code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
class _lowerCamelCase : """simple docstring""" def __init__( self , _SCREAMING_SNAKE_CASE )->Dict: '''simple docstring''' A_ : Optional[int] = arr.split(''',''' ) def _snake_case ( self )->List[Any]: '''simple docstring''' A_ : Optional[Any] = [int(self.array[0] )] * len(self.array ) A_ : List[str] = [int(self.array[0] )] * len(self.array ) for i in range(1 , len(self.array ) ): A_ : int = max( int(self.array[i] ) + sum_value[i - 1] , int(self.array[i] ) ) A_ : Optional[int] = max(sum_value[i] , rear[i - 1] ) return rear[len(self.array ) - 1] if __name__ == "__main__": UpperCamelCase = input("""please input some numbers:""") UpperCamelCase = SubArray(whole_array) UpperCamelCase = array.solve_sub_array() print(("""the results is:""", re))
186
def A ( lowercase ) -> list: '''simple docstring''' UpperCamelCase = len(lowercase ) for i in range(1 , lowercase ): UpperCamelCase = collection[i] UpperCamelCase = 0 UpperCamelCase = i - 1 while low <= high: UpperCamelCase = (low + high) // 2 if val < collection[mid]: UpperCamelCase = mid - 1 else: UpperCamelCase = mid + 1 for j in range(lowercase , lowercase , -1 ): UpperCamelCase = collection[j - 1] UpperCamelCase = val return collection if __name__ == "__main__": _UpperCAmelCase : List[Any] = input("Enter numbers separated by a comma:\n").strip() _UpperCAmelCase : Optional[int] = [int(item) for item in user_input.split(",")] print(binary_insertion_sort(unsorted))
222
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available __UpperCAmelCase : Any = {"tokenization_herbert": ["HerbertTokenizer"]} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase : Union[str, Any] = ["HerbertTokenizerFast"] if TYPE_CHECKING: from .tokenization_herbert import HerbertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_herbert_fast import HerbertTokenizerFast else: import sys __UpperCAmelCase : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
315
import warnings from ...utils import logging from .image_processing_imagegpt import ImageGPTImageProcessor __UpperCAmelCase : Optional[int] = logging.get_logger(__name__) class UpperCAmelCase_ ( _a): '''simple docstring''' def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" warnings.warn( '''The class ImageGPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use ImageGPTImageProcessor instead.''' , __SCREAMING_SNAKE_CASE , ) super().__init__(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
315
1
'''simple docstring''' import tempfile import unittest import numpy as np from diffusers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionPipeline, PNDMScheduler, ) from diffusers.utils.testing_utils import is_onnx_available, nightly, require_onnxruntime, require_torch_gpu from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class lowercase ( _a , unittest.TestCase ): """simple docstring""" _a = """hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline""" def lowerCAmelCase__ ( self , UpperCamelCase_=0 ): '''simple docstring''' UpperCamelCase__ :str = np.random.RandomState(UpperCamelCase_ ) UpperCamelCase__ :List[Any] = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :int = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) UpperCamelCase__ :Tuple = self.get_dummy_inputs() UpperCamelCase__ :Optional[Any] = pipe(**UpperCamelCase_ ).images UpperCamelCase__ :Any = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) UpperCamelCase__ :Tuple = np.array([0.65072, 0.58492, 0.48219, 0.55521, 0.53180, 0.55939, 0.50697, 0.39800, 0.46455] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :List[Any] = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) UpperCamelCase__ :List[Any] = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) UpperCamelCase__ :Dict = self.get_dummy_inputs() UpperCamelCase__ :str = pipe(**UpperCamelCase_ ).images UpperCamelCase__ :Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) UpperCamelCase__ :List[str] = np.array([0.65863, 0.59425, 0.49326, 0.56313, 0.53875, 0.56627, 0.51065, 0.39777, 0.46330] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :List[Any] = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) UpperCamelCase__ :List[str] = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) UpperCamelCase__ :List[Any] = self.get_dummy_inputs() UpperCamelCase__ :Union[str, Any] = pipe(**UpperCamelCase_ ).images UpperCamelCase__ :Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) UpperCamelCase__ :str = np.array([0.53755, 0.60786, 0.47402, 0.49488, 0.51869, 0.49819, 0.47985, 0.38957, 0.44279] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Union[str, Any] = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) UpperCamelCase__ :Optional[int] = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) UpperCamelCase__ :List[Any] = self.get_dummy_inputs() UpperCamelCase__ :int = pipe(**UpperCamelCase_ ).images UpperCamelCase__ :Any = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) UpperCamelCase__ :Any = np.array([0.53755, 0.60786, 0.47402, 0.49488, 0.51869, 0.49819, 0.47985, 0.38957, 0.44279] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Dict = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) UpperCamelCase__ :Union[str, Any] = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) UpperCamelCase__ :List[Any] = self.get_dummy_inputs() UpperCamelCase__ :List[str] = pipe(**UpperCamelCase_ ).images UpperCamelCase__ :Any = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) UpperCamelCase__ :Any = np.array([0.53817, 0.60812, 0.47384, 0.49530, 0.51894, 0.49814, 0.47984, 0.38958, 0.44271] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :int = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) UpperCamelCase__ :int = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) UpperCamelCase__ :List[Any] = self.get_dummy_inputs() UpperCamelCase__ :Optional[Any] = pipe(**UpperCamelCase_ ).images UpperCamelCase__ :List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) UpperCamelCase__ :int = np.array([0.53895, 0.60808, 0.47933, 0.49608, 0.51886, 0.49950, 0.48053, 0.38957, 0.44200] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :List[Any] = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) UpperCamelCase__ :int = self.get_dummy_inputs() UpperCamelCase__ :str = 3 * [inputs['prompt']] # forward UpperCamelCase__ :Optional[Any] = pipe(**UpperCamelCase_ ) UpperCamelCase__ :Optional[Any] = output.images[0, -3:, -3:, -1] UpperCamelCase__ :List[Any] = self.get_dummy_inputs() UpperCamelCase__ :Any = 3 * [inputs.pop('''prompt''' )] UpperCamelCase__ :Optional[int] = pipe.tokenizer( UpperCamelCase_ , padding='''max_length''' , max_length=pipe.tokenizer.model_max_length , truncation=UpperCamelCase_ , return_tensors='''np''' , ) UpperCamelCase__ :Optional[int] = text_inputs['input_ids'] UpperCamelCase__ :str = pipe.text_encoder(input_ids=text_inputs.astype(np.intaa ) )[0] UpperCamelCase__ :Tuple = prompt_embeds # forward UpperCamelCase__ :Union[str, Any] = pipe(**UpperCamelCase_ ) UpperCamelCase__ :Tuple = output.images[0, -3:, -3:, -1] assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1e-4 def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :List[str] = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) UpperCamelCase__ :Union[str, Any] = self.get_dummy_inputs() UpperCamelCase__ :Any = 3 * ['this is a negative prompt'] UpperCamelCase__ :int = negative_prompt UpperCamelCase__ :List[str] = 3 * [inputs['prompt']] # forward UpperCamelCase__ :str = pipe(**UpperCamelCase_ ) UpperCamelCase__ :Tuple = output.images[0, -3:, -3:, -1] UpperCamelCase__ :Optional[Any] = self.get_dummy_inputs() UpperCamelCase__ :int = 3 * [inputs.pop('''prompt''' )] UpperCamelCase__ :Optional[int] = [] for p in [prompt, negative_prompt]: UpperCamelCase__ :int = pipe.tokenizer( UpperCamelCase_ , padding='''max_length''' , max_length=pipe.tokenizer.model_max_length , truncation=UpperCamelCase_ , return_tensors='''np''' , ) UpperCamelCase__ :List[Any] = text_inputs['input_ids'] embeds.append(pipe.text_encoder(input_ids=text_inputs.astype(np.intaa ) )[0] ) UpperCamelCase__ :Optional[Any] = embeds # forward UpperCamelCase__ :List[str] = pipe(**UpperCamelCase_ ) UpperCamelCase__ :str = output.images[0, -3:, -3:, -1] assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1e-4 @nightly @require_onnxruntime @require_torch_gpu class lowercase ( unittest.TestCase ): """simple docstring""" @property def lowerCAmelCase__ ( self ): '''simple docstring''' return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Union[str, Any] = ort.SessionOptions() UpperCamelCase__ :str = False return options def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Dict = OnnxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''onnx''' , safety_checker=UpperCamelCase_ , feature_extractor=UpperCamelCase_ , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=UpperCamelCase_ ) UpperCamelCase__ :Tuple = 'A painting of a squirrel eating a burger' np.random.seed(0 ) UpperCamelCase__ :int = sd_pipe([prompt] , guidance_scale=6.0 , num_inference_steps=10 , output_type='''np''' ) UpperCamelCase__ :Union[str, Any] = output.images UpperCamelCase__ :Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCamelCase__ :Optional[int] = np.array([0.0452, 0.0390, 0.0087, 0.0350, 0.0617, 0.0364, 0.0544, 0.0523, 0.0720] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Union[str, Any] = DDIMScheduler.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , subfolder='''scheduler''' , revision='''onnx''' ) UpperCamelCase__ :int = OnnxStableDiffusionPipeline.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , revision='''onnx''' , scheduler=UpperCamelCase_ , safety_checker=UpperCamelCase_ , feature_extractor=UpperCamelCase_ , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=UpperCamelCase_ ) UpperCamelCase__ :Dict = 'open neural network exchange' UpperCamelCase__ :Union[str, Any] = np.random.RandomState(0 ) UpperCamelCase__ :int = sd_pipe([prompt] , guidance_scale=7.5 , num_inference_steps=10 , generator=UpperCamelCase_ , output_type='''np''' ) UpperCamelCase__ :Tuple = output.images UpperCamelCase__ :Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCamelCase__ :List[Any] = np.array([0.2867, 0.1974, 0.1481, 0.7294, 0.7251, 0.6667, 0.4194, 0.5642, 0.6486] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :int = LMSDiscreteScheduler.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , subfolder='''scheduler''' , revision='''onnx''' ) UpperCamelCase__ :Optional[int] = OnnxStableDiffusionPipeline.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , revision='''onnx''' , scheduler=UpperCamelCase_ , safety_checker=UpperCamelCase_ , feature_extractor=UpperCamelCase_ , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=UpperCamelCase_ ) UpperCamelCase__ :int = 'open neural network exchange' UpperCamelCase__ :Optional[Any] = np.random.RandomState(0 ) UpperCamelCase__ :List[str] = sd_pipe([prompt] , guidance_scale=7.5 , num_inference_steps=10 , generator=UpperCamelCase_ , output_type='''np''' ) UpperCamelCase__ :Dict = output.images UpperCamelCase__ :List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCamelCase__ :str = np.array([0.2306, 0.1959, 0.1593, 0.6549, 0.6394, 0.5408, 0.5065, 0.6010, 0.6161] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Dict = 0 def test_callback_fn(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> None: UpperCamelCase__ :int = True nonlocal number_of_steps number_of_steps += 1 if step == 0: assert latents.shape == (1, 4, 64, 64) UpperCamelCase__ :Tuple = latents[0, -3:, -3:, -1] UpperCamelCase__ :List[str] = np.array( [-0.6772, -0.3835, -1.2456, 0.1905, -1.0974, 0.6967, -1.9353, 0.0178, 1.0167] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 1e-3 elif step == 5: assert latents.shape == (1, 4, 64, 64) UpperCamelCase__ :int = latents[0, -3:, -3:, -1] UpperCamelCase__ :Optional[int] = np.array( [-0.3351, 0.2241, -0.1837, -0.2325, -0.6577, 0.3393, -0.0241, 0.5899, 1.3875] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 1e-3 UpperCamelCase__ :Any = False UpperCamelCase__ :List[str] = OnnxStableDiffusionPipeline.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , revision='''onnx''' , safety_checker=UpperCamelCase_ , feature_extractor=UpperCamelCase_ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) UpperCamelCase__ :str = 'Andromeda galaxy in a bottle' UpperCamelCase__ :Union[str, Any] = np.random.RandomState(0 ) pipe( prompt=UpperCamelCase_ , num_inference_steps=5 , guidance_scale=7.5 , generator=UpperCamelCase_ , callback=UpperCamelCase_ , callback_steps=1 , ) assert test_callback_fn.has_been_called assert number_of_steps == 6 def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :str = OnnxStableDiffusionPipeline.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , revision='''onnx''' , safety_checker=UpperCamelCase_ , feature_extractor=UpperCamelCase_ , provider=self.gpu_provider , sess_options=self.gpu_options , ) assert isinstance(UpperCamelCase_ , UpperCamelCase_ ) assert pipe.safety_checker is None UpperCamelCase__ :Union[str, Any] = pipe('''example prompt''' , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(UpperCamelCase_ ) UpperCamelCase__ :int = OnnxStableDiffusionPipeline.from_pretrained(UpperCamelCase_ ) # sanity check that the pipeline still works assert pipe.safety_checker is None UpperCamelCase__ :Optional[int] = pipe('''example prompt''' , num_inference_steps=2 ).images[0] assert image is not None
97
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert import BertTokenizer SCREAMING_SNAKE_CASE : Any = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Union[str, Any] = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} SCREAMING_SNAKE_CASE : Union[str, Any] = { "vocab_file": { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json" ), }, } SCREAMING_SNAKE_CASE : Dict = { "vocab_file": { "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json" ), }, } SCREAMING_SNAKE_CASE : str = { "vocab_file": { "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json" ), }, } SCREAMING_SNAKE_CASE : Dict = { "facebook/dpr-ctx_encoder-single-nq-base": 512, "facebook/dpr-ctx_encoder-multiset-base": 512, } SCREAMING_SNAKE_CASE : Optional[Any] = { "facebook/dpr-question_encoder-single-nq-base": 512, "facebook/dpr-question_encoder-multiset-base": 512, } SCREAMING_SNAKE_CASE : Dict = { "facebook/dpr-reader-single-nq-base": 512, "facebook/dpr-reader-multiset-base": 512, } SCREAMING_SNAKE_CASE : List[Any] = { "facebook/dpr-ctx_encoder-single-nq-base": {"do_lower_case": True}, "facebook/dpr-ctx_encoder-multiset-base": {"do_lower_case": True}, } SCREAMING_SNAKE_CASE : Dict = { "facebook/dpr-question_encoder-single-nq-base": {"do_lower_case": True}, "facebook/dpr-question_encoder-multiset-base": {"do_lower_case": True}, } SCREAMING_SNAKE_CASE : Dict = { "facebook/dpr-reader-single-nq-base": {"do_lower_case": True}, "facebook/dpr-reader-multiset-base": {"do_lower_case": True}, } class _lowerCamelCase( _a ): lowercase_ : Any = VOCAB_FILES_NAMES lowercase_ : Optional[int] = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowercase_ : str = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase_ : str = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION class _lowerCamelCase( _a ): lowercase_ : Optional[int] = VOCAB_FILES_NAMES lowercase_ : Any = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowercase_ : str = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase_ : Union[str, Any] = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION SCREAMING_SNAKE_CASE : Optional[int] = collections.namedtuple( "DPRSpanPrediction", ["span_score", "relevance_score", "doc_id", "start_index", "end_index", "text"] ) SCREAMING_SNAKE_CASE : Any = collections.namedtuple("DPRReaderOutput", ["start_logits", "end_logits", "relevance_logits"]) SCREAMING_SNAKE_CASE : str = r"\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n ```\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n ```\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `'tf'`: Return TensorFlow `tf.constant` objects.\n - `'pt'`: Return PyTorch `torch.Tensor` objects.\n - `'np'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer's default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Returns:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n " @add_start_docstrings(_a ) class _lowerCamelCase: def __call__( self, lowerCamelCase, lowerCamelCase = None, lowerCamelCase = None, lowerCamelCase = False, lowerCamelCase = False, lowerCamelCase = None, lowerCamelCase = None, lowerCamelCase = None, **lowerCamelCase, ) -> BatchEncoding: """simple docstring""" if titles is None and texts is None: return super().__call__( lowerCamelCase, padding=lowerCamelCase, truncation=lowerCamelCase, max_length=lowerCamelCase, return_tensors=lowerCamelCase, return_attention_mask=lowerCamelCase, **lowerCamelCase, ) elif titles is None or texts is None: _lowercase : Dict = titles if texts is None else texts return super().__call__( lowerCamelCase, lowerCamelCase, padding=lowerCamelCase, truncation=lowerCamelCase, max_length=lowerCamelCase, return_tensors=lowerCamelCase, return_attention_mask=lowerCamelCase, **lowerCamelCase, ) _lowercase : Union[str, Any] = titles if not isinstance(lowerCamelCase, lowerCamelCase) else [titles] _lowercase : Tuple = texts if not isinstance(lowerCamelCase, lowerCamelCase) else [texts] _lowercase : Optional[Any] = len(lowerCamelCase) _lowercase : Any = questions if not isinstance(lowerCamelCase, lowerCamelCase) else [questions] * n_passages if len(lowerCamelCase) != len(lowerCamelCase): raise ValueError( F'''There should be as many titles than texts but got {len(lowerCamelCase)} titles and {len(lowerCamelCase)} texts.''') _lowercase : Any = super().__call__(lowerCamelCase, lowerCamelCase, padding=lowerCamelCase, truncation=lowerCamelCase)['input_ids'] _lowercase : Tuple = super().__call__(lowerCamelCase, add_special_tokens=lowerCamelCase, padding=lowerCamelCase, truncation=lowerCamelCase)['input_ids'] _lowercase : int = { 'input_ids': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(lowerCamelCase, lowerCamelCase) ] } if return_attention_mask is not False: _lowercase : Optional[Any] = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id) for input_id in input_ids]) _lowercase : Union[str, Any] = attention_mask return self.pad(lowerCamelCase, padding=lowerCamelCase, max_length=lowerCamelCase, return_tensors=lowerCamelCase) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase = 16, lowerCamelCase = 64, lowerCamelCase = 4, ) -> List[DPRSpanPrediction]: """simple docstring""" _lowercase : Union[str, Any] = reader_input['input_ids'] _lowercase , _lowercase , _lowercase : Tuple = reader_output[:3] _lowercase : Tuple = len(lowerCamelCase) _lowercase : str = sorted(range(lowerCamelCase), reverse=lowerCamelCase, key=relevance_logits.__getitem__) _lowercase : List[DPRReaderOutput] = [] for doc_id in sorted_docs: _lowercase : str = list(input_ids[doc_id]) # assuming question & title information is at the beginning of the sequence _lowercase : Any = sequence_ids.index(self.sep_token_id, 2) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: _lowercase : List[Any] = sequence_ids.index(self.pad_token_id) else: _lowercase : List[str] = len(lowerCamelCase) _lowercase : Tuple = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len], end_logits=end_logits[doc_id][passage_offset:sequence_len], max_answer_length=lowerCamelCase, top_spans=lowerCamelCase, ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index], relevance_score=relevance_logits[doc_id], doc_id=lowerCamelCase, start_index=lowerCamelCase, end_index=lowerCamelCase, text=self.decode(sequence_ids[start_index : end_index + 1]), )) if len(lowerCamelCase) >= num_spans: break return nbest_spans_predictions[:num_spans] def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, ) -> List[DPRSpanPrediction]: """simple docstring""" _lowercase : str = [] for start_index, start_score in enumerate(lowerCamelCase): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length]): scores.append(((start_index, start_index + answer_length), start_score + end_score)) _lowercase : Dict = sorted(lowerCamelCase, key=lambda lowerCamelCase: x[1], reverse=lowerCamelCase) _lowercase : List[str] = [] for (start_index, end_index), score in scores: if start_index > end_index: raise ValueError(F'''Wrong span indices: [{start_index}:{end_index}]''') _lowercase : Dict = end_index - start_index + 1 if length > max_answer_length: raise ValueError(F'''Span is too long: {length} > {max_answer_length}''') if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals): continue chosen_span_intervals.append((start_index, end_index)) if len(lowerCamelCase) == top_spans: break return chosen_span_intervals @add_end_docstrings(_a ) class _lowerCamelCase( _a, _a ): lowercase_ : Union[str, Any] = VOCAB_FILES_NAMES lowercase_ : Any = READER_PRETRAINED_VOCAB_FILES_MAP lowercase_ : Dict = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase_ : Optional[int] = READER_PRETRAINED_INIT_CONFIGURATION lowercase_ : str = ["""input_ids""", """attention_mask"""]
21
0
"""simple docstring""" __A : dict[tuple[int, int, int], int] = {} def A_ ( snake_case_ : int ,snake_case_ : int ,snake_case_ : int ): '''simple docstring''' # if we are absent twice, or late 3 consecutive days, # no further prize strings are possible if late == 3 or absent == 2: return 0 # if we have no days left, and have not failed any other rules, # we have a prize string if days == 0: return 1 # No easy solution, so now we need to do the recursive calculation # First, check if the combination is already in the cache, and # if yes, return the stored value from there since we already # know the number of possible prize strings from this point on UpperCamelCase : str = (days, absent, late) if key in cache: return cache[key] # now we calculate the three possible ways that can unfold from # this point on, depending on our attendance today # 1) if we are late (but not absent), the "absent" counter stays as # it is, but the "late" counter increases by one UpperCamelCase : Dict = _calculate(days - 1 ,snake_case_ ,late + 1 ) # 2) if we are absent, the "absent" counter increases by 1, and the # "late" counter resets to 0 UpperCamelCase : Dict = _calculate(days - 1 ,absent + 1 ,0 ) # 3) if we are on time, this resets the "late" counter and keeps the # absent counter UpperCamelCase : Any = _calculate(days - 1 ,snake_case_ ,0 ) UpperCamelCase : str = state_late + state_absent + state_ontime UpperCamelCase : int = prizestrings return prizestrings def A_ ( snake_case_ : int = 3_0 ): '''simple docstring''' return _calculate(snake_case_ ,absent=0 ,late=0 ) if __name__ == "__main__": print(solution())
358
"""simple docstring""" import requests from bsa import BeautifulSoup def A_ ( snake_case_ : str = "https://www.worldometers.info/coronavirus" ): '''simple docstring''' UpperCamelCase : Any = BeautifulSoup(requests.get(snake_case_ ).text ,"""html.parser""" ) UpperCamelCase : Optional[int] = soup.findAll("""h1""" ) UpperCamelCase : List[Any] = soup.findAll("""div""" ,{"""class""": """maincounter-number"""} ) keys += soup.findAll("""span""" ,{"""class""": """panel-title"""} ) values += soup.findAll("""div""" ,{"""class""": """number-table-main"""} ) return {key.text.strip(): value.text.strip() for key, value in zip(snake_case_ ,snake_case_ )} if __name__ == "__main__": print('''\033[1m''' + '''COVID-19 Status of the World''' + '''\033[0m\n''') for key, value in world_covidaa_stats().items(): print(F'''{key}\n{value}\n''')
27
0
import os import warnings from typing import List, Optional from ...tokenization_utils_base import BatchEncoding from ...utils import logging from .configuration_rag import RagConfig lowerCAmelCase_ = logging.get_logger(__name__) class _A : def __init__( self : Optional[Any] , _A : Any , _A : Union[str, Any] ) -> Any: """simple docstring""" lowercase : Optional[Any] = question_encoder lowercase : Union[str, Any] = generator lowercase : Union[str, Any] = self.question_encoder def __a ( self : str , _A : Optional[int] ) -> Any: """simple docstring""" if os.path.isfile(_A ): raise ValueError(f"""Provided path ({save_directory}) should be a directory, not a file""" ) os.makedirs(_A , exist_ok=_A ) lowercase : Any = os.path.join(_A , '''question_encoder_tokenizer''' ) lowercase : int = os.path.join(_A , '''generator_tokenizer''' ) self.question_encoder.save_pretrained(_A ) self.generator.save_pretrained(_A ) @classmethod def __a ( cls : Any , _A : Any , **_A : Any ) -> int: """simple docstring""" from ..auto.tokenization_auto import AutoTokenizer lowercase : Dict = kwargs.pop('''config''' , _A ) if config is None: lowercase : List[str] = RagConfig.from_pretrained(_A ) lowercase : List[Any] = AutoTokenizer.from_pretrained( _A , config=config.question_encoder , subfolder='''question_encoder_tokenizer''' ) lowercase : List[Any] = AutoTokenizer.from_pretrained( _A , config=config.generator , subfolder='''generator_tokenizer''' ) return cls(question_encoder=_A , generator=_A ) def __call__( self : Optional[Any] , *_A : int , **_A : List[Any] ) -> Union[str, Any]: """simple docstring""" return self.current_tokenizer(*_A , **_A ) def __a ( self : List[str] , *_A : int , **_A : Optional[Any] ) -> List[str]: """simple docstring""" return self.generator.batch_decode(*_A , **_A ) def __a ( self : List[Any] , *_A : Tuple , **_A : Optional[Any] ) -> Optional[int]: """simple docstring""" return self.generator.decode(*_A , **_A ) def __a ( self : Tuple ) -> Union[str, Any]: """simple docstring""" lowercase : str = self.question_encoder def __a ( self : Any ) -> Any: """simple docstring""" lowercase : int = self.generator def __a ( self : Tuple , _A : List[str] , _A : Optional[List[str]] = None , _A : Optional[int] = None , _A : Optional[int] = None , _A : str = "longest" , _A : str = None , _A : bool = True , **_A : str , ) -> BatchEncoding: """simple docstring""" warnings.warn( '''`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the ''' '''regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` ''' '''context manager to prepare your targets. See the documentation of your specific tokenizer for more ''' '''details''' , _A , ) if max_length is None: lowercase : Any = self.current_tokenizer.model_max_length lowercase : Any = self( _A , add_special_tokens=_A , return_tensors=_A , max_length=_A , padding=_A , truncation=_A , **_A , ) if tgt_texts is None: return model_inputs # Process tgt_texts if max_target_length is None: lowercase : Any = self.current_tokenizer.model_max_length lowercase : str = self( text_target=_A , add_special_tokens=_A , return_tensors=_A , padding=_A , max_length=_A , truncation=_A , **_A , ) lowercase : List[Any] = labels['''input_ids'''] return model_inputs
308
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def snake_case( ) -> List[str]: '''simple docstring''' lowercase : Any = ArgumentParser('''Accelerate CLI tool''' , usage='''accelerate <command> [<args>]''' , allow_abbrev=__magic_name__ ) lowercase : Optional[Any] = parser.add_subparsers(help='''accelerate command helpers''' ) # Register commands get_config_parser(subparsers=__magic_name__ ) env_command_parser(subparsers=__magic_name__ ) launch_command_parser(subparsers=__magic_name__ ) tpu_command_parser(subparsers=__magic_name__ ) test_command_parser(subparsers=__magic_name__ ) # Let's go lowercase : Dict = parser.parse_args() if not hasattr(__magic_name__ , '''func''' ): parser.print_help() exit(1 ) # Run args.func(__magic_name__ ) if __name__ == "__main__": main()
308
1
"""simple docstring""" from graphs.minimum_spanning_tree_kruskal import kruskal def SCREAMING_SNAKE_CASE_ ( )-> List[Any]: _lowerCamelCase = 9 _lowerCamelCase = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] _lowerCamelCase = kruskal(snake_case , snake_case ) _lowerCamelCase = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] assert sorted(snake_case ) == sorted(snake_case )
354
"""simple docstring""" def SCREAMING_SNAKE_CASE_ ( snake_case : int )-> list[int]: if num <= 0: raise ValueError('Input must be a positive integer' ) _lowerCamelCase = [True] * (num + 1) _lowerCamelCase = 2 while p * p <= num: if primes[p]: for i in range(p * p , num + 1 , snake_case ): _lowerCamelCase = False p += 1 return [prime for prime in range(2 , num + 1 ) if primes[prime]] if __name__ == "__main__": import doctest doctest.testmod() A_ : Optional[int] =int(input("""Enter a positive integer: """).strip()) print(prime_sieve_eratosthenes(user_num))
80
0
from math import isqrt def __UpperCamelCase ( _A : int ) ->list[int]: """simple docstring""" lowerCamelCase_ =[True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , _A , _A ): lowerCamelCase_ =False return [i for i in range(2 , _A ) if is_prime[i]] def __UpperCamelCase ( _A : int = 10**8 ) ->int: """simple docstring""" lowerCamelCase_ =calculate_prime_numbers(max_number // 2 ) lowerCamelCase_ =0 lowerCamelCase_ =0 lowerCamelCase_ =len(_A ) - 1 while left <= right: while prime_numbers[left] * prime_numbers[right] >= max_number: right -= 1 semiprimes_count += right - left + 1 left += 1 return semiprimes_count if __name__ == "__main__": print(F"""{solution() = }""")
154
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class _SCREAMING_SNAKE_CASE ( unittest.TestCase): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=7 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=18 , _SCREAMING_SNAKE_CASE=30 , _SCREAMING_SNAKE_CASE=400 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=True , )-> Union[str, Any]: lowerCamelCase_ =size if size is not None else {"""shortest_edge""": 20} lowerCamelCase_ =crop_size if crop_size is not None else {"""height""": 18, """width""": 18} lowerCamelCase_ =parent lowerCamelCase_ =batch_size lowerCamelCase_ =num_channels lowerCamelCase_ =image_size lowerCamelCase_ =min_resolution lowerCamelCase_ =max_resolution lowerCamelCase_ =do_resize lowerCamelCase_ =size lowerCamelCase_ =do_center_crop lowerCamelCase_ =crop_size lowerCamelCase_ =do_flip_channel_order def _snake_case ( self )-> List[Any]: return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_flip_channel_order": self.do_flip_channel_order, } @require_torch @require_vision class _SCREAMING_SNAKE_CASE ( lowerCAmelCase__ , unittest.TestCase): _UpperCamelCase:Tuple = MobileViTImageProcessor if is_vision_available() else None def _snake_case ( self )-> List[str]: lowerCamelCase_ =MobileViTImageProcessingTester(self ) @property def _snake_case ( self )-> Optional[int]: return self.image_processor_tester.prepare_image_processor_dict() def _snake_case ( self )-> Any: lowerCamelCase_ =self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , """do_resize""" ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , """size""" ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , """do_center_crop""" ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , """center_crop""" ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , """do_flip_channel_order""" ) ) def _snake_case ( self )-> Optional[Any]: lowerCamelCase_ =self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 20} ) self.assertEqual(image_processor.crop_size , {"""height""": 18, """width""": 18} ) lowerCamelCase_ =self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42} ) self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84} ) def _snake_case ( self )-> Union[str, Any]: pass def _snake_case ( self )-> Dict: # Initialize image_processing lowerCamelCase_ =self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCamelCase_ =prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE , Image.Image ) # Test not batched input lowerCamelCase_ =image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched lowerCamelCase_ =image_processing(_SCREAMING_SNAKE_CASE , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def _snake_case ( self )-> str: # Initialize image_processing lowerCamelCase_ =self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCamelCase_ =prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE , numpify=_SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE , np.ndarray ) # Test not batched input lowerCamelCase_ =image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched lowerCamelCase_ =image_processing(_SCREAMING_SNAKE_CASE , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def _snake_case ( self )-> List[Any]: # Initialize image_processing lowerCamelCase_ =self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCamelCase_ =prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE , torchify=_SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE , torch.Tensor ) # Test not batched input lowerCamelCase_ =image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched lowerCamelCase_ =image_processing(_SCREAMING_SNAKE_CASE , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , )
154
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging snake_case : Optional[Any] = logging.get_logger(__name__) snake_case : int = { '''facebook/data2vec-vision-base-ft''': ( '''https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json''' ), } class snake_case_ (lowerCamelCase_ ): UpperCAmelCase__ : Optional[Any] = '''data2vec-vision''' def __init__( self :Tuple ,__snake_case :Optional[Any]=7_68 ,__snake_case :List[str]=12 ,__snake_case :Optional[int]=12 ,__snake_case :int=30_72 ,__snake_case :Dict="gelu" ,__snake_case :Any=0.0 ,__snake_case :Any=0.0 ,__snake_case :Dict=0.02 ,__snake_case :Any=1E-12 ,__snake_case :List[str]=2_24 ,__snake_case :Optional[Any]=16 ,__snake_case :List[str]=3 ,__snake_case :int=False ,__snake_case :Optional[int]=False ,__snake_case :Optional[int]=False ,__snake_case :Union[str, Any]=False ,__snake_case :int=0.1 ,__snake_case :List[str]=0.1 ,__snake_case :List[Any]=True ,__snake_case :int=[3, 5, 7, 11] ,__snake_case :Optional[Any]=[1, 2, 3, 6] ,__snake_case :List[str]=True ,__snake_case :Dict=0.4 ,__snake_case :str=2_56 ,__snake_case :Optional[int]=1 ,__snake_case :List[Any]=False ,__snake_case :Tuple=2_55 ,**__snake_case :int ,) -> str: super().__init__(**__snake_case ) a__ = hidden_size a__ = num_hidden_layers a__ = num_attention_heads a__ = intermediate_size a__ = hidden_act a__ = hidden_dropout_prob a__ = attention_probs_dropout_prob a__ = initializer_range a__ = layer_norm_eps a__ = image_size a__ = patch_size a__ = num_channels a__ = use_mask_token a__ = use_absolute_position_embeddings a__ = use_relative_position_bias a__ = use_shared_relative_position_bias a__ = layer_scale_init_value a__ = drop_path_rate a__ = use_mean_pooling # decode head attributes (semantic segmentation) a__ = out_indices a__ = pool_scales # auxiliary head attributes (semantic segmentation) a__ = use_auxiliary_head a__ = auxiliary_loss_weight a__ = auxiliary_channels a__ = auxiliary_num_convs a__ = auxiliary_concat_input a__ = semantic_loss_ignore_index class snake_case_ (lowerCamelCase_ ): UpperCAmelCase__ : str = version.parse('''1.11''' ) @property def lowerCamelCase__( self :str ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def lowerCamelCase__( self :str ) -> float: return 1E-4
109
from __future__ import annotations def __lowercase ( __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : str , __lowerCAmelCase : List[str] ): # noqa: E741 while r - l > 1: a__ = (l + r) // 2 if v[m] >= key: a__ = m else: a__ = m # noqa: E741 return r def __lowercase ( __lowerCAmelCase : list[int] ): if len(__lowerCAmelCase ) == 0: return 0 a__ = [0] * len(__lowerCAmelCase ) a__ = 1 a__ = v[0] for i in range(1 , len(__lowerCAmelCase ) ): if v[i] < tail[0]: a__ = v[i] elif v[i] > tail[length - 1]: a__ = v[i] length += 1 else: a__ = v[i] return length if __name__ == "__main__": import doctest doctest.testmod()
109
1
"""simple docstring""" from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers a = [ '''python''', '''tqdm''', '''regex''', '''requests''', '''packaging''', '''filelock''', '''numpy''', '''tokenizers''', '''huggingface-hub''', '''safetensors''', '''accelerate''', '''pyyaml''', ] for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed elif pkg == "accelerate": # must be loaded here, or else tqdm check may fail from .utils import is_accelerate_available # Maybe switch to is_torch_available in the future here so that Accelerate is hard dep of # Transformers with PyTorch if not is_accelerate_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(F'''can\'t find {pkg} in {deps.keys()}, check dependency_versions_table.py''') def _snake_case ( _snake_case : int , _snake_case : Union[str, Any]=None ) -> Tuple: '''simple docstring''' require_version(deps[pkg] , _snake_case )
315
"""simple docstring""" from ...utils import is_note_seq_available, is_transformers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .notes_encoder import SpectrogramNotesEncoder from .continous_encoder import SpectrogramContEncoder from .pipeline_spectrogram_diffusion import ( SpectrogramContEncoder, SpectrogramDiffusionPipeline, TaFilmDecoder, ) try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .midi_utils import MidiProcessor
315
1
'''simple docstring''' from __future__ import annotations import typing from collections.abc import Iterable import numpy as np lowerCamelCase : Union[str, Any] = typing.Union[Iterable[float], Iterable[int], np.ndarray] # noqa: UP007 lowerCamelCase : Any = typing.Union[np.floataa, int, float] # noqa: UP007 def _lowerCAmelCase ( _UpperCamelCase : Vector , _UpperCamelCase : Vector ) -> VectorOut: """simple docstring""" return np.sqrt(np.sum((np.asarray(_UpperCamelCase ) - np.asarray(_UpperCamelCase )) ** 2 ) ) def _lowerCAmelCase ( _UpperCamelCase : Vector , _UpperCamelCase : Vector ) -> VectorOut: """simple docstring""" return sum((va - va) ** 2 for va, va in zip(_UpperCamelCase , _UpperCamelCase ) ) ** (1 / 2) if __name__ == "__main__": def _lowerCAmelCase ( ) -> None: """simple docstring""" from timeit import timeit print('Without Numpy' ) print( timeit( 'euclidean_distance_no_np([1, 2, 3], [4, 5, 6])' , number=1_00_00 , globals=globals() , ) ) print('With Numpy' ) print( timeit( 'euclidean_distance([1, 2, 3], [4, 5, 6])' , number=1_00_00 , globals=globals() , ) ) benchmark()
114
'''simple docstring''' from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def _lowerCAmelCase ( _UpperCamelCase : int ) -> bool: """simple docstring""" _SCREAMING_SNAKE_CASE =int(number**0.5 ) return number == sq * sq def _lowerCAmelCase ( _UpperCamelCase : int , _UpperCamelCase : int , _UpperCamelCase : int , _UpperCamelCase : int , _UpperCamelCase : int , _UpperCamelCase : int ) -> tuple[int, int]: """simple docstring""" _SCREAMING_SNAKE_CASE =x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den _SCREAMING_SNAKE_CASE =x_den * y_den * z_den _SCREAMING_SNAKE_CASE =gcd(_UpperCamelCase , _UpperCamelCase ) top //= hcf bottom //= hcf return top, bottom def _lowerCAmelCase ( _UpperCamelCase : int = 35 ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE =set() _SCREAMING_SNAKE_CASE =42 _SCREAMING_SNAKE_CASE =Fraction(0 ) _SCREAMING_SNAKE_CASE =42 for x_num in range(1 , order + 1 ): for x_den in range(x_num + 1 , order + 1 ): for y_num in range(1 , order + 1 ): for y_den in range(y_num + 1 , order + 1 ): # n=1 _SCREAMING_SNAKE_CASE =x_num * y_den + x_den * y_num _SCREAMING_SNAKE_CASE =x_den * y_den _SCREAMING_SNAKE_CASE =gcd(_UpperCamelCase , _UpperCamelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _SCREAMING_SNAKE_CASE =add_three( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) unique_s.add(_UpperCamelCase ) # n=2 _SCREAMING_SNAKE_CASE =( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) _SCREAMING_SNAKE_CASE =x_den * x_den * y_den * y_den if is_sq(_UpperCamelCase ) and is_sq(_UpperCamelCase ): _SCREAMING_SNAKE_CASE =int(sqrt(_UpperCamelCase ) ) _SCREAMING_SNAKE_CASE =int(sqrt(_UpperCamelCase ) ) _SCREAMING_SNAKE_CASE =gcd(_UpperCamelCase , _UpperCamelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _SCREAMING_SNAKE_CASE =add_three( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) unique_s.add(_UpperCamelCase ) # n=-1 _SCREAMING_SNAKE_CASE =x_num * y_num _SCREAMING_SNAKE_CASE =x_den * y_num + x_num * y_den _SCREAMING_SNAKE_CASE =gcd(_UpperCamelCase , _UpperCamelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _SCREAMING_SNAKE_CASE =add_three( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) unique_s.add(_UpperCamelCase ) # n=2 _SCREAMING_SNAKE_CASE =x_num * x_num * y_num * y_num _SCREAMING_SNAKE_CASE =( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(_UpperCamelCase ) and is_sq(_UpperCamelCase ): _SCREAMING_SNAKE_CASE =int(sqrt(_UpperCamelCase ) ) _SCREAMING_SNAKE_CASE =int(sqrt(_UpperCamelCase ) ) _SCREAMING_SNAKE_CASE =gcd(_UpperCamelCase , _UpperCamelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _SCREAMING_SNAKE_CASE =add_three( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) unique_s.add(_UpperCamelCase ) for num, den in unique_s: total += Fraction(_UpperCamelCase , _UpperCamelCase ) return total.denominator + total.numerator if __name__ == "__main__": print(f'''{solution() = }''')
114
1
import re import string import numpy as np import datasets _lowercase: Tuple = '\nReturns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list.\n' _lowercase: List[str] = '\nArgs:\n predictions: List of predicted texts.\n references: List of reference texts.\n regexes_to_ignore: List, defaults to None. Regex expressions of characters to\n ignore when calculating the exact matches. Note: these regexes are removed\n from the input data before the changes based on the options below (e.g. ignore_case,\n ignore_punctuation, ignore_numbers) are applied.\n ignore_case: Boolean, defaults to False. If true, turns everything\n to lowercase so that capitalization differences are ignored.\n ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\n ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\nReturns:\n exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive.\nExamples:\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results["exact_match"], 1))\n 25.0\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results["exact_match"], 1))\n 50.0\n\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results["exact_match"], 1))\n 75.0\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True)\n >>> print(round(results["exact_match"], 1))\n 100.0\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["The cat sat on the mat.", "Theaters are great.", "It\'s like comparing oranges and apples."]\n >>> preds = ["The cat sat on the mat?", "Theaters are great.", "It\'s like comparing apples and oranges."]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results["exact_match"], 1))\n 33.3\n\n' _lowercase: Any = '\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class _lowercase ( datasets.Metric ): """simple docstring""" def UpperCamelCase_ (self ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Value("string" , id="sequence" ), } ) , reference_urls=[] , ) def UpperCamelCase_ (self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=None , lowerCamelCase_=False , lowerCamelCase_=False , lowerCamelCase_=False , ): """simple docstring""" if regexes_to_ignore is not None: for s in regexes_to_ignore: a = np.array([re.sub(__a , "" , __a ) for x in predictions] ) a = np.array([re.sub(__a , "" , __a ) for x in references] ) else: a = np.asarray(__a ) a = np.asarray(__a ) if ignore_case: a = np.char.lower(__a ) a = np.char.lower(__a ) if ignore_punctuation: a = string.punctuation.maketrans("" , "" , string.punctuation ) a = np.char.translate(__a , table=__a ) a = np.char.translate(__a , table=__a ) if ignore_numbers: a = string.digits.maketrans("" , "" , string.digits ) a = np.char.translate(__a , table=__a ) a = np.char.translate(__a , table=__a ) a = predictions == references return {"exact_match": np.mean(__a ) * 100}
227
'''simple docstring''' import requests __lowercase : Tuple = '' # <-- Put your OpenWeatherMap appid here! __lowercase : Tuple = 'https://api.openweathermap.org/data/2.5/' def lowerCamelCase (_SCREAMING_SNAKE_CASE : str = "Chicago" , _SCREAMING_SNAKE_CASE : str = APPID ): return requests.get(URL_BASE + 'weather' , params=locals() ).json() def lowerCamelCase (_SCREAMING_SNAKE_CASE : str = "Kolkata, India" , _SCREAMING_SNAKE_CASE : str = APPID ): return requests.get(URL_BASE + 'forecast' , params=locals() ).json() def lowerCamelCase (_SCREAMING_SNAKE_CASE : float = 5_5.6_8 , _SCREAMING_SNAKE_CASE : float = 1_2.5_7 , _SCREAMING_SNAKE_CASE : str = APPID ): return requests.get(URL_BASE + 'onecall' , params=locals() ).json() if __name__ == "__main__": from pprint import pprint while True: __lowercase : Dict = input('Enter a location:').strip() if location: pprint(current_weather(location)) else: break
27
0
"""simple docstring""" import numpy as np import pandas as pd from sklearn.preprocessing import MinMaxScaler from tensorflow.keras.layers import LSTM, Dense from tensorflow.keras.models import Sequential if __name__ == "__main__": UpperCAmelCase : Any = pd.read_csv("sample_data.csv", header=None) UpperCAmelCase : Union[str, Any] = df.shape[:1][0] # If you're using some other dataset input the target column UpperCAmelCase : Union[str, Any] = df.iloc[:, 1:2] UpperCAmelCase : Dict = actual_data.values.reshape(len_data, 1) UpperCAmelCase : Union[str, Any] = MinMaxScaler().fit_transform(actual_data) UpperCAmelCase : Union[str, Any] = 10 UpperCAmelCase : int = 5 UpperCAmelCase : Dict = 20 UpperCAmelCase : List[str] = len_data - periods * look_back UpperCAmelCase : Optional[Any] = actual_data[:division] UpperCAmelCase : Optional[Any] = actual_data[division - look_back :] UpperCAmelCase , UpperCAmelCase : Optional[int] = [], [] UpperCAmelCase , UpperCAmelCase : List[Any] = [], [] for i in range(0, len(train_data) - forward_days - look_back + 1): train_x.append(train_data[i : i + look_back]) train_y.append(train_data[i + look_back : i + look_back + forward_days]) for i in range(0, len(test_data) - forward_days - look_back + 1): test_x.append(test_data[i : i + look_back]) test_y.append(test_data[i + look_back : i + look_back + forward_days]) UpperCAmelCase : Dict = np.array(train_x) UpperCAmelCase : Optional[Any] = np.array(test_x) UpperCAmelCase : Tuple = np.array([list(i.ravel()) for i in train_y]) UpperCAmelCase : Any = np.array([list(i.ravel()) for i in test_y]) UpperCAmelCase : Any = Sequential() model.add(LSTM(128, input_shape=(look_back, 1), return_sequences=True)) model.add(LSTM(64, input_shape=(128, 1))) model.add(Dense(forward_days)) model.compile(loss="mean_squared_error", optimizer="adam") UpperCAmelCase : int = model.fit( x_train, y_train, epochs=150, verbose=1, shuffle=True, batch_size=4 ) UpperCAmelCase : str = model.predict(x_test)
313
"""simple docstring""" from __future__ import annotations import numpy as np def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> tuple[np.ndarray, np.ndarray]: '''simple docstring''' lowercase_ , lowercase_ = np.shape(__lowerCAmelCase ) if rows != columns: lowercase_ = ( """'table' has to be of square shaped array but got a """ F'''{rows}x{columns} array:\n{table}''' ) raise ValueError(__lowerCAmelCase ) lowercase_ = np.zeros((rows, columns) ) lowercase_ = np.zeros((rows, columns) ) for i in range(__lowerCAmelCase ): for j in range(__lowerCAmelCase ): lowercase_ = sum(lower[i][k] * upper[k][j] for k in range(__lowerCAmelCase ) ) if upper[j][j] == 0: raise ArithmeticError("""No LU decomposition exists""" ) lowercase_ = (table[i][j] - total) / upper[j][j] lowercase_ = 1 for j in range(__lowerCAmelCase , __lowerCAmelCase ): lowercase_ = sum(lower[i][k] * upper[k][j] for k in range(__lowerCAmelCase ) ) lowercase_ = table[i][j] - total return lower, upper if __name__ == "__main__": import doctest doctest.testmod()
313
1
'''simple docstring''' import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis_float32 (there's also the fix_lavis branch) # also note: to convert Vicuna checkpoints, we had to include /home/niels/python_projects/checkpoints/FastChat/vicuna-7b in lavis/configs/models/blip2/blip2_instruct_vicuna7b.yaml # same for Vicuna-13b from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipImageProcessor, InstructBlipConfig, InstructBlipForConditionalGeneration, InstructBlipProcessor, InstructBlipQFormerConfig, InstructBlipVisionConfig, LlamaConfig, LlamaTokenizerFast, TaConfig, TaTokenizerFast, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def lowerCamelCase ( ) -> List[Any]: lowercase_ : Union[str, Any] = """https://raw.githubusercontent.com/salesforce/LAVIS/main/docs/_static/Confusing-Pictures.jpg""" lowercase_ : str = Image.open(requests.get(__A , stream=__A ).raw ).convert("""RGB""" ) return image def lowerCamelCase ( UpperCAmelCase__ : Optional[int] ) -> List[str]: lowercase_ : List[str] = [] # fmt: off # vision encoder rename_keys.append(("""visual_encoder.cls_token""", """vision_model.embeddings.class_embedding""") ) rename_keys.append(("""visual_encoder.pos_embed""", """vision_model.embeddings.position_embedding""") ) rename_keys.append(("""visual_encoder.patch_embed.proj.weight""", """vision_model.embeddings.patch_embedding.weight""") ) rename_keys.append(("""visual_encoder.patch_embed.proj.bias""", """vision_model.embeddings.patch_embedding.bias""") ) rename_keys.append(("""ln_vision.weight""", """vision_model.post_layernorm.weight""") ) rename_keys.append(("""ln_vision.bias""", """vision_model.post_layernorm.bias""") ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((F'''visual_encoder.blocks.{i}.norm1.weight''', F'''vision_model.encoder.layers.{i}.layer_norm1.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm1.bias''', F'''vision_model.encoder.layers.{i}.layer_norm1.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm2.weight''', F'''vision_model.encoder.layers.{i}.layer_norm2.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm2.bias''', F'''vision_model.encoder.layers.{i}.layer_norm2.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.qkv.weight''', F'''vision_model.encoder.layers.{i}.self_attn.qkv.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.proj.weight''', F'''vision_model.encoder.layers.{i}.self_attn.projection.weight''',) ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.proj.bias''', F'''vision_model.encoder.layers.{i}.self_attn.projection.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc1.weight''', F'''vision_model.encoder.layers.{i}.mlp.fc1.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc1.bias''', F'''vision_model.encoder.layers.{i}.mlp.fc1.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc2.weight''', F'''vision_model.encoder.layers.{i}.mlp.fc2.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc2.bias''', F'''vision_model.encoder.layers.{i}.mlp.fc2.bias''') ) # QFormer rename_keys.append(("""Qformer.bert.embeddings.LayerNorm.weight""", """qformer.embeddings.layernorm.weight""") ) rename_keys.append(("""Qformer.bert.embeddings.LayerNorm.bias""", """qformer.embeddings.layernorm.bias""") ) # fmt: on return rename_keys def lowerCamelCase ( UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : int ) -> int: lowercase_ : Dict = dct.pop(__A ) lowercase_ : Optional[Any] = val def lowerCamelCase ( UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Any ) -> Optional[Any]: for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases lowercase_ : Tuple = state_dict.pop(F'''visual_encoder.blocks.{i}.attn.q_bias''' ) lowercase_ : List[Any] = state_dict.pop(F'''visual_encoder.blocks.{i}.attn.v_bias''' ) # next, set bias in the state dict lowercase_ : List[Any] = torch.cat((q_bias, torch.zeros_like(__A , requires_grad=__A ), v_bias) ) lowercase_ : Optional[Any] = qkv_bias def lowerCamelCase ( UpperCAmelCase__ : int ) -> Dict: lowercase_ : Dict = 364 if """coco""" in model_name else 224 lowercase_ : Optional[int] = InstructBlipVisionConfig(image_size=__A ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "t5-xl" in model_name: lowercase_ : List[str] = TaConfig.from_pretrained("""google/flan-t5-xl""" , dense_act_fn="""gelu""" , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: lowercase_ : int = TaConfig.from_pretrained("""google/flan-t5-xxl""" , dense_act_fn="""gelu""" , bos_token_id=1 ).to_dict() elif "vicuna-7b" in model_name: lowercase_ : Tuple = LlamaConfig.from_pretrained("""decapoda-research/llama-7b-hf""" , vocab_size=32001 ).to_dict() elif "vicuna-13b" in model_name: lowercase_ : Optional[Any] = LlamaConfig.from_pretrained("""decapoda-research/llama-13b-hf""" , vocab_size=32001 ).to_dict() else: raise ValueError("""Model name not supported""" ) # the authors add one special "[DEC]" token to the vocab of Q-Former, hence vocab size = 30522 + 1 lowercase_ : str = InstructBlipQFormerConfig(vocab_size=30523 ).to_dict() lowercase_ : str = InstructBlipConfig(vision_config=__A , text_config=__A , qformer_config=__A ) return config, image_size @torch.no_grad() def lowerCamelCase ( UpperCAmelCase__ : Dict , UpperCAmelCase__ : Dict=None , UpperCAmelCase__ : int=False ) -> Optional[int]: lowercase_ : Dict = AutoTokenizer.from_pretrained("""bert-base-uncased""" , truncation_side="""left""" ) qformer_tokenizer.add_special_tokens({"""bos_token""": """[DEC]"""} ) if "t5" in model_name: lowercase_ : Any = TaTokenizerFast.from_pretrained("""google/flan-t5-xl""" , truncation_side="""left""" ) elif "vicuna" in model_name: # the following was used in the original implementation: # tokenizer = LlamaTokenizer.from_pretrained("huggyllama/llama-7b", use_fast=False, truncation_side="left") # tokenizer.add_special_tokens({"pad_token": "[PAD]"}) # tokenizer.add_special_tokens({"bos_token": "</s>"}) # tokenizer.add_special_tokens({"eos_token": "</s>"}) # tokenizer.add_special_tokens({"unk_token": "</s>"}) lowercase_ : Tuple = LlamaTokenizerFast.from_pretrained( """huggyllama/llama-7b""" , truncation_side="""left""" , bos_token="""</s>""" , unk_token="""</s>""" ) tokenizer.add_special_tokens({"""pad_token""": """[PAD]"""} ) lowercase_ , lowercase_ : List[Any] = get_blipa_config(__A ) lowercase_ : Union[str, Any] = InstructBlipForConditionalGeneration(__A ).eval() lowercase_ : List[Any] = { """instructblip-vicuna-7b""": ("""blip2_vicuna_instruct""", """vicuna7b"""), """instructblip-vicuna-13b""": ("""blip2_vicuna_instruct""", """vicuna13b"""), """instructblip-flan-t5-xl""": ("""blip2_t5_instruct""", """flant5xl"""), """instructblip-flan-t5-xxl""": ("""blip2_t5_instruct""", """flant5xxl"""), } lowercase_ , lowercase_ : Optional[int] = model_name_to_original[model_name] # load original model print("""Loading original model...""" ) lowercase_ : List[str] = """cuda:1""" if torch.cuda.is_available() else """cpu""" lowercase_ : Optional[Any] = """cuda:2""" if torch.cuda.is_available() else """cpu""" lowercase_ , lowercase_ , lowercase_ : Optional[int] = load_model_and_preprocess( name=__A , model_type=__A , is_eval=__A , device=__A ) original_model.eval() print("""Done!""" ) # update state dict keys lowercase_ : List[Any] = original_model.state_dict() lowercase_ : Any = create_rename_keys(__A ) for src, dest in rename_keys: rename_key(__A , __A , __A ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): lowercase_ : Union[str, Any] = state_dict.pop(__A ) if key.startswith("""Qformer.bert""" ): lowercase_ : int = key.replace("""Qformer.bert""" , """qformer""" ) if "attention.self" in key: lowercase_ : int = key.replace("""self""" , """attention""" ) if "llm_proj" in key: lowercase_ : str = key.replace("""llm_proj""" , """language_projection""" ) if "t5_proj" in key: lowercase_ : Optional[Any] = key.replace("""t5_proj""" , """language_projection""" ) if key.startswith("""llm_model""" ): lowercase_ : List[str] = key.replace("""llm_model""" , """language_model""" ) if key.startswith("""t5""" ): lowercase_ : Optional[int] = key.replace("""t5""" , """language""" ) lowercase_ : Any = val # read in qv biases read_in_q_v_bias(__A , __A ) # note: weights get loaded in torch.float32 by default hf_model.load_state_dict(__A , strict=__A ) lowercase_ : str = load_demo_image() lowercase_ : str = """What is unusual about this image?""" # create processor lowercase_ : int = BlipImageProcessor( size={"""height""": image_size, """width""": image_size} , image_mean=__A , image_std=__A ) lowercase_ : Optional[Any] = InstructBlipProcessor( image_processor=__A , tokenizer=__A , qformer_tokenizer=__A , ) lowercase_ : Optional[int] = processor(images=__A , text=__A , return_tensors="""pt""" ).to(__A ) # make sure processor creates exact same pixel values lowercase_ : str = vis_processors["""eval"""](__A ).unsqueeze(0 ).to(__A ) lowercase_ : Tuple = inputs.pixel_values assert torch.allclose(original_pixel_values.to(pixel_values.device ) , __A ) original_model.to(__A ) hf_model.to(__A ) with torch.no_grad(): if "vicuna" in model_name: lowercase_ : List[str] = original_model({"""image""": original_pixel_values, """text_input""": [prompt]} ).logits lowercase_ : str = hf_model(**__A ).logits else: lowercase_ : Union[str, Any] = original_model( {"""image""": original_pixel_values, """text_input""": [prompt], """text_output""": ["""\n"""]} ).logits lowercase_ : Tuple = tokenizer("""\n""" , return_tensors="""pt""" ).input_ids.to(__A ) lowercase_ : Union[str, Any] = label_input_ids.masked_fill(label_input_ids == tokenizer.pad_token_id , -100 ) lowercase_ : Tuple = hf_model(**__A , labels=__A ).logits print("""First values of original logits:""" , original_logits[0, :3, :3] ) print("""First values of HF logits:""" , logits[0, :3, :3] ) # assert values assert original_logits.shape == logits.shape lowercase_ : Any = 1e-4 if """vicuna""" in model_name else 1e-5 assert torch.allclose(original_logits.to(logits.device ) , __A , atol=__A ) print("""Looks ok!""" ) print("""Generating with original model...""" ) lowercase_ : Optional[int] = original_model.generate({"""image""": original_pixel_values, """prompt""": prompt} , num_beams=5 ) # important: we need to cast the weights of the HF model to the appropriate type print("""Generating with HF model...""" ) lowercase_ : int = hf_model.generate( **__A , do_sample=__A , num_beams=5 , max_length=256 , min_length=1 , top_p=0.9 , repetition_penalty=1.5 , length_penalty=1.0 , temperature=1 , ) if "vicuna" in model_name: # convert output id 0 to 2 (eos_token_id) # TODO add this in the generate method? lowercase_ : List[str] = 2 print("""Original generation:""" , __A ) lowercase_ : Dict = processor.batch_decode(__A , skip_special_tokens=__A ) lowercase_ : Any = [text.strip() for text in output_text] print("""HF generation:""" , __A ) if pytorch_dump_folder_path is not None: processor.save_pretrained(__A ) hf_model.save_pretrained(__A ) if push_to_hub: processor.push_to_hub(F'''Salesforce/{model_name}''' ) hf_model.push_to_hub(F'''Salesforce/{model_name}''' ) if __name__ == "__main__": _lowercase : int = argparse.ArgumentParser() _lowercase : int = [ 'instructblip-vicuna-7b', 'instructblip-vicuna-13b', 'instructblip-flan-t5-xl', 'instructblip-flan-t5-xxl', ] parser.add_argument( "--model_name", default="instructblip-flan-t5-xl", choices=choices, type=str, help="Path to hf config.json of model to convert", ) parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument( "--push_to_hub", action="store_true", help="Whether to push the model and processor to the hub after converting", ) _lowercase : int = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
239
'''simple docstring''' from __future__ import annotations def _UpperCamelCase ( __A ) -> float: '''simple docstring''' UpperCamelCase__ = 0.00 UpperCamelCase__ = 0 for resistor in resistors: if resistor <= 0: UpperCamelCase__ = F'''Resistor at index {index} has a negative or zero value!''' raise ValueError(__A ) first_sum += 1 / float(__A ) index += 1 return 1 / first_sum def _UpperCamelCase ( __A ) -> float: '''simple docstring''' UpperCamelCase__ = 0.00 UpperCamelCase__ = 0 for resistor in resistors: sum_r += resistor if resistor < 0: UpperCamelCase__ = F'''Resistor at index {index} has a negative value!''' raise ValueError(__A ) index += 1 return sum_r if __name__ == "__main__": import doctest doctest.testmod()
80
0
"""simple docstring""" # coding=utf-8 # Copyright 2020 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import sys import transformers __A : Dict = '''3''' print('''Python version:''', sys.version) print('''transformers version:''', transformers.__version__) try: import torch print('''Torch version:''', torch.__version__) print('''Cuda available:''', torch.cuda.is_available()) print('''Cuda version:''', torch.version.cuda) print('''CuDNN version:''', torch.backends.cudnn.version()) print('''Number of GPUs available:''', torch.cuda.device_count()) print('''NCCL version:''', torch.cuda.nccl.version()) except ImportError: print('''Torch version:''', None) try: import deepspeed print('''DeepSpeed version:''', deepspeed.__version__) except ImportError: print('''DeepSpeed version:''', None) try: import tensorflow as tf print('''TensorFlow version:''', tf.__version__) print('''TF GPUs available:''', bool(tf.config.list_physical_devices('''GPU'''))) print('''Number of TF GPUs available:''', len(tf.config.list_physical_devices('''GPU'''))) except ImportError: print('''TensorFlow version:''', None)
27
"""simple docstring""" from collections.abc import Callable def A_ ( snake_case_ : Callable[[float], float] ,snake_case_ : float ,snake_case_ : float ): '''simple docstring''' UpperCamelCase : float = a UpperCamelCase : float = b if function(snake_case_ ) == 0: # one of the a or b is a root for the function return a elif function(snake_case_ ) == 0: return b elif ( function(snake_case_ ) * function(snake_case_ ) > 0 ): # if none of these are root and they are both positive or negative, # then this algorithm can't find the root raise ValueError("""could not find root in given interval.""" ) else: UpperCamelCase : float = start + (end - start) / 2.0 while abs(start - mid ) > 1_0**-7: # until precisely equals to 10^-7 if function(snake_case_ ) == 0: return mid elif function(snake_case_ ) * function(snake_case_ ) < 0: UpperCamelCase : Dict = mid else: UpperCamelCase : List[str] = mid UpperCamelCase : Tuple = start + (end - start) / 2.0 return mid def A_ ( snake_case_ : float ): '''simple docstring''' return x**3 - 2 * x - 5 if __name__ == "__main__": print(bisection(f, 1, 1000)) import doctest doctest.testmod()
27
1
"""simple docstring""" import flax.linen as nn import jax import jax.numpy as jnp class SCREAMING_SNAKE_CASE__ ( nn.Module ): __lowerCAmelCase : int __lowerCAmelCase : jnp.dtype = jnp.floataa def SCREAMING_SNAKE_CASE ( self ) -> Tuple: '''simple docstring''' UpperCAmelCase : List[str] = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self , _SCREAMING_SNAKE_CASE ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Dict = hidden_states.shape UpperCAmelCase : str = jax.image.resize( _SCREAMING_SNAKE_CASE , shape=(batch, height * 2, width * 2, channels) , method="""nearest""" , ) UpperCAmelCase : Optional[int] = self.conv(_SCREAMING_SNAKE_CASE ) return hidden_states class SCREAMING_SNAKE_CASE__ ( nn.Module ): __lowerCAmelCase : int __lowerCAmelCase : jnp.dtype = jnp.floataa def SCREAMING_SNAKE_CASE ( self ) -> List[str]: '''simple docstring''' UpperCAmelCase : Tuple = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self , _SCREAMING_SNAKE_CASE ) -> Any: '''simple docstring''' UpperCAmelCase : Any = self.conv(_SCREAMING_SNAKE_CASE ) return hidden_states class SCREAMING_SNAKE_CASE__ ( nn.Module ): __lowerCAmelCase : int __lowerCAmelCase : int = None __lowerCAmelCase : float = 0.0 __lowerCAmelCase : bool = None __lowerCAmelCase : jnp.dtype = jnp.floataa def SCREAMING_SNAKE_CASE ( self ) -> List[str]: '''simple docstring''' UpperCAmelCase : Optional[Any] = self.in_channels if self.out_channels is None else self.out_channels UpperCAmelCase : Any = nn.GroupNorm(num_groups=32 , epsilon=1E-5 ) UpperCAmelCase : Optional[Any] = nn.Conv( _SCREAMING_SNAKE_CASE , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) UpperCAmelCase : str = nn.Dense(_SCREAMING_SNAKE_CASE , dtype=self.dtype ) UpperCAmelCase : str = nn.GroupNorm(num_groups=32 , epsilon=1E-5 ) UpperCAmelCase : List[str] = nn.Dropout(self.dropout_prob ) UpperCAmelCase : str = nn.Conv( _SCREAMING_SNAKE_CASE , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) UpperCAmelCase : Tuple = self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut UpperCAmelCase : Dict = None if use_nin_shortcut: UpperCAmelCase : str = nn.Conv( _SCREAMING_SNAKE_CASE , kernel_size=(1, 1) , strides=(1, 1) , padding="""VALID""" , dtype=self.dtype , ) def __call__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=True ) -> List[Any]: '''simple docstring''' UpperCAmelCase : Tuple = hidden_states UpperCAmelCase : Dict = self.norma(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Tuple = nn.swish(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Optional[int] = self.conva(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : str = self.time_emb_proj(nn.swish(_SCREAMING_SNAKE_CASE ) ) UpperCAmelCase : Optional[int] = jnp.expand_dims(jnp.expand_dims(_SCREAMING_SNAKE_CASE , 1 ) , 1 ) UpperCAmelCase : Union[str, Any] = hidden_states + temb UpperCAmelCase : Any = self.norma(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Union[str, Any] = nn.swish(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : int = self.dropout(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCAmelCase : Tuple = self.conva(_SCREAMING_SNAKE_CASE ) if self.conv_shortcut is not None: UpperCAmelCase : Dict = self.conv_shortcut(_SCREAMING_SNAKE_CASE ) return hidden_states + residual
109
"""simple docstring""" from __future__ import annotations class SCREAMING_SNAKE_CASE__ : def __init__( self , _SCREAMING_SNAKE_CASE ) -> None: '''simple docstring''' UpperCAmelCase : Any = data UpperCAmelCase : Node | None = None UpperCAmelCase : Node | None = None def _snake_case ( UpperCamelCase : Node | None ): # In Order traversal of the tree if tree: display(tree.left ) print(tree.data ) display(tree.right ) def _snake_case ( UpperCamelCase : Node | None ): return 1 + max(depth_of_tree(tree.left ) , depth_of_tree(tree.right ) ) if tree else 0 def _snake_case ( UpperCamelCase : Node ): if not tree: return True if tree.left and tree.right: return is_full_binary_tree(tree.left ) and is_full_binary_tree(tree.right ) else: return not tree.left and not tree.right def _snake_case ( ): # Main function for testing. UpperCAmelCase : int = Node(1 ) UpperCAmelCase : Tuple = Node(2 ) UpperCAmelCase : Any = Node(3 ) UpperCAmelCase : Optional[int] = Node(4 ) UpperCAmelCase : Any = Node(5 ) UpperCAmelCase : Optional[int] = Node(6 ) UpperCAmelCase : int = Node(7 ) UpperCAmelCase : str = Node(8 ) UpperCAmelCase : str = Node(9 ) print(is_full_binary_tree(UpperCamelCase ) ) print(depth_of_tree(UpperCamelCase ) ) print("""Tree is: """ ) display(UpperCamelCase ) if __name__ == "__main__": main()
109
1
"""simple docstring""" from dataclasses import dataclass, field from typing import Optional @dataclass class lowerCAmelCase__ : '''simple docstring''' lowerCamelCase__ = field( default="""codeparrot/codeparrot""", metadata={"""help""": """Model name or path of model to be trained."""} ) lowerCamelCase__ = field( default="""./""", metadata={"""help""": """Save dir where model repo is cloned and models updates are saved to."""} ) lowerCamelCase__ = field( default="""codeparrot/codeparrot-clean-train""", metadata={"""help""": """Name or path of training dataset."""} ) lowerCamelCase__ = field( default="""codeparrot/codeparrot-clean-valid""", metadata={"""help""": """Name or path of validation dataset."""} ) lowerCamelCase__ = field(default=2, metadata={"""help""": """Batch size for training."""} ) lowerCamelCase__ = field(default=2, metadata={"""help""": """Batch size for evaluation."""} ) lowerCamelCase__ = field(default=0.1, metadata={"""help""": """Value of weight decay."""} ) lowerCamelCase__ = field( default=1_00_00, metadata={"""help""": """Size of buffer used to shuffle streaming dataset."""} ) lowerCamelCase__ = field(default=2e-4, metadata={"""help""": """Learning rate fo training."""} ) lowerCamelCase__ = field(default="""cosine""", metadata={"""help""": """Learning rate."""} ) lowerCamelCase__ = field( default=7_50, metadata={"""help""": """Number of warmup steps in the learning rate schedule."""} ) lowerCamelCase__ = field( default=16, metadata={"""help""": """Number of gradient accumulation steps."""} ) lowerCamelCase__ = field( default=lowercase, metadata={"""help""": """Use gradient checkpointing to reduce memory footprint."""} ) lowerCamelCase__ = field(default=5_00_00, metadata={"""help""": """Maximum number of training steps."""} ) lowerCamelCase__ = field( default=-1, metadata={"""help""": """Maximum number of evaluation steps. If -1 the full dataset is evaluated."""} ) lowerCamelCase__ = field(default=10_24, metadata={"""help""": """Sequence lengths used for training."""} ) lowerCamelCase__ = field(default=1, metadata={"""help""": """Training seed."""} ) lowerCamelCase__ = field( default=10_24, metadata={"""help""": """Interval to save checkpoints. Measured as number of forward passes not training steps."""}, ) lowerCamelCase__ = field( default=lowercase, metadata={"""help""": """States path if the training should continue from a checkpoint folder."""} ) lowerCamelCase__ = field(default=lowercase, metadata={"""help""": """If True the data is pretokenized."""} ) @dataclass class lowerCAmelCase__ : '''simple docstring''' lowerCamelCase__ = field( default="""codeparrot/codeparrot""", metadata={"""help""": """Model name or path of model to be evaluated."""} ) lowerCamelCase__ = field( default="""codeparrot/codeparrot-clean-valid""", metadata={"""help""": """Name or path of validation dataset."""} ) lowerCamelCase__ = field(default=2, metadata={"""help""": """Batch size used for evaluation."""} ) lowerCamelCase__ = field( default=-1, metadata={"""help""": """Maximum number of evaluation steps. If -1 the full dataset is evaluated."""} ) lowerCamelCase__ = field(default=10_24, metadata={"""help""": """Length of sequences to be evaluated."""} ) lowerCamelCase__ = field(default=1, metadata={"""help""": """Random seed used for evaluation."""} ) @dataclass class lowerCAmelCase__ : '''simple docstring''' lowerCamelCase__ = field( default="""codeparrot/codeparrot""", metadata={"""help""": """Model name or path of model to be evaluated."""} ) lowerCamelCase__ = field(default=lowercase, metadata={"""help""": """Number of workers used for code evaluation."""} ) lowerCamelCase__ = field( default=lowercase, metadata={"""help""": """The number of human-eval tasks to run. If not included all tasks are evaluated."""}, ) lowerCamelCase__ = field( default=lowercase, metadata={"""help""": """Sample from the language model's output distribution."""} ) lowerCamelCase__ = field(default=0.2, metadata={"""help""": """Sampling temperature used for generation."""} ) lowerCamelCase__ = field(default=2_56, metadata={"""help""": """Maximum number of newly generated tokens."""} ) lowerCamelCase__ = field(default=0, metadata={"""help""": """Top-k parameter used for generation."""} ) lowerCamelCase__ = field(default=0.95, metadata={"""help""": """Top-p parameter used for nucleus sampling."""} ) lowerCamelCase__ = field(default=10, metadata={"""help""": """Number of generations to run in parallel."""} ) lowerCamelCase__ = field( default=2_00, metadata={"""help""": """Number of completions to generate for each sample."""} ) lowerCamelCase__ = field(default=1, metadata={"""help""": """Random seed used for evaluation."""} ) lowerCamelCase__ = field( default="""eval_results.json""", metadata={"""help""": """Random seed used for evaluation."""} ) lowerCamelCase__ = field( default="""0""", metadata={"""help""": """Allow `code_eval` to execute Python code on machine"""} ) lowerCamelCase__ = field( default=-1, metadata={ """help""": ( """Determine which device to run the `text-generation` Pipeline on. -1 is CPU and any zero or positive""" """ number corresponds to which GPU device id to run on.""" ) }, ) @dataclass class lowerCAmelCase__ : '''simple docstring''' lowerCamelCase__ = field( default=lowercase, metadata={ """help""": """The number of CPU cores to use for parallel preprocessing. Default uses the maximum available.""" }, ) lowerCamelCase__ = field( default="""transformersbook/codeparrot""", metadata={"""help""": """Folder or name of dataset to process."""} ) lowerCamelCase__ = field( default="""codeparrot-clean""", metadata={"""help""": """Folder to save processed processed dataset."""} ) lowerCamelCase__ = field( default=10_00_00, metadata={"""help""": """Number of files to save per JSON output file."""} ) lowerCamelCase__ = field(default="""content""", metadata={"""help""": """Column containing text data to process."""} ) lowerCamelCase__ = field( default=10_00, metadata={"""help""": """Maximum line length in file, otherwise file is filtered."""} ) lowerCamelCase__ = field( default=1_00, metadata={"""help""": """Maximum mean line length in file, otherwise file is filtered."""} ) lowerCamelCase__ = field( default=0.25, metadata={"""help""": """Maximum fraction of non-alphanumeric characters, otherwise file is filtered."""} ) lowerCamelCase__ = field( default=1.5, metadata={"""help""": """Minimum character token ratio for the file, otherwise file is filtered."""} ) lowerCamelCase__ = field( default=0.7, metadata={"""help""": """Probability for filtering config, test and uncommon files."""} ) lowerCamelCase__ = field( default="""codeparrot/codeparrot""", metadata={"""help""": """Name or path to the tokenizer."""}, ) lowerCamelCase__ = field( default=lowercase, metadata={"""help""": """If True, near-duplicate samples are removed."""} ) lowerCamelCase__ = field( default=0.85, metadata={"""help""": """Jaccard threshold for near-duplicate samples."""} ) @dataclass class lowerCAmelCase__ : '''simple docstring''' lowerCamelCase__ = field( default="""gpt2""", metadata={"""help""": """Base tokenizer to build new tokenizer from."""} ) lowerCamelCase__ = field( default="""transformersbook/codeparrot-train""", metadata={"""help""": """Dataset to train tokenizer on."""} ) lowerCamelCase__ = field(default="""content""", metadata={"""help""": """Column containing text data to process."""} ) lowerCamelCase__ = field(default=20_00_00, metadata={"""help""": """Number of examples to train tokenizer on."""} ) lowerCamelCase__ = field( default=3_27_68, metadata={"""help""": """Number of examples to train the tokenizer on."""} ) lowerCamelCase__ = field(default="""codeparrot""", metadata={"""help""": """Name of new tokenizer."""} ) lowerCamelCase__ = field(default=lowercase, metadata={"""help""": """Push saved tokenizer to the hub."""} ) @dataclass class lowerCAmelCase__ : '''simple docstring''' lowerCamelCase__ = field( default="""codeparrot/codeparrot""", metadata={"""help""": """Name or path to the tokenizer."""} ) lowerCamelCase__ = field( default="""codeparrot/codeparrot-clean-train""", metadata={"""help""": """Name or path to the dataset to pretokenize."""} ) lowerCamelCase__ = field( default="""tokenized-codeparrot-train""", metadata={"""help""": """Repo name of the pretokenized data."""} ) lowerCamelCase__ = field(default=lowercase, metadata={"""help""": """Number of workers used for code evaluation."""} ) @dataclass class lowerCAmelCase__ : '''simple docstring''' lowerCamelCase__ = field( default="""gpt2-large""", metadata={"""help""": """Configuration to use for model initialization."""} ) lowerCamelCase__ = field( default="""codeparrot/codeparrot""", metadata={"""help""": """Tokenizer attached to model."""} ) lowerCamelCase__ = field(default="""codeparrot""", metadata={"""help""": """Name of the created model."""} ) lowerCamelCase__ = field(default=lowercase, metadata={"""help""": """Push saved tokenizer to the hub."""} )
356
"""simple docstring""" import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = (UnCLIPScheduler,) def A_ ( self , **lowercase ): _lowerCamelCase : Any = { 'num_train_timesteps': 1000, 'variance_type': 'fixed_small_log', 'clip_sample': True, 'clip_sample_range': 1.0, 'prediction_type': 'epsilon', } config.update(**lowercase ) return config def A_ ( self ): for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=lowercase ) def A_ ( self ): for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=lowercase ) def A_ ( self ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=lowercase ) def A_ ( self ): for clip_sample_range in [1, 5, 10, 20]: self.check_over_configs(clip_sample_range=lowercase ) def A_ ( self ): for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=lowercase ) def A_ ( self ): for time_step in [0, 500, 999]: for prev_timestep in [None, 5, 100, 250, 500, 750]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=lowercase , prev_timestep=lowercase ) def A_ ( self ): _lowerCamelCase : Optional[Any] = self.scheduler_classes[0] _lowerCamelCase : Optional[int] = self.get_scheduler_config(variance_type='fixed_small_log' ) _lowerCamelCase : str = scheduler_class(**lowercase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0000E-10 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_54_96_25 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.9_99_49_87 ) ) < 1E-5 def A_ ( self ): _lowerCamelCase : List[str] = self.scheduler_classes[0] _lowerCamelCase : Optional[Any] = self.get_scheduler_config(variance_type='learned_range' ) _lowerCamelCase : int = scheduler_class(**lowercase ) _lowerCamelCase : List[str] = 0.5 assert scheduler._get_variance(1 , predicted_variance=lowercase ) - -10.1_71_27_90 < 1E-5 assert scheduler._get_variance(487 , predicted_variance=lowercase ) - -5.7_99_80_52 < 1E-5 assert scheduler._get_variance(999 , predicted_variance=lowercase ) - -0.0_01_00_11 < 1E-5 def A_ ( self ): _lowerCamelCase : List[Any] = self.scheduler_classes[0] _lowerCamelCase : Optional[Any] = self.get_scheduler_config() _lowerCamelCase : Tuple = scheduler_class(**lowercase ) _lowerCamelCase : Union[str, Any] = scheduler.timesteps _lowerCamelCase : Any = self.dummy_model() _lowerCamelCase : Optional[Any] = self.dummy_sample_deter _lowerCamelCase : Optional[int] = torch.manual_seed(0 ) for i, t in enumerate(lowercase ): # 1. predict noise residual _lowerCamelCase : Tuple = model(lowercase , lowercase ) # 2. predict previous mean of sample x_t-1 _lowerCamelCase : List[Any] = scheduler.step(lowercase , lowercase , lowercase , generator=lowercase ).prev_sample _lowerCamelCase : Optional[int] = pred_prev_sample _lowerCamelCase : Optional[Any] = torch.sum(torch.abs(lowercase ) ) _lowerCamelCase : List[Any] = torch.mean(torch.abs(lowercase ) ) assert abs(result_sum.item() - 2_52.2_68_24_95 ) < 1E-2 assert abs(result_mean.item() - 0.3_28_47_43 ) < 1E-3 def A_ ( self ): _lowerCamelCase : Tuple = self.scheduler_classes[0] _lowerCamelCase : str = self.get_scheduler_config() _lowerCamelCase : Optional[Any] = scheduler_class(**lowercase ) scheduler.set_timesteps(25 ) _lowerCamelCase : Optional[Any] = scheduler.timesteps _lowerCamelCase : Optional[int] = self.dummy_model() _lowerCamelCase : Any = self.dummy_sample_deter _lowerCamelCase : str = torch.manual_seed(0 ) for i, t in enumerate(lowercase ): # 1. predict noise residual _lowerCamelCase : List[Any] = model(lowercase , lowercase ) if i + 1 == timesteps.shape[0]: _lowerCamelCase : Optional[int] = None else: _lowerCamelCase : List[str] = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 _lowerCamelCase : Union[str, Any] = scheduler.step( lowercase , lowercase , lowercase , prev_timestep=lowercase , generator=lowercase ).prev_sample _lowerCamelCase : List[Any] = pred_prev_sample _lowerCamelCase : Optional[Any] = torch.sum(torch.abs(lowercase ) ) _lowerCamelCase : List[str] = torch.mean(torch.abs(lowercase ) ) assert abs(result_sum.item() - 2_58.2_04_49_83 ) < 1E-2 assert abs(result_mean.item() - 0.3_36_20_38 ) < 1E-3 def A_ ( self ): pass def A_ ( self ): pass
12
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available a : Any = { "configuration_bloom": ["BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP", "BloomConfig", "BloomOnnxConfig"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Tuple = ["BloomTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Dict = [ "BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST", "BloomForCausalLM", "BloomModel", "BloomPreTrainedModel", "BloomForSequenceClassification", "BloomForTokenClassification", "BloomForQuestionAnswering", ] if TYPE_CHECKING: from .configuration_bloom import BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP, BloomConfig, BloomOnnxConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bloom_fast import BloomTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bloom import ( BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST, BloomForCausalLM, BloomForQuestionAnswering, BloomForSequenceClassification, BloomForTokenClassification, BloomModel, BloomPreTrainedModel, ) else: import sys a : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
114
import os import tempfile import unittest from transformers import NezhaConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, ) from transformers.models.nezha.modeling_nezha import NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST class a : """simple docstring""" def __init__( self : List[Any] , __lowercase : List[Any] , __lowercase : Any=13 , __lowercase : str=7 , __lowercase : Union[str, Any]=True , __lowercase : Any=True , __lowercase : int=True , __lowercase : Optional[int]=True , __lowercase : List[str]=99 , __lowercase : str=32 , __lowercase : Dict=5 , __lowercase : List[str]=4 , __lowercase : Dict=37 , __lowercase : Optional[int]="gelu" , __lowercase : int=0.1 , __lowercase : List[Any]=0.1 , __lowercase : Tuple=128 , __lowercase : Union[str, Any]=32 , __lowercase : str=16 , __lowercase : List[str]=2 , __lowercase : Optional[int]=0.02 , __lowercase : Any=3 , __lowercase : Any=4 , __lowercase : Optional[Any]=None , ) -> Any: __UpperCAmelCase : Optional[Any] = parent __UpperCAmelCase : Optional[int] = batch_size __UpperCAmelCase : int = seq_length __UpperCAmelCase : Optional[Any] = is_training __UpperCAmelCase : int = use_input_mask __UpperCAmelCase : Tuple = use_token_type_ids __UpperCAmelCase : List[str] = use_labels __UpperCAmelCase : List[str] = vocab_size __UpperCAmelCase : Any = hidden_size __UpperCAmelCase : Any = num_hidden_layers __UpperCAmelCase : List[Any] = num_attention_heads __UpperCAmelCase : List[str] = intermediate_size __UpperCAmelCase : Tuple = hidden_act __UpperCAmelCase : Tuple = hidden_dropout_prob __UpperCAmelCase : Tuple = attention_probs_dropout_prob __UpperCAmelCase : List[Any] = max_position_embeddings __UpperCAmelCase : Dict = type_vocab_size __UpperCAmelCase : int = type_sequence_label_size __UpperCAmelCase : Union[str, Any] = initializer_range __UpperCAmelCase : List[Any] = num_labels __UpperCAmelCase : Optional[int] = num_choices __UpperCAmelCase : Any = scope def UpperCAmelCase ( self : Optional[Any] ) -> List[Any]: __UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase : Any = None if self.use_input_mask: __UpperCAmelCase : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCAmelCase : Any = None if self.use_token_type_ids: __UpperCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __UpperCAmelCase : Optional[Any] = None __UpperCAmelCase : Dict = None __UpperCAmelCase : List[str] = None if self.use_labels: __UpperCAmelCase : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCAmelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCAmelCase : int = ids_tensor([self.batch_size] , self.num_choices ) __UpperCAmelCase : str = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase ( self : str ) -> str: return NezhaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__lowercase , initializer_range=self.initializer_range , ) def UpperCAmelCase ( self : int ) -> Optional[Any]: ( ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ) : List[str] = self.prepare_config_and_inputs() __UpperCAmelCase : str = True __UpperCAmelCase : Union[str, Any] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __UpperCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def UpperCAmelCase ( self : str , __lowercase : Union[str, Any] , __lowercase : str , __lowercase : Optional[int] , __lowercase : Dict , __lowercase : Union[str, Any] , __lowercase : str , __lowercase : int ) -> Any: __UpperCAmelCase : Union[str, Any] = NezhaModel(config=__lowercase ) model.to(__lowercase ) model.eval() __UpperCAmelCase : int = model(__lowercase , attention_mask=__lowercase , token_type_ids=__lowercase ) __UpperCAmelCase : Optional[Any] = model(__lowercase , token_type_ids=__lowercase ) __UpperCAmelCase : List[Any] = model(__lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCAmelCase ( self : Optional[int] , __lowercase : Union[str, Any] , __lowercase : Optional[int] , __lowercase : Dict , __lowercase : Optional[int] , __lowercase : Any , __lowercase : str , __lowercase : Tuple , __lowercase : Optional[Any] , __lowercase : Tuple , ) -> Optional[int]: __UpperCAmelCase : List[Any] = True __UpperCAmelCase : Optional[Any] = NezhaModel(__lowercase ) model.to(__lowercase ) model.eval() __UpperCAmelCase : List[Any] = model( __lowercase , attention_mask=__lowercase , token_type_ids=__lowercase , encoder_hidden_states=__lowercase , encoder_attention_mask=__lowercase , ) __UpperCAmelCase : Optional[Any] = model( __lowercase , attention_mask=__lowercase , token_type_ids=__lowercase , encoder_hidden_states=__lowercase , ) __UpperCAmelCase : List[str] = model(__lowercase , attention_mask=__lowercase , token_type_ids=__lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCAmelCase ( self : Any , __lowercase : int , __lowercase : str , __lowercase : Dict , __lowercase : Union[str, Any] , __lowercase : Tuple , __lowercase : Optional[int] , __lowercase : Optional[int] ) -> Optional[int]: __UpperCAmelCase : Optional[int] = NezhaForMaskedLM(config=__lowercase ) model.to(__lowercase ) model.eval() __UpperCAmelCase : Optional[int] = model(__lowercase , attention_mask=__lowercase , token_type_ids=__lowercase , labels=__lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase ( self : Dict , __lowercase : str , __lowercase : Optional[Any] , __lowercase : int , __lowercase : List[str] , __lowercase : Dict , __lowercase : str , __lowercase : str ) -> Dict: __UpperCAmelCase : Optional[int] = NezhaForNextSentencePrediction(config=__lowercase ) model.to(__lowercase ) model.eval() __UpperCAmelCase : Union[str, Any] = model( __lowercase , attention_mask=__lowercase , token_type_ids=__lowercase , labels=__lowercase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def UpperCAmelCase ( self : Tuple , __lowercase : Any , __lowercase : Dict , __lowercase : Optional[int] , __lowercase : Tuple , __lowercase : Optional[int] , __lowercase : Optional[int] , __lowercase : List[str] ) -> int: __UpperCAmelCase : Optional[Any] = NezhaForPreTraining(config=__lowercase ) model.to(__lowercase ) model.eval() __UpperCAmelCase : int = model( __lowercase , attention_mask=__lowercase , token_type_ids=__lowercase , labels=__lowercase , next_sentence_label=__lowercase , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def UpperCAmelCase ( self : Tuple , __lowercase : List[str] , __lowercase : Any , __lowercase : Tuple , __lowercase : Optional[Any] , __lowercase : Dict , __lowercase : List[Any] , __lowercase : Dict ) -> List[Any]: __UpperCAmelCase : Optional[Any] = NezhaForQuestionAnswering(config=__lowercase ) model.to(__lowercase ) model.eval() __UpperCAmelCase : Any = model( __lowercase , attention_mask=__lowercase , token_type_ids=__lowercase , start_positions=__lowercase , end_positions=__lowercase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCAmelCase ( self : Tuple , __lowercase : Dict , __lowercase : Any , __lowercase : Any , __lowercase : Union[str, Any] , __lowercase : int , __lowercase : Dict , __lowercase : List[Any] ) -> Optional[Any]: __UpperCAmelCase : Optional[int] = self.num_labels __UpperCAmelCase : Union[str, Any] = NezhaForSequenceClassification(__lowercase ) model.to(__lowercase ) model.eval() __UpperCAmelCase : Optional[Any] = model(__lowercase , attention_mask=__lowercase , token_type_ids=__lowercase , labels=__lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase ( self : Tuple , __lowercase : List[Any] , __lowercase : Union[str, Any] , __lowercase : str , __lowercase : List[Any] , __lowercase : List[str] , __lowercase : Dict , __lowercase : Dict ) -> str: __UpperCAmelCase : Union[str, Any] = self.num_labels __UpperCAmelCase : Dict = NezhaForTokenClassification(config=__lowercase ) model.to(__lowercase ) model.eval() __UpperCAmelCase : Dict = model(__lowercase , attention_mask=__lowercase , token_type_ids=__lowercase , labels=__lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase ( self : Tuple , __lowercase : Any , __lowercase : List[Any] , __lowercase : Dict , __lowercase : Tuple , __lowercase : List[Any] , __lowercase : Any , __lowercase : int ) -> Optional[int]: __UpperCAmelCase : List[str] = self.num_choices __UpperCAmelCase : int = NezhaForMultipleChoice(config=__lowercase ) model.to(__lowercase ) model.eval() __UpperCAmelCase : List[str] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCAmelCase : Tuple = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCAmelCase : int = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCAmelCase : Tuple = model( __lowercase , attention_mask=__lowercase , token_type_ids=__lowercase , labels=__lowercase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCAmelCase ( self : Dict ) -> List[Any]: __UpperCAmelCase : Optional[int] = self.prepare_config_and_inputs() ( ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ) : Tuple = config_and_inputs __UpperCAmelCase : Optional[Any] = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class a ( lowercase__ , lowercase__ , lowercase__ , unittest.TestCase ): """simple docstring""" a : Union[str, Any] = ( ( NezhaModel, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, ) if is_torch_available() else () ) a : Tuple = ( { 'feature-extraction': NezhaModel, 'fill-mask': NezhaForMaskedLM, 'question-answering': NezhaForQuestionAnswering, 'text-classification': NezhaForSequenceClassification, 'token-classification': NezhaForTokenClassification, 'zero-shot': NezhaForSequenceClassification, } if is_torch_available() else {} ) a : Dict = True def UpperCAmelCase ( self : Optional[int] , __lowercase : str , __lowercase : Dict , __lowercase : int=False ) -> Dict: __UpperCAmelCase : Optional[Any] = super()._prepare_for_class(__lowercase , __lowercase , return_labels=__lowercase ) if return_labels: if model_class in get_values(__lowercase ): __UpperCAmelCase : int = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=__lowercase ) __UpperCAmelCase : int = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__lowercase ) return inputs_dict def UpperCAmelCase ( self : Any ) -> int: __UpperCAmelCase : Tuple = NezhaModelTester(self ) __UpperCAmelCase : List[Any] = ConfigTester(self , config_class=__lowercase , hidden_size=37 ) def UpperCAmelCase ( self : Dict ) -> List[str]: self.config_tester.run_common_tests() def UpperCAmelCase ( self : str ) -> List[Any]: __UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowercase ) def UpperCAmelCase ( self : Optional[Any] ) -> Tuple: __UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*__lowercase ) def UpperCAmelCase ( self : int ) -> str: # This regression test was failing with PyTorch < 1.3 ( ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ) : Tuple = self.model_tester.prepare_config_and_inputs_for_decoder() __UpperCAmelCase : int = None self.model_tester.create_and_check_model_as_decoder( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , ) def UpperCAmelCase ( self : Dict ) -> Union[str, Any]: __UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__lowercase ) def UpperCAmelCase ( self : int ) -> Dict: __UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__lowercase ) def UpperCAmelCase ( self : List[str] ) -> List[Any]: __UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_next_sequence_prediction(*__lowercase ) def UpperCAmelCase ( self : Optional[int] ) -> Optional[int]: __UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*__lowercase ) def UpperCAmelCase ( self : int ) -> Dict: __UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__lowercase ) def UpperCAmelCase ( self : List[str] ) -> str: __UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__lowercase ) def UpperCAmelCase ( self : Optional[Any] ) -> str: __UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__lowercase ) @slow def UpperCAmelCase ( self : str ) -> Any: for model_name in NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase : int = NezhaModel.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) @slow @require_torch_gpu def UpperCAmelCase ( self : Union[str, Any] ) -> List[Any]: __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # NezhaForMultipleChoice behaves incorrectly in JIT environments. if model_class == NezhaForMultipleChoice: return __UpperCAmelCase : Optional[Any] = True __UpperCAmelCase : Dict = model_class(config=__lowercase ) __UpperCAmelCase : Union[str, Any] = self._prepare_for_class(__lowercase , __lowercase ) __UpperCAmelCase : Union[str, Any] = torch.jit.trace( __lowercase , (inputs_dict["""input_ids"""].to("""cpu""" ), inputs_dict["""attention_mask"""].to("""cpu""" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(__lowercase , os.path.join(__lowercase , """bert.pt""" ) ) __UpperCAmelCase : Optional[int] = torch.jit.load(os.path.join(__lowercase , """bert.pt""" ) , map_location=__lowercase ) loaded(inputs_dict["""input_ids"""].to(__lowercase ) , inputs_dict["""attention_mask"""].to(__lowercase ) ) @require_torch class a ( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase ( self : Any ) -> Optional[Any]: __UpperCAmelCase : Tuple = NezhaModel.from_pretrained("""sijunhe/nezha-cn-base""" ) __UpperCAmelCase : List[Any] = torch.tensor([[0, 1, 2, 3, 4, 5]] ) __UpperCAmelCase : Any = torch.tensor([[0, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __UpperCAmelCase : Optional[Any] = model(__lowercase , attention_mask=__lowercase )[0] __UpperCAmelCase : Dict = torch.Size((1, 6, 768) ) self.assertEqual(output.shape , __lowercase ) __UpperCAmelCase : Any = torch.tensor([[[0.0_685, 0.2_441, 0.1_102], [0.0_600, 0.1_906, 0.1_349], [0.0_221, 0.0_819, 0.0_586]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , __lowercase , atol=1e-4 ) ) @slow def UpperCAmelCase ( self : str ) -> List[str]: __UpperCAmelCase : int = NezhaForMaskedLM.from_pretrained("""sijunhe/nezha-cn-base""" ) __UpperCAmelCase : Tuple = torch.tensor([[0, 1, 2, 3, 4, 5]] ) __UpperCAmelCase : Any = torch.tensor([[1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __UpperCAmelCase : Dict = model(__lowercase , attention_mask=__lowercase )[0] __UpperCAmelCase : Union[str, Any] = torch.Size((1, 6, 21128) ) self.assertEqual(output.shape , __lowercase ) __UpperCAmelCase : int = torch.tensor( [[-2.7_939, -1.7_902, -2.2_189], [-2.8_585, -1.8_908, -2.3_723], [-2.6_499, -1.7_750, -2.2_558]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , __lowercase , atol=1e-4 ) )
114
1
import itertools import os import random import tempfile import unittest import numpy as np from transformers import TvltFeatureExtractor, is_datasets_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch if is_datasets_available(): from datasets import load_dataset SCREAMING_SNAKE_CASE__ : List[Any] = random.Random() def __magic_name__ ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : int=1.0 , __lowerCAmelCase : Dict=None , __lowerCAmelCase : Union[str, Any]=None ) -> Tuple: if rng is None: __lowerCamelCase = global_rng __lowerCamelCase = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class lowerCAmelCase__ ( unittest.TestCase ): def __init__( self : str , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[int]=7 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=4_00 , SCREAMING_SNAKE_CASE__ : int=20_00 , SCREAMING_SNAKE_CASE__ : Any=20_48 , SCREAMING_SNAKE_CASE__ : List[str]=1_28 , SCREAMING_SNAKE_CASE__ : Optional[Any]=1 , SCREAMING_SNAKE_CASE__ : str=5_12 , SCREAMING_SNAKE_CASE__ : List[str]=30 , SCREAMING_SNAKE_CASE__ : Optional[Any]=4_41_00 , ) -> List[Any]: __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = min_seq_length __lowerCamelCase = max_seq_length __lowerCamelCase = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) __lowerCamelCase = spectrogram_length __lowerCamelCase = feature_size __lowerCamelCase = num_audio_channels __lowerCamelCase = hop_length __lowerCamelCase = chunk_length __lowerCamelCase = sampling_rate def __A ( self : Union[str, Any] ) -> Tuple: return { "spectrogram_length": self.spectrogram_length, "feature_size": self.feature_size, "num_audio_channels": self.num_audio_channels, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "sampling_rate": self.sampling_rate, } def __A ( self : str , SCREAMING_SNAKE_CASE__ : Tuple=False , SCREAMING_SNAKE_CASE__ : Any=False ) -> int: def _flatten(SCREAMING_SNAKE_CASE__ : Union[str, Any] ): return list(itertools.chain(*SCREAMING_SNAKE_CASE__ ) ) if equal_length: __lowerCamelCase = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size __lowerCamelCase = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: __lowerCamelCase = [np.asarray(SCREAMING_SNAKE_CASE__ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class lowerCAmelCase__ ( __lowercase , unittest.TestCase ): a__ : List[Any] = TvltFeatureExtractor def __A ( self : Dict ) -> List[Any]: __lowerCamelCase = TvltFeatureExtractionTester(self ) def __A ( self : Optional[int] ) -> Optional[int]: __lowerCamelCase = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , '''spectrogram_length''' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , '''feature_size''' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , '''num_audio_channels''' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , '''hop_length''' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , '''chunk_length''' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , '''sampling_rate''' ) ) def __A ( self : Optional[Any] ) -> str: __lowerCamelCase = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __lowerCamelCase = feat_extract_first.save_pretrained(SCREAMING_SNAKE_CASE__ )[0] check_json_file_has_correct_format(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = self.feature_extraction_class.from_pretrained(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = feat_extract_first.to_dict() __lowerCamelCase = feat_extract_second.to_dict() __lowerCamelCase = dict_first.pop('''mel_filters''' ) __lowerCamelCase = dict_second.pop('''mel_filters''' ) self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) self.assertEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def __A ( self : Union[str, Any] ) -> Tuple: __lowerCamelCase = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __lowerCamelCase = os.path.join(SCREAMING_SNAKE_CASE__ , '''feat_extract.json''' ) feat_extract_first.to_json_file(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = self.feature_extraction_class.from_json_file(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = feat_extract_first.to_dict() __lowerCamelCase = feat_extract_second.to_dict() __lowerCamelCase = dict_first.pop('''mel_filters''' ) __lowerCamelCase = dict_second.pop('''mel_filters''' ) self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) self.assertEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def __A ( self : List[str] ) -> int: # Initialize feature_extractor __lowerCamelCase = self.feature_extraction_class(**self.feat_extract_dict ) # create three inputs of length 800, 1000, and 1200 __lowerCamelCase = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] __lowerCamelCase = [np.asarray(SCREAMING_SNAKE_CASE__ ) for speech_input in speech_inputs] # Test not batched input __lowerCamelCase = feature_extractor(np_speech_inputs[0] , return_tensors='''np''' , sampling_rate=4_41_00 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test batched __lowerCamelCase = feature_extractor(SCREAMING_SNAKE_CASE__ , return_tensors='''np''' , sampling_rate=4_41_00 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test audio masking __lowerCamelCase = feature_extractor( SCREAMING_SNAKE_CASE__ , return_tensors='''np''' , sampling_rate=4_41_00 , mask_audio=SCREAMING_SNAKE_CASE__ ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test 2-D numpy arrays are batched. __lowerCamelCase = [floats_list((1, x) )[0] for x in (8_00, 8_00, 8_00)] __lowerCamelCase = np.asarray(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = feature_extractor(SCREAMING_SNAKE_CASE__ , return_tensors='''np''' , sampling_rate=4_41_00 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) def __A ( self : str , SCREAMING_SNAKE_CASE__ : str ) -> Tuple: __lowerCamelCase = load_dataset('''hf-internal-testing/librispeech_asr_dummy''' , '''clean''' , split='''validation''' ) # automatic decoding with librispeech __lowerCamelCase = ds.sort('''id''' ).select(range(SCREAMING_SNAKE_CASE__ ) )[:num_samples]['''audio'''] return [x["array"] for x in speech_samples] def __A ( self : int ) -> Union[str, Any]: __lowerCamelCase = self._load_datasamples(1 ) __lowerCamelCase = TvltFeatureExtractor() __lowerCamelCase = feature_extractor(SCREAMING_SNAKE_CASE__ , return_tensors='''pt''' ).audio_values self.assertEquals(audio_values.shape , (1, 1, 1_92, 1_28) ) __lowerCamelCase = torch.tensor([[-0.3032, -0.2708], [-0.4434, -0.4007]] ) self.assertTrue(torch.allclose(audio_values[0, 0, :2, :2] , SCREAMING_SNAKE_CASE__ , atol=1e-4 ) )
339
from __future__ import annotations def __magic_name__ ( __lowerCAmelCase : list[int] ) -> bool: return len(set(__lowerCAmelCase ) ) == len(__lowerCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod()
339
1
