" ) lowerCamelCase , lowerCamelCase = tax_mlp_lookup(snake_case__ , snake_case__ , """encoder""" , snake_case__ ) lowerCamelCase = layer_norm if split_mlp_wi: lowerCamelCase = wi[0].T lowerCamelCase = wi[1].T else: lowerCamelCase = wi.T lowerCamelCase = wo.T if scalable_attention: # convert the rel_embedding of each layer lowerCamelCase = tax_relpos_bias_lookup( snake_case__ , snake_case__ , """encoder""" ).T lowerCamelCase = old["""encoder/encoder_norm/scale"""] if not scalable_attention: lowerCamelCase = tax_relpos_bias_lookup( snake_case__ , 0 , """encoder""" ).T lowerCamelCase = tax_relpos_bias_lookup( snake_case__ , 0 , """decoder""" ).T if not is_encoder_only: # Decoder. for i in range(snake_case__ ): # Block i, layer 0 (Self Attention). lowerCamelCase = tax_layer_norm_lookup(snake_case__ , snake_case__ , """decoder""" , """pre_self_attention_layer_norm""" ) lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase = tax_attention_lookup(snake_case__ , snake_case__ , """decoder""" , """self_attention""" ) lowerCamelCase = layer_norm lowerCamelCase = k.T lowerCamelCase = o.T lowerCamelCase = q.T lowerCamelCase = v.T # Block i, layer 1 (Cross Attention). lowerCamelCase = tax_layer_norm_lookup(snake_case__ , snake_case__ , """decoder""" , """pre_cross_attention_layer_norm""" ) lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase = tax_attention_lookup(snake_case__ , snake_case__ , """decoder""" , """encoder_decoder_attention""" ) lowerCamelCase = layer_norm lowerCamelCase = k.T lowerCamelCase = o.T lowerCamelCase = q.T lowerCamelCase = v.T # Block i, layer 2 (MLP). lowerCamelCase = tax_layer_norm_lookup(snake_case__ , snake_case__ , """decoder""" , """pre_mlp_layer_norm""" ) lowerCamelCase , lowerCamelCase = tax_mlp_lookup(snake_case__ , snake_case__ , """decoder""" , snake_case__ ) lowerCamelCase = layer_norm if split_mlp_wi: lowerCamelCase = wi[0].T lowerCamelCase = wi[1].T else: lowerCamelCase = wi.T lowerCamelCase = wo.T if scalable_attention: # convert the rel_embedding of each layer lowerCamelCase = tax_relpos_bias_lookup(snake_case__ , snake_case__ , """decoder""" ).T lowerCamelCase = old["""decoder/decoder_norm/scale"""] # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: lowerCamelCase = old["""decoder/logits_dense/kernel"""].T return new def a__ ( snake_case__ , snake_case__ ) -> Optional[int]: lowerCamelCase = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: lowerCamelCase = state_dict["""shared.weight"""] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: lowerCamelCase = state_dict["""shared.weight"""] if "lm_head.weight" not in state_dict: # For old 1.0 models. print("""Using shared word embeddings as lm_head.""" ) lowerCamelCase = state_dict["""shared.weight"""] return state_dict def a__ ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) -> List[Any]: lowerCamelCase = checkpoints.load_tax_checkpoint(snake_case__ ) lowerCamelCase = convert_tax_to_pytorch( snake_case__ , num_layers=config.num_layers , is_encoder_only=snake_case__ , scalable_attention=snake_case__ ) lowerCamelCase = make_state_dict(snake_case__ , snake_case__ ) model.load_state_dict(snake_case__ , strict=snake_case__ ) def a__ ( snake_case__ , snake_case__ , snake_case__ , snake_case__ = False , snake_case__ = False , ) -> str: lowerCamelCase = MTaConfig.from_json_file(snake_case__ ) print(F'Building PyTorch model from configuration: {config}' ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: lowerCamelCase = UMTaEncoderModel(snake_case__ ) else: lowerCamelCase = UMTaForConditionalGeneration(snake_case__ ) # Load weights from tf checkpoint load_tax_weights_in_ta(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) # Save pytorch-model print(F'Save PyTorch model to {pytorch_dump_path}' ) model.save_pretrained(snake_case__ ) # Verify that we can load the checkpoint. model.from_pretrained(snake_case__ ) print("""Done""" ) if __name__ == "__main__": lowerCAmelCase : Optional[int] = argparse.ArgumentParser(description="""Converts a native T5X checkpoint into a PyTorch checkpoint.""") # Required parameters parser.add_argument( """--t5x_checkpoint_path""", default=None, type=str, required=True, help="""Path to the T5X checkpoint.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help="""The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.""", ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--is_encoder_only""", action="""store_true""", help="""Check if the model is encoder-decoder model""", default=False ) parser.add_argument( """--scalable_attention""", action="""store_true""", help="""Whether the model uses scaled attention (umt5 model)""", default=False, ) lowerCAmelCase : int = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only, args.scalable_attention, )
291
0
'''simple docstring''' import torch from diffusers import StableDiffusionPipeline _lowercase : List[str] = "path-to-your-trained-model" _lowercase : Any = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.floataa).to("cuda") _lowercase : Union[str, Any] = "A photo of sks dog in a bucket" _lowercase : Dict = pipe(prompt, num_inference_steps=50, guidance_scale=7.5).images[0] image.save("dog-bucket.png")
21
'''simple docstring''' from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_torch_available, is_torch_tpu_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_torch_available(): import torch if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm _lowercase : int = logging.get_logger(__name__) @dataclass class __magic_name__ ( _UpperCAmelCase): UpperCamelCase__ = [ '''no_inference''', '''no_cuda''', '''no_tpu''', '''no_speed''', '''no_memory''', '''no_env_print''', '''no_multi_process''', ] def __init__( self : Optional[Any] , **lowercase_ : int ): for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: lowercase_ : Optional[int] = deprecated_arg[3:] setattr(self , lowercase_ , not kwargs.pop(lowercase_ ) ) logger.warning( f'''{deprecated_arg} is depreciated. Please use --no_{positive_arg} or''' f''' {positive_arg}={kwargs[positive_arg]}''' ) lowercase_ : Tuple = kwargs.pop("""torchscript""" , self.torchscript ) lowercase_ : List[Any] = kwargs.pop("""torch_xla_tpu_print_metrics""" , self.torch_xla_tpu_print_metrics ) lowercase_ : List[Any] = kwargs.pop("""fp16_opt_level""" , self.fpaa_opt_level ) super().__init__(**lowercase_ ) UpperCamelCase__ = field(default=_UpperCAmelCase, metadata={'''help''': '''Trace the models using torchscript'''}) UpperCamelCase__ = field(default=_UpperCAmelCase, metadata={'''help''': '''Print Xla/PyTorch tpu metrics'''}) UpperCamelCase__ = field( default='''O1''', metadata={ '''help''': ( '''For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\']. ''' '''See details at https://nvidia.github.io/apex/amp.html''' ) }, ) @cached_property def SCREAMING_SNAKE_CASE_ ( self : Tuple ): requires_backends(self , ["""torch"""] ) logger.info("""PyTorch: setting up devices""" ) if not self.cuda: lowercase_ : Optional[Any] = torch.device("""cpu""" ) lowercase_ : Tuple = 0 elif is_torch_tpu_available(): lowercase_ : Optional[int] = xm.xla_device() lowercase_ : str = 0 else: lowercase_ : int = torch.device("""cuda""" if torch.cuda.is_available() else """cpu""" ) lowercase_ : str = torch.cuda.device_count() return device, n_gpu @property def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): return is_torch_tpu_available() and self.tpu @property def SCREAMING_SNAKE_CASE_ ( self : List[str] ): requires_backends(self , ["""torch"""] ) # TODO(PVP): currently only single GPU is supported return torch.cuda.current_device() @property def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): requires_backends(self , ["""torch"""] ) return self._setup_devices[0] @property def SCREAMING_SNAKE_CASE_ ( self : int ): requires_backends(self , ["""torch"""] ) return self._setup_devices[1] @property def SCREAMING_SNAKE_CASE_ ( self : int ): return self.n_gpu > 0
21
1
from __future__ import annotations import os from collections.abc import Mapping lowerCAmelCase__ = tuple[int, int] class snake_case__: """simple docstring""" def __init__( self : Any , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Optional[int] ): lowercase__ : Optional[int] = vertices lowercase__ : int = { (min(__snake_case ), max(__snake_case )): weight for edge, weight in edges.items() } def snake_case ( self : Tuple , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Any ): self.vertices.add(edge[0] ) self.vertices.add(edge[1] ) lowercase__ : List[str] = weight def snake_case ( self : int ): lowercase__ : Dict = Graph({min(self.vertices )} , {} ) lowercase__ : Optional[int] = 42 lowercase__ : Optional[Any] = 42 lowercase__ : int = 42 lowercase__ : int = 42 while len(subgraph.vertices ) < len(self.vertices ): lowercase__ : int = max(self.edges.values() ) + 1 for edge, weight in self.edges.items(): if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices): if weight < min_weight: lowercase__ : Tuple = edge lowercase__ : Any = weight subgraph.add_edge(__snake_case , __snake_case ) return subgraph def __lowerCamelCase ( lowerCamelCase__ = "p107_network.txt" ): """simple docstring""" lowercase__ : int = os.path.abspath(os.path.dirname(_snake_case ) ) lowercase__ : str = os.path.join(_snake_case , _snake_case ) lowercase__ : Optional[Any] = {} lowercase__ : Tuple = 42 lowercase__ : int = 42 lowercase__ : Union[str, Any] = 42 with open(_snake_case ) as f: lowercase__ : int = f.read().strip().split("\n" ) lowercase__ : Optional[int] = [line.split("," ) for line in data] for edgea in range(1 , len(_snake_case ) ): for edgea in range(_snake_case ): if adjaceny_matrix[edgea][edgea] != "-": lowercase__ : Dict = int(adjaceny_matrix[edgea][edgea] ) lowercase__ : str = Graph(set(range(len(_snake_case ) ) ) , _snake_case ) lowercase__ : Optional[int] = graph.prims_algorithm() lowercase__ : Union[str, Any] = sum(graph.edges.values() ) lowercase__ : Optional[int] = sum(subgraph.edges.values() ) return initial_total - optimal_total if __name__ == "__main__": print(f'''{solution() = }''')
130
import argparse import re from pathlib import Path import requests import torch from PIL import Image from torchvision.transforms import CenterCrop, Compose, Normalize, Resize, ToTensor from transformers import ( EfficientFormerConfig, EfficientFormerForImageClassificationWithTeacher, EfficientFormerImageProcessor, ) from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def UpperCamelCase_( _snake_case : int , _snake_case : int ): """simple docstring""" __a =old_name if "patch_embed" in old_name: __a , __a , __a =old_name.split('.' ) if layer == "0": __a =old_name.replace('0' , 'convolution1' ) elif layer == "1": __a =old_name.replace('1' , 'batchnorm_before' ) elif layer == "3": __a =old_name.replace('3' , 'convolution2' ) else: __a =old_name.replace('4' , 'batchnorm_after' ) if "network" in old_name and re.search(r'\d\.\d' , _snake_case ): __a =r'\b\d{2}\b' if bool(re.search(_snake_case , _snake_case ) ): __a =re.search(r'\d\.\d\d.' , _snake_case ).group() else: __a =re.search(r'\d\.\d.' , _snake_case ).group() if int(match[0] ) < 6: __a =old_name.replace(_snake_case , '' ) __a =trimmed_name.replace('network' , match[0] + '.meta4D_layers.blocks.' + match[2:-1] ) __a ='intermediate_stages.' + trimmed_name else: __a =old_name.replace(_snake_case , '' ) if int(match[2] ) < num_meta4D_last_stage: __a =trimmed_name.replace('network' , 'meta4D_layers.blocks.' + match[2] ) else: __a =str(int(match[2] ) - num_meta4D_last_stage ) __a =trimmed_name.replace('network' , 'meta3D_layers.blocks.' + layer_index ) if "norm1" in old_name: __a =trimmed_name.replace('norm1' , 'layernorm1' ) elif "norm2" in old_name: __a =trimmed_name.replace('norm2' , 'layernorm2' ) elif "fc1" in old_name: __a =trimmed_name.replace('fc1' , 'linear_in' ) elif "fc2" in old_name: __a =trimmed_name.replace('fc2' , 'linear_out' ) __a ='last_stage.' + trimmed_name elif "network" in old_name and re.search(r'.\d.' , _snake_case ): __a =old_name.replace('network' , 'intermediate_stages' ) if "fc" in new_name: __a =new_name.replace('fc' , 'convolution' ) elif ("norm1" in new_name) and ("layernorm1" not in new_name): __a =new_name.replace('norm1' , 'batchnorm_before' ) elif ("norm2" in new_name) and ("layernorm2" not in new_name): __a =new_name.replace('norm2' , 'batchnorm_after' ) if "proj" in new_name: __a =new_name.replace('proj' , 'projection' ) if "dist_head" in new_name: __a =new_name.replace('dist_head' , 'distillation_classifier' ) elif "head" in new_name: __a =new_name.replace('head' , 'classifier' ) elif "patch_embed" in new_name: __a ='efficientformer.' + new_name elif new_name == "norm.weight" or new_name == "norm.bias": __a =new_name.replace('norm' , 'layernorm' ) __a ='efficientformer.' + new_name else: __a ='efficientformer.encoder.' + new_name return new_name def UpperCamelCase_( _snake_case : List[str] , _snake_case : Dict ): """simple docstring""" for key in checkpoint.copy().keys(): __a =checkpoint.pop(_snake_case ) __a =val return checkpoint def UpperCamelCase_( ): """simple docstring""" __a ='http://images.cocodataset.org/val2017/000000039769.jpg' __a =Image.open(requests.get(_snake_case , stream=_snake_case ).raw ) return image def UpperCamelCase_( _snake_case : Path , _snake_case : Path , _snake_case : Path , _snake_case : bool ): """simple docstring""" __a =torch.load(_snake_case , map_location='cpu' )['model'] __a =EfficientFormerConfig.from_json_file(_snake_case ) __a =EfficientFormerForImageClassificationWithTeacher(_snake_case ) __a ='_'.join(checkpoint_path.split('/' )[-1].split('.' )[0].split('_' )[:-1] ) __a =config.depths[-1] - config.num_metaad_blocks + 1 __a =convert_torch_checkpoint(_snake_case , _snake_case ) model.load_state_dict(_snake_case ) model.eval() __a ={ 'bilinear': PILImageResampling.BILINEAR, 'bicubic': PILImageResampling.BICUBIC, 'nearest': PILImageResampling.NEAREST, } # prepare image __a =prepare_img() __a =256 __a =224 __a =EfficientFormerImageProcessor( size={'shortest_edge': image_size} , crop_size={'height': crop_size, 'width': crop_size} , resample=pillow_resamplings['bicubic'] , ) __a =processor(images=_snake_case , return_tensors='pt' ).pixel_values # original processing pipeline __a =Compose( [ Resize(_snake_case , interpolation=pillow_resamplings['bicubic'] ), CenterCrop(_snake_case ), ToTensor(), Normalize(_snake_case , _snake_case ), ] ) __a =image_transforms(_snake_case ).unsqueeze(0 ) assert torch.allclose(_snake_case , _snake_case ) __a =model(_snake_case ) __a =outputs.logits __a =(1, 1000) if "l1" in model_name: __a =torch.Tensor( [-0.1_312, 0.4_353, -1.0_499, -0.5_124, 0.4_183, -0.6_793, -1.3_777, -0.0_893, -0.7_358, -2.4_328] ) assert torch.allclose(logits[0, :10] , _snake_case , atol=1e-3 ) assert logits.shape == expected_shape elif "l3" in model_name: __a =torch.Tensor( [-1.3_150, -1.5_456, -1.2_556, -0.8_496, -0.7_127, -0.7_897, -0.9_728, -0.3_052, 0.3_751, -0.3_127] ) assert torch.allclose(logits[0, :10] , _snake_case , atol=1e-3 ) assert logits.shape == expected_shape elif "l7" in model_name: __a =torch.Tensor( [-1.0_283, -1.4_131, -0.5_644, -1.3_115, -0.5_785, -1.2_049, -0.7_528, 0.1_992, -0.3_822, -0.0_878] ) assert logits.shape == expected_shape else: raise ValueError( F'Unknown model checkpoint: {checkpoint_path}. Supported version of efficientformer are l1, l3 and l7' ) # Save Checkpoints Path(_snake_case ).mkdir(exist_ok=_snake_case ) model.save_pretrained(_snake_case ) print(F'Checkpoint successfuly converted. Model saved at {pytorch_dump_path}' ) processor.save_pretrained(_snake_case ) print(F'Processor successfuly saved at {pytorch_dump_path}' ) if push_to_hub: print('Pushing model to the hub...' ) model.push_to_hub( repo_id=F'Bearnardd/{pytorch_dump_path}' , commit_message='Add model' , use_temp_dir=_snake_case , ) processor.push_to_hub( repo_id=F'Bearnardd/{pytorch_dump_path}' , commit_message='Add image processor' , use_temp_dir=_snake_case , ) if __name__ == "__main__": _lowerCAmelCase : int = argparse.ArgumentParser() # Required parameters parser.add_argument( "--pytorch_model_path", default=None, type=str, required=True, help="Path to EfficientFormer pytorch checkpoint.", ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The json file for EfficientFormer model config.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument("--push_to_hub", action="store_true", help="Push model and image processor to the hub") parser.add_argument( "--no-push_to_hub", dest="push_to_hub", action="store_false", help="Do not push model and image processor to the hub", ) parser.set_defaults(push_to_hub=True) _lowerCAmelCase : Union[str, Any] = parser.parse_args() convert_efficientformer_checkpoint( checkpoint_path=args.pytorch_model_path, efficientformer_config_file=args.config_file, pytorch_dump_path=args.pytorch_dump_path, push_to_hub=args.push_to_hub, )
218
0
"""simple docstring""" import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ConvNextConfig, SegformerImageProcessor, UperNetConfig, UperNetForSemanticSegmentation def _A ( UpperCamelCase_ : Optional[int]) -> List[str]: '''simple docstring''' __lowercase = 384 if "tiny" in model_name: __lowercase = [3, 3, 9, 3] __lowercase = [96, 192, 384, 768] if "small" in model_name: __lowercase = [3, 3, 27, 3] __lowercase = [96, 192, 384, 768] if "base" in model_name: __lowercase = [3, 3, 27, 3] __lowercase = [128, 256, 512, 1024] __lowercase = 512 if "large" in model_name: __lowercase = [3, 3, 27, 3] __lowercase = [192, 384, 768, 1536] __lowercase = 768 if "xlarge" in model_name: __lowercase = [3, 3, 27, 3] __lowercase = [256, 512, 1024, 2048] __lowercase = 1024 # set label information __lowercase = 150 __lowercase = "huggingface/label-files" __lowercase = "ade20k-id2label.json" __lowercase = json.load(open(hf_hub_download(UpperCamelCase_, UpperCamelCase_, repo_type="dataset"), "r")) __lowercase = {int(UpperCamelCase_): v for k, v in idalabel.items()} __lowercase = {v: k for k, v in idalabel.items()} __lowercase = ConvNextConfig( depths=UpperCamelCase_, hidden_sizes=UpperCamelCase_, out_features=["stage1", "stage2", "stage3", "stage4"]) __lowercase = UperNetConfig( backbone_config=UpperCamelCase_, auxiliary_in_channels=UpperCamelCase_, num_labels=UpperCamelCase_, idalabel=UpperCamelCase_, labelaid=UpperCamelCase_, ) return config def _A ( UpperCamelCase_ : List[str]) -> str: '''simple docstring''' __lowercase = [] # fmt: off # stem rename_keys.append(("backbone.downsample_layers.0.0.weight", "backbone.embeddings.patch_embeddings.weight")) rename_keys.append(("backbone.downsample_layers.0.0.bias", "backbone.embeddings.patch_embeddings.bias")) rename_keys.append(("backbone.downsample_layers.0.1.weight", "backbone.embeddings.layernorm.weight")) rename_keys.append(("backbone.downsample_layers.0.1.bias", "backbone.embeddings.layernorm.bias")) # stages for i in range(len(config.backbone_config.depths)): for j in range(config.backbone_config.depths[i]): rename_keys.append((F"""backbone.stages.{i}.{j}.gamma""", F"""backbone.encoder.stages.{i}.layers.{j}.layer_scale_parameter""")) rename_keys.append((F"""backbone.stages.{i}.{j}.depthwise_conv.weight""", F"""backbone.encoder.stages.{i}.layers.{j}.dwconv.weight""")) rename_keys.append((F"""backbone.stages.{i}.{j}.depthwise_conv.bias""", F"""backbone.encoder.stages.{i}.layers.{j}.dwconv.bias""")) rename_keys.append((F"""backbone.stages.{i}.{j}.norm.weight""", F"""backbone.encoder.stages.{i}.layers.{j}.layernorm.weight""")) rename_keys.append((F"""backbone.stages.{i}.{j}.norm.bias""", F"""backbone.encoder.stages.{i}.layers.{j}.layernorm.bias""")) rename_keys.append((F"""backbone.stages.{i}.{j}.pointwise_conv1.weight""", F"""backbone.encoder.stages.{i}.layers.{j}.pwconv1.weight""")) rename_keys.append((F"""backbone.stages.{i}.{j}.pointwise_conv1.bias""", F"""backbone.encoder.stages.{i}.layers.{j}.pwconv1.bias""")) rename_keys.append((F"""backbone.stages.{i}.{j}.pointwise_conv2.weight""", F"""backbone.encoder.stages.{i}.layers.{j}.pwconv2.weight""")) rename_keys.append((F"""backbone.stages.{i}.{j}.pointwise_conv2.bias""", F"""backbone.encoder.stages.{i}.layers.{j}.pwconv2.bias""")) if i > 0: rename_keys.append((F"""backbone.downsample_layers.{i}.0.weight""", F"""backbone.encoder.stages.{i}.downsampling_layer.0.weight""")) rename_keys.append((F"""backbone.downsample_layers.{i}.0.bias""", F"""backbone.encoder.stages.{i}.downsampling_layer.0.bias""")) rename_keys.append((F"""backbone.downsample_layers.{i}.1.weight""", F"""backbone.encoder.stages.{i}.downsampling_layer.1.weight""")) rename_keys.append((F"""backbone.downsample_layers.{i}.1.bias""", F"""backbone.encoder.stages.{i}.downsampling_layer.1.bias""")) rename_keys.append((F"""backbone.norm{i}.weight""", F"""backbone.hidden_states_norms.stage{i+1}.weight""")) rename_keys.append((F"""backbone.norm{i}.bias""", F"""backbone.hidden_states_norms.stage{i+1}.bias""")) # decode head rename_keys.extend( [ ("decode_head.conv_seg.weight", "decode_head.classifier.weight"), ("decode_head.conv_seg.bias", "decode_head.classifier.bias"), ("auxiliary_head.conv_seg.weight", "auxiliary_head.classifier.weight"), ("auxiliary_head.conv_seg.bias", "auxiliary_head.classifier.bias"), ]) # fmt: on return rename_keys def _A ( UpperCamelCase_ : Any, UpperCamelCase_ : List[str], UpperCamelCase_ : Tuple) -> List[str]: '''simple docstring''' __lowercase = dct.pop(UpperCamelCase_) __lowercase = val def _A ( UpperCamelCase_ : Union[str, Any], UpperCamelCase_ : List[str], UpperCamelCase_ : Tuple) -> Union[str, Any]: '''simple docstring''' __lowercase = { "upernet-convnext-tiny": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553-cad485de.pth", "upernet-convnext-small": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208-1b1e394f.pth", "upernet-convnext-base": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227-02a24fc6.pth", "upernet-convnext-large": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532-e57aa54d.pth", "upernet-convnext-xlarge": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344-95fc38c2.pth", } __lowercase = model_name_to_url[model_name] __lowercase = torch.hub.load_state_dict_from_url(UpperCamelCase_, map_location="cpu")["state_dict"] __lowercase = get_upernet_config(UpperCamelCase_) __lowercase = UperNetForSemanticSegmentation(UpperCamelCase_) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): __lowercase = state_dict.pop(UpperCamelCase_) if "bn" in key: __lowercase = key.replace("bn", "batch_norm") __lowercase = val # rename keys __lowercase = create_rename_keys(UpperCamelCase_) for src, dest in rename_keys: rename_key(UpperCamelCase_, UpperCamelCase_, UpperCamelCase_) model.load_state_dict(UpperCamelCase_) # verify on image __lowercase = "https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg" __lowercase = Image.open(requests.get(UpperCamelCase_, stream=UpperCamelCase_).raw).convert("RGB") __lowercase = SegformerImageProcessor() __lowercase = processor(UpperCamelCase_, return_tensors="pt").pixel_values with torch.no_grad(): __lowercase = model(UpperCamelCase_) if model_name == "upernet-convnext-tiny": __lowercase = torch.tensor( [[-8.8_110, -8.8_110, -8.6_521], [-8.8_110, -8.8_110, -8.6_521], [-8.7_746, -8.7_746, -8.6_130]]) elif model_name == "upernet-convnext-small": __lowercase = torch.tensor( [[-8.8_236, -8.8_236, -8.6_771], [-8.8_236, -8.8_236, -8.6_771], [-8.7_638, -8.7_638, -8.6_240]]) elif model_name == "upernet-convnext-base": __lowercase = torch.tensor( [[-8.8_558, -8.8_558, -8.6_905], [-8.8_558, -8.8_558, -8.6_905], [-8.7_669, -8.7_669, -8.6_021]]) elif model_name == "upernet-convnext-large": __lowercase = torch.tensor( [[-8.6_660, -8.6_660, -8.6_210], [-8.6_660, -8.6_660, -8.6_210], [-8.6_310, -8.6_310, -8.5_964]]) elif model_name == "upernet-convnext-xlarge": __lowercase = torch.tensor( [[-8.4_980, -8.4_980, -8.3_977], [-8.4_980, -8.4_980, -8.3_977], [-8.4_379, -8.4_379, -8.3_412]]) print("Logits:", outputs.logits[0, 0, :3, :3]) assert torch.allclose(outputs.logits[0, 0, :3, :3], UpperCamelCase_, atol=1E-4) print("Looks ok!") if pytorch_dump_folder_path is not None: print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""") model.save_pretrained(UpperCamelCase_) print(F"""Saving processor to {pytorch_dump_folder_path}""") processor.save_pretrained(UpperCamelCase_) if push_to_hub: print(F"""Pushing model and processor for {model_name} to hub""") model.push_to_hub(F"""openmmlab/{model_name}""") processor.push_to_hub(F"""openmmlab/{model_name}""") if __name__ == "__main__": _a = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='upernet-convnext-tiny', type=str, choices=[F"upernet-convnext-{size}" for size in ['tiny', 'small', 'base', 'large', 'xlarge']], help='Name of the ConvNext UperNet model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) _a = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
144
"""simple docstring""" import argparse import shlex import runhouse as rh if __name__ == "__main__": # Refer to https://runhouse-docs.readthedocs-hosted.com/en/latest/api/python/cluster.html#hardware-setup for cloud access # setup instructions, if using on-demand hardware # If user passes --user <user> --host <host> --key_path <key_path> <example> <args>, fill them in as BYO cluster # If user passes --instance <instance> --provider <provider> <example> <args>, fill them in as on-demand cluster # Throw an error if user passes both BYO and on-demand cluster args # Otherwise, use default values _a = argparse.ArgumentParser() parser.add_argument('--user', type=str, default='ubuntu') parser.add_argument('--host', type=str, default='localhost') parser.add_argument('--key_path', type=str, default=None) parser.add_argument('--instance', type=str, default='V100:1') parser.add_argument('--provider', type=str, default='cheapest') parser.add_argument('--use_spot', type=bool, default=False) parser.add_argument('--example', type=str, default='pytorch/text-generation/run_generation.py') _a , _a = parser.parse_known_args() if args.host != "localhost": if args.instance != "V100:1" or args.provider != "cheapest": raise ValueError('Cannot specify both BYO and on-demand cluster args') _a = rh.cluster( name='rh-cluster', ips=[args.host], ssh_creds={'ssh_user': args.user, 'ssh_private_key': args.key_path} ) else: _a = rh.cluster( name='rh-cluster', instance_type=args.instance, provider=args.provider, use_spot=args.use_spot ) _a = args.example.rsplit('/', 1)[0] # Set up remote environment cluster.install_packages(['pip:./']) # Installs transformers from local source # Note transformers is copied into the home directory on the remote machine, so we can install from there cluster.run([F"pip install -r transformers/examples/{example_dir}/requirements.txt"]) cluster.run(['pip install torch --upgrade --extra-index-url https://download.pytorch.org/whl/cu117']) # Run example. You can bypass the CLI wrapper and paste your own code here. cluster.run([F"python transformers/examples/{args.example} {' '.join(shlex.quote(arg) for arg in unknown)}"]) # Alternatively, we can just import and run a training function (especially if there's no wrapper CLI): # from my_script... import train # reqs = ['pip:./', 'torch', 'datasets', 'accelerate', 'evaluate', 'tqdm', 'scipy', 'scikit-learn', 'tensorboard'] # launch_train_gpu = rh.function(fn=train, # system=gpu, # reqs=reqs, # name='train_bert_glue') # # We can pass in arguments just like we would to a function: # launch_train_gpu(num_epochs = 3, lr = 2e-5, seed = 42, batch_size = 16 # stream_logs=True)
144
1
'''simple docstring''' import hashlib import unittest from typing import Dict import numpy as np from transformers import ( MODEL_FOR_MASK_GENERATION_MAPPING, TF_MODEL_FOR_MASK_GENERATION_MAPPING, is_vision_available, pipeline, ) from transformers.pipelines import MaskGenerationPipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) if is_vision_available(): from PIL import Image else: class SCREAMING_SNAKE_CASE : @staticmethod def SCREAMING_SNAKE_CASE ( *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' pass def _lowerCAmelCase ( __snake_case : Image ) -> str: __A : Dict = hashlib.mda(image.tobytes() ) return m.hexdigest()[:10] def _lowerCAmelCase ( __snake_case : Image ) -> Dict: __A : Dict = np.array(__snake_case ) __A : List[Any] = npimg.shape return {"hash": hashimage(__snake_case ), "shape": shape} @is_pipeline_test @require_vision @require_torch class SCREAMING_SNAKE_CASE (unittest.TestCase ): lowerCAmelCase = dict( (list(MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if MODEL_FOR_MASK_GENERATION_MAPPING else []) ) lowerCAmelCase = dict( (list(TF_MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if TF_MODEL_FOR_MASK_GENERATION_MAPPING else []) ) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : Any = MaskGenerationPipeline(model=_UpperCAmelCase , image_processor=_UpperCAmelCase) return image_segmenter, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' pass @require_tf @unittest.skip('Image segmentation not implemented in TF') def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' pass @slow @require_torch def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Optional[int] = pipeline('mask-generation' , model='facebook/sam-vit-huge') __A : Tuple = image_segmenter('http://images.cocodataset.org/val2017/000000039769.jpg' , points_per_batch=256) # Shortening by hashing __A : int = [] for i, o in enumerate(outputs['masks']): new_outupt += [{"mask": mask_to_test_readable(_UpperCAmelCase), "scores": outputs["scores"][i]}] # fmt: off self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=4) , [ {'mask': {'hash': '115ad19f5f', 'shape': (480, 640)}, 'scores': 1.0444}, {'mask': {'hash': '6affa964c6', 'shape': (480, 640)}, 'scores': 1.021}, {'mask': {'hash': 'dfe28a0388', 'shape': (480, 640)}, 'scores': 1.0167}, {'mask': {'hash': 'c0a5f4a318', 'shape': (480, 640)}, 'scores': 1.0132}, {'mask': {'hash': 'fe8065c197', 'shape': (480, 640)}, 'scores': 1.0053}, {'mask': {'hash': 'e2d0b7a0b7', 'shape': (480, 640)}, 'scores': 0.9967}, {'mask': {'hash': '453c7844bd', 'shape': (480, 640)}, 'scores': 0.993}, {'mask': {'hash': '3d44f2926d', 'shape': (480, 640)}, 'scores': 0.9909}, {'mask': {'hash': '64033ddc3f', 'shape': (480, 640)}, 'scores': 0.9879}, {'mask': {'hash': '801064ff79', 'shape': (480, 640)}, 'scores': 0.9834}, {'mask': {'hash': '6172f276ef', 'shape': (480, 640)}, 'scores': 0.9716}, {'mask': {'hash': 'b49e60e084', 'shape': (480, 640)}, 'scores': 0.9612}, {'mask': {'hash': 'a811e775fd', 'shape': (480, 640)}, 'scores': 0.9599}, {'mask': {'hash': 'a6a8ebcf4b', 'shape': (480, 640)}, 'scores': 0.9552}, {'mask': {'hash': '9d8257e080', 'shape': (480, 640)}, 'scores': 0.9532}, {'mask': {'hash': '32de6454a8', 'shape': (480, 640)}, 'scores': 0.9516}, {'mask': {'hash': 'af3d4af2c8', 'shape': (480, 640)}, 'scores': 0.9499}, {'mask': {'hash': '3c6db475fb', 'shape': (480, 640)}, 'scores': 0.9483}, {'mask': {'hash': 'c290813fb9', 'shape': (480, 640)}, 'scores': 0.9464}, {'mask': {'hash': 'b6f0b8f606', 'shape': (480, 640)}, 'scores': 0.943}, {'mask': {'hash': '92ce16bfdf', 'shape': (480, 640)}, 'scores': 0.943}, {'mask': {'hash': 'c749b25868', 'shape': (480, 640)}, 'scores': 0.9408}, {'mask': {'hash': 'efb6cab859', 'shape': (480, 640)}, 'scores': 0.9335}, {'mask': {'hash': '1ff2eafb30', 'shape': (480, 640)}, 'scores': 0.9326}, {'mask': {'hash': '788b798e24', 'shape': (480, 640)}, 'scores': 0.9262}, {'mask': {'hash': 'abea804f0e', 'shape': (480, 640)}, 'scores': 0.8999}, {'mask': {'hash': '7b9e8ddb73', 'shape': (480, 640)}, 'scores': 0.8986}, {'mask': {'hash': 'cd24047c8a', 'shape': (480, 640)}, 'scores': 0.8984}, {'mask': {'hash': '6943e6bcbd', 'shape': (480, 640)}, 'scores': 0.8873}, {'mask': {'hash': 'b5f47c9191', 'shape': (480, 640)}, 'scores': 0.8871} ] , ) # fmt: on @require_torch @slow def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : int = 'facebook/sam-vit-huge' __A : Optional[Any] = pipeline('mask-generation' , model=_UpperCAmelCase) __A : int = image_segmenter( 'http://images.cocodataset.org/val2017/000000039769.jpg' , pred_iou_thresh=1 , points_per_batch=256) # Shortening by hashing __A : int = [] for i, o in enumerate(outputs['masks']): new_outupt += [{"mask": mask_to_test_readable(_UpperCAmelCase), "scores": outputs["scores"][i]}] self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=4) , [ {'mask': {'hash': '115ad19f5f', 'shape': (480, 640)}, 'scores': 1.0444}, {'mask': {'hash': '6affa964c6', 'shape': (480, 640)}, 'scores': 1.0210}, {'mask': {'hash': 'dfe28a0388', 'shape': (480, 640)}, 'scores': 1.0167}, {'mask': {'hash': 'c0a5f4a318', 'shape': (480, 640)}, 'scores': 1.0132}, {'mask': {'hash': 'fe8065c197', 'shape': (480, 640)}, 'scores': 1.0053}, ] , )
190
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase__ : List[str] = { '''configuration_git''': ['''GIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GitConfig''', '''GitVisionConfig'''], '''processing_git''': ['''GitProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : Any = [ '''GIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GitForCausalLM''', '''GitModel''', '''GitPreTrainedModel''', '''GitVisionModel''', ] if TYPE_CHECKING: from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig from .processing_git import GitProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_git import ( GIT_PRETRAINED_MODEL_ARCHIVE_LIST, GitForCausalLM, GitModel, GitPreTrainedModel, GitVisionModel, ) else: import sys lowercase__ : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
190
1
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import AlignProcessor, EfficientNetImageProcessor @require_vision class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): def snake_case__ ( self : str ): __magic_name__ = tempfile.mkdtemp() __magic_name__ = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] __magic_name__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) __magic_name__ = { '''do_resize''': True, '''size''': 20, '''do_center_crop''': True, '''crop_size''': 18, '''do_normalize''': True, '''image_mean''': [0.48_145_466, 0.4_578_275, 0.40_821_073], '''image_std''': [0.26_862_954, 0.26_130_258, 0.27_577_711], } __magic_name__ = os.path.join(self.tmpdirname , _SCREAMING_SNAKE_CASE ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def snake_case__ ( self : Dict , **a__ : Dict ): return BertTokenizer.from_pretrained(self.tmpdirname , **_SCREAMING_SNAKE_CASE ) def snake_case__ ( self : Any , **a__ : int ): return BertTokenizerFast.from_pretrained(self.tmpdirname , **_SCREAMING_SNAKE_CASE ) def snake_case__ ( self : Dict , **a__ : List[str] ): return EfficientNetImageProcessor.from_pretrained(self.tmpdirname , **_SCREAMING_SNAKE_CASE ) def snake_case__ ( self : int ): shutil.rmtree(self.tmpdirname ) def snake_case__ ( self : Optional[Any] ): __magic_name__ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] __magic_name__ = [Image.fromarray(np.moveaxis(_SCREAMING_SNAKE_CASE , 0 , -1 ) ) for x in image_inputs] return image_inputs def snake_case__ ( self : List[Any] ): __magic_name__ = self.get_tokenizer() __magic_name__ = self.get_rust_tokenizer() __magic_name__ = self.get_image_processor() __magic_name__ = AlignProcessor(tokenizer=_SCREAMING_SNAKE_CASE , image_processor=_SCREAMING_SNAKE_CASE ) processor_slow.save_pretrained(self.tmpdirname ) __magic_name__ = AlignProcessor.from_pretrained(self.tmpdirname , use_fast=_SCREAMING_SNAKE_CASE ) __magic_name__ = AlignProcessor(tokenizer=_SCREAMING_SNAKE_CASE , image_processor=_SCREAMING_SNAKE_CASE ) processor_fast.save_pretrained(self.tmpdirname ) __magic_name__ = AlignProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , _SCREAMING_SNAKE_CASE ) self.assertIsInstance(processor_fast.tokenizer , _SCREAMING_SNAKE_CASE ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , _SCREAMING_SNAKE_CASE ) self.assertIsInstance(processor_fast.image_processor , _SCREAMING_SNAKE_CASE ) def snake_case__ ( self : Optional[Any] ): __magic_name__ = AlignProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __magic_name__ = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) __magic_name__ = self.get_image_processor(do_normalize=_SCREAMING_SNAKE_CASE , padding_value=1.0 ) __magic_name__ = AlignProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=_SCREAMING_SNAKE_CASE , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _SCREAMING_SNAKE_CASE ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _SCREAMING_SNAKE_CASE ) def snake_case__ ( self : Optional[int] ): __magic_name__ = self.get_image_processor() __magic_name__ = self.get_tokenizer() __magic_name__ = AlignProcessor(tokenizer=_SCREAMING_SNAKE_CASE , image_processor=_SCREAMING_SNAKE_CASE ) __magic_name__ = self.prepare_image_inputs() __magic_name__ = image_processor(_SCREAMING_SNAKE_CASE , return_tensors='''np''' ) __magic_name__ = processor(images=_SCREAMING_SNAKE_CASE , return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def snake_case__ ( self : Optional[int] ): __magic_name__ = self.get_image_processor() __magic_name__ = self.get_tokenizer() __magic_name__ = AlignProcessor(tokenizer=_SCREAMING_SNAKE_CASE , image_processor=_SCREAMING_SNAKE_CASE ) __magic_name__ = '''lower newer''' __magic_name__ = processor(text=_SCREAMING_SNAKE_CASE ) __magic_name__ = tokenizer(_SCREAMING_SNAKE_CASE , padding='''max_length''' , max_length=64 ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def snake_case__ ( self : str ): __magic_name__ = self.get_image_processor() __magic_name__ = self.get_tokenizer() __magic_name__ = AlignProcessor(tokenizer=_SCREAMING_SNAKE_CASE , image_processor=_SCREAMING_SNAKE_CASE ) __magic_name__ = '''lower newer''' __magic_name__ = self.prepare_image_inputs() __magic_name__ = processor(text=_SCREAMING_SNAKE_CASE , images=_SCREAMING_SNAKE_CASE ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(_SCREAMING_SNAKE_CASE ): processor() def snake_case__ ( self : Union[str, Any] ): __magic_name__ = self.get_image_processor() __magic_name__ = self.get_tokenizer() __magic_name__ = AlignProcessor(tokenizer=_SCREAMING_SNAKE_CASE , image_processor=_SCREAMING_SNAKE_CASE ) __magic_name__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __magic_name__ = processor.batch_decode(_SCREAMING_SNAKE_CASE ) __magic_name__ = tokenizer.batch_decode(_SCREAMING_SNAKE_CASE ) self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def snake_case__ ( self : Dict ): __magic_name__ = self.get_image_processor() __magic_name__ = self.get_tokenizer() __magic_name__ = AlignProcessor(tokenizer=_SCREAMING_SNAKE_CASE , image_processor=_SCREAMING_SNAKE_CASE ) __magic_name__ = '''lower newer''' __magic_name__ = self.prepare_image_inputs() __magic_name__ = processor(text=_SCREAMING_SNAKE_CASE , images=_SCREAMING_SNAKE_CASE ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
371
'''simple docstring''' from random import randint, random def UpperCamelCase ( a , a , a , a = False , a = False , a = 5 , ) -> list: '''simple docstring''' __magic_name__ = [[-1] * number_of_cells] # Create a highway without any car __magic_name__ = 0 __magic_name__ = max(a , 0 ) while i < number_of_cells: __magic_name__ = ( randint(0 , a ) if random_speed else initial_speed ) # Place the cars i += ( randint(1 , max_speed * 2 ) if random_frequency else frequency ) # Arbitrary number, may need tuning return highway def UpperCamelCase ( a , a ) -> int: '''simple docstring''' __magic_name__ = 0 __magic_name__ = highway_now[car_index + 1 :] for cell in range(len(a ) ): # May need a better name for this if cells[cell] != -1: # If the cell is not empty then return distance # we have the distance we wanted distance += 1 # Here if the car is near the end of the highway return distance + get_distance(a , -1 ) def UpperCamelCase ( a , a , a ) -> list: '''simple docstring''' __magic_name__ = len(a ) # Beforce calculations, the highway is empty __magic_name__ = [-1] * number_of_cells for car_index in range(a ): if highway_now[car_index] != -1: # Add 1 to the current speed of the car and cap the speed __magic_name__ = min(highway_now[car_index] + 1 , a ) # Number of empty cell before the next car __magic_name__ = get_distance(a , a ) - 1 # We can't have the car causing an accident __magic_name__ = min(next_highway[car_index] , a ) if random() < probability: # Randomly, a driver will slow down __magic_name__ = max(next_highway[car_index] - 1 , 0 ) return next_highway def UpperCamelCase ( a , a , a , a ) -> list: '''simple docstring''' __magic_name__ = len(highway[0] ) for i in range(a ): __magic_name__ = update(highway[i] , a , a ) __magic_name__ = [-1] * number_of_cells for car_index in range(a ): __magic_name__ = next_speeds_calculated[car_index] if speed != -1: # Change the position based on the speed (with % to create the loop) __magic_name__ = (car_index + speed) % number_of_cells # Commit the change of position __magic_name__ = speed highway.append(a ) return highway if __name__ == "__main__": import doctest doctest.testmod()
98
0
import sys from typing import Tuple import numpy as np import torch from PIL import Image from torch import nn from transformers.image_utils import PILImageResampling from utils import img_tensorize class __lowerCAmelCase : """simple docstring""" def __init__( self , lowerCamelCase__ , lowerCamelCase__=sys.maxsize ) -> List[str]: '''simple docstring''' __lowerCamelCase = 'bilinear' __lowerCamelCase = max_size __lowerCamelCase = short_edge_length def __call__( self , lowerCamelCase__ ) -> Optional[int]: '''simple docstring''' __lowerCamelCase = [] for img in imgs: __lowerCamelCase , __lowerCamelCase = img.shape[:2] # later: provide list and randomly choose index for resize __lowerCamelCase = np.random.randint(self.short_edge_length[0] , self.short_edge_length[1] + 1 ) if size == 0: return img __lowerCamelCase = size * 1.0 / min(lowerCamelCase__ , lowerCamelCase__ ) if h < w: __lowerCamelCase , __lowerCamelCase = size, scale * w else: __lowerCamelCase , __lowerCamelCase = scale * h, size if max(lowerCamelCase__ , lowerCamelCase__ ) > self.max_size: __lowerCamelCase = self.max_size * 1.0 / max(lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase = newh * scale __lowerCamelCase = neww * scale __lowerCamelCase = int(neww + 0.5 ) __lowerCamelCase = int(newh + 0.5 ) if img.dtype == np.uinta: __lowerCamelCase = Image.fromarray(lowerCamelCase__ ) __lowerCamelCase = pil_image.resize((neww, newh) , PILImageResampling.BILINEAR ) __lowerCamelCase = np.asarray(lowerCamelCase__ ) else: __lowerCamelCase = img.permute(2 , 0 , 1 ).unsqueeze(0 ) # 3, 0, 1) # hw(c) -> nchw __lowerCamelCase = nn.functional.interpolate( lowerCamelCase__ , (newh, neww) , mode=self.interp_method , align_corners=lowerCamelCase__ ).squeeze(0 ) img_augs.append(lowerCamelCase__ ) return img_augs class __lowerCAmelCase : """simple docstring""" def __init__( self , lowerCamelCase__ ) -> Optional[int]: '''simple docstring''' __lowerCamelCase = ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST] , cfg.INPUT.MAX_SIZE_TEST ) __lowerCamelCase = cfg.INPUT.FORMAT __lowerCamelCase = cfg.SIZE_DIVISIBILITY __lowerCamelCase = cfg.PAD_VALUE __lowerCamelCase = cfg.INPUT.MAX_SIZE_TEST __lowerCamelCase = cfg.MODEL.DEVICE __lowerCamelCase = torch.tensor(cfg.MODEL.PIXEL_STD ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) __lowerCamelCase = torch.tensor(cfg.MODEL.PIXEL_MEAN ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) __lowerCamelCase = lambda lowerCamelCase__ : (x - self.pixel_mean) / self.pixel_std def lowercase_ ( self , lowerCamelCase__ ) -> Tuple: '''simple docstring''' __lowerCamelCase = tuple(max(lowerCamelCase__ ) for s in zip(*[img.shape for img in images] ) ) __lowerCamelCase = [im.shape[-2:] for im in images] __lowerCamelCase = [ nn.functional.pad( lowerCamelCase__ , [0, max_size[-1] - size[1], 0, max_size[-2] - size[0]] , value=self.pad_value , ) for size, im in zip(lowerCamelCase__ , lowerCamelCase__ ) ] return torch.stack(lowerCamelCase__ ), torch.tensor(lowerCamelCase__ ) def __call__( self , lowerCamelCase__ , lowerCamelCase__=False ) -> List[Any]: '''simple docstring''' with torch.no_grad(): if not isinstance(lowerCamelCase__ , lowerCamelCase__ ): __lowerCamelCase = [images] if single_image: assert len(lowerCamelCase__ ) == 1 for i in range(len(lowerCamelCase__ ) ): if isinstance(images[i] , torch.Tensor ): images.insert(lowerCamelCase__ , images.pop(lowerCamelCase__ ).to(self.device ).float() ) elif not isinstance(images[i] , torch.Tensor ): images.insert( lowerCamelCase__ , torch.as_tensor(img_tensorize(images.pop(lowerCamelCase__ ) , input_format=self.input_format ) ) .to(self.device ) .float() , ) # resize smallest edge __lowerCamelCase = torch.tensor([im.shape[:2] for im in images] ) __lowerCamelCase = self.aug(lowerCamelCase__ ) # transpose images and convert to torch tensors # images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images] # now normalize before pad to avoid useless arithmetic __lowerCamelCase = [self.normalizer(lowerCamelCase__ ) for x in images] # now pad them to do the following operations __lowerCamelCase , __lowerCamelCase = self.pad(lowerCamelCase__ ) # Normalize if self.size_divisibility > 0: raise NotImplementedError() # pad __lowerCamelCase = torch.true_divide(lowerCamelCase__ , lowerCamelCase__ ) if single_image: return images[0], sizes[0], scales_yx[0] else: return images, sizes, scales_yx def lowerCamelCase_ ( UpperCamelCase__ : List[str] , UpperCamelCase__ : str ) -> List[Any]: """simple docstring""" boxes[:, 0::2] *= scale_yx[:, 1] boxes[:, 1::2] *= scale_yx[:, 0] return boxes def lowerCamelCase_ ( UpperCamelCase__ : List[str] , UpperCamelCase__ : Tuple[int, int] ) -> Dict: """simple docstring""" assert torch.isfinite(UpperCamelCase__ ).all(), "Box tensor contains infinite or NaN!" __lowerCamelCase , __lowerCamelCase = box_size tensor[:, 0].clamp_(min=0 , max=UpperCamelCase__ ) tensor[:, 1].clamp_(min=0 , max=UpperCamelCase__ ) tensor[:, 2].clamp_(min=0 , max=UpperCamelCase__ ) tensor[:, 3].clamp_(min=0 , max=UpperCamelCase__ )
90
'''simple docstring''' import argparse from transformers import ( TapasConfig, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasTokenizer, load_tf_weights_in_tapas, ) from transformers.utils import logging logging.set_verbosity_info() def UpperCAmelCase_ ( __lowercase : int , __lowercase : Dict , __lowercase : str , __lowercase : Optional[Any] , __lowercase : str ) -> List[str]: '''simple docstring''' _UpperCAmelCase = TapasConfig.from_json_file(__lowercase ) # set absolute/relative position embeddings parameter _UpperCAmelCase = reset_position_index_per_cell # set remaining parameters of TapasConfig as well as the model based on the task if task == "SQA": _UpperCAmelCase = TapasForQuestionAnswering(config=__lowercase ) elif task == "WTQ": # run_task_main.py hparams _UpperCAmelCase = 4 _UpperCAmelCase = True # hparam_utils.py hparams _UpperCAmelCase = 0.66_4694 _UpperCAmelCase = 0.20_7951 _UpperCAmelCase = 0.12_1194 _UpperCAmelCase = True _UpperCAmelCase = True _UpperCAmelCase = False _UpperCAmelCase = 0.035_2513 _UpperCAmelCase = TapasForQuestionAnswering(config=__lowercase ) elif task == "WIKISQL_SUPERVISED": # run_task_main.py hparams _UpperCAmelCase = 4 _UpperCAmelCase = False # hparam_utils.py hparams _UpperCAmelCase = 36.4519 _UpperCAmelCase = 0.90_3421 _UpperCAmelCase = 222.088 _UpperCAmelCase = True _UpperCAmelCase = True _UpperCAmelCase = True _UpperCAmelCase = 0.76_3141 _UpperCAmelCase = TapasForQuestionAnswering(config=__lowercase ) elif task == "TABFACT": _UpperCAmelCase = TapasForSequenceClassification(config=__lowercase ) elif task == "MLM": _UpperCAmelCase = TapasForMaskedLM(config=__lowercase ) elif task == "INTERMEDIATE_PRETRAINING": _UpperCAmelCase = TapasModel(config=__lowercase ) else: raise ValueError(f'Task {task} not supported.' ) print(f'Building PyTorch model from configuration: {config}' ) # Load weights from tf checkpoint load_tf_weights_in_tapas(__lowercase , __lowercase , __lowercase ) # Save pytorch-model (weights and configuration) print(f'Save PyTorch model to {pytorch_dump_path}' ) model.save_pretrained(__lowercase ) # Save tokenizer files print(f'Save tokenizer files to {pytorch_dump_path}' ) _UpperCAmelCase = TapasTokenizer(vocab_file=tf_checkpoint_path[:-10] + "vocab.txt" , model_max_length=512 ) tokenizer.save_pretrained(__lowercase ) print("Used relative position embeddings:" , model.config.reset_position_index_per_cell ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE :List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--task''', default='''SQA''', type=str, help='''Model task for which to convert a checkpoint. Defaults to SQA.''' ) parser.add_argument( '''--reset_position_index_per_cell''', default=False, action='''store_true''', help='''Whether to use relative position embeddings or not. Defaults to True.''', ) parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--tapas_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained TAPAS model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) __SCREAMING_SNAKE_CASE :List[str] = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.task, args.reset_position_index_per_cell, args.tf_checkpoint_path, args.tapas_config_file, args.pytorch_dump_path, )
22
0
'''simple docstring''' from __future__ import annotations import numpy as np from numpy import floataa from numpy.typing import NDArray def _a ( _lowercase : NDArray[floataa] , _lowercase : NDArray[floataa] , _lowercase : list[int] , _lowercase : int , ): '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : int = coefficient_matrix.shape __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = constant_matrix.shape if rowsa != colsa: __UpperCAmelCase : List[Any] = F'Coefficient matrix dimensions must be nxn but received {rowsa}x{colsa}' raise ValueError(_lowercase ) if colsa != 1: __UpperCAmelCase : Optional[Any] = F'Constant matrix must be nx1 but received {rowsa}x{colsa}' raise ValueError(_lowercase ) if rowsa != rowsa: __UpperCAmelCase : List[str] = ( '''Coefficient and constant matrices dimensions must be nxn and nx1 but ''' F'received {rowsa}x{colsa} and {rowsa}x{colsa}' ) raise ValueError(_lowercase ) if len(_lowercase ) != rowsa: __UpperCAmelCase : List[str] = ( '''Number of initial values must be equal to number of rows in coefficient ''' F'matrix but received {len(_lowercase )} and {rowsa}' ) raise ValueError(_lowercase ) if iterations <= 0: raise ValueError('''Iterations must be at least 1''' ) __UpperCAmelCase : NDArray[floataa] = np.concatenate( (coefficient_matrix, constant_matrix) , axis=1 ) __UpperCAmelCase , __UpperCAmelCase : Dict = table.shape strictly_diagonally_dominant(_lowercase ) # Iterates the whole matrix for given number of times for _ in range(_lowercase ): __UpperCAmelCase : Union[str, Any] = [] for row in range(_lowercase ): __UpperCAmelCase : int = 0 for col in range(_lowercase ): if col == row: __UpperCAmelCase : Optional[Any] = table[row][col] elif col == cols - 1: __UpperCAmelCase : Optional[Any] = table[row][col] else: temp += (-1) * table[row][col] * init_val[col] __UpperCAmelCase : Optional[Any] = (temp + val) / denom new_val.append(_lowercase ) __UpperCAmelCase : List[str] = new_val return [float(_lowercase ) for i in new_val] def _a ( _lowercase : NDArray[floataa] ): '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = table.shape __UpperCAmelCase : Optional[Any] = True for i in range(0 , _lowercase ): __UpperCAmelCase : Tuple = 0 for j in range(0 , cols - 1 ): if i == j: continue else: total += table[i][j] if table[i][i] <= total: raise ValueError('''Coefficient matrix is not strictly diagonally dominant''' ) return is_diagonally_dominant # Test Cases if __name__ == "__main__": import doctest doctest.testmod()
240
