code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_video_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import VivitImageProcessor class a_ ( unittest.TestCase ): '''simple docstring''' def __init__( self , A , A=7 , A=3 , A=10 , A=18 , A=30 , A=400 , A=True , A=None , A=True , A=[0.5, 0.5, 0.5] , A=[0.5, 0.5, 0.5] , A=None , ) -> List[Any]: _SCREAMING_SNAKE_CASE = size if size is not None else {"""shortest_edge""": 18} _SCREAMING_SNAKE_CASE = crop_size if crop_size is not None else {"""height""": 18, """width""": 18} _SCREAMING_SNAKE_CASE = parent _SCREAMING_SNAKE_CASE = batch_size _SCREAMING_SNAKE_CASE = num_channels _SCREAMING_SNAKE_CASE = num_frames _SCREAMING_SNAKE_CASE = image_size _SCREAMING_SNAKE_CASE = min_resolution _SCREAMING_SNAKE_CASE = max_resolution _SCREAMING_SNAKE_CASE = do_resize _SCREAMING_SNAKE_CASE = size _SCREAMING_SNAKE_CASE = do_normalize _SCREAMING_SNAKE_CASE = image_mean _SCREAMING_SNAKE_CASE = image_std _SCREAMING_SNAKE_CASE = crop_size def snake_case_( self ) -> str: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class a_ ( snake_case_ , unittest.TestCase ): '''simple docstring''' UpperCamelCase = VivitImageProcessor if is_vision_available() else None def snake_case_( self ) -> List[str]: _SCREAMING_SNAKE_CASE = VivitImageProcessingTester(self ) @property def snake_case_( self ) -> Any: return self.image_processor_tester.prepare_image_processor_dict() def snake_case_( self ) -> int: _SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A , """image_mean""" ) ) self.assertTrue(hasattr(A , """image_std""" ) ) self.assertTrue(hasattr(A , """do_normalize""" ) ) self.assertTrue(hasattr(A , """do_resize""" ) ) self.assertTrue(hasattr(A , """do_center_crop""" ) ) self.assertTrue(hasattr(A , """size""" ) ) def snake_case_( self ) -> int: _SCREAMING_SNAKE_CASE = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 18} ) self.assertEqual(image_processor.crop_size , {"""height""": 18, """width""": 18} ) _SCREAMING_SNAKE_CASE = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42} ) self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84} ) def snake_case_( self ) -> Optional[int]: # Initialize image_processing _SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) # create random PIL videos _SCREAMING_SNAKE_CASE = prepare_video_inputs(self.image_processor_tester , equal_resolution=A ) for video in video_inputs: self.assertIsInstance(A , A ) self.assertIsInstance(video[0] , Image.Image ) # Test not batched input _SCREAMING_SNAKE_CASE = image_processing(video_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _SCREAMING_SNAKE_CASE = image_processing(A , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def snake_case_( self ) -> List[str]: # Initialize image_processing _SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _SCREAMING_SNAKE_CASE = prepare_video_inputs(self.image_processor_tester , equal_resolution=A , numpify=A ) for video in video_inputs: self.assertIsInstance(A , A ) self.assertIsInstance(video[0] , np.ndarray ) # Test not batched input _SCREAMING_SNAKE_CASE = image_processing(video_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _SCREAMING_SNAKE_CASE = image_processing(A , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def snake_case_( self ) -> str: # Initialize image_processing _SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _SCREAMING_SNAKE_CASE = prepare_video_inputs(self.image_processor_tester , equal_resolution=A , torchify=A ) for video in video_inputs: self.assertIsInstance(A , A ) self.assertIsInstance(video[0] , torch.Tensor ) # Test not batched input _SCREAMING_SNAKE_CASE = image_processing(video_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _SCREAMING_SNAKE_CASE = image_processing(A , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , )
58