import logging import os import sys from dataclasses import dataclass, field from typing import Optional import evaluate import numpy as np import torch from datasets import load_dataset from PIL import Image from torchvision.transforms import ( CenterCrop, Compose, Normalize, RandomHorizontalFlip, RandomResizedCrop, Resize, ToTensor, ) import transformers from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForImageClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version a__ : str = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') require_version('''datasets>=1.8.0''', '''To fix: pip install -r examples/pytorch/image-classification/requirements.txt''') a__ : List[Any] = list(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING.keys()) a__ : List[str] = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) def UpperCAmelCase_( a__ ): """simple docstring""" with open(a__ , '''rb''' ) as f: SCREAMING_SNAKE_CASE : Dict = Image.open(a__ ) return im.convert('''RGB''' ) @dataclass class a_ : """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[str] = field( default=a__ , metadata={ 'help': 'Name of a dataset from the hub (could be your own, possibly private dataset hosted on the hub).' } , ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default=a__ , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} ) __SCREAMING_SNAKE_CASE : Optional[str] = field(default=a__ , metadata={'help': 'A folder containing the training data.'} ) __SCREAMING_SNAKE_CASE : Optional[str] = field(default=a__ , metadata={'help': 'A folder containing the validation data.'} ) __SCREAMING_SNAKE_CASE : Optional[float] = field( default=0.1_5 , metadata={'help': 'Percent to split off of train for validation.'} ) __SCREAMING_SNAKE_CASE : Optional[int] = field( default=a__ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) __SCREAMING_SNAKE_CASE : Optional[int] = field( default=a__ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) def __lowerCAmelCase ( self ) ->Tuple: if self.dataset_name is None and (self.train_dir is None and self.validation_dir is None): raise ValueError( '''You must specify either a dataset name from the hub or a train and/or validation directory.''' ) @dataclass class a_ : """simple docstring""" __SCREAMING_SNAKE_CASE : str = field( default='google/vit-base-patch16-224-in21k' , metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} , ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default=a__ , metadata={'help': 'If training from scratch, pass a model type from the list: ' + ', '.join(a__ )} , ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default=a__ , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default=a__ , metadata={'help': 'Where do you want to store the pretrained models downloaded from s3'} ) __SCREAMING_SNAKE_CASE : str = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) __SCREAMING_SNAKE_CASE : str = field(default=a__ , metadata={'help': 'Name or path of preprocessor config.'} ) __SCREAMING_SNAKE_CASE : bool = field( default=a__ , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) __SCREAMING_SNAKE_CASE : bool = field( default=a__ , metadata={'help': 'Will enable to load a pretrained model whose head dimensions are different.'} , ) def UpperCAmelCase_( a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = torch.stack([example['''pixel_values'''] for example in examples] ) SCREAMING_SNAKE_CASE : Dict = torch.tensor([example['''labels'''] for example in examples] ) return {"pixel_values": pixel_values, "labels": labels} def UpperCAmelCase_( ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('''run_image_classification''' , a__ , a__ ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() SCREAMING_SNAKE_CASE : Any = training_args.get_process_log_level() logger.setLevel(a__ ) transformers.utils.logging.set_verbosity(a__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. SCREAMING_SNAKE_CASE : List[Any] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: SCREAMING_SNAKE_CASE : int = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Set seed before initializing model. set_seed(training_args.seed ) # Initialize our dataset and prepare it for the 'image-classification' task. if data_args.dataset_name is not None: SCREAMING_SNAKE_CASE : int = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir , task='''image-classification''' , use_auth_token=True if model_args.use_auth_token else None , ) else: SCREAMING_SNAKE_CASE : Any = {} if data_args.train_dir is not None: SCREAMING_SNAKE_CASE : int = os.path.join(data_args.train_dir , '''**''' ) if data_args.validation_dir is not None: SCREAMING_SNAKE_CASE : List[str] = os.path.join(data_args.validation_dir , '''**''' ) SCREAMING_SNAKE_CASE : Tuple = load_dataset( '''imagefolder''' , data_files=a__ , cache_dir=model_args.cache_dir , task='''image-classification''' , ) # If we don't have a validation split, split off a percentage of train as validation. SCREAMING_SNAKE_CASE : Dict = None if '''validation''' in dataset.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , a__ ) and data_args.train_val_split > 0.0: SCREAMING_SNAKE_CASE : Any = dataset['''train'''].train_test_split(data_args.train_val_split ) SCREAMING_SNAKE_CASE : Any = split['''train'''] SCREAMING_SNAKE_CASE : Union[str, Any] = split['''test'''] # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. SCREAMING_SNAKE_CASE : Dict = dataset['''train'''].features['''labels'''].names SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = {}, {} for i, label in enumerate(a__ ): SCREAMING_SNAKE_CASE : List[Any] = str(a__ ) SCREAMING_SNAKE_CASE : Tuple = label # Load the accuracy metric from the datasets package SCREAMING_SNAKE_CASE : Union[str, Any] = evaluate.load('''accuracy''' ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(a__ ): return metric.compute(predictions=np.argmax(p.predictions , axis=1 ) , references=p.label_ids ) SCREAMING_SNAKE_CASE : int = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path , num_labels=len(a__ ) , labelaid=a__ , idalabel=a__ , finetuning_task='''image-classification''' , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) SCREAMING_SNAKE_CASE : Any = AutoModelForImageClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=a__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) SCREAMING_SNAKE_CASE : Optional[int] = AutoImageProcessor.from_pretrained( model_args.image_processor_name or model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Define torchvision transforms to be applied to each image. if "shortest_edge" in image_processor.size: SCREAMING_SNAKE_CASE : List[str] = image_processor.size['''shortest_edge'''] else: SCREAMING_SNAKE_CASE : Union[str, Any] = (image_processor.size['''height'''], image_processor.size['''width''']) SCREAMING_SNAKE_CASE : Optional[Any] = Normalize(mean=image_processor.image_mean , std=image_processor.image_std ) SCREAMING_SNAKE_CASE : Tuple = Compose( [ RandomResizedCrop(a__ ), RandomHorizontalFlip(), ToTensor(), normalize, ] ) SCREAMING_SNAKE_CASE : int = Compose( [ Resize(a__ ), CenterCrop(a__ ), ToTensor(), normalize, ] ) def train_transforms(a__ ): SCREAMING_SNAKE_CASE : Dict = [ _train_transforms(pil_img.convert('''RGB''' ) ) for pil_img in example_batch['''image'''] ] return example_batch def val_transforms(a__ ): SCREAMING_SNAKE_CASE : List[str] = [_val_transforms(pil_img.convert('''RGB''' ) ) for pil_img in example_batch['''image''']] return example_batch if training_args.do_train: if "train" not in dataset: raise ValueError('''--do_train requires a train dataset''' ) if data_args.max_train_samples is not None: SCREAMING_SNAKE_CASE : Optional[int] = ( dataset['''train'''].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms dataset["train"].set_transform(a__ ) if training_args.do_eval: if "validation" not in dataset: raise ValueError('''--do_eval requires a validation dataset''' ) if data_args.max_eval_samples is not None: SCREAMING_SNAKE_CASE : List[str] = ( dataset['''validation'''].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms dataset["validation"].set_transform(a__ ) # Initalize our trainer SCREAMING_SNAKE_CASE : Dict = Trainer( model=a__ , args=a__ , train_dataset=dataset['''train'''] if training_args.do_train else None , eval_dataset=dataset['''validation'''] if training_args.do_eval else None , compute_metrics=a__ , tokenizer=a__ , data_collator=a__ , ) # Training if training_args.do_train: SCREAMING_SNAKE_CASE : List[Any] = None if training_args.resume_from_checkpoint is not None: SCREAMING_SNAKE_CASE : Dict = training_args.resume_from_checkpoint elif last_checkpoint is not None: SCREAMING_SNAKE_CASE : str = last_checkpoint SCREAMING_SNAKE_CASE : Optional[Any] = trainer.train(resume_from_checkpoint=a__ ) trainer.save_model() trainer.log_metrics('''train''' , train_result.metrics ) trainer.save_metrics('''train''' , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: SCREAMING_SNAKE_CASE : Any = trainer.evaluate() trainer.log_metrics('''eval''' , a__ ) trainer.save_metrics('''eval''' , a__ ) # Write model card and (optionally) push to hub SCREAMING_SNAKE_CASE : Optional[int] = { '''finetuned_from''': model_args.model_name_or_path, '''tasks''': '''image-classification''', '''dataset''': data_args.dataset_name, '''tags''': ['''image-classification''', '''vision'''], } if training_args.push_to_hub: trainer.push_to_hub(**a__ ) else: trainer.create_model_card(**a__ ) if __name__ == "__main__": main()
313
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD torch.set_grad_enabled(False) def UpperCAmelCase_( a__ , a__=False ): """simple docstring""" SCREAMING_SNAKE_CASE : int = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""module.blocks.{i}.norm1.weight""", F"""vit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""module.blocks.{i}.norm1.bias""", F"""vit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append( (F"""module.blocks.{i}.attn.proj.weight""", F"""vit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((F"""module.blocks.{i}.attn.proj.bias""", F"""vit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""module.blocks.{i}.norm2.weight""", F"""vit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""module.blocks.{i}.norm2.bias""", F"""vit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc1.weight""", F"""vit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc1.bias""", F"""vit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc2.weight""", F"""vit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc2.bias""", F"""vit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ('''module.cls_token''', '''vit.embeddings.cls_token'''), ('''module.patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight'''), ('''module.patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias'''), ('''module.pos_embed''', '''vit.embeddings.position_embeddings'''), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('''module.norm.weight''', '''layernorm.weight'''), ('''module.norm.bias''', '''layernorm.bias'''), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" SCREAMING_SNAKE_CASE : Any = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('''norm.weight''', '''vit.layernorm.weight'''), ('''norm.bias''', '''vit.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) return rename_keys def UpperCAmelCase_( a__ , a__ , a__=False ): """simple docstring""" for i in range(config.num_hidden_layers ): if base_model: SCREAMING_SNAKE_CASE : Any = '''''' else: SCREAMING_SNAKE_CASE : Optional[int] = '''vit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) SCREAMING_SNAKE_CASE : Optional[Any] = state_dict.pop(F"""module.blocks.{i}.attn.qkv.weight""" ) SCREAMING_SNAKE_CASE : List[str] = state_dict.pop(F"""module.blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict SCREAMING_SNAKE_CASE : List[str] = in_proj_weight[ : config.hidden_size, : ] SCREAMING_SNAKE_CASE : Any = in_proj_bias[: config.hidden_size] SCREAMING_SNAKE_CASE : int = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] SCREAMING_SNAKE_CASE : List[Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] SCREAMING_SNAKE_CASE : List[str] = in_proj_weight[ -config.hidden_size :, : ] SCREAMING_SNAKE_CASE : Optional[Any] = in_proj_bias[-config.hidden_size :] def UpperCAmelCase_( a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(a__ , a__ ) def UpperCAmelCase_( a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = [ '''module.fc.fc1.weight''', '''module.fc.fc1.bias''', '''module.fc.bn1.weight''', '''module.fc.bn1.bias''', '''module.fc.bn1.running_mean''', '''module.fc.bn1.running_var''', '''module.fc.bn1.num_batches_tracked''', '''module.fc.fc2.weight''', '''module.fc.fc2.bias''', '''module.fc.bn2.weight''', '''module.fc.bn2.bias''', '''module.fc.bn2.running_mean''', '''module.fc.bn2.running_var''', '''module.fc.bn2.num_batches_tracked''', '''module.fc.fc3.weight''', '''module.fc.fc3.bias''', ] for k in ignore_keys: state_dict.pop(a__ , a__ ) def UpperCAmelCase_( a__ , a__ , a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : int = dct.pop(a__ ) SCREAMING_SNAKE_CASE : Optional[Any] = val def UpperCAmelCase_( a__ , a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = ViTMSNConfig() SCREAMING_SNAKE_CASE : Optional[int] = 1_000 SCREAMING_SNAKE_CASE : str = '''datasets/huggingface/label-files''' SCREAMING_SNAKE_CASE : List[str] = '''imagenet-1k-id2label.json''' SCREAMING_SNAKE_CASE : Union[str, Any] = json.load(open(hf_hub_download(a__ , a__ ) , '''r''' ) ) SCREAMING_SNAKE_CASE : List[Any] = {int(a__ ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE : str = idalabel SCREAMING_SNAKE_CASE : int = {v: k for k, v in idalabel.items()} if "s16" in checkpoint_url: SCREAMING_SNAKE_CASE : Tuple = 384 SCREAMING_SNAKE_CASE : Any = 1_536 SCREAMING_SNAKE_CASE : List[str] = 6 elif "l16" in checkpoint_url: SCREAMING_SNAKE_CASE : Optional[int] = 1_024 SCREAMING_SNAKE_CASE : Optional[int] = 4_096 SCREAMING_SNAKE_CASE : Tuple = 24 SCREAMING_SNAKE_CASE : Union[str, Any] = 16 SCREAMING_SNAKE_CASE : Dict = 0.1 elif "b4" in checkpoint_url: SCREAMING_SNAKE_CASE : str = 4 elif "l7" in checkpoint_url: SCREAMING_SNAKE_CASE : Union[str, Any] = 7 SCREAMING_SNAKE_CASE : Union[str, Any] = 1_024 SCREAMING_SNAKE_CASE : List[Any] = 4_096 SCREAMING_SNAKE_CASE : List[Any] = 24 SCREAMING_SNAKE_CASE : Tuple = 16 SCREAMING_SNAKE_CASE : Union[str, Any] = 0.1 SCREAMING_SNAKE_CASE : Union[str, Any] = ViTMSNModel(a__ ) SCREAMING_SNAKE_CASE : Optional[int] = torch.hub.load_state_dict_from_url(a__ , map_location='''cpu''' )['''target_encoder'''] SCREAMING_SNAKE_CASE : Any = ViTImageProcessor(size=config.image_size ) remove_projection_head(a__ ) SCREAMING_SNAKE_CASE : Any = create_rename_keys(a__ , base_model=a__ ) for src, dest in rename_keys: rename_key(a__ , a__ , a__ ) read_in_q_k_v(a__ , a__ , base_model=a__ ) model.load_state_dict(a__ ) model.eval() SCREAMING_SNAKE_CASE : Any = '''http://images.cocodataset.org/val2017/000000039769.jpg''' SCREAMING_SNAKE_CASE : Dict = Image.open(requests.get(a__ , stream=a__ ).raw ) SCREAMING_SNAKE_CASE : Optional[int] = ViTImageProcessor( size=config.image_size , image_mean=a__ , image_std=a__ ) SCREAMING_SNAKE_CASE : int = image_processor(images=a__ , return_tensors='''pt''' ) # forward pass torch.manual_seed(2 ) SCREAMING_SNAKE_CASE : Tuple = model(**a__ ) SCREAMING_SNAKE_CASE : str = outputs.last_hidden_state # The following Colab Notebook was used to generate these outputs: # https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb if "s16" in checkpoint_url: SCREAMING_SNAKE_CASE : Tuple = torch.tensor([[-1.0_915, -1.4_876, -1.1_809]] ) elif "b16" in checkpoint_url: SCREAMING_SNAKE_CASE : Tuple = torch.tensor([[14.2_889, -18.9_045, 11.7_281]] ) elif "l16" in checkpoint_url: SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor([[41.5_028, -22.8_681, 45.6_475]] ) elif "b4" in checkpoint_url: SCREAMING_SNAKE_CASE : str = torch.tensor([[-4.3_868, 5.2_932, -0.4_137]] ) else: SCREAMING_SNAKE_CASE : List[str] = torch.tensor([[-0.1_792, -0.6_465, 2.4_263]] ) # verify logits assert torch.allclose(last_hidden_state[:, 0, :3] , a__ , atol=1e-4 ) print(F"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(a__ ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(a__ ) if __name__ == "__main__": a__ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar''', type=str, help='''URL of the checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) a__ : Any = parser.parse_args() convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
313
1
'''simple docstring''' class UpperCAmelCase_ : def __init__( self : int , UpperCAmelCase__ : Any , UpperCAmelCase__ : Union[str, Any] ) -> Optional[Any]: lowerCAmelCase = name lowerCAmelCase = val def __str__( self : str ) -> str: return F'''{self.__class__.__name__}({self.name}, {self.val})''' def __lt__( self : Optional[Any] , UpperCAmelCase__ : Dict ) -> int: return self.val < other.val class UpperCAmelCase_ : def __init__( self : Union[str, Any] , UpperCAmelCase__ : List[str] ) -> List[Any]: lowerCAmelCase = {} lowerCAmelCase = {} lowerCAmelCase = self.build_heap(UpperCAmelCase__ ) def __getitem__( self : Any , UpperCAmelCase__ : Union[str, Any] ) -> Optional[int]: return self.get_value(UpperCAmelCase__ ) def __UpperCAmelCase ( self : str , UpperCAmelCase__ : Optional[int] ) -> List[Any]: return (idx - 1) // 2 def __UpperCAmelCase ( self : str , UpperCAmelCase__ : Tuple ) -> Any: return idx * 2 + 1 def __UpperCAmelCase ( self : int , UpperCAmelCase__ : List[Any] ) -> List[str]: return idx * 2 + 2 def __UpperCAmelCase ( self : Any , UpperCAmelCase__ : str ) -> Tuple: return self.heap_dict[key] def __UpperCAmelCase ( self : Tuple , UpperCAmelCase__ : Any ) -> Tuple: lowerCAmelCase = len(UpperCAmelCase__ ) - 1 lowerCAmelCase = self.get_parent_idx(UpperCAmelCase__ ) for idx, i in enumerate(UpperCAmelCase__ ): lowerCAmelCase = idx lowerCAmelCase = i.val for i in range(UpperCAmelCase__ , -1 , -1 ): self.sift_down(UpperCAmelCase__ , UpperCAmelCase__ ) return array def __UpperCAmelCase ( self : List[str] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Optional[int] ) -> Any: while True: lowerCAmelCase = self.get_left_child_idx(UpperCAmelCase__ ) # noqa: E741 lowerCAmelCase = self.get_right_child_idx(UpperCAmelCase__ ) lowerCAmelCase = idx if l < len(UpperCAmelCase__ ) and array[l] < array[idx]: lowerCAmelCase = l if r < len(UpperCAmelCase__ ) and array[r] < array[smallest]: lowerCAmelCase = r if smallest != idx: lowerCAmelCase , lowerCAmelCase = array[smallest], array[idx] ( ( lowerCAmelCase ) , ( lowerCAmelCase ) , ) = ( self.idx_of_element[array[smallest]], self.idx_of_element[array[idx]], ) lowerCAmelCase = smallest else: break def __UpperCAmelCase ( self : Dict , UpperCAmelCase__ : int ) -> List[str]: lowerCAmelCase = self.get_parent_idx(UpperCAmelCase__ ) while p >= 0 and self.heap[p] > self.heap[idx]: lowerCAmelCase , lowerCAmelCase = self.heap[idx], self.heap[p] lowerCAmelCase , lowerCAmelCase = ( self.idx_of_element[self.heap[idx]], self.idx_of_element[self.heap[p]], ) lowerCAmelCase = p lowerCAmelCase = self.get_parent_idx(UpperCAmelCase__ ) def __UpperCAmelCase ( self : int ) -> Dict: return self.heap[0] def __UpperCAmelCase ( self : Tuple ) -> List[str]: lowerCAmelCase , lowerCAmelCase = self.heap[-1], self.heap[0] lowerCAmelCase , lowerCAmelCase = ( self.idx_of_element[self.heap[-1]], self.idx_of_element[self.heap[0]], ) lowerCAmelCase = self.heap.pop() del self.idx_of_element[x] self.sift_down(0 , self.heap ) return x def __UpperCAmelCase ( self : List[Any] , UpperCAmelCase__ : List[Any] ) -> Dict: self.heap.append(UpperCAmelCase__ ) lowerCAmelCase = len(self.heap ) - 1 lowerCAmelCase = node.val self.sift_up(len(self.heap ) - 1 ) def __UpperCAmelCase ( self : List[str] ) -> List[Any]: return len(self.heap ) == 0 def __UpperCAmelCase ( self : Union[str, Any] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : List[str] ) -> Tuple: assert ( self.heap[self.idx_of_element[node]].val > new_value ), "newValue must be less that current value" lowerCAmelCase = new_value lowerCAmelCase = new_value self.sift_up(self.idx_of_element[node] ) __snake_case =Node("""R""", -1) __snake_case =Node("""B""", 6) __snake_case =Node("""A""", 3) __snake_case =Node("""X""", 1) __snake_case =Node("""E""", 4) # Use one of these two ways to generate Min-Heap # Generating Min-Heap from array __snake_case =MinHeap([r, b, a, x, e]) # Generating Min-Heap by Insert method # myMinHeap.insert(a) # myMinHeap.insert(b) # myMinHeap.insert(x) # myMinHeap.insert(r) # myMinHeap.insert(e) # Before print("""Min Heap - before decrease key""") for i in my_min_heap.heap: print(i) print("""Min Heap - After decrease key of node [B -> -17]""") my_min_heap.decrease_key(b, -17) # After for i in my_min_heap.heap: print(i) if __name__ == "__main__": import doctest doctest.testmod()
357
'''simple docstring''' import math def a_ ( lowerCamelCase : int ): lowerCAmelCase = math.loga(math.sqrt(4 * positive_integer + 1 ) / 2 + 1 / 2 ) return exponent == int(lowerCamelCase ) def a_ ( lowerCamelCase : float = 1 / 12345 ): lowerCAmelCase = 0 lowerCAmelCase = 0 lowerCAmelCase = 3 while True: lowerCAmelCase = (integer**2 - 1) / 4 # if candidate is an integer, then there is a partition for k if partition_candidate == int(lowerCamelCase ): lowerCAmelCase = int(lowerCamelCase ) total_partitions += 1 if check_partition_perfect(lowerCamelCase ): perfect_partitions += 1 if perfect_partitions > 0: if perfect_partitions / total_partitions < max_proportion: return int(lowerCamelCase ) integer += 1 if __name__ == "__main__": print(F'''{solution() = }''')
55
0
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer import diffusers from diffusers import ( AutoencoderKL, EulerDiscreteScheduler, StableDiffusionLatentUpscalePipeline, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.schedulers import KarrasDiffusionSchedulers from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() def lowerCamelCase (_SCREAMING_SNAKE_CASE : Optional[int] ): __a : Optional[Any] = [tensor.shape for tensor in tensor_list] return all(shape == shapes[0] for shape in shapes[1:] ) class __UpperCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): A_ = StableDiffusionLatentUpscalePipeline A_ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { "height", "width", "cross_attention_kwargs", "negative_prompt_embeds", "prompt_embeds", } A_ = PipelineTesterMixin.required_optional_params - {"num_images_per_prompt"} A_ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS A_ = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess A_ = frozenset([] ) A_ = True @property def __UpperCAmelCase ( self ): '''simple docstring''' __a : int = 1 __a : Any = 4 __a : List[str] = (16, 16) __a : List[Any] = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(__a ) return image def __UpperCAmelCase ( self ): '''simple docstring''' torch.manual_seed(0 ) __a : List[Any] = UNetaDConditionModel( act_fn='gelu' , attention_head_dim=8 , norm_num_groups=__a , block_out_channels=[32, 32, 64, 64] , time_cond_proj_dim=160 , conv_in_kernel=1 , conv_out_kernel=1 , cross_attention_dim=32 , down_block_types=( 'KDownBlock2D', 'KCrossAttnDownBlock2D', 'KCrossAttnDownBlock2D', 'KCrossAttnDownBlock2D', ) , in_channels=8 , mid_block_type=__a , only_cross_attention=__a , out_channels=5 , resnet_time_scale_shift='scale_shift' , time_embedding_type='fourier' , timestep_post_act='gelu' , up_block_types=('KCrossAttnUpBlock2D', 'KCrossAttnUpBlock2D', 'KCrossAttnUpBlock2D', 'KUpBlock2D') , ) __a : Dict = AutoencoderKL( block_out_channels=[32, 32, 64, 64] , in_channels=3 , out_channels=3 , down_block_types=[ 'DownEncoderBlock2D', 'DownEncoderBlock2D', 'DownEncoderBlock2D', 'DownEncoderBlock2D', ] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D', 'UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) __a : str = EulerDiscreteScheduler(prediction_type='sample' ) __a : Optional[int] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act='quick_gelu' , projection_dim=512 , ) __a : Optional[Any] = CLIPTextModel(__a ) __a : Any = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) __a : Any = { 'unet': model.eval(), 'vae': vae.eval(), 'scheduler': scheduler, 'text_encoder': text_encoder, 'tokenizer': tokenizer, } return components def __UpperCAmelCase ( self , __a , __a=0 ): '''simple docstring''' if str(__a ).startswith('mps' ): __a : str = torch.manual_seed(__a ) else: __a : Tuple = torch.Generator(device=__a ).manual_seed(__a ) __a : Optional[int] = { 'prompt': 'A painting of a squirrel eating a burger', 'image': self.dummy_image.cpu(), 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs def __UpperCAmelCase ( self ): '''simple docstring''' __a : Optional[Any] = 'cpu' __a : List[Any] = self.get_dummy_components() __a : Optional[int] = self.pipeline_class(**__a ) pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) __a : Dict = self.get_dummy_inputs(__a ) __a : Tuple = pipe(**__a ).images __a : List[Any] = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 256, 256, 3) ) __a : List[str] = np.array( [0.47222412, 0.41921633, 0.44717434, 0.46874192, 0.42588258, 0.46150726, 0.4677534, 0.45583832, 0.48579055] ) __a : Tuple = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(__a , 1E-3 ) def __UpperCAmelCase ( self ): '''simple docstring''' super().test_attention_slicing_forward_pass(expected_max_diff=7E-3 ) def __UpperCAmelCase ( self ): '''simple docstring''' super().test_cpu_offload_forward_pass(expected_max_diff=3E-3 ) def __UpperCAmelCase ( self ): '''simple docstring''' super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) def __UpperCAmelCase ( self ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=7E-3 ) def __UpperCAmelCase ( self ): '''simple docstring''' super().test_pt_np_pil_outputs_equivalent(expected_max_diff=3E-3 ) def __UpperCAmelCase ( self ): '''simple docstring''' super().test_save_load_local(expected_max_difference=3E-3 ) def __UpperCAmelCase ( self ): '''simple docstring''' super().test_save_load_optional_components(expected_max_difference=3E-3 ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : List[Any] = [ 'DDIMScheduler', 'DDPMScheduler', 'PNDMScheduler', 'HeunDiscreteScheduler', 'EulerAncestralDiscreteScheduler', 'KDPM2DiscreteScheduler', 'KDPM2AncestralDiscreteScheduler', 'DPMSolverSDEScheduler', ] __a : Tuple = self.get_dummy_components() __a : Tuple = self.pipeline_class(**__a ) # make sure that PNDM does not need warm-up pipe.scheduler.register_to_config(skip_prk_steps=__a ) pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) __a : List[str] = self.get_dummy_inputs(__a ) __a : Any = 2 __a : Tuple = [] for scheduler_enum in KarrasDiffusionSchedulers: if scheduler_enum.name in skip_schedulers: # no sigma schedulers are not supported # no schedulers continue __a : Tuple = getattr(__a , scheduler_enum.name ) __a : Optional[Any] = scheduler_cls.from_config(pipe.scheduler.config ) __a : int = pipe(**__a )[0] outputs.append(__a ) assert check_same_shape(__a ) @require_torch_gpu @slow class __UpperCamelCase ( unittest.TestCase ): def __UpperCAmelCase ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCAmelCase ( self ): '''simple docstring''' __a : Dict = torch.manual_seed(33 ) __a : str = StableDiffusionPipeline.from_pretrained('CompVis/stable-diffusion-v1-4' , torch_dtype=torch.floataa ) pipe.to('cuda' ) __a : str = StableDiffusionLatentUpscalePipeline.from_pretrained( 'stabilityai/sd-x2-latent-upscaler' , torch_dtype=torch.floataa ) upscaler.to('cuda' ) __a : Union[str, Any] = 'a photo of an astronaut high resolution, unreal engine, ultra realistic' __a : int = pipe(__a , generator=__a , output_type='latent' ).images __a : Union[str, Any] = upscaler( prompt=__a , image=__a , num_inference_steps=20 , guidance_scale=0 , generator=__a , output_type='np' , ).images[0] __a : Optional[Any] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/astronaut_1024.npy' ) assert np.abs((expected_image - image).mean() ) < 5E-2 def __UpperCAmelCase ( self ): '''simple docstring''' __a : Optional[Any] = torch.manual_seed(33 ) __a : Union[str, Any] = StableDiffusionLatentUpscalePipeline.from_pretrained( 'stabilityai/sd-x2-latent-upscaler' , torch_dtype=torch.floataa ) upscaler.to('cuda' ) __a : Optional[int] = 'the temple of fire by Ross Tran and Gerardo Dottori, oil on canvas' __a : List[str] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_512.png' ) __a : List[str] = upscaler( prompt=__a , image=__a , num_inference_steps=20 , guidance_scale=0 , generator=__a , output_type='np' , ).images[0] __a : Tuple = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_1024.npy' ) assert np.abs((expected_image - image).max() ) < 5E-2
27
'''simple docstring''' import argparse import json import os import fairseq import torch from torch import nn from transformers import ( SpeechaTextaConfig, SpeechaTextaForCausalLM, SpeechaTextaTokenizer, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() __lowercase : Union[str, Any] = logging.get_logger(__name__) __lowercase : Optional[int] = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', } __lowercase : Optional[Any] = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', ] def lowerCamelCase (_SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Dict ): for attribute in key.split('.' ): __a : Any = getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if weight_type is not None: __a : List[Any] = getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).shape else: __a : Any = hf_pointer.shape assert hf_shape == value.shape, ( F"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": __a : Tuple = value elif weight_type == "weight_g": __a : str = value elif weight_type == "weight_v": __a : Optional[Any] = value elif weight_type == "bias": __a : Union[str, Any] = value else: __a : List[Any] = value logger.info(F"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def lowerCamelCase (_SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : Optional[Any] ): __a : int = [] __a : List[str] = fairseq_model.state_dict() __a : Tuple = hf_model.feature_extractor # if encoder has different dim to decoder -> use proj_weight __a : int = None for name, value in fairseq_dict.items(): __a : List[str] = False if "conv_layers" in name: load_conv_layer( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , hf_model.config.feat_extract_norm == 'group' , ) __a : List[str] = True elif name.split('.' )[0] == "proj": __a : Tuple = fairseq_model.proj __a : str = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: __a : List[Any] = True if "*" in mapped_key: __a : str = name.split(_SCREAMING_SNAKE_CASE )[0].split('.' )[-2] __a : int = mapped_key.replace('*' , _SCREAMING_SNAKE_CASE ) if "weight_g" in name: __a : List[Any] = 'weight_g' elif "weight_v" in name: __a : List[Any] = 'weight_v' elif "bias" in name: __a : Optional[Any] = 'bias' elif "weight" in name: __a : Tuple = 'weight' else: __a : Optional[Any] = None set_recursively(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) continue if not is_used: unused_weights.append(_SCREAMING_SNAKE_CASE ) logger.warning(F"""Unused weights: {unused_weights}""" ) return proj_weight def lowerCamelCase (_SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Optional[Any] ): __a : List[str] = full_name.split('conv_layers.' )[-1] __a : Any = name.split('.' ) __a : List[str] = int(items[0] ) __a : List[Any] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) __a : List[str] = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) __a : str = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) __a : Tuple = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) __a : List[Any] = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(_SCREAMING_SNAKE_CASE ) def lowerCamelCase (_SCREAMING_SNAKE_CASE : int ): __a , __a : List[str] = emb.weight.shape __a : str = nn.Linear(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , bias=_SCREAMING_SNAKE_CASE ) __a : Optional[int] = emb.weight.data return lin_layer def lowerCamelCase (_SCREAMING_SNAKE_CASE : Any ): with open(_SCREAMING_SNAKE_CASE , 'r' , encoding='utf-8' ) as f: __a : Union[str, Any] = f.readlines() __a : Tuple = [line.split(' ' )[0] for line in lines] __a : int = len(_SCREAMING_SNAKE_CASE ) __a : List[Any] = { '<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3, } vocab_dict.update(dict(zip(_SCREAMING_SNAKE_CASE , range(4 , num_words + 4 ) ) ) ) return vocab_dict @torch.no_grad() def lowerCamelCase (_SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : Optional[int] , ): __a : Optional[int] = WavaVecaConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) __a : Any = SpeechaTextaConfig.from_pretrained( _SCREAMING_SNAKE_CASE , vocab_size=_SCREAMING_SNAKE_CASE , decoder_layers=_SCREAMING_SNAKE_CASE , do_stable_layer_norm=_SCREAMING_SNAKE_CASE ) __a : Dict = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=_SCREAMING_SNAKE_CASE , return_attention_mask=_SCREAMING_SNAKE_CASE , ) __a , __a , __a : List[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) __a : Optional[int] = model[0].eval() # set weights for wav2vec2 encoder __a : Tuple = WavaVecaModel(_SCREAMING_SNAKE_CASE ) __a : int = recursively_load_weights_wavaveca(model.encoder , _SCREAMING_SNAKE_CASE ) __a : Dict = SpeechaTextaForCausalLM(_SCREAMING_SNAKE_CASE ) __a , __a : Optional[int] = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=_SCREAMING_SNAKE_CASE ) # set output linear layer unexpected_keys.remove('embed_out' ) __a : Optional[Any] = nn.Parameter(model.decoder.embed_out.detach() ) # layer norm is init to identity matrix so leaving it is fine logger.warning(F"""The following keys are missing when loading the decoder weights: {missing_keys}""" ) logger.warning(F"""The following keys are unexpected when loading the decoder weights: {unexpected_keys}""" ) __a : Tuple = SpeechEncoderDecoderModel(encoder=_SCREAMING_SNAKE_CASE , decoder=_SCREAMING_SNAKE_CASE ) __a : int = False # add projection layer __a : str = nn.Parameter(projection_layer.weight ) __a : Any = nn.Parameter(projection_layer.bias ) __a : str = create_vocab_dict(_SCREAMING_SNAKE_CASE ) with open(os.path.join(_SCREAMING_SNAKE_CASE , 'vocab.json' ) , 'w' ) as fp: json.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __a : Optional[Any] = SpeechaTextaTokenizer(os.path.join(_SCREAMING_SNAKE_CASE , 'vocab.json' ) ) tokenizer.save_pretrained(_SCREAMING_SNAKE_CASE ) __a : Union[str, Any] = hf_wavavec.config.to_dict() __a : Tuple = tokenizer.pad_token_id __a : Optional[int] = tokenizer.bos_token_id __a : Union[str, Any] = tokenizer.eos_token_id __a : Tuple = 'speech_to_text_2' __a : Tuple = 'wav2vec2' __a : List[str] = SpeechEncoderDecoderConfig.from_dict(_SCREAMING_SNAKE_CASE ) hf_wavavec.save_pretrained(_SCREAMING_SNAKE_CASE ) feature_extractor.save_pretrained(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": __lowercase : Dict = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument( '--encoder_config_path', default='facebook/wav2vec2-large-lv60', type=str, help='Path to hf encoder wav2vec2 checkpoint config', ) parser.add_argument( '--decoder_config_path', default='facebook/s2t-small-mustc-en-fr-st', type=str, help='Path to hf decoder s2t checkpoint config', ) parser.add_argument('--vocab_size', default=1_02_24, type=int, help='Vocab size of decoder') parser.add_argument('--num_decoder_layers', default=7, type=int, help='Number of decoder layers') __lowercase : Tuple = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, vocab_size=args.vocab_size, num_decoder_layers=args.num_decoder_layers, )
27
1
"""simple docstring""" from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_torch_available from ...utils import OptionalDependencyNotAvailable _UpperCamelCase: str = { 'configuration_gpt_neox_japanese': ['GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GPTNeoXJapaneseConfig'], 'tokenization_gpt_neox_japanese': ['GPTNeoXJapaneseTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase: Dict = [ 'GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST', 'GPTNeoXJapaneseForCausalLM', 'GPTNeoXJapaneseLayer', 'GPTNeoXJapaneseModel', 'GPTNeoXJapanesePreTrainedModel', ] if TYPE_CHECKING: from .configuration_gpt_neox_japanese import GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXJapaneseConfig from .tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neox_japanese import ( GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseLayer, GPTNeoXJapaneseModel, GPTNeoXJapanesePreTrainedModel, ) else: import sys _UpperCamelCase: List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
363
"""simple docstring""" def lowercase__ ( _UpperCAmelCase ) -> int: '''simple docstring''' assert isinstance(_UpperCAmelCase , _UpperCAmelCase ), f'''The input value of [n={number}] is not an integer''' if number == 1: return 2 elif number < 1: lowercase : List[Any] = f'''The input value of [n={number}] has to be > 0''' raise ValueError(_UpperCAmelCase ) else: lowercase : str = sylvester(number - 1 ) lowercase : Union[str, Any] = num - 1 lowercase : List[Any] = num return lower * upper + 1 if __name__ == "__main__": print(f'''The 8th number in Sylvester\'s sequence: {sylvester(8)}''')
53
0
'''simple docstring''' # XXX: we want transformers master here - in the absense of conftest manipulating sys.path: # hack it in for now: import sys from pathlib import Path UpperCamelCase_ = Path(__file__).resolve().parents[3] / """src""" sys.path.insert(1, str(git_repo_path)) import dataclasses # noqa import io # noqa import itertools # noqa import json # noqa import os # noqa import unittest # noqa from copy import deepcopy # noqa from parameterized import parameterized # noqa from transformers import TrainingArguments, is_torch_available # noqa from transformers.deepspeed import is_deepspeed_available # noqa from transformers.file_utils import WEIGHTS_NAME # noqa from transformers.testing_utils import ( # noqa CaptureLogger, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, mockenv_context, require_deepspeed, require_torch_gpu, require_torch_multi_gpu, slow, ) from transformers.trainer_utils import set_seed # noqa set_seed(42) UpperCamelCase_ = {"""base""": """patrickvonplaten/wav2vec2_tiny_random""", """robust""": """patrickvonplaten/wav2vec2_tiny_random_robust"""} UpperCamelCase_ = """zero2""" UpperCamelCase_ = """zero3""" UpperCamelCase_ = [ZEROa, ZEROa] def _UpperCAmelCase ( _lowerCamelCase : int , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : List[Any] ) -> List[str]: _lowerCAmelCase : Tuple = parameterized.to_safe_name("""_""".join(str(A__ ) for x in param.args ) ) return f'{func.__name__}_{param_based_name}' # Cartesian-product of zero stages with models to test UpperCamelCase_ = list(itertools.product(stages, models.keys())) @slow @require_deepspeed @require_torch_gpu class a_ (__lowerCamelCase ): @parameterized.expand(UpperCamelCase_ , name_func=UpperCamelCase_ ) def __UpperCamelCase ( self , snake_case_ , snake_case_ ): self.run_and_check( stage=UpperCamelCase_ , model=UpperCamelCase_ , distributed=UpperCamelCase_ , fpaa=UpperCamelCase_ , ) @require_torch_multi_gpu @parameterized.expand(UpperCamelCase_ , name_func=UpperCamelCase_ ) def __UpperCamelCase ( self , snake_case_ , snake_case_ ): self.run_and_check( stage=UpperCamelCase_ , model=UpperCamelCase_ , distributed=UpperCamelCase_ , fpaa=UpperCamelCase_ , ) @parameterized.expand(UpperCamelCase_ , name_func=UpperCamelCase_ ) def __UpperCamelCase ( self , snake_case_ , snake_case_ ): self.run_and_check( stage=UpperCamelCase_ , model=UpperCamelCase_ , distributed=UpperCamelCase_ , fpaa=UpperCamelCase_ , ) @require_torch_multi_gpu @parameterized.expand(UpperCamelCase_ , name_func=UpperCamelCase_ ) def __UpperCamelCase ( self , snake_case_ , snake_case_ ): self.run_and_check( stage=UpperCamelCase_ , model=UpperCamelCase_ , distributed=UpperCamelCase_ , fpaa=UpperCamelCase_ , ) def __UpperCamelCase ( self , snake_case_ ): # XXX: run_asr is premature and doesn't save any results # so all we check for now is that the process didn't fail pass def __UpperCamelCase ( self , snake_case_ , snake_case_ , snake_case_ = 1_0 , snake_case_ = True , snake_case_ = True , snake_case_ = True , ): _lowerCAmelCase : Tuple = models[model] _lowerCAmelCase : Dict = self.run_trainer( stage=UpperCamelCase_ , model_name=UpperCamelCase_ , eval_steps=UpperCamelCase_ , num_train_epochs=1 , distributed=UpperCamelCase_ , fpaa=UpperCamelCase_ , ) self.do_checks(UpperCamelCase_ ) return output_dir def __UpperCamelCase ( self , snake_case_ , snake_case_ , snake_case_ = 1_0 , snake_case_ = 1 , snake_case_ = True , snake_case_ = True , ): _lowerCAmelCase : Tuple = self.get_auto_remove_tmp_dir("""./xxx""" , after=UpperCamelCase_ ) _lowerCAmelCase : int = f'\n --model_name_or_path {model_name}\n --dataset_name hf-internal-testing/librispeech_asr_dummy\n --dataset_config_name clean\n --train_split_name validation\n --validation_split_name validation\n --output_dir {output_dir}\n --num_train_epochs {str(UpperCamelCase_ )}\n --per_device_train_batch_size 2\n --per_device_eval_batch_size 2\n --evaluation_strategy steps\n --learning_rate 5e-4\n --warmup_steps 8\n --orthography timit\n --preprocessing_num_workers 1\n --group_by_length\n --freeze_feature_extractor\n --report_to none\n --save_steps 0\n --eval_steps {eval_steps}\n --report_to none\n '.split() if fpaa: args.extend(["""--fp16"""] ) # currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true, # hence the separate config files _lowerCAmelCase : Optional[Any] = f'--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json'.split() _lowerCAmelCase : Any = [f'{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py'] _lowerCAmelCase : Union[str, Any] = self.get_launcher(UpperCamelCase_ ) _lowerCAmelCase : Optional[int] = launcher + script + args + ds_args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(UpperCamelCase_ , env=self.get_env() ) return output_dir def __UpperCamelCase ( self , snake_case_=False ): # 1. explicitly set --num_nodes=1 just in case these tests end up run on a multi-node setup # - it won't be able to handle that # 2. for now testing with just 2 gpus max (since some quality tests may give different # results with mode gpus because we use very little data) _lowerCAmelCase : Optional[int] = min(2 , get_gpu_count() ) if distributed else 1 return f'deepspeed --num_nodes 1 --num_gpus {num_gpus}'.split()
309
from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) UpperCAmelCase_ = logging.get_logger(__name__) # pylint: disable=invalid-name UpperCAmelCase_ = '\n Examples:\n ```py\n >>> import torch\n >>> import numpy as np\n\n >>> from diffusers import KandinskyV22PriorPipeline, KandinskyV22ControlnetPipeline\n >>> from transformers import pipeline\n >>> from diffusers.utils import load_image\n\n\n >>> def make_hint(image, depth_estimator):\n ... image = depth_estimator(image)["depth"]\n ... image = np.array(image)\n ... image = image[:, :, None]\n ... image = np.concatenate([image, image, image], axis=2)\n ... detected_map = torch.from_numpy(image).float() / 255.0\n ... hint = detected_map.permute(2, 0, 1)\n ... return hint\n\n\n >>> depth_estimator = pipeline("depth-estimation")\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16\n ... )\n >>> pipe_prior = pipe_prior.to("cuda")\n\n >>> pipe = KandinskyV22ControlnetPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-controlnet-depth", torch_dtype=torch.float16\n ... )\n >>> pipe = pipe.to("cuda")\n\n\n >>> img = load_image(\n ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"\n ... "/kandinsky/cat.png"\n ... ).resize((768, 768))\n\n >>> hint = make_hint(img, depth_estimator).unsqueeze(0).half().to("cuda")\n\n >>> prompt = "A robot, 4k photo"\n >>> negative_prior_prompt = "lowres, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, out of frame, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck, username, watermark, signature"\n\n >>> generator = torch.Generator(device="cuda").manual_seed(43)\n\n >>> image_emb, zero_image_emb = pipe_prior(\n ... prompt=prompt, negative_prompt=negative_prior_prompt, generator=generator\n ... ).to_tuple()\n\n >>> images = pipe(\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... hint=hint,\n ... num_inference_steps=50,\n ... generator=generator,\n ... height=768,\n ... width=768,\n ... ).images\n\n >>> images[0].save("robot_cat.png")\n ```\n' def lowerCamelCase__ ( A__ : Optional[int] , A__ : Dict , A__ : Optional[int]=8 ): '''simple docstring''' __lowerCamelCase = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 __lowerCamelCase = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class lowerCamelCase__( __lowerCamelCase): def __init__( self: List[Any] , UpperCamelCase_: UNetaDConditionModel , UpperCamelCase_: DDPMScheduler , UpperCamelCase_: VQModel , ): super().__init__() self.register_modules( unet=UpperCamelCase_ , scheduler=UpperCamelCase_ , movq=UpperCamelCase_ , ) __lowerCamelCase = 2 ** (len(self.movq.config.block_out_channels ) - 1) def lowerCAmelCase__ ( self: int , UpperCamelCase_: Any , UpperCamelCase_: Tuple , UpperCamelCase_: int , UpperCamelCase_: Dict , UpperCamelCase_: Dict , UpperCamelCase_: int ): if latents is None: __lowerCamelCase = randn_tensor(UpperCamelCase_ , generator=UpperCamelCase_ , device=UpperCamelCase_ , dtype=UpperCamelCase_ ) else: if latents.shape != shape: raise ValueError(F'Unexpected latents shape, got {latents.shape}, expected {shape}' ) __lowerCamelCase = latents.to(UpperCamelCase_ ) __lowerCamelCase = latents * scheduler.init_noise_sigma return latents def lowerCAmelCase__ ( self: Dict , UpperCamelCase_: str=0 ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("""Please install accelerate via `pip install accelerate`""" ) __lowerCamelCase = torch.device(F'cuda:{gpu_id}' ) __lowerCamelCase = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(UpperCamelCase_ , UpperCamelCase_ ) def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: Optional[int]=0 ): if is_accelerate_available() and is_accelerate_version(""">=""" , """0.17.0.dev0""" ): from accelerate import cpu_offload_with_hook else: raise ImportError("""`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.""" ) __lowerCamelCase = torch.device(F'cuda:{gpu_id}' ) if self.device.type != "cpu": self.to("""cpu""" , silence_dtype_warnings=UpperCamelCase_ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) __lowerCamelCase = None for cpu_offloaded_model in [self.unet, self.movq]: __lowerCamelCase, __lowerCamelCase = cpu_offload_with_hook(UpperCamelCase_ , UpperCamelCase_ , prev_module_hook=UpperCamelCase_ ) # We'll offload the last model manually. __lowerCamelCase = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def lowerCAmelCase__ ( self: int ): if not hasattr(self.unet , """_hf_hook""" ): return self.device for module in self.unet.modules(): if ( hasattr(UpperCamelCase_ , """_hf_hook""" ) and hasattr(module._hf_hook , """execution_device""" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(UpperCamelCase_ ) def __call__( self: Tuple , UpperCamelCase_: Union[torch.FloatTensor, List[torch.FloatTensor]] , UpperCamelCase_: Union[torch.FloatTensor, List[torch.FloatTensor]] , UpperCamelCase_: torch.FloatTensor , UpperCamelCase_: int = 5_12 , UpperCamelCase_: int = 5_12 , UpperCamelCase_: int = 1_00 , UpperCamelCase_: float = 4.0 , UpperCamelCase_: int = 1 , UpperCamelCase_: Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCamelCase_: Optional[torch.FloatTensor] = None , UpperCamelCase_: Optional[str] = "pil" , UpperCamelCase_: bool = True , ): __lowerCamelCase = self._execution_device __lowerCamelCase = guidance_scale > 1.0 if isinstance(UpperCamelCase_ , UpperCamelCase_ ): __lowerCamelCase = torch.cat(UpperCamelCase_ , dim=0 ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ): __lowerCamelCase = torch.cat(UpperCamelCase_ , dim=0 ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ): __lowerCamelCase = torch.cat(UpperCamelCase_ , dim=0 ) __lowerCamelCase = image_embeds.shape[0] * num_images_per_prompt if do_classifier_free_guidance: __lowerCamelCase = image_embeds.repeat_interleave(UpperCamelCase_ , dim=0 ) __lowerCamelCase = negative_image_embeds.repeat_interleave(UpperCamelCase_ , dim=0 ) __lowerCamelCase = hint.repeat_interleave(UpperCamelCase_ , dim=0 ) __lowerCamelCase = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=UpperCamelCase_ ) __lowerCamelCase = torch.cat([hint, hint] , dim=0 ).to(dtype=self.unet.dtype , device=UpperCamelCase_ ) self.scheduler.set_timesteps(UpperCamelCase_ , device=UpperCamelCase_ ) __lowerCamelCase = self.scheduler.timesteps __lowerCamelCase = self.movq.config.latent_channels __lowerCamelCase, __lowerCamelCase = downscale_height_and_width(UpperCamelCase_ , UpperCamelCase_ , self.movq_scale_factor ) # create initial latent __lowerCamelCase = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , self.scheduler , ) for i, t in enumerate(self.progress_bar(UpperCamelCase_ ) ): # expand the latents if we are doing classifier free guidance __lowerCamelCase = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents __lowerCamelCase = {"""image_embeds""": image_embeds, """hint""": hint} __lowerCamelCase = self.unet( sample=UpperCamelCase_ , timestep=UpperCamelCase_ , encoder_hidden_states=UpperCamelCase_ , added_cond_kwargs=UpperCamelCase_ , return_dict=UpperCamelCase_ , )[0] if do_classifier_free_guidance: __lowerCamelCase, __lowerCamelCase = noise_pred.split(latents.shape[1] , dim=1 ) __lowerCamelCase, __lowerCamelCase = noise_pred.chunk(2 ) __lowerCamelCase, __lowerCamelCase = variance_pred.chunk(2 ) __lowerCamelCase = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) __lowerCamelCase = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , """variance_type""" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): __lowerCamelCase, __lowerCamelCase = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 __lowerCamelCase = self.scheduler.step( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , generator=UpperCamelCase_ , )[0] # post-processing __lowerCamelCase = self.movq.decode(UpperCamelCase_ , force_not_quantize=UpperCamelCase_ )["""sample"""] if output_type not in ["pt", "np", "pil"]: raise ValueError(F'Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}' ) if output_type in ["np", "pil"]: __lowerCamelCase = image * 0.5 + 0.5 __lowerCamelCase = image.clamp(0 , 1 ) __lowerCamelCase = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": __lowerCamelCase = self.numpy_to_pil(UpperCamelCase_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=UpperCamelCase_ )
12
0
from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def _A ( ): """simple docstring""" a__ : Tuple =HfArgumentParser(SCREAMING_SNAKE_CASE ) a__ : Optional[Any] =parser.parse_args_into_dataclasses()[0] a__ : Dict =TensorFlowBenchmark(args=SCREAMING_SNAKE_CASE ) try: a__ : Optional[int] =parser.parse_args_into_dataclasses()[0] except ValueError as e: a__ : Dict ="Arg --no_{0} is no longer used, please use --no-{0} instead." a__ : Union[str, Any] =" ".join(str(SCREAMING_SNAKE_CASE ).split(" " )[:-1] ) a__ : Optional[Any] ="" a__ : str =eval(str(SCREAMING_SNAKE_CASE ).split(" " )[-1] ) a__ : Tuple =[] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:] ) else: wrong_args.append(SCREAMING_SNAKE_CASE ) if len(SCREAMING_SNAKE_CASE ) > 0: a__ : List[Any] =full_error_msg + begin_error_msg + str(SCREAMING_SNAKE_CASE ) raise ValueError(SCREAMING_SNAKE_CASE ) benchmark.run() if __name__ == "__main__": main()
148
import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class __lowerCAmelCase ( UpperCamelCase__): def _lowercase ( self ) -> Any: '''simple docstring''' a__ : Optional[int] =self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(lowerCAmelCase__ , "tf_padding" ) ) self.parent.assertTrue(hasattr(lowerCAmelCase__ , "depth_multiplier" ) ) class __lowerCAmelCase : def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=1_3 , lowerCAmelCase__=3 , lowerCAmelCase__=3_2 , lowerCAmelCase__=0.25 , lowerCAmelCase__=8 , lowerCAmelCase__=True , lowerCAmelCase__=1_0_2_4 , lowerCAmelCase__=3_2 , lowerCAmelCase__="relu6" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.02 , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=1_0 , lowerCAmelCase__=None , ) -> Dict: '''simple docstring''' a__ : int =parent a__ : Optional[Any] =batch_size a__ : Tuple =num_channels a__ : Dict =image_size a__ : Union[str, Any] =depth_multiplier a__ : List[str] =min_depth a__ : Dict =tf_padding a__ : Any =int(last_hidden_size * depth_multiplier ) a__ : Tuple =output_stride a__ : Optional[Any] =hidden_act a__ : str =classifier_dropout_prob a__ : int =use_labels a__ : List[Any] =is_training a__ : List[str] =num_labels a__ : Dict =initializer_range a__ : Tuple =scope def _lowercase ( self ) -> List[str]: '''simple docstring''' a__ : Union[str, Any] =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) a__ : Any =None a__ : List[Any] =None if self.use_labels: a__ : Dict =ids_tensor([self.batch_size] , self.num_labels ) a__ : Tuple =ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) a__ : Optional[Any] =self.get_config() return config, pixel_values, labels, pixel_labels def _lowercase ( self ) -> str: '''simple docstring''' return MobileNetVaConfig( num_channels=self.num_channels , image_size=self.image_size , depth_multiplier=self.depth_multiplier , min_depth=self.min_depth , tf_padding=self.tf_padding , hidden_act=self.hidden_act , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def _lowercase ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Union[str, Any]: '''simple docstring''' a__ : Union[str, Any] =MobileNetVaModel(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() a__ : str =model(lowerCAmelCase__ ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def _lowercase ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> str: '''simple docstring''' a__ : Any =self.num_labels a__ : Dict =MobileNetVaForImageClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() a__ : Optional[int] =model(lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowercase ( self ) -> str: '''simple docstring''' a__ : str =self.prepare_config_and_inputs() a__ , a__ , a__ , a__ : List[str] =config_and_inputs a__ : Tuple ={"pixel_values": pixel_values} return config, inputs_dict @require_torch class __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase): _lowercase : List[str] = (MobileNetVaModel, MobileNetVaForImageClassification) if is_torch_available() else () _lowercase : Optional[int] = ( {"""feature-extraction""": MobileNetVaModel, """image-classification""": MobileNetVaForImageClassification} if is_torch_available() else {} ) _lowercase : Union[str, Any] = False _lowercase : Optional[int] = False _lowercase : List[str] = False _lowercase : str = False def _lowercase ( self ) -> Optional[int]: '''simple docstring''' a__ : Optional[Any] =MobileNetVaModelTester(self ) a__ : Optional[Any] =MobileNetVaConfigTester(self , config_class=lowerCAmelCase__ , has_text_modality=lowerCAmelCase__ ) def _lowercase ( self ) -> Dict: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="MobileNetV1 does not use inputs_embeds" ) def _lowercase ( self ) -> Union[str, Any]: '''simple docstring''' pass @unittest.skip(reason="MobileNetV1 does not support input and output embeddings" ) def _lowercase ( self ) -> List[str]: '''simple docstring''' pass @unittest.skip(reason="MobileNetV1 does not output attentions" ) def _lowercase ( self ) -> Any: '''simple docstring''' pass def _lowercase ( self ) -> str: '''simple docstring''' a__ , a__ : Optional[int] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ : Optional[int] =model_class(lowerCAmelCase__ ) a__ : str =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic a__ : Optional[int] =[*signature.parameters.keys()] a__ : Union[str, Any] =["pixel_values"] self.assertListEqual(arg_names[:1] , lowerCAmelCase__ ) def _lowercase ( self ) -> Union[str, Any]: '''simple docstring''' a__ : Optional[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__ ) def _lowercase ( self ) -> List[str]: '''simple docstring''' def check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): a__ : int =model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() with torch.no_grad(): a__ : List[Any] =model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) a__ : Optional[int] =outputs.hidden_states a__ : Optional[int] =2_6 self.assertEqual(len(lowerCAmelCase__ ) , lowerCAmelCase__ ) a__ , a__ : Optional[Any] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ : Optional[int] =True check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] a__ : Union[str, Any] =True check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def _lowercase ( self ) -> Any: '''simple docstring''' a__ : Dict =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase__ ) @slow def _lowercase ( self ) -> Any: '''simple docstring''' for model_name in MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a__ : List[str] =MobileNetVaModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) def _A ( ): """simple docstring""" a__ : Optional[Any] =Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class __lowerCAmelCase ( unittest.TestCase): @cached_property def _lowercase ( self ) -> Optional[Any]: '''simple docstring''' return ( MobileNetVaImageProcessor.from_pretrained("google/mobilenet_v1_1.0_224" ) if is_vision_available() else None ) @slow def _lowercase ( self ) -> Optional[int]: '''simple docstring''' a__ : str =MobileNetVaForImageClassification.from_pretrained("google/mobilenet_v1_1.0_224" ).to(lowerCAmelCase__ ) a__ : Optional[Any] =self.default_image_processor a__ : Optional[int] =prepare_img() a__ : Optional[int] =image_processor(images=lowerCAmelCase__ , return_tensors="pt" ).to(lowerCAmelCase__ ) # forward pass with torch.no_grad(): a__ : int =model(**lowerCAmelCase__ ) # verify the logits a__ : str =torch.Size((1, 1_0_0_1) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase__ ) a__ : int =torch.tensor([-4.17_39, -1.12_33, 3.12_05] ).to(lowerCAmelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase__ , atol=1E-4 ) )
148
1
import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = {"vocab_file": "vocab.json", "merges_file": "merges.txt"} UpperCAmelCase__ = { "vocab_file": { "allenai/longformer-base-4096": "https://huggingface.co/allenai/longformer-base-4096/resolve/main/vocab.json", "allenai/longformer-large-4096": ( "https://huggingface.co/allenai/longformer-large-4096/resolve/main/vocab.json" ), "allenai/longformer-large-4096-finetuned-triviaqa": ( "https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/vocab.json" ), "allenai/longformer-base-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/vocab.json" ), "allenai/longformer-large-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/vocab.json" ), }, "merges_file": { "allenai/longformer-base-4096": "https://huggingface.co/allenai/longformer-base-4096/resolve/main/merges.txt", "allenai/longformer-large-4096": ( "https://huggingface.co/allenai/longformer-large-4096/resolve/main/merges.txt" ), "allenai/longformer-large-4096-finetuned-triviaqa": ( "https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/merges.txt" ), "allenai/longformer-base-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/merges.txt" ), "allenai/longformer-large-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/merges.txt" ), }, } UpperCAmelCase__ = { "allenai/longformer-base-4096": 4096, "allenai/longformer-large-4096": 4096, "allenai/longformer-large-4096-finetuned-triviaqa": 4096, "allenai/longformer-base-4096-extra.pos.embd.only": 4096, "allenai/longformer-large-4096-extra.pos.embd.only": 4096, } @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def A ( ) -> List[Any]: '''simple docstring''' _UpperCAmelCase = ( list(range(ord('!' ) , ord('~' ) + 1 ) ) + list(range(ord('¡' ) , ord('¬' ) + 1 ) ) + list(range(ord('®' ) , ord('ÿ' ) + 1 ) ) ) _UpperCAmelCase = bs[:] _UpperCAmelCase = 0 for b in range(2**8 ): if b not in bs: bs.append(_UpperCAmelCase ) cs.append(2**8 + n ) n += 1 _UpperCAmelCase = [chr(_UpperCAmelCase ) for n in cs] return dict(zip(_UpperCAmelCase , _UpperCAmelCase ) ) def A ( _UpperCAmelCase : Any ) -> Dict: '''simple docstring''' _UpperCAmelCase = set() _UpperCAmelCase = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _UpperCAmelCase = char return pairs class __lowerCAmelCase ( A ): UpperCamelCase = VOCAB_FILES_NAMES UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase = ['''input_ids''', '''attention_mask'''] def __init__( self : int , A : str , A : int , A : int="replace" , A : List[str]="<s>" , A : Any="</s>" , A : List[str]="</s>" , A : Optional[Any]="<s>" , A : Dict="<unk>" , A : int="<pad>" , A : Tuple="<mask>" , A : Any=False , **A : Dict , ) -> Dict: """simple docstring""" _UpperCAmelCase = AddedToken(A , lstrip=A , rstrip=A) if isinstance(A , A) else bos_token _UpperCAmelCase = AddedToken(A , lstrip=A , rstrip=A) if isinstance(A , A) else eos_token _UpperCAmelCase = AddedToken(A , lstrip=A , rstrip=A) if isinstance(A , A) else sep_token _UpperCAmelCase = AddedToken(A , lstrip=A , rstrip=A) if isinstance(A , A) else cls_token _UpperCAmelCase = AddedToken(A , lstrip=A , rstrip=A) if isinstance(A , A) else unk_token _UpperCAmelCase = AddedToken(A , lstrip=A , rstrip=A) if isinstance(A , A) else pad_token # Mask token behave like a normal word, i.e. include the space before it _UpperCAmelCase = AddedToken(A , lstrip=A , rstrip=A) if isinstance(A , A) else mask_token super().__init__( errors=A , bos_token=A , eos_token=A , unk_token=A , sep_token=A , cls_token=A , pad_token=A , mask_token=A , add_prefix_space=A , **A , ) with open(A , encoding='utf-8') as vocab_handle: _UpperCAmelCase = json.load(A) _UpperCAmelCase = {v: k for k, v in self.encoder.items()} _UpperCAmelCase = errors # how to handle errors in decoding _UpperCAmelCase = bytes_to_unicode() _UpperCAmelCase = {v: k for k, v in self.byte_encoder.items()} with open(A , encoding='utf-8') as merges_handle: _UpperCAmelCase = merges_handle.read().split('\n')[1:-1] _UpperCAmelCase = [tuple(merge.split()) for merge in bpe_merges] _UpperCAmelCase = dict(zip(A , range(len(A)))) _UpperCAmelCase = {} _UpperCAmelCase = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions _UpperCAmelCase = re.compile(R'\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+') @property def _lowerCamelCase ( self : Optional[Any]) -> Union[str, Any]: """simple docstring""" return len(self.encoder) def _lowerCamelCase ( self : List[Any]) -> Any: """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder) def _lowerCamelCase ( self : int , A : Tuple) -> Union[str, Any]: """simple docstring""" if token in self.cache: return self.cache[token] _UpperCAmelCase = tuple(A) _UpperCAmelCase = get_pairs(A) if not pairs: return token while True: _UpperCAmelCase = min(A , key=lambda A: self.bpe_ranks.get(A , float('inf'))) if bigram not in self.bpe_ranks: break _UpperCAmelCase , _UpperCAmelCase = bigram _UpperCAmelCase = [] _UpperCAmelCase = 0 while i < len(A): try: _UpperCAmelCase = word.index(A , A) except ValueError: new_word.extend(word[i:]) break else: new_word.extend(word[i:j]) _UpperCAmelCase = j if word[i] == first and i < len(A) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 _UpperCAmelCase = tuple(A) _UpperCAmelCase = new_word if len(A) == 1: break else: _UpperCAmelCase = get_pairs(A) _UpperCAmelCase = ' '.join(A) _UpperCAmelCase = word return word def _lowerCamelCase ( self : Union[str, Any] , A : str) -> str: """simple docstring""" _UpperCAmelCase = [] for token in re.findall(self.pat , A): _UpperCAmelCase = ''.join( self.byte_encoder[b] for b in token.encode('utf-8')) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(A).split(' ')) return bpe_tokens def _lowerCamelCase ( self : Union[str, Any] , A : Any) -> int: """simple docstring""" return self.encoder.get(A , self.encoder.get(self.unk_token)) def _lowerCamelCase ( self : List[Any] , A : Dict) -> List[str]: """simple docstring""" return self.decoder.get(A) def _lowerCamelCase ( self : Optional[int] , A : int) -> Tuple: """simple docstring""" _UpperCAmelCase = ''.join(A) _UpperCAmelCase = bytearray([self.byte_decoder[c] for c in text]).decode('utf-8' , errors=self.errors) return text def _lowerCamelCase ( self : Optional[Any] , A : str , A : Optional[str] = None) -> Tuple[str]: """simple docstring""" if not os.path.isdir(A): logger.error(F"Vocabulary path ({save_directory}) should be a directory") return _UpperCAmelCase = os.path.join( A , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) _UpperCAmelCase = os.path.join( A , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file']) with open(A , 'w' , encoding='utf-8') as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=A , ensure_ascii=A) + '\n') _UpperCAmelCase = 0 with open(A , 'w' , encoding='utf-8') as writer: writer.write('#version: 0.2\n') for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda A: kv[1]): if index != token_index: logger.warning( F"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." ' Please check that the tokenizer is not corrupted!') _UpperCAmelCase = token_index writer.write(' '.join(A) + '\n') index += 1 return vocab_file, merge_file def _lowerCamelCase ( self : Dict , A : List[int] , A : Optional[List[int]] = None) -> List[int]: """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _UpperCAmelCase = [self.cls_token_id] _UpperCAmelCase = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _lowerCamelCase ( self : Optional[Any] , A : List[int] , A : Optional[List[int]] = None , A : bool = False) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A , token_ids_a=A , already_has_special_tokens=A) if token_ids_a is None: return [1] + ([0] * len(A)) + [1] return [1] + ([0] * len(A)) + [1, 1] + ([0] * len(A)) + [1] def _lowerCamelCase ( self : List[Any] , A : List[int] , A : Optional[List[int]] = None) -> List[int]: """simple docstring""" _UpperCAmelCase = [self.sep_token_id] _UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def _lowerCamelCase ( self : List[str] , A : int , A : str=False , **A : Dict) -> Dict: """simple docstring""" _UpperCAmelCase = kwargs.pop('add_prefix_space' , self.add_prefix_space) if (is_split_into_words or add_prefix_space) and (len(A) > 0 and not text[0].isspace()): _UpperCAmelCase = ' ' + text return (text, kwargs)
339
import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import numpy as np import pandas as pd from datasets import load_dataset import transformers from transformers import ( AutoConfig, BartForSequenceClassification, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, TapexTokenizer, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.17.0.dev0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt") UpperCAmelCase__ = logging.getLogger(__name__) @dataclass class __lowerCAmelCase : UpperCamelCase = field( default='''tab_fact''' , metadata={'''help''': '''The name of the dataset to use (via the datasets library).'''} ) UpperCamelCase = field( default='''tab_fact''' , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} , ) UpperCamelCase = field( default=1_0_2_4 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) UpperCamelCase = field( default=A , metadata={'''help''': '''Overwrite the cached preprocessed datasets or not.'''} ) UpperCamelCase = field( default=A , metadata={ '''help''': ( '''Whether to pad all samples to `max_seq_length`. ''' '''If False, will pad the samples dynamically when batching to the maximum length in the batch.''' ) } , ) UpperCamelCase = field( default=A , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) } , ) UpperCamelCase = field( default=A , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of evaluation examples to this ''' '''value if set.''' ) } , ) UpperCamelCase = field( default=A , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of prediction examples to this ''' '''value if set.''' ) } , ) UpperCamelCase = field( default=A , metadata={'''help''': '''A csv or a json file containing the training data.'''} ) UpperCamelCase = field( default=A , metadata={'''help''': '''A csv or a json file containing the validation data.'''} ) UpperCamelCase = field(default=A , metadata={'''help''': '''A csv or a json file containing the test data.'''} ) def _lowerCamelCase ( self : str) -> List[Any]: """simple docstring""" if self.dataset_name is not None: pass elif self.train_file is None or self.validation_file is None: raise ValueError('Need either a GLUE task, a training/validation file or a dataset name.') else: _UpperCAmelCase = self.train_file.split('.')[-1] assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file." _UpperCAmelCase = self.validation_file.split('.')[-1] assert ( validation_extension == train_extension ), "`validation_file` should have the same extension (csv or json) as `train_file`." @dataclass class __lowerCAmelCase : UpperCamelCase = field( default=A , metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) UpperCamelCase = field( default=A , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) UpperCamelCase = field( default=A , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) UpperCamelCase = field( default=A , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) UpperCamelCase = field( default=A , metadata={'''help''': '''Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'''} , ) UpperCamelCase = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) UpperCamelCase = field( default=A , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) def A ( ) -> Optional[int]: '''simple docstring''' # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _UpperCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = parser.parse_args_into_dataclasses() # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) _UpperCAmelCase = training_args.get_process_log_level() logger.setLevel(_UpperCAmelCase ) datasets.utils.logging.set_verbosity(_UpperCAmelCase ) transformers.utils.logging.set_verbosity(_UpperCAmelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + F"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" ) logger.info(F"Training/evaluation parameters {training_args}" ) # Detecting last checkpoint. _UpperCAmelCase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _UpperCAmelCase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"Output directory ({training_args.output_dir}) already exists and is not empty. " 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below) # or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub). # # For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table. # # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this # single column. You can easily tweak this behavior (see below) # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. _UpperCAmelCase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) else: # Loading a dataset from your local files. # CSV/JSON training and evaluation files are needed. _UpperCAmelCase = {'train': data_args.train_file, 'validation': data_args.validation_file} # Get the test dataset: you can provide your own CSV/JSON test file (see below) # when you use `do_predict` without specifying a GLUE benchmark task. if training_args.do_predict: if data_args.test_file is not None: _UpperCAmelCase = data_args.train_file.split('.' )[-1] _UpperCAmelCase = data_args.test_file.split('.' )[-1] assert ( test_extension == train_extension ), "`test_file` should have the same extension (csv or json) as `train_file`." _UpperCAmelCase = data_args.test_file else: raise ValueError('Need either a GLUE task or a test file for `do_predict`.' ) for key in data_files.keys(): logger.info(F"load a local file for {key}: {data_files[key]}" ) if data_args.train_file.endswith('.csv' ): # Loading a dataset from local csv files _UpperCAmelCase = load_dataset('csv' , data_files=_UpperCAmelCase , cache_dir=model_args.cache_dir ) else: # Loading a dataset from local json files _UpperCAmelCase = load_dataset('json' , data_files=_UpperCAmelCase , cache_dir=model_args.cache_dir ) # See more about loading any type of standard or custom dataset at # https://huggingface.co/docs/datasets/loading_datasets.html. # Labels _UpperCAmelCase = raw_datasets['train'].features['label'].names _UpperCAmelCase = len(_UpperCAmelCase ) # Load pretrained model and tokenizer # # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _UpperCAmelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=_UpperCAmelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # load tapex tokenizer _UpperCAmelCase = TapexTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , add_prefix_space=_UpperCAmelCase , ) _UpperCAmelCase = BartForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=_UpperCAmelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Padding strategy if data_args.pad_to_max_length: _UpperCAmelCase = 'max_length' else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch _UpperCAmelCase = False # Some models have set the order of the labels to use, so let's make sure we do use it. _UpperCAmelCase = {'Refused': 0, 'Entailed': 1} _UpperCAmelCase = {0: 'Refused', 1: 'Entailed'} if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( F"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the" F"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}." ) _UpperCAmelCase = min(data_args.max_seq_length , tokenizer.model_max_length ) def preprocess_tabfact_function(_UpperCAmelCase : Union[str, Any] ): # Tokenize the texts def _convert_table_text_to_pandas(_UpperCAmelCase : Dict ): _UpperCAmelCase = [_table_row.split('#' ) for _table_row in _table_text.strip('\n' ).split('\n' )] _UpperCAmelCase = pd.DataFrame.from_records(_table_content[1:] , columns=_table_content[0] ) return _table_pd _UpperCAmelCase = examples['statement'] _UpperCAmelCase = list(map(_convert_table_text_to_pandas , examples['table_text'] ) ) _UpperCAmelCase = tokenizer(_UpperCAmelCase , _UpperCAmelCase , padding=_UpperCAmelCase , max_length=_UpperCAmelCase , truncation=_UpperCAmelCase ) _UpperCAmelCase = examples['label'] return result with training_args.main_process_first(desc='dataset map pre-processing' ): _UpperCAmelCase = raw_datasets.map( _UpperCAmelCase , batched=_UpperCAmelCase , load_from_cache_file=not data_args.overwrite_cache , desc='Running tokenizer on dataset' , ) if training_args.do_train: if "train" not in raw_datasets: raise ValueError('--do_train requires a train dataset' ) _UpperCAmelCase = raw_datasets['train'] if data_args.max_train_samples is not None: _UpperCAmelCase = train_dataset.select(range(data_args.max_train_samples ) ) if training_args.do_eval: if "validation" not in raw_datasets and "validation_matched" not in raw_datasets: raise ValueError('--do_eval requires a validation dataset' ) _UpperCAmelCase = raw_datasets['validation'] if data_args.max_eval_samples is not None: _UpperCAmelCase = eval_dataset.select(range(data_args.max_eval_samples ) ) if training_args.do_predict or data_args.test_file is not None: if "test" not in raw_datasets and "test_matched" not in raw_datasets: raise ValueError('--do_predict requires a test dataset' ) _UpperCAmelCase = raw_datasets['test'] if data_args.max_predict_samples is not None: _UpperCAmelCase = predict_dataset.select(range(data_args.max_predict_samples ) ) # Log a few random samples from the training set: if training_args.do_train: for index in random.sample(range(len(_UpperCAmelCase ) ) , 3 ): logger.info(F"Sample {index} of the training set: {train_dataset[index]}." ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(_UpperCAmelCase : EvalPrediction ): _UpperCAmelCase = p.predictions[0] if isinstance(p.predictions , _UpperCAmelCase ) else p.predictions _UpperCAmelCase = np.argmax(_UpperCAmelCase , axis=1 ) return {"accuracy": (preds == p.label_ids).astype(np.floataa ).mean().item()} # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: _UpperCAmelCase = default_data_collator elif training_args.fpaa: _UpperCAmelCase = DataCollatorWithPadding(_UpperCAmelCase , pad_to_multiple_of=8 ) else: _UpperCAmelCase = None # Initialize our Trainer _UpperCAmelCase = Trainer( model=_UpperCAmelCase , args=_UpperCAmelCase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=_UpperCAmelCase , tokenizer=_UpperCAmelCase , data_collator=_UpperCAmelCase , ) # Training if training_args.do_train: _UpperCAmelCase = None if training_args.resume_from_checkpoint is not None: _UpperCAmelCase = training_args.resume_from_checkpoint elif last_checkpoint is not None: _UpperCAmelCase = last_checkpoint _UpperCAmelCase = trainer.train(resume_from_checkpoint=_UpperCAmelCase ) _UpperCAmelCase = train_result.metrics _UpperCAmelCase = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(_UpperCAmelCase ) ) _UpperCAmelCase = min(_UpperCAmelCase , len(_UpperCAmelCase ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics('train' , _UpperCAmelCase ) trainer.save_metrics('train' , _UpperCAmelCase ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('*** Evaluate ***' ) _UpperCAmelCase = trainer.evaluate(eval_dataset=_UpperCAmelCase ) _UpperCAmelCase = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(_UpperCAmelCase ) _UpperCAmelCase = min(_UpperCAmelCase , len(_UpperCAmelCase ) ) trainer.log_metrics('eval' , _UpperCAmelCase ) trainer.save_metrics('eval' , _UpperCAmelCase ) if training_args.do_predict: logger.info('*** Predict ***' ) # Removing the `label` columns because it contains -1 and Trainer won't like that. _UpperCAmelCase = predict_dataset.remove_columns('label' ) _UpperCAmelCase = trainer.predict(_UpperCAmelCase , metric_key_prefix='predict' ).predictions _UpperCAmelCase = np.argmax(_UpperCAmelCase , axis=1 ) _UpperCAmelCase = os.path.join(training_args.output_dir , 'predict_results_tabfact.txt' ) if trainer.is_world_process_zero(): with open(_UpperCAmelCase , 'w' ) as writer: logger.info('***** Predict Results *****' ) writer.write('index\tprediction\n' ) for index, item in enumerate(_UpperCAmelCase ): _UpperCAmelCase = label_list[item] writer.write(F"{index}\t{item}\n" ) _UpperCAmelCase = {'finetuned_from': model_args.model_name_or_path, 'tasks': 'text-classification'} if training_args.push_to_hub: trainer.push_to_hub(**_UpperCAmelCase ) else: trainer.create_model_card(**_UpperCAmelCase ) def A ( _UpperCAmelCase : Optional[Any] ) -> Optional[Any]: '''simple docstring''' # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
339
1
'''simple docstring''' def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase ): """simple docstring""" _lowerCAmelCase = """""" for i in table: res += inp[i - 1] return res def UpperCamelCase__ ( lowerCAmelCase ): """simple docstring""" return data[1:] + data[0] def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase ): """simple docstring""" _lowerCAmelCase = """""" for i in range(len(lowerCAmelCase ) ): if a[i] == b[i]: res += "0" else: res += "1" return res def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase ): """simple docstring""" _lowerCAmelCase = int("""0b""" + data[0] + data[-1] , 2 ) _lowerCAmelCase = int("""0b""" + data[1:3] , 2 ) return bin(s[row][col] )[2:] def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): """simple docstring""" _lowerCAmelCase = message[:4] _lowerCAmelCase = message[4:] _lowerCAmelCase = apply_table(lowerCAmelCase , lowerCAmelCase ) _lowerCAmelCase = xor(lowerCAmelCase , lowerCAmelCase ) _lowerCAmelCase = apply_sbox(lowerCAmelCase , temp[:4] ) # noqa: E741 _lowerCAmelCase = apply_sbox(lowerCAmelCase , temp[4:] ) _lowerCAmelCase = """0""" * (2 - len(lowerCAmelCase )) + l # noqa: E741 _lowerCAmelCase = """0""" * (2 - len(lowerCAmelCase )) + r _lowerCAmelCase = apply_table(l + r , lowerCAmelCase ) _lowerCAmelCase = xor(lowerCAmelCase , lowerCAmelCase ) return temp + right if __name__ == "__main__": A__ : Tuple =input('''Enter 10 bit key: ''') A__ : Optional[Any] =input('''Enter 8 bit message: ''') A__ : Any =[6, 3, 7, 4, 8, 5, 10, 9] A__ : Optional[int] =[3, 5, 2, 7, 4, 10, 1, 9, 8, 6] A__ : List[Any] =[2, 4, 3, 1] A__ : List[Any] =[2, 6, 3, 1, 4, 8, 5, 7] A__ : List[Any] =[4, 1, 3, 5, 7, 2, 8, 6] A__ : Dict =[4, 1, 2, 3, 2, 3, 4, 1] A__ : List[Any] =[[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]] A__ : List[Any] =[[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]] # key generation A__ : List[str] =apply_table(key, paa_table) A__ : List[Any] =temp[:5] A__ : Optional[Any] =temp[5:] A__ : Optional[int] =left_shift(left) A__ : List[str] =left_shift(right) A__ : Dict =apply_table(left + right, pa_table) A__ : Optional[int] =left_shift(left) A__ : Optional[int] =left_shift(right) A__ : Optional[Any] =left_shift(left) A__ : str =left_shift(right) A__ : int =apply_table(left + right, pa_table) # encryption A__ : Union[str, Any] =apply_table(message, IP) A__ : Optional[int] =function(expansion, sa, sa, keya, temp) A__ : Union[str, Any] =temp[4:] + temp[:4] A__ : Optional[int] =function(expansion, sa, sa, keya, temp) A__ : Dict =apply_table(temp, IP_inv) print('''Cipher text is:''', CT) # decryption A__ : Optional[Any] =apply_table(CT, IP) A__ : str =function(expansion, sa, sa, keya, temp) A__ : int =temp[4:] + temp[:4] A__ : Any =function(expansion, sa, sa, keya, temp) A__ : List[str] =apply_table(temp, IP_inv) print('''Plain text after decypting is:''', PT)
220
'''simple docstring''' # Usage: # ./gen-card-facebook-wmt19.py import os from pathlib import Path def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): """simple docstring""" _lowerCAmelCase = { """en""": """Machine learning is great, isn't it?""", """ru""": """Машинное обучение - это здорово, не так ли?""", """de""": """Maschinelles Lernen ist großartig, oder?""", } # BLUE scores as follows: # "pair": [fairseq, transformers] _lowerCAmelCase = { """ru-en""": ["""[41.3](http://matrix.statmt.org/matrix/output/1907?run_id=6937)""", """39.20"""], """en-ru""": ["""[36.4](http://matrix.statmt.org/matrix/output/1914?run_id=6724)""", """33.47"""], """en-de""": ["""[43.1](http://matrix.statmt.org/matrix/output/1909?run_id=6862)""", """42.83"""], """de-en""": ["""[42.3](http://matrix.statmt.org/matrix/output/1902?run_id=6750)""", """41.35"""], } _lowerCAmelCase = f"{src_lang}-{tgt_lang}" _lowerCAmelCase = f"\n---\nlanguage: \n- {src_lang}\n- {tgt_lang}\nthumbnail:\ntags:\n- translation\n- wmt19\n- facebook\nlicense: apache-2.0\ndatasets:\n- wmt19\nmetrics:\n- bleu\n---\n\n# FSMT\n\n## Model description\n\nThis is a ported version of [fairseq wmt19 transformer](https://github.com/pytorch/fairseq/blob/master/examples/wmt19/README.md) for {src_lang}-{tgt_lang}.\n\nFor more details, please see, [Facebook FAIR's WMT19 News Translation Task Submission](https://arxiv.org/abs/1907.06616).\n\nThe abbreviation FSMT stands for FairSeqMachineTranslation\n\nAll four models are available:\n\n* [wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru)\n* [wmt19-ru-en](https://huggingface.co/facebook/wmt19-ru-en)\n* [wmt19-en-de](https://huggingface.co/facebook/wmt19-en-de)\n* [wmt19-de-en](https://huggingface.co/facebook/wmt19-de-en)\n\n## Intended uses & limitations\n\n#### How to use\n\n```python\nfrom transformers import FSMTForConditionalGeneration, FSMTTokenizer\nmname = \"facebook/wmt19-{src_lang}-{tgt_lang}\"\ntokenizer = FSMTTokenizer.from_pretrained(mname)\nmodel = FSMTForConditionalGeneration.from_pretrained(mname)\n\ninput = \"{texts[src_lang]}\"\ninput_ids = tokenizer.encode(input, return_tensors=\"pt\")\noutputs = model.generate(input_ids)\ndecoded = tokenizer.decode(outputs[0], skip_special_tokens=True)\nprint(decoded) # {texts[tgt_lang]}\n\n```\n\n#### Limitations and bias\n\n- The original (and this ported model) doesn't seem to handle well inputs with repeated sub-phrases, [content gets truncated](https://discuss.huggingface.co/t/issues-with-translating-inputs-containing-repeated-phrases/981)\n\n## Training data\n\nPretrained weights were left identical to the original model released by fairseq. For more details, please, see the [paper](https://arxiv.org/abs/1907.06616).\n\n## Eval results\n\npair | fairseq | transformers\n-------|---------|----------\n{pair} | {scores[pair][0]} | {scores[pair][1]}\n\nThe score is slightly below the score reported by `fairseq`, since `transformers`` currently doesn't support:\n- model ensemble, therefore the best performing checkpoint was ported (``model4.pt``).\n- re-ranking\n\nThe score was calculated using this code:\n\n```bash\ngit clone https://github.com/huggingface/transformers\ncd transformers\nexport PAIR={pair}\nexport DATA_DIR=data/$PAIR\nexport SAVE_DIR=data/$PAIR\nexport BS=8\nexport NUM_BEAMS=15\nmkdir -p $DATA_DIR\nsacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source\nsacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target\necho $PAIR\nPYTHONPATH=\"src:examples/seq2seq\" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS\n```\nnote: fairseq reports using a beam of 50, so you should get a slightly higher score if re-run with `--num_beams 50`.\n\n## Data Sources\n\n- [training, etc.](http://www.statmt.org/wmt19/)\n- [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561)\n\n\n### BibTeX entry and citation info\n\n```bibtex\n@inproceedings{{...,\n year={{2020}},\n title={{Facebook FAIR's WMT19 News Translation Task Submission}},\n author={{Ng, Nathan and Yee, Kyra and Baevski, Alexei and Ott, Myle and Auli, Michael and Edunov, Sergey}},\n booktitle={{Proc. of WMT}},\n}}\n```\n\n\n## TODO\n\n- port model ensemble (fairseq uses 4 model checkpoints)\n\n" os.makedirs(lowerCAmelCase , exist_ok=lowerCAmelCase ) _lowerCAmelCase = os.path.join(lowerCAmelCase , """README.md""" ) print(f"Generating {path}" ) with open(lowerCAmelCase , """w""" , encoding="""utf-8""" ) as f: f.write(lowerCAmelCase ) # make sure we are under the root of the project A__ : Optional[int] =Path(__file__).resolve().parent.parent.parent A__ : Union[str, Any] =repo_dir / '''model_cards''' for model_name in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: A__ , A__ , A__ : Optional[Any] =model_name.split('''-''') A__ : List[str] =model_cards_dir / '''facebook''' / model_name write_model_card(model_card_dir, src_lang=src_lang, tgt_lang=tgt_lang)
220
1
import torch from diffusers import KDPMaDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class A_ (a_ ): UpperCAmelCase__ = (KDPMaDiscreteScheduler,) UpperCAmelCase__ = 1_0 def _lowercase ( self , **_A ): '''simple docstring''' UpperCAmelCase = { '''num_train_timesteps''': 1_1_0_0, '''beta_start''': 0.00_01, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', } config.update(**_A ) return config def _lowercase ( self ): '''simple docstring''' for timesteps in [1_0, 5_0, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=_A ) def _lowercase ( self ): '''simple docstring''' for beta_start, beta_end in zip([0.0_00_01, 0.00_01, 0.0_01] , [0.00_02, 0.0_02, 0.02] ): self.check_over_configs(beta_start=_A , beta_end=_A ) def _lowercase ( self ): '''simple docstring''' for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=_A ) def _lowercase ( self ): '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_A ) def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = self.scheduler_classes[0] UpperCAmelCase = self.get_scheduler_config(prediction_type='''v_prediction''' ) UpperCAmelCase = scheduler_class(**_A ) scheduler.set_timesteps(self.num_inference_steps ) UpperCAmelCase = self.dummy_model() UpperCAmelCase = self.dummy_sample_deter * scheduler.init_noise_sigma UpperCAmelCase = sample.to(_A ) for i, t in enumerate(scheduler.timesteps ): UpperCAmelCase = scheduler.scale_model_input(_A , _A ) UpperCAmelCase = model(_A , _A ) UpperCAmelCase = scheduler.step(_A , _A , _A ) UpperCAmelCase = output.prev_sample UpperCAmelCase = torch.sum(torch.abs(_A ) ) UpperCAmelCase = torch.mean(torch.abs(_A ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 4.6934E-07 ) < 1E-2 assert abs(result_mean.item() - 6.1112E-10 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 4.693_4286_5017_0972E-07 ) < 1E-2 assert abs(result_mean.item() - 0.00_02 ) < 1E-3 def _lowercase ( self ): '''simple docstring''' if torch_device == "mps": return UpperCAmelCase = self.scheduler_classes[0] UpperCAmelCase = self.get_scheduler_config() UpperCAmelCase = scheduler_class(**_A ) scheduler.set_timesteps(self.num_inference_steps ) UpperCAmelCase = self.dummy_model() UpperCAmelCase = self.dummy_sample_deter * scheduler.init_noise_sigma UpperCAmelCase = sample.to(_A ) for i, t in enumerate(scheduler.timesteps ): UpperCAmelCase = scheduler.scale_model_input(_A , _A ) UpperCAmelCase = model(_A , _A ) UpperCAmelCase = scheduler.step(_A , _A , _A ) UpperCAmelCase = output.prev_sample UpperCAmelCase = torch.sum(torch.abs(_A ) ) UpperCAmelCase = torch.mean(torch.abs(_A ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 20.41_25 ) < 1E-2 assert abs(result_mean.item() - 0.02_66 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 20.41_25 ) < 1E-2 assert abs(result_mean.item() - 0.02_66 ) < 1E-3 def _lowercase ( self ): '''simple docstring''' if torch_device == "mps": return UpperCAmelCase = self.scheduler_classes[0] UpperCAmelCase = self.get_scheduler_config() UpperCAmelCase = scheduler_class(**_A ) scheduler.set_timesteps(self.num_inference_steps , device=_A ) UpperCAmelCase = self.dummy_model() UpperCAmelCase = self.dummy_sample_deter.to(_A ) * scheduler.init_noise_sigma for t in scheduler.timesteps: UpperCAmelCase = scheduler.scale_model_input(_A , _A ) UpperCAmelCase = model(_A , _A ) UpperCAmelCase = scheduler.step(_A , _A , _A ) UpperCAmelCase = output.prev_sample UpperCAmelCase = torch.sum(torch.abs(_A ) ) UpperCAmelCase = torch.mean(torch.abs(_A ) ) if str(_A ).startswith('''cpu''' ): # The following sum varies between 148 and 156 on mps. Why? assert abs(result_sum.item() - 20.41_25 ) < 1E-2 assert abs(result_mean.item() - 0.02_66 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 20.41_25 ) < 1E-2 assert abs(result_mean.item() - 0.02_66 ) < 1E-3
273
'''simple docstring''' import math def __snake_case ( UpperCAmelCase_ : int ): lowerCamelCase_ = math.loga(math.sqrt(4 * positive_integer + 1 ) / 2 + 1 / 2 ) return exponent == int(UpperCAmelCase_ ) def __snake_case ( UpperCAmelCase_ : float = 1 / 12345 ): lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = 3 while True: lowerCamelCase_ = (integer**2 - 1) / 4 # if candidate is an integer, then there is a partition for k if partition_candidate == int(UpperCAmelCase_ ): lowerCamelCase_ = int(UpperCAmelCase_ ) total_partitions += 1 if check_partition_perfect(UpperCAmelCase_ ): perfect_partitions += 1 if perfect_partitions > 0: if perfect_partitions / total_partitions < max_proportion: return int(UpperCAmelCase_ ) integer += 1 if __name__ == "__main__": print(f'''{solution() = }''')
55
0
from typing import List, Union import numpy as np from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, logging from .base import PIPELINE_INIT_ARGS, ArgumentHandler, ChunkPipeline _lowerCamelCase : str = logging.get_logger(__name__) class lowercase ( a ): def __snake_case( self : List[str] , _UpperCamelCase : Optional[Any] ) -> List[Any]: '''simple docstring''' if isinstance(_UpperCamelCase , _UpperCamelCase ): SCREAMING_SNAKE_CASE = [label.strip() for label in labels.split("," ) if label.strip()] return labels def __call__( self : List[Any] , _UpperCamelCase : List[str] , _UpperCamelCase : Any , _UpperCamelCase : Dict ) -> List[str]: '''simple docstring''' if len(_UpperCamelCase ) == 0 or len(_UpperCamelCase ) == 0: raise ValueError("You must include at least one label and at least one sequence." ) if hypothesis_template.format(labels[0] ) == hypothesis_template: raise ValueError( ( "The provided hypothesis_template \"{}\" was not able to be formatted with the target labels. " "Make sure the passed template includes formatting syntax such as {{}} where the label should go." ).format(_UpperCamelCase ) ) if isinstance(_UpperCamelCase , _UpperCamelCase ): SCREAMING_SNAKE_CASE = [sequences] SCREAMING_SNAKE_CASE = [] for sequence in sequences: sequence_pairs.extend([[sequence, hypothesis_template.format(_UpperCamelCase )] for label in labels] ) return sequence_pairs, sequences @add_end_docstrings(a ) class lowercase ( a ): def __init__( self : Union[str, Any] , _UpperCamelCase : List[str]=ZeroShotClassificationArgumentHandler() , *_UpperCamelCase : str , **_UpperCamelCase : Any ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = args_parser super().__init__(*_UpperCamelCase , **_UpperCamelCase ) if self.entailment_id == -1: logger.warning( "Failed to determine 'entailment' label id from the label2id mapping in the model config. Setting to " "-1. Define a descriptive label2id mapping in the model config to ensure correct outputs." ) @property def __snake_case( self : Union[str, Any] ) -> List[str]: '''simple docstring''' for label, ind in self.model.config.labelaid.items(): if label.lower().startswith("entail" ): return ind return -1 def __snake_case( self : Union[str, Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Dict=True , _UpperCamelCase : Dict=True , _UpperCamelCase : Optional[int]=TruncationStrategy.ONLY_FIRST , **_UpperCamelCase : Dict ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = self.framework if self.tokenizer.pad_token is None: # Override for tokenizers not supporting padding logger.error( "Tokenizer was not supporting padding necessary for zero-shot, attempting to use " " `pad_token=eos_token`" ) SCREAMING_SNAKE_CASE = self.tokenizer.eos_token try: SCREAMING_SNAKE_CASE = self.tokenizer( _UpperCamelCase , add_special_tokens=_UpperCamelCase , return_tensors=_UpperCamelCase , padding=_UpperCamelCase , truncation=_UpperCamelCase , ) except Exception as e: if "too short" in str(_UpperCamelCase ): # tokenizers might yell that we want to truncate # to a value that is not even reached by the input. # In that case we don't want to truncate. # It seems there's not a really better way to catch that # exception. SCREAMING_SNAKE_CASE = self.tokenizer( _UpperCamelCase , add_special_tokens=_UpperCamelCase , return_tensors=_UpperCamelCase , padding=_UpperCamelCase , truncation=TruncationStrategy.DO_NOT_TRUNCATE , ) else: raise e return inputs def __snake_case( self : str , **_UpperCamelCase : Any ) -> Optional[Any]: '''simple docstring''' if kwargs.get("multi_class" , _UpperCamelCase ) is not None: SCREAMING_SNAKE_CASE = kwargs["multi_class"] logger.warning( "The `multi_class` argument has been deprecated and renamed to `multi_label`. " "`multi_class` will be removed in a future version of Transformers." ) SCREAMING_SNAKE_CASE = {} if "candidate_labels" in kwargs: SCREAMING_SNAKE_CASE = self._args_parser._parse_labels(kwargs["candidate_labels"] ) if "hypothesis_template" in kwargs: SCREAMING_SNAKE_CASE = kwargs["hypothesis_template"] SCREAMING_SNAKE_CASE = {} if "multi_label" in kwargs: SCREAMING_SNAKE_CASE = kwargs["multi_label"] return preprocess_params, {}, postprocess_params def __call__( self : List[Any] , _UpperCamelCase : Union[str, List[str]] , *_UpperCamelCase : List[str] , **_UpperCamelCase : int , ) -> int: '''simple docstring''' if len(_UpperCamelCase ) == 0: pass elif len(_UpperCamelCase ) == 1 and "candidate_labels" not in kwargs: SCREAMING_SNAKE_CASE = args[0] else: raise ValueError(F"Unable to understand extra arguments {args}" ) return super().__call__(_UpperCamelCase , **_UpperCamelCase ) def __snake_case( self : int , _UpperCamelCase : Any , _UpperCamelCase : List[str]=None , _UpperCamelCase : str="This example is {}." ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self._args_parser(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) for i, (candidate_label, sequence_pair) in enumerate(zip(_UpperCamelCase , _UpperCamelCase ) ): SCREAMING_SNAKE_CASE = self._parse_and_tokenize([sequence_pair] ) yield { "candidate_label": candidate_label, "sequence": sequences[0], "is_last": i == len(_UpperCamelCase ) - 1, **model_input, } def __snake_case( self : List[Any] , _UpperCamelCase : Union[str, Any] ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE = inputs["candidate_label"] SCREAMING_SNAKE_CASE = inputs["sequence"] SCREAMING_SNAKE_CASE = {k: inputs[k] for k in self.tokenizer.model_input_names} SCREAMING_SNAKE_CASE = self.model(**_UpperCamelCase ) SCREAMING_SNAKE_CASE = { "candidate_label": candidate_label, "sequence": sequence, "is_last": inputs["is_last"], **outputs, } return model_outputs def __snake_case( self : List[Any] , _UpperCamelCase : int , _UpperCamelCase : Any=False ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = [outputs["candidate_label"] for outputs in model_outputs] SCREAMING_SNAKE_CASE = [outputs["sequence"] for outputs in model_outputs] SCREAMING_SNAKE_CASE = np.concatenate([output["logits"].numpy() for output in model_outputs] ) SCREAMING_SNAKE_CASE = logits.shape[0] SCREAMING_SNAKE_CASE = len(_UpperCamelCase ) SCREAMING_SNAKE_CASE = N // n SCREAMING_SNAKE_CASE = logits.reshape((num_sequences, n, -1) ) if multi_label or len(_UpperCamelCase ) == 1: # softmax over the entailment vs. contradiction dim for each label independently SCREAMING_SNAKE_CASE = self.entailment_id SCREAMING_SNAKE_CASE = -1 if entailment_id == 0 else 0 SCREAMING_SNAKE_CASE = reshaped_outputs[..., [contradiction_id, entailment_id]] SCREAMING_SNAKE_CASE = np.exp(_UpperCamelCase ) / np.exp(_UpperCamelCase ).sum(-1 , keepdims=_UpperCamelCase ) SCREAMING_SNAKE_CASE = scores[..., 1] else: # softmax the "entailment" logits over all candidate labels SCREAMING_SNAKE_CASE = reshaped_outputs[..., self.entailment_id] SCREAMING_SNAKE_CASE = np.exp(_UpperCamelCase ) / np.exp(_UpperCamelCase ).sum(-1 , keepdims=_UpperCamelCase ) SCREAMING_SNAKE_CASE = list(reversed(scores[0].argsort() ) ) return { "sequence": sequences[0], "labels": [candidate_labels[i] for i in top_inds], "scores": scores[0, top_inds].tolist(), }
206
from pickle import UnpicklingError import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict from ..utils import logging _lowerCamelCase : Optional[Any] = logging.get_logger(__name__) def __lowerCamelCase (UpperCAmelCase__ : str , UpperCAmelCase__ : Dict ): try: with open(UpperCAmelCase__ , "rb" ) as flax_state_f: SCREAMING_SNAKE_CASE = from_bytes(UpperCAmelCase__ , flax_state_f.read() ) except UnpicklingError as e: try: with open(UpperCAmelCase__ ) as f: if f.read().startswith("version" ): raise OSError( "You seem to have cloned a repository without having git-lfs installed. Please" " install git-lfs and run `git lfs install` followed by `git lfs pull` in the" " folder you cloned." ) else: raise ValueError from e except (UnicodeDecodeError, ValueError): raise EnvironmentError(F"Unable to convert {model_file} to Flax deserializable object. " ) return load_flax_weights_in_pytorch_model(UpperCAmelCase__ , UpperCAmelCase__ ) def __lowerCamelCase (UpperCAmelCase__ : int , UpperCAmelCase__ : Optional[Any] ): try: import torch # noqa: F401 except ImportError: logger.error( "Loading Flax weights in PyTorch requires both PyTorch and Flax to be installed. Please see" " https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation" " instructions." ) raise # check if we have bf16 weights SCREAMING_SNAKE_CASE = flatten_dict(jax.tree_util.tree_map(lambda UpperCAmelCase__ : x.dtype == jnp.bfloataa , UpperCAmelCase__ ) ).values() if any(UpperCAmelCase__ ): # convert all weights to fp32 if they are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( "Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` " "before loading those in PyTorch model." ) SCREAMING_SNAKE_CASE = jax.tree_util.tree_map( lambda UpperCAmelCase__ : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , UpperCAmelCase__ ) SCREAMING_SNAKE_CASE = "" SCREAMING_SNAKE_CASE = flatten_dict(UpperCAmelCase__ , sep="." ) SCREAMING_SNAKE_CASE = pt_model.state_dict() # keep track of unexpected & missing keys SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): SCREAMING_SNAKE_CASE = flax_key_tuple.split("." ) if flax_key_tuple_array[-1] == "kernel" and flax_tensor.ndim == 4: SCREAMING_SNAKE_CASE = flax_key_tuple_array[:-1] + ["weight"] SCREAMING_SNAKE_CASE = jnp.transpose(UpperCAmelCase__ , (3, 2, 0, 1) ) elif flax_key_tuple_array[-1] == "kernel": SCREAMING_SNAKE_CASE = flax_key_tuple_array[:-1] + ["weight"] SCREAMING_SNAKE_CASE = flax_tensor.T elif flax_key_tuple_array[-1] == "scale": SCREAMING_SNAKE_CASE = flax_key_tuple_array[:-1] + ["weight"] if "time_embedding" not in flax_key_tuple_array: for i, flax_key_tuple_string in enumerate(UpperCAmelCase__ ): SCREAMING_SNAKE_CASE = ( flax_key_tuple_string.replace("_0" , ".0" ) .replace("_1" , ".1" ) .replace("_2" , ".2" ) .replace("_3" , ".3" ) .replace("_4" , ".4" ) .replace("_5" , ".5" ) .replace("_6" , ".6" ) .replace("_7" , ".7" ) .replace("_8" , ".8" ) .replace("_9" , ".9" ) ) SCREAMING_SNAKE_CASE = ".".join(UpperCAmelCase__ ) if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( F"Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected " F"to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}." ) else: # add weight to pytorch dict SCREAMING_SNAKE_CASE = np.asarray(UpperCAmelCase__ ) if not isinstance(UpperCAmelCase__ , np.ndarray ) else flax_tensor SCREAMING_SNAKE_CASE = torch.from_numpy(UpperCAmelCase__ ) # remove from missing keys missing_keys.remove(UpperCAmelCase__ ) else: # weight is not expected by PyTorch model unexpected_keys.append(UpperCAmelCase__ ) pt_model.load_state_dict(UpperCAmelCase__ ) # re-transform missing_keys to list SCREAMING_SNAKE_CASE = list(UpperCAmelCase__ ) if len(UpperCAmelCase__ ) > 0: logger.warning( "Some weights of the Flax model were not used when initializing the PyTorch model" F" {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing" F" {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture" " (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This" F" IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect" " to be exactly identical (e.g. initializing a BertForSequenceClassification model from a" " FlaxBertForSequenceClassification model)." ) if len(UpperCAmelCase__ ) > 0: logger.warning( F"Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly" F" initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to" " use it for predictions and inference." ) return pt_model
206
1
from __future__ import annotations import inspect import unittest from math import floor import numpy as np from transformers import CvtConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFCvtForImageClassification, TFCvtModel from transformers.models.cvt.modeling_tf_cvt import TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowerCamelCase__( __lowerCamelCase): def lowerCAmelCase__ ( self: int ): __lowerCamelCase = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__A , """embed_dim""" ) ) self.parent.assertTrue(hasattr(__A , """num_heads""" ) ) class lowerCamelCase__: def __init__( self: str , UpperCamelCase_: Optional[int] , UpperCamelCase_: Dict=13 , UpperCamelCase_: Optional[Any]=64 , UpperCamelCase_: Tuple=3 , UpperCamelCase_: str=[16, 48, 96] , UpperCamelCase_: List[Any]=[1, 3, 6] , UpperCamelCase_: Tuple=[1, 2, 10] , UpperCamelCase_: str=[7, 3, 3] , UpperCamelCase_: Optional[int]=[4, 2, 2] , UpperCamelCase_: Any=[2, 1, 1] , UpperCamelCase_: List[str]=[2, 2, 2] , UpperCamelCase_: List[Any]=[False, False, True] , UpperCamelCase_: Dict=[0.0, 0.0, 0.0] , UpperCamelCase_: Dict=0.02 , UpperCamelCase_: int=1E-12 , UpperCamelCase_: int=True , UpperCamelCase_: List[Any]=True , UpperCamelCase_: List[Any]=2 , ): __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = image_size __lowerCamelCase = patch_sizes __lowerCamelCase = patch_stride __lowerCamelCase = patch_padding __lowerCamelCase = is_training __lowerCamelCase = use_labels __lowerCamelCase = num_labels __lowerCamelCase = num_channels __lowerCamelCase = embed_dim __lowerCamelCase = num_heads __lowerCamelCase = stride_kv __lowerCamelCase = depth __lowerCamelCase = cls_token __lowerCamelCase = attention_drop_rate __lowerCamelCase = initializer_range __lowerCamelCase = layer_norm_eps def lowerCAmelCase__ ( self: Any ): __lowerCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCamelCase = None if self.use_labels: # create a random int32 tensor of given shape __lowerCamelCase = ids_tensor([self.batch_size] , self.num_labels ) __lowerCamelCase = self.get_config() return config, pixel_values, labels def lowerCAmelCase__ ( self: str ): return CvtConfig( image_size=self.image_size , num_labels=self.num_labels , num_channels=self.num_channels , embed_dim=self.embed_dim , num_heads=self.num_heads , patch_sizes=self.patch_sizes , patch_padding=self.patch_padding , patch_stride=self.patch_stride , stride_kv=self.stride_kv , depth=self.depth , cls_token=self.cls_token , attention_drop_rate=self.attention_drop_rate , initializer_range=self.initializer_range , ) def lowerCAmelCase__ ( self: Any , UpperCamelCase_: List[str] , UpperCamelCase_: List[str] , UpperCamelCase_: Optional[Any] ): __lowerCamelCase = TFCvtModel(config=__A ) __lowerCamelCase = model(__A , training=__A ) __lowerCamelCase = (self.image_size, self.image_size) __lowerCamelCase, __lowerCamelCase = image_size[0], image_size[1] for i in range(len(self.depth ) ): __lowerCamelCase = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) __lowerCamelCase = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dim[-1], height, width) ) def lowerCAmelCase__ ( self: Optional[Any] , UpperCamelCase_: Any , UpperCamelCase_: Optional[int] , UpperCamelCase_: Optional[Any] ): __lowerCamelCase = self.num_labels __lowerCamelCase = TFCvtForImageClassification(__A ) __lowerCamelCase = model(__A , labels=__A , training=__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase__ ( self: Optional[Any] ): __lowerCamelCase = self.prepare_config_and_inputs() __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = config_and_inputs __lowerCamelCase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class lowerCamelCase__( __lowerCamelCase , __lowerCamelCase , unittest.TestCase): UpperCAmelCase__ : Optional[int] = (TFCvtModel, TFCvtForImageClassification) if is_tf_available() else () UpperCAmelCase__ : int = ( {"feature-extraction": TFCvtModel, "image-classification": TFCvtForImageClassification} if is_tf_available() else {} ) UpperCAmelCase__ : Optional[Any] = False UpperCAmelCase__ : Union[str, Any] = False UpperCAmelCase__ : Optional[int] = False UpperCAmelCase__ : Any = False UpperCAmelCase__ : int = False def lowerCAmelCase__ ( self: List[Any] ): __lowerCamelCase = TFCvtModelTester(self ) __lowerCamelCase = TFCvtConfigTester(self , config_class=__A , has_text_modality=__A , hidden_size=37 ) def lowerCAmelCase__ ( self: Any ): self.config_tester.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() @unittest.skip(reason="""Cvt does not output attentions""" ) def lowerCAmelCase__ ( self: Tuple ): pass @unittest.skip(reason="""Cvt does not use inputs_embeds""" ) def lowerCAmelCase__ ( self: List[str] ): pass @unittest.skip(reason="""Cvt does not support input and output embeddings""" ) def lowerCAmelCase__ ( self: int ): pass @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices("""GPU""" ) ) == 0 , reason="""TF does not support backprop for grouped convolutions on CPU.""" , ) def lowerCAmelCase__ ( self: Dict ): super().test_dataset_conversion() @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices("""GPU""" ) ) == 0 , reason="""TF does not support backprop for grouped convolutions on CPU.""" , ) @slow def lowerCAmelCase__ ( self: List[Any] ): super().test_keras_fit() @unittest.skip(reason="""Get `Failed to determine best cudnn convolution algo.` error after using TF 2.12+cuda 11.8""" ) def lowerCAmelCase__ ( self: Union[str, Any] ): __lowerCamelCase = tf.keras.mixed_precision.Policy("""mixed_float16""" ) tf.keras.mixed_precision.set_global_policy(__A ) super().test_keras_fit() tf.keras.mixed_precision.set_global_policy("""float32""" ) def lowerCAmelCase__ ( self: Optional[int] ): __lowerCamelCase, __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase = model_class(__A ) __lowerCamelCase = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCamelCase = [*signature.parameters.keys()] __lowerCamelCase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __A ) def lowerCAmelCase__ ( self: Union[str, Any] ): def check_hidden_states_output(UpperCamelCase_: List[Any] , UpperCamelCase_: List[Any] , UpperCamelCase_: Dict ): __lowerCamelCase = model_class(__A ) __lowerCamelCase = model(**self._prepare_for_class(__A , __A ) ) __lowerCamelCase = outputs.hidden_states __lowerCamelCase = len(self.model_tester.depth ) self.assertEqual(len(__A ) , __A ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.embed_dim[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) __lowerCamelCase, __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase = True check_hidden_states_output(__A , __A , __A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowerCamelCase = True check_hidden_states_output(__A , __A , __A ) def lowerCAmelCase__ ( self: Any ): __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__A ) def lowerCAmelCase__ ( self: str ): __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__A ) @slow def lowerCAmelCase__ ( self: Dict ): for model_name in TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCamelCase = TFCvtModel.from_pretrained(__A ) self.assertIsNotNone(__A ) def lowerCamelCase__ ( ): '''simple docstring''' __lowerCamelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class lowerCamelCase__( unittest.TestCase): @cached_property def lowerCAmelCase__ ( self: Dict ): return AutoImageProcessor.from_pretrained(TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def lowerCAmelCase__ ( self: Dict ): __lowerCamelCase = TFCvtForImageClassification.from_pretrained(TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) __lowerCamelCase = self.default_image_processor __lowerCamelCase = prepare_img() __lowerCamelCase = image_processor(images=__A , return_tensors="""tf""" ) # forward pass __lowerCamelCase = model(**__A ) # verify the logits __lowerCamelCase = tf.TensorShape((1, 10_00) ) self.assertEqual(outputs.logits.shape , __A ) __lowerCamelCase = tf.constant([0.9285, 0.9015, -0.3150] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , __A , atol=1E-4 ) )
12
'''simple docstring''' from __future__ import annotations from typing import Any class snake_case ( __lowerCamelCase ): """simple docstring""" pass class snake_case : """simple docstring""" def __init__( self : List[Any] , __A : Any ): __UpperCamelCase = data __UpperCamelCase = None def __iter__( self : Optional[Any] ): __UpperCamelCase = self __UpperCamelCase = [] while node: if node in visited: raise ContainsLoopError visited.append(__A ) yield node.data __UpperCamelCase = node.next_node @property def _lowerCamelCase ( self : List[str] ): try: list(self ) return False except ContainsLoopError: return True if __name__ == "__main__": a__ : Dict =Node(1) a__ : Optional[int] =Node(2) a__ : List[str] =Node(3) a__ : Optional[int] =Node(4) print(root_node.has_loop) # False a__ : str =root_node.next_node print(root_node.has_loop) # True a__ : Optional[int] =Node(5) a__ : List[Any] =Node(6) a__ : int =Node(5) a__ : Tuple =Node(6) print(root_node.has_loop) # False a__ : str =Node(1) print(root_node.has_loop) # False
53
0