'''simple docstring''' from dataclasses import dataclass from typing import Dict, Optional, Union import torch import torch.nn.functional as F from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .attention_processor import AttentionProcessor, AttnProcessor from .embeddings import TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin @dataclass class a ( _a ): """simple docstring""" SCREAMING_SNAKE_CASE : torch.FloatTensor class a ( _a , _a ): """simple docstring""" @register_to_config def __init__( self : str , snake_case : int = 32 , snake_case : int = 64 , snake_case : int = 20 , snake_case : int = 768 , snake_case : Tuple=77 , snake_case : List[Any]=4 , snake_case : float = 0.0 , snake_case : str = "silu" , snake_case : Optional[str] = None , snake_case : Optional[str] = None , snake_case : Optional[str] = "linear" , snake_case : Optional[str] = "prd" , snake_case : Optional[int] = None , snake_case : Optional[int] = None , snake_case : Optional[int] = None , ) -> List[str]: super().__init__() __UpperCAmelCase : List[Any] = num_attention_heads __UpperCAmelCase : List[str] = attention_head_dim __UpperCAmelCase : int = num_attention_heads * attention_head_dim __UpperCAmelCase : List[Any] = additional_embeddings __UpperCAmelCase : Any = time_embed_dim or inner_dim __UpperCAmelCase : Any = embedding_proj_dim or embedding_dim __UpperCAmelCase : Union[str, Any] = clip_embed_dim or embedding_dim __UpperCAmelCase : List[Any] = Timesteps(snake_case , snake_case , 0 ) __UpperCAmelCase : Optional[Any] = TimestepEmbedding(snake_case , snake_case , out_dim=snake_case , act_fn=snake_case ) __UpperCAmelCase : str = nn.Linear(snake_case , snake_case ) if embedding_proj_norm_type is None: __UpperCAmelCase : str = None elif embedding_proj_norm_type == "layer": __UpperCAmelCase : str = nn.LayerNorm(snake_case ) else: raise ValueError(f'unsupported embedding_proj_norm_type: {embedding_proj_norm_type}' ) __UpperCAmelCase : List[Any] = nn.Linear(snake_case , snake_case ) if encoder_hid_proj_type is None: __UpperCAmelCase : Union[str, Any] = None elif encoder_hid_proj_type == "linear": __UpperCAmelCase : Any = nn.Linear(snake_case , snake_case ) else: raise ValueError(f'unsupported encoder_hid_proj_type: {encoder_hid_proj_type}' ) __UpperCAmelCase : Dict = nn.Parameter(torch.zeros(1 , num_embeddings + additional_embeddings , snake_case ) ) if added_emb_type == "prd": __UpperCAmelCase : Any = nn.Parameter(torch.zeros(1 , 1 , snake_case ) ) elif added_emb_type is None: __UpperCAmelCase : List[Any] = None else: raise ValueError( f'`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `\'prd\'` or `None`.' ) __UpperCAmelCase : Optional[int] = nn.ModuleList( [ BasicTransformerBlock( snake_case , snake_case , snake_case , dropout=snake_case , activation_fn='''gelu''' , attention_bias=snake_case , ) for d in range(snake_case ) ] ) if norm_in_type == "layer": __UpperCAmelCase : Tuple = nn.LayerNorm(snake_case ) elif norm_in_type is None: __UpperCAmelCase : List[Any] = None else: raise ValueError(f'Unsupported norm_in_type: {norm_in_type}.' ) __UpperCAmelCase : Dict = nn.LayerNorm(snake_case ) __UpperCAmelCase : Any = nn.Linear(snake_case , snake_case ) __UpperCAmelCase : Any = torch.full( [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] , -10_000.0 ) causal_attention_mask.triu_(1 ) __UpperCAmelCase : str = causal_attention_mask[None, ...] self.register_buffer('''causal_attention_mask''' , snake_case , persistent=snake_case ) __UpperCAmelCase : Tuple = nn.Parameter(torch.zeros(1 , snake_case ) ) __UpperCAmelCase : List[str] = nn.Parameter(torch.zeros(1 , snake_case ) ) @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def lowerCamelCase__ ( self : int ) -> Dict[str, AttentionProcessor]: __UpperCAmelCase : Optional[Any] = {} def fn_recursive_add_processors(snake_case : str , snake_case : torch.nn.Module , snake_case : Dict[str, AttentionProcessor] ): if hasattr(snake_case , '''set_processor''' ): __UpperCAmelCase : Union[str, Any] = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(f'{name}.{sub_name}' , snake_case , snake_case ) return processors for name, module in self.named_children(): fn_recursive_add_processors(snake_case , snake_case , snake_case ) return processors def lowerCamelCase__ ( self : Optional[Any] , snake_case : Union[AttentionProcessor, Dict[str, AttentionProcessor]] ) -> Union[str, Any]: __UpperCAmelCase : Union[str, Any] = len(self.attn_processors.keys() ) if isinstance(snake_case , snake_case ) and len(snake_case ) != count: raise ValueError( f'A dict of processors was passed, but the number of processors {len(snake_case )} does not match the' f' number of attention layers: {count}. Please make sure to pass {count} processor classes.' ) def fn_recursive_attn_processor(snake_case : str , snake_case : torch.nn.Module , snake_case : int ): if hasattr(snake_case , '''set_processor''' ): if not isinstance(snake_case , snake_case ): module.set_processor(snake_case ) else: module.set_processor(processor.pop(f'{name}.processor' ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f'{name}.{sub_name}' , snake_case , snake_case ) for name, module in self.named_children(): fn_recursive_attn_processor(snake_case , snake_case , snake_case ) def lowerCamelCase__ ( self : str ) -> Tuple: self.set_attn_processor(AttnProcessor() ) def lowerCamelCase__ ( self : Optional[Any] , snake_case : List[Any] , snake_case : Union[torch.Tensor, float, int] , snake_case : torch.FloatTensor , snake_case : Optional[torch.FloatTensor] = None , snake_case : Optional[torch.BoolTensor] = None , snake_case : bool = True , ) -> List[Any]: __UpperCAmelCase : Any = hidden_states.shape[0] __UpperCAmelCase : Optional[int] = timestep if not torch.is_tensor(snake_case ): __UpperCAmelCase : str = torch.tensor([timesteps] , dtype=torch.long , device=hidden_states.device ) elif torch.is_tensor(snake_case ) and len(timesteps.shape ) == 0: __UpperCAmelCase : Any = timesteps[None].to(hidden_states.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML __UpperCAmelCase : Optional[int] = timesteps * torch.ones(snake_case , dtype=timesteps.dtype , device=timesteps.device ) __UpperCAmelCase : Tuple = self.time_proj(snake_case ) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might be fp16, so we need to cast here. __UpperCAmelCase : int = timesteps_projected.to(dtype=self.dtype ) __UpperCAmelCase : Optional[int] = self.time_embedding(snake_case ) if self.embedding_proj_norm is not None: __UpperCAmelCase : Optional[Any] = self.embedding_proj_norm(snake_case ) __UpperCAmelCase : str = self.embedding_proj(snake_case ) if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None: __UpperCAmelCase : Dict = self.encoder_hidden_states_proj(snake_case ) elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None: raise ValueError('''`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set''' ) __UpperCAmelCase : Optional[int] = self.proj_in(snake_case ) __UpperCAmelCase : Optional[Any] = self.positional_embedding.to(hidden_states.dtype ) __UpperCAmelCase : Union[str, Any] = [] __UpperCAmelCase : Optional[Any] = 0 if encoder_hidden_states is not None: additional_embeds.append(snake_case ) additional_embeddings_len += encoder_hidden_states.shape[1] if len(proj_embeddings.shape ) == 2: __UpperCAmelCase : Optional[int] = proj_embeddings[:, None, :] if len(hidden_states.shape ) == 2: __UpperCAmelCase : Union[str, Any] = hidden_states[:, None, :] __UpperCAmelCase : Union[str, Any] = additional_embeds + [ proj_embeddings, time_embeddings[:, None, :], hidden_states, ] if self.prd_embedding is not None: __UpperCAmelCase : Any = self.prd_embedding.to(hidden_states.dtype ).expand(snake_case , -1 , -1 ) additional_embeds.append(snake_case ) __UpperCAmelCase : Dict = torch.cat( snake_case , dim=1 , ) # Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens __UpperCAmelCase : str = additional_embeddings_len + proj_embeddings.shape[1] + 1 if positional_embeddings.shape[1] < hidden_states.shape[1]: __UpperCAmelCase : Union[str, Any] = F.pad( snake_case , ( 0, 0, additional_embeddings_len, self.prd_embedding.shape[1] if self.prd_embedding is not None else 0, ) , value=0.0 , ) __UpperCAmelCase : Optional[int] = hidden_states + positional_embeddings if attention_mask is not None: __UpperCAmelCase : List[Any] = (1 - attention_mask.to(hidden_states.dtype )) * -10_000.0 __UpperCAmelCase : str = F.pad(snake_case , (0, self.additional_embeddings) , value=0.0 ) __UpperCAmelCase : Optional[int] = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype ) __UpperCAmelCase : Optional[int] = attention_mask.repeat_interleave(self.config.num_attention_heads , dim=0 ) if self.norm_in is not None: __UpperCAmelCase : str = self.norm_in(snake_case ) for block in self.transformer_blocks: __UpperCAmelCase : Optional[int] = block(snake_case , attention_mask=snake_case ) __UpperCAmelCase : int = self.norm_out(snake_case ) if self.prd_embedding is not None: __UpperCAmelCase : Optional[int] = hidden_states[:, -1] else: __UpperCAmelCase : List[Any] = hidden_states[:, additional_embeddings_len:] __UpperCAmelCase : Dict = self.proj_to_clip_embeddings(snake_case ) if not return_dict: return (predicted_image_embedding,) return PriorTransformerOutput(predicted_image_embedding=snake_case ) def lowerCamelCase__ ( self : Optional[int] , snake_case : List[str] ) -> str: __UpperCAmelCase : Dict = (prior_latents * self.clip_std) + self.clip_mean return prior_latents
240
1
from __future__ import annotations from scipy.special import comb # type: ignore class _lowerCamelCase: def __init__( self, lowerCamelCase) -> Tuple: """simple docstring""" _lowercase : Optional[Any] = list_of_points # Degree determines the flexibility of the curve. # Degree = 1 will produce a straight line. _lowercase : List[str] = len(lowerCamelCase) - 1 def UpperCamelCase ( self, lowerCamelCase) -> list[float]: """simple docstring""" assert 0 <= t <= 1, "Time t must be between 0 and 1." _lowercase : list[float] = [] for i in range(len(self.list_of_points)): # basis function for each i output_values.append( comb(self.degree, lowerCamelCase) * ((1 - t) ** (self.degree - i)) * (t**i)) # the basis must sum up to 1 for it to produce a valid Bezier curve. assert round(sum(lowerCamelCase), 5) == 1 return output_values def UpperCamelCase ( self, lowerCamelCase) -> tuple[float, float]: """simple docstring""" assert 0 <= t <= 1, "Time t must be between 0 and 1." _lowercase : Optional[int] = self.basis_function(lowerCamelCase) _lowercase : Optional[int] = 0.0 _lowercase : Optional[Any] = 0.0 for i in range(len(self.list_of_points)): # For all points, sum up the product of i-th basis function and i-th point. x += basis_function[i] * self.list_of_points[i][0] y += basis_function[i] * self.list_of_points[i][1] return (x, y) def UpperCamelCase ( self, lowerCamelCase = 0.0_1) -> int: """simple docstring""" from matplotlib import pyplot as plt # type: ignore _lowercase : list[float] = [] # x coordinates of points to plot _lowercase : list[float] = [] # y coordinates of points to plot _lowercase : str = 0.0 while t <= 1: _lowercase : List[Any] = self.bezier_curve_function(lowerCamelCase) to_plot_x.append(value[0]) to_plot_y.append(value[1]) t += step_size _lowercase : List[str] = [i[0] for i in self.list_of_points] _lowercase : Dict = [i[1] for i in self.list_of_points] plt.plot( lowerCamelCase, lowerCamelCase, color='blue', label='Curve of Degree ' + str(self.degree), ) plt.scatter(lowerCamelCase, lowerCamelCase, color='red', label='Control Points') plt.legend() plt.show() if __name__ == "__main__": import doctest doctest.testmod() BezierCurve([(1, 2), (3, 5)]).plot_curve() # degree 1 BezierCurve([(0, 0), (5, 5), (5, 0)]).plot_curve() # degree 2 BezierCurve([(0, 0), (5, 5), (5, 0), (2.5, -2.5)]).plot_curve() # degree 3
21
from __future__ import annotations from math import ceil, floor, sqrt def UpperCamelCase_( lowerCamelCase_ = 200_0000 ) -> int: _lowercase : list[int] = [0] _lowercase : int for idx in range(1 , ceil(sqrt(target * 2 ) * 1.1 ) ): triangle_numbers.append(triangle_numbers[-1] + idx ) # we want this to be as close as possible to target _lowercase : int = 0 # the area corresponding to the grid that gives the product closest to target _lowercase : int = 0 # an estimate of b, using the quadratic formula _lowercase : float # the largest integer less than b_estimate _lowercase : int # the largest integer less than b_estimate _lowercase : int # the triangle number corresponding to b_floor _lowercase : int # the triangle number corresponding to b_ceil _lowercase : int for idx_a, triangle_a in enumerate(triangle_numbers[1:] , 1 ): _lowercase : Optional[int] = (-1 + sqrt(1 + 8 * target / triangle_a )) / 2 _lowercase : List[str] = floor(lowerCamelCase_ ) _lowercase : Dict = ceil(lowerCamelCase_ ) _lowercase : List[str] = triangle_numbers[b_floor] _lowercase : List[str] = triangle_numbers[b_ceil] if abs(target - triangle_b_first_guess * triangle_a ) < abs( target - best_product ): _lowercase : Union[str, Any] = triangle_b_first_guess * triangle_a _lowercase : Union[str, Any] = idx_a * b_floor if abs(target - triangle_b_second_guess * triangle_a ) < abs( target - best_product ): _lowercase : Any = triangle_b_second_guess * triangle_a _lowercase : Optional[Any] = idx_a * b_ceil return area if __name__ == "__main__": print(F"{solution() = }")
21
1
from sympy import diff, lambdify, symbols from sympy.functions import * # noqa: F403 def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = "x" , UpperCAmelCase = 10**-10 , UpperCAmelCase = 1 , ) -> complex: snake_case_ = symbols(UpperCAmelCase ) snake_case_ = lambdify(UpperCAmelCase , UpperCAmelCase ) snake_case_ = lambdify(UpperCAmelCase , diff(UpperCAmelCase , UpperCAmelCase ) ) snake_case_ = starting_point while True: if diff_function(UpperCAmelCase ) != 0: snake_case_ = prev_guess - multiplicity * func(UpperCAmelCase ) / diff_function( UpperCAmelCase ) else: raise ZeroDivisionError('Could not find root' ) from None # Precision is checked by comparing the difference of consecutive guesses if abs(next_guess - prev_guess ) < precision: return next_guess snake_case_ = next_guess # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(F"""The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}""") # Find root of polynomial # Find fourth Root of 5 print(F"""The root of x**4 - 5 = 0 is {newton_raphson("x**4 -5", 0.4 +5j)}""") # Find value of e print( '''The root of log(y) - 1 = 0 is ''', F"""{newton_raphson("log(y) - 1", 2, variable="y")}""", ) # Exponential Roots print( '''The root of exp(x) - 1 = 0 is''', F"""{newton_raphson("exp(x) - 1", 10, precision=0.005)}""", ) # Find root of cos(x) print(F"""The root of cos(x) = 0 is {newton_raphson("cos(x)", 0)}""")
353
"""simple docstring""" from ..utils import DummyObject, requires_backends class UpperCamelCase ( metaclass=lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ = ["keras_nlp"] def __init__( self, *lowerCAmelCase__, **lowerCAmelCase__) -> int: requires_backends(self, ['keras_nlp'])
312
0
"""simple docstring""" import cmath import math def _snake_case ( lowerCamelCase__ : float , lowerCamelCase__ : float , lowerCamelCase__ : float , lowerCamelCase__ : float ) -> complex: lowerCamelCase_ : int =math.radians(lowerCamelCase__ ) lowerCamelCase_ : List[str] =math.radians(lowerCamelCase__ ) # Convert voltage and current to rectangular form lowerCamelCase_ : Tuple =cmath.rect(lowerCamelCase__ , lowerCamelCase__ ) lowerCamelCase_ : Dict =cmath.rect(lowerCamelCase__ , lowerCamelCase__ ) # Calculate apparent power return voltage_rect * current_rect if __name__ == "__main__": import doctest doctest.testmod()
144
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaPriorEmbaEmbPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class lowercase__ ( snake_case__, unittest.TestCase ): _UpperCAmelCase :Union[str, Any] = KandinskyVaaControlnetImgaImgPipeline _UpperCAmelCase :List[Any] = ["image_embeds", "negative_image_embeds", "image", "hint"] _UpperCAmelCase :List[str] = ["image_embeds", "negative_image_embeds", "image", "hint"] _UpperCAmelCase :Dict = [ "generator", "height", "width", "strength", "guidance_scale", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] _UpperCAmelCase :str = False @property def UpperCAmelCase__ ( self : Tuple ): return 32 @property def UpperCAmelCase__ ( self : List[Any] ): return 32 @property def UpperCAmelCase__ ( self : Dict ): return self.time_input_dim @property def UpperCAmelCase__ ( self : int ): return self.time_input_dim * 4 @property def UpperCAmelCase__ ( self : Optional[int] ): return 100 @property def UpperCAmelCase__ ( self : int ): torch.manual_seed(0 ) lowerCamelCase_ : Union[str, Any] ={ "in_channels": 8, # Out channels is double in channels because predicts mean and variance "out_channels": 8, "addition_embed_type": "image_hint", "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "layers_per_block": 1, "encoder_hid_dim": self.text_embedder_hidden_size, "encoder_hid_dim_type": "image_proj", "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": None, } lowerCamelCase_ : Union[str, Any] =UNetaDConditionModel(**snake_case__ ) return model @property def UpperCAmelCase__ ( self : Any ): return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def UpperCAmelCase__ ( self : int ): torch.manual_seed(0 ) lowerCamelCase_ : int =VQModel(**self.dummy_movq_kwargs ) return model def UpperCAmelCase__ ( self : Dict ): lowerCamelCase_ : Optional[int] =self.dummy_unet lowerCamelCase_ : Optional[Any] =self.dummy_movq lowerCamelCase_ : Optional[Any] ={ "num_train_timesteps": 1000, "beta_schedule": "linear", "beta_start": 0.00_085, "beta_end": 0.012, "clip_sample": False, "set_alpha_to_one": False, "steps_offset": 0, "prediction_type": "epsilon", "thresholding": False, } lowerCamelCase_ : Optional[Any] =DDIMScheduler(**snake_case__ ) lowerCamelCase_ : Optional[Any] ={ "unet": unet, "scheduler": scheduler, "movq": movq, } return components def UpperCAmelCase__ ( self : Union[str, Any] , snake_case__ : str , snake_case__ : str=0 ): lowerCamelCase_ : Optional[int] =floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(snake_case__ ) ).to(snake_case__ ) lowerCamelCase_ : Optional[Any] =floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( snake_case__ ) # create init_image lowerCamelCase_ : List[Any] =floats_tensor((1, 3, 64, 64) , rng=random.Random(snake_case__ ) ).to(snake_case__ ) lowerCamelCase_ : Union[str, Any] =image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCamelCase_ : Tuple =Image.fromarray(np.uinta(snake_case__ ) ).convert("RGB" ).resize((256, 256) ) # create hint lowerCamelCase_ : Dict =floats_tensor((1, 3, 64, 64) , rng=random.Random(snake_case__ ) ).to(snake_case__ ) if str(snake_case__ ).startswith("mps" ): lowerCamelCase_ : List[Any] =torch.manual_seed(snake_case__ ) else: lowerCamelCase_ : List[str] =torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) lowerCamelCase_ : Dict ={ "image": init_image, "image_embeds": image_embeds, "negative_image_embeds": negative_image_embeds, "hint": hint, "generator": generator, "height": 64, "width": 64, "num_inference_steps": 10, "guidance_scale": 7.0, "strength": 0.2, "output_type": "np", } return inputs def UpperCAmelCase__ ( self : Optional[Any] ): lowerCamelCase_ : Any ="cpu" lowerCamelCase_ : Dict =self.get_dummy_components() lowerCamelCase_ : Dict =self.pipeline_class(**snake_case__ ) lowerCamelCase_ : str =pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) lowerCamelCase_ : Optional[Any] =pipe(**self.get_dummy_inputs(snake_case__ ) ) lowerCamelCase_ : Dict =output.images lowerCamelCase_ : Dict =pipe( **self.get_dummy_inputs(snake_case__ ) , return_dict=snake_case__ , )[0] lowerCamelCase_ : List[str] =image[0, -3:, -3:, -1] lowerCamelCase_ : Optional[int] =image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCamelCase_ : Union[str, Any] =np.array( [0.54_985_034, 0.55_509_365, 0.52_561_504, 0.5_570_494, 0.5_593_818, 0.5_263_979, 0.50_285_643, 0.5_069_846, 0.51_196_736] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" @slow @require_torch_gpu class lowercase__ ( unittest.TestCase ): def UpperCAmelCase__ ( self : str ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ ( self : int ): lowerCamelCase_ : List[Any] =load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinskyv22/kandinskyv22_controlnet_img2img_robotcat_fp16.npy" ) lowerCamelCase_ : Optional[int] =load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png" ) lowerCamelCase_ : Optional[int] =init_image.resize((512, 512) ) lowerCamelCase_ : int =load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinskyv22/hint_image_cat.png" ) lowerCamelCase_ : Any =torch.from_numpy(np.array(snake_case__ ) ).float() / 255.0 lowerCamelCase_ : Union[str, Any] =hint.permute(2 , 0 , 1 ).unsqueeze(0 ) lowerCamelCase_ : str ="A robot, 4k photo" lowerCamelCase_ : List[Any] =KandinskyVaaPriorEmbaEmbPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-prior" , torch_dtype=torch.floataa ) pipe_prior.to(snake_case__ ) lowerCamelCase_ : Any =KandinskyVaaControlnetImgaImgPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-controlnet-depth" , torch_dtype=torch.floataa ) lowerCamelCase_ : List[str] =pipeline.to(snake_case__ ) pipeline.set_progress_bar_config(disable=snake_case__ ) lowerCamelCase_ : Tuple =torch.Generator(device="cpu" ).manual_seed(0 ) lowerCamelCase_ , lowerCamelCase_ : Tuple =pipe_prior( snake_case__ , image=snake_case__ , strength=0.85 , generator=snake_case__ , negative_prompt="" , ).to_tuple() lowerCamelCase_ : str =pipeline( image=snake_case__ , image_embeds=snake_case__ , negative_image_embeds=snake_case__ , hint=snake_case__ , generator=snake_case__ , num_inference_steps=100 , height=512 , width=512 , strength=0.5 , output_type="np" , ) lowerCamelCase_ : Optional[Any] =output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(snake_case__ , snake_case__ )
144
1
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class SCREAMING_SNAKE_CASE__ ( snake_case_): lowerCAmelCase_ = """facebook/bart-large-mnli""" lowerCAmelCase_ = ( """This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which """ """should be the text to classify, and `labels`, which should be the list of labels to use for classification. """ """It returns the most likely label in the list of provided `labels` for the input text.""" ) lowerCAmelCase_ = """text_classifier""" lowerCAmelCase_ = AutoTokenizer lowerCAmelCase_ = AutoModelForSequenceClassification lowerCAmelCase_ = ["""text""", ["""text"""]] lowerCAmelCase_ = ["""text"""] def UpperCAmelCase_ ( self )-> str: '''simple docstring''' super().setup() UpperCamelCase = self.model.config UpperCamelCase = -1 for idx, label in config.idalabel.items(): if label.lower().startswith('entail' ): UpperCamelCase = int(A_ ) if self.entailment_id == -1: raise ValueError('Could not determine the entailment ID from the model config, please pass it at init.' ) def UpperCAmelCase_ ( self , A_ , A_ )-> Any: '''simple docstring''' UpperCamelCase = labels return self.pre_processor( [text] * len(A_ ) , [F'''This example is {label}''' for label in labels] , return_tensors='pt' , padding='max_length' , ) def UpperCAmelCase_ ( self , A_ )-> Union[str, Any]: '''simple docstring''' UpperCamelCase = outputs.logits UpperCamelCase = torch.argmax(logits[:, 2] ).item() return self._labels[label_id]
251
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.25.0')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, ) else: from .modeling_text_unet import UNetFlatConditionModel from .pipeline_versatile_diffusion import VersatileDiffusionPipeline from .pipeline_versatile_diffusion_dual_guided import VersatileDiffusionDualGuidedPipeline from .pipeline_versatile_diffusion_image_variation import VersatileDiffusionImageVariationPipeline from .pipeline_versatile_diffusion_text_to_image import VersatileDiffusionTextToImagePipeline
251
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ : str = logging.get_logger(__name__) lowerCAmelCase_ : Tuple = { 'facebook/s2t-small-librispeech-asr': ( 'https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/config.json' ), # See all Speech2Text models at https://huggingface.co/models?filter=speech_to_text } class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" __a ='speech_to_text' __a =['past_key_values'] __a ={'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self : Optional[Any] , __a : Dict=1_00_00 , __a : Any=12 , __a : Optional[Any]=20_48 , __a : List[str]=4 , __a : Any=6 , __a : str=20_48 , __a : Optional[Any]=4 , __a : Tuple=0.0 , __a : str=0.0 , __a : int=True , __a : Union[str, Any]=True , __a : Any="relu" , __a : Optional[int]=2_56 , __a : Optional[Any]=0.1 , __a : Optional[int]=0.0 , __a : List[Any]=0.0 , __a : Dict=0.02 , __a : Any=2 , __a : Union[str, Any]=True , __a : Optional[Any]=1 , __a : Dict=0 , __a : Optional[int]=2 , __a : Dict=60_00 , __a : Dict=10_24 , __a : Optional[int]=2 , __a : int=(5, 5) , __a : int=10_24 , __a : str=80 , __a : Any=1 , **__a : Dict , ): _a = vocab_size _a = d_model _a = encoder_ffn_dim _a = encoder_layers _a = encoder_attention_heads _a = decoder_ffn_dim _a = decoder_layers _a = decoder_attention_heads _a = dropout _a = attention_dropout _a = activation_dropout _a = activation_function _a = init_std _a = encoder_layerdrop _a = decoder_layerdrop _a = use_cache _a = encoder_layers _a = scale_embedding # scale factor will be sqrt(d_model) if True _a = max_source_positions _a = max_target_positions _a = num_conv_layers _a = list(__a ) _a = conv_channels _a = input_feat_per_channel _a = input_channels if len(self.conv_kernel_sizes ) != self.num_conv_layers: raise ValueError( "Configuration for convolutional module is incorrect. " "It is required that `len(config.conv_kernel_sizes)` == `config.num_conv_layers` " f'but is `len(config.conv_kernel_sizes) = {len(self.conv_kernel_sizes )}`, ' f'`config.num_conv_layers = {self.num_conv_layers}`.' ) super().__init__( pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , is_encoder_decoder=__a , decoder_start_token_id=__a , **__a , )
63
"""simple docstring""" import functools def a_ ( lowerCamelCase , lowerCamelCase ): UpperCAmelCase__ = len(lowerCamelCase ) UpperCAmelCase__ = len(lowerCamelCase ) @functools.cache def min_distance(lowerCamelCase , lowerCamelCase ) -> int: # if first word index is overflow - delete all from the second word if indexa >= len_worda: return len_worda - indexa # if second word index is overflow - delete all from the first word if indexa >= len_worda: return len_worda - indexa UpperCAmelCase__ = int(worda[indexa] != worda[indexa] ) # current letters not identical return min( 1 + min_distance(indexa + 1 , lowerCamelCase ) , 1 + min_distance(lowerCamelCase , indexa + 1 ) , diff + min_distance(indexa + 1 , indexa + 1 ) , ) return min_distance(0 , 0 ) if __name__ == "__main__": import doctest doctest.testmod()
98
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ....tokenization_utils_fast import PreTrainedTokenizerFast from ....utils import logging from .tokenization_retribert import RetriBertTokenizer __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} __lowerCamelCase = { """vocab_file""": { """yjernite/retribert-base-uncased""": ( """https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """yjernite/retribert-base-uncased""": ( """https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/tokenizer.json""" ), }, } __lowerCamelCase = { """yjernite/retribert-base-uncased""": 5_12, } __lowerCamelCase = { """yjernite/retribert-base-uncased""": {"""do_lower_case""": True}, } class UpperCAmelCase ( A_ ): A__ : str = VOCAB_FILES_NAMES A__ : List[str] = PRETRAINED_VOCAB_FILES_MAP A__ : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ : List[str] = PRETRAINED_INIT_CONFIGURATION A__ : Tuple = RetriBertTokenizer A__ : Tuple = ["input_ids", "attention_mask"] def __init__(self : List[Any] , snake_case__ : List[str]=None , snake_case__ : Optional[int]=None , snake_case__ : str=True , snake_case__ : Dict="[UNK]" , snake_case__ : List[Any]="[SEP]" , snake_case__ : Optional[int]="[PAD]" , snake_case__ : List[Any]="[CLS]" , snake_case__ : List[str]="[MASK]" , snake_case__ : str=True , snake_case__ : Union[str, Any]=None , **snake_case__ : Optional[int] , ) -> List[Any]: '''simple docstring''' super().__init__( snake_case__ , tokenizer_file=snake_case__ , do_lower_case=snake_case__ , unk_token=snake_case__ , sep_token=snake_case__ , pad_token=snake_case__ , cls_token=snake_case__ , mask_token=snake_case__ , tokenize_chinese_chars=snake_case__ , strip_accents=snake_case__ , **snake_case__ , ) snake_case : Optional[Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , snake_case__ ) != do_lower_case or normalizer_state.get("strip_accents" , snake_case__ ) != strip_accents or normalizer_state.get("handle_chinese_chars" , snake_case__ ) != tokenize_chinese_chars ): snake_case : Union[str, Any] = getattr(snake_case__ , normalizer_state.pop("type" ) ) snake_case : str = do_lower_case snake_case : Union[str, Any] = strip_accents snake_case : Union[str, Any] = tokenize_chinese_chars snake_case : Dict = normalizer_class(**snake_case__ ) snake_case : Any = do_lower_case def _SCREAMING_SNAKE_CASE (self : Tuple , snake_case__ : Optional[int] , snake_case__ : List[Any]=None ) -> List[str]: '''simple docstring''' snake_case : int = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _SCREAMING_SNAKE_CASE (self : List[Any] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' snake_case : Union[str, Any] = [self.sep_token_id] snake_case : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _SCREAMING_SNAKE_CASE (self : Optional[int] , snake_case__ : str , snake_case__ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' snake_case : Optional[Any] = self._tokenizer.model.save(snake_case__ , name=snake_case__ ) return tuple(snake_case__ )
10
import unittest from transformers import TrOCRConfig from transformers.testing_utils import is_torch_available, require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM @require_torch class UpperCAmelCase : def __init__(self : Dict , snake_case__ : Any , snake_case__ : Tuple=99 , snake_case__ : Tuple=13 , snake_case__ : int=16 , snake_case__ : Tuple=7 , snake_case__ : Union[str, Any]=True , snake_case__ : int=True , snake_case__ : List[Any]=True , snake_case__ : Optional[Any]=False , snake_case__ : Optional[int]=True , snake_case__ : Any=2 , snake_case__ : List[Any]=32 , snake_case__ : List[str]=4 , snake_case__ : List[str]=4 , snake_case__ : int=30 , snake_case__ : int=0 , snake_case__ : Tuple=1 , snake_case__ : Optional[Any]=2 , snake_case__ : int=None , ) -> List[Any]: '''simple docstring''' snake_case : Optional[Any] = parent snake_case : Any = batch_size snake_case : Any = decoder_seq_length # For common tests snake_case : Any = self.decoder_seq_length snake_case : Optional[int] = is_training snake_case : List[str] = use_attention_mask snake_case : Tuple = use_labels snake_case : int = vocab_size snake_case : Any = d_model snake_case : Dict = d_model snake_case : List[str] = decoder_layers snake_case : Union[str, Any] = decoder_layers snake_case : int = decoder_ffn_dim snake_case : List[Any] = decoder_attention_heads snake_case : Dict = decoder_attention_heads snake_case : Optional[int] = eos_token_id snake_case : Dict = bos_token_id snake_case : List[str] = pad_token_id snake_case : int = decoder_start_token_id snake_case : List[Any] = use_cache snake_case : List[str] = max_position_embeddings snake_case : Dict = None snake_case : Union[str, Any] = decoder_seq_length snake_case : Union[str, Any] = 2 snake_case : Union[str, Any] = 1 def _SCREAMING_SNAKE_CASE (self : List[str] ) -> Optional[Any]: '''simple docstring''' snake_case : Dict = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) snake_case : List[str] = None if self.use_attention_mask: snake_case : Optional[int] = ids_tensor([self.batch_size, self.decoder_seq_length] , vocab_size=2 ) snake_case : Union[str, Any] = None if self.use_labels: snake_case : List[str] = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) snake_case : Union[str, Any] = TrOCRConfig( vocab_size=self.vocab_size , d_model=self.d_model , decoder_layers=self.decoder_layers , decoder_ffn_dim=self.decoder_ffn_dim , decoder_attention_heads=self.decoder_attention_heads , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , use_cache=self.use_cache , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , max_position_embeddings=self.max_position_embeddings , ) return (config, input_ids, attention_mask, lm_labels) def _SCREAMING_SNAKE_CASE (self : Union[str, Any] , snake_case__ : Tuple , snake_case__ : List[str] , snake_case__ : str , snake_case__ : Union[str, Any] , ) -> str: '''simple docstring''' snake_case : Optional[int] = True snake_case : List[Any] = TrOCRDecoder(config=snake_case__ ).to(snake_case__ ).eval() snake_case : Dict = input_ids[:2] input_ids[input_ids == 0] += 1 # first forward pass snake_case : List[str] = model(snake_case__ , use_cache=snake_case__ ) snake_case : Any = model(snake_case__ ) snake_case : Any = model(snake_case__ , use_cache=snake_case__ ) self.parent.assertTrue(len(snake_case__ ) == len(snake_case__ ) ) self.parent.assertTrue(len(snake_case__ ) == len(snake_case__ ) + 1 ) snake_case : List[Any] = outputs["past_key_values"] # create hypothetical next token and extent to next_input_ids snake_case : Optional[Any] = ids_tensor((2, 1) , config.vocab_size - 1 ) + 1 # append to next input_ids and snake_case : Union[str, Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) snake_case : str = model(snake_case__ )["last_hidden_state"] snake_case : str = model(snake_case__ , past_key_values=snake_case__ )["last_hidden_state"] # select random slice snake_case : int = ids_tensor((1,) , output_from_past.shape[-1] ).item() snake_case : str = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() snake_case : Optional[Any] = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice assert torch.allclose(snake_case__ , snake_case__ , atol=1e-3 ) def _SCREAMING_SNAKE_CASE (self : List[str] ) -> Tuple: '''simple docstring''' snake_case : List[Any] = self.prepare_config_and_inputs() snake_case , snake_case , snake_case , snake_case : Dict = config_and_inputs snake_case : List[Any] = {"input_ids": input_ids, "attention_mask": attention_mask} return config, inputs_dict @require_torch class UpperCAmelCase ( A_ ,A_ ,A_ ,unittest.TestCase ): A__ : int = (TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else () A__ : Union[str, Any] = (TrOCRForCausalLM,) if is_torch_available() else () A__ : int = {"text-generation": TrOCRForCausalLM} if is_torch_available() else {} A__ : int = True A__ : Optional[Any] = False def _SCREAMING_SNAKE_CASE (self : Any ) -> Optional[Any]: '''simple docstring''' snake_case : Optional[Any] = TrOCRStandaloneDecoderModelTester(self , is_training=snake_case__ ) snake_case : int = ConfigTester(self , config_class=snake_case__ ) def _SCREAMING_SNAKE_CASE (self : int ) -> Union[str, Any]: '''simple docstring''' pass def _SCREAMING_SNAKE_CASE (self : List[Any] ) -> List[Any]: '''simple docstring''' pass def _SCREAMING_SNAKE_CASE (self : Tuple ) -> Optional[Any]: '''simple docstring''' pass def _SCREAMING_SNAKE_CASE (self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' self.config_tester.run_common_tests() def _SCREAMING_SNAKE_CASE (self : Dict ) -> List[str]: '''simple docstring''' snake_case : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past(*snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Dict ) -> Any: '''simple docstring''' return @unittest.skip("The model doesn't support left padding" ) # and it's not used enough to be worth fixing :) def _SCREAMING_SNAKE_CASE (self : Any ) -> Any: '''simple docstring''' pass
10
1
from collections import deque from math import floor from random import random from time import time class snake_case_ : def __init__( self :Dict ) -> List[Any]: a__ = {} def lowerCamelCase__( self :List[str] ,__snake_case :int ,__snake_case :List[Any] ,__snake_case :int=1 ) -> Optional[int]: if self.graph.get(__snake_case ): if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: a__ = [[w, v]] if not self.graph.get(__snake_case ): a__ = [] def lowerCamelCase__( self :str ) -> List[Any]: return list(self.graph ) def lowerCamelCase__( self :List[Any] ,__snake_case :List[Any] ,__snake_case :Optional[Any] ) -> Any: if self.graph.get(__snake_case ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(__snake_case ) def lowerCamelCase__( self :Any ,__snake_case :Any=-2 ,__snake_case :Optional[int]=-1 ) -> Optional[Any]: if s == d: return [] a__ = [] a__ = [] if s == -2: a__ = list(self.graph )[0] stack.append(__snake_case ) visited.append(__snake_case ) a__ = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: a__ = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(__snake_case ) return visited else: stack.append(node[1] ) visited.append(node[1] ) a__ = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(__snake_case ) != 0: a__ = stack[len(__snake_case ) - 1] else: a__ = ss # check if se have reached the starting point if len(__snake_case ) == 0: return visited def lowerCamelCase__( self :Dict ,__snake_case :Any=-1 ) -> List[str]: if c == -1: a__ = floor(random() * 1_00_00 ) + 10 for i in range(__snake_case ): # every vertex has max 100 edges for _ in range(floor(random() * 1_02 ) + 1 ): a__ = floor(random() * c ) + 1 if n != i: self.add_pair(__snake_case ,__snake_case ,1 ) def lowerCamelCase__( self :Optional[Any] ,__snake_case :Optional[int]=-2 ) -> Optional[Any]: a__ = deque() a__ = [] if s == -2: a__ = list(self.graph )[0] d.append(__snake_case ) visited.append(__snake_case ) while d: a__ = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def lowerCamelCase__( self :Optional[Any] ,__snake_case :Optional[Any] ) -> List[str]: a__ = 0 for x in self.graph: for y in self.graph[x]: if y[1] == u: count += 1 return count def lowerCamelCase__( self :int ,__snake_case :List[str] ) -> int: return len(self.graph[u] ) def lowerCamelCase__( self :List[str] ,__snake_case :Any=-2 ) -> Union[str, Any]: a__ = [] a__ = [] if s == -2: a__ = list(self.graph )[0] stack.append(__snake_case ) visited.append(__snake_case ) a__ = s a__ = [] while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: a__ = s for node in self.graph[s]: if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) a__ = node[1] break # check if all the children are visited if s == ss: sorted_nodes.append(stack.pop() ) if len(__snake_case ) != 0: a__ = stack[len(__snake_case ) - 1] else: a__ = ss # check if se have reached the starting point if len(__snake_case ) == 0: return sorted_nodes def lowerCamelCase__( self :Any ) -> Dict: a__ = [] a__ = [] a__ = list(self.graph )[0] stack.append(__snake_case ) visited.append(__snake_case ) a__ = -2 a__ = [] a__ = s a__ = False a__ = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: a__ = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): a__ = len(__snake_case ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) a__ = node[1] break # check if all the children are visited if s == ss: stack.pop() a__ = True if len(__snake_case ) != 0: a__ = stack[len(__snake_case ) - 1] else: a__ = False indirect_parents.append(__snake_case ) a__ = s a__ = ss # check if se have reached the starting point if len(__snake_case ) == 0: return list(__snake_case ) def lowerCamelCase__( self :Optional[int] ) -> str: a__ = [] a__ = [] a__ = list(self.graph )[0] stack.append(__snake_case ) visited.append(__snake_case ) a__ = -2 a__ = [] a__ = s a__ = False a__ = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: a__ = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): a__ = len(__snake_case ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) a__ = node[1] break # check if all the children are visited if s == ss: stack.pop() a__ = True if len(__snake_case ) != 0: a__ = stack[len(__snake_case ) - 1] else: a__ = False indirect_parents.append(__snake_case ) a__ = s a__ = ss # check if se have reached the starting point if len(__snake_case ) == 0: return False def lowerCamelCase__( self :Any ,__snake_case :Tuple=-2 ,__snake_case :Optional[int]=-1 ) -> str: a__ = time() self.dfs(__snake_case ,__snake_case ) a__ = time() return end - begin def lowerCamelCase__( self :Dict ,__snake_case :Optional[int]=-2 ) -> Optional[Any]: a__ = time() self.bfs(__snake_case ) a__ = time() return end - begin class snake_case_ : def __init__( self :List[Any] ) -> Dict: a__ = {} def lowerCamelCase__( self :Optional[int] ,__snake_case :Dict ,__snake_case :int ,__snake_case :Tuple=1 ) -> Optional[Any]: # check if the u exists if self.graph.get(__snake_case ): # if there already is a edge if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: # if u does not exist a__ = [[w, v]] # add the other way if self.graph.get(__snake_case ): # if there already is a edge if self.graph[v].count([w, u] ) == 0: self.graph[v].append([w, u] ) else: # if u does not exist a__ = [[w, u]] def lowerCamelCase__( self :int ,__snake_case :Union[str, Any] ,__snake_case :Optional[int] ) -> int: if self.graph.get(__snake_case ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(__snake_case ) # the other way round if self.graph.get(__snake_case ): for _ in self.graph[v]: if _[1] == u: self.graph[v].remove(__snake_case ) def lowerCamelCase__( self :Optional[Any] ,__snake_case :int=-2 ,__snake_case :Any=-1 ) -> Optional[Any]: if s == d: return [] a__ = [] a__ = [] if s == -2: a__ = list(self.graph )[0] stack.append(__snake_case ) visited.append(__snake_case ) a__ = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: a__ = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(__snake_case ) return visited else: stack.append(node[1] ) visited.append(node[1] ) a__ = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(__snake_case ) != 0: a__ = stack[len(__snake_case ) - 1] else: a__ = ss # check if se have reached the starting point if len(__snake_case ) == 0: return visited def lowerCamelCase__( self :int ,__snake_case :Any=-1 ) -> Optional[int]: if c == -1: a__ = floor(random() * 1_00_00 ) + 10 for i in range(__snake_case ): # every vertex has max 100 edges for _ in range(floor(random() * 1_02 ) + 1 ): a__ = floor(random() * c ) + 1 if n != i: self.add_pair(__snake_case ,__snake_case ,1 ) def lowerCamelCase__( self :Any ,__snake_case :Optional[Any]=-2 ) -> Optional[int]: a__ = deque() a__ = [] if s == -2: a__ = list(self.graph )[0] d.append(__snake_case ) visited.append(__snake_case ) while d: a__ = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def lowerCamelCase__( self :Tuple ,__snake_case :Optional[Any] ) -> List[str]: return len(self.graph[u] ) def lowerCamelCase__( self :str ) -> Optional[int]: a__ = [] a__ = [] a__ = list(self.graph )[0] stack.append(__snake_case ) visited.append(__snake_case ) a__ = -2 a__ = [] a__ = s a__ = False a__ = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: a__ = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): a__ = len(__snake_case ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) a__ = node[1] break # check if all the children are visited if s == ss: stack.pop() a__ = True if len(__snake_case ) != 0: a__ = stack[len(__snake_case ) - 1] else: a__ = False indirect_parents.append(__snake_case ) a__ = s a__ = ss # check if se have reached the starting point if len(__snake_case ) == 0: return list(__snake_case ) def lowerCamelCase__( self :Optional[Any] ) -> Tuple: a__ = [] a__ = [] a__ = list(self.graph )[0] stack.append(__snake_case ) visited.append(__snake_case ) a__ = -2 a__ = [] a__ = s a__ = False a__ = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: a__ = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): a__ = len(__snake_case ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) a__ = node[1] break # check if all the children are visited if s == ss: stack.pop() a__ = True if len(__snake_case ) != 0: a__ = stack[len(__snake_case ) - 1] else: a__ = False indirect_parents.append(__snake_case ) a__ = s a__ = ss # check if se have reached the starting point if len(__snake_case ) == 0: return False def lowerCamelCase__( self :Optional[Any] ) -> Union[str, Any]: return list(self.graph ) def lowerCamelCase__( self :Union[str, Any] ,__snake_case :str=-2 ,__snake_case :List[str]=-1 ) -> List[str]: a__ = time() self.dfs(__snake_case ,__snake_case ) a__ = time() return end - begin def lowerCamelCase__( self :Union[str, Any] ,__snake_case :int=-2 ) -> str: a__ = time() self.bfs(__snake_case ) a__ = time() return end - begin
240
import argparse import torch from transformers import GPTaConfig, GPTaModel, load_tf_weights_in_gpta from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def __lowercase ( __lowerCAmelCase : str , __lowerCAmelCase : Any , __lowerCAmelCase : int ): # Construct model if gpta_config_file == "": a__ = GPTaConfig() else: a__ = GPTaConfig.from_json_file(__lowerCAmelCase ) a__ = GPTaModel(__lowerCAmelCase ) # Load weights from numpy load_tf_weights_in_gpta(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # Save pytorch-model a__ = pytorch_dump_folder_path + '/' + WEIGHTS_NAME a__ = pytorch_dump_folder_path + '/' + CONFIG_NAME print(F'Save PyTorch model to {pytorch_weights_dump_path}' ) torch.save(model.state_dict() , __lowerCAmelCase ) print(F'Save configuration file to {pytorch_config_dump_path}' ) with open(__lowerCAmelCase , 'w' , encoding='utf-8' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": snake_case : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--gpt2_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--gpt2_config_file''', default='''''', type=str, help=( '''An optional config json file corresponding to the pre-trained OpenAI model. \n''' '''This specifies the model architecture.''' ), ) snake_case : Any = parser.parse_args() convert_gpta_checkpoint_to_pytorch(args.gpta_checkpoint_path, args.gpta_config_file, args.pytorch_dump_folder_path)
240
1
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_distilbert import DistilBertTokenizer lowercase_ = logging.get_logger(__name__) lowercase_ = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} lowercase_ = { "vocab_file": { "distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt", "distilbert-base-uncased-distilled-squad": ( "https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt" ), "distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt", "distilbert-base-cased-distilled-squad": ( "https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt" ), "distilbert-base-german-cased": "https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt", "distilbert-base-multilingual-cased": ( "https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt" ), }, "tokenizer_file": { "distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json", "distilbert-base-uncased-distilled-squad": ( "https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json" ), "distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json", "distilbert-base-cased-distilled-squad": ( "https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json" ), "distilbert-base-german-cased": ( "https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json" ), "distilbert-base-multilingual-cased": ( "https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json" ), }, } lowercase_ = { "distilbert-base-uncased": 5_12, "distilbert-base-uncased-distilled-squad": 5_12, "distilbert-base-cased": 5_12, "distilbert-base-cased-distilled-squad": 5_12, "distilbert-base-german-cased": 5_12, "distilbert-base-multilingual-cased": 5_12, } lowercase_ = { "distilbert-base-uncased": {"do_lower_case": True}, "distilbert-base-uncased-distilled-squad": {"do_lower_case": True}, "distilbert-base-cased": {"do_lower_case": False}, "distilbert-base-cased-distilled-squad": {"do_lower_case": False}, "distilbert-base-german-cased": {"do_lower_case": False}, "distilbert-base-multilingual-cased": {"do_lower_case": False}, } class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): A : int = VOCAB_FILES_NAMES A : Dict = PRETRAINED_VOCAB_FILES_MAP A : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A : Union[str, Any] = PRETRAINED_INIT_CONFIGURATION A : List[Any] = ["input_ids", "attention_mask"] A : Optional[int] = DistilBertTokenizer def __init__( self : Optional[int] , _lowerCAmelCase : Optional[Any]=None , _lowerCAmelCase : str=None , _lowerCAmelCase : Any=True , _lowerCAmelCase : Optional[Any]="[UNK]" , _lowerCAmelCase : Tuple="[SEP]" , _lowerCAmelCase : Any="[PAD]" , _lowerCAmelCase : int="[CLS]" , _lowerCAmelCase : Dict="[MASK]" , _lowerCAmelCase : str=True , _lowerCAmelCase : str=None , **_lowerCAmelCase : Dict , ): super().__init__( _lowerCAmelCase , tokenizer_file=_lowerCAmelCase , do_lower_case=_lowerCAmelCase , unk_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , tokenize_chinese_chars=_lowerCAmelCase , strip_accents=_lowerCAmelCase , **_lowerCAmelCase , ) __snake_case : Optional[Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , _lowerCAmelCase ) != do_lower_case or normalizer_state.get("""strip_accents""" , _lowerCAmelCase ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , _lowerCAmelCase ) != tokenize_chinese_chars ): __snake_case : List[Any] = getattr(_lowerCAmelCase , normalizer_state.pop("""type""" ) ) __snake_case : Union[str, Any] = do_lower_case __snake_case : Optional[int] = strip_accents __snake_case : Union[str, Any] = tokenize_chinese_chars __snake_case : Tuple = normalizer_class(**_lowerCAmelCase ) __snake_case : Optional[int] = do_lower_case def snake_case__ ( self : str , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Tuple=None ): __snake_case : int = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def snake_case__ ( self : Tuple , _lowerCAmelCase : List[int] , _lowerCAmelCase : Optional[List[int]] = None ): __snake_case : List[Any] = [self.sep_token_id] __snake_case : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def snake_case__ ( self : List[Any] , _lowerCAmelCase : str , _lowerCAmelCase : Optional[str] = None ): __snake_case : int = self._tokenizer.model.save(_lowerCAmelCase , name=_lowerCAmelCase ) return tuple(_lowerCAmelCase )
20
import io import os import unicodedata from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = "▁" lowercase_ = {"vocab_file": "vocab.txt", "sentencepiece_model_ckpt": "sentencepiece.bpe.model"} lowercase_ = { "sentencepiece_model_file": "sentencepiece.bpe.model", "vocab_file": "vocab.txt", } lowercase_ = { "vocab_file": { "ernie-m-base": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt", "ernie-m-large": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt", }, "sentencepiece_model_file": { "ernie-m-base": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model", "ernie-m-large": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model", }, } lowercase_ = { "ernie-m-base": 5_14, "ernie-m-large": 5_14, } lowercase_ = { "ernie-m-base": {"do_lower_case": False}, "ernie-m-large": {"do_lower_case": False}, } class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): A : List[str] = ["input_ids"] A : Tuple = VOCAB_FILES_NAMES A : List[Any] = PRETRAINED_INIT_CONFIGURATION A : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP A : Optional[Any] = RESOURCE_FILES_NAMES def __init__( self : int , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Dict=None , _lowerCAmelCase : Dict=False , _lowerCAmelCase : List[Any]="utf8" , _lowerCAmelCase : Optional[Any]="[UNK]" , _lowerCAmelCase : Optional[int]="[SEP]" , _lowerCAmelCase : List[str]="[PAD]" , _lowerCAmelCase : Dict="[CLS]" , _lowerCAmelCase : List[Any]="[MASK]" , _lowerCAmelCase : Optional[Dict[str, Any]] = None , **_lowerCAmelCase : Any , ): # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. __snake_case : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=_lowerCAmelCase , unk_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , vocab_file=_lowerCAmelCase , encoding=_lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **_lowerCAmelCase , ) __snake_case : List[Any] = do_lower_case __snake_case : Any = sentencepiece_model_ckpt __snake_case : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_lowerCAmelCase ) # to mimic paddlenlp.transformers.ernie_m.tokenizer.ErnieMTokenizer functioning if vocab_file is not None: __snake_case : int = self.load_vocab(filepath=_lowerCAmelCase ) else: __snake_case : Tuple = {self.sp_model.id_to_piece(_lowerCAmelCase ): id for id in range(self.sp_model.get_piece_size() )} __snake_case : str = {v: k for k, v in self.vocab.items()} def snake_case__ ( self : List[Any] , _lowerCAmelCase : List[Any] ): if text is None: return None __snake_case : List[Any] = self.tokenize(_lowerCAmelCase ) __snake_case , __snake_case : Optional[Any] = """""", [] for i, ch in enumerate(_lowerCAmelCase ): if ch in self.SP_CHAR_MAPPING: __snake_case : Any = self.SP_CHAR_MAPPING.get(_lowerCAmelCase ) else: __snake_case : Dict = unicodedata.normalize("""NFKC""" , _lowerCAmelCase ) if self.is_whitespace(_lowerCAmelCase ): continue normalized_text += ch char_mapping.extend([i] * len(_lowerCAmelCase ) ) __snake_case , __snake_case , __snake_case : str = normalized_text, [], 0 if self.do_lower_case: __snake_case : int = text.lower() for token in split_tokens: if token[:1] == "▁": __snake_case : int = token[1:] __snake_case : Optional[int] = text[offset:].index(_lowerCAmelCase ) + offset __snake_case : int = start + len(_lowerCAmelCase ) token_mapping.append((char_mapping[start], char_mapping[end - 1] + 1) ) __snake_case : str = end return token_mapping @property def snake_case__ ( self : Tuple ): return len(self.vocab ) def snake_case__ ( self : Dict ): return dict(self.vocab , **self.added_tokens_encoder ) def __getstate__( self : int ): __snake_case : str = self.__dict__.copy() __snake_case : Union[str, Any] = None return state def __setstate__( self : Optional[Any] , _lowerCAmelCase : List[str] ): __snake_case : Union[str, Any] = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): __snake_case : Optional[Any] = {} __snake_case : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.sentencepiece_model_ckpt ) def snake_case__ ( self : str , _lowerCAmelCase : Optional[int] ): return "".join((self.SP_CHAR_MAPPING.get(_lowerCAmelCase , _lowerCAmelCase ) for c in text) ) def snake_case__ ( self : Optional[Any] , _lowerCAmelCase : str , _lowerCAmelCase : Tuple=False , _lowerCAmelCase : Optional[Any]=64 , _lowerCAmelCase : Optional[int]=0.1 ): if self.sp_model_kwargs.get("""enable_sampling""" ) is True: __snake_case : List[str] = True if self.sp_model_kwargs.get("""alpha""" ) is not None: __snake_case : Dict = self.sp_model_kwargs.get("""alpha""" ) if self.sp_model_kwargs.get("""nbest_size""" ) is not None: __snake_case : List[Any] = self.sp_model_kwargs.get("""nbest_size""" ) if not enable_sampling: __snake_case : str = self.sp_model.EncodeAsPieces(_lowerCAmelCase ) else: __snake_case : Tuple = self.sp_model.SampleEncodeAsPieces(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) __snake_case : Union[str, Any] = [] for pi, piece in enumerate(_lowerCAmelCase ): if piece == SPIECE_UNDERLINE: if not pieces[pi + 1].startswith(_lowerCAmelCase ) and pi != 0: new_pieces.append(_lowerCAmelCase ) continue else: continue __snake_case : Optional[int] = 0 for i, chunk in enumerate(_lowerCAmelCase ): if chunk == SPIECE_UNDERLINE: continue if self.is_ch_char(_lowerCAmelCase ) or self.is_punct(_lowerCAmelCase ): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) new_pieces.append(_lowerCAmelCase ) __snake_case : Tuple = i + 1 elif chunk.isdigit() and i > 0 and not piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) __snake_case : List[str] = i elif not chunk.isdigit() and i > 0 and piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) __snake_case : Tuple = i if len(_lowerCAmelCase ) > lst_i: new_pieces.append(piece[lst_i:] ) return new_pieces def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : int ): __snake_case : int = """""".join(_lowerCAmelCase ).replace(_lowerCAmelCase , """ """ ).strip() return out_string def snake_case__ ( self : Dict , _lowerCAmelCase : Tuple ): __snake_case : int = self.convert_ids_to_tokens(_lowerCAmelCase ) __snake_case : Any = """""".join(_lowerCAmelCase ).replace(_lowerCAmelCase , """ """ ).strip() return out_string def snake_case__ ( self : Dict , _lowerCAmelCase : Tuple ): return self.vocab.get(_lowerCAmelCase , self.vocab.get(self.unk_token ) ) def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : Dict ): return self.reverse_vocab.get(_lowerCAmelCase , self.unk_token ) def snake_case__ ( self : Any , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Union[str, Any]=None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __snake_case : Union[str, Any] = [self.cls_token_id] __snake_case : Optional[Any] = [self.sep_token_id] return _cls + token_ids_a + _sep + _sep + token_ids_a + _sep def snake_case__ ( self : List[str] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Optional[Any]=None ): if offset_mapping_a is None: return [(0, 0)] + offset_mapping_a + [(0, 0)] return [(0, 0)] + offset_mapping_a + [(0, 0), (0, 0)] + offset_mapping_a + [(0, 0)] def snake_case__ ( self : Optional[Any] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Optional[Any]=None , _lowerCAmelCase : Optional[Any]=False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( """You should not supply a second sequence if the provided sequence of """ """ids is already formatted with special tokens for the model.""" ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(_lowerCAmelCase )) + [1, 1] + ([0] * len(_lowerCAmelCase )) + [1] return [1] + ([0] * len(_lowerCAmelCase )) + [1] def snake_case__ ( self : Optional[int] , _lowerCAmelCase : List[int] , _lowerCAmelCase : Optional[List[int]] = None ): # called when `add_special_tokens` is True, so align with `build_inputs_with_special_tokens` method if token_ids_a is None: # [CLS] X [SEP] return (len(_lowerCAmelCase ) + 2) * [0] # [CLS] A [SEP] [SEP] B [SEP] return [0] * (len(_lowerCAmelCase ) + 1) + [1] * (len(_lowerCAmelCase ) + 3) def snake_case__ ( self : Tuple , _lowerCAmelCase : List[str] ): if "\u4e00" <= char <= "\u9fff": return True return False def snake_case__ ( self : List[str] , _lowerCAmelCase : Any ): if ("a" <= char <= "z") or ("A" <= char <= "Z"): return True return False def snake_case__ ( self : int , _lowerCAmelCase : List[Any] ): if char in ",;:.?!~,;:。?!《》【】": return True return False def snake_case__ ( self : str , _lowerCAmelCase : Optional[Any] ): if char == " " or char == "\t" or char == "\n" or char == "\r": return True if len(_lowerCAmelCase ) == 1: __snake_case : Dict = unicodedata.category(_lowerCAmelCase ) if cat == "Zs": return True return False def snake_case__ ( self : str , _lowerCAmelCase : List[Any] ): __snake_case : Dict = {} with io.open(_lowerCAmelCase , """r""" , encoding="""utf-8""" ) as f: for index, line in enumerate(_lowerCAmelCase ): __snake_case : Tuple = line.rstrip("""\n""" ) __snake_case : List[str] = int(_lowerCAmelCase ) return token_to_idx def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : str , _lowerCAmelCase : Optional[str] = None ): __snake_case : Optional[int] = 0 if os.path.isdir(_lowerCAmelCase ): __snake_case : int = os.path.join( _lowerCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) else: __snake_case : Optional[Any] = (filename_prefix + """-""" if filename_prefix else """""") + save_directory with open(_lowerCAmelCase , """w""" , encoding="""utf-8""" ) as writer: for token, token_index in sorted(self.vocab.items() , key=lambda _lowerCAmelCase : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.''' """ Please check that the vocabulary is not corrupted!""" ) __snake_case : Union[str, Any] = token_index writer.write(token + """\n""" ) index += 1 __snake_case : List[Any] = os.path.join(_lowerCAmelCase , """sentencepiece.bpe.model""" ) with open(_lowerCAmelCase , """wb""" ) as fi: __snake_case : List[Any] = self.sp_model.serialized_model_proto() fi.write(_lowerCAmelCase ) return (vocab_file,)