'''simple docstring''' import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import numpy as np from utils_multiple_choice import MultipleChoiceDataset, Split, processors import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process A =logging.getLogger(__name__) def snake_case_ (_a : Dict , _a : Union[str, Any] ): return (preds == labels).mean() @dataclass class _a : __a : str = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) __a : Optional[str] = field( default=__a , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) __a : Optional[str] = field( default=__a , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) __a : Optional[str] = field( default=__a , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) @dataclass class _a : __a : str = field(metadata={"""help""": """The name of the task to train on: """ + """, """.join(processors.keys() )} ) __a : str = field(metadata={"""help""": """Should contain the data files for the task."""} ) __a : int = field( default=128 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) __a : bool = field( default=__a , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) def snake_case_ (): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. UpperCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F"Output directory ({training_args.output_dir}) already exists and is not empty. Use" ''' --overwrite_output_dir to overcome.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''' , _a ) # Set seed set_seed(training_args.seed ) try: UpperCAmelCase = processors[data_args.task_name]() UpperCAmelCase = processor.get_labels() UpperCAmelCase = len(_a ) except KeyError: raise ValueError('''Task not found: %s''' % (data_args.task_name) ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. UpperCAmelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=_a , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , ) UpperCAmelCase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) UpperCAmelCase = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=_a , cache_dir=model_args.cache_dir , ) # Get datasets UpperCAmelCase = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=_a , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) UpperCAmelCase = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=_a , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def compute_metrics(_a : EvalPrediction ) -> Dict: UpperCAmelCase = np.argmax(p.predictions , axis=1 ) return {"acc": simple_accuracy(_a , p.label_ids )} # Data collator UpperCAmelCase = DataCollatorWithPadding(_a , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer UpperCAmelCase = Trainer( model=_a , args=_a , train_dataset=_a , eval_dataset=_a , compute_metrics=_a , data_collator=_a , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation UpperCAmelCase = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) UpperCAmelCase = trainer.evaluate() UpperCAmelCase = os.path.join(training_args.output_dir , '''eval_results.txt''' ) if trainer.is_world_master(): with open(_a , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key, value in result.items(): logger.info(''' %s = %s''' , _a , _a ) writer.write('''%s = %s\n''' % (key, value) ) results.update(_a ) return results def snake_case_ (_a : Optional[int] ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
34
0
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import torch from ..models.clipseg import CLIPSegForImageSegmentation from ..utils import is_vision_available, requires_backends from .base import PipelineTool if is_vision_available(): from PIL import Image class UpperCAmelCase_ ( _a): '''simple docstring''' __UpperCamelCase : List[Any] = ( "This is a tool that creates a segmentation mask of an image according to a label. It cannot create an image." "It takes two arguments named `image` which should be the original image, and `label` which should be a text " "describing the elements what should be identified in the segmentation mask. The tool returns the mask." ) __UpperCamelCase : int = "CIDAS/clipseg-rd64-refined" __UpperCamelCase : Tuple = "image_segmenter" __UpperCamelCase : List[str] = CLIPSegForImageSegmentation __UpperCamelCase : Dict = ["image", "text"] __UpperCamelCase : Union[str, Any] = ["image"] def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(self , ['''vision'''] ) super().