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase : int = logging.get_logger(__name__) __UpperCAmelCase : Dict = { "sayakpaul/vit-msn-base": "https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json", # See all ViT MSN models at https://huggingface.co/models?filter=vit_msn } class UpperCAmelCase_ ( _a): '''simple docstring''' __UpperCamelCase : Tuple = "vit_msn" def __init__( self , __SCREAMING_SNAKE_CASE=768 , __SCREAMING_SNAKE_CASE=12 , __SCREAMING_SNAKE_CASE=12 , __SCREAMING_SNAKE_CASE=3_072 , __SCREAMING_SNAKE_CASE="gelu" , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=1e-06 , __SCREAMING_SNAKE_CASE=224 , __SCREAMING_SNAKE_CASE=16 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=True , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" super().__init__(**__SCREAMING_SNAKE_CASE ) UpperCamelCase : int = hidden_size UpperCamelCase : List[Any] = num_hidden_layers UpperCamelCase : Tuple = num_attention_heads UpperCamelCase : Tuple = intermediate_size UpperCamelCase : List[Any] = hidden_act UpperCamelCase : Optional[Any] = hidden_dropout_prob UpperCamelCase : Dict = attention_probs_dropout_prob UpperCamelCase : str = initializer_range UpperCamelCase : List[str] = layer_norm_eps UpperCamelCase : Dict = image_size UpperCamelCase : Any = patch_size UpperCamelCase : Optional[Any] = num_channels UpperCamelCase : Dict = qkv_bias
315
def a ( SCREAMING_SNAKE_CASE_ : str = "The quick brown fox jumps over the lazy dog" , ): """simple docstring""" UpperCamelCase : Any = set() # Replace all the whitespace in our sentence UpperCamelCase : Union[str, Any] = input_str.replace(''' ''' , '''''' ) for alpha in input_str: if "a" <= alpha.lower() <= "z": frequency.add(alpha.lower() ) return len(SCREAMING_SNAKE_CASE_ ) == 2_6 def a ( SCREAMING_SNAKE_CASE_ : str = "The quick brown fox jumps over the lazy dog" , ): """simple docstring""" UpperCamelCase : str = [False] * 2_6 for char in input_str: if char.islower(): UpperCamelCase : List[Any] = True elif char.isupper(): UpperCamelCase : List[Any] = True return all(SCREAMING_SNAKE_CASE_ ) def a ( SCREAMING_SNAKE_CASE_ : str = "The quick brown fox jumps over the lazy dog" , ): """simple docstring""" return len({char for char in input_str.lower() if char.isalpha()} ) == 2_6 def a ( ): """simple docstring""" from timeit import timeit UpperCamelCase : int = '''from __main__ import is_pangram, is_pangram_faster, is_pangram_fastest''' print(timeit('''is_pangram()''' , setup=SCREAMING_SNAKE_CASE_ ) ) print(timeit('''is_pangram_faster()''' , setup=SCREAMING_SNAKE_CASE_ ) ) print(timeit('''is_pangram_fastest()''' , setup=SCREAMING_SNAKE_CASE_ ) ) # 5.348480500048026, 2.6477354579837993, 1.8470395830227062 # 5.036091582966037, 2.644472333951853, 1.8869528750656173 if __name__ == "__main__": import doctest doctest.testmod() benchmark()
315
1
"""simple docstring""" def UpperCamelCase__ ( lowercase__ : str ): return credit_card_number.startswith(("34", "35", "37", "4", "5", "6") ) def UpperCamelCase__ ( lowercase__ : str ): snake_case : str = credit_card_number snake_case : Tuple = 0 snake_case : Optional[Any] = len(lowercase__ ) - 2 for i in range(lowercase__ , -1 , -2 ): # double the value of every second digit snake_case : Optional[int] = int(cc_number[i] ) digit *= 2 # If doubling of a number results in a two digit number # i.e greater than 9(e.g., 6 × 2 = 12), # then add the digits of the product (e.g., 12: 1 + 2 = 3, 15: 1 + 5 = 6), # to get a single digit number. if digit > 9: digit %= 10 digit += 1 snake_case : Union[str, Any] = cc_number[:i] + str(lowercase__ ) + cc_number[i + 1 :] total += digit # Sum up the remaining digits for i in range(len(lowercase__ ) - 1 , -1 , -2 ): total += int(cc_number[i] ) return total % 10 == 0 def UpperCamelCase__ ( lowercase__ : str ): snake_case : Optional[int] = F'''{credit_card_number} is an invalid credit card number because''' if not credit_card_number.isdigit(): print(F'''{error_message} it has nonnumerical characters.''' ) return False if not 13 <= len(lowercase__ ) <= 16: print(F'''{error_message} of its length.''' ) return False if not validate_initial_digits(lowercase__ ): print(F'''{error_message} of its first two digits.''' ) return False if not luhn_validation(lowercase__ ): print(F'''{error_message} it fails the Luhn check.''' ) return False print(F'''{credit_card_number} is a valid credit card number.''' ) return True if __name__ == "__main__": import doctest doctest.testmod() validate_credit_card_number("4111111111111111") validate_credit_card_number("32323")
148
"""simple docstring""" import unittest import numpy as np from transformers import RoFormerConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roformer.modeling_flax_roformer import ( FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, ) class lowerCamelCase__ ( unittest.TestCase ): def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=13 , SCREAMING_SNAKE_CASE=7 , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=99 , SCREAMING_SNAKE_CASE=32 , SCREAMING_SNAKE_CASE=5 , SCREAMING_SNAKE_CASE=4 , SCREAMING_SNAKE_CASE=37 , SCREAMING_SNAKE_CASE="gelu" , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=512 , SCREAMING_SNAKE_CASE=16 , SCREAMING_SNAKE_CASE=2 , SCREAMING_SNAKE_CASE=0.02 , SCREAMING_SNAKE_CASE=4 , ): """simple docstring""" snake_case : int = parent snake_case : List[Any] = batch_size snake_case : str = seq_length snake_case : Optional[int] = is_training snake_case : Optional[int] = use_attention_mask snake_case : str = use_token_type_ids snake_case : int = use_labels snake_case : Any = vocab_size snake_case : Any = hidden_size snake_case : Any = num_hidden_layers snake_case : int = num_attention_heads snake_case : Optional[Any] = intermediate_size snake_case : List[str] = hidden_act snake_case : Any = hidden_dropout_prob snake_case : Tuple = attention_probs_dropout_prob snake_case : int = max_position_embeddings snake_case : Any = type_vocab_size snake_case : int = type_sequence_label_size snake_case : Union[str, Any] = initializer_range snake_case : Optional[Any] = num_choices def lowerCamelCase_ ( self ): """simple docstring""" snake_case : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case : Tuple = None if self.use_attention_mask: snake_case : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) snake_case : str = None if self.use_token_type_ids: snake_case : Any = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case : str = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def lowerCamelCase_ ( self ): """simple docstring""" snake_case : Optional[int] = self.prepare_config_and_inputs() snake_case , snake_case , snake_case , snake_case : str = config_and_inputs snake_case : int = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict @require_flax class lowerCamelCase__ ( lowerCamelCase_ , unittest.TestCase ): a__ : Optional[Any] = True a__ : List[str] = ( ( FlaxRoFormerModel, FlaxRoFormerForMaskedLM, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, ) if is_flax_available() else () ) def lowerCamelCase_ ( self ): """simple docstring""" snake_case : str = FlaxRoFormerModelTester(self ) @slow def lowerCamelCase_ ( self ): """simple docstring""" for model_class_name in self.all_model_classes: snake_case : List[Any] = model_class_name.from_pretrained("junnyu/roformer_chinese_small" , from_pt=SCREAMING_SNAKE_CASE ) snake_case : str = model(np.ones((1, 1) ) ) self.assertIsNotNone(SCREAMING_SNAKE_CASE ) @require_flax class lowerCamelCase__ ( unittest.TestCase ): @slow def lowerCamelCase_ ( self ): """simple docstring""" snake_case : List[str] = FlaxRoFormerForMaskedLM.from_pretrained("junnyu/roformer_chinese_base" ) snake_case : Union[str, Any] = jnp.array([[0, 1, 2, 3, 4, 5]] ) snake_case : List[Any] = model(SCREAMING_SNAKE_CASE )[0] snake_case : List[Any] = 50_000 snake_case : List[str] = (1, 6, vocab_size) self.assertEqual(output.shape , SCREAMING_SNAKE_CASE ) snake_case : Optional[int] = jnp.array( [[[-0.12_05, -1.02_65, 0.29_22], [-1.51_34, 0.19_74, 0.15_19], [-5.01_35, -3.90_03, -0.84_04]]] ) self.assertTrue(jnp.allclose(output[:, :3, :3] , SCREAMING_SNAKE_CASE , atol=1E-4 ) )
148
1
'''simple docstring''' from dataclasses import dataclass from typing import Optional import numpy as np import torch import torch.nn as nn from ..utils import BaseOutput, is_torch_version, randn_tensor from .attention_processor import SpatialNorm from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block @dataclass class _snake_case ( snake_case_ ): lowerCAmelCase :torch.FloatTensor class _snake_case ( nn.Module ): def __init__( self , _lowerCamelCase=3 , _lowerCamelCase=3 , _lowerCamelCase=("DownEncoderBlock2D",) , _lowerCamelCase=(64,) , _lowerCamelCase=2 , _lowerCamelCase=32 , _lowerCamelCase="silu" , _lowerCamelCase=True , ): super().__init__() UpperCAmelCase__ : List[str] = layers_per_block UpperCAmelCase__ : Optional[int] = torch.nn.Convad( _A , block_out_channels[0] , kernel_size=3 , stride=1 , padding=1 , ) UpperCAmelCase__ : str = None UpperCAmelCase__ : List[str] = nn.ModuleList([]) # down UpperCAmelCase__ : List[str] = block_out_channels[0] for i, down_block_type in enumerate(_A): UpperCAmelCase__ : List[str] = output_channel UpperCAmelCase__ : Any = block_out_channels[i] UpperCAmelCase__ : Any = i == len(_A) - 1 UpperCAmelCase__ : Any = get_down_block( _A , num_layers=self.layers_per_block , in_channels=_A , out_channels=_A , add_downsample=not is_final_block , resnet_eps=1e-6 , downsample_padding=0 , resnet_act_fn=_A , resnet_groups=_A , attention_head_dim=_A , temb_channels=_A , ) self.down_blocks.append(_A) # mid UpperCAmelCase__ : str = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=_A , output_scale_factor=1 , resnet_time_scale_shift="""default""" , attention_head_dim=block_out_channels[-1] , resnet_groups=_A , temb_channels=_A , ) # out UpperCAmelCase__ : Optional[int] = nn.GroupNorm(num_channels=block_out_channels[-1] , num_groups=_A , eps=1e-6) UpperCAmelCase__ : int = nn.SiLU() UpperCAmelCase__ : Optional[int] = 2 * out_channels if double_z else out_channels UpperCAmelCase__ : Any = nn.Convad(block_out_channels[-1] , _A , 3 , padding=1) UpperCAmelCase__ : List[str] = False def snake_case__ ( self , _lowerCamelCase): UpperCAmelCase__ : Any = x UpperCAmelCase__ : List[str] = self.conv_in(_A) if self.training and self.gradient_checkpointing: def create_custom_forward(_lowerCamelCase): def custom_forward(*_lowerCamelCase): return module(*_A) return custom_forward # down if is_torch_version(""">=""" , """1.11.0"""): for down_block in self.down_blocks: UpperCAmelCase__ : List[str] = torch.utils.checkpoint.checkpoint( create_custom_forward(_A) , _A , use_reentrant=_A) # middle UpperCAmelCase__ : Union[str, Any] = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block) , _A , use_reentrant=_A) else: for down_block in self.down_blocks: UpperCAmelCase__ : Tuple = torch.utils.checkpoint.checkpoint(create_custom_forward(_A) , _A) # middle UpperCAmelCase__ : Any = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block) , _A) else: # down for down_block in self.down_blocks: UpperCAmelCase__ : Tuple = down_block(_A) # middle UpperCAmelCase__ : Optional[int] = self.mid_block(_A) # post-process UpperCAmelCase__ : str = self.conv_norm_out(_A) UpperCAmelCase__ : Dict = self.conv_act(_A) UpperCAmelCase__ : List[Any] = self.conv_out(_A) return sample class _snake_case ( nn.Module ): def __init__( self , _lowerCamelCase=3 , _lowerCamelCase=3 , _lowerCamelCase=("UpDecoderBlock2D",) , _lowerCamelCase=(64,) , _lowerCamelCase=2 , _lowerCamelCase=32 , _lowerCamelCase="silu" , _lowerCamelCase="group" , ): super().__init__() UpperCAmelCase__ : Any = layers_per_block UpperCAmelCase__ : Any = nn.Convad( _A , block_out_channels[-1] , kernel_size=3 , stride=1 , padding=1 , ) UpperCAmelCase__ : List[Any] = None UpperCAmelCase__ : List[str] = nn.ModuleList([]) UpperCAmelCase__ : Dict = in_channels if norm_type == 'spatial' else None # mid UpperCAmelCase__ : int = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=_A , output_scale_factor=1 , resnet_time_scale_shift="""default""" if norm_type == """group""" else norm_type , attention_head_dim=block_out_channels[-1] , resnet_groups=_A , temb_channels=_A , ) # up UpperCAmelCase__ : Union[str, Any] = list(reversed(_A)) UpperCAmelCase__ : int = reversed_block_out_channels[0] for i, up_block_type in enumerate(_A): UpperCAmelCase__ : List[Any] = output_channel UpperCAmelCase__ : Optional[int] = reversed_block_out_channels[i] UpperCAmelCase__ : Dict = i == len(_A) - 1 UpperCAmelCase__ : Optional[Any] = get_up_block( _A , num_layers=self.layers_per_block + 1 , in_channels=_A , out_channels=_A , prev_output_channel=_A , add_upsample=not is_final_block , resnet_eps=1e-6 , resnet_act_fn=_A , resnet_groups=_A , attention_head_dim=_A , temb_channels=_A , resnet_time_scale_shift=_A , ) self.up_blocks.append(_A) UpperCAmelCase__ : int = output_channel # out if norm_type == "spatial": UpperCAmelCase__ : Union[str, Any] = SpatialNorm(block_out_channels[0] , _A) else: UpperCAmelCase__ : Dict = nn.GroupNorm(num_channels=block_out_channels[0] , num_groups=_A , eps=1e-6) UpperCAmelCase__ : List[str] = nn.SiLU() UpperCAmelCase__ : Optional[int] = nn.Convad(block_out_channels[0] , _A , 3 , padding=1) UpperCAmelCase__ : Optional[int] = False def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase=None): UpperCAmelCase__ : Any = z UpperCAmelCase__ : List[str] = self.conv_in(_A) UpperCAmelCase__ : Any = next(iter(self.up_blocks.parameters())).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(_lowerCamelCase): def custom_forward(*_lowerCamelCase): return module(*_A) return custom_forward if is_torch_version(""">=""" , """1.11.0"""): # middle UpperCAmelCase__ : Dict = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block) , _A , _A , use_reentrant=_A) UpperCAmelCase__ : Optional[Any] = sample.to(_A) # up for up_block in self.up_blocks: UpperCAmelCase__ : int = torch.utils.checkpoint.checkpoint( create_custom_forward(_A) , _A , _A , use_reentrant=_A) else: # middle UpperCAmelCase__ : int = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block) , _A , _A) UpperCAmelCase__ : str = sample.to(_A) # up for up_block in self.up_blocks: UpperCAmelCase__ : str = torch.utils.checkpoint.checkpoint(create_custom_forward(_A) , _A , _A) else: # middle UpperCAmelCase__ : str = self.mid_block(_A , _A) UpperCAmelCase__ : Any = sample.to(_A) # up for up_block in self.up_blocks: UpperCAmelCase__ : int = up_block(_A , _A) # post-process if latent_embeds is None: UpperCAmelCase__ : List[Any] = self.conv_norm_out(_A) else: UpperCAmelCase__ : Optional[int] = self.conv_norm_out(_A , _A) UpperCAmelCase__ : Any = self.conv_act(_A) UpperCAmelCase__ : Dict = self.conv_out(_A) return sample class _snake_case ( nn.Module ): def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase="random" , _lowerCamelCase=False , _lowerCamelCase=True): super().__init__() UpperCAmelCase__ : Optional[Any] = n_e UpperCAmelCase__ : List[Any] = vq_embed_dim UpperCAmelCase__ : Dict = beta UpperCAmelCase__ : List[Any] = legacy UpperCAmelCase__ : str = nn.Embedding(self.n_e , self.vq_embed_dim) self.embedding.weight.data.uniform_(-1.0 / self.n_e , 1.0 / self.n_e) UpperCAmelCase__ : str = remap if self.remap is not None: self.register_buffer("""used""" , torch.tensor(np.load(self.remap))) UpperCAmelCase__ : List[Any] = self.used.shape[0] UpperCAmelCase__ : Dict = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": UpperCAmelCase__ : Union[str, Any] = self.re_embed UpperCAmelCase__ : List[Any] = self.re_embed + 1 print( f'''Remapping {self.n_e} indices to {self.re_embed} indices. ''' f'''Using {self.unknown_index} for unknown indices.''') else: UpperCAmelCase__ : Optional[Any] = n_e UpperCAmelCase__ : Tuple = sane_index_shape def snake_case__ ( self , _lowerCamelCase): UpperCAmelCase__ : str = inds.shape assert len(_A) > 1 UpperCAmelCase__ : Union[str, Any] = inds.reshape(ishape[0] , -1) UpperCAmelCase__ : Tuple = self.used.to(_A) UpperCAmelCase__ : Dict = (inds[:, :, None] == used[None, None, ...]).long() UpperCAmelCase__ : List[Any] = match.argmax(-1) UpperCAmelCase__ : Optional[int] = match.sum(2) < 1 if self.unknown_index == "random": UpperCAmelCase__ : Union[str, Any] = torch.randint(0 , self.re_embed , size=new[unknown].shape).to(device=new.device) else: UpperCAmelCase__ : Tuple = self.unknown_index return new.reshape(_A) def snake_case__ ( self , _lowerCamelCase): UpperCAmelCase__ : Tuple = inds.shape assert len(_A) > 1 UpperCAmelCase__ : str = inds.reshape(ishape[0] , -1) UpperCAmelCase__ : Optional[Any] = self.used.to(_A) if self.re_embed > self.used.shape[0]: # extra token UpperCAmelCase__ : Optional[Any] = 0 # simply set to zero UpperCAmelCase__ : List[Any] = torch.gather(used[None, :][inds.shape[0] * [0], :] , 1 , _A) return back.reshape(_A) def snake_case__ ( self , _lowerCamelCase): UpperCAmelCase__ : str = z.permute(0 , 2 , 3 , 1).contiguous() UpperCAmelCase__ : Optional[Any] = z.view(-1 , self.vq_embed_dim) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z UpperCAmelCase__ : int = torch.argmin(torch.cdist(_A , self.embedding.weight) , dim=1) UpperCAmelCase__ : Optional[int] = self.embedding(_A).view(z.shape) UpperCAmelCase__ : int = None UpperCAmelCase__ : List[Any] = None # compute loss for embedding if not self.legacy: UpperCAmelCase__ : int = self.beta * torch.mean((z_q.detach() - z) ** 2) + torch.mean((z_q - z.detach()) ** 2) else: UpperCAmelCase__ : int = torch.mean((z_q.detach() - z) ** 2) + self.beta * torch.mean((z_q - z.detach()) ** 2) # preserve gradients UpperCAmelCase__ : Tuple = z + (z_q - z).detach() # reshape back to match original input shape UpperCAmelCase__ : Union[str, Any] = z_q.permute(0 , 3 , 1 , 2).contiguous() if self.remap is not None: UpperCAmelCase__ : int = min_encoding_indices.reshape(z.shape[0] , -1) # add batch axis UpperCAmelCase__ : Optional[Any] = self.remap_to_used(_A) UpperCAmelCase__ : List[str] = min_encoding_indices.reshape(-1 , 1) # flatten if self.sane_index_shape: UpperCAmelCase__ : Any = min_encoding_indices.reshape(z_q.shape[0] , z_q.shape[2] , z_q.shape[3]) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase): if self.remap is not None: UpperCAmelCase__ : Optional[int] = indices.reshape(shape[0] , -1) # add batch axis UpperCAmelCase__ : Optional[int] = self.unmap_to_all(_A) UpperCAmelCase__ : Optional[Any] = indices.reshape(-1) # flatten again # get quantized latent vectors UpperCAmelCase__ : List[Any] = self.embedding(_A) if shape is not None: UpperCAmelCase__ : Union[str, Any] = z_q.view(_A) # reshape back to match original input shape UpperCAmelCase__ : Tuple = z_q.permute(0 , 3 , 1 , 2).contiguous() return z_q class _snake_case ( snake_case_ ): def __init__( self , _lowerCamelCase , _lowerCamelCase=False): UpperCAmelCase__ : int = parameters UpperCAmelCase__ : Optional[int] = torch.chunk(_A , 2 , dim=1) UpperCAmelCase__ : str = torch.clamp(self.logvar , -30.0 , 20.0) UpperCAmelCase__ : Any = deterministic UpperCAmelCase__ : int = torch.exp(0.5 * self.logvar) UpperCAmelCase__ : Optional[int] = torch.exp(self.logvar) if self.deterministic: UpperCAmelCase__ : Union[str, Any] = torch.zeros_like( self.mean , device=self.parameters.device , dtype=self.parameters.dtype) def snake_case__ ( self , _lowerCamelCase = None): UpperCAmelCase__ : Union[str, Any] = randn_tensor( self.mean.shape , generator=_A , device=self.parameters.device , dtype=self.parameters.dtype) UpperCAmelCase__ : Optional[int] = self.mean + self.std * sample return x def snake_case__ ( self , _lowerCamelCase=None): if self.deterministic: return torch.Tensor([0.0]) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean , 2) + self.var - 1.0 - self.logvar , dim=[1, 2, 3]) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean , 2) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar , dim=[1, 2, 3] , ) def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase=[1, 2, 3]): if self.deterministic: return torch.Tensor([0.0]) UpperCAmelCase__ : int = np.log(2.0 * np.pi) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean , 2) / self.var , dim=_A) def snake_case__ ( self): return self.mean
350
'''simple docstring''' import os from typing import Optional import fsspec from fsspec.archive import AbstractArchiveFileSystem from fsspec.utils import DEFAULT_BLOCK_SIZE class _snake_case ( a__ ): lowerCAmelCase :Optional[int] = '''''' lowerCAmelCase :str = ( None # protocol passed in prefix to the url. ex: "gzip", for gzip://file.txt::http://foo.bar/file.txt.gz ) lowerCAmelCase :str = None # compression type in fsspec. ex: "gzip" lowerCAmelCase :str = None # extension of the filename to strip. ex: "".gz" to get file.txt from file.txt.gz def __init__( self , _lowerCamelCase = "" , _lowerCamelCase = None , _lowerCamelCase = None , **_lowerCamelCase): super().__init__(self , **_lowerCamelCase) # always open as "rb" since fsspec can then use the TextIOWrapper to make it work for "r" mode UpperCAmelCase__ : Optional[Any] = fsspec.open( _lowerCamelCase , mode="""rb""" , protocol=_lowerCamelCase , compression=self.compression , client_kwargs={ """requote_redirect_url""": False, # see https://github.com/huggingface/datasets/pull/5459 """trust_env""": True, # Enable reading proxy env variables. **(target_options or {}).pop("""client_kwargs""" , {}), # To avoid issues if it was already passed. } , **(target_options or {}) , ) UpperCAmelCase__ : List[Any] = os.path.basename(self.file.path.split("""::""")[0]) UpperCAmelCase__ : Dict = ( self.compressed_name[: self.compressed_name.rindex(""".""")] if """.""" in self.compressed_name else self.compressed_name ) UpperCAmelCase__ : Tuple = None @classmethod def snake_case__ ( cls , _lowerCamelCase): # compressed file paths are always relative to the archive root return super()._strip_protocol(_lowerCamelCase).lstrip("""/""") def snake_case__ ( self): if self.dir_cache is None: UpperCAmelCase__ : Optional[Any] = {**self.file.fs.info(self.file.path), """name""": self.uncompressed_name} UpperCAmelCase__ : Union[str, Any] = {f["""name"""]: f} def snake_case__ ( self , _lowerCamelCase): return self.file.open().read() def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase = "rb" , _lowerCamelCase=None , _lowerCamelCase=True , _lowerCamelCase=None , **_lowerCamelCase , ): UpperCAmelCase__ : List[str] = self._strip_protocol(_lowerCamelCase) if mode != "rb": raise ValueError(f'''Tried to read with mode {mode} on file {self.file.path} opened with mode \'rb\'''') return self.file.open() class _snake_case ( a__ ): lowerCAmelCase :Dict = '''bz2''' lowerCAmelCase :List[str] = '''bz2''' lowerCAmelCase :Dict = '''.bz2''' class _snake_case ( a__ ): lowerCAmelCase :int = '''gzip''' lowerCAmelCase :Tuple = '''gzip''' lowerCAmelCase :str = '''.gz''' class _snake_case ( a__ ): lowerCAmelCase :List[str] = '''lz4''' lowerCAmelCase :Any = '''lz4''' lowerCAmelCase :int = '''.lz4''' class _snake_case ( a__ ): lowerCAmelCase :Union[str, Any] = '''xz''' lowerCAmelCase :int = '''xz''' lowerCAmelCase :List[Any] = '''.xz''' class _snake_case ( a__ ): lowerCAmelCase :Tuple = '''zstd''' lowerCAmelCase :List[str] = '''zstd''' lowerCAmelCase :Union[str, Any] = '''.zst''' def __init__( self , _lowerCamelCase , _lowerCamelCase = "rb" , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = DEFAULT_BLOCK_SIZE , **_lowerCamelCase , ): super().__init__( fo=_lowerCamelCase , mode=_lowerCamelCase , target_protocol=_lowerCamelCase , target_options=_lowerCamelCase , block_size=_lowerCamelCase , **_lowerCamelCase , ) # We need to wrap the zstd decompressor to avoid this error in fsspec==2021.7.0 and zstandard==0.15.2: # # File "/Users/user/.virtualenvs/hf-datasets/lib/python3.7/site-packages/fsspec/core.py", line 145, in open # out.close = close # AttributeError: 'zstd.ZstdDecompressionReader' object attribute 'close' is read-only # # see https://github.com/intake/filesystem_spec/issues/725 UpperCAmelCase__ : Dict = self.file.__enter__ class _snake_case : def __init__( self , _lowerCamelCase): UpperCAmelCase__ : Optional[int] = file_ def __enter__( self): self._file.__enter__() return self def __exit__( self , *_lowerCamelCase , **_lowerCamelCase): self._file.__exit__(*_lowerCamelCase , **_lowerCamelCase) def __iter__( self): return iter(self._file) def snake_case__ ( self): return next(self._file) def __getattr__( self , _lowerCamelCase): return getattr(self._file , _lowerCamelCase) def fixed_enter(*_lowerCamelCase , **_lowerCamelCase): return WrappedFile(_enter(*_lowerCamelCase , **_lowerCamelCase)) UpperCAmelCase__ : List[Any] = fixed_enter
283
0
"""simple docstring""" from dataclasses import dataclass from typing import Tuple import numpy as np import torch @dataclass class a : UpperCAmelCase_ : torch.Tensor # [batch_size x 3] UpperCAmelCase_ : torch.Tensor # [batch_size x 3] UpperCAmelCase_ : torch.Tensor # [batch_size x 3] UpperCAmelCase_ : torch.Tensor # [batch_size x 3] UpperCAmelCase_ : int UpperCAmelCase_ : int UpperCAmelCase_ : float UpperCAmelCase_ : float UpperCAmelCase_ : Tuple[int] def UpperCamelCase_ ( self ): assert self.x.shape[0] == self.y.shape[0] == self.z.shape[0] == self.origin.shape[0] assert self.x.shape[1] == self.y.shape[1] == self.z.shape[1] == self.origin.shape[1] == 3 assert len(self.x.shape ) == len(self.y.shape ) == len(self.z.shape ) == len(self.origin.shape ) == 2 def UpperCamelCase_ ( self ): return torch.from_numpy(np.array([self.width, self.height] , dtype=np.floataa ) ) def UpperCamelCase_ ( self ): return torch.from_numpy(np.array([self.x_fov, self.y_fov] , dtype=np.floataa ) ) def UpperCamelCase_ ( self ): lowercase = torch.arange(self.height * self.width ) lowercase = torch.stack( [ pixel_indices % self.width, torch.div(_lowerCamelCase , self.width , rounding_mode='trunc' ), ] , axis=1 , ) return coords @property def UpperCamelCase_ ( self ): lowercase , *lowercase = self.shape lowercase = int(np.prod(_lowerCamelCase ) ) lowercase = self.get_image_coords() lowercase = torch.broadcast_to(coords.unsqueeze(0 ) , [batch_size * inner_batch_size, *coords.shape] ) lowercase = self.get_camera_rays(_lowerCamelCase ) lowercase = rays.view(_lowerCamelCase , inner_batch_size * self.height * self.width , 2 , 3 ) return rays def UpperCamelCase_ ( self , _lowerCamelCase ): lowercase , *lowercase , lowercase = coords.shape assert n_coords == 2 assert batch_size == self.origin.shape[0] lowercase = coords.view(_lowerCamelCase , -1 , 2 ) lowercase = self.resolution() lowercase = self.fov() lowercase = (flat.float() / (res - 1)) * 2 - 1 lowercase = fracs * torch.tan(fov / 2 ) lowercase = fracs.view(_lowerCamelCase , -1 , 2 ) lowercase = ( self.z.view(_lowerCamelCase , 1 , 3 ) + self.x.view(_lowerCamelCase , 1 , 3 ) * fracs[:, :, :1] + self.y.view(_lowerCamelCase , 1 , 3 ) * fracs[:, :, 1:] ) lowercase = directions / directions.norm(dim=-1 , keepdim=_lowerCamelCase ) lowercase = torch.stack( [ torch.broadcast_to(self.origin.view(_lowerCamelCase , 1 , 3 ) , [batch_size, directions.shape[1], 3] ), directions, ] , dim=2 , ) return rays.view(_lowerCamelCase , *_lowerCamelCase , 2 , 3 ) def UpperCamelCase_ ( self , _lowerCamelCase , _lowerCamelCase ): assert width * self.height == height * self.width, "The aspect ratio should not change." return DifferentiableProjectiveCamera( origin=self.origin , x=self.x , y=self.y , z=self.z , width=_lowerCamelCase , height=_lowerCamelCase , x_fov=self.x_fov , y_fov=self.y_fov , ) def _SCREAMING_SNAKE_CASE ( __snake_case : int ): '''simple docstring''' lowercase = [] lowercase = [] lowercase = [] lowercase = [] for theta in np.linspace(0 , 2 * np.pi , num=20 ): lowercase = np.array([np.sin(__snake_case ), np.cos(__snake_case ), -0.5] ) z /= np.sqrt(np.sum(z**2 ) ) lowercase = -z * 4 lowercase = np.array([np.cos(__snake_case ), -np.sin(__snake_case ), 0.0] ) lowercase = np.cross(__snake_case , __snake_case ) origins.append(__snake_case ) xs.append(__snake_case ) ys.append(__snake_case ) zs.append(__snake_case ) return DifferentiableProjectiveCamera( origin=torch.from_numpy(np.stack(__snake_case , axis=0 ) ).float() , x=torch.from_numpy(np.stack(__snake_case , axis=0 ) ).float() , y=torch.from_numpy(np.stack(__snake_case , axis=0 ) ).float() , z=torch.from_numpy(np.stack(__snake_case , axis=0 ) ).float() , width=__snake_case , height=__snake_case , x_fov=0.7 , y_fov=0.7 , shape=(1, len(__snake_case )) , )
220
"""simple docstring""" def _SCREAMING_SNAKE_CASE ( __snake_case : int = 4_00_00_00 ): '''simple docstring''' lowercase = [] lowercase , lowercase = 0, 1 while b <= n: if b % 2 == 0: even_fibs.append(__snake_case ) lowercase , lowercase = b, a + b return sum(__snake_case ) if __name__ == "__main__": print(F'''{solution() = }''')
220
1
from string import ascii_lowercase, ascii_uppercase def a_ ( __lowercase : str ) -> str: if not sentence: return "" _snake_case = dict(zip(__lowercase , __lowercase ) ) return lower_to_upper.get(sentence[0] , sentence[0] ) + sentence[1:] if __name__ == "__main__": from doctest import testmod testmod()
130
import logging import os import sys from pathlib import Path from unittest.mock import patch from parameterized import parameterized from run_eval import run_generate from run_eval_search import run_search from transformers.testing_utils import CaptureStdout, TestCasePlus, slow from utils import ROUGE_KEYS logging.basicConfig(level=logging.DEBUG) _lowerCamelCase : Union[str, Any] = logging.getLogger() def a_ ( __lowercase : Path , __lowercase : list ) -> Tuple: _snake_case = '\n'.join(__lowercase ) Path(__lowercase ).open('w' ).writelines(__lowercase ) _lowerCamelCase : Any = '''patrickvonplaten/t5-tiny-random''' _lowerCamelCase : List[Any] = '''sshleifer/bart-tiny-random''' _lowerCamelCase : List[Any] = '''sshleifer/tiny-mbart''' _lowerCamelCase : Union[str, Any] = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) logging.disable(logging.CRITICAL) # remove noisy download output from tracebacks class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' def A ( self : Optional[int] , lowercase : int ): '''simple docstring''' _snake_case = Path(self.get_auto_remove_tmp_dir() ) / 'utest_input.source' _snake_case = input_file_name.parent / 'utest_output.txt' assert not output_file_name.exists() _snake_case = [' New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County.'] _dump_articles(lowercase , lowercase ) _snake_case = str(Path(self.get_auto_remove_tmp_dir() ) / 'scores.json' ) _snake_case = 'translation_en_to_de' if model == T5_TINY else 'summarization' _snake_case = f''' run_eval_search.py {model} {input_file_name} {output_file_name} --score_path {score_path} --task {task} --num_beams 2 --length_penalty 2.0 '''.split() with patch.object(lowercase , 'argv' , lowercase ): run_generate() assert Path(lowercase ).exists() # os.remove(Path(output_file_name)) def A ( self : List[Any] ): '''simple docstring''' self.run_eval_tester(lowercase ) @parameterized.expand([BART_TINY, MBART_TINY] ) @slow def A ( self : Any , lowercase : int ): '''simple docstring''' self.run_eval_tester(lowercase ) @parameterized.expand([T5_TINY, MBART_TINY] ) @slow def A ( self : Any , lowercase : str ): '''simple docstring''' _snake_case = Path(self.get_auto_remove_tmp_dir() ) / 'utest_input.source' _snake_case = input_file_name.parent / 'utest_output.txt' assert not output_file_name.exists() _snake_case = { 'en': ['Machine learning is great, isn\'t it?', 'I like to eat bananas', 'Tomorrow is another great day!'], 'de': [ 'Maschinelles Lernen ist großartig, oder?', 'Ich esse gerne Bananen', 'Morgen ist wieder ein toller Tag!', ], } _snake_case = Path(self.get_auto_remove_tmp_dir() ) _snake_case = str(tmp_dir / 'scores.json' ) _snake_case = str(tmp_dir / 'val.target' ) _dump_articles(lowercase , text['en'] ) _dump_articles(lowercase , text['de'] ) _snake_case = 'translation_en_to_de' if model == T5_TINY else 'summarization' _snake_case = f''' run_eval_search.py {model} {str(lowercase )} {str(lowercase )} --score_path {score_path} --reference_path {reference_path} --task {task} '''.split() testargs.extend(['--search', 'num_beams=1:2 length_penalty=0.9:1.0'] ) with patch.object(lowercase , 'argv' , lowercase ): with CaptureStdout() as cs: run_search() _snake_case = [' num_beams | length_penalty', model, 'Best score args'] _snake_case = ['Info'] if "translation" in task: expected_strings.append('bleu' ) else: expected_strings.extend(lowercase ) for w in expected_strings: assert w in cs.out for w in un_expected_strings: assert w not in cs.out assert Path(lowercase ).exists() os.remove(Path(lowercase ) )
130
1
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import warnings from typing import List from unittest.mock import Mock import torch from torch.utils.data import DataLoader, IterableDataset, TensorDataset from accelerate.accelerator import Accelerator from accelerate.utils.dataclasses import DistributedType class _lowerCAmelCase ( __UpperCAmelCase ): def __init__(self , lowercase ): A_ : Optional[Any] = data def __iter__(self ): for element in self.data: yield element def a ( lowerCamelCase__=True ): '''simple docstring''' A_ : int = Accelerator(even_batches=lowerCamelCase__ ) assert accelerator.num_processes == 2, "this script expects that two GPUs are available" return accelerator def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = False ): '''simple docstring''' if iterable: A_ : Optional[Any] = DummyIterableDataset(torch.as_tensor(range(lowerCamelCase__ ) ) ) else: A_ : Dict = TensorDataset(torch.as_tensor(range(lowerCamelCase__ ) ) ) A_ : Any = DataLoader(lowerCamelCase__ , batch_size=lowerCamelCase__ ) A_ : Any = accelerator.prepare(lowerCamelCase__ ) return dl def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , ): '''simple docstring''' A_ : List[str] = create_dataloader(accelerator=lowerCamelCase__ , dataset_size=lowerCamelCase__ , batch_size=lowerCamelCase__ ) A_ : List[str] = [len(batch[0] ) for batch in dl] if accelerator.process_index == 0: assert batch_sizes == process_0_expected_batch_sizes elif accelerator.process_index == 1: assert batch_sizes == process_1_expected_batch_sizes def a ( ): '''simple docstring''' A_ : Optional[Any] = create_accelerator() # without padding, we would expect a different number of batches verify_dataloader_batch_sizes( lowerCamelCase__ , dataset_size=3 , batch_size=1 , process_0_expected_batch_sizes=[1, 1] , process_1_expected_batch_sizes=[1, 1] , ) # without padding, we would expect the same number of batches, but different sizes verify_dataloader_batch_sizes( lowerCamelCase__ , dataset_size=7 , batch_size=2 , process_0_expected_batch_sizes=[2, 2] , process_1_expected_batch_sizes=[2, 2] , ) def a ( ): '''simple docstring''' A_ : str = create_accelerator(even_batches=lowerCamelCase__ ) verify_dataloader_batch_sizes( lowerCamelCase__ , dataset_size=3 , batch_size=1 , process_0_expected_batch_sizes=[1, 1] , process_1_expected_batch_sizes=[1] , ) verify_dataloader_batch_sizes( lowerCamelCase__ , dataset_size=7 , batch_size=2 , process_0_expected_batch_sizes=[2, 2] , process_1_expected_batch_sizes=[2, 1] , ) def a ( ): '''simple docstring''' A_ : Union[str, Any] = create_accelerator(even_batches=lowerCamelCase__ ) A_ : Any = torch.nn.Linear(1 , 1 ) A_ : str = accelerator.prepare(lowerCamelCase__ ) A_ : Union[str, Any] = create_dataloader(lowerCamelCase__ , dataset_size=3 , batch_size=1 ) A_ : Tuple = [] with accelerator.join_uneven_inputs([ddp_model] ): for batch_idx, batch in enumerate(lowerCamelCase__ ): A_ : Union[str, Any] = ddp_model(batch[0].float() ) A_ : Optional[Any] = output.sum() loss.backward() batch_idxs.append(lowerCamelCase__ ) accelerator.wait_for_everyone() if accelerator.process_index == 0: assert batch_idxs == [0, 1] elif accelerator.process_index == 1: assert batch_idxs == [0] def a ( lowerCamelCase__ ): '''simple docstring''' with warnings.catch_warnings(record=lowerCamelCase__ ) as w: with accelerator.join_uneven_inputs([Mock()] ): pass assert issubclass(w[-1].category , lowerCamelCase__ ) assert "only supported for multi-GPU" in str(w[-1].message ) def a ( ): '''simple docstring''' A_ : Optional[Any] = True A_ : List[str] = False A_ : Tuple = create_accelerator(even_batches=lowerCamelCase__ ) A_ : List[str] = torch.nn.Linear(1 , 1 ) A_ : Optional[Any] = accelerator.prepare(lowerCamelCase__ ) A_ : Union[str, Any] = create_dataloader(lowerCamelCase__ , dataset_size=3 , batch_size=1 ) A_ : Dict = create_dataloader(lowerCamelCase__ , dataset_size=3 , batch_size=1 ) with accelerator.join_uneven_inputs([ddp_model] , even_batches=lowerCamelCase__ ): A_ : Optional[int] = train_dl.batch_sampler.even_batches A_ : List[str] = valid_dl.batch_sampler.even_batches assert train_dl_overridden_value == overridden_even_batches assert valid_dl_overridden_value == overridden_even_batches assert train_dl.batch_sampler.even_batches == default_even_batches assert valid_dl.batch_sampler.even_batches == default_even_batches def a ( ): '''simple docstring''' A_ : str = True A_ : List[Any] = False A_ : Tuple = create_accelerator(even_batches=lowerCamelCase__ ) A_ : List[str] = torch.nn.Linear(1 , 1 ) A_ : str = accelerator.prepare(lowerCamelCase__ ) create_dataloader(lowerCamelCase__ , dataset_size=3 , batch_size=1 , iterable=lowerCamelCase__ ) A_ : Dict = create_dataloader(lowerCamelCase__ , dataset_size=3 , batch_size=1 ) with warnings.catch_warnings(): warnings.filterwarnings("""ignore""" ) try: with accelerator.join_uneven_inputs([ddp_model] , even_batches=lowerCamelCase__ ): A_ : Tuple = batch_dl.batch_sampler.even_batches except AttributeError: # ensure attribute error is not raised when processing iterable dl raise AssertionError assert batch_dl_overridden_value == overridden_even_batches assert batch_dl.batch_sampler.even_batches == default_even_batches def a ( ): '''simple docstring''' A_ : Union[str, Any] = create_accelerator() A_ : str = torch.nn.Linear(1 , 1 ) A_ : List[str] = accelerator.prepare(lowerCamelCase__ ) create_dataloader(lowerCamelCase__ , dataset_size=3 , batch_size=1 , iterable=lowerCamelCase__ ) with warnings.catch_warnings(record=lowerCamelCase__ ) as w: with accelerator.join_uneven_inputs([ddp_model] , even_batches=lowerCamelCase__ ): pass assert issubclass(w[-1].category , lowerCamelCase__ ) assert "only supported for map-style datasets" in str(w[-1].message ) def a ( ): '''simple docstring''' A_ : Union[str, Any] = create_accelerator() accelerator.print("""Test that even_batches variable ensures uniform batches across processes""" ) test_default_ensures_even_batch_sizes() accelerator.print("""Run tests with even_batches disabled""" ) test_can_disable_even_batches() accelerator.print("""Test joining uneven inputs""" ) test_can_join_uneven_inputs() accelerator.print("""Test overriding even_batches when joining uneven inputs""" ) test_join_can_override_even_batches() accelerator.print("""Test overriding even_batches for mixed dataloader types""" ) test_join_can_override_for_mixed_type_dataloaders() accelerator.print("""Test overriding even_batches raises a warning for iterable dataloaders""" ) test_join_raises_warning_for_iterable_when_overriding_even_batches() accelerator.print("""Test join with non DDP distributed raises warning""" ) A_ : Any = accelerator.state.distributed_type A_ : Tuple = DistributedType.FSDP test_join_raises_warning_for_non_ddp_distributed(lowerCamelCase__ ) A_ : Dict = original_state if __name__ == "__main__": main()
206
'''simple docstring''' class _lowerCAmelCase ( __UpperCAmelCase ): pass class _lowerCAmelCase ( __UpperCAmelCase ): pass class _lowerCAmelCase : def __init__(self ): A_ : List[Any] = [ [], [], [], ] def _a (self , lowercase , lowercase ): try: if len(self.queues[priority] ) >= 100: raise OverflowError("""Maximum queue size is 100""" ) self.queues[priority].append(lowercase ) except IndexError: raise ValueError("""Valid priorities are 0, 1, and 2""" ) def _a (self ): for queue in self.queues: if queue: return queue.pop(0 ) raise UnderFlowError("""All queues are empty""" ) def __str__(self ): return "\n".join(F'Priority {i}: {q}' for i, q in enumerate(self.queues ) ) class _lowerCAmelCase : def __init__(self ): A_ : List[str] = [] def _a (self , lowercase ): if len(self.queue ) == 100: raise OverFlowError("""Maximum queue size is 100""" ) self.queue.append(lowercase ) def _a (self ): if not self.queue: raise UnderFlowError("""The queue is empty""" ) else: A_ : List[Any] = min(self.queue ) self.queue.remove(lowercase ) return data def __str__(self ): return str(self.queue ) def a ( ): '''simple docstring''' A_ : Optional[int] = FixedPriorityQueue() fpq.enqueue(0 , 10 ) fpq.enqueue(1 , 70 ) fpq.enqueue(0 , 1_00 ) fpq.enqueue(2 , 1 ) fpq.enqueue(2 , 5 ) fpq.enqueue(1 , 7 ) fpq.enqueue(2 , 4 ) fpq.enqueue(1 , 64 ) fpq.enqueue(0 , 1_28 ) print(lowerCamelCase__ ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(lowerCamelCase__ ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) def a ( ): '''simple docstring''' A_ : int = ElementPriorityQueue() epq.enqueue(10 ) epq.enqueue(70 ) epq.enqueue(1_00 ) epq.enqueue(1 ) epq.enqueue(5 ) epq.enqueue(7 ) epq.enqueue(4 ) epq.enqueue(64 ) epq.enqueue(1_28 ) print(lowerCamelCase__ ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(lowerCamelCase__ ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) if __name__ == "__main__": fixed_priority_queue() element_priority_queue()
206
1
import requests _lowerCamelCase : int = """https://newsapi.org/v1/articles?source=bbc-news&sortBy=top&apiKey=""" def SCREAMING_SNAKE_CASE ( lowercase_ ) -> None: """simple docstring""" A__ = requests.get(_NEWS_API + bbc_news_api_key ).json() # each article in the list is a dict for i, article in enumerate(bbc_news_page['''articles'''] , 1 ): print(f"""{i}.) {article["title"]}""" ) if __name__ == "__main__": fetch_bbc_news(bbc_news_api_key="""<Your BBC News API key goes here>""")
231
# This script creates a super tiny model that is useful inside tests, when we just want to test that # the machinery works, without needing to the check the quality of the outcomes. # # This version creates a tiny model through reduction of a normal pre-trained model, but keeping the # full vocab, merges file, and thus also resulting in a larger model due to a large vocab size. # This gives ~3MB in total for all files. # # If you want a 50 times smaller than this see `fsmt-make-super-tiny-model.py`, which is slightly more complicated # # # It will be used then as "stas/tiny-wmt19-en-de" # Build from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration _lowerCamelCase : Optional[Any] = """facebook/wmt19-en-de""" _lowerCamelCase : Optional[Any] = FSMTTokenizer.from_pretrained(mname) # get the correct vocab sizes, etc. from the master model _lowerCamelCase : int = FSMTConfig.from_pretrained(mname) config.update( dict( d_model=4, encoder_layers=1, decoder_layers=1, encoder_ffn_dim=4, decoder_ffn_dim=4, encoder_attention_heads=1, decoder_attention_heads=1, ) ) _lowerCamelCase : Union[str, Any] = FSMTForConditionalGeneration(config) print(F'''num of params {tiny_model.num_parameters()}''') # Test _lowerCamelCase : int = tokenizer(["""Making tiny model"""], return_tensors="""pt""") _lowerCamelCase : int = tiny_model(**batch) print("""test output:""", len(outputs.logits[0])) # Save _lowerCamelCase : str = """tiny-wmt19-en-de""" tiny_model.half() # makes it smaller tiny_model.save_pretrained(mname_tiny) tokenizer.save_pretrained(mname_tiny) print(F'''Generated {mname_tiny}''') # Upload # transformers-cli upload tiny-wmt19-en-de
231
1
"""simple docstring""" from __future__ import annotations import unittest from transformers import LEDConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFLEDForConditionalGeneration, TFLEDModel @require_tf class lowercase_ : '''simple docstring''' UpperCAmelCase : str = LEDConfig UpperCAmelCase : Optional[int] = {} UpperCAmelCase : Union[str, Any] = '''gelu''' def __init__( self : Dict , _UpperCAmelCase : int , _UpperCAmelCase : List[Any]=13 , _UpperCAmelCase : Dict=7 , _UpperCAmelCase : Any=True , _UpperCAmelCase : Optional[int]=False , _UpperCAmelCase : str=99 , _UpperCAmelCase : int=32 , _UpperCAmelCase : Tuple=2 , _UpperCAmelCase : int=4 , _UpperCAmelCase : Optional[Any]=37 , _UpperCAmelCase : List[str]=0.1 , _UpperCAmelCase : List[Any]=0.1 , _UpperCAmelCase : Any=20 , _UpperCAmelCase : str=2 , _UpperCAmelCase : List[str]=1 , _UpperCAmelCase : Dict=0 , _UpperCAmelCase : List[str]=4 , ): _A = parent _A = batch_size _A = seq_length _A = is_training _A = use_labels _A = vocab_size _A = hidden_size _A = num_hidden_layers _A = num_attention_heads _A = intermediate_size _A = hidden_dropout_prob _A = attention_probs_dropout_prob _A = max_position_embeddings _A = eos_token_id _A = pad_token_id _A = bos_token_id _A = attention_window # `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size # [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention # returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1] # because its local attention only attends to `self.attention_window` and one before and one after _A = self.attention_window + 2 # because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for # the `test_attention_outputs` and `test_hidden_states_output` tests _A = ( self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window ) def lowerCAmelCase_ ( self : Dict ): _A = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) _A = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) _A = tf.concat([input_ids, eos_tensor] , axis=1 ) _A = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _A = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , attention_window=self.attention_window , **self.config_updates , ) _A = prepare_led_inputs_dict(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) _A = tf.concat( [tf.zeros_like(_UpperCAmelCase )[:, :-1], tf.ones_like(_UpperCAmelCase )[:, -1:]] , axis=-1 , ) _A = global_attention_mask return config, inputs_dict def lowerCAmelCase_ ( self : Optional[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : str ): _A = TFLEDModel(config=_UpperCAmelCase ).get_decoder() _A = inputs_dict['input_ids'] _A = input_ids[:1, :] _A = inputs_dict['attention_mask'][:1, :] _A = 1 # first forward pass _A = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , use_cache=_UpperCAmelCase ) _A , _A = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _A = ids_tensor((self.batch_size, 3) , config.vocab_size ) _A = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and _A = tf.concat([input_ids, next_tokens] , axis=-1 ) _A = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) _A = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase )[0] _A = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , past_key_values=_UpperCAmelCase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice _A = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) _A = output_from_no_past[:, -3:, random_slice_idx] _A = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(_UpperCAmelCase , _UpperCAmelCase , rtol=1E-3 ) def _snake_case ( _snake_case : int , _snake_case : Tuple , _snake_case : Optional[Any] , _snake_case : Tuple=None , _snake_case : Dict=None , _snake_case : List[str]=None , _snake_case : Any=None , ) -> Optional[int]: '''simple docstring''' if attention_mask is None: _A = tf.cast(tf.math.not_equal(_snake_case , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: _A = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: _A = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _A = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, } @require_tf class lowercase_ ( __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ): '''simple docstring''' UpperCAmelCase : Tuple = (TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else () UpperCAmelCase : Optional[Any] = (TFLEDForConditionalGeneration,) if is_tf_available() else () UpperCAmelCase : List[Any] = ( { '''conversational''': TFLEDForConditionalGeneration, '''feature-extraction''': TFLEDModel, '''summarization''': TFLEDForConditionalGeneration, '''text2text-generation''': TFLEDForConditionalGeneration, '''translation''': TFLEDForConditionalGeneration, } if is_tf_available() else {} ) UpperCAmelCase : Dict = True UpperCAmelCase : Any = False UpperCAmelCase : Optional[Any] = False UpperCAmelCase : Optional[int] = False def lowerCAmelCase_ ( self : Optional[Any] ): _A = TFLEDModelTester(self ) _A = ConfigTester(self , config_class=_UpperCAmelCase ) def lowerCAmelCase_ ( self : int ): self.config_tester.run_common_tests() def lowerCAmelCase_ ( self : Tuple ): _A = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*_UpperCAmelCase ) def lowerCAmelCase_ ( self : str ): _A , _A = self.model_tester.prepare_config_and_inputs_for_common() _A = tf.zeros_like(inputs_dict['attention_mask'] ) _A = 2 _A = tf.where( tf.range(self.model_tester.seq_length )[None, :] < num_global_attn_indices , 1 , inputs_dict['global_attention_mask'] , ) _A = True _A = self.model_tester.seq_length _A = self.model_tester.encoder_seq_length def check_decoder_attentions_output(_UpperCAmelCase : str ): _A = outputs.decoder_attentions self.assertEqual(len(_UpperCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) def check_encoder_attentions_output(_UpperCAmelCase : Union[str, Any] ): _A = [t.numpy() for t in outputs.encoder_attentions] _A = [t.numpy() for t in outputs.encoder_global_attentions] self.assertEqual(len(_UpperCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertEqual(len(_UpperCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) self.assertListEqual( list(global_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] , ) for model_class in self.all_model_classes: _A = True _A = False _A = False _A = model_class(_UpperCAmelCase ) _A = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) _A = len(_UpperCAmelCase ) self.assertEqual(config.output_hidden_states , _UpperCAmelCase ) check_encoder_attentions_output(_UpperCAmelCase ) if self.is_encoder_decoder: _A = model_class(_UpperCAmelCase ) _A = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) self.assertEqual(config.output_hidden_states , _UpperCAmelCase ) check_decoder_attentions_output(_UpperCAmelCase ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] _A = True _A = model_class(_UpperCAmelCase ) _A = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) self.assertEqual(config.output_hidden_states , _UpperCAmelCase ) check_encoder_attentions_output(_UpperCAmelCase ) # Check attention is always last and order is fine _A = True _A = True _A = model_class(_UpperCAmelCase ) _A = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(_UpperCAmelCase ) ) self.assertEqual(model.config.output_hidden_states , _UpperCAmelCase ) check_encoder_attentions_output(_UpperCAmelCase ) @unittest.skip('LED keeps using potentially symbolic tensors in conditionals and breaks tracing.' ) def lowerCAmelCase_ ( self : Union[str, Any] ): pass def lowerCAmelCase_ ( self : str ): # TODO: Head-masking not yet implement pass def _snake_case ( _snake_case : List[Any] ) -> Optional[Any]: '''simple docstring''' return tf.constant(_snake_case , dtype=tf.intaa ) a = 1e-4 @slow @require_tf class lowercase_ ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ ( self : Union[str, Any] ): _A = TFLEDForConditionalGeneration.from_pretrained('allenai/led-base-16384' ).led # change to intended input here _A = _long_tensor([512 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) _A = _long_tensor([128 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) _A = prepare_led_inputs_dict(model.config , _UpperCAmelCase , _UpperCAmelCase ) _A = model(**_UpperCAmelCase )[0] _A = (1, 1_024, 768) self.assertEqual(output.shape , _UpperCAmelCase ) # change to expected output here _A = tf.convert_to_tensor( [[2.3050, 2.8279, 0.6531], [-1.8457, -0.1455, -3.5661], [-1.0186, 0.4586, -2.2043]] , ) tf.debugging.assert_near(output[:, :3, :3] , _UpperCAmelCase , atol=1E-3 ) def lowerCAmelCase_ ( self : List[Any] ): _A = TFLEDForConditionalGeneration.from_pretrained('allenai/led-base-16384' ) # change to intended input here _A = _long_tensor([512 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) _A = _long_tensor([128 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) _A = prepare_led_inputs_dict(model.config , _UpperCAmelCase , _UpperCAmelCase ) _A = model(**_UpperCAmelCase )[0] _A = (1, 1_024, model.config.vocab_size) self.assertEqual(output.shape , _UpperCAmelCase ) # change to expected output here _A = tf.convert_to_tensor( [[33.6507, 6.4572, 16.8089], [5.8739, -2.4238, 11.2902], [-3.2139, -4.3149, 4.2783]] , ) tf.debugging.assert_near(output[:, :3, :3] , _UpperCAmelCase , atol=1E-3 , rtol=1E-3 )
315
"""simple docstring""" import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging a = logging.get_logger(__name__) a = { '''xlnet-base-cased''': '''https://huggingface.co/xlnet-base-cased/resolve/main/config.json''', '''xlnet-large-cased''': '''https://huggingface.co/xlnet-large-cased/resolve/main/config.json''', } class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : int = '''xlnet''' UpperCAmelCase : List[Any] = ['''mems'''] UpperCAmelCase : Any = { '''n_token''': '''vocab_size''', # Backward compatibility '''hidden_size''': '''d_model''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self : Union[str, Any] , _UpperCAmelCase : Dict=32_000 , _UpperCAmelCase : List[str]=1_024 , _UpperCAmelCase : Any=24 , _UpperCAmelCase : Union[str, Any]=16 , _UpperCAmelCase : Union[str, Any]=4_096 , _UpperCAmelCase : Tuple="gelu" , _UpperCAmelCase : Any=True , _UpperCAmelCase : str="bi" , _UpperCAmelCase : int=0.02 , _UpperCAmelCase : Optional[Any]=1E-1_2 , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : Any=512 , _UpperCAmelCase : Dict=None , _UpperCAmelCase : int=True , _UpperCAmelCase : int=False , _UpperCAmelCase : Optional[Any]=False , _UpperCAmelCase : int=-1 , _UpperCAmelCase : Optional[int]=False , _UpperCAmelCase : Union[str, Any]="last" , _UpperCAmelCase : int=True , _UpperCAmelCase : str="tanh" , _UpperCAmelCase : str=0.1 , _UpperCAmelCase : Dict=5 , _UpperCAmelCase : Optional[Any]=5 , _UpperCAmelCase : Union[str, Any]=5 , _UpperCAmelCase : List[str]=1 , _UpperCAmelCase : Dict=2 , **_UpperCAmelCase : int , ): _A = vocab_size _A = d_model _A = n_layer _A = n_head if d_model % n_head != 0: raise ValueError(F'''\'d_model % n_head\' ({d_model % n_head}) should be equal to 0''' ) if "d_head" in kwargs: if kwargs["d_head"] != d_model // n_head: raise ValueError( F'''`d_head` ({kwargs["d_head"]}) should be equal to `d_model // n_head` ({d_model // n_head})''' ) _A = d_model // n_head _A = ff_activation _A = d_inner _A = untie_r _A = attn_type _A = initializer_range _A = layer_norm_eps _A = dropout _A = mem_len _A = reuse_len _A = bi_data _A = clamp_len _A = same_length _A = summary_type _A = summary_use_proj _A = summary_activation _A = summary_last_dropout _A = start_n_top _A = end_n_top _A = bos_token_id _A = pad_token_id _A = eos_token_id if "use_cache" in kwargs: warnings.warn( 'The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`' ' instead.' , _UpperCAmelCase , ) _A = kwargs['use_cache'] _A = use_mems_eval _A = use_mems_train super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase ) @property def lowerCAmelCase_ ( self : Tuple ): logger.info(F'''The model {self.model_type} is one of the few models that has no sequence length limit.''' ) return -1 @max_position_embeddings.setter def lowerCAmelCase_ ( self : Optional[Any] , _UpperCAmelCase : Optional[Any] ): # Message copied from Transformer-XL documentation raise NotImplementedError( F'''The model {self.model_type} is one of the few models that has no sequence length limit.''' )
315
1
"""simple docstring""" import os import unittest from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase (_UpperCAmelCase ,unittest.TestCase ): """simple docstring""" _UpperCAmelCase :str = LayoutLMTokenizer _UpperCAmelCase :int = LayoutLMTokenizerFast _UpperCAmelCase :Union[str, Any] = True _UpperCAmelCase :List[str] = True def _snake_case ( self ): super().setUp() lowercase__: Union[str, Any] = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] lowercase__: Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def _snake_case ( self , **_UpperCAmelCase ): return LayoutLMTokenizer.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def _snake_case ( self , _UpperCAmelCase ): lowercase__: Dict = '''UNwant\u00E9d,running''' lowercase__: Optional[Any] = '''unwanted, running''' return input_text, output_text def _snake_case ( self ): lowercase__: Dict = self.tokenizer_class(self.vocab_file ) lowercase__: Optional[int] = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(_UpperCAmelCase , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [7, 4, 5, 10, 8, 9] ) def _snake_case ( self ): pass
357
"""simple docstring""" import os import re import shutil from argparse import ArgumentParser, Namespace from datasets.commands import BaseDatasetsCLICommand from datasets.utils.logging import get_logger __A = "<<<<<<< This should probably be modified because it mentions: " __A = "=======\n>>>>>>>\n" __A = [ "TextEncoderConfig", "ByteTextEncoder", "SubwordTextEncoder", "encoder_config", "maybe_build_from_corpus", "manual_dir", ] __A = [ # (pattern, replacement) # Order is important here for some replacements (R"tfds\.core", R"datasets"), (R"tf\.io\.gfile\.GFile", R"open"), (R"tf\.([\w\d]+)", R"datasets.Value('\1')"), (R"tfds\.features\.Text\(\)", R"datasets.Value('string')"), (R"tfds\.features\.Text\(", R"datasets.Value('string'),"), (R"features\s*=\s*tfds.features.FeaturesDict\(", R"features=datasets.Features("), (R"tfds\.features\.FeaturesDict\(", R"dict("), (R"The TensorFlow Datasets Authors", R"The TensorFlow Datasets Authors and the HuggingFace Datasets Authors"), (R"tfds\.", R"datasets."), (R"dl_manager\.manual_dir", R"self.config.data_dir"), (R"self\.builder_config", R"self.config"), ] def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> Tuple: return ConvertCommand(args.tfds_path , args.datasets_directory ) class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" @staticmethod def _snake_case ( _UpperCAmelCase ): lowercase__: int = parser.add_parser( '''convert''' , help='''Convert a TensorFlow Datasets dataset to a HuggingFace Datasets dataset.''' , ) train_parser.add_argument( '''--tfds_path''' , type=_UpperCAmelCase , required=_UpperCAmelCase , help='''Path to a TensorFlow Datasets folder to convert or a single tfds file to convert.''' , ) train_parser.add_argument( '''--datasets_directory''' , type=_UpperCAmelCase , required=_UpperCAmelCase , help='''Path to the HuggingFace Datasets folder.''' ) train_parser.set_defaults(func=_UpperCAmelCase ) def __init__( self , _UpperCAmelCase , _UpperCAmelCase , *_UpperCAmelCase ): lowercase__: List[str] = get_logger('''datasets-cli/converting''' ) lowercase__: Optional[Any] = tfds_path lowercase__: Dict = datasets_directory def _snake_case ( self ): if os.path.isdir(self._tfds_path ): lowercase__: Optional[Any] = os.path.abspath(self._tfds_path ) elif os.path.isfile(self._tfds_path ): lowercase__: Optional[int] = os.path.dirname(self._tfds_path ) else: raise ValueError('''--tfds_path is neither a directory nor a file. Please check path.''' ) lowercase__: int = os.path.abspath(self._datasets_directory ) self._logger.info(F"""Converting datasets from {abs_tfds_path} to {abs_datasets_path}""" ) lowercase__: Tuple = [] lowercase__: Dict = [] lowercase__: Any = {} if os.path.isdir(self._tfds_path ): lowercase__: Dict = os.listdir(_UpperCAmelCase ) else: lowercase__: Dict = [os.path.basename(self._tfds_path )] for f_name in file_names: self._logger.info(F"""Looking at file {f_name}""" ) lowercase__: Tuple = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Optional[int] = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) if not os.path.isfile(_UpperCAmelCase ) or "__init__" in f_name or "_test" in f_name or ".py" not in f_name: self._logger.info('''Skipping file''' ) continue with open(_UpperCAmelCase , encoding='''utf-8''' ) as f: lowercase__: Tuple = f.readlines() lowercase__: Optional[Any] = [] lowercase__: Dict = False lowercase__: List[str] = False lowercase__: List[Any] = [] for line in lines: lowercase__: List[str] = line # Convert imports if "import tensorflow.compat.v2 as tf" in out_line: continue elif "@tfds.core" in out_line: continue elif "builder=self" in out_line: continue elif "import tensorflow_datasets.public_api as tfds" in out_line: lowercase__: Optional[int] = '''import datasets\n''' elif "import tensorflow" in out_line: # order is important here lowercase__: Dict = '''''' continue elif "from absl import logging" in out_line: lowercase__: Tuple = '''from datasets import logging\n''' elif "getLogger" in out_line: lowercase__: Optional[Any] = out_line.replace('''getLogger''' , '''get_logger''' ) elif any(expression in out_line for expression in TO_HIGHLIGHT ): lowercase__: Any = True lowercase__: str = list(filter(lambda _UpperCAmelCase : e in out_line , _UpperCAmelCase ) ) out_lines.append(HIGHLIGHT_MESSAGE_PRE + str(_UpperCAmelCase ) + '''\n''' ) out_lines.append(_UpperCAmelCase ) out_lines.append(_UpperCAmelCase ) continue else: for pattern, replacement in TO_CONVERT: lowercase__: List[Any] = re.sub(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # Take care of saving utilities (to later move them together with main script) if "tensorflow_datasets" in out_line: lowercase__: Any = re.match(r'''from\stensorflow_datasets.*import\s([^\.\r\n]+)''' , _UpperCAmelCase ) tfds_imports.extend(imp.strip() for imp in match.group(1 ).split(''',''' ) ) lowercase__: List[str] = '''from . import ''' + match.group(1 ) # Check we have not forget anything if "tf." in out_line or "tfds." in out_line or "tensorflow_datasets" in out_line: raise ValueError(F"""Error converting {out_line.strip()}""" ) if "GeneratorBasedBuilder" in out_line or "BeamBasedBuilder" in out_line: lowercase__: Optional[Any] = True out_lines.append(_UpperCAmelCase ) if is_builder or "wmt" in f_name: # We create a new directory for each dataset lowercase__: Dict = f_name.replace('''.py''' , '''''' ) lowercase__: Dict = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Optional[Any] = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase ) self._logger.info(F"""Adding directory {output_dir}""" ) imports_to_builder_map.update({imp: output_dir for imp in tfds_imports} ) else: # Utilities will be moved at the end utils_files.append(_UpperCAmelCase ) if needs_manual_update: with_manual_update.append(_UpperCAmelCase ) with open(_UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as f: f.writelines(_UpperCAmelCase ) self._logger.info(F"""Converted in {output_file}""" ) for utils_file in utils_files: try: lowercase__: str = os.path.basename(_UpperCAmelCase ) lowercase__: Union[str, Any] = imports_to_builder_map[f_name.replace('''.py''' , '''''' )] self._logger.info(F"""Moving {dest_folder} to {utils_file}""" ) shutil.copy(_UpperCAmelCase , _UpperCAmelCase ) except KeyError: self._logger.error(F"""Cannot find destination folder for {utils_file}. Please copy manually.""" ) if with_manual_update: for file_path in with_manual_update: self._logger.warning( F"""You need to manually update file {file_path} to remove configurations using 'TextEncoderConfig'.""" )
2
0
"""simple docstring""" from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase_ : str = { """configuration_trajectory_transformer""": [ """TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TrajectoryTransformerConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : List[str] = [ """TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TrajectoryTransformerModel""", """TrajectoryTransformerPreTrainedModel""", """load_tf_weights_in_trajectory_transformer""", ] if TYPE_CHECKING: from .configuration_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TrajectoryTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TrajectoryTransformerModel, TrajectoryTransformerPreTrainedModel, load_tf_weights_in_trajectory_transformer, ) else: import sys lowerCamelCase_ : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
81
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import OwlViTImageProcessor, OwlViTProcessor @require_vision class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def _snake_case ( self ): """simple docstring""" lowerCamelCase : str = tempfile.mkdtemp() # fmt: off lowerCamelCase : Any = ["", "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "lo", "l</w>", "w</w>", "r</w>", "t</w>", "low</w>", "er</w>", "lowest</w>", "newer</w>", "wider", "<unk>", "<|startoftext|>", "<|endoftext|>"] # fmt: on lowerCamelCase : List[Any] = dict(zip(__A , range(len(__A ) ) ) ) lowerCamelCase : List[Any] = ["#version: 0.2", "l o", "lo w</w>", "e r</w>", ""] lowerCamelCase : Optional[Any] = {"unk_token": "<unk>"} lowerCamelCase : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) lowerCamelCase : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(__A ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(__A ) ) lowerCamelCase : str = { "do_resize": True, "size": 20, "do_center_crop": True, "crop_size": 18, "do_normalize": True, "image_mean": [0.48145466, 0.4578275, 0.40821073], "image_std": [0.26862954, 0.26130258, 0.27577711], } lowerCamelCase : str = os.path.join(self.tmpdirname , __A ) with open(self.image_processor_file , "w" , encoding="utf-8" ) as fp: json.dump(__A , __A ) def _snake_case ( self , **__A ): """simple docstring""" return CLIPTokenizer.from_pretrained(self.tmpdirname , pad_token="!" , **__A ) def _snake_case ( self , **__A ): """simple docstring""" return CLIPTokenizerFast.from_pretrained(self.tmpdirname , pad_token="!" , **__A ) def _snake_case ( self , **__A ): """simple docstring""" return OwlViTImageProcessor.from_pretrained(self.tmpdirname , **__A ) def _snake_case ( self ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def _snake_case ( self ): """simple docstring""" lowerCamelCase : Dict = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowerCamelCase : Tuple = [Image.fromarray(np.moveaxis(__A , 0 , -1 ) ) for x in image_inputs] return image_inputs def _snake_case ( self ): """simple docstring""" lowerCamelCase : List[Any] = self.get_tokenizer() lowerCamelCase : Optional[Any] = self.get_rust_tokenizer() lowerCamelCase : Tuple = self.get_image_processor() lowerCamelCase : List[Any] = OwlViTProcessor(tokenizer=__A , image_processor=__A ) processor_slow.save_pretrained(self.tmpdirname ) lowerCamelCase : Optional[Any] = OwlViTProcessor.from_pretrained(self.tmpdirname , use_fast=__A ) lowerCamelCase : Optional[int] = OwlViTProcessor(tokenizer=__A , image_processor=__A ) processor_fast.save_pretrained(self.tmpdirname ) lowerCamelCase : Tuple = OwlViTProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , __A ) self.assertIsInstance(processor_fast.tokenizer , __A ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , __A ) self.assertIsInstance(processor_fast.image_processor , __A ) def _snake_case ( self ): """simple docstring""" lowerCamelCase : Optional[Any] = OwlViTProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCamelCase : int = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) lowerCamelCase : List[str] = self.get_image_processor(do_normalize=__A ) lowerCamelCase : Optional[int] = OwlViTProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=__A ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __A ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __A ) def _snake_case ( self ): """simple docstring""" lowerCamelCase : List[Any] = self.get_image_processor() lowerCamelCase : Optional[int] = self.get_tokenizer() lowerCamelCase : Dict = OwlViTProcessor(tokenizer=__A , image_processor=__A ) lowerCamelCase : Tuple = self.prepare_image_inputs() lowerCamelCase : int = image_processor(__A , return_tensors="np" ) lowerCamelCase : Union[str, Any] = processor(images=__A , return_tensors="np" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def _snake_case ( self ): """simple docstring""" lowerCamelCase : Union[str, Any] = self.get_image_processor() lowerCamelCase : Dict = self.get_tokenizer() lowerCamelCase : Union[str, Any] = OwlViTProcessor(tokenizer=__A , image_processor=__A ) lowerCamelCase : Tuple = "lower newer" lowerCamelCase : Union[str, Any] = processor(text=__A , return_tensors="np" ) lowerCamelCase : List[Any] = tokenizer(__A , return_tensors="np" ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key][0].tolist() , encoded_processor[key][0].tolist() ) def _snake_case ( self ): """simple docstring""" lowerCamelCase : Any = self.get_image_processor() lowerCamelCase : Any = self.get_tokenizer() lowerCamelCase : int = OwlViTProcessor(tokenizer=__A , image_processor=__A ) lowerCamelCase : Optional[Any] = "lower newer" lowerCamelCase : Dict = self.prepare_image_inputs() lowerCamelCase : Any = processor(text=__A , images=__A ) self.assertListEqual(list(inputs.keys() ) , ["input_ids", "attention_mask", "pixel_values"] ) # test if it raises when no input is passed with pytest.raises(__A ): processor() def _snake_case ( self ): """simple docstring""" lowerCamelCase : Any = "google/owlvit-base-patch32" lowerCamelCase : List[Any] = OwlViTProcessor.from_pretrained(__A ) lowerCamelCase : Tuple = ["cat", "nasa badge"] lowerCamelCase : str = processor(text=__A ) lowerCamelCase : Union[str, Any] = 16 self.assertListEqual(list(inputs.keys() ) , ["input_ids", "attention_mask"] ) self.assertEqual(inputs["input_ids"].shape , (2, seq_length) ) # test if it raises when no input is passed with pytest.raises(__A ): processor() def _snake_case ( self ): """simple docstring""" lowerCamelCase : str = "google/owlvit-base-patch32" lowerCamelCase : Optional[int] = OwlViTProcessor.from_pretrained(__A ) lowerCamelCase : Dict = [["cat", "nasa badge"], ["person"]] lowerCamelCase : int = processor(text=__A ) lowerCamelCase : Tuple = 16 lowerCamelCase : Any = len(__A ) lowerCamelCase : Optional[Any] = max([len(__A ) for texts in input_texts] ) self.assertListEqual(list(inputs.keys() ) , ["input_ids", "attention_mask"] ) self.assertEqual(inputs["input_ids"].shape , (batch_size * num_max_text_queries, seq_length) ) # test if it raises when no input is passed with pytest.raises(__A ): processor() def _snake_case ( self ): """simple docstring""" lowerCamelCase : Dict = "google/owlvit-base-patch32" lowerCamelCase : Tuple = OwlViTProcessor.from_pretrained(__A ) lowerCamelCase : List[Any] = ["cat", "nasa badge"] lowerCamelCase : Optional[Any] = processor(text=__A ) lowerCamelCase : int = 16 lowerCamelCase : List[str] = inputs["input_ids"] lowerCamelCase : int = [ [4_9406, 2368, 4_9407, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [4_9406, 6841, 1_1301, 4_9407, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] self.assertListEqual(list(inputs.keys() ) , ["input_ids", "attention_mask"] ) self.assertEqual(inputs["input_ids"].shape , (2, seq_length) ) self.assertListEqual(list(input_ids[0] ) , predicted_ids[0] ) self.assertListEqual(list(input_ids[1] ) , predicted_ids[1] ) def _snake_case ( self ): """simple docstring""" lowerCamelCase : Any = self.get_image_processor() lowerCamelCase : List[str] = self.get_tokenizer() lowerCamelCase : str = OwlViTProcessor(tokenizer=__A , image_processor=__A ) lowerCamelCase : Dict = self.prepare_image_inputs() lowerCamelCase : Union[str, Any] = self.prepare_image_inputs() lowerCamelCase : Any = processor(images=__A , query_images=__A ) self.assertListEqual(list(inputs.keys() ) , ["query_pixel_values", "pixel_values"] ) # test if it raises when no input is passed with pytest.raises(__A ): processor() def _snake_case ( self ): """simple docstring""" lowerCamelCase : Optional[Any] = self.get_image_processor() lowerCamelCase : Optional[int] = self.get_tokenizer() lowerCamelCase : Dict = OwlViTProcessor(tokenizer=__A , image_processor=__A ) lowerCamelCase : Optional[int] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCamelCase : List[Any] = processor.batch_decode(__A ) lowerCamelCase : Union[str, Any] = tokenizer.batch_decode(__A ) self.assertListEqual(__A , __A )
283
0
import inspect import unittest from transformers import SegformerConfig, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_MAPPING, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerModel, ) from transformers.models.segformer.modeling_segformer import SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import SegformerImageProcessor class snake_case__ ( _lowerCAmelCase ): def __magic_name__ ( self ) -> Optional[int]: __magic_name__ : Optional[int] = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(lowerCAmelCase__ , """hidden_sizes""" ) ) self.parent.assertTrue(hasattr(lowerCAmelCase__ , """num_attention_heads""" ) ) self.parent.assertTrue(hasattr(lowerCAmelCase__ , """num_encoder_blocks""" ) ) class snake_case__ : def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=13 , lowerCAmelCase__=64 , lowerCAmelCase__=3 , lowerCAmelCase__=4 , lowerCAmelCase__=[2, 2, 2, 2] , lowerCAmelCase__=[8, 4, 2, 1] , lowerCAmelCase__=[16, 32, 64, 1_28] , lowerCAmelCase__=[1, 4, 8, 16] , lowerCAmelCase__=[1, 2, 4, 8] , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.0_2 , lowerCAmelCase__=3 , lowerCAmelCase__=None , ) -> str: __magic_name__ : Union[str, Any] = parent __magic_name__ : List[Any] = batch_size __magic_name__ : Optional[Any] = image_size __magic_name__ : str = num_channels __magic_name__ : Tuple = num_encoder_blocks __magic_name__ : Dict = sr_ratios __magic_name__ : Union[str, Any] = depths __magic_name__ : Tuple = hidden_sizes __magic_name__ : Dict = downsampling_rates __magic_name__ : Dict = num_attention_heads __magic_name__ : str = is_training __magic_name__ : List[str] = use_labels __magic_name__ : Tuple = hidden_act __magic_name__ : Optional[Any] = hidden_dropout_prob __magic_name__ : List[str] = attention_probs_dropout_prob __magic_name__ : Any = initializer_range __magic_name__ : Dict = num_labels __magic_name__ : Union[str, Any] = scope def __magic_name__ ( self ) -> List[str]: __magic_name__ : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __magic_name__ : Union[str, Any] = None if self.use_labels: __magic_name__ : Dict = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __magic_name__ : Any = self.get_config() return config, pixel_values, labels def __magic_name__ ( self ) -> str: return SegformerConfig( image_size=self.image_size , num_channels=self.num_channels , num_encoder_blocks=self.num_encoder_blocks , depths=self.depths , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Dict: __magic_name__ : str = SegformerModel(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __magic_name__ : List[str] = model(lowerCAmelCase__ ) __magic_name__ : Any = self.image_size // (self.downsampling_rates[-1] * 2) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], expected_height, expected_width) ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[Any]: __magic_name__ : List[Any] = self.num_labels __magic_name__ : Any = SegformerForSemanticSegmentation(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __magic_name__ : Optional[int] = model(lowerCAmelCase__ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) ) __magic_name__ : int = model(lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) ) self.parent.assertGreater(result.loss , 0.0 ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Any: __magic_name__ : Tuple = 1 __magic_name__ : Union[str, Any] = SegformerForSemanticSegmentation(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __magic_name__ : Optional[Any] = torch.randint(0 , 1 , (self.batch_size, self.image_size, self.image_size) ).to(lowerCAmelCase__ ) __magic_name__ : Union[str, Any] = model(lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertGreater(result.loss , 0.0 ) def __magic_name__ ( self ) -> Any: __magic_name__ : Any = self.prepare_config_and_inputs() __magic_name__ : int = config_and_inputs __magic_name__ : Dict = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class snake_case__ ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): lowercase__ : Optional[int] = ( ( SegformerModel, SegformerForSemanticSegmentation, SegformerForImageClassification, ) if is_torch_available() else () ) lowercase__ : Tuple = ( { '''feature-extraction''': SegformerModel, '''image-classification''': SegformerForImageClassification, '''image-segmentation''': SegformerForSemanticSegmentation, } if is_torch_available() else {} ) lowercase__ : Any = True lowercase__ : Any = False lowercase__ : Dict = False lowercase__ : int = False def __magic_name__ ( self ) -> str: __magic_name__ : Optional[Any] = SegformerModelTester(self ) __magic_name__ : str = SegformerConfigTester(self , config_class=lowerCAmelCase__ ) def __magic_name__ ( self ) -> Any: self.config_tester.run_common_tests() def __magic_name__ ( self ) -> List[Any]: __magic_name__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__ ) def __magic_name__ ( self ) -> Tuple: __magic_name__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_binary_image_segmentation(*lowerCAmelCase__ ) def __magic_name__ ( self ) -> Optional[Any]: __magic_name__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_segmentation(*lowerCAmelCase__ ) @unittest.skip("""SegFormer does not use inputs_embeds""" ) def __magic_name__ ( self ) -> List[str]: pass @unittest.skip("""SegFormer does not have get_input_embeddings method and get_output_embeddings methods""" ) def __magic_name__ ( self ) -> Optional[int]: pass def __magic_name__ ( self ) -> Union[str, Any]: __magic_name__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ : Dict = model_class(lowerCAmelCase__ ) __magic_name__ : List[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __magic_name__ : Tuple = [*signature.parameters.keys()] __magic_name__ : Optional[int] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowerCAmelCase__ ) def __magic_name__ ( self ) -> str: __magic_name__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ : Dict = True for model_class in self.all_model_classes: __magic_name__ : Union[str, Any] = True __magic_name__ : Optional[int] = False __magic_name__ : int = True __magic_name__ : List[Any] = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() with torch.no_grad(): __magic_name__ : List[Any] = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) __magic_name__ : List[str] = outputs.attentions __magic_name__ : str = sum(self.model_tester.depths ) self.assertEqual(len(lowerCAmelCase__ ) , lowerCAmelCase__ ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __magic_name__ : List[Any] = True __magic_name__ : Dict = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() with torch.no_grad(): __magic_name__ : Any = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) __magic_name__ : List[Any] = outputs.attentions self.assertEqual(len(lowerCAmelCase__ ) , lowerCAmelCase__ ) # verify the first attentions (first block, first layer) __magic_name__ : str = (self.model_tester.image_size // 4) ** 2 __magic_name__ : List[Any] = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , ) # verify the last attentions (last block, last layer) __magic_name__ : str = (self.model_tester.image_size // 32) ** 2 __magic_name__ : int = (self.model_tester.image_size // (32 * self.model_tester.sr_ratios[-1])) ** 2 self.assertListEqual( list(attentions[-1].shape[-3:] ) , [self.model_tester.num_attention_heads[-1], expected_seq_len, expected_reduced_seq_len] , ) __magic_name__ : Tuple = len(lowerCAmelCase__ ) # Check attention is always last and order is fine __magic_name__ : List[Any] = True __magic_name__ : Optional[int] = True __magic_name__ : Union[str, Any] = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() with torch.no_grad(): __magic_name__ : Optional[Any] = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) self.assertEqual(out_len + 1 , len(lowerCAmelCase__ ) ) __magic_name__ : Dict = outputs.attentions self.assertEqual(len(lowerCAmelCase__ ) , lowerCAmelCase__ ) # verify the first attentions (first block, first layer) __magic_name__ : Tuple = (self.model_tester.image_size // 4) ** 2 __magic_name__ : Dict = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , ) def __magic_name__ ( self ) -> Dict: def check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): __magic_name__ : str = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() with torch.no_grad(): __magic_name__ : Union[str, Any] = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) __magic_name__ : List[str] = outputs.hidden_states __magic_name__ : Tuple = self.model_tester.num_encoder_blocks self.assertEqual(len(lowerCAmelCase__ ) , lowerCAmelCase__ ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.hidden_sizes[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) __magic_name__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ : Optional[int] = True check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __magic_name__ : str = True check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def __magic_name__ ( self ) -> Optional[int]: if not self.model_tester.is_training: return __magic_name__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ : List[Any] = True for model_class in self.all_model_classes: if model_class in get_values(lowerCAmelCase__ ): continue __magic_name__ : int = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.train() __magic_name__ : int = self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ , return_labels=lowerCAmelCase__ ) __magic_name__ : Union[str, Any] = model(**lowerCAmelCase__ ).loss loss.backward() @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def __magic_name__ ( self ) -> Any: pass @slow def __magic_name__ ( self ) -> List[Any]: for model_name in SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __magic_name__ : int = SegformerModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) def UpperCamelCase ( ): """simple docstring""" __magic_name__ : int = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch class snake_case__ ( unittest.TestCase ): @slow def __magic_name__ ( self ) -> Any: # only resize + normalize __magic_name__ : Tuple = SegformerImageProcessor( image_scale=(5_12, 5_12) , keep_ratio=lowerCAmelCase__ , align=lowerCAmelCase__ , do_random_crop=lowerCAmelCase__ ) __magic_name__ : List[str] = SegformerForSemanticSegmentation.from_pretrained("""nvidia/segformer-b0-finetuned-ade-512-512""" ).to( lowerCAmelCase__ ) __magic_name__ : List[str] = prepare_img() __magic_name__ : Any = image_processor(images=lowerCAmelCase__ , return_tensors="""pt""" ) __magic_name__ : Tuple = encoded_inputs.pixel_values.to(lowerCAmelCase__ ) with torch.no_grad(): __magic_name__ : List[Any] = model(lowerCAmelCase__ ) __magic_name__ : int = torch.Size((1, model.config.num_labels, 1_28, 1_28) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase__ ) __magic_name__ : List[str] = torch.tensor( [ [[-4.6_3_1_0, -5.5_2_3_2, -6.2_3_5_6], [-5.1_9_2_1, -6.1_4_4_4, -6.5_9_9_6], [-5.4_4_2_4, -6.2_7_9_0, -6.7_5_7_4]], [[-12.13_91, -13.31_22, -13.95_54], [-12.87_32, -13.93_52, -14.35_63], [-12.94_38, -13.82_26, -14.25_13]], [[-12.51_34, -13.46_86, -14.49_15], [-12.86_69, -14.43_43, -14.77_58], [-13.25_23, -14.58_19, -15.06_94]], ] ).to(lowerCAmelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , lowerCAmelCase__ , atol=1e-4 ) ) @slow def __magic_name__ ( self ) -> Optional[Any]: # only resize + normalize __magic_name__ : List[str] = SegformerImageProcessor( image_scale=(5_12, 5_12) , keep_ratio=lowerCAmelCase__ , align=lowerCAmelCase__ , do_random_crop=lowerCAmelCase__ ) __magic_name__ : Any = SegformerForSemanticSegmentation.from_pretrained( """nvidia/segformer-b1-finetuned-cityscapes-1024-1024""" ).to(lowerCAmelCase__ ) __magic_name__ : Union[str, Any] = prepare_img() __magic_name__ : Tuple = image_processor(images=lowerCAmelCase__ , return_tensors="""pt""" ) __magic_name__ : int = encoded_inputs.pixel_values.to(lowerCAmelCase__ ) with torch.no_grad(): __magic_name__ : Tuple = model(lowerCAmelCase__ ) __magic_name__ : Union[str, Any] = torch.Size((1, model.config.num_labels, 1_28, 1_28) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase__ ) __magic_name__ : List[Any] = torch.tensor( [ [[-13.57_48, -13.91_11, -12.65_00], [-14.35_00, -15.36_83, -14.23_28], [-14.75_32, -16.04_24, -15.60_87]], [[-17.16_51, -15.87_25, -12.96_53], [-17.25_80, -17.37_18, -14.82_23], [-16.60_58, -16.87_83, -16.74_52]], [[-3.6_4_5_6, -3.0_2_0_9, -1.4_2_0_3], [-3.0_7_9_7, -3.1_9_5_9, -2.0_0_0_0], [-1.8_7_5_7, -1.9_2_1_7, -1.6_9_9_7]], ] ).to(lowerCAmelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , lowerCAmelCase__ , atol=1e-1 ) ) @slow def __magic_name__ ( self ) -> List[Any]: # only resize + normalize __magic_name__ : Optional[Any] = SegformerImageProcessor( image_scale=(5_12, 5_12) , keep_ratio=lowerCAmelCase__ , align=lowerCAmelCase__ , do_random_crop=lowerCAmelCase__ ) __magic_name__ : List[Any] = SegformerForSemanticSegmentation.from_pretrained("""nvidia/segformer-b0-finetuned-ade-512-512""" ).to( lowerCAmelCase__ ) __magic_name__ : Any = prepare_img() __magic_name__ : List[str] = image_processor(images=lowerCAmelCase__ , return_tensors="""pt""" ) __magic_name__ : Union[str, Any] = encoded_inputs.pixel_values.to(lowerCAmelCase__ ) with torch.no_grad(): __magic_name__ : List[str] = model(lowerCAmelCase__ ) __magic_name__ : Optional[int] = outputs.logits.detach().cpu() __magic_name__ : Union[str, Any] = image_processor.post_process_semantic_segmentation(outputs=lowerCAmelCase__ , target_sizes=[(5_00, 3_00)] ) __magic_name__ : Tuple = torch.Size((5_00, 3_00) ) self.assertEqual(segmentation[0].shape , lowerCAmelCase__ ) __magic_name__ : Optional[int] = image_processor.post_process_semantic_segmentation(outputs=lowerCAmelCase__ ) __magic_name__ : List[str] = torch.Size((1_28, 1_28) ) self.assertEqual(segmentation[0].shape , lowerCAmelCase__ )
360
import math from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->UnCLIP class snake_case__ ( _lowerCAmelCase ): lowercase__ : torch.FloatTensor lowercase__ : Optional[torch.FloatTensor] = None def UpperCamelCase ( _A, _A=0.999, _A="cosine", ): """simple docstring""" if alpha_transform_type == "cosine": def alpha_bar_fn(_A ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(_A ): return math.exp(t * -12.0 ) else: raise ValueError(f'Unsupported alpha_tranform_type: {alpha_transform_type}' ) __magic_name__ : Optional[Any] = [] for i in range(_A ): __magic_name__ : Dict = i / num_diffusion_timesteps __magic_name__ : Any = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(_A ) / alpha_bar_fn(_A ), _A ) ) return torch.tensor(_A, dtype=torch.floataa ) class snake_case__ ( _lowerCAmelCase , _lowerCAmelCase ): @register_to_config def __init__( self , lowerCAmelCase__ = 10_00 , lowerCAmelCase__ = "fixed_small_log" , lowerCAmelCase__ = True , lowerCAmelCase__ = 1.0 , lowerCAmelCase__ = "epsilon" , lowerCAmelCase__ = "squaredcos_cap_v2" , ) -> Union[str, Any]: if beta_schedule != "squaredcos_cap_v2": raise ValueError("""UnCLIPScheduler only supports `beta_schedule`: 'squaredcos_cap_v2'""" ) __magic_name__ : Tuple = betas_for_alpha_bar(lowerCAmelCase__ ) __magic_name__ : Union[str, Any] = 1.0 - self.betas __magic_name__ : str = torch.cumprod(self.alphas , dim=0 ) __magic_name__ : Any = torch.tensor(1.0 ) # standard deviation of the initial noise distribution __magic_name__ : Tuple = 1.0 # setable values __magic_name__ : List[Any] = None __magic_name__ : int = torch.from_numpy(np.arange(0 , lowerCAmelCase__ )[::-1].copy() ) __magic_name__ : List[Any] = variance_type def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> torch.FloatTensor: return sample def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> str: __magic_name__ : List[Any] = num_inference_steps __magic_name__ : Union[str, Any] = (self.config.num_train_timesteps - 1) / (self.num_inference_steps - 1) __magic_name__ : List[Any] = (np.arange(0 , lowerCAmelCase__ ) * step_ratio).round()[::-1].copy().astype(np.intaa ) __magic_name__ : Dict = torch.from_numpy(lowerCAmelCase__ ).to(lowerCAmelCase__ ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None ) -> Tuple: if prev_timestep is None: __magic_name__ : int = t - 1 __magic_name__ : Optional[Any] = self.alphas_cumprod[t] __magic_name__ : Any = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one __magic_name__ : Tuple = 1 - alpha_prod_t __magic_name__ : int = 1 - alpha_prod_t_prev if prev_timestep == t - 1: __magic_name__ : List[str] = self.betas[t] else: __magic_name__ : List[Any] = 1 - alpha_prod_t / alpha_prod_t_prev # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample __magic_name__ : Dict = beta_prod_t_prev / beta_prod_t * beta if variance_type is None: __magic_name__ : str = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small_log": __magic_name__ : str = torch.log(torch.clamp(lowerCAmelCase__ , min=1e-2_0 ) ) __magic_name__ : Optional[Any] = torch.exp(0.5 * variance ) elif variance_type == "learned_range": # NOTE difference with DDPM scheduler __magic_name__ : List[str] = variance.log() __magic_name__ : Optional[int] = beta.log() __magic_name__ : Any = (predicted_variance + 1) / 2 __magic_name__ : Any = frac * max_log + (1 - frac) * min_log return variance def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__=None , lowerCAmelCase__ = True , ) -> Union[UnCLIPSchedulerOutput, Tuple]: __magic_name__ : List[Any] = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type == "learned_range": __magic_name__ ,__magic_name__ : List[Any] = torch.split(lowerCAmelCase__ , sample.shape[1] , dim=1 ) else: __magic_name__ : List[str] = None # 1. compute alphas, betas if prev_timestep is None: __magic_name__ : Union[str, Any] = t - 1 __magic_name__ : List[str] = self.alphas_cumprod[t] __magic_name__ : Dict = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one __magic_name__ : Any = 1 - alpha_prod_t __magic_name__ : Dict = 1 - alpha_prod_t_prev if prev_timestep == t - 1: __magic_name__ : Union[str, Any] = self.betas[t] __magic_name__ : int = self.alphas[t] else: __magic_name__ : Tuple = 1 - alpha_prod_t / alpha_prod_t_prev __magic_name__ : Tuple = 1 - beta # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": __magic_name__ : Optional[int] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": __magic_name__ : Tuple = model_output else: raise ValueError( F'prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `sample`' """ for the UnCLIPScheduler.""" ) # 3. Clip "predicted x_0" if self.config.clip_sample: __magic_name__ : Tuple = torch.clamp( lowerCAmelCase__ , -self.config.clip_sample_range , self.config.clip_sample_range ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __magic_name__ : List[Any] = (alpha_prod_t_prev ** 0.5 * beta) / beta_prod_t __magic_name__ : Dict = alpha ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __magic_name__ : str = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise __magic_name__ : Tuple = 0 if t > 0: __magic_name__ : Any = randn_tensor( model_output.shape , dtype=model_output.dtype , generator=lowerCAmelCase__ , device=model_output.device ) __magic_name__ : Tuple = self._get_variance( lowerCAmelCase__ , predicted_variance=lowerCAmelCase__ , prev_timestep=lowerCAmelCase__ , ) if self.variance_type == "fixed_small_log": __magic_name__ : Tuple = variance elif self.variance_type == "learned_range": __magic_name__ : int = (0.5 * variance).exp() else: raise ValueError( F'variance_type given as {self.variance_type} must be one of `fixed_small_log` or `learned_range`' """ for the UnCLIPScheduler.""" ) __magic_name__ : Tuple = variance * variance_noise __magic_name__ : List[str] = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return UnCLIPSchedulerOutput(prev_sample=lowerCAmelCase__ , pred_original_sample=lowerCAmelCase__ ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ) -> torch.FloatTensor: # Make sure alphas_cumprod and timestep have same device and dtype as original_samples __magic_name__ : List[str] = self.alphas_cumprod.to(device=original_samples.device , dtype=original_samples.dtype ) __magic_name__ : Any = timesteps.to(original_samples.device ) __magic_name__ : int = alphas_cumprod[timesteps] ** 0.5 __magic_name__ : Union[str, Any] = sqrt_alpha_prod.flatten() while len(sqrt_alpha_prod.shape ) < len(original_samples.shape ): __magic_name__ : int = sqrt_alpha_prod.unsqueeze(-1 ) __magic_name__ : Any = (1 - alphas_cumprod[timesteps]) ** 0.5 __magic_name__ : str = sqrt_one_minus_alpha_prod.flatten() while len(sqrt_one_minus_alpha_prod.shape ) < len(original_samples.shape ): __magic_name__ : Any = sqrt_one_minus_alpha_prod.unsqueeze(-1 ) __magic_name__ : Any = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples
138
0
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.local_sgd import LocalSGD ######################################################################## # This is a fully working simple example to use Accelerate # with LocalSGD, which is a method to synchronize model # parameters every K batches. It is different, but complementary # to gradient accumulation. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowerCAmelCase__ = 1_6 lowerCAmelCase__ = 3_2 def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__ = 16 ): """simple docstring""" lowercase__ : Tuple = AutoTokenizer.from_pretrained("bert-base-cased" ) lowercase__ : str = load_dataset("glue" , "mrpc" ) def tokenize_function(lowerCamelCase__ ): # max_length=None => use the model max length (it's actually the default) lowercase__ : Optional[int] = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=lowerCamelCase__ , max_length=lowerCamelCase__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowercase__ : Tuple = datasets.map( lowerCamelCase__ , batched=lowerCamelCase__ , remove_columns=["idx", "sentence1", "sentence2"] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowercase__ : List[Any] = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(lowerCamelCase__ ): # On TPU it's best to pad everything to the same length or training will be very slow. lowercase__ : Any = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowercase__ : Optional[int] = 16 elif accelerator.mixed_precision != "no": lowercase__ : Tuple = 8 else: lowercase__ : Union[str, Any] = None return tokenizer.pad( lowerCamelCase__ , padding="longest" , max_length=lowerCamelCase__ , pad_to_multiple_of=lowerCamelCase__ , return_tensors="pt" , ) # Instantiate dataloaders. lowercase__ : Tuple = DataLoader( tokenized_datasets["train"] , shuffle=lowerCamelCase__ , collate_fn=lowerCamelCase__ , batch_size=lowerCamelCase__ ) lowercase__ : Any = DataLoader( tokenized_datasets["validation"] , shuffle=lowerCamelCase__ , collate_fn=lowerCamelCase__ , batch_size=lowerCamelCase__ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''', None) == "1": from accelerate.test_utils.training import mocked_dataloaders lowerCAmelCase__ = mocked_dataloaders # noqa: F811 def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" if os.environ.get("TESTING_MOCKED_DATALOADERS" , lowerCamelCase__ ) == "1": lowercase__ : str = 2 # New Code # lowercase__ : Tuple = int(args.gradient_accumulation_steps ) lowercase__ : List[str] = int(args.local_sgd_steps ) # Initialize accelerator lowercase__ : Dict = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=lowerCamelCase__ ) if accelerator.distributed_type not in [DistributedType.NO, DistributedType.MULTI_CPU, DistributedType.MULTI_GPU]: raise NotImplementedError("LocalSGD is supported only for CPUs and GPUs (no DeepSpeed or MegatronLM)" ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowercase__ : str = config["lr"] lowercase__ : Dict = int(config["num_epochs"] ) lowercase__ : Optional[Any] = int(config["seed"] ) lowercase__ : List[str] = int(config["batch_size"] ) lowercase__ : Tuple = evaluate.load("glue" , "mrpc" ) set_seed(lowerCamelCase__ ) lowercase__ , lowercase__ : Any = get_dataloaders(lowerCamelCase__ , lowerCamelCase__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowercase__ : Dict = AutoModelForSequenceClassification.from_pretrained("bert-base-cased" , return_dict=lowerCamelCase__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowercase__ : str = model.to(accelerator.device ) # Instantiate optimizer lowercase__ : int = AdamW(params=model.parameters() , lr=lowerCamelCase__ ) # Instantiate scheduler lowercase__ : List[str] = get_linear_schedule_with_warmup( optimizer=lowerCamelCase__ , num_warmup_steps=100 , num_training_steps=(len(lowerCamelCase__ ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : List[str] = accelerator.prepare( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # Now we train the model for epoch in range(lowerCamelCase__ ): model.train() with LocalSGD( accelerator=lowerCamelCase__ , model=lowerCamelCase__ , local_sgd_steps=lowerCamelCase__ , enabled=local_sgd_steps is not None ) as local_sgd: for step, batch in enumerate(lowerCamelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(lowerCamelCase__ ): lowercase__ : Optional[int] = model(**lowerCamelCase__ ) lowercase__ : str = output.loss accelerator.backward(lowerCamelCase__ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() # LocalSGD-specific line local_sgd.step() model.eval() for step, batch in enumerate(lowerCamelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowercase__ : List[str] = model(**lowerCamelCase__ ) lowercase__ : List[Any] = outputs.logits.argmax(dim=-1 ) lowercase__ , lowercase__ : List[Any] = accelerator.gather_for_metrics((predictions, batch["labels"]) ) metric.add_batch( predictions=lowerCamelCase__ , references=lowerCamelCase__ , ) lowercase__ : Optional[int] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"""epoch {epoch}:""" , lowerCamelCase__ ) def __lowerCamelCase ( ): """simple docstring""" lowercase__ : str = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument( "--mixed_precision" , type=lowerCamelCase__ , default=lowerCamelCase__ , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." , ) # New Code # parser.add_argument( "--gradient_accumulation_steps" , type=lowerCamelCase__ , default=1 , help="The number of minibatches to be ran before gradients are accumulated." , ) parser.add_argument( "--local_sgd_steps" , type=lowerCamelCase__ , default=8 , help="Number of local SGD steps or None to disable local SGD" ) parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." ) lowercase__ : Optional[int] = parser.parse_args() lowercase__ : List[Any] = {"lr": 2e-5, "num_epochs": 3, "seed": 42, "batch_size": 16} training_function(lowerCamelCase__ , lowerCamelCase__ ) if __name__ == "__main__": main()
130
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''facebook/vit-mae-base''': '''https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json''', # See all ViT MAE models at https://huggingface.co/models?filter=vit-mae } class snake_case__(_UpperCamelCase ): """simple docstring""" lowercase_ = """vit_mae""" def __init__( self : Tuple , SCREAMING_SNAKE_CASE : Tuple=768 , SCREAMING_SNAKE_CASE : Tuple=12 , SCREAMING_SNAKE_CASE : Any=12 , SCREAMING_SNAKE_CASE : int=3_072 , SCREAMING_SNAKE_CASE : int="gelu" , SCREAMING_SNAKE_CASE : Union[str, Any]=0.0 , SCREAMING_SNAKE_CASE : int=0.0 , SCREAMING_SNAKE_CASE : List[str]=0.02 , SCREAMING_SNAKE_CASE : int=1E-1_2 , SCREAMING_SNAKE_CASE : str=224 , SCREAMING_SNAKE_CASE : Any=16 , SCREAMING_SNAKE_CASE : Dict=3 , SCREAMING_SNAKE_CASE : str=True , SCREAMING_SNAKE_CASE : Optional[Any]=16 , SCREAMING_SNAKE_CASE : str=512 , SCREAMING_SNAKE_CASE : Tuple=8 , SCREAMING_SNAKE_CASE : Any=2_048 , SCREAMING_SNAKE_CASE : str=0.75 , SCREAMING_SNAKE_CASE : Optional[Any]=False , **SCREAMING_SNAKE_CASE : Any , ): super().__init__(**SCREAMING_SNAKE_CASE ) lowercase__ : str = hidden_size lowercase__ : Optional[int] = num_hidden_layers lowercase__ : Optional[Any] = num_attention_heads lowercase__ : Tuple = intermediate_size lowercase__ : Any = hidden_act lowercase__ : Optional[int] = hidden_dropout_prob lowercase__ : Any = attention_probs_dropout_prob lowercase__ : Dict = initializer_range lowercase__ : Union[str, Any] = layer_norm_eps lowercase__ : str = image_size lowercase__ : List[Any] = patch_size lowercase__ : str = num_channels lowercase__ : Union[str, Any] = qkv_bias lowercase__ : Optional[Any] = decoder_num_attention_heads lowercase__ : int = decoder_hidden_size lowercase__ : Any = decoder_num_hidden_layers lowercase__ : Tuple = decoder_intermediate_size lowercase__ : str = mask_ratio lowercase__ : Union[str, Any] = norm_pix_loss
130
1
"""simple docstring""" from __future__ import annotations import numpy as np def a__ ( _SCREAMING_SNAKE_CASE ): """simple docstring""" return np.maximum(0 , _SCREAMING_SNAKE_CASE ) if __name__ == "__main__": print(np.array(relu([-1, 0, 5]))) # --> [0, 0, 5]
244
"""simple docstring""" import sacrebleu as scb from packaging import version from sacrebleu import CHRF import datasets lowerCAmelCase__ = '''\ @inproceedings{popovic-2015-chrf, title = "chr{F}: character n-gram {F}-score for automatic {MT} evaluation", author = "Popovi{\'c}, Maja", booktitle = "Proceedings of the Tenth Workshop on Statistical Machine Translation", month = sep, year = "2015", address = "Lisbon, Portugal", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/W15-3049", doi = "10.18653/v1/W15-3049", pages = "392--395", } @inproceedings{popovic-2017-chrf, title = "chr{F}++: words helping character n-grams", author = "Popovi{\'c}, Maja", booktitle = "Proceedings of the Second Conference on Machine Translation", month = sep, year = "2017", address = "Copenhagen, Denmark", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/W17-4770", doi = "10.18653/v1/W17-4770", pages = "612--618", } @inproceedings{post-2018-call, title = "A Call for Clarity in Reporting {BLEU} Scores", author = "Post, Matt", booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers", month = oct, year = "2018", address = "Belgium, Brussels", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/W18-6319", pages = "186--191", } ''' lowerCAmelCase__ = '''\ ChrF and ChrF++ are two MT evaluation metrics. They both use the F-score statistic for character n-gram matches, and ChrF++ adds word n-grams as well which correlates more strongly with direct assessment. We use the implementation that is already present in sacrebleu. The implementation here is slightly different from sacrebleu in terms of the required input format. The length of the references and hypotheses lists need to be the same, so you may need to transpose your references compared to sacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534 See the README.md file at https://github.com/mjpost/sacreBLEU#chrf--chrf for more information. ''' lowerCAmelCase__ = ''' Produces ChrF(++) scores for hypotheses given reference translations. Args: predictions (list of str): The predicted sentences. references (list of list of str): The references. There should be one reference sub-list for each prediction sentence. char_order (int): Character n-gram order. Defaults to `6`. word_order (int): Word n-gram order. If equals to `2`, the metric is referred to as chrF++. Defaults to `0`. beta (int): Determine the importance of recall w.r.t precision. Defaults to `2`. lowercase (bool): if `True`, enables case-insensitivity. Defaults to `False`. whitespace (bool): If `True`, include whitespaces when extracting character n-grams. eps_smoothing (bool): If `True`, applies epsilon smoothing similar to reference chrF++.py, NLTK and Moses implementations. If `False`, it takes into account effective match order similar to sacreBLEU < 2.0.0. Defaults to `False`. Returns: \'score\' (float): The chrF (chrF++) score, \'char_order\' (int): The character n-gram order, \'word_order\' (int): The word n-gram order. If equals to 2, the metric is referred to as chrF++, \'beta\' (int): Determine the importance of recall w.r.t precision Examples: Example 1--a simple example of calculating chrF: >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."] >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]] >>> chrf = datasets.load_metric("chrf") >>> results = chrf.compute(predictions=prediction, references=reference) >>> print(results) {\'score\': 84.64214891738334, \'char_order\': 6, \'word_order\': 0, \'beta\': 2} Example 2--the same example, but with the argument word_order=2, to calculate chrF++ instead of chrF: >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."] >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]] >>> chrf = datasets.load_metric("chrf") >>> results = chrf.compute(predictions=prediction, ... references=reference, ... word_order=2) >>> print(results) {\'score\': 82.87263732906315, \'char_order\': 6, \'word_order\': 2, \'beta\': 2} Example 3--the same chrF++ example as above, but with `lowercase=True` to normalize all case: >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."] >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]] >>> chrf = datasets.load_metric("chrf") >>> results = chrf.compute(predictions=prediction, ... references=reference, ... word_order=2, ... lowercase=True) >>> print(results) {\'score\': 92.12853119829202, \'char_order\': 6, \'word_order\': 2, \'beta\': 2} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _lowerCamelCase ( datasets.Metric ): def snake_case_ (self ) -> Tuple: if version.parse(scb.__version__ ) < version.parse("1.4.12" ): raise ImportWarning( "To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n" "You can install it with `pip install \"sacrebleu>=1.4.12\"`." ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="https://github.com/mjpost/sacreBLEU#chrf--chrf" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Sequence(datasets.Value("string" , id="sequence" ) , id="references" ), } ) , codebase_urls=["https://github.com/mjpost/sacreBLEU#chrf--chrf"] , reference_urls=[ "https://github.com/m-popovic/chrF", ] , ) def snake_case_ (self , __a , __a , __a = CHRF.CHAR_ORDER , __a = CHRF.WORD_ORDER , __a = CHRF.BETA , __a = False , __a = False , __a = False , ) -> Tuple: UpperCamelCase = len(references[0] ) if any(len(__a ) != references_per_prediction for refs in references ): raise ValueError("Sacrebleu requires the same number of references for each prediction" ) UpperCamelCase = [[refs[i] for refs in references] for i in range(__a )] UpperCamelCase = CHRF(__a , __a , __a , __a , __a , __a ) UpperCamelCase = sb_chrf.corpus_score(__a , __a ) return { "score": output.score, "char_order": output.char_order, "word_order": output.word_order, "beta": output.beta, }
244
1
def lowerCamelCase__ ( __lowerCAmelCase : int = 50 ): """simple docstring""" lowerCAmelCase_ = [1] * (length + 1) for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): ways_number[row_length] += ways_number[ row_length - tile_start - tile_length ] return ways_number[length] if __name__ == "__main__": print(f"""{solution() = }""")
231