20
1
import logging import torch from accelerate import Accelerator from arguments import EvaluationArguments from datasets import load_dataset from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, set_seed class A_ ( snake_case_ ): def __init__( self : int , UpperCAmelCase : int , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Union[str, Any]=1_0_2_4 , UpperCAmelCase : List[str]=1_0_2_4 , UpperCAmelCase : List[Any]=3.6 ) -> Union[str, Any]: __lowerCAmelCase: Tuple = tokenizer __lowerCAmelCase: Any = tokenizer.bos_token_id __lowerCAmelCase: Optional[int] = dataset __lowerCAmelCase: Dict = seq_length __lowerCAmelCase: Dict = seq_length * chars_per_token * num_of_sequences def __iter__( self : Dict ) -> int: __lowerCAmelCase: int = iter(self.dataset ) __lowerCAmelCase: List[str] = True while more_examples: __lowerCAmelCase , __lowerCAmelCase: int = [], 0 while True: if buffer_len >= self.input_characters: break try: buffer.append(next(UpperCAmelCase )['content'] ) buffer_len += len(buffer[-1] ) except StopIteration: __lowerCAmelCase: Union[str, Any] = False break __lowerCAmelCase: Optional[Any] = tokenizer(UpperCAmelCase , truncation=UpperCAmelCase )['input_ids'] __lowerCAmelCase: List[str] = [] for tokenized_input in tokenized_inputs: all_token_ids.extend(tokenized_input + [self.concat_token_id] ) for i in range(0 , len(UpperCAmelCase ) , self.seq_length ): __lowerCAmelCase: int = all_token_ids[i : i + self.seq_length] if len(UpperCAmelCase ) == self.seq_length: yield torch.tensor(UpperCAmelCase ) def _a ( SCREAMING_SNAKE_CASE : Any ) -> int: """simple docstring""" __lowerCAmelCase: Optional[Any] = {'streaming': True} __lowerCAmelCase: int = load_dataset(args.dataset_name , split='train' , **__UpperCamelCase ) __lowerCAmelCase: List[Any] = ConstantLengthDataset(__UpperCamelCase , __UpperCamelCase , seq_length=args.seq_length ) __lowerCAmelCase: Tuple = DataLoader(__UpperCamelCase , batch_size=args.batch_size ) return eval_dataloader def _a ( SCREAMING_SNAKE_CASE : Dict ) -> str: """simple docstring""" model.eval() __lowerCAmelCase: int = [] for step, batch in enumerate(__UpperCamelCase ): with torch.no_grad(): __lowerCAmelCase: List[Any] = model(__UpperCamelCase , labels=__UpperCamelCase ) __lowerCAmelCase: Any = outputs.loss.repeat(args.batch_size ) losses.append(accelerator.gather(__UpperCamelCase ) ) if args.max_eval_steps > 0 and step >= args.max_eval_steps: break __lowerCAmelCase: Tuple = torch.mean(torch.cat(__UpperCamelCase ) ) try: __lowerCAmelCase: Any = torch.exp(__UpperCamelCase ) except OverflowError: __lowerCAmelCase: List[str] = float('inf' ) return loss.item(), perplexity.item() # Setup Accelerator _a = Accelerator() # Parse configuration _a = HfArgumentParser(EvaluationArguments) _a = parser.parse_args() set_seed(args.seed) # Logging _a = logging.getLogger(__name__) logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO ) # Load model and tokenizer _a = AutoModelForCausalLM.from_pretrained(args.model_ckpt) _a = AutoTokenizer.from_pretrained(args.model_ckpt) # Load dataset and dataloader _a = create_dataloader(args) # Prepare everything with our `accelerator`. _a = accelerator.prepare(model, eval_dataloader) # Evaluate and save the last checkpoint logger.info('''Evaluating and saving model after training''') _a = evaluate(args) logger.info(f"loss/eval: {eval_loss}, perplexity: {perplexity}")
322
from unittest import TestCase from datasets import Dataset from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters def __snake_case ( ): """simple docstring""" A_ = { "repo_name": ["test_repo1", "test_repo2", "test_repo3"], "path": ["test_1.py", "test_2.py", "unit_test.py"], "content": ["a " * 20, "a " * 30, "b " * 7], } A_ = Dataset.from_dict(__UpperCamelCase ) return dataset class _a ( snake_case_ ): """simple docstring""" def __A ( self : Union[str, Any] ): A_ = get_dataset() A_ = make_duplicate_clusters(UpperCAmelCase , 0.85 ) self.assertEqual(len(duplicate_clusters[0] ) , 2 ) def __A ( self : List[Any] ): A_ = get_dataset() A_ , A_ = deduplicate_dataset(UpperCAmelCase ) self.assertEqual(len(UpperCAmelCase ) , 2 ) print(UpperCAmelCase ) self.assertEqual(duplicate_clusters[0][0]["copies"] , 2 ) self.assertEqual(duplicate_clusters[0][0]["is_extreme"] , UpperCAmelCase )
312
0
"""simple docstring""" import colorsys from PIL import Image # type: ignore def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> float: snake_case_ = x snake_case_ = y for step in range(UpperCAmelCase ): # noqa: B007 snake_case_ = a * a - b * b + x snake_case_ = 2 * a * b + y snake_case_ = a_new # divergence happens for all complex number with an absolute value # greater than 4 if a * a + b * b > 4: break return step / (max_step - 1) def UpperCAmelCase ( UpperCAmelCase ) -> tuple: if distance == 1: return (0, 0, 0) else: return (255, 255, 255) def UpperCAmelCase ( UpperCAmelCase ) -> tuple: if distance == 1: return (0, 0, 0) else: return tuple(round(i * 255 ) for i in colorsys.hsv_to_rgb(UpperCAmelCase , 1 , 1 ) ) def UpperCAmelCase ( UpperCAmelCase = 800 , UpperCAmelCase = 600 , UpperCAmelCase = -0.6 , UpperCAmelCase = 0 , UpperCAmelCase = 3.2 , UpperCAmelCase = 50 , UpperCAmelCase = True , ) -> Image.Image: snake_case_ = Image.new('RGB' , (image_width, image_height) ) snake_case_ = img.load() # loop through the image-coordinates for image_x in range(UpperCAmelCase ): for image_y in range(UpperCAmelCase ): # determine the figure-coordinates based on the image-coordinates snake_case_ = figure_width / image_width * image_height snake_case_ = figure_center_x + (image_x / image_width - 0.5) * figure_width snake_case_ = figure_center_y + (image_y / image_height - 0.5) * figure_height snake_case_ = get_distance(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # color the corresponding pixel based on the selected coloring-function if use_distance_color_coding: snake_case_ = get_color_coded_rgb(UpperCAmelCase ) else: snake_case_ = get_black_and_white_rgb(UpperCAmelCase ) return img if __name__ == "__main__": import doctest doctest.testmod() # colored version, full figure __UpperCamelCase = get_image() # uncomment for colored version, different section, zoomed in # img = get_image(figure_center_x = -0.6, figure_center_y = -0.4, # figure_width = 0.8) # uncomment for black and white version, full figure # img = get_image(use_distance_color_coding = False) # uncomment to save the image # img.save("mandelbrot.png") img.show()
312
"""simple docstring""" # flake8: noqa # Lint as: python3 from typing import Dict, List, Optional, Type from .. import config from ..utils import logging from .formatting import ( ArrowFormatter, CustomFormatter, Formatter, PandasFormatter, PythonFormatter, TensorFormatter, format_table, query_table, ) from .np_formatter import NumpyFormatter __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = {} __UpperCamelCase = {} __UpperCamelCase = {} def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = None , ) -> Optional[Any]: snake_case_ = aliases if aliases is not None else [] if format_type in _FORMAT_TYPES: logger.warning( f'Overwriting format type \'{format_type}\' ({_FORMAT_TYPES[format_type].__name__} -> {formatter_cls.__name__})' ) snake_case_ = formatter_cls for alias in set(aliases + [format_type] ): if alias in _FORMAT_TYPES_ALIASES: logger.warning( f'Overwriting format type alias \'{alias}\' ({_FORMAT_TYPES_ALIASES[alias]} -> {format_type})' ) snake_case_ = format_type def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = None ) -> Union[str, Any]: snake_case_ = aliases if aliases is not None else [] for alias in set(aliases + [format_type] ): snake_case_ = unavailable_error # Here we define all the available formatting functions that can be used by `Dataset.set_format` _register_formatter(PythonFormatter, None, aliases=['''python''']) _register_formatter(ArrowFormatter, '''arrow''', aliases=['''pa''', '''pyarrow''']) _register_formatter(NumpyFormatter, '''numpy''', aliases=['''np''']) _register_formatter(PandasFormatter, '''pandas''', aliases=['''pd''']) _register_formatter(CustomFormatter, '''custom''') if config.TORCH_AVAILABLE: from .torch_formatter import TorchFormatter _register_formatter(TorchFormatter, '''torch''', aliases=['''pt''', '''pytorch''']) else: __UpperCamelCase = ValueError('''PyTorch needs to be installed to be able to return PyTorch tensors.''') _register_unavailable_formatter(_torch_error, '''torch''', aliases=['''pt''', '''pytorch''']) if config.TF_AVAILABLE: from .tf_formatter import TFFormatter _register_formatter(TFFormatter, '''tensorflow''', aliases=['''tf''']) else: __UpperCamelCase = ValueError('''Tensorflow needs to be installed to be able to return Tensorflow tensors.''') _register_unavailable_formatter(_tf_error, '''tensorflow''', aliases=['''tf''']) if config.JAX_AVAILABLE: from .jax_formatter import JaxFormatter _register_formatter(JaxFormatter, '''jax''', aliases=[]) else: __UpperCamelCase = ValueError('''JAX needs to be installed to be able to return JAX arrays.''') _register_unavailable_formatter(_jax_error, '''jax''', aliases=[]) def UpperCAmelCase ( UpperCAmelCase ) -> Optional[str]: if format_type in _FORMAT_TYPES_ALIASES: return _FORMAT_TYPES_ALIASES[format_type] else: return format_type def UpperCAmelCase ( UpperCAmelCase , **UpperCAmelCase ) -> Formatter: snake_case_ = get_format_type_from_alias(UpperCAmelCase ) if format_type in _FORMAT_TYPES: return _FORMAT_TYPES[format_type](**UpperCAmelCase ) if format_type in _FORMAT_TYPES_ALIASES_UNAVAILABLE: raise _FORMAT_TYPES_ALIASES_UNAVAILABLE[format_type] else: raise ValueError( f'Return type should be None or selected in {list(type for type in _FORMAT_TYPES.keys() if type != None )}, but got \'{format_type}\'' )
312
1
'''simple docstring''' from jiwer import compute_measures import datasets UpperCamelCase_ = "\\n@inproceedings{inproceedings,\n author = {Morris, Andrew and Maier, Viktoria and Green, Phil},\n year = {2004},\n month = {01},\n pages = {},\n title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.}\n}\n" UpperCamelCase_ = "\\nWord error rate (WER) is a common metric of the performance of an automatic speech recognition system.\n\nThe general difficulty of measuring performance lies in the fact that the recognized word sequence can have a different length from the reference word sequence (supposedly the correct one). The WER is derived from the Levenshtein distance, working at the word level instead of the phoneme level. The WER is a valuable tool for comparing different systems as well as for evaluating improvements within one system. This kind of measurement, however, provides no details on the nature of translation errors and further work is therefore required to identify the main source(s) of error and to focus any research effort.\n\nThis problem is solved by first aligning the recognized word sequence with the reference (spoken) word sequence using dynamic string alignment. Examination of this issue is seen through a theory called the power law that states the correlation between perplexity and word error rate.\n\nWord error rate can then be computed as:\n\nWER = (S + D + I) / N = (S + D + I) / (S + D + C)\n\nwhere\n\nS is the number of substitutions,\nD is the number of deletions,\nI is the number of insertions,\nC is the number of correct words,\nN is the number of words in the reference (N=S+D+C).\n\nThis value indicates the average number of errors per reference word. The lower the value, the better the\nperformance of the ASR system with a WER of 0 being a perfect score.\n" UpperCamelCase_ = "\nCompute WER score of transcribed segments against references.\n\nArgs:\n references: List of references for each speech input.\n predictions: List of transcriptions to score.\n concatenate_texts (bool, default=False): Whether to concatenate all input texts or compute WER iteratively.\n\nReturns:\n (float): the word error rate\n\nExamples:\n\n >>> predictions = [\"this is the prediction\", \"there is an other sample\"]\n >>> references = [\"this is the reference\", \"there is another one\"]\n >>> wer = datasets.load_metric(\"wer\")\n >>> wer_score = wer.compute(predictions=predictions, references=references)\n >>> print(wer_score)\n 0.5\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _a ( datasets.Metric ): '''simple docstring''' def UpperCamelCase_ ( self ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { 'predictions': datasets.Value('string', id='sequence' ), 'references': datasets.Value('string', id='sequence' ), } ), codebase_urls=['https://github.com/jitsi/jiwer/'], reference_urls=[ 'https://en.wikipedia.org/wiki/Word_error_rate', ], ) def UpperCamelCase_ ( self, A=None, A=None, A=False ): '''simple docstring''' if concatenate_texts: return compute_measures(A, A )["wer"] else: SCREAMING_SNAKE_CASE : Optional[int] = 0 SCREAMING_SNAKE_CASE : Tuple = 0 for prediction, reference in zip(A, A ): SCREAMING_SNAKE_CASE : List[str] = compute_measures(A, A ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
251
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from typing import Optional import evaluate import numpy as np import torch from datasets import load_dataset from PIL import Image from torchvision.transforms import ( CenterCrop, Compose, Normalize, RandomHorizontalFlip, RandomResizedCrop, Resize, ToTensor, ) import transformers from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForImageClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version UpperCamelCase_ = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.31.0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/image-classification/requirements.txt") UpperCamelCase_ = list(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING.keys()) UpperCamelCase_ = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) def lowercase__( __UpperCamelCase: str ): """simple docstring""" with open(__UpperCamelCase ,'rb' ) as f: SCREAMING_SNAKE_CASE : List[str] = Image.open(__UpperCamelCase ) return im.convert('RGB' ) @dataclass class _a : '''simple docstring''' A : Optional[str] = field( default=SCREAMING_SNAKE_CASE , metadata={ '''help''': '''Name of a dataset from the hub (could be your own, possibly private dataset hosted on the hub).''' } , ) A : Optional[str] = field( default=SCREAMING_SNAKE_CASE , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} ) A : Optional[str] = field(default=SCREAMING_SNAKE_CASE , metadata={'''help''': '''A folder containing the training data.'''} ) A : Optional[str] = field(default=SCREAMING_SNAKE_CASE , metadata={'''help''': '''A folder containing the validation data.'''} ) A : Optional[float] = field( default=0.15 , metadata={'''help''': '''Percent to split off of train for validation.'''} ) A : Optional[int] = field( default=SCREAMING_SNAKE_CASE , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) } , ) A : Optional[int] = field( default=SCREAMING_SNAKE_CASE , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of evaluation examples to this ''' '''value if set.''' ) } , ) def UpperCamelCase_ ( self ): '''simple docstring''' if self.dataset_name is None and (self.train_dir is None and self.validation_dir is None): raise ValueError( 'You must specify either a dataset name from the hub or a train and/or validation directory.' ) @dataclass class _a : '''simple docstring''' A : str = field( default='''google/vit-base-patch16-224-in21k''' , metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} , ) A : Optional[str] = field( default=SCREAMING_SNAKE_CASE , metadata={'''help''': '''If training from scratch, pass a model type from the list: ''' + ''', '''.join(SCREAMING_SNAKE_CASE )} , ) A : Optional[str] = field( default=SCREAMING_SNAKE_CASE , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) A : Optional[str] = field( default=SCREAMING_SNAKE_CASE , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from s3'''} ) A : str = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) A : str = field(default=SCREAMING_SNAKE_CASE , metadata={'''help''': '''Name or path of preprocessor config.'''} ) A : bool = field( default=SCREAMING_SNAKE_CASE , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) A : bool = field( default=SCREAMING_SNAKE_CASE , metadata={'''help''': '''Will enable to load a pretrained model whose head dimensions are different.'''} , ) def lowercase__( __UpperCamelCase: Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = torch.stack([example['pixel_values'] for example in examples] ) SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor([example['labels'] for example in examples] ) return {"pixel_values": pixel_values, "labels": labels} def lowercase__( ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('run_image_classification' ,__UpperCamelCase ,__UpperCamelCase ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' ,datefmt='%m/%d/%Y %H:%M:%S' ,handlers=[logging.StreamHandler(sys.stdout )] ,) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() SCREAMING_SNAKE_CASE : str = training_args.get_process_log_level() logger.setLevel(__UpperCamelCase ) transformers.utils.logging.set_verbosity(__UpperCamelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + f"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" ) logger.info(f"Training/evaluation parameters {training_args}" ) # Detecting last checkpoint. SCREAMING_SNAKE_CASE : Optional[int] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: SCREAMING_SNAKE_CASE : Union[str, Any] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. " 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Set seed before initializing model. set_seed(training_args.seed ) # Initialize our dataset and prepare it for the 'image-classification' task. if data_args.dataset_name is not None: SCREAMING_SNAKE_CASE : Any = load_dataset( data_args.dataset_name ,data_args.dataset_config_name ,cache_dir=model_args.cache_dir ,task='image-classification' ,use_auth_token=True if model_args.use_auth_token else None ,) else: SCREAMING_SNAKE_CASE : Union[str, Any] = {} if data_args.train_dir is not None: SCREAMING_SNAKE_CASE : Tuple = os.path.join(data_args.train_dir ,'**' ) if data_args.validation_dir is not None: SCREAMING_SNAKE_CASE : Optional[int] = os.path.join(data_args.validation_dir ,'**' ) SCREAMING_SNAKE_CASE : str = load_dataset( 'imagefolder' ,data_files=__UpperCamelCase ,cache_dir=model_args.cache_dir ,task='image-classification' ,) # If we don't have a validation split, split off a percentage of train as validation. SCREAMING_SNAKE_CASE : Tuple = None if 'validation' in dataset.keys() else data_args.train_val_split if isinstance(data_args.train_val_split ,__UpperCamelCase ) and data_args.train_val_split > 0.0: SCREAMING_SNAKE_CASE : int = dataset['train'].train_test_split(data_args.train_val_split ) SCREAMING_SNAKE_CASE : Optional[int] = split['train'] SCREAMING_SNAKE_CASE : int = split['test'] # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. SCREAMING_SNAKE_CASE : int = dataset['train'].features['labels'].names SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = {}, {} for i, label in enumerate(__UpperCamelCase ): SCREAMING_SNAKE_CASE : List[Any] = str(__UpperCamelCase ) SCREAMING_SNAKE_CASE : int = label # Load the accuracy metric from the datasets package SCREAMING_SNAKE_CASE : Any = evaluate.load('accuracy' ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(__UpperCamelCase: Dict ): return metric.compute(predictions=np.argmax(p.predictions ,axis=1 ) ,references=p.label_ids ) SCREAMING_SNAKE_CASE : Optional[int] = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path ,num_labels=len(__UpperCamelCase ) ,labelaid=__UpperCamelCase ,idalabel=__UpperCamelCase ,finetuning_task='image-classification' ,cache_dir=model_args.cache_dir ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,) SCREAMING_SNAKE_CASE : Union[str, Any] = AutoModelForImageClassification.from_pretrained( model_args.model_name_or_path ,from_tf=bool('.ckpt' in model_args.model_name_or_path ) ,config=__UpperCamelCase ,cache_dir=model_args.cache_dir ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,ignore_mismatched_sizes=model_args.ignore_mismatched_sizes ,) SCREAMING_SNAKE_CASE : List[str] = AutoImageProcessor.from_pretrained( model_args.image_processor_name or model_args.model_name_or_path ,cache_dir=model_args.cache_dir ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,) # Define torchvision transforms to be applied to each image. if "shortest_edge" in image_processor.size: SCREAMING_SNAKE_CASE : Optional[Any] = image_processor.size['shortest_edge'] else: SCREAMING_SNAKE_CASE : List[Any] = (image_processor.size['height'], image_processor.size['width']) SCREAMING_SNAKE_CASE : Dict = Normalize(mean=image_processor.image_mean ,std=image_processor.image_std ) SCREAMING_SNAKE_CASE : Dict = Compose( [ RandomResizedCrop(__UpperCamelCase ), RandomHorizontalFlip(), ToTensor(), normalize, ] ) SCREAMING_SNAKE_CASE : List[Any] = Compose( [ Resize(__UpperCamelCase ), CenterCrop(__UpperCamelCase ), ToTensor(), normalize, ] ) def train_transforms(__UpperCamelCase: List[Any] ): SCREAMING_SNAKE_CASE : Optional[int] = [ _train_transforms(pil_img.convert('RGB' ) ) for pil_img in example_batch['image'] ] return example_batch def val_transforms(__UpperCamelCase: Dict ): SCREAMING_SNAKE_CASE : List[str] = [_val_transforms(pil_img.convert('RGB' ) ) for pil_img in example_batch['image']] return example_batch if training_args.do_train: if "train" not in dataset: raise ValueError('--do_train requires a train dataset' ) if data_args.max_train_samples is not None: SCREAMING_SNAKE_CASE : Tuple = ( dataset['train'].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms dataset["train"].set_transform(__UpperCamelCase ) if training_args.do_eval: if "validation" not in dataset: raise ValueError('--do_eval requires a validation dataset' ) if data_args.max_eval_samples is not None: SCREAMING_SNAKE_CASE : Optional[int] = ( dataset['validation'].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms dataset["validation"].set_transform(__UpperCamelCase ) # Initalize our trainer SCREAMING_SNAKE_CASE : List[Any] = Trainer( model=__UpperCamelCase ,args=__UpperCamelCase ,train_dataset=dataset['train'] if training_args.do_train else None ,eval_dataset=dataset['validation'] if training_args.do_eval else None ,compute_metrics=__UpperCamelCase ,tokenizer=__UpperCamelCase ,data_collator=__UpperCamelCase ,) # Training if training_args.do_train: SCREAMING_SNAKE_CASE : Any = None if training_args.resume_from_checkpoint is not None: SCREAMING_SNAKE_CASE : Any = training_args.resume_from_checkpoint elif last_checkpoint is not None: SCREAMING_SNAKE_CASE : Optional[Any] = last_checkpoint SCREAMING_SNAKE_CASE : Union[str, Any] = trainer.train(resume_from_checkpoint=__UpperCamelCase ) trainer.save_model() trainer.log_metrics('train' ,train_result.metrics ) trainer.save_metrics('train' ,train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: SCREAMING_SNAKE_CASE : Union[str, Any] = trainer.evaluate() trainer.log_metrics('eval' ,__UpperCamelCase ) trainer.save_metrics('eval' ,__UpperCamelCase ) # Write model card and (optionally) push to hub SCREAMING_SNAKE_CASE : List[str] = { 'finetuned_from': model_args.model_name_or_path, 'tasks': 'image-classification', 'dataset': data_args.dataset_name, 'tags': ['image-classification', 'vision'], } if training_args.push_to_hub: trainer.push_to_hub(**__UpperCamelCase ) else: trainer.create_model_card(**__UpperCamelCase ) if __name__ == "__main__": main()
251
1
"""simple docstring""" import argparse import json from collections import OrderedDict from functools import partial from pathlib import Path import timm import torch from huggingface_hub import hf_hub_download from transformers import LevitConfig, LevitForImageClassificationWithTeacher, LevitImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowercase : Dict = logging.get_logger() def UpperCAmelCase_ (_lowerCAmelCase : int , _lowerCAmelCase : str , _lowerCAmelCase : LevitConfig , _lowerCAmelCase : Path , _lowerCAmelCase : bool = True ): print(F'''Converting {name}...''' ) with torch.no_grad(): if hidden_sizes == 1_28: if name[-1] == "S": __UpperCamelCase : str = timm.create_model("levit_128s" , pretrained=_a ) else: __UpperCamelCase : Optional[Any] = timm.create_model("levit_128" , pretrained=_a ) if hidden_sizes == 1_92: __UpperCamelCase : List[str] = timm.create_model("levit_192" , pretrained=_a ) if hidden_sizes == 2_56: __UpperCamelCase : List[Any] = timm.create_model("levit_256" , pretrained=_a ) if hidden_sizes == 3_84: __UpperCamelCase : Any = timm.create_model("levit_384" , pretrained=_a ) from_model.eval() __UpperCamelCase : Dict = LevitForImageClassificationWithTeacher(_a ).eval() __UpperCamelCase : List[Any] = OrderedDict() __UpperCamelCase : Optional[int] = from_model.state_dict() __UpperCamelCase : int = list(from_model.state_dict().keys() ) __UpperCamelCase : Optional[Any] = list(our_model.state_dict().keys() ) print(len(_a ) , len(_a ) ) for i in range(len(_a ) ): __UpperCamelCase : Dict = weights[og_keys[i]] our_model.load_state_dict(_a ) __UpperCamelCase : int = torch.randn((2, 3, 2_24, 2_24) ) __UpperCamelCase : List[str] = from_model(_a ) __UpperCamelCase : Any = our_model(_a ).logits assert torch.allclose(_a , _a ), "The model logits don't match the original one." __UpperCamelCase : str = name print(_a ) if push_to_hub: our_model.save_pretrained(save_directory / checkpoint_name ) __UpperCamelCase : Dict = LevitImageProcessor() image_processor.save_pretrained(save_directory / checkpoint_name ) print(F'''Pushed {checkpoint_name}''' ) def UpperCAmelCase_ (_lowerCAmelCase : Path , _lowerCAmelCase : str = None , _lowerCAmelCase : bool = True ): __UpperCamelCase : Tuple = "imagenet-1k-id2label.json" __UpperCamelCase : Union[str, Any] = 10_00 __UpperCamelCase : Any = (1, num_labels) __UpperCamelCase : Optional[Any] = "huggingface/label-files" __UpperCamelCase : int = num_labels __UpperCamelCase : Dict = json.load(open(hf_hub_download(_a , _a , repo_type="dataset" ) , "r" ) ) __UpperCamelCase : List[str] = {int(_a ): v for k, v in idalabel.items()} __UpperCamelCase : List[Any] = idalabel __UpperCamelCase : Optional[Any] = {v: k for k, v in idalabel.items()} __UpperCamelCase : Optional[Any] = partial(_a , num_labels=_a , idalabel=_a , labelaid=_a ) __UpperCamelCase : Tuple = { "levit-128S": 1_28, "levit-128": 1_28, "levit-192": 1_92, "levit-256": 2_56, "levit-384": 3_84, } __UpperCamelCase : Optional[int] = { "levit-128S": ImageNetPreTrainedConfig( hidden_sizes=[1_28, 2_56, 3_84] , num_attention_heads=[4, 6, 8] , depths=[2, 3, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), "levit-128": ImageNetPreTrainedConfig( hidden_sizes=[1_28, 2_56, 3_84] , num_attention_heads=[4, 8, 12] , depths=[4, 4, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), "levit-192": ImageNetPreTrainedConfig( hidden_sizes=[1_92, 2_88, 3_84] , num_attention_heads=[3, 5, 6] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), "levit-256": ImageNetPreTrainedConfig( hidden_sizes=[2_56, 3_84, 5_12] , num_attention_heads=[4, 6, 8] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), "levit-384": ImageNetPreTrainedConfig( hidden_sizes=[3_84, 5_12, 7_68] , num_attention_heads=[6, 9, 12] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0.1 , ), } if model_name: convert_weight_and_push( names_to_hidden_sizes[model_name] , _a , names_to_config[model_name] , _a , _a ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(names_to_hidden_sizes[model_name] , _a , _a , _a , _a ) return config, expected_shape if __name__ == "__main__": lowercase : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default=None, type=str, help="The name of the model you wish to convert, it must be one of the supported Levit* architecture,", ) parser.add_argument( "--pytorch_dump_folder_path", default="levit-dump-folder/", type=Path, required=False, help="Path to the output PyTorch model directory.", ) parser.add_argument("--push_to_hub", action="store_true", help="Push model and image processor to the hub") parser.add_argument( "--no-push_to_hub", dest="push_to_hub", action="store_false", help="Do not push model and image processor to the hub", ) lowercase : str = parser.parse_args() lowercase : Path = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
364
import glob import os import random from string import ascii_lowercase, digits import cva import numpy as np # Parrameters lowercase : Dict = (720, 1280) # Height, Width lowercase : Any = (0.4, 0.6) # if height or width lower than this scale, drop it. lowercase : Tuple = 1 / 100 lowercase : Optional[int] = "" lowercase : Any = "" lowercase : Union[str, Any] = "" lowercase : str = 250 def UpperCAmelCase_ (): __UpperCamelCase , __UpperCamelCase : Dict = get_dataset(_lowerCAmelCase , _lowerCAmelCase ) for index in range(_lowerCAmelCase ): __UpperCamelCase : Optional[int] = random.sample(range(len(_lowerCAmelCase ) ) , 4 ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase : Union[str, Any] = update_image_and_anno( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , filter_scale=_lowerCAmelCase , ) # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' __UpperCamelCase : List[str] = random_chars(32 ) __UpperCamelCase : int = path.split(os.sep )[-1].rsplit("." , 1 )[0] __UpperCamelCase : Dict = F'''{OUTPUT_DIR}/{file_name}_MOSAIC_{letter_code}''' cva.imwrite(F'''{file_root}.jpg''' , _lowerCAmelCase , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(F'''Succeeded {index+1}/{NUMBER_IMAGES} with {file_name}''' ) __UpperCamelCase : str = [] for anno in new_annos: __UpperCamelCase : List[str] = anno[3] - anno[1] __UpperCamelCase : Union[str, Any] = anno[4] - anno[2] __UpperCamelCase : List[str] = anno[1] + width / 2 __UpperCamelCase : str = anno[2] + height / 2 __UpperCamelCase : List[str] = F'''{anno[0]} {x_center} {y_center} {width} {height}''' annos_list.append(_lowerCAmelCase ) with open(F'''{file_root}.txt''' , "w" ) as outfile: outfile.write("\n".join(line for line in annos_list ) ) def UpperCAmelCase_ (_lowerCAmelCase : str , _lowerCAmelCase : str ): __UpperCamelCase : int = [] __UpperCamelCase : Dict = [] for label_file in glob.glob(os.path.join(_lowerCAmelCase , "*.txt" ) ): __UpperCamelCase : Any = label_file.split(os.sep )[-1].rsplit("." , 1 )[0] with open(_lowerCAmelCase ) as in_file: __UpperCamelCase : Any = in_file.readlines() __UpperCamelCase : Union[str, Any] = os.path.join(_lowerCAmelCase , F'''{label_name}.jpg''' ) __UpperCamelCase : Dict = [] for obj_list in obj_lists: __UpperCamelCase : Optional[int] = obj_list.rstrip("\n" ).split(" " ) __UpperCamelCase : int = float(obj[1] ) - float(obj[3] ) / 2 __UpperCamelCase : Any = float(obj[2] ) - float(obj[4] ) / 2 __UpperCamelCase : Any = float(obj[1] ) + float(obj[3] ) / 2 __UpperCamelCase : Optional[int] = float(obj[2] ) + float(obj[4] ) / 2 boxes.append([int(obj[0] ), xmin, ymin, xmax, ymax] ) if not boxes: continue img_paths.append(_lowerCAmelCase ) labels.append(_lowerCAmelCase ) return img_paths, labels def UpperCAmelCase_ (_lowerCAmelCase : list , _lowerCAmelCase : list , _lowerCAmelCase : list[int] , _lowerCAmelCase : tuple[int, int] , _lowerCAmelCase : tuple[float, float] , _lowerCAmelCase : float = 0.0 , ): __UpperCamelCase : Union[str, Any] = np.zeros([output_size[0], output_size[1], 3] , dtype=np.uinta ) __UpperCamelCase : int = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) __UpperCamelCase : Optional[int] = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) __UpperCamelCase : Any = int(scale_x * output_size[1] ) __UpperCamelCase : str = int(scale_y * output_size[0] ) __UpperCamelCase : str = [] __UpperCamelCase : Optional[int] = [] for i, index in enumerate(_lowerCAmelCase ): __UpperCamelCase : Any = all_img_list[index] path_list.append(_lowerCAmelCase ) __UpperCamelCase : Dict = all_annos[index] __UpperCamelCase : Any = cva.imread(_lowerCAmelCase ) if i == 0: # top-left __UpperCamelCase : Dict = cva.resize(_lowerCAmelCase , (divid_point_x, divid_point_y) ) __UpperCamelCase : Optional[int] = img for bbox in img_annos: __UpperCamelCase : List[str] = bbox[1] * scale_x __UpperCamelCase : Dict = bbox[2] * scale_y __UpperCamelCase : Optional[Any] = bbox[3] * scale_x __UpperCamelCase : int = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 1: # top-right __UpperCamelCase : Optional[Any] = cva.resize(_lowerCAmelCase , (output_size[1] - divid_point_x, divid_point_y) ) __UpperCamelCase : Dict = img for bbox in img_annos: __UpperCamelCase : List[Any] = scale_x + bbox[1] * (1 - scale_x) __UpperCamelCase : str = bbox[2] * scale_y __UpperCamelCase : Optional[int] = scale_x + bbox[3] * (1 - scale_x) __UpperCamelCase : List[Any] = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 2: # bottom-left __UpperCamelCase : Dict = cva.resize(_lowerCAmelCase , (divid_point_x, output_size[0] - divid_point_y) ) __UpperCamelCase : Tuple = img for bbox in img_annos: __UpperCamelCase : List[Any] = bbox[1] * scale_x __UpperCamelCase : str = scale_y + bbox[2] * (1 - scale_y) __UpperCamelCase : Dict = bbox[3] * scale_x __UpperCamelCase : List[str] = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) else: # bottom-right __UpperCamelCase : List[Any] = cva.resize( _lowerCAmelCase , (output_size[1] - divid_point_x, output_size[0] - divid_point_y) ) __UpperCamelCase : Tuple = img for bbox in img_annos: __UpperCamelCase : Union[str, Any] = scale_x + bbox[1] * (1 - scale_x) __UpperCamelCase : Optional[int] = scale_y + bbox[2] * (1 - scale_y) __UpperCamelCase : Optional[Any] = scale_x + bbox[3] * (1 - scale_x) __UpperCamelCase : Any = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) # Remove bounding box small than scale of filter if filter_scale > 0: __UpperCamelCase : Optional[int] = [ anno for anno in new_anno if filter_scale < (anno[3] - anno[1]) and filter_scale < (anno[4] - anno[2]) ] return output_img, new_anno, path_list[0] def UpperCAmelCase_ (_lowerCAmelCase : int ): assert number_char > 1, "The number of character should greater than 1" __UpperCamelCase : Optional[int] = ascii_lowercase + digits return "".join(random.choice(_lowerCAmelCase ) for _ in range(_lowerCAmelCase ) ) if __name__ == "__main__": main() print("DONE ✅")
171
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ....tokenization_utils_fast import PreTrainedTokenizerFast from ....utils import logging from .tokenization_retribert import RetriBertTokenizer __A = logging.get_logger(__name__) __A = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} __A = { "vocab_file": { "yjernite/retribert-base-uncased": ( "https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/vocab.txt" ), }, "tokenizer_file": { "yjernite/retribert-base-uncased": ( "https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/tokenizer.json" ), }, } __A = { "yjernite/retribert-base-uncased": 512, } __A = { "yjernite/retribert-base-uncased": {"do_lower_case": True}, } class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = VOCAB_FILES_NAMES lowercase_ = PRETRAINED_VOCAB_FILES_MAP lowercase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase_ = PRETRAINED_INIT_CONFIGURATION lowercase_ = RetriBertTokenizer lowercase_ = ["input_ids", "attention_mask"] def __init__(self : int , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : str=None , UpperCAmelCase_ : Optional[Any]=True , UpperCAmelCase_ : Union[str, Any]="[UNK]" , UpperCAmelCase_ : Any="[SEP]" , UpperCAmelCase_ : List[str]="[PAD]" , UpperCAmelCase_ : Optional[Any]="[CLS]" , UpperCAmelCase_ : Optional[Any]="[MASK]" , UpperCAmelCase_ : Dict=True , UpperCAmelCase_ : str=None , **UpperCAmelCase_ : str , ) ->List[Any]: '''simple docstring''' super().__init__( UpperCAmelCase_ , tokenizer_file=UpperCAmelCase_ , do_lower_case=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , tokenize_chinese_chars=UpperCAmelCase_ , strip_accents=UpperCAmelCase_ , **UpperCAmelCase_ , ) lowerCamelCase__: List[Any] =json.loads(self.backend_tokenizer.normalizer.__getstate__()) if ( normalizer_state.get("lowercase" , UpperCAmelCase_) != do_lower_case or normalizer_state.get("strip_accents" , UpperCAmelCase_) != strip_accents or normalizer_state.get("handle_chinese_chars" , UpperCAmelCase_) != tokenize_chinese_chars ): lowerCamelCase__: Dict =getattr(UpperCAmelCase_ , normalizer_state.pop("type")) lowerCamelCase__: int =do_lower_case lowerCamelCase__: int =strip_accents lowerCamelCase__: List[str] =tokenize_chinese_chars lowerCamelCase__: Tuple =normalizer_class(**UpperCAmelCase_) lowerCamelCase__: Any =do_lower_case def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[Any]=None) ->List[str]: '''simple docstring''' lowerCamelCase__: Optional[Any] =[self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def SCREAMING_SNAKE_CASE_ (self : Dict , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None) ->List[int]: '''simple docstring''' lowerCamelCase__: Tuple =[self.sep_token_id] lowerCamelCase__: Optional[int] =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] def SCREAMING_SNAKE_CASE_ (self : Tuple , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None) ->Tuple[str]: '''simple docstring''' lowerCamelCase__: Tuple =self._tokenizer.model.save(UpperCAmelCase_ , name=UpperCAmelCase_) return tuple(UpperCAmelCase_)
10
from typing import Any def lowerCAmelCase_ ( __a , __a , __a , __a , __a , ) -> list: """simple docstring""" _validation( __a , __a , __a , __a , __a , ) # Creates data structures and fill initial step lowerCamelCase__: dict ={} lowerCamelCase__: dict ={} for state in states_space: lowerCamelCase__: Optional[Any] =observations_space[0] lowerCamelCase__: List[Any] =( initial_probabilities[state] * emission_probabilities[state][observation] ) lowerCamelCase__: int =None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 , len(__a ) ): lowerCamelCase__: Tuple =observations_space[o] lowerCamelCase__: Optional[Any] =observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function lowerCamelCase__: Tuple ="" lowerCamelCase__: Optional[Any] =-1 for k_state in states_space: lowerCamelCase__: int =( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: lowerCamelCase__: List[str] =probability lowerCamelCase__: int =k_state # Update probabilities and pointers dicts lowerCamelCase__: Any =( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) lowerCamelCase__: int =arg_max # The final observation lowerCamelCase__: Any =observations_space[len(__a ) - 1] # argmax for given final observation lowerCamelCase__: Optional[Any] ="" lowerCamelCase__: int =-1 for k_state in states_space: lowerCamelCase__: Tuple =probabilities[(k_state, final_observation)] if probability > max_probability: lowerCamelCase__: List[Any] =probability lowerCamelCase__: Dict =k_state lowerCamelCase__: str =arg_max # Process pointers backwards lowerCamelCase__: Union[str, Any] =last_state lowerCamelCase__: List[str] =[] for o in range(len(__a ) - 1 , -1 , -1 ): result.append(__a ) lowerCamelCase__: Union[str, Any] =pointers[previous, observations_space[o]] result.reverse() return result def lowerCAmelCase_ ( __a , __a , __a , __a , __a , ) -> None: """simple docstring""" _validate_not_empty( __a , __a , __a , __a , __a , ) _validate_lists(__a , __a ) _validate_dicts( __a , __a , __a ) def lowerCAmelCase_ ( __a , __a , __a , __a , __a , ) -> None: """simple docstring""" if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ] ): raise ValueError("There's an empty parameter" ) def lowerCAmelCase_ ( __a , __a ) -> None: """simple docstring""" _validate_list(__a , "observations_space" ) _validate_list(__a , "states_space" ) def lowerCAmelCase_ ( __a , __a ) -> None: """simple docstring""" if not isinstance(_object , __a ): lowerCamelCase__: Tuple =F"""{var_name} must be a list""" raise ValueError(__a ) else: for x in _object: if not isinstance(__a , __a ): lowerCamelCase__: str =F"""{var_name} must be a list of strings""" raise ValueError(__a ) def lowerCAmelCase_ ( __a , __a , __a , ) -> None: """simple docstring""" _validate_dict(__a , "initial_probabilities" , __a ) _validate_nested_dict(__a , "transition_probabilities" ) _validate_nested_dict(__a , "emission_probabilities" ) def lowerCAmelCase_ ( __a , __a ) -> None: """simple docstring""" _validate_dict(_object , __a , __a ) for x in _object.values(): _validate_dict(__a , __a , __a , __a ) def lowerCAmelCase_ ( __a , __a , __a , __a = False ) -> None: """simple docstring""" if not isinstance(_object , __a ): lowerCamelCase__: Optional[int] =F"""{var_name} must be a dict""" raise ValueError(__a ) if not all(isinstance(__a , __a ) for x in _object ): lowerCamelCase__: Tuple =F"""{var_name} all keys must be strings""" raise ValueError(__a ) if not all(isinstance(__a , __a ) for x in _object.values() ): lowerCamelCase__: Dict ="nested dictionary " if nested else "" lowerCamelCase__: List[str] =F"""{var_name} {nested_text}all values must be {value_type.__name__}""" raise ValueError(__a ) if __name__ == "__main__": from doctest import testmod testmod()
10
1
def _lowercase ( __lowerCAmelCase ) -> bool: if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise ValueError("""Input series is not valid, valid series - [2, 4, 6]""" ) if len(__lowerCAmelCase ) == 0: raise ValueError("""Input list must be a non empty list""" ) if len(__lowerCAmelCase ) == 1: return True SCREAMING_SNAKE_CASE__ : Tuple = series[1] - series[0] for index in range(len(__lowerCAmelCase ) - 1 ): if series[index + 1] - series[index] != common_diff: return False return True def _lowercase ( __lowerCAmelCase ) -> float: if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise ValueError("""Input series is not valid, valid series - [2, 4, 6]""" ) if len(__lowerCAmelCase ) == 0: raise ValueError("""Input list must be a non empty list""" ) SCREAMING_SNAKE_CASE__ : Dict = 0 for val in series: answer += val return answer / len(__lowerCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod()
351
"""simple docstring""" import re from typing import Callable, List, Optional, Union import tensorflow as tf try: from tensorflow.keras.optimizers.legacy import Adam except ImportError: from tensorflow.keras.optimizers import Adam class __a (tf.keras.optimizers.schedules.LearningRateSchedule): '''simple docstring''' def __init__( self , _a , _a , _a , _a = 1.0 , _a = None , ) -> Union[str, Any]: """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE__ : List[Any] = initial_learning_rate SCREAMING_SNAKE_CASE__ : Tuple = warmup_steps SCREAMING_SNAKE_CASE__ : Optional[Any] = power SCREAMING_SNAKE_CASE__ : Optional[Any] = decay_schedule_fn SCREAMING_SNAKE_CASE__ : Any = name def __call__( self , _a ) -> List[Any]: """simple docstring""" with tf.name_scope(self.name or """WarmUp""" ) as name: # Implements polynomial warmup. i.e., if global_step < warmup_steps, the # learning rate will be `global_step/num_warmup_steps * init_lr`. SCREAMING_SNAKE_CASE__ : Optional[Any] = tf.cast(_a , tf.floataa ) SCREAMING_SNAKE_CASE__ : Optional[Any] = tf.cast(self.warmup_steps , tf.floataa ) SCREAMING_SNAKE_CASE__ : str = global_step_float / warmup_steps_float SCREAMING_SNAKE_CASE__ : Optional[int] = self.initial_learning_rate * tf.math.pow(_a , self.power ) return tf.cond( global_step_float < warmup_steps_float , lambda: warmup_learning_rate , lambda: self.decay_schedule_fn(step - self.warmup_steps ) , name=_a , ) def _a ( self ) -> List[Any]: """simple docstring""" return { "initial_learning_rate": self.initial_learning_rate, "decay_schedule_fn": self.decay_schedule_fn, "warmup_steps": self.warmup_steps, "power": self.power, "name": self.name, } def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = 0.0 , __lowerCAmelCase = 0.9 , __lowerCAmelCase = 0.999 , __lowerCAmelCase = 1E-8 , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = 0.0 , __lowerCAmelCase = 1.0 , __lowerCAmelCase = None , ) -> Dict: SCREAMING_SNAKE_CASE__ : Optional[int] = tf.keras.optimizers.schedules.PolynomialDecay( initial_learning_rate=__lowerCAmelCase , decay_steps=num_train_steps - num_warmup_steps , end_learning_rate=init_lr * min_lr_ratio , power=__lowerCAmelCase , ) if num_warmup_steps: SCREAMING_SNAKE_CASE__ : Dict = WarmUp( initial_learning_rate=__lowerCAmelCase , decay_schedule_fn=__lowerCAmelCase , warmup_steps=__lowerCAmelCase , ) if weight_decay_rate > 0.0: SCREAMING_SNAKE_CASE__ : int = AdamWeightDecay( learning_rate=__lowerCAmelCase , weight_decay_rate=__lowerCAmelCase , beta_a=__lowerCAmelCase , beta_a=__lowerCAmelCase , epsilon=__lowerCAmelCase , clipnorm=__lowerCAmelCase , global_clipnorm=__lowerCAmelCase , exclude_from_weight_decay=["""LayerNorm""", """layer_norm""", """bias"""] , include_in_weight_decay=__lowerCAmelCase , ) else: SCREAMING_SNAKE_CASE__ : int = tf.keras.optimizers.Adam( learning_rate=__lowerCAmelCase , beta_a=__lowerCAmelCase , beta_a=__lowerCAmelCase , epsilon=__lowerCAmelCase , clipnorm=__lowerCAmelCase , global_clipnorm=__lowerCAmelCase , ) # We return the optimizer and the LR scheduler in order to better track the # evolution of the LR independently of the optimizer. return optimizer, lr_schedule class __a (UpperCamelCase_): '''simple docstring''' def __init__( self , _a = 0.001 , _a = 0.9 , _a = 0.999 , _a = 1E-7 , _a = False , _a = 0.0 , _a = None , _a = None , _a = "AdamWeightDecay" , **_a , ) -> Union[str, Any]: """simple docstring""" super().__init__(_a , _a , _a , _a , _a , _a , **_a ) SCREAMING_SNAKE_CASE__ : Tuple = weight_decay_rate SCREAMING_SNAKE_CASE__ : Tuple = include_in_weight_decay SCREAMING_SNAKE_CASE__ : Dict = exclude_from_weight_decay @classmethod def _a ( cls , _a ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = {"""WarmUp""": WarmUp} return super(_a , cls ).from_config(_a , custom_objects=_a ) def _a ( self , _a , _a , _a ) -> str: """simple docstring""" super(_a , self )._prepare_local(_a , _a , _a ) SCREAMING_SNAKE_CASE__ : Tuple = tf.constant( self.weight_decay_rate , name="""adam_weight_decay_rate""" ) def _a ( self , _a , _a , _a ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = self._do_use_weight_decay(var.name ) if do_decay: return var.assign_sub( learning_rate * var * apply_state[(var.device, var.dtype.base_dtype)]["""weight_decay_rate"""] , use_locking=self._use_locking , ) return tf.no_op() def _a ( self , _a , _a=None , **_a ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : str = list(zip(*_a ) ) return super(_a , self ).apply_gradients(zip(_a , _a ) , name=_a , **_a ) def _a ( self , _a , _a , _a ) -> str: """simple docstring""" if apply_state is None: return self._decayed_lr_t[var_dtype], {} SCREAMING_SNAKE_CASE__ : Dict = apply_state or {} SCREAMING_SNAKE_CASE__ : List[str] = apply_state.get((var_device, var_dtype) ) if coefficients is None: SCREAMING_SNAKE_CASE__ : Union[str, Any] = self._fallback_apply_state(_a , _a ) SCREAMING_SNAKE_CASE__ : List[Any] = coefficients return coefficients["lr_t"], {"apply_state": apply_state} def _a ( self , _a , _a , _a=None ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[int] = self._get_lr(var.device , var.dtype.base_dtype , _a ) SCREAMING_SNAKE_CASE__ : Any = self._decay_weights_op(_a , _a , _a ) with tf.control_dependencies([decay] ): return super(_a , self )._resource_apply_dense(_a , _a , **_a ) def _a ( self , _a , _a , _a , _a=None ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[str] = self._get_lr(var.device , var.dtype.base_dtype , _a ) SCREAMING_SNAKE_CASE__ : Dict = self._decay_weights_op(_a , _a , _a ) with tf.control_dependencies([decay] ): return super(_a , self )._resource_apply_sparse(_a , _a , _a , **_a ) def _a ( self ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = super().get_config() config.update({"""weight_decay_rate""": self.weight_decay_rate} ) return config def _a ( self , _a ) -> Tuple: """simple docstring""" if self.weight_decay_rate == 0: return False if self._include_in_weight_decay: for r in self._include_in_weight_decay: if re.search(_a , _a ) is not None: return True if self._exclude_from_weight_decay: for r in self._exclude_from_weight_decay: if re.search(_a , _a ) is not None: return False return True class __a (UpperCamelCase_): '''simple docstring''' def __init__( self ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = [] SCREAMING_SNAKE_CASE__ : List[str] = None @property def _a ( self ) -> str: """simple docstring""" if self._accum_steps is None: SCREAMING_SNAKE_CASE__ : Dict = tf.Variable( tf.constant(0 , dtype=tf.intaa ) , trainable=_a , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) return self._accum_steps.value() @property def _a ( self ) -> List[str]: """simple docstring""" if not self._gradients: raise ValueError("""The accumulator should be called first to initialize the gradients""" ) return [gradient.value() if gradient is not None else gradient for gradient in self._gradients] def __call__( self , _a ) -> str: """simple docstring""" if not self._gradients: SCREAMING_SNAKE_CASE__ : Optional[Any] = self.step # Create the step variable. self._gradients.extend( [ tf.Variable( tf.zeros_like(_a ) , trainable=_a , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) if gradient is not None else gradient for gradient in gradients ] ) if len(_a ) != len(self._gradients ): raise ValueError(f'''Expected {len(self._gradients )} gradients, but got {len(_a )}''' ) for accum_gradient, gradient in zip(self._gradients , _a ): if accum_gradient is not None and gradient is not None: accum_gradient.assign_add(_a ) self._accum_steps.assign_add(1 ) def _a ( self ) -> Any: """simple docstring""" if not self._gradients: return self._accum_steps.assign(0 ) for gradient in self._gradients: if gradient is not None: gradient.assign(tf.zeros_like(_a ) )
56
0
import contextlib import os import sqlitea import pytest from datasets import Dataset, Features, Value from datasets.io.sql import SqlDatasetReader, SqlDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases, require_sqlalchemy def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Any: assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @require_sqlalchemy @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Union[str, Any]: lowercase : Union[str, Any] = tmp_path / """cache""" lowercase : Optional[Any] = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowercase : Any = SqlDatasetReader( """dataset""" , """sqlite:///""" + sqlite_path , cache_dir=SCREAMING_SNAKE_CASE__ , keep_in_memory=SCREAMING_SNAKE_CASE__ ).read() _check_sql_dataset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @require_sqlalchemy @pytest.mark.parametrize( """features""" , [ None, {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}, {"""col_1""": """string""", """col_2""": """string""", """col_3""": """string"""}, {"""col_1""": """int32""", """col_2""": """int32""", """col_3""": """int32"""}, {"""col_1""": """float32""", """col_2""": """float32""", """col_3""": """float32"""}, ] , ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Tuple: lowercase : Union[str, Any] = tmp_path / """cache""" lowercase : int = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} lowercase : str = features.copy() if features else default_expected_features lowercase : Optional[Any] = ( Features({feature: Value(SCREAMING_SNAKE_CASE__ ) for feature, dtype in features.items()} ) if features is not None else None ) lowercase : Optional[int] = SqlDatasetReader("""dataset""" , """sqlite:///""" + sqlite_path , features=SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ ).read() _check_sql_dataset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _snake_case( SCREAMING_SNAKE_CASE__ ) -> List[Any]: with contextlib.closing(sqlitea.connect(SCREAMING_SNAKE_CASE__ ) ) as con: lowercase : Optional[int] = con.cursor() cur.execute("""SELECT * FROM dataset""" ) for row in cur: yield row @require_sqlalchemy def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> int: lowercase : Any = tmp_path / """cache""" lowercase : int = os.path.join(SCREAMING_SNAKE_CASE__ , """tmp.sql""" ) lowercase : List[str] = SqlDatasetReader("""dataset""" , """sqlite:///""" + sqlite_path , cache_dir=SCREAMING_SNAKE_CASE__ ).read() SqlDatasetWriter(SCREAMING_SNAKE_CASE__ , """dataset""" , """sqlite:///""" + output_sqlite_path , num_proc=1 ).write() lowercase : List[str] = iter_sql_file(SCREAMING_SNAKE_CASE__ ) lowercase : Tuple = iter_sql_file(SCREAMING_SNAKE_CASE__ ) for rowa, rowa in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): assert rowa == rowa @require_sqlalchemy def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Dict: lowercase : Dict = tmp_path / """cache""" lowercase : List[str] = os.path.join(SCREAMING_SNAKE_CASE__ , """tmp.sql""" ) lowercase : List[str] = SqlDatasetReader("""dataset""" , """sqlite:///""" + sqlite_path , cache_dir=SCREAMING_SNAKE_CASE__ ).read() SqlDatasetWriter(SCREAMING_SNAKE_CASE__ , """dataset""" , """sqlite:///""" + output_sqlite_path , num_proc=2 ).write() lowercase : Optional[int] = iter_sql_file(SCREAMING_SNAKE_CASE__ ) lowercase : List[Any] = iter_sql_file(SCREAMING_SNAKE_CASE__ ) for rowa, rowa in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): assert rowa == rowa @require_sqlalchemy def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> List[str]: lowercase : str = tmp_path / """cache""" lowercase : Optional[int] = os.path.join(SCREAMING_SNAKE_CASE__ , """tmp.sql""" ) lowercase : Optional[Any] = SqlDatasetReader("""dataset""" , """sqlite:///""" + sqlite_path , cache_dir=SCREAMING_SNAKE_CASE__ ).read() with pytest.raises(SCREAMING_SNAKE_CASE__ ): SqlDatasetWriter(SCREAMING_SNAKE_CASE__ , """dataset""" , """sqlite:///""" + output_sqlite_path , num_proc=0 ).write()
20