__init__(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" return self.pre_processor(text=[label] , images=[image] , padding=__SCREAMING_SNAKE_CASE , return_tensors='''pt''' ) def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" with torch.no_grad(): UpperCamelCase : Tuple = self.model(**__SCREAMING_SNAKE_CASE ).logits return logits def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Any = outputs.cpu().detach().numpy() UpperCamelCase : Any = 0 UpperCamelCase : Tuple = 1 return Image.fromarray((array * 255).astype(np.uinta ) )
315
import warnings from ...utils import logging from .image_processing_imagegpt import ImageGPTImageProcessor __UpperCAmelCase : Optional[int] = logging.get_logger(__name__) class UpperCAmelCase_ ( _a): '''simple docstring''' def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" warnings.warn( '''The class ImageGPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use ImageGPTImageProcessor instead.''' , __SCREAMING_SNAKE_CASE , ) super().__init__(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
315
1
"""simple docstring""" lowercase_ = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/" def lowercase ( lowerCAmelCase__ : bytes ) -> bytes: # Make sure the supplied data is a bytes-like object if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): __a = f'''a bytes-like object is required, not \'{data.__class__.__name__}\'''' raise TypeError(lowerCAmelCase__ ) __a = ''''''.join(bin(lowerCAmelCase__ )[2:].zfill(8 ) for byte in data ) __a = len(lowerCAmelCase__ ) % 6 != 0 if padding_needed: # The padding that will be added later __a = b'''=''' * ((6 - len(lowerCAmelCase__ ) % 6) // 2) # Append binary_stream with arbitrary binary digits (0's by default) to make its # length a multiple of 6. binary_stream += "0" * (6 - len(lowerCAmelCase__ ) % 6) else: __a = b'''''' # Encode every 6 binary digits to their corresponding Base64 character return ( "".join( B64_CHARSET[int(binary_stream[index : index + 6] , 2 )] for index in range(0 , len(lowerCAmelCase__ ) , 6 ) ).encode() + padding ) def lowercase ( lowerCAmelCase__ : str ) -> bytes: # Make sure encoded_data is either a string or a bytes-like object if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): __a = ( '''argument should be a bytes-like object or ASCII string, ''' f'''not \'{encoded_data.__class__.__name__}\'''' ) raise TypeError(lowerCAmelCase__ ) # In case encoded_data is a bytes-like object, make sure it contains only # ASCII characters so we convert it to a string object if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): try: __a = encoded_data.decode('''utf-8''' ) except UnicodeDecodeError: raise ValueError('''base64 encoded data should only contain ASCII characters''' ) __a = encoded_data.count('''=''' ) # Check if the encoded string contains non base64 characters if padding: assert all( char in B64_CHARSET for char in encoded_data[:-padding] ), "Invalid base64 character(s) found." else: assert all( char in B64_CHARSET for char in encoded_data ), "Invalid base64 character(s) found." # Check the padding assert len(lowerCAmelCase__ ) % 4 == 0 and padding < 3, "Incorrect padding" if padding: # Remove padding if there is one __a = encoded_data[:-padding] __a = ''''''.join( bin(B64_CHARSET.index(lowerCAmelCase__ ) )[2:].zfill(6 ) for char in encoded_data )[: -padding * 2] else: __a = ''''''.join( bin(B64_CHARSET.index(lowerCAmelCase__ ) )[2:].zfill(6 ) for char in encoded_data ) __a = [ int(binary_stream[index : index + 8] , 2 ) for index in range(0 , len(lowerCAmelCase__ ) , 8 ) ] return bytes(lowerCAmelCase__ ) if __name__ == "__main__": import doctest doctest.testmod()