import os import re import shutil import sys import tempfile import unittest import black _A = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated. _A = " \"\"\"\n Output class for the scheduler's step function output.\n\n Args:\n prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the\n denoising loop.\n pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n The predicted denoised sample (x_{0}) based on the model output from the current timestep.\n `pred_original_sample` can be used to preview progress or for guidance.\n \"\"\"\n\n prev_sample: torch.FloatTensor\n pred_original_sample: Optional[torch.FloatTensor] = None\n" class _lowerCAmelCase ( unittest.TestCase ): def __a ( self ) -> str: lowerCAmelCase_ = tempfile.mkdtemp() os.makedirs(os.path.join(self.diffusers_dir , "schedulers/" ) ) lowerCAmelCase_ = self.diffusers_dir shutil.copy( os.path.join(_UpperCamelCase , "src/diffusers/schedulers/scheduling_ddpm.py" ) , os.path.join(self.diffusers_dir , "schedulers/scheduling_ddpm.py" ) , ) def __a ( self ) -> Optional[int]: lowerCAmelCase_ = "src/diffusers" shutil.rmtree(self.diffusers_dir ) def __a ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=None ) -> Optional[Any]: lowerCAmelCase_ = comment + f"""\nclass {class_name}(nn.Module):\n""" + class_code if overwrite_result is not None: lowerCAmelCase_ = comment + f"""\nclass {class_name}(nn.Module):\n""" + overwrite_result lowerCAmelCase_ = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 ) lowerCAmelCase_ = black.format_str(_UpperCamelCase , mode=_UpperCamelCase ) lowerCAmelCase_ = os.path.join(self.diffusers_dir , "new_code.py" ) with open(_UpperCamelCase , "w" , newline="\n" ) as f: f.write(_UpperCamelCase ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(_UpperCamelCase ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=_UpperCamelCase ) with open(_UpperCamelCase , "r" ) as f: self.assertTrue(f.read() , _UpperCamelCase ) def __a ( self ) -> Optional[Any]: lowerCAmelCase_ = check_copies.find_code_in_diffusers("schedulers.scheduling_ddpm.DDPMSchedulerOutput" ) self.assertEqual(_UpperCamelCase , _UpperCamelCase ) def __a ( self ) -> Tuple: # Base copy consistency self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput" , "DDPMSchedulerOutput" , REFERENCE_CODE + "\n" , ) # With no empty line at the end self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput" , "DDPMSchedulerOutput" , _UpperCamelCase , ) # Copy consistency with rename self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test" , "TestSchedulerOutput" , re.sub("DDPM" , "Test" , _UpperCamelCase ) , ) # Copy consistency with a really long name lowerCAmelCase_ = "TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason" self.check_copy_consistency( f"""# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}""" , f"""{long_class_name}SchedulerOutput""" , re.sub("Bert" , _UpperCamelCase , _UpperCamelCase ) , ) # Copy consistency with overwrite self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test" , "TestSchedulerOutput" , _UpperCamelCase , overwrite_result=re.sub("DDPM" , "Test" , _UpperCamelCase ) , )
231
1
def __lowerCamelCase ( ): return [list(range(1_0_0_0 - i , -1_0_0_0 - i , -1 ) ) for i in range(1_0_0_0 )] lowerCAmelCase__ = generate_large_matrix() lowerCAmelCase__ = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def __lowerCamelCase ( lowerCAmelCase__ ): assert all(row == sorted(a__ , reverse=a__ ) for row in grid ) assert all(list(a__ ) == sorted(a__ , reverse=a__ ) for col in zip(*a__ ) ) def __lowerCamelCase ( lowerCAmelCase__ ): lowerCAmelCase__ = 0 lowerCAmelCase__ = len(a__ ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: lowerCAmelCase__ = (left + right) // 2 lowerCAmelCase__ = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: lowerCAmelCase__ = mid + 1 else: lowerCAmelCase__ = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(a__ ) def __lowerCamelCase ( lowerCAmelCase__ ): lowerCAmelCase__ = 0 lowerCAmelCase__ = len(grid[0] ) for i in range(len(a__ ) ): lowerCAmelCase__ = find_negative_index(grid[i][:bound] ) total += bound return (len(a__ ) * len(grid[0] )) - total def __lowerCamelCase ( lowerCAmelCase__ ): return len([number for row in grid for number in row if number < 0] ) def __lowerCamelCase ( lowerCAmelCase__ ): lowerCAmelCase__ = 0 for row in grid: for i, number in enumerate(a__ ): if number < 0: total += len(a__ ) - i break return total def __lowerCamelCase ( ): from timeit import timeit print('Running benchmarks' ) lowerCAmelCase__ = ( 'from __main__ import count_negatives_binary_search, ' 'count_negatives_brute_force, count_negatives_brute_force_with_break, grid' ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): lowerCAmelCase__ = timeit(F"""{func}(grid=grid)""" , setup=a__ , number=5_0_0 ) print(F"""{func}() took {time:0.4f} seconds""" ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
369
from copy import deepcopy from typing import Optional, Union import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_tf_available, is_torch_available if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf class a_ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCAmelCase_ = ['image_processor'] UpperCAmelCase_ = 'SamImageProcessor' def __init__( self : Tuple , lowercase__ : Dict): '''simple docstring''' super().__init__(lowercase__) lowerCAmelCase__ = self.image_processor lowerCAmelCase__ = -10 lowerCAmelCase__ = self.image_processor.size['longest_edge'] def __call__( self : List[Any] , lowercase__ : Optional[int]=None , lowercase__ : Any=None , lowercase__ : Tuple=None , lowercase__ : List[str]=None , lowercase__ : Optional[Union[str, TensorType]] = None , **lowercase__ : Dict , ): '''simple docstring''' lowerCAmelCase__ = self.image_processor( lowercase__ , return_tensors=lowercase__ , **lowercase__ , ) # pop arguments that are not used in the foward but used nevertheless lowerCAmelCase__ = encoding_image_processor['original_sizes'] if hasattr(lowercase__ , 'numpy'): # Checks if Torch or TF tensor lowerCAmelCase__ = original_sizes.numpy() lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = self._check_and_preprocess_points( input_points=lowercase__ , input_labels=lowercase__ , input_boxes=lowercase__ , ) lowerCAmelCase__ = self._normalize_and_convert( lowercase__ , lowercase__ , input_points=lowercase__ , input_labels=lowercase__ , input_boxes=lowercase__ , return_tensors=lowercase__ , ) return encoding_image_processor def __snake_case ( self : Optional[Any] , lowercase__ : List[str] , lowercase__ : List[str] , lowercase__ : str=None , lowercase__ : Optional[int]=None , lowercase__ : str=None , lowercase__ : Optional[Any]="pt" , ): '''simple docstring''' if input_points is not None: if len(lowercase__) != len(lowercase__): lowerCAmelCase__ = [ self._normalize_coordinates(self.target_size , lowercase__ , original_sizes[0]) for point in input_points ] else: lowerCAmelCase__ = [ self._normalize_coordinates(self.target_size , lowercase__ , lowercase__) for point, original_size in zip(lowercase__ , lowercase__) ] # check that all arrays have the same shape if not all(point.shape == input_points[0].shape for point in input_points): if input_labels is not None: lowerCAmelCase__ , lowerCAmelCase__ = self._pad_points_and_labels(lowercase__ , lowercase__) lowerCAmelCase__ = np.array(lowercase__) if input_labels is not None: lowerCAmelCase__ = np.array(lowercase__) if input_boxes is not None: if len(lowercase__) != len(lowercase__): lowerCAmelCase__ = [ self._normalize_coordinates(self.target_size , lowercase__ , original_sizes[0] , is_bounding_box=lowercase__) for box in input_boxes ] else: lowerCAmelCase__ = [ self._normalize_coordinates(self.target_size , lowercase__ , lowercase__ , is_bounding_box=lowercase__) for box, original_size in zip(lowercase__ , lowercase__) ] lowerCAmelCase__ = np.array(lowercase__) if input_boxes is not None: if return_tensors == "pt": lowerCAmelCase__ = torch.from_numpy(lowercase__) # boxes batch size of 1 by default lowerCAmelCase__ = input_boxes.unsqueeze(1) if len(input_boxes.shape) != 3 else input_boxes elif return_tensors == "tf": lowerCAmelCase__ = tf.convert_to_tensor(lowercase__) # boxes batch size of 1 by default lowerCAmelCase__ = tf.expand_dims(lowercase__ , 1) if len(input_boxes.shape) != 3 else input_boxes encoding_image_processor.update({'input_boxes': input_boxes}) if input_points is not None: if return_tensors == "pt": lowerCAmelCase__ = torch.from_numpy(lowercase__) # point batch size of 1 by default lowerCAmelCase__ = input_points.unsqueeze(1) if len(input_points.shape) != 4 else input_points elif return_tensors == "tf": lowerCAmelCase__ = tf.convert_to_tensor(lowercase__) # point batch size of 1 by default lowerCAmelCase__ = tf.expand_dims(lowercase__ , 1) if len(input_points.shape) != 4 else input_points encoding_image_processor.update({'input_points': input_points}) if input_labels is not None: if return_tensors == "pt": lowerCAmelCase__ = torch.from_numpy(lowercase__) # point batch size of 1 by default lowerCAmelCase__ = input_labels.unsqueeze(1) if len(input_labels.shape) != 3 else input_labels elif return_tensors == "tf": lowerCAmelCase__ = tf.convert_to_tensor(lowercase__) # point batch size of 1 by default lowerCAmelCase__ = tf.expand_dims(lowercase__ , 1) if len(input_labels.shape) != 3 else input_labels encoding_image_processor.update({'input_labels': input_labels}) return encoding_image_processor def __snake_case ( self : str , lowercase__ : Optional[int] , lowercase__ : Optional[Any]): '''simple docstring''' lowerCAmelCase__ = max([point.shape[0] for point in input_points]) lowerCAmelCase__ = [] for i, point in enumerate(lowercase__): if point.shape[0] != expected_nb_points: lowerCAmelCase__ = np.concatenate( [point, np.zeros((expected_nb_points - point.shape[0], 2)) + self.point_pad_value] , axis=0) lowerCAmelCase__ = np.append(input_labels[i] , [self.point_pad_value]) processed_input_points.append(lowercase__) lowerCAmelCase__ = processed_input_points return input_points, input_labels def __snake_case ( self : Optional[Any] , lowercase__ : int , lowercase__ : np.ndarray , lowercase__ : int , lowercase__ : Optional[Any]=False): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ = original_size lowerCAmelCase__ , lowerCAmelCase__ = self.image_processor._get_preprocess_shape(lowercase__ , longest_edge=lowercase__) lowerCAmelCase__ = deepcopy(lowercase__).astype(lowercase__) if is_bounding_box: lowerCAmelCase__ = coords.reshape(-1 , 2 , 2) lowerCAmelCase__ = coords[..., 0] * (new_w / old_w) lowerCAmelCase__ = coords[..., 1] * (new_h / old_h) if is_bounding_box: lowerCAmelCase__ = coords.reshape(-1 , 4) return coords def __snake_case ( self : Dict , lowercase__ : Optional[Any]=None , lowercase__ : Tuple=None , lowercase__ : int=None , ): '''simple docstring''' if input_points is not None: if hasattr(lowercase__ , 'numpy'): # Checks for TF or Torch tensor lowerCAmelCase__ = input_points.numpy().tolist() if not isinstance(lowercase__ , lowercase__) or not isinstance(input_points[0] , lowercase__): raise ValueError('Input points must be a list of list of floating points.') lowerCAmelCase__ = [np.array(lowercase__) for input_point in input_points] else: lowerCAmelCase__ = None if input_labels is not None: if hasattr(lowercase__ , 'numpy'): lowerCAmelCase__ = input_labels.numpy().tolist() if not isinstance(lowercase__ , lowercase__) or not isinstance(input_labels[0] , lowercase__): raise ValueError('Input labels must be a list of list integers.') lowerCAmelCase__ = [np.array(lowercase__) for label in input_labels] else: lowerCAmelCase__ = None if input_boxes is not None: if hasattr(lowercase__ , 'numpy'): lowerCAmelCase__ = input_boxes.numpy().tolist() if ( not isinstance(lowercase__ , lowercase__) or not isinstance(input_boxes[0] , lowercase__) or not isinstance(input_boxes[0][0] , lowercase__) ): raise ValueError('Input boxes must be a list of list of list of floating points.') lowerCAmelCase__ = [np.array(lowercase__).astype(np.floataa) for box in input_boxes] else: lowerCAmelCase__ = None return input_points, input_labels, input_boxes @property def __snake_case ( self : List[Any]): '''simple docstring''' lowerCAmelCase__ = self.image_processor.model_input_names return list(dict.fromkeys(lowercase__)) def __snake_case ( self : int , *lowercase__ : int , **lowercase__ : int): '''simple docstring''' return self.image_processor.post_process_masks(*lowercase__ , **lowercase__)
119
0
class lowerCamelCase__ : '''simple docstring''' def __init__(self ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ) -> Any: """simple docstring""" lowerCAmelCase__ : List[Any] = name lowerCAmelCase__ : Tuple = value lowerCAmelCase__ : Optional[Any] = weight def __repr__(self ) -> Optional[Any]: """simple docstring""" return f"""{self.__class__.__name__}({self.name}, {self.value}, {self.weight})""" def lowerCAmelCase__ (self ) -> Optional[int]: """simple docstring""" return self.value def lowerCAmelCase__ (self ) -> str: """simple docstring""" return self.name def lowerCAmelCase__ (self ) -> List[str]: """simple docstring""" return self.weight def lowerCAmelCase__ (self ) -> List[str]: """simple docstring""" return self.value / self.weight def lowerCAmelCase__ ( lowerCamelCase_ : int ,lowerCamelCase_ : Tuple ,lowerCamelCase_ : Tuple): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = [] for i in range(len(lowerCamelCase_)): menu.append(Things(name[i] ,value[i] ,weight[i])) return menu def lowerCAmelCase__ ( lowerCamelCase_ : List[Any] ,lowerCamelCase_ : List[str] ,lowerCamelCase_ : Optional[int]): '''simple docstring''' lowerCAmelCase__ : List[str] = sorted(lowerCamelCase_ ,key=lowerCamelCase_ ,reverse=lowerCamelCase_) lowerCAmelCase__ : Union[str, Any] = [] lowerCAmelCase__ , lowerCAmelCase__ : int = 0.0, 0.0 for i in range(len(lowerCamelCase_)): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i]) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def lowerCAmelCase__ ( ): '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
129
'''simple docstring''' import unittest from transformers import TrOCRConfig from transformers.testing_utils import is_torch_available, require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM @require_torch class __lowerCAmelCase : '''simple docstring''' def __init__(self : str , UpperCamelCase : Tuple , UpperCamelCase : Optional[int]=99 , UpperCamelCase : Optional[int]=13 , UpperCamelCase : Tuple=16 , UpperCamelCase : Union[str, Any]=7 , UpperCamelCase : List[Any]=True , UpperCamelCase : List[str]=True , UpperCamelCase : str=True , UpperCamelCase : Tuple=False , UpperCamelCase : str=True , UpperCamelCase : Tuple=2 , UpperCamelCase : Optional[int]=32 , UpperCamelCase : Any=4 , UpperCamelCase : Optional[int]=4 , UpperCamelCase : Tuple=30 , UpperCamelCase : str=0 , UpperCamelCase : Tuple=1 , UpperCamelCase : List[Any]=2 , UpperCamelCase : str=None , ): '''simple docstring''' lowercase__ = parent lowercase__ = batch_size lowercase__ = decoder_seq_length # For common tests lowercase__ = self.decoder_seq_length lowercase__ = is_training lowercase__ = use_attention_mask lowercase__ = use_labels lowercase__ = vocab_size lowercase__ = d_model lowercase__ = d_model lowercase__ = decoder_layers lowercase__ = decoder_layers lowercase__ = decoder_ffn_dim lowercase__ = decoder_attention_heads lowercase__ = decoder_attention_heads lowercase__ = eos_token_id lowercase__ = bos_token_id lowercase__ = pad_token_id lowercase__ = decoder_start_token_id lowercase__ = use_cache lowercase__ = max_position_embeddings lowercase__ = None lowercase__ = decoder_seq_length lowercase__ = 2 lowercase__ = 1 def UpperCamelCase__ (self : str ): '''simple docstring''' lowercase__ = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) lowercase__ = None if self.use_attention_mask: lowercase__ = ids_tensor([self.batch_size, self.decoder_seq_length] , vocab_size=2 ) lowercase__ = None if self.use_labels: lowercase__ = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) lowercase__ = TrOCRConfig( vocab_size=self.vocab_size , d_model=self.d_model , decoder_layers=self.decoder_layers , decoder_ffn_dim=self.decoder_ffn_dim , decoder_attention_heads=self.decoder_attention_heads , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , use_cache=self.use_cache , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , max_position_embeddings=self.max_position_embeddings , ) return (config, input_ids, attention_mask, lm_labels) def UpperCamelCase__ (self : Tuple , UpperCamelCase : List[Any] , UpperCamelCase : Optional[Any] , UpperCamelCase : Tuple , UpperCamelCase : List[str] , ): '''simple docstring''' lowercase__ = True lowercase__ = TrOCRDecoder(config=UpperCamelCase ).to(UpperCamelCase ).eval() lowercase__ = input_ids[:2] input_ids[input_ids == 0] += 1 # first forward pass lowercase__ = model(UpperCamelCase , use_cache=UpperCamelCase ) lowercase__ = model(UpperCamelCase ) lowercase__ = model(UpperCamelCase , use_cache=UpperCamelCase ) self.parent.assertTrue(len(UpperCamelCase ) == len(UpperCamelCase ) ) self.parent.assertTrue(len(UpperCamelCase ) == len(UpperCamelCase ) + 1 ) lowercase__ = outputs['''past_key_values'''] # create hypothetical next token and extent to next_input_ids lowercase__ = ids_tensor((2, 1) , config.vocab_size - 1 ) + 1 # append to next input_ids and lowercase__ = torch.cat([input_ids, next_tokens] , dim=-1 ) lowercase__ = model(UpperCamelCase )['''last_hidden_state'''] lowercase__ = model(UpperCamelCase , past_key_values=UpperCamelCase )['''last_hidden_state'''] # select random slice lowercase__ = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowercase__ = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() lowercase__ = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice assert torch.allclose(UpperCamelCase , UpperCamelCase , atol=1E-3 ) def UpperCamelCase__ (self : Optional[Any] ): '''simple docstring''' lowercase__ = self.prepare_config_and_inputs() lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ = config_and_inputs lowercase__ = {'''input_ids''': input_ids, '''attention_mask''': attention_mask} return config, inputs_dict @require_torch class __lowerCAmelCase (lowercase_ , lowercase_ , lowercase_ , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ : List[str] = (TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else () lowerCAmelCase__ : List[Any] = (TrOCRForCausalLM,) if is_torch_available() else () lowerCAmelCase__ : Optional[Any] = {"""text-generation""": TrOCRForCausalLM} if is_torch_available() else {} lowerCAmelCase__ : Optional[Any] = True lowerCAmelCase__ : List[str] = False def UpperCamelCase__ (self : Any ): '''simple docstring''' lowercase__ = TrOCRStandaloneDecoderModelTester(self , is_training=UpperCamelCase ) lowercase__ = ConfigTester(self , config_class=UpperCamelCase ) def UpperCamelCase__ (self : List[str] ): '''simple docstring''' pass def UpperCamelCase__ (self : Optional[int] ): '''simple docstring''' pass def UpperCamelCase__ (self : Any ): '''simple docstring''' pass def UpperCamelCase__ (self : Any ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCamelCase__ (self : Union[str, Any] ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past(*UpperCamelCase ) def UpperCamelCase__ (self : Optional[int] ): '''simple docstring''' return @unittest.skip('''The model doesn\'t support left padding''' ) # and it's not used enough to be worth fixing :) def UpperCamelCase__ (self : List[str] ): '''simple docstring''' pass
2
0
import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class a_ ( _snake_case ): UpperCamelCase__ : int =(UnCLIPScheduler,) def __a ( self :Any , **_lowercase :Dict) -> Optional[int]: UpperCAmelCase_ = { '''num_train_timesteps''': 1000, '''variance_type''': '''fixed_small_log''', '''clip_sample''': True, '''clip_sample_range''': 1.0, '''prediction_type''': '''epsilon''', } config.update(**_lowercase) return config def __a ( self :Tuple) -> Any: for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=_lowercase) def __a ( self :Tuple) -> Optional[int]: for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=_lowercase) def __a ( self :Union[str, Any]) -> Union[str, Any]: for clip_sample in [True, False]: self.check_over_configs(clip_sample=_lowercase) def __a ( self :str) -> List[Any]: for clip_sample_range in [1, 5, 10, 20]: self.check_over_configs(clip_sample_range=_lowercase) def __a ( self :int) -> Union[str, Any]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=_lowercase) def __a ( self :Union[str, Any]) -> Any: for time_step in [0, 500, 999]: for prev_timestep in [None, 5, 100, 250, 500, 750]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=_lowercase , prev_timestep=_lowercase) def __a ( self :Optional[int]) -> int: UpperCAmelCase_ = self.scheduler_classes[0] UpperCAmelCase_ = self.get_scheduler_config(variance_type='''fixed_small_log''') UpperCAmelCase_ = scheduler_class(**_lowercase) assert torch.sum(torch.abs(scheduler._get_variance(0) - 1.0_0_0_0E-1_0)) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487) - 0.0_549_625)) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999) - 0.9_994_987)) < 1E-5 def __a ( self :List[str]) -> str: UpperCAmelCase_ = self.scheduler_classes[0] UpperCAmelCase_ = self.get_scheduler_config(variance_type='''learned_range''') UpperCAmelCase_ = scheduler_class(**_lowercase) UpperCAmelCase_ = 0.5 assert scheduler._get_variance(1 , predicted_variance=_lowercase) - -10.1_712_790 < 1E-5 assert scheduler._get_variance(487 , predicted_variance=_lowercase) - -5.7_998_052 < 1E-5 assert scheduler._get_variance(999 , predicted_variance=_lowercase) - -0.0_010_011 < 1E-5 def __a ( self :Dict) -> Dict: UpperCAmelCase_ = self.scheduler_classes[0] UpperCAmelCase_ = self.get_scheduler_config() UpperCAmelCase_ = scheduler_class(**_lowercase) UpperCAmelCase_ = scheduler.timesteps UpperCAmelCase_ = self.dummy_model() UpperCAmelCase_ = self.dummy_sample_deter UpperCAmelCase_ = torch.manual_seed(0) for i, t in enumerate(_lowercase): # 1. predict noise residual UpperCAmelCase_ = model(_lowercase , _lowercase) # 2. predict previous mean of sample x_t-1 UpperCAmelCase_ = scheduler.step(_lowercase , _lowercase , _lowercase , generator=_lowercase).prev_sample UpperCAmelCase_ = pred_prev_sample UpperCAmelCase_ = torch.sum(torch.abs(_lowercase)) UpperCAmelCase_ = torch.mean(torch.abs(_lowercase)) assert abs(result_sum.item() - 252.2_682_495) < 1E-2 assert abs(result_mean.item() - 0.3_284_743) < 1E-3 def __a ( self :Any) -> Optional[Any]: UpperCAmelCase_ = self.scheduler_classes[0] UpperCAmelCase_ = self.get_scheduler_config() UpperCAmelCase_ = scheduler_class(**_lowercase) scheduler.set_timesteps(25) UpperCAmelCase_ = scheduler.timesteps UpperCAmelCase_ = self.dummy_model() UpperCAmelCase_ = self.dummy_sample_deter UpperCAmelCase_ = torch.manual_seed(0) for i, t in enumerate(_lowercase): # 1. predict noise residual UpperCAmelCase_ = model(_lowercase , _lowercase) if i + 1 == timesteps.shape[0]: UpperCAmelCase_ = None else: UpperCAmelCase_ = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 UpperCAmelCase_ = scheduler.step( _lowercase , _lowercase , _lowercase , prev_timestep=_lowercase , generator=_lowercase).prev_sample UpperCAmelCase_ = pred_prev_sample UpperCAmelCase_ = torch.sum(torch.abs(_lowercase)) UpperCAmelCase_ = torch.mean(torch.abs(_lowercase)) assert abs(result_sum.item() - 258.2_044_983) < 1E-2 assert abs(result_mean.item() - 0.3_362_038) < 1E-3 def __a ( self :Optional[Any]) -> int: pass def __a ( self :Optional[int]) -> Optional[Any]: pass
344
import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class a_ ( _snake_case ): UpperCamelCase__ : Optional[Any] =(DPMSolverSinglestepScheduler,) UpperCamelCase__ : Tuple =(("num_inference_steps", 25),) def __a ( self :List[Any] , **_lowercase :Optional[Any]) -> int: UpperCAmelCase_ = { '''num_train_timesteps''': 1000, '''beta_start''': 0.0_001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''solver_order''': 2, '''prediction_type''': '''epsilon''', '''thresholding''': False, '''sample_max_value''': 1.0, '''algorithm_type''': '''dpmsolver++''', '''solver_type''': '''midpoint''', '''lambda_min_clipped''': -float('''inf'''), '''variance_type''': None, } config.update(**_lowercase) return config def __a ( self :Union[str, Any] , _lowercase :List[Any]=0 , **_lowercase :Optional[int]) -> List[Any]: UpperCAmelCase_ = dict(self.forward_default_kwargs) UpperCAmelCase_ = kwargs.pop('''num_inference_steps''' , _lowercase) UpperCAmelCase_ = self.dummy_sample UpperCAmelCase_ = 0.1 * sample UpperCAmelCase_ = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: UpperCAmelCase_ = self.get_scheduler_config(**_lowercase) UpperCAmelCase_ = scheduler_class(**_lowercase) scheduler.set_timesteps(_lowercase) # copy over dummy past residuals UpperCAmelCase_ = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_lowercase) UpperCAmelCase_ = scheduler_class.from_pretrained(_lowercase) new_scheduler.set_timesteps(_lowercase) # copy over dummy past residuals UpperCAmelCase_ = dummy_past_residuals[: new_scheduler.config.solver_order] UpperCAmelCase_ , UpperCAmelCase_ = sample, sample for t in range(_lowercase , time_step + scheduler.config.solver_order + 1): UpperCAmelCase_ = scheduler.step(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample UpperCAmelCase_ = new_scheduler.step(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1E-5, "Scheduler outputs are not identical" def __a ( self :Union[str, Any]) -> List[Any]: pass def __a ( self :Optional[Any] , _lowercase :str=0 , **_lowercase :Union[str, Any]) -> Dict: UpperCAmelCase_ = dict(self.forward_default_kwargs) UpperCAmelCase_ = kwargs.pop('''num_inference_steps''' , _lowercase) UpperCAmelCase_ = self.dummy_sample UpperCAmelCase_ = 0.1 * sample UpperCAmelCase_ = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: UpperCAmelCase_ = self.get_scheduler_config() UpperCAmelCase_ = scheduler_class(**_lowercase) scheduler.set_timesteps(_lowercase) # copy over dummy past residuals (must be after setting timesteps) UpperCAmelCase_ = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_lowercase) UpperCAmelCase_ = scheduler_class.from_pretrained(_lowercase) # copy over dummy past residuals new_scheduler.set_timesteps(_lowercase) # copy over dummy past residual (must be after setting timesteps) UpperCAmelCase_ = dummy_past_residuals[: new_scheduler.config.solver_order] UpperCAmelCase_ = scheduler.step(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample UpperCAmelCase_ = new_scheduler.step(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1E-5, "Scheduler outputs are not identical" def __a ( self :Dict , _lowercase :Union[str, Any]=None , **_lowercase :List[Any]) -> int: if scheduler is None: UpperCAmelCase_ = self.scheduler_classes[0] UpperCAmelCase_ = self.get_scheduler_config(**_lowercase) UpperCAmelCase_ = scheduler_class(**_lowercase) UpperCAmelCase_ = self.scheduler_classes[0] UpperCAmelCase_ = self.get_scheduler_config(**_lowercase) UpperCAmelCase_ = scheduler_class(**_lowercase) UpperCAmelCase_ = 10 UpperCAmelCase_ = self.dummy_model() UpperCAmelCase_ = self.dummy_sample_deter scheduler.set_timesteps(_lowercase) for i, t in enumerate(scheduler.timesteps): UpperCAmelCase_ = model(_lowercase , _lowercase) UpperCAmelCase_ = scheduler.step(_lowercase , _lowercase , _lowercase).prev_sample return sample def __a ( self :int) -> Tuple: UpperCAmelCase_ = DPMSolverSinglestepScheduler(**self.get_scheduler_config()) UpperCAmelCase_ = 50 UpperCAmelCase_ = self.dummy_model() UpperCAmelCase_ = self.dummy_sample_deter scheduler.set_timesteps(_lowercase) # make sure that the first t is uneven for i, t in enumerate(scheduler.timesteps[3:]): UpperCAmelCase_ = model(_lowercase , _lowercase) UpperCAmelCase_ = scheduler.step(_lowercase , _lowercase , _lowercase).prev_sample UpperCAmelCase_ = torch.mean(torch.abs(_lowercase)) assert abs(result_mean.item() - 0.2_574) < 1E-3 def __a ( self :List[Any]) -> List[Any]: for timesteps in [25, 50, 100, 999, 1000]: self.check_over_configs(num_train_timesteps=_lowercase) def __a ( self :int) -> Optional[Any]: # make sure that iterating over schedulers with same config names gives same results # for defaults UpperCAmelCase_ = DPMSolverSinglestepScheduler(**self.get_scheduler_config()) UpperCAmelCase_ = self.full_loop(scheduler=_lowercase) UpperCAmelCase_ = torch.mean(torch.abs(_lowercase)) assert abs(result_mean.item() - 0.2_791) < 1E-3 UpperCAmelCase_ = DEISMultistepScheduler.from_config(scheduler.config) UpperCAmelCase_ = DPMSolverMultistepScheduler.from_config(scheduler.config) UpperCAmelCase_ = UniPCMultistepScheduler.from_config(scheduler.config) UpperCAmelCase_ = DPMSolverSinglestepScheduler.from_config(scheduler.config) UpperCAmelCase_ = self.full_loop(scheduler=_lowercase) UpperCAmelCase_ = torch.mean(torch.abs(_lowercase)) assert abs(result_mean.item() - 0.2_791) < 1E-3 def __a ( self :Tuple) -> int: self.check_over_configs(thresholding=_lowercase) for order in [1, 2, 3]: for solver_type in ["midpoint", "heun"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=_lowercase , prediction_type=_lowercase , sample_max_value=_lowercase , algorithm_type='''dpmsolver++''' , solver_order=_lowercase , solver_type=_lowercase , ) def __a ( self :List[Any]) -> Any: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_lowercase) def __a ( self :Any) -> Optional[int]: for algorithm_type in ["dpmsolver", "dpmsolver++"]: for solver_type in ["midpoint", "heun"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=_lowercase , solver_type=_lowercase , prediction_type=_lowercase , algorithm_type=_lowercase , ) UpperCAmelCase_ = self.full_loop( solver_order=_lowercase , solver_type=_lowercase , prediction_type=_lowercase , algorithm_type=_lowercase , ) assert not torch.isnan(_lowercase).any(), "Samples have nan numbers" def __a ( self :Tuple) -> int: self.check_over_configs(lower_order_final=_lowercase) self.check_over_configs(lower_order_final=_lowercase) def __a ( self :Tuple) -> Optional[Any]: self.check_over_configs(lambda_min_clipped=-float('''inf''')) self.check_over_configs(lambda_min_clipped=-5.1) def __a ( self :Any) -> List[str]: self.check_over_configs(variance_type=_lowercase) self.check_over_configs(variance_type='''learned_range''') def __a ( self :Any) -> Dict: for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]: self.check_over_forward(num_inference_steps=_lowercase , time_step=0) def __a ( self :Dict) -> Union[str, Any]: UpperCAmelCase_ = self.full_loop() UpperCAmelCase_ = torch.mean(torch.abs(_lowercase)) assert abs(result_mean.item() - 0.2_791) < 1E-3 def __a ( self :Any) -> Union[str, Any]: UpperCAmelCase_ = self.full_loop(use_karras_sigmas=_lowercase) UpperCAmelCase_ = torch.mean(torch.abs(_lowercase)) assert abs(result_mean.item() - 0.2_248) < 1E-3 def __a ( self :str) -> Optional[int]: UpperCAmelCase_ = self.full_loop(prediction_type='''v_prediction''') UpperCAmelCase_ = torch.mean(torch.abs(_lowercase)) assert abs(result_mean.item() - 0.1_453) < 1E-3 def __a ( self :List[Any]) -> Dict: UpperCAmelCase_ = self.full_loop(prediction_type='''v_prediction''' , use_karras_sigmas=_lowercase) UpperCAmelCase_ = torch.mean(torch.abs(_lowercase)) assert abs(result_mean.item() - 0.0_649) < 1E-3 def __a ( self :Any) -> Optional[Any]: UpperCAmelCase_ = self.scheduler_classes[0] UpperCAmelCase_ = self.get_scheduler_config(thresholding=_lowercase , dynamic_thresholding_ratio=0) UpperCAmelCase_ = scheduler_class(**_lowercase) UpperCAmelCase_ = 10 UpperCAmelCase_ = self.dummy_model() UpperCAmelCase_ = self.dummy_sample_deter.half() scheduler.set_timesteps(_lowercase) for i, t in enumerate(scheduler.timesteps): UpperCAmelCase_ = model(_lowercase , _lowercase) UpperCAmelCase_ = scheduler.step(_lowercase , _lowercase , _lowercase).prev_sample assert sample.dtype == torch.floataa
344
1
import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import MaMaaaTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from transformers.utils import is_sentencepiece_available if is_sentencepiece_available(): from transformers.models.mam_aaa.tokenization_mam_aaa import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin if is_sentencepiece_available(): lowerCAmelCase : str = get_tests_dir('fixtures/test_sentencepiece.model') if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right lowerCAmelCase : List[str] = 12_80_22 lowerCAmelCase : Tuple = 12_80_28 @require_sentencepiece class _A ( __magic_name__ , unittest.TestCase): SCREAMING_SNAKE_CASE : str = MaMaaaTokenizer SCREAMING_SNAKE_CASE : Tuple = False SCREAMING_SNAKE_CASE : Dict = False SCREAMING_SNAKE_CASE : Optional[int] = True def UpperCAmelCase ( self ): """simple docstring""" super().setUp() SCREAMING_SNAKE_CASE_ : Optional[Any] = ['</s>', '<unk>', '▁This', '▁is', '▁a', '▁t', 'est', '\u0120', '<pad>'] SCREAMING_SNAKE_CASE_ : int = dict(zip(UpperCAmelCase_ , range(len(UpperCAmelCase_ ) ) ) ) SCREAMING_SNAKE_CASE_ : Optional[int] = Path(self.tmpdirname ) save_json(UpperCAmelCase_ , save_dir / VOCAB_FILES_NAMES['vocab_file'] ) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(UpperCAmelCase_ , save_dir / VOCAB_FILES_NAMES['spm_file'] ) SCREAMING_SNAKE_CASE_ : Dict = MaMaaaTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCAmelCase ( self , **_SCREAMING_SNAKE_CASE ): """simple docstring""" return MaMaaaTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase_ ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE ): """simple docstring""" return ( "This is a test", "This is a test", ) def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = '</s>' SCREAMING_SNAKE_CASE_ : Union[str, Any] = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCAmelCase_ ) , UpperCAmelCase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCAmelCase_ ) , UpperCAmelCase_ ) def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = self.get_tokenizer() SCREAMING_SNAKE_CASE_ : str = list(tokenizer.get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '</s>' ) self.assertEqual(vocab_keys[1] , '<unk>' ) self.assertEqual(vocab_keys[-1] , '<s>' ) self.assertEqual(len(UpperCAmelCase_ ) , tokenizer.vocab_size + len(tokenizer.get_added_vocab() ) ) @unittest.skip('Skip this test while all models are still to be uploaded.' ) def UpperCAmelCase ( self ): """simple docstring""" pass def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = self.get_tokenizer() SCREAMING_SNAKE_CASE_ : Optional[int] = tokenizer.tokenize('This is a test' ) self.assertListEqual(UpperCAmelCase_ , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(UpperCAmelCase_ ) , [2, 3, 4, 5, 6] , ) SCREAMING_SNAKE_CASE_ : Any = tokenizer.convert_ids_to_tokens([2, 3, 4, 5, 6] ) self.assertListEqual(UpperCAmelCase_ , ['▁This', '▁is', '▁a', '▁t', 'est'] ) SCREAMING_SNAKE_CASE_ : Tuple = tokenizer.convert_tokens_to_string(UpperCAmelCase_ ) self.assertEqual(UpperCAmelCase_ , 'This is a test' ) @slow def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = {'input_ids': [[12_8022, 11_0108, 397, 11, 3_8272, 2247, 12_4811, 285, 1_8105, 1586, 207, 7, 3_9534, 4428, 397, 1019, 1_8105, 1586, 207, 7, 4_1337, 1_6786, 241, 7, 2_0214, 17, 12_5690, 1_0398, 7, 4_4378, 5_8069, 6_8342, 7798, 7343, 11, 299, 3_3310, 4, 158, 3_7350, 9_4077, 4569, 299, 3_3310, 90, 4, 5_2840, 290, 4, 3_1270, 112, 299, 682, 4, 5_2840, 3_9953, 1_4079, 193, 5_2519, 9_0894, 1_7894, 12_0697, 11, 4_0445, 551, 17, 1019, 5_2519, 9_0894, 1_7756, 963, 11, 4_0445, 480, 17, 9792, 1120, 5173, 1393, 6240, 1_6786, 241, 12_0996, 28, 1245, 1393, 11_8240, 1_1123, 1019, 9_3612, 2691, 1_0618, 9_8058, 12_0409, 1928, 279, 4, 4_0683, 367, 178, 207, 1019, 103, 10_3121, 506, 6_5296, 5, 2], [12_8022, 2_1217, 367, 117, 12_5450, 128, 719, 7, 7308, 40, 9_3612, 1_2669, 1116, 1_6704, 71, 1_7785, 3699, 1_5592, 35, 144, 9584, 241, 1_1943, 713, 950, 799, 2247, 8_8427, 150, 149, 11_8813, 12_0706, 1019, 10_6906, 8_1518, 28, 1224, 2_2799, 397, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [12_8022, 1658, 12_3311, 5155, 5578, 4722, 279, 1_4947, 2366, 1120, 1197, 14, 1348, 9232, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCAmelCase_ , model_name='facebook/m2m100_418M' , revision='c168bae485c864188cf9aa0e4108b0b6934dc91e' , ) @require_torch @require_sentencepiece @require_tokenizers class _A ( unittest.TestCase): SCREAMING_SNAKE_CASE : Tuple = "facebook/m2m100_418M" SCREAMING_SNAKE_CASE : List[Any] = [ "In my opinion, there are two levels of response from the French government.", "NSA Affair Emphasizes Complete Lack of Debate on Intelligence", ] SCREAMING_SNAKE_CASE : Dict = [ "Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.", "L'affaire NSA souligne l'absence totale de débat sur le renseignement", ] # fmt: off SCREAMING_SNAKE_CASE : Dict = [EN_CODE, 593, 1_949, 115_781, 4, 71_586, 4_234, 60_633, 126_233, 432, 123_808, 15_592, 1_197, 117_132, 120_618, 5, 2] @classmethod def UpperCAmelCase ( cls ): """simple docstring""" SCREAMING_SNAKE_CASE_ : MaMaaaTokenizer = MaMaaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang='en' , tgt_lang='fr' ) SCREAMING_SNAKE_CASE_ : Dict = 1 return cls def UpperCAmelCase ( self ): """simple docstring""" self.assertEqual(self.tokenizer.get_lang_id('ar' ) , 12_8006 ) self.assertEqual(self.tokenizer.get_lang_id('en' ) , 12_8022 ) self.assertEqual(self.tokenizer.get_lang_id('ro' ) , 12_8076 ) self.assertEqual(self.tokenizer.get_lang_id('mr' ) , 12_8063 ) def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = self.tokenizer.get_vocab() self.assertEqual(len(UpperCAmelCase_ ) , self.tokenizer.vocab_size ) self.assertEqual(vocab['<unk>'] , 3 ) self.assertIn(self.tokenizer.get_lang_token('en' ) , UpperCAmelCase_ ) def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = 'en' SCREAMING_SNAKE_CASE_ : Dict = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , UpperCAmelCase_ ) def UpperCAmelCase ( self ): """simple docstring""" self.assertIn(UpperCAmelCase_ , self.tokenizer.all_special_ids ) # fmt: off SCREAMING_SNAKE_CASE_ : str = [FR_CODE, 5364, 82, 8642, 4, 294, 47, 8, 1_4028, 136, 3286, 9706, 6, 9_0797, 6, 14_4012, 162, 8_8128, 3_0061, 5, 2] # fmt: on SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.tokenizer.decode(UpperCAmelCase_ , skip_special_tokens=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE_ : Optional[int] = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=UpperCAmelCase_ ) self.assertEqual(UpperCAmelCase_ , UpperCAmelCase_ ) self.assertNotIn(self.tokenizer.eos_token , UpperCAmelCase_ ) def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = tempfile.mkdtemp() SCREAMING_SNAKE_CASE_ : Optional[int] = self.tokenizer.lang_token_to_id self.tokenizer.save_pretrained(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE_ : Any = MaMaaaTokenizer.from_pretrained(UpperCAmelCase_ ) self.assertDictEqual(new_tok.lang_token_to_id , UpperCAmelCase_ ) @require_torch def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = 'en' SCREAMING_SNAKE_CASE_ : Optional[int] = 'fr' SCREAMING_SNAKE_CASE_ : Any = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=UpperCAmelCase_ , return_tensors='pt' ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = shift_tokens_right( batch['labels'] , self.tokenizer.pad_token_id , self.tokenizer.eos_token_id ) for k in batch: SCREAMING_SNAKE_CASE_ : str = batch[k].tolist() # batch = {k: v.tolist() for k,v in batch.items()} # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 # batch.decoder_inputs_ids[0][0] == assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == FR_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2] == [2, FR_CODE] @require_torch def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = 'mr' self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id('mr' )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) SCREAMING_SNAKE_CASE_ : int = 'zh' self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id('zh' )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) @require_torch def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = 'mr' self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id('mr' )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = 'zh' self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id('zh' )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) @require_torch def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = self.tokenizer._build_translation_inputs('A test' , return_tensors='pt' , src_lang='en' , tgt_lang='ar' ) self.assertEqual( nested_simplify(UpperCAmelCase_ ) , { # en_XX, A, test, EOS 'input_ids': [[12_8022, 58, 4183, 2]], 'attention_mask': [[1, 1, 1, 1]], # ar_AR 'forced_bos_token_id': 12_8006, } , )
253
from __future__ import annotations import math import numpy as np from numpy.linalg import norm def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' return math.sqrt(sum(pow(a - b, 2 ) for a, b in zip(_UpperCAmelCase, _UpperCAmelCase ) ) ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> list[list[list[float] | float]]: '''simple docstring''' if dataset.ndim != value_array.ndim: lowerCAmelCase : List[Any] = ( 'Wrong input data\'s dimensions... ' f"dataset : {dataset.ndim}, value_array : {value_array.ndim}" ) raise ValueError(_UpperCAmelCase ) try: if dataset.shape[1] != value_array.shape[1]: lowerCAmelCase : Dict = ( 'Wrong input data\'s shape... ' f"dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}" ) raise ValueError(_UpperCAmelCase ) except IndexError: if dataset.ndim != value_array.ndim: raise TypeError('Wrong shape' ) if dataset.dtype != value_array.dtype: lowerCAmelCase : Any = ( 'Input data have different datatype... ' f"dataset : {dataset.dtype}, value_array : {value_array.dtype}" ) raise TypeError(_UpperCAmelCase ) lowerCAmelCase : int = [] for value in value_array: lowerCAmelCase : Tuple = euclidean(_UpperCAmelCase, dataset[0] ) lowerCAmelCase : Tuple = dataset[0].tolist() for dataset_value in dataset[1:]: lowerCAmelCase : Dict = euclidean(_UpperCAmelCase, _UpperCAmelCase ) if dist > temp_dist: lowerCAmelCase : Tuple = temp_dist lowerCAmelCase : Tuple = dataset_value.tolist() answer.append([vector, dist] ) return answer def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' return np.dot(_UpperCAmelCase, _UpperCAmelCase ) / (norm(_UpperCAmelCase ) * norm(_UpperCAmelCase )) if __name__ == "__main__": import doctest doctest.testmod()
138
0
"""simple docstring""" import os import unittest from transformers.models.phobert.tokenization_phobert import VOCAB_FILES_NAMES, PhobertTokenizer from ...test_tokenization_common import TokenizerTesterMixin class __snake_case ( __lowerCAmelCase , unittest.TestCase ): a__ = PhobertTokenizer a__ = False def lowerCamelCase_ ( self) -> str: '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt a__: Tuple = ['T@@', 'i', 'I', 'R@@', 'r', 'e@@'] a__: Optional[int] = dict(zip(lowercase , range(len(lowercase)))) a__: int = ['#version: 0.2', 'l à</w>'] a__: Tuple = {'unk_token': '<unk>'} a__: Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file']) a__: Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file']) with open(self.vocab_file , 'w' , encoding='utf-8') as fp: for token in vocab_tokens: fp.write(f'{token} {vocab_tokens[token]}\n') with open(self.merges_file , 'w' , encoding='utf-8') as fp: fp.write('\n'.join(lowercase)) def lowerCamelCase_ ( self , **lowercase) -> Any: '''simple docstring''' kwargs.update(self.special_tokens_map) return PhobertTokenizer.from_pretrained(self.tmpdirname , **lowercase) def lowerCamelCase_ ( self , lowercase) -> int: '''simple docstring''' a__: List[str] = 'Tôi là VinAI Research' a__: str = 'T<unk> i <unk> <unk> <unk> <unk> <unk> <unk> I Re<unk> e<unk> <unk> <unk> <unk>' return input_text, output_text def lowerCamelCase_ ( self) -> List[str]: '''simple docstring''' a__: Tuple = PhobertTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map) a__: str = 'Tôi là VinAI Research' a__: str = 'T@@ ô@@ i l@@ à V@@ i@@ n@@ A@@ I R@@ e@@ s@@ e@@ a@@ r@@ c@@ h'.split() a__: List[str] = tokenizer.tokenize(lowercase) print(lowercase) self.assertListEqual(lowercase , lowercase) a__: Tuple = tokens + [tokenizer.unk_token] a__: List[Any] = [4, 3, 5, 3, 3, 3, 3, 3, 3, 6, 7, 9, 3, 9, 3, 3, 3, 3, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase) , lowercase)
203
"""simple docstring""" import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel from diffusers import DDIMScheduler, LDMPipeline, UNetaDModel, VQModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class __snake_case ( unittest.TestCase ): @property def lowerCamelCase_ ( self) -> Dict: '''simple docstring''' torch.manual_seed(0) a__: str = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , ) return model @property def lowerCamelCase_ ( self) -> int: '''simple docstring''' torch.manual_seed(0) a__: List[Any] = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=3 , ) return model @property def lowerCamelCase_ ( self) -> Optional[Any]: '''simple docstring''' torch.manual_seed(0) a__: Optional[int] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) return CLIPTextModel(lowercase) def lowerCamelCase_ ( self) -> str: '''simple docstring''' a__: Union[str, Any] = self.dummy_uncond_unet a__: Optional[int] = DDIMScheduler() a__: Optional[int] = self.dummy_vq_model a__: Union[str, Any] = LDMPipeline(unet=lowercase , vqvae=lowercase , scheduler=lowercase) ldm.to(lowercase) ldm.set_progress_bar_config(disable=lowercase) a__: str = torch.manual_seed(0) a__: Dict = ldm(generator=lowercase , num_inference_steps=2 , output_type='numpy').images a__: Union[str, Any] = torch.manual_seed(0) a__: int = ldm(generator=lowercase , num_inference_steps=2 , output_type='numpy' , return_dict=lowercase)[0] a__: Union[str, Any] = image[0, -3:, -3:, -1] a__: int = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) a__: int = np.array([0.8512, 0.818, 0.6411, 0.6808, 0.4465, 0.5618, 0.46, 0.6231, 0.5172]) a__: Optional[Any] = 1e-2 if torch_device != 'mps' else 3e-2 assert np.abs(image_slice.flatten() - expected_slice).max() < tolerance assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < tolerance @slow @require_torch class __snake_case ( unittest.TestCase ): def lowerCamelCase_ ( self) -> Optional[Any]: '''simple docstring''' a__: Union[str, Any] = LDMPipeline.from_pretrained('CompVis/ldm-celebahq-256') ldm.to(lowercase) ldm.set_progress_bar_config(disable=lowercase) a__: List[str] = torch.manual_seed(0) a__: Optional[int] = ldm(generator=lowercase , num_inference_steps=5 , output_type='numpy').images a__: Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 2_56, 2_56, 3) a__: int = np.array([0.4399, 0.44975, 0.46825, 0.474, 0.4359, 0.4581, 0.45095, 0.4341, 0.4447]) a__: Any = 1e-2 if torch_device != 'mps' else 3e-2 assert np.abs(image_slice.flatten() - expected_slice).max() < tolerance
203
1
from typing import Optional, Tuple, Union import torch from einops import rearrange, reduce from diffusers import DDIMScheduler, DDPMScheduler, DiffusionPipeline, ImagePipelineOutput, UNetaDConditionModel from diffusers.schedulers.scheduling_ddim import DDIMSchedulerOutput from diffusers.schedulers.scheduling_ddpm import DDPMSchedulerOutput lowerCamelCase_ = 8 def __magic_name__ ( __a : str , __a : Any=BITS ): '''simple docstring''' UpperCamelCase__ = x.device UpperCamelCase__ = (x * 255).int().clamp(0 , 255 ) UpperCamelCase__ = 2 ** torch.arange(bits - 1 , -1 , -1 , device=__a ) UpperCamelCase__ = rearrange(__a , """d -> d 1 1""" ) UpperCamelCase__ = rearrange(__a , """b c h w -> b c 1 h w""" ) UpperCamelCase__ = ((x & mask) != 0).float() UpperCamelCase__ = rearrange(__a , """b c d h w -> b (c d) h w""" ) UpperCamelCase__ = bits * 2 - 1 return bits def __magic_name__ ( __a : List[Any] , __a : Optional[int]=BITS ): '''simple docstring''' UpperCamelCase__ = x.device UpperCamelCase__ = (x > 0).int() UpperCamelCase__ = 2 ** torch.arange(bits - 1 , -1 , -1 , device=__a , dtype=torch.intaa ) UpperCamelCase__ = rearrange(__a , """d -> d 1 1""" ) UpperCamelCase__ = rearrange(__a , """b (c d) h w -> b c d h w""" , d=8 ) UpperCamelCase__ = reduce(x * mask , """b c d h w -> b c h w""" , """sum""" ) return (dec / 255).clamp(0.0 , 1.0 ) def __magic_name__ ( self : Any , __a : torch.FloatTensor , __a : int , __a : torch.FloatTensor , __a : float = 0.0 , __a : bool = True , __a : int=None , __a : bool = True , ): '''simple docstring''' if self.num_inference_steps is None: raise ValueError( """Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler""" ) # See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf # Ideally, read DDIM paper in-detail understanding # Notation (<variable name> -> <name in paper> # - pred_noise_t -> e_theta(x_t, t) # - pred_original_sample -> f_theta(x_t, t) or x_0 # - std_dev_t -> sigma_t # - eta -> η # - pred_sample_direction -> "direction pointing to x_t" # - pred_prev_sample -> "x_t-1" # 1. get previous step value (=t-1) UpperCamelCase__ = timestep - self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas UpperCamelCase__ = self.alphas_cumprod[timestep] UpperCamelCase__ = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod UpperCamelCase__ = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf UpperCamelCase__ = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 # 4. Clip "predicted x_0" UpperCamelCase__ = self.bit_scale if self.config.clip_sample: UpperCamelCase__ = torch.clamp(__a , -scale , __a ) # 5. compute variance: "sigma_t(η)" -> see formula (16) # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1) UpperCamelCase__ = self._get_variance(__a , __a ) UpperCamelCase__ = eta * variance ** 0.5 if use_clipped_model_output: # the model_output is always re-derived from the clipped x_0 in Glide UpperCamelCase__ = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 # 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf UpperCamelCase__ = (1 - alpha_prod_t_prev - std_dev_t**2) ** 0.5 * model_output # 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf UpperCamelCase__ = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if eta > 0: # randn_like does not support generator https://github.com/pytorch/pytorch/issues/27072 UpperCamelCase__ = model_output.device if torch.is_tensor(__a ) else """cpu""" UpperCamelCase__ = torch.randn(model_output.shape , dtype=model_output.dtype , generator=__a ).to(__a ) UpperCamelCase__ = self._get_variance(__a , __a ) ** 0.5 * eta * noise UpperCamelCase__ = prev_sample + variance if not return_dict: return (prev_sample,) return DDIMSchedulerOutput(prev_sample=__a , pred_original_sample=__a ) def __magic_name__ ( self : Optional[Any] , __a : torch.FloatTensor , __a : int , __a : torch.FloatTensor , __a : int="epsilon" , __a : Optional[int]=None , __a : bool = True , ): '''simple docstring''' UpperCamelCase__ = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]: UpperCamelCase__ , UpperCamelCase__ = torch.split(__a , sample.shape[1] , dim=1 ) else: UpperCamelCase__ = None # 1. compute alphas, betas UpperCamelCase__ = self.alphas_cumprod[t] UpperCamelCase__ = self.alphas_cumprod[t - 1] if t > 0 else self.one UpperCamelCase__ = 1 - alpha_prod_t UpperCamelCase__ = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if prediction_type == "epsilon": UpperCamelCase__ = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif prediction_type == "sample": UpperCamelCase__ = model_output else: raise ValueError(f"Unsupported prediction_type {prediction_type}." ) # 3. Clip "predicted x_0" UpperCamelCase__ = self.bit_scale if self.config.clip_sample: UpperCamelCase__ = torch.clamp(__a , -scale , __a ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf UpperCamelCase__ = (alpha_prod_t_prev ** 0.5 * self.betas[t]) / beta_prod_t UpperCamelCase__ = self.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf UpperCamelCase__ = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise UpperCamelCase__ = 0 if t > 0: UpperCamelCase__ = torch.randn( model_output.size() , dtype=model_output.dtype , layout=model_output.layout , generator=__a ).to(model_output.device ) UpperCamelCase__ = (self._get_variance(__a , predicted_variance=__a ) ** 0.5) * noise UpperCamelCase__ = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return DDPMSchedulerOutput(prev_sample=__a , pred_original_sample=__a ) class __A( __lowerCamelCase ): """simple docstring""" def __init__(self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = 1.0 , ): super().__init__() UpperCamelCase__ = bit_scale UpperCamelCase__ = ( ddim_bit_scheduler_step if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else ddpm_bit_scheduler_step ) self.register_modules(unet=SCREAMING_SNAKE_CASE_ , scheduler=SCREAMING_SNAKE_CASE_ ) @torch.no_grad() def __call__(self , SCREAMING_SNAKE_CASE_ = 2_56 , SCREAMING_SNAKE_CASE_ = 2_56 , SCREAMING_SNAKE_CASE_ = 50 , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = 1 , SCREAMING_SNAKE_CASE_ = "pil" , SCREAMING_SNAKE_CASE_ = True , **SCREAMING_SNAKE_CASE_ , ): UpperCamelCase__ = torch.randn( (batch_size, self.unet.config.in_channels, height, width) , generator=SCREAMING_SNAKE_CASE_ , ) UpperCamelCase__ = decimal_to_bits(SCREAMING_SNAKE_CASE_ ) * self.bit_scale UpperCamelCase__ = latents.to(self.device ) self.scheduler.set_timesteps(SCREAMING_SNAKE_CASE_ ) for t in self.progress_bar(self.scheduler.timesteps ): # predict the noise residual UpperCamelCase__ = self.unet(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).sample # compute the previous noisy sample x_t -> x_t-1 UpperCamelCase__ = self.scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).prev_sample UpperCamelCase__ = bits_to_decimal(SCREAMING_SNAKE_CASE_ ) if output_type == "pil": UpperCamelCase__ = self.numpy_to_pil(SCREAMING_SNAKE_CASE_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=SCREAMING_SNAKE_CASE_ )
244
import torch from diffusers import StableDiffusionPipeline lowerCamelCase_ = '''path-to-your-trained-model''' lowerCamelCase_ = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.floataa).to('''cuda''') lowerCamelCase_ = '''A photo of sks dog in a bucket''' lowerCamelCase_ = pipe(prompt, num_inference_steps=50, guidance_scale=7.5).images[0] image.save('''dog-bucket.png''')
244
1
"""simple docstring""" from __future__ import annotations def _snake_case ( _snake_case : list[int] ): # This function is recursive lowerCAmelCase : int = len(_snake_case ) # If the array contains only one element, we return it (it's the stop condition of # recursion) if array_length <= 1: return array # Else lowerCAmelCase : Any = array[0] lowerCAmelCase : Any = False lowerCAmelCase : Optional[int] = 1 lowerCAmelCase : list[int] = [] while not is_found and i < array_length: if array[i] < pivot: lowerCAmelCase : List[str] = True lowerCAmelCase : int = [element for element in array[i:] if element >= array[i]] lowerCAmelCase : Tuple = longest_subsequence(_snake_case ) if len(_snake_case ) > len(_snake_case ): lowerCAmelCase : Optional[int] = temp_array else: i += 1 lowerCAmelCase : Dict = [element for element in array[1:] if element >= pivot] lowerCAmelCase : Union[str, Any] = [pivot, *longest_subsequence(_snake_case )] if len(_snake_case ) > len(_snake_case ): return temp_array else: return longest_subseq if __name__ == "__main__": import doctest doctest.testmod()
354
"""simple docstring""" import warnings from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch from ...models import UNetaDModel from ...schedulers import RePaintScheduler from ...utils import PIL_INTERPOLATION, logging, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput snake_case__ : List[str] = logging.get_logger(__name__) # pylint: disable=invalid-name def _snake_case ( _snake_case : Union[List, PIL.Image.Image, torch.Tensor] ): warnings.warn( '''The preprocess method is deprecated and will be removed in a future version. Please''' ''' use VaeImageProcessor.preprocess instead''' , _snake_case , ) if isinstance(_snake_case , torch.Tensor ): return image elif isinstance(_snake_case , PIL.Image.Image ): lowerCAmelCase : Optional[int] = [image] if isinstance(image[0] , PIL.Image.Image ): lowerCAmelCase, lowerCAmelCase : int = image[0].size lowerCAmelCase, lowerCAmelCase : Optional[int] = (x - x % 8 for x in (w, h)) # resize to integer multiple of 8 lowerCAmelCase : Union[str, Any] = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION['''lanczos'''] ) )[None, :] for i in image] lowerCAmelCase : int = np.concatenate(_snake_case , axis=0 ) lowerCAmelCase : Optional[Any] = np.array(_snake_case ).astype(np.floataa ) / 255.0 lowerCAmelCase : List[Any] = image.transpose(0 , 3 , 1 , 2 ) lowerCAmelCase : List[str] = 2.0 * image - 1.0 lowerCAmelCase : List[Any] = torch.from_numpy(_snake_case ) elif isinstance(image[0] , torch.Tensor ): lowerCAmelCase : Any = torch.cat(_snake_case , dim=0 ) return image def _snake_case ( _snake_case : Union[List, PIL.Image.Image, torch.Tensor] ): if isinstance(_snake_case , torch.Tensor ): return mask elif isinstance(_snake_case , PIL.Image.Image ): lowerCAmelCase : str = [mask] if isinstance(mask[0] , PIL.Image.Image ): lowerCAmelCase, lowerCAmelCase : int = mask[0].size lowerCAmelCase, lowerCAmelCase : Dict = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 lowerCAmelCase : List[str] = [np.array(m.convert('''L''' ).resize((w, h) , resample=PIL_INTERPOLATION['''nearest'''] ) )[None, :] for m in mask] lowerCAmelCase : Optional[int] = np.concatenate(_snake_case , axis=0 ) lowerCAmelCase : Dict = mask.astype(np.floataa ) / 255.0 lowerCAmelCase : List[str] = 0 lowerCAmelCase : Optional[int] = 1 lowerCAmelCase : List[Any] = torch.from_numpy(_snake_case ) elif isinstance(mask[0] , torch.Tensor ): lowerCAmelCase : Optional[int] = torch.cat(_snake_case , dim=0 ) return mask class snake_case_( a__ ): __UpperCamelCase = 42 __UpperCamelCase = 42 def __init__( self : List[Any] , UpperCamelCase_ : List[str] , UpperCamelCase_ : Optional[Any] ): super().__init__() self.register_modules(unet=UpperCamelCase_ , scheduler=UpperCamelCase_ ) @torch.no_grad() def __call__( self : Union[str, Any] , UpperCamelCase_ : Union[torch.Tensor, PIL.Image.Image] , UpperCamelCase_ : Union[torch.Tensor, PIL.Image.Image] , UpperCamelCase_ : int = 2_5_0 , UpperCamelCase_ : float = 0.0 , UpperCamelCase_ : int = 1_0 , UpperCamelCase_ : int = 1_0 , UpperCamelCase_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCamelCase_ : Optional[str] = "pil" , UpperCamelCase_ : bool = True , ): lowerCAmelCase : Optional[Any] = image lowerCAmelCase : Tuple = _preprocess_image(UpperCamelCase_ ) lowerCAmelCase : int = original_image.to(device=self.device , dtype=self.unet.dtype ) lowerCAmelCase : Optional[Any] = _preprocess_mask(UpperCamelCase_ ) lowerCAmelCase : str = mask_image.to(device=self.device , dtype=self.unet.dtype ) lowerCAmelCase : Union[str, Any] = original_image.shape[0] # sample gaussian noise to begin the loop if isinstance(UpperCamelCase_ , UpperCamelCase_ ) and len(UpperCamelCase_ ) != batch_size: raise ValueError( F'''You have passed a list of generators of length {len(UpperCamelCase_ )}, but requested an effective batch''' F''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) lowerCAmelCase : Union[str, Any] = original_image.shape lowerCAmelCase : str = randn_tensor(UpperCamelCase_ , generator=UpperCamelCase_ , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , self.device ) lowerCAmelCase : Optional[int] = eta lowerCAmelCase : List[str] = self.scheduler.timesteps[0] + 1 lowerCAmelCase : List[str] = generator[0] if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else generator for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): if t < t_last: # predict the noise residual lowerCAmelCase : Union[str, Any] = self.unet(UpperCamelCase_ , UpperCamelCase_ ).sample # compute previous image: x_t -> x_t-1 lowerCAmelCase : str = self.scheduler.step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ).prev_sample else: # compute the reverse: x_t-1 -> x_t lowerCAmelCase : Optional[Any] = self.scheduler.undo_step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase : List[Any] = t lowerCAmelCase : int = (image / 2 + 0.5).clamp(0 , 1 ) lowerCAmelCase : Union[str, Any] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": lowerCAmelCase : Tuple = self.numpy_to_pil(UpperCamelCase_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=UpperCamelCase_ )
314
0
"""simple docstring""" import math def _snake_case ( ): lowerCAmelCase : Union[str, Any] = input('''Enter message: ''' ) lowerCAmelCase : Optional[int] = int(input(f'''Enter key [2-{len(_snake_case ) - 1}]: ''' ) ) lowerCAmelCase : str = input('''Encryption/Decryption [e/d]: ''' ) if mode.lower().startswith('''e''' ): lowerCAmelCase : Any = encrypt_message(_snake_case , _snake_case ) elif mode.lower().startswith('''d''' ): lowerCAmelCase : Union[str, Any] = decrypt_message(_snake_case , _snake_case ) # Append pipe symbol (vertical bar) to identify spaces at the end. print(f'''Output:\n{text + "|"}''' ) def _snake_case ( _snake_case : int , _snake_case : str ): lowerCAmelCase : Optional[Any] = [''''''] * key for col in range(_snake_case ): lowerCAmelCase : Optional[Any] = col while pointer < len(_snake_case ): cipher_text[col] += message[pointer] pointer += key return "".join(_snake_case ) def _snake_case ( _snake_case : int , _snake_case : str ): lowerCAmelCase : Union[str, Any] = math.ceil(len(_snake_case ) / key ) lowerCAmelCase : str = key lowerCAmelCase : Any = (num_cols * num_rows) - len(_snake_case ) lowerCAmelCase : Dict = [''''''] * num_cols lowerCAmelCase : int = 0 lowerCAmelCase : int = 0 for symbol in message: plain_text[col] += symbol col += 1 if ( (col == num_cols) or (col == num_cols - 1) and (row >= num_rows - num_shaded_boxes) ): lowerCAmelCase : int = 0 row += 1 return "".join(_snake_case ) if __name__ == "__main__": import doctest doctest.testmod() main()
60
import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def UpperCamelCase ( snake_case__ : Dict , snake_case__ : Any=0.999 , snake_case__ : List[Any]="cosine" , ) -> Optional[int]: if alpha_transform_type == "cosine": def alpha_bar_fn(snake_case__ : int ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(snake_case__ : Optional[Any] ): return math.exp(t * -12.0 ) else: raise ValueError(F"""Unsupported alpha_tranform_type: {alpha_transform_type}""" ) UpperCamelCase : List[Any] = [] for i in range(snake_case__ ): UpperCamelCase : Optional[Any] = i / num_diffusion_timesteps UpperCamelCase : Union[str, Any] = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(snake_case__ ) / alpha_bar_fn(snake_case__ ) , snake_case__ ) ) return torch.tensor(snake_case__ , dtype=torch.floataa ) class lowerCAmelCase_ ( a__ , a__ ): UpperCAmelCase__ : List[Any] = [e.name for e in KarrasDiffusionSchedulers] UpperCAmelCase__ : List[str] = 2 @register_to_config def __init__( self, SCREAMING_SNAKE_CASE_ = 1000, SCREAMING_SNAKE_CASE_ = 0.0_00_85, SCREAMING_SNAKE_CASE_ = 0.0_12, SCREAMING_SNAKE_CASE_ = "linear", SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = "epsilon", SCREAMING_SNAKE_CASE_ = "linspace", SCREAMING_SNAKE_CASE_ = 0, ) -> List[str]: if trained_betas is not None: UpperCamelCase : Union[str, Any] = torch.tensor(SCREAMING_SNAKE_CASE_, dtype=torch.floataa ) elif beta_schedule == "linear": UpperCamelCase : List[Any] = torch.linspace(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. UpperCamelCase : int = ( torch.linspace(beta_start**0.5, beta_end**0.5, SCREAMING_SNAKE_CASE_, dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule UpperCamelCase : Optional[int] = betas_for_alpha_bar(SCREAMING_SNAKE_CASE_ ) else: raise NotImplementedError(F"""{beta_schedule} does is not implemented for {self.__class__}""" ) UpperCamelCase : Optional[int] = 1.0 - self.betas UpperCamelCase : int = torch.cumprod(self.alphas, dim=0 ) # set all values self.set_timesteps(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=None ) -> str: if schedule_timesteps is None: UpperCamelCase : Union[str, Any] = self.timesteps UpperCamelCase : Dict = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: UpperCamelCase : Optional[int] = 1 if len(SCREAMING_SNAKE_CASE_ ) > 1 else 0 else: UpperCamelCase : str = timestep.cpu().item() if torch.is_tensor(SCREAMING_SNAKE_CASE_ ) else timestep UpperCamelCase : int = self._index_counter[timestep_int] return indices[pos].item() @property def snake_case_ ( self ) -> List[Any]: # standard deviation of the initial noise distribution if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, ) -> torch.FloatTensor: UpperCamelCase : Optional[int] = self.index_for_timestep(SCREAMING_SNAKE_CASE_ ) if self.state_in_first_order: UpperCamelCase : Dict = self.sigmas[step_index] else: UpperCamelCase : int = self.sigmas_interpol[step_index] UpperCamelCase : Any = sample / ((sigma**2 + 1) ** 0.5) return sample def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = None, ) -> Optional[int]: UpperCamelCase : Dict = num_inference_steps UpperCamelCase : List[Any] = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": UpperCamelCase : int = np.linspace(0, num_train_timesteps - 1, SCREAMING_SNAKE_CASE_, dtype=SCREAMING_SNAKE_CASE_ )[::-1].copy() elif self.config.timestep_spacing == "leading": UpperCamelCase : List[Any] = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 UpperCamelCase : Optional[Any] = (np.arange(0, SCREAMING_SNAKE_CASE_ ) * step_ratio).round()[::-1].copy().astype(SCREAMING_SNAKE_CASE_ ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": UpperCamelCase : Optional[int] = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 UpperCamelCase : Any = (np.arange(SCREAMING_SNAKE_CASE_, 0, -step_ratio )).round().copy().astype(SCREAMING_SNAKE_CASE_ ) timesteps -= 1 else: raise ValueError( F"""{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'.""" ) UpperCamelCase : Tuple = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) UpperCamelCase : Optional[int] = torch.from_numpy(np.log(SCREAMING_SNAKE_CASE_ ) ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[int] = np.interp(SCREAMING_SNAKE_CASE_, np.arange(0, len(SCREAMING_SNAKE_CASE_ ) ), SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Dict = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) UpperCamelCase : Optional[int] = torch.from_numpy(SCREAMING_SNAKE_CASE_ ).to(device=SCREAMING_SNAKE_CASE_ ) # interpolate sigmas UpperCamelCase : Union[str, Any] = sigmas.log().lerp(sigmas.roll(1 ).log(), 0.5 ).exp() UpperCamelCase : Any = torch.cat([sigmas[:1], sigmas[1:].repeat_interleave(2 ), sigmas[-1:]] ) UpperCamelCase : Optional[Any] = torch.cat( [sigmas_interpol[:1], sigmas_interpol[1:].repeat_interleave(2 ), sigmas_interpol[-1:]] ) if str(SCREAMING_SNAKE_CASE_ ).startswith('mps' ): # mps does not support float64 UpperCamelCase : Any = torch.from_numpy(SCREAMING_SNAKE_CASE_ ).to(SCREAMING_SNAKE_CASE_, dtype=torch.floataa ) else: UpperCamelCase : Dict = torch.from_numpy(SCREAMING_SNAKE_CASE_ ).to(SCREAMING_SNAKE_CASE_ ) # interpolate timesteps UpperCamelCase : int = self.sigma_to_t(SCREAMING_SNAKE_CASE_ ).to(SCREAMING_SNAKE_CASE_, dtype=timesteps.dtype ) UpperCamelCase : List[str] = torch.stack((timesteps_interpol[1:-1, None], timesteps[1:, None]), dim=-1 ).flatten() UpperCamelCase : Optional[Any] = torch.cat([timesteps[:1], interleaved_timesteps] ) UpperCamelCase : Optional[Any] = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter UpperCamelCase : Dict = defaultdict(SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: # get log sigma UpperCamelCase : List[Any] = sigma.log() # get distribution UpperCamelCase : Optional[int] = log_sigma - self.log_sigmas[:, None] # get sigmas range UpperCamelCase : Optional[int] = dists.ge(0 ).cumsum(dim=0 ).argmax(dim=0 ).clamp(max=self.log_sigmas.shape[0] - 2 ) UpperCamelCase : Tuple = low_idx + 1 UpperCamelCase : List[str] = self.log_sigmas[low_idx] UpperCamelCase : Optional[Any] = self.log_sigmas[high_idx] # interpolate sigmas UpperCamelCase : int = (low - log_sigma) / (low - high) UpperCamelCase : Tuple = w.clamp(0, 1 ) # transform interpolation to time range UpperCamelCase : List[str] = (1 - w) * low_idx + w * high_idx UpperCamelCase : Dict = t.view(sigma.shape ) return t @property def snake_case_ ( self ) -> Optional[int]: return self.sample is None def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = True, ) -> Union[SchedulerOutput, Tuple]: UpperCamelCase : str = self.index_for_timestep(SCREAMING_SNAKE_CASE_ ) # advance index counter by 1 UpperCamelCase : Optional[int] = timestep.cpu().item() if torch.is_tensor(SCREAMING_SNAKE_CASE_ ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: UpperCamelCase : Tuple = self.sigmas[step_index] UpperCamelCase : Dict = self.sigmas_interpol[step_index + 1] UpperCamelCase : Optional[int] = self.sigmas[step_index + 1] else: # 2nd order / KDPM2's method UpperCamelCase : str = self.sigmas[step_index - 1] UpperCamelCase : Dict = self.sigmas_interpol[step_index] UpperCamelCase : Any = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API UpperCamelCase : Dict = 0 UpperCamelCase : Any = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": UpperCamelCase : Any = sigma_hat if self.state_in_first_order else sigma_interpol UpperCamelCase : List[Any] = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": UpperCamelCase : Union[str, Any] = sigma_hat if self.state_in_first_order else sigma_interpol UpperCamelCase : Optional[int] = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": raise NotImplementedError('prediction_type not implemented yet: sample' ) else: raise ValueError( F"""prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`""" ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order UpperCamelCase : int = (sample - pred_original_sample) / sigma_hat # 3. delta timestep UpperCamelCase : Any = sigma_interpol - sigma_hat # store for 2nd order step UpperCamelCase : Tuple = sample else: # DPM-Solver-2 # 2. Convert to an ODE derivative for 2nd order UpperCamelCase : Union[str, Any] = (sample - pred_original_sample) / sigma_interpol # 3. delta timestep UpperCamelCase : Dict = sigma_next - sigma_hat UpperCamelCase : Any = self.sample UpperCamelCase : str = None UpperCamelCase : Any = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, ) -> torch.FloatTensor: # Make sure sigmas and timesteps have the same device and dtype as original_samples UpperCamelCase : Optional[Any] = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(SCREAMING_SNAKE_CASE_ ): # mps does not support float64 UpperCamelCase : List[str] = self.timesteps.to(original_samples.device, dtype=torch.floataa ) UpperCamelCase : str = timesteps.to(original_samples.device, dtype=torch.floataa ) else: UpperCamelCase : Dict = self.timesteps.to(original_samples.device ) UpperCamelCase : int = timesteps.to(original_samples.device ) UpperCamelCase : str = [self.index_for_timestep(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) for t in timesteps] UpperCamelCase : List[Any] = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): UpperCamelCase : int = sigma.unsqueeze(-1 ) UpperCamelCase : Any = original_samples + noise * sigma return noisy_samples def __len__( self ) -> Optional[int]: return self.config.num_train_timesteps
119
0
from __future__ import annotations import math from collections import Counter from string import ascii_lowercase def UpperCAmelCase ( a_ ) -> None: """simple docstring""" __A , __A = analyze_text(a_ ) __A = list(" " + ascii_lowercase ) # what is our total sum of probabilities. __A = sum(single_char_strings.values() ) # one length string __A = 0 # for each alpha we go in our dict and if it is in it we calculate entropy for ch in my_alphas: if ch in single_char_strings: __A = single_char_strings[ch] __A = my_str / all_sum my_fir_sum += prob * math.loga(a_ ) # entropy formula. # print entropy print(F'''{round(-1 * my_fir_sum ):.1f}''' ) # two len string __A = sum(two_char_strings.values() ) __A = 0 # for each alpha (two in size) calculate entropy. for cha in my_alphas: for cha in my_alphas: __A = cha + cha if sequence in two_char_strings: __A = two_char_strings[sequence] __A = int(a_ ) / all_sum my_sec_sum += prob * math.loga(a_ ) # print second entropy print(F'''{round(-1 * my_sec_sum ):.1f}''' ) # print the difference between them print(F'''{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}''' ) def UpperCAmelCase ( a_ ) -> tuple[dict, dict]: """simple docstring""" __A = Counter() # type: ignore __A = Counter() # type: ignore single_char_strings[text[-1]] += 1 # first case when we have space at start. two_char_strings[" " + text[0]] += 1 for i in range(0 , len(a_ ) - 1 ): single_char_strings[text[i]] += 1 two_char_strings[text[i : i + 2]] += 1 return single_char_strings, two_char_strings def UpperCAmelCase ( ) -> Optional[Any]: """simple docstring""" import doctest doctest.testmod() # text = ( # "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark " # "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest " # "jointure saw horrible. He private he on be imagine suppose. Fertile " # "beloved evident through no service elderly is. Blind there if every no so " # "at. Own neglected you preferred way sincerity delivered his attempted. To " # "of message cottage windows do besides against uncivil. Delightful " # "unreserved impossible few estimating men favourable see entreaties. She " # "propriety immediate was improving. He or entrance humoured likewise " # "moderate. Much nor game son say feel. Fat make met can must form into " # "gate. Me we offending prevailed discovery. " # ) # calculate_prob(text) if __name__ == "__main__": main()
124
def UpperCAmelCase ( ) -> list[list[int]]: """simple docstring""" return [list(range(1_0_0_0 - i , -1_0_0_0 - i , -1 ) ) for i in range(1_0_0_0 )] SCREAMING_SNAKE_CASE :List[str] = generate_large_matrix() SCREAMING_SNAKE_CASE :str = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def UpperCAmelCase ( a_ ) -> None: """simple docstring""" assert all(row == sorted(a_ , reverse=a_ ) for row in grid ) assert all(list(a_ ) == sorted(a_ , reverse=a_ ) for col in zip(*a_ ) ) def UpperCAmelCase ( a_ ) -> int: """simple docstring""" __A = 0 __A = len(a_ ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: __A = (left + right) // 2 __A = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: __A = mid + 1 else: __A = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(a_ ) def UpperCAmelCase ( a_ ) -> int: """simple docstring""" __A = 0 __A = len(grid[0] ) for i in range(len(a_ ) ): __A = find_negative_index(grid[i][:bound] ) total += bound return (len(a_ ) * len(grid[0] )) - total def UpperCAmelCase ( a_ ) -> int: """simple docstring""" return len([number for row in grid for number in row if number < 0] ) def UpperCAmelCase ( a_ ) -> int: """simple docstring""" __A = 0 for row in grid: for i, number in enumerate(a_ ): if number < 0: total += len(a_ ) - i break return total def UpperCAmelCase ( ) -> None: """simple docstring""" from timeit import timeit print("Running benchmarks" ) __A = ( "from __main__ import count_negatives_binary_search, " "count_negatives_brute_force, count_negatives_brute_force_with_break, grid" ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): __A = timeit(F'''{func}(grid=grid)''' , setup=a_ , number=5_0_0 ) print(F'''{func}() took {time:0.4f} seconds''' ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
124
1
'''simple docstring''' import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class _lowerCAmelCase ( __A ): """simple docstring""" lowerCamelCase = (UnCLIPScheduler,) def UpperCAmelCase_ ( self , **_lowerCamelCase ) -> List[Any]: A_ : Union[str, Any] = { """num_train_timesteps""": 1000, """variance_type""": """fixed_small_log""", """clip_sample""": True, """clip_sample_range""": 1.0, """prediction_type""": """epsilon""", } config.update(**_lowerCamelCase ) return config def UpperCAmelCase_ ( self ) -> List[Any]: for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Dict: for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> str: for clip_sample in [True, False]: self.check_over_configs(clip_sample=_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> str: for clip_sample_range in [1, 5, 10, 20]: self.check_over_configs(clip_sample_range=_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Dict: for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Optional[int]: for time_step in [0, 500, 999]: for prev_timestep in [None, 5, 100, 250, 500, 750]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=_lowerCamelCase , prev_timestep=_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> List[Any]: A_ : Optional[int] = self.scheduler_classes[0] A_ : Any = self.get_scheduler_config(variance_type="""fixed_small_log""" ) A_ : List[Any] = scheduler_class(**_lowerCamelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0000e-10 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.054_9625 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.999_4987 ) ) < 1e-5 def UpperCAmelCase_ ( self ) -> Optional[int]: A_ : List[Any] = self.scheduler_classes[0] A_ : Tuple = self.get_scheduler_config(variance_type="""learned_range""" ) A_ : Dict = scheduler_class(**_lowerCamelCase ) A_ : Dict = 0.5 assert scheduler._get_variance(1 , predicted_variance=_lowerCamelCase ) - -10.171_2790 < 1e-5 assert scheduler._get_variance(487 , predicted_variance=_lowerCamelCase ) - -5.799_8052 < 1e-5 assert scheduler._get_variance(999 , predicted_variance=_lowerCamelCase ) - -0.001_0011 < 1e-5 def UpperCAmelCase_ ( self ) -> Any: A_ : Optional[Any] = self.scheduler_classes[0] A_ : Tuple = self.get_scheduler_config() A_ : Optional[Any] = scheduler_class(**_lowerCamelCase ) A_ : int = scheduler.timesteps A_ : List[Any] = self.dummy_model() A_ : str = self.dummy_sample_deter A_ : Optional[Any] = torch.manual_seed(0 ) for i, t in enumerate(_lowerCamelCase ): # 1. predict noise residual A_ : Any = model(_lowerCamelCase , _lowerCamelCase ) # 2. predict previous mean of sample x_t-1 A_ : List[str] = scheduler.step(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , generator=_lowerCamelCase ).prev_sample A_ : List[Any] = pred_prev_sample A_ : Any = torch.sum(torch.abs(_lowerCamelCase ) ) A_ : Optional[Any] = torch.mean(torch.abs(_lowerCamelCase ) ) assert abs(result_sum.item() - 252.268_2495 ) < 1e-2 assert abs(result_mean.item() - 0.328_4743 ) < 1e-3 def UpperCAmelCase_ ( self ) -> Dict: A_ : Union[str, Any] = self.scheduler_classes[0] A_ : Dict = self.get_scheduler_config() A_ : Tuple = scheduler_class(**_lowerCamelCase ) scheduler.set_timesteps(25 ) A_ : List[str] = scheduler.timesteps A_ : List[Any] = self.dummy_model() A_ : List[Any] = self.dummy_sample_deter A_ : List[Any] = torch.manual_seed(0 ) for i, t in enumerate(_lowerCamelCase ): # 1. predict noise residual A_ : Optional[Any] = model(_lowerCamelCase , _lowerCamelCase ) if i + 1 == timesteps.shape[0]: A_ : List[str] = None else: A_ : Dict = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 A_ : str = scheduler.step( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , prev_timestep=_lowerCamelCase , generator=_lowerCamelCase ).prev_sample A_ : Optional[Any] = pred_prev_sample A_ : Dict = torch.sum(torch.abs(_lowerCamelCase ) ) A_ : List[str] = torch.mean(torch.abs(_lowerCamelCase ) ) assert abs(result_sum.item() - 258.204_4983 ) < 1e-2 assert abs(result_mean.item() - 0.336_2038 ) < 1e-3 def UpperCAmelCase_ ( self ) -> Union[str, Any]: pass def UpperCAmelCase_ ( self ) -> int: pass
344
'''simple docstring''' from __future__ import annotations import inspect import unittest from typing import List, Tuple from transformers import RegNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFRegNetForImageClassification, TFRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _lowerCAmelCase : """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase=3 , _lowerCamelCase=32 , _lowerCamelCase=3 , _lowerCamelCase=10 , _lowerCamelCase=[10, 20, 30, 40] , _lowerCamelCase=[1, 1, 2, 1] , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase="relu" , _lowerCamelCase=3 , _lowerCamelCase=None , ) -> List[str]: A_ : Any = parent A_ : List[Any] = batch_size A_ : List[Any] = image_size A_ : Optional[int] = num_channels A_ : Tuple = embeddings_size A_ : str = hidden_sizes A_ : Optional[Any] = depths A_ : Any = is_training A_ : int = use_labels A_ : int = hidden_act A_ : Optional[Any] = num_labels A_ : str = scope A_ : Optional[int] = len(_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Tuple: A_ : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A_ : Dict = None if self.use_labels: A_ : Optional[Any] = ids_tensor([self.batch_size] , self.num_labels ) A_ : Union[str, Any] = self.get_config() return config, pixel_values, labels def UpperCAmelCase_ ( self ) -> Optional[Any]: return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[str]: A_ : Dict = TFRegNetModel(config=_lowerCamelCase ) A_ : Optional[int] = model(_lowerCamelCase , training=_lowerCamelCase ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Optional[int]: A_ : Optional[Any] = self.num_labels A_ : int = TFRegNetForImageClassification(_lowerCamelCase ) A_ : Tuple = model(_lowerCamelCase , labels=_lowerCamelCase , training=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase_ ( self ) -> str: A_ : Any = self.prepare_config_and_inputs() A_ , A_ , A_ : str = config_and_inputs A_ : Optional[int] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class _lowerCAmelCase ( __A, __A, unittest.TestCase ): """simple docstring""" lowerCamelCase = (TFRegNetModel, TFRegNetForImageClassification) if is_tf_available() else () lowerCamelCase = ( {'''feature-extraction''': TFRegNetModel, '''image-classification''': TFRegNetForImageClassification} if is_tf_available() else {} ) lowerCamelCase = False lowerCamelCase = False lowerCamelCase = False lowerCamelCase = False lowerCamelCase = False def UpperCAmelCase_ ( self ) -> Optional[Any]: A_ : Dict = TFRegNetModelTester(self ) A_ : Optional[int] = ConfigTester(self , config_class=_lowerCamelCase , has_text_modality=_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> str: return @unittest.skip(reason="""RegNet does not use inputs_embeds""" ) def UpperCAmelCase_ ( self ) -> Dict: pass @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices("""GPU""" ) ) == 0 , reason="""TF does not support backprop for grouped convolutions on CPU.""" , ) @slow def UpperCAmelCase_ ( self ) -> int: super().test_keras_fit() @unittest.skip(reason="""RegNet does not support input and output embeddings""" ) def UpperCAmelCase_ ( self ) -> Optional[Any]: pass def UpperCAmelCase_ ( self ) -> int: A_ , A_ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ : Optional[Any] = model_class(_lowerCamelCase ) A_ : Optional[int] = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A_ : int = [*signature.parameters.keys()] A_ : Any = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Tuple: A_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Dict: def check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): A_ : Optional[int] = model_class(_lowerCamelCase ) A_ : List[Any] = model(**self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) , training=_lowerCamelCase ) A_ : List[str] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states A_ : Optional[int] = self.model_tester.num_stages self.assertEqual(len(_lowerCamelCase ) , expected_num_stages + 1 ) # RegNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 2, self.model_tester.image_size // 2] , ) A_ , A_ : Any = self.model_tester.prepare_config_and_inputs_for_common() A_ : List[str] = ["""basic""", """bottleneck"""] for model_class in self.all_model_classes: for layer_type in layers_type: A_ : Dict = layer_type A_ : List[Any] = True check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] A_ : str = True check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Dict: A_ , A_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() def check_equivalence(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase={} ): A_ : Dict = model(_lowerCamelCase , return_dict=_lowerCamelCase , **_lowerCamelCase ) A_ : Optional[Any] = model(_lowerCamelCase , return_dict=_lowerCamelCase , **_lowerCamelCase ).to_tuple() def recursive_check(_lowerCamelCase , _lowerCamelCase ): if isinstance(_lowerCamelCase , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(_lowerCamelCase , _lowerCamelCase ): recursive_check(_lowerCamelCase , _lowerCamelCase ) elif tuple_object is None: return else: self.assertTrue( all(tf.equal(_lowerCamelCase , _lowerCamelCase ) ) , msg=( """Tuple and dict output are not equal. Difference:""" F" {tf.math.reduce_max(tf.abs(tuple_object - dict_object ) )}" ) , ) recursive_check(_lowerCamelCase , _lowerCamelCase ) for model_class in self.all_model_classes: A_ : Optional[Any] = model_class(_lowerCamelCase ) A_ : Optional[Any] = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) A_ : Optional[int] = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) check_equivalence(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) A_ : Any = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase ) A_ : Tuple = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase ) check_equivalence(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) A_ : Dict = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) A_ : int = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) check_equivalence(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , {"""output_hidden_states""": True} ) A_ : Tuple = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase ) A_ : str = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase ) check_equivalence(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , {"""output_hidden_states""": True} ) def UpperCAmelCase_ ( self ) -> str: A_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCamelCase ) @slow def UpperCAmelCase_ ( self ) -> Tuple: for model_name in TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ : Dict = TFRegNetModel.from_pretrained(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) def UpperCAmelCase ( ) -> Tuple: """simple docstring""" A_ : Optional[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def UpperCAmelCase_ ( self ) -> int: return ( AutoImageProcessor.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def UpperCAmelCase_ ( self ) -> Optional[Any]: A_ : str = TFRegNetForImageClassification.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) A_ : Tuple = self.default_image_processor A_ : Optional[int] = prepare_img() A_ : Any = image_processor(images=_lowerCamelCase , return_tensors="""tf""" ) # forward pass A_ : List[Any] = model(**_lowerCamelCase , training=_lowerCamelCase ) # verify the logits A_ : Optional[Any] = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , _lowerCamelCase ) A_ : Optional[Any] = tf.constant([-0.4180, -1.5051, -3.4836] ) tf.debugging.assert_near(outputs.logits[0, :3] , _lowerCamelCase , atol=1e-4 )
344
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) __A ={ '''configuration_funnel''': ['''FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''FunnelConfig'''], '''convert_funnel_original_tf_checkpoint_to_pytorch''': [], '''tokenization_funnel''': ['''FunnelTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A =['''FunnelTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A =[ '''FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FunnelBaseModel''', '''FunnelForMaskedLM''', '''FunnelForMultipleChoice''', '''FunnelForPreTraining''', '''FunnelForQuestionAnswering''', '''FunnelForSequenceClassification''', '''FunnelForTokenClassification''', '''FunnelModel''', '''FunnelPreTrainedModel''', '''load_tf_weights_in_funnel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A =[ '''TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFFunnelBaseModel''', '''TFFunnelForMaskedLM''', '''TFFunnelForMultipleChoice''', '''TFFunnelForPreTraining''', '''TFFunnelForQuestionAnswering''', '''TFFunnelForSequenceClassification''', '''TFFunnelForTokenClassification''', '''TFFunnelModel''', '''TFFunnelPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_funnel import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP, FunnelConfig from .tokenization_funnel import FunnelTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_funnel_fast import FunnelTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_funnel import ( FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, FunnelBaseModel, FunnelForMaskedLM, FunnelForMultipleChoice, FunnelForPreTraining, FunnelForQuestionAnswering, FunnelForSequenceClassification, FunnelForTokenClassification, FunnelModel, FunnelPreTrainedModel, load_tf_weights_in_funnel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_funnel import ( TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, TFFunnelPreTrainedModel, ) else: import sys __A =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
47
import json import os import shutil import warnings from argparse import ArgumentParser, Namespace from pathlib import Path from typing import List from ..utils import logging from . import BaseTransformersCLICommand try: from cookiecutter.main import cookiecutter __A =True except ImportError: __A =False __A =logging.get_logger(__name__) # pylint: disable=invalid-name def lowerCamelCase_ ( lowerCamelCase__ ): return AddNewModelCommand(args.testing , args.testing_file , path=args.path ) class _SCREAMING_SNAKE_CASE ( snake_case_ ): @staticmethod def SCREAMING_SNAKE_CASE_( lowercase ) -> int: lowerCamelCase_ = parser.add_parser("add-new-model" ) add_new_model_parser.add_argument("--testing" , action="store_true" , help="If in testing mode." ) add_new_model_parser.add_argument("--testing_file" , type=lowercase , help="Configuration file on which to run." ) add_new_model_parser.add_argument( "--path" , type=lowercase , help="Path to cookiecutter. Should only be used for testing purposes." ) add_new_model_parser.set_defaults(func=lowercase ) def __init__( self , lowercase , lowercase , lowercase=None , *lowercase ) -> List[str]: lowerCamelCase_ = testing lowerCamelCase_ = testing_file lowerCamelCase_ = path def SCREAMING_SNAKE_CASE_( self ) -> str: warnings.warn( "The command `transformers-cli add-new-model` is deprecated and will be removed in v5 of Transformers. " "It is not actively maintained anymore, so might give a result that won't pass all tests and quality " "checks, you should use `transformers-cli add-new-model-like` instead." ) if not _has_cookiecutter: raise ImportError( "Model creation dependencies are required to use the `add_new_model` command. Install them by running " "the following at the root of your `transformers` clone:\n\n\t$ pip install -e .[modelcreation]\n" ) # Ensure that there is no other `cookiecutter-template-xxx` directory in the current working directory lowerCamelCase_ = [directory for directory in os.listdir() if "cookiecutter-template-" == directory[:22]] if len(lowercase ) > 0: raise ValueError( "Several directories starting with `cookiecutter-template-` in current working directory. " "Please clean your directory by removing all folders starting with `cookiecutter-template-` or " "change your working directory." ) lowerCamelCase_ = ( Path(lowercase ).parent.parent.parent.parent if self._path is None else Path(self._path ).parent.parent ) lowerCamelCase_ = path_to_transformer_root / "templates" / "adding_a_new_model" # Execute cookiecutter if not self._testing: cookiecutter(str(lowercase ) ) else: with open(self._testing_file , "r" ) as configuration_file: lowerCamelCase_ = json.load(lowercase ) cookiecutter( str(path_to_cookiecutter if self._path is None else self._path ) , no_input=lowercase , extra_context=lowercase , ) lowerCamelCase_ = [directory for directory in os.listdir() if "cookiecutter-template-" in directory[:22]][0] # Retrieve configuration with open(directory + "/configuration.json" , "r" ) as configuration_file: lowerCamelCase_ = json.load(lowercase ) lowerCamelCase_ = configuration["lowercase_modelname"] lowerCamelCase_ = configuration["generate_tensorflow_pytorch_and_flax"] os.remove(f'{directory}/configuration.json' ) lowerCamelCase_ = "PyTorch" in generate_tensorflow_pytorch_and_flax lowerCamelCase_ = "TensorFlow" in generate_tensorflow_pytorch_and_flax lowerCamelCase_ = "Flax" in generate_tensorflow_pytorch_and_flax lowerCamelCase_ = f'{path_to_transformer_root}/src/transformers/models/{lowercase_model_name}' os.makedirs(lowercase , exist_ok=lowercase ) os.makedirs(f'{path_to_transformer_root}/tests/models/{lowercase_model_name}' , exist_ok=lowercase ) # Tests require submodules as they have parent imports with open(f'{path_to_transformer_root}/tests/models/{lowercase_model_name}/__init__.py' , "w" ): pass shutil.move( f'{directory}/__init__.py' , f'{model_dir}/__init__.py' , ) shutil.move( f'{directory}/configuration_{lowercase_model_name}.py' , f'{model_dir}/configuration_{lowercase_model_name}.py' , ) def remove_copy_lines(lowercase ): with open(lowercase , "r" ) as f: lowerCamelCase_ = f.readlines() with open(lowercase , "w" ) as f: for line in lines: if "# Copied from transformers." not in line: f.write(lowercase ) if output_pytorch: if not self._testing: remove_copy_lines(f'{directory}/modeling_{lowercase_model_name}.py' ) shutil.move( f'{directory}/modeling_{lowercase_model_name}.py' , f'{model_dir}/modeling_{lowercase_model_name}.py' , ) shutil.move( f'{directory}/test_modeling_{lowercase_model_name}.py' , f'{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_{lowercase_model_name}.py' , ) else: os.remove(f'{directory}/modeling_{lowercase_model_name}.py' ) os.remove(f'{directory}/test_modeling_{lowercase_model_name}.py' ) if output_tensorflow: if not self._testing: remove_copy_lines(f'{directory}/modeling_tf_{lowercase_model_name}.py' ) shutil.move( f'{directory}/modeling_tf_{lowercase_model_name}.py' , f'{model_dir}/modeling_tf_{lowercase_model_name}.py' , ) shutil.move( f'{directory}/test_modeling_tf_{lowercase_model_name}.py' , f'{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_tf_{lowercase_model_name}.py' , ) else: os.remove(f'{directory}/modeling_tf_{lowercase_model_name}.py' ) os.remove(f'{directory}/test_modeling_tf_{lowercase_model_name}.py' ) if output_flax: if not self._testing: remove_copy_lines(f'{directory}/modeling_flax_{lowercase_model_name}.py' ) shutil.move( f'{directory}/modeling_flax_{lowercase_model_name}.py' , f'{model_dir}/modeling_flax_{lowercase_model_name}.py' , ) shutil.move( f'{directory}/test_modeling_flax_{lowercase_model_name}.py' , f'{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_flax_{lowercase_model_name}.py' , ) else: os.remove(f'{directory}/modeling_flax_{lowercase_model_name}.py' ) os.remove(f'{directory}/test_modeling_flax_{lowercase_model_name}.py' ) shutil.move( f'{directory}/{lowercase_model_name}.md' , f'{path_to_transformer_root}/docs/source/en/model_doc/{lowercase_model_name}.md' , ) shutil.move( f'{directory}/tokenization_{lowercase_model_name}.py' , f'{model_dir}/tokenization_{lowercase_model_name}.py' , ) shutil.move( f'{directory}/tokenization_fast_{lowercase_model_name}.py' , f'{model_dir}/tokenization_{lowercase_model_name}_fast.py' , ) from os import fdopen, remove from shutil import copymode, move from tempfile import mkstemp def replace(lowercase , lowercase , lowercase ): # Create temp file lowerCamelCase_ , lowerCamelCase_ = mkstemp() lowerCamelCase_ = False with fdopen(lowercase , "w" ) as new_file: with open(lowercase ) as old_file: for line in old_file: new_file.write(lowercase ) if line_to_copy_below in line: lowerCamelCase_ = True for line_to_copy in lines_to_copy: new_file.write(lowercase ) if not line_found: raise ValueError(f'Line {line_to_copy_below} was not found in file.' ) # Copy the file permissions from the old file to the new file copymode(lowercase , lowercase ) # Remove original file remove(lowercase ) # Move new file move(lowercase , lowercase ) def skip_units(lowercase ): return ( ("generating PyTorch" in line and not output_pytorch) or ("generating TensorFlow" in line and not output_tensorflow) or ("generating Flax" in line and not output_flax) ) def replace_in_files(lowercase ): with open(lowercase ) as datafile: lowerCamelCase_ = [] lowerCamelCase_ = False lowerCamelCase_ = False for line in datafile: if "# To replace in: " in line and "##" not in line: lowerCamelCase_ = line.split("\"" )[1] lowerCamelCase_ = skip_units(lowercase ) elif "# Below: " in line and "##" not in line: lowerCamelCase_ = line.split("\"" )[1] lowerCamelCase_ = skip_units(lowercase ) elif "# End." in line and "##" not in line: if not skip_file and not skip_snippet: replace(lowercase , lowercase , lowercase ) lowerCamelCase_ = [] elif "# Replace with" in line and "##" not in line: lowerCamelCase_ = [] elif "##" not in line: lines_to_copy.append(lowercase ) remove(lowercase ) replace_in_files(f'{directory}/to_replace_{lowercase_model_name}.py' ) os.rmdir(lowercase )
47
1
"""simple docstring""" import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetrImageProcessor class _lowerCAmelCase ( unittest.TestCase ): def __init__( self , UpperCamelCase__ , UpperCamelCase__=7 , UpperCamelCase__=3 , UpperCamelCase__=30 , UpperCamelCase__=400 , UpperCamelCase__=True , UpperCamelCase__=None , UpperCamelCase__=True , UpperCamelCase__=1 / 255 , UpperCamelCase__=True , UpperCamelCase__=[0.5, 0.5, 0.5] , UpperCamelCase__=[0.5, 0.5, 0.5] , UpperCamelCase__=True , ) -> str: '''simple docstring''' snake_case : int = size if size is not None else {"shortest_edge": 18, "longest_edge": 1333} snake_case : Optional[int] = parent snake_case : int = batch_size snake_case : Union[str, Any] = num_channels snake_case : str = min_resolution snake_case : str = max_resolution snake_case : Tuple = do_resize snake_case : Optional[int] = size snake_case : Any = do_rescale snake_case : List[str] = rescale_factor snake_case : Tuple = do_normalize snake_case : Any = image_mean snake_case : str = image_std snake_case : str = do_pad def lowerCamelCase ( self ) -> str: '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_pad": self.do_pad, } def lowerCamelCase ( self , UpperCamelCase__ , UpperCamelCase__=False ) -> Any: '''simple docstring''' if not batched: snake_case : Optional[Any] = image_inputs[0] if isinstance(UpperCamelCase__ , Image.Image ): snake_case ,snake_case : Any = image.size else: snake_case ,snake_case : Tuple = image.shape[1], image.shape[2] if w < h: snake_case : Union[str, Any] = int(self.size["shortest_edge"] * h / w ) snake_case : Optional[int] = self.size["shortest_edge"] elif w > h: snake_case : str = self.size["shortest_edge"] snake_case : Any = int(self.size["shortest_edge"] * w / h ) else: snake_case : Any = self.size["shortest_edge"] snake_case : Dict = self.size["shortest_edge"] else: snake_case : Dict = [] for image in image_inputs: snake_case ,snake_case : Any = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) snake_case : int = max(UpperCamelCase__ , key=lambda UpperCamelCase__ : item[0] )[0] snake_case : Optional[Any] = max(UpperCamelCase__ , key=lambda UpperCamelCase__ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class _lowerCAmelCase ( snake_case_ , unittest.TestCase ): __UpperCAmelCase : str = DetrImageProcessor if is_vision_available() else None def lowerCamelCase ( self ) -> Optional[Any]: '''simple docstring''' snake_case : Any = DetrImageProcessingTester(self ) @property def lowerCamelCase ( self ) -> Optional[Any]: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def lowerCamelCase ( self ) -> str: '''simple docstring''' snake_case : str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCamelCase__ , "image_mean" ) ) self.assertTrue(hasattr(UpperCamelCase__ , "image_std" ) ) self.assertTrue(hasattr(UpperCamelCase__ , "do_normalize" ) ) self.assertTrue(hasattr(UpperCamelCase__ , "do_rescale" ) ) self.assertTrue(hasattr(UpperCamelCase__ , "rescale_factor" ) ) self.assertTrue(hasattr(UpperCamelCase__ , "do_resize" ) ) self.assertTrue(hasattr(UpperCamelCase__ , "size" ) ) self.assertTrue(hasattr(UpperCamelCase__ , "do_pad" ) ) def lowerCamelCase ( self ) -> Union[str, Any]: '''simple docstring''' snake_case : int = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 18, "longest_edge": 1333} ) self.assertEqual(image_processor.do_pad , UpperCamelCase__ ) snake_case : List[str] = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=UpperCamelCase__ ) self.assertEqual(image_processor.size , {"shortest_edge": 42, "longest_edge": 84} ) self.assertEqual(image_processor.do_pad , UpperCamelCase__ ) def lowerCamelCase ( self ) -> Optional[Any]: '''simple docstring''' pass def lowerCamelCase ( self ) -> Optional[Any]: '''simple docstring''' snake_case : str = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase__ , Image.Image ) # Test not batched input snake_case : Union[str, Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values snake_case ,snake_case : str = self.image_processor_tester.get_expected_values(UpperCamelCase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case ,snake_case : str = self.image_processor_tester.get_expected_values(UpperCamelCase__ , batched=UpperCamelCase__ ) snake_case : Optional[int] = image_processing(UpperCamelCase__ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCamelCase ( self ) -> Optional[Any]: '''simple docstring''' snake_case : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase__ , numpify=UpperCamelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase__ , np.ndarray ) # Test not batched input snake_case : str = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values snake_case ,snake_case : List[str] = self.image_processor_tester.get_expected_values(UpperCamelCase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case : Tuple = image_processing(UpperCamelCase__ , return_tensors="pt" ).pixel_values snake_case ,snake_case : Any = self.image_processor_tester.get_expected_values(UpperCamelCase__ , batched=UpperCamelCase__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCamelCase ( self ) -> Union[str, Any]: '''simple docstring''' snake_case : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase__ , torchify=UpperCamelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase__ , torch.Tensor ) # Test not batched input snake_case : int = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values snake_case ,snake_case : Dict = self.image_processor_tester.get_expected_values(UpperCamelCase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case : Dict = image_processing(UpperCamelCase__ , return_tensors="pt" ).pixel_values snake_case ,snake_case : List[Any] = self.image_processor_tester.get_expected_values(UpperCamelCase__ , batched=UpperCamelCase__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def lowerCamelCase ( self ) -> Any: '''simple docstring''' snake_case : Optional[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt" , "r" ) as f: snake_case : Union[str, Any] = json.loads(f.read() ) snake_case : List[Any] = {"image_id": 3_9769, "annotations": target} # encode them snake_case : Optional[int] = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50" ) snake_case : Union[str, Any] = image_processing(images=UpperCamelCase__ , annotations=UpperCamelCase__ , return_tensors="pt" ) # verify pixel values snake_case : Any = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["pixel_values"].shape , UpperCamelCase__ ) snake_case : Union[str, Any] = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , UpperCamelCase__ , atol=1e-4 ) ) # verify area snake_case : int = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , UpperCamelCase__ ) ) # verify boxes snake_case : Union[str, Any] = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , UpperCamelCase__ ) snake_case : Union[str, Any] = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , UpperCamelCase__ , atol=1e-3 ) ) # verify image_id snake_case : int = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , UpperCamelCase__ ) ) # verify is_crowd snake_case : List[str] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , UpperCamelCase__ ) ) # verify class_labels snake_case : Optional[Any] = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , UpperCamelCase__ ) ) # verify orig_size snake_case : Tuple = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , UpperCamelCase__ ) ) # verify size snake_case : str = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , UpperCamelCase__ ) ) @slow def lowerCamelCase ( self ) -> Union[str, Any]: '''simple docstring''' snake_case : List[str] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt" , "r" ) as f: snake_case : Tuple = json.loads(f.read() ) snake_case : Union[str, Any] = {"file_name": "000000039769.png", "image_id": 3_9769, "segments_info": target} snake_case : str = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic" ) # encode them snake_case : Any = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50-panoptic" ) snake_case : str = image_processing(images=UpperCamelCase__ , annotations=UpperCamelCase__ , masks_path=UpperCamelCase__ , return_tensors="pt" ) # verify pixel values snake_case : Any = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["pixel_values"].shape , UpperCamelCase__ ) snake_case : Optional[Any] = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , UpperCamelCase__ , atol=1e-4 ) ) # verify area snake_case : List[Any] = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , UpperCamelCase__ ) ) # verify boxes snake_case : List[Any] = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , UpperCamelCase__ ) snake_case : Optional[int] = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , UpperCamelCase__ , atol=1e-3 ) ) # verify image_id snake_case : Tuple = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , UpperCamelCase__ ) ) # verify is_crowd snake_case : Tuple = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , UpperCamelCase__ ) ) # verify class_labels snake_case : Optional[int] = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , UpperCamelCase__ ) ) # verify masks snake_case : Optional[int] = 82_2873 self.assertEqual(encoding["labels"][0]["masks"].sum().item() , UpperCamelCase__ ) # verify orig_size snake_case : Optional[Any] = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , UpperCamelCase__ ) ) # verify size snake_case : Dict = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , UpperCamelCase__ ) )
203
"""simple docstring""" def __lowerCAmelCase ( ) -> Union[str, Any]: """simple docstring""" snake_case : Dict = [] snake_case : List[Any] = 1 while len(lowercase ) < 1e6: constant.append(str(lowercase ) ) i += 1 snake_case : Tuple = "".join(lowercase ) return ( int(constant[0] ) * int(constant[9] ) * int(constant[99] ) * int(constant[999] ) * int(constant[9999] ) * int(constant[9_9999] ) * int(constant[99_9999] ) ) if __name__ == "__main__": print(solution())
203
1