import json import os from dataclasses import dataclass from functools import partial from typing import Callable import flax.linen as nn import jax import jax.numpy as jnp import joblib import optax import wandb from flax import jax_utils, struct, traverse_util from flax.serialization import from_bytes, to_bytes from flax.training import train_state from flax.training.common_utils import shard from tqdm.auto import tqdm from transformers import BigBirdConfig, FlaxBigBirdForQuestionAnswering from transformers.models.big_bird.modeling_flax_big_bird import FlaxBigBirdForQuestionAnsweringModule class __snake_case ( lowerCAmelCase ): _a : BigBirdConfig _a : jnp.dtype= jnp.floataa _a : bool= True def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' super().setup() lowercase : List[str] = nn.Dense(5 ,dtype=self.dtype ) def __call__( self ,*snake_case ,**snake_case ): '''simple docstring''' lowercase : int = super().__call__(*snake_case ,**snake_case ) lowercase : Any = self.cls(outputs[2] ) return outputs[:2] + (cls_out,) class __snake_case ( lowerCAmelCase ): _a : List[Any]= FlaxBigBirdForNaturalQuestionsModule def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> List[str]: def cross_entropy(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=None ): lowercase : int = logits.shape[-1] lowercase : Dict = (labels[..., None] == jnp.arange(SCREAMING_SNAKE_CASE__ )[None]).astype("""f4""" ) lowercase : Any = jax.nn.log_softmax(SCREAMING_SNAKE_CASE__ , axis=-1 ) lowercase : Optional[Any] = -jnp.sum(labels * logits , axis=-1 ) if reduction is not None: lowercase : Any = reduction(SCREAMING_SNAKE_CASE__ ) return loss lowercase : Optional[Any] = partial(SCREAMING_SNAKE_CASE__ , reduction=jnp.mean ) lowercase : Optional[int] = cross_entropy(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowercase : Dict = cross_entropy(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowercase : int = cross_entropy(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return (start_loss + end_loss + pooled_loss) / 3 @dataclass class __snake_case : _a : str= "google/bigbird-roberta-base" _a : int= 3000 _a : int= 1_0500 _a : int= 128 _a : int= 3 _a : int= 1 _a : int= 5 # tx_args _a : float= 3E-5 _a : float= 0.0 _a : int= 2_0000 _a : float= 0.00_95 _a : str= "bigbird-roberta-natural-questions" _a : str= "training-expt" _a : str= "data/nq-training.jsonl" _a : str= "data/nq-validation.jsonl" def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' os.makedirs(self.base_dir ,exist_ok=snake_case ) lowercase : Optional[int] = os.path.join(self.base_dir ,self.save_dir ) lowercase : Optional[int] = self.batch_size_per_device * jax.device_count() @dataclass class __snake_case : _a : int _a : int= 4096 # no dynamic padding on TPUs def __call__( self ,snake_case ): '''simple docstring''' lowercase : int = self.collate_fn(snake_case ) lowercase : Union[str, Any] = jax.tree_util.tree_map(snake_case ,snake_case ) return batch def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' lowercase , lowercase : Union[str, Any] = self.fetch_inputs(features["""input_ids"""] ) lowercase : Tuple = { """input_ids""": jnp.array(snake_case ,dtype=jnp.intaa ), """attention_mask""": jnp.array(snake_case ,dtype=jnp.intaa ), """start_labels""": jnp.array(features["""start_token"""] ,dtype=jnp.intaa ), """end_labels""": jnp.array(features["""end_token"""] ,dtype=jnp.intaa ), """pooled_labels""": jnp.array(features["""category"""] ,dtype=jnp.intaa ), } return batch def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' lowercase : Tuple = [self._fetch_inputs(snake_case ) for ids in input_ids] return zip(*snake_case ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' lowercase : Union[str, Any] = [1 for _ in range(len(snake_case ) )] while len(snake_case ) < self.max_length: input_ids.append(self.pad_id ) attention_mask.append(0 ) return input_ids, attention_mask def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=None ) -> Any: if seed is not None: lowercase : Optional[int] = dataset.shuffle(seed=SCREAMING_SNAKE_CASE__ ) for i in range(len(SCREAMING_SNAKE_CASE__ ) // batch_size ): lowercase : Optional[Any] = dataset[i * batch_size : (i + 1) * batch_size] yield dict(SCREAMING_SNAKE_CASE__ ) @partial(jax.pmap , axis_name="""batch""" ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) -> List[Any]: def loss_fn(SCREAMING_SNAKE_CASE__ ): lowercase : List[str] = model_inputs.pop("""start_labels""" ) lowercase : Optional[int] = model_inputs.pop("""end_labels""" ) lowercase : str = model_inputs.pop("""pooled_labels""" ) lowercase : Union[str, Any] = state.apply_fn(**SCREAMING_SNAKE_CASE__ , params=SCREAMING_SNAKE_CASE__ , dropout_rng=SCREAMING_SNAKE_CASE__ , train=SCREAMING_SNAKE_CASE__ ) lowercase , lowercase , lowercase : List[str] = outputs return state.loss_fn( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ) lowercase , lowercase : int = jax.random.split(SCREAMING_SNAKE_CASE__ ) lowercase : Dict = jax.value_and_grad(SCREAMING_SNAKE_CASE__ ) lowercase , lowercase : Union[str, Any] = grad_fn(state.params ) lowercase : List[Any] = jax.lax.pmean({"""loss""": loss} , axis_name="""batch""" ) lowercase : List[Any] = jax.lax.pmean(SCREAMING_SNAKE_CASE__ , """batch""" ) lowercase : str = state.apply_gradients(grads=SCREAMING_SNAKE_CASE__ ) return state, metrics, new_drp_rng @partial(jax.pmap , axis_name="""batch""" ) def _snake_case( SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) -> List[str]: lowercase : int = model_inputs.pop("""start_labels""" ) lowercase : Dict = model_inputs.pop("""end_labels""" ) lowercase : Optional[Any] = model_inputs.pop("""pooled_labels""" ) lowercase : Optional[int] = state.apply_fn(**SCREAMING_SNAKE_CASE__ , params=state.params , train=SCREAMING_SNAKE_CASE__ ) lowercase , lowercase , lowercase : List[Any] = outputs lowercase : Dict = state.loss_fn(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowercase : str = jax.lax.pmean({"""loss""": loss} , axis_name="""batch""" ) return metrics class __snake_case ( train_state.TrainState ): _a : Callable= struct.field(pytree_node=lowerCAmelCase ) @dataclass class __snake_case : _a : Args _a : Callable _a : Callable _a : Callable _a : Callable _a : wandb _a : Callable= None def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case=None ): '''simple docstring''' lowercase : Tuple = model.params lowercase : Any = TrainState.create( apply_fn=model.__call__ ,params=snake_case ,tx=snake_case ,loss_fn=snake_case ,) if ckpt_dir is not None: lowercase , lowercase , lowercase , lowercase , lowercase : Tuple = restore_checkpoint(snake_case ,snake_case ) lowercase : List[str] = { """lr""": args.lr, """init_lr""": args.init_lr, """warmup_steps""": args.warmup_steps, """num_train_steps""": num_train_steps, """weight_decay""": args.weight_decay, } lowercase , lowercase : Tuple = build_tx(**snake_case ) lowercase : str = train_state.TrainState( step=snake_case ,apply_fn=model.__call__ ,params=snake_case ,tx=snake_case ,opt_state=snake_case ,) lowercase : Any = args lowercase : Optional[Any] = data_collator lowercase : List[str] = lr lowercase : str = params lowercase : Tuple = jax_utils.replicate(snake_case ) return state def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ): '''simple docstring''' lowercase : Dict = self.args lowercase : Optional[Any] = len(snake_case ) // args.batch_size lowercase : int = jax.random.PRNGKey(0 ) lowercase : List[str] = jax.random.split(snake_case ,jax.device_count() ) for epoch in range(args.max_epochs ): lowercase : List[Any] = jnp.array(0 ,dtype=jnp.floataa ) lowercase : List[str] = get_batched_dataset(snake_case ,args.batch_size ,seed=snake_case ) lowercase : int = 0 for batch in tqdm(snake_case ,total=snake_case ,desc=f"Running EPOCH-{epoch}" ): lowercase : Dict = self.data_collator(snake_case ) lowercase , lowercase , lowercase : Optional[int] = self.train_step_fn(snake_case ,snake_case ,**snake_case ) running_loss += jax_utils.unreplicate(metrics["""loss"""] ) i += 1 if i % args.logging_steps == 0: lowercase : Optional[Any] = jax_utils.unreplicate(state.step ) lowercase : List[str] = running_loss.item() / i lowercase : List[str] = self.scheduler_fn(state_step - 1 ) lowercase : int = self.evaluate(snake_case ,snake_case ) lowercase : Tuple = { """step""": state_step.item(), """eval_loss""": eval_loss.item(), """tr_loss""": tr_loss, """lr""": lr.item(), } tqdm.write(str(snake_case ) ) self.logger.log(snake_case ,commit=snake_case ) if i % args.save_steps == 0: self.save_checkpoint(args.save_dir + f"-e{epoch}-s{i}" ,state=snake_case ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ): '''simple docstring''' lowercase : List[str] = get_batched_dataset(snake_case ,self.args.batch_size ) lowercase : Any = len(snake_case ) // self.args.batch_size lowercase : List[Any] = jnp.array(0 ,dtype=jnp.floataa ) lowercase : Optional[int] = 0 for batch in tqdm(snake_case ,total=snake_case ,desc="""Evaluating ... """ ): lowercase : Tuple = self.data_collator(snake_case ) lowercase : Optional[int] = self.val_step_fn(snake_case ,**snake_case ) running_loss += jax_utils.unreplicate(metrics["""loss"""] ) i += 1 return running_loss / i def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ): '''simple docstring''' lowercase : str = jax_utils.unreplicate(snake_case ) print(f"SAVING CHECKPOINT IN {save_dir}" ,end=""" ... """ ) self.model_save_fn(snake_case ,params=state.params ) with open(os.path.join(snake_case ,"""opt_state.msgpack""" ) ,"""wb""" ) as f: f.write(to_bytes(state.opt_state ) ) joblib.dump(self.args ,os.path.join(snake_case ,"""args.joblib""" ) ) joblib.dump(self.data_collator ,os.path.join(snake_case ,"""data_collator.joblib""" ) ) with open(os.path.join(snake_case ,"""training_state.json""" ) ,"""w""" ) as f: json.dump({"""step""": state.step.item()} ,snake_case ) print("""DONE""" ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Union[str, Any]: print(f"RESTORING CHECKPOINT FROM {save_dir}" , end=""" ... """ ) with open(os.path.join(SCREAMING_SNAKE_CASE__ , """flax_model.msgpack""" ) , """rb""" ) as f: lowercase : str = from_bytes(state.params , f.read() ) with open(os.path.join(SCREAMING_SNAKE_CASE__ , """opt_state.msgpack""" ) , """rb""" ) as f: lowercase : Optional[int] = from_bytes(state.opt_state , f.read() ) lowercase : Optional[Any] = joblib.load(os.path.join(SCREAMING_SNAKE_CASE__ , """args.joblib""" ) ) lowercase : int = joblib.load(os.path.join(SCREAMING_SNAKE_CASE__ , """data_collator.joblib""" ) ) with open(os.path.join(SCREAMING_SNAKE_CASE__ , """training_state.json""" ) , """r""" ) as f: lowercase : Tuple = json.load(SCREAMING_SNAKE_CASE__ ) lowercase : Tuple = training_state["""step"""] print("""DONE""" ) return params, opt_state, step, args, data_collator def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> List[Any]: lowercase : List[str] = num_train_steps - warmup_steps lowercase : Dict = optax.linear_schedule(init_value=SCREAMING_SNAKE_CASE__ , end_value=SCREAMING_SNAKE_CASE__ , transition_steps=SCREAMING_SNAKE_CASE__ ) lowercase : List[str] = optax.linear_schedule(init_value=SCREAMING_SNAKE_CASE__ , end_value=1e-7 , transition_steps=SCREAMING_SNAKE_CASE__ ) lowercase : Tuple = optax.join_schedules(schedules=[warmup_fn, decay_fn] , boundaries=[warmup_steps] ) return lr def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Optional[Any]: def weight_decay_mask(SCREAMING_SNAKE_CASE__ ): lowercase : List[Any] = traverse_util.flatten_dict(SCREAMING_SNAKE_CASE__ ) lowercase : List[Any] = {k: (v[-1] != """bias""" and v[-2:] != ("""LayerNorm""", """scale""")) for k, v in params.items()} return traverse_util.unflatten_dict(SCREAMING_SNAKE_CASE__ ) lowercase : List[str] = scheduler_fn(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowercase : List[str] = optax.adamw(learning_rate=SCREAMING_SNAKE_CASE__ , weight_decay=SCREAMING_SNAKE_CASE__ , mask=SCREAMING_SNAKE_CASE__ ) return tx, lr
20
1
'''simple docstring''' from pathlib import Path import torch from ...utils import is_npu_available, is_xpu_available from .config_args import ClusterConfig, default_json_config_file from .config_utils import SubcommandHelpFormatter __UpperCAmelCase :Tuple = "Create a default config file for Accelerate with only a few flags set." def _a ( _lowercase : List[Any]="no" , _lowercase : str = default_json_config_file , _lowercase : bool = False ): '''simple docstring''' __UpperCAmelCase : Dict = Path(_lowercase ) path.parent.mkdir(parents=_lowercase , exist_ok=_lowercase ) if path.exists(): print( F'Configuration already exists at {save_location}, will not override. Run `accelerate config` manually or pass a different `save_location`.' ) return False __UpperCAmelCase : List[str] = mixed_precision.lower() if mixed_precision not in ["no", "fp16", "bf16", "fp8"]: raise ValueError( F'`mixed_precision` should be one of \'no\', \'fp16\', \'bf16\', or \'fp8\'. Received {mixed_precision}' ) __UpperCAmelCase : int = { '''compute_environment''': '''LOCAL_MACHINE''', '''mixed_precision''': mixed_precision, } if torch.cuda.is_available(): __UpperCAmelCase : Optional[Any] = torch.cuda.device_count() __UpperCAmelCase : List[str] = num_gpus __UpperCAmelCase : int = False if num_gpus > 1: __UpperCAmelCase : Any = '''MULTI_GPU''' else: __UpperCAmelCase : int = '''NO''' elif is_xpu_available() and use_xpu: __UpperCAmelCase : List[Any] = torch.xpu.device_count() __UpperCAmelCase : List[Any] = num_xpus __UpperCAmelCase : Optional[int] = False if num_xpus > 1: __UpperCAmelCase : Any = '''MULTI_XPU''' else: __UpperCAmelCase : Optional[Any] = '''NO''' elif is_npu_available(): __UpperCAmelCase : Dict = torch.npu.device_count() __UpperCAmelCase : Any = num_npus __UpperCAmelCase : Any = False if num_npus > 1: __UpperCAmelCase : Dict = '''MULTI_NPU''' else: __UpperCAmelCase : Optional[int] = '''NO''' else: __UpperCAmelCase : List[str] = 0 __UpperCAmelCase : Dict = True __UpperCAmelCase : Dict = 1 __UpperCAmelCase : Tuple = '''NO''' __UpperCAmelCase : List[Any] = ClusterConfig(**_lowercase ) config.to_json_file(_lowercase ) return path def _a ( _lowercase : Union[str, Any] , _lowercase : str ): '''simple docstring''' __UpperCAmelCase : Optional[int] = parser.add_parser('''default''' , parents=_lowercase , help=_lowercase , formatter_class=_lowercase ) parser.add_argument( '''--config_file''' , default=_lowercase , help=( '''The path to use to store the config file. Will default to a file named default_config.yaml in the cache ''' '''location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ''' '''such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ''' '''with \'huggingface\'.''' ) , dest='''save_location''' , ) parser.add_argument( '''--mixed_precision''' , choices=['''no''', '''fp16''', '''bf16'''] , type=_lowercase , help='''Whether or not to use mixed precision training. ''' '''Choose between FP16 and BF16 (bfloat16) training. ''' '''BF16 training is only supported on Nvidia Ampere GPUs and PyTorch 1.10 or later.''' , default='''no''' , ) parser.set_defaults(func=_lowercase ) return parser def _a ( _lowercase : List[Any] ): '''simple docstring''' __UpperCAmelCase : str = write_basic_config(args.mixed_precision , args.save_location ) if config_file: print(F'accelerate configuration saved at {config_file}' )
357
'''simple docstring''' import unittest from transformers import DebertaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, ) from transformers.models.deberta.modeling_deberta import DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST class a ( _a ): """simple docstring""" def __init__( self : Optional[Any] , snake_case : Dict , snake_case : Dict=13 , snake_case : str=7 , snake_case : Dict=True , snake_case : Any=True , snake_case : Optional[Any]=True , snake_case : Optional[Any]=True , snake_case : List[str]=99 , snake_case : str=32 , snake_case : Any=5 , snake_case : List[str]=4 , snake_case : List[str]=37 , snake_case : int="gelu" , snake_case : int=0.1 , snake_case : int=0.1 , snake_case : Union[str, Any]=512 , snake_case : int=16 , snake_case : Optional[Any]=2 , snake_case : List[Any]=0.02 , snake_case : Any=False , snake_case : int=True , snake_case : Union[str, Any]="None" , snake_case : str=3 , snake_case : Union[str, Any]=4 , snake_case : Any=None , ) -> List[Any]: __UpperCAmelCase : List[str] = parent __UpperCAmelCase : Dict = batch_size __UpperCAmelCase : Any = seq_length __UpperCAmelCase : List[Any] = is_training __UpperCAmelCase : List[str] = use_input_mask __UpperCAmelCase : Union[str, Any] = use_token_type_ids __UpperCAmelCase : Any = use_labels __UpperCAmelCase : Any = vocab_size __UpperCAmelCase : Dict = hidden_size __UpperCAmelCase : List[str] = num_hidden_layers __UpperCAmelCase : Union[str, Any] = num_attention_heads __UpperCAmelCase : List[str] = intermediate_size __UpperCAmelCase : str = hidden_act __UpperCAmelCase : Union[str, Any] = hidden_dropout_prob __UpperCAmelCase : int = attention_probs_dropout_prob __UpperCAmelCase : Tuple = max_position_embeddings __UpperCAmelCase : Any = type_vocab_size __UpperCAmelCase : Tuple = type_sequence_label_size __UpperCAmelCase : Union[str, Any] = initializer_range __UpperCAmelCase : Dict = num_labels __UpperCAmelCase : Any = num_choices __UpperCAmelCase : Any = relative_attention __UpperCAmelCase : Dict = position_biased_input __UpperCAmelCase : Optional[int] = pos_att_type __UpperCAmelCase : Dict = scope def lowerCamelCase__ ( self : Dict ) -> Optional[int]: __UpperCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase : Optional[Any] = None if self.use_input_mask: __UpperCAmelCase : str = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) __UpperCAmelCase : Any = None if self.use_token_type_ids: __UpperCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __UpperCAmelCase : List[str] = None __UpperCAmelCase : int = None __UpperCAmelCase : str = None if self.use_labels: __UpperCAmelCase : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) __UpperCAmelCase : str = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCamelCase__ ( self : Tuple ) -> List[str]: return DebertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def lowerCamelCase__ ( self : Union[str, Any] ) -> str: __UpperCAmelCase : Optional[int] = self.get_config() __UpperCAmelCase : Dict = 300 return config def lowerCamelCase__ ( self : Any , snake_case : int ) -> Any: self.parent.assertListEqual(list(result.loss.size() ) , [] ) def lowerCamelCase__ ( self : List[Any] , snake_case : Optional[int] , snake_case : Any , snake_case : List[Any] , snake_case : Any , snake_case : Union[str, Any] , snake_case : Optional[Any] , snake_case : Union[str, Any] ) -> Optional[Any]: __UpperCAmelCase : List[str] = DebertaModel(config=snake_case ) model.to(snake_case ) model.eval() __UpperCAmelCase : str = model(snake_case , attention_mask=snake_case , token_type_ids=snake_case )[0] __UpperCAmelCase : Tuple = model(snake_case , token_type_ids=snake_case )[0] __UpperCAmelCase : Optional[int] = model(snake_case )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def lowerCamelCase__ ( self : Optional[int] , snake_case : int , snake_case : Tuple , snake_case : Any , snake_case : Tuple , snake_case : Union[str, Any] , snake_case : Optional[int] , snake_case : List[str] ) -> Optional[int]: __UpperCAmelCase : Union[str, Any] = DebertaForMaskedLM(config=snake_case ) model.to(snake_case ) model.eval() __UpperCAmelCase : int = model(snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase__ ( self : str , snake_case : Union[str, Any] , snake_case : Tuple , snake_case : Optional[Any] , snake_case : Tuple , snake_case : List[Any] , snake_case : str , snake_case : Tuple ) -> Union[str, Any]: __UpperCAmelCase : Tuple = self.num_labels __UpperCAmelCase : List[Any] = DebertaForSequenceClassification(snake_case ) model.to(snake_case ) model.eval() __UpperCAmelCase : Any = model(snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=snake_case ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(snake_case ) def lowerCamelCase__ ( self : str , snake_case : List[str] , snake_case : Union[str, Any] , snake_case : List[str] , snake_case : Dict , snake_case : Optional[Any] , snake_case : Dict , snake_case : Optional[int] ) -> int: __UpperCAmelCase : List[Any] = self.num_labels __UpperCAmelCase : Union[str, Any] = DebertaForTokenClassification(config=snake_case ) model.to(snake_case ) model.eval() __UpperCAmelCase : Any = model(snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCamelCase__ ( self : str , snake_case : List[Any] , snake_case : Optional[Any] , snake_case : str , snake_case : Optional[int] , snake_case : int , snake_case : int , snake_case : str ) -> Union[str, Any]: __UpperCAmelCase : Union[str, Any] = DebertaForQuestionAnswering(config=snake_case ) model.to(snake_case ) model.eval() __UpperCAmelCase : Optional[int] = model( snake_case , attention_mask=snake_case , token_type_ids=snake_case , start_positions=snake_case , end_positions=snake_case , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCamelCase__ ( self : str ) -> int: __UpperCAmelCase : int = self.prepare_config_and_inputs() ( ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ) : Any = config_and_inputs __UpperCAmelCase : str = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class a ( _a , _a , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = ( ( DebertaModel, DebertaForMaskedLM, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaForQuestionAnswering, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE : Dict = ( { "feature-extraction": DebertaModel, "fill-mask": DebertaForMaskedLM, "question-answering": DebertaForQuestionAnswering, "text-classification": DebertaForSequenceClassification, "token-classification": DebertaForTokenClassification, "zero-shot": DebertaForSequenceClassification, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE : Union[str, Any] = True SCREAMING_SNAKE_CASE : Dict = False SCREAMING_SNAKE_CASE : List[Any] = False SCREAMING_SNAKE_CASE : List[str] = False SCREAMING_SNAKE_CASE : Any = False def lowerCamelCase__ ( self : Union[str, Any] ) -> Union[str, Any]: __UpperCAmelCase : Dict = DebertaModelTester(self ) __UpperCAmelCase : List[Any] = ConfigTester(self , config_class=snake_case , hidden_size=37 ) def lowerCamelCase__ ( self : Optional[int] ) -> Dict: self.config_tester.run_common_tests() def lowerCamelCase__ ( self : List[str] ) -> Optional[Any]: __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*snake_case ) def lowerCamelCase__ ( self : Dict ) -> List[str]: __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*snake_case ) def lowerCamelCase__ ( self : Dict ) -> str: __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*snake_case ) def lowerCamelCase__ ( self : Union[str, Any] ) -> Any: __UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*snake_case ) def lowerCamelCase__ ( self : Dict ) -> Optional[Any]: __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*snake_case ) @slow def lowerCamelCase__ ( self : Dict ) -> Tuple: for model_name in DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase : str = DebertaModel.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) @require_torch @require_sentencepiece @require_tokenizers class a ( unittest.TestCase ): """simple docstring""" @unittest.skip(reason='''Model not available yet''' ) def lowerCamelCase__ ( self : Dict ) -> Tuple: pass @slow def lowerCamelCase__ ( self : int ) -> Optional[Any]: __UpperCAmelCase : Any = DebertaModel.from_pretrained('''microsoft/deberta-base''' ) __UpperCAmelCase : Any = torch.tensor([[0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2]] ) __UpperCAmelCase : Dict = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __UpperCAmelCase : int = model(snake_case , attention_mask=snake_case )[0] # compare the actual values for a slice. __UpperCAmelCase : Optional[Any] = torch.tensor( [[[-0.5_986, -0.8_055, -0.8_462], [1.4_484, -0.9_348, -0.8_059], [0.3_123, 0.0_032, -1.4_131]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , snake_case , atol=1E-4 ) , f'{output[:, 1:4, 1:4]}' )
240
0
from transformers import BertTokenizerFast from .custom_tokenization import CustomTokenizer class _a ( snake_case_ ): """simple docstring""" _lowerCamelCase : int = CustomTokenizer pass
312
def __snake_case ( __UpperCamelCase : bytes ): """simple docstring""" return "".join([hex(__UpperCamelCase )[2:].zfill(2 ).upper() for byte in list(__UpperCamelCase )] ) def __snake_case ( __UpperCamelCase : str ): """simple docstring""" if (len(__UpperCamelCase ) % 2) != 0: raise ValueError( "Base16 encoded data is invalid:\nData does not have an even number of hex digits." ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(__UpperCamelCase ) <= set("0123456789ABCDEF" ): raise ValueError( "Base16 encoded data is invalid:\nData is not uppercase hex or it contains invalid characters." ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1] ,16 ) for i in range(0 ,len(__UpperCamelCase ) ,2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
312
1
'''simple docstring''' import logging import os import sys import warnings from dataclasses import dataclass, field from random import randint from typing import Optional import datasets import evaluate import numpy as np from datasets import DatasetDict, load_dataset import transformers from transformers import ( AutoConfig, AutoFeatureExtractor, AutoModelForAudioClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version A__ : int =logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') require_version('''datasets>=1.14.0''', '''To fix: pip install -r examples/pytorch/audio-classification/requirements.txt''') def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = 1_60_00 ) -> Optional[int]: """simple docstring""" _lowerCAmelCase = int(round(sample_rate * max_length ) ) if len(lowerCAmelCase ) <= sample_length: return wav _lowerCAmelCase = randint(0 , len(lowerCAmelCase ) - sample_length - 1 ) return wav[random_offset : random_offset + sample_length] @dataclass class UpperCAmelCase : _lowercase: Optional[str] = field(default=snake_case_ , metadata={'''help''': '''Name of a dataset from the datasets package'''} ) _lowercase: Optional[str] = field( default=snake_case_ , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} ) _lowercase: Optional[str] = field( default=snake_case_ , metadata={'''help''': '''A file containing the training audio paths and labels.'''} ) _lowercase: Optional[str] = field( default=snake_case_ , metadata={'''help''': '''A file containing the validation audio paths and labels.'''} ) _lowercase: str = field( default='''train''' , metadata={ '''help''': '''The name of the training data set split to use (via the datasets library). Defaults to \'train\'''' } , ) _lowercase: str = field( default='''validation''' , metadata={ '''help''': ( '''The name of the training data set split to use (via the datasets library). Defaults to \'validation\'''' ) } , ) _lowercase: str = field( default='''audio''' , metadata={'''help''': '''The name of the dataset column containing the audio data. Defaults to \'audio\''''} , ) _lowercase: str = field( default='''label''' , metadata={'''help''': '''The name of the dataset column containing the labels. Defaults to \'label\''''} ) _lowercase: Optional[int] = field( default=snake_case_ , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) } , ) _lowercase: Optional[int] = field( default=snake_case_ , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of evaluation examples to this ''' '''value if set.''' ) } , ) _lowercase: float = field( default=20 , metadata={'''help''': '''Audio clips will be randomly cut to this length during training if the value is set.'''} , ) @dataclass class UpperCAmelCase : _lowercase: str = field( default='''facebook/wav2vec2-base''' , metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} , ) _lowercase: Optional[str] = field( default=snake_case_ , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) _lowercase: Optional[str] = field( default=snake_case_ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from the Hub'''} ) _lowercase: str = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) _lowercase: Optional[str] = field( default=snake_case_ , metadata={'''help''': '''Name or path of preprocessor config.'''} ) _lowercase: bool = field( default=snake_case_ , metadata={'''help''': '''Whether to freeze the feature encoder layers of the model.'''} ) _lowercase: bool = field( default=snake_case_ , metadata={'''help''': '''Whether to generate an attention mask in the feature extractor.'''} ) _lowercase: bool = field( default=snake_case_ , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) _lowercase: Optional[bool] = field( default=snake_case_ , metadata={'''help''': '''Whether to freeze the feature extractor layers of the model.'''} ) _lowercase: bool = field( default=snake_case_ , metadata={'''help''': '''Will enable to load a pretrained model whose head dimensions are different.'''} , ) def lowercase__ ( self : str ) -> Optional[int]: if not self.freeze_feature_extractor and self.freeze_feature_encoder: warnings.warn( """The argument `--freeze_feature_extractor` is deprecated and """ """will be removed in a future version. Use `--freeze_feature_encoder`""" """instead. Setting `freeze_feature_encoder==True`.""" , __snake_case , ) if self.freeze_feature_extractor and not self.freeze_feature_encoder: raise ValueError( """The argument `--freeze_feature_extractor` is deprecated and """ """should not be used in combination with `--freeze_feature_encoder`.""" """Only make use of `--freeze_feature_encoder`.""" ) def UpperCamelCase__ ( ) -> List[str]: """simple docstring""" _lowerCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("""run_audio_classification""" , lowerCAmelCase , lowerCAmelCase ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() _lowerCAmelCase = training_args.get_process_log_level() logger.setLevel(lowerCAmelCase ) transformers.utils.logging.set_verbosity(lowerCAmelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu} " + f"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" ) logger.info(f"Training/evaluation parameters {training_args}" ) # Set seed before initializing model. set_seed(training_args.seed ) # Detecting last checkpoint. _lowerCAmelCase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _lowerCAmelCase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. " """Use --overwrite_output_dir to train from scratch.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Initialize our dataset and prepare it for the audio classification task. _lowerCAmelCase = DatasetDict() _lowerCAmelCase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.train_split_name , use_auth_token=True if model_args.use_auth_token else None , ) _lowerCAmelCase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.eval_split_name , use_auth_token=True if model_args.use_auth_token else None , ) if data_args.audio_column_name not in raw_datasets["train"].column_names: raise ValueError( f"--audio_column_name {data_args.audio_column_name} not found in dataset '{data_args.dataset_name}'. " """Make sure to set `--audio_column_name` to the correct audio column - one of """ f"{', '.join(raw_datasets['train'].column_names )}." ) if data_args.label_column_name not in raw_datasets["train"].column_names: raise ValueError( f"--label_column_name {data_args.label_column_name} not found in dataset '{data_args.dataset_name}'. " """Make sure to set `--label_column_name` to the correct text column - one of """ f"{', '.join(raw_datasets['train'].column_names )}." ) # Setting `return_attention_mask=True` is the way to get a correctly masked mean-pooling over # transformer outputs in the classifier, but it doesn't always lead to better accuracy _lowerCAmelCase = AutoFeatureExtractor.from_pretrained( model_args.feature_extractor_name or model_args.model_name_or_path , return_attention_mask=model_args.attention_mask , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # `datasets` takes care of automatically loading and resampling the audio, # so we just need to set the correct target sampling rate. _lowerCAmelCase = raw_datasets.cast_column( data_args.audio_column_name , datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate ) ) _lowerCAmelCase = feature_extractor.model_input_names[0] def train_transforms(lowerCAmelCase ): _lowerCAmelCase = [] for audio in batch[data_args.audio_column_name]: _lowerCAmelCase = random_subsample( audio["""array"""] , max_length=data_args.max_length_seconds , sample_rate=feature_extractor.sampling_rate ) subsampled_wavs.append(lowerCAmelCase ) _lowerCAmelCase = feature_extractor(lowerCAmelCase , sampling_rate=feature_extractor.sampling_rate ) _lowerCAmelCase = {model_input_name: inputs.get(lowerCAmelCase )} _lowerCAmelCase = list(batch[data_args.label_column_name] ) return output_batch def val_transforms(lowerCAmelCase ): _lowerCAmelCase = [audio["""array"""] for audio in batch[data_args.audio_column_name]] _lowerCAmelCase = feature_extractor(lowerCAmelCase , sampling_rate=feature_extractor.sampling_rate ) _lowerCAmelCase = {model_input_name: inputs.get(lowerCAmelCase )} _lowerCAmelCase = list(batch[data_args.label_column_name] ) return output_batch # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. _lowerCAmelCase = raw_datasets["""train"""].features[data_args.label_column_name].names _lowerCAmelCase , _lowerCAmelCase = {}, {} for i, label in enumerate(lowerCAmelCase ): _lowerCAmelCase = str(lowerCAmelCase ) _lowerCAmelCase = label # Load the accuracy metric from the datasets package _lowerCAmelCase = evaluate.load("""accuracy""" ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with # `predictions` and `label_ids` fields) and has to return a dictionary string to float. def compute_metrics(lowerCAmelCase ): _lowerCAmelCase = np.argmax(eval_pred.predictions , axis=1 ) return metric.compute(predictions=lowerCAmelCase , references=eval_pred.label_ids ) _lowerCAmelCase = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path , num_labels=len(lowerCAmelCase ) , labelaid=lowerCAmelCase , idalabel=lowerCAmelCase , finetuning_task="""audio-classification""" , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) _lowerCAmelCase = AutoModelForAudioClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=lowerCAmelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) # freeze the convolutional waveform encoder if model_args.freeze_feature_encoder: model.freeze_feature_encoder() if training_args.do_train: if data_args.max_train_samples is not None: _lowerCAmelCase = ( raw_datasets["""train"""].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms raw_datasets["train"].set_transform(lowerCAmelCase , output_all_columns=lowerCAmelCase ) if training_args.do_eval: if data_args.max_eval_samples is not None: _lowerCAmelCase = ( raw_datasets["""eval"""].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms raw_datasets["eval"].set_transform(lowerCAmelCase , output_all_columns=lowerCAmelCase ) # Initialize our trainer _lowerCAmelCase = Trainer( model=lowerCAmelCase , args=lowerCAmelCase , train_dataset=raw_datasets["""train"""] if training_args.do_train else None , eval_dataset=raw_datasets["""eval"""] if training_args.do_eval else None , compute_metrics=lowerCAmelCase , tokenizer=lowerCAmelCase , ) # Training if training_args.do_train: _lowerCAmelCase = None if training_args.resume_from_checkpoint is not None: _lowerCAmelCase = training_args.resume_from_checkpoint elif last_checkpoint is not None: _lowerCAmelCase = last_checkpoint _lowerCAmelCase = trainer.train(resume_from_checkpoint=lowerCAmelCase ) trainer.save_model() trainer.log_metrics("""train""" , train_result.metrics ) trainer.save_metrics("""train""" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: _lowerCAmelCase = trainer.evaluate() trainer.log_metrics("""eval""" , lowerCAmelCase ) trainer.save_metrics("""eval""" , lowerCAmelCase ) # Write model card and (optionally) push to hub _lowerCAmelCase = { """finetuned_from""": model_args.model_name_or_path, """tasks""": """audio-classification""", """dataset""": data_args.dataset_name, """tags""": ["""audio-classification"""], } if training_args.push_to_hub: trainer.push_to_hub(**lowerCAmelCase ) else: trainer.create_model_card(**lowerCAmelCase ) if __name__ == "__main__": main()
362
'''simple docstring''' from manim import * class UpperCAmelCase ( snake_case_ ): def lowercase__ ( self : Union[str, Any] ) -> str: _lowerCAmelCase = Rectangle(height=0.5 , width=0.5 ) _lowerCAmelCase = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) _lowerCAmelCase = [mem.copy() for i in range(6 )] _lowerCAmelCase = [mem.copy() for i in range(6 )] _lowerCAmelCase = VGroup(*__snake_case ).arrange(__snake_case , buff=0 ) _lowerCAmelCase = VGroup(*__snake_case ).arrange(__snake_case , buff=0 ) _lowerCAmelCase = VGroup(__snake_case , __snake_case ).arrange(__snake_case , buff=0 ) _lowerCAmelCase = Text("""CPU""" , font_size=24 ) _lowerCAmelCase = Group(__snake_case , __snake_case ).arrange(__snake_case , buff=0.5 , aligned_edge=__snake_case ) cpu.move_to([-2.5, -0.5, 0] ) self.add(__snake_case ) _lowerCAmelCase = [mem.copy() for i in range(4 )] _lowerCAmelCase = VGroup(*__snake_case ).arrange(__snake_case , buff=0 ) _lowerCAmelCase = Text("""GPU""" , font_size=24 ) _lowerCAmelCase = Group(__snake_case , __snake_case ).arrange(__snake_case , buff=0.5 , aligned_edge=__snake_case ) gpu.move_to([-1, -1, 0] ) self.add(__snake_case ) _lowerCAmelCase = [mem.copy() for i in range(6 )] _lowerCAmelCase = VGroup(*__snake_case ).arrange(__snake_case , buff=0 ) _lowerCAmelCase = Text("""Model""" , font_size=24 ) _lowerCAmelCase = Group(__snake_case , __snake_case ).arrange(__snake_case , buff=0.5 , aligned_edge=__snake_case ) model.move_to([3, -1.0, 0] ) self.add(__snake_case ) _lowerCAmelCase = [] for i, rect in enumerate(__snake_case ): rect.set_stroke(__snake_case ) # target = fill.copy().set_fill(YELLOW, opacity=0.7) # target.move_to(rect) # self.add(target) _lowerCAmelCase = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(__snake_case , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=__snake_case ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(cpu_targs[0] , direction=__snake_case , buff=0.0 ) else: cpu_target.next_to(cpu_targs[i - 1] , direction=__snake_case , buff=0.0 ) self.add(__snake_case ) cpu_targs.append(__snake_case ) _lowerCAmelCase = [mem.copy() for i in range(6 )] _lowerCAmelCase = VGroup(*__snake_case ).arrange(__snake_case , buff=0 ) _lowerCAmelCase = Text("""Loaded Checkpoint""" , font_size=24 ) _lowerCAmelCase = Group(__snake_case , __snake_case ).arrange(__snake_case , aligned_edge=__snake_case , buff=0.4 ) checkpoint.move_to([3, 0.5, 0] ) _lowerCAmelCase = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) _lowerCAmelCase = MarkupText( f"<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(__snake_case , __snake_case ) _lowerCAmelCase = MarkupText( f"<span fgcolor='{BLUE}'>●</span> Checkpoint" , font_size=18 , ) blue_text.next_to(__snake_case , DOWN * 2.4 , aligned_edge=key_text.get_left() ) _lowerCAmelCase = MarkupText( f"Next, a <i><span fgcolor=\"{BLUE}\">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor=\"{BLUE}\">single shard</span>." , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(__snake_case ) , Write(__snake_case ) ) self.play(Write(__snake_case , run_time=1 ) , Create(__snake_case , run_time=1 ) ) _lowerCAmelCase = [] _lowerCAmelCase = [] for i, rect in enumerate(__snake_case ): _lowerCAmelCase = fill.copy().set_fill(__snake_case , opacity=0.7 ) target.move_to(__snake_case ) first_animations.append(GrowFromCenter(__snake_case , run_time=1 ) ) _lowerCAmelCase = target.copy() cpu_target.generate_target() if i < 5: cpu_target.target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.target.move_to(cpu_right_col_base[i - 5] ) second_animations.append(MoveToTarget(__snake_case , run_time=1.5 ) ) self.play(*__snake_case ) self.play(*__snake_case ) self.wait()
220
0
"""simple docstring""" from __future__ import annotations import unittest from transformers import MobileBertConfig, is_tf_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_MODEL_FOR_PRETRAINING_MAPPING, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertModel, ) @require_tf class _UpperCAmelCase ( _A , _A , unittest.TestCase ): SCREAMING_SNAKE_CASE_ : int = ( ( TFMobileBertModel, TFMobileBertForMaskedLM, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertForMultipleChoice, ) if is_tf_available() else () ) SCREAMING_SNAKE_CASE_ : Any = ( { "feature-extraction": TFMobileBertModel, "fill-mask": TFMobileBertForMaskedLM, "question-answering": TFMobileBertForQuestionAnswering, "text-classification": TFMobileBertForSequenceClassification, "token-classification": TFMobileBertForTokenClassification, "zero-shot": TFMobileBertForSequenceClassification, } if is_tf_available() else {} ) SCREAMING_SNAKE_CASE_ : str = False SCREAMING_SNAKE_CASE_ : int = False def A ( self : Dict , A : Dict , A : List[Any] , A : Tuple=False ) -> int: lowercase_ : str = super()._prepare_for_class(A , A , return_labels=A ) if return_labels: if model_class in get_values(A ): lowercase_ : List[str] = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) return inputs_dict class _UpperCAmelCase ( _A ): def __init__( self : Any , A : int , A : int=13 , A : Any=7 , A : Optional[Any]=True , A : List[str]=True , A : List[Any]=True , A : Dict=True , A : List[str]=99 , A : str=32 , A : str=32 , A : List[Any]=2 , A : Tuple=4 , A : Optional[Any]=37 , A : Tuple="gelu" , A : Optional[int]=0.1 , A : Tuple=0.1 , A : Optional[int]=5_12 , A : List[Any]=16 , A : Optional[Any]=2 , A : Any=0.02 , A : List[str]=3 , A : Dict=4 , A : Tuple=None , ) -> List[Any]: lowercase_ : Optional[int] = parent lowercase_ : Optional[int] = batch_size lowercase_ : Union[str, Any] = seq_length lowercase_ : List[str] = is_training lowercase_ : str = use_input_mask lowercase_ : Tuple = use_token_type_ids lowercase_ : Any = use_labels lowercase_ : Optional[int] = vocab_size lowercase_ : Tuple = hidden_size lowercase_ : List[str] = num_hidden_layers lowercase_ : Dict = num_attention_heads lowercase_ : Any = intermediate_size lowercase_ : Tuple = hidden_act lowercase_ : Optional[Any] = hidden_dropout_prob lowercase_ : Optional[Any] = attention_probs_dropout_prob lowercase_ : str = max_position_embeddings lowercase_ : str = type_vocab_size lowercase_ : Tuple = type_sequence_label_size lowercase_ : str = initializer_range lowercase_ : str = num_labels lowercase_ : Optional[Any] = num_choices lowercase_ : Any = scope lowercase_ : int = embedding_size def A ( self : List[Any] ) -> Any: lowercase_ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase_ : Any = None if self.use_input_mask: lowercase_ : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) lowercase_ : int = None if self.use_token_type_ids: lowercase_ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase_ : str = None lowercase_ : Dict = None lowercase_ : Any = None if self.use_labels: lowercase_ : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase_ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase_ : int = ids_tensor([self.batch_size] , self.num_choices ) lowercase_ : Optional[Any] = MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , embedding_size=self.embedding_size , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A ( self : List[str] , A : List[str] , A : Optional[int] , A : str , A : Union[str, Any] , A : List[str] , A : Optional[Any] , A : Union[str, Any] ) -> Optional[Any]: lowercase_ : Optional[int] = TFMobileBertModel(config=A ) lowercase_ : List[Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} lowercase_ : Tuple = model(A ) lowercase_ : Optional[int] = [input_ids, input_mask] lowercase_ : int = model(A ) lowercase_ : Optional[int] = model(A ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def A ( self : List[Any] , A : int , A : int , A : int , A : int , A : Optional[int] , A : List[str] , A : Dict ) -> List[Any]: lowercase_ : List[Any] = TFMobileBertForMaskedLM(config=A ) lowercase_ : Tuple = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} lowercase_ : Optional[int] = model(A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A ( self : List[Any] , A : Optional[Any] , A : int , A : Dict , A : Union[str, Any] , A : List[Any] , A : List[str] , A : List[Any] ) -> Union[str, Any]: lowercase_ : Optional[int] = TFMobileBertForNextSentencePrediction(config=A ) lowercase_ : int = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} lowercase_ : Optional[int] = model(A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def A ( self : Any , A : List[str] , A : Union[str, Any] , A : Any , A : Any , A : Tuple , A : Optional[Any] , A : str ) -> List[str]: lowercase_ : Optional[Any] = TFMobileBertForPreTraining(config=A ) lowercase_ : List[str] = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} lowercase_ : List[Any] = model(A ) self.parent.assertEqual( result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def A ( self : Dict , A : Optional[int] , A : List[Any] , A : List[Any] , A : Union[str, Any] , A : Optional[Any] , A : Any , A : str ) -> str: lowercase_ : Tuple = self.num_labels lowercase_ : Optional[Any] = TFMobileBertForSequenceClassification(config=A ) lowercase_ : Optional[int] = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} lowercase_ : Optional[int] = model(A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A ( self : List[str] , A : Optional[int] , A : Union[str, Any] , A : int , A : Optional[int] , A : List[Any] , A : Any , A : Tuple ) -> str: lowercase_ : Tuple = self.num_choices lowercase_ : List[str] = TFMobileBertForMultipleChoice(config=A ) lowercase_ : Tuple = tf.tile(tf.expand_dims(A , 1 ) , (1, self.num_choices, 1) ) lowercase_ : Dict = tf.tile(tf.expand_dims(A , 1 ) , (1, self.num_choices, 1) ) lowercase_ : List[str] = tf.tile(tf.expand_dims(A , 1 ) , (1, self.num_choices, 1) ) lowercase_ : Optional[int] = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } lowercase_ : Union[str, Any] = model(A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def A ( self : Tuple , A : Optional[int] , A : Optional[Any] , A : Any , A : Dict , A : Optional[int] , A : Dict , A : str ) -> str: lowercase_ : Optional[Any] = self.num_labels lowercase_ : Optional[int] = TFMobileBertForTokenClassification(config=A ) lowercase_ : List[Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} lowercase_ : Tuple = model(A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A ( self : Dict , A : Dict , A : Optional[Any] , A : List[Any] , A : Union[str, Any] , A : List[str] , A : int , A : str ) -> Optional[Any]: lowercase_ : Optional[int] = TFMobileBertForQuestionAnswering(config=A ) lowercase_ : str = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} lowercase_ : Union[str, Any] = model(A ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A ( self : int ) -> Union[str, Any]: lowercase_ : Optional[int] = self.prepare_config_and_inputs() ( ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ) : Any = config_and_inputs lowercase_ : List[str] = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict def A ( self : Tuple ) -> Tuple: lowercase_ : List[Any] = TFMobileBertModelTest.TFMobileBertModelTester(self ) lowercase_ : List[str] = ConfigTester(self , config_class=A , hidden_size=37 ) def A ( self : int ) -> Optional[Any]: self.config_tester.run_common_tests() def A ( self : List[str] ) -> Tuple: lowercase_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*A ) def A ( self : List[Any] ) -> Union[str, Any]: lowercase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*A ) def A ( self : List[str] ) -> List[Any]: lowercase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*A ) def A ( self : str ) -> Any: lowercase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*A ) def A ( self : Optional[int] ) -> int: lowercase_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*A ) def A ( self : str ) -> int: lowercase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*A ) def A ( self : Optional[Any] ) -> List[str]: lowercase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*A ) def A ( self : str ) -> Any: lowercase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*A ) @slow def A ( self : Optional[Any] ) -> Optional[Any]: # for model_name in TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["google/mobilebert-uncased"]: lowercase_ : Any = TFMobileBertModel.from_pretrained(A ) self.assertIsNotNone(A ) @require_tf class _UpperCAmelCase ( unittest.TestCase ): @slow def A ( self : Union[str, Any] ) -> List[Any]: lowercase_ : Any = TFMobileBertForPreTraining.from_pretrained('''google/mobilebert-uncased''' ) lowercase_ : Any = tf.constant([[0, 1, 2, 3, 4, 5]] ) lowercase_ : List[Any] = model(A )[0] lowercase_ : Optional[int] = [1, 6, 3_05_22] self.assertEqual(output.shape , A ) lowercase_ : Tuple = tf.constant( [ [ [-4.5919547, -9.248295, -9.645256], [-6.7306175, -6.440284, -6.6052837], [-7.2743506, -6.7847915, -6.024673], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , A , atol=1e-4 )
33
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import convert_to_rgb, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL _A = logging.get_logger(__name__) class lowerCamelCase ( lowerCAmelCase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE = ['pixel_values'] def __init__(self , _lowerCamelCase = True , _lowerCamelCase = None , _lowerCamelCase = PILImageResampling.BICUBIC , _lowerCamelCase = True , _lowerCamelCase = 1 / 255 , _lowerCamelCase = True , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = True , **_lowerCamelCase , ): """simple docstring""" super().__init__(**_lowerCamelCase ) UpperCAmelCase__ : List[Any] = size if size is not None else {"""height""": 384, """width""": 384} UpperCAmelCase__ : Optional[int] = get_size_dict(_lowerCamelCase , default_to_square=_lowerCamelCase ) UpperCAmelCase__ : Union[str, Any] = do_resize UpperCAmelCase__ : Dict = size UpperCAmelCase__ : Optional[Any] = resample UpperCAmelCase__ : Optional[Any] = do_rescale UpperCAmelCase__ : List[str] = rescale_factor UpperCAmelCase__ : List[Any] = do_normalize UpperCAmelCase__ : Dict = image_mean if image_mean is not None else OPENAI_CLIP_MEAN UpperCAmelCase__ : Union[str, Any] = image_std if image_std is not None else OPENAI_CLIP_STD UpperCAmelCase__ : Optional[int] = do_convert_rgb def _a (self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = PILImageResampling.BICUBIC , _lowerCamelCase = None , **_lowerCamelCase , ): """simple docstring""" UpperCAmelCase__ : Tuple = get_size_dict(_lowerCamelCase , default_to_square=_lowerCamelCase ) if "height" not in size or "width" not in size: raise ValueError(F"""The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}""" ) UpperCAmelCase__ : Dict = (size["""height"""], size["""width"""]) return resize(_lowerCamelCase , size=_lowerCamelCase , resample=_lowerCamelCase , data_format=_lowerCamelCase , **_lowerCamelCase ) def _a (self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = None , **_lowerCamelCase , ): """simple docstring""" return rescale(_lowerCamelCase , scale=_lowerCamelCase , data_format=_lowerCamelCase , **_lowerCamelCase ) def _a (self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = None , **_lowerCamelCase , ): """simple docstring""" return normalize(_lowerCamelCase , mean=_lowerCamelCase , std=_lowerCamelCase , data_format=_lowerCamelCase , **_lowerCamelCase ) def _a (self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = ChannelDimension.FIRST , **_lowerCamelCase , ): """simple docstring""" UpperCAmelCase__ : Optional[int] = do_resize if do_resize is not None else self.do_resize UpperCAmelCase__ : int = resample if resample is not None else self.resample UpperCAmelCase__ : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase__ : str = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase__ : int = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase__ : Any = image_mean if image_mean is not None else self.image_mean UpperCAmelCase__ : Tuple = image_std if image_std is not None else self.image_std UpperCAmelCase__ : List[str] = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb UpperCAmelCase__ : Optional[int] = size if size is not None else self.size UpperCAmelCase__ : List[str] = get_size_dict(_lowerCamelCase , default_to_square=_lowerCamelCase ) UpperCAmelCase__ : Any = make_list_of_images(_lowerCamelCase ) if not valid_images(_lowerCamelCase ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # PIL RGBA images are converted to RGB if do_convert_rgb: UpperCAmelCase__ : Dict = [convert_to_rgb(_lowerCamelCase ) for image in images] # All transformations expect numpy arrays. UpperCAmelCase__ : Optional[Any] = [to_numpy_array(_lowerCamelCase ) for image in images] if do_resize: UpperCAmelCase__ : Union[str, Any] = [self.resize(image=_lowerCamelCase , size=_lowerCamelCase , resample=_lowerCamelCase ) for image in images] if do_rescale: UpperCAmelCase__ : List[str] = [self.rescale(image=_lowerCamelCase , scale=_lowerCamelCase ) for image in images] if do_normalize: UpperCAmelCase__ : Union[str, Any] = [self.normalize(image=_lowerCamelCase , mean=_lowerCamelCase , std=_lowerCamelCase ) for image in images] UpperCAmelCase__ : List[str] = [to_channel_dimension_format(_lowerCamelCase , _lowerCamelCase ) for image in images] UpperCAmelCase__ : Optional[Any] = BatchFeature(data={"""pixel_values""": images} , tensor_type=_lowerCamelCase ) return encoded_outputs
171
0
"""simple docstring""" import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("TEST_SAGEMAKER" , "False" ) ) is not True , reason="Skipping test because should only be run when releasing minor transformers version" , ) @pytest.mark.usefixtures("sm_env" ) @parameterized_class( [ { "framework": "pytorch", "script": "run_glue.py", "model_name_or_path": "distilbert-base-cased", "instance_type": "ml.g4dn.xlarge", "results": {"train_runtime": 650, "eval_accuracy": 0.6, "eval_loss": 0.9}, }, { "framework": "tensorflow", "script": "run_tf.py", "model_name_or_path": "distilbert-base-cased", "instance_type": "ml.g4dn.xlarge", "results": {"train_runtime": 600, "eval_accuracy": 0.3, "eval_loss": 0.9}, }, ] ) class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self : str ) -> str: if self.framework == "pytorch": subprocess.run( F'''cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py'''.split() , encoding="utf-8" , check=_snake_case , ) assert hasattr(self , "env" ) def __SCREAMING_SNAKE_CASE ( self : List[Any] , __a : Union[str, Any]=1 ) -> Dict: return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=F'''{self.env.base_job_name}-single''' , instance_count=_snake_case , instance_type=self.instance_type , debugger_hook_config=_snake_case , hyperparameters={**self.env.hyperparameters, "model_name_or_path": self.model_name_or_path} , metric_definitions=self.env.metric_definitions , py_version="py36" , ) def __SCREAMING_SNAKE_CASE ( self : int , __a : Dict ) -> int: TrainingJobAnalytics(_snake_case ).export_csv(F'''{self.env.test_path}/{job_name}_metrics.csv''' ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Any: _UpperCamelCase : int = self.create_estimator() # run training estimator.fit() # result dataframe _UpperCamelCase : str = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis _UpperCamelCase : Tuple = list(result_metrics_df[result_metrics_df.metric_name == "eval_accuracy"]["value"] ) _UpperCamelCase : List[Any] = list(result_metrics_df[result_metrics_df.metric_name == "eval_loss"]["value"] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping _UpperCamelCase : Tuple = ( Session().describe_training_job(estimator.latest_training_job.name ).get("TrainingTimeInSeconds" , 99_9999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results["eval_accuracy"] for t in eval_accuracy ) assert all(t <= self.results["eval_loss"] for t in eval_loss ) # dump tests result into json file to share in PR with open(F'''{estimator.latest_training_job.name}.json''' , "w" ) as outfile: json.dump({"train_time": train_runtime, "eval_accuracy": eval_accuracy, "eval_loss": eval_loss} , _snake_case )
357
"""simple docstring""" import webbrowser from sys import argv from urllib.parse import parse_qs, quote import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": lowerCamelCase__ = "%20".join(argv[1:]) if len(argv) > 1 else quote(str(input("Search: "))) print("Googling.....") lowerCamelCase__ = f"""https://www.google.com/search?q={query}&num=100""" lowerCamelCase__ = requests.get( url, headers={"User-Agent": str(UserAgent().random)}, ) try: lowerCamelCase__ = ( BeautifulSoup(res.text, "html.parser") .find("div", attrs={"class": "yuRUbf"}) .find("a") .get("href") ) except AttributeError: lowerCamelCase__ = parse_qs( BeautifulSoup(res.text, "html.parser") .find("div", attrs={"class": "kCrYT"}) .find("a") .get("href") )["url"][0] webbrowser.open(link)
310
0
import unittest from transformers import ( MODEL_FOR_OBJECT_DETECTION_MAPPING, AutoFeatureExtractor, AutoModelForObjectDetection, ObjectDetectionPipeline, is_vision_available, pipeline, ) from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_pytesseract, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class lowercase__ : '''simple docstring''' @staticmethod def UpperCamelCase__ ( *__magic_name__, **__magic_name__ ) -> str: """simple docstring""" pass @is_pipeline_test @require_vision @require_timm @require_torch class lowercase__ ( unittest.TestCase ): '''simple docstring''' a : Optional[Any] = MODEL_FOR_OBJECT_DETECTION_MAPPING def UpperCamelCase__ ( self, __magic_name__, __magic_name__, __magic_name__ ) -> List[Any]: """simple docstring""" UpperCamelCase__ : List[Any] = ObjectDetectionPipeline(model=lowercase_, image_processor=lowercase_ ) return object_detector, ["./tests/fixtures/tests_samples/COCO/000000039769.png"] def UpperCamelCase__ ( self, __magic_name__, __magic_name__ ) -> Optional[Any]: """simple docstring""" UpperCamelCase__ : str = object_detector('''./tests/fixtures/tests_samples/COCO/000000039769.png''', threshold=0.0 ) self.assertGreater(len(lowercase_ ), 0 ) for detected_object in outputs: self.assertEqual( lowercase_, { '''score''': ANY(lowercase_ ), '''label''': ANY(lowercase_ ), '''box''': {'''xmin''': ANY(lowercase_ ), '''ymin''': ANY(lowercase_ ), '''xmax''': ANY(lowercase_ ), '''ymax''': ANY(lowercase_ )}, }, ) import datasets UpperCamelCase__ : Dict = datasets.load_dataset('''hf-internal-testing/fixtures_image_utils''', '''image''', split='''test''' ) UpperCamelCase__ : str = [ Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ), '''http://images.cocodataset.org/val2017/000000039769.jpg''', # RGBA dataset[0]['''file'''], # LA dataset[1]['''file'''], # L dataset[2]['''file'''], ] UpperCamelCase__ : Union[str, Any] = object_detector(lowercase_, threshold=0.0 ) self.assertEqual(len(lowercase_ ), len(lowercase_ ) ) for outputs in batch_outputs: self.assertGreater(len(lowercase_ ), 0 ) for detected_object in outputs: self.assertEqual( lowercase_, { '''score''': ANY(lowercase_ ), '''label''': ANY(lowercase_ ), '''box''': {'''xmin''': ANY(lowercase_ ), '''ymin''': ANY(lowercase_ ), '''xmax''': ANY(lowercase_ ), '''ymax''': ANY(lowercase_ )}, }, ) @require_tf @unittest.skip('''Object detection not implemented in TF''' ) def UpperCamelCase__ ( self ) -> Union[str, Any]: """simple docstring""" pass @require_torch def UpperCamelCase__ ( self ) -> Any: """simple docstring""" UpperCamelCase__ : Optional[int] = '''hf-internal-testing/tiny-detr-mobilenetsv3''' UpperCamelCase__ : str = AutoModelForObjectDetection.from_pretrained(lowercase_ ) UpperCamelCase__ : Any = AutoFeatureExtractor.from_pretrained(lowercase_ ) UpperCamelCase__ : Union[str, Any] = ObjectDetectionPipeline(model=lowercase_, feature_extractor=lowercase_ ) UpperCamelCase__ : Union[str, Any] = object_detector('''http://images.cocodataset.org/val2017/000000039769.jpg''', threshold=0.0 ) self.assertEqual( nested_simplify(lowercase_, decimals=4 ), [ {'''score''': 0.3376, '''label''': '''LABEL_0''', '''box''': {'''xmin''': 159, '''ymin''': 120, '''xmax''': 480, '''ymax''': 359}}, {'''score''': 0.3376, '''label''': '''LABEL_0''', '''box''': {'''xmin''': 159, '''ymin''': 120, '''xmax''': 480, '''ymax''': 359}}, ], ) UpperCamelCase__ : List[str] = object_detector( [ '''http://images.cocodataset.org/val2017/000000039769.jpg''', '''http://images.cocodataset.org/val2017/000000039769.jpg''', ], threshold=0.0, ) self.assertEqual( nested_simplify(lowercase_, decimals=4 ), [ [ {'''score''': 0.3376, '''label''': '''LABEL_0''', '''box''': {'''xmin''': 159, '''ymin''': 120, '''xmax''': 480, '''ymax''': 359}}, {'''score''': 0.3376, '''label''': '''LABEL_0''', '''box''': {'''xmin''': 159, '''ymin''': 120, '''xmax''': 480, '''ymax''': 359}}, ], [ {'''score''': 0.3376, '''label''': '''LABEL_0''', '''box''': {'''xmin''': 159, '''ymin''': 120, '''xmax''': 480, '''ymax''': 359}}, {'''score''': 0.3376, '''label''': '''LABEL_0''', '''box''': {'''xmin''': 159, '''ymin''': 120, '''xmax''': 480, '''ymax''': 359}}, ], ], ) @require_torch @slow def UpperCamelCase__ ( self ) -> List[str]: """simple docstring""" UpperCamelCase__ : Dict = '''facebook/detr-resnet-50''' UpperCamelCase__ : Tuple = AutoModelForObjectDetection.from_pretrained(lowercase_ ) UpperCamelCase__ : Optional[int] = AutoFeatureExtractor.from_pretrained(lowercase_ ) UpperCamelCase__ : str = ObjectDetectionPipeline(model=lowercase_, feature_extractor=lowercase_ ) UpperCamelCase__ : Any = object_detector('''http://images.cocodataset.org/val2017/000000039769.jpg''' ) self.assertEqual( nested_simplify(lowercase_, decimals=4 ), [ {'''score''': 0.9982, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 70, '''xmax''': 175, '''ymax''': 117}}, {'''score''': 0.9960, '''label''': '''remote''', '''box''': {'''xmin''': 333, '''ymin''': 72, '''xmax''': 368, '''ymax''': 187}}, {'''score''': 0.9955, '''label''': '''couch''', '''box''': {'''xmin''': 0, '''ymin''': 1, '''xmax''': 639, '''ymax''': 473}}, {'''score''': 0.9988, '''label''': '''cat''', '''box''': {'''xmin''': 13, '''ymin''': 52, '''xmax''': 314, '''ymax''': 470}}, {'''score''': 0.9987, '''label''': '''cat''', '''box''': {'''xmin''': 345, '''ymin''': 23, '''xmax''': 640, '''ymax''': 368}}, ], ) UpperCamelCase__ : List[Any] = object_detector( [ '''http://images.cocodataset.org/val2017/000000039769.jpg''', '''http://images.cocodataset.org/val2017/000000039769.jpg''', ] ) self.assertEqual( nested_simplify(lowercase_, decimals=4 ), [ [ {'''score''': 0.9982, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 70, '''xmax''': 175, '''ymax''': 117}}, {'''score''': 0.9960, '''label''': '''remote''', '''box''': {'''xmin''': 333, '''ymin''': 72, '''xmax''': 368, '''ymax''': 187}}, {'''score''': 0.9955, '''label''': '''couch''', '''box''': {'''xmin''': 0, '''ymin''': 1, '''xmax''': 639, '''ymax''': 473}}, {'''score''': 0.9988, '''label''': '''cat''', '''box''': {'''xmin''': 13, '''ymin''': 52, '''xmax''': 314, '''ymax''': 470}}, {'''score''': 0.9987, '''label''': '''cat''', '''box''': {'''xmin''': 345, '''ymin''': 23, '''xmax''': 640, '''ymax''': 368}}, ], [ {'''score''': 0.9982, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 70, '''xmax''': 175, '''ymax''': 117}}, {'''score''': 0.9960, '''label''': '''remote''', '''box''': {'''xmin''': 333, '''ymin''': 72, '''xmax''': 368, '''ymax''': 187}}, {'''score''': 0.9955, '''label''': '''couch''', '''box''': {'''xmin''': 0, '''ymin''': 1, '''xmax''': 639, '''ymax''': 473}}, {'''score''': 0.9988, '''label''': '''cat''', '''box''': {'''xmin''': 13, '''ymin''': 52, '''xmax''': 314, '''ymax''': 470}}, {'''score''': 0.9987, '''label''': '''cat''', '''box''': {'''xmin''': 345, '''ymin''': 23, '''xmax''': 640, '''ymax''': 368}}, ], ], ) @require_torch @slow def UpperCamelCase__ ( self ) -> List[Any]: """simple docstring""" UpperCamelCase__ : Tuple = '''facebook/detr-resnet-50''' UpperCamelCase__ : Tuple = pipeline('''object-detection''', model=lowercase_ ) UpperCamelCase__ : int = object_detector('''http://images.cocodataset.org/val2017/000000039769.jpg''' ) self.assertEqual( nested_simplify(lowercase_, decimals=4 ), [ {'''score''': 0.9982, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 70, '''xmax''': 175, '''ymax''': 117}}, {'''score''': 0.9960, '''label''': '''remote''', '''box''': {'''xmin''': 333, '''ymin''': 72, '''xmax''': 368, '''ymax''': 187}}, {'''score''': 0.9955, '''label''': '''couch''', '''box''': {'''xmin''': 0, '''ymin''': 1, '''xmax''': 639, '''ymax''': 473}}, {'''score''': 0.9988, '''label''': '''cat''', '''box''': {'''xmin''': 13, '''ymin''': 52, '''xmax''': 314, '''ymax''': 470}}, {'''score''': 0.9987, '''label''': '''cat''', '''box''': {'''xmin''': 345, '''ymin''': 23, '''xmax''': 640, '''ymax''': 368}}, ], ) UpperCamelCase__ : Optional[int] = object_detector( [ '''http://images.cocodataset.org/val2017/000000039769.jpg''', '''http://images.cocodataset.org/val2017/000000039769.jpg''', ] ) self.assertEqual( nested_simplify(lowercase_, decimals=4 ), [ [ {'''score''': 0.9982, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 70, '''xmax''': 175, '''ymax''': 117}}, {'''score''': 0.9960, '''label''': '''remote''', '''box''': {'''xmin''': 333, '''ymin''': 72, '''xmax''': 368, '''ymax''': 187}}, {'''score''': 0.9955, '''label''': '''couch''', '''box''': {'''xmin''': 0, '''ymin''': 1, '''xmax''': 639, '''ymax''': 473}}, {'''score''': 0.9988, '''label''': '''cat''', '''box''': {'''xmin''': 13, '''ymin''': 52, '''xmax''': 314, '''ymax''': 470}}, {'''score''': 0.9987, '''label''': '''cat''', '''box''': {'''xmin''': 345, '''ymin''': 23, '''xmax''': 640, '''ymax''': 368}}, ], [ {'''score''': 0.9982, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 70, '''xmax''': 175, '''ymax''': 117}}, {'''score''': 0.9960, '''label''': '''remote''', '''box''': {'''xmin''': 333, '''ymin''': 72, '''xmax''': 368, '''ymax''': 187}}, {'''score''': 0.9955, '''label''': '''couch''', '''box''': {'''xmin''': 0, '''ymin''': 1, '''xmax''': 639, '''ymax''': 473}}, {'''score''': 0.9988, '''label''': '''cat''', '''box''': {'''xmin''': 13, '''ymin''': 52, '''xmax''': 314, '''ymax''': 470}}, {'''score''': 0.9987, '''label''': '''cat''', '''box''': {'''xmin''': 345, '''ymin''': 23, '''xmax''': 640, '''ymax''': 368}}, ], ], ) @require_torch @slow def UpperCamelCase__ ( self ) -> Union[str, Any]: """simple docstring""" UpperCamelCase__ : Optional[Any] = 0.9985 UpperCamelCase__ : List[str] = '''facebook/detr-resnet-50''' UpperCamelCase__ : int = pipeline('''object-detection''', model=lowercase_ ) UpperCamelCase__ : str = object_detector('''http://images.cocodataset.org/val2017/000000039769.jpg''', threshold=lowercase_ ) self.assertEqual( nested_simplify(lowercase_, decimals=4 ), [ {'''score''': 0.9988, '''label''': '''cat''', '''box''': {'''xmin''': 13, '''ymin''': 52, '''xmax''': 314, '''ymax''': 470}}, {'''score''': 0.9987, '''label''': '''cat''', '''box''': {'''xmin''': 345, '''ymin''': 23, '''xmax''': 640, '''ymax''': 368}}, ], ) @require_torch @require_pytesseract @slow def UpperCamelCase__ ( self ) -> Optional[Any]: """simple docstring""" UpperCamelCase__ : List[str] = '''Narsil/layoutlmv3-finetuned-funsd''' UpperCamelCase__ : Dict = 0.9993 UpperCamelCase__ : Any = pipeline('''object-detection''', model=lowercase_, threshold=lowercase_ ) UpperCamelCase__ : List[Any] = object_detector( '''https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png''' ) self.assertEqual( nested_simplify(lowercase_, decimals=4 ), [ {'''score''': 0.9993, '''label''': '''I-ANSWER''', '''box''': {'''xmin''': 294, '''ymin''': 254, '''xmax''': 343, '''ymax''': 264}}, {'''score''': 0.9993, '''label''': '''I-ANSWER''', '''box''': {'''xmin''': 294, '''ymin''': 254, '''xmax''': 343, '''ymax''': 264}}, ], )
201
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging a : Dict = logging.get_logger(__name__) a : List[str] = { 'Helsinki-NLP/opus-mt-en-de': 'https://huggingface.co/Helsinki-NLP/opus-mt-en-de/resolve/main/config.json', # See all Marian models at https://huggingface.co/models?filter=marian } class a ( _lowerCamelCase ): snake_case_ = "marian" snake_case_ = ["past_key_values"] snake_case_ = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self : List[Any] , lowercase_ : Optional[Any]=5_8101 , lowercase_ : Dict=None , lowercase_ : List[str]=1024 , lowercase_ : Optional[Any]=12 , lowercase_ : int=4096 , lowercase_ : Any=16 , lowercase_ : Optional[int]=12 , lowercase_ : str=4096 , lowercase_ : Union[str, Any]=16 , lowercase_ : Dict=0.0 , lowercase_ : Union[str, Any]=0.0 , lowercase_ : Optional[Any]=True , lowercase_ : Union[str, Any]=True , lowercase_ : int="gelu" , lowercase_ : Dict=1024 , lowercase_ : int=0.1 , lowercase_ : Tuple=0.0 , lowercase_ : Tuple=0.0 , lowercase_ : Tuple=0.02 , lowercase_ : int=5_8100 , lowercase_ : Optional[Any]=False , lowercase_ : Any=5_8100 , lowercase_ : Optional[int]=0 , lowercase_ : Dict=0 , lowercase_ : List[str]=True , **lowercase_ : Any , ): snake_case_ = vocab_size snake_case_ = decoder_vocab_size or vocab_size snake_case_ = max_position_embeddings snake_case_ = d_model snake_case_ = encoder_ffn_dim snake_case_ = encoder_layers snake_case_ = encoder_attention_heads snake_case_ = decoder_ffn_dim snake_case_ = decoder_layers snake_case_ = decoder_attention_heads snake_case_ = dropout snake_case_ = attention_dropout snake_case_ = activation_dropout snake_case_ = activation_function snake_case_ = init_std snake_case_ = encoder_layerdrop snake_case_ = decoder_layerdrop snake_case_ = use_cache snake_case_ = encoder_layers snake_case_ = scale_embedding # scale factor will be sqrt(d_model) if True snake_case_ = share_encoder_decoder_embeddings super().__init__( pad_token_id=lowercase_ , eos_token_id=lowercase_ , is_encoder_decoder=lowercase_ , decoder_start_token_id=lowercase_ , forced_eos_token_id=lowercase_ , **lowercase_ , ) class a ( _lowerCamelCase ): @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.inputs def A_ ( self : Union[str, Any] ): if self.task in ["default", "seq2seq-lm"]: snake_case_ = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: snake_case_ = {0: '''batch'''} snake_case_ = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} else: snake_case_ = {0: '''batch''', 1: '''decoder_sequence'''} snake_case_ = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(lowercase_ , direction='''inputs''' ) elif self.task == "causal-lm": # TODO: figure this case out. snake_case_ = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: snake_case_ ,snake_case_ = self.num_layers for i in range(lowercase_ ): snake_case_ = {0: '''batch''', 2: '''past_sequence + sequence'''} snake_case_ = {0: '''batch''', 2: '''past_sequence + sequence'''} else: snake_case_ = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''decoder_input_ids''', {0: '''batch''', 1: '''decoder_sequence'''}), ('''decoder_attention_mask''', {0: '''batch''', 1: '''decoder_sequence'''}), ] ) return common_inputs @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.outputs def A_ ( self : Dict ): if self.task in ["default", "seq2seq-lm"]: snake_case_ = super().outputs else: snake_case_ = super(lowercase_ , self ).outputs if self.use_past: snake_case_ ,snake_case_ = self.num_layers for i in range(lowercase_ ): snake_case_ = {0: '''batch''', 2: '''past_sequence + sequence'''} snake_case_ = {0: '''batch''', 2: '''past_sequence + sequence'''} return common_outputs def A_ ( self : Dict , lowercase_ : PreTrainedTokenizer , lowercase_ : int = -1 , lowercase_ : int = -1 , lowercase_ : bool = False , lowercase_ : Optional[TensorType] = None , ): snake_case_ = self._generate_dummy_inputs_for_encoder_and_decoder( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) # Generate decoder inputs snake_case_ = seq_length if not self.use_past else 1 snake_case_ = self._generate_dummy_inputs_for_encoder_and_decoder( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) snake_case_ = {F"decoder_{name}": tensor for name, tensor in decoder_inputs.items()} snake_case_ = dict(**lowercase_ , **lowercase_ ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch snake_case_ ,snake_case_ = common_inputs['''input_ids'''].shape snake_case_ = common_inputs['''decoder_input_ids'''].shape[1] snake_case_ ,snake_case_ = self.num_attention_heads snake_case_ = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) snake_case_ = decoder_seq_length + 3 snake_case_ = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) snake_case_ = torch.cat( [common_inputs['''decoder_attention_mask'''], torch.ones(lowercase_ , lowercase_ )] , dim=1 ) snake_case_ = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered snake_case_ ,snake_case_ = self.num_layers snake_case_ = min(lowercase_ , lowercase_ ) snake_case_ = max(lowercase_ , lowercase_ ) - min_num_layers snake_case_ = '''encoder''' if num_encoder_layers > num_decoder_layers else '''decoder''' for _ in range(lowercase_ ): common_inputs["past_key_values"].append( ( torch.zeros(lowercase_ ), torch.zeros(lowercase_ ), torch.zeros(lowercase_ ), torch.zeros(lowercase_ ), ) ) # TODO: test this. snake_case_ = encoder_shape if remaining_side_name == '''encoder''' else decoder_shape for _ in range(lowercase_ , lowercase_ ): common_inputs["past_key_values"].append((torch.zeros(lowercase_ ), torch.zeros(lowercase_ )) ) return common_inputs def A_ ( self : Union[str, Any] , lowercase_ : PreTrainedTokenizer , lowercase_ : int = -1 , lowercase_ : int = -1 , lowercase_ : bool = False , lowercase_ : Optional[TensorType] = None , ): snake_case_ = self._generate_dummy_inputs_for_encoder_and_decoder( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch snake_case_ ,snake_case_ = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values snake_case_ = seqlen + 2 snake_case_ ,snake_case_ = self.num_layers snake_case_ ,snake_case_ = self.num_attention_heads snake_case_ = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) snake_case_ = common_inputs['''attention_mask'''].dtype snake_case_ = torch.cat( [common_inputs['''attention_mask'''], torch.ones(lowercase_ , lowercase_ , dtype=lowercase_ )] , dim=1 ) snake_case_ = [ (torch.zeros(lowercase_ ), torch.zeros(lowercase_ )) for _ in range(lowercase_ ) ] return common_inputs def A_ ( self : List[str] , lowercase_ : PreTrainedTokenizer , lowercase_ : int = -1 , lowercase_ : int = -1 , lowercase_ : bool = False , lowercase_ : Optional[TensorType] = None , ): # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX snake_case_ = compute_effective_axis_dimension( lowercase_ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX snake_case_ = tokenizer.num_special_tokens_to_add(lowercase_ ) snake_case_ = compute_effective_axis_dimension( lowercase_ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=lowercase_ ) # Generate dummy inputs according to compute batch and sequence snake_case_ = [''' '''.join([tokenizer.unk_token] ) * seq_length] * batch_size snake_case_ = dict(tokenizer(lowercase_ , return_tensors=lowercase_ ) ) return common_inputs def A_ ( self : Any , lowercase_ : PreTrainedTokenizer , lowercase_ : int = -1 , lowercase_ : int = -1 , lowercase_ : bool = False , lowercase_ : Optional[TensorType] = None , ): if self.task in ["default", "seq2seq-lm"]: snake_case_ = self._generate_dummy_inputs_for_default_and_seqaseq_lm( lowercase_ , batch_size=lowercase_ , seq_length=lowercase_ , is_pair=lowercase_ , framework=lowercase_ ) else: snake_case_ = self._generate_dummy_inputs_for_causal_lm( lowercase_ , batch_size=lowercase_ , seq_length=lowercase_ , is_pair=lowercase_ , framework=lowercase_ ) return common_inputs def A_ ( self : Dict , lowercase_ : List[str] , lowercase_ : List[str] , lowercase_ : int , lowercase_ : List[str] ): if self.task in ["default", "seq2seq-lm"]: snake_case_ = super()._flatten_past_key_values_(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) else: snake_case_ = super(lowercase_ , self )._flatten_past_key_values_( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) @property def A_ ( self : List[str] ): return 1e-4
56
0
def UpperCAmelCase_ (_lowerCAmelCase : bytes ): return "".join([hex(_lowerCAmelCase )[2:].zfill(2 ).upper() for byte in list(_lowerCAmelCase )] ) def UpperCAmelCase_ (_lowerCAmelCase : str ): # Check data validity, following RFC3548 # https://www.ietf.org/rfc/rfc3548.txt if (len(_lowerCAmelCase ) % 2) != 0: raise ValueError( "Base16 encoded data is invalid:\nData does not have an even number of hex digits." ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(_lowerCAmelCase ) <= set("0123456789ABCDEF" ): raise ValueError( "Base16 encoded data is invalid:\nData is not uppercase hex or it contains invalid characters." ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1] , 16 ) for i in range(0 , len(_lowerCAmelCase ) , 2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
171
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase : Union[str, Any] = { "configuration_mctct": ["MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MCTCTConfig"], "feature_extraction_mctct": ["MCTCTFeatureExtractor"], "processing_mctct": ["MCTCTProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Tuple = [ "MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST", "MCTCTForCTC", "MCTCTModel", "MCTCTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig from .feature_extraction_mctct import MCTCTFeatureExtractor from .processing_mctct import MCTCTProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel else: import sys lowercase : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
171
1
"""simple docstring""" import string import numpy def __UpperCAmelCase ( UpperCAmelCase_ : int , UpperCAmelCase_ : int ) -> Tuple: '''simple docstring''' return b if a == 0 else greatest_common_divisor(b % a , __lowerCAmelCase ) class UpperCamelCase : UpperCAmelCase : List[Any] = string.ascii_uppercase + string.digits # This cipher takes alphanumerics into account # i.e. a total of 36 characters # take x and return x % len(key_string) UpperCAmelCase : Union[str, Any] = numpy.vectorize(lambda lowercase : x % 36 ) UpperCAmelCase : Optional[int] = numpy.vectorize(lowerCamelCase_ ) def __init__(self : Optional[Any] , _A : numpy.ndarray) -> None: __snake_case : Dict = self.modulus(__snake_case) # mod36 calc's on the encrypt key self.check_determinant() # validate the determinant of the encryption key __snake_case : Union[str, Any] = encrypt_key.shape[0] def _lowercase (self : Any , _A : str) -> int: return self.key_string.index(__snake_case) def _lowercase (self : Tuple , _A : int) -> str: return self.key_string[round(__snake_case)] def _lowercase (self : List[str]) -> None: __snake_case : Optional[int] = round(numpy.linalg.det(self.encrypt_key)) if det < 0: __snake_case : Union[str, Any] = det % len(self.key_string) __snake_case : Tuple = len(self.key_string) if greatest_common_divisor(__snake_case , len(self.key_string)) != 1: __snake_case : Optional[Any] = ( f"determinant modular {req_l} of encryption key({det}) " f"is not co prime w.r.t {req_l}.\nTry another key." ) raise ValueError(__snake_case) def _lowercase (self : Dict , _A : str) -> str: __snake_case : Dict = [char for char in text.upper() if char in self.key_string] __snake_case : Union[str, Any] = chars[-1] while len(__snake_case) % self.break_key != 0: chars.append(__snake_case) return "".join(__snake_case) def _lowercase (self : Optional[Any] , _A : str) -> str: __snake_case : List[Any] = self.process_text(text.upper()) __snake_case : Any = '' for i in range(0 , len(__snake_case) - self.break_key + 1 , self.break_key): __snake_case : List[str] = text[i : i + self.break_key] __snake_case : Union[str, Any] = [self.replace_letters(__snake_case) for char in batch] __snake_case : List[str] = numpy.array([vec]).T __snake_case : Optional[int] = self.modulus(self.encrypt_key.dot(__snake_case)).T.tolist()[ 0 ] __snake_case : Any = ''.join( self.replace_digits(__snake_case) for num in batch_encrypted) encrypted += encrypted_batch return encrypted def _lowercase (self : Optional[Any]) -> numpy.ndarray: __snake_case : Tuple = round(numpy.linalg.det(self.encrypt_key)) if det < 0: __snake_case : Dict = det % len(self.key_string) __snake_case : List[Any] = None for i in range(len(self.key_string)): if (det * i) % len(self.key_string) == 1: __snake_case : Optional[Any] = i break __snake_case : str = ( det_inv * numpy.linalg.det(self.encrypt_key) * numpy.linalg.inv(self.encrypt_key) ) return self.to_int(self.modulus(__snake_case)) def _lowercase (self : Tuple , _A : str) -> str: __snake_case : Optional[int] = self.make_decrypt_key() __snake_case : Optional[Any] = self.process_text(text.upper()) __snake_case : Optional[int] = '' for i in range(0 , len(__snake_case) - self.break_key + 1 , self.break_key): __snake_case : Any = text[i : i + self.break_key] __snake_case : Union[str, Any] = [self.replace_letters(__snake_case) for char in batch] __snake_case : Tuple = numpy.array([vec]).T __snake_case : List[Any] = self.modulus(decrypt_key.dot(__snake_case)).T.tolist()[0] __snake_case : str = ''.join( self.replace_digits(__snake_case) for num in batch_decrypted) decrypted += decrypted_batch return decrypted def __UpperCAmelCase ( ) -> Tuple: '''simple docstring''' __snake_case : Optional[Any] = int(input('Enter the order of the encryption key: ' ) ) __snake_case : Any = [] print('Enter each row of the encryption key with space separated integers' ) for _ in range(__lowerCAmelCase ): __snake_case : str = [int(__lowerCAmelCase ) for x in input().split()] hill_matrix.append(__lowerCAmelCase ) __snake_case : Union[str, Any] = HillCipher(numpy.array(__lowerCAmelCase ) ) print('Would you like to encrypt or decrypt some text? (1 or 2)' ) __snake_case : List[str] = input('\n1. Encrypt\n2. Decrypt\n' ) if option == "1": __snake_case : List[str] = input('What text would you like to encrypt?: ' ) print('Your encrypted text is:' ) print(hc.encrypt(__lowerCAmelCase ) ) elif option == "2": __snake_case : List[str] = input('What text would you like to decrypt?: ' ) print('Your decrypted text is:' ) print(hc.decrypt(__lowerCAmelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
172
import math def __lowercase ( __lowerCAmelCase : int ): a__ = [True] * n a__ = False a__ = False a__ = True for i in range(3 , int(n**0.5 + 1 ) , 2 ): a__ = i * 2 while index < n: a__ = False a__ = index + i a__ = [2] for i in range(3 , __lowerCAmelCase , 2 ): if is_prime[i]: primes.append(__lowerCAmelCase ) return primes def __lowercase ( __lowerCAmelCase : int = 9_9_9_9_6_6_6_6_3_3_3_3 ): a__ = math.floor(math.sqrt(__lowerCAmelCase ) ) + 1_0_0 a__ = prime_sieve(__lowerCAmelCase ) a__ = 0 a__ = 0 a__ = primes[prime_index] while (last_prime**2) <= limit: a__ = primes[prime_index + 1] a__ = last_prime**2 a__ = next_prime**2 # Get numbers divisible by lps(current) a__ = lower_bound + last_prime while upper_bound > current <= limit: matches_sum += current current += last_prime # Reset the upper_bound while (upper_bound - next_prime) > limit: upper_bound -= next_prime # Add the numbers divisible by ups(current) a__ = upper_bound - next_prime while current > lower_bound: matches_sum += current current -= next_prime # Remove the numbers divisible by both ups and lps a__ = 0 while upper_bound > current <= limit: if current <= lower_bound: # Increment the current number current += last_prime * next_prime continue if current > limit: break # Remove twice since it was added by both ups and lps matches_sum -= current * 2 # Increment the current number current += last_prime * next_prime # Setup for next pair a__ = next_prime prime_index += 1 return matches_sum if __name__ == "__main__": print(solution())
240
0
"""simple docstring""" import unittest from transformers import AlbertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, ) from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCAmelCase : """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=7 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=99 , _UpperCAmelCase=16 , _UpperCAmelCase=36 , _UpperCAmelCase=6 , _UpperCAmelCase=6 , _UpperCAmelCase=6 , _UpperCAmelCase=37 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=16 , _UpperCAmelCase=2 , _UpperCAmelCase=0.02 , _UpperCAmelCase=3 , _UpperCAmelCase=4 , _UpperCAmelCase=None , ): lowercase__: Union[str, Any] = parent lowercase__: List[str] = batch_size lowercase__: Union[str, Any] = seq_length lowercase__: Tuple = is_training lowercase__: Optional[int] = use_input_mask lowercase__: Optional[int] = use_token_type_ids lowercase__: Dict = use_labels lowercase__: Any = vocab_size lowercase__: int = embedding_size lowercase__: int = hidden_size lowercase__: int = num_hidden_layers lowercase__: Tuple = num_hidden_groups lowercase__: Union[str, Any] = num_attention_heads lowercase__: Optional[Any] = intermediate_size lowercase__: int = hidden_act lowercase__: int = hidden_dropout_prob lowercase__: int = attention_probs_dropout_prob lowercase__: Any = max_position_embeddings lowercase__: Tuple = type_vocab_size lowercase__: Optional[int] = type_sequence_label_size lowercase__: str = initializer_range lowercase__: Optional[int] = num_labels lowercase__: List[Any] = num_choices lowercase__: Union[str, Any] = scope def _snake_case ( self ): lowercase__: str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase__: Optional[Any] = None if self.use_input_mask: lowercase__: Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__: Dict = None if self.use_token_type_ids: lowercase__: List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase__: str = None lowercase__: List[str] = None lowercase__: Tuple = None if self.use_labels: lowercase__: Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase__: List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase__: Optional[int] = ids_tensor([self.batch_size] , self.num_choices ) lowercase__: List[str] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _snake_case ( self ): return AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: int = AlbertModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__: Optional[int] = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase ) lowercase__: str = model(_UpperCAmelCase , token_type_ids=_UpperCAmelCase ) lowercase__: Dict = model(_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: Optional[Any] = AlbertForPreTraining(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__: str = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , sentence_order_label=_UpperCAmelCase , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels) ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: Any = AlbertForMaskedLM(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__: Dict = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: int = AlbertForQuestionAnswering(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__: Optional[Any] = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: Union[str, Any] = self.num_labels lowercase__: Any = AlbertForSequenceClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__: Any = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: Union[str, Any] = self.num_labels lowercase__: List[Any] = AlbertForTokenClassification(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__: str = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: Optional[int] = self.num_choices lowercase__: Any = AlbertForMultipleChoice(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__: Dict = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase__: Union[str, Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase__: Optional[int] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase__: int = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _snake_case ( self ): lowercase__: Any = self.prepare_config_and_inputs() ( ( lowercase__ ), ( lowercase__ ), ( lowercase__ ), ( lowercase__ ), ( lowercase__ ), ( lowercase__ ), ( lowercase__ ), ): int = config_and_inputs lowercase__: List[str] = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class UpperCAmelCase (_UpperCAmelCase ,_UpperCAmelCase ,unittest.TestCase ): """simple docstring""" _UpperCAmelCase :Optional[Any] = ( ( AlbertModel, AlbertForPreTraining, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertForQuestionAnswering, ) if is_torch_available() else () ) _UpperCAmelCase :str = ( { "feature-extraction": AlbertModel, "fill-mask": AlbertForMaskedLM, "question-answering": AlbertForQuestionAnswering, "text-classification": AlbertForSequenceClassification, "token-classification": AlbertForTokenClassification, "zero-shot": AlbertForSequenceClassification, } if is_torch_available() else {} ) _UpperCAmelCase :Any = True def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=False ): lowercase__: Optional[Any] = super()._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase ) if return_labels: if model_class in get_values(_UpperCAmelCase ): lowercase__: Dict = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=_UpperCAmelCase ) lowercase__: Optional[int] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_UpperCAmelCase ) return inputs_dict def _snake_case ( self ): lowercase__: Optional[int] = AlbertModelTester(self ) lowercase__: Optional[int] = ConfigTester(self , config_class=_UpperCAmelCase , hidden_size=37 ) def _snake_case ( self ): self.config_tester.run_common_tests() def _snake_case ( self ): lowercase__: List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def _snake_case ( self ): lowercase__: Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*_UpperCAmelCase ) def _snake_case ( self ): lowercase__: Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_UpperCAmelCase ) def _snake_case ( self ): lowercase__: Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_UpperCAmelCase ) def _snake_case ( self ): lowercase__: Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_UpperCAmelCase ) def _snake_case ( self ): lowercase__: Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_UpperCAmelCase ) def _snake_case ( self ): lowercase__: Optional[Any] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowercase__: Tuple = type self.model_tester.create_and_check_model(*_UpperCAmelCase ) @slow def _snake_case ( self ): for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__: str = AlbertModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) @require_torch class UpperCAmelCase (unittest.TestCase ): """simple docstring""" @slow def _snake_case ( self ): lowercase__: Union[str, Any] = AlbertModel.from_pretrained('''albert-base-v2''' ) lowercase__: Dict = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) lowercase__: Optional[Any] = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): lowercase__: List[str] = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase )[0] lowercase__: Any = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , _UpperCAmelCase ) lowercase__: Optional[Any] = torch.tensor( [[[-0.6_513, 1.5_035, -0.2_766], [-0.6_515, 1.5_046, -0.2_780], [-0.6_512, 1.5_049, -0.2_784]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , _UpperCAmelCase , atol=1e-4 ) )
2
"""simple docstring""" from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging __A = logging.get_logger(__name__) __A = { "Salesforce/codegen-350M-nl": "https://huggingface.co/Salesforce/codegen-350M-nl/resolve/main/config.json", "Salesforce/codegen-350M-multi": "https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/config.json", "Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/config.json", "Salesforce/codegen-2B-nl": "https://huggingface.co/Salesforce/codegen-2B-nl/resolve/main/config.json", "Salesforce/codegen-2B-multi": "https://huggingface.co/Salesforce/codegen-2B-multi/resolve/main/config.json", "Salesforce/codegen-2B-mono": "https://huggingface.co/Salesforce/codegen-2B-mono/resolve/main/config.json", "Salesforce/codegen-6B-nl": "https://huggingface.co/Salesforce/codegen-6B-nl/resolve/main/config.json", "Salesforce/codegen-6B-multi": "https://huggingface.co/Salesforce/codegen-6B-multi/resolve/main/config.json", "Salesforce/codegen-6B-mono": "https://huggingface.co/Salesforce/codegen-6B-mono/resolve/main/config.json", "Salesforce/codegen-16B-nl": "https://huggingface.co/Salesforce/codegen-16B-nl/resolve/main/config.json", "Salesforce/codegen-16B-multi": "https://huggingface.co/Salesforce/codegen-16B-multi/resolve/main/config.json", "Salesforce/codegen-16B-mono": "https://huggingface.co/Salesforce/codegen-16B-mono/resolve/main/config.json", } class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :List[str] = "codegen" _UpperCAmelCase :Optional[int] = { "max_position_embeddings": "n_positions", "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self , _UpperCAmelCase=50400 , _UpperCAmelCase=2048 , _UpperCAmelCase=2048 , _UpperCAmelCase=4096 , _UpperCAmelCase=28 , _UpperCAmelCase=16 , _UpperCAmelCase=64 , _UpperCAmelCase=None , _UpperCAmelCase="gelu_new" , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.0 , _UpperCAmelCase=1e-5 , _UpperCAmelCase=0.02 , _UpperCAmelCase=True , _UpperCAmelCase=50256 , _UpperCAmelCase=50256 , _UpperCAmelCase=False , **_UpperCAmelCase , ): lowercase__: int = vocab_size lowercase__: str = n_ctx lowercase__: List[Any] = n_positions lowercase__: Union[str, Any] = n_embd lowercase__: Optional[Any] = n_layer lowercase__: str = n_head lowercase__: List[Any] = n_inner lowercase__: Union[str, Any] = rotary_dim lowercase__: Optional[Any] = activation_function lowercase__: Union[str, Any] = resid_pdrop lowercase__: Optional[int] = embd_pdrop lowercase__: Optional[Any] = attn_pdrop lowercase__: Optional[int] = layer_norm_epsilon lowercase__: List[Any] = initializer_range lowercase__: Tuple = use_cache lowercase__: Any = bos_token_id lowercase__: Any = eos_token_id super().__init__( bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , tie_word_embeddings=_UpperCAmelCase , **_UpperCAmelCase ) class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase = "default" , _UpperCAmelCase = None , _UpperCAmelCase = False , ): super().__init__(_UpperCAmelCase , task=_UpperCAmelCase , patching_specs=_UpperCAmelCase , use_past=_UpperCAmelCase ) if not getattr(self._config , '''pad_token_id''' , _UpperCAmelCase ): # TODO: how to do that better? lowercase__: Any = 0 @property def _snake_case ( self ): lowercase__: int = OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}} ) if self.use_past: self.fill_with_past_key_values_(_UpperCAmelCase , direction='''inputs''' ) lowercase__: int = {0: '''batch''', 1: '''past_sequence + sequence'''} else: lowercase__: Tuple = {0: '''batch''', 1: '''sequence'''} return common_inputs @property def _snake_case ( self ): return self._config.n_layer @property def _snake_case ( self ): return self._config.n_head def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase = -1 , _UpperCAmelCase = -1 , _UpperCAmelCase = False , _UpperCAmelCase = None , ): lowercase__: Optional[int] = super(_UpperCAmelCase , self ).generate_dummy_inputs( _UpperCAmelCase , batch_size=_UpperCAmelCase , seq_length=_UpperCAmelCase , is_pair=_UpperCAmelCase , framework=_UpperCAmelCase ) # We need to order the input in the way they appears in the forward() lowercase__: List[Any] = OrderedDict({'''input_ids''': common_inputs['''input_ids''']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch lowercase__, lowercase__: Union[str, Any] = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values lowercase__: Any = seqlen + 2 lowercase__: List[str] = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) lowercase__: Optional[Any] = [ (torch.zeros(_UpperCAmelCase ), torch.zeros(_UpperCAmelCase )) for _ in range(self.num_layers ) ] lowercase__: Optional[Any] = common_inputs['''attention_mask'''] if self.use_past: lowercase__: List[str] = ordered_inputs['''attention_mask'''].dtype lowercase__: List[Any] = torch.cat( [ordered_inputs['''attention_mask'''], torch.ones(_UpperCAmelCase , _UpperCAmelCase , dtype=_UpperCAmelCase )] , dim=1 ) return ordered_inputs @property def _snake_case ( self ): return 13
2
1
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_rembert import RemBertTokenizer else: lowerCamelCase_ = None lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = {'vocab_file': 'sentencepiece.model', 'tokenizer_file': 'tokenizer.json'} lowerCamelCase_ = { 'vocab_file': { 'google/rembert': 'https://huggingface.co/google/rembert/resolve/main/sentencepiece.model', }, 'tokenizer_file': { 'google/rembert': 'https://huggingface.co/google/rembert/resolve/main/tokenizer.json', }, } lowerCamelCase_ = { 'google/rembert': 256, } lowerCamelCase_ = '▁' class UpperCamelCase_ (a_ ): __magic_name__ = VOCAB_FILES_NAMES __magic_name__ = PRETRAINED_VOCAB_FILES_MAP __magic_name__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__ = RemBertTokenizer def __init__( self : Optional[Any] , lowerCAmelCase_ : str=None , lowerCAmelCase_ : Tuple=None , lowerCAmelCase_ : List[str]=True , lowerCAmelCase_ : List[str]=True , lowerCAmelCase_ : Any=False , lowerCAmelCase_ : Optional[Any]="[CLS]" , lowerCAmelCase_ : Tuple="[SEP]" , lowerCAmelCase_ : List[Any]="<unk>" , lowerCAmelCase_ : Tuple="[SEP]" , lowerCAmelCase_ : List[str]="<pad>" , lowerCAmelCase_ : Optional[Any]="[CLS]" , lowerCAmelCase_ : Dict="[MASK]" , **lowerCAmelCase_ : Tuple , ) -> Optional[Any]: # Mask token behave like a normal word, i.e. include the space before it UpperCAmelCase_ : Optional[Any] = AddedToken(_lowerCamelCase , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ) else mask_token super().__init__( _lowerCamelCase , tokenizer_file=_lowerCamelCase , do_lower_case=_lowerCamelCase , remove_space=_lowerCamelCase , keep_accents=_lowerCamelCase , bos_token=_lowerCamelCase , eos_token=_lowerCamelCase , unk_token=_lowerCamelCase , sep_token=_lowerCamelCase , pad_token=_lowerCamelCase , cls_token=_lowerCamelCase , mask_token=_lowerCamelCase , **_lowerCamelCase , ) UpperCAmelCase_ : List[str] = do_lower_case UpperCAmelCase_ : List[str] = remove_space UpperCAmelCase_ : int = keep_accents UpperCAmelCase_ : int = vocab_file UpperCAmelCase_ : Any = False if not self.vocab_file else True def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[int] = None ) -> List[Any]: UpperCAmelCase_ : Tuple = [self.sep_token_id] UpperCAmelCase_ : List[str] = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def _SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[Any] = None , lowerCAmelCase_ : str = False ) -> Any: if already_has_special_tokens: if token_ids_a is not None: raise ValueError( "You should not supply a second sequence if the provided sequence of " "ids is already formatted with special tokens for the model." ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(_lowerCamelCase )) + [1] + ([0] * len(_lowerCamelCase )) + [1] return [1] + ([0] * len(_lowerCamelCase )) + [1] def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Any = None ) -> List[Any]: UpperCAmelCase_ : Optional[Any] = [self.sep_token_id] UpperCAmelCase_ : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Dict = None ) -> List[str]: if not os.path.isdir(_lowerCamelCase ): logger.error("Vocabulary path ({}) should be a directory".format(_lowerCamelCase ) ) return UpperCAmelCase_ : str = os.path.join( _lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCamelCase ): copyfile(self.vocab_file , _lowerCamelCase ) return (out_vocab_file,)
268
"""simple docstring""" def _SCREAMING_SNAKE_CASE ( __snake_case : int = 1_00 ): '''simple docstring''' lowercase = 0 lowercase = 0 for i in range(1 , n + 1 ): sum_of_squares += i**2 sum_of_ints += i return sum_of_ints**2 - sum_of_squares if __name__ == "__main__": print(F'''{solution() = }''')
220
0
"""simple docstring""" import os import textwrap import pyarrow as pa import pytest from datasets import ClassLabel, Features, Image from datasets.packaged_modules.csv.csv import Csv from ..utils import require_pil @pytest.fixture def lowerCAmelCase_( lowercase_ : Optional[Any] ) -> Tuple: _lowerCamelCase = tmp_path / '''file.csv''' _lowerCamelCase = textwrap.dedent( '''\ header1,header2 1,2 10,20 ''' ) with open(lowercase_ , '''w''' ) as f: f.write(lowercase_ ) return str(lowercase_ ) @pytest.fixture def lowerCAmelCase_( lowercase_ : List[str] ) -> Optional[int]: _lowerCamelCase = tmp_path / '''malformed_file.csv''' _lowerCamelCase = textwrap.dedent( '''\ header1,header2 1,2 10,20, ''' ) with open(lowercase_ , '''w''' ) as f: f.write(lowercase_ ) return str(lowercase_ ) @pytest.fixture def lowerCAmelCase_( lowercase_ : Tuple , lowercase_ : List[Any] ) -> List[Any]: _lowerCamelCase = tmp_path / '''csv_with_image.csv''' _lowerCamelCase = textwrap.dedent( F"""\ image {image_file} """ ) with open(lowercase_ , '''w''' ) as f: f.write(lowercase_ ) return str(lowercase_ ) @pytest.fixture def lowerCAmelCase_( lowercase_ : Any ) -> Tuple: _lowerCamelCase = tmp_path / '''csv_with_label.csv''' _lowerCamelCase = textwrap.dedent( '''\ label good bad good ''' ) with open(lowercase_ , '''w''' ) as f: f.write(lowercase_ ) return str(lowercase_ ) @pytest.fixture def lowerCAmelCase_( lowercase_ : int ) -> Tuple: _lowerCamelCase = tmp_path / '''csv_with_int_list.csv''' _lowerCamelCase = textwrap.dedent( '''\ int_list 1 2 3 4 5 6 7 8 9 ''' ) with open(lowercase_ , '''w''' ) as f: f.write(lowercase_ ) return str(lowercase_ ) def lowerCAmelCase_( lowercase_ : Union[str, Any] , lowercase_ : List[Any] , lowercase_ : Union[str, Any] ) -> Union[str, Any]: _lowerCamelCase = Csv() _lowerCamelCase = csv._generate_tables([[csv_file, malformed_csv_file]] ) with pytest.raises(lowercase_ , match='''Error tokenizing data''' ): for _ in generator: pass assert any( record.levelname == '''ERROR''' and '''Failed to read file''' in record.message and os.path.basename(lowercase_ ) in record.message for record in caplog.records ) @require_pil def lowerCAmelCase_( lowercase_ : List[Any] ) -> Any: with open(lowercase_ , encoding='''utf-8''' ) as f: _lowerCamelCase = f.read().splitlines()[1] _lowerCamelCase = Csv(encoding='''utf-8''' , features=Features({'''image''': Image()} ) ) _lowerCamelCase = csv._generate_tables([[csv_file_with_image]] ) _lowerCamelCase = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field('''image''' ).type == Image()() _lowerCamelCase = pa_table.to_pydict()['''image'''] assert generated_content == [{"path": image_file, "bytes": None}] def lowerCAmelCase_( lowercase_ : Optional[int] ) -> Dict: with open(lowercase_ , encoding='''utf-8''' ) as f: _lowerCamelCase = f.read().splitlines()[1:] _lowerCamelCase = Csv(encoding='''utf-8''' , features=Features({'''label''': ClassLabel(names=['''good''', '''bad'''] )} ) ) _lowerCamelCase = csv._generate_tables([[csv_file_with_label]] ) _lowerCamelCase = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field('''label''' ).type == ClassLabel(names=['''good''', '''bad'''] )() _lowerCamelCase = pa_table.to_pydict()['''label'''] assert generated_content == [ClassLabel(names=['''good''', '''bad'''] ).straint(lowercase_ ) for label in labels] def lowerCAmelCase_( lowercase_ : Optional[Any] ) -> Optional[Any]: _lowerCamelCase = Csv(encoding='''utf-8''' , sep=''',''' , converters={'''int_list''': lambda lowercase_ : [int(lowercase_ ) for i in x.split()]} ) _lowerCamelCase = csv._generate_tables([[csv_file_with_int_list]] ) _lowerCamelCase = pa.concat_tables([table for _, table in generator] ) assert pa.types.is_list(pa_table.schema.field('''int_list''' ).type ) _lowerCamelCase = pa_table.to_pydict()['''int_list'''] assert generated_content == [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
368
"""simple docstring""" import copy import os import cva import numpy as np from matplotlib import pyplot as plt class lowerCamelCase_: '''simple docstring''' def __init__( self ): _lowerCamelCase = '''''' _lowerCamelCase = '''''' _lowerCamelCase = [] _lowerCamelCase = 0 _lowerCamelCase = 2_5_6 _lowerCamelCase = 0 _lowerCamelCase = 0 _lowerCamelCase = 0 _lowerCamelCase = 0 def snake_case__ ( self , lowerCamelCase__ ): _lowerCamelCase = cva.imread(lowerCamelCase__ , 0 ) _lowerCamelCase = copy.deepcopy(self.img ) _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = plt.hist(self.img.ravel() , 2_5_6 , [0, 2_5_6] , label='''x''' ) _lowerCamelCase = np.sum(lowerCamelCase__ ) for i in range(len(lowerCamelCase__ ) ): _lowerCamelCase = x[i] / self.k self.sk += prk _lowerCamelCase = (self.L - 1) * self.sk if self.rem != 0: _lowerCamelCase = int(last % last ) _lowerCamelCase = int(last + 1 if self.rem >= 0.5 else last ) self.last_list.append(lowerCamelCase__ ) _lowerCamelCase = int(np.ma.count(self.img ) / self.img[1].size ) _lowerCamelCase = self.img[1].size for i in range(self.number_of_cols ): for j in range(self.number_of_rows ): _lowerCamelCase = self.img[j][i] if num != self.last_list[num]: _lowerCamelCase = self.last_list[num] cva.imwrite('''output_data/output.jpg''' , self.img ) def snake_case__ ( self ): plt.hist(self.img.ravel() , 2_5_6 , [0, 2_5_6] ) def snake_case__ ( self ): cva.imshow('''Output-Image''' , self.img ) cva.imshow('''Input-Image''' , self.original_image ) cva.waitKey(5_0_0_0 ) cva.destroyAllWindows() if __name__ == "__main__": __SCREAMING_SNAKE_CASE : int = os.path.join(os.path.basename(__file__), '''image_data/input.jpg''') __SCREAMING_SNAKE_CASE : List[Any] = ConstantStretch() stretcher.stretch(file_path) stretcher.plot_histogram() stretcher.show_image()
73
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = { '''hustvl/yolos-small''': '''https://huggingface.co/hustvl/yolos-small/resolve/main/config.json''', # See all YOLOS models at https://huggingface.co/models?filter=yolos } class __lowerCamelCase (_a ): _lowercase = """yolos""" def __init__( self: Tuple,A_: Any=768,A_: Any=12,A_: str=12,A_: Optional[int]=3072,A_: Dict="gelu",A_: Optional[Any]=0.0,A_: int=0.0,A_: int=0.0_2,A_: str=1E-12,A_: List[Any]=[512, 864],A_: Optional[int]=16,A_: Tuple=3,A_: Optional[int]=True,A_: List[str]=100,A_: Dict=True,A_: Optional[int]=False,A_: Dict=1,A_: Any=5,A_: Optional[Any]=2,A_: Optional[Any]=5,A_: str=2,A_: Union[str, Any]=0.1,**A_: Tuple,): '''simple docstring''' super().__init__(**A_ ) __UpperCamelCase = hidden_size __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = intermediate_size __UpperCamelCase = hidden_act __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = attention_probs_dropout_prob __UpperCamelCase = initializer_range __UpperCamelCase = layer_norm_eps __UpperCamelCase = image_size __UpperCamelCase = patch_size __UpperCamelCase = num_channels __UpperCamelCase = qkv_bias __UpperCamelCase = num_detection_tokens __UpperCamelCase = use_mid_position_embeddings __UpperCamelCase = auxiliary_loss # Hungarian matcher __UpperCamelCase = class_cost __UpperCamelCase = bbox_cost __UpperCamelCase = giou_cost # Loss coefficients __UpperCamelCase = bbox_loss_coefficient __UpperCamelCase = giou_loss_coefficient __UpperCamelCase = eos_coefficient class __lowerCamelCase (_a ): _lowercase = version.parse("""1.11""" ) @property def snake_case_ ( self: Any ): '''simple docstring''' return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def snake_case_ ( self: Optional[int] ): '''simple docstring''' return 1E-4 @property def snake_case_ ( self: Optional[Any] ): '''simple docstring''' return 12
310
import os def _A ( ) -> Tuple: """simple docstring""" with open(os.path.dirname(_lowercase ) + '/p022_names.txt' ) as file: __UpperCamelCase = str(file.readlines()[0] ) __UpperCamelCase = names.replace('"' , '' ).split(',' ) names.sort() __UpperCamelCase = 0 __UpperCamelCase = 0 for i, name in enumerate(_lowercase ): for letter in name: name_score += ord(_lowercase ) - 64 total_score += (i + 1) * name_score __UpperCamelCase = 0 return total_score if __name__ == "__main__": print(solution())
310
1
import argparse import torch from transformers import BertConfig, BertForPreTraining, load_tf_weights_in_bert from transformers.utils import logging logging.set_verbosity_info() def _UpperCamelCase (a__ :Union[str, Any] , a__ :str , a__ :List[Any] ): """simple docstring""" UpperCamelCase__ = BertConfig.from_json_file(a__ ) print(f"""Building PyTorch model from configuration: {config}""" ) UpperCamelCase__ = BertForPreTraining(a__ ) # Load weights from tf checkpoint load_tf_weights_in_bert(a__ , a__ , a__ ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , a__ ) if __name__ == "__main__": UpperCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--bert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained BERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) UpperCamelCase__ = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
87
import shutil import tempfile import unittest import numpy as np import pytest from transformers import is_speech_available, is_vision_available from transformers.testing_utils import require_torch if is_vision_available(): from transformers import TvltImageProcessor if is_speech_available(): from transformers import TvltFeatureExtractor from transformers import TvltProcessor @require_torch class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): def _lowerCamelCase ( self ): UpperCamelCase__ = """ZinengTang/tvlt-base""" UpperCamelCase__ = tempfile.mkdtemp() def _lowerCamelCase ( self , **__lowerCAmelCase ): return TvltImageProcessor.from_pretrained(self.checkpoint , **__lowerCAmelCase ) def _lowerCamelCase ( self , **__lowerCAmelCase ): return TvltFeatureExtractor.from_pretrained(self.checkpoint , **__lowerCAmelCase ) def _lowerCamelCase ( self ): shutil.rmtree(self.tmpdirname ) def _lowerCamelCase ( self ): UpperCamelCase__ = self.get_image_processor() UpperCamelCase__ = self.get_feature_extractor() UpperCamelCase__ = TvltProcessor(image_processor=__lowerCAmelCase , feature_extractor=__lowerCAmelCase ) processor.save_pretrained(self.tmpdirname ) UpperCamelCase__ = TvltProcessor.from_pretrained(self.tmpdirname ) self.assertIsInstance(processor.feature_extractor , __lowerCAmelCase ) self.assertIsInstance(processor.image_processor , __lowerCAmelCase ) def _lowerCamelCase ( self ): UpperCamelCase__ = self.get_image_processor() UpperCamelCase__ = self.get_feature_extractor() UpperCamelCase__ = TvltProcessor(image_processor=__lowerCAmelCase , feature_extractor=__lowerCAmelCase ) UpperCamelCase__ = np.ones([12000] ) UpperCamelCase__ = feature_extractor(__lowerCAmelCase , return_tensors="""np""" ) UpperCamelCase__ = processor(audio=__lowerCAmelCase , return_tensors="""np""" ) for key in audio_dict.keys(): self.assertAlmostEqual(audio_dict[key].sum() , input_processor[key].sum() , delta=1E-2 ) def _lowerCamelCase ( self ): UpperCamelCase__ = self.get_image_processor() UpperCamelCase__ = self.get_feature_extractor() UpperCamelCase__ = TvltProcessor(image_processor=__lowerCAmelCase , feature_extractor=__lowerCAmelCase ) UpperCamelCase__ = np.ones([3, 224, 224] ) UpperCamelCase__ = image_processor(__lowerCAmelCase , return_tensors="""np""" ) UpperCamelCase__ = processor(images=__lowerCAmelCase , return_tensors="""np""" ) for key in image_dict.keys(): self.assertAlmostEqual(image_dict[key].sum() , input_processor[key].sum() , delta=1E-2 ) def _lowerCamelCase ( self ): UpperCamelCase__ = self.get_image_processor() UpperCamelCase__ = self.get_feature_extractor() UpperCamelCase__ = TvltProcessor(image_processor=__lowerCAmelCase , feature_extractor=__lowerCAmelCase ) UpperCamelCase__ = np.ones([12000] ) UpperCamelCase__ = np.ones([3, 224, 224] ) UpperCamelCase__ = processor(audio=__lowerCAmelCase , images=__lowerCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ["""audio_values""", """audio_mask""", """pixel_values""", """pixel_mask"""] ) # test if it raises when no input is passed with pytest.raises(__lowerCAmelCase ): processor() def _lowerCamelCase ( self ): UpperCamelCase__ = self.get_image_processor() UpperCamelCase__ = self.get_feature_extractor() UpperCamelCase__ = TvltProcessor(image_processor=__lowerCAmelCase , feature_extractor=__lowerCAmelCase ) self.assertListEqual( processor.model_input_names , image_processor.model_input_names + feature_extractor.model_input_names , msg="""`processor` and `image_processor`+`feature_extractor` model input names do not match""" , )