"""simple docstring""" import copy from typing import TYPE_CHECKING, Any, Mapping, Optional, OrderedDict from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto.configuration_auto import AutoConfig if TYPE_CHECKING: from ... import PreTrainedTokenizerBase, TensorType _UpperCamelCase: Any = logging.get_logger(__name__) class a__ ( SCREAMING_SNAKE_CASE__ ): _lowerCamelCase = 'vision-encoder-decoder' _lowerCamelCase = True def __init__( self : Optional[Any], **lowerCAmelCase : Dict ) -> Tuple: super().__init__(**lowerCAmelCase ) if "encoder" not in kwargs or "decoder" not in kwargs: raise ValueError( f'''A configuraton of type {self.model_type} cannot be instantiated because ''' f'''not both `encoder` and `decoder` sub-configurations are passed, but only {kwargs}''' ) lowercase : List[Any] = kwargs.pop('encoder' ) lowercase : List[str] = encoder_config.pop('model_type' ) lowercase : List[str] = kwargs.pop('decoder' ) lowercase : Optional[int] = decoder_config.pop('model_type' ) lowercase : List[Any] = AutoConfig.for_model(lowerCAmelCase, **lowerCAmelCase ) lowercase : str = AutoConfig.for_model(lowerCAmelCase, **lowerCAmelCase ) lowercase : Optional[Any] = True @classmethod def lowercase ( cls : int, lowerCAmelCase : PretrainedConfig, lowerCAmelCase : PretrainedConfig, **lowerCAmelCase : Dict ) -> PretrainedConfig: logger.info('Setting `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config' ) lowercase : Union[str, Any] = True lowercase : Optional[int] = True return cls(encoder=encoder_config.to_dict(), decoder=decoder_config.to_dict(), **lowerCAmelCase ) def lowercase ( self : Union[str, Any] ) -> str: lowercase : Optional[Any] = copy.deepcopy(self.__dict__ ) lowercase : int = self.encoder.to_dict() lowercase : Any = self.decoder.to_dict() lowercase : Union[str, Any] = self.__class__.model_type return output class a__ ( SCREAMING_SNAKE_CASE__ ): _lowerCamelCase = version.parse('1.11' ) @property def lowercase ( self : int ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def lowercase ( self : List[Any] ) -> float: return 1e-4 @property def lowercase ( self : Optional[Any] ) -> Mapping[str, Mapping[int, str]]: return OrderedDict({'last_hidden_state': {0: 'batch', 1: 'encoder_sequence'}} ) class a__ ( SCREAMING_SNAKE_CASE__ ): @property def lowercase ( self : Optional[Any] ) -> Mapping[str, Mapping[int, str]]: lowercase : Optional[int] = OrderedDict() lowercase : Tuple = {0: 'batch', 1: 'past_decoder_sequence + sequence'} lowercase : Dict = {0: 'batch', 1: 'past_decoder_sequence + sequence'} lowercase : Any = {0: 'batch', 1: 'encoder_sequence'} return common_inputs def lowercase ( self : int, lowerCAmelCase : "PreTrainedTokenizerBase", lowerCAmelCase : int = -1, lowerCAmelCase : int = -1, lowerCAmelCase : bool = False, lowerCAmelCase : Optional["TensorType"] = None, ) -> Mapping[str, Any]: import torch lowercase : Optional[int] = OrderedDict() lowercase : List[str] = super().generate_dummy_inputs( lowerCAmelCase, batch_size=lowerCAmelCase, seq_length=lowerCAmelCase, is_pair=lowerCAmelCase, framework=lowerCAmelCase ) lowercase , lowercase : Optional[Any] = dummy_input['input_ids'].shape lowercase : Optional[int] = (batch, encoder_sequence, self._config.encoder_hidden_size) lowercase : Any = dummy_input.pop('input_ids' ) lowercase : List[str] = dummy_input.pop('attention_mask' ) lowercase : Any = torch.zeros(lowerCAmelCase ) return common_inputs class a__ ( SCREAMING_SNAKE_CASE__ ): @property def lowercase ( self : Optional[Any] ) -> None: pass def lowercase ( self : Any, lowerCAmelCase : PretrainedConfig ) -> OnnxConfig: return VisionEncoderDecoderEncoderOnnxConfig(lowerCAmelCase ) def lowercase ( self : List[str], lowerCAmelCase : PretrainedConfig, lowerCAmelCase : PretrainedConfig, lowerCAmelCase : str = "default" ) -> OnnxConfig: lowercase : Tuple = encoder_config.hidden_size return VisionEncoderDecoderDecoderOnnxConfig(lowerCAmelCase, lowerCAmelCase )
53
"""simple docstring""" from collections.abc import Sequence def lowercase__ ( _UpperCAmelCase , _UpperCAmelCase = False ) -> float: '''simple docstring''' if not arr: return 0 lowercase : List[str] = 0 if allow_empty_subarrays else float('-inf' ) lowercase : Dict = 0.0 for num in arr: lowercase : List[str] = max(0 if allow_empty_subarrays else num , curr_sum + num ) lowercase : List[Any] = max(_UpperCAmelCase , _UpperCAmelCase ) return max_sum if __name__ == "__main__": from doctest import testmod testmod() _UpperCamelCase: Any = [-2, 1, -3, 4, -1, 2, 1, -5, 4] print(f'''{max_subarray_sum(nums) = }''')
53
1
"""simple docstring""" import os import torch from ..logging import get_logger from .constants import FSDP_PYTORCH_VERSION, MODEL_NAME, OPTIMIZER_NAME from .versions import is_torch_version if is_torch_version('>=', FSDP_PYTORCH_VERSION): import torch.distributed.checkpoint as dist_cp from torch.distributed.checkpoint.default_planner import DefaultLoadPlanner, DefaultSavePlanner from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType UpperCAmelCase : List[Any] = get_logger(__name__) def lowerCamelCase ( _UpperCamelCase : Dict , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : List[Any] , _UpperCamelCase : List[str] , _UpperCamelCase : Union[str, Any]=0 ) -> List[Any]: '''simple docstring''' os.makedirs(_A , exist_ok=_A ) with FSDP.state_dict_type( _A , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): __UpperCAmelCase : Tuple = model.state_dict() if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: __UpperCAmelCase : List[str] = f'''{MODEL_NAME}.bin''' if model_index == 0 else f'''{MODEL_NAME}_{model_index}.bin''' __UpperCAmelCase : Optional[Any] = os.path.join(_A , _A ) if accelerator.process_index == 0: logger.info(f'''Saving model to {output_model_file}''' ) torch.save(_A , _A ) logger.info(f'''Model saved to {output_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: __UpperCAmelCase : Dict = ( f'''{MODEL_NAME}_rank{accelerator.process_index}.bin''' if model_index == 0 else f'''{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin''' ) __UpperCAmelCase : Any = os.path.join(_A , _A ) logger.info(f'''Saving model to {output_model_file}''' ) torch.save(_A , _A ) logger.info(f'''Model saved to {output_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: __UpperCAmelCase : Optional[Any] = os.path.join(_A , f'''{MODEL_NAME}_{model_index}''' ) os.makedirs(_A , exist_ok=_A ) logger.info(f'''Saving model to {ckpt_dir}''' ) __UpperCAmelCase : List[Any] = {"""model""": state_dict} dist_cp.save_state_dict( state_dict=_A , storage_writer=dist_cp.FileSystemWriter(_A ) , planner=DefaultSavePlanner() , ) logger.info(f'''Model saved to {ckpt_dir}''' ) def lowerCamelCase ( _UpperCamelCase : Optional[Any] , _UpperCamelCase : str , _UpperCamelCase : Optional[Any] , _UpperCamelCase : str , _UpperCamelCase : Tuple=0 ) -> int: '''simple docstring''' accelerator.wait_for_everyone() with FSDP.state_dict_type( _A , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if type(_A ) != FSDP and accelerator.process_index != 0: if not fsdp_plugin.sync_module_states: raise ValueError( """Set the `sync_module_states` flag to `True` so that model states are synced across processes when """ """initializing FSDP object""" ) return __UpperCAmelCase : List[str] = f'''{MODEL_NAME}.bin''' if model_index == 0 else f'''{MODEL_NAME}_{model_index}.bin''' __UpperCAmelCase : int = os.path.join(_A , _A ) logger.info(f'''Loading model from {input_model_file}''' ) __UpperCAmelCase : Dict = torch.load(_A ) logger.info(f'''Model loaded from {input_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: __UpperCAmelCase : Tuple = ( f'''{MODEL_NAME}_rank{accelerator.process_index}.bin''' if model_index == 0 else f'''{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin''' ) __UpperCAmelCase : Tuple = os.path.join(_A , _A ) logger.info(f'''Loading model from {input_model_file}''' ) __UpperCAmelCase : int = torch.load(_A ) logger.info(f'''Model loaded from {input_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: __UpperCAmelCase : Tuple = ( os.path.join(_A , f'''{MODEL_NAME}_{model_index}''' ) if f'''{MODEL_NAME}''' not in input_dir else input_dir ) logger.info(f'''Loading model from {ckpt_dir}''' ) __UpperCAmelCase : Any = {"""model""": model.state_dict()} dist_cp.load_state_dict( state_dict=_A , storage_reader=dist_cp.FileSystemReader(_A ) , planner=DefaultLoadPlanner() , ) __UpperCAmelCase : Optional[Any] = state_dict["""model"""] logger.info(f'''Model loaded from {ckpt_dir}''' ) model.load_state_dict(_A ) def lowerCamelCase ( _UpperCamelCase : Any , _UpperCamelCase : Tuple , _UpperCamelCase : List[str] , _UpperCamelCase : int , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : List[Any]=0 ) -> Any: '''simple docstring''' os.makedirs(_A , exist_ok=_A ) with FSDP.state_dict_type( _A , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): __UpperCAmelCase : Optional[int] = FSDP.optim_state_dict(_A , _A ) if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if accelerator.process_index == 0: __UpperCAmelCase : Union[str, Any] = ( f'''{OPTIMIZER_NAME}.bin''' if optimizer_index == 0 else f'''{OPTIMIZER_NAME}_{optimizer_index}.bin''' ) __UpperCAmelCase : int = os.path.join(_A , _A ) logger.info(f'''Saving Optimizer state to {output_optimizer_file}''' ) torch.save(_A , _A ) logger.info(f'''Optimizer state saved in {output_optimizer_file}''' ) else: __UpperCAmelCase : List[Any] = os.path.join(_A , f'''{OPTIMIZER_NAME}_{optimizer_index}''' ) os.makedirs(_A , exist_ok=_A ) logger.info(f'''Saving Optimizer state to {ckpt_dir}''' ) dist_cp.save_state_dict( state_dict={"""optimizer""": optim_state} , storage_writer=dist_cp.FileSystemWriter(_A ) , planner=DefaultSavePlanner() , ) logger.info(f'''Optimizer state saved in {ckpt_dir}''' ) def lowerCamelCase ( _UpperCamelCase : str , _UpperCamelCase : str , _UpperCamelCase : Dict , _UpperCamelCase : int , _UpperCamelCase : str , _UpperCamelCase : int=0 ) -> int: '''simple docstring''' accelerator.wait_for_everyone() with FSDP.state_dict_type( _A , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: __UpperCAmelCase : Optional[Any] = None # below check should work but currently it isn't working (mostly opytorch issue), # in the meantime disabling it at the cost of excess memory usage # if accelerator.process_index == 0 or not fsdp_plugin.optim_state_dict_config.rank0_only: __UpperCAmelCase : Optional[Any] = ( f'''{OPTIMIZER_NAME}.bin''' if optimizer_index == 0 else f'''{OPTIMIZER_NAME}_{optimizer_index}.bin''' ) __UpperCAmelCase : Dict = os.path.join(_A , _A ) logger.info(f'''Loading Optimizer state from {input_optimizer_file}''' ) __UpperCAmelCase : List[Any] = torch.load(_A ) logger.info(f'''Optimizer state loaded from {input_optimizer_file}''' ) else: __UpperCAmelCase : Optional[Any] = ( os.path.join(_A , f'''{OPTIMIZER_NAME}_{optimizer_index}''' ) if f'''{OPTIMIZER_NAME}''' not in input_dir else input_dir ) logger.info(f'''Loading Optimizer from {ckpt_dir}''' ) __UpperCAmelCase : Union[str, Any] = load_sharded_optimizer_state_dict( model_state_dict=model.state_dict() , optimizer_key="""optimizer""" , storage_reader=dist_cp.FileSystemReader(_A ) , ) __UpperCAmelCase : Union[str, Any] = optim_state["""optimizer"""] logger.info(f'''Optimizer loaded from {ckpt_dir}''' ) __UpperCAmelCase : List[str] = FSDP.optim_state_dict_to_load(_A , _A , _A ) optimizer.load_state_dict(_A )
115
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import YolosImageProcessor class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def __init__( self : Optional[Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Union[str, Any]=7 , __lowerCamelCase : Any=3 , __lowerCamelCase : Any=30 , __lowerCamelCase : str=400 , __lowerCamelCase : Optional[int]=True , __lowerCamelCase : Dict=None , __lowerCamelCase : Union[str, Any]=True , __lowerCamelCase : Optional[int]=[0.5, 0.5, 0.5] , __lowerCamelCase : Tuple=[0.5, 0.5, 0.5] , __lowerCamelCase : Union[str, Any]=True , __lowerCamelCase : List[Any]=1 / 255 , __lowerCamelCase : Dict=True , ) -> List[Any]: # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p SCREAMING_SNAKE_CASE__ = size if size is not None else {'''shortest_edge''': 18, '''longest_edge''': 1333} SCREAMING_SNAKE_CASE__ = parent SCREAMING_SNAKE_CASE__ = batch_size SCREAMING_SNAKE_CASE__ = num_channels SCREAMING_SNAKE_CASE__ = min_resolution SCREAMING_SNAKE_CASE__ = max_resolution SCREAMING_SNAKE_CASE__ = do_resize SCREAMING_SNAKE_CASE__ = size SCREAMING_SNAKE_CASE__ = do_normalize SCREAMING_SNAKE_CASE__ = image_mean SCREAMING_SNAKE_CASE__ = image_std SCREAMING_SNAKE_CASE__ = do_rescale SCREAMING_SNAKE_CASE__ = rescale_factor SCREAMING_SNAKE_CASE__ = do_pad def lowercase_ ( self : Tuple ) -> Tuple: return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def lowercase_ ( self : Optional[int] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : int=False ) -> Optional[int]: if not batched: SCREAMING_SNAKE_CASE__ = image_inputs[0] if isinstance(__lowerCamelCase , Image.Image ): SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = image.size else: SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = image.shape[1], image.shape[2] if w < h: SCREAMING_SNAKE_CASE__ = int(self.size['''shortest_edge'''] * h / w ) SCREAMING_SNAKE_CASE__ = self.size['''shortest_edge'''] elif w > h: SCREAMING_SNAKE_CASE__ = self.size['''shortest_edge'''] SCREAMING_SNAKE_CASE__ = int(self.size['''shortest_edge'''] * w / h ) else: SCREAMING_SNAKE_CASE__ = self.size['''shortest_edge'''] SCREAMING_SNAKE_CASE__ = self.size['''shortest_edge'''] else: SCREAMING_SNAKE_CASE__ = [] for image in image_inputs: SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) SCREAMING_SNAKE_CASE__ = max(__lowerCamelCase , key=lambda __lowerCamelCase : item[0] )[0] SCREAMING_SNAKE_CASE__ = max(__lowerCamelCase , key=lambda __lowerCamelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class UpperCAmelCase__ ( A__ , unittest.TestCase ): """simple docstring""" a = YolosImageProcessor if is_vision_available() else None def lowercase_ ( self : Any ) -> int: SCREAMING_SNAKE_CASE__ = YolosImageProcessingTester(self ) @property def lowercase_ ( self : Tuple ) -> str: return self.image_processor_tester.prepare_image_processor_dict() def lowercase_ ( self : List[str] ) -> str: SCREAMING_SNAKE_CASE__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__lowerCamelCase , '''image_mean''' ) ) self.assertTrue(hasattr(__lowerCamelCase , '''image_std''' ) ) self.assertTrue(hasattr(__lowerCamelCase , '''do_normalize''' ) ) self.assertTrue(hasattr(__lowerCamelCase , '''do_resize''' ) ) self.assertTrue(hasattr(__lowerCamelCase , '''size''' ) ) def lowercase_ ( self : Optional[Any] ) -> Tuple: SCREAMING_SNAKE_CASE__ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18, '''longest_edge''': 1333} ) self.assertEqual(image_processor.do_pad , __lowerCamelCase ) SCREAMING_SNAKE_CASE__ = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=__lowerCamelCase ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42, '''longest_edge''': 84} ) self.assertEqual(image_processor.do_pad , __lowerCamelCase ) def lowercase_ ( self : Tuple ) -> Optional[int]: pass def lowercase_ ( self : int ) -> Dict: # Initialize image_processing SCREAMING_SNAKE_CASE__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images SCREAMING_SNAKE_CASE__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , Image.Image ) # Test not batched input SCREAMING_SNAKE_CASE__ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = self.image_processor_tester.get_expected_values(__lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = self.image_processor_tester.get_expected_values(__lowerCamelCase , batched=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = image_processing(__lowerCamelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowercase_ ( self : Tuple ) -> str: # Initialize image_processing SCREAMING_SNAKE_CASE__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors SCREAMING_SNAKE_CASE__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase , numpify=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , np.ndarray ) # Test not batched input SCREAMING_SNAKE_CASE__ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = self.image_processor_tester.get_expected_values(__lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched SCREAMING_SNAKE_CASE__ = image_processing(__lowerCamelCase , return_tensors='''pt''' ).pixel_values SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = self.image_processor_tester.get_expected_values(__lowerCamelCase , batched=__lowerCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowercase_ ( self : Dict ) -> Dict: # Initialize image_processing SCREAMING_SNAKE_CASE__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors SCREAMING_SNAKE_CASE__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase , torchify=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , torch.Tensor ) # Test not batched input SCREAMING_SNAKE_CASE__ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = self.image_processor_tester.get_expected_values(__lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched SCREAMING_SNAKE_CASE__ = image_processing(__lowerCamelCase , return_tensors='''pt''' ).pixel_values SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = self.image_processor_tester.get_expected_values(__lowerCamelCase , batched=__lowerCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowercase_ ( self : List[str] ) -> Optional[Any]: # Initialize image_processings SCREAMING_SNAKE_CASE__ = self.image_processing_class(**self.image_processor_dict ) SCREAMING_SNAKE_CASE__ = self.image_processing_class(do_resize=__lowerCamelCase , do_normalize=__lowerCamelCase , do_rescale=__lowerCamelCase ) # create random PyTorch tensors SCREAMING_SNAKE_CASE__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase , torchify=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , torch.Tensor ) # Test whether the method "pad" and calling the image processor return the same tensors SCREAMING_SNAKE_CASE__ = image_processing_a.pad(__lowerCamelCase , return_tensors='''pt''' ) SCREAMING_SNAKE_CASE__ = image_processing_a(__lowerCamelCase , return_tensors='''pt''' ) self.assertTrue( torch.allclose(encoded_images_with_method['''pixel_values'''] , encoded_images['''pixel_values'''] , atol=1e-4 ) ) @slow def lowercase_ ( self : Union[str, Any] ) -> Optional[int]: # prepare image and target SCREAMING_SNAKE_CASE__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''' ) as f: SCREAMING_SNAKE_CASE__ = json.loads(f.read() ) SCREAMING_SNAKE_CASE__ = {'''image_id''': 3_9769, '''annotations''': target} # encode them SCREAMING_SNAKE_CASE__ = YolosImageProcessor.from_pretrained('''hustvl/yolos-small''' ) SCREAMING_SNAKE_CASE__ = image_processing(images=__lowerCamelCase , annotations=__lowerCamelCase , return_tensors='''pt''' ) # verify pixel values SCREAMING_SNAKE_CASE__ = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['''pixel_values'''].shape , __lowerCamelCase ) SCREAMING_SNAKE_CASE__ = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , __lowerCamelCase , atol=1e-4 ) ) # verify area SCREAMING_SNAKE_CASE__ = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , __lowerCamelCase ) ) # verify boxes SCREAMING_SNAKE_CASE__ = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , __lowerCamelCase ) SCREAMING_SNAKE_CASE__ = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , __lowerCamelCase , atol=1e-3 ) ) # verify image_id SCREAMING_SNAKE_CASE__ = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , __lowerCamelCase ) ) # verify is_crowd SCREAMING_SNAKE_CASE__ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , __lowerCamelCase ) ) # verify class_labels SCREAMING_SNAKE_CASE__ = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , __lowerCamelCase ) ) # verify orig_size SCREAMING_SNAKE_CASE__ = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , __lowerCamelCase ) ) # verify size SCREAMING_SNAKE_CASE__ = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , __lowerCamelCase ) ) @slow def lowercase_ ( self : Optional[Any] ) -> Optional[Any]: # prepare image, target and masks_path SCREAMING_SNAKE_CASE__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''' ) as f: SCREAMING_SNAKE_CASE__ = json.loads(f.read() ) SCREAMING_SNAKE_CASE__ = {'''file_name''': '''000000039769.png''', '''image_id''': 3_9769, '''segments_info''': target} SCREAMING_SNAKE_CASE__ = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' ) # encode them SCREAMING_SNAKE_CASE__ = YolosImageProcessor(format='''coco_panoptic''' ) SCREAMING_SNAKE_CASE__ = image_processing(images=__lowerCamelCase , annotations=__lowerCamelCase , masks_path=__lowerCamelCase , return_tensors='''pt''' ) # verify pixel values SCREAMING_SNAKE_CASE__ = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['''pixel_values'''].shape , __lowerCamelCase ) SCREAMING_SNAKE_CASE__ = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , __lowerCamelCase , atol=1e-4 ) ) # verify area SCREAMING_SNAKE_CASE__ = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , __lowerCamelCase ) ) # verify boxes SCREAMING_SNAKE_CASE__ = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , __lowerCamelCase ) SCREAMING_SNAKE_CASE__ = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , __lowerCamelCase , atol=1e-3 ) ) # verify image_id SCREAMING_SNAKE_CASE__ = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , __lowerCamelCase ) ) # verify is_crowd SCREAMING_SNAKE_CASE__ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , __lowerCamelCase ) ) # verify class_labels SCREAMING_SNAKE_CASE__ = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , __lowerCamelCase ) ) # verify masks SCREAMING_SNAKE_CASE__ = 82_2873 self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , __lowerCamelCase ) # verify orig_size SCREAMING_SNAKE_CASE__ = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , __lowerCamelCase ) ) # verify size SCREAMING_SNAKE_CASE__ = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , __lowerCamelCase ) )
314
0
from collections import deque from .hash_table import HashTable class __magic_name__ ( __lowerCAmelCase): def __init__( self : Optional[int] , *lowerCamelCase__ : List[Any] , **lowerCamelCase__ : int ) -> Dict: '''simple docstring''' super().__init__(*lowerCamelCase__ , **lowerCamelCase__ ) def UpperCAmelCase__ ( self : Tuple , lowerCamelCase__ : str , lowerCamelCase__ : Union[str, Any] ) -> Dict: '''simple docstring''' UpperCamelCase__ : Tuple = deque([] ) if self.values[key] is None else self.values[key] self.values[key].appendleft(lowerCamelCase__ ) UpperCamelCase__ : List[Any] = self.values[key] def UpperCAmelCase__ ( self : List[Any] ) -> List[Any]: '''simple docstring''' return ( sum(self.charge_factor - len(lowerCamelCase__ ) for slot in self.values ) / self.size_table * self.charge_factor ) def UpperCAmelCase__ ( self : List[str] , lowerCamelCase__ : Tuple , lowerCamelCase__ : Optional[int]=None ) -> Dict: '''simple docstring''' if not ( len(self.values[key] ) == self.charge_factor and self.values.count(lowerCamelCase__ ) == 0 ): return key return super()._collision_resolution(lowerCamelCase__ , lowerCamelCase__ )
51
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __UpperCamelCase : List[str] = { "configuration_mobilenet_v2": [ "MOBILENET_V2_PRETRAINED_CONFIG_ARCHIVE_MAP", "MobileNetV2Config", "MobileNetV2OnnxConfig", ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Union[str, Any] = ["MobileNetV2FeatureExtractor"] __UpperCamelCase : List[str] = ["MobileNetV2ImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : List[str] = [ "MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST", "MobileNetV2ForImageClassification", "MobileNetV2ForSemanticSegmentation", "MobileNetV2Model", "MobileNetV2PreTrainedModel", "load_tf_weights_in_mobilenet_v2", ] if TYPE_CHECKING: from .configuration_mobilenet_va import ( MOBILENET_V2_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileNetVaConfig, MobileNetVaOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilenet_va import MobileNetVaFeatureExtractor from .image_processing_mobilenet_va import MobileNetVaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilenet_va import ( MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST, MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation, MobileNetVaModel, MobileNetVaPreTrainedModel, load_tf_weights_in_mobilenet_va, ) else: import sys __UpperCamelCase : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
51
1
def SCREAMING_SNAKE_CASE__ ( lowercase = 4000000 ) -> int: snake_case : Any = [0, 1] snake_case : Tuple = 0 while fib[i] <= n: fib.append(fib[i] + fib[i + 1] ) if fib[i + 2] > n: break i += 1 snake_case : List[str] = 0 for j in range(len(lowercase ) - 1 ): if fib[j] % 2 == 0: total += fib[j] return total if __name__ == "__main__": print(f"""{solution() = }""")
124
def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> str: if number < 0 or shift_amount < 0: raise ValueError("""both inputs must be positive integers""" ) snake_case : Optional[int] = str(bin(lowercase ) ) binary_number += "0" * shift_amount return binary_number def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> str: if number < 0 or shift_amount < 0: raise ValueError("""both inputs must be positive integers""" ) snake_case : Dict = str(bin(lowercase ) )[2:] if shift_amount >= len(lowercase ): return "0b0" snake_case : str = binary_number[: len(lowercase ) - shift_amount] return "0b" + shifted_binary_number def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> str: if number >= 0: # Get binary representation of positive number snake_case : Optional[Any] = """0""" + str(bin(lowercase ) ).strip("""-""" )[2:] else: # Get binary (2's complement) representation of negative number snake_case : Dict = len(bin(lowercase )[3:] ) # Find 2's complement of number snake_case : Optional[Any] = bin(abs(lowercase ) - (1 << binary_number_length) )[3:] snake_case : Tuple = ( """1""" + """0""" * (binary_number_length - len(lowercase )) + binary_number ) if shift_amount >= len(lowercase ): return "0b" + binary_number[0] * len(lowercase ) return ( "0b" + binary_number[0] * shift_amount + binary_number[: len(lowercase ) - shift_amount] ) if __name__ == "__main__": import doctest doctest.testmod()
124
1
'''simple docstring''' import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler __a = 16 __a = 32 def __UpperCAmelCase ( a_: Accelerator, a_: int = 16, a_: str = "bert-base-cased" ): _UpperCAmelCase : Union[str, Any] = AutoTokenizer.from_pretrained(a_ ) _UpperCAmelCase : Union[str, Any] = load_dataset("glue", "mrpc" ) def tokenize_function(a_: Any ): # max_length=None => use the model max length (it's actually the default) _UpperCAmelCase : Union[str, Any] = tokenizer(examples["sentence1"], examples["sentence2"], truncation=a_, max_length=a_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset _UpperCAmelCase : List[Any] = datasets.map( a_, batched=a_, remove_columns=["idx", "sentence1", "sentence2"], load_from_cache_file=a_ ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _UpperCAmelCase : Union[str, Any] = tokenized_datasets.rename_column("label", "labels" ) def collate_fn(a_: Union[str, Any] ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(a_, padding="max_length", max_length=128, return_tensors="pt" ) return tokenizer.pad(a_, padding="longest", return_tensors="pt" ) # Instantiate dataloaders. _UpperCAmelCase : List[str] = DataLoader( tokenized_datasets["train"], shuffle=a_, collate_fn=a_, batch_size=a_ ) _UpperCAmelCase : Any = DataLoader( tokenized_datasets["validation"], shuffle=a_, collate_fn=a_, batch_size=a_ ) return train_dataloader, eval_dataloader def __UpperCAmelCase ( a_: Optional[int], a_: str ): # Initialize accelerator _UpperCAmelCase : List[Any] = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _UpperCAmelCase : Tuple = config["lr"] _UpperCAmelCase : List[Any] = int(config["num_epochs"] ) _UpperCAmelCase : Optional[int] = int(config["seed"] ) _UpperCAmelCase : Optional[Any] = int(config["batch_size"] ) _UpperCAmelCase : List[Any] = args.model_name_or_path set_seed(a_ ) _UpperCAmelCase , _UpperCAmelCase : Optional[Any] = get_dataloaders(a_, a_, a_ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _UpperCAmelCase : Tuple = AutoModelForSequenceClassification.from_pretrained(a_, return_dict=a_ ) # Instantiate optimizer _UpperCAmelCase : str = ( AdamW if accelerator.state.deepspeed_plugin is None or "optimizer" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) _UpperCAmelCase : Union[str, Any] = optimizer_cls(params=model.parameters(), lr=a_ ) if accelerator.state.deepspeed_plugin is not None: _UpperCAmelCase : int = accelerator.state.deepspeed_plugin.deepspeed_config[ "gradient_accumulation_steps" ] else: _UpperCAmelCase : int = 1 _UpperCAmelCase : List[Any] = (len(a_ ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): _UpperCAmelCase : Optional[int] = get_linear_schedule_with_warmup( optimizer=a_, num_warmup_steps=0, num_training_steps=a_, ) else: _UpperCAmelCase : str = DummyScheduler(a_, total_num_steps=a_, warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : List[str] = accelerator.prepare( a_, a_, a_, a_, a_ ) # We need to keep track of how many total steps we have iterated over _UpperCAmelCase : Any = 0 # We also need to keep track of the stating epoch so files are named properly _UpperCAmelCase : List[Any] = 0 # Now we train the model _UpperCAmelCase : str = evaluate.load("glue", "mrpc" ) _UpperCAmelCase : Tuple = 0 _UpperCAmelCase : int = {} for epoch in range(a_, a_ ): model.train() for step, batch in enumerate(a_ ): _UpperCAmelCase : Tuple = model(**a_ ) _UpperCAmelCase : Tuple = outputs.loss _UpperCAmelCase : Tuple = loss / gradient_accumulation_steps accelerator.backward(a_ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 model.eval() _UpperCAmelCase : Tuple = 0 for step, batch in enumerate(a_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _UpperCAmelCase : Optional[Any] = model(**a_ ) _UpperCAmelCase : Union[str, Any] = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times _UpperCAmelCase , _UpperCAmelCase : Dict = accelerator.gather( (predictions, batch["labels"]) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(a_ ) - 1: _UpperCAmelCase : int = predictions[: len(eval_dataloader.dataset ) - samples_seen] _UpperCAmelCase : Union[str, Any] = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=a_, references=a_, ) _UpperCAmelCase : Optional[Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""", a_ ) _UpperCAmelCase : List[str] = eval_metric["accuracy"] if best_performance < eval_metric["accuracy"]: _UpperCAmelCase : Optional[Any] = eval_metric["accuracy"] if args.performance_lower_bound is not None: assert ( args.performance_lower_bound <= best_performance ), f"""Best performance metric {best_performance} is lower than the lower bound {args.performance_lower_bound}""" accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir, "all_results.json" ), "w" ) as f: json.dump(a_, a_ ) def __UpperCAmelCase ( ): _UpperCAmelCase : List[Any] = argparse.ArgumentParser(description="Simple example of training script tracking peak GPU memory usage." ) parser.add_argument( "--model_name_or_path", type=a_, default="bert-base-cased", help="Path to pretrained model or model identifier from huggingface.co/models.", required=a_, ) parser.add_argument( "--output_dir", type=a_, default=".", help="Optional save directory where all checkpoint folders will be stored. Default is the current working directory.", ) parser.add_argument( "--performance_lower_bound", type=a_, default=a_, help="Optional lower bound for the performance metric. If set, the training will throw error when the performance metric drops below this value.", ) parser.add_argument( "--num_epochs", type=a_, default=3, help="Number of train epochs.", ) _UpperCAmelCase : List[Any] = parser.parse_args() _UpperCAmelCase : int = {"lr": 2e-5, "num_epochs": args.num_epochs, "seed": 42, "batch_size": 16} training_function(a_, a_ ) if __name__ == "__main__": main()
17
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) __a = { 'configuration_layoutlmv2': ['LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LayoutLMv2Config'], 'processing_layoutlmv2': ['LayoutLMv2Processor'], 'tokenization_layoutlmv2': ['LayoutLMv2Tokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = ['LayoutLMv2TokenizerFast'] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = ['LayoutLMv2FeatureExtractor'] __a = ['LayoutLMv2ImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ 'LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST', 'LayoutLMv2ForQuestionAnswering', 'LayoutLMv2ForSequenceClassification', 'LayoutLMv2ForTokenClassification', 'LayoutLMv2Layer', 'LayoutLMv2Model', 'LayoutLMv2PreTrainedModel', ] if TYPE_CHECKING: from .configuration_layoutlmva import LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor, LayoutLMvaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaLayer, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) else: import sys __a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
17
1
'''simple docstring''' import multiprocessing from typing import TYPE_CHECKING, Optional, Union from .. import Dataset, Features, config from ..formatting import query_table from ..packaged_modules.sql.sql import Sql from ..utils import logging from .abc import AbstractDatasetInputStream if TYPE_CHECKING: import sqlitea import sqlalchemy class A__ ( A__ ): def __init__( self : Union[str, Any] , _a : Union[str, "sqlalchemy.sql.Selectable"] , _a : Union[str, "sqlalchemy.engine.Connection", "sqlalchemy.engine.Engine", "sqlite3.Connection"] , _a : Optional[Features] = None , _a : str = None , _a : bool = False , **_a : Union[str, Any] , ) -> Union[str, Any]: '''simple docstring''' super().__init__(features=_a , cache_dir=_a , keep_in_memory=_a , **_a ) _SCREAMING_SNAKE_CASE =Sql( cache_dir=_a , features=_a , sql=_a , con=_a , **_a , ) def A ( self : Optional[int] ) -> Optional[Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE =None _SCREAMING_SNAKE_CASE =None _SCREAMING_SNAKE_CASE =None _SCREAMING_SNAKE_CASE =None self.builder.download_and_prepare( download_config=_a , download_mode=_a , verification_mode=_a , base_path=_a , ) # Build dataset for splits _SCREAMING_SNAKE_CASE =self.builder.as_dataset( split='train' , verification_mode=_a , in_memory=self.keep_in_memory ) return dataset class A__ : def __init__( self : List[Any] , _a : Dataset , _a : str , _a : Union[str, "sqlalchemy.engine.Connection", "sqlalchemy.engine.Engine", "sqlite3.Connection"] , _a : Optional[int] = None , _a : Optional[int] = None , **_a : int , ) -> str: '''simple docstring''' if num_proc is not None and num_proc <= 0: raise ValueError(f"num_proc {num_proc} must be an integer > 0." ) _SCREAMING_SNAKE_CASE =dataset _SCREAMING_SNAKE_CASE =name _SCREAMING_SNAKE_CASE =con _SCREAMING_SNAKE_CASE =batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE _SCREAMING_SNAKE_CASE =num_proc _SCREAMING_SNAKE_CASE =to_sql_kwargs def A ( self : Dict ) -> int: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.to_sql_kwargs.pop('sql' , _a ) _SCREAMING_SNAKE_CASE =self.to_sql_kwargs.pop('con' , _a ) _SCREAMING_SNAKE_CASE =self.to_sql_kwargs.pop('index' , _a ) _SCREAMING_SNAKE_CASE =self._write(index=_a , **self.to_sql_kwargs ) return written def A ( self : Dict , _a : List[str] ) -> Tuple: '''simple docstring''' _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =args _SCREAMING_SNAKE_CASE ={**to_sql_kwargs, 'if_exists': 'append'} if offset > 0 else to_sql_kwargs _SCREAMING_SNAKE_CASE =query_table( table=self.dataset.data , key=slice(_a , offset + self.batch_size ) , indices=self.dataset._indices , ) _SCREAMING_SNAKE_CASE =batch.to_pandas() _SCREAMING_SNAKE_CASE =df.to_sql(self.name , self.con , index=_a , **_a ) return num_rows or len(_a ) def A ( self : Any , _a : Union[str, Any] , **_a : List[str] ) -> int: '''simple docstring''' _SCREAMING_SNAKE_CASE =0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit='ba' , disable=not logging.is_progress_bar_enabled() , desc='Creating SQL from Arrow format' , ): written += self._batch_sql((offset, index, to_sql_kwargs) ) else: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for num_rows in logging.tqdm( pool.imap( self._batch_sql , [(offset, index, to_sql_kwargs) for offset in range(0 , _a , _a )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit='ba' , disable=not logging.is_progress_bar_enabled() , desc='Creating SQL from Arrow format' , ): written += num_rows return written
47
'''simple docstring''' import numpy as np from nltk.translate import meteor_score import datasets from datasets.config import importlib_metadata, version lowerCamelCase : List[Any] = version.parse(importlib_metadata.version("nltk")) if NLTK_VERSION >= version.Version("3.6.4"): from nltk import word_tokenize lowerCamelCase : Any = "\\n@inproceedings{banarjee2005,\n title = {{METEOR}: An Automatic Metric for {MT} Evaluation with Improved Correlation with Human Judgments},\n author = {Banerjee, Satanjeev and Lavie, Alon},\n booktitle = {Proceedings of the {ACL} Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization},\n month = jun,\n year = {2005},\n address = {Ann Arbor, Michigan},\n publisher = {Association for Computational Linguistics},\n url = {https://www.aclweb.org/anthology/W05-0909},\n pages = {65--72},\n}\n" lowerCamelCase : Optional[Any] = "\\nMETEOR, an automatic metric for machine translation evaluation\nthat is based on a generalized concept of unigram matching between the\nmachine-produced translation and human-produced reference translations.\nUnigrams can be matched based on their surface forms, stemmed forms,\nand meanings; furthermore, METEOR can be easily extended to include more\nadvanced matching strategies. Once all generalized unigram matches\nbetween the two strings have been found, METEOR computes a score for\nthis matching using a combination of unigram-precision, unigram-recall, and\na measure of fragmentation that is designed to directly capture how\nwell-ordered the matched words in the machine translation are in relation\nto the reference.\n\nMETEOR gets an R correlation value of 0.347 with human evaluation on the Arabic\ndata and 0.331 on the Chinese data. This is shown to be an improvement on\nusing simply unigram-precision, unigram-recall and their harmonic F1\ncombination.\n" lowerCamelCase : Optional[Any] = "\nComputes METEOR score of translated segments against one or more references.\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n alpha: Parameter for controlling relative weights of precision and recall. default: 0.9\n beta: Parameter for controlling shape of penalty as a function of fragmentation. default: 3\n gamma: Relative weight assigned to fragmentation penalty. default: 0.5\nReturns:\n 'meteor': meteor score.\nExamples:\n\n >>> meteor = datasets.load_metric('meteor')\n >>> predictions = [\"It is a guide to action which ensures that the military always obeys the commands of the party\"]\n >>> references = [\"It is a guide to action that ensures that the military will forever heed Party commands\"]\n >>> results = meteor.compute(predictions=predictions, references=references)\n >>> print(round(results[\"meteor\"], 4))\n 0.6944\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A__ ( datasets.Metric ): def A ( self : Tuple ) -> str: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Value('string' , id='sequence' ), } ) , codebase_urls=['https://github.com/nltk/nltk/blob/develop/nltk/translate/meteor_score.py'] , reference_urls=[ 'https://www.nltk.org/api/nltk.translate.html#module-nltk.translate.meteor_score', 'https://en.wikipedia.org/wiki/METEOR', ] , ) def A ( self : Union[str, Any] , _a : Union[str, Any] ) -> Optional[int]: '''simple docstring''' import nltk nltk.download('wordnet' ) if NLTK_VERSION >= version.Version('3.6.5' ): nltk.download('punkt' ) if NLTK_VERSION >= version.Version('3.6.6' ): nltk.download('omw-1.4' ) def A ( self : int , _a : Tuple , _a : List[str] , _a : List[str]=0.9 , _a : Dict=3 , _a : Optional[int]=0.5 ) -> Optional[int]: '''simple docstring''' if NLTK_VERSION >= version.Version('3.6.5' ): _SCREAMING_SNAKE_CASE =[ meteor_score.single_meteor_score( word_tokenize(_a ) , word_tokenize(_a ) , alpha=_a , beta=_a , gamma=_a ) for ref, pred in zip(_a , _a ) ] else: _SCREAMING_SNAKE_CASE =[ meteor_score.single_meteor_score(_a , _a , alpha=_a , beta=_a , gamma=_a ) for ref, pred in zip(_a , _a ) ] return {"meteor": np.mean(_a )}
47
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase__ = { "configuration_roformer": ["ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "RoFormerConfig", "RoFormerOnnxConfig"], "tokenization_roformer": ["RoFormerTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = ["RoFormerTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "RoFormerForCausalLM", "RoFormerForMaskedLM", "RoFormerForMultipleChoice", "RoFormerForQuestionAnswering", "RoFormerForSequenceClassification", "RoFormerForTokenClassification", "RoFormerLayer", "RoFormerModel", "RoFormerPreTrainedModel", "load_tf_weights_in_roformer", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TFRoFormerForCausalLM", "TFRoFormerForMaskedLM", "TFRoFormerForMultipleChoice", "TFRoFormerForQuestionAnswering", "TFRoFormerForSequenceClassification", "TFRoFormerForTokenClassification", "TFRoFormerLayer", "TFRoFormerModel", "TFRoFormerPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "FlaxRoFormerForMaskedLM", "FlaxRoFormerForMultipleChoice", "FlaxRoFormerForQuestionAnswering", "FlaxRoFormerForSequenceClassification", "FlaxRoFormerForTokenClassification", "FlaxRoFormerModel", "FlaxRoFormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig from .tokenization_roformer import RoFormerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roformer_fast import RoFormerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roformer import ( ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, RoFormerForCausalLM, RoFormerForMaskedLM, RoFormerForMultipleChoice, RoFormerForQuestionAnswering, RoFormerForSequenceClassification, RoFormerForTokenClassification, RoFormerLayer, RoFormerModel, RoFormerPreTrainedModel, load_tf_weights_in_roformer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roformer import ( TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerLayer, TFRoFormerModel, TFRoFormerPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roformer import ( FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, FlaxRoFormerPreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
26
import math def _a ( a :int = 100 ) -> int: a = sum(i * i for i in range(1 , n + 1 ) ) a = int(math.pow(sum(range(1 , n + 1 ) ) , 2 ) ) return square_of_sum - sum_of_squares if __name__ == "__main__": print(f"""{solution() = }""")
26
1
'''simple docstring''' import unittest import numpy as np def lowercase__ ( __lowercase : np.ndarray , __lowercase : np.ndarray , __lowercase : np.ndarray , __lowercase : np.ndarray | None = None , ) -> np.ndarray: """simple docstring""" __UpperCamelCase = np.shape(__lowercase ) __UpperCamelCase = np.shape(__lowercase ) __UpperCamelCase = np.shape(__lowercase ) if shape_a[0] != shape_b[0]: __UpperCamelCase = ( 'Expected the same number of rows for A and B. ' F'''Instead found A of size {shape_a} and B of size {shape_b}''' ) raise ValueError(__lowercase ) if shape_b[1] != shape_c[1]: __UpperCamelCase = ( 'Expected the same number of columns for B and C. ' F'''Instead found B of size {shape_b} and C of size {shape_c}''' ) raise ValueError(__lowercase ) __UpperCamelCase = pseudo_inv if a_inv is None: try: __UpperCamelCase = np.linalg.inv(__lowercase ) except np.linalg.LinAlgError: raise ValueError( 'Input matrix A is not invertible. Cannot compute Schur complement.' ) return mat_c - mat_b.T @ a_inv @ mat_b class snake_case ( unittest.TestCase ): """simple docstring""" def _lowerCamelCase ( self : Tuple ): __UpperCamelCase = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) __UpperCamelCase = np.array([[0, 3], [3, 0], [2, 3]] ) __UpperCamelCase = np.array([[2, 1], [6, 3]] ) __UpperCamelCase = schur_complement(__A , __A , __A ) __UpperCamelCase = np.block([[a, b], [b.T, c]] ) __UpperCamelCase = np.linalg.det(__A ) __UpperCamelCase = np.linalg.det(__A ) __UpperCamelCase = np.linalg.det(__A ) self.assertAlmostEqual(__A , det_a * det_s ) def _lowerCamelCase ( self : int ): __UpperCamelCase = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) __UpperCamelCase = np.array([[0, 3], [3, 0], [2, 3]] ) __UpperCamelCase = np.array([[2, 1], [6, 3]] ) with self.assertRaises(__A ): schur_complement(__A , __A , __A ) def _lowerCamelCase ( self : List[Any] ): __UpperCamelCase = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) __UpperCamelCase = np.array([[0, 3], [3, 0], [2, 3]] ) __UpperCamelCase = np.array([[2, 1, 3], [6, 3, 5]] ) with self.assertRaises(__A ): schur_complement(__A , __A , __A ) if __name__ == "__main__": import doctest doctest.testmod() unittest.main()
53
'''simple docstring''' import os import numpy import onnx def lowercase__ ( __lowercase : Optional[int] , __lowercase : Union[str, Any] ) -> Dict: """simple docstring""" __UpperCamelCase = a.name __UpperCamelCase = b.name __UpperCamelCase = '' __UpperCamelCase = '' __UpperCamelCase = a == b __UpperCamelCase = name_a __UpperCamelCase = name_b return res def lowercase__ ( __lowercase : int , __lowercase : int , __lowercase : List[Any] ) -> Optional[int]: """simple docstring""" for i, input_name in enumerate(node_proto.input ): if input_name == name: node_proto.input.insert(__lowercase , __lowercase ) node_proto.input.pop(i + 1 ) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g , __lowercase , __lowercase ) _graph_replace_input_with(node_proto.attribute[1].g , __lowercase , __lowercase ) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g , __lowercase , __lowercase ) def lowercase__ ( __lowercase : int , __lowercase : List[Any] , __lowercase : Dict ) -> int: """simple docstring""" for n in graph_proto.node: _node_replace_input_with(__lowercase , __lowercase , __lowercase ) def lowercase__ ( __lowercase : List[str] , __lowercase : Union[str, Any] , __lowercase : str ) -> Union[str, Any]: """simple docstring""" __UpperCamelCase = list(model.graph.initializer ) __UpperCamelCase = list(model_without_ext.graph.initializer ) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i __UpperCamelCase = inits[i].name __UpperCamelCase = inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i] ) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph , __lowercase , __lowercase ) def lowercase__ ( __lowercase : Dict ) -> Union[str, Any]: """simple docstring""" __UpperCamelCase = os.path.dirname(__lowercase ) __UpperCamelCase = os.path.basename(__lowercase ) __UpperCamelCase = onnx.load(os.path.join(__lowercase , __lowercase ) ) __UpperCamelCase = list(model.graph.initializer ) __UpperCamelCase = set() __UpperCamelCase = {} __UpperCamelCase = [] __UpperCamelCase = 0 for i in range(len(__lowercase ) ): if i in dup_set: continue for j in range(i + 1 , len(__lowercase ) ): if j in dup_set: continue if _is_equal_tensor_proto(inits[i] , inits[j] ): dup_set.add(__lowercase ) dup_set.add(__lowercase ) __UpperCamelCase = inits[j].data_type __UpperCamelCase = numpy.prod(inits[j].dims ) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 11: mem_size *= 8 else: print('unexpected data type: ' , __lowercase ) total_reduced_size += mem_size __UpperCamelCase = inits[i].name __UpperCamelCase = inits[j].name if name_i in dup_map: dup_map[name_i].append(__lowercase ) else: __UpperCamelCase = [name_j] ind_to_replace.append((j, i) ) print('total reduced size: ' , total_reduced_size / 1024 / 1024 / 1024 , 'GB' ) __UpperCamelCase = sorted(__lowercase ) _remove_dup_initializers_from_model(__lowercase , __lowercase , __lowercase ) __UpperCamelCase = 'optimized_' + model_file_name __UpperCamelCase = os.path.join(__lowercase , __lowercase ) onnx.save(__lowercase , __lowercase ) return new_model
53
1
"""simple docstring""" class lowerCamelCase__ : '''simple docstring''' def __init__( self ) -> Any: A = 0 A = 0 A = {} def UpperCamelCase__ ( self ,lowerCamelCase_ ) -> List[str]: if vertex not in self.adjacency: A = {} self.num_vertices += 1 def UpperCamelCase__ ( self ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) -> Optional[Any]: self.add_vertex(lowerCamelCase_ ) self.add_vertex(lowerCamelCase_ ) if head == tail: return A = weight A = weight def UpperCamelCase__ ( self ) -> List[str]: A = self.get_edges() for edge in edges: A , A , A = edge edges.remove((tail, head, weight) ) for i in range(len(lowerCamelCase_ ) ): A = list(edges[i] ) edges.sort(key=lambda lowerCamelCase_ : e[2] ) for i in range(len(lowerCamelCase_ ) - 1 ): if edges[i][2] >= edges[i + 1][2]: A = edges[i][2] + 1 for edge in edges: A , A , A = edge A = weight A = weight def __str__( self ) -> Dict: A = """""" for tail in self.adjacency: for head in self.adjacency[tail]: A = self.adjacency[head][tail] string += f'{head} -> {tail} == {weight}\n' return string.rstrip("""\n""" ) def UpperCamelCase__ ( self ) -> Optional[Any]: A = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail]) ) return output def UpperCamelCase__ ( self ) -> List[str]: return self.adjacency.keys() @staticmethod def UpperCamelCase__ ( lowerCamelCase_=None ,lowerCamelCase_=None ) -> Optional[Any]: A = Graph() if vertices is None: A = [] if edges is None: A = [] for vertex in vertices: g.add_vertex(lowerCamelCase_ ) for edge in edges: g.add_edge(*lowerCamelCase_ ) return g class lowerCamelCase__ : '''simple docstring''' def __init__( self ) -> List[str]: A = {} A = {} def __len__( self ) -> List[str]: return len(self.parent ) def UpperCamelCase__ ( self ,lowerCamelCase_ ) -> List[str]: if item in self.parent: return self.find(lowerCamelCase_ ) A = item A = 0 return item def UpperCamelCase__ ( self ,lowerCamelCase_ ) -> Union[str, Any]: if item not in self.parent: return self.make_set(lowerCamelCase_ ) if item != self.parent[item]: A = self.find(self.parent[item] ) return self.parent[item] def UpperCamelCase__ ( self ,lowerCamelCase_ ,lowerCamelCase_ ) -> Any: A = self.find(lowerCamelCase_ ) A = self.find(lowerCamelCase_ ) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: A = roota return roota if self.rank[roota] < self.rank[roota]: A = roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 A = roota return roota return None @staticmethod def UpperCamelCase__ ( lowerCamelCase_ ) -> List[str]: A = graph.num_vertices A = Graph.UnionFind() A = [] while num_components > 1: A = {} for vertex in graph.get_vertices(): A = -1 A = graph.get_edges() for edge in edges: A , A , A = edge edges.remove((tail, head, weight) ) for edge in edges: A , A , A = edge A = union_find.find(lowerCamelCase_ ) A = union_find.find(lowerCamelCase_ ) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: A = [head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: A = [head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: A , A , A = cheap_edge[vertex] if union_find.find(lowerCamelCase_ ) != union_find.find(lowerCamelCase_ ): union_find.union(lowerCamelCase_ ,lowerCamelCase_ ) mst_edges.append(cheap_edge[vertex] ) A = num_components - 1 A = Graph.build(edges=lowerCamelCase_ ) return mst
77
"""simple docstring""" from typing import Dict, Iterable, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging UpperCAmelCase =logging.get_logger(__name__) class lowerCamelCase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowerCamelCase = ['''pixel_values'''] def __init__( self ,lowerCamelCase_ = True ,lowerCamelCase_ = None ,lowerCamelCase_ = PILImageResampling.BICUBIC ,lowerCamelCase_ = True ,lowerCamelCase_ = None ,lowerCamelCase_ = True ,lowerCamelCase_ = 1 / 2_5_5 ,lowerCamelCase_ = True ,lowerCamelCase_ = IMAGENET_DEFAULT_MEAN ,lowerCamelCase_ = IMAGENET_DEFAULT_STD ,**lowerCamelCase_ ,) -> None: super().__init__(**lowerCamelCase_ ) A = size if size is not None else {"""shortest_edge""": 2_2_4} A = get_size_dict(lowerCamelCase_ ,default_to_square=lowerCamelCase_ ) A = crop_size if crop_size is not None else {"""height""": 2_2_4, """width""": 2_2_4} A = get_size_dict(lowerCamelCase_ ,param_name="""crop_size""" ) A = do_resize A = size A = resample A = do_center_crop A = crop_size A = do_rescale A = rescale_factor A = do_normalize A = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN A = image_std if image_std is not None else IMAGENET_DEFAULT_STD def UpperCamelCase__ ( self ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ = PILImageResampling.BICUBIC ,lowerCamelCase_ = None ,**lowerCamelCase_ ,) -> np.ndarray: A = get_size_dict(lowerCamelCase_ ,default_to_square=lowerCamelCase_ ) # size_dict is a dict with either keys "height" and "width" or "shortest_edge" if "shortest_edge" in size: A = int((2_5_6 / 2_2_4) * size["""shortest_edge"""] ) A = get_resize_output_image_size(lowerCamelCase_ ,size=lowerCamelCase_ ,default_to_square=lowerCamelCase_ ) A = {"""height""": output_size[0], """width""": output_size[1]} if "height" not in size_dict or "width" not in size_dict: raise ValueError( f'Size dict must have keys \'height\' and \'width\' or \'shortest_edge\'. Got {size_dict.keys()}' ) return resize( lowerCamelCase_ ,size=(size_dict["""height"""], size_dict["""width"""]) ,resample=lowerCamelCase_ ,data_format=lowerCamelCase_ ,**lowerCamelCase_ ) def UpperCamelCase__ ( self ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ = None ,**lowerCamelCase_ ,) -> np.ndarray: A = get_size_dict(lowerCamelCase_ ) if "height" not in size or "width" not in size: raise ValueError(f'Size dict must have keys \'height\' and \'width\'. Got {size.keys()}' ) return center_crop(lowerCamelCase_ ,size=(size["""height"""], size["""width"""]) ,data_format=lowerCamelCase_ ,**lowerCamelCase_ ) def UpperCamelCase__ ( self ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ = None ,**lowerCamelCase_ ,) -> np.ndarray: return rescale(lowerCamelCase_ ,scale=lowerCamelCase_ ,data_format=lowerCamelCase_ ,**lowerCamelCase_ ) def UpperCamelCase__ ( self ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ = None ,**lowerCamelCase_ ,) -> np.ndarray: return normalize(lowerCamelCase_ ,mean=lowerCamelCase_ ,std=lowerCamelCase_ ,data_format=lowerCamelCase_ ,**lowerCamelCase_ ) def UpperCamelCase__ ( self ,lowerCamelCase_ ,lowerCamelCase_ = None ,lowerCamelCase_ = None ,lowerCamelCase_ = None ,lowerCamelCase_ = None ,lowerCamelCase_ = None ,lowerCamelCase_ = None ,lowerCamelCase_ = None ,lowerCamelCase_ = None ,lowerCamelCase_ = None ,lowerCamelCase_ = None ,lowerCamelCase_ = None ,lowerCamelCase_ = ChannelDimension.FIRST ,**lowerCamelCase_ ,) -> BatchFeature: A = do_resize if do_resize is not None else self.do_resize A = resample if resample is not None else self.resample A = do_center_crop if do_center_crop is not None else self.do_center_crop A = do_rescale if do_rescale is not None else self.do_rescale A = rescale_factor if rescale_factor is not None else self.rescale_factor A = do_normalize if do_normalize is not None else self.do_normalize A = image_mean if image_mean is not None else self.image_mean A = image_std if image_std is not None else self.image_std A = size if size is not None else self.size A = get_size_dict(lowerCamelCase_ ,default_to_square=lowerCamelCase_ ) A = crop_size if crop_size is not None else self.crop_size A = get_size_dict(lowerCamelCase_ ,param_name="""crop_size""" ) A = make_list_of_images(lowerCamelCase_ ) if not valid_images(lowerCamelCase_ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. A = [to_numpy_array(lowerCamelCase_ ) for image in images] if do_resize: A = [self.resize(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) for image in images] if do_center_crop: A = [self.center_crop(lowerCamelCase_ ,lowerCamelCase_ ) for image in images] if do_rescale: A = [self.rescale(lowerCamelCase_ ,lowerCamelCase_ ) for image in images] if do_normalize: A = [self.normalize(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) for image in images] A = [to_channel_dimension_format(lowerCamelCase_ ,lowerCamelCase_ ) for image in images] A = {"""pixel_values""": images} return BatchFeature(data=lowerCamelCase_ ,tensor_type=lowerCamelCase_ )
77
1
import unittest from dataclasses import dataclass import pytest from accelerate.commands.config.config_args import SageMakerConfig from accelerate.utils import ComputeEnvironment from accelerate.utils.launch import _convert_nargs_to_dict @dataclass class __snake_case ( a ): UpperCAmelCase__ : Dict = ComputeEnvironment.AMAZON_SAGEMAKER UpperCAmelCase__ : str = True UpperCAmelCase__ : List[Any] = '''ml.p3.2xlarge''' UpperCAmelCase__ : str = '''accelerate_sagemaker_execution_role''' UpperCAmelCase__ : int = '''hf-sm''' UpperCAmelCase__ : List[str] = '''us-east-1''' UpperCAmelCase__ : int = 1 UpperCAmelCase__ : List[Any] = '''accelerate-sagemaker-1''' UpperCAmelCase__ : int = '''1.6''' UpperCAmelCase__ : Tuple = '''4.4''' UpperCAmelCase__ : str = '''train.py''' UpperCAmelCase__ : Union[str, Any] = [ '''--model_name_or_path''', '''bert''', '''--do_train''', '''False''', '''--epochs''', '''3''', '''--learning_rate''', '''5e-5''', '''--max_steps''', '''50.5''', ] UpperCAmelCase__ : Union[str, Any] = [ '''--model_name_or_path''', '''bert''', '''--do_train''', '''--do_test''', '''False''', '''--do_predict''', '''--epochs''', '''3''', '''--learning_rate''', '''5e-5''', '''--max_steps''', '''50.5''', ] class __snake_case ( unittest.TestCase ): def lowerCamelCase ( self : str): """simple docstring""" UpperCAmelCase_ = _convert_nargs_to_dict(MockLaunchConfig.success_training_script_args) assert isinstance(converted_args['''model_name_or_path'''] , _snake_case) assert isinstance(converted_args['''do_train'''] , _snake_case) assert isinstance(converted_args['''epochs'''] , _snake_case) assert isinstance(converted_args['''learning_rate'''] , _snake_case) assert isinstance(converted_args['''max_steps'''] , _snake_case) with pytest.raises(_snake_case): _convert_nargs_to_dict(MockLaunchConfig.fail_training_script_args)
51
from __future__ import annotations import time from math import sqrt # 1 for manhattan, 0 for euclidean snake_case_ : str = 0 snake_case_ : Union[str, Any] = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] snake_case_ : str = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right snake_case_ : List[Any] = tuple[int, int] class __snake_case : def __init__( self : Any , _snake_case : int , _snake_case : int , _snake_case : int , _snake_case : int , _snake_case : int , _snake_case : Node | None , ): """simple docstring""" UpperCAmelCase_ = pos_x UpperCAmelCase_ = pos_y UpperCAmelCase_ = (pos_y, pos_x) UpperCAmelCase_ = goal_x UpperCAmelCase_ = goal_y UpperCAmelCase_ = g_cost UpperCAmelCase_ = parent UpperCAmelCase_ = self.calculate_heuristic() UpperCAmelCase_ = self.g_cost + self.h_cost def lowerCamelCase ( self : List[str]): """simple docstring""" UpperCAmelCase_ = self.pos_x - self.goal_x UpperCAmelCase_ = self.pos_y - self.goal_y if HEURISTIC == 1: return abs(_snake_case) + abs(_snake_case) else: return sqrt(dy**2 + dx**2) def __lt__( self : Union[str, Any] , _snake_case : Node): """simple docstring""" return self.f_cost < other.f_cost class __snake_case : def __init__( self : str , _snake_case : TPosition , _snake_case : TPosition): """simple docstring""" UpperCAmelCase_ = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , _snake_case) UpperCAmelCase_ = Node(goal[1] , goal[0] , goal[1] , goal[0] , 99999 , _snake_case) UpperCAmelCase_ = [self.start] UpperCAmelCase_ = [] UpperCAmelCase_ = False def lowerCamelCase ( self : Optional[int]): """simple docstring""" while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() UpperCAmelCase_ = self.open_nodes.pop(0) if current_node.pos == self.target.pos: return self.retrace_path(_snake_case) self.closed_nodes.append(_snake_case) UpperCAmelCase_ = self.get_successors(_snake_case) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(_snake_case) else: # retrieve the best current path UpperCAmelCase_ = self.open_nodes.pop(self.open_nodes.index(_snake_case)) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(_snake_case) else: self.open_nodes.append(_snake_case) return [self.start.pos] def lowerCamelCase ( self : Tuple , _snake_case : Node): """simple docstring""" UpperCAmelCase_ = [] for action in delta: UpperCAmelCase_ = parent.pos_x + action[1] UpperCAmelCase_ = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0]) - 1 and 0 <= pos_y <= len(_snake_case) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( _snake_case , _snake_case , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , _snake_case , )) return successors def lowerCamelCase ( self : Any , _snake_case : Node | None): """simple docstring""" UpperCAmelCase_ = node UpperCAmelCase_ = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x)) UpperCAmelCase_ = current_node.parent path.reverse() return path class __snake_case : def __init__( self : Any , _snake_case : TPosition , _snake_case : TPosition): """simple docstring""" UpperCAmelCase_ = AStar(_snake_case , _snake_case) UpperCAmelCase_ = AStar(_snake_case , _snake_case) UpperCAmelCase_ = False def lowerCamelCase ( self : List[Any]): """simple docstring""" while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes: self.fwd_astar.open_nodes.sort() self.bwd_astar.open_nodes.sort() UpperCAmelCase_ = self.fwd_astar.open_nodes.pop(0) UpperCAmelCase_ = self.bwd_astar.open_nodes.pop(0) if current_bwd_node.pos == current_fwd_node.pos: return self.retrace_bidirectional_path( _snake_case , _snake_case) self.fwd_astar.closed_nodes.append(_snake_case) self.bwd_astar.closed_nodes.append(_snake_case) UpperCAmelCase_ = current_bwd_node UpperCAmelCase_ = current_fwd_node UpperCAmelCase_ = { self.fwd_astar: self.fwd_astar.get_successors(_snake_case), self.bwd_astar: self.bwd_astar.get_successors(_snake_case), } for astar in [self.fwd_astar, self.bwd_astar]: for child_node in successors[astar]: if child_node in astar.closed_nodes: continue if child_node not in astar.open_nodes: astar.open_nodes.append(_snake_case) else: # retrieve the best current path UpperCAmelCase_ = astar.open_nodes.pop( astar.open_nodes.index(_snake_case)) if child_node.g_cost < better_node.g_cost: astar.open_nodes.append(_snake_case) else: astar.open_nodes.append(_snake_case) return [self.fwd_astar.start.pos] def lowerCamelCase ( self : int , _snake_case : Node , _snake_case : Node): """simple docstring""" UpperCAmelCase_ = self.fwd_astar.retrace_path(_snake_case) UpperCAmelCase_ = self.bwd_astar.retrace_path(_snake_case) bwd_path.pop() bwd_path.reverse() UpperCAmelCase_ = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] snake_case_ : Any = (0, 0) snake_case_ : Union[str, Any] = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) snake_case_ : str = time.time() snake_case_ : List[str] = AStar(init, goal) snake_case_ : Optional[int] = a_star.search() snake_case_ : Optional[Any] = time.time() - start_time print(f"AStar execution time = {end_time:f} seconds") snake_case_ : int = time.time() snake_case_ : Dict = BidirectionalAStar(init, goal) snake_case_ : str = time.time() - bd_start_time print(f"BidirectionalAStar execution time = {bd_end_time:f} seconds")
51
1
import gc import unittest from diffusers import FlaxControlNetModel, FlaxStableDiffusionControlNetPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class A ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" super().tearDown() gc.collect() def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ , lowerCAmelCase_ = FlaxControlNetModel.from_pretrained( '''lllyasviel/sd-controlnet-canny''', from_pt=UpperCamelCase__, dtype=jnp.bfloataa ) lowerCAmelCase_ , lowerCAmelCase_ = FlaxStableDiffusionControlNetPipeline.from_pretrained( '''runwayml/stable-diffusion-v1-5''', controlnet=UpperCamelCase__, from_pt=UpperCamelCase__, dtype=jnp.bfloataa ) lowerCAmelCase_ = controlnet_params lowerCAmelCase_ = '''bird''' lowerCAmelCase_ = jax.device_count() lowerCAmelCase_ = pipe.prepare_text_inputs([prompts] * num_samples ) lowerCAmelCase_ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png''' ) lowerCAmelCase_ = pipe.prepare_image_inputs([canny_image] * num_samples ) lowerCAmelCase_ = jax.random.PRNGKey(0 ) lowerCAmelCase_ = jax.random.split(UpperCamelCase__, jax.device_count() ) lowerCAmelCase_ = replicate(UpperCamelCase__ ) lowerCAmelCase_ = shard(UpperCamelCase__ ) lowerCAmelCase_ = shard(UpperCamelCase__ ) lowerCAmelCase_ = pipe( prompt_ids=UpperCamelCase__, image=UpperCamelCase__, params=UpperCamelCase__, prng_seed=UpperCamelCase__, num_inference_steps=50, jit=UpperCamelCase__, ).images assert images.shape == (jax.device_count(), 1, 768, 512, 3) lowerCAmelCase_ = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) lowerCAmelCase_ = images[0, 253:256, 253:256, -1] lowerCAmelCase_ = jnp.asarray(jax.device_get(image_slice.flatten() ) ) lowerCAmelCase_ = jnp.array( [0.167_969, 0.116_699, 0.081_543, 0.154_297, 0.132_812, 0.108_887, 0.169_922, 0.169_922, 0.205_078] ) print(f"output_slice: {output_slice}" ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2 def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ , lowerCAmelCase_ = FlaxControlNetModel.from_pretrained( '''lllyasviel/sd-controlnet-openpose''', from_pt=UpperCamelCase__, dtype=jnp.bfloataa ) lowerCAmelCase_ , lowerCAmelCase_ = FlaxStableDiffusionControlNetPipeline.from_pretrained( '''runwayml/stable-diffusion-v1-5''', controlnet=UpperCamelCase__, from_pt=UpperCamelCase__, dtype=jnp.bfloataa ) lowerCAmelCase_ = controlnet_params lowerCAmelCase_ = '''Chef in the kitchen''' lowerCAmelCase_ = jax.device_count() lowerCAmelCase_ = pipe.prepare_text_inputs([prompts] * num_samples ) lowerCAmelCase_ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose.png''' ) lowerCAmelCase_ = pipe.prepare_image_inputs([pose_image] * num_samples ) lowerCAmelCase_ = jax.random.PRNGKey(0 ) lowerCAmelCase_ = jax.random.split(UpperCamelCase__, jax.device_count() ) lowerCAmelCase_ = replicate(UpperCamelCase__ ) lowerCAmelCase_ = shard(UpperCamelCase__ ) lowerCAmelCase_ = shard(UpperCamelCase__ ) lowerCAmelCase_ = pipe( prompt_ids=UpperCamelCase__, image=UpperCamelCase__, params=UpperCamelCase__, prng_seed=UpperCamelCase__, num_inference_steps=50, jit=UpperCamelCase__, ).images assert images.shape == (jax.device_count(), 1, 768, 512, 3) lowerCAmelCase_ = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) lowerCAmelCase_ = images[0, 253:256, 253:256, -1] lowerCAmelCase_ = jnp.asarray(jax.device_get(image_slice.flatten() ) ) lowerCAmelCase_ = jnp.array( [[0.271_484, 0.261_719, 0.275_391, 0.277_344, 0.279_297, 0.291_016, 0.294_922, 0.302_734, 0.302_734]] ) print(f"output_slice: {output_slice}" ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
167
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _A = { '''configuration_rembert''': ['''REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''RemBertConfig''', '''RemBertOnnxConfig'''] } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = ['''RemBertTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = ['''RemBertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ '''REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''RemBertForCausalLM''', '''RemBertForMaskedLM''', '''RemBertForMultipleChoice''', '''RemBertForQuestionAnswering''', '''RemBertForSequenceClassification''', '''RemBertForTokenClassification''', '''RemBertLayer''', '''RemBertModel''', '''RemBertPreTrainedModel''', '''load_tf_weights_in_rembert''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ '''TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFRemBertForCausalLM''', '''TFRemBertForMaskedLM''', '''TFRemBertForMultipleChoice''', '''TFRemBertForQuestionAnswering''', '''TFRemBertForSequenceClassification''', '''TFRemBertForTokenClassification''', '''TFRemBertLayer''', '''TFRemBertModel''', '''TFRemBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_rembert import REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RemBertConfig, RemBertOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert import RemBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert_fast import RemBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rembert import ( REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, RemBertForCausalLM, RemBertForMaskedLM, RemBertForMultipleChoice, RemBertForQuestionAnswering, RemBertForSequenceClassification, RemBertForTokenClassification, RemBertLayer, RemBertModel, RemBertPreTrainedModel, load_tf_weights_in_rembert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rembert import ( TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFRemBertForCausalLM, TFRemBertForMaskedLM, TFRemBertForMultipleChoice, TFRemBertForQuestionAnswering, TFRemBertForSequenceClassification, TFRemBertForTokenClassification, TFRemBertLayer, TFRemBertModel, TFRemBertPreTrainedModel, ) else: import sys _A = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
167
1
"""simple docstring""" import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler _a = 16 _a = 32 def _A ( UpperCamelCase_ : Accelerator, UpperCamelCase_ : int = 16, UpperCamelCase_ : str = "bert-base-cased") -> List[str]: '''simple docstring''' __lowercase = AutoTokenizer.from_pretrained(UpperCamelCase_) __lowercase = load_dataset("glue", "mrpc") def tokenize_function(UpperCamelCase_ : Optional[Any]): # max_length=None => use the model max length (it's actually the default) __lowercase = tokenizer(examples["sentence1"], examples["sentence2"], truncation=UpperCamelCase_, max_length=UpperCamelCase_) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset __lowercase = datasets.map( UpperCamelCase_, batched=UpperCamelCase_, remove_columns=["idx", "sentence1", "sentence2"], load_from_cache_file=UpperCamelCase_) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __lowercase = tokenized_datasets.rename_column("label", "labels") def collate_fn(UpperCamelCase_ : Tuple): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(UpperCamelCase_, padding="max_length", max_length=128, return_tensors="pt") return tokenizer.pad(UpperCamelCase_, padding="longest", return_tensors="pt") # Instantiate dataloaders. __lowercase = DataLoader( tokenized_datasets["train"], shuffle=UpperCamelCase_, collate_fn=UpperCamelCase_, batch_size=UpperCamelCase_) __lowercase = DataLoader( tokenized_datasets["validation"], shuffle=UpperCamelCase_, collate_fn=UpperCamelCase_, batch_size=UpperCamelCase_) return train_dataloader, eval_dataloader def _A ( UpperCamelCase_ : Tuple, UpperCamelCase_ : Tuple) -> Tuple: '''simple docstring''' __lowercase = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __lowercase = config["lr"] __lowercase = int(config["num_epochs"]) __lowercase = int(config["seed"]) __lowercase = int(config["batch_size"]) __lowercase = args.model_name_or_path set_seed(UpperCamelCase_) __lowercase ,__lowercase = get_dataloaders(UpperCamelCase_, UpperCamelCase_, UpperCamelCase_) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __lowercase = AutoModelForSequenceClassification.from_pretrained(UpperCamelCase_, return_dict=UpperCamelCase_) # Instantiate optimizer __lowercase = ( AdamW if accelerator.state.deepspeed_plugin is None or "optimizer" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) __lowercase = optimizer_cls(params=model.parameters(), lr=UpperCamelCase_) if accelerator.state.deepspeed_plugin is not None: __lowercase = accelerator.state.deepspeed_plugin.deepspeed_config[ "gradient_accumulation_steps" ] else: __lowercase = 1 __lowercase = (len(UpperCamelCase_) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): __lowercase = get_linear_schedule_with_warmup( optimizer=UpperCamelCase_, num_warmup_steps=0, num_training_steps=UpperCamelCase_, ) else: __lowercase = DummyScheduler(UpperCamelCase_, total_num_steps=UpperCamelCase_, warmup_num_steps=0) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __lowercase ,__lowercase ,__lowercase ,__lowercase ,__lowercase = accelerator.prepare( UpperCamelCase_, UpperCamelCase_, UpperCamelCase_, UpperCamelCase_, UpperCamelCase_) # We need to keep track of how many total steps we have iterated over __lowercase = 0 # We also need to keep track of the stating epoch so files are named properly __lowercase = 0 # Now we train the model __lowercase = evaluate.load("glue", "mrpc") __lowercase = 0 __lowercase = {} for epoch in range(UpperCamelCase_, UpperCamelCase_): model.train() for step, batch in enumerate(UpperCamelCase_): __lowercase = model(**UpperCamelCase_) __lowercase = outputs.loss __lowercase = loss / gradient_accumulation_steps accelerator.backward(UpperCamelCase_) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 model.eval() __lowercase = 0 for step, batch in enumerate(UpperCamelCase_): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device) with torch.no_grad(): __lowercase = model(**UpperCamelCase_) __lowercase = outputs.logits.argmax(dim=-1) # It is slightly faster to call this once, than multiple times __lowercase ,__lowercase = accelerator.gather( (predictions, batch["labels"])) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(UpperCamelCase_) - 1: __lowercase = predictions[: len(eval_dataloader.dataset) - samples_seen] __lowercase = references[: len(eval_dataloader.dataset) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=UpperCamelCase_, references=UpperCamelCase_, ) __lowercase = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"""epoch {epoch}:""", UpperCamelCase_) __lowercase = eval_metric["accuracy"] if best_performance < eval_metric["accuracy"]: __lowercase = eval_metric["accuracy"] if args.performance_lower_bound is not None: assert ( args.performance_lower_bound <= best_performance ), F"""Best performance metric {best_performance} is lower than the lower bound {args.performance_lower_bound}""" accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir, "all_results.json"), "w") as f: json.dump(UpperCamelCase_, UpperCamelCase_) def _A ( ) -> List[str]: '''simple docstring''' __lowercase = argparse.ArgumentParser(description="Simple example of training script tracking peak GPU memory usage.") parser.add_argument( "--model_name_or_path", type=UpperCamelCase_, default="bert-base-cased", help="Path to pretrained model or model identifier from huggingface.co/models.", required=UpperCamelCase_, ) parser.add_argument( "--output_dir", type=UpperCamelCase_, default=".", help="Optional save directory where all checkpoint folders will be stored. Default is the current working directory.", ) parser.add_argument( "--performance_lower_bound", type=UpperCamelCase_, default=UpperCamelCase_, help="Optional lower bound for the performance metric. If set, the training will throw error when the performance metric drops below this value.", ) parser.add_argument( "--num_epochs", type=UpperCamelCase_, default=3, help="Number of train epochs.", ) __lowercase = parser.parse_args() __lowercase = {"lr": 2E-5, "num_epochs": args.num_epochs, "seed": 42, "batch_size": 16} training_function(UpperCamelCase_, UpperCamelCase_) if __name__ == "__main__": main()
17
"""simple docstring""" import inspect import unittest import numpy as np from transformers import BeitConfig from transformers.testing_utils import require_flax, require_vision, slow from transformers.utils import cached_property, is_flax_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor if is_flax_available(): import jax from transformers import FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self : str, UpperCAmelCase__ : List[Any], UpperCAmelCase__ : int=1_0_0, UpperCAmelCase__ : Any=1_3, UpperCAmelCase__ : List[Any]=3_0, UpperCAmelCase__ : Dict=2, UpperCAmelCase__ : Any=3, UpperCAmelCase__ : Optional[Any]=True, UpperCAmelCase__ : List[str]=True, UpperCAmelCase__ : Optional[Any]=3_2, UpperCAmelCase__ : Any=5, UpperCAmelCase__ : Any=4, UpperCAmelCase__ : Any=3_7, UpperCAmelCase__ : Optional[int]="gelu", UpperCAmelCase__ : Dict=0.1, UpperCAmelCase__ : Optional[int]=0.1, UpperCAmelCase__ : Dict=1_0, UpperCAmelCase__ : Tuple=0.02, UpperCAmelCase__ : List[Any]=3, ): __lowercase = parent __lowercase = vocab_size __lowercase = batch_size __lowercase = image_size __lowercase = patch_size __lowercase = num_channels __lowercase = is_training __lowercase = use_labels __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = type_sequence_label_size __lowercase = initializer_range # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) __lowercase = (image_size // patch_size) ** 2 __lowercase = num_patches + 1 def _lowercase ( self : int ): __lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size], self.type_sequence_label_size ) __lowercase = BeitConfig( vocab_size=self.vocab_size, image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=UpperCAmelCase__, initializer_range=self.initializer_range, ) return config, pixel_values, labels def _lowercase ( self : Any, UpperCAmelCase__ : List[Any], UpperCAmelCase__ : List[str], UpperCAmelCase__ : List[str] ): __lowercase = FlaxBeitModel(config=UpperCAmelCase__ ) __lowercase = model(UpperCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase ( self : Optional[Any], UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : int, UpperCAmelCase__ : List[Any] ): __lowercase = FlaxBeitForMaskedImageModeling(config=UpperCAmelCase__ ) __lowercase = model(UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length - 1, self.vocab_size) ) def _lowercase ( self : Dict, UpperCAmelCase__ : List[Any], UpperCAmelCase__ : Any, UpperCAmelCase__ : Union[str, Any] ): __lowercase = self.type_sequence_label_size __lowercase = FlaxBeitForImageClassification(config=UpperCAmelCase__ ) __lowercase = model(UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __lowercase = 1 __lowercase = FlaxBeitForImageClassification(UpperCAmelCase__ ) __lowercase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __lowercase = model(UpperCAmelCase__ ) def _lowercase ( self : List[str] ): __lowercase = self.prepare_config_and_inputs() ( ( __lowercase ) ,( __lowercase ) ,( __lowercase ) , ) = config_and_inputs __lowercase = {"pixel_values": pixel_values} return config, inputs_dict @require_flax class _lowerCAmelCase ( lowercase ,unittest.TestCase ): """simple docstring""" __UpperCAmelCase : str = ( (FlaxBeitModel, FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling) if is_flax_available() else () ) def _lowercase ( self : List[Any] ): __lowercase = FlaxBeitModelTester(self ) __lowercase = ConfigTester(self, config_class=UpperCAmelCase__, has_text_modality=UpperCAmelCase__, hidden_size=3_7 ) def _lowercase ( self : Union[str, Any] ): self.config_tester.run_common_tests() def _lowercase ( self : Optional[int] ): __lowercase ,__lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = model_class(UpperCAmelCase__ ) __lowercase = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase = [*signature.parameters.keys()] __lowercase = ["pixel_values"] self.assertListEqual(arg_names[:1], UpperCAmelCase__ ) def _lowercase ( self : Tuple ): __lowercase ,__lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __lowercase = self._prepare_for_class(UpperCAmelCase__, UpperCAmelCase__ ) __lowercase = model_class(UpperCAmelCase__ ) @jax.jit def model_jitted(UpperCAmelCase__ : str, **UpperCAmelCase__ : Dict ): return model(pixel_values=UpperCAmelCase__, **UpperCAmelCase__ ) with self.subTest("JIT Enabled" ): __lowercase = model_jitted(**UpperCAmelCase__ ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): __lowercase = model_jitted(**UpperCAmelCase__ ).to_tuple() self.assertEqual(len(UpperCAmelCase__ ), len(UpperCAmelCase__ ) ) for jitted_output, output in zip(UpperCAmelCase__, UpperCAmelCase__ ): self.assertEqual(jitted_output.shape, output.shape ) def _lowercase ( self : List[str] ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase__ ) def _lowercase ( self : int ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase__ ) def _lowercase ( self : Tuple ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase__ ) @slow def _lowercase ( self : Union[str, Any] ): for model_class_name in self.all_model_classes: __lowercase = model_class_name.from_pretrained("microsoft/beit-base-patch16-224" ) __lowercase = model(np.ones((1, 3, 2_2_4, 2_2_4) ) ) self.assertIsNotNone(UpperCAmelCase__ ) def _A ( ) -> str: '''simple docstring''' __lowercase = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") return image @require_vision @require_flax class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def _lowercase ( self : Optional[int] ): return BeitImageProcessor.from_pretrained("microsoft/beit-base-patch16-224" ) if is_vision_available() else None @slow def _lowercase ( self : Any ): __lowercase = FlaxBeitForMaskedImageModeling.from_pretrained("microsoft/beit-base-patch16-224-pt22k" ) __lowercase = self.default_image_processor __lowercase = prepare_img() __lowercase = image_processor(images=UpperCAmelCase__, return_tensors="np" ).pixel_values # prepare bool_masked_pos __lowercase = np.ones((1, 1_9_6), dtype=UpperCAmelCase__ ) # forward pass __lowercase = model(pixel_values=UpperCAmelCase__, bool_masked_pos=UpperCAmelCase__ ) __lowercase = outputs.logits # verify the logits __lowercase = (1, 1_9_6, 8_1_9_2) self.assertEqual(logits.shape, UpperCAmelCase__ ) __lowercase = np.array( [[-3.2_437, 0.5_072, -13.9_174], [-3.2_456, 0.4_948, -13.9_401], [-3.2_033, 0.5_121, -13.8_550]] ) self.assertTrue(np.allclose(logits[bool_masked_pos][:3, :3], UpperCAmelCase__, atol=1E-2 ) ) @slow def _lowercase ( self : Any ): __lowercase = FlaxBeitForImageClassification.from_pretrained("microsoft/beit-base-patch16-224" ) __lowercase = self.default_image_processor __lowercase = prepare_img() __lowercase = image_processor(images=UpperCAmelCase__, return_tensors="np" ) # forward pass __lowercase = model(**UpperCAmelCase__ ) __lowercase = outputs.logits # verify the logits __lowercase = (1, 1_0_0_0) self.assertEqual(logits.shape, UpperCAmelCase__ ) __lowercase = np.array([-1.2_385, -1.0_987, -1.0_108] ) self.assertTrue(np.allclose(logits[0, :3], UpperCAmelCase__, atol=1E-4 ) ) __lowercase = 2_8_1 self.assertEqual(logits.argmax(-1 ).item(), UpperCAmelCase__ ) @slow def _lowercase ( self : List[str] ): __lowercase = FlaxBeitForImageClassification.from_pretrained("microsoft/beit-large-patch16-224-pt22k-ft22k" ) __lowercase = self.default_image_processor __lowercase = prepare_img() __lowercase = image_processor(images=UpperCAmelCase__, return_tensors="np" ) # forward pass __lowercase = model(**UpperCAmelCase__ ) __lowercase = outputs.logits # verify the logits __lowercase = (1, 2_1_8_4_1) self.assertEqual(logits.shape, UpperCAmelCase__ ) __lowercase = np.array([1.6_881, -0.2_787, 0.5_901] ) self.assertTrue(np.allclose(logits[0, :3], UpperCAmelCase__, atol=1E-4 ) ) __lowercase = 2_3_9_6 self.assertEqual(logits.argmax(-1 ).item(), UpperCAmelCase__ )
17
1
"""simple docstring""" from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = ["""image_processor""", """tokenizer"""] lowerCamelCase__ = """BlipImageProcessor""" lowerCamelCase__ = ("""BertTokenizer""", """BertTokenizerFast""") def __init__( self , lowercase , lowercase ): _lowerCamelCase : Tuple = False super().__init__(lowercase , lowercase ) _lowerCamelCase : Tuple = self.image_processor def __call__( self , lowercase = None , lowercase = None , lowercase = True , lowercase = False , lowercase = None , lowercase = None , lowercase = 0 , lowercase = None , lowercase = None , lowercase = False , lowercase = False , lowercase = False , lowercase = False , lowercase = False , lowercase = True , lowercase = None , **lowercase , ): if images is None and text is None: raise ValueError('You have to specify either images or text.' ) # Get only text if images is None: _lowerCamelCase : List[Any] = self.tokenizer _lowerCamelCase : List[str] = self.tokenizer( text=lowercase , add_special_tokens=lowercase , padding=lowercase , truncation=lowercase , max_length=lowercase , stride=lowercase , pad_to_multiple_of=lowercase , return_attention_mask=lowercase , return_overflowing_tokens=lowercase , return_special_tokens_mask=lowercase , return_offsets_mapping=lowercase , return_token_type_ids=lowercase , return_length=lowercase , verbose=lowercase , return_tensors=lowercase , **lowercase , ) return text_encoding # add pixel_values _lowerCamelCase : Optional[int] = self.image_processor(lowercase , return_tensors=lowercase ) if text is not None: _lowerCamelCase : Optional[int] = self.tokenizer( text=lowercase , add_special_tokens=lowercase , padding=lowercase , truncation=lowercase , max_length=lowercase , stride=lowercase , pad_to_multiple_of=lowercase , return_attention_mask=lowercase , return_overflowing_tokens=lowercase , return_special_tokens_mask=lowercase , return_offsets_mapping=lowercase , return_token_type_ids=lowercase , return_length=lowercase , verbose=lowercase , return_tensors=lowercase , **lowercase , ) else: _lowerCamelCase : str = None if text_encoding is not None: encoding_image_processor.update(lowercase ) return encoding_image_processor def A_ ( self , *lowercase , **lowercase ): return self.tokenizer.batch_decode(*lowercase , **lowercase ) def A_ ( self , *lowercase , **lowercase ): return self.tokenizer.decode(*lowercase , **lowercase ) @property def A_ ( self ): _lowerCamelCase : Union[str, Any] = self.tokenizer.model_input_names _lowerCamelCase : Any = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
12
"""simple docstring""" from __future__ import annotations import unittest import numpy as np from transformers import OPTConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import GPTaTokenizer, TFOPTForCausalLM, TFOPTModel def _snake_case ( lowercase__ , lowercase__ , lowercase__=None , lowercase__=None ): if attention_mask is None: _lowerCamelCase : List[str] = tf.cast(tf.math.not_equal(lowercase__ , config.pad_token_id ) , tf.inta ) return {"input_ids": input_ids, "attention_mask": attention_mask} @require_tf class lowerCAmelCase__ : '''simple docstring''' lowerCamelCase__ = OPTConfig lowerCamelCase__ = {} lowerCamelCase__ = """gelu""" def __init__( self , lowercase , lowercase=13 , lowercase=7 , lowercase=True , lowercase=False , lowercase=99 , lowercase=16 , lowercase=2 , lowercase=4 , lowercase=4 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=20 , lowercase=2 , lowercase=1 , lowercase=0 , lowercase=16 , lowercase=16 , ): _lowerCamelCase : Tuple = parent _lowerCamelCase : Any = batch_size _lowerCamelCase : Tuple = seq_length _lowerCamelCase : str = is_training _lowerCamelCase : Optional[int] = use_labels _lowerCamelCase : List[Any] = vocab_size _lowerCamelCase : Dict = hidden_size _lowerCamelCase : str = num_hidden_layers _lowerCamelCase : Optional[int] = num_attention_heads _lowerCamelCase : Any = intermediate_size _lowerCamelCase : Dict = hidden_act _lowerCamelCase : Any = hidden_dropout_prob _lowerCamelCase : List[str] = attention_probs_dropout_prob _lowerCamelCase : Optional[Any] = max_position_embeddings _lowerCamelCase : List[Any] = eos_token_id _lowerCamelCase : Tuple = pad_token_id _lowerCamelCase : List[str] = bos_token_id _lowerCamelCase : Optional[int] = embed_dim _lowerCamelCase : List[str] = word_embed_proj_dim _lowerCamelCase : Any = False def A_ ( self ): _lowerCamelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) _lowerCamelCase : Optional[int] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) _lowerCamelCase : str = tf.concat([input_ids, eos_tensor] , axis=1 ) _lowerCamelCase : Tuple = self.config_cls( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , embed_dim=self.embed_dim , word_embed_proj_dim=self.word_embed_proj_dim , is_encoder_decoder=lowercase , **self.config_updates , ) _lowerCamelCase : int = prepare_opt_inputs_dict(lowercase , lowercase ) return config, inputs_dict def A_ ( self , lowercase , lowercase ): _lowerCamelCase : Optional[Any] = TFOPTModel(config=lowercase ) _lowerCamelCase : Optional[Any] = inputs_dict['input_ids'] _lowerCamelCase : str = input_ids[:1, :] _lowerCamelCase : Dict = inputs_dict['attention_mask'][:1, :] _lowerCamelCase : Optional[Any] = 1 # first forward pass _lowerCamelCase : Any = model(lowercase , attention_mask=lowercase , use_cache=lowercase ) _lowerCamelCase, _lowerCamelCase : List[str] = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _lowerCamelCase : Optional[Any] = ids_tensor((self.batch_size, 3) , config.vocab_size ) _lowerCamelCase : Optional[Any] = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and _lowerCamelCase : List[Any] = tf.concat([input_ids, next_tokens] , axis=-1 ) _lowerCamelCase : Optional[int] = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) _lowerCamelCase : Optional[Any] = model(lowercase , attention_mask=lowercase )[0] _lowerCamelCase : List[str] = model(lowercase , attention_mask=lowercase , past_key_values=lowercase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice _lowerCamelCase : Any = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) _lowerCamelCase : Optional[int] = output_from_no_past[:, -3:, random_slice_idx] _lowerCamelCase : List[str] = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowercase , lowercase , rtol=1E-3 ) @require_tf class lowerCAmelCase__ ( lowercase, lowercase, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = (TFOPTModel, TFOPTForCausalLM) if is_tf_available() else () lowerCamelCase__ = (TFOPTForCausalLM,) if is_tf_available() else () lowerCamelCase__ = ( {"""feature-extraction""": TFOPTModel, """text-generation""": TFOPTForCausalLM} if is_tf_available() else {} ) lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = 10 def A_ ( self ): _lowerCamelCase : int = TFOPTModelTester(self ) _lowerCamelCase : Tuple = ConfigTester(self , config_class=lowercase ) def A_ ( self ): self.config_tester.run_common_tests() def A_ ( self ): _lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowercase ) def A_ ( self ): _lowerCamelCase, _lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() def _get_word_embedding_weight(lowercase , lowercase ): if hasattr(lowercase , 'weight' ): return embedding_layer.weight else: # Here we build the word embeddings weights if not exists. # And then we retry to get the attribute once built. model.build() if hasattr(lowercase , 'weight' ): return embedding_layer.weight else: return None for model_class in self.all_model_classes: for size in [config.vocab_size - 10, config.vocab_size + 10]: # build the embeddings _lowerCamelCase : Optional[int] = model_class(config=lowercase ) _lowerCamelCase : int = _get_word_embedding_weight(lowercase , model.get_input_embeddings() ) _lowerCamelCase : Tuple = _get_word_embedding_weight(lowercase , model.get_output_embeddings() ) # reshape the embeddings model.resize_token_embeddings(lowercase ) _lowerCamelCase : str = _get_word_embedding_weight(lowercase , model.get_input_embeddings() ) _lowerCamelCase : Any = _get_word_embedding_weight(lowercase , model.get_output_embeddings() ) # check that the resized embeddings size matches the desired size. _lowerCamelCase : Union[str, Any] = size if size is not None else config.vocab_size self.assertEqual(new_input_embeddings.shape[0] , lowercase ) # check that weights remain the same after resizing _lowerCamelCase : int = True for pa, pa in zip(old_input_embeddings.value() , new_input_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: _lowerCamelCase : Optional[Any] = False self.assertTrue(lowercase ) if old_output_embeddings is not None and new_output_embeddings is not None: self.assertEqual(new_output_embeddings.shape[0] , lowercase ) _lowerCamelCase : Dict = True for pa, pa in zip(old_output_embeddings.value() , new_output_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: _lowerCamelCase : Union[str, Any] = False self.assertTrue(lowercase ) def _snake_case ( lowercase__ ): return tf.constant(lowercase__ , dtype=tf.intaa ) @require_tf class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = 99 def A_ ( self ): _lowerCamelCase : Tuple = tf.ones((4, 1) , dtype=tf.intaa ) * 2 _lowerCamelCase : Tuple = tf.concat([ids_tensor((4, 6) , self.vocab_size - 3 ) + 3, eos_column_vector] , axis=1 ) _lowerCamelCase : int = input_ids.shape[0] _lowerCamelCase : List[Any] = OPTConfig( vocab_size=self.vocab_size , hidden_size=24 , num_hidden_layers=2 , num_attention_heads=2 , ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size @require_sentencepiece @require_tf class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' @slow def A_ ( self ): _lowerCamelCase : Tuple = TFOPTModel.from_pretrained('facebook/opt-350m' ) _lowerCamelCase : List[Any] = _long_tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]] ) _lowerCamelCase : List[str] = tf.not_equal(lowercase , model.config.pad_token_id ) with tf.GradientTape(): _lowerCamelCase : List[str] = model(input_ids=lowercase , attention_mask=lowercase ).last_hidden_state _lowerCamelCase : Optional[Any] = (1, 11, 512) self.assertEqual(output.shape , lowercase ) _lowerCamelCase : List[str] = tf.constant( [[-0.28_73, -1.92_18, -0.30_33], [-1.27_10, -0.13_38, -0.19_02], [0.40_95, 0.12_14, -1.31_21]] ) self.assertTrue(np.allclose(output[:, :3, :3] , lowercase , atol=4E-3 ) ) _lowerCamelCase : List[str] = tf.function(lowercase , jit_compile=lowercase ) _lowerCamelCase : Union[str, Any] = xla_generate(lowercase , lowercase )[0] self.assertTrue(np.allclose(output[:, :3, :3] , lowercase , atol=4E-2 ) ) @require_tf @slow class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def A_ ( self ): super().setUp() _lowerCamelCase : List[Any] = 'facebook/opt-350m' def A_ ( self ): _lowerCamelCase : int = TFOPTForCausalLM.from_pretrained(self.path_model ) _lowerCamelCase : List[Any] = GPTaTokenizer.from_pretrained(self.path_model ) _lowerCamelCase : List[str] = [ 'Today is a beautiful day and I want to', 'In the city of', 'Paris is the capital of France and', 'Computers and mobile phones have taken', ] # verify that prompt without BOS token is identical to Metaseq -> add_special_tokens=False _lowerCamelCase : List[Any] = tokenizer(lowercase , return_tensors='tf' , padding=lowercase , add_special_tokens=lowercase ) _lowerCamelCase : Optional[int] = tf.math.reduce_mean(model(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) _lowerCamelCase : Any = tf.constant( [ [1.38_51, -13.89_23, -10.52_29, -10.75_33, -0.23_09, -10.23_84, -0.53_65, -9.09_47, -5.16_70], [-4.70_73, -10.62_76, -3.94_15, -21.52_42, -0.28_22, -0.28_22, -0.28_22, -0.28_22, -0.28_22], [0.62_47, -3.42_29, -8.91_79, -1.42_97, -14.16_50, 1.41_46, -9.02_18, -0.27_03, -0.27_03], [6.47_83, -1.99_13, -10.79_26, -2.33_36, 1.50_92, -0.99_74, -6.82_13, 1.34_77, 1.34_77], ] ) self.assertTrue(np.allclose(lowercase , lowercase , atol=1E-4 ) ) _lowerCamelCase : Tuple = tf.function(lowercase , jit_compile=lowercase ) _lowerCamelCase : List[Any] = tf.math.reduce_mean(xla_generate(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) self.assertTrue(np.allclose(lowercase , lowercase , atol=1E-4 ) ) @require_tf @slow class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' @property def A_ ( self ): return [ "Today is a beautiful day and I want", "In the city of", "Paris is the capital of France and", "Computers and mobile phones have taken", ] def A_ ( self ): _lowerCamelCase : str = 'facebook/opt-125m' _lowerCamelCase : Dict = [ 'Today is a beautiful day and I want to', 'In the city of New York, the city', 'Paris is the capital of France and the capital', 'Computers and mobile phones have taken over the', ] _lowerCamelCase : Optional[int] = [] _lowerCamelCase : Optional[int] = GPTaTokenizer.from_pretrained(lowercase ) _lowerCamelCase : Dict = TFOPTForCausalLM.from_pretrained(lowercase ) for prompt in self.prompts: _lowerCamelCase : int = tokenizer(lowercase , return_tensors='tf' ).input_ids _lowerCamelCase : int = model.generate(lowercase , max_length=10 ) _lowerCamelCase : Any = tokenizer.batch_decode(lowercase , skip_special_tokens=lowercase ) predicted_outputs += generated_string self.assertListEqual(lowercase , lowercase ) def A_ ( self ): _lowerCamelCase : List[Any] = 'facebook/opt-350m' _lowerCamelCase : int = GPTaTokenizer.from_pretrained(lowercase ) _lowerCamelCase : Optional[int] = TFOPTForCausalLM.from_pretrained(lowercase ) _lowerCamelCase : Any = 'left' # use different length sentences to test batching _lowerCamelCase : Optional[int] = [ 'Hello, my dog is a little', 'Today, I', ] _lowerCamelCase : Dict = tokenizer(lowercase , return_tensors='tf' , padding=lowercase ) _lowerCamelCase : int = inputs['input_ids'] _lowerCamelCase : Tuple = model.generate(input_ids=lowercase , attention_mask=inputs['attention_mask'] ) _lowerCamelCase : Optional[int] = tokenizer(sentences[0] , return_tensors='tf' ).input_ids _lowerCamelCase : Union[str, Any] = model.generate(input_ids=lowercase ) _lowerCamelCase : Dict = inputs_non_padded.shape[-1] - tf.math.reduce_sum( tf.cast(inputs['attention_mask'][-1] , tf.intaa ) ) _lowerCamelCase : int = tokenizer(sentences[1] , return_tensors='tf' ).input_ids _lowerCamelCase : Union[str, Any] = model.generate(input_ids=lowercase , max_length=model.config.max_length - num_paddings ) _lowerCamelCase : List[Any] = tokenizer.batch_decode(lowercase , skip_special_tokens=lowercase ) _lowerCamelCase : Union[str, Any] = tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowercase ) _lowerCamelCase : Optional[Any] = tokenizer.decode(output_padded[0] , skip_special_tokens=lowercase ) _lowerCamelCase : Optional[Any] = [ 'Hello, my dog is a little bit of a dork.\nI\'m a little bit', 'Today, I was in the middle of a conversation with a friend about the', ] self.assertListEqual(lowercase , lowercase ) self.assertListEqual(lowercase , [non_padded_sentence, padded_sentence] ) def A_ ( self ): _lowerCamelCase : Tuple = 'facebook/opt-350m' _lowerCamelCase : List[Any] = [ 'Today is a beautiful day and I want to', 'In the city of San Francisco, the city', 'Paris is the capital of France and the capital', 'Computers and mobile phones have taken over the', ] _lowerCamelCase : Optional[int] = [] _lowerCamelCase : Optional[Any] = GPTaTokenizer.from_pretrained(lowercase ) _lowerCamelCase : Optional[Any] = TFOPTForCausalLM.from_pretrained(lowercase ) for prompt in self.prompts: _lowerCamelCase : List[Any] = tokenizer(lowercase , return_tensors='tf' ).input_ids _lowerCamelCase : Optional[Any] = model.generate(lowercase , max_length=10 ) _lowerCamelCase : Dict = tokenizer.batch_decode(lowercase , skip_special_tokens=lowercase ) predicted_outputs += generated_string self.assertListEqual(lowercase , lowercase )
12
1
import unittest from transformers import BertGenerationTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _snake_case = "▁" _snake_case = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece class lowercase ( UpperCamelCase__,unittest.TestCase ): _a = BertGenerationTokenizer _a = False _a = True def a__ ( self ) -> str: super().setUp() _A : Tuple = BertGenerationTokenizer(_a , keep_accents=_a ) tokenizer.save_pretrained(self.tmpdirname ) def a__ ( self ) -> Union[str, Any]: _A : List[Any] = """<s>""" _A : Optional[int] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_a ) , _a ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_a ) , _a ) def a__ ( self ) -> List[Any]: _A : List[str] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<unk>""" ) self.assertEqual(vocab_keys[1] , """<s>""" ) self.assertEqual(vocab_keys[-1] , """<pad>""" ) self.assertEqual(len(_a ) , 1002 ) def a__ ( self ) -> Union[str, Any]: self.assertEqual(self.get_tokenizer().vocab_size , 1000 ) def a__ ( self ) -> Union[str, Any]: _A : str = BertGenerationTokenizer(_a , keep_accents=_a ) _A : Tuple = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(_a , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_a ) , [285, 46, 10, 170, 382] , ) _A : Union[str, Any] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( _a , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) _A : List[str] = tokenizer.convert_tokens_to_ids(_a ) self.assertListEqual( _a , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) _A : Union[str, Any] = tokenizer.convert_ids_to_tokens(_a ) self.assertListEqual( _a , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) @cached_property def a__ ( self ) -> Tuple: return BertGenerationTokenizer.from_pretrained("""google/bert_for_seq_generation_L-24_bbc_encoder""" ) @slow def a__ ( self ) -> List[Any]: _A : List[Any] = """Hello World!""" _A : List[str] = [1_8536, 2260, 101] self.assertListEqual(_a , self.big_tokenizer.encode(_a ) ) @slow def a__ ( self ) -> List[str]: _A : str = ( """This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will""" """ add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth""" ) _A : List[Any] = [ 871, 419, 358, 946, 991, 2521, 452, 358, 1357, 387, 7751, 3536, 112, 985, 456, 126, 865, 938, 5400, 5734, 458, 1368, 467, 786, 2462, 5246, 1159, 633, 865, 4519, 457, 582, 852, 2557, 427, 916, 508, 405, 3_4324, 497, 391, 408, 1_1342, 1244, 385, 100, 938, 985, 456, 574, 362, 1_2597, 3200, 3129, 1172, ] self.assertListEqual(_a , self.big_tokenizer.encode(_a ) ) @require_torch @slow def a__ ( self ) -> Optional[Any]: import torch from transformers import BertGenerationConfig, BertGenerationEncoder # Build sequence _A : Optional[int] = list(self.big_tokenizer.get_vocab().keys() )[:10] _A : str = """ """.join(_a ) _A : int = self.big_tokenizer.encode_plus(_a , return_tensors="""pt""" , return_token_type_ids=_a ) _A : Any = self.big_tokenizer.batch_encode_plus( [sequence + """ """ + sequence] , return_tensors="""pt""" , return_token_type_ids=_a ) _A : Optional[int] = BertGenerationConfig() _A : int = BertGenerationEncoder(_a ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**_a ) model(**_a ) @slow def a__ ( self ) -> Optional[Any]: # fmt: off _A : Any = {"""input_ids""": [[3_9286, 458, 3_6335, 2001, 456, 1_3073, 1_3266, 455, 113, 7746, 1741, 1_1157, 391, 1_3073, 1_3266, 455, 113, 3967, 3_5412, 113, 4936, 109, 3870, 2377, 113, 3_0084, 4_5720, 458, 134, 1_7496, 112, 503, 1_1672, 113, 118, 112, 5665, 1_3347, 3_8687, 112, 1496, 3_1389, 112, 3268, 4_7264, 134, 962, 112, 1_6377, 8035, 2_3130, 430, 1_2169, 1_5518, 2_8592, 458, 146, 4_1697, 109, 391, 1_2169, 1_5518, 1_6689, 458, 146, 4_1358, 109, 452, 726, 4034, 111, 763, 3_5412, 5082, 388, 1903, 111, 9051, 391, 2870, 4_8918, 1900, 1123, 550, 998, 112, 9586, 1_5985, 455, 391, 410, 2_2955, 3_7636, 114], [448, 1_7496, 419, 3663, 385, 763, 113, 2_7533, 2870, 3283, 1_3043, 1639, 2_4713, 523, 656, 2_4013, 1_8550, 2521, 517, 2_7014, 2_1244, 420, 1212, 1465, 391, 927, 4833, 388, 578, 1_1786, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [484, 2169, 7687, 2_1932, 1_8146, 726, 363, 1_7032, 3391, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_a , model_name="""google/bert_for_seq_generation_L-24_bbc_encoder""" , revision="""c817d1fd1be2ffa69431227a1fe320544943d4db""" , )
26
import torch from diffusers import DPMSolverSDEScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import require_torchsde from .test_schedulers import SchedulerCommonTest @require_torchsde class lowercase ( UpperCamelCase__ ): _a = (DPMSolverSDEScheduler,) _a = 1_0 def a__ ( self , **_a ) -> Optional[Any]: _A : str = { """num_train_timesteps""": 1100, """beta_start""": 0.0001, """beta_end""": 0.02, """beta_schedule""": """linear""", """noise_sampler_seed""": 0, } config.update(**_a ) return config def a__ ( self ) -> Tuple: for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=_a ) def a__ ( self ) -> Optional[int]: for beta_start, beta_end in zip([0.00001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=_a , beta_end=_a ) def a__ ( self ) -> Any: for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=_a ) def a__ ( self ) -> Optional[int]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_a ) def a__ ( self ) -> Optional[int]: _A : Any = self.scheduler_classes[0] _A : List[str] = self.get_scheduler_config() _A : Optional[Any] = scheduler_class(**_a ) scheduler.set_timesteps(self.num_inference_steps ) _A : Dict = self.dummy_model() _A : Any = self.dummy_sample_deter * scheduler.init_noise_sigma _A : Dict = sample.to(_a ) for i, t in enumerate(scheduler.timesteps ): _A : Optional[int] = scheduler.scale_model_input(_a , _a ) _A : str = model(_a , _a ) _A : List[Any] = scheduler.step(_a , _a , _a ) _A : Optional[int] = output.prev_sample _A : Dict = torch.sum(torch.abs(_a ) ) _A : Dict = torch.mean(torch.abs(_a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.47821044921875 ) < 1e-2 assert abs(result_mean.item() - 0.2178705964565277 ) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59352111816406 ) < 1e-2 assert abs(result_mean.item() - 0.22342906892299652 ) < 1e-3 else: assert abs(result_sum.item() - 162.52383422851562 ) < 1e-2 assert abs(result_mean.item() - 0.211619570851326 ) < 1e-3 def a__ ( self ) -> Optional[Any]: _A : Dict = self.scheduler_classes[0] _A : Optional[int] = self.get_scheduler_config(prediction_type="""v_prediction""" ) _A : Optional[Any] = scheduler_class(**_a ) scheduler.set_timesteps(self.num_inference_steps ) _A : Tuple = self.dummy_model() _A : int = self.dummy_sample_deter * scheduler.init_noise_sigma _A : Tuple = sample.to(_a ) for i, t in enumerate(scheduler.timesteps ): _A : int = scheduler.scale_model_input(_a , _a ) _A : Tuple = model(_a , _a ) _A : Dict = scheduler.step(_a , _a , _a ) _A : Optional[int] = output.prev_sample _A : Optional[Any] = torch.sum(torch.abs(_a ) ) _A : List[Any] = torch.mean(torch.abs(_a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 124.77149200439453 ) < 1e-2 assert abs(result_mean.item() - 0.16226289014816284 ) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 128.1663360595703 ) < 1e-2 assert abs(result_mean.item() - 0.16688326001167297 ) < 1e-3 else: assert abs(result_sum.item() - 119.8487548828125 ) < 1e-2 assert abs(result_mean.item() - 0.1560530662536621 ) < 1e-3 def a__ ( self ) -> List[str]: _A : Union[str, Any] = self.scheduler_classes[0] _A : List[Any] = self.get_scheduler_config() _A : List[str] = scheduler_class(**_a ) scheduler.set_timesteps(self.num_inference_steps , device=_a ) _A : Union[str, Any] = self.dummy_model() _A : Optional[Any] = self.dummy_sample_deter.to(_a ) * scheduler.init_noise_sigma for t in scheduler.timesteps: _A : int = scheduler.scale_model_input(_a , _a ) _A : List[Any] = model(_a , _a ) _A : Dict = scheduler.step(_a , _a , _a ) _A : Dict = output.prev_sample _A : str = torch.sum(torch.abs(_a ) ) _A : str = torch.mean(torch.abs(_a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.46957397460938 ) < 1e-2 assert abs(result_mean.item() - 0.21805934607982635 ) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59353637695312 ) < 1e-2 assert abs(result_mean.item() - 0.22342908382415771 ) < 1e-3 else: assert abs(result_sum.item() - 162.52383422851562 ) < 1e-2 assert abs(result_mean.item() - 0.211619570851326 ) < 1e-3 def a__ ( self ) -> Union[str, Any]: _A : List[Any] = self.scheduler_classes[0] _A : Optional[Any] = self.get_scheduler_config() _A : int = scheduler_class(**_a , use_karras_sigmas=_a ) scheduler.set_timesteps(self.num_inference_steps , device=_a ) _A : Optional[Any] = self.dummy_model() _A : Dict = self.dummy_sample_deter.to(_a ) * scheduler.init_noise_sigma _A : str = sample.to(_a ) for t in scheduler.timesteps: _A : Optional[int] = scheduler.scale_model_input(_a , _a ) _A : List[Any] = model(_a , _a ) _A : Dict = scheduler.step(_a , _a , _a ) _A : List[str] = output.prev_sample _A : str = torch.sum(torch.abs(_a ) ) _A : List[str] = torch.mean(torch.abs(_a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 176.66974135742188 ) < 1e-2 assert abs(result_mean.item() - 0.23003872730981811 ) < 1e-2 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 177.63653564453125 ) < 1e-2 assert abs(result_mean.item() - 0.23003872730981811 ) < 1e-2 else: assert abs(result_sum.item() - 170.3135223388672 ) < 1e-2 assert abs(result_mean.item() - 0.23003872730981811 ) < 1e-2