87
1
"""simple docstring""" import argparse import json import os import pickle import shutil import numpy as np import torch from distiller import Distiller from lm_seqs_dataset import LmSeqsDataset from transformers import ( BertConfig, BertForMaskedLM, BertTokenizer, DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer, GPTaConfig, GPTaLMHeadModel, GPTaTokenizer, RobertaConfig, RobertaForMaskedLM, RobertaTokenizer, ) from utils import git_log, init_gpu_params, logger, set_seed _A = { """distilbert""": (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer), """roberta""": (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer), """bert""": (BertConfig, BertForMaskedLM, BertTokenizer), """gpt2""": (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer), } def a__ ( lowerCAmelCase ) -> Optional[int]: assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0) assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0) if args.mlm: assert os.path.isfile(args.token_counts ) assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"]) else: assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"]) assert args.teacher_type == args.student_type or ( args.student_type == "distilbert" and args.teacher_type == "bert" ) assert os.path.isfile(args.student_config ) if args.student_pretrained_weights is not None: assert os.path.isfile(args.student_pretrained_weights ) if args.freeze_token_type_embds: assert args.student_type in ["roberta"] assert args.alpha_ce >= 0.0 assert args.alpha_mlm >= 0.0 assert args.alpha_clm >= 0.0 assert args.alpha_mse >= 0.0 assert args.alpha_cos >= 0.0 assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0 def a__ ( lowerCAmelCase , lowerCAmelCase ) -> Optional[int]: if args.student_type == "roberta": UpperCAmelCase__ : Optional[Any] = False elif args.student_type == "gpt2": UpperCAmelCase__ : Optional[int] = False def a__ ( lowerCAmelCase , lowerCAmelCase ) -> Any: if args.student_type == "roberta": UpperCAmelCase__ : Tuple = False def a__ ( ) -> int: UpperCAmelCase__ : Dict = argparse.ArgumentParser(description="""Training""" ) parser.add_argument("""--force""" , action="""store_true""" , help="""Overwrite dump_path if it already exists.""" ) parser.add_argument( """--dump_path""" , type=lowerCAmelCase , required=lowerCAmelCase , help="""The output directory (log, checkpoints, parameters, etc.)""" ) parser.add_argument( """--data_file""" , type=lowerCAmelCase , required=lowerCAmelCase , help="""The binarized file (tokenized + tokens_to_ids) and grouped by sequence.""" , ) parser.add_argument( """--student_type""" , type=lowerCAmelCase , choices=["""distilbert""", """roberta""", """gpt2"""] , required=lowerCAmelCase , help="""The student type (DistilBERT, RoBERTa).""" , ) parser.add_argument("""--student_config""" , type=lowerCAmelCase , required=lowerCAmelCase , help="""Path to the student configuration.""" ) parser.add_argument( """--student_pretrained_weights""" , default=lowerCAmelCase , type=lowerCAmelCase , help="""Load student initialization checkpoint.""" ) parser.add_argument( """--teacher_type""" , choices=["""bert""", """roberta""", """gpt2"""] , required=lowerCAmelCase , help="""Teacher type (BERT, RoBERTa).""" ) parser.add_argument("""--teacher_name""" , type=lowerCAmelCase , required=lowerCAmelCase , help="""The teacher model.""" ) parser.add_argument("""--temperature""" , default=2.0 , type=lowerCAmelCase , help="""Temperature for the softmax temperature.""" ) parser.add_argument( """--alpha_ce""" , default=0.5 , type=lowerCAmelCase , help="""Linear weight for the distillation loss. Must be >=0.""" ) parser.add_argument( """--alpha_mlm""" , default=0.0 , type=lowerCAmelCase , help="""Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag.""" , ) parser.add_argument("""--alpha_clm""" , default=0.5 , type=lowerCAmelCase , help="""Linear weight for the CLM loss. Must be >=0.""" ) parser.add_argument("""--alpha_mse""" , default=0.0 , type=lowerCAmelCase , help="""Linear weight of the MSE loss. Must be >=0.""" ) parser.add_argument( """--alpha_cos""" , default=0.0 , type=lowerCAmelCase , help="""Linear weight of the cosine embedding loss. Must be >=0.""" ) parser.add_argument( """--mlm""" , action="""store_true""" , help="""The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM.""" ) parser.add_argument( """--mlm_mask_prop""" , default=0.15 , type=lowerCAmelCase , help="""Proportion of tokens for which we need to make a prediction.""" , ) parser.add_argument("""--word_mask""" , default=0.8 , type=lowerCAmelCase , help="""Proportion of tokens to mask out.""" ) parser.add_argument("""--word_keep""" , default=0.1 , type=lowerCAmelCase , help="""Proportion of tokens to keep.""" ) parser.add_argument("""--word_rand""" , default=0.1 , type=lowerCAmelCase , help="""Proportion of tokens to randomly replace.""" ) parser.add_argument( """--mlm_smoothing""" , default=0.7 , type=lowerCAmelCase , help="""Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec).""" , ) parser.add_argument("""--token_counts""" , type=lowerCAmelCase , help="""The token counts in the data_file for MLM.""" ) parser.add_argument( """--restrict_ce_to_mask""" , action="""store_true""" , help="""If true, compute the distillation loss only the [MLM] prediction distribution.""" , ) parser.add_argument( """--freeze_pos_embs""" , action="""store_true""" , help="""Freeze positional embeddings during distillation. For student_type in ['roberta', 'gpt2'] only.""" , ) parser.add_argument( """--freeze_token_type_embds""" , action="""store_true""" , help="""Freeze token type embeddings during distillation if existent. For student_type in ['roberta'] only.""" , ) parser.add_argument("""--n_epoch""" , type=lowerCAmelCase , default=3 , help="""Number of pass on the whole dataset.""" ) parser.add_argument("""--batch_size""" , type=lowerCAmelCase , default=5 , help="""Batch size (for each process).""" ) parser.add_argument( """--group_by_size""" , action="""store_false""" , help="""If true, group sequences that have similar length into the same batch. Default is true.""" , ) parser.add_argument( """--gradient_accumulation_steps""" , type=lowerCAmelCase , default=50 , help="""Gradient accumulation for larger training batches.""" , ) parser.add_argument("""--warmup_prop""" , default=0.05 , type=lowerCAmelCase , help="""Linear warmup proportion.""" ) parser.add_argument("""--weight_decay""" , default=0.0 , type=lowerCAmelCase , help="""Weight decay if we apply some.""" ) parser.add_argument("""--learning_rate""" , default=5E-4 , type=lowerCAmelCase , help="""The initial learning rate for Adam.""" ) parser.add_argument("""--adam_epsilon""" , default=1E-6 , type=lowerCAmelCase , help="""Epsilon for Adam optimizer.""" ) parser.add_argument("""--max_grad_norm""" , default=5.0 , type=lowerCAmelCase , help="""Max gradient norm.""" ) parser.add_argument("""--initializer_range""" , default=0.02 , type=lowerCAmelCase , help="""Random initialization range.""" ) parser.add_argument( """--fp16""" , action="""store_true""" , help="""Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit""" , ) parser.add_argument( """--fp16_opt_level""" , type=lowerCAmelCase , default="""O1""" , help=( """For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3'].""" """See details at https://nvidia.github.io/apex/amp.html""" ) , ) parser.add_argument("""--n_gpu""" , type=lowerCAmelCase , default=1 , help="""Number of GPUs in the node.""" ) parser.add_argument("""--local_rank""" , type=lowerCAmelCase , default=-1 , help="""Distributed training - Local rank""" ) parser.add_argument("""--seed""" , type=lowerCAmelCase , default=56 , help="""Random seed""" ) parser.add_argument("""--log_interval""" , type=lowerCAmelCase , default=5_00 , help="""Tensorboard logging interval.""" ) parser.add_argument("""--checkpoint_interval""" , type=lowerCAmelCase , default=40_00 , help="""Checkpoint interval.""" ) UpperCAmelCase__ : List[Any] = parser.parse_args() sanity_checks(lowerCAmelCase ) # ARGS # init_gpu_params(lowerCAmelCase ) set_seed(lowerCAmelCase ) if args.is_master: if os.path.exists(args.dump_path ): if not args.force: raise ValueError( F"""Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite""" """ itUse `--force` if you want to overwrite it""" ) else: shutil.rmtree(args.dump_path ) if not os.path.exists(args.dump_path ): os.makedirs(args.dump_path ) logger.info(F"""Experiment will be dumped and logged in {args.dump_path}""" ) # SAVE PARAMS # logger.info(F"""Param: {args}""" ) with open(os.path.join(args.dump_path , """parameters.json""" ) , """w""" ) as f: json.dump(vars(lowerCAmelCase ) , lowerCAmelCase , indent=4 ) git_log(args.dump_path ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = MODEL_CLASSES[args.student_type] UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : int = MODEL_CLASSES[args.teacher_type] # TOKENIZER # UpperCAmelCase__ : List[Any] = teacher_tokenizer_class.from_pretrained(args.teacher_name ) UpperCAmelCase__ : List[Any] = {} for tok_name, tok_symbol in tokenizer.special_tokens_map.items(): UpperCAmelCase__ : List[Any] = tokenizer.all_special_tokens.index(lowerCAmelCase ) UpperCAmelCase__ : Tuple = tokenizer.all_special_ids[idx] logger.info(F"""Special tokens {special_tok_ids}""" ) UpperCAmelCase__ : Any = special_tok_ids UpperCAmelCase__ : Any = tokenizer.max_model_input_sizes[args.teacher_name] # DATA LOADER # logger.info(F"""Loading data from {args.data_file}""" ) with open(args.data_file , """rb""" ) as fp: UpperCAmelCase__ : List[str] = pickle.load(lowerCAmelCase ) if args.mlm: logger.info(F"""Loading token counts from {args.token_counts} (already pre-computed)""" ) with open(args.token_counts , """rb""" ) as fp: UpperCAmelCase__ : List[Any] = pickle.load(lowerCAmelCase ) UpperCAmelCase__ : List[Any] = np.maximum(lowerCAmelCase , 1 ) ** -args.mlm_smoothing for idx in special_tok_ids.values(): UpperCAmelCase__ : int = 0.0 # do not predict special tokens UpperCAmelCase__ : str = torch.from_numpy(lowerCAmelCase ) else: UpperCAmelCase__ : List[Any] = None UpperCAmelCase__ : str = LmSeqsDataset(params=lowerCAmelCase , data=lowerCAmelCase ) logger.info("""Data loader created.""" ) # STUDENT # logger.info(F"""Loading student config from {args.student_config}""" ) UpperCAmelCase__ : List[str] = student_config_class.from_pretrained(args.student_config ) UpperCAmelCase__ : List[Any] = True if args.student_pretrained_weights is not None: logger.info(F"""Loading pretrained weights from {args.student_pretrained_weights}""" ) UpperCAmelCase__ : List[str] = student_model_class.from_pretrained(args.student_pretrained_weights , config=lowerCAmelCase ) else: UpperCAmelCase__ : List[Any] = student_model_class(lowerCAmelCase ) if args.n_gpu > 0: student.to(F"""cuda:{args.local_rank}""" ) logger.info("""Student loaded.""" ) # TEACHER # UpperCAmelCase__ : str = teacher_model_class.from_pretrained(args.teacher_name , output_hidden_states=lowerCAmelCase ) if args.n_gpu > 0: teacher.to(F"""cuda:{args.local_rank}""" ) logger.info(F"""Teacher loaded from {args.teacher_name}.""" ) # FREEZING # if args.freeze_pos_embs: freeze_pos_embeddings(lowerCAmelCase , lowerCAmelCase ) if args.freeze_token_type_embds: freeze_token_type_embeddings(lowerCAmelCase , lowerCAmelCase ) # SANITY CHECKS # assert student.config.vocab_size == teacher.config.vocab_size assert student.config.hidden_size == teacher.config.hidden_size assert student.config.max_position_embeddings == teacher.config.max_position_embeddings if args.mlm: assert token_probs.size(0 ) == stu_architecture_config.vocab_size # DISTILLER # torch.cuda.empty_cache() UpperCAmelCase__ : Optional[int] = Distiller( params=lowerCAmelCase , dataset=lowerCAmelCase , token_probs=lowerCAmelCase , student=lowerCAmelCase , teacher=lowerCAmelCase ) distiller.train() logger.info("""Let's go get some drinks.""" ) if __name__ == "__main__": main()
171
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) _A = { """configuration_owlvit""": [ """OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """OwlViTConfig""", """OwlViTOnnxConfig""", """OwlViTTextConfig""", """OwlViTVisionConfig""", ], """processing_owlvit""": ["""OwlViTProcessor"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = ["""OwlViTFeatureExtractor"""] _A = ["""OwlViTImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ """OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """OwlViTModel""", """OwlViTPreTrainedModel""", """OwlViTTextModel""", """OwlViTVisionModel""", """OwlViTForObjectDetection""", ] if TYPE_CHECKING: from .configuration_owlvit import ( OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, OwlViTConfig, OwlViTOnnxConfig, OwlViTTextConfig, OwlViTVisionConfig, ) from .processing_owlvit import OwlViTProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_owlvit import OwlViTFeatureExtractor from .image_processing_owlvit import OwlViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_owlvit import ( OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST, OwlViTForObjectDetection, OwlViTModel, OwlViTPreTrainedModel, OwlViTTextModel, OwlViTVisionModel, ) else: import sys _A = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
171
1
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { "RWKV/rwkv-4-169m-pile": "https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json", "RWKV/rwkv-4-430m-pile": "https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json", "RWKV/rwkv-4-1b5-pile": "https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json", "RWKV/rwkv-4-3b-pile": "https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json", "RWKV/rwkv-4-7b-pile": "https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json", "RWKV/rwkv-4-14b-pile": "https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json", "RWKV/rwkv-raven-1b5": "https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json", "RWKV/rwkv-raven-3b": "https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json", "RWKV/rwkv-raven-7b": "https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json", "RWKV/rwkv-raven-14b": "https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json", } class lowercase_ ( lowercase ): '''simple docstring''' __snake_case = '''rwkv''' __snake_case = {'''max_position_embeddings''': '''context_length'''} def __init__( self : Optional[Any] , __UpperCAmelCase : Optional[int]=50_277 , __UpperCAmelCase : str=1_024 , __UpperCAmelCase : Tuple=4_096 , __UpperCAmelCase : str=32 , __UpperCAmelCase : Optional[int]=None , __UpperCAmelCase : Optional[int]=None , __UpperCAmelCase : Dict=1e-5 , __UpperCAmelCase : List[Any]=0 , __UpperCAmelCase : Dict=0 , __UpperCAmelCase : Dict=6 , __UpperCAmelCase : int=False , __UpperCAmelCase : Union[str, Any]=True , **__UpperCAmelCase : List[str] , ) ->Optional[int]: """simple docstring""" a = vocab_size a = context_length a = hidden_size a = num_hidden_layers a = attention_hidden_size if attention_hidden_size is not None else hidden_size a = intermediate_size if intermediate_size is not None else 4 * hidden_size a = layer_norm_epsilon a = rescale_every a = use_cache a = bos_token_id a = eos_token_id super().__init__( tie_word_embeddings=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , **__UpperCAmelCase )
26
import os import textwrap import pyarrow as pa import pytest from datasets import ClassLabel, Features, Image from datasets.packaged_modules.csv.csv import Csv from ..utils import require_pil @pytest.fixture def _a ( a :Tuple ) -> int: a = tmp_path / '''file.csv''' a = textwrap.dedent( '''\ header1,header2 1,2 10,20 ''' ) with open(a , '''w''' ) as f: f.write(a ) return str(a ) @pytest.fixture def _a ( a :int ) -> List[str]: a = tmp_path / '''malformed_file.csv''' a = textwrap.dedent( '''\ header1,header2 1,2 10,20, ''' ) with open(a , '''w''' ) as f: f.write(a ) return str(a ) @pytest.fixture def _a ( a :Dict , a :int ) -> List[str]: a = tmp_path / '''csv_with_image.csv''' a = textwrap.dedent( F"""\ image {image_file} """ ) with open(a , '''w''' ) as f: f.write(a ) return str(a ) @pytest.fixture def _a ( a :List[Any] ) -> Dict: a = tmp_path / '''csv_with_label.csv''' a = textwrap.dedent( '''\ label good bad good ''' ) with open(a , '''w''' ) as f: f.write(a ) return str(a ) @pytest.fixture def _a ( a :Tuple ) -> Any: a = tmp_path / '''csv_with_int_list.csv''' a = textwrap.dedent( '''\ int_list 1 2 3 4 5 6 7 8 9 ''' ) with open(a , '''w''' ) as f: f.write(a ) return str(a ) def _a ( a :Dict , a :int , a :Union[str, Any] ) -> List[Any]: a = Csv() a = csv._generate_tables([[csv_file, malformed_csv_file]] ) with pytest.raises(a , match='''Error tokenizing data''' ): for _ in generator: pass assert any( record.levelname == '''ERROR''' and '''Failed to read file''' in record.message and os.path.basename(a ) in record.message for record in caplog.records ) @require_pil def _a ( a :Dict ) -> Any: with open(a , encoding='''utf-8''' ) as f: a = f.read().splitlines()[1] a = Csv(encoding='''utf-8''' , features=Features({'''image''': Image()} ) ) a = csv._generate_tables([[csv_file_with_image]] ) a = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field('''image''' ).type == Image()() a = pa_table.to_pydict()['''image'''] assert generated_content == [{"path": image_file, "bytes": None}] def _a ( a :Any ) -> Tuple: with open(a , encoding='''utf-8''' ) as f: a = f.read().splitlines()[1:] a = Csv(encoding='''utf-8''' , features=Features({'''label''': ClassLabel(names=['''good''', '''bad'''] )} ) ) a = csv._generate_tables([[csv_file_with_label]] ) a = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field('''label''' ).type == ClassLabel(names=['''good''', '''bad'''] )() a = pa_table.to_pydict()['''label'''] assert generated_content == [ClassLabel(names=['''good''', '''bad'''] ).straint(a ) for label in labels] def _a ( a :Union[str, Any] ) -> Optional[Any]: a = Csv(encoding='''utf-8''' , sep=''',''' , converters={'''int_list''': lambda a : [int(a ) for i in x.split()]} ) a = csv._generate_tables([[csv_file_with_int_list]] ) a = pa.concat_tables([table for _, table in generator] ) assert pa.types.is_list(pa_table.schema.field('''int_list''' ).type ) a = pa_table.to_pydict()['''int_list'''] assert generated_content == [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
26
1
'''simple docstring''' import unittest from transformers import AlbertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, ) from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST class __lowerCAmelCase : '''simple docstring''' def __init__(self : str , UpperCamelCase : Optional[int] , UpperCamelCase : List[str]=13 , UpperCamelCase : List[str]=7 , UpperCamelCase : Dict=True , UpperCamelCase : Optional[Any]=True , UpperCamelCase : List[str]=True , UpperCamelCase : Union[str, Any]=True , UpperCamelCase : List[str]=99 , UpperCamelCase : Optional[int]=16 , UpperCamelCase : Optional[int]=36 , UpperCamelCase : Union[str, Any]=6 , UpperCamelCase : Dict=6 , UpperCamelCase : Dict=6 , UpperCamelCase : Any=37 , UpperCamelCase : Tuple="gelu" , UpperCamelCase : Tuple=0.1 , UpperCamelCase : Tuple=0.1 , UpperCamelCase : Any=512 , UpperCamelCase : Dict=16 , UpperCamelCase : Union[str, Any]=2 , UpperCamelCase : List[str]=0.02 , UpperCamelCase : Any=3 , UpperCamelCase : Dict=4 , UpperCamelCase : Tuple=None , ): '''simple docstring''' lowercase__ = parent lowercase__ = batch_size lowercase__ = seq_length lowercase__ = is_training lowercase__ = use_input_mask lowercase__ = use_token_type_ids lowercase__ = use_labels lowercase__ = vocab_size lowercase__ = embedding_size lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_hidden_groups lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = type_vocab_size lowercase__ = type_sequence_label_size lowercase__ = initializer_range lowercase__ = num_labels lowercase__ = num_choices lowercase__ = scope def UpperCamelCase__ (self : Any ): '''simple docstring''' lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase__ = None if self.use_input_mask: lowercase__ = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__ = None if self.use_token_type_ids: lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase__ = None lowercase__ = None lowercase__ = None if self.use_labels: lowercase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase__ = ids_tensor([self.batch_size] , self.num_choices ) lowercase__ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase__ (self : List[Any] ): '''simple docstring''' return AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , ) def UpperCamelCase__ (self : List[str] , UpperCamelCase : str , UpperCamelCase : Union[str, Any] , UpperCamelCase : Any , UpperCamelCase : List[str] , UpperCamelCase : List[str] , UpperCamelCase : Optional[Any] , UpperCamelCase : str ): '''simple docstring''' lowercase__ = AlbertModel(config=UpperCamelCase ) model.to(UpperCamelCase ) model.eval() lowercase__ = model(UpperCamelCase , attention_mask=UpperCamelCase , token_type_ids=UpperCamelCase ) lowercase__ = model(UpperCamelCase , token_type_ids=UpperCamelCase ) lowercase__ = model(UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCamelCase__ (self : List[Any] , UpperCamelCase : Any , UpperCamelCase : Any , UpperCamelCase : int , UpperCamelCase : Dict , UpperCamelCase : int , UpperCamelCase : Optional[int] , UpperCamelCase : List[str] ): '''simple docstring''' lowercase__ = AlbertForPreTraining(config=UpperCamelCase ) model.to(UpperCamelCase ) model.eval() lowercase__ = model( UpperCamelCase , attention_mask=UpperCamelCase , token_type_ids=UpperCamelCase , labels=UpperCamelCase , sentence_order_label=UpperCamelCase , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels) ) def UpperCamelCase__ (self : str , UpperCamelCase : Union[str, Any] , UpperCamelCase : Dict , UpperCamelCase : Union[str, Any] , UpperCamelCase : List[Any] , UpperCamelCase : int , UpperCamelCase : Dict , UpperCamelCase : Tuple ): '''simple docstring''' lowercase__ = AlbertForMaskedLM(config=UpperCamelCase ) model.to(UpperCamelCase ) model.eval() lowercase__ = model(UpperCamelCase , attention_mask=UpperCamelCase , token_type_ids=UpperCamelCase , labels=UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase__ (self : Tuple , UpperCamelCase : Any , UpperCamelCase : List[Any] , UpperCamelCase : Union[str, Any] , UpperCamelCase : Tuple , UpperCamelCase : int , UpperCamelCase : List[str] , UpperCamelCase : Tuple ): '''simple docstring''' lowercase__ = AlbertForQuestionAnswering(config=UpperCamelCase ) model.to(UpperCamelCase ) model.eval() lowercase__ = model( UpperCamelCase , attention_mask=UpperCamelCase , token_type_ids=UpperCamelCase , start_positions=UpperCamelCase , end_positions=UpperCamelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase__ (self : str , UpperCamelCase : Optional[Any] , UpperCamelCase : Union[str, Any] , UpperCamelCase : Dict , UpperCamelCase : Union[str, Any] , UpperCamelCase : int , UpperCamelCase : List[Any] , UpperCamelCase : Dict ): '''simple docstring''' lowercase__ = self.num_labels lowercase__ = AlbertForSequenceClassification(UpperCamelCase ) model.to(UpperCamelCase ) model.eval() lowercase__ = model(UpperCamelCase , attention_mask=UpperCamelCase , token_type_ids=UpperCamelCase , labels=UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase__ (self : str , UpperCamelCase : List[Any] , UpperCamelCase : str , UpperCamelCase : int , UpperCamelCase : List[Any] , UpperCamelCase : Union[str, Any] , UpperCamelCase : Dict , UpperCamelCase : Union[str, Any] ): '''simple docstring''' lowercase__ = self.num_labels lowercase__ = AlbertForTokenClassification(config=UpperCamelCase ) model.to(UpperCamelCase ) model.eval() lowercase__ = model(UpperCamelCase , attention_mask=UpperCamelCase , token_type_ids=UpperCamelCase , labels=UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase__ (self : Optional[Any] , UpperCamelCase : Optional[Any] , UpperCamelCase : Optional[int] , UpperCamelCase : List[Any] , UpperCamelCase : List[str] , UpperCamelCase : List[Any] , UpperCamelCase : List[Any] , UpperCamelCase : Optional[Any] ): '''simple docstring''' lowercase__ = self.num_choices lowercase__ = AlbertForMultipleChoice(config=UpperCamelCase ) model.to(UpperCamelCase ) model.eval() lowercase__ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase__ = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase__ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase__ = model( UpperCamelCase , attention_mask=UpperCamelCase , token_type_ids=UpperCamelCase , labels=UpperCamelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCamelCase__ (self : Union[str, Any] ): '''simple docstring''' lowercase__ = self.prepare_config_and_inputs() ( ( lowercase__ ) ,( lowercase__ ) ,( lowercase__ ) ,( lowercase__ ) ,( lowercase__ ) ,( lowercase__ ) ,( lowercase__ ) , ) = config_and_inputs lowercase__ = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class __lowerCAmelCase (lowercase_ , lowercase_ , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = ( ( AlbertModel, AlbertForPreTraining, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertForQuestionAnswering, ) if is_torch_available() else () ) lowerCAmelCase__ : Dict = ( { """feature-extraction""": AlbertModel, """fill-mask""": AlbertForMaskedLM, """question-answering""": AlbertForQuestionAnswering, """text-classification""": AlbertForSequenceClassification, """token-classification""": AlbertForTokenClassification, """zero-shot""": AlbertForSequenceClassification, } if is_torch_available() else {} ) lowerCAmelCase__ : int = True def UpperCamelCase__ (self : Union[str, Any] , UpperCamelCase : Dict , UpperCamelCase : Any , UpperCamelCase : Any=False ): '''simple docstring''' lowercase__ = super()._prepare_for_class(UpperCamelCase , UpperCamelCase , return_labels=UpperCamelCase ) if return_labels: if model_class in get_values(UpperCamelCase ): lowercase__ = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=UpperCamelCase ) lowercase__ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCamelCase ) return inputs_dict def UpperCamelCase__ (self : int ): '''simple docstring''' lowercase__ = AlbertModelTester(self ) lowercase__ = ConfigTester(self , config_class=UpperCamelCase , hidden_size=37 ) def UpperCamelCase__ (self : List[Any] ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCamelCase__ (self : Tuple ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase ) def UpperCamelCase__ (self : Optional[int] ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*UpperCamelCase ) def UpperCamelCase__ (self : Union[str, Any] ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCamelCase ) def UpperCamelCase__ (self : Dict ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*UpperCamelCase ) def UpperCamelCase__ (self : Dict ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCamelCase ) def UpperCamelCase__ (self : Optional[int] ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCamelCase ) def UpperCamelCase__ (self : Optional[Any] ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowercase__ = type self.model_tester.create_and_check_model(*UpperCamelCase ) @slow def UpperCamelCase__ (self : Tuple ): '''simple docstring''' for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ = AlbertModel.from_pretrained(UpperCamelCase ) self.assertIsNotNone(UpperCamelCase ) @require_torch class __lowerCAmelCase (unittest.TestCase ): '''simple docstring''' @slow def UpperCamelCase__ (self : List[Any] ): '''simple docstring''' lowercase__ = AlbertModel.from_pretrained('''albert-base-v2''' ) lowercase__ = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) lowercase__ = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): lowercase__ = model(UpperCamelCase , attention_mask=UpperCamelCase )[0] lowercase__ = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , UpperCamelCase ) lowercase__ = torch.tensor( [[[-0.65_13, 1.50_35, -0.27_66], [-0.65_15, 1.50_46, -0.27_80], [-0.65_12, 1.50_49, -0.27_84]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , UpperCamelCase , atol=1E-4 ) )
2
'''simple docstring''' import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : str = logging.get_logger(__name__) lowerCamelCase : int = { 'RUCAIBox/mvp': 'https://huggingface.co/RUCAIBox/mvp/resolve/main/config.json', } class __lowerCAmelCase (lowercase_ ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = """mvp""" lowerCAmelCase__ : Optional[Any] = ["""past_key_values"""] lowerCAmelCase__ : List[str] = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__(self : Any , UpperCamelCase : Optional[int]=50267 , UpperCamelCase : Tuple=1024 , UpperCamelCase : int=12 , UpperCamelCase : Tuple=4096 , UpperCamelCase : Dict=16 , UpperCamelCase : int=12 , UpperCamelCase : Optional[int]=4096 , UpperCamelCase : Optional[int]=16 , UpperCamelCase : Tuple=0.0 , UpperCamelCase : Tuple=0.0 , UpperCamelCase : List[Any]="gelu" , UpperCamelCase : Union[str, Any]=1024 , UpperCamelCase : Optional[Any]=0.1 , UpperCamelCase : str=0.0 , UpperCamelCase : str=0.0 , UpperCamelCase : Optional[Any]=0.02 , UpperCamelCase : List[str]=0.0 , UpperCamelCase : List[str]=False , UpperCamelCase : Optional[int]=True , UpperCamelCase : Any=1 , UpperCamelCase : int=0 , UpperCamelCase : int=2 , UpperCamelCase : Any=True , UpperCamelCase : Optional[Any]=2 , UpperCamelCase : Optional[Any]=2 , UpperCamelCase : Tuple=False , UpperCamelCase : int=100 , UpperCamelCase : Optional[Any]=800 , **UpperCamelCase : str , ): '''simple docstring''' lowercase__ = vocab_size lowercase__ = max_position_embeddings lowercase__ = d_model lowercase__ = encoder_ffn_dim lowercase__ = encoder_layers lowercase__ = encoder_attention_heads lowercase__ = decoder_ffn_dim lowercase__ = decoder_layers lowercase__ = decoder_attention_heads lowercase__ = dropout lowercase__ = attention_dropout lowercase__ = activation_dropout lowercase__ = activation_function lowercase__ = init_std lowercase__ = encoder_layerdrop lowercase__ = decoder_layerdrop lowercase__ = classifier_dropout lowercase__ = use_cache lowercase__ = encoder_layers lowercase__ = scale_embedding # scale factor will be sqrt(d_model) if True lowercase__ = use_prompt lowercase__ = prompt_length lowercase__ = prompt_mid_dim super().__init__( pad_token_id=UpperCamelCase , bos_token_id=UpperCamelCase , eos_token_id=UpperCamelCase , is_encoder_decoder=UpperCamelCase , decoder_start_token_id=UpperCamelCase , forced_eos_token_id=UpperCamelCase , **UpperCamelCase , ) if self.forced_bos_token_id is None and kwargs.get('''force_bos_token_to_be_generated''' , UpperCamelCase ): lowercase__ = self.bos_token_id warnings.warn( f"Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. " '''The config can simply be saved and uploaded again to be fixed.''' )
2
1
"""simple docstring""" import math def __a ( _SCREAMING_SNAKE_CASE = 100 ) ->int: a__: Dict = sum(i * i for i in range(1 , n + 1 ) ) a__: Dict = int(math.pow(sum(range(1 , n + 1 ) ) , 2 ) ) return square_of_sum - sum_of_squares if __name__ == "__main__": print(f"{solution() = }")
371
"""simple docstring""" import math def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->Optional[int]: if 0 not in (x, y): # We use the relation x^y = y*log10(x), where 10 is the base. return y * math.logaa(_SCREAMING_SNAKE_CASE ) else: if x == 0: # 0 raised to any number is 0 return 0 elif y == 0: return 1 # any number raised to 0 is 1 raise AssertionError('This should never happen' ) if __name__ == "__main__": # Main function # Read two numbers from input and typecast them to int using map function. # Here x is the base and y is the power. lowercase__ = 'Enter the base and the power separated by a comma: ' lowercase__ , lowercase__ = map(int, input(prompt).split(',')) lowercase__ , lowercase__ = map(int, input(prompt).split(',')) # We find the log of each number, using the function res(), which takes two # arguments. lowercase__ = res(xa, ya) lowercase__ = res(xa, ya) # We check for the largest number if resa > resa: print('Largest number is', xa, '^', ya) elif resa > resa: print('Largest number is', xa, '^', ya) else: print('Both are equal')
203
0
'''simple docstring''' from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class lowercase ( A__ ): """simple docstring""" _a = ['''image_processor''', '''tokenizer'''] _a = '''Pix2StructImageProcessor''' _a = ('''T5Tokenizer''', '''T5TokenizerFast''') def __init__( self , UpperCamelCase_ , UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ :List[Any] = False super().__init__(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def __call__( self , UpperCamelCase_=None , UpperCamelCase_ = None , UpperCamelCase_ = True , UpperCamelCase_ = False , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = 2048 , UpperCamelCase_ = 0 , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = False , UpperCamelCase_ = False , UpperCamelCase_ = False , UpperCamelCase_ = False , UpperCamelCase_ = False , UpperCamelCase_ = True , UpperCamelCase_ = None , **UpperCamelCase_ , ): '''simple docstring''' if images is None and text is None: raise ValueError('''You have to specify either images or text.''' ) # Get only text if images is None and not self.image_processor.is_vqa: UpperCamelCase__ :Tuple = self.tokenizer UpperCamelCase__ :Dict = self.tokenizer( text=SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ , padding=SCREAMING_SNAKE_CASE__ , truncation=SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ , stride=SCREAMING_SNAKE_CASE__ , pad_to_multiple_of=SCREAMING_SNAKE_CASE__ , return_attention_mask=SCREAMING_SNAKE_CASE__ , return_overflowing_tokens=SCREAMING_SNAKE_CASE__ , return_special_tokens_mask=SCREAMING_SNAKE_CASE__ , return_offsets_mapping=SCREAMING_SNAKE_CASE__ , return_token_type_ids=SCREAMING_SNAKE_CASE__ , return_length=SCREAMING_SNAKE_CASE__ , verbose=SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) return text_encoding if not self.image_processor.is_vqa: # add pixel_values UpperCamelCase__ :List[Any] = self.image_processor( SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ , max_patches=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) else: # add pixel_values and bbox UpperCamelCase__ :List[Any] = self.image_processor( SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ , max_patches=SCREAMING_SNAKE_CASE__ , header_text=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) if text is not None and not self.image_processor.is_vqa: UpperCamelCase__ :List[Any] = self.tokenizer( text=SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ , padding=SCREAMING_SNAKE_CASE__ , truncation=SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ , stride=SCREAMING_SNAKE_CASE__ , pad_to_multiple_of=SCREAMING_SNAKE_CASE__ , return_attention_mask=SCREAMING_SNAKE_CASE__ , return_overflowing_tokens=SCREAMING_SNAKE_CASE__ , return_special_tokens_mask=SCREAMING_SNAKE_CASE__ , return_offsets_mapping=SCREAMING_SNAKE_CASE__ , return_token_type_ids=SCREAMING_SNAKE_CASE__ , return_length=SCREAMING_SNAKE_CASE__ , verbose=SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) if "attention_mask" in text_encoding: UpperCamelCase__ :List[Any] = text_encoding.pop('''attention_mask''' ) if "input_ids" in text_encoding: UpperCamelCase__ :Dict = text_encoding.pop('''input_ids''' ) else: UpperCamelCase__ :Optional[int] = None if text_encoding is not None: encoding_image_processor.update(SCREAMING_SNAKE_CASE__ ) return encoding_image_processor def lowerCAmelCase__ ( self , *UpperCamelCase_ , **UpperCamelCase_ ): '''simple docstring''' return self.tokenizer.batch_decode(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def lowerCAmelCase__ ( self , *UpperCamelCase_ , **UpperCamelCase_ ): '''simple docstring''' return self.tokenizer.decode(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) @property def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Dict = self.tokenizer.model_input_names UpperCamelCase__ :int = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
97
from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class A_ ( SCREAMING_SNAKE_CASE ): _UpperCAmelCase : Optional[Any] = ['''image_processor''', '''tokenizer'''] _UpperCAmelCase : Union[str, Any] = '''Pix2StructImageProcessor''' _UpperCAmelCase : Any = ('''T5Tokenizer''', '''T5TokenizerFast''') def __init__( self : List[str] ,SCREAMING_SNAKE_CASE__ : str ,SCREAMING_SNAKE_CASE__ : int): __lowerCamelCase : List[Any] = False super().__init__(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) def __call__( self : str ,SCREAMING_SNAKE_CASE__ : Any=None ,SCREAMING_SNAKE_CASE__ : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None ,SCREAMING_SNAKE_CASE__ : bool = True ,SCREAMING_SNAKE_CASE__ : Union[bool, str, PaddingStrategy] = False ,SCREAMING_SNAKE_CASE__ : Union[bool, str, TruncationStrategy] = None ,SCREAMING_SNAKE_CASE__ : Optional[int] = None ,SCREAMING_SNAKE_CASE__ : Optional[int] = 2_0_4_8 ,SCREAMING_SNAKE_CASE__ : int = 0 ,SCREAMING_SNAKE_CASE__ : Optional[int] = None ,SCREAMING_SNAKE_CASE__ : Optional[bool] = None ,SCREAMING_SNAKE_CASE__ : bool = False ,SCREAMING_SNAKE_CASE__ : bool = False ,SCREAMING_SNAKE_CASE__ : bool = False ,SCREAMING_SNAKE_CASE__ : bool = False ,SCREAMING_SNAKE_CASE__ : bool = False ,SCREAMING_SNAKE_CASE__ : bool = True ,SCREAMING_SNAKE_CASE__ : Optional[Union[str, TensorType]] = None ,**SCREAMING_SNAKE_CASE__ : Dict ,): if images is None and text is None: raise ValueError('You have to specify either images or text.') # Get only text if images is None and not self.image_processor.is_vqa: __lowerCamelCase : Tuple = self.tokenizer __lowerCamelCase : Dict = self.tokenizer( text=SCREAMING_SNAKE_CASE__ ,add_special_tokens=SCREAMING_SNAKE_CASE__ ,padding=SCREAMING_SNAKE_CASE__ ,truncation=SCREAMING_SNAKE_CASE__ ,max_length=SCREAMING_SNAKE_CASE__ ,stride=SCREAMING_SNAKE_CASE__ ,pad_to_multiple_of=SCREAMING_SNAKE_CASE__ ,return_attention_mask=SCREAMING_SNAKE_CASE__ ,return_overflowing_tokens=SCREAMING_SNAKE_CASE__ ,return_special_tokens_mask=SCREAMING_SNAKE_CASE__ ,return_offsets_mapping=SCREAMING_SNAKE_CASE__ ,return_token_type_ids=SCREAMING_SNAKE_CASE__ ,return_length=SCREAMING_SNAKE_CASE__ ,verbose=SCREAMING_SNAKE_CASE__ ,return_tensors=SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ,) return text_encoding if not self.image_processor.is_vqa: # add pixel_values __lowerCamelCase : List[Any] = self.image_processor( SCREAMING_SNAKE_CASE__ ,return_tensors=SCREAMING_SNAKE_CASE__ ,max_patches=SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__) else: # add pixel_values and bbox __lowerCamelCase : List[Any] = self.image_processor( SCREAMING_SNAKE_CASE__ ,return_tensors=SCREAMING_SNAKE_CASE__ ,max_patches=SCREAMING_SNAKE_CASE__ ,header_text=SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__) if text is not None and not self.image_processor.is_vqa: __lowerCamelCase : List[Any] = self.tokenizer( text=SCREAMING_SNAKE_CASE__ ,add_special_tokens=SCREAMING_SNAKE_CASE__ ,padding=SCREAMING_SNAKE_CASE__ ,truncation=SCREAMING_SNAKE_CASE__ ,max_length=SCREAMING_SNAKE_CASE__ ,stride=SCREAMING_SNAKE_CASE__ ,pad_to_multiple_of=SCREAMING_SNAKE_CASE__ ,return_attention_mask=SCREAMING_SNAKE_CASE__ ,return_overflowing_tokens=SCREAMING_SNAKE_CASE__ ,return_special_tokens_mask=SCREAMING_SNAKE_CASE__ ,return_offsets_mapping=SCREAMING_SNAKE_CASE__ ,return_token_type_ids=SCREAMING_SNAKE_CASE__ ,return_length=SCREAMING_SNAKE_CASE__ ,verbose=SCREAMING_SNAKE_CASE__ ,return_tensors=SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ,) if "attention_mask" in text_encoding: __lowerCamelCase : List[Any] = text_encoding.pop('attention_mask') if "input_ids" in text_encoding: __lowerCamelCase : Dict = text_encoding.pop('input_ids') else: __lowerCamelCase : Optional[int] = None if text_encoding is not None: encoding_image_processor.update(SCREAMING_SNAKE_CASE__) return encoding_image_processor def lowerCAmelCase ( self : Dict ,*SCREAMING_SNAKE_CASE__ : str ,**SCREAMING_SNAKE_CASE__ : int): return self.tokenizer.batch_decode(*SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__) def lowerCAmelCase ( self : List[str] ,*SCREAMING_SNAKE_CASE__ : int ,**SCREAMING_SNAKE_CASE__ : Dict): return self.tokenizer.decode(*SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__) @property def lowerCAmelCase ( self : int): __lowerCamelCase : Dict = self.tokenizer.model_input_names __lowerCamelCase : int = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
73
0
'''simple docstring''' import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import ( AutoProcessor, BertTokenizerFast, BlipImageProcessor, GPTaTokenizer, InstructBlipProcessor, PreTrainedTokenizerFast, ) @require_vision class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def A ( self : Tuple ): """simple docstring""" UpperCamelCase = tempfile.mkdtemp() UpperCamelCase = BlipImageProcessor() UpperCamelCase = GPTaTokenizer.from_pretrained('hf-internal-testing/tiny-random-GPT2Model' ) UpperCamelCase = BertTokenizerFast.from_pretrained('hf-internal-testing/tiny-random-bert' ) UpperCamelCase = InstructBlipProcessor(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) processor.save_pretrained(self.tmpdirname ) def A ( self : List[Any] , **UpperCamelCase__ : int ): """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **UpperCamelCase__ ).tokenizer def A ( self : Dict , **UpperCamelCase__ : Optional[Any] ): """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **UpperCamelCase__ ).image_processor def A ( self : int , **UpperCamelCase__ : Any ): """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **UpperCamelCase__ ).qformer_tokenizer def A ( self : List[str] ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def A ( self : Dict ): """simple docstring""" UpperCamelCase = [np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta )] UpperCamelCase = [Image.fromarray(np.moveaxis(UpperCamelCase__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def A ( self : Union[str, Any] ): """simple docstring""" UpperCamelCase = InstructBlipProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() , qformer_tokenizer=self.get_qformer_tokenizer() , ) processor.save_pretrained(self.tmpdirname ) UpperCamelCase = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) UpperCamelCase = self.get_image_processor(do_normalize=UpperCamelCase__ , padding_value=1.0 ) UpperCamelCase = InstructBlipProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=UpperCamelCase__ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , UpperCamelCase__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCamelCase__ ) self.assertIsInstance(processor.qformer_tokenizer , UpperCamelCase__ ) def A ( self : Optional[int] ): """simple docstring""" UpperCamelCase = self.get_image_processor() UpperCamelCase = self.get_tokenizer() UpperCamelCase = self.get_qformer_tokenizer() UpperCamelCase = InstructBlipProcessor( tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ , qformer_tokenizer=UpperCamelCase__ ) UpperCamelCase = self.prepare_image_inputs() UpperCamelCase = image_processor(UpperCamelCase__ , return_tensors='np' ) UpperCamelCase = processor(images=UpperCamelCase__ , return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def A ( self : int ): """simple docstring""" UpperCamelCase = self.get_image_processor() UpperCamelCase = self.get_tokenizer() UpperCamelCase = self.get_qformer_tokenizer() UpperCamelCase = InstructBlipProcessor( tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ , qformer_tokenizer=UpperCamelCase__ ) UpperCamelCase = 'lower newer' UpperCamelCase = processor(text=UpperCamelCase__ ) UpperCamelCase = tokenizer(UpperCamelCase__ , return_token_type_ids=UpperCamelCase__ ) UpperCamelCase = qformer_tokenizer(UpperCamelCase__ , return_token_type_ids=UpperCamelCase__ ) for key in encoded_tokens.keys(): self.assertListEqual(encoded_tokens[key] , encoded_processor[key] ) for key in encoded_tokens_qformer.keys(): self.assertListEqual(encoded_tokens_qformer[key] , encoded_processor['qformer_' + key] ) def A ( self : List[str] ): """simple docstring""" UpperCamelCase = self.get_image_processor() UpperCamelCase = self.get_tokenizer() UpperCamelCase = self.get_qformer_tokenizer() UpperCamelCase = InstructBlipProcessor( tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ , qformer_tokenizer=UpperCamelCase__ ) UpperCamelCase = 'lower newer' UpperCamelCase = self.prepare_image_inputs() UpperCamelCase = processor(text=UpperCamelCase__ , images=UpperCamelCase__ ) self.assertListEqual( list(inputs.keys() ) , ['input_ids', 'attention_mask', 'qformer_input_ids', 'qformer_attention_mask', 'pixel_values'] , ) # test if it raises when no input is passed with pytest.raises(UpperCamelCase__ ): processor() def A ( self : Dict ): """simple docstring""" UpperCamelCase = self.get_image_processor() UpperCamelCase = self.get_tokenizer() UpperCamelCase = self.get_qformer_tokenizer() UpperCamelCase = InstructBlipProcessor( tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ , qformer_tokenizer=UpperCamelCase__ ) UpperCamelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] UpperCamelCase = processor.batch_decode(UpperCamelCase__ ) UpperCamelCase = tokenizer.batch_decode(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) def A ( self : Tuple ): """simple docstring""" UpperCamelCase = self.get_image_processor() UpperCamelCase = self.get_tokenizer() UpperCamelCase = self.get_qformer_tokenizer() UpperCamelCase = InstructBlipProcessor( tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ , qformer_tokenizer=UpperCamelCase__ ) UpperCamelCase = 'lower newer' UpperCamelCase = self.prepare_image_inputs() UpperCamelCase = processor(text=UpperCamelCase__ , images=UpperCamelCase__ ) self.assertListEqual( list(inputs.keys() ) , ['input_ids', 'attention_mask', 'qformer_input_ids', 'qformer_attention_mask', 'pixel_values'] , )
358
'''simple docstring''' import warnings from ...utils import logging from .image_processing_deformable_detr import DeformableDetrImageProcessor _lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE ( _a ): """simple docstring""" def __init__( self : Optional[Any] , *UpperCamelCase__ : int , **UpperCamelCase__ : List[str] ): """simple docstring""" warnings.warn( 'The class DeformableDetrFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use DeformableDetrImageProcessor instead.' , UpperCamelCase__ , ) super().__init__(*UpperCamelCase__ , **UpperCamelCase__ )
249
0
import math import time from typing import Dict, List, Optional from torch.utils.data import Dataset from transformers import SeqaSeqTrainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class snake_case_ ( __A ): def __init__( self : List[Any] , *lowercase_ : List[Any] , lowercase_ : Union[str, Any]=None , lowercase_ : Tuple=None , **lowercase_ : str ) -> Union[str, Any]: super().__init__(*lowercase_ , **lowercase_ ) lowercase__ : Tuple = eval_examples lowercase__ : Optional[int] = post_process_function def __UpperCamelCase ( self : List[Any] , lowercase_ : Optional[Dataset] = None , lowercase_ : Any=None , lowercase_ : Optional[List[str]] = None , lowercase_ : str = "eval" , **lowercase_ : Any , ) -> Dict[str, float]: lowercase__ : List[Any] = gen_kwargs.copy() lowercase__ : Optional[int] = ( gen_kwargs["max_length"] if gen_kwargs.get("max_length" ) is not None else self.args.generation_max_length ) lowercase__ : List[str] = ( gen_kwargs["num_beams"] if gen_kwargs.get("num_beams" ) is not None else self.args.generation_num_beams ) lowercase__ : Tuple = gen_kwargs lowercase__ : Tuple = self.eval_dataset if eval_dataset is None else eval_dataset lowercase__ : str = self.get_eval_dataloader(lowercase_ ) lowercase__ : Any = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. lowercase__ : List[str] = self.compute_metrics lowercase__ : str = None lowercase__ : Any = time.time() lowercase__ : List[Any] = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: lowercase__ : Optional[int] = eval_loop( lowercase_ , description="Evaluation" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=lowercase_ , metric_key_prefix=lowercase_ , ) finally: lowercase__ : int = compute_metrics lowercase__ : Tuple = self.args.eval_batch_size * self.args.world_size if F'''{metric_key_prefix}_jit_compilation_time''' in output.metrics: start_time += output.metrics[F'''{metric_key_prefix}_jit_compilation_time'''] output.metrics.update( speed_metrics( lowercase_ , lowercase_ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default lowercase__ : Optional[int] = self.post_process_function(lowercase_ , lowercase_ , lowercase_ ) lowercase__ : str = self.compute_metrics(lowercase_ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F'''{metric_key_prefix}_''' ): lowercase__ : List[str] = metrics.pop(lowercase_ ) metrics.update(output.metrics ) else: lowercase__ : Union[str, Any] = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(lowercase_ ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) lowercase__ : List[str] = self.callback_handler.on_evaluate(self.args , self.state , self.control , lowercase_ ) return metrics def __UpperCamelCase ( self : str , lowercase_ : str , lowercase_ : List[Any] , lowercase_ : Optional[int]=None , lowercase_ : str = "test" , **lowercase_ : Any ) -> Tuple: lowercase__ : Any = gen_kwargs.copy() lowercase__ : Tuple = self.get_test_dataloader(lowercase_ ) # Temporarily disable metric computation, we will do it in the loop here. lowercase__ : List[Any] = self.compute_metrics lowercase__ : Optional[Any] = None lowercase__ : Any = time.time() lowercase__ : Optional[int] = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: lowercase__ : Dict = eval_loop( lowercase_ , description="Prediction" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=lowercase_ , metric_key_prefix=lowercase_ , ) finally: lowercase__ : Optional[int] = compute_metrics lowercase__ : Union[str, Any] = self.args.eval_batch_size * self.args.world_size if F'''{metric_key_prefix}_jit_compilation_time''' in output.metrics: start_time += output.metrics[F'''{metric_key_prefix}_jit_compilation_time'''] output.metrics.update( speed_metrics( lowercase_ , lowercase_ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output lowercase__ : int = self.post_process_function(lowercase_ , lowercase_ , lowercase_ , "predict" ) lowercase__ : List[Any] = self.compute_metrics(lowercase_ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F'''{metric_key_prefix}_''' ): lowercase__ : Tuple = metrics.pop(lowercase_ ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=lowercase_ )
87
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging UpperCamelCase = logging.get_logger(__name__) if is_vision_available(): import PIL class snake_case_ ( __A ): __A : str = ["pixel_values"] def __init__( self : int , lowercase_ : bool = True , lowercase_ : Dict[str, int] = None , lowercase_ : PILImageResampling = PILImageResampling.BICUBIC , lowercase_ : bool = True , lowercase_ : Dict[str, int] = None , lowercase_ : bool = True , lowercase_ : Union[int, float] = 1 / 2_55 , lowercase_ : bool = True , lowercase_ : Optional[Union[float, List[float]]] = None , lowercase_ : Optional[Union[float, List[float]]] = None , lowercase_ : bool = True , **lowercase_ : Union[str, Any] , ) -> None: super().__init__(**lowercase_ ) lowercase__ : Tuple = size if size is not None else {"shortest_edge": 2_24} lowercase__ : Tuple = get_size_dict(lowercase_ , default_to_square=lowercase_ ) lowercase__ : List[str] = crop_size if crop_size is not None else {"height": 2_24, "width": 2_24} lowercase__ : Tuple = get_size_dict(lowercase_ , default_to_square=lowercase_ , param_name="crop_size" ) lowercase__ : Dict = do_resize lowercase__ : List[Any] = size lowercase__ : int = resample lowercase__ : Union[str, Any] = do_center_crop lowercase__ : Optional[int] = crop_size lowercase__ : List[str] = do_rescale lowercase__ : int = rescale_factor lowercase__ : List[Any] = do_normalize lowercase__ : Union[str, Any] = image_mean if image_mean is not None else OPENAI_CLIP_MEAN lowercase__ : str = image_std if image_std is not None else OPENAI_CLIP_STD lowercase__ : Dict = do_convert_rgb def __UpperCamelCase ( self : Optional[Any] , lowercase_ : np.ndarray , lowercase_ : Dict[str, int] , lowercase_ : PILImageResampling = PILImageResampling.BICUBIC , lowercase_ : Optional[Union[str, ChannelDimension]] = None , **lowercase_ : Union[str, Any] , ) -> np.ndarray: lowercase__ : str = get_size_dict(lowercase_ , default_to_square=lowercase_ ) if "shortest_edge" not in size: raise ValueError(F'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' ) lowercase__ : Dict = get_resize_output_image_size(lowercase_ , size=size["shortest_edge"] , default_to_square=lowercase_ ) return resize(lowercase_ , size=lowercase_ , resample=lowercase_ , data_format=lowercase_ , **lowercase_ ) def __UpperCamelCase ( self : int , lowercase_ : np.ndarray , lowercase_ : Dict[str, int] , lowercase_ : Optional[Union[str, ChannelDimension]] = None , **lowercase_ : int , ) -> np.ndarray: lowercase__ : Optional[Any] = get_size_dict(lowercase_ ) if "height" not in size or "width" not in size: raise ValueError(F'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' ) return center_crop(lowercase_ , size=(size["height"], size["width"]) , data_format=lowercase_ , **lowercase_ ) def __UpperCamelCase ( self : Optional[Any] , lowercase_ : np.ndarray , lowercase_ : Union[int, float] , lowercase_ : Optional[Union[str, ChannelDimension]] = None , **lowercase_ : Optional[Any] , ) -> Any: return rescale(lowercase_ , scale=lowercase_ , data_format=lowercase_ , **lowercase_ ) def __UpperCamelCase ( self : str , lowercase_ : np.ndarray , lowercase_ : Union[float, List[float]] , lowercase_ : Union[float, List[float]] , lowercase_ : Optional[Union[str, ChannelDimension]] = None , **lowercase_ : str , ) -> np.ndarray: return normalize(lowercase_ , mean=lowercase_ , std=lowercase_ , data_format=lowercase_ , **lowercase_ ) def __UpperCamelCase ( self : Optional[Any] , lowercase_ : ImageInput , lowercase_ : bool = None , lowercase_ : Dict[str, int] = None , lowercase_ : PILImageResampling = None , lowercase_ : bool = None , lowercase_ : int = None , lowercase_ : bool = None , lowercase_ : float = None , lowercase_ : bool = None , lowercase_ : Optional[Union[float, List[float]]] = None , lowercase_ : Optional[Union[float, List[float]]] = None , lowercase_ : bool = None , lowercase_ : Optional[Union[str, TensorType]] = None , lowercase_ : Optional[ChannelDimension] = ChannelDimension.FIRST , **lowercase_ : Union[str, Any] , ) -> PIL.Image.Image: lowercase__ : int = do_resize if do_resize is not None else self.do_resize lowercase__ : Dict = size if size is not None else self.size lowercase__ : List[Any] = get_size_dict(lowercase_ , param_name="size" , default_to_square=lowercase_ ) lowercase__ : Dict = resample if resample is not None else self.resample lowercase__ : int = do_center_crop if do_center_crop is not None else self.do_center_crop lowercase__ : Dict = crop_size if crop_size is not None else self.crop_size lowercase__ : List[str] = get_size_dict(lowercase_ , param_name="crop_size" , default_to_square=lowercase_ ) lowercase__ : int = do_rescale if do_rescale is not None else self.do_rescale lowercase__ : Dict = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase__ : Union[str, Any] = do_normalize if do_normalize is not None else self.do_normalize lowercase__ : int = image_mean if image_mean is not None else self.image_mean lowercase__ : List[str] = image_std if image_std is not None else self.image_std lowercase__ : Union[str, Any] = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb lowercase__ : Union[str, Any] = make_list_of_images(lowercase_ ) if not valid_images(lowercase_ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # PIL RGBA images are converted to RGB if do_convert_rgb: lowercase__ : Dict = [convert_to_rgb(lowercase_ ) for image in images] # All transformations expect numpy arrays. lowercase__ : Optional[Any] = [to_numpy_array(lowercase_ ) for image in images] if do_resize: lowercase__ : List[Any] = [self.resize(image=lowercase_ , size=lowercase_ , resample=lowercase_ ) for image in images] if do_center_crop: lowercase__ : int = [self.center_crop(image=lowercase_ , size=lowercase_ ) for image in images] if do_rescale: lowercase__ : str = [self.rescale(image=lowercase_ , scale=lowercase_ ) for image in images] if do_normalize: lowercase__ : Optional[int] = [self.normalize(image=lowercase_ , mean=lowercase_ , std=lowercase_ ) for image in images] lowercase__ : Optional[Any] = [to_channel_dimension_format(lowercase_ , lowercase_ ) for image in images] lowercase__ : List[str] = {"pixel_values": images} return BatchFeature(data=lowercase_ , tensor_type=lowercase_ )
87
1
'''simple docstring''' # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A__ : Tuple ={ "configuration_mgp_str": ["MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP", "MgpstrConfig"], "processing_mgp_str": ["MgpstrProcessor"], "tokenization_mgp_str": ["MgpstrTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Tuple =[ "MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST", "MgpstrModel", "MgpstrPreTrainedModel", "MgpstrForSceneTextRecognition", ] if TYPE_CHECKING: from .configuration_mgp_str import MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP, MgpstrConfig from .processing_mgp_str import MgpstrProcessor from .tokenization_mgp_str import MgpstrTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mgp_str import ( MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST, MgpstrForSceneTextRecognition, MgpstrModel, MgpstrPreTrainedModel, ) else: import sys A__ : Union[str, Any] =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
368
'''simple docstring''' import argparse import tensorflow as tf import torch from transformers import BertConfig, BertForMaskedLM from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertPooler, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging logging.set_verbosity_info() def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): """simple docstring""" def get_masked_lm_array(lowerCAmelCase ): _lowerCAmelCase = f"masked_lm/{name}/.ATTRIBUTES/VARIABLE_VALUE" _lowerCAmelCase = tf.train.load_variable(lowerCAmelCase , lowerCAmelCase ) if "kernel" in name: _lowerCAmelCase = array.transpose() return torch.from_numpy(lowerCAmelCase ) def get_encoder_array(lowerCAmelCase ): _lowerCAmelCase = f"encoder/{name}/.ATTRIBUTES/VARIABLE_VALUE" _lowerCAmelCase = tf.train.load_variable(lowerCAmelCase , lowerCAmelCase ) if "kernel" in name: _lowerCAmelCase = array.transpose() return torch.from_numpy(lowerCAmelCase ) def get_encoder_layer_array(lowerCAmelCase , lowerCAmelCase ): _lowerCAmelCase = f"encoder/_transformer_layers/{layer_index}/{name}/.ATTRIBUTES/VARIABLE_VALUE" _lowerCAmelCase = tf.train.load_variable(lowerCAmelCase , lowerCAmelCase ) if "kernel" in name: _lowerCAmelCase = array.transpose() return torch.from_numpy(lowerCAmelCase ) def get_encoder_attention_layer_array(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): _lowerCAmelCase = f"encoder/_transformer_layers/{layer_index}/_attention_layer/{name}/.ATTRIBUTES/VARIABLE_VALUE" _lowerCAmelCase = tf.train.load_variable(lowerCAmelCase , lowerCAmelCase ) _lowerCAmelCase = array.reshape(lowerCAmelCase ) if "kernel" in name: _lowerCAmelCase = array.transpose() return torch.from_numpy(lowerCAmelCase ) print(f"Loading model based on config from {config_path}..." ) _lowerCAmelCase = BertConfig.from_json_file(lowerCAmelCase ) _lowerCAmelCase = BertForMaskedLM(lowerCAmelCase ) # Layers for layer_index in range(0 , config.num_hidden_layers ): _lowerCAmelCase = model.bert.encoder.layer[layer_index] # Self-attention _lowerCAmelCase = layer.attention.self _lowerCAmelCase = get_encoder_attention_layer_array( lowerCAmelCase , """_query_dense/kernel""" , self_attn.query.weight.data.shape ) _lowerCAmelCase = get_encoder_attention_layer_array( lowerCAmelCase , """_query_dense/bias""" , self_attn.query.bias.data.shape ) _lowerCAmelCase = get_encoder_attention_layer_array( lowerCAmelCase , """_key_dense/kernel""" , self_attn.key.weight.data.shape ) _lowerCAmelCase = get_encoder_attention_layer_array( lowerCAmelCase , """_key_dense/bias""" , self_attn.key.bias.data.shape ) _lowerCAmelCase = get_encoder_attention_layer_array( lowerCAmelCase , """_value_dense/kernel""" , self_attn.value.weight.data.shape ) _lowerCAmelCase = get_encoder_attention_layer_array( lowerCAmelCase , """_value_dense/bias""" , self_attn.value.bias.data.shape ) # Self-attention Output _lowerCAmelCase = layer.attention.output _lowerCAmelCase = get_encoder_attention_layer_array( lowerCAmelCase , """_output_dense/kernel""" , self_output.dense.weight.data.shape ) _lowerCAmelCase = get_encoder_attention_layer_array( lowerCAmelCase , """_output_dense/bias""" , self_output.dense.bias.data.shape ) _lowerCAmelCase = get_encoder_layer_array(lowerCAmelCase , """_attention_layer_norm/gamma""" ) _lowerCAmelCase = get_encoder_layer_array(lowerCAmelCase , """_attention_layer_norm/beta""" ) # Intermediate _lowerCAmelCase = layer.intermediate _lowerCAmelCase = get_encoder_layer_array(lowerCAmelCase , """_intermediate_dense/kernel""" ) _lowerCAmelCase = get_encoder_layer_array(lowerCAmelCase , """_intermediate_dense/bias""" ) # Output _lowerCAmelCase = layer.output _lowerCAmelCase = get_encoder_layer_array(lowerCAmelCase , """_output_dense/kernel""" ) _lowerCAmelCase = get_encoder_layer_array(lowerCAmelCase , """_output_dense/bias""" ) _lowerCAmelCase = get_encoder_layer_array(lowerCAmelCase , """_output_layer_norm/gamma""" ) _lowerCAmelCase = get_encoder_layer_array(lowerCAmelCase , """_output_layer_norm/beta""" ) # Embeddings _lowerCAmelCase = get_encoder_array("""_position_embedding_layer/embeddings""" ) _lowerCAmelCase = get_encoder_array("""_type_embedding_layer/embeddings""" ) _lowerCAmelCase = get_encoder_array("""_embedding_norm_layer/gamma""" ) _lowerCAmelCase = get_encoder_array("""_embedding_norm_layer/beta""" ) # LM Head _lowerCAmelCase = model.cls.predictions.transform _lowerCAmelCase = get_masked_lm_array("""dense/kernel""" ) _lowerCAmelCase = get_masked_lm_array("""dense/bias""" ) _lowerCAmelCase = get_masked_lm_array("""layer_norm/gamma""" ) _lowerCAmelCase = get_masked_lm_array("""layer_norm/beta""" ) _lowerCAmelCase = get_masked_lm_array("""embedding_table""" ) # Pooling _lowerCAmelCase = BertPooler(config=lowerCAmelCase ) _lowerCAmelCase = get_encoder_array("""_pooler_layer/kernel""" ) _lowerCAmelCase = get_encoder_array("""_pooler_layer/bias""" ) # Export final model model.save_pretrained(lowerCAmelCase ) # Integration test - should load without any errors ;) _lowerCAmelCase = BertForMaskedLM.from_pretrained(lowerCAmelCase ) print(new_model.eval() ) print("""Model conversion was done sucessfully!""" ) if __name__ == "__main__": A__ : str =argparse.ArgumentParser() parser.add_argument( '''--tf_checkpoint_path''', type=str, required=True, help='''Path to the TensorFlow Token Dropping checkpoint path.''' ) parser.add_argument( '''--bert_config_file''', type=str, required=True, help='''The config json file corresponding to the BERT model. This specifies the model architecture.''', ) parser.add_argument( '''--pytorch_dump_path''', type=str, required=True, help='''Path to the output PyTorch model.''', ) A__ : Dict =parser.parse_args() convert_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
220
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "camembert-base": "https://huggingface.co/camembert-base/resolve/main/config.json", "umberto-commoncrawl-cased-v1": ( "https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json" ), "umberto-wikipedia-uncased-v1": ( "https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json" ), } class lowercase ( UpperCamelCase__ ): _a = "camembert" def __init__( self , _a=3_0522 , _a=768 , _a=12 , _a=12 , _a=3072 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=2 , _a=0.02 , _a=1e-12 , _a=1 , _a=0 , _a=2 , _a="absolute" , _a=True , _a=None , **_a , ) -> str: super().__init__(pad_token_id=_a , bos_token_id=_a , eos_token_id=_a , **_a ) _A : Any = vocab_size _A : List[Any] = hidden_size _A : Dict = num_hidden_layers _A : int = num_attention_heads _A : Dict = hidden_act _A : str = intermediate_size _A : List[Any] = hidden_dropout_prob _A : str = attention_probs_dropout_prob _A : int = max_position_embeddings _A : Tuple = type_vocab_size _A : List[str] = initializer_range _A : Dict = layer_norm_eps _A : str = position_embedding_type _A : Dict = use_cache _A : Any = classifier_dropout class lowercase ( UpperCamelCase__ ): @property def a__ ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": _A : Optional[Any] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: _A : Optional[Any] = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
26
def lowerCAmelCase_ ( snake_case_,snake_case_ ): _enforce_args(snake_case_,snake_case_ ) if n == 0: return 0 _A : Tuple = float("""-inf""" ) for i in range(1,n + 1 ): _A : str = max( snake_case_,prices[i - 1] + naive_cut_rod_recursive(n - i,snake_case_ ) ) return max_revue def lowerCAmelCase_ ( snake_case_,snake_case_ ): _enforce_args(snake_case_,snake_case_ ) _A : Dict = [float("""-inf""" ) for _ in range(n + 1 )] return _top_down_cut_rod_recursive(snake_case_,snake_case_,snake_case_ ) def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ): if max_rev[n] >= 0: return max_rev[n] elif n == 0: return 0 else: _A : List[str] = float("""-inf""" ) for i in range(1,n + 1 ): _A : Optional[Any] = max( snake_case_,prices[i - 1] + _top_down_cut_rod_recursive(n - i,snake_case_,snake_case_ ),) _A : Tuple = max_revenue return max_rev[n] def lowerCAmelCase_ ( snake_case_,snake_case_ ): _enforce_args(snake_case_,snake_case_ ) # length(max_rev) = n + 1, to accommodate for the revenue obtainable from a rod of # length 0. _A : List[Any] = [float("""-inf""" ) for _ in range(n + 1 )] _A : Any = 0 for i in range(1,n + 1 ): _A : Optional[Any] = max_rev[i] for j in range(1,i + 1 ): _A : int = max(snake_case_,prices[j - 1] + max_rev[i - j] ) _A : int = max_revenue_i return max_rev[n] def lowerCAmelCase_ ( snake_case_,snake_case_ ): if n < 0: _A : Optional[Any] = f'''n must be greater than or equal to 0. Got n = {n}''' raise ValueError(snake_case_ ) if n > len(snake_case_ ): _A : Any = ( """Each integral piece of rod must have a corresponding price. """ f'''Got n = {n} but length of prices = {len(snake_case_ )}''' ) raise ValueError(snake_case_ ) def lowerCAmelCase_ ( ): _A : Tuple = [6, 10, 12, 15, 20, 23] _A : List[Any] = len(snake_case_ ) # the best revenue comes from cutting the rod into 6 pieces, each # of length 1 resulting in a revenue of 6 * 6 = 36. _A : Any = 36 _A : List[Any] = top_down_cut_rod(snake_case_,snake_case_ ) _A : List[Any] = bottom_up_cut_rod(snake_case_,snake_case_ ) _A : Dict = naive_cut_rod_recursive(snake_case_,snake_case_ ) assert expected_max_revenue == max_rev_top_down assert max_rev_top_down == max_rev_bottom_up assert max_rev_bottom_up == max_rev_naive if __name__ == "__main__": main()
26
1
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from typing import Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import randn_tensor from .scheduling_utils import SchedulerMixin class _snake_case ( a__ , a__ ): snake_case__ = 1 @register_to_config def __init__( self : Any , UpperCAmelCase : Union[str, Any]=2000 , UpperCAmelCase : int=0.1 , UpperCAmelCase : Union[str, Any]=20 , UpperCAmelCase : Any=1E-3 ): __lowerCamelCase : List[Any] = None __lowerCamelCase : Dict = None __lowerCamelCase : List[Any] = None def lowerCamelCase__ ( self : Any , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Union[str, torch.device] = None ): __lowerCamelCase : Tuple = torch.linspace(1 , self.config.sampling_eps , __UpperCAmelCase , device=__UpperCAmelCase ) def lowerCamelCase__ ( self : Union[str, Any] , UpperCAmelCase : str , UpperCAmelCase : List[str] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[str]=None ): if self.timesteps is None: raise ValueError( "`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler" ) # TODO(Patrick) better comments + non-PyTorch # postprocess model score __lowerCamelCase : Union[str, Any] = ( -0.2_5 * t**2 * (self.config.beta_max - self.config.beta_min) - 0.5 * t * self.config.beta_min ) __lowerCamelCase : Tuple = torch.sqrt(1.0 - torch.exp(2.0 * log_mean_coeff ) ) __lowerCamelCase : Tuple = std.flatten() while len(std.shape ) < len(score.shape ): __lowerCamelCase : str = std.unsqueeze(-1 ) __lowerCamelCase : Union[str, Any] = -score / std # compute __lowerCamelCase : List[Any] = -1.0 / len(self.timesteps ) __lowerCamelCase : Tuple = self.config.beta_min + t * (self.config.beta_max - self.config.beta_min) __lowerCamelCase : Tuple = beta_t.flatten() while len(beta_t.shape ) < len(x.shape ): __lowerCamelCase : str = beta_t.unsqueeze(-1 ) __lowerCamelCase : Union[str, Any] = -0.5 * beta_t * x __lowerCamelCase : Union[str, Any] = torch.sqrt(__UpperCAmelCase ) __lowerCamelCase : List[Any] = drift - diffusion**2 * score __lowerCamelCase : List[str] = x + drift * dt # add noise __lowerCamelCase : Dict = randn_tensor(x.shape , layout=x.layout , generator=__UpperCAmelCase , device=x.device , dtype=x.dtype ) __lowerCamelCase : int = x_mean + diffusion * math.sqrt(-dt ) * noise return x, x_mean def __len__( self : Union[str, Any] ): return self.config.num_train_timesteps
354
"""simple docstring""" import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class _snake_case ( a__ , unittest.TestCase ): snake_case__ = DiTPipeline snake_case__ = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS snake_case__ = PipelineTesterMixin.required_optional_params - { "latents", "num_images_per_prompt", "callback", "callback_steps", } snake_case__ = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS snake_case__ = False def lowerCamelCase__ ( self : Tuple ): torch.manual_seed(0 ) __lowerCamelCase : Optional[Any] = TransformeraDModel( sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=UpperCAmelCase , activation_fn="gelu-approximate" , num_embeds_ada_norm=1000 , norm_type="ada_norm_zero" , norm_elementwise_affine=UpperCAmelCase , ) __lowerCamelCase : List[str] = AutoencoderKL() __lowerCamelCase : List[Any] = DDIMScheduler() __lowerCamelCase : Optional[Any] = {"transformer": transformer.eval(), "vae": vae.eval(), "scheduler": scheduler} return components def lowerCamelCase__ ( self : List[str] , UpperCAmelCase : Any , UpperCAmelCase : Union[str, Any]=0 ): if str(UpperCAmelCase ).startswith("mps" ): __lowerCamelCase : List[str] = torch.manual_seed(UpperCAmelCase ) else: __lowerCamelCase : List[str] = torch.Generator(device=UpperCAmelCase ).manual_seed(UpperCAmelCase ) __lowerCamelCase : str = { "class_labels": [1], "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs def lowerCamelCase__ ( self : Optional[Any] ): __lowerCamelCase : Dict = "cpu" __lowerCamelCase : int = self.get_dummy_components() __lowerCamelCase : Optional[Any] = self.pipeline_class(**UpperCAmelCase ) pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) __lowerCamelCase : Optional[int] = self.get_dummy_inputs(UpperCAmelCase ) __lowerCamelCase : List[Any] = pipe(**UpperCAmelCase ).images __lowerCamelCase : Optional[int] = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 16, 16, 3) ) __lowerCamelCase : Optional[int] = np.array([0.2_9_4_6, 0.6_6_0_1, 0.4_3_2_9, 0.3_2_9_6, 0.4_1_4_4, 0.5_3_1_9, 0.7_2_7_3, 0.5_0_1_3, 0.4_4_5_7] ) __lowerCamelCase : Optional[int] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(UpperCAmelCase , 1E-3 ) def lowerCamelCase__ ( self : Any ): self._test_inference_batch_single_identical(relax_max_difference=UpperCAmelCase , expected_max_diff=1E-3 ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def lowerCamelCase__ ( self : List[str] ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) @require_torch_gpu @slow class _snake_case ( unittest.TestCase ): def lowerCamelCase__ ( self : Any ): super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase__ ( self : List[str] ): __lowerCamelCase : Optional[int] = torch.manual_seed(0 ) __lowerCamelCase : str = DiTPipeline.from_pretrained("facebook/DiT-XL-2-256" ) pipe.to("cuda" ) __lowerCamelCase : Tuple = ["vase", "umbrella", "white shark", "white wolf"] __lowerCamelCase : Optional[int] = pipe.get_label_ids(UpperCAmelCase ) __lowerCamelCase : Optional[Any] = pipe(UpperCAmelCase , generator=UpperCAmelCase , num_inference_steps=40 , output_type="np" ).images for word, image in zip(UpperCAmelCase , UpperCAmelCase ): __lowerCamelCase : Dict = load_numpy( F"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy""" ) assert np.abs((expected_image - image).max() ) < 1E-2 def lowerCamelCase__ ( self : str ): __lowerCamelCase : Tuple = DiTPipeline.from_pretrained("facebook/DiT-XL-2-512" ) __lowerCamelCase : Any = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.to("cuda" ) __lowerCamelCase : Union[str, Any] = ["vase", "umbrella"] __lowerCamelCase : int = pipe.get_label_ids(UpperCAmelCase ) __lowerCamelCase : Dict = torch.manual_seed(0 ) __lowerCamelCase : Dict = pipe(UpperCAmelCase , generator=UpperCAmelCase , num_inference_steps=25 , output_type="np" ).images for word, image in zip(UpperCAmelCase , UpperCAmelCase ): __lowerCamelCase : Union[str, Any] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" F"""/dit/{word}_512.npy""" ) assert np.abs((expected_image - image).max() ) < 1E-1
64
0
'''simple docstring''' import argparse import collections import json import os import re import string import sys import numpy as np lowercase_ = re.compile(R"""\b(a|an|the)\b""", re.UNICODE) lowercase_ = None def lowerCamelCase ( ) ->Union[str, Any]: _SCREAMING_SNAKE_CASE = argparse.ArgumentParser("""Official evaluation script for SQuAD version 2.0.""" ) parser.add_argument("""data_file""" , metavar="""data.json""" , help="""Input data JSON file.""" ) parser.add_argument("""pred_file""" , metavar="""pred.json""" , help="""Model predictions.""" ) parser.add_argument( """--out-file""" , """-o""" , metavar="""eval.json""" , help="""Write accuracy metrics to file (default is stdout).""" ) parser.add_argument( """--na-prob-file""" , """-n""" , metavar="""na_prob.json""" , help="""Model estimates of probability of no answer.""" ) parser.add_argument( """--na-prob-thresh""" , """-t""" , type=__lowerCamelCase , default=1.0 , help="""Predict \"\" if no-answer probability exceeds this (default = 1.0).""" , ) parser.add_argument( """--out-image-dir""" , """-p""" , metavar="""out_images""" , default=__lowerCamelCase , help="""Save precision-recall curves to directory.""" ) parser.add_argument("""--verbose""" , """-v""" , action="""store_true""" ) if len(sys.argv ) == 1: parser.print_help() sys.exit(1 ) return parser.parse_args() def lowerCamelCase ( __lowerCamelCase : str ) ->Optional[Any]: _SCREAMING_SNAKE_CASE = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: _SCREAMING_SNAKE_CASE = bool(qa["""answers"""]["""text"""] ) return qid_to_has_ans def lowerCamelCase ( __lowerCamelCase : Dict ) ->Tuple: def remove_articles(__lowerCamelCase : Optional[int] ): return ARTICLES_REGEX.sub(""" """ , __lowerCamelCase ) def white_space_fix(__lowerCamelCase : List[str] ): return " ".join(text.split() ) def remove_punc(__lowerCamelCase : Tuple ): _SCREAMING_SNAKE_CASE = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(__lowerCamelCase : Tuple ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(__lowerCamelCase ) ) ) ) def lowerCamelCase ( __lowerCamelCase : Optional[Any] ) ->Any: if not s: return [] return normalize_answer(__lowerCamelCase ).split() def lowerCamelCase ( __lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[Any] ) ->str: return int(normalize_answer(__lowerCamelCase ) == normalize_answer(__lowerCamelCase ) ) def lowerCamelCase ( __lowerCamelCase : Dict , __lowerCamelCase : Optional[int] ) ->Optional[int]: _SCREAMING_SNAKE_CASE = get_tokens(__lowerCamelCase ) _SCREAMING_SNAKE_CASE = get_tokens(__lowerCamelCase ) _SCREAMING_SNAKE_CASE = collections.Counter(__lowerCamelCase ) & collections.Counter(__lowerCamelCase ) _SCREAMING_SNAKE_CASE = sum(common.values() ) if len(__lowerCamelCase ) == 0 or len(__lowerCamelCase ) == 0: # If either is no-answer, then F1 is 1 if they agree, 0 otherwise return int(gold_toks == pred_toks ) if num_same == 0: return 0 _SCREAMING_SNAKE_CASE = 1.0 * num_same / len(__lowerCamelCase ) _SCREAMING_SNAKE_CASE = 1.0 * num_same / len(__lowerCamelCase ) _SCREAMING_SNAKE_CASE = (2 * precision * recall) / (precision + recall) return fa def lowerCamelCase ( __lowerCamelCase : List[str] , __lowerCamelCase : Dict ) ->Dict: _SCREAMING_SNAKE_CASE = {} _SCREAMING_SNAKE_CASE = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: _SCREAMING_SNAKE_CASE = qa["id"] _SCREAMING_SNAKE_CASE = [t for t in qa["answers"]["text"] if normalize_answer(__lowerCamelCase )] if not gold_answers: # For unanswerable questions, only correct answer is empty string _SCREAMING_SNAKE_CASE = [""] if qid not in preds: print(F'Missing prediction for {qid}' ) continue _SCREAMING_SNAKE_CASE = preds[qid] # Take max over all gold answers _SCREAMING_SNAKE_CASE = max(compute_exact(__lowerCamelCase , __lowerCamelCase ) for a in gold_answers ) _SCREAMING_SNAKE_CASE = max(compute_fa(__lowerCamelCase , __lowerCamelCase ) for a in gold_answers ) return exact_scores, fa_scores def lowerCamelCase ( __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : int , __lowerCamelCase : str ) ->int: _SCREAMING_SNAKE_CASE = {} for qid, s in scores.items(): _SCREAMING_SNAKE_CASE = na_probs[qid] > na_prob_thresh if pred_na: _SCREAMING_SNAKE_CASE = float(not qid_to_has_ans[qid] ) else: _SCREAMING_SNAKE_CASE = s return new_scores def lowerCamelCase ( __lowerCamelCase : Optional[Any] , __lowerCamelCase : Any , __lowerCamelCase : Optional[Any]=None ) ->Optional[int]: if not qid_list: _SCREAMING_SNAKE_CASE = len(__lowerCamelCase ) return collections.OrderedDict( [ ("""exact""", 100.0 * sum(exact_scores.values() ) / total), ("""f1""", 100.0 * sum(fa_scores.values() ) / total), ("""total""", total), ] ) else: _SCREAMING_SNAKE_CASE = len(__lowerCamelCase ) return collections.OrderedDict( [ ("""exact""", 100.0 * sum(exact_scores[k] for k in qid_list ) / total), ("""f1""", 100.0 * sum(fa_scores[k] for k in qid_list ) / total), ("""total""", total), ] ) def lowerCamelCase ( __lowerCamelCase : str , __lowerCamelCase : int , __lowerCamelCase : Optional[int] ) ->Optional[int]: for k in new_eval: _SCREAMING_SNAKE_CASE = new_eval[k] def lowerCamelCase ( __lowerCamelCase : Optional[int] , __lowerCamelCase : Dict , __lowerCamelCase : Tuple , __lowerCamelCase : Optional[Any] ) ->str: plt.step(__lowerCamelCase , __lowerCamelCase , color="""b""" , alpha=0.2 , where="""post""" ) plt.fill_between(__lowerCamelCase , __lowerCamelCase , step="""post""" , alpha=0.2 , color="""b""" ) plt.xlabel("""Recall""" ) plt.ylabel("""Precision""" ) plt.xlim([0.0, 1.05] ) plt.ylim([0.0, 1.05] ) plt.title(__lowerCamelCase ) plt.savefig(__lowerCamelCase ) plt.clf() def lowerCamelCase ( __lowerCamelCase : Union[str, Any] , __lowerCamelCase : int , __lowerCamelCase : str , __lowerCamelCase : Dict , __lowerCamelCase : List[str]=None , __lowerCamelCase : List[Any]=None ) ->List[Any]: _SCREAMING_SNAKE_CASE = sorted(__lowerCamelCase , key=lambda __lowerCamelCase : na_probs[k] ) _SCREAMING_SNAKE_CASE = 0.0 _SCREAMING_SNAKE_CASE = 1.0 _SCREAMING_SNAKE_CASE = 0.0 _SCREAMING_SNAKE_CASE = [1.0] _SCREAMING_SNAKE_CASE = [0.0] _SCREAMING_SNAKE_CASE = 0.0 for i, qid in enumerate(__lowerCamelCase ): if qid_to_has_ans[qid]: true_pos += scores[qid] _SCREAMING_SNAKE_CASE = true_pos / float(i + 1 ) _SCREAMING_SNAKE_CASE = true_pos / float(__lowerCamelCase ) if i == len(__lowerCamelCase ) - 1 or na_probs[qid] != na_probs[qid_list[i + 1]]: # i.e., if we can put a threshold after this point avg_prec += cur_p * (cur_r - recalls[-1]) precisions.append(__lowerCamelCase ) recalls.append(__lowerCamelCase ) if out_image: plot_pr_curve(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) return {"ap": 100.0 * avg_prec} def lowerCamelCase ( __lowerCamelCase : Optional[int] , __lowerCamelCase : List[Any] , __lowerCamelCase : List[str] , __lowerCamelCase : List[str] , __lowerCamelCase : Dict , __lowerCamelCase : Dict ) ->Any: if out_image_dir and not os.path.exists(__lowerCamelCase ): os.makedirs(__lowerCamelCase ) _SCREAMING_SNAKE_CASE = sum(1 for v in qid_to_has_ans.values() if v ) if num_true_pos == 0: return _SCREAMING_SNAKE_CASE = make_precision_recall_eval( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , out_image=os.path.join(__lowerCamelCase , """pr_exact.png""" ) , title="""Precision-Recall curve for Exact Match score""" , ) _SCREAMING_SNAKE_CASE = make_precision_recall_eval( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , out_image=os.path.join(__lowerCamelCase , """pr_f1.png""" ) , title="""Precision-Recall curve for F1 score""" , ) _SCREAMING_SNAKE_CASE = {k: float(__lowerCamelCase ) for k, v in qid_to_has_ans.items()} _SCREAMING_SNAKE_CASE = make_precision_recall_eval( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , out_image=os.path.join(__lowerCamelCase , """pr_oracle.png""" ) , title="""Oracle Precision-Recall curve (binary task of HasAns vs. NoAns)""" , ) merge_eval(__lowerCamelCase , __lowerCamelCase , """pr_exact""" ) merge_eval(__lowerCamelCase , __lowerCamelCase , """pr_f1""" ) merge_eval(__lowerCamelCase , __lowerCamelCase , """pr_oracle""" ) def lowerCamelCase ( __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[int] , __lowerCamelCase : int , __lowerCamelCase : Tuple ) ->Union[str, Any]: if not qid_list: return _SCREAMING_SNAKE_CASE = [na_probs[k] for k in qid_list] _SCREAMING_SNAKE_CASE = np.ones_like(__lowerCamelCase ) / float(len(__lowerCamelCase ) ) plt.hist(__lowerCamelCase , weights=__lowerCamelCase , bins=20 , range=(0.0, 1.0) ) plt.xlabel("""Model probability of no-answer""" ) plt.ylabel("""Proportion of dataset""" ) plt.title(F'Histogram of no-answer probability: {name}' ) plt.savefig(os.path.join(__lowerCamelCase , F'na_prob_hist_{name}.png' ) ) plt.clf() def lowerCamelCase ( __lowerCamelCase : Optional[int] , __lowerCamelCase : Dict , __lowerCamelCase : str , __lowerCamelCase : List[Any] ) ->Any: _SCREAMING_SNAKE_CASE = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k] ) _SCREAMING_SNAKE_CASE = num_no_ans _SCREAMING_SNAKE_CASE = cur_score _SCREAMING_SNAKE_CASE = 0.0 _SCREAMING_SNAKE_CASE = sorted(__lowerCamelCase , key=lambda __lowerCamelCase : na_probs[k] ) for i, qid in enumerate(__lowerCamelCase ): if qid not in scores: continue if qid_to_has_ans[qid]: _SCREAMING_SNAKE_CASE = scores[qid] else: if preds[qid]: _SCREAMING_SNAKE_CASE = -1 else: _SCREAMING_SNAKE_CASE = 0 cur_score += diff if cur_score > best_score: _SCREAMING_SNAKE_CASE = cur_score _SCREAMING_SNAKE_CASE = na_probs[qid] return 100.0 * best_score / len(__lowerCamelCase ), best_thresh def lowerCamelCase ( __lowerCamelCase : List[Any] , __lowerCamelCase : Tuple , __lowerCamelCase : List[Any] , __lowerCamelCase : str , __lowerCamelCase : Tuple , __lowerCamelCase : int ) ->List[Any]: _SCREAMING_SNAKE_CASE = find_best_thresh(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) _SCREAMING_SNAKE_CASE = find_best_thresh(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) _SCREAMING_SNAKE_CASE = best_exact _SCREAMING_SNAKE_CASE = exact_thresh _SCREAMING_SNAKE_CASE = best_fa _SCREAMING_SNAKE_CASE = fa_thresh def lowerCamelCase ( ) ->Optional[int]: with open(OPTS.data_file ) as f: _SCREAMING_SNAKE_CASE = json.load(__lowerCamelCase ) _SCREAMING_SNAKE_CASE = dataset_json["data"] with open(OPTS.pred_file ) as f: _SCREAMING_SNAKE_CASE = json.load(__lowerCamelCase ) if OPTS.na_prob_file: with open(OPTS.na_prob_file ) as f: _SCREAMING_SNAKE_CASE = json.load(__lowerCamelCase ) else: _SCREAMING_SNAKE_CASE = {k: 0.0 for k in preds} _SCREAMING_SNAKE_CASE = make_qid_to_has_ans(__lowerCamelCase ) # maps qid to True/False _SCREAMING_SNAKE_CASE = [k for k, v in qid_to_has_ans.items() if v] _SCREAMING_SNAKE_CASE = [k for k, v in qid_to_has_ans.items() if not v] _SCREAMING_SNAKE_CASE = get_raw_scores(__lowerCamelCase , __lowerCamelCase ) _SCREAMING_SNAKE_CASE = apply_no_ans_threshold(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , OPTS.na_prob_thresh ) _SCREAMING_SNAKE_CASE = apply_no_ans_threshold(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , OPTS.na_prob_thresh ) _SCREAMING_SNAKE_CASE = make_eval_dict(__lowerCamelCase , __lowerCamelCase ) if has_ans_qids: _SCREAMING_SNAKE_CASE = make_eval_dict(__lowerCamelCase , __lowerCamelCase , qid_list=__lowerCamelCase ) merge_eval(__lowerCamelCase , __lowerCamelCase , """HasAns""" ) if no_ans_qids: _SCREAMING_SNAKE_CASE = make_eval_dict(__lowerCamelCase , __lowerCamelCase , qid_list=__lowerCamelCase ) merge_eval(__lowerCamelCase , __lowerCamelCase , """NoAns""" ) if OPTS.na_prob_file: find_all_best_thresh(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) if OPTS.na_prob_file and OPTS.out_image_dir: run_precision_recall_analysis(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , OPTS.out_image_dir ) histogram_na_prob(__lowerCamelCase , __lowerCamelCase , OPTS.out_image_dir , """hasAns""" ) histogram_na_prob(__lowerCamelCase , __lowerCamelCase , OPTS.out_image_dir , """noAns""" ) if OPTS.out_file: with open(OPTS.out_file , """w""" ) as f: json.dump(__lowerCamelCase , __lowerCamelCase ) else: print(json.dumps(__lowerCamelCase , indent=2 ) ) if __name__ == "__main__": lowercase_ = parse_args() if OPTS.out_image_dir: import matplotlib matplotlib.use("""Agg""") import matplotlib.pyplot as plt main()
58
"""simple docstring""" def __lowerCAmelCase ( lowercase : list ) -> int: """simple docstring""" if not grid or not grid[0]: raise TypeError("The grid does not contain the appropriate information" ) for cell_n in range(1 , len(grid[0] ) ): grid[0][cell_n] += grid[0][cell_n - 1] snake_case : int = grid[0] for row_n in range(1 , len(lowercase ) ): snake_case : Optional[Any] = grid[row_n] snake_case : List[str] = fill_row(lowercase , lowercase ) snake_case : Optional[int] = grid[row_n] return grid[-1][-1] def __lowerCAmelCase ( lowercase : list , lowercase : list ) -> list: """simple docstring""" current_row[0] += row_above[0] for cell_n in range(1 , len(lowercase ) ): current_row[cell_n] += min(current_row[cell_n - 1] , row_above[cell_n] ) return current_row if __name__ == "__main__": import doctest doctest.testmod()
203
0
'''simple docstring''' import numpy as np from PIL import Image def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase ) -> np.ndarray: '''simple docstring''' snake_case_ = np.array(__UpperCAmelCase ) if arr.shape[0] != arr.shape[1]: raise ValueError('''The input array is not a square matrix''' ) snake_case_ = 0 snake_case_ = 0 snake_case_ = 0 snake_case_ = 0 # compute the shape of the output matrix snake_case_ = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape maxpool_shape snake_case_ = np.zeros((maxpool_shape, maxpool_shape) ) while i < arr.shape[0]: if i + size > arr.shape[0]: # if the end of the matrix is reached, break break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the maximum of the pooling matrix snake_case_ = np.max(arr[i : i + size, j : j + size] ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 snake_case_ = 0 snake_case_ = 0 return updated_arr def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase ) -> np.ndarray: '''simple docstring''' snake_case_ = np.array(__UpperCAmelCase ) if arr.shape[0] != arr.shape[1]: raise ValueError('''The input array is not a square matrix''' ) snake_case_ = 0 snake_case_ = 0 snake_case_ = 0 snake_case_ = 0 # compute the shape of the output matrix snake_case_ = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape avgpool_shape snake_case_ = np.zeros((avgpool_shape, avgpool_shape) ) while i < arr.shape[0]: # if the end of the matrix is reached, break if i + size > arr.shape[0]: break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the average of the pooling matrix snake_case_ = int(np.average(arr[i : i + size, j : j + size] ) ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 snake_case_ = 0 snake_case_ = 0 return updated_arr # Main Function if __name__ == "__main__": from doctest import testmod testmod(name='avgpooling', verbose=True) # Loading the image a : str = Image.open('path_to_image') # Converting the image to numpy array and maxpooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(maxpooling(np.array(image), size=3, stride=2)).show() # Converting the image to numpy array and averagepooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(avgpooling(np.array(image), size=3, stride=2)).show()
72
'''simple docstring''' import json import multiprocessing import os import re from collections import defaultdict import torch from accelerate import Accelerator from accelerate.utils import set_seed from arguments import HumanEvalArguments from datasets import load_dataset, load_metric from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from tqdm import tqdm import transformers from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, StoppingCriteria, StoppingCriteriaList a : str = ['\nclass', '\ndef', '\n#', '\n@', '\nprint', '\nif'] class a ( _lowerCamelCase ): def __init__( self : List[Any] , lowercase_ : Union[str, Any] , lowercase_ : Dict , lowercase_ : Optional[int]=None , lowercase_ : str=1 ): snake_case_ = tokenizer snake_case_ = dataset snake_case_ = len(lowercase_ ) if n_tasks is None else n_tasks snake_case_ = n_copies def __iter__( self : Optional[Any] ): snake_case_ = [] for task in range(self.n_tasks ): # without strip, the model generate commented codes ... prompts.append(self.tokenizer.eos_token + self.dataset[task]['''prompt'''].strip() ) snake_case_ = self.tokenizer(lowercase_ , padding=lowercase_ , return_tensors='''pt''' ) for task in range(self.n_tasks ): for _ in range(self.n_copies ): yield { "ids": outputs.input_ids[task], "task_id": task, "input_len": outputs.attention_mask[task].sum(), } class a ( _lowerCamelCase ): def __init__( self : str , lowercase_ : Tuple , lowercase_ : Optional[int] , lowercase_ : int ): snake_case_ = start_length snake_case_ = eof_strings snake_case_ = tokenizer def __call__( self : List[Any] , lowercase_ : str , lowercase_ : Optional[int] , **lowercase_ : List[str] ): snake_case_ = self.tokenizer.batch_decode(input_ids[:, self.start_length :] ) snake_case_ = [] for decoded_generation in decoded_generations: done.append(any(stop_string in decoded_generation for stop_string in self.eof_strings ) ) return all(lowercase_ ) def __magic_name__ ( __UpperCAmelCase ) -> Any: '''simple docstring''' snake_case_ = re.split('''(%s)''' % '''|'''.join(__UpperCAmelCase ), __UpperCAmelCase ) # last string should be "" return "".join(string_list[:-2] ) def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase=20, **__UpperCAmelCase ) -> str: '''simple docstring''' snake_case_ = defaultdict(__UpperCAmelCase ) # dict of list of generated tokens for step, batch in tqdm(enumerate(__UpperCAmelCase ) ): with torch.no_grad(): snake_case_ = batch['''ids'''].shape[-1] snake_case_ = accelerator.unwrap_model(__UpperCAmelCase ).generate( input_ids=batch['''ids'''][:, : batch['''input_len''']], num_return_sequences=__UpperCAmelCase, **__UpperCAmelCase ) # each task is generated batch_size times snake_case_ = batch['''task_id'''].repeat(__UpperCAmelCase ) snake_case_ = accelerator.pad_across_processes( __UpperCAmelCase, dim=1, pad_index=tokenizer.pad_token_id ) snake_case_ ,snake_case_ = accelerator.gather((generated_tokens, generated_tasks) ) snake_case_ = generated_tokens.cpu().numpy() snake_case_ = generated_tasks.cpu().numpy() for task, generated_tokens in zip(__UpperCAmelCase, __UpperCAmelCase ): gen_token_dict[task].append(__UpperCAmelCase ) snake_case_ = [[] for _ in range(__UpperCAmelCase )] for task, generated_tokens in gen_token_dict.items(): for s in generated_tokens: snake_case_ = tokenizer.decode(__UpperCAmelCase, skip_special_tokens=__UpperCAmelCase, clean_up_tokenization_spaces=__UpperCAmelCase ) code_gens[task].append(remove_last_block(__UpperCAmelCase ) ) return code_gens def __magic_name__ ( ) -> Tuple: '''simple docstring''' snake_case_ = HfArgumentParser(__UpperCAmelCase ) snake_case_ = parser.parse_args() transformers.logging.set_verbosity_error() # enables code execution in code_eval metric snake_case_ = args.HF_ALLOW_CODE_EVAL # make sure tokenizer plays nice with multiprocessing snake_case_ = '''false''' if args.num_workers is None: snake_case_ = multiprocessing.cpu_count() # Use dataset load to feed to accelerate snake_case_ = Accelerator() set_seed(args.seed, device_specific=__UpperCAmelCase ) # Load model and tokenizer snake_case_ = AutoTokenizer.from_pretrained(args.model_ckpt ) snake_case_ = tokenizer.eos_token snake_case_ = AutoModelForCausalLM.from_pretrained(args.model_ckpt ) # Generation settings snake_case_ = { '''do_sample''': args.do_sample, '''temperature''': args.temperature, '''max_new_tokens''': args.max_new_tokens, '''top_p''': args.top_p, '''top_k''': args.top_k, '''stopping_criteria''': StoppingCriteriaList([EndOfFunctionCriteria(0, __UpperCAmelCase, __UpperCAmelCase )] ), } # Load evaluation dataset and metric snake_case_ = load_dataset('''openai_humaneval''' ) snake_case_ = load_metric('''code_eval''' ) snake_case_ = args.num_tasks if args.num_tasks is not None else len(human_eval['''test'''] ) snake_case_ = args.n_samples // args.batch_size snake_case_ = TokenizedDataset(__UpperCAmelCase, human_eval['''test'''], n_copies=__UpperCAmelCase, n_tasks=__UpperCAmelCase ) # do not confuse args.batch_size, which is actually the num_return_sequences snake_case_ = DataLoader(__UpperCAmelCase, batch_size=1 ) # Run a quick test to see if code evaluation is enabled try: snake_case_ = code_eval_metric.compute(references=[''''''], predictions=[['''''']] ) except ValueError as exception: print( '''Code evaluation not enabled. Read the warning below carefully and then use `--HF_ALLOW_CODE_EVAL="1"`''' ''' flag to enable code evaluation.''' ) raise exception snake_case_ ,snake_case_ = accelerator.prepare(__UpperCAmelCase, __UpperCAmelCase ) snake_case_ = complete_code( __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, n_tasks=__UpperCAmelCase, batch_size=args.batch_size, **__UpperCAmelCase, ) if accelerator.is_main_process: snake_case_ = [] for task in tqdm(range(__UpperCAmelCase ) ): snake_case_ = human_eval['''test'''][task]['''test'''] snake_case_ = F"check({human_eval['test'][task]['entry_point']})" references.append('''\n''' + test_func + '''\n''' + entry_point ) # Evaluate completions with "code_eval" metric snake_case_ ,snake_case_ = code_eval_metric.compute( references=__UpperCAmelCase, predictions=__UpperCAmelCase, num_workers=args.num_workers ) print(F"Results: {pass_at_k}" ) # Save results to json file with open(args.output_file, '''w''' ) as fp: json.dump(__UpperCAmelCase, __UpperCAmelCase ) # For some reason the folliwng seems to be necessary sometimes for code_eval to work nice with multiprocessing # https://stackoverflow.com/questions/60804599/python-multiprocessing-keeps-spawning-the-whole-script if __name__ == "__main__": main()
72
1
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_distilbert import DistilBertTokenizer SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} SCREAMING_SNAKE_CASE__ = { "vocab_file": { "distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt", "distilbert-base-uncased-distilled-squad": ( "https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt" ), "distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt", "distilbert-base-cased-distilled-squad": ( "https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt" ), "distilbert-base-german-cased": "https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt", "distilbert-base-multilingual-cased": ( "https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt" ), }, "tokenizer_file": { "distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json", "distilbert-base-uncased-distilled-squad": ( "https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json" ), "distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json", "distilbert-base-cased-distilled-squad": ( "https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json" ), "distilbert-base-german-cased": ( "https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json" ), "distilbert-base-multilingual-cased": ( "https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json" ), }, } SCREAMING_SNAKE_CASE__ = { "distilbert-base-uncased": 512, "distilbert-base-uncased-distilled-squad": 512, "distilbert-base-cased": 512, "distilbert-base-cased-distilled-squad": 512, "distilbert-base-german-cased": 512, "distilbert-base-multilingual-cased": 512, } SCREAMING_SNAKE_CASE__ = { "distilbert-base-uncased": {"do_lower_case": True}, "distilbert-base-uncased-distilled-squad": {"do_lower_case": True}, "distilbert-base-cased": {"do_lower_case": False}, "distilbert-base-cased-distilled-squad": {"do_lower_case": False}, "distilbert-base-german-cased": {"do_lower_case": False}, "distilbert-base-multilingual-cased": {"do_lower_case": False}, } class lowercase ( _UpperCAmelCase ): _SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES _SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP _SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _SCREAMING_SNAKE_CASE = PRETRAINED_INIT_CONFIGURATION _SCREAMING_SNAKE_CASE = ['input_ids', 'attention_mask'] _SCREAMING_SNAKE_CASE = DistilBertTokenizer def __init__( self , lowercase=None , lowercase=None , lowercase=True , lowercase="[UNK]" , lowercase="[SEP]" , lowercase="[PAD]" , lowercase="[CLS]" , lowercase="[MASK]" , lowercase=True , lowercase=None , **lowercase , ) -> Optional[Any]: super().__init__( UpperCamelCase_ , tokenizer_file=UpperCamelCase_ , do_lower_case=UpperCamelCase_ , unk_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , tokenize_chinese_chars=UpperCamelCase_ , strip_accents=UpperCamelCase_ , **UpperCamelCase_ , ) lowerCAmelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , UpperCamelCase_ ) != do_lower_case or normalizer_state.get("""strip_accents""" , UpperCamelCase_ ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , UpperCamelCase_ ) != tokenize_chinese_chars ): lowerCAmelCase = getattr(UpperCamelCase_ , normalizer_state.pop("""type""" ) ) lowerCAmelCase = do_lower_case lowerCAmelCase = strip_accents lowerCAmelCase = tokenize_chinese_chars lowerCAmelCase = normalizer_class(**UpperCamelCase_ ) lowerCAmelCase = do_lower_case def _snake_case ( self , lowercase , lowercase=None ) -> int: lowerCAmelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _snake_case ( self , lowercase , lowercase = None ) -> List[int]: lowerCAmelCase = [self.sep_token_id] lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _snake_case ( self , lowercase , lowercase = None ) -> Tuple[str]: lowerCAmelCase = self._tokenizer.model.save(UpperCamelCase_ , name=UpperCamelCase_ ) return tuple(UpperCamelCase_ )
46
"""simple docstring""" import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import datasets import numpy as np import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, EvalPrediction, HfArgumentParser, PreTrainedTokenizer, TFAutoModelForSequenceClassification, TFTrainer, TFTrainingArguments, ) from transformers.utils import logging as hf_logging hf_logging.set_verbosity_info() hf_logging.enable_default_handler() hf_logging.enable_explicit_format() def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = None , ): __lowercase : Tuple = {} if train_file is not None: __lowercase : List[Any] = [train_file] if eval_file is not None: __lowercase : List[str] = [eval_file] if test_file is not None: __lowercase : List[Any] = [test_file] __lowercase : List[str] = datasets.load_dataset('''csv''' , data_files=__UpperCamelCase ) __lowercase : str = list(ds[list(files.keys() )[0]].features.keys() ) __lowercase : Union[str, Any] = features_name.pop(__UpperCamelCase ) __lowercase : List[str] = list(set(ds[list(files.keys() )[0]][label_name] ) ) __lowercase : List[str] = {label: i for i, label in enumerate(__UpperCamelCase )} __lowercase : Optional[Any] = tokenizer.model_input_names __lowercase : Optional[Any] = {} if len(__UpperCamelCase ) == 1: for k in files.keys(): __lowercase : str = ds[k].map( lambda __UpperCamelCase : tokenizer.batch_encode_plus( example[features_name[0]] , truncation=__UpperCamelCase , max_length=__UpperCamelCase , padding='''max_length''' ) , batched=__UpperCamelCase , ) elif len(__UpperCamelCase ) == 2: for k in files.keys(): __lowercase : List[Any] = ds[k].map( lambda __UpperCamelCase : tokenizer.batch_encode_plus( (example[features_name[0]], example[features_name[1]]) , truncation=__UpperCamelCase , max_length=__UpperCamelCase , padding='''max_length''' , ) , batched=__UpperCamelCase , ) def gen_train(): for ex in transformed_ds[datasets.Split.TRAIN]: __lowercase : Dict = {k: v for k, v in ex.items() if k in input_names} __lowercase : str = labelaid[ex[label_name]] yield (d, label) def gen_val(): for ex in transformed_ds[datasets.Split.VALIDATION]: __lowercase : Tuple = {k: v for k, v in ex.items() if k in input_names} __lowercase : List[str] = labelaid[ex[label_name]] yield (d, label) def gen_test(): for ex in transformed_ds[datasets.Split.TEST]: __lowercase : Optional[Any] = {k: v for k, v in ex.items() if k in input_names} __lowercase : Dict = labelaid[ex[label_name]] yield (d, label) __lowercase : str = ( tf.data.Dataset.from_generator( __UpperCamelCase , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TRAIN in transformed_ds else None ) if train_ds is not None: __lowercase : List[Any] = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) ) __lowercase : Optional[Any] = ( tf.data.Dataset.from_generator( __UpperCamelCase , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.VALIDATION in transformed_ds else None ) if val_ds is not None: __lowercase : Tuple = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) ) __lowercase : str = ( tf.data.Dataset.from_generator( __UpperCamelCase , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TEST in transformed_ds else None ) if test_ds is not None: __lowercase : Optional[Any] = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) ) return train_ds, val_ds, test_ds, labelaid a_ = logging.getLogger(__name__) @dataclass class UpperCAmelCase_ : UpperCamelCase =field(metadata={"help": "Which column contains the label"} ) UpperCamelCase =field(default=snake_case , metadata={"help": "The path of the training file"} ) UpperCamelCase =field(default=snake_case , metadata={"help": "The path of the development file"} ) UpperCamelCase =field(default=snake_case , metadata={"help": "The path of the test file"} ) UpperCamelCase =field( default=1_28 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) UpperCamelCase =field( default=snake_case , metadata={"help": "Overwrite the cached training and evaluation sets"} ) @dataclass class UpperCAmelCase_ : UpperCamelCase =field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) UpperCamelCase =field( default=snake_case , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) UpperCamelCase =field( default=snake_case , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) UpperCamelCase =field(default=snake_case , metadata={"help": "Set this flag to use fast tokenization."} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. UpperCamelCase =field( default=snake_case , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) def __UpperCAmelCase ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __lowercase : Optional[int] = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) ) __lowercase ,__lowercase ,__lowercase : Tuple = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" ''' --overwrite_output_dir to overcome.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO , ) logger.info( f"""n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, """ f"""16-bits training: {training_args.fpaa}""" ) logger.info(f"""Training/evaluation parameters {training_args}""" ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __lowercase : str = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) __lowercase ,__lowercase ,__lowercase ,__lowercase : Any = get_tfds( train_file=data_args.train_file , eval_file=data_args.dev_file , test_file=data_args.test_file , tokenizer=__UpperCamelCase , label_column_id=data_args.label_column_id , max_seq_length=data_args.max_seq_length , ) __lowercase : str = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=len(__UpperCamelCase ) , labelaid=__UpperCamelCase , idalabel={id: label for label, id in labelaid.items()} , finetuning_task='''text-classification''' , cache_dir=model_args.cache_dir , ) with training_args.strategy.scope(): __lowercase : Union[str, Any] = TFAutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_pt=bool('''.bin''' in model_args.model_name_or_path ) , config=__UpperCamelCase , cache_dir=model_args.cache_dir , ) def compute_metrics(__UpperCamelCase ) -> Dict: __lowercase : List[Any] = np.argmax(p.predictions , axis=1 ) return {"acc": (preds == p.label_ids).mean()} # Initialize our Trainer __lowercase : Optional[Any] = TFTrainer( model=__UpperCamelCase , args=__UpperCamelCase , train_dataset=__UpperCamelCase , eval_dataset=__UpperCamelCase , compute_metrics=__UpperCamelCase , ) # Training if training_args.do_train: trainer.train() trainer.save_model() tokenizer.save_pretrained(training_args.output_dir ) # Evaluation __lowercase : List[Any] = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) __lowercase : List[Any] = trainer.evaluate() __lowercase : int = os.path.join(training_args.output_dir , '''eval_results.txt''' ) with open(__UpperCamelCase , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key, value in result.items(): logger.info(f""" {key} = {value}""" ) writer.write(f"""{key} = {value}\n""" ) results.update(__UpperCamelCase ) return results if __name__ == "__main__": main()
249
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __a :int = { 'configuration_instructblip': [ 'INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'InstructBlipConfig', 'InstructBlipQFormerConfig', 'InstructBlipVisionConfig', ], 'processing_instructblip': ['InstructBlipProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a :List[str] = [ 'INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'InstructBlipQFormerModel', 'InstructBlipPreTrainedModel', 'InstructBlipForConditionalGeneration', 'InstructBlipVisionModel', ] if TYPE_CHECKING: from .configuration_instructblip import ( INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, InstructBlipConfig, InstructBlipQFormerConfig, InstructBlipVisionConfig, ) from .processing_instructblip import InstructBlipProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_instructblip import ( INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST, InstructBlipForConditionalGeneration, InstructBlipPreTrainedModel, InstructBlipQFormerModel, InstructBlipVisionModel, ) else: import sys __a :List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
329
import itertools import math def __snake_case ( __UpperCamelCase : int ): """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 ,int(math.sqrt(__UpperCamelCase ) + 1 ) ,6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def __snake_case ( ): """simple docstring""" A_ = 2 while True: if is_prime(__UpperCamelCase ): yield num num += 1 def __snake_case ( __UpperCamelCase : int = 1_0001 ): """simple docstring""" return next(itertools.islice(prime_generator() ,nth - 1 ,__UpperCamelCase ) ) if __name__ == "__main__": print(F"{solution() = }")
329
1