26
1
"""simple docstring""" import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import DetrConfig, MaskFormerConfig, SwinConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskFormerForInstanceSegmentation, MaskFormerModel if is_vision_available(): from transformers import MaskFormerImageProcessor if is_vision_available(): from PIL import Image class __lowercase : '''simple docstring''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase=2 , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=10 , _UpperCAmelCase=3 , _UpperCAmelCase=32 * 4 , _UpperCAmelCase=32 * 6 , _UpperCAmelCase=4 , _UpperCAmelCase=32 , ): __a : Dict = parent __a : Optional[Any] = batch_size __a : str = is_training __a : Optional[int] = use_auxiliary_loss __a : Optional[Any] = num_queries __a : Optional[Any] = num_channels __a : List[str] = min_size __a : List[str] = max_size __a : Tuple = num_labels __a : Optional[Any] = mask_feature_size def _lowerCamelCase ( self ): __a : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( _SCREAMING_SNAKE_CASE ) __a : Tuple = torch.ones([self.batch_size, self.min_size, self.max_size] , device=_SCREAMING_SNAKE_CASE ) __a : Any = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=_SCREAMING_SNAKE_CASE ) > 0.5 ).float() __a : Tuple = (torch.rand((self.batch_size, self.num_labels) , device=_SCREAMING_SNAKE_CASE ) > 0.5).long() __a : Optional[int] = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def _lowerCamelCase ( self ): return MaskFormerConfig.from_backbone_and_decoder_configs( backbone_config=SwinConfig( depths=[1, 1, 1, 1] , ) , decoder_config=DetrConfig( decoder_ffn_dim=128 , num_queries=self.num_queries , decoder_attention_heads=2 , d_model=self.mask_feature_size , ) , mask_feature_size=self.mask_feature_size , fpn_feature_size=self.mask_feature_size , num_channels=self.num_channels , num_labels=self.num_labels , ) def _lowerCamelCase ( self ): __a , __a , __a , __a , __a : int = self.prepare_config_and_inputs() __a : List[str] = {'''pixel_values''': pixel_values, '''pixel_mask''': pixel_mask} return config, inputs_dict def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase ): __a : Any = output.encoder_hidden_states __a : Any = output.pixel_decoder_hidden_states __a : Optional[Any] = output.transformer_decoder_hidden_states self.parent.assertTrue(len(_SCREAMING_SNAKE_CASE ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_SCREAMING_SNAKE_CASE ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_SCREAMING_SNAKE_CASE ) , config.decoder_config.decoder_layers ) def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=False ): with torch.no_grad(): __a : Any = MaskFormerModel(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() __a : Any = model(pixel_values=_SCREAMING_SNAKE_CASE , pixel_mask=_SCREAMING_SNAKE_CASE ) __a : str = model(_SCREAMING_SNAKE_CASE , output_hidden_states=_SCREAMING_SNAKE_CASE ) # the correct shape of output.transformer_decoder_hidden_states ensure the correcteness of the # encoder and pixel decoder self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.mask_feature_size) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __a : List[Any] = MaskFormerForInstanceSegmentation(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() def comm_check_on_output(_UpperCAmelCase ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): __a : int = model(pixel_values=_SCREAMING_SNAKE_CASE , pixel_mask=_SCREAMING_SNAKE_CASE ) __a : Any = model(_SCREAMING_SNAKE_CASE ) comm_check_on_output(_SCREAMING_SNAKE_CASE ) __a : Tuple = model( pixel_values=_SCREAMING_SNAKE_CASE , pixel_mask=_SCREAMING_SNAKE_CASE , mask_labels=_SCREAMING_SNAKE_CASE , class_labels=_SCREAMING_SNAKE_CASE ) comm_check_on_output(_SCREAMING_SNAKE_CASE ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class __lowercase ( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): '''simple docstring''' __lowerCAmelCase = (MaskFormerModel, MaskFormerForInstanceSegmentation) if is_torch_available() else () __lowerCAmelCase = ( {"feature-extraction": MaskFormerModel, "image-segmentation": MaskFormerForInstanceSegmentation} if is_torch_available() else {} ) __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False def _lowerCamelCase ( self ): __a : List[Any] = MaskFormerModelTester(self ) __a : Optional[Any] = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , has_text_modality=_SCREAMING_SNAKE_CASE ) def _lowerCamelCase ( self ): self.config_tester.run_common_tests() def _lowerCamelCase ( self ): __a , __a : List[str] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , output_hidden_states=_SCREAMING_SNAKE_CASE ) def _lowerCamelCase ( self ): __a : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskformer_instance_segmentation_head_model(*_SCREAMING_SNAKE_CASE ) @unittest.skip(reason='''MaskFormer does not use inputs_embeds''' ) def _lowerCamelCase ( self ): pass @unittest.skip(reason='''MaskFormer does not have a get_input_embeddings method''' ) def _lowerCamelCase ( self ): pass @unittest.skip(reason='''MaskFormer is not a generative model''' ) def _lowerCamelCase ( self ): pass @unittest.skip(reason='''MaskFormer does not use token embeddings''' ) def _lowerCamelCase ( self ): pass @require_torch_multi_gpu @unittest.skip( reason='''MaskFormer has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`''' ) def _lowerCamelCase ( self ): pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def _lowerCamelCase ( self ): pass def _lowerCamelCase ( self ): __a , __a : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a : Tuple = model_class(_SCREAMING_SNAKE_CASE ) __a : str = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __a : int = [*signature.parameters.keys()] __a : Any = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _SCREAMING_SNAKE_CASE ) @slow def _lowerCamelCase ( self ): for model_name in ["facebook/maskformer-swin-small-coco"]: __a : Tuple = MaskFormerModel.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) def _lowerCamelCase ( self ): __a : int = (self.model_tester.min_size,) * 2 __a : Tuple = { '''pixel_values''': torch.randn((2, 3, *size) , device=_SCREAMING_SNAKE_CASE ), '''mask_labels''': torch.randn((2, 10, *size) , device=_SCREAMING_SNAKE_CASE ), '''class_labels''': torch.zeros(2 , 10 , device=_SCREAMING_SNAKE_CASE ).long(), } __a : str = MaskFormerForInstanceSegmentation(MaskFormerConfig() ).to(_SCREAMING_SNAKE_CASE ) __a : str = model(**_SCREAMING_SNAKE_CASE ) self.assertTrue(outputs.loss is not None ) def _lowerCamelCase ( self ): __a , __a : List[str] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , output_hidden_states=_SCREAMING_SNAKE_CASE ) def _lowerCamelCase ( self ): __a , __a : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a : Tuple = model_class(_SCREAMING_SNAKE_CASE ).to(_SCREAMING_SNAKE_CASE ) __a : Union[str, Any] = model(**_SCREAMING_SNAKE_CASE , output_attentions=_SCREAMING_SNAKE_CASE ) self.assertTrue(outputs.attentions is not None ) def _lowerCamelCase ( self ): if not self.model_tester.is_training: return # only MaskFormerForInstanceSegmentation has the loss __a : str = self.all_model_classes[1] __a , __a , __a , __a , __a : List[Any] = self.model_tester.prepare_config_and_inputs() __a : List[str] = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.train() __a : Optional[int] = model(_SCREAMING_SNAKE_CASE , mask_labels=_SCREAMING_SNAKE_CASE , class_labels=_SCREAMING_SNAKE_CASE ).loss loss.backward() def _lowerCamelCase ( self ): # only MaskFormerForInstanceSegmentation has the loss __a : Optional[int] = self.all_model_classes[1] __a , __a , __a , __a , __a : List[str] = self.model_tester.prepare_config_and_inputs() __a : List[Any] = True __a : List[str] = True __a : Union[str, Any] = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.train() __a : int = model(_SCREAMING_SNAKE_CASE , mask_labels=_SCREAMING_SNAKE_CASE , class_labels=_SCREAMING_SNAKE_CASE ) __a : int = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() __a : Optional[int] = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() # we requires_grad=True in inputs_embeds (line 2152), the original implementation don't __a : Any = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() __a : Union[str, Any] = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) A = 1e-4 def __A ( ) -> Optional[int]: __a : List[str] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''') return image @require_vision @slow class __lowercase ( unittest.TestCase ): '''simple docstring''' @cached_property def _lowerCamelCase ( self ): return ( MaskFormerImageProcessor.from_pretrained('''facebook/maskformer-swin-small-coco''' ) if is_vision_available() else None ) def _lowerCamelCase ( self ): __a : Dict = MaskFormerModel.from_pretrained('''facebook/maskformer-swin-small-coco''' ).to(_SCREAMING_SNAKE_CASE ) __a : Union[str, Any] = self.default_image_processor __a : Any = prepare_img() __a : int = image_processor(_SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).to(_SCREAMING_SNAKE_CASE ) __a : List[str] = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_SCREAMING_SNAKE_CASE , (1, 3, 800, 1088) ) with torch.no_grad(): __a : List[str] = model(**_SCREAMING_SNAKE_CASE ) __a : List[Any] = torch.tensor( [[-0.0_4_8_2, 0.9_2_2_8, 0.4_9_5_1], [-0.2_5_4_7, 0.8_0_1_7, 0.8_5_2_7], [-0.0_0_6_9, 0.3_3_8_5, -0.0_0_8_9]] ).to(_SCREAMING_SNAKE_CASE ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , _SCREAMING_SNAKE_CASE , atol=_SCREAMING_SNAKE_CASE ) ) __a : str = torch.tensor( [[-0.8_4_2_2, -0.8_4_3_4, -0.9_7_1_8], [-1.0_1_4_4, -0.5_5_6_5, -0.4_1_9_5], [-1.0_0_3_8, -0.4_4_8_4, -0.1_9_6_1]] ).to(_SCREAMING_SNAKE_CASE ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , _SCREAMING_SNAKE_CASE , atol=_SCREAMING_SNAKE_CASE ) ) __a : Dict = torch.tensor( [[0.2_8_5_2, -0.0_1_5_9, 0.9_7_3_5], [0.6_2_5_4, 0.1_8_5_8, 0.8_5_2_9], [-0.0_6_8_0, -0.4_1_1_6, 1.8_4_1_3]] ).to(_SCREAMING_SNAKE_CASE ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , _SCREAMING_SNAKE_CASE , atol=_SCREAMING_SNAKE_CASE ) ) def _lowerCamelCase ( self ): __a : Optional[Any] = ( MaskFormerForInstanceSegmentation.from_pretrained('''facebook/maskformer-swin-small-coco''' ) .to(_SCREAMING_SNAKE_CASE ) .eval() ) __a : Any = self.default_image_processor __a : Dict = prepare_img() __a : Tuple = image_processor(_SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).to(_SCREAMING_SNAKE_CASE ) __a : Union[str, Any] = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_SCREAMING_SNAKE_CASE , (1, 3, 800, 1088) ) with torch.no_grad(): __a : List[Any] = model(**_SCREAMING_SNAKE_CASE ) # masks_queries_logits __a : Tuple = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , ) __a : List[str] = [ [-1.3_7_3_7_1_2_4, -1.7_7_2_4_9_3_7, -1.9_3_6_4_2_3_3], [-1.5_9_7_7_2_8_1, -1.9_8_6_7_9_3_9, -2.1_5_2_3_6_9_5], [-1.5_7_9_5_3_9_8, -1.9_2_6_9_8_3_2, -2.0_9_3_9_4_2], ] __a : int = torch.tensor(_SCREAMING_SNAKE_CASE ).to(_SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , _SCREAMING_SNAKE_CASE , atol=_SCREAMING_SNAKE_CASE ) ) # class_queries_logits __a : Tuple = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) __a : Any = torch.tensor( [ [1.6_5_1_2e0_0, -5.2_5_7_2e0_0, -3.3_5_1_9e0_0], [3.6_1_6_9e-0_2, -5.9_0_2_5e0_0, -2.9_3_1_3e0_0], [1.0_7_6_6e-0_4, -7.7_6_3_0e0_0, -5.1_2_6_3e0_0], ] ).to(_SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , _SCREAMING_SNAKE_CASE , atol=_SCREAMING_SNAKE_CASE ) ) def _lowerCamelCase ( self ): __a : Optional[int] = ( MaskFormerForInstanceSegmentation.from_pretrained('''facebook/maskformer-resnet101-coco-stuff''' ) .to(_SCREAMING_SNAKE_CASE ) .eval() ) __a : Optional[int] = self.default_image_processor __a : List[str] = prepare_img() __a : Tuple = image_processor(_SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).to(_SCREAMING_SNAKE_CASE ) __a : Dict = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_SCREAMING_SNAKE_CASE , (1, 3, 800, 1088) ) with torch.no_grad(): __a : int = model(**_SCREAMING_SNAKE_CASE ) # masks_queries_logits __a : str = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , ) __a : Optional[Any] = [[-0.9_0_4_6, -2.6_3_6_6, -4.6_0_6_2], [-3.4_1_7_9, -5.7_8_9_0, -8.8_0_5_7], [-4.9_1_7_9, -7.6_5_6_0, -10.7711]] __a : str = torch.tensor(_SCREAMING_SNAKE_CASE ).to(_SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , _SCREAMING_SNAKE_CASE , atol=_SCREAMING_SNAKE_CASE ) ) # class_queries_logits __a : Any = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) __a : Union[str, Any] = torch.tensor( [[4.7_1_8_8, -3.2_5_8_5, -2.8_8_5_7], [6.6_8_7_1, -2.9_1_8_1, -1.2_4_8_7], [7.2_4_4_9, -2.2_7_6_4, -2.1_8_7_4]] ).to(_SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , _SCREAMING_SNAKE_CASE , atol=_SCREAMING_SNAKE_CASE ) ) def _lowerCamelCase ( self ): __a : List[str] = ( MaskFormerForInstanceSegmentation.from_pretrained('''facebook/maskformer-swin-small-coco''' ) .to(_SCREAMING_SNAKE_CASE ) .eval() ) __a : str = self.default_image_processor __a : List[str] = image_processor( [np.zeros((3, 800, 1333) ), np.zeros((3, 800, 1333) )] , segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] , return_tensors='''pt''' , ) __a : int = inputs['''pixel_values'''].to(_SCREAMING_SNAKE_CASE ) __a : List[str] = [el.to(_SCREAMING_SNAKE_CASE ) for el in inputs['''mask_labels''']] __a : Optional[Any] = [el.to(_SCREAMING_SNAKE_CASE ) for el in inputs['''class_labels''']] with torch.no_grad(): __a : int = model(**_SCREAMING_SNAKE_CASE ) self.assertTrue(outputs.loss is not None )
355
"""simple docstring""" import random import unittest import numpy as np from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionImgaImgPipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class __lowercase ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __lowerCAmelCase = '''hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline''' def _lowerCamelCase ( self , _UpperCAmelCase=0 ): __a : Tuple = floats_tensor((1, 3, 128, 128) , rng=random.Random(_UpperCAmelCase ) ) __a : Any = np.random.RandomState(_UpperCAmelCase ) __a : Any = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 3, '''strength''': 0.7_5, '''guidance_scale''': 7.5, '''output_type''': '''numpy''', } return inputs def _lowerCamelCase ( self ): __a : int = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) __a : Dict = self.get_dummy_inputs() __a : Any = pipe(**_UpperCAmelCase ).images __a : Optional[int] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 128, 128, 3) __a : List[Any] = np.array([0.6_9_6_4_3, 0.5_8_4_8_4, 0.5_0_3_1_4, 0.5_8_7_6_0, 0.5_5_3_6_8, 0.5_9_6_4_3, 0.5_1_5_2_9, 0.4_1_2_1_7, 0.4_9_0_8_7] ) assert np.abs(image_slice - expected_slice ).max() < 1e-1 def _lowerCamelCase ( self ): __a : int = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) __a : Tuple = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) __a : Optional[int] = self.get_dummy_inputs() __a : Optional[Any] = pipe(**_UpperCAmelCase ).images __a : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __a : Optional[int] = np.array([0.6_1_7_3_7, 0.5_4_6_4_2, 0.5_3_1_8_3, 0.5_4_4_6_5, 0.5_2_7_4_2, 0.6_0_5_2_5, 0.4_9_9_6_9, 0.4_0_6_5_5, 0.4_8_1_5_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _lowerCamelCase ( self ): __a : List[str] = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) __a : Any = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) # warmup pass to apply optimizations __a : Any = pipe(**self.get_dummy_inputs() ) __a : List[str] = self.get_dummy_inputs() __a : Tuple = pipe(**_UpperCAmelCase ).images __a : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __a : int = np.array([0.5_2_7_6_1, 0.5_9_9_7_7, 0.4_9_0_3_3, 0.4_9_6_1_9, 0.5_4_2_8_2, 0.5_0_3_1_1, 0.4_7_6_0_0, 0.4_0_9_1_8, 0.4_5_2_0_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _lowerCamelCase ( self ): __a : int = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) __a : Any = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) __a : List[Any] = self.get_dummy_inputs() __a : Any = pipe(**_UpperCAmelCase ).images __a : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __a : Optional[Any] = np.array([0.5_2_9_1_1, 0.6_0_0_0_4, 0.4_9_2_2_9, 0.4_9_8_0_5, 0.5_4_5_0_2, 0.5_0_6_8_0, 0.4_7_7_7_7, 0.4_1_0_2_8, 0.4_5_3_0_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _lowerCamelCase ( self ): __a : int = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) __a : Any = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) __a : Union[str, Any] = self.get_dummy_inputs() __a : str = pipe(**_UpperCAmelCase ).images __a : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __a : Optional[int] = np.array([0.5_2_9_1_1, 0.6_0_0_0_4, 0.4_9_2_2_9, 0.4_9_8_0_5, 0.5_4_5_0_2, 0.5_0_6_8_0, 0.4_7_7_7_7, 0.4_1_0_2_8, 0.4_5_3_0_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _lowerCamelCase ( self ): __a : int = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) __a : str = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) __a : Optional[int] = self.get_dummy_inputs() __a : Optional[Any] = pipe(**_UpperCAmelCase ).images __a : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __a : Optional[Any] = np.array([0.6_5_3_3_1, 0.5_8_2_7_7, 0.4_8_2_0_4, 0.5_6_0_5_9, 0.5_3_6_6_5, 0.5_6_2_3_5, 0.5_0_9_6_9, 0.4_0_0_0_9, 0.4_6_5_5_2] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 @nightly @require_onnxruntime @require_torch_gpu class __lowercase ( unittest.TestCase ): '''simple docstring''' @property def _lowerCamelCase ( self ): return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def _lowerCamelCase ( self ): __a : Optional[Any] = ort.SessionOptions() __a : Any = False return options def _lowerCamelCase ( self ): __a : str = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) __a : Tuple = init_image.resize((768, 512) ) # using the PNDM scheduler by default __a : List[str] = OnnxStableDiffusionImgaImgPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''onnx''' , safety_checker=_UpperCAmelCase , feature_extractor=_UpperCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) __a : Tuple = '''A fantasy landscape, trending on artstation''' __a : Tuple = np.random.RandomState(0 ) __a : int = pipe( prompt=_UpperCAmelCase , image=_UpperCAmelCase , strength=0.7_5 , guidance_scale=7.5 , num_inference_steps=10 , generator=_UpperCAmelCase , output_type='''np''' , ) __a : List[Any] = output.images __a : int = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) __a : Any = np.array([0.4_9_0_9, 0.5_0_5_9, 0.5_3_7_2, 0.4_6_2_3, 0.4_8_7_6, 0.5_0_4_9, 0.4_8_2_0, 0.4_9_5_6, 0.5_0_1_9] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def _lowerCamelCase ( self ): __a : List[str] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) __a : Tuple = init_image.resize((768, 512) ) __a : str = LMSDiscreteScheduler.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , subfolder='''scheduler''' , revision='''onnx''' ) __a : Optional[int] = OnnxStableDiffusionImgaImgPipeline.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , revision='''onnx''' , scheduler=_UpperCAmelCase , safety_checker=_UpperCAmelCase , feature_extractor=_UpperCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) __a : List[str] = '''A fantasy landscape, trending on artstation''' __a : str = np.random.RandomState(0 ) __a : str = pipe( prompt=_UpperCAmelCase , image=_UpperCAmelCase , strength=0.7_5 , guidance_scale=7.5 , num_inference_steps=20 , generator=_UpperCAmelCase , output_type='''np''' , ) __a : Dict = output.images __a : List[Any] = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) __a : Dict = np.array([0.8_0_4_3, 0.9_2_6, 0.9_5_8_1, 0.8_1_1_9, 0.8_9_5_4, 0.9_1_3, 0.7_2_0_9, 0.7_4_6_3, 0.7_4_3_1] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2
188
0
"""simple docstring""" import argparse import collections import json import os import re import string import sys import numpy as np _UpperCamelCase : Any = re.compile(r"\b(a|an|the)\b", re.UNICODE) _UpperCamelCase : Union[str, Any] = None def a_ ( ): '''simple docstring''' lowercase__ : Optional[int] = argparse.ArgumentParser('Official evaluation script for SQuAD version 2.0.' ) parser.add_argument('data_file' , metavar='data.json' , help='Input data JSON file.' ) parser.add_argument('pred_file' , metavar='pred.json' , help='Model predictions.' ) parser.add_argument( '--out-file' , '-o' , metavar='eval.json' , help='Write accuracy metrics to file (default is stdout).' ) parser.add_argument( '--na-prob-file' , '-n' , metavar='na_prob.json' , help='Model estimates of probability of no answer.' ) parser.add_argument( '--na-prob-thresh' , '-t' , type=_lowerCAmelCase , default=1.0 , help='Predict "" if no-answer probability exceeds this (default = 1.0).' , ) parser.add_argument( '--out-image-dir' , '-p' , metavar='out_images' , default=_lowerCAmelCase , help='Save precision-recall curves to directory.' ) parser.add_argument('--verbose' , '-v' , action='store_true' ) if len(sys.argv ) == 1: parser.print_help() sys.exit(1 ) return parser.parse_args() def a_ ( _lowerCAmelCase : Optional[Any] ): '''simple docstring''' lowercase__ : Tuple = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: lowercase__ : Optional[int] = bool(qa['answers']['text'] ) return qid_to_has_ans def a_ ( _lowerCAmelCase : Any ): '''simple docstring''' def remove_articles(_lowerCAmelCase : int ): return ARTICLES_REGEX.sub(' ' , _lowerCAmelCase ) def white_space_fix(_lowerCAmelCase : str ): return " ".join(text.split() ) def remove_punc(_lowerCAmelCase : List[Any] ): lowercase__ : int = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(_lowerCAmelCase : List[str] ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(_lowerCAmelCase ) ) ) ) def a_ ( _lowerCAmelCase : Union[str, Any] ): '''simple docstring''' if not s: return [] return normalize_answer(_lowerCAmelCase ).split() def a_ ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : str ): '''simple docstring''' return int(normalize_answer(_lowerCAmelCase ) == normalize_answer(_lowerCAmelCase ) ) def a_ ( _lowerCAmelCase : Dict , _lowerCAmelCase : Dict ): '''simple docstring''' lowercase__ : Dict = get_tokens(_lowerCAmelCase ) lowercase__ : List[str] = get_tokens(_lowerCAmelCase ) lowercase__ : List[Any] = collections.Counter(_lowerCAmelCase ) & collections.Counter(_lowerCAmelCase ) lowercase__ : int = sum(common.values() ) if len(_lowerCAmelCase ) == 0 or len(_lowerCAmelCase ) == 0: # If either is no-answer, then F1 is 1 if they agree, 0 otherwise return int(gold_toks == pred_toks ) if num_same == 0: return 0 lowercase__ : Any = 1.0 * num_same / len(_lowerCAmelCase ) lowercase__ : Dict = 1.0 * num_same / len(_lowerCAmelCase ) lowercase__ : Any = (2 * precision * recall) / (precision + recall) return fa def a_ ( _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[Any] ): '''simple docstring''' lowercase__ : Optional[int] = {} lowercase__ : Union[str, Any] = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: lowercase__ : Any = qa['id'] lowercase__ : Union[str, Any] = [t for t in qa['answers']['text'] if normalize_answer(_lowerCAmelCase )] if not gold_answers: # For unanswerable questions, only correct answer is empty string lowercase__ : Dict = [''] if qid not in preds: print(f"""Missing prediction for {qid}""" ) continue lowercase__ : Optional[int] = preds[qid] # Take max over all gold answers lowercase__ : int = max(compute_exact(_lowerCAmelCase , _lowerCAmelCase ) for a in gold_answers ) lowercase__ : Optional[Any] = max(compute_fa(_lowerCAmelCase , _lowerCAmelCase ) for a in gold_answers ) return exact_scores, fa_scores def a_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : Tuple , _lowerCAmelCase : Tuple , _lowerCAmelCase : List[str] ): '''simple docstring''' lowercase__ : str = {} for qid, s in scores.items(): lowercase__ : int = na_probs[qid] > na_prob_thresh if pred_na: lowercase__ : Optional[Any] = float(not qid_to_has_ans[qid] ) else: lowercase__ : Optional[Any] = s return new_scores def a_ ( _lowerCAmelCase : str , _lowerCAmelCase : List[Any] , _lowerCAmelCase : str=None ): '''simple docstring''' if not qid_list: lowercase__ : Optional[Any] = len(_lowerCAmelCase ) return collections.OrderedDict( [ ('exact', 1_0_0.0 * sum(exact_scores.values() ) / total), ('f1', 1_0_0.0 * sum(fa_scores.values() ) / total), ('total', total), ] ) else: lowercase__ : Optional[Any] = len(_lowerCAmelCase ) return collections.OrderedDict( [ ('exact', 1_0_0.0 * sum(exact_scores[k] for k in qid_list ) / total), ('f1', 1_0_0.0 * sum(fa_scores[k] for k in qid_list ) / total), ('total', total), ] ) def a_ ( _lowerCAmelCase : str , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Union[str, Any] ): '''simple docstring''' for k in new_eval: lowercase__ : int = new_eval[k] def a_ ( _lowerCAmelCase : str , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : int , _lowerCAmelCase : Tuple ): '''simple docstring''' plt.step(_lowerCAmelCase , _lowerCAmelCase , color='b' , alpha=0.2 , where='post' ) plt.fill_between(_lowerCAmelCase , _lowerCAmelCase , step='post' , alpha=0.2 , color='b' ) plt.xlabel('Recall' ) plt.ylabel('Precision' ) plt.xlim([0.0, 1.0_5] ) plt.ylim([0.0, 1.0_5] ) plt.title(_lowerCAmelCase ) plt.savefig(_lowerCAmelCase ) plt.clf() def a_ ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : str , _lowerCAmelCase : int , _lowerCAmelCase : str , _lowerCAmelCase : Any=None , _lowerCAmelCase : List[str]=None ): '''simple docstring''' lowercase__ : Optional[int] = sorted(_lowerCAmelCase , key=lambda _lowerCAmelCase : na_probs[k] ) lowercase__ : Tuple = 0.0 lowercase__ : List[str] = 1.0 lowercase__ : List[str] = 0.0 lowercase__ : Union[str, Any] = [1.0] lowercase__ : List[Any] = [0.0] lowercase__ : Optional[int] = 0.0 for i, qid in enumerate(_lowerCAmelCase ): if qid_to_has_ans[qid]: true_pos += scores[qid] lowercase__ : Tuple = true_pos / float(i + 1 ) lowercase__ : Union[str, Any] = true_pos / float(_lowerCAmelCase ) if i == len(_lowerCAmelCase ) - 1 or na_probs[qid] != na_probs[qid_list[i + 1]]: # i.e., if we can put a threshold after this point avg_prec += cur_p * (cur_r - recalls[-1]) precisions.append(_lowerCAmelCase ) recalls.append(_lowerCAmelCase ) if out_image: plot_pr_curve(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) return {"ap": 1_0_0.0 * avg_prec} def a_ ( _lowerCAmelCase : Dict , _lowerCAmelCase : Tuple , _lowerCAmelCase : Tuple , _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Tuple ): '''simple docstring''' if out_image_dir and not os.path.exists(_lowerCAmelCase ): os.makedirs(_lowerCAmelCase ) lowercase__ : List[str] = sum(1 for v in qid_to_has_ans.values() if v ) if num_true_pos == 0: return lowercase__ : Dict = make_precision_recall_eval( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , out_image=os.path.join(_lowerCAmelCase , 'pr_exact.png' ) , title='Precision-Recall curve for Exact Match score' , ) lowercase__ : Tuple = make_precision_recall_eval( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , out_image=os.path.join(_lowerCAmelCase , 'pr_f1.png' ) , title='Precision-Recall curve for F1 score' , ) lowercase__ : List[Any] = {k: float(_lowerCAmelCase ) for k, v in qid_to_has_ans.items()} lowercase__ : Any = make_precision_recall_eval( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , out_image=os.path.join(_lowerCAmelCase , 'pr_oracle.png' ) , title='Oracle Precision-Recall curve (binary task of HasAns vs. NoAns)' , ) merge_eval(_lowerCAmelCase , _lowerCAmelCase , 'pr_exact' ) merge_eval(_lowerCAmelCase , _lowerCAmelCase , 'pr_f1' ) merge_eval(_lowerCAmelCase , _lowerCAmelCase , 'pr_oracle' ) def a_ ( _lowerCAmelCase : int , _lowerCAmelCase : Any , _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[Any] ): '''simple docstring''' if not qid_list: return lowercase__ : List[str] = [na_probs[k] for k in qid_list] lowercase__ : Tuple = np.ones_like(_lowerCAmelCase ) / float(len(_lowerCAmelCase ) ) plt.hist(_lowerCAmelCase , weights=_lowerCAmelCase , bins=20 , range=(0.0, 1.0) ) plt.xlabel('Model probability of no-answer' ) plt.ylabel('Proportion of dataset' ) plt.title(f"""Histogram of no-answer probability: {name}""" ) plt.savefig(os.path.join(_lowerCAmelCase , f"""na_prob_hist_{name}.png""" ) ) plt.clf() def a_ ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : Any , _lowerCAmelCase : Union[str, Any] ): '''simple docstring''' lowercase__ : Tuple = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k] ) lowercase__ : int = num_no_ans lowercase__ : Optional[int] = cur_score lowercase__ : Tuple = 0.0 lowercase__ : Dict = sorted(_lowerCAmelCase , key=lambda _lowerCAmelCase : na_probs[k] ) for i, qid in enumerate(_lowerCAmelCase ): if qid not in scores: continue if qid_to_has_ans[qid]: lowercase__ : Optional[int] = scores[qid] else: if preds[qid]: lowercase__ : List[Any] = -1 else: lowercase__ : Optional[int] = 0 cur_score += diff if cur_score > best_score: lowercase__ : Dict = cur_score lowercase__ : Optional[int] = na_probs[qid] return 1_0_0.0 * best_score / len(_lowerCAmelCase ), best_thresh def a_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Tuple , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : str ): '''simple docstring''' lowercase__ , lowercase__ : List[Any] = find_best_thresh(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) lowercase__ , lowercase__ : Dict = find_best_thresh(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) lowercase__ : Any = best_exact lowercase__ : Tuple = exact_thresh lowercase__ : Optional[Any] = best_fa lowercase__ : Any = fa_thresh def a_ ( ): '''simple docstring''' with open(OPTS.data_file ) as f: lowercase__ : List[Any] = json.load(_lowerCAmelCase ) lowercase__ : Union[str, Any] = dataset_json['data'] with open(OPTS.pred_file ) as f: lowercase__ : str = json.load(_lowerCAmelCase ) if OPTS.na_prob_file: with open(OPTS.na_prob_file ) as f: lowercase__ : Union[str, Any] = json.load(_lowerCAmelCase ) else: lowercase__ : str = {k: 0.0 for k in preds} lowercase__ : int = make_qid_to_has_ans(_lowerCAmelCase ) # maps qid to True/False lowercase__ : List[str] = [k for k, v in qid_to_has_ans.items() if v] lowercase__ : Any = [k for k, v in qid_to_has_ans.items() if not v] lowercase__ , lowercase__ : Any = get_raw_scores(_lowerCAmelCase , _lowerCAmelCase ) lowercase__ : Optional[Any] = apply_no_ans_threshold(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , OPTS.na_prob_thresh ) lowercase__ : Union[str, Any] = apply_no_ans_threshold(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , OPTS.na_prob_thresh ) lowercase__ : Tuple = make_eval_dict(_lowerCAmelCase , _lowerCAmelCase ) if has_ans_qids: lowercase__ : int = make_eval_dict(_lowerCAmelCase , _lowerCAmelCase , qid_list=_lowerCAmelCase ) merge_eval(_lowerCAmelCase , _lowerCAmelCase , 'HasAns' ) if no_ans_qids: lowercase__ : Optional[Any] = make_eval_dict(_lowerCAmelCase , _lowerCAmelCase , qid_list=_lowerCAmelCase ) merge_eval(_lowerCAmelCase , _lowerCAmelCase , 'NoAns' ) if OPTS.na_prob_file: find_all_best_thresh(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) if OPTS.na_prob_file and OPTS.out_image_dir: run_precision_recall_analysis(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , OPTS.out_image_dir ) histogram_na_prob(_lowerCAmelCase , _lowerCAmelCase , OPTS.out_image_dir , 'hasAns' ) histogram_na_prob(_lowerCAmelCase , _lowerCAmelCase , OPTS.out_image_dir , 'noAns' ) if OPTS.out_file: with open(OPTS.out_file , 'w' ) as f: json.dump(_lowerCAmelCase , _lowerCAmelCase ) else: print(json.dumps(_lowerCAmelCase , indent=2 ) ) if __name__ == "__main__": _UpperCamelCase : Optional[int] = parse_args() if OPTS.out_image_dir: import matplotlib matplotlib.use("Agg") import matplotlib.pyplot as plt main()
77
"""simple docstring""" import baseaa import io import json import os from copy import deepcopy from ..optimizer import AcceleratedOptimizer from ..scheduler import AcceleratedScheduler class UpperCAmelCase_ : def __init__( self , a ) -> List[str]: if isinstance(a , a ): # Don't modify user's data should they want to reuse it (e.g. in tests), because once we # modified it, it will not be accepted here again, since `auto` values would have been overridden lowercase__ : Optional[Any] = deepcopy(a ) elif os.path.exists(a ): with io.open(a , 'r' , encoding='utf-8' ) as f: lowercase__ : List[Any] = json.load(a ) else: try: lowercase__ : Optional[int] = baseaa.urlsafe_baadecode(a ).decode('utf-8' ) lowercase__ : List[str] = json.loads(a ) except (UnicodeDecodeError, AttributeError, ValueError): raise ValueError( f"""Expected a string path to an existing deepspeed config, or a dictionary, or a base64 encoded string. Received: {config_file_or_dict}""" ) lowercase__ : Any = config self.set_stage_and_offload() def _UpperCAmelCase ( self ) -> Dict: # zero stage - this is done as early as possible, before model is created, to allow # ``is_deepspeed_zero3_enabled`` query and getting to the early deepspeed config object # during ``zero.Init()`` which needs to know the dtype, and some other hparams. lowercase__ : Tuple = self.get_value('zero_optimization.stage' , -1 ) # offload lowercase__ : int = False if self.is_zeroa() or self.is_zeroa(): lowercase__ : str = set(['cpu', 'nvme'] ) lowercase__ : Optional[Any] = set( [ self.get_value('zero_optimization.offload_optimizer.device' ), self.get_value('zero_optimization.offload_param.device' ), ] ) if len(offload_devices & offload_devices_valid ) > 0: lowercase__ : Optional[Any] = True def _UpperCAmelCase ( self , a ) -> Any: lowercase__ : Dict = self.config # find the config node of interest if it exists lowercase__ : int = ds_key_long.split('.' ) lowercase__ : Dict = nodes.pop() for node in nodes: lowercase__ : Optional[Any] = config.get(a ) if config is None: return None, ds_key return config, ds_key def _UpperCAmelCase ( self , a , a=None ) -> Union[str, Any]: lowercase__ , lowercase__ : Tuple = self.find_config_node(a ) if config is None: return default return config.get(a , a ) def _UpperCAmelCase ( self , a , a=False ) -> Any: lowercase__ : str = self.config # find the config node of interest if it exists lowercase__ : List[Any] = ds_key_long.split('.' ) for node in nodes: lowercase__ : str = config lowercase__ : str = config.get(a ) if config is None: if must_exist: raise ValueError(f"""Can't find {ds_key_long} entry in the config: {self.config}""" ) else: return # if found remove it if parent_config is not None: parent_config.pop(a ) def _UpperCAmelCase ( self , a ) -> List[Any]: lowercase__ : Union[str, Any] = self.get_value(a ) return False if value is None else bool(a ) def _UpperCAmelCase ( self , a ) -> Any: lowercase__ : Any = self.get_value(a ) return False if value is None else not bool(a ) def _UpperCAmelCase ( self ) -> Tuple: return self._stage == 2 def _UpperCAmelCase ( self ) -> List[Any]: return self._stage == 3 def _UpperCAmelCase ( self ) -> str: return self._offload class UpperCAmelCase_ : def __init__( self , a ) -> str: lowercase__ : Tuple = engine def _UpperCAmelCase ( self , a , **a ) -> Optional[int]: # runs backpropagation and handles mixed precision self.engine.backward(a , **a ) # Deepspeed's `engine.step` performs the following operations: # - gradient accumulation check # - gradient clipping # - optimizer step # - zero grad # - checking overflow # - lr_scheduler step (only if engine.lr_scheduler is not None) self.engine.step() # and this plugin overrides the above calls with no-ops when Accelerate runs under # Deepspeed, but allows normal functionality for non-Deepspeed cases thus enabling a simple # training loop that works transparently under many training regimes. class UpperCAmelCase_ ( _a): def __init__( self , a ) -> Dict: super().__init__(a , device_placement=a , scaler=a ) lowercase__ : Union[str, Any] = hasattr(self.optimizer , 'overflow' ) def _UpperCAmelCase ( self , a=None ) -> List[Any]: pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed def _UpperCAmelCase ( self ) -> Optional[int]: pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed @property def _UpperCAmelCase ( self ) -> Tuple: if self.__has_overflow__: return self.optimizer.overflow return False class UpperCAmelCase_ ( _a): def __init__( self , a , a ) -> Any: super().__init__(a , a ) def _UpperCAmelCase ( self ) -> List[Any]: pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed class UpperCAmelCase_ : def __init__( self , a , a=0.001 , a=0 , **a ) -> Tuple: lowercase__ : List[Any] = params lowercase__ : int = lr lowercase__ : int = weight_decay lowercase__ : Union[str, Any] = kwargs class UpperCAmelCase_ : def __init__( self , a , a=None , a=0 , **a ) -> Tuple: lowercase__ : Dict = optimizer lowercase__ : List[str] = total_num_steps lowercase__ : Optional[int] = warmup_num_steps lowercase__ : List[Any] = kwargs
77
1
'''simple docstring''' import torch from torch import nn class lowerCamelCase ( nn.Module ): '''simple docstring''' def __init__( self : Any , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[int]=1 , lowerCAmelCase_ : str=False ) -> List[str]: '''simple docstring''' super().__init__() A__ : Any =n_token A__ : int =d_embed A__ : Any =d_proj A__ : Tuple =cutoffs + [n_token] A__ : Optional[Any] =[0] + self.cutoffs A__ : Dict =div_val A__ : str =self.cutoffs[0] A__ : Optional[Any] =len(self.cutoffs ) - 1 A__ : List[Any] =self.shortlist_size + self.n_clusters if self.n_clusters > 0: A__ : Any =nn.Parameter(torch.zeros(self.n_clusters , self.d_embed ) ) A__ : str =nn.Parameter(torch.zeros(self.n_clusters ) ) A__ : Union[str, Any] =nn.ModuleList() A__ : Optional[int] =nn.ParameterList() if div_val == 1: for i in range(len(self.cutoffs ) ): if d_proj != d_embed: self.out_projs.append(nn.Parameter(torch.FloatTensor(lowerCAmelCase_ , lowerCAmelCase_ ) ) ) else: self.out_projs.append(lowerCAmelCase_ ) self.out_layers.append(nn.Linear(lowerCAmelCase_ , lowerCAmelCase_ ) ) else: for i in range(len(self.cutoffs ) ): A__ , A__ : Optional[int] =self.cutoff_ends[i], self.cutoff_ends[i + 1] A__ : Tuple =d_embed // (div_val**i) self.out_projs.append(nn.Parameter(torch.FloatTensor(lowerCAmelCase_ , lowerCAmelCase_ ) ) ) self.out_layers.append(nn.Linear(lowerCAmelCase_ , r_idx - l_idx ) ) A__ : Optional[int] =keep_order def lowercase__ ( self : Dict , lowerCAmelCase_ : int , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Any ) -> Union[str, Any]: '''simple docstring''' if proj is None: A__ : Optional[int] =nn.functional.linear(lowerCAmelCase_ , lowerCAmelCase_ , bias=lowerCAmelCase_ ) else: # if CUDA_MAJOR <= 9 and CUDA_MINOR <= 1: A__ : Optional[int] =nn.functional.linear(lowerCAmelCase_ , proj.t().contiguous() ) A__ : Union[str, Any] =nn.functional.linear(lowerCAmelCase_ , lowerCAmelCase_ , bias=lowerCAmelCase_ ) # else: # logit = torch.einsum('bd,de,ev->bv', (hidden, proj, weight.t())) # if bias is not None: # logit = logit + bias return logit def lowercase__ ( self : Tuple , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : List[Any]=None , lowerCAmelCase_ : Dict=False ) -> Optional[int]: '''simple docstring''' if labels is not None: # Shift so that tokens < n predict n A__ : Optional[Any] =hidden[..., :-1, :].contiguous() A__ : List[Any] =labels[..., 1:].contiguous() A__ : Optional[int] =hidden.view(-1 , hidden.size(-1 ) ) A__ : str =labels.view(-1 ) if hidden.size(0 ) != labels.size(0 ): raise RuntimeError("""Input and labels should have the same size in the batch dimension.""" ) else: A__ : Optional[int] =hidden.view(-1 , hidden.size(-1 ) ) if self.n_clusters == 0: A__ : Optional[Any] =self._compute_logit(lowerCAmelCase_ , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) if labels is not None: A__ : Tuple =labels != -1_00 A__ : int =torch.zeros_like(lowerCAmelCase_ , dtype=hidden.dtype , device=hidden.device ) A__ : Union[str, Any] =( -nn.functional.log_softmax(lowerCAmelCase_ , dim=-1 )[mask].gather(1 , labels[mask].unsqueeze(1 ) ).squeeze(1 ) ) else: A__ : List[Any] =nn.functional.log_softmax(lowerCAmelCase_ , dim=-1 ) else: # construct weights and biases A__ , A__ : Any =[], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: A__ , A__ : Optional[int] =self.cutoff_ends[i], self.cutoff_ends[i + 1] A__ : int =self.out_layers[0].weight[l_idx:r_idx] A__ : List[str] =self.out_layers[0].bias[l_idx:r_idx] else: A__ : List[str] =self.out_layers[i].weight A__ : Union[str, Any] =self.out_layers[i].bias if i == 0: A__ : Tuple =torch.cat([weight_i, self.cluster_weight] , dim=0 ) A__ : List[str] =torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(lowerCAmelCase_ ) biases.append(lowerCAmelCase_ ) A__ , A__ , A__ : Tuple =weights[0], biases[0], self.out_projs[0] A__ : List[Any] =self._compute_logit(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) A__ : int =nn.functional.log_softmax(lowerCAmelCase_ , dim=1 ) if labels is None: A__ : Union[str, Any] =hidden.new_empty((head_logit.size(0 ), self.n_token) ) else: A__ : Union[str, Any] =torch.zeros_like(lowerCAmelCase_ , dtype=hidden.dtype , device=hidden.device ) A__ : Any =0 A__ : Tuple =[0] + self.cutoffs for i in range(len(lowerCAmelCase_ ) - 1 ): A__ , A__ : Tuple =cutoff_values[i], cutoff_values[i + 1] if labels is not None: A__ : Tuple =(labels >= l_idx) & (labels < r_idx) A__ : Any =mask_i.nonzero().squeeze() if indices_i.numel() == 0: continue A__ : int =labels.index_select(0 , lowerCAmelCase_ ) - l_idx A__ : List[str] =head_logprob.index_select(0 , lowerCAmelCase_ ) A__ : str =hidden.index_select(0 , lowerCAmelCase_ ) else: A__ : Optional[Any] =hidden if i == 0: if labels is not None: A__ : Optional[Any] =head_logprob_i.gather(1 , target_i[:, None] ).squeeze(1 ) else: A__ : Union[str, Any] =head_logprob[:, : self.cutoffs[0]] else: A__ , A__ , A__ : Dict =weights[i], biases[i], self.out_projs[i] A__ : List[Any] =self._compute_logit(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) A__ : List[Any] =nn.functional.log_softmax(lowerCAmelCase_ , dim=1 ) A__ : Optional[Any] =self.cutoffs[0] + i - 1 # No probability for the head cluster if labels is not None: A__ : Union[str, Any] =head_logprob_i[:, cluster_prob_idx] + tail_logprob_i.gather( 1 , target_i[:, None] ).squeeze(1 ) else: A__ : List[str] =head_logprob[:, cluster_prob_idx, None] + tail_logprob_i A__ : Tuple =logprob_i if labels is not None: if (hasattr(self , """keep_order""" ) and self.keep_order) or keep_order: out.index_copy_(0 , lowerCAmelCase_ , -logprob_i ) else: out[offset : offset + logprob_i.size(0 )].copy_(-logprob_i ) offset += logprob_i.size(0 ) return out def lowercase__ ( self : List[str] , lowerCAmelCase_ : Optional[Any] ) -> Any: '''simple docstring''' if self.n_clusters == 0: A__ : List[str] =self._compute_logit(lowerCAmelCase_ , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) return nn.functional.log_softmax(lowerCAmelCase_ , dim=-1 ) else: # construct weights and biases A__ , A__ : List[str] =[], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: A__ , A__ : int =self.cutoff_ends[i], self.cutoff_ends[i + 1] A__ : List[str] =self.out_layers[0].weight[l_idx:r_idx] A__ : List[Any] =self.out_layers[0].bias[l_idx:r_idx] else: A__ : Dict =self.out_layers[i].weight A__ : Any =self.out_layers[i].bias if i == 0: A__ : List[str] =torch.cat([weight_i, self.cluster_weight] , dim=0 ) A__ : Tuple =torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(lowerCAmelCase_ ) biases.append(lowerCAmelCase_ ) A__ , A__ , A__ : Optional[int] =weights[0], biases[0], self.out_projs[0] A__ : Any =self._compute_logit(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) A__ : Dict =hidden.new_empty((head_logit.size(0 ), self.n_token) ) A__ : Dict =nn.functional.log_softmax(lowerCAmelCase_ , dim=1 ) A__ : Tuple =[0] + self.cutoffs for i in range(len(lowerCAmelCase_ ) - 1 ): A__ , A__ : List[Any] =cutoff_values[i], cutoff_values[i + 1] if i == 0: A__ : Tuple =head_logprob[:, : self.cutoffs[0]] else: A__ , A__ , A__ : Any =weights[i], biases[i], self.out_projs[i] A__ : Dict =self._compute_logit(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) A__ : str =nn.functional.log_softmax(lowerCAmelCase_ , dim=1 ) A__ : str =head_logprob[:, -i] + tail_logprob_i A__ : List[Any] =logprob_i return out
136
'''simple docstring''' import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XLMRobertaTokenizer, XLMRobertaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin __snake_case : List[str] = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece @require_tokenizers class lowerCamelCase ( lowercase_ , unittest.TestCase ): '''simple docstring''' __snake_case = XLMRobertaTokenizer __snake_case = XLMRobertaTokenizerFast __snake_case = True __snake_case = True def lowercase__ ( self : Any ) -> Union[str, Any]: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing A__ : Any =XLMRobertaTokenizer(lowerCAmelCase_ , keep_accents=lowerCAmelCase_ ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase__ ( self : Optional[Any] ) -> Tuple: '''simple docstring''' A__ : Union[str, Any] ="""<pad>""" A__ : Any =1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase_ ) , lowerCAmelCase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase_ ) , lowerCAmelCase_ ) def lowercase__ ( self : List[Any] ) -> Any: '''simple docstring''' A__ : int =list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(vocab_keys[-1] , """<mask>""" ) self.assertEqual(len(lowerCAmelCase_ ) , 10_02 ) def lowercase__ ( self : Optional[int] ) -> Optional[Any]: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 10_02 ) def lowercase__ ( self : Tuple ) -> Any: '''simple docstring''' A__ : List[Any] =XLMRobertaTokenizer(lowerCAmelCase_ , keep_accents=lowerCAmelCase_ ) A__ : Tuple =tokenizer.tokenize("""This is a test""" ) self.assertListEqual(lowerCAmelCase_ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) A__ : Optional[int] =tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( lowerCAmelCase_ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) A__ : Optional[int] =tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) self.assertListEqual( lowerCAmelCase_ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) A__ : Union[str, Any] =tokenizer.convert_ids_to_tokens(lowerCAmelCase_ ) self.assertListEqual( lowerCAmelCase_ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) def lowercase__ ( self : List[Any] ) -> Optional[int]: '''simple docstring''' if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return A__ : Dict =(self.rust_tokenizer_class, """hf-internal-testing/tiny-xlm-roberta""", {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): A__ : List[str] =self.rust_tokenizer_class.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ ) A__ : Union[str, Any] =self.tokenizer_class.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ ) A__ : Optional[Any] =tempfile.mkdtemp() A__ : Union[str, Any] =tokenizer_r.save_pretrained(lowerCAmelCase_ ) A__ : Union[str, Any] =tokenizer_p.save_pretrained(lowerCAmelCase_ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) A__ : List[str] =tuple(f for f in tokenizer_r_files if """tokenizer.json""" not in f ) self.assertSequenceEqual(lowerCAmelCase_ , lowerCAmelCase_ ) # Checks everything loads correctly in the same way A__ : Any =tokenizer_r.from_pretrained(lowerCAmelCase_ ) A__ : Union[str, Any] =tokenizer_p.from_pretrained(lowerCAmelCase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCAmelCase_ , lowerCAmelCase_ ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(lowerCAmelCase_ ) # Save tokenizer rust, legacy_format=True A__ : List[str] =tempfile.mkdtemp() A__ : List[str] =tokenizer_r.save_pretrained(lowerCAmelCase_ , legacy_format=lowerCAmelCase_ ) A__ : List[Any] =tokenizer_p.save_pretrained(lowerCAmelCase_ ) # Checks it save with the same files self.assertSequenceEqual(lowerCAmelCase_ , lowerCAmelCase_ ) # Checks everything loads correctly in the same way A__ : str =tokenizer_r.from_pretrained(lowerCAmelCase_ ) A__ : List[Any] =tokenizer_p.from_pretrained(lowerCAmelCase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCAmelCase_ , lowerCAmelCase_ ) ) shutil.rmtree(lowerCAmelCase_ ) # Save tokenizer rust, legacy_format=False A__ : List[str] =tempfile.mkdtemp() A__ : Dict =tokenizer_r.save_pretrained(lowerCAmelCase_ , legacy_format=lowerCAmelCase_ ) A__ : List[Any] =tokenizer_p.save_pretrained(lowerCAmelCase_ ) # Checks it saved the tokenizer.json file self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way A__ : Optional[int] =tokenizer_r.from_pretrained(lowerCAmelCase_ ) A__ : str =tokenizer_p.from_pretrained(lowerCAmelCase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCAmelCase_ , lowerCAmelCase_ ) ) shutil.rmtree(lowerCAmelCase_ ) @cached_property def lowercase__ ( self : Optional[Any] ) -> List[str]: '''simple docstring''' return XLMRobertaTokenizer.from_pretrained("""xlm-roberta-base""" ) def lowercase__ ( self : Tuple ) -> Tuple: '''simple docstring''' with tempfile.NamedTemporaryFile() as f: shutil.copyfile(lowerCAmelCase_ , f.name ) A__ : Dict =XLMRobertaTokenizer(f.name , keep_accents=lowerCAmelCase_ ) A__ : Optional[Any] =pickle.dumps(lowerCAmelCase_ ) pickle.loads(lowerCAmelCase_ ) def lowercase__ ( self : Optional[Any] ) -> List[Any]: '''simple docstring''' if not self.test_rust_tokenizer: return A__ : Any =self.get_tokenizer() A__ : Any =self.get_rust_tokenizer() A__ : Optional[Any] ="""I was born in 92000, and this is falsé.""" A__ : List[str] =tokenizer.tokenize(lowerCAmelCase_ ) A__ : int =rust_tokenizer.tokenize(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) A__ : str =tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) A__ : Dict =rust_tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) A__ : Union[str, Any] =self.get_rust_tokenizer() A__ : Union[str, Any] =tokenizer.encode(lowerCAmelCase_ ) A__ : Optional[Any] =rust_tokenizer.encode(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) @slow def lowercase__ ( self : Dict ) -> int: '''simple docstring''' A__ : Optional[Any] ="""Hello World!""" A__ : Optional[Any] =[0, 3_53_78, 66_61, 38, 2] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(lowerCAmelCase_ , self.big_tokenizer.encode(lowerCAmelCase_ ) ) @slow def lowercase__ ( self : List[Any] ) -> int: '''simple docstring''' A__ : List[Any] =( """This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will""" """ add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth""" ) A__ : Optional[Any] =[ 0, 32_93, 83, 10, 45_52, 49_89, 79_86, 6_78, 10, 59_15, 1_11, 17_94_59, 12_48_50, 4, 60_44, 2_37, 12, 6, 5, 6, 4, 67_80, 7_05, 15, 13_88, 44, 3_78, 1_01_14, 7_11, 1_52, 20, 6, 5, 2_23_76, 6_42, 12_21, 1_51_90, 3_41_53, 4_50, 56_08, 9_59, 11_19, 5_77_02, 1_36, 1_86, 47, 10_98, 2_93_67, 47, # 4426, # What fairseq tokenizes from "<unk>": "_<" # 3678, # What fairseq tokenizes from "<unk>": "unk" # 2740, # What fairseq tokenizes from "<unk>": ">" 3, # What we tokenize from "<unk>": "<unk>" 6, # Residue from the tokenization: an extra sentencepiece underline 4, 60_44, 2_37, 62_84, 5_09_01, 5_28, 31, 90, 34, 9_27, 2, ] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(lowerCAmelCase_ , self.big_tokenizer.encode(lowerCAmelCase_ ) ) @slow def lowercase__ ( self : int ) -> Optional[Any]: '''simple docstring''' # fmt: off A__ : List[Any] ={"""input_ids""": [[0, 1_10_62, 8_27_72, 7, 15, 8_27_72, 5_38, 5_15_29, 2_37, 1_71_98, 12_90, 2_06, 9, 21_51_75, 13_14, 1_36, 1_71_98, 12_90, 2_06, 9, 5_63_59, 42, 12_20_09, 9, 1_64_66, 16, 8_73_44, 45_37, 9, 47_17, 7_83_81, 6, 15_99_58, 7, 15, 2_44_80, 6_18, 4, 5_27, 2_26_93, 54_28, 4, 27_77, 2_44_80, 98_74, 4, 4_35_23, 5_94, 4, 8_03, 1_83_92, 3_31_89, 18, 4, 4_35_23, 2_44_47, 1_23_99, 1_00, 2_49_55, 8_36_58, 96_26, 14_40_57, 15, 8_39, 2_23_35, 16, 1_36, 2_49_55, 8_36_58, 8_34_79, 15, 3_91_02, 7_24, 16, 6_78, 6_45, 27_89, 13_28, 45_89, 42, 12_20_09, 11_57_74, 23, 8_05, 13_28, 4_68_76, 7, 1_36, 5_38_94, 19_40, 4_22_27, 4_11_59, 1_77_21, 8_23, 4_25, 4, 2_75_12, 9_87_22, 2_06, 1_36, 55_31, 49_70, 9_19, 1_73_36, 5, 2], [0, 2_00_80, 6_18, 83, 8_27_75, 47, 4_79, 9, 15_17, 73, 5_38_94, 3_33, 8_05_81, 11_01_17, 1_88_11, 52_56, 12_95, 51, 15_25_26, 2_97, 79_86, 3_90, 12_44_16, 5_38, 3_54_31, 2_14, 98, 1_50_44, 2_57_37, 1_36, 71_08, 4_37_01, 23, 7_56, 13_53_55, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 5_81, 6_37_73, 11_94_55, 6, 14_77_97, 8_82_03, 7, 6_45, 70, 21, 32_85, 1_02_69, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase_ , model_name="""xlm-roberta-base""" , revision="""d9d8a8ea5eb94b1c6654ae9249df7793cd2933d3""" , )
136
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCamelCase : Dict = { 'configuration_megatron_bert': ['MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MegatronBertConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Union[str, Any] = [ 'MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'MegatronBertForCausalLM', 'MegatronBertForMaskedLM', 'MegatronBertForMultipleChoice', 'MegatronBertForNextSentencePrediction', 'MegatronBertForPreTraining', 'MegatronBertForQuestionAnswering', 'MegatronBertForSequenceClassification', 'MegatronBertForTokenClassification', 'MegatronBertModel', 'MegatronBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_megatron_bert import MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MegatronBertConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_megatron_bert import ( MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, MegatronBertPreTrainedModel, ) else: import sys _lowerCamelCase : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
167
"""simple docstring""" import argparse import pickle import numpy as np import torch from torch import nn from transformers import ReformerConfig, ReformerModelWithLMHead from transformers.utils import logging logging.set_verbosity_info() def lowercase_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=None ): """simple docstring""" assert torch_layer.weight.shape == weight.shape, f"""{torch_layer} layer.weight does not match""" A_ : Dict = nn.Parameter(_UpperCAmelCase ) if bias is not None: assert torch_layer.bias.shape == bias.shape, f"""{torch_layer} layer.bias does not match""" A_ : Optional[Any] = nn.Parameter(_UpperCAmelCase ) def lowercase_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" A_ : Optional[int] = np.asarray(weights[0] ) A_ : Optional[Any] = np.asarray(weights[1] ) A_ : Union[str, Any] = np.asarray(weights[2] ) set_param( torch_layer.self_attention.query_key , torch.tensor(_UpperCAmelCase ).transpose(1 , 2 ).contiguous().view(-1 , _UpperCAmelCase ) , ) set_param( torch_layer.self_attention.value , torch.tensor(_UpperCAmelCase ).transpose(1 , 2 ).contiguous().view(-1 , _UpperCAmelCase ) , ) set_param( torch_layer.output.dense , torch.tensor(_UpperCAmelCase ).view(-1 , _UpperCAmelCase ).contiguous().transpose(0 , 1 ) , ) def lowercase_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" A_ : int = np.asarray(weights[0] ) A_ : Optional[int] = np.asarray(weights[1] ) A_ : int = np.asarray(weights[2] ) A_ : List[str] = np.asarray(weights[3] ) set_param( torch_layer.self_attention.query , torch.tensor(_UpperCAmelCase ).transpose(1 , 2 ).contiguous().view(-1 , _UpperCAmelCase ) , ) set_param( torch_layer.self_attention.key , torch.tensor(_UpperCAmelCase ).transpose(1 , 2 ).contiguous().view(-1 , _UpperCAmelCase ) , ) set_param( torch_layer.self_attention.value , torch.tensor(_UpperCAmelCase ).transpose(1 , 2 ).contiguous().view(-1 , _UpperCAmelCase ) , ) set_param( torch_layer.output.dense , torch.tensor(_UpperCAmelCase ).view(-1 , _UpperCAmelCase ).contiguous().transpose(0 , 1 ) , ) def lowercase_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" A_ : List[Any] = weights[0][0][0] A_ : Any = np.asarray(layer_norm_a[0] ) A_ : List[str] = np.asarray(layer_norm_a[1] ) set_param( torch_block.attention.layer_norm , torch.tensor(_UpperCAmelCase ) , torch.tensor(_UpperCAmelCase ) , ) # lsh weights + output A_ : List[str] = weights[0][1] if len(_UpperCAmelCase ) < 4: set_layer_weights_in_torch_lsh(_UpperCAmelCase , torch_block.attention , _UpperCAmelCase ) else: set_layer_weights_in_torch_local(_UpperCAmelCase , torch_block.attention , _UpperCAmelCase ) # intermediate weighs A_ : Dict = weights[2][0][1][2] # Chunked Feed Forward if len(_UpperCAmelCase ) == 4: A_ : Tuple = intermediate_weights[2] # layernorm 2 A_ : List[Any] = np.asarray(intermediate_weights[0][0] ) A_ : List[Any] = np.asarray(intermediate_weights[0][1] ) set_param( torch_block.feed_forward.layer_norm , torch.tensor(_UpperCAmelCase ) , torch.tensor(_UpperCAmelCase ) , ) # intermediate dense A_ : Optional[int] = np.asarray(intermediate_weights[1][0] ) A_ : List[str] = np.asarray(intermediate_weights[1][1] ) set_param( torch_block.feed_forward.dense.dense , torch.tensor(_UpperCAmelCase ).transpose(0 , 1 ).contiguous() , torch.tensor(_UpperCAmelCase ) , ) # intermediate out A_ : List[str] = np.asarray(intermediate_weights[4][0] ) A_ : int = np.asarray(intermediate_weights[4][1] ) set_param( torch_block.feed_forward.output.dense , torch.tensor(_UpperCAmelCase ).transpose(0 , 1 ).contiguous() , torch.tensor(_UpperCAmelCase ) , ) def lowercase_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" A_ : Any = torch_model.reformer # word embeds A_ : str = np.asarray(weights[1] ) set_param( torch_model_reformer.embeddings.word_embeddings , torch.tensor(_UpperCAmelCase ) , ) if isinstance(weights[3] , _UpperCAmelCase ): A_ : Tuple = torch_model_reformer.embeddings.position_embeddings for emb_idx in range(len(position_embeddings.weights ) ): A_ : Tuple = np.asarray(weights[3][emb_idx][0] ) assert ( position_embeddings.weights[emb_idx].shape == emb_weights.shape ), f"""{position_embeddings[emb_idx]} emb does not match""" A_ : Tuple = nn.Parameter(torch.tensor(_UpperCAmelCase ) ) A_ : str = weights[5] assert len(torch_model_reformer.encoder.layers ) * 4 == len( _UpperCAmelCase ), "HF and trax model do not have the same number of layers" for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers ): A_ : Tuple = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)] set_block_weights_in_torch(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # output layer norm A_ : int = np.asarray(weights[7][0] ) A_ : str = np.asarray(weights[7][1] ) set_param( torch_model_reformer.encoder.layer_norm , torch.tensor(_UpperCAmelCase ) , torch.tensor(_UpperCAmelCase ) , ) # output embeddings A_ : Optional[Any] = np.asarray(weights[9][0] ) A_ : Tuple = np.asarray(weights[9][1] ) set_param( torch_model.lm_head.decoder , torch.tensor(_UpperCAmelCase ).transpose(0 , 1 ).contiguous() , torch.tensor(_UpperCAmelCase ) , ) def lowercase_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" A_ : Optional[Any] = ReformerConfig.from_json_file(_UpperCAmelCase ) print(f"""Building PyTorch model from configuration: {config}""" ) A_ : Optional[Any] = ReformerModelWithLMHead(_UpperCAmelCase ) with open(_UpperCAmelCase , '''rb''' ) as f: A_ : Union[str, Any] = pickle.load(_UpperCAmelCase )['''weights'''] set_model_weights_in_torch(_UpperCAmelCase , _UpperCAmelCase , config.hidden_size ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , _UpperCAmelCase ) if __name__ == "__main__": _lowerCamelCase : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--trax_model_pkl_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained Reformer model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) _lowerCamelCase : Dict = parser.parse_args() convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
167
1
import baseaa def SCREAMING_SNAKE_CASE ( __UpperCamelCase : str ) -> bytes: return baseaa.baaencode(string.encode('''utf-8''' ) ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : bytes ) -> str: return baseaa.baadecode(__UpperCamelCase ).decode('''utf-8''' ) if __name__ == "__main__": _lowerCamelCase = 'Hello World!' _lowerCamelCase = baseaa_encode(test) print(encoded) _lowerCamelCase = baseaa_decode(encoded) print(decoded)
358
import argparse from tax import checkpoints from transformers import AutoConfig, FlaxAutoModelForSeqaSeqLM def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Tuple , __UpperCamelCase : List[str] , __UpperCamelCase : str ) -> str: UpperCAmelCase_ = AutoConfig.from_pretrained(__UpperCamelCase ) UpperCAmelCase_ = FlaxAutoModelForSeqaSeqLM.from_config(config=__UpperCamelCase ) UpperCAmelCase_ = checkpoints.load_tax_checkpoint(__UpperCamelCase ) UpperCAmelCase_ = '''wi_0''' in tax_model['''target''']['''encoder''']['''layers_0''']['''mlp'''] if config.model_type == "t5": UpperCAmelCase_ = '''SelfAttention''' if config.model_type == "longt5" and config.encoder_attention_type == "local": UpperCAmelCase_ = '''LocalSelfAttention''' elif config.model_type == "longt5" and config.encoder_attention_type == "transient-global": UpperCAmelCase_ = '''TransientGlobalSelfAttention''' else: raise ValueError( '''Given config is expected to have `model_type=\'t5\'`, or `model_type=\'longt5` with `encoder_attention_type`''' ''' attribute with a value from [\'local\', \'transient-global].''' ) # Encoder for layer_index in range(config.num_layers ): UpperCAmelCase_ = f'layers_{str(__UpperCamelCase )}' # Self-Attention UpperCAmelCase_ = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''key''']['''kernel'''] UpperCAmelCase_ = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''out''']['''kernel'''] UpperCAmelCase_ = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''query''']['''kernel'''] UpperCAmelCase_ = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''value''']['''kernel'''] # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": UpperCAmelCase_ = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''T5LayerNorm_0''']['''scale'''] # Layer Normalization UpperCAmelCase_ = tax_model['''target''']['''encoder'''][layer_name]['''pre_attention_layer_norm''']['''scale'''] if split_mlp_wi: UpperCAmelCase_ = tax_model['''target''']['''encoder'''][layer_name]['''mlp''']['''wi_0''']['''kernel'''] UpperCAmelCase_ = tax_model['''target''']['''encoder'''][layer_name]['''mlp''']['''wi_1''']['''kernel'''] else: UpperCAmelCase_ = tax_model['''target''']['''encoder'''][layer_name]['''mlp''']['''wi''']['''kernel'''] UpperCAmelCase_ = tax_model['''target''']['''encoder'''][layer_name]['''mlp''']['''wo''']['''kernel'''] # Layer Normalization UpperCAmelCase_ = tax_model['''target''']['''encoder'''][layer_name]['''pre_mlp_layer_norm''']['''scale'''] # Assigning UpperCAmelCase_ = flax_model.params['''encoder''']['''block'''][str(__UpperCamelCase )]['''layer'''] UpperCAmelCase_ = tax_attention_key UpperCAmelCase_ = tax_attention_out UpperCAmelCase_ = tax_attention_query UpperCAmelCase_ = tax_attention_value UpperCAmelCase_ = tax_attention_layer_norm # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": UpperCAmelCase_ = tax_global_layer_norm if split_mlp_wi: UpperCAmelCase_ = tax_mlp_wi_a UpperCAmelCase_ = tax_mlp_wi_a else: UpperCAmelCase_ = tax_mlp_wi UpperCAmelCase_ = tax_mlp_wo UpperCAmelCase_ = tax_mlp_layer_norm UpperCAmelCase_ = flax_model_encoder_layer_block # Only for layer 0: UpperCAmelCase_ = tax_model['''target''']['''encoder''']['''relpos_bias''']['''rel_embedding'''].T UpperCAmelCase_ = tax_encoder_rel_embedding # Side/global relative position_bias + layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": UpperCAmelCase_ = tax_model['''target''']['''encoder''']['''side_relpos_bias''']['''rel_embedding'''].T UpperCAmelCase_ = tax_encoder_global_rel_embedding # Assigning UpperCAmelCase_ = tax_model['''target''']['''encoder''']['''encoder_norm''']['''scale'''] UpperCAmelCase_ = tax_encoder_norm # Decoder for layer_index in range(config.num_layers ): UpperCAmelCase_ = f'layers_{str(__UpperCamelCase )}' # Self-Attention UpperCAmelCase_ = tax_model['''target''']['''decoder'''][layer_name]['''self_attention''']['''key''']['''kernel'''] UpperCAmelCase_ = tax_model['''target''']['''decoder'''][layer_name]['''self_attention''']['''out''']['''kernel'''] UpperCAmelCase_ = tax_model['''target''']['''decoder'''][layer_name]['''self_attention''']['''query''']['''kernel'''] UpperCAmelCase_ = tax_model['''target''']['''decoder'''][layer_name]['''self_attention''']['''value''']['''kernel'''] # Layer Normalization UpperCAmelCase_ = tax_model['''target''']['''decoder'''][layer_name]['''pre_self_attention_layer_norm'''][ '''scale''' ] # Encoder-Decoder-Attention UpperCAmelCase_ = tax_model['''target''']['''decoder'''][layer_name]['''encoder_decoder_attention'''] UpperCAmelCase_ = tax_enc_dec_attention_module['''key''']['''kernel'''] UpperCAmelCase_ = tax_enc_dec_attention_module['''out''']['''kernel'''] UpperCAmelCase_ = tax_enc_dec_attention_module['''query''']['''kernel'''] UpperCAmelCase_ = tax_enc_dec_attention_module['''value''']['''kernel'''] # Layer Normalization UpperCAmelCase_ = tax_model['''target''']['''decoder'''][layer_name]['''pre_cross_attention_layer_norm''']['''scale'''] # MLP if split_mlp_wi: UpperCAmelCase_ = tax_model['''target''']['''decoder'''][layer_name]['''mlp''']['''wi_0''']['''kernel'''] UpperCAmelCase_ = tax_model['''target''']['''decoder'''][layer_name]['''mlp''']['''wi_1''']['''kernel'''] else: UpperCAmelCase_ = tax_model['''target''']['''decoder'''][layer_name]['''mlp''']['''wi''']['''kernel'''] UpperCAmelCase_ = tax_model['''target''']['''decoder'''][layer_name]['''mlp''']['''wo''']['''kernel'''] # Layer Normalization UpperCAmelCase_ = tax_model['''target''']['''decoder'''][layer_name]['''pre_mlp_layer_norm''']['''scale'''] # Assigning UpperCAmelCase_ = flax_model.params['''decoder''']['''block'''][str(__UpperCamelCase )]['''layer'''] UpperCAmelCase_ = tax_attention_key UpperCAmelCase_ = tax_attention_out UpperCAmelCase_ = tax_attention_query UpperCAmelCase_ = tax_attention_value UpperCAmelCase_ = tax_pre_attention_layer_norm UpperCAmelCase_ = tax_enc_dec_attention_key UpperCAmelCase_ = tax_enc_dec_attention_out UpperCAmelCase_ = tax_enc_dec_attention_query UpperCAmelCase_ = tax_enc_dec_attention_value UpperCAmelCase_ = tax_cross_layer_norm if split_mlp_wi: UpperCAmelCase_ = tax_mlp_wi_a UpperCAmelCase_ = tax_mlp_wi_a else: UpperCAmelCase_ = tax_mlp_wi UpperCAmelCase_ = tax_mlp_wo UpperCAmelCase_ = txa_mlp_layer_norm UpperCAmelCase_ = flax_model_decoder_layer_block # Decoder Normalization UpperCAmelCase_ = tax_model['''target''']['''decoder''']['''decoder_norm''']['''scale'''] UpperCAmelCase_ = txa_decoder_norm # Only for layer 0: UpperCAmelCase_ = tax_model['''target''']['''decoder''']['''relpos_bias''']['''rel_embedding'''].T UpperCAmelCase_ = tax_decoder_rel_embedding # Token Embeddings UpperCAmelCase_ = tax_model['''target''']['''token_embedder''']['''embedding'''] UpperCAmelCase_ = txa_token_embeddings # LM Head (only in v1.1 and LongT5 checkpoints) if "logits_dense" in tax_model["target"]["decoder"]: UpperCAmelCase_ = tax_model['''target''']['''decoder''']['''logits_dense''']['''kernel'''] flax_model.save_pretrained(__UpperCamelCase ) print('''T5X Model was sucessfully converted!''' ) if __name__ == "__main__": _lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--t5x_checkpoint_path', default=None, type=str, required=True, help='Path the T5X checkpoint.' ) parser.add_argument('--config_name', default=None, type=str, required=True, help='Config name of LongT5/T5 model.') parser.add_argument( '--flax_dump_folder_path', default=None, type=str, required=True, help='Path to the output FLAX model.' ) _lowerCamelCase = parser.parse_args() convert_tax_checkpoint_to_flax(args.tax_checkpoint_path, args.config_name, args.flax_dump_folder_path)
177
0
from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class lowerCamelCase__( __lowerCamelCase): UpperCAmelCase__ : List[Any] = ['image_processor', 'tokenizer'] UpperCAmelCase__ : int = 'BlipImageProcessor' UpperCAmelCase__ : Tuple = ('BertTokenizer', 'BertTokenizerFast') def __init__( self: Optional[Any] , UpperCamelCase_: List[str] , UpperCamelCase_: List[Any] ): __lowerCamelCase = False super().__init__(UpperCamelCase_ , UpperCamelCase_ ) __lowerCamelCase = self.image_processor def __call__( self: str , UpperCamelCase_: ImageInput = None , UpperCamelCase_: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , UpperCamelCase_: bool = True , UpperCamelCase_: Union[bool, str, PaddingStrategy] = False , UpperCamelCase_: Union[bool, str, TruncationStrategy] = None , UpperCamelCase_: Optional[int] = None , UpperCamelCase_: int = 0 , UpperCamelCase_: Optional[int] = None , UpperCamelCase_: Optional[bool] = None , UpperCamelCase_: bool = False , UpperCamelCase_: bool = False , UpperCamelCase_: bool = False , UpperCamelCase_: bool = False , UpperCamelCase_: bool = False , UpperCamelCase_: bool = True , UpperCamelCase_: Optional[Union[str, TensorType]] = None , **UpperCamelCase_: List[str] , ): if images is None and text is None: raise ValueError("""You have to specify either images or text.""" ) # Get only text if images is None: __lowerCamelCase = self.tokenizer __lowerCamelCase = self.tokenizer( text=UpperCamelCase_ , add_special_tokens=UpperCamelCase_ , padding=UpperCamelCase_ , truncation=UpperCamelCase_ , max_length=UpperCamelCase_ , stride=UpperCamelCase_ , pad_to_multiple_of=UpperCamelCase_ , return_attention_mask=UpperCamelCase_ , return_overflowing_tokens=UpperCamelCase_ , return_special_tokens_mask=UpperCamelCase_ , return_offsets_mapping=UpperCamelCase_ , return_token_type_ids=UpperCamelCase_ , return_length=UpperCamelCase_ , verbose=UpperCamelCase_ , return_tensors=UpperCamelCase_ , **UpperCamelCase_ , ) return text_encoding # add pixel_values __lowerCamelCase = self.image_processor(UpperCamelCase_ , return_tensors=UpperCamelCase_ ) if text is not None: __lowerCamelCase = self.tokenizer( text=UpperCamelCase_ , add_special_tokens=UpperCamelCase_ , padding=UpperCamelCase_ , truncation=UpperCamelCase_ , max_length=UpperCamelCase_ , stride=UpperCamelCase_ , pad_to_multiple_of=UpperCamelCase_ , return_attention_mask=UpperCamelCase_ , return_overflowing_tokens=UpperCamelCase_ , return_special_tokens_mask=UpperCamelCase_ , return_offsets_mapping=UpperCamelCase_ , return_token_type_ids=UpperCamelCase_ , return_length=UpperCamelCase_ , verbose=UpperCamelCase_ , return_tensors=UpperCamelCase_ , **UpperCamelCase_ , ) else: __lowerCamelCase = None if text_encoding is not None: encoding_image_processor.update(UpperCamelCase_ ) return encoding_image_processor def lowerCAmelCase__ ( self: Optional[int] , *UpperCamelCase_: Union[str, Any] , **UpperCamelCase_: Tuple ): return self.tokenizer.batch_decode(*UpperCamelCase_ , **UpperCamelCase_ ) def lowerCAmelCase__ ( self: List[str] , *UpperCamelCase_: List[str] , **UpperCamelCase_: str ): return self.tokenizer.decode(*UpperCamelCase_ , **UpperCamelCase_ ) @property def lowerCAmelCase__ ( self: str ): __lowerCamelCase = self.tokenizer.model_input_names __lowerCamelCase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
12
from typing import Callable, List, Optional, Tuple, Union import torch from transformers import CLIPTextModel, CLIPTokenizer from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin, TransformeraDModel, VQModel from ...schedulers import VQDiffusionScheduler from ...utils import logging from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput UpperCAmelCase_ = logging.get_logger(__name__) # pylint: disable=invalid-name class lowerCamelCase__( __lowerCamelCase , __lowerCamelCase): @register_to_config def __init__( self: Optional[Any] , UpperCamelCase_: bool , UpperCamelCase_: Optional[int] = None , UpperCamelCase_: Optional[int] = None ): super().__init__() __lowerCamelCase = learnable if self.learnable: assert hidden_size is not None, "learnable=True requires `hidden_size` to be set" assert length is not None, "learnable=True requires `length` to be set" __lowerCamelCase = torch.zeros(UpperCamelCase_ , UpperCamelCase_ ) else: __lowerCamelCase = None __lowerCamelCase = torch.nn.Parameter(UpperCamelCase_ ) class lowerCamelCase__( __lowerCamelCase): UpperCAmelCase__ : VQModel UpperCAmelCase__ : CLIPTextModel UpperCAmelCase__ : CLIPTokenizer UpperCAmelCase__ : TransformeraDModel UpperCAmelCase__ : LearnedClassifierFreeSamplingEmbeddings UpperCAmelCase__ : VQDiffusionScheduler def __init__( self: str , UpperCamelCase_: VQModel , UpperCamelCase_: CLIPTextModel , UpperCamelCase_: CLIPTokenizer , UpperCamelCase_: TransformeraDModel , UpperCamelCase_: VQDiffusionScheduler , UpperCamelCase_: LearnedClassifierFreeSamplingEmbeddings , ): super().__init__() self.register_modules( vqvae=UpperCamelCase_ , transformer=UpperCamelCase_ , text_encoder=UpperCamelCase_ , tokenizer=UpperCamelCase_ , scheduler=UpperCamelCase_ , learned_classifier_free_sampling_embeddings=UpperCamelCase_ , ) def lowerCAmelCase__ ( self: str , UpperCamelCase_: Any , UpperCamelCase_: List[Any] , UpperCamelCase_: Any ): __lowerCamelCase = len(UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else 1 # get prompt text embeddings __lowerCamelCase = self.tokenizer( UpperCamelCase_ , padding="""max_length""" , max_length=self.tokenizer.model_max_length , return_tensors="""pt""" , ) __lowerCamelCase = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: __lowerCamelCase = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( """The following part of your input was truncated because CLIP can only handle sequences up to""" F' {self.tokenizer.model_max_length} tokens: {removed_text}' ) __lowerCamelCase = text_input_ids[:, : self.tokenizer.model_max_length] __lowerCamelCase = self.text_encoder(text_input_ids.to(self.device ) )[0] # NOTE: This additional step of normalizing the text embeddings is from VQ-Diffusion. # While CLIP does normalize the pooled output of the text transformer when combining # the image and text embeddings, CLIP does not directly normalize the last hidden state. # # CLIP normalizing the pooled output. # https://github.com/huggingface/transformers/blob/d92e22d1f28324f513f3080e5c47c071a3916721/src/transformers/models/clip/modeling_clip.py#L1052-L1053 __lowerCamelCase = prompt_embeds / prompt_embeds.norm(dim=-1 , keepdim=UpperCamelCase_ ) # duplicate text embeddings for each generation per prompt __lowerCamelCase = prompt_embeds.repeat_interleave(UpperCamelCase_ , dim=0 ) if do_classifier_free_guidance: if self.learned_classifier_free_sampling_embeddings.learnable: __lowerCamelCase = self.learned_classifier_free_sampling_embeddings.embeddings __lowerCamelCase = negative_prompt_embeds.unsqueeze(0 ).repeat(UpperCamelCase_ , 1 , 1 ) else: __lowerCamelCase = [""""""] * batch_size __lowerCamelCase = text_input_ids.shape[-1] __lowerCamelCase = self.tokenizer( UpperCamelCase_ , padding="""max_length""" , max_length=UpperCamelCase_ , truncation=UpperCamelCase_ , return_tensors="""pt""" , ) __lowerCamelCase = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # See comment for normalizing text embeddings __lowerCamelCase = negative_prompt_embeds / negative_prompt_embeds.norm(dim=-1 , keepdim=UpperCamelCase_ ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method __lowerCamelCase = negative_prompt_embeds.shape[1] __lowerCamelCase = negative_prompt_embeds.repeat(1 , UpperCamelCase_ , 1 ) __lowerCamelCase = negative_prompt_embeds.view(batch_size * num_images_per_prompt , UpperCamelCase_ , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes __lowerCamelCase = torch.cat([negative_prompt_embeds, prompt_embeds] ) return prompt_embeds @torch.no_grad() def __call__( self: Tuple , UpperCamelCase_: Union[str, List[str]] , UpperCamelCase_: int = 1_00 , UpperCamelCase_: float = 5.0 , UpperCamelCase_: float = 1.0 , UpperCamelCase_: int = 1 , UpperCamelCase_: Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCamelCase_: Optional[torch.FloatTensor] = None , UpperCamelCase_: Optional[str] = "pil" , UpperCamelCase_: bool = True , UpperCamelCase_: Optional[Callable[[int, int, torch.FloatTensor], None]] = None , UpperCamelCase_: int = 1 , ): if isinstance(UpperCamelCase_ , UpperCamelCase_ ): __lowerCamelCase = 1 elif isinstance(UpperCamelCase_ , UpperCamelCase_ ): __lowerCamelCase = len(UpperCamelCase_ ) else: raise ValueError(F'`prompt` has to be of type `str` or `list` but is {type(UpperCamelCase_ )}' ) __lowerCamelCase = batch_size * num_images_per_prompt __lowerCamelCase = guidance_scale > 1.0 __lowerCamelCase = self._encode_prompt(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(UpperCamelCase_ , UpperCamelCase_ ) or callback_steps <= 0) ): raise ValueError( F'`callback_steps` has to be a positive integer but is {callback_steps} of type' F' {type(UpperCamelCase_ )}.' ) # get the initial completely masked latents unless the user supplied it __lowerCamelCase = (batch_size, self.transformer.num_latent_pixels) if latents is None: __lowerCamelCase = self.transformer.num_vector_embeds - 1 __lowerCamelCase = torch.full(UpperCamelCase_ , UpperCamelCase_ ).to(self.device ) else: if latents.shape != latents_shape: raise ValueError(F'Unexpected latents shape, got {latents.shape}, expected {latents_shape}' ) if (latents < 0).any() or (latents >= self.transformer.num_vector_embeds).any(): raise ValueError( """Unexpected latents value(s). All latents be valid embedding indices i.e. in the range 0,""" F' {self.transformer.num_vector_embeds - 1} (inclusive).' ) __lowerCamelCase = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(UpperCamelCase_ , device=self.device ) __lowerCamelCase = self.scheduler.timesteps.to(self.device ) __lowerCamelCase = latents for i, t in enumerate(self.progress_bar(UpperCamelCase_ ) ): # expand the sample if we are doing classifier free guidance __lowerCamelCase = torch.cat([sample] * 2 ) if do_classifier_free_guidance else sample # predict the un-noised image # model_output == `log_p_x_0` __lowerCamelCase = self.transformer(UpperCamelCase_ , encoder_hidden_states=UpperCamelCase_ , timestep=UpperCamelCase_ ).sample if do_classifier_free_guidance: __lowerCamelCase, __lowerCamelCase = model_output.chunk(2 ) __lowerCamelCase = model_output_uncond + guidance_scale * (model_output_text - model_output_uncond) model_output -= torch.logsumexp(UpperCamelCase_ , dim=1 , keepdim=UpperCamelCase_ ) __lowerCamelCase = self.truncate(UpperCamelCase_ , UpperCamelCase_ ) # remove `log(0)`'s (`-inf`s) __lowerCamelCase = model_output.clamp(-70 ) # compute the previous noisy sample x_t -> x_t-1 __lowerCamelCase = self.scheduler.step(UpperCamelCase_ , timestep=UpperCamelCase_ , sample=UpperCamelCase_ , generator=UpperCamelCase_ ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) __lowerCamelCase = self.vqvae.config.vq_embed_dim __lowerCamelCase = (batch_size, self.transformer.height, self.transformer.width, embedding_channels) __lowerCamelCase = self.vqvae.quantize.get_codebook_entry(UpperCamelCase_ , shape=UpperCamelCase_ ) __lowerCamelCase = self.vqvae.decode(UpperCamelCase_ , force_not_quantize=UpperCamelCase_ ).sample __lowerCamelCase = (image / 2 + 0.5).clamp(0 , 1 ) __lowerCamelCase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __lowerCamelCase = self.numpy_to_pil(UpperCamelCase_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=UpperCamelCase_ ) def lowerCAmelCase__ ( self: Union[str, Any] , UpperCamelCase_: torch.FloatTensor , UpperCamelCase_: float ): __lowerCamelCase, __lowerCamelCase = torch.sort(UpperCamelCase_ , 1 , descending=UpperCamelCase_ ) __lowerCamelCase = torch.exp(UpperCamelCase_ ) __lowerCamelCase = sorted_p_x_0.cumsum(dim=1 ) < truncation_rate # Ensure that at least the largest probability is not zeroed out __lowerCamelCase = torch.full_like(keep_mask[:, 0:1, :] , UpperCamelCase_ ) __lowerCamelCase = torch.cat((all_true, keep_mask) , dim=1 ) __lowerCamelCase = keep_mask[:, :-1, :] __lowerCamelCase = keep_mask.gather(1 , indices.argsort(1 ) ) __lowerCamelCase = log_p_x_0.clone() __lowerCamelCase = -torch.inf # -inf = log(0) return rv
12
1
import pytest from datasets.utils.sharding import _distribute_shards, _number_of_shards_in_gen_kwargs, _split_gen_kwargs @pytest.mark.parametrize( 'kwargs, expected' , [ ({'num_shards': 0, 'max_num_jobs': 1}, []), ({'num_shards': 10, 'max_num_jobs': 1}, [range(10 )]), ({'num_shards': 10, 'max_num_jobs': 10}, [range(a__ , i + 1 ) for i in range(10 )]), ({'num_shards': 1, 'max_num_jobs': 10}, [range(1 )]), ({'num_shards': 10, 'max_num_jobs': 3}, [range(0 , 4 ), range(4 , 7 ), range(7 , 10 )]), ({'num_shards': 3, 'max_num_jobs': 10}, [range(0 , 1 ), range(1 , 2 ), range(2 , 3 )]), ] , ) def UpperCamelCase_( snake_case__: Tuple , snake_case__: Optional[Any] ) -> Any: UpperCAmelCase__ = _distribute_shards(**a__ ) assert out == expected @pytest.mark.parametrize( 'gen_kwargs, max_num_jobs, expected' , [ ({'foo': 0}, 10, [{'foo': 0}]), ({'shards': [0, 1, 2, 3]}, 1, [{'shards': [0, 1, 2, 3]}]), ({'shards': [0, 1, 2, 3]}, 4, [{'shards': [0]}, {'shards': [1]}, {'shards': [2]}, {'shards': [3]}]), ({'shards': [0, 1]}, 4, [{'shards': [0]}, {'shards': [1]}]), ({'shards': [0, 1, 2, 3]}, 2, [{'shards': [0, 1]}, {'shards': [2, 3]}]), ] , ) def UpperCamelCase_( snake_case__: Union[str, Any] , snake_case__: Union[str, Any] , snake_case__: Optional[Any] ) -> int: UpperCAmelCase__ = _split_gen_kwargs(a__ , a__ ) assert out == expected @pytest.mark.parametrize( 'gen_kwargs, expected' , [ ({'foo': 0}, 1), ({'shards': [0]}, 1), ({'shards': [0, 1, 2, 3]}, 4), ({'shards': [0, 1, 2, 3], 'foo': 0}, 4), ({'shards': [0, 1, 2, 3], 'other': (0, 1)}, 4), ({'shards': [0, 1, 2, 3], 'shards2': [0, 1]}, RuntimeError), ] , ) def UpperCamelCase_( snake_case__: Optional[Any] , snake_case__: Tuple ) -> List[Any]: if expected is RuntimeError: with pytest.raises(a__ ): _number_of_shards_in_gen_kwargs(a__ ) else: UpperCAmelCase__ = _number_of_shards_in_gen_kwargs(a__ ) assert out == expected
360
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = { '''asapp/sew-d-tiny-100k''': '''https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json''', # See all SEW-D models at https://huggingface.co/models?filter=sew-d } class lowercase ( _UpperCamelCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = """sew-d""" def __init__(self , __a=32 , __a=768 , __a=12 , __a=12 , __a=3072 , __a=2 , __a=512 , __a=256 , __a=True , __a=True , __a=("p2c", "c2p") , __a="layer_norm" , __a="gelu_python" , __a=0.1 , __a=0.1 , __a=0.1 , __a=0.0 , __a=0.1 , __a=0.02 , __a=1E-7 , __a=1E-5 , __a="group" , __a="gelu" , __a=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , __a=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , __a=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , __a=False , __a=128 , __a=16 , __a=True , __a=0.05 , __a=10 , __a=2 , __a=0.0 , __a=10 , __a=0 , __a="mean" , __a=False , __a=False , __a=256 , __a=0 , __a=1 , __a=2 , **__a , ) -> str: """simple docstring""" super().__init__(**__a , pad_token_id=__a , bos_token_id=__a , eos_token_id=__a ) UpperCAmelCase__ = hidden_size UpperCAmelCase__ = feat_extract_norm UpperCAmelCase__ = feat_extract_activation UpperCAmelCase__ = list(__a ) UpperCAmelCase__ = list(__a ) UpperCAmelCase__ = list(__a ) UpperCAmelCase__ = conv_bias UpperCAmelCase__ = num_conv_pos_embeddings UpperCAmelCase__ = num_conv_pos_embedding_groups UpperCAmelCase__ = len(self.conv_dim ) UpperCAmelCase__ = num_hidden_layers UpperCAmelCase__ = intermediate_size UpperCAmelCase__ = squeeze_factor UpperCAmelCase__ = max_position_embeddings UpperCAmelCase__ = position_buckets UpperCAmelCase__ = share_att_key UpperCAmelCase__ = relative_attention UpperCAmelCase__ = norm_rel_ebd UpperCAmelCase__ = list(__a ) UpperCAmelCase__ = hidden_act UpperCAmelCase__ = num_attention_heads UpperCAmelCase__ = hidden_dropout UpperCAmelCase__ = attention_dropout UpperCAmelCase__ = activation_dropout UpperCAmelCase__ = feat_proj_dropout UpperCAmelCase__ = final_dropout UpperCAmelCase__ = layer_norm_eps UpperCAmelCase__ = feature_layer_norm_eps UpperCAmelCase__ = initializer_range UpperCAmelCase__ = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect.' 'It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,' F"but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)" F"= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`." ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCAmelCase__ = apply_spec_augment UpperCAmelCase__ = mask_time_prob UpperCAmelCase__ = mask_time_length UpperCAmelCase__ = mask_time_min_masks UpperCAmelCase__ = mask_feature_prob UpperCAmelCase__ = mask_feature_length UpperCAmelCase__ = mask_feature_min_masks # ctc loss UpperCAmelCase__ = ctc_loss_reduction UpperCAmelCase__ = ctc_zero_infinity # sequence classification UpperCAmelCase__ = use_weighted_layer_sum UpperCAmelCase__ = classifier_proj_size @property def UpperCamelCase__ (self ) -> List[str]: """simple docstring""" return functools.reduce(operator.mul , self.conv_stride , 1 )
335
0
"""simple docstring""" from numpy import exp, pi, sqrt def lowercase ( lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : float = 0.0 , lowerCAmelCase__ : float = 1.0 ) -> int: return 1 / sqrt(2 * pi * sigma**2 ) * exp(-((x - mu) ** 2) / (2 * sigma**2) ) if __name__ == "__main__": import doctest doctest.testmod()
45
from ..utils import DummyObject, requires_backends class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : List[Any] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> List[str]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Optional[Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> int: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Dict = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> List[str]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> List[str]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Optional[int]: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : List[str] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Union[str, Any]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Optional[int]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> List[str]: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Dict = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> List[Any]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Optional[Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Union[str, Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Dict = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> str: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Tuple: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Any: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : List[Any] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> List[Any]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Optional[int]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Any: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : int = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Dict: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> str: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Tuple: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : List[Any] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> int: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> str: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Optional[Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : List[Any] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Tuple: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Optional[int]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Optional[Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : List[str] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Optional[Any]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Optional[Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Union[str, Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : List[Any] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Dict: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Tuple: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> List[Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) def UpperCAmelCase__ ( *_A : Optional[Any] , **_A : Optional[Any] ): '''simple docstring''' requires_backends(_A , ['''torch'''] ) def UpperCAmelCase__ ( *_A : Union[str, Any] , **_A : List[Any] ): '''simple docstring''' requires_backends(_A , ['''torch'''] ) def UpperCAmelCase__ ( *_A : Union[str, Any] , **_A : Tuple ): '''simple docstring''' requires_backends(_A , ['''torch'''] ) def UpperCAmelCase__ ( *_A : List[str] , **_A : List[str] ): '''simple docstring''' requires_backends(_A , ['''torch'''] ) def UpperCAmelCase__ ( *_A : Dict , **_A : Dict ): '''simple docstring''' requires_backends(_A , ['''torch'''] ) def UpperCAmelCase__ ( *_A : List[str] , **_A : str ): '''simple docstring''' requires_backends(_A , ['''torch'''] ) def UpperCAmelCase__ ( *_A : Optional[int] , **_A : Dict ): '''simple docstring''' requires_backends(_A , ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : List[Any] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> List[Any]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> List[Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> str: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Any: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> List[Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> str: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : str = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> List[str]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Dict: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Tuple: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Tuple = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> List[str]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Optional[int]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Dict: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Tuple = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Tuple: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Any: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> str: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Dict = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Optional[int]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Dict: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> str: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : List[str] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Any: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> str: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> str: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Any = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> int: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Union[str, Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Optional[Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : List[str] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Dict: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Dict: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Any: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : str = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Optional[Any]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Optional[Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> List[str]: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : int = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> List[str]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> List[str]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> int: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Union[str, Any]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> int: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> List[Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Optional[int]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Dict: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Union[str, Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Dict: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> List[Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> str: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : str = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Optional[Any]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Optional[Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> List[Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> List[Any]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Optional[int]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> List[Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : int = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> List[str]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Optional[int]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Union[str, Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Dict = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Tuple: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Optional[int]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Tuple: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Any: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> str: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> int: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Optional[Any]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Tuple: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Dict: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Dict: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> List[str]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Optional[Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Tuple = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Tuple: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Tuple: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> int: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : int = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Optional[Any]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> List[str]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> int: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : List[Any] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> List[Any]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Union[str, Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Dict: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Dict = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> int: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Union[str, Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> int: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : str = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Optional[Any]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Optional[int]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> List[str]: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Any: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Optional[int]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> str: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : str = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> List[str]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Any: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> List[Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Dict = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Optional[Any]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Any: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> int: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : List[Any] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> int: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> str: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Optional[int]: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> str: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Optional[Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Any: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Dict = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Any: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Tuple: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Dict: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Any = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> int: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Dict: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> int: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : int = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Union[str, Any]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> int: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> int: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Optional[int]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Tuple: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Any: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Optional[int] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Tuple: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> List[Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> List[Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Optional[Any]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> List[Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> str: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Optional[int]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> List[Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> str: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : int = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Tuple: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Tuple: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> str: """simple docstring""" requires_backends(cls, ['''torch'''] )
188
0
"""simple docstring""" import argparse import gc import json import os import re import torch from huggingface_hub import hf_hub_download from transformers import AutoModelForCausalLM, AutoTokenizer, PreTrainedTokenizerFast, RwkvConfig from transformers.modeling_utils import WEIGHTS_INDEX_NAME, shard_checkpoint __A = { '169M': 12, '430M': 24, '1B5': 24, '3B': 32, '7B': 32, '14B': 40, } __A = { '169M': 768, '430M': 1024, '1B5': 2048, '3B': 2560, '7B': 4096, '14B': 5120, } def lowercase_ ( _lowerCamelCase: Optional[Any] ) -> Tuple: '''simple docstring''' __lowerCamelCase : str = list(state_dict.keys() ) for name in state_dict_keys: __lowerCamelCase : Tuple = state_dict.pop(lowerCamelCase_ ) # emb -> embedding if name.startswith("emb." ): __lowerCamelCase : Optional[Any] = name.replace("emb." , "embeddings." ) # ln_0 -> pre_ln (only present at block 0) if name.startswith("blocks.0.ln0" ): __lowerCamelCase : List[Any] = name.replace("blocks.0.ln0" , "blocks.0.pre_ln" ) # att -> attention __lowerCamelCase : Optional[int] = re.sub(r"blocks\.(\d+)\.att" , r"blocks.\1.attention" , lowerCamelCase_ ) # ffn -> feed_forward __lowerCamelCase : List[str] = re.sub(r"blocks\.(\d+)\.ffn" , r"blocks.\1.feed_forward" , lowerCamelCase_ ) # time_mix_k -> time_mix_key and reshape if name.endswith(".time_mix_k" ): __lowerCamelCase : int = name.replace(".time_mix_k" , ".time_mix_key" ) # time_mix_v -> time_mix_value and reshape if name.endswith(".time_mix_v" ): __lowerCamelCase : Optional[Any] = name.replace(".time_mix_v" , ".time_mix_value" ) # time_mix_r -> time_mix_key and reshape if name.endswith(".time_mix_r" ): __lowerCamelCase : List[str] = name.replace(".time_mix_r" , ".time_mix_receptance" ) if name != "head.weight": __lowerCamelCase : Union[str, Any] = """rwkv.""" + name __lowerCamelCase : List[str] = weight return state_dict def lowercase_ ( _lowerCamelCase: Optional[int] , _lowerCamelCase: List[str] , _lowerCamelCase: List[str] , _lowerCamelCase: List[Any]=None , _lowerCamelCase: List[Any]=None , _lowerCamelCase: List[Any]=False , _lowerCamelCase: str=None ) -> Union[str, Any]: '''simple docstring''' if tokenizer_file is None: print("No `--tokenizer_file` provided, we will use the default tokenizer." ) __lowerCamelCase : Any = 50277 __lowerCamelCase : Dict = AutoTokenizer.from_pretrained("EleutherAI/gpt-neox-20b" ) else: __lowerCamelCase : List[Any] = PreTrainedTokenizerFast(tokenizer_file=lowerCamelCase_ ) __lowerCamelCase : Tuple = len(lowerCamelCase_ ) tokenizer.save_pretrained(lowerCamelCase_ ) # 2. Build the config __lowerCamelCase : Dict = list(NUM_HIDDEN_LAYERS_MAPPING.keys() ) if size is None: # Try to infer size from the checkpoint name for candidate in possible_sizes: if candidate in checkpoint_file: __lowerCamelCase : Union[str, Any] = candidate break if size is None: raise ValueError("Could not infer the size, please provide it with the `--size` argument." ) if size not in possible_sizes: raise ValueError(F"""`size` should be one of {possible_sizes}, got {size}.""" ) __lowerCamelCase : Dict = RwkvConfig( vocab_size=lowerCamelCase_ , num_hidden_layers=NUM_HIDDEN_LAYERS_MAPPING[size] , hidden_size=HIDEN_SIZE_MAPPING[size] , ) config.save_pretrained(lowerCamelCase_ ) # 3. Download model file then convert state_dict __lowerCamelCase : List[str] = hf_hub_download(lowerCamelCase_ , lowerCamelCase_ ) __lowerCamelCase : Any = torch.load(lowerCamelCase_ , map_location="cpu" ) __lowerCamelCase : Tuple = convert_state_dict(lowerCamelCase_ ) # 4. Split in shards and save __lowerCamelCase : str = shard_checkpoint(lowerCamelCase_ ) for shard_file, shard in shards.items(): torch.save(lowerCamelCase_ , os.path.join(lowerCamelCase_ , lowerCamelCase_ ) ) if index is not None: __lowerCamelCase : Union[str, Any] = os.path.join(lowerCamelCase_ , lowerCamelCase_ ) # Save the index as well with open(lowerCamelCase_ , "w" , encoding="utf-8" ) as f: __lowerCamelCase : Union[str, Any] = json.dumps(lowerCamelCase_ , indent=2 , sort_keys=lowerCamelCase_ ) + """\n""" f.write(lowerCamelCase_ ) # 5. Clean up shards (for some reason the file PyTorch saves take the same space as the whole state_dict print( "Cleaning up shards. This may error with an OOM error, it this is the case don't worry you still have converted the model." ) __lowerCamelCase : Any = list(shards.keys() ) del state_dict del shards gc.collect() for shard_file in shard_files: __lowerCamelCase : Dict = torch.load(os.path.join(lowerCamelCase_ , lowerCamelCase_ ) ) torch.save({k: v.cpu().clone() for k, v in state_dict.items()} , os.path.join(lowerCamelCase_ , lowerCamelCase_ ) ) del state_dict gc.collect() if push_to_hub: if model_name is None: raise ValueError("Please provide a `model_name` to push the model to the Hub." ) __lowerCamelCase : Any = AutoModelForCausalLM.from_pretrained(lowerCamelCase_ ) model.push_to_hub(lowerCamelCase_ , max_shard_size="2GB" ) tokenizer.push_to_hub(lowerCamelCase_ ) if __name__ == "__main__": __A = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--repo_id''', default=None, type=str, required=True, help='''Repo ID from which to pull the checkpoint.''' ) parser.add_argument( '''--checkpoint_file''', default=None, type=str, required=True, help='''Name of the checkpoint file in the repo.''' ) parser.add_argument( '''--output_dir''', default=None, type=str, required=True, help='''Where to save the converted model.''' ) parser.add_argument( '''--tokenizer_file''', default=None, type=str, help='''Path to the tokenizer file to use (if not provided, only the model is converted).''', ) parser.add_argument( '''--size''', default=None, type=str, help='''Size of the model. Will be inferred from the `checkpoint_file` if not passed.''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Push to the Hub the converted model.''', ) parser.add_argument( '''--model_name''', default=None, type=str, help='''Name of the pushed model on the Hub, including the username / organization.''', ) __A = parser.parse_args() convert_rmkv_checkpoint_to_hf_format( args.repo_id, args.checkpoint_file, args.output_dir, size=args.size, tokenizer_file=args.tokenizer_file, push_to_hub=args.push_to_hub, model_name=args.model_name, )
358
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __A = { '''configuration_xlm''': ['''XLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XLMConfig''', '''XLMOnnxConfig'''], '''tokenization_xlm''': ['''XLMTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ '''XLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XLMForMultipleChoice''', '''XLMForQuestionAnswering''', '''XLMForQuestionAnsweringSimple''', '''XLMForSequenceClassification''', '''XLMForTokenClassification''', '''XLMModel''', '''XLMPreTrainedModel''', '''XLMWithLMHeadModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ '''TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXLMForMultipleChoice''', '''TFXLMForQuestionAnsweringSimple''', '''TFXLMForSequenceClassification''', '''TFXLMForTokenClassification''', '''TFXLMMainLayer''', '''TFXLMModel''', '''TFXLMPreTrainedModel''', '''TFXLMWithLMHeadModel''', ] if TYPE_CHECKING: from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig from .tokenization_xlm import XLMTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) else: import sys __A = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
64
0
"""simple docstring""" def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> str: '''simple docstring''' return " ".join(input_str.split()[::-1] ) if __name__ == "__main__": import doctest doctest.testmod()
136
"""simple docstring""" import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): lowercase__ = "Speech2TextFeatureExtractor" lowercase__ = "Speech2TextTokenizer" def __init__( self : Optional[Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Tuple): """simple docstring""" super().__init__(lowerCAmelCase_ , lowerCAmelCase_) lowercase_ = self.feature_extractor lowercase_ = False def __call__( self : Dict , *lowerCAmelCase_ : List[str] , **lowerCAmelCase_ : List[str]): """simple docstring""" if self._in_target_context_manager: return self.current_processor(*lowerCAmelCase_ , **lowerCAmelCase_) if "raw_speech" in kwargs: warnings.warn("""Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.""") lowercase_ = kwargs.pop("""raw_speech""") else: lowercase_ = kwargs.pop("""audio""" , lowerCAmelCase_) lowercase_ = kwargs.pop("""sampling_rate""" , lowerCAmelCase_) lowercase_ = kwargs.pop("""text""" , lowerCAmelCase_) if len(lowerCAmelCase_) > 0: lowercase_ = args[0] lowercase_ = args[1:] if audio is None and text is None: raise ValueError("""You need to specify either an `audio` or `text` input to process.""") if audio is not None: lowercase_ = self.feature_extractor(lowerCAmelCase_ , *lowerCAmelCase_ , sampling_rate=lowerCAmelCase_ , **lowerCAmelCase_) if text is not None: lowercase_ = self.tokenizer(lowerCAmelCase_ , **lowerCAmelCase_) if text is None: return inputs elif audio is None: return encodings else: lowercase_ = encodings["""input_ids"""] return inputs def _UpperCAmelCase ( self : List[str] , *lowerCAmelCase_ : Dict , **lowerCAmelCase_ : Optional[Any]): """simple docstring""" return self.tokenizer.batch_decode(*lowerCAmelCase_ , **lowerCAmelCase_) def _UpperCAmelCase ( self : Optional[int] , *lowerCAmelCase_ : int , **lowerCAmelCase_ : str): """simple docstring""" return self.tokenizer.decode(*lowerCAmelCase_ , **lowerCAmelCase_) @contextmanager def _UpperCAmelCase ( self : Optional[int]): """simple docstring""" warnings.warn( """`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your """ """labels by using the argument `text` of the regular `__call__` method (either in the same call as """ """your audio inputs, or in a separate call.""") lowercase_ = True lowercase_ = self.tokenizer yield lowercase_ = self.feature_extractor lowercase_ = False
136
1
'''simple docstring''' import math from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''facebook/data2vec-base-960h''': '''https://huggingface.co/facebook/data2vec-audio-base-960h/resolve/main/config.json''', # See all Data2VecAudio models at https://huggingface.co/models?filter=data2vec-audio } class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = 'data2vec-audio' def __init__( self : int ,lowercase__ : Tuple=3_2 ,lowercase__ : Optional[Any]=7_6_8 ,lowercase__ : Any=1_2 ,lowercase__ : Dict=1_2 ,lowercase__ : Optional[int]=3_0_7_2 ,lowercase__ : Optional[Any]="gelu" ,lowercase__ : Tuple=0.1 ,lowercase__ : Union[str, Any]=0.1 ,lowercase__ : Tuple=0.1 ,lowercase__ : Union[str, Any]=0.0 ,lowercase__ : Dict=0.1 ,lowercase__ : str=0.1 ,lowercase__ : Dict=0.0_2 ,lowercase__ : Tuple=1e-5 ,lowercase__ : Dict="gelu" ,lowercase__ : Optional[Any]=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2) ,lowercase__ : Tuple=(5, 2, 2, 2, 2, 2, 2) ,lowercase__ : Optional[Any]=(1_0, 3, 3, 3, 3, 2, 2) ,lowercase__ : Optional[int]=False ,lowercase__ : int=1_6 ,lowercase__ : Tuple=1_9 ,lowercase__ : Optional[Any]=5 ,lowercase__ : Tuple=0.0_5 ,lowercase__ : Union[str, Any]=1_0 ,lowercase__ : int=2 ,lowercase__ : Optional[int]=0.0 ,lowercase__ : Optional[int]=1_0 ,lowercase__ : Optional[Any]=0 ,lowercase__ : str="sum" ,lowercase__ : Any=False ,lowercase__ : List[Any]=False ,lowercase__ : Any=2_5_6 ,lowercase__ : List[Any]=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 1_5_0_0) ,lowercase__ : str=(5, 3, 3, 1, 1) ,lowercase__ : Optional[Any]=(1, 2, 3, 1, 1) ,lowercase__ : Optional[Any]=5_1_2 ,lowercase__ : Tuple=0 ,lowercase__ : int=1 ,lowercase__ : Dict=2 ,lowercase__ : Any=False ,lowercase__ : int=3 ,lowercase__ : List[str]=2 ,lowercase__ : Tuple=3 ,lowercase__ : Optional[int]=None ,**lowercase__ : str ,): super().__init__(**lowercase__ ,pad_token_id=lowercase__ ,bos_token_id=lowercase__ ,eos_token_id=lowercase__ ) __lowercase = hidden_size __lowercase = feat_extract_activation __lowercase = list(lowercase__ ) __lowercase = list(lowercase__ ) __lowercase = list(lowercase__ ) __lowercase = conv_bias __lowercase = num_conv_pos_embeddings __lowercase = num_conv_pos_embedding_groups __lowercase = conv_pos_kernel_size __lowercase = len(self.conv_dim ) __lowercase = num_hidden_layers __lowercase = intermediate_size __lowercase = hidden_act __lowercase = num_attention_heads __lowercase = hidden_dropout __lowercase = attention_dropout __lowercase = activation_dropout __lowercase = feat_proj_dropout __lowercase = final_dropout __lowercase = layerdrop __lowercase = layer_norm_eps __lowercase = initializer_range __lowercase = vocab_size __lowercase = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' F" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`," F" `len(config.conv_kernel) = {len(self.conv_kernel )}`." ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __lowercase = mask_time_prob __lowercase = mask_time_length __lowercase = mask_time_min_masks __lowercase = mask_feature_prob __lowercase = mask_feature_length __lowercase = mask_feature_min_masks # ctc loss __lowercase = ctc_loss_reduction __lowercase = ctc_zero_infinity # adapter __lowercase = add_adapter __lowercase = adapter_kernel_size __lowercase = adapter_stride __lowercase = num_adapter_layers __lowercase = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. __lowercase = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. __lowercase = list(lowercase__ ) __lowercase = list(lowercase__ ) __lowercase = list(lowercase__ ) __lowercase = xvector_output_dim @property def SCREAMING_SNAKE_CASE ( self : str ): return math.prod(self.conv_stride )
52
'''simple docstring''' import json import os import unittest from transformers import OpenAIGPTTokenizer, OpenAIGPTTokenizerFast from transformers.models.openai.tokenization_openai import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_spacy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowercase_ (lowerCamelCase__ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE : int = OpenAIGPTTokenizer SCREAMING_SNAKE_CASE : str = OpenAIGPTTokenizerFast SCREAMING_SNAKE_CASE : Optional[int] = True SCREAMING_SNAKE_CASE : List[str] = False def SCREAMING_SNAKE_CASE ( self : int ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __lowercase = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''w</w>''', '''r</w>''', '''t</w>''', '''lo''', '''low''', '''er</w>''', '''low</w>''', '''lowest</w>''', '''newer</w>''', '''wider</w>''', '''<unk>''', ] __lowercase = dict(zip(lowercase__ ,range(len(lowercase__ ) ) ) ) __lowercase = ['''#version: 0.2''', '''l o''', '''lo w''', '''e r</w>''', ''''''] __lowercase = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['''vocab_file'''] ) __lowercase = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file ,'''w''' ) as fp: fp.write(json.dumps(lowercase__ ) ) with open(self.merges_file ,'''w''' ) as fp: fp.write('''\n'''.join(lowercase__ ) ) def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : Optional[Any] ): return "lower newer", "lower newer" def SCREAMING_SNAKE_CASE ( self : Optional[int] ): __lowercase = OpenAIGPTTokenizer(self.vocab_file ,self.merges_file ) __lowercase = '''lower''' __lowercase = ['''low''', '''er</w>'''] __lowercase = tokenizer.tokenize(lowercase__ ) self.assertListEqual(lowercase__ ,lowercase__ ) __lowercase = tokens + ['''<unk>'''] __lowercase = [1_4, 1_5, 2_0] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase__ ) ,lowercase__ ) def SCREAMING_SNAKE_CASE ( self : List[str] ,lowercase__ : Dict=1_5 ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): __lowercase = self.rust_tokenizer_class.from_pretrained(lowercase__ ,**lowercase__ ) # Simple input __lowercase = '''This is a simple input''' __lowercase = ['''This is a simple input 1''', '''This is a simple input 2'''] __lowercase = ('''This is a simple input''', '''This is a pair''') __lowercase = [ ('''This is a simple input 1''', '''This is a simple input 2'''), ('''This is a simple pair 1''', '''This is a simple pair 2'''), ] # Simple input tests self.assertRaises(lowercase__ ,tokenizer_r.encode ,lowercase__ ,max_length=lowercase__ ,padding='''max_length''' ) # Simple input self.assertRaises(lowercase__ ,tokenizer_r.encode_plus ,lowercase__ ,max_length=lowercase__ ,padding='''max_length''' ) # Simple input self.assertRaises( lowercase__ ,tokenizer_r.batch_encode_plus ,lowercase__ ,max_length=lowercase__ ,padding='''max_length''' ,) # Pair input self.assertRaises(lowercase__ ,tokenizer_r.encode ,lowercase__ ,max_length=lowercase__ ,padding='''max_length''' ) # Pair input self.assertRaises(lowercase__ ,tokenizer_r.encode_plus ,lowercase__ ,max_length=lowercase__ ,padding='''max_length''' ) # Pair input self.assertRaises( lowercase__ ,tokenizer_r.batch_encode_plus ,lowercase__ ,max_length=lowercase__ ,padding='''max_length''' ,) def SCREAMING_SNAKE_CASE ( self : Optional[int] ): pass @require_ftfy @require_spacy @require_tokenizers class lowercase_ (lowerCamelCase__ ): """simple docstring""" pass
52
1
'''simple docstring''' import math def a__ ( ) -> None: UpperCAmelCase__ : List[Any] = input('''Enter message: ''' ) UpperCAmelCase__ : Any = int(input(F"""Enter key [2-{len(__UpperCAmelCase ) - 1}]: """ ) ) UpperCAmelCase__ : Any = input('''Encryption/Decryption [e/d]: ''' ) if mode.lower().startswith('''e''' ): UpperCAmelCase__ : List[Any] = encrypt_message(__UpperCAmelCase , __UpperCAmelCase ) elif mode.lower().startswith('''d''' ): UpperCAmelCase__ : Dict = decrypt_message(__UpperCAmelCase , __UpperCAmelCase ) # Append pipe symbol (vertical bar) to identify spaces at the end. print(F"""Output:\n{text + "|"}""" ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ) -> str: UpperCAmelCase__ : Optional[int] = [''''''] * key for col in range(__UpperCAmelCase ): UpperCAmelCase__ : Dict = col while pointer < len(__UpperCAmelCase ): cipher_text[col] += message[pointer] pointer += key return "".join(__UpperCAmelCase ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ) -> str: UpperCAmelCase__ : Dict = math.ceil(len(__UpperCAmelCase ) / key ) UpperCAmelCase__ : str = key UpperCAmelCase__ : Optional[Any] = (num_cols * num_rows) - len(__UpperCAmelCase ) UpperCAmelCase__ : List[str] = [''''''] * num_cols UpperCAmelCase__ : int = 0 UpperCAmelCase__ : List[str] = 0 for symbol in message: plain_text[col] += symbol col += 1 if ( (col == num_cols) or (col == num_cols - 1) and (row >= num_rows - num_shaded_boxes) ): UpperCAmelCase__ : Union[str, Any] = 0 row += 1 return "".join(__UpperCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod() main()
181
"""simple docstring""" def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase=2_8_1_2_3 ) -> Any: lowercase__: Optional[Any] = [1] * (limit + 1) for i in range(2 , int(limit**0.5 ) + 1 ): sum_divs[i * i] += i for k in range(i + 1 , limit // i + 1 ): sum_divs[k * i] += k + i lowercase__: Union[str, Any] = set() lowercase__: Optional[Any] = 0 for n in range(1 , limit + 1 ): if sum_divs[n] > n: abundants.add(__UpperCAmelCase ) if not any((n - a in abundants) for a in abundants ): res += n return res if __name__ == "__main__": print(solution())
177
0
import json import os import tempfile import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ImageGPTImageProcessor class __lowerCAmelCase ( unittest.TestCase): def __init__( self: Dict , _lowerCAmelCase: List[Any] , _lowerCAmelCase: str=7 , _lowerCAmelCase: str=3 , _lowerCAmelCase: int=18 , _lowerCAmelCase: List[str]=30 , _lowerCAmelCase: Optional[Any]=4_00 , _lowerCAmelCase: List[str]=True , _lowerCAmelCase: int=None , _lowerCAmelCase: List[str]=True , ): lowercase :Union[str, Any] = size if size is not None else {"height": 18, "width": 18} lowercase :int = parent lowercase :Optional[Any] = batch_size lowercase :Tuple = num_channels lowercase :int = image_size lowercase :List[Any] = min_resolution lowercase :Any = max_resolution lowercase :Union[str, Any] = do_resize lowercase :int = size lowercase :List[Any] = do_normalize def SCREAMING_SNAKE_CASE ( self: Optional[Any] ): return { # here we create 2 clusters for the sake of simplicity "clusters": np.asarray( [ [0.88_66_44_36_34_03_32_03, 0.66_18_82_93_69_54_49_83, 0.38_91_74_64_01_78_68_04], [-0.60_42_55_91_46_88_11_04, -0.0_22_95_00_88_60_52_84_69, 0.54_23_79_73_69_00_32_96], ] ), "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, } @require_torch @require_vision class __lowerCAmelCase ( lowerCAmelCase , unittest.TestCase): _a = ImageGPTImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE ( self: Dict ): lowercase :List[Any] = ImageGPTImageProcessingTester(self ) @property def SCREAMING_SNAKE_CASE ( self: Optional[Any] ): return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE ( self: Dict ): lowercase :Tuple = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowerCAmelCase , "clusters" ) ) self.assertTrue(hasattr(_lowerCAmelCase , "do_resize" ) ) self.assertTrue(hasattr(_lowerCAmelCase , "size" ) ) self.assertTrue(hasattr(_lowerCAmelCase , "do_normalize" ) ) def SCREAMING_SNAKE_CASE ( self: List[Any] ): lowercase :Dict = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"height": 18, "width": 18} ) lowercase :List[Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"height": 42, "width": 42} ) def SCREAMING_SNAKE_CASE ( self: Union[str, Any] ): lowercase :Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) lowercase :Optional[int] = json.loads(image_processor.to_json_string() ) for key, value in self.image_processor_dict.items(): if key == "clusters": self.assertTrue(np.array_equal(_lowerCAmelCase , obj[key] ) ) else: self.assertEqual(obj[key] , _lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self: Any ): lowercase :Any = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: lowercase :Union[str, Any] = os.path.join(_lowerCAmelCase , "image_processor.json" ) image_processor_first.to_json_file(_lowerCAmelCase ) lowercase :Union[str, Any] = self.image_processing_class.from_json_file(_lowerCAmelCase ).to_dict() lowercase :str = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(_lowerCAmelCase , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , _lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self: Union[str, Any] ): lowercase :Tuple = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: image_processor_first.save_pretrained(_lowerCAmelCase ) lowercase :Optional[int] = self.image_processing_class.from_pretrained(_lowerCAmelCase ).to_dict() lowercase :Dict = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(_lowerCAmelCase , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , _lowerCAmelCase ) @unittest.skip("ImageGPT requires clusters at initialization" ) def SCREAMING_SNAKE_CASE ( self: Optional[Any] ): pass def UpperCAmelCase__ ( ): lowercase :Optional[Any] = load_dataset("hf-internal-testing/fixtures_image_utils", split="test" ) lowercase :Union[str, Any] = Image.open(dataset[4]["file"] ) lowercase :Optional[int] = Image.open(dataset[5]["file"] ) lowercase :List[str] = [imagea, imagea] return images @require_vision @require_torch class __lowerCAmelCase ( unittest.TestCase): @slow def SCREAMING_SNAKE_CASE ( self: Optional[int] ): lowercase :List[Any] = ImageGPTImageProcessor.from_pretrained("openai/imagegpt-small" ) lowercase :str = prepare_images() # test non-batched lowercase :int = image_processing(images[0] , return_tensors="pt" ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (1, 10_24) ) lowercase :Optional[int] = [3_06, 1_91, 1_91] self.assertEqual(encoding.input_ids[0, :3].tolist() , _lowerCAmelCase ) # test batched lowercase :Optional[int] = image_processing(_lowerCAmelCase , return_tensors="pt" ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (2, 10_24) ) lowercase :int = [3_03, 13, 13] self.assertEqual(encoding.input_ids[1, -3:].tolist() , _lowerCAmelCase )
354
import coval # From: git+https://github.com/ns-moosavi/coval.git # noqa: F401 from coval.conll import reader, util from coval.eval import evaluator import datasets _UpperCAmelCase : Union[str, Any] = datasets.logging.get_logger(__name__) _UpperCAmelCase : Tuple = "\\n@InProceedings{moosavi2019minimum,\n author = { Nafise Sadat Moosavi, Leo Born, Massimo Poesio and Michael Strube},\n title = {Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection},\n year = {2019},\n booktitle = {Proceedings of the 57th Annual Meeting of\n the Association for Computational Linguistics (Volume 1: Long Papers)},\n publisher = {Association for Computational Linguistics},\n address = {Florence, Italy},\n}\n\n@inproceedings{10.3115/1072399.1072405,\nauthor = {Vilain, Marc and Burger, John and Aberdeen, John and Connolly, Dennis and Hirschman, Lynette},\ntitle = {A Model-Theoretic Coreference Scoring Scheme},\nyear = {1995},\nisbn = {1558604022},\npublisher = {Association for Computational Linguistics},\naddress = {USA},\nurl = {https://doi.org/10.3115/1072399.1072405},\ndoi = {10.3115/1072399.1072405},\nbooktitle = {Proceedings of the 6th Conference on Message Understanding},\npages = {45–52},\nnumpages = {8},\nlocation = {Columbia, Maryland},\nseries = {MUC6 ’95}\n}\n\n@INPROCEEDINGS{Bagga98algorithmsfor,\n author = {Amit Bagga and Breck Baldwin},\n title = {Algorithms for Scoring Coreference Chains},\n booktitle = {In The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference},\n year = {1998},\n pages = {563--566}\n}\n\n@INPROCEEDINGS{Luo05oncoreference,\n author = {Xiaoqiang Luo},\n title = {On coreference resolution performance metrics},\n booktitle = {In Proc. of HLT/EMNLP},\n year = {2005},\n pages = {25--32},\n publisher = {URL}\n}\n\n@inproceedings{moosavi-strube-2016-coreference,\n title = \"Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric\",\n author = \"Moosavi, Nafise Sadat and\n Strube, Michael\",\n booktitle = \"Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)\",\n month = aug,\n year = \"2016\",\n address = \"Berlin, Germany\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/P16-1060\",\n doi = \"10.18653/v1/P16-1060\",\n pages = \"632--642\",\n}\n\n" _UpperCAmelCase : int = "\\nCoVal is a coreference evaluation tool for the CoNLL and ARRAU datasets which\nimplements of the common evaluation metrics including MUC [Vilain et al, 1995],\nB-cubed [Bagga and Baldwin, 1998], CEAFe [Luo et al., 2005],\nLEA [Moosavi and Strube, 2016] and the averaged CoNLL score\n(the average of the F1 values of MUC, B-cubed and CEAFe)\n[Denis and Baldridge, 2009a; Pradhan et al., 2011].\n\nThis wrapper of CoVal currently only work with CoNLL line format:\nThe CoNLL format has one word per line with all the annotation for this word in column separated by spaces:\nColumn Type Description\n1 Document ID This is a variation on the document filename\n2 Part number Some files are divided into multiple parts numbered as 000, 001, 002, ... etc.\n3 Word number\n4 Word itself This is the token as segmented/tokenized in the Treebank. Initially the *_skel file contain the placeholder [WORD] which gets replaced by the actual token from the Treebank which is part of the OntoNotes release.\n5 Part-of-Speech\n6 Parse bit This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a *. The full parse can be created by substituting the asterix with the \"([pos] [word])\" string (or leaf) and concatenating the items in the rows of that column.\n7 Predicate lemma The predicate lemma is mentioned for the rows for which we have semantic role information. All other rows are marked with a \"-\"\n8 Predicate Frameset ID This is the PropBank frameset ID of the predicate in Column 7.\n9 Word sense This is the word sense of the word in Column 3.\n10 Speaker/Author This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data.\n11 Named Entities These columns identifies the spans representing various named entities.\n12:N Predicate Arguments There is one column each of predicate argument structure information for the predicate mentioned in Column 7.\nN Coreference Coreference chain information encoded in a parenthesis structure.\nMore informations on the format can be found here (section \"*_conll File Format\"): http://www.conll.cemantix.org/2012/data.html\n\nDetails on the evaluation on CoNLL can be found here: https://github.com/ns-moosavi/coval/blob/master/conll/README.md\n\nCoVal code was written by @ns-moosavi.\nSome parts are borrowed from https://github.com/clarkkev/deep-coref/blob/master/evaluation.py\nThe test suite is taken from https://github.com/conll/reference-coreference-scorers/\nMention evaluation and the test suite are added by @andreasvc.\nParsing CoNLL files is developed by Leo Born.\n" _UpperCAmelCase : Union[str, Any] = "\nCalculates coreference evaluation metrics.\nArgs:\n predictions: list of sentences. Each sentence is a list of word predictions to score in the CoNLL format.\n Each prediction is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n references: list of sentences. Each sentence is a list of word reference to score in the CoNLL format.\n Each reference is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n keep_singletons: After extracting all mentions of key or system files,\n mentions whose corresponding coreference chain is of size one,\n are considered as singletons. The default evaluation mode will include\n singletons in evaluations if they are included in the key or the system files.\n By setting 'keep_singletons=False', all singletons in the key and system files\n will be excluded from the evaluation.\n NP_only: Most of the recent coreference resolvers only resolve NP mentions and\n leave out the resolution of VPs. By setting the 'NP_only' option, the scorer will only evaluate the resolution of NPs.\n min_span: By setting 'min_span', the scorer reports the results based on automatically detected minimum spans.\n Minimum spans are determined using the MINA algorithm.\n\nReturns:\n 'mentions': mentions\n 'muc': MUC metric [Vilain et al, 1995]\n 'bcub': B-cubed [Bagga and Baldwin, 1998]\n 'ceafe': CEAFe [Luo et al., 2005]\n 'lea': LEA [Moosavi and Strube, 2016]\n 'conll_score': averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe)\n\nExamples:\n\n >>> coval = datasets.load_metric('coval')\n >>> words = ['bc/cctv/00/cctv_0005 0 0 Thank VBP (TOP(S(VP* thank 01 1 Xu_li * (V*) * -',\n ... 'bc/cctv/00/cctv_0005 0 1 you PRP (NP*) - - - Xu_li * (ARG1*) (ARG0*) (116)',\n ... 'bc/cctv/00/cctv_0005 0 2 everyone NN (NP*) - - - Xu_li * (ARGM-DIS*) * (116)',\n ... 'bc/cctv/00/cctv_0005 0 3 for IN (PP* - - - Xu_li * (ARG2* * -',\n ... 'bc/cctv/00/cctv_0005 0 4 watching VBG (S(VP*)))) watch 01 1 Xu_li * *) (V*) -',\n ... 'bc/cctv/00/cctv_0005 0 5 . . *)) - - - Xu_li * * * -']\n >>> references = [words]\n >>> predictions = [words]\n >>> results = coval.compute(predictions=predictions, references=references)\n >>> print(results) # doctest:+ELLIPSIS\n {'mentions/recall': 1.0,[...] 'conll_score': 100.0}\n" def UpperCAmelCase__ ( lowerCamelCase, lowerCamelCase, lowerCamelCase=False, lowerCamelCase=False, lowerCamelCase=True, lowerCamelCase=False, lowerCamelCase="dummy_doc" ): lowercase :str = {doc: key_lines} lowercase :Union[str, Any] = {doc: sys_lines} lowercase :Tuple = {} lowercase :Optional[Any] = 0 lowercase :str = 0 lowercase :Optional[Any] = 0 lowercase :str = 0 lowercase :Union[str, Any] = 0 lowercase :int = 0 lowercase , lowercase :str = reader.get_doc_mentions(lowerCamelCase, key_doc_lines[doc], lowerCamelCase ) key_singletons_num += singletons_num if NP_only or min_span: lowercase :Any = reader.set_annotated_parse_trees(lowerCamelCase, key_doc_lines[doc], lowerCamelCase, lowerCamelCase ) lowercase , lowercase :int = reader.get_doc_mentions(lowerCamelCase, sys_doc_lines[doc], lowerCamelCase ) sys_singletons_num += singletons_num if NP_only or min_span: lowercase :str = reader.set_annotated_parse_trees(lowerCamelCase, key_doc_lines[doc], lowerCamelCase, lowerCamelCase ) if remove_nested: lowercase , lowercase :List[str] = reader.remove_nested_coref_mentions(lowerCamelCase, lowerCamelCase ) key_nested_coref_num += nested_mentions key_removed_nested_clusters += removed_clusters lowercase , lowercase :Any = reader.remove_nested_coref_mentions(lowerCamelCase, lowerCamelCase ) sys_nested_coref_num += nested_mentions sys_removed_nested_clusters += removed_clusters lowercase :Optional[Any] = reader.get_mention_assignments(lowerCamelCase, lowerCamelCase ) lowercase :str = reader.get_mention_assignments(lowerCamelCase, lowerCamelCase ) lowercase :Optional[int] = (key_clusters, sys_clusters, key_mention_sys_cluster, sys_mention_key_cluster) if remove_nested: logger.info( "Number of removed nested coreferring mentions in the key " F"annotation: {key_nested_coref_num}; and system annotation: {sys_nested_coref_num}" ) logger.info( "Number of resulting singleton clusters in the key " F"annotation: {key_removed_nested_clusters}; and system annotation: {sys_removed_nested_clusters}" ) if not keep_singletons: logger.info( F"{key_singletons_num:d} and {sys_singletons_num:d} singletons are removed from the key and system " "files, respectively" ) return doc_coref_infos def UpperCAmelCase__ ( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase ): lowercase :Union[str, Any] = get_coref_infos(lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase ) lowercase :List[str] = {} lowercase :Dict = 0 lowercase :Tuple = 0 for name, metric in metrics: lowercase , lowercase , lowercase :int = evaluator.evaluate_documents(lowerCamelCase, lowerCamelCase, beta=1 ) if name in ["muc", "bcub", "ceafe"]: conll += fa conll_subparts_num += 1 output_scores.update({F"{name}/recall": recall, F"{name}/precision": precision, F"{name}/f1": fa} ) logger.info( name.ljust(10 ), F"Recall: {recall * 100:.2f}", F" Precision: {precision * 100:.2f}", F" F1: {fa * 100:.2f}", ) if conll_subparts_num == 3: lowercase :Any = (conll / 3) * 100 logger.info(F"CoNLL score: {conll:.2f}" ) output_scores.update({"conll_score": conll} ) return output_scores def UpperCAmelCase__ ( lowerCamelCase ): lowercase :str = False for line in key_lines: if not line.startswith("#" ): if len(line.split() ) > 6: lowercase :Union[str, Any] = line.split()[5] if not parse_col == "-": lowercase :Optional[int] = True break else: break return has_gold_parse @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class __lowerCAmelCase ( datasets.Metric): def SCREAMING_SNAKE_CASE ( self: Any ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string" ) ), "references": datasets.Sequence(datasets.Value("string" ) ), } ) , codebase_urls=["https://github.com/ns-moosavi/coval"] , reference_urls=[ "https://github.com/ns-moosavi/coval", "https://www.aclweb.org/anthology/P16-1060", "http://www.conll.cemantix.org/2012/data.html", ] , ) def SCREAMING_SNAKE_CASE ( self: Any , _lowerCAmelCase: Dict , _lowerCAmelCase: Tuple , _lowerCAmelCase: Tuple=True , _lowerCAmelCase: Dict=False , _lowerCAmelCase: Optional[int]=False , _lowerCAmelCase: Dict=False ): lowercase :Any = [ ("mentions", evaluator.mentions), ("muc", evaluator.muc), ("bcub", evaluator.b_cubed), ("ceafe", evaluator.ceafe), ("lea", evaluator.lea), ] if min_span: lowercase :List[str] = util.check_gold_parse_annotation(_lowerCAmelCase ) if not has_gold_parse: raise NotImplementedError("References should have gold parse annotation to use 'min_span'." ) # util.parse_key_file(key_file) # key_file = key_file + ".parsed" lowercase :List[str] = evaluate( key_lines=_lowerCAmelCase , sys_lines=_lowerCAmelCase , metrics=_lowerCAmelCase , NP_only=_lowerCAmelCase , remove_nested=_lowerCAmelCase , keep_singletons=_lowerCAmelCase , min_span=_lowerCAmelCase , ) return score
158
0
"""simple docstring""" SCREAMING_SNAKE_CASE__ = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/" def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : bytes ): '''simple docstring''' if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): lowerCAmelCase = F'a bytes-like object is required, not \'{data.__class__.__name__}\'' raise TypeError(SCREAMING_SNAKE_CASE ) lowerCAmelCase = """""".join(bin(SCREAMING_SNAKE_CASE )[2:].zfill(8 ) for byte in data ) lowerCAmelCase = len(SCREAMING_SNAKE_CASE ) % 6 != 0 if padding_needed: # The padding that will be added later lowerCAmelCase = B"""=""" * ((6 - len(SCREAMING_SNAKE_CASE ) % 6) // 2) # Append binary_stream with arbitrary binary digits (0's by default) to make its # length a multiple of 6. binary_stream += "0" * (6 - len(SCREAMING_SNAKE_CASE ) % 6) else: lowerCAmelCase = B"""""" # Encode every 6 binary digits to their corresponding Base64 character return ( "".join( B64_CHARSET[int(binary_stream[index : index + 6] , 2 )] for index in range(0 , len(SCREAMING_SNAKE_CASE ) , 6 ) ).encode() + padding ) def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : str ): '''simple docstring''' if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): lowerCAmelCase = ( """argument should be a bytes-like object or ASCII string, """ F'not \'{encoded_data.__class__.__name__}\'' ) raise TypeError(SCREAMING_SNAKE_CASE ) # In case encoded_data is a bytes-like object, make sure it contains only # ASCII characters so we convert it to a string object if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): try: lowerCAmelCase = encoded_data.decode("""utf-8""" ) except UnicodeDecodeError: raise ValueError("""base64 encoded data should only contain ASCII characters""" ) lowerCAmelCase = encoded_data.count("""=""" ) # Check if the encoded string contains non base64 characters if padding: assert all( char in B64_CHARSET for char in encoded_data[:-padding] ), "Invalid base64 character(s) found." else: assert all( char in B64_CHARSET for char in encoded_data ), "Invalid base64 character(s) found." # Check the padding assert len(SCREAMING_SNAKE_CASE ) % 4 == 0 and padding < 3, "Incorrect padding" if padding: # Remove padding if there is one lowerCAmelCase = encoded_data[:-padding] lowerCAmelCase = """""".join( bin(B64_CHARSET.index(SCREAMING_SNAKE_CASE ) )[2:].zfill(6 ) for char in encoded_data )[: -padding * 2] else: lowerCAmelCase = """""".join( bin(B64_CHARSET.index(SCREAMING_SNAKE_CASE ) )[2:].zfill(6 ) for char in encoded_data ) lowerCAmelCase = [ int(binary_stream[index : index + 8] , 2 ) for index in range(0 , len(SCREAMING_SNAKE_CASE ) , 8 ) ] return bytes(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod()
46
"""simple docstring""" from collections import defaultdict from pathlib import Path import pandas as pd from rouge_cli import calculate_rouge_path from utils import calculate_rouge SCREAMING_SNAKE_CASE_ : int = [ 'Prosecutor: "No videos were used in the crash investigation" German papers say they saw a cell phone video of the' ' final seconds on board Flight 9525. The Germanwings co-pilot says he had a "previous episode of severe' ' depression\" German airline confirms it knew of Andreas Lubitz\'s depression years before he took control.', 'The Palestinian Authority officially becomes the 123rd member of the International Criminal Court. The formal' ' accession was marked with a ceremony at The Hague, in the Netherlands. The Palestinians signed the ICC\'s' ' founding Rome Statute in January. Israel and the United States opposed the Palestinians\' efforts to join the' ' body.', 'Amnesty International releases its annual report on the death penalty. The report catalogs the use of' ' state-sanctioned killing as a punitive measure across the globe. At least 607 people were executed around the' ' world in 2014, compared to 778 in 2013. The U.S. remains one of the worst offenders for imposing capital' ' punishment.', ] SCREAMING_SNAKE_CASE_ : List[Any] = [ 'Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports .' ' Journalists at Bild and Paris Match are "very confident" the video clip is real, an editor says . Andreas Lubitz' ' had informed his Lufthansa training school of an episode of severe depression, airline says .', 'Membership gives the ICC jurisdiction over alleged crimes committed in Palestinian territories since last June .' ' Israel and the United States opposed the move, which could open the door to war crimes investigations against' ' Israelis .', 'Amnesty\'s annual death penalty report catalogs encouraging signs, but setbacks in numbers of those sentenced to' ' death . Organization claims that governments around the world are using the threat of terrorism to advance' ' executions . The number of executions worldwide has gone down by almost 22% compared with 2013, but death' ' sentences up by 28% .', ] def _snake_case ( ): A__ = calculate_rouge(UpperCAmelCase_ , UpperCAmelCase_ , bootstrap_aggregation=UpperCAmelCase_ , rouge_keys=["""rouge2""", """rougeL"""] ) assert isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) A__ = calculate_rouge(UpperCAmelCase_ , UpperCAmelCase_ , bootstrap_aggregation=UpperCAmelCase_ , rouge_keys=["""rouge2"""] ) assert ( pd.DataFrame(no_aggregation["""rouge2"""] ).fmeasure.mean() == pd.DataFrame(no_aggregation_just_ra["""rouge2"""] ).fmeasure.mean() ) def _snake_case ( ): A__ = """rougeLsum""" A__ = calculate_rouge(UpperCAmelCase_ , UpperCAmelCase_ , newline_sep=UpperCAmelCase_ , rouge_keys=[k] )[k] A__ = calculate_rouge(UpperCAmelCase_ , UpperCAmelCase_ , newline_sep=UpperCAmelCase_ , rouge_keys=[k] )[k] assert score > score_no_sep def _snake_case ( ): A__ = ["""rouge1""", """rouge2""", """rougeL"""] A__ = calculate_rouge(UpperCAmelCase_ , UpperCAmelCase_ , newline_sep=UpperCAmelCase_ , rouge_keys=UpperCAmelCase_ ) A__ = calculate_rouge(UpperCAmelCase_ , UpperCAmelCase_ , newline_sep=UpperCAmelCase_ , rouge_keys=UpperCAmelCase_ ) assert score_sep == score_no_sep def _snake_case ( ): A__ = [ """Her older sister, Margot Frank, died in 1945, a month earlier than previously thought.""", """Marseille prosecutor says \"so far no videos were used in the crash investigation\" despite media reports .""", ] A__ = [ """Margot Frank, died in 1945, a month earlier than previously thought.""", """Prosecutor: \"No videos were used in the crash investigation\" German papers say they saw a cell phone video of""" """ the final seconds on board Flight 9525.""", ] assert calculate_rouge(UpperCAmelCase_ , UpperCAmelCase_ , newline_sep=UpperCAmelCase_ ) == calculate_rouge(UpperCAmelCase_ , UpperCAmelCase_ , newline_sep=UpperCAmelCase_ ) def _snake_case ( ): A__ = [ """\" \"a person who has such a video needs to immediately give it to the investigators,\" prosecutor says .<n> \"it is a very disturbing scene,\" editor-in-chief of bild online tells \"erin burnett: outfront\" """ ] A__ = [ """ Marseille prosecutor says \"so far no videos were used in the crash investigation\" despite media reports . Journalists at Bild and Paris Match are \"very confident\" the video clip is real, an editor says . Andreas Lubitz had informed his Lufthansa training school of an episode of severe depression, airline says .""" ] A__ = calculate_rouge(UpperCAmelCase_ , UpperCAmelCase_ , rouge_keys=["""rougeLsum"""] , newline_sep=UpperCAmelCase_ )["""rougeLsum"""] A__ = calculate_rouge(UpperCAmelCase_ , UpperCAmelCase_ , rouge_keys=["""rougeLsum"""] )["""rougeLsum"""] assert new_score > prev_score def _snake_case ( ): A__ = Path("""examples/seq2seq/test_data/wmt_en_ro""" ) A__ = calculate_rouge_path(data_dir.joinpath("""test.source""" ) , data_dir.joinpath("""test.target""" ) ) assert isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) A__ = calculate_rouge_path( data_dir.joinpath("""test.source""" ) , data_dir.joinpath("""test.target""" ) , bootstrap_aggregation=UpperCAmelCase_ ) assert isinstance(UpperCAmelCase_ , UpperCAmelCase_ )
335
0
"""simple docstring""" import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class _UpperCAmelCase : def __init__( self : int , lowercase_ : int , lowercase_ : int=13 , lowercase_ : Optional[Any]=7 , lowercase_ : Dict=True , lowercase_ : str=True , lowercase_ : Optional[int]=False , lowercase_ : Union[str, Any]=True , lowercase_ : List[str]=99 , lowercase_ : Union[str, Any]=32 , lowercase_ : Dict=5 , lowercase_ : Dict=4 , lowercase_ : Optional[int]=37 , lowercase_ : str="gelu" , lowercase_ : Optional[int]=0.1 , lowercase_ : Any=0.1 , lowercase_ : Union[str, Any]=512 , lowercase_ : int=16 , lowercase_ : List[str]=2 , lowercase_ : List[str]=0.02 , lowercase_ : Union[str, Any]=3 , lowercase_ : Union[str, Any]=4 , lowercase_ : List[str]=None , ): snake_case_ : Optional[int] = parent snake_case_ : Optional[Any] = batch_size snake_case_ : Union[str, Any] = seq_length snake_case_ : Union[str, Any] = is_training snake_case_ : List[str] = use_input_mask snake_case_ : Optional[Any] = use_token_type_ids snake_case_ : str = use_labels snake_case_ : List[str] = vocab_size snake_case_ : Optional[Any] = hidden_size snake_case_ : Dict = num_hidden_layers snake_case_ : Optional[Any] = num_attention_heads snake_case_ : Dict = intermediate_size snake_case_ : str = hidden_act snake_case_ : Tuple = hidden_dropout_prob snake_case_ : Optional[int] = attention_probs_dropout_prob snake_case_ : Union[str, Any] = max_position_embeddings snake_case_ : Dict = type_vocab_size snake_case_ : int = type_sequence_label_size snake_case_ : Tuple = initializer_range snake_case_ : Any = num_labels snake_case_ : Dict = num_choices snake_case_ : str = scope def _snake_case ( self : Dict ): snake_case_ : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ : List[str] = None if self.use_input_mask: snake_case_ : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) snake_case_ : Any = None if self.use_token_type_ids: snake_case_ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case_ : Tuple = None snake_case_ : str = None snake_case_ : Any = None if self.use_labels: snake_case_ : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case_ : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) snake_case_ : str = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _snake_case ( self : List[str] ): return OpenLlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowercase_ , initializer_range=self.initializer_range , use_stable_embedding=lowercase_ , ) def _snake_case ( self : Any , lowercase_ : Tuple , lowercase_ : Tuple , lowercase_ : Optional[Any] , lowercase_ : Union[str, Any] , lowercase_ : int , lowercase_ : Dict , lowercase_ : Any ): snake_case_ : List[Any] = OpenLlamaModel(config=lowercase_ ) model.to(lowercase_ ) model.eval() snake_case_ : Any = model(lowercase_ , attention_mask=lowercase_ ) snake_case_ : List[Any] = model(lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _snake_case ( self : Union[str, Any] , lowercase_ : List[Any] , lowercase_ : List[Any] , lowercase_ : Dict , lowercase_ : Union[str, Any] , lowercase_ : int , lowercase_ : Tuple , lowercase_ : Any , lowercase_ : Union[str, Any] , lowercase_ : Dict , ): snake_case_ : List[str] = True snake_case_ : Tuple = OpenLlamaModel(lowercase_ ) model.to(lowercase_ ) model.eval() snake_case_ : Optional[Any] = model( lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , encoder_attention_mask=lowercase_ , ) snake_case_ : str = model( lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , ) snake_case_ : Any = model(lowercase_ , attention_mask=lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _snake_case ( self : Dict , lowercase_ : Tuple , lowercase_ : int , lowercase_ : List[Any] , lowercase_ : int , lowercase_ : List[str] , lowercase_ : Any , lowercase_ : Optional[Any] , lowercase_ : int , lowercase_ : List[str] , ): snake_case_ : Optional[int] = OpenLlamaForCausalLM(config=lowercase_ ) model.to(lowercase_ ) model.eval() snake_case_ : str = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _snake_case ( self : int , lowercase_ : Any , lowercase_ : Union[str, Any] , lowercase_ : Optional[Any] , lowercase_ : str , lowercase_ : Union[str, Any] , lowercase_ : List[Any] , lowercase_ : str , lowercase_ : Optional[Any] , lowercase_ : str , ): snake_case_ : int = True snake_case_ : Optional[int] = True snake_case_ : List[Any] = OpenLlamaForCausalLM(config=lowercase_ ) model.to(lowercase_ ) model.eval() # first forward pass snake_case_ : List[Any] = model( lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , encoder_attention_mask=lowercase_ , use_cache=lowercase_ , ) snake_case_ : int = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids snake_case_ : str = ids_tensor((self.batch_size, 3) , config.vocab_size ) snake_case_ : Union[str, Any] = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and snake_case_ : str = torch.cat([input_ids, next_tokens] , dim=-1 ) snake_case_ : Optional[int] = torch.cat([input_mask, next_mask] , dim=-1 ) snake_case_ : int = model( lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , encoder_attention_mask=lowercase_ , output_hidden_states=lowercase_ , )['''hidden_states'''][0] snake_case_ : Optional[int] = model( lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , encoder_attention_mask=lowercase_ , past_key_values=lowercase_ , output_hidden_states=lowercase_ , )['''hidden_states'''][0] # select random slice snake_case_ : Any = ids_tensor((1,) , output_from_past.shape[-1] ).item() snake_case_ : Dict = output_from_no_past[:, -3:, random_slice_idx].detach() snake_case_ : str = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowercase_ , lowercase_ , atol=1E-3 ) ) def _snake_case ( self : List[str] ): snake_case_ : Optional[Any] = self.prepare_config_and_inputs() ( ( snake_case_ ), ( snake_case_ ), ( snake_case_ ), ( snake_case_ ), ( snake_case_ ), ( snake_case_ ), ( snake_case_ ), ) : List[str] = config_and_inputs snake_case_ : Union[str, Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class _UpperCAmelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase): _lowerCAmelCase : Optional[Any] = ( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) _lowerCAmelCase : Any = (OpenLlamaForCausalLM,) if is_torch_available() else () _lowerCAmelCase : Union[str, Any] = ( { """feature-extraction""": OpenLlamaModel, """text-classification""": OpenLlamaForSequenceClassification, """text-generation""": OpenLlamaForCausalLM, """zero-shot""": OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) _lowerCAmelCase : List[str] = False _lowerCAmelCase : Union[str, Any] = False def _snake_case ( self : List[Any] ): snake_case_ : Any = OpenLlamaModelTester(self ) snake_case_ : Dict = ConfigTester(self , config_class=lowercase_ , hidden_size=37 ) def _snake_case ( self : Union[str, Any] ): self.config_tester.run_common_tests() def _snake_case ( self : List[Any] ): snake_case_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_ ) def _snake_case ( self : List[Any] ): snake_case_ : Tuple = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: snake_case_ : Tuple = type self.model_tester.create_and_check_model(*lowercase_ ) def _snake_case ( self : Optional[int] ): snake_case_, snake_case_ : Dict = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ : Dict = 3 snake_case_ : Dict = input_dict['''input_ids'''] snake_case_ : int = input_ids.ne(1 ).to(lowercase_ ) snake_case_ : Union[str, Any] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) snake_case_ : Tuple = OpenLlamaForSequenceClassification(lowercase_ ) model.to(lowercase_ ) model.eval() snake_case_ : Union[str, Any] = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _snake_case ( self : Union[str, Any] ): snake_case_, snake_case_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ : Dict = 3 snake_case_ : str = '''single_label_classification''' snake_case_ : Tuple = input_dict['''input_ids'''] snake_case_ : Optional[int] = input_ids.ne(1 ).to(lowercase_ ) snake_case_ : str = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) snake_case_ : Union[str, Any] = OpenLlamaForSequenceClassification(lowercase_ ) model.to(lowercase_ ) model.eval() snake_case_ : List[Any] = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _snake_case ( self : Optional[Any] ): snake_case_, snake_case_ : int = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ : Optional[Any] = 3 snake_case_ : Optional[Any] = '''multi_label_classification''' snake_case_ : Tuple = input_dict['''input_ids'''] snake_case_ : str = input_ids.ne(1 ).to(lowercase_ ) snake_case_ : Tuple = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) snake_case_ : Any = OpenLlamaForSequenceClassification(lowercase_ ) model.to(lowercase_ ) model.eval() snake_case_ : Optional[Any] = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('''Open-Llama buffers include complex numbers, which breaks this test''' ) def _snake_case ( self : List[str] ): pass @parameterized.expand([('''linear''',), ('''dynamic''',)] ) def _snake_case ( self : Tuple , lowercase_ : Dict ): snake_case_, snake_case_ : int = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ : List[str] = ids_tensor([1, 10] , config.vocab_size ) snake_case_ : Optional[int] = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights snake_case_ : Any = OpenLlamaModel(lowercase_ ) original_model.to(lowercase_ ) original_model.eval() snake_case_ : Optional[Any] = original_model(lowercase_ ).last_hidden_state snake_case_ : Optional[Any] = original_model(lowercase_ ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights snake_case_ : Dict = {'''type''': scaling_type, '''factor''': 10.0} snake_case_ : Union[str, Any] = OpenLlamaModel(lowercase_ ) scaled_model.to(lowercase_ ) scaled_model.eval() snake_case_ : str = scaled_model(lowercase_ ).last_hidden_state snake_case_ : List[str] = scaled_model(lowercase_ ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(lowercase_ , lowercase_ , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(lowercase_ , lowercase_ , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(lowercase_ , lowercase_ , atol=1E-5 ) )
155
"""simple docstring""" import unittest from transformers import ( MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TextGenerationPipeline, logging, pipeline, ) from transformers.testing_utils import ( CaptureLogger, is_pipeline_test, require_accelerate, require_tf, require_torch, require_torch_gpu, require_torch_or_tf, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf class _UpperCAmelCase ( unittest.TestCase): _lowerCAmelCase : Optional[int] = MODEL_FOR_CAUSAL_LM_MAPPING _lowerCAmelCase : Union[str, Any] = TF_MODEL_FOR_CAUSAL_LM_MAPPING @require_torch def _snake_case ( self : Any ): snake_case_ : Dict = pipeline(task='''text-generation''' , model='''sshleifer/tiny-ctrl''' , framework='''pt''' ) # Using `do_sample=False` to force deterministic output snake_case_ : List[str] = text_generator('''This is a test''' , do_sample=lowercase_ ) self.assertEqual( lowercase_ , [ { '''generated_text''': ( '''This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.''' ''' oscope. FiliFili@@''' ) } ] , ) snake_case_ : Tuple = text_generator(['''This is a test''', '''This is a second test'''] ) self.assertEqual( lowercase_ , [ [ { '''generated_text''': ( '''This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.''' ''' oscope. FiliFili@@''' ) } ], [ { '''generated_text''': ( '''This is a second test ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy''' ''' oscope. oscope. FiliFili@@''' ) } ], ] , ) snake_case_ : int = text_generator('''This is a test''' , do_sample=lowercase_ , num_return_sequences=2 , return_tensors=lowercase_ ) self.assertEqual( lowercase_ , [ {'''generated_token_ids''': ANY(lowercase_ )}, {'''generated_token_ids''': ANY(lowercase_ )}, ] , ) snake_case_ : Tuple = text_generator.model.config.eos_token_id snake_case_ : Any = '''<pad>''' snake_case_ : Optional[Any] = text_generator( ['''This is a test''', '''This is a second test'''] , do_sample=lowercase_ , num_return_sequences=2 , batch_size=2 , return_tensors=lowercase_ , ) self.assertEqual( lowercase_ , [ [ {'''generated_token_ids''': ANY(lowercase_ )}, {'''generated_token_ids''': ANY(lowercase_ )}, ], [ {'''generated_token_ids''': ANY(lowercase_ )}, {'''generated_token_ids''': ANY(lowercase_ )}, ], ] , ) @require_tf def _snake_case ( self : Any ): snake_case_ : List[str] = pipeline(task='''text-generation''' , model='''sshleifer/tiny-ctrl''' , framework='''tf''' ) # Using `do_sample=False` to force deterministic output snake_case_ : List[Any] = text_generator('''This is a test''' , do_sample=lowercase_ ) self.assertEqual( lowercase_ , [ { '''generated_text''': ( '''This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵''' ''' please,''' ) } ] , ) snake_case_ : Tuple = text_generator(['''This is a test''', '''This is a second test'''] , do_sample=lowercase_ ) self.assertEqual( lowercase_ , [ [ { '''generated_text''': ( '''This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵''' ''' please,''' ) } ], [ { '''generated_text''': ( '''This is a second test Chieftain Chieftain prefecture prefecture prefecture Cannes Cannes''' ''' Cannes 閲閲Cannes Cannes Cannes 攵 please,''' ) } ], ] , ) def _snake_case ( self : Union[str, Any] , lowercase_ : Union[str, Any] , lowercase_ : List[Any] , lowercase_ : int ): snake_case_ : str = TextGenerationPipeline(model=lowercase_ , tokenizer=lowercase_ ) return text_generator, ["This is a test", "Another test"] def _snake_case ( self : Any ): snake_case_ : int = '''Hello I believe in''' snake_case_ : Dict = pipeline('''text-generation''' , model='''hf-internal-testing/tiny-random-gpt2''' ) snake_case_ : Optional[Any] = text_generator(lowercase_ ) self.assertEqual( lowercase_ , [{'''generated_text''': '''Hello I believe in fe fe fe fe fe fe fe fe fe fe fe fe'''}] , ) snake_case_ : Any = text_generator(lowercase_ , stop_sequence=''' fe''' ) self.assertEqual(lowercase_ , [{'''generated_text''': '''Hello I believe in fe'''}] ) def _snake_case ( self : Optional[int] , lowercase_ : str , lowercase_ : List[Any] ): snake_case_ : Any = text_generator.model snake_case_ : str = text_generator.tokenizer snake_case_ : Tuple = text_generator('''This is a test''' ) self.assertEqual(lowercase_ , [{'''generated_text''': ANY(lowercase_ )}] ) self.assertTrue(outputs[0]['''generated_text'''].startswith('''This is a test''' ) ) snake_case_ : Any = text_generator('''This is a test''' , return_full_text=lowercase_ ) self.assertEqual(lowercase_ , [{'''generated_text''': ANY(lowercase_ )}] ) self.assertNotIn('''This is a test''' , outputs[0]['''generated_text'''] ) snake_case_ : Optional[Any] = pipeline(task='''text-generation''' , model=lowercase_ , tokenizer=lowercase_ , return_full_text=lowercase_ ) snake_case_ : str = text_generator('''This is a test''' ) self.assertEqual(lowercase_ , [{'''generated_text''': ANY(lowercase_ )}] ) self.assertNotIn('''This is a test''' , outputs[0]['''generated_text'''] ) snake_case_ : List[str] = text_generator('''This is a test''' , return_full_text=lowercase_ ) self.assertEqual(lowercase_ , [{'''generated_text''': ANY(lowercase_ )}] ) self.assertTrue(outputs[0]['''generated_text'''].startswith('''This is a test''' ) ) snake_case_ : List[Any] = text_generator(['''This is great !''', '''Something else'''] , num_return_sequences=2 , do_sample=lowercase_ ) self.assertEqual( lowercase_ , [ [{'''generated_text''': ANY(lowercase_ )}, {'''generated_text''': ANY(lowercase_ )}], [{'''generated_text''': ANY(lowercase_ )}, {'''generated_text''': ANY(lowercase_ )}], ] , ) if text_generator.tokenizer.pad_token is not None: snake_case_ : List[Any] = text_generator( ['''This is great !''', '''Something else'''] , num_return_sequences=2 , batch_size=2 , do_sample=lowercase_ ) self.assertEqual( lowercase_ , [ [{'''generated_text''': ANY(lowercase_ )}, {'''generated_text''': ANY(lowercase_ )}], [{'''generated_text''': ANY(lowercase_ )}, {'''generated_text''': ANY(lowercase_ )}], ] , ) with self.assertRaises(lowercase_ ): snake_case_ : int = text_generator('''test''' , return_full_text=lowercase_ , return_text=lowercase_ ) with self.assertRaises(lowercase_ ): snake_case_ : Dict = text_generator('''test''' , return_full_text=lowercase_ , return_tensors=lowercase_ ) with self.assertRaises(lowercase_ ): snake_case_ : Dict = text_generator('''test''' , return_text=lowercase_ , return_tensors=lowercase_ ) # Empty prompt is slighly special # it requires BOS token to exist. # Special case for Pegasus which will always append EOS so will # work even without BOS. if ( text_generator.tokenizer.bos_token_id is not None or "Pegasus" in tokenizer.__class__.__name__ or "Git" in model.__class__.__name__ ): snake_case_ : str = text_generator('''''' ) self.assertEqual(lowercase_ , [{'''generated_text''': ANY(lowercase_ )}] ) else: with self.assertRaises((ValueError, AssertionError) ): snake_case_ : List[str] = text_generator('''''' ) if text_generator.framework == "tf": # TF generation does not support max_new_tokens, and it's impossible # to control long generation with only max_length without # fancy calculation, dismissing tests for now. return # We don't care about infinite range models. # They already work. # Skip this test for XGLM, since it uses sinusoidal positional embeddings which are resized on-the-fly. snake_case_ : List[Any] = ['''RwkvForCausalLM''', '''XGLMForCausalLM''', '''GPTNeoXForCausalLM'''] if ( tokenizer.model_max_length < 10000 and text_generator.model.__class__.__name__ not in EXTRA_MODELS_CAN_HANDLE_LONG_INPUTS ): # Handling of large generations with self.assertRaises((RuntimeError, IndexError, ValueError, AssertionError) ): text_generator('''This is a test''' * 500 , max_new_tokens=20 ) snake_case_ : Tuple = text_generator('''This is a test''' * 500 , handle_long_generation='''hole''' , max_new_tokens=20 ) # Hole strategy cannot work with self.assertRaises(lowercase_ ): text_generator( '''This is a test''' * 500 , handle_long_generation='''hole''' , max_new_tokens=tokenizer.model_max_length + 10 , ) @require_torch @require_accelerate @require_torch_gpu def _snake_case ( self : Optional[int] ): import torch # Classic `model_kwargs` snake_case_ : List[str] = pipeline( model='''hf-internal-testing/tiny-random-bloom''' , model_kwargs={'''device_map''': '''auto''', '''torch_dtype''': torch.bfloataa} , ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) snake_case_ : Tuple = pipe('''This is a test''' ) self.assertEqual( lowercase_ , [ { '''generated_text''': ( '''This is a test test test test test test test test test test test test test test test test''' ''' test''' ) } ] , ) # Upgraded those two to real pipeline arguments (they just get sent for the model as they're unlikely to mean anything else.) snake_case_ : Optional[Any] = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device_map='''auto''' , torch_dtype=torch.bfloataa ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) snake_case_ : Optional[Any] = pipe('''This is a test''' ) self.assertEqual( lowercase_ , [ { '''generated_text''': ( '''This is a test test test test test test test test test test test test test test test test''' ''' test''' ) } ] , ) # torch_dtype will be automatically set to float32 if not provided - check: https://github.com/huggingface/transformers/pull/20602 snake_case_ : Tuple = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device_map='''auto''' ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.floataa ) snake_case_ : int = pipe('''This is a test''' ) self.assertEqual( lowercase_ , [ { '''generated_text''': ( '''This is a test test test test test test test test test test test test test test test test''' ''' test''' ) } ] , ) @require_torch @require_torch_gpu def _snake_case ( self : List[str] ): import torch snake_case_ : Any = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device=0 , torch_dtype=torch.floataa ) pipe('''This is a test''' ) @require_torch @require_accelerate @require_torch_gpu def _snake_case ( self : Dict ): import torch snake_case_ : int = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device_map='''auto''' , torch_dtype=torch.floataa ) pipe('''This is a test''' , do_sample=lowercase_ , top_p=0.5 ) def _snake_case ( self : int ): snake_case_ : int = '''Hello world''' snake_case_ : List[Any] = pipeline('''text-generation''' , model='''hf-internal-testing/tiny-random-gpt2''' ) if text_generator.model.framework == "tf": snake_case_ : Optional[Any] = logging.get_logger('''transformers.generation.tf_utils''' ) else: snake_case_ : Dict = logging.get_logger('''transformers.generation.utils''' ) snake_case_ : Tuple = '''Both `max_new_tokens`''' # The beggining of the message to be checked in this test # Both are set by the user -> log warning with CaptureLogger(lowercase_ ) as cl: snake_case_ : List[Any] = text_generator(lowercase_ , max_length=10 , max_new_tokens=1 ) self.assertIn(lowercase_ , cl.out ) # The user only sets one -> no warning with CaptureLogger(lowercase_ ) as cl: snake_case_ : int = text_generator(lowercase_ , max_new_tokens=1 ) self.assertNotIn(lowercase_ , cl.out ) with CaptureLogger(lowercase_ ) as cl: snake_case_ : Optional[Any] = text_generator(lowercase_ , max_length=10 ) self.assertNotIn(lowercase_ , cl.out )
155
1
def __lowerCAmelCase ( a__ , a__ , a__ ) -> int: def count_of_possible_combinations(a__ ) -> int: if target < 0: return 0 if target == 0: return 1 return sum(count_of_possible_combinations(target - item ) for item in array ) return count_of_possible_combinations(a__ ) def __lowerCAmelCase ( a__ , a__ , a__ ) -> int: def count_of_possible_combinations_with_dp_array( a__ , a__ ) -> int: if target < 0: return 0 if target == 0: return 1 if dp_array[target] != -1: return dp_array[target] __a = sum( count_of_possible_combinations_with_dp_array(target - item , a__ ) for item in array ) __a = answer return answer __a = [-1] * (target + 1) return count_of_possible_combinations_with_dp_array(a__ , a__ ) def __lowerCAmelCase ( a__ , a__ , a__ ) -> int: __a = [0] * (target + 1) __a = 1 for i in range(1 , target + 1 ): for j in range(a__ ): if i - array[j] >= 0: dp_array[i] += dp_array[i - array[j]] return dp_array[target] if __name__ == "__main__": import doctest doctest.testmod() A : Dict = 3 A : Any = 5 A : Tuple = [1, 2, 5] print(combination_sum_iv(n, array, target))
6
"""simple docstring""" import json import re from typing import TYPE_CHECKING, List, Optional, Tuple, Union import numpy as np from ...utils import is_tf_available, is_torch_available, logging if TYPE_CHECKING: if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_codegen import CodeGenTokenizer A_ = logging.get_logger(__name__) A_ = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} A_ = { '''vocab_file''': { '''Salesforce/codegen-350M-mono''': '''https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/vocab.json''', }, '''merges_file''': { '''Salesforce/codegen-350M-mono''': '''https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''Salesforce/codegen-350M-mono''': ( '''https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/tokenizer.json''' ), }, } A_ = { '''Salesforce/codegen-350M-mono''': 20_48, } class lowercase( __a ): '''simple docstring''' lowercase__ = VOCAB_FILES_NAMES lowercase__ = PRETRAINED_VOCAB_FILES_MAP lowercase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ = ["input_ids", "attention_mask"] lowercase__ = CodeGenTokenizer def __init__( self: Union[str, Any], a_: List[Any]=None, a_: str=None, a_: str=None, a_: Dict="<|endoftext|>", a_: Tuple="<|endoftext|>", a_: str="<|endoftext|>", a_: List[Any]=False, **a_: List[str], ): '''simple docstring''' super().__init__( a_, a_, tokenizer_file=a_, unk_token=a_, bos_token=a_, eos_token=a_, add_prefix_space=a_, **a_, ) if kwargs.pop("""add_bos_token""", a_ ): _snake_case : str = kwargs.pop("""name_or_path""", """""" ) raise ValueError( """Currenty GPT2's fast tokenizer does NOT support adding a BOS token.""" """Instead you should use GPT2's slow tokenizer class `CodeGenTokenizer` as follows: \n""" f"`CodeGenTokenizer.from_pretrained('{model_id}')`\nor\n" f"`AutoTokenizer.from_pretrained('{model_id}', use_fast=False)`\n" """This issue will be fixed soon, see: https://github.com/huggingface/tokenizers/pull/1005.""" """ so that the fast tokenizer works correctly.""" ) _snake_case : Tuple = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""", a_ ) != add_prefix_space: _snake_case : Dict = getattr(a_, pre_tok_state.pop("""type""" ) ) _snake_case : Dict = add_prefix_space _snake_case : str = pre_tok_class(**a_ ) _snake_case : List[Any] = add_prefix_space def UpperCamelCase_ ( self: Any, *a_: Any, **a_: int ): '''simple docstring''' _snake_case : Optional[int] = kwargs.get("""is_split_into_words""", a_ ) assert self.add_prefix_space or not is_split_into_words, ( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*a_, **a_ ) def UpperCamelCase_ ( self: Optional[Any], *a_: Any, **a_: List[str] ): '''simple docstring''' _snake_case : Dict = kwargs.get("""is_split_into_words""", a_ ) assert self.add_prefix_space or not is_split_into_words, ( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._encode_plus(*a_, **a_ ) def UpperCamelCase_ ( self: Optional[int], a_: str, a_: Optional[str] = None ): '''simple docstring''' _snake_case : List[Any] = self._tokenizer.model.save(a_, name=a_ ) return tuple(a_ ) def UpperCamelCase_ ( self: str, a_: Union[int, List[int], "np.ndarray", "torch.Tensor", "tf.Tensor"], a_: bool = False, a_: bool = None, a_: Optional[List[str]] = None, **a_: List[str], ): '''simple docstring''' _snake_case : Any = super().decode( token_ids=a_, skip_special_tokens=a_, clean_up_tokenization_spaces=a_, **a_, ) if truncate_before_pattern is not None and len(a_ ) > 0: _snake_case : List[str] = self.truncate(a_, a_ ) return decoded_text def UpperCamelCase_ ( self: Dict, a_: Tuple, a_: Optional[Any] ): '''simple docstring''' def find_re(a_: Dict, a_: str, a_: Union[str, Any] ): _snake_case : Any = pattern.search(a_, a_ ) return m.start() if m else -1 _snake_case : Tuple = [re.compile(a_, re.MULTILINE ) for pattern in truncate_before_pattern] _snake_case : List[Any] = list(re.finditer("""^print""", a_, re.MULTILINE ) ) if len(a_ ) > 1: _snake_case : int = completion[: prints[1].start()] _snake_case : List[str] = list(re.finditer("""^def""", a_, re.MULTILINE ) ) if len(a_ ) > 1: _snake_case : List[Any] = completion[: defs[1].start()] _snake_case : int = 0 _snake_case : List[Any] = [ pos for pos in [find_re(a_, a_, a_ ) for terminal in terminals] if pos != -1 ] if len(a_ ) > 0: return completion[: min(a_ )] else: return completion
64
0
'''simple docstring''' from __future__ import annotations import typing from collections.abc import Iterable import numpy as np _lowercase : List[str] = typing.Union[Iterable[float], Iterable[int], np.ndarray] # noqa: UP007 _lowercase : Optional[Any] = typing.Union[np.floataa, int, float] # noqa: UP007 def lowerCamelCase ( UpperCAmelCase__ : Vector , UpperCAmelCase__ : Vector ) -> VectorOut: return np.sqrt(np.sum((np.asarray(lowerCAmelCase__ ) - np.asarray(lowerCAmelCase__ )) ** 2 ) ) def lowerCamelCase ( UpperCAmelCase__ : Vector , UpperCAmelCase__ : Vector ) -> VectorOut: return sum((va - va) ** 2 for va, va in zip(lowerCAmelCase__ , lowerCAmelCase__ ) ) ** (1 / 2) if __name__ == "__main__": def lowerCamelCase ( ) -> None: from timeit import timeit print("""Without Numpy""" ) print( timeit( """euclidean_distance_no_np([1, 2, 3], [4, 5, 6])""" , number=10000 , globals=globals() , ) ) print("""With Numpy""" ) print( timeit( """euclidean_distance([1, 2, 3], [4, 5, 6])""" , number=10000 , globals=globals() , ) ) benchmark()
361
'''simple docstring''' import json import os import tempfile import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ImageGPTImageProcessor class __magic_name__ ( unittest.TestCase): def __init__( self : Union[str, Any] , lowercase_ : Union[str, Any] , lowercase_ : int=7 , lowercase_ : Optional[Any]=3 , lowercase_ : Optional[Any]=18 , lowercase_ : List[Any]=30 , lowercase_ : int=400 , lowercase_ : Dict=True , lowercase_ : List[Any]=None , lowercase_ : Dict=True , ): lowercase_ : Tuple = size if size is not None else {"""height""": 18, """width""": 18} lowercase_ : List[str] = parent lowercase_ : Any = batch_size lowercase_ : Optional[Any] = num_channels lowercase_ : Tuple = image_size lowercase_ : Optional[Any] = min_resolution lowercase_ : Dict = max_resolution lowercase_ : Optional[int] = do_resize lowercase_ : Optional[Any] = size lowercase_ : Union[str, Any] = do_normalize def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): return { # here we create 2 clusters for the sake of simplicity "clusters": np.asarray( [ [0.88_66_44_36_34_03_32_03, 0.66_18_82_93_69_54_49_83, 0.38_91_74_64_01_78_68_04], [-0.60_42_55_91_46_88_11_04, -0.0_22_95_00_88_60_52_84_69, 0.54_23_79_73_69_00_32_96], ] ), "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, } @require_torch @require_vision class __magic_name__ ( _UpperCAmelCase, unittest.TestCase): UpperCamelCase__ = ImageGPTImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE_ ( self : List[str] ): lowercase_ : Optional[int] = ImageGPTImageProcessingTester(self ) @property def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE_ ( self : Tuple ): lowercase_ : int = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowercase_ , """clusters""" ) ) self.assertTrue(hasattr(lowercase_ , """do_resize""" ) ) self.assertTrue(hasattr(lowercase_ , """size""" ) ) self.assertTrue(hasattr(lowercase_ , """do_normalize""" ) ) def SCREAMING_SNAKE_CASE_ ( self : Tuple ): lowercase_ : Any = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 18, """width""": 18} ) lowercase_ : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} ) def SCREAMING_SNAKE_CASE_ ( self : int ): lowercase_ : int = self.image_processing_class(**self.image_processor_dict ) lowercase_ : Union[str, Any] = json.loads(image_processor.to_json_string() ) for key, value in self.image_processor_dict.items(): if key == "clusters": self.assertTrue(np.array_equal(lowercase_ , obj[key] ) ) else: self.assertEqual(obj[key] , lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): lowercase_ : str = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: lowercase_ : Union[str, Any] = os.path.join(lowercase_ , """image_processor.json""" ) image_processor_first.to_json_file(lowercase_ ) lowercase_ : Optional[Any] = self.image_processing_class.from_json_file(lowercase_ ).to_dict() lowercase_ : Any = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(lowercase_ , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): lowercase_ : Tuple = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: image_processor_first.save_pretrained(lowercase_ ) lowercase_ : Any = self.image_processing_class.from_pretrained(lowercase_ ).to_dict() lowercase_ : List[str] = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(lowercase_ , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , lowercase_ ) @unittest.skip("""ImageGPT requires clusters at initialization""" ) def SCREAMING_SNAKE_CASE_ ( self : Any ): pass def lowerCamelCase ( ) -> Any: lowercase_ : Union[str, Any] = load_dataset("""hf-internal-testing/fixtures_image_utils""" , split="""test""" ) lowercase_ : Any = Image.open(dataset[4]["""file"""] ) lowercase_ : Dict = Image.open(dataset[5]["""file"""] ) lowercase_ : int = [imagea, imagea] return images @require_vision @require_torch class __magic_name__ ( unittest.TestCase): @slow def SCREAMING_SNAKE_CASE_ ( self : Any ): lowercase_ : Optional[Any] = ImageGPTImageProcessor.from_pretrained("""openai/imagegpt-small""" ) lowercase_ : Optional[int] = prepare_images() # test non-batched lowercase_ : str = image_processing(images[0] , return_tensors="""pt""" ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (1, 1024) ) lowercase_ : Tuple = [306, 191, 191] self.assertEqual(encoding.input_ids[0, :3].tolist() , lowercase_ ) # test batched lowercase_ : List[str] = image_processing(lowercase_ , return_tensors="""pt""" ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (2, 1024) ) lowercase_ : Union[str, Any] = [303, 13, 13] self.assertEqual(encoding.input_ids[1, -3:].tolist() , lowercase_ )
21
0
# Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position __lowerCamelCase : List[str] = """2.13.1""" import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse("""3.7"""): raise ImportWarning( """To use `datasets`, Python>=3.7 is required, and the current version of Python doesn't match this condition.""" ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( """To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn't match this condition.\n""" """If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`.""" ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip __lowerCamelCase : int = concatenate_datasets __lowerCamelCase : Union[str, Any] = DownloadConfig __lowerCamelCase : List[Any] = DownloadManager __lowerCamelCase : int = DownloadMode __lowerCamelCase : Any = DownloadConfig __lowerCamelCase : str = DownloadMode __lowerCamelCase : List[Any] = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
52
import pickle import numpy as np from matplotlib import pyplot as plt class A__ : def __init__( self , A_ , A_ , A_ , A_ , A_ , A_=0.2 , A_=0.2 ): '''simple docstring''' UpperCamelCase : int = bp_numa UpperCamelCase : int = bp_numa UpperCamelCase : List[Any] = bp_numa UpperCamelCase : Optional[int] = conva_get[:2] UpperCamelCase : Optional[Any] = conva_get[2] UpperCamelCase : Dict = size_pa UpperCamelCase : Union[str, Any] = rate_w UpperCamelCase : Dict = rate_t UpperCamelCase : Union[str, Any] = [ np.mat(-1 * np.random.rand(self.conva[0] , self.conva[0] ) + 0.5 ) for i in range(self.conva[1] ) ] UpperCamelCase : Any = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 ) UpperCamelCase : List[Any] = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 ) UpperCamelCase : Optional[Any] = -2 * np.random.rand(self.conva[1] ) + 1 UpperCamelCase : Any = -2 * np.random.rand(self.num_bpa ) + 1 UpperCamelCase : int = -2 * np.random.rand(self.num_bpa ) + 1 def __UpperCamelCase( self , A_ ): '''simple docstring''' UpperCamelCase : Optional[int] = { "num_bp1": self.num_bpa, "num_bp2": self.num_bpa, "num_bp3": self.num_bpa, "conv1": self.conva, "step_conv1": self.step_conva, "size_pooling1": self.size_poolinga, "rate_weight": self.rate_weight, "rate_thre": self.rate_thre, "w_conv1": self.w_conva, "wkj": self.wkj, "vji": self.vji, "thre_conv1": self.thre_conva, "thre_bp2": self.thre_bpa, "thre_bp3": self.thre_bpa, } with open(A_ , "wb" ) as f: pickle.dump(A_ , A_ ) print(F"""Model saved: {save_path}""" ) @classmethod def __UpperCamelCase( cls , A_ ): '''simple docstring''' with open(A_ , "rb" ) as f: UpperCamelCase : Optional[Any] = pickle.load(A_ ) # noqa: S301 UpperCamelCase : List[Any] = model_dic.get("conv1" ) conv_get.append(model_dic.get("step_conv1" ) ) UpperCamelCase : Union[str, Any] = model_dic.get("size_pooling1" ) UpperCamelCase : List[Any] = model_dic.get("num_bp1" ) UpperCamelCase : Dict = model_dic.get("num_bp2" ) UpperCamelCase : Dict = model_dic.get("num_bp3" ) UpperCamelCase : Dict = model_dic.get("rate_weight" ) UpperCamelCase : str = model_dic.get("rate_thre" ) # create model instance UpperCamelCase : Any = CNN(A_ , A_ , A_ , A_ , A_ , A_ , A_ ) # modify model parameter UpperCamelCase : str = model_dic.get("w_conv1" ) UpperCamelCase : Optional[Any] = model_dic.get("wkj" ) UpperCamelCase : int = model_dic.get("vji" ) UpperCamelCase : Any = model_dic.get("thre_conv1" ) UpperCamelCase : Optional[int] = model_dic.get("thre_bp2" ) UpperCamelCase : Union[str, Any] = model_dic.get("thre_bp3" ) return conv_ins def __UpperCamelCase( self , A_ ): '''simple docstring''' return 1 / (1 + np.exp(-1 * x )) def __UpperCamelCase( self , A_ ): '''simple docstring''' return round(A_ , 3 ) def __UpperCamelCase( self , A_ , A_ , A_ , A_ , A_ ): '''simple docstring''' UpperCamelCase : str = convs[0] UpperCamelCase : Optional[Any] = convs[1] UpperCamelCase : Optional[Any] = np.shape(A_ )[0] # get the data slice of original image data, data_focus UpperCamelCase : List[str] = [] for i_focus in range(0 , size_data - size_conv + 1 , A_ ): for j_focus in range(0 , size_data - size_conv + 1 , A_ ): UpperCamelCase : Union[str, Any] = data[ i_focus : i_focus + size_conv, j_focus : j_focus + size_conv ] data_focus.append(A_ ) # calculate the feature map of every single kernel, and saved as list of matrix UpperCamelCase : int = [] UpperCamelCase : Optional[Any] = int((size_data - size_conv) / conv_step + 1 ) for i_map in range(A_ ): UpperCamelCase : str = [] for i_focus in range(len(A_ ) ): UpperCamelCase : List[Any] = ( np.sum(np.multiply(data_focus[i_focus] , w_convs[i_map] ) ) - thre_convs[i_map] ) featuremap.append(self.sig(A_ ) ) UpperCamelCase : Optional[int] = np.asmatrix(A_ ).reshape( A_ , A_ ) data_featuremap.append(A_ ) # expanding the data slice to One dimenssion UpperCamelCase : List[Any] = [] for each_focus in data_focus: focusa_list.extend(self.Expand_Mat(A_ ) ) UpperCamelCase : Tuple = np.asarray(A_ ) return focus_list, data_featuremap def __UpperCamelCase( self , A_ , A_ , A_="average_pool" ): '''simple docstring''' UpperCamelCase : Any = len(featuremaps[0] ) UpperCamelCase : str = int(size_map / size_pooling ) UpperCamelCase : Optional[int] = [] for i_map in range(len(A_ ) ): UpperCamelCase : Tuple = featuremaps[i_map] UpperCamelCase : Any = [] for i_focus in range(0 , A_ , A_ ): for j_focus in range(0 , A_ , A_ ): UpperCamelCase : int = feature_map[ i_focus : i_focus + size_pooling, j_focus : j_focus + size_pooling, ] if pooling_type == "average_pool": # average pooling map_pooled.append(np.average(A_ ) ) elif pooling_type == "max_pooling": # max pooling map_pooled.append(np.max(A_ ) ) UpperCamelCase : Optional[Any] = np.asmatrix(A_ ).reshape(A_ , A_ ) featuremap_pooled.append(A_ ) return featuremap_pooled def __UpperCamelCase( self , A_ ): '''simple docstring''' UpperCamelCase : List[Any] = [] for i in range(len(A_ ) ): UpperCamelCase : List[Any] = np.shape(data[i] ) UpperCamelCase : str = data[i].reshape(1 , shapes[0] * shapes[1] ) UpperCamelCase : Optional[int] = data_listed.getA().tolist()[0] data_expanded.extend(A_ ) UpperCamelCase : Any = np.asarray(A_ ) return data_expanded def __UpperCamelCase( self , A_ ): '''simple docstring''' UpperCamelCase : List[Any] = np.asarray(A_ ) UpperCamelCase : List[Any] = np.shape(A_ ) UpperCamelCase : Any = data_mat.reshape(1 , shapes[0] * shapes[1] ) return data_expanded def __UpperCamelCase( self , A_ , A_ , A_ , A_ , A_ ): '''simple docstring''' UpperCamelCase : int = [] UpperCamelCase : Optional[int] = 0 for i_map in range(A_ ): UpperCamelCase : int = np.ones((size_map, size_map) ) for i in range(0 , A_ , A_ ): for j in range(0 , A_ , A_ ): UpperCamelCase : str = pd_pool[ i_pool ] UpperCamelCase : str = i_pool + 1 UpperCamelCase : str = np.multiply( A_ , np.multiply(out_map[i_map] , (1 - out_map[i_map]) ) ) pd_all.append(A_ ) return pd_all def __UpperCamelCase( self , A_ , A_ , A_ , A_ , A_ , A_=bool ): '''simple docstring''' print("----------------------Start Training-------------------------" ) print((" - - Shape: Train_Data ", np.shape(A_ )) ) print((" - - Shape: Teach_Data ", np.shape(A_ )) ) UpperCamelCase : List[str] = 0 UpperCamelCase : Union[str, Any] = [] UpperCamelCase : int = 1_0000 while rp < n_repeat and mse >= error_accuracy: UpperCamelCase : Tuple = 0 print(F"""-------------Learning Time {rp}--------------""" ) for p in range(len(A_ ) ): # print('------------Learning Image: %d--------------'%p) UpperCamelCase : Any = np.asmatrix(datas_train[p] ) UpperCamelCase : List[str] = np.asarray(datas_teach[p] ) UpperCamelCase , UpperCamelCase : Dict = self.convolute( A_ , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) UpperCamelCase : Tuple = self.pooling(A_ , self.size_poolinga ) UpperCamelCase : int = np.shape(A_ ) UpperCamelCase : List[str] = self._expand(A_ ) UpperCamelCase : Optional[int] = data_bp_input UpperCamelCase : str = np.dot(A_ , self.vji.T ) - self.thre_bpa UpperCamelCase : Optional[int] = self.sig(A_ ) UpperCamelCase : List[Any] = np.dot(A_ , self.wkj.T ) - self.thre_bpa UpperCamelCase : Dict = self.sig(A_ ) # --------------Model Leaning ------------------------ # calculate error and gradient--------------- UpperCamelCase : List[Any] = np.multiply( (data_teach - bp_outa) , np.multiply(A_ , (1 - bp_outa) ) ) UpperCamelCase : str = np.multiply( np.dot(A_ , self.wkj ) , np.multiply(A_ , (1 - bp_outa) ) ) UpperCamelCase : Any = np.dot(A_ , self.vji ) UpperCamelCase : Dict = pd_i_all / (self.size_poolinga * self.size_poolinga) UpperCamelCase : List[Any] = pd_conva_pooled.T.getA().tolist() UpperCamelCase : List[Any] = self._calculate_gradient_from_pool( A_ , A_ , shape_featuremapa[0] , shape_featuremapa[1] , self.size_poolinga , ) # weight and threshold learning process--------- # convolution layer for k_conv in range(self.conva[1] ): UpperCamelCase : List[Any] = self._expand_mat(pd_conva_all[k_conv] ) UpperCamelCase : List[Any] = self.rate_weight * np.dot(A_ , A_ ) UpperCamelCase : str = self.w_conva[k_conv] + delta_w.reshape( (self.conva[0], self.conva[0]) ) UpperCamelCase : Dict = ( self.thre_conva[k_conv] - np.sum(pd_conva_all[k_conv] ) * self.rate_thre ) # all connected layer UpperCamelCase : Optional[Any] = self.wkj + pd_k_all.T * bp_outa * self.rate_weight UpperCamelCase : List[Any] = self.vji + pd_j_all.T * bp_outa * self.rate_weight UpperCamelCase : Optional[Any] = self.thre_bpa - pd_k_all * self.rate_thre UpperCamelCase : List[str] = self.thre_bpa - pd_j_all * self.rate_thre # calculate the sum error of all single image UpperCamelCase : List[Any] = np.sum(abs(data_teach - bp_outa ) ) error_count += errors # print(' ----Teach ',data_teach) # print(' ----BP_output ',bp_out3) UpperCamelCase : Any = rp + 1 UpperCamelCase : Union[str, Any] = error_count / patterns all_mse.append(A_ ) def draw_error(): UpperCamelCase : Tuple = [error_accuracy for i in range(int(n_repeat * 1.2 ) )] plt.plot(A_ , "+-" ) plt.plot(A_ , "r--" ) plt.xlabel("Learning Times" ) plt.ylabel("All_mse" ) plt.grid(A_ , alpha=0.5 ) plt.show() print("------------------Training Complished---------------------" ) print((" - - Training epoch: ", rp, F""" - - Mse: {mse:.6f}""") ) if draw_e: draw_error() return mse def __UpperCamelCase( self , A_ ): '''simple docstring''' UpperCamelCase : Optional[Any] = [] print("-------------------Start Testing-------------------------" ) print((" - - Shape: Test_Data ", np.shape(A_ )) ) for p in range(len(A_ ) ): UpperCamelCase : int = np.asmatrix(datas_test[p] ) UpperCamelCase , UpperCamelCase : Any = self.convolute( A_ , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) UpperCamelCase : List[str] = self.pooling(A_ , self.size_poolinga ) UpperCamelCase : Dict = self._expand(A_ ) UpperCamelCase : List[Any] = data_bp_input UpperCamelCase : Any = bp_outa * self.vji.T - self.thre_bpa UpperCamelCase : List[Any] = self.sig(A_ ) UpperCamelCase : int = bp_outa * self.wkj.T - self.thre_bpa UpperCamelCase : Optional[int] = self.sig(A_ ) produce_out.extend(bp_outa.getA().tolist() ) UpperCamelCase : List[str] = [list(map(self.do_round , A_ ) ) for each in produce_out] return np.asarray(A_ ) def __UpperCamelCase( self , A_ ): '''simple docstring''' UpperCamelCase : Union[str, Any] = np.asmatrix(A_ ) UpperCamelCase , UpperCamelCase : List[Any] = self.convolute( A_ , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) UpperCamelCase : str = self.pooling(A_ , self.size_poolinga ) return data_conveda, data_pooleda if __name__ == "__main__": pass
52
1
"""simple docstring""" from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast from ...utils import logging a_ = logging.get_logger(__name__) a_ = { "EleutherAI/gpt-neo-1.3B": "https://huggingface.co/EleutherAI/gpt-neo-1.3B/resolve/main/config.json", # See all GPTNeo models at https://huggingface.co/models?filter=gpt_neo } class snake_case ( _UpperCamelCase): __UpperCamelCase = 'gpt_neo' __UpperCamelCase = ['past_key_values'] __UpperCamelCase = {'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers'} def __init__( self : Optional[Any] , a__ : Any=5_02_57 , a__ : List[Any]=20_48 , a__ : Optional[int]=20_48 , a__ : List[Any]=24 , a__ : List[str]=[[["global", "local"], 12]] , a__ : Dict=16 , a__ : Dict=None , a__ : str=2_56 , a__ : Any="gelu_new" , a__ : List[Any]=0.0 , a__ : Optional[int]=0.0 , a__ : List[Any]=0.0 , a__ : int=0.1 , a__ : Any=1E-5 , a__ : List[Any]=0.0_2 , a__ : Tuple=True , a__ : Optional[Any]=5_02_56 , a__ : Optional[Any]=5_02_56 , **a__ : Tuple , ) -> Optional[Any]: '''simple docstring''' _A = vocab_size _A = max_position_embeddings _A = hidden_size _A = num_layers _A = num_heads _A = intermediate_size _A = window_size _A = activation_function _A = resid_dropout _A = embed_dropout _A = attention_dropout _A = classifier_dropout _A = layer_norm_epsilon _A = initializer_range _A = use_cache _A = bos_token_id _A = eos_token_id _A = attention_types _A = self.expand_attention_types_params(a__ ) if len(self.attention_layers ) != self.num_layers: raise ValueError( "Configuration for convolutional module is incorrect. " "It is required that `len(config.attention_layers)` == `config.num_layers` " F"""but is `len(config.attention_layers) = {len(self.attention_layers )}`, """ F"""`config.num_layers = {self.num_layers}`. """ "`config.attention_layers` is prepared using `config.attention_types`. " "Please verify the value of `config.attention_types` argument." ) super().__init__(bos_token_id=a__ , eos_token_id=a__ , **a__ ) @staticmethod def a_ ( a__ : Optional[int] ) -> Dict: '''simple docstring''' _A = [] for item in attention_types: for _ in range(item[1] ): attentions.extend(item[0] ) return attentions def a__ ( __lowercase , __lowercase , __lowercase , __lowercase ) -> Any: import torch _A = input.size() _A = len(__lowercase ) _A = shape[dimension] _A = torch.arange(0 , __lowercase , __lowercase ) _A = torch.div(sizedim - size , __lowercase , rounding_mode="floor" ) + 1 _A = torch.arange(__lowercase ) + low_indices[:min_length][:, None] _A = [slice(__lowercase )] * rank _A = indices _A = input[s] _A = list(range(0 , rank + 1 ) ) perm.append(perm.pop(dimension + 1 ) ) return sliced.permute(__lowercase ) def a__ ( __lowercase , __lowercase ) -> List[Any]: import torch _A = torch.arange(1 , __lowercase ) _A = torch.remainder(__lowercase , __lowercase ) _A = remainders == 0 _A = candidates[divisor_indices] _A = torch.max(__lowercase ) return largest_divisor, torch.div(__lowercase , __lowercase , rounding_mode="floor" ) class snake_case ( _UpperCamelCase): @property def a_ ( self : int ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' _A = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}} ) if self.use_past: self.fill_with_past_key_values_(a__ , direction="inputs" ) _A = {0: "batch", 1: "past_sequence + sequence"} else: _A = {0: "batch", 1: "sequence"} return common_inputs @property def a_ ( self : Any ) -> int: '''simple docstring''' return self._config.num_heads def a_ ( self : str , a__ : PreTrainedTokenizer , a__ : int = -1 , a__ : int = -1 , a__ : bool = False , a__ : Optional[TensorType] = None , ) -> Mapping[str, Any]: '''simple docstring''' _A = super(a__ , self ).generate_dummy_inputs( a__ , batch_size=a__ , seq_length=a__ , is_pair=a__ , framework=a__ ) # We need to order the input in the way they appears in the forward() _A = OrderedDict({"input_ids": common_inputs["input_ids"]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch _A , _A = common_inputs["input_ids"].shape # Not using the same length for past_key_values _A = seqlen + 2 _A = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) _A = [ (torch.zeros(a__ ), torch.zeros(a__ )) for _ in range(self.num_layers ) ] _A = common_inputs["attention_mask"] if self.use_past: _A = ordered_inputs["attention_mask"].dtype _A = torch.cat( [ordered_inputs["attention_mask"], torch.ones(a__ , a__ , dtype=a__ )] , dim=1 ) return ordered_inputs @property def a_ ( self : List[str] ) -> int: '''simple docstring''' return 13
163
"""simple docstring""" import shutil import tempfile import unittest from transformers import ( SPIECE_UNDERLINE, AddedToken, BatchEncoding, NllbTokenizer, NllbTokenizerFast, is_torch_available, ) from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin a_ = get_tests_dir("fixtures/test_sentencepiece.model") if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right a_ = 25_60_47 a_ = 25_61_45 @require_sentencepiece @require_tokenizers class snake_case ( _UpperCamelCase , unittest.TestCase): __UpperCamelCase = NllbTokenizer __UpperCamelCase = NllbTokenizerFast __UpperCamelCase = True __UpperCamelCase = True __UpperCamelCase = {} def a_ ( self : Union[str, Any] ) -> Tuple: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing _A = NllbTokenizer(a__ , keep_accents=a__ ) tokenizer.save_pretrained(self.tmpdirname ) def a_ ( self : Optional[Any] ) -> List[Any]: '''simple docstring''' _A = NllbTokenizer(a__ , keep_accents=a__ ) _A = tokenizer.tokenize("This is a test" ) self.assertListEqual(a__ , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(a__ ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) _A = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( a__ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) _A = tokenizer.convert_tokens_to_ids(a__ ) self.assertListEqual( a__ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) _A = tokenizer.convert_ids_to_tokens(a__ ) self.assertListEqual( a__ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) def a_ ( self : Dict ) -> Union[str, Any]: '''simple docstring''' _A = (self.rust_tokenizer_class, "hf-internal-testing/tiny-random-nllb", {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): _A = self.rust_tokenizer_class.from_pretrained(a__ , **a__ ) _A = self.tokenizer_class.from_pretrained(a__ , **a__ ) _A = tempfile.mkdtemp() _A = tokenizer_r.save_pretrained(a__ ) _A = tokenizer_p.save_pretrained(a__ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files ) ) _A = tuple(f for f in tokenizer_r_files if "tokenizer.json" not in f ) self.assertSequenceEqual(a__ , a__ ) # Checks everything loads correctly in the same way _A = tokenizer_r.from_pretrained(a__ ) _A = tokenizer_p.from_pretrained(a__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(a__ , a__ ) ) shutil.rmtree(a__ ) # Save tokenizer rust, legacy_format=True _A = tempfile.mkdtemp() _A = tokenizer_r.save_pretrained(a__ , legacy_format=a__ ) _A = tokenizer_p.save_pretrained(a__ ) # Checks it save with the same files self.assertSequenceEqual(a__ , a__ ) # Checks everything loads correctly in the same way _A = tokenizer_r.from_pretrained(a__ ) _A = tokenizer_p.from_pretrained(a__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(a__ , a__ ) ) shutil.rmtree(a__ ) # Save tokenizer rust, legacy_format=False _A = tempfile.mkdtemp() _A = tokenizer_r.save_pretrained(a__ , legacy_format=a__ ) _A = tokenizer_p.save_pretrained(a__ ) # Checks it saved the tokenizer.json file self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way _A = tokenizer_r.from_pretrained(a__ ) _A = tokenizer_p.from_pretrained(a__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(a__ , a__ ) ) shutil.rmtree(a__ ) @require_torch def a_ ( self : Dict ) -> Optional[Any]: '''simple docstring''' if not self.test_seqaseq: return _A = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): # Longer text that will definitely require truncation. _A = [ " UN Chief Says There Is No Military Solution in Syria", " Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for" " Syria is that 'there is no military solution' to the nearly five-year conflict and more weapons" " will only worsen the violence and misery for millions of people.", ] _A = [ "Şeful ONU declară că nu există o soluţie militară în Siria", "Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al" " Rusiei pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi" " că noi arme nu vor face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.", ] try: _A = tokenizer.prepare_seqaseq_batch( src_texts=a__ , tgt_texts=a__ , max_length=3 , max_target_length=10 , return_tensors="pt" , src_lang="eng_Latn" , tgt_lang="ron_Latn" , ) except NotImplementedError: return self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.labels.shape[1] , 10 ) # max_target_length will default to max_length if not specified _A = tokenizer.prepare_seqaseq_batch( a__ , tgt_texts=a__ , max_length=3 , return_tensors="pt" ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.labels.shape[1] , 3 ) _A = tokenizer.prepare_seqaseq_batch( src_texts=a__ , max_length=3 , max_target_length=10 , return_tensors="pt" ) self.assertEqual(batch_encoder_only.input_ids.shape[1] , 3 ) self.assertEqual(batch_encoder_only.attention_mask.shape[1] , 3 ) self.assertNotIn("decoder_input_ids" , a__ ) @unittest.skip("Unfortunately way too slow to build a BPE with SentencePiece." ) def a_ ( self : List[Any] ) -> Union[str, Any]: '''simple docstring''' pass def a_ ( self : Optional[Any] ) -> Any: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): _A = [AddedToken("<special>" , lstrip=a__ )] _A = self.rust_tokenizer_class.from_pretrained( a__ , additional_special_tokens=a__ , **a__ ) _A = tokenizer_r.encode("Hey this is a <special> token" ) _A = tokenizer_r.encode("<special>" , add_special_tokens=a__ )[0] self.assertTrue(special_token_id in r_output ) if self.test_slow_tokenizer: _A = self.rust_tokenizer_class.from_pretrained( a__ , additional_special_tokens=a__ , **a__ , ) _A = self.tokenizer_class.from_pretrained( a__ , additional_special_tokens=a__ , **a__ ) _A = tokenizer_p.encode("Hey this is a <special> token" ) _A = tokenizer_cr.encode("Hey this is a <special> token" ) self.assertEqual(a__ , a__ ) self.assertEqual(a__ , a__ ) self.assertTrue(special_token_id in p_output ) self.assertTrue(special_token_id in cr_output ) @require_torch @require_sentencepiece @require_tokenizers class snake_case ( unittest.TestCase): __UpperCamelCase = 'facebook/nllb-200-distilled-600M' __UpperCamelCase = [ ' UN Chief Says There Is No Military Solution in Syria', ' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.', ] __UpperCamelCase = [ 'Şeful ONU declară că nu există o soluţie militară în Siria', 'Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei' ' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor' ' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.', ] __UpperCamelCase = [ 25_6047, 1_6297, 13_4408, 8165, 24_8066, 1_4734, 950, 1135, 10_5721, 3573, 83, 2_7352, 108, 4_9486, 2, ] @classmethod def a_ ( cls : Optional[Any] ) -> Any: '''simple docstring''' _A = NllbTokenizer.from_pretrained( cls.checkpoint_name , src_lang="eng_Latn" , tgt_lang="ron_Latn" ) _A = 1 return cls def a_ ( self : Dict ) -> List[str]: '''simple docstring''' self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["ace_Arab"] , 25_60_01 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["ace_Latn"] , 25_60_02 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["fra_Latn"] , 25_60_57 ) def a_ ( self : str ) -> Tuple: '''simple docstring''' _A = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , a__ ) def a_ ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' self.assertIn(a__ , self.tokenizer.all_special_ids ) # fmt: off _A = [RO_CODE, 42_54, 9_80_68, 11_29_23, 3_90_72, 39_09, 7_13, 10_27_67, 26, 1_73_14, 3_56_42, 1_46_83, 3_31_18, 20_22, 6_69_87, 2, 25_60_47] # fmt: on _A = self.tokenizer.decode(a__ , skip_special_tokens=a__ ) _A = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=a__ ) self.assertEqual(a__ , a__ ) self.assertNotIn(self.tokenizer.eos_token , a__ ) def a_ ( self : Dict ) -> str: '''simple docstring''' _A = ["this is gunna be a long sentence " * 20] assert isinstance(src_text[0] , a__ ) _A = 10 _A = self.tokenizer(a__ , max_length=a__ , truncation=a__ ).input_ids[0] self.assertEqual(ids[-1] , 2 ) self.assertEqual(ids[0] , a__ ) self.assertEqual(len(a__ ) , a__ ) def a_ ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["<mask>", "ar_AR"] ) , [25_62_03, 3] ) def a_ ( self : Optional[Any] ) -> str: '''simple docstring''' _A = tempfile.mkdtemp() _A = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(a__ ) _A = NllbTokenizer.from_pretrained(a__ ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , a__ ) @require_torch def a_ ( self : str ) -> str: '''simple docstring''' _A = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=a__ , truncation=a__ , max_length=len(self.expected_src_tokens ) , return_tensors="pt" , ) _A = shift_tokens_right( batch["labels"] , self.tokenizer.pad_token_id , self.tokenizer.lang_code_to_id["ron_Latn"] ) self.assertIsInstance(a__ , a__ ) self.assertEqual((2, 15) , batch.input_ids.shape ) self.assertEqual((2, 15) , batch.attention_mask.shape ) _A = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , a__ ) self.assertEqual(a__ , batch.decoder_input_ids[0, 0] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) def a_ ( self : List[Any] ) -> Tuple: '''simple docstring''' _A = self.tokenizer(self.src_text , padding=a__ , truncation=a__ , max_length=3 , return_tensors="pt" ) _A = self.tokenizer( text_target=self.tgt_text , padding=a__ , truncation=a__ , max_length=10 , return_tensors="pt" ) _A = targets["input_ids"] _A = shift_tokens_right( a__ , self.tokenizer.pad_token_id , decoder_start_token_id=self.tokenizer.lang_code_to_id[self.tokenizer.tgt_lang] , ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def a_ ( self : Dict ) -> List[Any]: '''simple docstring''' _A = self.tokenizer._build_translation_inputs( "A test" , return_tensors="pt" , src_lang="eng_Latn" , tgt_lang="fra_Latn" ) self.assertEqual( nested_simplify(a__ ) , { # A, test, EOS, en_XX "input_ids": [[25_60_47, 70, 73_56, 2]], "attention_mask": [[1, 1, 1, 1]], # ar_AR "forced_bos_token_id": 25_60_57, } , ) @require_torch def a_ ( self : Union[str, Any] ) -> Tuple: '''simple docstring''' _A = True _A = self.tokenizer( "UN Chief says there is no military solution in Syria" , src_lang="eng_Latn" , tgt_lang="fra_Latn" ) self.assertEqual( inputs.input_ids , [1_62_97, 13_44_08, 2_56_53, 63_70, 2_48, 2_54, 10_39_29, 9_49_95, 1_08, 4_94_86, 2, 25_60_47] ) _A = False _A = self.tokenizer( "UN Chief says there is no military solution in Syria" , src_lang="eng_Latn" , tgt_lang="fra_Latn" ) self.assertEqual( inputs.input_ids , [25_60_47, 1_62_97, 13_44_08, 2_56_53, 63_70, 2_48, 2_54, 10_39_29, 9_49_95, 1_08, 4_94_86, 2] )
163
1
'''simple docstring''' import argparse from transformers import TaConfig, TaForConditionalGeneration, load_tf_weights_in_ta from transformers.utils import logging logging.set_verbosity_info() def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : Union[str, Any] ,_UpperCAmelCase : Tuple ,_UpperCAmelCase : int ) -> str: _a : str =TaConfig.from_json_file(SCREAMING_SNAKE_CASE_ ) print(F"Building PyTorch model from configuration: {config}" ) _a : Optional[int] =TaForConditionalGeneration(SCREAMING_SNAKE_CASE_ ) # Load weights from tf checkpoint load_tf_weights_in_ta(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) # Save pytorch-model print(F"Save PyTorch model to {pytorch_dump_path}" ) model.save_pretrained(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": A__: int = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained T5 model. \nThis specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) A__: List[str] = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
276
'''simple docstring''' import copy import json import os import tempfile from transformers import is_torch_available from .test_configuration_utils import config_common_kwargs class lowerCAmelCase_ ( __magic_name__ ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase=None , _lowerCAmelCase=True , _lowerCAmelCase=None , **_lowerCAmelCase ) -> Optional[int]: _lowerCAmelCase = parent _lowerCAmelCase = config_class _lowerCAmelCase = has_text_modality _lowerCAmelCase = kwargs _lowerCAmelCase = common_properties def _snake_case ( self ) -> int: _lowerCAmelCase = self.config_class(**self.inputs_dict ) _lowerCAmelCase = ( ["hidden_size", "num_attention_heads", "num_hidden_layers"] if self.common_properties is None else self.common_properties ) # Add common fields for text models if self.has_text_modality: common_properties.extend(["vocab_size"] ) # Test that config has the common properties as getters for prop in common_properties: self.parent.assertTrue(hasattr(_lowerCAmelCase , _lowerCAmelCase ) , msg=f'''`{prop}` does not exist''' ) # Test that config has the common properties as setter for idx, name in enumerate(_lowerCAmelCase ): try: setattr(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) self.parent.assertEqual( getattr(_lowerCAmelCase , _lowerCAmelCase ) , _lowerCAmelCase , msg=f'''`{name} value {idx} expected, but was {getattr(_lowerCAmelCase , _lowerCAmelCase )}''' ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass # Test if config class can be called with Config(prop_name=..) for idx, name in enumerate(_lowerCAmelCase ): try: _lowerCAmelCase = self.config_class(**{name: idx} ) self.parent.assertEqual( getattr(_lowerCAmelCase , _lowerCAmelCase ) , _lowerCAmelCase , msg=f'''`{name} value {idx} expected, but was {getattr(_lowerCAmelCase , _lowerCAmelCase )}''' ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass def _snake_case ( self ) -> Optional[int]: _lowerCAmelCase = self.config_class(**self.inputs_dict ) _lowerCAmelCase = json.loads(config.to_json_string() ) for key, value in self.inputs_dict.items(): self.parent.assertEqual(obj[key] , _lowerCAmelCase ) def _snake_case ( self ) -> Union[str, Any]: _lowerCAmelCase = self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _lowerCAmelCase = os.path.join(_lowerCAmelCase , "config.json" ) config_first.to_json_file(_lowerCAmelCase ) _lowerCAmelCase = self.config_class.from_json_file(_lowerCAmelCase ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def _snake_case ( self ) -> str: _lowerCAmelCase = self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: config_first.save_pretrained(_lowerCAmelCase ) _lowerCAmelCase = self.config_class.from_pretrained(_lowerCAmelCase ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def _snake_case ( self ) -> Dict: _lowerCAmelCase = self.config_class(**self.inputs_dict ) _lowerCAmelCase = "test" with tempfile.TemporaryDirectory() as tmpdirname: _lowerCAmelCase = os.path.join(_lowerCAmelCase , _lowerCAmelCase ) config_first.save_pretrained(_lowerCAmelCase ) _lowerCAmelCase = self.config_class.from_pretrained(_lowerCAmelCase , subfolder=_lowerCAmelCase ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def _snake_case ( self ) -> Optional[Any]: _lowerCAmelCase = self.config_class(**self.inputs_dict , num_labels=5 ) self.parent.assertEqual(len(config.idalabel ) , 5 ) self.parent.assertEqual(len(config.labelaid ) , 5 ) _lowerCAmelCase = 3 self.parent.assertEqual(len(config.idalabel ) , 3 ) self.parent.assertEqual(len(config.labelaid ) , 3 ) def _snake_case ( self ) -> List[Any]: if self.config_class.is_composition: return _lowerCAmelCase = self.config_class() self.parent.assertIsNotNone(_lowerCAmelCase ) def _snake_case ( self ) -> str: _lowerCAmelCase = copy.deepcopy(_lowerCAmelCase ) _lowerCAmelCase = self.config_class(**_lowerCAmelCase ) _lowerCAmelCase = [] for key, value in config_common_kwargs.items(): if key == "torch_dtype": if not is_torch_available(): continue else: import torch if config.torch_dtype != torch.floataa: wrong_values.append(("torch_dtype", config.torch_dtype, torch.floataa) ) elif getattr(_lowerCAmelCase , _lowerCAmelCase ) != value: wrong_values.append((key, getattr(_lowerCAmelCase , _lowerCAmelCase ), value) ) if len(_lowerCAmelCase ) > 0: _lowerCAmelCase = "\n".join([f'''- {v[0]}: got {v[1]} instead of {v[2]}''' for v in wrong_values] ) raise ValueError(f'''The following keys were not properly set in the config:\n{errors}''' ) def _snake_case ( self ) -> List[str]: self.create_and_test_config_common_properties() self.create_and_test_config_to_json_string() self.create_and_test_config_to_json_file() self.create_and_test_config_from_and_save_pretrained() self.create_and_test_config_from_and_save_pretrained_subfolder() self.create_and_test_config_with_num_labels() self.check_config_can_be_init_without_params() self.check_config_arguments_init()
158
0
'''simple docstring''' import cva import numpy as np class lowerCAmelCase__ : def __init__( self : int , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : Optional[int] ) ->List[str]: '''simple docstring''' if k in (0.0_4, 0.0_6): _UpperCAmelCase : int = k _UpperCAmelCase : List[str] = window_size else: raise ValueError("invalid k value" ) def __str__( self : Optional[Any] ) ->str: '''simple docstring''' return str(self.k ) def lowerCAmelCase__ ( self : Tuple , lowerCamelCase__ : str ) ->tuple[cva.Mat, list[list[int]]]: '''simple docstring''' _UpperCAmelCase : Optional[Any] = cva.imread(_SCREAMING_SNAKE_CASE , 0 ) _UpperCAmelCase , _UpperCAmelCase : Optional[Any] = img.shape _UpperCAmelCase : Dict = [] _UpperCAmelCase : Optional[Any] = img.copy() _UpperCAmelCase : Any = cva.cvtColor(_SCREAMING_SNAKE_CASE , cva.COLOR_GRAY2RGB ) _UpperCAmelCase , _UpperCAmelCase : Any = np.gradient(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase : Optional[Any] = dx**2 _UpperCAmelCase : Optional[int] = dy**2 _UpperCAmelCase : Dict = dx * dy _UpperCAmelCase : Any = 0.0_4 _UpperCAmelCase : Optional[Any] = self.window_size // 2 for y in range(_SCREAMING_SNAKE_CASE , h - offset ): for x in range(_SCREAMING_SNAKE_CASE , w - offset ): _UpperCAmelCase : List[Any] = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() _UpperCAmelCase : str = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() _UpperCAmelCase : List[Any] = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() _UpperCAmelCase : Dict = (wxx * wyy) - (wxy**2) _UpperCAmelCase : List[str] = wxx + wyy _UpperCAmelCase : Dict = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) , 0 ) color_img.itemset((y, x, 1) , 0 ) color_img.itemset((y, x, 2) , 2_55 ) return color_img, corner_list if __name__ == "__main__": lowerCamelCase__ = HarrisCorner(0.04, 3) lowerCamelCase__ = edge_detect.detect('path_to_image') cva.imwrite('detect.png', color_img)
368
'''simple docstring''' from __future__ import annotations from collections.abc import Iterator from typing import Generic, TypeVar lowerCamelCase__ = TypeVar('T') class lowerCAmelCase__ ( Generic[T] ): def __init__( self : Union[str, Any] , lowerCamelCase__ : T ) ->Tuple: '''simple docstring''' _UpperCAmelCase : Dict = data _UpperCAmelCase : Node[T] | None = None def __str__( self : Any ) ->str: '''simple docstring''' return F"""{self.data}""" class lowerCAmelCase__ ( Generic[T] ): def __init__( self : Tuple ) ->None: '''simple docstring''' _UpperCAmelCase : Node[T] | None = None def __iter__( self : List[str] ) ->Iterator[T]: '''simple docstring''' _UpperCAmelCase : Any = self.top while node: yield node.data _UpperCAmelCase : Dict = node.next def __str__( self : Dict ) ->str: '''simple docstring''' return "->".join([str(lowerCamelCase__ ) for item in self] ) def __len__( self : Optional[int] ) ->int: '''simple docstring''' return len(tuple(iter(self ) ) ) def lowerCAmelCase__ ( self : List[Any] ) ->bool: '''simple docstring''' return self.top is None def lowerCAmelCase__ ( self : List[str] , lowerCamelCase__ : T ) ->None: '''simple docstring''' _UpperCAmelCase : List[Any] = Node(lowerCamelCase__ ) if not self.is_empty(): _UpperCAmelCase : Tuple = self.top _UpperCAmelCase : List[str] = node def lowerCAmelCase__ ( self : Union[str, Any] ) ->T: '''simple docstring''' if self.is_empty(): raise IndexError("pop from empty stack" ) assert isinstance(self.top , lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = self.top _UpperCAmelCase : Optional[Any] = self.top.next return pop_node.data def lowerCAmelCase__ ( self : Union[str, Any] ) ->T: '''simple docstring''' if self.is_empty(): raise IndexError("peek from empty stack" ) assert self.top is not None return self.top.data def lowerCAmelCase__ ( self : List[Any] ) ->None: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = None if __name__ == "__main__": from doctest import testmod testmod()
322
0
"""simple docstring""" import math from datetime import datetime, timedelta def lowercase (snake_case__ : int ) -> datetime: '''simple docstring''' lowerCAmelCase = year % 19 lowerCAmelCase = year % 4 lowerCAmelCase = year % 7 lowerCAmelCase = math.floor(year / 100 ) lowerCAmelCase = math.floor((13 + 8 * leap_day_inhibits) / 25 ) lowerCAmelCase = leap_day_inhibits / 4 lowerCAmelCase = ( 15 - lunar_orbit_correction + leap_day_inhibits - leap_day_reinstall_number ) % 30 lowerCAmelCase = (4 + leap_day_inhibits - leap_day_reinstall_number) % 7 # days to be added to March 21 lowerCAmelCase = (19 * metonic_cycle + secular_moon_shift) % 30 # PHM -> Paschal Full Moon lowerCAmelCase = ( 2 * julian_leap_year + 4 * non_leap_year + 6 * days_to_add + century_starting_point ) % 7 if days_to_add == 29 and days_from_phm_to_sunday == 6: return datetime(snake_case__ , 4 , 19 ) elif days_to_add == 28 and days_from_phm_to_sunday == 6: return datetime(snake_case__ , 4 , 18 ) else: return datetime(snake_case__ , 3 , 22 ) + timedelta( days=int(days_to_add + days_from_phm_to_sunday ) ) if __name__ == "__main__": for year in (1_9_9_4, 2_0_0_0, 2_0_1_0, 2_0_2_1, 2_0_2_3): a = 'will be' if year > datetime.now().year else 'was' print(f"""Easter in {year} {tense} {gauss_easter(year)}""")
155
"""simple docstring""" from __future__ import annotations def lowercase (snake_case__ : list , snake_case__ : int , snake_case__ : int , snake_case__ : int ) -> list: '''simple docstring''' lowerCAmelCase = [] lowerCAmelCase , lowerCAmelCase = input_list[low:mid], input_list[mid : high + 1] while left and right: result.append((left if left[0] <= right[0] else right).pop(0 ) ) lowerCAmelCase = result + left + right return input_list def lowercase (snake_case__ : list ) -> list: '''simple docstring''' if len(snake_case__ ) <= 1: return input_list lowerCAmelCase = list(snake_case__ ) # iteration for two-way merging lowerCAmelCase = 2 while p <= len(snake_case__ ): # getting low, high and middle value for merge-sort of single list for i in range(0 , len(snake_case__ ) , snake_case__ ): lowerCAmelCase = i lowerCAmelCase = i + p - 1 lowerCAmelCase = (low + high + 1) // 2 lowerCAmelCase = merge(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) # final merge of last two parts if p * 2 >= len(snake_case__ ): lowerCAmelCase = i lowerCAmelCase = merge(snake_case__ , 0 , snake_case__ , len(snake_case__ ) - 1 ) break p *= 2 return input_list if __name__ == "__main__": a = input('Enter numbers separated by a comma:\n').strip() if user_input == "": a = [] else: a = [int(item.strip()) for item in user_input.split(',')] print(iter_merge_sort(unsorted))
155
1