'''simple docstring''' from collections import deque class _UpperCAmelCase : """simple docstring""" def __init__( self : List[Any] , __UpperCAmelCase : str , __UpperCAmelCase : int , __UpperCAmelCase : int ): '''simple docstring''' _A = process_name # process name _A = arrival_time # arrival time of the process # completion time of finished process or last interrupted time _A = arrival_time _A = burst_time # remaining burst time _A = 0 # total time of the process wait in ready queue _A = 0 # time from arrival time to completion time class _UpperCAmelCase : """simple docstring""" def __init__( self : str , __UpperCAmelCase : int , __UpperCAmelCase : list[int] , __UpperCAmelCase : deque[Process] , __UpperCAmelCase : int , ): '''simple docstring''' _A = number_of_queues # time slice of queues that round robin algorithm applied _A = time_slices # unfinished process is in this ready_queue _A = queue # current time _A = current_time # finished process is in this sequence queue _A = deque() def lowerCAmelCase ( self : Any ): '''simple docstring''' _A = [] for i in range(len(self.finish_queue ) ): sequence.append(self.finish_queue[i].process_name ) return sequence def lowerCAmelCase ( self : Any , __UpperCAmelCase : list[Process] ): '''simple docstring''' _A = [] for i in range(len(__UpperCAmelCase ) ): waiting_times.append(queue[i].waiting_time ) return waiting_times def lowerCAmelCase ( self : List[str] , __UpperCAmelCase : list[Process] ): '''simple docstring''' _A = [] for i in range(len(__UpperCAmelCase ) ): turnaround_times.append(queue[i].turnaround_time ) return turnaround_times def lowerCAmelCase ( self : Dict , __UpperCAmelCase : list[Process] ): '''simple docstring''' _A = [] for i in range(len(__UpperCAmelCase ) ): completion_times.append(queue[i].stop_time ) return completion_times def lowerCAmelCase ( self : Any , __UpperCAmelCase : deque[Process] ): '''simple docstring''' return [q.burst_time for q in queue] def lowerCAmelCase ( self : Optional[Any] , __UpperCAmelCase : Process ): '''simple docstring''' process.waiting_time += self.current_time - process.stop_time return process.waiting_time def lowerCAmelCase ( self : Tuple , __UpperCAmelCase : deque[Process] ): '''simple docstring''' _A = deque() # sequence deque of finished process while len(__UpperCAmelCase ) != 0: _A = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of current process self.update_waiting_time(__UpperCAmelCase ) # update current time self.current_time += cp.burst_time # finish the process and set the process's burst-time 0 _A = 0 # set the process's turnaround time because it is finished _A = self.current_time - cp.arrival_time # set the completion time _A = self.current_time # add the process to queue that has finished queue finished.append(__UpperCAmelCase ) self.finish_queue.extend(__UpperCAmelCase ) # add finished process to finish queue # FCFS will finish all remaining processes return finished def lowerCAmelCase ( self : Tuple , __UpperCAmelCase : deque[Process] , __UpperCAmelCase : int ): '''simple docstring''' _A = deque() # sequence deque of terminated process # just for 1 cycle and unfinished processes will go back to queue for _ in range(len(__UpperCAmelCase ) ): _A = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of unfinished processes self.update_waiting_time(__UpperCAmelCase ) # if the burst time of process is bigger than time-slice if cp.burst_time > time_slice: # use CPU for only time-slice self.current_time += time_slice # update remaining burst time cp.burst_time -= time_slice # update end point time _A = self.current_time # locate the process behind the queue because it is not finished ready_queue.append(__UpperCAmelCase ) else: # use CPU for remaining burst time self.current_time += cp.burst_time # set burst time 0 because the process is finished _A = 0 # set the finish time _A = self.current_time # update the process' turnaround time because it is finished _A = self.current_time - cp.arrival_time # add the process to queue that has finished queue finished.append(__UpperCAmelCase ) self.finish_queue.extend(__UpperCAmelCase ) # add finished process to finish queue # return finished processes queue and remaining processes queue return finished, ready_queue def lowerCAmelCase ( self : str ): '''simple docstring''' for i in range(self.number_of_queues - 1 ): _A , _A = self.round_robin( self.ready_queue , self.time_slices[i] ) # the last queue has first_come_first_served algorithm self.first_come_first_served(self.ready_queue ) return self.finish_queue if __name__ == "__main__": import doctest lowerCamelCase_ = Process('''P1''', 0, 53) lowerCamelCase_ = Process('''P2''', 0, 17) lowerCamelCase_ = Process('''P3''', 0, 68) lowerCamelCase_ = Process('''P4''', 0, 24) lowerCamelCase_ = 3 lowerCamelCase_ = [17, 25] lowerCamelCase_ = deque([Pa, Pa, Pa, Pa]) if len(time_slices) != number_of_queues - 1: raise SystemExit(0) doctest.testmod(extraglobs={'''queue''': deque([Pa, Pa, Pa, Pa])}) lowerCamelCase_ = Process('''P1''', 0, 53) lowerCamelCase_ = Process('''P2''', 0, 17) lowerCamelCase_ = Process('''P3''', 0, 68) lowerCamelCase_ = Process('''P4''', 0, 24) lowerCamelCase_ = 3 lowerCamelCase_ = [17, 25] lowerCamelCase_ = deque([Pa, Pa, Pa, Pa]) lowerCamelCase_ = MLFQ(number_of_queues, time_slices, queue, 0) lowerCamelCase_ = mlfq.multi_level_feedback_queue() # print total waiting times of processes(P1, P2, P3, P4) print( F"""waiting time:\ \t\t\t{MLFQ.calculate_waiting_time(mlfq, [Pa, Pa, Pa, Pa])}""" ) # print completion times of processes(P1, P2, P3, P4) print( F"""completion time:\ \t\t{MLFQ.calculate_completion_time(mlfq, [Pa, Pa, Pa, Pa])}""" ) # print total turnaround times of processes(P1, P2, P3, P4) print( F"""turnaround time:\ \t\t{MLFQ.calculate_turnaround_time(mlfq, [Pa, Pa, Pa, Pa])}""" ) # print sequence of finished processes print( F"""sequence of finished processes:\ {mlfq.calculate_sequence_of_finish_queue()}""" )
79
"""simple docstring""" import json import os from dataclasses import dataclass from functools import partial from typing import Callable import flax.linen as nn import jax import jax.numpy as jnp import joblib import optax import wandb from flax import jax_utils, struct, traverse_util from flax.serialization import from_bytes, to_bytes from flax.training import train_state from flax.training.common_utils import shard from tqdm.auto import tqdm from transformers import BigBirdConfig, FlaxBigBirdForQuestionAnswering from transformers.models.big_bird.modeling_flax_big_bird import FlaxBigBirdForQuestionAnsweringModule class a ( a_ ): UpperCAmelCase_ : BigBirdConfig UpperCAmelCase_ : jnp.dtype =jnp.floataa UpperCAmelCase_ : bool =True def UpperCamelCase_ ( self ): super().setup() lowercase = nn.Dense(5 , dtype=self.dtype ) def __call__( self , *_lowerCamelCase , **_lowerCamelCase ): lowercase = super().__call__(*_lowerCamelCase , **_lowerCamelCase ) lowercase = self.cls(outputs[2] ) return outputs[:2] + (cls_out,) class a ( a_ ): UpperCAmelCase_ : str =FlaxBigBirdForNaturalQuestionsModule def _SCREAMING_SNAKE_CASE ( __snake_case : Optional[int] , __snake_case : Dict , __snake_case : Optional[Any] , __snake_case : Optional[int] , __snake_case : Tuple , __snake_case : Tuple ): '''simple docstring''' def cross_entropy(__snake_case : Dict , __snake_case : str , __snake_case : Any=None ): lowercase = logits.shape[-1] lowercase = (labels[..., None] == jnp.arange(__snake_case )[None]).astype('f4' ) lowercase = jax.nn.log_softmax(__snake_case , axis=-1 ) lowercase = -jnp.sum(labels * logits , axis=-1 ) if reduction is not None: lowercase = reduction(__snake_case ) return loss lowercase = partial(__snake_case , reduction=jnp.mean ) lowercase = cross_entropy(__snake_case , __snake_case ) lowercase = cross_entropy(__snake_case , __snake_case ) lowercase = cross_entropy(__snake_case , __snake_case ) return (start_loss + end_loss + pooled_loss) / 3 @dataclass class a : UpperCAmelCase_ : str ="google/bigbird-roberta-base" UpperCAmelCase_ : int =3000 UpperCAmelCase_ : int =1_0500 UpperCAmelCase_ : int =128 UpperCAmelCase_ : int =3 UpperCAmelCase_ : int =1 UpperCAmelCase_ : int =5 # tx_args UpperCAmelCase_ : float =3e-5 UpperCAmelCase_ : float =0.0 UpperCAmelCase_ : int =2_0000 UpperCAmelCase_ : float =0.00_95 UpperCAmelCase_ : str ="bigbird-roberta-natural-questions" UpperCAmelCase_ : str ="training-expt" UpperCAmelCase_ : str ="data/nq-training.jsonl" UpperCAmelCase_ : str ="data/nq-validation.jsonl" def UpperCamelCase_ ( self ): os.makedirs(self.base_dir , exist_ok=_lowerCamelCase ) lowercase = os.path.join(self.base_dir , self.save_dir ) lowercase = self.batch_size_per_device * jax.device_count() @dataclass class a : UpperCAmelCase_ : int UpperCAmelCase_ : int =4096 # no dynamic padding on TPUs def __call__( self , _lowerCamelCase ): lowercase = self.collate_fn(_lowerCamelCase ) lowercase = jax.tree_util.tree_map(_lowerCamelCase , _lowerCamelCase ) return batch def UpperCamelCase_ ( self , _lowerCamelCase ): lowercase , lowercase = self.fetch_inputs(features['input_ids'] ) lowercase = { 'input_ids': jnp.array(_lowerCamelCase , dtype=jnp.intaa ), 'attention_mask': jnp.array(_lowerCamelCase , dtype=jnp.intaa ), 'start_labels': jnp.array(features['start_token'] , dtype=jnp.intaa ), 'end_labels': jnp.array(features['end_token'] , dtype=jnp.intaa ), 'pooled_labels': jnp.array(features['category'] , dtype=jnp.intaa ), } return batch def UpperCamelCase_ ( self , _lowerCamelCase ): lowercase = [self._fetch_inputs(_lowerCamelCase ) for ids in input_ids] return zip(*_lowerCamelCase ) def UpperCamelCase_ ( self , _lowerCamelCase ): lowercase = [1 for _ in range(len(_lowerCamelCase ) )] while len(_lowerCamelCase ) < self.max_length: input_ids.append(self.pad_id ) attention_mask.append(0 ) return input_ids, attention_mask def _SCREAMING_SNAKE_CASE ( __snake_case : Any , __snake_case : Tuple , __snake_case : Optional[Any]=None ): '''simple docstring''' if seed is not None: lowercase = dataset.shuffle(seed=__snake_case ) for i in range(len(__snake_case ) // batch_size ): lowercase = dataset[i * batch_size : (i + 1) * batch_size] yield dict(__snake_case ) @partial(jax.pmap , axis_name='batch' ) def _SCREAMING_SNAKE_CASE ( __snake_case : Dict , __snake_case : List[Any] , **__snake_case : List[Any] ): '''simple docstring''' def loss_fn(__snake_case : str ): lowercase = model_inputs.pop('start_labels' ) lowercase = model_inputs.pop('end_labels' ) lowercase = model_inputs.pop('pooled_labels' ) lowercase = state.apply_fn(**__snake_case , params=__snake_case , dropout_rng=__snake_case , train=__snake_case ) lowercase , lowercase , lowercase = outputs return state.loss_fn( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) lowercase , lowercase = jax.random.split(__snake_case ) lowercase = jax.value_and_grad(__snake_case ) lowercase , lowercase = grad_fn(state.params ) lowercase = jax.lax.pmean({'loss': loss} , axis_name='batch' ) lowercase = jax.lax.pmean(__snake_case , 'batch' ) lowercase = state.apply_gradients(grads=__snake_case ) return state, metrics, new_drp_rng @partial(jax.pmap , axis_name='batch' ) def _SCREAMING_SNAKE_CASE ( __snake_case : Optional[int] , **__snake_case : Dict ): '''simple docstring''' lowercase = model_inputs.pop('start_labels' ) lowercase = model_inputs.pop('end_labels' ) lowercase = model_inputs.pop('pooled_labels' ) lowercase = state.apply_fn(**__snake_case , params=state.params , train=__snake_case ) lowercase , lowercase , lowercase = outputs lowercase = state.loss_fn(__snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) lowercase = jax.lax.pmean({'loss': loss} , axis_name='batch' ) return metrics class a ( train_state.TrainState ): UpperCAmelCase_ : Callable =struct.field(pytree_node=a_ ) @dataclass class a : UpperCAmelCase_ : Args UpperCAmelCase_ : Callable UpperCAmelCase_ : Callable UpperCAmelCase_ : Callable UpperCAmelCase_ : Callable UpperCAmelCase_ : wandb UpperCAmelCase_ : Callable =None def UpperCamelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None ): lowercase = model.params lowercase = TrainState.create( apply_fn=model.__call__ , params=_lowerCamelCase , tx=_lowerCamelCase , loss_fn=_lowerCamelCase , ) if ckpt_dir is not None: lowercase , lowercase , lowercase , lowercase , lowercase = restore_checkpoint(_lowerCamelCase , _lowerCamelCase ) lowercase = { 'lr': args.lr, 'init_lr': args.init_lr, 'warmup_steps': args.warmup_steps, 'num_train_steps': num_train_steps, 'weight_decay': args.weight_decay, } lowercase , lowercase = build_tx(**_lowerCamelCase ) lowercase = train_state.TrainState( step=_lowerCamelCase , apply_fn=model.__call__ , params=_lowerCamelCase , tx=_lowerCamelCase , opt_state=_lowerCamelCase , ) lowercase = args lowercase = data_collator lowercase = lr lowercase = params lowercase = jax_utils.replicate(_lowerCamelCase ) return state def UpperCamelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): lowercase = self.args lowercase = len(_lowerCamelCase ) // args.batch_size lowercase = jax.random.PRNGKey(0 ) lowercase = jax.random.split(_lowerCamelCase , jax.device_count() ) for epoch in range(args.max_epochs ): lowercase = jnp.array(0 , dtype=jnp.floataa ) lowercase = get_batched_dataset(_lowerCamelCase , args.batch_size , seed=_lowerCamelCase ) lowercase = 0 for batch in tqdm(_lowerCamelCase , total=_lowerCamelCase , desc=F'Running EPOCH-{epoch}' ): lowercase = self.data_collator(_lowerCamelCase ) lowercase , lowercase , lowercase = self.train_step_fn(_lowerCamelCase , _lowerCamelCase , **_lowerCamelCase ) running_loss += jax_utils.unreplicate(metrics['loss'] ) i += 1 if i % args.logging_steps == 0: lowercase = jax_utils.unreplicate(state.step ) lowercase = running_loss.item() / i lowercase = self.scheduler_fn(state_step - 1 ) lowercase = self.evaluate(_lowerCamelCase , _lowerCamelCase ) lowercase = { 'step': state_step.item(), 'eval_loss': eval_loss.item(), 'tr_loss': tr_loss, 'lr': lr.item(), } tqdm.write(str(_lowerCamelCase ) ) self.logger.log(_lowerCamelCase , commit=_lowerCamelCase ) if i % args.save_steps == 0: self.save_checkpoint(args.save_dir + F'-e{epoch}-s{i}' , state=_lowerCamelCase ) def UpperCamelCase_ ( self , _lowerCamelCase , _lowerCamelCase ): lowercase = get_batched_dataset(_lowerCamelCase , self.args.batch_size ) lowercase = len(_lowerCamelCase ) // self.args.batch_size lowercase = jnp.array(0 , dtype=jnp.floataa ) lowercase = 0 for batch in tqdm(_lowerCamelCase , total=_lowerCamelCase , desc='Evaluating ... ' ): lowercase = self.data_collator(_lowerCamelCase ) lowercase = self.val_step_fn(_lowerCamelCase , **_lowerCamelCase ) running_loss += jax_utils.unreplicate(metrics['loss'] ) i += 1 return running_loss / i def UpperCamelCase_ ( self , _lowerCamelCase , _lowerCamelCase ): lowercase = jax_utils.unreplicate(_lowerCamelCase ) print(F'SAVING CHECKPOINT IN {save_dir}' , end=' ... ' ) self.model_save_fn(_lowerCamelCase , params=state.params ) with open(os.path.join(_lowerCamelCase , 'opt_state.msgpack' ) , 'wb' ) as f: f.write(to_bytes(state.opt_state ) ) joblib.dump(self.args , os.path.join(_lowerCamelCase , 'args.joblib' ) ) joblib.dump(self.data_collator , os.path.join(_lowerCamelCase , 'data_collator.joblib' ) ) with open(os.path.join(_lowerCamelCase , 'training_state.json' ) , 'w' ) as f: json.dump({'step': state.step.item()} , _lowerCamelCase ) print('DONE' ) def _SCREAMING_SNAKE_CASE ( __snake_case : int , __snake_case : Tuple ): '''simple docstring''' print(f'RESTORING CHECKPOINT FROM {save_dir}' , end=' ... ' ) with open(os.path.join(__snake_case , 'flax_model.msgpack' ) , 'rb' ) as f: lowercase = from_bytes(state.params , f.read() ) with open(os.path.join(__snake_case , 'opt_state.msgpack' ) , 'rb' ) as f: lowercase = from_bytes(state.opt_state , f.read() ) lowercase = joblib.load(os.path.join(__snake_case , 'args.joblib' ) ) lowercase = joblib.load(os.path.join(__snake_case , 'data_collator.joblib' ) ) with open(os.path.join(__snake_case , 'training_state.json' ) , 'r' ) as f: lowercase = json.load(__snake_case ) lowercase = training_state['step'] print('DONE' ) return params, opt_state, step, args, data_collator def _SCREAMING_SNAKE_CASE ( __snake_case : int , __snake_case : str , __snake_case : Any , __snake_case : Any ): '''simple docstring''' lowercase = num_train_steps - warmup_steps lowercase = optax.linear_schedule(init_value=__snake_case , end_value=__snake_case , transition_steps=__snake_case ) lowercase = optax.linear_schedule(init_value=__snake_case , end_value=1e-7 , transition_steps=__snake_case ) lowercase = optax.join_schedules(schedules=[warmup_fn, decay_fn] , boundaries=[warmup_steps] ) return lr def _SCREAMING_SNAKE_CASE ( __snake_case : Union[str, Any] , __snake_case : Union[str, Any] , __snake_case : List[str] , __snake_case : str , __snake_case : Optional[int] ): '''simple docstring''' def weight_decay_mask(__snake_case : Tuple ): lowercase = traverse_util.flatten_dict(__snake_case ) lowercase = {k: (v[-1] != 'bias' and v[-2:] != ('LayerNorm', 'scale')) for k, v in params.items()} return traverse_util.unflatten_dict(__snake_case ) lowercase = scheduler_fn(__snake_case , __snake_case , __snake_case , __snake_case ) lowercase = optax.adamw(learning_rate=__snake_case , weight_decay=__snake_case , mask=__snake_case ) return tx, lr
220
0
import math def lowerCamelCase_ ( ) -> Dict: """simple docstring""" snake_case_ : Dict = input('''Enter message: ''' ) snake_case_ : Optional[int] = int(input(f'''Enter key [2-{len(snake_case_ ) - 1}]: ''' ) ) snake_case_ : Union[str, Any] = input('''Encryption/Decryption [e/d]: ''' ) if mode.lower().startswith('''e''' ): snake_case_ : int = encrypt_message(snake_case_ , snake_case_ ) elif mode.lower().startswith('''d''' ): snake_case_ : str = decrypt_message(snake_case_ , snake_case_ ) # Append pipe symbol (vertical bar) to identify spaces at the end. print(f'''Output:\n{text + "|"}''' ) def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase ) -> List[str]: """simple docstring""" snake_case_ : List[str] = [""""""] * key for col in range(snake_case_ ): snake_case_ : Optional[Any] = col while pointer < len(snake_case_ ): cipher_text[col] += message[pointer] pointer += key return "".join(snake_case_ ) def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase ) -> Union[str, Any]: """simple docstring""" snake_case_ : Any = math.ceil(len(snake_case_ ) / key ) snake_case_ : Tuple = key snake_case_ : Any = (num_cols * num_rows) - len(snake_case_ ) snake_case_ : List[str] = [""""""] * num_cols snake_case_ : Dict = 0 snake_case_ : Optional[int] = 0 for symbol in message: plain_text[col] += symbol col += 1 if ( (col == num_cols) or (col == num_cols - 1) and (row >= num_rows - num_shaded_boxes) ): snake_case_ : Dict = 0 row += 1 return "".join(snake_case_ ) if __name__ == "__main__": import doctest doctest.testmod() main()
355
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase_ = {'''configuration_xglm''': ['''XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XGLMConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['''XGLMTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['''XGLMTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ '''XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XGLMForCausalLM''', '''XGLMModel''', '''XGLMPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ '''FlaxXGLMForCausalLM''', '''FlaxXGLMModel''', '''FlaxXGLMPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ '''TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXGLMForCausalLM''', '''TFXGLMModel''', '''TFXGLMPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
279
0
from pathlib import Path import numpy as np from PIL import Image def lowerCamelCase__ ( snake_case_ : np.ndarray ) -> np.ndarray: __snake_case , __snake_case , __snake_case = rgb[:, :, 0], rgb[:, :, 1], rgb[:, :, 2] return 0.2_989 * r + 0.5_870 * g + 0.1_140 * b def lowerCamelCase__ ( snake_case_ : np.ndarray ) -> np.ndarray: return (gray > 127) & (gray <= 255) def lowerCamelCase__ ( snake_case_ : np.ndarray , snake_case_ : np.ndarray ) -> np.ndarray: __snake_case = np.zeros_like(snake_case_ ) __snake_case = np.zeros( (image.shape[0] + kernel.shape[0] - 1, image.shape[1] + kernel.shape[1] - 1) ) # Copy image to padded image __snake_case = image # Iterate over image & apply kernel for x in range(image.shape[1] ): for y in range(image.shape[0] ): __snake_case = ( kernel * image_padded[y : y + kernel.shape[0], x : x + kernel.shape[1]] ).sum() __snake_case = int(summation > 0 ) return output if __name__ == "__main__": # read original image snake_case_ = Path(__file__).resolve().parent / 'image_data' / 'lena.jpg' snake_case_ = np.array(Image.open(lena_path)) # kernel to be applied snake_case_ = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]]) snake_case_ = dilation(gray_to_binary(rgb_to_gray(lena)), structuring_element) # Save the output image snake_case_ = Image.fromarray(output).convert('RGB') pil_img.save('result_dilation.png')
24
"""simple docstring""" import os import zipfile import requests from get_ci_error_statistics import download_artifact, get_artifacts_links def UpperCAmelCase__ (snake_case__ : Optional[int] , snake_case__ : Any=7 ): """simple docstring""" _snake_case : Any = None if token is not None: _snake_case : Any = {"""Accept""": """application/vnd.github+json""", """Authorization""": F"Bearer {token}"} # The id of a workflow (not of a workflow run) _snake_case : List[str] = """636036""" _snake_case : Union[str, Any] = F"https://api.github.com/repos/huggingface/transformers/actions/workflows/{workflow_id}/runs" # On `main` branch + event being `schedule` + not returning PRs + only `num_runs` results url += F"?branch=main&event=schedule&exclude_pull_requests=true&per_page={num_runs}" _snake_case : str = requests.get(snake_case__ , headers=snake_case__ ).json() return result["workflow_runs"] def UpperCAmelCase__ (snake_case__ : Optional[Any] ): """simple docstring""" _snake_case : str = get_daily_ci_runs(snake_case__ ) _snake_case : str = None for workflow_run in workflow_runs: if workflow_run["status"] == "completed": _snake_case : List[str] = workflow_run["""id"""] break return workflow_run_id def UpperCAmelCase__ (snake_case__ : str , snake_case__ : Union[str, Any] , snake_case__ : Optional[int] ): """simple docstring""" _snake_case : Optional[Any] = get_last_daily_ci_runs(snake_case__ ) if workflow_run_id is not None: _snake_case : Optional[Any] = get_artifacts_links(worflow_run_id=snake_case__ , token=snake_case__ ) for artifact_name in artifact_names: if artifact_name in artifacts_links: _snake_case : Optional[int] = artifacts_links[artifact_name] download_artifact( artifact_name=snake_case__ , artifact_url=snake_case__ , output_dir=snake_case__ , token=snake_case__ ) def UpperCAmelCase__ (snake_case__ : Union[str, Any] , snake_case__ : List[str] , snake_case__ : int ): """simple docstring""" get_last_daily_ci_artifacts(snake_case__ , snake_case__ , snake_case__ ) _snake_case : int = {} for artifact_name in artifact_names: _snake_case : int = os.path.join(snake_case__ , F"{artifact_name}.zip" ) if os.path.isfile(snake_case__ ): _snake_case : Tuple = {} with zipfile.ZipFile(snake_case__ ) as z: for filename in z.namelist(): if not os.path.isdir(snake_case__ ): # read the file with z.open(snake_case__ ) as f: _snake_case : Any = f.read().decode("""UTF-8""" ) return results
64
0
import torch from diffusers import DDIMParallelScheduler from .test_schedulers import SchedulerCommonTest class a (_lowerCAmelCase ): """simple docstring""" __UpperCAmelCase : Union[str, Any] = (DDIMParallelScheduler,) __UpperCAmelCase : str = (("eta", 0.0), ("num_inference_steps", 50)) def __snake_case ( self : List[Any] , **lowerCamelCase : Union[str, Any] ) -> Tuple: __snake_case : Optional[Any] = { "num_train_timesteps": 1000, "beta_start": 0.00_01, "beta_end": 0.02, "beta_schedule": "linear", "clip_sample": True, } config.update(**lowerCamelCase ) return config def __snake_case ( self : List[Any] , **lowerCamelCase : int ) -> Dict: __snake_case : Any = self.scheduler_classes[0] __snake_case : Optional[Any] = self.get_scheduler_config(**lowerCamelCase ) __snake_case : Any = scheduler_class(**lowerCamelCase ) __snake_case , __snake_case : Dict = 10, 0.0 __snake_case : Tuple = self.dummy_model() __snake_case : Optional[Any] = self.dummy_sample_deter scheduler.set_timesteps(lowerCamelCase ) for t in scheduler.timesteps: __snake_case : Dict = model(lowerCamelCase , lowerCamelCase ) __snake_case : List[str] = scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ).prev_sample return sample def __snake_case ( self : str ) -> Tuple: for timesteps in [100, 500, 1000]: self.check_over_configs(num_train_timesteps=lowerCamelCase ) def __snake_case ( self : List[Any] ) -> Any: for steps_offset in [0, 1]: self.check_over_configs(steps_offset=lowerCamelCase ) __snake_case : Optional[Any] = self.scheduler_classes[0] __snake_case : List[Any] = self.get_scheduler_config(steps_offset=1 ) __snake_case : List[str] = scheduler_class(**lowerCamelCase ) scheduler.set_timesteps(5 ) assert torch.equal(scheduler.timesteps , torch.LongTensor([801, 601, 401, 201, 1] ) ) def __snake_case ( self : Dict ) -> Union[str, Any]: for beta_start, beta_end in zip([0.00_01, 0.0_01, 0.01, 0.1] , [0.0_02, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=lowerCamelCase , beta_end=lowerCamelCase ) def __snake_case ( self : List[Any] ) -> Tuple: for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=lowerCamelCase ) def __snake_case ( self : int ) -> int: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowerCamelCase ) def __snake_case ( self : Any ) -> Dict: for clip_sample in [True, False]: self.check_over_configs(clip_sample=lowerCamelCase ) def __snake_case ( self : Any ) -> List[str]: for timestep_spacing in ["trailing", "leading"]: self.check_over_configs(timestep_spacing=lowerCamelCase ) def __snake_case ( self : Any ) -> List[str]: for rescale_betas_zero_snr in [True, False]: self.check_over_configs(rescale_betas_zero_snr=lowerCamelCase ) def __snake_case ( self : List[Any] ) -> List[Any]: self.check_over_configs(thresholding=lowerCamelCase ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs( thresholding=lowerCamelCase , prediction_type=lowerCamelCase , sample_max_value=lowerCamelCase , ) def __snake_case ( self : List[Any] ) -> str: for t in [1, 10, 49]: self.check_over_forward(time_step=lowerCamelCase ) def __snake_case ( self : Optional[Any] ) -> Optional[Any]: for t, num_inference_steps in zip([1, 10, 50] , [10, 50, 500] ): self.check_over_forward(time_step=lowerCamelCase , num_inference_steps=lowerCamelCase ) def __snake_case ( self : Tuple ) -> Union[str, Any]: for t, eta in zip([1, 10, 49] , [0.0, 0.5, 1.0] ): self.check_over_forward(time_step=lowerCamelCase , eta=lowerCamelCase ) def __snake_case ( self : Optional[Any] ) -> Any: __snake_case : int = self.scheduler_classes[0] __snake_case : Any = self.get_scheduler_config() __snake_case : int = scheduler_class(**lowerCamelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(420 , 400 ) - 0.1_47_71 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(980 , 960 ) - 0.3_24_60 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487 , 486 ) - 0.0_09_79 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999 , 998 ) - 0.02 ) ) < 1E-5 def __snake_case ( self : List[Any] ) -> str: __snake_case : List[Any] = self.scheduler_classes[0] __snake_case : int = self.get_scheduler_config() __snake_case : Optional[int] = scheduler_class(**lowerCamelCase ) __snake_case , __snake_case : Any = 10, 0.0 scheduler.set_timesteps(lowerCamelCase ) __snake_case : Optional[int] = self.dummy_model() __snake_case : List[str] = self.dummy_sample_deter __snake_case : str = self.dummy_sample_deter + 0.1 __snake_case : Tuple = self.dummy_sample_deter - 0.1 __snake_case : Optional[Any] = samplea.shape[0] __snake_case : Any = torch.stack([samplea, samplea, samplea] , dim=0 ) __snake_case : Dict = torch.arange(lowerCamelCase )[0:3, None].repeat(1 , lowerCamelCase ) __snake_case : int = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) __snake_case : Tuple = scheduler.batch_step_no_noise(lowerCamelCase , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) , lowerCamelCase ) __snake_case : Tuple = torch.sum(torch.abs(lowerCamelCase ) ) __snake_case : List[str] = torch.mean(torch.abs(lowerCamelCase ) ) assert abs(result_sum.item() - 11_47.79_04 ) < 1E-2 assert abs(result_mean.item() - 0.49_82 ) < 1E-3 def __snake_case ( self : Tuple ) -> Optional[Any]: __snake_case : Optional[int] = self.full_loop() __snake_case : Any = torch.sum(torch.abs(lowerCamelCase ) ) __snake_case : Optional[int] = torch.mean(torch.abs(lowerCamelCase ) ) assert abs(result_sum.item() - 1_72.00_67 ) < 1E-2 assert abs(result_mean.item() - 0.22_39_67 ) < 1E-3 def __snake_case ( self : Optional[int] ) -> Any: __snake_case : int = self.full_loop(prediction_type="v_prediction" ) __snake_case : Union[str, Any] = torch.sum(torch.abs(lowerCamelCase ) ) __snake_case : Union[str, Any] = torch.mean(torch.abs(lowerCamelCase ) ) assert abs(result_sum.item() - 52.53_02 ) < 1E-2 assert abs(result_mean.item() - 0.06_84 ) < 1E-3 def __snake_case ( self : List[Any] ) -> Union[str, Any]: # We specify different beta, so that the first alpha is 0.99 __snake_case : List[str] = self.full_loop(set_alpha_to_one=lowerCamelCase , beta_start=0.01 ) __snake_case : List[str] = torch.sum(torch.abs(lowerCamelCase ) ) __snake_case : Union[str, Any] = torch.mean(torch.abs(lowerCamelCase ) ) assert abs(result_sum.item() - 1_49.82_95 ) < 1E-2 assert abs(result_mean.item() - 0.19_51 ) < 1E-3 def __snake_case ( self : List[Any] ) -> List[Any]: # We specify different beta, so that the first alpha is 0.99 __snake_case : Dict = self.full_loop(set_alpha_to_one=lowerCamelCase , beta_start=0.01 ) __snake_case : List[Any] = torch.sum(torch.abs(lowerCamelCase ) ) __snake_case : Union[str, Any] = torch.mean(torch.abs(lowerCamelCase ) ) assert abs(result_sum.item() - 1_49.07_84 ) < 1E-2 assert abs(result_mean.item() - 0.19_41 ) < 1E-3
134
import importlib import math import os from dataclasses import dataclass from enum import Enum from typing import Any, Dict, Optional, Tuple, Union import flax import jax.numpy as jnp from ..utils import BaseOutput _snake_case : int = "scheduler_config.json" class a (_lowerCAmelCase ): """simple docstring""" __UpperCAmelCase : Tuple = 1 __UpperCAmelCase : Tuple = 2 __UpperCAmelCase : Union[str, Any] = 3 __UpperCAmelCase : List[Any] = 4 __UpperCAmelCase : Tuple = 5 @dataclass class a (_lowerCAmelCase ): """simple docstring""" __UpperCAmelCase : jnp.ndarray class a : """simple docstring""" __UpperCAmelCase : Dict = SCHEDULER_CONFIG_NAME __UpperCAmelCase : Union[str, Any] = ["dtype"] __UpperCAmelCase : Tuple = [] __UpperCAmelCase : int = True @classmethod def __snake_case ( cls : List[str] , lowerCamelCase : Dict[str, Any] = None , lowerCamelCase : Optional[str] = None , lowerCamelCase : List[str]=False , **lowerCamelCase : Union[str, Any] , ) -> List[str]: __snake_case , __snake_case : List[str] = cls.load_config( pretrained_model_name_or_path=lowerCamelCase , subfolder=lowerCamelCase , return_unused_kwargs=lowerCamelCase , **lowerCamelCase , ) __snake_case , __snake_case : Dict = cls.from_config(lowerCamelCase , return_unused_kwargs=lowerCamelCase , **lowerCamelCase ) if hasattr(lowerCamelCase , "create_state" ) and getattr(lowerCamelCase , "has_state" , lowerCamelCase ): __snake_case : Tuple = scheduler.create_state() if return_unused_kwargs: return scheduler, state, unused_kwargs return scheduler, state def __snake_case ( self : Any , lowerCamelCase : Union[str, os.PathLike] , lowerCamelCase : bool = False , **lowerCamelCase : List[Any] ) -> int: self.save_config(save_directory=lowerCamelCase , push_to_hub=lowerCamelCase , **lowerCamelCase ) @property def __snake_case ( self : Tuple ) -> List[Any]: return self._get_compatibles() @classmethod def __snake_case ( cls : int ) -> Dict: __snake_case : Tuple = list(set([cls.__name__] + cls._compatibles ) ) __snake_case : int = importlib.import_module(__name__.split("." )[0] ) __snake_case : Tuple = [ getattr(lowerCamelCase , lowerCamelCase ) for c in compatible_classes_str if hasattr(lowerCamelCase , lowerCamelCase ) ] return compatible_classes def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase ): assert len(__lowerCamelCase ) >= x.ndim return jnp.broadcast_to(x.reshape(x.shape + (1,) * (len(__lowerCamelCase ) - x.ndim) ) , __lowerCamelCase ) def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase=0.9_9_9 , __lowerCamelCase=jnp.floataa ): def alpha_bar(__lowerCamelCase ): return math.cos((time_step + 0.0_0_8) / 1.0_0_8 * math.pi / 2 ) ** 2 __snake_case : List[Any] = [] for i in range(__lowerCamelCase ): __snake_case : Dict = i / num_diffusion_timesteps __snake_case : str = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar(__lowerCamelCase ) / alpha_bar(__lowerCamelCase ) , __lowerCamelCase ) ) return jnp.array(__lowerCamelCase , dtype=__lowerCamelCase ) @flax.struct.dataclass class a : """simple docstring""" __UpperCAmelCase : jnp.ndarray __UpperCAmelCase : jnp.ndarray __UpperCAmelCase : jnp.ndarray @classmethod def __snake_case ( cls : Union[str, Any] , lowerCamelCase : int ) -> List[Any]: __snake_case : Dict = scheduler.config if config.trained_betas is not None: __snake_case : Dict = jnp.asarray(config.trained_betas , dtype=scheduler.dtype ) elif config.beta_schedule == "linear": __snake_case : Optional[int] = jnp.linspace(config.beta_start , config.beta_end , config.num_train_timesteps , dtype=scheduler.dtype ) elif config.beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. __snake_case : str = ( jnp.linspace( config.beta_start**0.5 , config.beta_end**0.5 , config.num_train_timesteps , dtype=scheduler.dtype ) ** 2 ) elif config.beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule __snake_case : Optional[Any] = betas_for_alpha_bar(config.num_train_timesteps , dtype=scheduler.dtype ) else: raise NotImplementedError( F'beta_schedule {config.beta_schedule} is not implemented for scheduler {scheduler.__class__.__name__}' ) __snake_case : Any = 1.0 - betas __snake_case : int = jnp.cumprod(lowerCamelCase , axis=0 ) return cls( alphas=lowerCamelCase , betas=lowerCamelCase , alphas_cumprod=lowerCamelCase , ) def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): __snake_case : List[Any] = state.alphas_cumprod __snake_case : str = alphas_cumprod[timesteps] ** 0.5 __snake_case : Dict = sqrt_alpha_prod.flatten() __snake_case : str = broadcast_to_shape_from_left(__lowerCamelCase , original_samples.shape ) __snake_case : Tuple = (1 - alphas_cumprod[timesteps]) ** 0.5 __snake_case : str = sqrt_one_minus_alpha_prod.flatten() __snake_case : Tuple = broadcast_to_shape_from_left(__lowerCamelCase , original_samples.shape ) return sqrt_alpha_prod, sqrt_one_minus_alpha_prod def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): __snake_case , __snake_case : Union[str, Any] = get_sqrt_alpha_prod(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) __snake_case : List[str] = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): __snake_case , __snake_case : Dict = get_sqrt_alpha_prod(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) __snake_case : Optional[int] = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample return velocity
134
1
"""simple docstring""" import json import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from transformers import OneFormerImageProcessor from transformers.models.oneformer.image_processing_oneformer import binary_mask_to_rle from transformers.models.oneformer.modeling_oneformer import OneFormerForUniversalSegmentationOutput if is_vision_available(): from PIL import Image def snake_case_ ( A_ : Optional[Any], A_ : Union[str, Any]="shi-labs/oneformer_demo" ): '''simple docstring''' with open(hf_hub_download(A_, A_, repo_type='''dataset''' ), '''r''' ) as f: _lowerCamelCase : int = json.load(A_ ) _lowerCamelCase : Union[str, Any] = {} _lowerCamelCase : Dict = [] _lowerCamelCase : List[Any] = [] for key, info in class_info.items(): _lowerCamelCase : Optional[int] = info['''name'''] class_names.append(info['''name'''] ) if info["isthing"]: thing_ids.append(int(A_ ) ) _lowerCamelCase : Union[str, Any] = thing_ids _lowerCamelCase : List[Any] = class_names return metadata class __snake_case ( unittest.TestCase): def __init__( self : int , __lowerCAmelCase : Any , __lowerCAmelCase : Union[str, Any]=7 , __lowerCAmelCase : Optional[int]=3 , __lowerCAmelCase : Union[str, Any]=3_0 , __lowerCAmelCase : str=4_0_0 , __lowerCAmelCase : Tuple=None , __lowerCAmelCase : List[Any]=True , __lowerCAmelCase : Optional[Any]=True , __lowerCAmelCase : Any=[0.5, 0.5, 0.5] , __lowerCAmelCase : List[Any]=[0.5, 0.5, 0.5] , __lowerCAmelCase : Dict=1_0 , __lowerCAmelCase : int=False , __lowerCAmelCase : int=2_5_5 , __lowerCAmelCase : List[str]="shi-labs/oneformer_demo" , __lowerCAmelCase : str="ade20k_panoptic.json" , __lowerCAmelCase : List[Any]=1_0 , ): """simple docstring""" _lowerCamelCase : Optional[int] = parent _lowerCamelCase : str = batch_size _lowerCamelCase : Dict = num_channels _lowerCamelCase : Union[str, Any] = min_resolution _lowerCamelCase : str = max_resolution _lowerCamelCase : Optional[Any] = do_resize _lowerCamelCase : int = {'''shortest_edge''': 3_2, '''longest_edge''': 1_3_3_3} if size is None else size _lowerCamelCase : List[Any] = do_normalize _lowerCamelCase : Any = image_mean _lowerCamelCase : List[str] = image_std _lowerCamelCase : List[str] = class_info_file _lowerCamelCase : Optional[Any] = prepare_metadata(__lowerCAmelCase , __lowerCAmelCase ) _lowerCamelCase : str = num_text _lowerCamelCase : Any = repo_path # for the post_process_functions _lowerCamelCase : Union[str, Any] = 2 _lowerCamelCase : str = 1_0 _lowerCamelCase : Tuple = 1_0 _lowerCamelCase : List[str] = 3 _lowerCamelCase : Any = 4 _lowerCamelCase : Tuple = num_labels _lowerCamelCase : Tuple = do_reduce_labels _lowerCamelCase : List[str] = ignore_index def SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "num_labels": self.num_labels, "do_reduce_labels": self.do_reduce_labels, "ignore_index": self.ignore_index, "class_info_file": self.class_info_file, "metadata": self.metadata, "num_text": self.num_text, } def SCREAMING_SNAKE_CASE ( self : Optional[Any] , __lowerCAmelCase : Any , __lowerCAmelCase : Optional[int]=False ): """simple docstring""" if not batched: _lowerCamelCase : Optional[Any] = image_inputs[0] if isinstance(__lowerCAmelCase , Image.Image ): _lowerCamelCase , _lowerCamelCase : List[Any] = image.size else: _lowerCamelCase , _lowerCamelCase : int = image.shape[1], image.shape[2] if w < h: _lowerCamelCase : str = int(self.size['''shortest_edge'''] * h / w ) _lowerCamelCase : Any = self.size['''shortest_edge'''] elif w > h: _lowerCamelCase : Optional[int] = self.size['''shortest_edge'''] _lowerCamelCase : Tuple = int(self.size['''shortest_edge'''] * w / h ) else: _lowerCamelCase : Optional[Any] = self.size['''shortest_edge'''] _lowerCamelCase : Optional[int] = self.size['''shortest_edge'''] else: _lowerCamelCase : List[str] = [] for image in image_inputs: _lowerCamelCase , _lowerCamelCase : str = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) _lowerCamelCase : List[Any] = max(__lowerCAmelCase , key=lambda __lowerCAmelCase : item[0] )[0] _lowerCamelCase : List[Any] = max(__lowerCAmelCase , key=lambda __lowerCAmelCase : item[1] )[1] return expected_height, expected_width def SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" return OneFormerForUniversalSegmentationOutput( # +1 for null class class_queries_logits=torch.randn((self.batch_size, self.num_queries, self.num_classes + 1) ) , masks_queries_logits=torch.randn((self.batch_size, self.num_queries, self.height, self.width) ) , ) @require_torch @require_vision class __snake_case ( _lowercase , unittest.TestCase): snake_case__ : Union[str, Any] = OneFormerImageProcessor if (is_vision_available() and is_torch_available()) else None # only for test_image_processing_common.test_image_proc_to_json_string snake_case__ : Any = image_processing_class def SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" _lowerCamelCase : Union[str, Any] = OneFormerImageProcessorTester(self ) @property def SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" return self.image_processing_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" _lowerCamelCase : int = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__lowerCAmelCase , '''image_mean''' ) ) self.assertTrue(hasattr(__lowerCAmelCase , '''image_std''' ) ) self.assertTrue(hasattr(__lowerCAmelCase , '''do_normalize''' ) ) self.assertTrue(hasattr(__lowerCAmelCase , '''do_resize''' ) ) self.assertTrue(hasattr(__lowerCAmelCase , '''size''' ) ) self.assertTrue(hasattr(__lowerCAmelCase , '''ignore_index''' ) ) self.assertTrue(hasattr(__lowerCAmelCase , '''class_info_file''' ) ) self.assertTrue(hasattr(__lowerCAmelCase , '''num_text''' ) ) self.assertTrue(hasattr(__lowerCAmelCase , '''repo_path''' ) ) self.assertTrue(hasattr(__lowerCAmelCase , '''metadata''' ) ) self.assertTrue(hasattr(__lowerCAmelCase , '''do_reduce_labels''' ) ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" pass def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" _lowerCamelCase : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _lowerCamelCase : List[Any] = prepare_image_inputs(self.image_processing_tester , equal_resolution=__lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(__lowerCAmelCase , Image.Image ) # Test not batched input _lowerCamelCase : Tuple = image_processor(image_inputs[0] , ['''semantic'''] , return_tensors='''pt''' ).pixel_values _lowerCamelCase , _lowerCamelCase : str = self.image_processing_tester.get_expected_values(__lowerCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched _lowerCamelCase , _lowerCamelCase : Tuple = self.image_processing_tester.get_expected_values(__lowerCAmelCase , batched=__lowerCAmelCase ) _lowerCamelCase : Optional[int] = image_processor( __lowerCAmelCase , ['''semantic'''] * len(__lowerCAmelCase ) , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def SCREAMING_SNAKE_CASE ( self : List[str] ): """simple docstring""" _lowerCamelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _lowerCamelCase : Optional[int] = prepare_image_inputs(self.image_processing_tester , equal_resolution=__lowerCAmelCase , numpify=__lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(__lowerCAmelCase , np.ndarray ) # Test not batched input _lowerCamelCase : Union[str, Any] = image_processor(image_inputs[0] , ['''semantic'''] , return_tensors='''pt''' ).pixel_values _lowerCamelCase , _lowerCamelCase : Dict = self.image_processing_tester.get_expected_values(__lowerCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched _lowerCamelCase , _lowerCamelCase : Any = self.image_processing_tester.get_expected_values(__lowerCAmelCase , batched=__lowerCAmelCase ) _lowerCamelCase : str = image_processor( __lowerCAmelCase , ['''semantic'''] * len(__lowerCAmelCase ) , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" _lowerCamelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _lowerCamelCase : Union[str, Any] = prepare_image_inputs(self.image_processing_tester , equal_resolution=__lowerCAmelCase , torchify=__lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(__lowerCAmelCase , torch.Tensor ) # Test not batched input _lowerCamelCase : Union[str, Any] = image_processor(image_inputs[0] , ['''semantic'''] , return_tensors='''pt''' ).pixel_values _lowerCamelCase , _lowerCamelCase : List[Any] = self.image_processing_tester.get_expected_values(__lowerCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched _lowerCamelCase , _lowerCamelCase : List[Any] = self.image_processing_tester.get_expected_values(__lowerCAmelCase , batched=__lowerCAmelCase ) _lowerCamelCase : List[str] = image_processor( __lowerCAmelCase , ['''semantic'''] * len(__lowerCAmelCase ) , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def SCREAMING_SNAKE_CASE ( self : Dict , __lowerCAmelCase : List[str]=False , __lowerCAmelCase : List[str]=False , __lowerCAmelCase : Dict="np" ): """simple docstring""" _lowerCamelCase : Any = self.image_processing_class(**self.image_processor_dict ) # prepare image and target _lowerCamelCase : int = self.image_processing_tester.num_labels _lowerCamelCase : Optional[Any] = None _lowerCamelCase : List[Any] = None _lowerCamelCase : Union[str, Any] = prepare_image_inputs(self.image_processing_tester , equal_resolution=__lowerCAmelCase ) if with_segmentation_maps: _lowerCamelCase : Optional[int] = num_labels if is_instance_map: _lowerCamelCase : List[Any] = list(range(__lowerCAmelCase ) ) * 2 _lowerCamelCase : int = dict(enumerate(__lowerCAmelCase ) ) _lowerCamelCase : List[str] = [ np.random.randint(0 , high * 2 , (img.size[1], img.size[0]) ).astype(np.uinta ) for img in image_inputs ] if segmentation_type == "pil": _lowerCamelCase : List[str] = [Image.fromarray(__lowerCAmelCase ) for annotation in annotations] _lowerCamelCase : Tuple = image_processor( __lowerCAmelCase , ['''semantic'''] * len(__lowerCAmelCase ) , __lowerCAmelCase , return_tensors='''pt''' , instance_id_to_semantic_id=__lowerCAmelCase , pad_and_return_pixel_mask=__lowerCAmelCase , ) return inputs def SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" pass def SCREAMING_SNAKE_CASE ( self : List[str] ): """simple docstring""" def common(__lowerCAmelCase : Dict=False , __lowerCAmelCase : Any=None ): _lowerCamelCase : Optional[Any] = self.comm_get_image_processor_inputs( with_segmentation_maps=__lowerCAmelCase , is_instance_map=__lowerCAmelCase , segmentation_type=__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = inputs['''mask_labels'''] _lowerCamelCase : Union[str, Any] = inputs['''class_labels'''] _lowerCamelCase : int = inputs['''pixel_values'''] _lowerCamelCase : Optional[int] = inputs['''text_inputs'''] # check the batch_size for mask_label, class_label, text_input in zip(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): self.assertEqual(mask_label.shape[0] , class_label.shape[0] ) # this ensure padding has happened self.assertEqual(mask_label.shape[1:] , pixel_values.shape[2:] ) self.assertEqual(len(__lowerCAmelCase ) , self.image_processing_tester.num_text ) common() common(is_instance_map=__lowerCAmelCase ) common(is_instance_map=__lowerCAmelCase , segmentation_type='''pil''' ) common(is_instance_map=__lowerCAmelCase , segmentation_type='''pil''' ) def SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" _lowerCamelCase : Optional[int] = np.zeros((2_0, 5_0) ) _lowerCamelCase : Dict = 1 _lowerCamelCase : Optional[int] = 1 _lowerCamelCase : int = 1 _lowerCamelCase : Optional[int] = binary_mask_to_rle(__lowerCAmelCase ) self.assertEqual(len(__lowerCAmelCase ) , 4 ) self.assertEqual(rle[0] , 2_1 ) self.assertEqual(rle[1] , 4_5 ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" _lowerCamelCase : Optional[Any] = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=7_7 , task_seq_length=7_7 , class_info_file='''ade20k_panoptic.json''' , num_text=self.image_processing_tester.num_text , repo_path='''shi-labs/oneformer_demo''' , ) _lowerCamelCase : str = self.image_processing_tester.get_fake_oneformer_outputs() _lowerCamelCase : int = fature_extractor.post_process_semantic_segmentation(__lowerCAmelCase ) self.assertEqual(len(__lowerCAmelCase ) , self.image_processing_tester.batch_size ) self.assertEqual( segmentation[0].shape , ( self.image_processing_tester.height, self.image_processing_tester.width, ) , ) _lowerCamelCase : List[str] = [(1, 4) for i in range(self.image_processing_tester.batch_size )] _lowerCamelCase : int = fature_extractor.post_process_semantic_segmentation(__lowerCAmelCase , target_sizes=__lowerCAmelCase ) self.assertEqual(segmentation[0].shape , target_sizes[0] ) def SCREAMING_SNAKE_CASE ( self : List[str] ): """simple docstring""" _lowerCamelCase : int = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=7_7 , task_seq_length=7_7 , class_info_file='''ade20k_panoptic.json''' , num_text=self.image_processing_tester.num_text , repo_path='''shi-labs/oneformer_demo''' , ) _lowerCamelCase : List[str] = self.image_processing_tester.get_fake_oneformer_outputs() _lowerCamelCase : Optional[int] = image_processor.post_process_instance_segmentation(__lowerCAmelCase , threshold=0 ) self.assertTrue(len(__lowerCAmelCase ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue('''segmentation''' in el ) self.assertTrue('''segments_info''' in el ) self.assertEqual(type(el['''segments_info'''] ) , __lowerCAmelCase ) self.assertEqual( el['''segmentation'''].shape , (self.image_processing_tester.height, self.image_processing_tester.width) ) def SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" _lowerCamelCase : Any = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=7_7 , task_seq_length=7_7 , class_info_file='''ade20k_panoptic.json''' , num_text=self.image_processing_tester.num_text , repo_path='''shi-labs/oneformer_demo''' , ) _lowerCamelCase : Optional[int] = self.image_processing_tester.get_fake_oneformer_outputs() _lowerCamelCase : Optional[Any] = image_processor.post_process_panoptic_segmentation(__lowerCAmelCase , threshold=0 ) self.assertTrue(len(__lowerCAmelCase ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue('''segmentation''' in el ) self.assertTrue('''segments_info''' in el ) self.assertEqual(type(el['''segments_info'''] ) , __lowerCAmelCase ) self.assertEqual( el['''segmentation'''].shape , (self.image_processing_tester.height, self.image_processing_tester.width) )
72
"""simple docstring""" def snake_case_ ( A_ : list[list[float]] ): '''simple docstring''' _lowerCamelCase : list[list[float]] = [] for data in source_data: for i, el in enumerate(A_ ): if len(A_ ) < i + 1: data_lists.append([] ) data_lists[i].append(float(A_ ) ) return data_lists def snake_case_ ( A_ : list[list[float]], A_ : list[int] ): '''simple docstring''' _lowerCamelCase : list[list[float]] = [] for dlist, weight in zip(A_, A_ ): _lowerCamelCase : Any = min(A_ ) _lowerCamelCase : Optional[Any] = max(A_ ) _lowerCamelCase : list[float] = [] # for weight 0 score is 1 - actual score if weight == 0: for item in dlist: try: score.append(1 - ((item - mind) / (maxd - mind)) ) except ZeroDivisionError: score.append(1 ) elif weight == 1: for item in dlist: try: score.append((item - mind) / (maxd - mind) ) except ZeroDivisionError: score.append(0 ) # weight not 0 or 1 else: _lowerCamelCase : str = F'''Invalid weight of {weight:f} provided''' raise ValueError(A_ ) score_lists.append(A_ ) return score_lists def snake_case_ ( A_ : list[list[float]] ): '''simple docstring''' _lowerCamelCase : list[float] = [0 for i in range(len(score_lists[0] ) )] for slist in score_lists: for j, ele in enumerate(A_ ): _lowerCamelCase : List[str] = final_scores[j] + ele return final_scores def snake_case_ ( A_ : list[list[float]], A_ : list[int] ): '''simple docstring''' _lowerCamelCase : Tuple = get_data(A_ ) _lowerCamelCase : Optional[Any] = calculate_each_score(A_, A_ ) _lowerCamelCase : str = generate_final_scores(A_ ) # append scores to source data for i, ele in enumerate(A_ ): source_data[i].append(A_ ) return source_data
72
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ : Dict = logging.get_logger(__name__) UpperCAmelCase_ : List[str] = { """RWKV/rwkv-4-169m-pile""": """https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json""", """RWKV/rwkv-4-430m-pile""": """https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json""", """RWKV/rwkv-4-1b5-pile""": """https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json""", """RWKV/rwkv-4-3b-pile""": """https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json""", """RWKV/rwkv-4-7b-pile""": """https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json""", """RWKV/rwkv-4-14b-pile""": """https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json""", """RWKV/rwkv-raven-1b5""": """https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json""", """RWKV/rwkv-raven-3b""": """https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json""", """RWKV/rwkv-raven-7b""": """https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json""", """RWKV/rwkv-raven-14b""": """https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json""", } class lowerCAmelCase__ ( UpperCAmelCase__ ): '''simple docstring''' __UpperCamelCase = "rwkv" __UpperCamelCase = {"max_position_embeddings": "context_length"} def __init__( self : Union[str, Any] , lowercase_ : Any=50277 , lowercase_ : str=1024 , lowercase_ : List[str]=4096 , lowercase_ : Optional[Any]=32 , lowercase_ : Any=None , lowercase_ : Any=None , lowercase_ : List[Any]=1e-5 , lowercase_ : Union[str, Any]=0 , lowercase_ : Union[str, Any]=0 , lowercase_ : int=6 , lowercase_ : Tuple=False , lowercase_ : Any=True , **lowercase_ : Any , ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Union[str, Any] = vocab_size SCREAMING_SNAKE_CASE_ : Any = context_length SCREAMING_SNAKE_CASE_ : int = hidden_size SCREAMING_SNAKE_CASE_ : int = num_hidden_layers SCREAMING_SNAKE_CASE_ : List[str] = attention_hidden_size if attention_hidden_size is not None else hidden_size SCREAMING_SNAKE_CASE_ : int = intermediate_size if intermediate_size is not None else 4 * hidden_size SCREAMING_SNAKE_CASE_ : int = layer_norm_epsilon SCREAMING_SNAKE_CASE_ : Optional[int] = rescale_every SCREAMING_SNAKE_CASE_ : Dict = use_cache SCREAMING_SNAKE_CASE_ : Dict = bos_token_id SCREAMING_SNAKE_CASE_ : Any = eos_token_id super().__init__( tie_word_embeddings=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , **lowercase_)
318
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ : Dict = logging.get_logger(__name__) UpperCAmelCase_ : List[str] = { """RWKV/rwkv-4-169m-pile""": """https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json""", """RWKV/rwkv-4-430m-pile""": """https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json""", """RWKV/rwkv-4-1b5-pile""": """https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json""", """RWKV/rwkv-4-3b-pile""": """https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json""", """RWKV/rwkv-4-7b-pile""": """https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json""", """RWKV/rwkv-4-14b-pile""": """https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json""", """RWKV/rwkv-raven-1b5""": """https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json""", """RWKV/rwkv-raven-3b""": """https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json""", """RWKV/rwkv-raven-7b""": """https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json""", """RWKV/rwkv-raven-14b""": """https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json""", } class lowerCAmelCase__ ( UpperCAmelCase__ ): '''simple docstring''' __UpperCamelCase = "rwkv" __UpperCamelCase = {"max_position_embeddings": "context_length"} def __init__( self : Union[str, Any] , lowercase_ : Any=50277 , lowercase_ : str=1024 , lowercase_ : List[str]=4096 , lowercase_ : Optional[Any]=32 , lowercase_ : Any=None , lowercase_ : Any=None , lowercase_ : List[Any]=1e-5 , lowercase_ : Union[str, Any]=0 , lowercase_ : Union[str, Any]=0 , lowercase_ : int=6 , lowercase_ : Tuple=False , lowercase_ : Any=True , **lowercase_ : Any , ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Union[str, Any] = vocab_size SCREAMING_SNAKE_CASE_ : Any = context_length SCREAMING_SNAKE_CASE_ : int = hidden_size SCREAMING_SNAKE_CASE_ : int = num_hidden_layers SCREAMING_SNAKE_CASE_ : List[str] = attention_hidden_size if attention_hidden_size is not None else hidden_size SCREAMING_SNAKE_CASE_ : int = intermediate_size if intermediate_size is not None else 4 * hidden_size SCREAMING_SNAKE_CASE_ : int = layer_norm_epsilon SCREAMING_SNAKE_CASE_ : Optional[int] = rescale_every SCREAMING_SNAKE_CASE_ : Dict = use_cache SCREAMING_SNAKE_CASE_ : Dict = bos_token_id SCREAMING_SNAKE_CASE_ : Any = eos_token_id super().__init__( tie_word_embeddings=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , **lowercase_)
318
1