from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class _snake_case ( snake_case ): UpperCamelCase__ = ['image_processor', 'tokenizer'] UpperCamelCase__ = 'Pix2StructImageProcessor' UpperCamelCase__ = ('T5Tokenizer', 'T5TokenizerFast') def __init__( self , _a , _a ): __magic_name__ : Optional[int] = False super().__init__(_a , _a ) def __call__( self , _a=None , _a = None , _a = True , _a = False , _a = None , _a = None , _a = 2_048 , _a = 0 , _a = None , _a = None , _a = False , _a = False , _a = False , _a = False , _a = False , _a = True , _a = None , **_a , ): if images is None and text is None: raise ValueError("You have to specify either images or text." ) # Get only text if images is None and not self.image_processor.is_vqa: __magic_name__ : Any = self.tokenizer __magic_name__ : Union[str, Any] = self.tokenizer( text=_a , add_special_tokens=_a , padding=_a , truncation=_a , max_length=_a , stride=_a , pad_to_multiple_of=_a , return_attention_mask=_a , return_overflowing_tokens=_a , return_special_tokens_mask=_a , return_offsets_mapping=_a , return_token_type_ids=_a , return_length=_a , verbose=_a , return_tensors=_a , **_a , ) return text_encoding if not self.image_processor.is_vqa: # add pixel_values __magic_name__ : Union[str, Any] = self.image_processor( _a , return_tensors=_a , max_patches=_a , **_a ) else: # add pixel_values and bbox __magic_name__ : Union[str, Any] = self.image_processor( _a , return_tensors=_a , max_patches=_a , header_text=_a , **_a ) if text is not None and not self.image_processor.is_vqa: __magic_name__ : Any = self.tokenizer( text=_a , add_special_tokens=_a , padding=_a , truncation=_a , max_length=_a , stride=_a , pad_to_multiple_of=_a , return_attention_mask=_a , return_overflowing_tokens=_a , return_special_tokens_mask=_a , return_offsets_mapping=_a , return_token_type_ids=_a , return_length=_a , verbose=_a , return_tensors=_a , **_a , ) if "attention_mask" in text_encoding: __magic_name__ : Optional[int] = text_encoding.pop("attention_mask" ) if "input_ids" in text_encoding: __magic_name__ : Optional[Any] = text_encoding.pop("input_ids" ) else: __magic_name__ : Union[str, Any] = None if text_encoding is not None: encoding_image_processor.update(_a ) return encoding_image_processor def SCREAMING_SNAKE_CASE ( self , *_a , **_a ): return self.tokenizer.batch_decode(*_a , **_a ) def SCREAMING_SNAKE_CASE ( self , *_a , **_a ): return self.tokenizer.decode(*_a , **_a ) @property def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : Union[str, Any] = self.tokenizer.model_input_names __magic_name__ : Union[str, Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
41
from __future__ import annotations import copy import inspect import json import math import os import tempfile import unittest from importlib import import_module import numpy as np from transformers import ViTMAEConfig from transformers.file_utils import cached_property, is_tf_available, is_vision_available from transformers.testing_utils import require_tf, require_vision, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTMAEForPreTraining, TFViTMAEModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class _snake_case : def __init__( self , _a , _a=13 , _a=30 , _a=2 , _a=3 , _a=True , _a=True , _a=32 , _a=2 , _a=4 , _a=37 , _a="gelu" , _a=0.1 , _a=0.1 , _a=10 , _a=0.02 , _a=3 , _a=0.6 , _a=None , ): __magic_name__ : Tuple = parent __magic_name__ : Tuple = batch_size __magic_name__ : int = image_size __magic_name__ : Optional[Any] = patch_size __magic_name__ : int = num_channels __magic_name__ : Dict = is_training __magic_name__ : Tuple = use_labels __magic_name__ : List[str] = hidden_size __magic_name__ : Dict = num_hidden_layers __magic_name__ : Optional[Any] = num_attention_heads __magic_name__ : int = intermediate_size __magic_name__ : int = hidden_act __magic_name__ : Optional[Any] = hidden_dropout_prob __magic_name__ : List[Any] = attention_probs_dropout_prob __magic_name__ : Optional[Any] = type_sequence_label_size __magic_name__ : Optional[Any] = initializer_range __magic_name__ : List[str] = mask_ratio __magic_name__ : Union[str, Any] = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) __magic_name__ : Union[str, Any] = (image_size // patch_size) ** 2 __magic_name__ : Optional[int] = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __magic_name__ : Tuple = None if self.use_labels: __magic_name__ : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __magic_name__ : Union[str, Any] = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE ( self ): return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , decoder_hidden_size=self.hidden_size , decoder_num_hidden_layers=self.num_hidden_layers , decoder_num_attention_heads=self.num_attention_heads , decoder_intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_a , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def SCREAMING_SNAKE_CASE ( self , _a , _a , _a ): __magic_name__ : List[str] = TFViTMAEModel(config=_a ) __magic_name__ : List[Any] = model(_a , training=_a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE ( self , _a , _a , _a ): __magic_name__ : Dict = TFViTMAEForPreTraining(_a ) __magic_name__ : Any = model(_a , training=_a ) # expected sequence length = num_patches __magic_name__ : Tuple = (self.image_size // self.patch_size) ** 2 __magic_name__ : Dict = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images __magic_name__ : Dict = 1 __magic_name__ : int = TFViTMAEForPreTraining(_a ) __magic_name__ : str = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __magic_name__ : Any = model(_a , training=_a ) __magic_name__ : Any = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : Optional[int] = self.prepare_config_and_inputs() ((__magic_name__) , (__magic_name__) , (__magic_name__)) : List[Any] = config_and_inputs __magic_name__ : Optional[int] = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class _snake_case ( snake_case , snake_case , unittest.TestCase ): UpperCamelCase__ = (TFViTMAEModel, TFViTMAEForPreTraining) if is_tf_available() else () UpperCamelCase__ = {'feature-extraction': TFViTMAEModel} if is_tf_available() else {} UpperCamelCase__ = False UpperCamelCase__ = False UpperCamelCase__ = False UpperCamelCase__ = False def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : Optional[int] = TFViTMAEModelTester(self ) __magic_name__ : List[str] = ConfigTester(self , config_class=_a , has_text_modality=_a , hidden_size=37 ) def SCREAMING_SNAKE_CASE ( self ): self.config_tester.run_common_tests() @unittest.skip(reason="ViTMAE does not use inputs_embeds" ) def SCREAMING_SNAKE_CASE ( self ): pass def SCREAMING_SNAKE_CASE ( self ): __magic_name__ , __magic_name__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ : Dict = model_class(_a ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) __magic_name__ : Optional[int] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_a , tf.keras.layers.Layer ) ) def SCREAMING_SNAKE_CASE ( self ): __magic_name__ , __magic_name__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ : Any = model_class(_a ) __magic_name__ : str = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __magic_name__ : int = [*signature.parameters.keys()] __magic_name__ : Any = ["pixel_values"] self.assertListEqual(arg_names[:1] , _a ) def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*_a ) def SCREAMING_SNAKE_CASE ( self ): # make the mask reproducible np.random.seed(2 ) __magic_name__ , __magic_name__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ : List[str] = int((config.image_size // config.patch_size) ** 2 ) __magic_name__ : Dict = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: __magic_name__ : str = model_class(_a ) __magic_name__ : List[Any] = self._prepare_for_class(_a , _a ) __magic_name__ : Union[str, Any] = model(_a , noise=_a ) __magic_name__ : int = copy.deepcopy(self._prepare_for_class(_a , _a ) ) __magic_name__ : str = model(**_a , noise=_a ) __magic_name__ : Optional[int] = outputs_dict[0].numpy() __magic_name__ : Optional[int] = outputs_keywords[0].numpy() self.assertLess(np.sum(np.abs(output_dict - output_keywords ) ) , 1e-6 ) def SCREAMING_SNAKE_CASE ( self ): # make the mask reproducible np.random.seed(2 ) __magic_name__ , __magic_name__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ : List[Any] = int((config.image_size // config.patch_size) ** 2 ) __magic_name__ : List[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) def prepare_numpy_arrays(_a ): __magic_name__ : Union[str, Any] = {} for k, v in inputs_dict.items(): if tf.is_tensor(_a ): __magic_name__ : List[str] = v.numpy() else: __magic_name__ : str = np.array(_a ) return inputs_np_dict for model_class in self.all_model_classes: __magic_name__ : Optional[Any] = model_class(_a ) __magic_name__ : int = self._prepare_for_class(_a , _a ) __magic_name__ : Optional[Any] = prepare_numpy_arrays(_a ) __magic_name__ : Union[str, Any] = model(_a , noise=_a ) __magic_name__ : int = model(**_a , noise=_a ) self.assert_outputs_same(_a , _a ) def SCREAMING_SNAKE_CASE ( self , _a , _a , _a ): # make masks reproducible np.random.seed(2 ) __magic_name__ : Union[str, Any] = int((tf_model.config.image_size // tf_model.config.patch_size) ** 2 ) __magic_name__ : List[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) __magic_name__ : Dict = tf.constant(_a ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument __magic_name__ : List[str] = tf_noise super().check_pt_tf_models(_a , _a , _a ) def SCREAMING_SNAKE_CASE ( self ): # make mask reproducible np.random.seed(2 ) __magic_name__ , __magic_name__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ : Any = { module_member for model_class in self.all_model_classes for module in (import_module(model_class.__module__ ),) for module_member_name in dir(_a ) if module_member_name.endswith("MainLayer" ) # This condition is required, since `modeling_tf_clip.py` has 3 classes whose names end with `MainLayer`. and module_member_name[: -len("MainLayer" )] == model_class.__name__[: -len("Model" )] for module_member in (getattr(_a , _a ),) if isinstance(_a , _a ) and tf.keras.layers.Layer in module_member.__bases__ and getattr(_a , "_keras_serializable" , _a ) } __magic_name__ : Optional[int] = int((config.image_size // config.patch_size) ** 2 ) __magic_name__ : int = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) __magic_name__ : Optional[int] = tf.convert_to_tensor(_a ) inputs_dict.update({"noise": noise} ) for main_layer_class in tf_main_layer_classes: __magic_name__ : Optional[int] = main_layer_class(_a ) __magic_name__ : Optional[int] = { name: tf.keras.Input(tensor.shape[1:] , dtype=tensor.dtype ) for name, tensor in inputs_dict.items() } __magic_name__ : Any = tf.keras.Model(_a , outputs=main_layer(_a ) ) __magic_name__ : str = model(_a ) with tempfile.TemporaryDirectory() as tmpdirname: __magic_name__ : Dict = os.path.join(_a , "keras_model.h5" ) model.save(_a ) __magic_name__ : Optional[int] = tf.keras.models.load_model( _a , custom_objects={main_layer_class.__name__: main_layer_class} ) assert isinstance(_a , tf.keras.Model ) __magic_name__ : Optional[Any] = model(_a ) self.assert_outputs_same(_a , _a ) @slow def SCREAMING_SNAKE_CASE ( self ): # make mask reproducible np.random.seed(2 ) __magic_name__ , __magic_name__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ : List[Any] = int((config.image_size // config.patch_size) ** 2 ) __magic_name__ : List[str] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: __magic_name__ : int = model_class(_a ) __magic_name__ : Tuple = self._prepare_for_class(_a , _a ) __magic_name__ : List[Any] = model(_a , noise=_a ) if model_class.__name__ == "TFViTMAEModel": __magic_name__ : Optional[int] = outputs.last_hidden_state.numpy() __magic_name__ : int = 0 else: __magic_name__ : List[Any] = outputs.logits.numpy() __magic_name__ : int = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_a , saved_model=_a ) __magic_name__ : List[str] = model_class.from_pretrained(_a ) __magic_name__ : Optional[Any] = model(_a , noise=_a ) if model_class.__name__ == "TFViTMAEModel": __magic_name__ : int = after_outputs["last_hidden_state"].numpy() __magic_name__ : str = 0 else: __magic_name__ : Any = after_outputs["logits"].numpy() __magic_name__ : List[str] = 0 __magic_name__ : Any = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_a , 1e-5 ) def SCREAMING_SNAKE_CASE ( self ): # make mask reproducible np.random.seed(2 ) __magic_name__ , __magic_name__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ : str = int((config.image_size // config.patch_size) ** 2 ) __magic_name__ : List[str] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: __magic_name__ : List[Any] = model_class(_a ) __magic_name__ : List[str] = self._prepare_for_class(_a , _a ) __magic_name__ : Any = model(_a , noise=_a ) __magic_name__ : Optional[Any] = model.get_config() # make sure that returned config is jsonifiable, which is required by keras json.dumps(_a ) __magic_name__ : Optional[int] = model_class.from_config(model.get_config() ) # make sure it also accepts a normal config __magic_name__ : Optional[Any] = model_class.from_config(model.config ) __magic_name__ : Tuple = new_model(_a ) # Build model new_model.set_weights(model.get_weights() ) __magic_name__ : List[str] = new_model(_a , noise=_a ) self.assert_outputs_same(_a , _a ) @unittest.skip( reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." ) def SCREAMING_SNAKE_CASE ( self ): pass @unittest.skip(reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load" ) def SCREAMING_SNAKE_CASE ( self ): pass @slow def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : Dict = TFViTMAEModel.from_pretrained("google/vit-base-patch16-224" ) self.assertIsNotNone(_a ) def lowerCAmelCase_ ( ) -> Tuple: '''simple docstring''' __magic_name__ : Union[str, Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class _snake_case ( unittest.TestCase ): @cached_property def SCREAMING_SNAKE_CASE ( self ): return ViTImageProcessor.from_pretrained("facebook/vit-mae-base" ) if is_vision_available() else None @slow def SCREAMING_SNAKE_CASE ( self ): # make random mask reproducible across the PT and TF model np.random.seed(2 ) __magic_name__ : Dict = TFViTMAEForPreTraining.from_pretrained("facebook/vit-mae-base" ) __magic_name__ : str = self.default_image_processor __magic_name__ : int = prepare_img() __magic_name__ : Union[str, Any] = image_processor(images=_a , return_tensors="tf" ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) __magic_name__ : Optional[int] = ViTMAEConfig() __magic_name__ : List[str] = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) __magic_name__ : Tuple = np.random.uniform(size=(1, num_patches) ) # forward pass __magic_name__ : Tuple = model(**_a , noise=_a ) # verify the logits __magic_name__ : str = tf.convert_to_tensor([1, 196, 768] ) self.assertEqual(outputs.logits.shape , _a ) __magic_name__ : Union[str, Any] = tf.convert_to_tensor( [[-0.05_48, -1.70_23, -0.93_25], [0.37_21, -0.56_70, -0.22_33], [0.82_35, -1.38_78, -0.35_24]] ) tf.debugging.assert_near(outputs.logits[0, :3, :3] , _a , atol=1e-4 )
41
1
from pathlib import Path from typing import List from transformers import is_torch_available, is_vision_available from transformers.testing_utils import get_tests_dir, is_tool_test from transformers.tools.agent_types import AGENT_TYPE_MAPPING, AgentAudio, AgentImage, AgentText if is_torch_available(): import torch if is_vision_available(): from PIL import Image __A = ["text", "image", "audio"] def lowerCAmelCase_ ( __a ) -> List[Any]: """simple docstring""" lowerCamelCase__: Dict =[] for input_type in input_types: if input_type == "text": inputs.append("Text input" ) elif input_type == "image": inputs.append( Image.open(Path(get_tests_dir("fixtures/tests_samples/COCO" ) ) / "000000039769.png" ).resize((512, 512) ) ) elif input_type == "audio": inputs.append(torch.ones(3000 ) ) elif isinstance(__a , __a ): inputs.append(create_inputs(__a ) ) else: raise ValueError(F"""Invalid type requested: {input_type}""" ) return inputs def lowerCAmelCase_ ( __a ) -> Tuple: """simple docstring""" lowerCamelCase__: Any =[] for output in outputs: if isinstance(__a , (str, AgentText) ): output_types.append("text" ) elif isinstance(__a , (Image.Image, AgentImage) ): output_types.append("image" ) elif isinstance(__a , (torch.Tensor, AgentAudio) ): output_types.append("audio" ) else: raise ValueError(F"""Invalid output: {output}""" ) return output_types @is_tool_test class _SCREAMING_SNAKE_CASE : '''simple docstring''' def SCREAMING_SNAKE_CASE_ (self : Tuple) ->List[Any]: '''simple docstring''' self.assertTrue(hasattr(self.tool , "inputs")) self.assertTrue(hasattr(self.tool , "outputs")) lowerCamelCase__: List[Any] =self.tool.inputs for _input in inputs: if isinstance(_input , UpperCAmelCase_): for __input in _input: self.assertTrue(__input in authorized_types) else: self.assertTrue(_input in authorized_types) lowerCamelCase__: List[str] =self.tool.outputs for _output in outputs: self.assertTrue(_output in authorized_types) def SCREAMING_SNAKE_CASE_ (self : str) ->Optional[int]: '''simple docstring''' lowerCamelCase__: Optional[int] =create_inputs(self.tool.inputs) lowerCamelCase__: Tuple =self.tool(*UpperCAmelCase_) # There is a single output if len(self.tool.outputs) == 1: lowerCamelCase__: Tuple =[outputs] self.assertListEqual(output_types(UpperCAmelCase_) , self.tool.outputs) def SCREAMING_SNAKE_CASE_ (self : str) ->Dict: '''simple docstring''' self.assertTrue(hasattr(self.tool , "description")) self.assertTrue(hasattr(self.tool , "default_checkpoint")) self.assertTrue(self.tool.description.startswith("This is a tool that")) def SCREAMING_SNAKE_CASE_ (self : Any) ->Union[str, Any]: '''simple docstring''' lowerCamelCase__: Optional[int] =create_inputs(self.tool.inputs) lowerCamelCase__: Tuple =self.tool(*UpperCAmelCase_) if not isinstance(UpperCAmelCase_ , UpperCAmelCase_): lowerCamelCase__: Optional[int] =[outputs] self.assertEqual(len(UpperCAmelCase_) , len(self.tool.outputs)) for output, output_type in zip(UpperCAmelCase_ , self.tool.outputs): lowerCamelCase__: Optional[Any] =AGENT_TYPE_MAPPING[output_type] self.assertTrue(isinstance(UpperCAmelCase_ , UpperCAmelCase_)) def SCREAMING_SNAKE_CASE_ (self : Any) ->Dict: '''simple docstring''' lowerCamelCase__: List[Any] =create_inputs(self.tool.inputs) lowerCamelCase__: Union[str, Any] =[] for _input, input_type in zip(UpperCAmelCase_ , self.tool.inputs): if isinstance(UpperCAmelCase_ , UpperCAmelCase_): _inputs.append([AGENT_TYPE_MAPPING[_input_type](_input) for _input_type in input_type]) else: _inputs.append(AGENT_TYPE_MAPPING[input_type](_input)) # Should not raise an error lowerCamelCase__: Optional[int] =self.tool(*UpperCAmelCase_) if not isinstance(UpperCAmelCase_ , UpperCAmelCase_): lowerCamelCase__: int =[outputs] self.assertEqual(len(UpperCAmelCase_) , len(self.tool.outputs))
10
import inspect from typing import Optional, Union import numpy as np import PIL import torch from torch.nn import functional as F from torchvision import transforms from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, DPMSolverMultistepScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.utils import ( PIL_INTERPOLATION, randn_tensor, ) def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> List[Any]: if isinstance(lowerCamelCase_ , torch.Tensor ): return image elif isinstance(lowerCamelCase_ , PIL.Image.Image ): _lowercase : List[Any] = [image] if isinstance(image[0] , PIL.Image.Image ): _lowercase : Tuple = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION['lanczos'] ) )[None, :] for i in image] _lowercase : str = np.concatenate(lowerCamelCase_ , axis=0 ) _lowercase : Dict = np.array(lowerCamelCase_ ).astype(np.floataa ) / 2_55.0 _lowercase : Optional[int] = image.transpose(0 , 3 , 1 , 2 ) _lowercase : str = 2.0 * image - 1.0 _lowercase : Tuple = torch.from_numpy(lowerCamelCase_ ) elif isinstance(image[0] , torch.Tensor ): _lowercase : Any = torch.cat(lowerCamelCase_ , dim=0 ) return image def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=0.99_95 ) -> Tuple: if not isinstance(lowerCamelCase_ , np.ndarray ): _lowercase : List[Any] = True _lowercase : Any = va.device _lowercase : Union[str, Any] = va.cpu().numpy() _lowercase : int = va.cpu().numpy() _lowercase : int = np.sum(va * va / (np.linalg.norm(lowerCamelCase_ ) * np.linalg.norm(lowerCamelCase_ )) ) if np.abs(lowerCamelCase_ ) > DOT_THRESHOLD: _lowercase : Any = (1 - t) * va + t * va else: _lowercase : Dict = np.arccos(lowerCamelCase_ ) _lowercase : str = np.sin(lowerCamelCase_ ) _lowercase : int = theta_a * t _lowercase : Dict = np.sin(lowerCamelCase_ ) _lowercase : Any = np.sin(theta_a - theta_t ) / sin_theta_a _lowercase : List[Any] = sin_theta_t / sin_theta_a _lowercase : Dict = sa * va + sa * va if inputs_are_torch: _lowercase : Optional[Any] = torch.from_numpy(lowerCamelCase_ ).to(lowerCamelCase_ ) return va def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ ) -> List[Any]: _lowercase : Tuple = F.normalize(lowerCamelCase_ , dim=-1 ) _lowercase : Tuple = F.normalize(lowerCamelCase_ , dim=-1 ) return (x - y).norm(dim=-1 ).div(2 ).arcsin().pow(2 ).mul(2 ) def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ ) -> Optional[int]: for param in model.parameters(): _lowercase : Any = value class _lowerCamelCase( _a ): def __init__( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase=None, lowerCamelCase=None, lowerCamelCase=None, ) -> Tuple: """simple docstring""" super().__init__() self.register_modules( vae=lowerCamelCase, text_encoder=lowerCamelCase, clip_model=lowerCamelCase, tokenizer=lowerCamelCase, unet=lowerCamelCase, scheduler=lowerCamelCase, feature_extractor=lowerCamelCase, coca_model=lowerCamelCase, coca_tokenizer=lowerCamelCase, coca_transform=lowerCamelCase, ) _lowercase : Tuple = ( feature_extractor.size if isinstance(feature_extractor.size, lowerCamelCase) else feature_extractor.size['shortest_edge'] ) _lowercase : Union[str, Any] = transforms.Normalize(mean=feature_extractor.image_mean, std=feature_extractor.image_std) set_requires_grad(self.text_encoder, lowerCamelCase) set_requires_grad(self.clip_model, lowerCamelCase) def UpperCamelCase ( self, lowerCamelCase = "auto") -> Any: """simple docstring""" if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory _lowercase : Optional[Any] = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(lowerCamelCase) def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" self.enable_attention_slicing(lowerCamelCase) def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" set_requires_grad(self.vae, lowerCamelCase) def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" set_requires_grad(self.vae, lowerCamelCase) def UpperCamelCase ( self) -> str: """simple docstring""" set_requires_grad(self.unet, lowerCamelCase) def UpperCamelCase ( self) -> int: """simple docstring""" set_requires_grad(self.unet, lowerCamelCase) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> Optional[int]: """simple docstring""" _lowercase : str = min(int(num_inference_steps * strength), lowerCamelCase) _lowercase : List[Any] = max(num_inference_steps - init_timestep, 0) _lowercase : int = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase=None) -> Optional[Any]: """simple docstring""" if not isinstance(lowerCamelCase, torch.Tensor): raise ValueError(F'''`image` has to be of type `torch.Tensor` but is {type(lowerCamelCase)}''') _lowercase : Any = image.to(device=lowerCamelCase, dtype=lowerCamelCase) if isinstance(lowerCamelCase, lowerCamelCase): _lowercase : Dict = [ self.vae.encode(image[i : i + 1]).latent_dist.sample(generator[i]) for i in range(lowerCamelCase) ] _lowercase : int = torch.cat(lowerCamelCase, dim=0) else: _lowercase : int = self.vae.encode(lowerCamelCase).latent_dist.sample(lowerCamelCase) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _lowercase : str = 0.1_8_2_1_5 * init_latents _lowercase : List[str] = init_latents.repeat_interleave(lowerCamelCase, dim=0) _lowercase : List[str] = randn_tensor(init_latents.shape, generator=lowerCamelCase, device=lowerCamelCase, dtype=lowerCamelCase) # get latents _lowercase : Any = self.scheduler.add_noise(lowerCamelCase, lowerCamelCase, lowerCamelCase) _lowercase : str = init_latents return latents def UpperCamelCase ( self, lowerCamelCase) -> Optional[int]: """simple docstring""" _lowercase : str = self.coca_transform(lowerCamelCase).unsqueeze(0) with torch.no_grad(), torch.cuda.amp.autocast(): _lowercase : List[str] = self.coca_model.generate(transformed_image.to(device=self.device, dtype=self.coca_model.dtype)) _lowercase : int = self.coca_tokenizer.decode(generated[0].cpu().numpy()) return generated.split('<end_of_text>')[0].replace('<start_of_text>', '').rstrip(' .,') def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase) -> List[str]: """simple docstring""" _lowercase : Tuple = self.feature_extractor.preprocess(lowerCamelCase) _lowercase : List[str] = torch.from_numpy(clip_image_input['pixel_values'][0]).unsqueeze(0).to(self.device).half() _lowercase : int = self.clip_model.get_image_features(lowerCamelCase) _lowercase : Dict = image_embeddings_clip / image_embeddings_clip.norm(p=2, dim=-1, keepdim=lowerCamelCase) _lowercase : int = image_embeddings_clip.repeat_interleave(lowerCamelCase, dim=0) return image_embeddings_clip @torch.enable_grad() def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, ) -> List[str]: """simple docstring""" _lowercase : List[Any] = latents.detach().requires_grad_() _lowercase : Union[str, Any] = self.scheduler.scale_model_input(lowerCamelCase, lowerCamelCase) # predict the noise residual _lowercase : Tuple = self.unet(lowerCamelCase, lowerCamelCase, encoder_hidden_states=lowerCamelCase).sample if isinstance(self.scheduler, (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler)): _lowercase : Any = self.scheduler.alphas_cumprod[timestep] _lowercase : Any = 1 - alpha_prod_t # compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _lowercase : List[Any] = (latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5 _lowercase : List[str] = torch.sqrt(lowerCamelCase) _lowercase : Dict = pred_original_sample * (fac) + latents * (1 - fac) elif isinstance(self.scheduler, lowerCamelCase): _lowercase : Dict = self.scheduler.sigmas[index] _lowercase : List[Any] = latents - sigma * noise_pred else: raise ValueError(F'''scheduler type {type(self.scheduler)} not supported''') # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _lowercase : Dict = 1 / 0.1_8_2_1_5 * sample _lowercase : Optional[Any] = self.vae.decode(lowerCamelCase).sample _lowercase : int = (image / 2 + 0.5).clamp(0, 1) _lowercase : Any = transforms.Resize(self.feature_extractor_size)(lowerCamelCase) _lowercase : Optional[Any] = self.normalize(lowerCamelCase).to(latents.dtype) _lowercase : List[str] = self.clip_model.get_image_features(lowerCamelCase) _lowercase : List[Any] = image_embeddings_clip / image_embeddings_clip.norm(p=2, dim=-1, keepdim=lowerCamelCase) _lowercase : Optional[Any] = spherical_dist_loss(lowerCamelCase, lowerCamelCase).mean() * clip_guidance_scale _lowercase : str = -torch.autograd.grad(lowerCamelCase, lowerCamelCase)[0] if isinstance(self.scheduler, lowerCamelCase): _lowercase : Union[str, Any] = latents.detach() + grads * (sigma**2) _lowercase : List[str] = noise_pred_original else: _lowercase : List[Any] = noise_pred_original - torch.sqrt(lowerCamelCase) * grads return noise_pred, latents @torch.no_grad() def __call__( self, lowerCamelCase, lowerCamelCase, lowerCamelCase = None, lowerCamelCase = None, lowerCamelCase = 5_12, lowerCamelCase = 5_12, lowerCamelCase = 0.6, lowerCamelCase = 50, lowerCamelCase = 7.5, lowerCamelCase = 1, lowerCamelCase = 0.0, lowerCamelCase = 1_00, lowerCamelCase = None, lowerCamelCase = "pil", lowerCamelCase = True, lowerCamelCase = 0.8, lowerCamelCase = 0.1, lowerCamelCase = 0.1, ) -> int: """simple docstring""" if isinstance(lowerCamelCase, lowerCamelCase) and len(lowerCamelCase) != batch_size: raise ValueError(F'''You have passed {batch_size} batch_size, but only {len(lowerCamelCase)} generators.''') if height % 8 != 0 or width % 8 != 0: raise ValueError(F'''`height` and `width` have to be divisible by 8 but are {height} and {width}.''') if isinstance(lowerCamelCase, torch.Generator) and batch_size > 1: _lowercase : Dict = [generator] + [None] * (batch_size - 1) _lowercase : Optional[int] = [ ('model', self.coca_model is None), ('tokenizer', self.coca_tokenizer is None), ('transform', self.coca_transform is None), ] _lowercase : Optional[int] = [x[0] for x in coca_is_none if x[1]] _lowercase : str = ', '.join(lowerCamelCase) # generate prompts with coca model if prompt is None if content_prompt is None: if len(lowerCamelCase): raise ValueError( F'''Content prompt is None and CoCa [{coca_is_none_str}] is None.''' F'''Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.''') _lowercase : List[Any] = self.get_image_description(lowerCamelCase) if style_prompt is None: if len(lowerCamelCase): raise ValueError( F'''Style prompt is None and CoCa [{coca_is_none_str}] is None.''' F''' Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.''') _lowercase : Dict = self.get_image_description(lowerCamelCase) # get prompt text embeddings for content and style _lowercase : Optional[int] = self.tokenizer( lowerCamelCase, padding='max_length', max_length=self.tokenizer.model_max_length, truncation=lowerCamelCase, return_tensors='pt', ) _lowercase : Optional[int] = self.text_encoder(content_text_input.input_ids.to(self.device))[0] _lowercase : Union[str, Any] = self.tokenizer( lowerCamelCase, padding='max_length', max_length=self.tokenizer.model_max_length, truncation=lowerCamelCase, return_tensors='pt', ) _lowercase : List[Any] = self.text_encoder(style_text_input.input_ids.to(self.device))[0] _lowercase : Any = slerp(lowerCamelCase, lowerCamelCase, lowerCamelCase) # duplicate text embeddings for each generation per prompt _lowercase : Dict = text_embeddings.repeat_interleave(lowerCamelCase, dim=0) # set timesteps _lowercase : Dict = 'offset' in set(inspect.signature(self.scheduler.set_timesteps).parameters.keys()) _lowercase : Optional[Any] = {} if accepts_offset: _lowercase : Any = 1 self.scheduler.set_timesteps(lowerCamelCase, **lowerCamelCase) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand self.scheduler.timesteps.to(self.device) _lowercase , _lowercase : List[Any] = self.get_timesteps(lowerCamelCase, lowerCamelCase, self.device) _lowercase : str = timesteps[:1].repeat(lowerCamelCase) # Preprocess image _lowercase : str = preprocess(lowerCamelCase, lowerCamelCase, lowerCamelCase) _lowercase : List[str] = self.prepare_latents( lowerCamelCase, lowerCamelCase, lowerCamelCase, text_embeddings.dtype, self.device, lowerCamelCase) _lowercase : int = preprocess(lowerCamelCase, lowerCamelCase, lowerCamelCase) _lowercase : List[str] = self.prepare_latents( lowerCamelCase, lowerCamelCase, lowerCamelCase, text_embeddings.dtype, self.device, lowerCamelCase) _lowercase : Optional[int] = slerp(lowerCamelCase, lowerCamelCase, lowerCamelCase) if clip_guidance_scale > 0: _lowercase : Optional[int] = self.get_clip_image_embeddings(lowerCamelCase, lowerCamelCase) _lowercase : Dict = self.get_clip_image_embeddings(lowerCamelCase, lowerCamelCase) _lowercase : Optional[int] = slerp( lowerCamelCase, lowerCamelCase, lowerCamelCase) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. _lowercase : Dict = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: _lowercase : Tuple = content_text_input.input_ids.shape[-1] _lowercase : Union[str, Any] = self.tokenizer([''], padding='max_length', max_length=lowerCamelCase, return_tensors='pt') _lowercase : int = self.text_encoder(uncond_input.input_ids.to(self.device))[0] # duplicate unconditional embeddings for each generation per prompt _lowercase : Union[str, Any] = uncond_embeddings.repeat_interleave(lowerCamelCase, dim=0) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes _lowercase : Optional[Any] = torch.cat([uncond_embeddings, text_embeddings]) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. _lowercase : Tuple = (batch_size, self.unet.config.in_channels, height // 8, width // 8) _lowercase : Optional[int] = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not work reproducibly on mps _lowercase : List[Any] = torch.randn(lowerCamelCase, generator=lowerCamelCase, device='cpu', dtype=lowerCamelCase).to( self.device) else: _lowercase : Any = torch.randn(lowerCamelCase, generator=lowerCamelCase, device=self.device, dtype=lowerCamelCase) else: if latents.shape != latents_shape: raise ValueError(F'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''') _lowercase : Tuple = latents.to(self.device) # scale the initial noise by the standard deviation required by the scheduler _lowercase : List[Any] = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] _lowercase : Dict = 'eta' in set(inspect.signature(self.scheduler.step).parameters.keys()) _lowercase : Optional[Any] = {} if accepts_eta: _lowercase : List[Any] = eta # check if the scheduler accepts generator _lowercase : Dict = 'generator' in set(inspect.signature(self.scheduler.step).parameters.keys()) if accepts_generator: _lowercase : str = generator with self.progress_bar(total=lowerCamelCase): for i, t in enumerate(lowerCamelCase): # expand the latents if we are doing classifier free guidance _lowercase : List[str] = torch.cat([latents] * 2) if do_classifier_free_guidance else latents _lowercase : List[Any] = self.scheduler.scale_model_input(lowerCamelCase, lowerCamelCase) # predict the noise residual _lowercase : Dict = self.unet(lowerCamelCase, lowerCamelCase, encoder_hidden_states=lowerCamelCase).sample # perform classifier free guidance if do_classifier_free_guidance: _lowercase , _lowercase : Optional[Any] = noise_pred.chunk(2) _lowercase : Optional[Any] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # perform clip guidance if clip_guidance_scale > 0: _lowercase : Tuple = ( text_embeddings.chunk(2)[1] if do_classifier_free_guidance else text_embeddings ) _lowercase , _lowercase : List[Any] = self.cond_fn( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, ) # compute the previous noisy sample x_t -> x_t-1 _lowercase : Optional[Any] = self.scheduler.step(lowerCamelCase, lowerCamelCase, lowerCamelCase, **lowerCamelCase).prev_sample # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _lowercase : Any = 1 / 0.1_8_2_1_5 * latents _lowercase : List[str] = self.vae.decode(lowerCamelCase).sample _lowercase : Tuple = (image / 2 + 0.5).clamp(0, 1) _lowercase : List[Any] = image.cpu().permute(0, 2, 3, 1).numpy() if output_type == "pil": _lowercase : List[Any] = self.numpy_to_pil(lowerCamelCase) if not return_dict: return (image, None) return StableDiffusionPipelineOutput(images=lowerCamelCase, nsfw_content_detected=lowerCamelCase)
21
0
import inspect import warnings from typing import Any, Dict, Optional, Union from packaging import version def lowerCamelCase_ ( *_UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase=True , _UpperCamelCase=2 ) -> int: """simple docstring""" from .. import __version__ snake_case_ : List[str] = take_from snake_case_ : Optional[Any] = () if not isinstance(args[0] , _UpperCamelCase ): snake_case_ : Tuple = (args,) for attribute, version_name, message in args: if version.parse(version.parse(_UpperCamelCase ).base_version ) >= version.parse(_UpperCamelCase ): raise ValueError( f'''The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers\'''' f''' version {__version__} is >= {version_name}''' ) snake_case_ : str = None if isinstance(_UpperCamelCase , _UpperCamelCase ) and attribute in deprecated_kwargs: values += (deprecated_kwargs.pop(_UpperCamelCase ),) snake_case_ : Dict = f'''The `{attribute}` argument is deprecated and will be removed in version {version_name}.''' elif hasattr(_UpperCamelCase , _UpperCamelCase ): values += (getattr(_UpperCamelCase , _UpperCamelCase ),) snake_case_ : List[Any] = f'''The `{attribute}` attribute is deprecated and will be removed in version {version_name}.''' elif deprecated_kwargs is None: snake_case_ : int = f'''`{attribute}` is deprecated and will be removed in version {version_name}.''' if warning is not None: snake_case_ : str = warning + ''' ''' if standard_warn else '''''' warnings.warn(warning + message , _UpperCamelCase , stacklevel=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) and len(_UpperCamelCase ) > 0: snake_case_ : Optional[int] = inspect.getouterframes(inspect.currentframe() )[1] snake_case_ : Optional[Any] = call_frame.filename snake_case_ : int = call_frame.lineno snake_case_ : List[Any] = call_frame.function snake_case_ , snake_case_ : int = next(iter(deprecated_kwargs.items() ) ) raise TypeError(f'''{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`''' ) if len(_UpperCamelCase ) == 0: return elif len(_UpperCamelCase ) == 1: return values[0] return values
279
from __future__ import annotations import unittest import numpy as np from transformers import OPTConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import GPTaTokenizer, TFOPTForCausalLM, TFOPTModel def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=None , _UpperCamelCase=None ) -> Optional[Any]: """simple docstring""" if attention_mask is None: snake_case_ : Optional[Any] = tf.cast(tf.math.not_equal(_UpperCamelCase , config.pad_token_id ) , tf.inta ) return {"input_ids": input_ids, "attention_mask": attention_mask} @require_tf class __lowerCAmelCase : lowerCamelCase_ : Optional[Any] = OPTConfig lowerCamelCase_ : str = {} lowerCamelCase_ : Tuple = '''gelu''' def __init__(self , __magic_name__ , __magic_name__=13 , __magic_name__=7 , __magic_name__=True , __magic_name__=False , __magic_name__=99 , __magic_name__=16 , __magic_name__=2 , __magic_name__=4 , __magic_name__=4 , __magic_name__="gelu" , __magic_name__=0.1 , __magic_name__=0.1 , __magic_name__=20 , __magic_name__=2 , __magic_name__=1 , __magic_name__=0 , __magic_name__=16 , __magic_name__=16 , ) -> Union[str, Any]: '''simple docstring''' snake_case_ : List[Any] = parent snake_case_ : int = batch_size snake_case_ : Optional[int] = seq_length snake_case_ : Dict = is_training snake_case_ : str = use_labels snake_case_ : List[str] = vocab_size snake_case_ : Dict = hidden_size snake_case_ : Optional[Any] = num_hidden_layers snake_case_ : Union[str, Any] = num_attention_heads snake_case_ : Optional[Any] = intermediate_size snake_case_ : Optional[Any] = hidden_act snake_case_ : Dict = hidden_dropout_prob snake_case_ : Optional[int] = attention_probs_dropout_prob snake_case_ : Dict = max_position_embeddings snake_case_ : Any = eos_token_id snake_case_ : Union[str, Any] = pad_token_id snake_case_ : List[Any] = bos_token_id snake_case_ : List[Any] = embed_dim snake_case_ : Optional[int] = word_embed_proj_dim snake_case_ : Any = False def lowerCamelCase (self ) -> List[str]: '''simple docstring''' snake_case_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) snake_case_ : Tuple = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) snake_case_ : Union[str, Any] = tf.concat([input_ids, eos_tensor] , axis=1 ) snake_case_ : Optional[int] = self.config_cls( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , embed_dim=self.embed_dim , word_embed_proj_dim=self.word_embed_proj_dim , is_encoder_decoder=__magic_name__ , **self.config_updates , ) snake_case_ : Optional[Any] = prepare_opt_inputs_dict(__magic_name__ , __magic_name__ ) return config, inputs_dict def lowerCamelCase (self , __magic_name__ , __magic_name__ ) -> Dict: '''simple docstring''' snake_case_ : Optional[int] = TFOPTModel(config=__magic_name__ ) snake_case_ : str = inputs_dict['''input_ids'''] snake_case_ : Tuple = input_ids[:1, :] snake_case_ : Union[str, Any] = inputs_dict['''attention_mask'''][:1, :] snake_case_ : List[Any] = 1 # first forward pass snake_case_ : int = model(__magic_name__ , attention_mask=__magic_name__ , use_cache=__magic_name__ ) snake_case_ , snake_case_ : Any = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids snake_case_ : List[Any] = ids_tensor((self.batch_size, 3) , config.vocab_size ) snake_case_ : Optional[Any] = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and snake_case_ : Any = tf.concat([input_ids, next_tokens] , axis=-1 ) snake_case_ : List[str] = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) snake_case_ : List[str] = model(__magic_name__ , attention_mask=__magic_name__ )[0] snake_case_ : List[Any] = model(__magic_name__ , attention_mask=__magic_name__ , past_key_values=__magic_name__ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice snake_case_ : List[str] = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) snake_case_ : List[Any] = output_from_no_past[:, -3:, random_slice_idx] snake_case_ : str = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(__magic_name__ , __magic_name__ , rtol=1e-3 ) @require_tf class __lowerCAmelCase ( _a, _a, unittest.TestCase ): lowerCamelCase_ : Any = (TFOPTModel, TFOPTForCausalLM) if is_tf_available() else () lowerCamelCase_ : List[str] = (TFOPTForCausalLM,) if is_tf_available() else () lowerCamelCase_ : Optional[int] = ( {'''feature-extraction''': TFOPTModel, '''text-generation''': TFOPTForCausalLM} if is_tf_available() else {} ) lowerCamelCase_ : List[str] = False lowerCamelCase_ : Tuple = False lowerCamelCase_ : str = False lowerCamelCase_ : List[str] = 10 def lowerCamelCase (self ) -> int: '''simple docstring''' snake_case_ : str = TFOPTModelTester(self ) snake_case_ : Tuple = ConfigTester(self , config_class=__magic_name__ ) def lowerCamelCase (self ) -> List[Any]: '''simple docstring''' self.config_tester.run_common_tests() def lowerCamelCase (self ) -> int: '''simple docstring''' snake_case_ : Any = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*__magic_name__ ) def lowerCamelCase (self ) -> Optional[Any]: '''simple docstring''' snake_case_ , snake_case_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() def _get_word_embedding_weight(__magic_name__ , __magic_name__ ): if hasattr(__magic_name__ , '''weight''' ): return embedding_layer.weight else: # Here we build the word embeddings weights if not exists. # And then we retry to get the attribute once built. model.build() if hasattr(__magic_name__ , '''weight''' ): return embedding_layer.weight else: return None for model_class in self.all_model_classes: for size in [config.vocab_size - 10, config.vocab_size + 10]: # build the embeddings snake_case_ : Optional[Any] = model_class(config=__magic_name__ ) snake_case_ : str = _get_word_embedding_weight(__magic_name__ , model.get_input_embeddings() ) snake_case_ : Tuple = _get_word_embedding_weight(__magic_name__ , model.get_output_embeddings() ) # reshape the embeddings model.resize_token_embeddings(__magic_name__ ) snake_case_ : int = _get_word_embedding_weight(__magic_name__ , model.get_input_embeddings() ) snake_case_ : Union[str, Any] = _get_word_embedding_weight(__magic_name__ , model.get_output_embeddings() ) # check that the resized embeddings size matches the desired size. snake_case_ : List[str] = size if size is not None else config.vocab_size self.assertEqual(new_input_embeddings.shape[0] , __magic_name__ ) # check that weights remain the same after resizing snake_case_ : str = True for pa, pa in zip(old_input_embeddings.value() , new_input_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: snake_case_ : int = False self.assertTrue(__magic_name__ ) if old_output_embeddings is not None and new_output_embeddings is not None: self.assertEqual(new_output_embeddings.shape[0] , __magic_name__ ) snake_case_ : Optional[int] = True for pa, pa in zip(old_output_embeddings.value() , new_output_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: snake_case_ : Optional[Any] = False self.assertTrue(__magic_name__ ) def lowerCamelCase_ ( _UpperCamelCase ) -> int: """simple docstring""" return tf.constant(_UpperCamelCase , dtype=tf.intaa ) @require_tf class __lowerCAmelCase ( unittest.TestCase ): lowerCamelCase_ : Dict = 99 def lowerCamelCase (self ) -> List[Any]: '''simple docstring''' snake_case_ : List[Any] = tf.ones((4, 1) , dtype=tf.intaa ) * 2 snake_case_ : Dict = tf.concat([ids_tensor((4, 6) , self.vocab_size - 3 ) + 3, eos_column_vector] , axis=1 ) snake_case_ : List[str] = input_ids.shape[0] snake_case_ : str = OPTConfig( vocab_size=self.vocab_size , hidden_size=24 , num_hidden_layers=2 , num_attention_heads=2 , ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size @require_sentencepiece @require_tf class __lowerCAmelCase ( unittest.TestCase ): @slow def lowerCamelCase (self ) -> int: '''simple docstring''' snake_case_ : List[Any] = TFOPTModel.from_pretrained('''facebook/opt-350m''' ) snake_case_ : Optional[Any] = _long_tensor([[0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2]] ) snake_case_ : Any = tf.not_equal(__magic_name__ , model.config.pad_token_id ) with tf.GradientTape(): snake_case_ : int = model(input_ids=__magic_name__ , attention_mask=__magic_name__ ).last_hidden_state snake_case_ : int = (1, 11, 512) self.assertEqual(output.shape , __magic_name__ ) snake_case_ : str = tf.constant( [[-0.2_873, -1.9_218, -0.3_033], [-1.2_710, -0.1_338, -0.1_902], [0.4_095, 0.1_214, -1.3_121]] ) self.assertTrue(np.allclose(output[:, :3, :3] , __magic_name__ , atol=4e-3 ) ) snake_case_ : Union[str, Any] = tf.function(__magic_name__ , jit_compile=__magic_name__ ) snake_case_ : Any = xla_generate(__magic_name__ , __magic_name__ )[0] self.assertTrue(np.allclose(output[:, :3, :3] , __magic_name__ , atol=4e-2 ) ) @require_tf @slow class __lowerCAmelCase ( unittest.TestCase ): def lowerCamelCase (self ) -> Optional[Any]: '''simple docstring''' super().setUp() snake_case_ : Optional[Any] = '''facebook/opt-350m''' def lowerCamelCase (self ) -> Optional[int]: '''simple docstring''' snake_case_ : int = TFOPTForCausalLM.from_pretrained(self.path_model ) snake_case_ : Optional[Any] = GPTaTokenizer.from_pretrained(self.path_model ) snake_case_ : List[Any] = [ '''Today is a beautiful day and I want to''', '''In the city of''', '''Paris is the capital of France and''', '''Computers and mobile phones have taken''', ] # verify that prompt without BOS token is identical to Metaseq -> add_special_tokens=False snake_case_ : List[str] = tokenizer(__magic_name__ , return_tensors='''tf''' , padding=__magic_name__ , add_special_tokens=__magic_name__ ) snake_case_ : Optional[Any] = tf.math.reduce_mean(model(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) snake_case_ : int = tf.constant( [ [1.3_851, -13.8_923, -10.5_229, -10.7_533, -0.2_309, -10.2_384, -0.5_365, -9.0_947, -5.1_670], [-4.7_073, -10.6_276, -3.9_415, -21.5_242, -0.2_822, -0.2_822, -0.2_822, -0.2_822, -0.2_822], [0.6_247, -3.4_229, -8.9_179, -1.4_297, -14.1_650, 1.4_146, -9.0_218, -0.2_703, -0.2_703], [6.4_783, -1.9_913, -10.7_926, -2.3_336, 1.5_092, -0.9_974, -6.8_213, 1.3_477, 1.3_477], ] ) self.assertTrue(np.allclose(__magic_name__ , __magic_name__ , atol=1e-4 ) ) snake_case_ : str = tf.function(__magic_name__ , jit_compile=__magic_name__ ) snake_case_ : Optional[int] = tf.math.reduce_mean(xla_generate(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) self.assertTrue(np.allclose(__magic_name__ , __magic_name__ , atol=1e-4 ) ) @require_tf @slow class __lowerCAmelCase ( unittest.TestCase ): @property def lowerCamelCase (self ) -> Tuple: '''simple docstring''' return [ "Today is a beautiful day and I want", "In the city of", "Paris is the capital of France and", "Computers and mobile phones have taken", ] def lowerCamelCase (self ) -> Dict: '''simple docstring''' snake_case_ : Any = '''facebook/opt-125m''' snake_case_ : List[str] = [ '''Today is a beautiful day and I want to''', '''In the city of New York, the city''', '''Paris is the capital of France and the capital''', '''Computers and mobile phones have taken over the''', ] snake_case_ : Optional[Any] = [] snake_case_ : Any = GPTaTokenizer.from_pretrained(__magic_name__ ) snake_case_ : Optional[Any] = TFOPTForCausalLM.from_pretrained(__magic_name__ ) for prompt in self.prompts: snake_case_ : List[Any] = tokenizer(__magic_name__ , return_tensors='''tf''' ).input_ids snake_case_ : Any = model.generate(__magic_name__ , max_length=10 ) snake_case_ : Union[str, Any] = tokenizer.batch_decode(__magic_name__ , skip_special_tokens=__magic_name__ ) predicted_outputs += generated_string self.assertListEqual(__magic_name__ , __magic_name__ ) def lowerCamelCase (self ) -> int: '''simple docstring''' snake_case_ : Dict = '''facebook/opt-350m''' snake_case_ : int = GPTaTokenizer.from_pretrained(__magic_name__ ) snake_case_ : Optional[Any] = TFOPTForCausalLM.from_pretrained(__magic_name__ ) snake_case_ : List[str] = '''left''' # use different length sentences to test batching snake_case_ : Optional[Any] = [ '''Hello, my dog is a little''', '''Today, I''', ] snake_case_ : Tuple = tokenizer(__magic_name__ , return_tensors='''tf''' , padding=__magic_name__ ) snake_case_ : int = inputs['''input_ids'''] snake_case_ : Optional[int] = model.generate(input_ids=__magic_name__ , attention_mask=inputs['''attention_mask'''] ) snake_case_ : Any = tokenizer(sentences[0] , return_tensors='''tf''' ).input_ids snake_case_ : int = model.generate(input_ids=__magic_name__ ) snake_case_ : List[str] = inputs_non_padded.shape[-1] - tf.math.reduce_sum( tf.cast(inputs['''attention_mask'''][-1] , tf.intaa ) ) snake_case_ : Optional[Any] = tokenizer(sentences[1] , return_tensors='''tf''' ).input_ids snake_case_ : int = model.generate(input_ids=__magic_name__ , max_length=model.config.max_length - num_paddings ) snake_case_ : Union[str, Any] = tokenizer.batch_decode(__magic_name__ , skip_special_tokens=__magic_name__ ) snake_case_ : List[Any] = tokenizer.decode(output_non_padded[0] , skip_special_tokens=__magic_name__ ) snake_case_ : str = tokenizer.decode(output_padded[0] , skip_special_tokens=__magic_name__ ) snake_case_ : Any = [ '''Hello, my dog is a little bit of a dork.\nI\'m a little bit''', '''Today, I was in the middle of a conversation with a friend about the''', ] self.assertListEqual(__magic_name__ , __magic_name__ ) self.assertListEqual(__magic_name__ , [non_padded_sentence, padded_sentence] ) def lowerCamelCase (self ) -> List[Any]: '''simple docstring''' snake_case_ : Tuple = '''facebook/opt-350m''' snake_case_ : Optional[Any] = [ '''Today is a beautiful day and I want to''', '''In the city of San Francisco, the city''', '''Paris is the capital of France and the capital''', '''Computers and mobile phones have taken over the''', ] snake_case_ : Dict = [] snake_case_ : Tuple = GPTaTokenizer.from_pretrained(__magic_name__ ) snake_case_ : Tuple = TFOPTForCausalLM.from_pretrained(__magic_name__ ) for prompt in self.prompts: snake_case_ : Tuple = tokenizer(__magic_name__ , return_tensors='''tf''' ).input_ids snake_case_ : int = model.generate(__magic_name__ , max_length=10 ) snake_case_ : Optional[int] = tokenizer.batch_decode(__magic_name__ , skip_special_tokens=__magic_name__ ) predicted_outputs += generated_string self.assertListEqual(__magic_name__ , __magic_name__ )
279
1
'''simple docstring''' from math import sqrt def _UpperCamelCase ( UpperCamelCase__ ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(sqrt(UpperCamelCase__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def _UpperCamelCase ( UpperCamelCase__ = 1_0_0_0_1 ): UpperCAmelCase__ : List[Any] = 0 UpperCAmelCase__ : Optional[Any] = 1 while count != nth and number < 3: number += 1 if is_prime(UpperCamelCase__ ): count += 1 while count != nth: number += 2 if is_prime(UpperCamelCase__ ): count += 1 return number if __name__ == "__main__": print(f"""{solution() = }""")
163
'''simple docstring''' import unittest from transformers.testing_utils import require_bsa from transformers.utils import is_bsa_available from ...test_feature_extraction_common import FeatureExtractionSavingTestMixin if is_bsa_available(): from transformers import MarkupLMFeatureExtractor class _snake_case ( unittest.TestCase ): def __init__( self , _lowerCamelCase): UpperCAmelCase__ : Any = parent def snake_case__ ( self): return {} def _UpperCamelCase ( ): UpperCAmelCase__ : List[str] = """<HTML> <HEAD> <TITLE>sample document</TITLE> </HEAD> <BODY BGCOLOR=\"FFFFFF\"> <HR> <a href=\"http://google.com\">Goog</a> <H1>This is one header</H1> <H2>This is a another Header</H2> <P>Travel from <P> <B>SFO to JFK</B> <BR> <B><I>on May 2, 2015 at 2:00 pm. For details go to confirm.com </I></B> <HR> <div style=\"color:#0000FF\"> <h3>Traveler <b> name </b> is <p> John Doe </p> </div>""" UpperCAmelCase__ : Tuple = """ <!DOCTYPE html> <html> <body> <h1>My First Heading</h1> <p>My first paragraph.</p> </body> </html> """ return [html_string_a, html_string_a] @require_bsa class _snake_case ( a__ , unittest.TestCase ): lowerCAmelCase :Optional[int] = MarkupLMFeatureExtractor if is_bsa_available() else None def snake_case__ ( self): UpperCAmelCase__ : Union[str, Any] = MarkupLMFeatureExtractionTester(self) @property def snake_case__ ( self): return self.feature_extract_tester.prepare_feat_extract_dict() def snake_case__ ( self): # Initialize feature_extractor UpperCAmelCase__ : List[Any] = self.feature_extraction_class() # Test not batched input UpperCAmelCase__ : Optional[Any] = get_html_strings()[0] UpperCAmelCase__ : Any = feature_extractor(_lowerCamelCase) # fmt: off UpperCAmelCase__ : Dict = [["""sample document""", """Goog""", """This is one header""", """This is a another Header""", """Travel from""", """SFO to JFK""", """on May 2, 2015 at 2:00 pm. For details go to confirm.com""", """Traveler""", """name""", """is""", """John Doe"""]] UpperCAmelCase__ : List[str] = [["""/html/head/title""", """/html/body/a""", """/html/body/h1""", """/html/body/h2""", """/html/body/p""", """/html/body/p/p/b[1]""", """/html/body/p/p/b[2]/i""", """/html/body/p/p/div/h3""", """/html/body/p/p/div/h3/b""", """/html/body/p/p/div/h3""", """/html/body/p/p/div/h3/p"""]] # fmt: on self.assertEqual(encoding.nodes , _lowerCamelCase) self.assertEqual(encoding.xpaths , _lowerCamelCase) # Test batched UpperCAmelCase__ : int = get_html_strings() UpperCAmelCase__ : Optional[Any] = feature_extractor(_lowerCamelCase) # fmt: off UpperCAmelCase__ : List[str] = expected_nodes + [["""My First Heading""", """My first paragraph."""]] UpperCAmelCase__ : str = expected_xpaths + [["""/html/body/h1""", """/html/body/p"""]] self.assertEqual(len(encoding.nodes) , 2) self.assertEqual(len(encoding.xpaths) , 2) self.assertEqual(encoding.nodes , _lowerCamelCase) self.assertEqual(encoding.xpaths , _lowerCamelCase)
163
1
import os import string import sys SCREAMING_SNAKE_CASE : List[Any] = 1 << 8 SCREAMING_SNAKE_CASE : Union[str, Any] = { "tab": ord("\t"), "newline": ord("\r"), "esc": 27, "up": 65 + ARROW_KEY_FLAG, "down": 66 + ARROW_KEY_FLAG, "right": 67 + ARROW_KEY_FLAG, "left": 68 + ARROW_KEY_FLAG, "mod_int": 91, "undefined": sys.maxsize, "interrupt": 3, "insert": 50, "delete": 51, "pg_up": 53, "pg_down": 54, } SCREAMING_SNAKE_CASE : int = KEYMAP["up"] SCREAMING_SNAKE_CASE : str = KEYMAP["left"] if sys.platform == "win32": SCREAMING_SNAKE_CASE : Dict = [] SCREAMING_SNAKE_CASE : Union[str, Any] = { B"\xe0H": KEYMAP["up"] - ARROW_KEY_FLAG, B"\x00H": KEYMAP["up"] - ARROW_KEY_FLAG, B"\xe0P": KEYMAP["down"] - ARROW_KEY_FLAG, B"\x00P": KEYMAP["down"] - ARROW_KEY_FLAG, B"\xe0M": KEYMAP["right"] - ARROW_KEY_FLAG, B"\x00M": KEYMAP["right"] - ARROW_KEY_FLAG, B"\xe0K": KEYMAP["left"] - ARROW_KEY_FLAG, B"\x00K": KEYMAP["left"] - ARROW_KEY_FLAG, } for i in range(10): SCREAMING_SNAKE_CASE : Union[str, Any] = ord(str(i)) def UpperCamelCase_( ) -> Union[str, Any]: if os.name == "nt": import msvcrt _lowercase : Union[str, Any] = '''mbcs''' # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(lowerCamelCase_ ) == 0: # Read the keystroke _lowercase : int = msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): _lowercase : Dict = ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: _lowercase : int = chr(WIN_KEYMAP[cha] ) WIN_CH_BUFFER.append(chr(KEYMAP['mod_int'] ) ) WIN_CH_BUFFER.append(lowerCamelCase_ ) if ord(lowerCamelCase_ ) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(126 ) ) _lowercase : Union[str, Any] = chr(KEYMAP['esc'] ) except KeyError: _lowercase : int = cha[1] else: _lowercase : Dict = ch.decode(lowerCamelCase_ ) else: _lowercase : Any = WIN_CH_BUFFER.pop(0 ) elif os.name == "posix": import termios import tty _lowercase : Union[str, Any] = sys.stdin.fileno() _lowercase : Optional[Any] = termios.tcgetattr(lowerCamelCase_ ) try: tty.setraw(lowerCamelCase_ ) _lowercase : Union[str, Any] = sys.stdin.read(1 ) finally: termios.tcsetattr(lowerCamelCase_ , termios.TCSADRAIN , lowerCamelCase_ ) return ch def UpperCamelCase_( ) -> Any: _lowercase : Dict = get_raw_chars() if ord(lowerCamelCase_ ) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(lowerCamelCase_ ) == KEYMAP["esc"]: _lowercase : Dict = get_raw_chars() if ord(lowerCamelCase_ ) == KEYMAP["mod_int"]: _lowercase : Optional[Any] = get_raw_chars() if ord(lowerCamelCase_ ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(lowerCamelCase_ ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(lowerCamelCase_ ) + ARROW_KEY_FLAG ) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
360
import argparse import logging import sys from unittest.mock import patch import run_glue_deebert from transformers.testing_utils import TestCasePlus, get_gpu_count, require_torch_non_multi_gpu, slow logging.basicConfig(level=logging.DEBUG) SCREAMING_SNAKE_CASE : str = logging.getLogger() def UpperCamelCase_( ) -> Any: _lowercase : int = argparse.ArgumentParser() parser.add_argument('-f' ) _lowercase : Optional[Any] = parser.parse_args() return args.f class _lowerCamelCase( _a ): def UpperCamelCase ( self) -> None: """simple docstring""" _lowercase : List[Any] = logging.StreamHandler(sys.stdout) logger.addHandler(lowerCamelCase) def UpperCamelCase ( self, lowerCamelCase) -> List[str]: """simple docstring""" _lowercase : str = get_gpu_count() if n_gpu > 1: pass # XXX: doesn't quite work with n_gpu > 1 https://github.com/huggingface/transformers/issues/10560 # script = f"{self.examples_dir_str}/research_projects/deebert/run_glue_deebert.py" # distributed_args = f"-m torch.distributed.launch --nproc_per_node={n_gpu} {script}".split() # cmd = [sys.executable] + distributed_args + args # execute_subprocess_async(cmd, env=self.get_env()) # XXX: test the results - need to save them first into .json file else: args.insert(0, 'run_glue_deebert.py') with patch.object(lowerCamelCase, 'argv', lowerCamelCase): _lowercase : Optional[Any] = run_glue_deebert.main() for value in result.values(): self.assertGreaterEqual(lowerCamelCase, 0.6_6_6) @slow @require_torch_non_multi_gpu def UpperCamelCase ( self) -> Tuple: """simple docstring""" _lowercase : Union[str, Any] = '\n --model_type roberta\n --model_name_or_path roberta-base\n --task_name MRPC\n --do_train\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --max_seq_length 128\n --per_gpu_eval_batch_size=1\n --per_gpu_train_batch_size=8\n --learning_rate 2e-4\n --num_train_epochs 3\n --overwrite_output_dir\n --seed 42\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --save_steps 0\n --overwrite_cache\n --eval_after_first_stage\n '.split() self.run_and_check(lowerCamelCase) _lowercase : Union[str, Any] = '\n --model_type roberta\n --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --task_name MRPC\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --max_seq_length 128\n --eval_each_highway\n --eval_highway\n --overwrite_cache\n --per_gpu_eval_batch_size=1\n '.split() self.run_and_check(lowerCamelCase) _lowercase : Union[str, Any] = '\n --model_type roberta\n --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --task_name MRPC\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --max_seq_length 128\n --early_exit_entropy 0.1\n --eval_highway\n --overwrite_cache\n --per_gpu_eval_batch_size=1\n '.split() self.run_and_check(lowerCamelCase)
84
0
import os import unittest from transformers import MobileBertTokenizer, MobileBertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase_ = MobileBertTokenizer lowercase_ = MobileBertTokenizerFast lowercase_ = True lowercase_ = True lowercase_ = filter_non_english lowercase_ = "google/mobilebert-uncased" def SCREAMING_SNAKE_CASE_ (self : Any) ->Any: '''simple docstring''' super().setUp() lowerCamelCase__: Any =[ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] lowerCamelCase__: Optional[int] =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"]) with open(self.vocab_file , "w" , encoding="utf-8") as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens])) lowerCamelCase__: str =[ (tokenizer_def[0], self.pre_trained_model_path, tokenizer_def[2]) # else the 'google/' prefix is stripped for tokenizer_def in self.tokenizers_list ] def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : int) ->List[str]: '''simple docstring''' lowerCamelCase__: List[str] ="UNwant\u00E9d,running" lowerCamelCase__: Dict ="unwanted, running" return input_text, output_text def SCREAMING_SNAKE_CASE_ (self : int) ->str: '''simple docstring''' lowerCamelCase__: Optional[int] =self.tokenizer_class(self.vocab_file) lowerCamelCase__: Union[str, Any] =tokenizer.tokenize("UNwant\u00E9d,running") self.assertListEqual(UpperCAmelCase_ , ["un", "##want", "##ed", ",", "runn", "##ing"]) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase_) , [9, 6, 7, 12, 10, 11]) def SCREAMING_SNAKE_CASE_ (self : Dict) ->Optional[Any]: '''simple docstring''' if not self.test_rust_tokenizer: return lowerCamelCase__: Tuple =self.get_tokenizer() lowerCamelCase__: Union[str, Any] =self.get_rust_tokenizer() lowerCamelCase__: List[Any] ="UNwant\u00E9d,running" lowerCamelCase__: Optional[Any] =tokenizer.tokenize(UpperCAmelCase_) lowerCamelCase__: List[str] =rust_tokenizer.tokenize(UpperCAmelCase_) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_) lowerCamelCase__: Optional[int] =tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_) lowerCamelCase__: int =rust_tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_) lowerCamelCase__: List[str] =self.get_rust_tokenizer() lowerCamelCase__: Any =tokenizer.encode(UpperCAmelCase_) lowerCamelCase__: int =rust_tokenizer.encode(UpperCAmelCase_) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_) # With lower casing lowerCamelCase__: Dict =self.get_tokenizer(do_lower_case=UpperCAmelCase_) lowerCamelCase__: List[str] =self.get_rust_tokenizer(do_lower_case=UpperCAmelCase_) lowerCamelCase__: Optional[int] ="UNwant\u00E9d,running" lowerCamelCase__: Tuple =tokenizer.tokenize(UpperCAmelCase_) lowerCamelCase__: List[str] =rust_tokenizer.tokenize(UpperCAmelCase_) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_) lowerCamelCase__: Tuple =rust_tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =self.get_rust_tokenizer() lowerCamelCase__: Any =tokenizer.encode(UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =rust_tokenizer.encode(UpperCAmelCase_) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : int) ->Union[str, Any]: '''simple docstring''' lowerCamelCase__: str =BasicTokenizer() self.assertListEqual(tokenizer.tokenize("ah\u535A\u63A8zz") , ["ah", "\u535A", "\u63A8", "zz"]) def SCREAMING_SNAKE_CASE_ (self : Dict) ->Optional[int]: '''simple docstring''' lowerCamelCase__: Union[str, Any] =BasicTokenizer(do_lower_case=UpperCAmelCase_) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? ") , ["hello", "!", "how", "are", "you", "?"]) self.assertListEqual(tokenizer.tokenize("H\u00E9llo") , ["hello"]) def SCREAMING_SNAKE_CASE_ (self : int) ->List[str]: '''simple docstring''' lowerCamelCase__: Dict =BasicTokenizer(do_lower_case=UpperCAmelCase_ , strip_accents=UpperCAmelCase_) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? ") , ["hällo", "!", "how", "are", "you", "?"]) self.assertListEqual(tokenizer.tokenize("H\u00E9llo") , ["h\u00E9llo"]) def SCREAMING_SNAKE_CASE_ (self : Tuple) ->Optional[int]: '''simple docstring''' lowerCamelCase__: Optional[int] =BasicTokenizer(do_lower_case=UpperCAmelCase_ , strip_accents=UpperCAmelCase_) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? ") , ["hallo", "!", "how", "are", "you", "?"]) self.assertListEqual(tokenizer.tokenize("H\u00E9llo") , ["hello"]) def SCREAMING_SNAKE_CASE_ (self : Optional[int]) ->Dict: '''simple docstring''' lowerCamelCase__: Any =BasicTokenizer(do_lower_case=UpperCAmelCase_) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? ") , ["hallo", "!", "how", "are", "you", "?"]) self.assertListEqual(tokenizer.tokenize("H\u00E9llo") , ["hello"]) def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->Any: '''simple docstring''' lowerCamelCase__: Optional[Any] =BasicTokenizer(do_lower_case=UpperCAmelCase_) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? ") , ["HeLLo", "!", "how", "Are", "yoU", "?"]) def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->int: '''simple docstring''' lowerCamelCase__: str =BasicTokenizer(do_lower_case=UpperCAmelCase_ , strip_accents=UpperCAmelCase_) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? ") , ["HäLLo", "!", "how", "Are", "yoU", "?"]) def SCREAMING_SNAKE_CASE_ (self : Optional[int]) ->Tuple: '''simple docstring''' lowerCamelCase__: Optional[int] =BasicTokenizer(do_lower_case=UpperCAmelCase_ , strip_accents=UpperCAmelCase_) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? ") , ["HaLLo", "!", "how", "Are", "yoU", "?"]) def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->List[str]: '''simple docstring''' lowerCamelCase__: List[Any] =BasicTokenizer(do_lower_case=UpperCAmelCase_ , never_split=["[UNK]"]) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? [UNK]") , ["HeLLo", "!", "how", "Are", "yoU", "?", "[UNK]"]) def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->List[str]: '''simple docstring''' lowerCamelCase__: Dict =["[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing"] lowerCamelCase__: Optional[int] ={} for i, token in enumerate(UpperCAmelCase_): lowerCamelCase__: List[str] =i lowerCamelCase__: Optional[int] =WordpieceTokenizer(vocab=UpperCAmelCase_ , unk_token="[UNK]") self.assertListEqual(tokenizer.tokenize("") , []) self.assertListEqual(tokenizer.tokenize("unwanted running") , ["un", "##want", "##ed", "runn", "##ing"]) self.assertListEqual(tokenizer.tokenize("unwantedX running") , ["[UNK]", "runn", "##ing"]) def SCREAMING_SNAKE_CASE_ (self : Any) ->List[str]: '''simple docstring''' self.assertTrue(_is_whitespace(" ")) self.assertTrue(_is_whitespace("\t")) self.assertTrue(_is_whitespace("\r")) self.assertTrue(_is_whitespace("\n")) self.assertTrue(_is_whitespace("\u00A0")) self.assertFalse(_is_whitespace("A")) self.assertFalse(_is_whitespace("-")) def SCREAMING_SNAKE_CASE_ (self : Any) ->int: '''simple docstring''' self.assertTrue(_is_control("\u0005")) self.assertFalse(_is_control("A")) self.assertFalse(_is_control(" ")) self.assertFalse(_is_control("\t")) self.assertFalse(_is_control("\r")) def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->List[str]: '''simple docstring''' self.assertTrue(_is_punctuation("-")) self.assertTrue(_is_punctuation("$")) self.assertTrue(_is_punctuation("`")) self.assertTrue(_is_punctuation(".")) self.assertFalse(_is_punctuation("A")) self.assertFalse(_is_punctuation(" ")) def SCREAMING_SNAKE_CASE_ (self : Dict) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: List[str] =self.get_tokenizer() lowerCamelCase__: Optional[Any] =self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(UpperCAmelCase_) for t in ["Test", "\xad", "test"]] , [["[UNK]"], [], ["[UNK]"]]) self.assertListEqual( [rust_tokenizer.tokenize(UpperCAmelCase_) for t in ["Test", "\xad", "test"]] , [["[UNK]"], [], ["[UNK]"]]) @slow def SCREAMING_SNAKE_CASE_ (self : Optional[int]) ->Dict: '''simple docstring''' lowerCamelCase__: Dict =self.tokenizer_class.from_pretrained("google/mobilebert-uncased") lowerCamelCase__: Dict =tokenizer.encode("sequence builders" , add_special_tokens=UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =tokenizer.encode("multi-sequence build" , add_special_tokens=UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =tokenizer.build_inputs_with_special_tokens(UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =tokenizer.build_inputs_with_special_tokens(UpperCAmelCase_ , UpperCAmelCase_) assert encoded_sentence == [101] + text + [102] assert encoded_pair == [101] + text + [102] + text_a + [102] def SCREAMING_SNAKE_CASE_ (self : Any) ->Tuple: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})"""): lowerCamelCase__: List[str] =self.rust_tokenizer_class.from_pretrained(UpperCAmelCase_ , **UpperCAmelCase_) lowerCamelCase__: Optional[Any] =F"""A, naïve {tokenizer_r.mask_token} AllenNLP sentence.""" lowerCamelCase__: Any =tokenizer_r.encode_plus( UpperCAmelCase_ , return_attention_mask=UpperCAmelCase_ , return_token_type_ids=UpperCAmelCase_ , return_offsets_mapping=UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ , ) lowerCamelCase__: Optional[int] =tokenizer_r.do_lower_case if hasattr(UpperCAmelCase_ , "do_lower_case") else False lowerCamelCase__: Optional[Any] =( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), "A"), ((1, 2), ","), ((3, 5), "na"), ((5, 6), "##ï"), ((6, 8), "##ve"), ((9, 15), tokenizer_r.mask_token), ((16, 21), "Allen"), ((21, 23), "##NL"), ((23, 24), "##P"), ((25, 33), "sentence"), ((33, 34), "."), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), "a"), ((1, 2), ","), ((3, 8), "naive"), ((9, 15), tokenizer_r.mask_token), ((16, 21), "allen"), ((21, 23), "##nl"), ((23, 24), "##p"), ((25, 33), "sentence"), ((33, 34), "."), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens["input_ids"])) self.assertEqual([e[0] for e in expected_results] , tokens["offset_mapping"]) def SCREAMING_SNAKE_CASE_ (self : List[str]) ->Dict: '''simple docstring''' lowerCamelCase__: str =["的", "人", "有"] lowerCamelCase__: Optional[Any] ="".join(UpperCAmelCase_) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})"""): lowerCamelCase__: str =True lowerCamelCase__: List[str] =self.tokenizer_class.from_pretrained(UpperCAmelCase_ , **UpperCAmelCase_) lowerCamelCase__: Tuple =self.rust_tokenizer_class.from_pretrained(UpperCAmelCase_ , **UpperCAmelCase_) lowerCamelCase__: List[Any] =tokenizer_p.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_) lowerCamelCase__: Any =tokenizer_r.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_) lowerCamelCase__: List[str] =tokenizer_r.convert_ids_to_tokens(UpperCAmelCase_) lowerCamelCase__: Dict =tokenizer_p.convert_ids_to_tokens(UpperCAmelCase_) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_) lowerCamelCase__: Any =False lowerCamelCase__: List[Any] =self.rust_tokenizer_class.from_pretrained(UpperCAmelCase_ , **UpperCAmelCase_) lowerCamelCase__: str =self.tokenizer_class.from_pretrained(UpperCAmelCase_ , **UpperCAmelCase_) lowerCamelCase__: Dict =tokenizer_r.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_) lowerCamelCase__: List[Any] =tokenizer_p.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_) lowerCamelCase__: Dict =tokenizer_r.convert_ids_to_tokens(UpperCAmelCase_) lowerCamelCase__: Dict =tokenizer_p.convert_ids_to_tokens(UpperCAmelCase_) # it is expected that only the first Chinese character is not preceded by "##". lowerCamelCase__: str =[ F"""##{token}""" if idx != 0 else token for idx, token in enumerate(UpperCAmelCase_) ] self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_)
10
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class A_ ( snake_case__ ): _lowercase : int = ['image_processor', 'tokenizer'] _lowercase : Union[str, Any] = 'LayoutLMv3ImageProcessor' _lowercase : List[str] = ('LayoutLMv3Tokenizer', 'LayoutLMv3TokenizerFast') def __init__( self : Any , UpperCAmelCase : Dict=None , UpperCAmelCase : Tuple=None , **UpperCAmelCase : Optional[Any] ) -> str: __lowerCAmelCase: str = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , UpperCAmelCase , ) __lowerCAmelCase: List[Any] = kwargs.pop('feature_extractor' ) __lowerCAmelCase: Tuple = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(UpperCAmelCase , UpperCAmelCase ) def __call__( self : Optional[int] , UpperCAmelCase : List[Any] , UpperCAmelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , UpperCAmelCase : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , UpperCAmelCase : Union[List[List[int]], List[List[List[int]]]] = None , UpperCAmelCase : Optional[Union[List[int], List[List[int]]]] = None , UpperCAmelCase : bool = True , UpperCAmelCase : Union[bool, str, PaddingStrategy] = False , UpperCAmelCase : Union[bool, str, TruncationStrategy] = None , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : int = 0 , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : Optional[bool] = None , UpperCAmelCase : Optional[bool] = None , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = True , UpperCAmelCase : Optional[Union[str, TensorType]] = None , **UpperCAmelCase : Tuple , ) -> BatchEncoding: # verify input if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( 'You cannot provide bounding boxes if you initialized the image processor with apply_ocr set to True.' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( 'You cannot provide word labels if you initialized the image processor with apply_ocr set to True.' ) # first, apply the image processor __lowerCAmelCase: str = self.image_processor(images=UpperCAmelCase , return_tensors=UpperCAmelCase ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(UpperCAmelCase , UpperCAmelCase ): __lowerCAmelCase: Tuple = [text] # add batch dimension (as the image processor always adds a batch dimension) __lowerCAmelCase: List[str] = features['words'] __lowerCAmelCase: List[Any] = self.tokenizer( text=text if text is not None else features['words'] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['boxes'] , word_labels=UpperCAmelCase , add_special_tokens=UpperCAmelCase , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=UpperCAmelCase , stride=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_overflowing_tokens=UpperCAmelCase , return_special_tokens_mask=UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , return_length=UpperCAmelCase , verbose=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , ) # add pixel values __lowerCAmelCase: Tuple = features.pop('pixel_values' ) if return_overflowing_tokens is True: __lowerCAmelCase: int = self.get_overflowing_images(UpperCAmelCase , encoded_inputs['overflow_to_sample_mapping'] ) __lowerCAmelCase: str = images return encoded_inputs def UpperCAmelCase ( self : Optional[int] , UpperCAmelCase : List[Any] , UpperCAmelCase : Union[str, Any] ) -> List[str]: # in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image __lowerCAmelCase: str = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(UpperCAmelCase ) != len(UpperCAmelCase ): raise ValueError( 'Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got' F''' {len(UpperCAmelCase )} and {len(UpperCAmelCase )}''' ) return images_with_overflow def UpperCAmelCase ( self : Optional[int] , *UpperCAmelCase : Optional[int] , **UpperCAmelCase : Dict ) -> Union[str, Any]: return self.tokenizer.batch_decode(*UpperCAmelCase , **UpperCAmelCase ) def UpperCAmelCase ( self : Any , *UpperCAmelCase : Dict , **UpperCAmelCase : Any ) -> List[str]: return self.tokenizer.decode(*UpperCAmelCase , **UpperCAmelCase ) @property def UpperCAmelCase ( self : Union[str, Any] ) -> str: return ["input_ids", "bbox", "attention_mask", "pixel_values"] @property def UpperCAmelCase ( self : str ) -> Union[str, Any]: warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , UpperCAmelCase , ) return self.image_processor_class @property def UpperCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , UpperCAmelCase , ) return self.image_processor
322
0
'''simple docstring''' import numpy # List of input, output pairs __A : str = ( ((5, 2, 3), 15), ((6, 5, 9), 25), ((11, 12, 13), 41), ((1, 1, 1), 8), ((11, 12, 13), 41), ) __A : Any = (((515, 22, 13), 555), ((61, 35, 49), 150)) __A : Optional[Any] = [2, 4, 1, 5] __A : List[Any] = len(train_data) __A : List[str] = 0.0_0_9 def UpperCamelCase_ ( A__ : Tuple , A__ : List[str]="train" ): '''simple docstring''' return calculate_hypothesis_value(__lowerCAmelCase , __lowerCAmelCase ) - output( __lowerCAmelCase , __lowerCAmelCase ) def UpperCamelCase_ ( A__ : Any ): '''simple docstring''' lowerCAmelCase_ : Optional[int] = 0 for i in range(len(__lowerCAmelCase ) - 1 ): hyp_val += data_input_tuple[i] * parameter_vector[i + 1] hyp_val += parameter_vector[0] return hyp_val def UpperCamelCase_ ( A__ : Optional[int] , A__ : Dict ): '''simple docstring''' if data_set == "train": return train_data[example_no][1] elif data_set == "test": return test_data[example_no][1] return None def UpperCamelCase_ ( A__ : Union[str, Any] , A__ : Dict ): '''simple docstring''' if data_set == "train": return _hypothesis_value(train_data[example_no][0] ) elif data_set == "test": return _hypothesis_value(test_data[example_no][0] ) return None def UpperCamelCase_ ( A__ : Union[str, Any] , A__ : Optional[int]=m ): '''simple docstring''' lowerCAmelCase_ : Dict = 0 for i in range(__lowerCAmelCase ): if index == -1: summation_value += _error(__lowerCAmelCase ) else: summation_value += _error(__lowerCAmelCase ) * train_data[i][0][index] return summation_value def UpperCamelCase_ ( A__ : List[Any] ): '''simple docstring''' lowerCAmelCase_ : Optional[Any] = summation_of_cost_derivative(__lowerCAmelCase , __lowerCAmelCase ) / m return cost_derivative_value def UpperCamelCase_ ( ): '''simple docstring''' global parameter_vector # Tune these values to set a tolerance value for predicted output lowerCAmelCase_ : List[str] = 0.000002 lowerCAmelCase_ : int = 0 lowerCAmelCase_ : Dict = 0 while True: j += 1 lowerCAmelCase_ : Optional[int] = [0, 0, 0, 0] for i in range(0 , len(__lowerCAmelCase ) ): lowerCAmelCase_ : Optional[Any] = get_cost_derivative(i - 1 ) lowerCAmelCase_ : Dict = ( parameter_vector[i] - LEARNING_RATE * cost_derivative ) if numpy.allclose( __lowerCAmelCase , __lowerCAmelCase , atol=__lowerCAmelCase , rtol=__lowerCAmelCase , ): break lowerCAmelCase_ : int = temp_parameter_vector print(("""Number of iterations:""", j) ) def UpperCamelCase_ ( ): '''simple docstring''' for i in range(len(__lowerCAmelCase ) ): print(("""Actual output value:""", output(__lowerCAmelCase , """test""" )) ) print(("""Hypothesis output:""", calculate_hypothesis_value(__lowerCAmelCase , """test""" )) ) if __name__ == "__main__": run_gradient_descent() print("\nTesting gradient descent for a linear hypothesis function.\n") test_gradient_descent()
362
'''simple docstring''' import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() __A : List[str] = logging.get_logger(__name__) __A : str = "https://openaipublic.azureedge.net/jukebox/models/" __A : Any = { "jukebox-1b-lyrics": [ "5b/vqvae.pth.tar", "5b/prior_level_0.pth.tar", "5b/prior_level_1.pth.tar", "1b_lyrics/prior_level_2.pth.tar", ], "jukebox-5b-lyrics": [ "5b/vqvae.pth.tar", "5b/prior_level_0.pth.tar", "5b/prior_level_1.pth.tar", "5b_lyrics/prior_level_2.pth.tar", ], } def UpperCamelCase_ ( A__ : int ): '''simple docstring''' if key.endswith(""".model.1.bias""" ) and len(key.split(""".""" ) ) > 10: lowerCAmelCase_ : Union[str, Any] = key.replace(""".model.1.bias""" , """.conv1d_1.bias""" ) elif key.endswith(""".model.1.weight""" ) and len(key.split(""".""" ) ) > 10: lowerCAmelCase_ : Union[str, Any] = key.replace(""".model.1.weight""" , """.conv1d_1.weight""" ) elif key.endswith(""".model.3.bias""" ) and len(key.split(""".""" ) ) > 10: lowerCAmelCase_ : Union[str, Any] = key.replace(""".model.3.bias""" , """.conv1d_2.bias""" ) elif key.endswith(""".model.3.weight""" ) and len(key.split(""".""" ) ) > 10: lowerCAmelCase_ : int = key.replace(""".model.3.weight""" , """.conv1d_2.weight""" ) if "conditioner_blocks.0." in key: lowerCAmelCase_ : Any = key.replace("""conditioner_blocks.0""" , """conditioner_blocks""" ) if "prime_prior" in key: lowerCAmelCase_ : str = key.replace("""prime_prior""" , """encoder""" ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: lowerCAmelCase_ : int = key.replace(""".emb.""" , """.""" ) if key.endswith("""k""" ): # replace vqvae.X.k with vqvae.X.codebook return key.replace(""".k""" , """.codebook""" ) if "y_emb." in key: return key.replace("""y_emb.""" , """metadata_embedding.""" ) if "x_emb.emb." in key: lowerCAmelCase_ : List[Any] = key.replace("""0.x_emb.emb""" , """embed_tokens""" ) if "prime_state_ln" in key: return key.replace("""prime_state_ln""" , """encoder.final_layer_norm""" ) if ".ln" in key: return key.replace(""".ln""" , """.layer_norm""" ) if "_ln" in key: return key.replace("""_ln""" , """_layer_norm""" ) if "prime_state_proj" in key: return key.replace("""prime_state_proj""" , """encoder.proj_in""" ) if "prime_x_out" in key: return key.replace("""prime_x_out""" , """encoder.lm_head""" ) if "prior.x_out" in key: return key.replace("""x_out""" , """fc_proj_out""" ) if "x_emb" in key: return key.replace("""x_emb""" , """embed_tokens""" ) return key def UpperCamelCase_ ( A__ : Dict , A__ : Optional[Any] , A__ : Tuple , A__ : Any ): '''simple docstring''' lowerCAmelCase_ : Union[str, Any] = {} import re lowerCAmelCase_ : Union[str, Any] = re.compile(R"""encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)""" ) lowerCAmelCase_ : str = re.compile( R"""encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)""" ) lowerCAmelCase_ : Dict = re.compile(R"""encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)""" ) lowerCAmelCase_ : int = re.compile(R"""decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)""" ) lowerCAmelCase_ : Optional[int] = re.compile( R"""decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)""" ) lowerCAmelCase_ : Union[str, Any] = re.compile(R"""decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)""" ) lowerCAmelCase_ : Any = re.compile(R"""conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)""" ) lowerCAmelCase_ : Dict = re.compile( R"""conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)""" ) lowerCAmelCase_ : str = re.compile(R"""conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)""" ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(A__ ): lowerCAmelCase_ : Dict = re_encoder_block_conv_in.match(A__ ) lowerCAmelCase_ : Optional[int] = regex_match.groups() lowerCAmelCase_ : Tuple = int(groups[2] ) * 2 + int(groups[3] ) lowerCAmelCase_ : Optional[Any] = f'encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}' lowerCAmelCase_ : List[str] = re_encoder_block_conv_in.sub(A__ , A__ ) elif re_encoder_block_resnet.fullmatch(A__ ): lowerCAmelCase_ : Tuple = re_encoder_block_resnet.match(A__ ) lowerCAmelCase_ : Tuple = regex_match.groups() lowerCAmelCase_ : List[Any] = int(groups[2] ) * 2 + int(groups[3] ) lowerCAmelCase_ : str = {"""1""": 1, """3""": 2}[groups[-2]] lowerCAmelCase_ : int = f'encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.' lowerCAmelCase_ : Optional[Any] = f'resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}' lowerCAmelCase_ : List[str] = prefix + resnet_block lowerCAmelCase_ : Tuple = re_encoder_block_resnet.sub(A__ , A__ ) elif re_encoder_block_proj_out.fullmatch(A__ ): lowerCAmelCase_ : int = re_encoder_block_proj_out.match(A__ ) lowerCAmelCase_ : Tuple = regex_match.groups() lowerCAmelCase_ : Optional[Any] = f'encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}' lowerCAmelCase_ : str = re_encoder_block_proj_out.sub(A__ , A__ ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(A__ ): lowerCAmelCase_ : List[Any] = re_decoder_block_conv_out.match(A__ ) lowerCAmelCase_ : Tuple = regex_match.groups() lowerCAmelCase_ : str = int(groups[2] ) * 2 + int(groups[3] ) - 2 lowerCAmelCase_ : Any = f'decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}' lowerCAmelCase_ : Tuple = re_decoder_block_conv_out.sub(A__ , A__ ) elif re_decoder_block_resnet.fullmatch(A__ ): lowerCAmelCase_ : Optional[Any] = re_decoder_block_resnet.match(A__ ) lowerCAmelCase_ : Optional[Any] = regex_match.groups() lowerCAmelCase_ : Optional[Any] = int(groups[2] ) * 2 + int(groups[3] ) - 2 lowerCAmelCase_ : Any = {"""1""": 1, """3""": 2}[groups[-2]] lowerCAmelCase_ : Optional[int] = f'decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.' lowerCAmelCase_ : Union[str, Any] = f'resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}' lowerCAmelCase_ : Dict = prefix + resnet_block lowerCAmelCase_ : Any = re_decoder_block_resnet.sub(A__ , A__ ) elif re_decoder_block_proj_in.fullmatch(A__ ): lowerCAmelCase_ : str = re_decoder_block_proj_in.match(A__ ) lowerCAmelCase_ : Optional[int] = regex_match.groups() lowerCAmelCase_ : str = f'decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}' lowerCAmelCase_ : Union[str, Any] = re_decoder_block_proj_in.sub(A__ , A__ ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(A__ ): lowerCAmelCase_ : Optional[Any] = re_prior_cond_conv_out.match(A__ ) lowerCAmelCase_ : Union[str, Any] = regex_match.groups() lowerCAmelCase_ : Union[str, Any] = int(groups[1] ) * 2 + int(groups[2] ) - 2 lowerCAmelCase_ : Optional[int] = f'conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}' lowerCAmelCase_ : Dict = re_prior_cond_conv_out.sub(A__ , A__ ) elif re_prior_cond_resnet.fullmatch(A__ ): lowerCAmelCase_ : Any = re_prior_cond_resnet.match(A__ ) lowerCAmelCase_ : int = regex_match.groups() lowerCAmelCase_ : Dict = int(groups[1] ) * 2 + int(groups[2] ) - 2 lowerCAmelCase_ : Tuple = {"""1""": 1, """3""": 2}[groups[-2]] lowerCAmelCase_ : Optional[Any] = f'conditioner_blocks.upsampler.upsample_block.{block_index}.' lowerCAmelCase_ : List[Any] = f'resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}' lowerCAmelCase_ : Optional[int] = prefix + resnet_block lowerCAmelCase_ : Dict = re_prior_cond_resnet.sub(A__ , A__ ) elif re_prior_cond_proj_in.fullmatch(A__ ): lowerCAmelCase_ : List[str] = re_prior_cond_proj_in.match(A__ ) lowerCAmelCase_ : Optional[Any] = regex_match.groups() lowerCAmelCase_ : Any = f'conditioner_blocks.upsampler.proj_in.{groups[-1]}' lowerCAmelCase_ : List[str] = re_prior_cond_proj_in.sub(A__ , A__ ) # keep original key else: lowerCAmelCase_ : Optional[Any] = original_key lowerCAmelCase_ : Optional[Any] = replace_key(A__ ) if f'{key_prefix}.{key}' not in model_state_dict or key is None: print(f'failed converting {original_key} to {key}, does not match' ) # handle missmatched shape elif value.shape != model_state_dict[f'{key_prefix}.{key}'].shape: lowerCAmelCase_ : Dict = model_state_dict[f'{key_prefix}.{key}'] print(f'{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match' ) lowerCAmelCase_ : str = original_key lowerCAmelCase_ : Dict = original_key lowerCAmelCase_ : Optional[int] = value return new_dict @torch.no_grad() def UpperCamelCase_ ( A__ : Optional[Any]=None , A__ : str=None ): '''simple docstring''' for file in MODEL_MAPPING[model_name]: if not os.path.isfile(f'{pytorch_dump_folder_path}/{file.split("/" )[-1]}' ): lowerCAmelCase_ : List[Any] = requests.get(f'{PREFIX}{file}' , allow_redirects=A__ ) os.makedirs(f'{pytorch_dump_folder_path}/' , exist_ok=A__ ) open(f'{pytorch_dump_folder_path}/{file.split("/" )[-1]}' , """wb""" ).write(r.content ) lowerCAmelCase_ : Optional[int] = MODEL_MAPPING[model_name.split("""/""" )[-1]] lowerCAmelCase_ : List[str] = JukeboxConfig.from_pretrained(A__ ) lowerCAmelCase_ : Dict = JukeboxModel(A__ ) lowerCAmelCase_ : Optional[Any] = [] lowerCAmelCase_ : Dict = {} for i, dict_name in enumerate(A__ ): lowerCAmelCase_ : List[Any] = torch.load(f'{pytorch_dump_folder_path}/{dict_name.split("/" )[-1]}' )["""model"""] lowerCAmelCase_ : Dict = {} for k in old_dic.keys(): if k.endswith(""".b""" ): lowerCAmelCase_ : Optional[int] = old_dic[k] elif k.endswith(""".w""" ): lowerCAmelCase_ : Optional[int] = old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: lowerCAmelCase_ : Tuple = old_dic[k] else: lowerCAmelCase_ : List[Any] = old_dic[k] lowerCAmelCase_ : Union[str, Any] = """vqvae""" if i == 0 else f'priors.{3 - i}' lowerCAmelCase_ : str = fix_jukebox_keys(A__ , model.state_dict() , A__ , A__ ) weight_dict.append(A__ ) lowerCAmelCase_ : int = weight_dict.pop(0 ) model.vqvae.load_state_dict(A__ ) for i in range(len(A__ ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(A__ ).mkdir(exist_ok=A__ ) with open(f'{pytorch_dump_folder_path}/mapping.json' , """w""" ) as txtfile: json.dump(A__ , A__ ) print(f'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(A__ ) return weight_dict if __name__ == "__main__": __A : str = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="jukebox-5b-lyrics", type=str, help="Name of the model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default="jukebox-5b-lyrics-converted", type=str, help="Path to the output PyTorch model directory.", ) __A : Optional[Any] = parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
89
0
'''simple docstring''' from typing import List, Optional, Union import numpy as np import PIL.Image from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, PILImageResampling, get_image_size, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging _A : str =logging.get_logger(__name__) class _lowercase ( _lowercase ): a = ["""pixel_values"""] def __init__( self: List[Any] , UpperCamelCase__: bool = True , UpperCamelCase__: int = 32 , UpperCamelCase__: Optional[int]=PILImageResampling.BILINEAR , UpperCamelCase__: bool = True , **UpperCamelCase__: Any , ): lowerCamelCase__ : Optional[int] = do_resize lowerCamelCase__ : List[Any] = do_rescale lowerCamelCase__ : Optional[int] = size_divisor lowerCamelCase__ : Union[str, Any] = resample super().__init__(**UpperCamelCase__ ) def lowerCamelCase_ ( self: int , UpperCamelCase__: np.ndarray , UpperCamelCase__: int , UpperCamelCase__: Optional[Any] , UpperCamelCase__: Optional[ChannelDimension] = None , **UpperCamelCase__: int ): lowerCamelCase__ , lowerCamelCase__ : List[Any] = get_image_size(UpperCamelCase__ ) # Rounds the height and width down to the closest multiple of size_divisor lowerCamelCase__ : Any = height // size_divisor * size_divisor lowerCamelCase__ : Any = width // size_divisor * size_divisor lowerCamelCase__ : Tuple = resize(UpperCamelCase__ , (new_h, new_w) , resample=UpperCamelCase__ , data_format=UpperCamelCase__ , **UpperCamelCase__ ) return image def lowerCamelCase_ ( self: Optional[int] , UpperCamelCase__: np.ndarray , UpperCamelCase__: float , UpperCamelCase__: Optional[ChannelDimension] = None , **UpperCamelCase__: List[str] ): return rescale(image=UpperCamelCase__ , scale=UpperCamelCase__ , data_format=UpperCamelCase__ , **UpperCamelCase__ ) def lowerCamelCase_ ( self: str , UpperCamelCase__: Union["PIL.Image.Image", TensorType, List["PIL.Image.Image"], List[TensorType]] , UpperCamelCase__: Optional[bool] = None , UpperCamelCase__: Optional[int] = None , UpperCamelCase__: Optional[Any]=None , UpperCamelCase__: Optional[bool] = None , UpperCamelCase__: Optional[Union[TensorType, str]] = None , UpperCamelCase__: ChannelDimension = ChannelDimension.FIRST , **UpperCamelCase__: int , ): lowerCamelCase__ : str = do_resize if do_resize is not None else self.do_resize lowerCamelCase__ : str = do_rescale if do_rescale is not None else self.do_rescale lowerCamelCase__ : Tuple = size_divisor if size_divisor is not None else self.size_divisor lowerCamelCase__ : Optional[Any] = resample if resample is not None else self.resample if do_resize and size_divisor is None: raise ValueError("""size_divisor is required for resizing""" ) lowerCamelCase__ : Union[str, Any] = make_list_of_images(UpperCamelCase__ ) if not valid_images(UpperCamelCase__ ): raise ValueError("""Invalid image(s)""" ) # All transformations expect numpy arrays. lowerCamelCase__ : Tuple = [to_numpy_array(UpperCamelCase__ ) for img in images] if do_resize: lowerCamelCase__ : List[Any] = [self.resize(UpperCamelCase__ , size_divisor=UpperCamelCase__ , resample=UpperCamelCase__ ) for image in images] if do_rescale: lowerCamelCase__ : Dict = [self.rescale(UpperCamelCase__ , scale=1 / 255 ) for image in images] lowerCamelCase__ : int = [to_channel_dimension_format(UpperCamelCase__ , UpperCamelCase__ ) for image in images] lowerCamelCase__ : List[Any] = {"""pixel_values""": images} return BatchFeature(data=UpperCamelCase__ , tensor_type=UpperCamelCase__ )
41
'''simple docstring''' import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, ByTaTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): _A : List[Any] ='''pt''' elif is_tf_available(): _A : Any ='''tf''' else: _A : List[str] ='''jax''' class _lowercase ( _lowercase , unittest.TestCase ): a = ByTaTokenizer a = False def lowerCamelCase_ ( self: str ): super().setUp() lowerCamelCase__ : str = ByTaTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowerCamelCase_ ( self: Optional[int] ): return ByTaTokenizer.from_pretrained("""google/byt5-small""" ) def lowerCamelCase_ ( self: Any , **UpperCamelCase__: Tuple ): return self.tokenizer_class.from_pretrained(self.tmpdirname , **UpperCamelCase__ ) def lowerCamelCase_ ( self: Union[str, Any] , UpperCamelCase__: str , UpperCamelCase__: Any=False , UpperCamelCase__: Union[str, Any]=20 , UpperCamelCase__: Optional[int]=5 ): # XXX The default common tokenizer tests assume that every ID is decodable on its own. # This assumption is invalid for ByT5 because single bytes might not be # valid utf-8 (byte 128 for instance). # Here we're overriding the smallest possible method to provide # a clean sequence without making the same assumption. lowerCamelCase__ : List[str] = [] for i in range(len(UpperCamelCase__ ) ): try: lowerCamelCase__ : Tuple = tokenizer.decode([i] , clean_up_tokenization_spaces=UpperCamelCase__ ) except UnicodeDecodeError: pass toks.append((i, tok) ) lowerCamelCase__ : Union[str, Any] = list(filter(lambda UpperCamelCase__ : re.match(R"""^[ a-zA-Z]+$""" , t[1] ) , UpperCamelCase__ ) ) lowerCamelCase__ : Tuple = list(filter(lambda UpperCamelCase__ : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=UpperCamelCase__ ) , UpperCamelCase__ ) ) if max_length is not None and len(UpperCamelCase__ ) > max_length: lowerCamelCase__ : Dict = toks[:max_length] if min_length is not None and len(UpperCamelCase__ ) < min_length and len(UpperCamelCase__ ) > 0: while len(UpperCamelCase__ ) < min_length: lowerCamelCase__ : Optional[Any] = toks + toks # toks_str = [t[1] for t in toks] lowerCamelCase__ : Union[str, Any] = [t[0] for t in toks] # Ensure consistency lowerCamelCase__ : Union[str, Any] = tokenizer.decode(UpperCamelCase__ , clean_up_tokenization_spaces=UpperCamelCase__ ) if " " not in output_txt and len(UpperCamelCase__ ) > 1: lowerCamelCase__ : Optional[int] = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=UpperCamelCase__ ) + """ """ + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=UpperCamelCase__ ) ) if with_prefix_space: lowerCamelCase__ : str = """ """ + output_txt lowerCamelCase__ : List[Any] = tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) return output_txt, output_ids def lowerCamelCase_ ( self: Tuple ): lowerCamelCase__ : str = self.ta_base_tokenizer lowerCamelCase__ : Union[str, Any] = tokenizer(["""hi</s>""", """I went to the gym</s>""", """</s>"""] ) lowerCamelCase__ : Optional[int] = tokenizer(["""hi""", """I went to the gym""", """"""] ) self.assertListEqual(batch_with_eos_added["""input_ids"""] , batch_without_eos_added["""input_ids"""] ) def lowerCamelCase_ ( self: Tuple ): lowerCamelCase__ : Optional[Any] = self.ta_base_tokenizer lowerCamelCase__ : Dict = """Unicode €.""" lowerCamelCase__ : List[Any] = tokenizer(UpperCamelCase__ ) lowerCamelCase__ : List[str] = [88, 113, 108, 102, 114, 103, 104, 35, 229, 133, 175, 49, 1] self.assertEqual(encoded["""input_ids"""] , UpperCamelCase__ ) # decoding lowerCamelCase__ : Tuple = tokenizer.decode(UpperCamelCase__ ) self.assertEqual(UpperCamelCase__ , """Unicode €.</s>""" ) lowerCamelCase__ : List[Any] = tokenizer("""e è é ê ë""" ) lowerCamelCase__ : List[Any] = [104, 35, 198, 171, 35, 198, 172, 35, 198, 173, 35, 198, 174, 1] self.assertEqual(encoded["""input_ids"""] , UpperCamelCase__ ) # decoding lowerCamelCase__ : str = tokenizer.decode(UpperCamelCase__ ) self.assertEqual(UpperCamelCase__ , """e è é ê ë</s>""" ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode("""e è é ê ë""" ) ) , """e è é ê ë</s>""" ) def lowerCamelCase_ ( self: Any ): lowerCamelCase__ : int = self.ta_base_tokenizer lowerCamelCase__ : Tuple = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] # fmt: off lowerCamelCase__ : List[str] = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 1, 0] # fmt: on lowerCamelCase__ : int = tokenizer(UpperCamelCase__ , padding=UpperCamelCase__ , return_tensors=UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) if FRAMEWORK != "jax": lowerCamelCase__ : Any = list(batch.input_ids.numpy()[0] ) else: lowerCamelCase__ : str = list(batch.input_ids.tolist()[0] ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) self.assertEqual((2, 37) , batch.input_ids.shape ) self.assertEqual((2, 37) , batch.attention_mask.shape ) def lowerCamelCase_ ( self: List[Any] ): lowerCamelCase__ : List[str] = self.ta_base_tokenizer lowerCamelCase__ : Tuple = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] lowerCamelCase__ : Tuple = tokenizer(UpperCamelCase__ , padding=UpperCamelCase__ , return_tensors=UpperCamelCase__ ) # check if input_ids are returned and no decoder_input_ids self.assertIn("""input_ids""" , UpperCamelCase__ ) self.assertIn("""attention_mask""" , UpperCamelCase__ ) self.assertNotIn("""decoder_input_ids""" , UpperCamelCase__ ) self.assertNotIn("""decoder_attention_mask""" , UpperCamelCase__ ) def lowerCamelCase_ ( self: Tuple ): lowerCamelCase__ : str = self.ta_base_tokenizer lowerCamelCase__ : List[Any] = [ """Summary of the text.""", """Another summary.""", ] lowerCamelCase__ : Union[str, Any] = tokenizer( text_target=UpperCamelCase__ , max_length=32 , padding="""max_length""" , truncation=UpperCamelCase__ , return_tensors=UpperCamelCase__ ) self.assertEqual(32 , targets["""input_ids"""].shape[1] ) def lowerCamelCase_ ( self: str ): lowerCamelCase__ : Tuple = self.ta_base_tokenizer lowerCamelCase__ : str = ["""A long paragraph for summarization. </s>"""] lowerCamelCase__ : Optional[Any] = ["""Summary of the text. </s>"""] # fmt: off lowerCamelCase__ : Tuple = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 35, 1] lowerCamelCase__ : Any = [86, 120, 112, 112, 100, 117, 124, 35, 114, 105, 35, 119, 107, 104, 35, 119, 104, 123, 119, 49, 35, 1] # fmt: on lowerCamelCase__ : Any = tokenizer(UpperCamelCase__ , text_target=UpperCamelCase__ ) self.assertEqual(UpperCamelCase__ , batch["""input_ids"""][0] ) self.assertEqual(UpperCamelCase__ , batch["""labels"""][0] ) def lowerCamelCase_ ( self: Optional[int] ): # safety check on max_len default value so we are sure the test works lowerCamelCase__ : Any = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test lowerCamelCase__ : Any = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc lowerCamelCase__ : int = tempfile.mkdtemp() lowerCamelCase__ : List[str] = """ He is very happy, UNwant\u00E9d,running""" lowerCamelCase__ : List[Any] = tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) tokenizer.save_pretrained(UpperCamelCase__ ) lowerCamelCase__ : List[Any] = tokenizer.__class__.from_pretrained(UpperCamelCase__ ) lowerCamelCase__ : Optional[int] = after_tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) shutil.rmtree(UpperCamelCase__ ) lowerCamelCase__ : Any = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc lowerCamelCase__ : Any = tempfile.mkdtemp() lowerCamelCase__ : Optional[Any] = """ He is very happy, UNwant\u00E9d,running""" tokenizer.add_tokens(["""bim""", """bambam"""] ) lowerCamelCase__ : Optional[int] = tokenizer.additional_special_tokens additional_special_tokens.append("""new_additional_special_token""" ) tokenizer.add_special_tokens({"""additional_special_tokens""": additional_special_tokens} ) lowerCamelCase__ : List[Any] = tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) tokenizer.save_pretrained(UpperCamelCase__ ) lowerCamelCase__ : Union[str, Any] = tokenizer.__class__.from_pretrained(UpperCamelCase__ ) lowerCamelCase__ : int = after_tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) self.assertIn("""new_additional_special_token""" , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) lowerCamelCase__ : Any = tokenizer.__class__.from_pretrained(UpperCamelCase__ , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(UpperCamelCase__ ) def lowerCamelCase_ ( self: Optional[int] ): lowerCamelCase__ : List[Any] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(UpperCamelCase__ ) with open(os.path.join(UpperCamelCase__ , """special_tokens_map.json""" ) , encoding="""utf-8""" ) as json_file: lowerCamelCase__ : Union[str, Any] = json.load(UpperCamelCase__ ) with open(os.path.join(UpperCamelCase__ , """tokenizer_config.json""" ) , encoding="""utf-8""" ) as json_file: lowerCamelCase__ : Optional[Any] = json.load(UpperCamelCase__ ) lowerCamelCase__ : Optional[int] = [F'''<extra_id_{i}>''' for i in range(125 )] lowerCamelCase__ : int = added_tokens_extra_ids + [ """an_additional_special_token""" ] lowerCamelCase__ : Optional[Any] = added_tokens_extra_ids + [ """an_additional_special_token""" ] with open(os.path.join(UpperCamelCase__ , """special_tokens_map.json""" ) , """w""" , encoding="""utf-8""" ) as outfile: json.dump(UpperCamelCase__ , UpperCamelCase__ ) with open(os.path.join(UpperCamelCase__ , """tokenizer_config.json""" ) , """w""" , encoding="""utf-8""" ) as outfile: json.dump(UpperCamelCase__ , UpperCamelCase__ ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files lowerCamelCase__ : Dict = tokenizer_class.from_pretrained( UpperCamelCase__ , ) self.assertIn( """an_additional_special_token""" , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( ["""an_additional_special_token"""] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(["""an_additional_special_token"""] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained lowerCamelCase__ : Optional[Any] = added_tokens_extra_ids + [AddedToken("""a_new_additional_special_token""" , lstrip=UpperCamelCase__ )] lowerCamelCase__ : Any = tokenizer_class.from_pretrained( UpperCamelCase__ , additional_special_tokens=UpperCamelCase__ , ) self.assertIn("""a_new_additional_special_token""" , tokenizer.additional_special_tokens ) self.assertEqual( ["""a_new_additional_special_token"""] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(["""a_new_additional_special_token"""] ) ) , ) def lowerCamelCase_ ( self: Union[str, Any] ): lowerCamelCase__ : Dict = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(UpperCamelCase__ ) lowerCamelCase__ : str = tokenizer_class.from_pretrained(UpperCamelCase__ ) self.assertTrue(tokenizer.decode([255] ) == """""" ) def lowerCamelCase_ ( self: Optional[int] ): pass def lowerCamelCase_ ( self: str ): pass def lowerCamelCase_ ( self: List[str] ): pass def lowerCamelCase_ ( self: Optional[int] ): pass def lowerCamelCase_ ( self: int ): # The default common tokenizer tests uses invalid tokens for ByT5 that can only accept one-character strings # and special added tokens as tokens lowerCamelCase__ : Dict = self.get_tokenizers(fast=UpperCamelCase__ , do_lower_case=UpperCamelCase__ ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): lowerCamelCase__ : Dict = ["""t""", """h""", """i""", """s""", """ """, """i""", """s""", """ """, """a""", """ """, """t""", """e""", """x""", """t""", """</s>"""] lowerCamelCase__ : Optional[int] = tokenizer.convert_tokens_to_string(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) def lowerCamelCase_ ( self: Any ): lowerCamelCase__ : str = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): lowerCamelCase__ : str = [ """bos_token""", """eos_token""", """unk_token""", """sep_token""", """pad_token""", """cls_token""", """mask_token""", ] lowerCamelCase__ : str = 0 lowerCamelCase__ : Any = tokenizer.convert_ids_to_tokens( UpperCamelCase__ , skip_special_tokens=UpperCamelCase__ ) for attr in attributes_list: setattr(UpperCamelCase__ , attr + """_id""" , UpperCamelCase__ ) self.assertEqual(getattr(UpperCamelCase__ , UpperCamelCase__ ) , UpperCamelCase__ ) self.assertEqual(getattr(UpperCamelCase__ , attr + """_id""" ) , UpperCamelCase__ ) setattr(UpperCamelCase__ , attr + """_id""" , UpperCamelCase__ ) self.assertEqual(getattr(UpperCamelCase__ , UpperCamelCase__ ) , UpperCamelCase__ ) self.assertEqual(getattr(UpperCamelCase__ , attr + """_id""" ) , UpperCamelCase__ ) setattr(UpperCamelCase__ , """additional_special_tokens_ids""" , [] ) self.assertListEqual(getattr(UpperCamelCase__ , """additional_special_tokens""" ) , [] ) self.assertListEqual(getattr(UpperCamelCase__ , """additional_special_tokens_ids""" ) , [] ) setattr(UpperCamelCase__ , """additional_special_tokens_ids""" , [token_id_to_test_setters] ) self.assertListEqual(getattr(UpperCamelCase__ , """additional_special_tokens""" ) , [token_to_test_setters] ) self.assertListEqual(getattr(UpperCamelCase__ , """additional_special_tokens_ids""" ) , [token_id_to_test_setters] )
41
1
'''simple docstring''' from ...processing_utils import ProcessorMixin class __magic_name__ ( _UpperCAmelCase): UpperCamelCase__ = '''WhisperFeatureExtractor''' UpperCamelCase__ = '''WhisperTokenizer''' def __init__( self : Any , lowercase_ : Optional[Any] , lowercase_ : Dict ): super().__init__(lowercase_ , lowercase_ ) lowercase_ : Any = self.feature_extractor lowercase_ : Tuple = False def SCREAMING_SNAKE_CASE_ ( self : Tuple , lowercase_ : str=None , lowercase_ : Any=None , lowercase_ : Any=True ): return self.tokenizer.get_decoder_prompt_ids(task=lowercase_ , language=lowercase_ , no_timestamps=lowercase_ ) def __call__( self : Union[str, Any] , *lowercase_ : str , **lowercase_ : Dict ): # For backward compatibility if self._in_target_context_manager: return self.current_processor(*lowercase_ , **lowercase_ ) lowercase_ : str = kwargs.pop("""audio""" , lowercase_ ) lowercase_ : Tuple = kwargs.pop("""sampling_rate""" , lowercase_ ) lowercase_ : Dict = kwargs.pop("""text""" , lowercase_ ) if len(lowercase_ ) > 0: lowercase_ : Tuple = args[0] lowercase_ : Any = args[1:] if audio is None and text is None: raise ValueError("""You need to specify either an `audio` or `text` input to process.""" ) if audio is not None: lowercase_ : List[Any] = self.feature_extractor(lowercase_ , *lowercase_ , sampling_rate=lowercase_ , **lowercase_ ) if text is not None: lowercase_ : Any = self.tokenizer(lowercase_ , **lowercase_ ) if text is None: return inputs elif audio is None: return encodings else: lowercase_ : List[Any] = encodings["""input_ids"""] return inputs def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , *lowercase_ : List[str] , **lowercase_ : List[Any] ): return self.tokenizer.batch_decode(*lowercase_ , **lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , *lowercase_ : int , **lowercase_ : List[Any] ): return self.tokenizer.decode(*lowercase_ , **lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : List[str] , lowercase_ : str , lowercase_ : List[Any]="np" ): return self.tokenizer.get_prompt_ids(lowercase_ , return_tensors=lowercase_ )
21
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available _lowercase : Union[str, Any] = {"tokenization_herbert": ["HerbertTokenizer"]} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : str = ["HerbertTokenizerFast"] if TYPE_CHECKING: from .tokenization_herbert import HerbertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_herbert_fast import HerbertTokenizerFast else: import sys _lowercase : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
21
1