45
'''simple docstring''' def _A ( lowercase__ ): lowercase__ = False while is_sorted is False: # Until all the indices are traversed keep looping lowercase__ = True for i in range(0 , len(lowercase__ ) - 1 , 2 ): # iterating over all even indices if input_list[i] > input_list[i + 1]: lowercase__ , lowercase__ = input_list[i + 1], input_list[i] # swapping if elements not in order lowercase__ = False for i in range(1 , len(lowercase__ ) - 1 , 2 ): # iterating over all odd indices if input_list[i] > input_list[i + 1]: lowercase__ , lowercase__ = input_list[i + 1], input_list[i] # swapping if elements not in order lowercase__ = False return input_list if __name__ == "__main__": print("Enter list to be sorted") __A = [int(x) for x in input().split()] # inputing elements of the list in one line __A = odd_even_sort(input_list) print("The sorted list is") print(sorted_list)
164
0
"""simple docstring""" import unittest import numpy as np import torch from diffusers import DDIMPipeline, DDIMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow, torch_device from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class _SCREAMING_SNAKE_CASE ( UpperCAmelCase_ , unittest.TestCase ): UpperCAmelCase_ :Optional[Any] = DDIMPipeline UpperCAmelCase_ :str = UNCONDITIONAL_IMAGE_GENERATION_PARAMS UpperCAmelCase_ :Any = PipelineTesterMixin.required_optional_params - { """num_images_per_prompt""", """latents""", """callback""", """callback_steps""", } UpperCAmelCase_ :str = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS UpperCAmelCase_ :Optional[Any] = False def __lowerCAmelCase ( self ) -> Tuple: torch.manual_seed(0 ) lowerCAmelCase_ :Optional[int] = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("""DownBlock2D""", """AttnDownBlock2D""") , up_block_types=("""AttnUpBlock2D""", """UpBlock2D""") , ) lowerCAmelCase_ :int = DDIMScheduler() lowerCAmelCase_ :Any = {'''unet''': unet, '''scheduler''': scheduler} return components def __lowerCAmelCase ( self , __A , __A=0 ) -> Optional[Any]: if str(__lowercase ).startswith("""mps""" ): lowerCAmelCase_ :List[Any] = torch.manual_seed(__lowercase ) else: lowerCAmelCase_ :List[str] = torch.Generator(device=__lowercase ).manual_seed(__lowercase ) lowerCAmelCase_ :List[Any] = { '''batch_size''': 1, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def __lowerCAmelCase ( self ) -> Optional[Any]: lowerCAmelCase_ :List[Any] = '''cpu''' lowerCAmelCase_ :int = self.get_dummy_components() lowerCAmelCase_ :List[Any] = self.pipeline_class(**__lowercase ) pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) lowerCAmelCase_ :Any = self.get_dummy_inputs(__lowercase ) lowerCAmelCase_ :Union[str, Any] = pipe(**__lowercase ).images lowerCAmelCase_ :List[Any] = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 32, 32, 3) ) lowerCAmelCase_ :int = np.array( [1.0_00E00, 5.7_17E-01, 4.7_17E-01, 1.0_00E00, 0.0_00E00, 1.0_00E00, 3.0_00E-04, 0.0_00E00, 9.0_00E-04] ) lowerCAmelCase_ :str = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(__lowercase , 1E-3 ) def __lowerCAmelCase ( self ) -> List[Any]: super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) def __lowerCAmelCase ( self ) -> Optional[int]: super().test_save_load_local(expected_max_difference=3E-3 ) def __lowerCAmelCase ( self ) -> Tuple: super().test_save_load_optional_components(expected_max_difference=3E-3 ) def __lowerCAmelCase ( self ) -> int: super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __lowerCAmelCase ( self ) -> Any: lowerCAmelCase_ :List[str] = '''google/ddpm-cifar10-32''' lowerCAmelCase_ :Optional[Any] = UNetaDModel.from_pretrained(__lowercase ) lowerCAmelCase_ :Dict = DDIMScheduler() lowerCAmelCase_ :Optional[Any] = DDIMPipeline(unet=__lowercase , scheduler=__lowercase ) ddim.to(__lowercase ) ddim.set_progress_bar_config(disable=__lowercase ) lowerCAmelCase_ :List[str] = torch.manual_seed(0 ) lowerCAmelCase_ :Optional[int] = ddim(generator=__lowercase , eta=0.0 , output_type="""numpy""" ).images lowerCAmelCase_ :Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowerCAmelCase_ :Union[str, Any] = np.array([0.1_7_2_3, 0.1_6_1_7, 0.1_6_0_0, 0.1_6_2_6, 0.1_4_9_7, 0.1_5_1_3, 0.1_5_0_5, 0.1_4_4_2, 0.1_4_5_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def __lowerCAmelCase ( self ) -> List[str]: lowerCAmelCase_ :Optional[int] = '''google/ddpm-ema-bedroom-256''' lowerCAmelCase_ :str = UNetaDModel.from_pretrained(__lowercase ) lowerCAmelCase_ :int = DDIMScheduler.from_pretrained(__lowercase ) lowerCAmelCase_ :Any = DDIMPipeline(unet=__lowercase , scheduler=__lowercase ) ddpm.to(__lowercase ) ddpm.set_progress_bar_config(disable=__lowercase ) lowerCAmelCase_ :Dict = torch.manual_seed(0 ) lowerCAmelCase_ :Any = ddpm(generator=__lowercase , output_type="""numpy""" ).images lowerCAmelCase_ :List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) lowerCAmelCase_ :Dict = np.array([0.0_0_6_0, 0.0_2_0_1, 0.0_3_4_4, 0.0_0_2_4, 0.0_0_1_8, 0.0_0_0_2, 0.0_0_2_2, 0.0_0_0_0, 0.0_0_6_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
366
"""simple docstring""" from typing import Optional import numpy as np import torch from torch import nn from transformers import GPTaConfig, GPTaLMHeadModel from transformers.modeling_utils import ModuleUtilsMixin from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class _SCREAMING_SNAKE_CASE ( A__ , A__ , A__ ): UpperCAmelCase_ :List[str] = [r"h\.\d+\.attn\.bias", r"h\.\d+\.attn\.masked_bias"] @register_to_config def __init__( self , __A , __A , __A = None , __A = 5_0257 , __A = 1024 , __A = 768 , __A = 12 , __A = 12 , __A = None , __A = "gelu_new" , __A = 0.1 , __A = 0.1 , __A = 0.1 , __A = 1E-5 , __A = 0.0_2 , __A = True , __A = True , __A = False , __A = False , ) -> Optional[Any]: super().__init__() lowerCAmelCase_ :List[str] = prefix_length if prefix_inner_dim != n_embd and prefix_hidden_dim is None: raise ValueError( f"""`prefix_hidden_dim` cannot be `None` when `prefix_inner_dim`: {prefix_hidden_dim} and""" f""" `n_embd`: {n_embd} are not equal.""" ) lowerCAmelCase_ :Union[str, Any] = prefix_inner_dim lowerCAmelCase_ :str = prefix_hidden_dim lowerCAmelCase_ :str = ( nn.Linear(self.prefix_inner_dim , self.prefix_hidden_dim ) if self.prefix_hidden_dim is not None else nn.Identity() ) lowerCAmelCase_ :List[Any] = ( nn.Linear(self.prefix_hidden_dim , __A ) if self.prefix_hidden_dim is not None else nn.Identity() ) lowerCAmelCase_ :Any = GPTaConfig( vocab_size=__A , n_positions=__A , n_embd=__A , n_layer=__A , n_head=__A , n_inner=__A , activation_function=__A , resid_pdrop=__A , embd_pdrop=__A , attn_pdrop=__A , layer_norm_epsilon=__A , initializer_range=__A , scale_attn_weights=__A , use_cache=__A , scale_attn_by_inverse_layer_idx=__A , reorder_and_upcast_attn=__A , ) lowerCAmelCase_ :Any = GPTaLMHeadModel(__A ) def __lowerCAmelCase ( self , __A , __A , __A = None , __A = None , ) -> List[str]: lowerCAmelCase_ :str = self.transformer.transformer.wte(__A ) lowerCAmelCase_ :Any = self.encode_prefix(__A ) lowerCAmelCase_ :Optional[Any] = self.decode_prefix(__A ) lowerCAmelCase_ :Optional[int] = torch.cat((prefix_embeds, embedding_text) , dim=1 ) if labels is not None: lowerCAmelCase_ :int = self.get_dummy_token(input_ids.shape[0] , input_ids.device ) lowerCAmelCase_ :Optional[Any] = torch.cat((dummy_token, input_ids) , dim=1 ) lowerCAmelCase_ :Tuple = self.transformer(inputs_embeds=__A , labels=__A , attention_mask=__A ) if self.prefix_hidden_dim is not None: return out, hidden else: return out def __lowerCAmelCase ( self , __A , __A ) -> torch.Tensor: return torch.zeros(__A , self.prefix_length , dtype=torch.intaa , device=__A ) def __lowerCAmelCase ( self , __A ) -> Optional[int]: return self.encode_prefix(__A ) @torch.no_grad() def __lowerCAmelCase ( self , __A , __A , __A ) -> Optional[int]: lowerCAmelCase_ :Tuple = torch.split(__A , 1 , dim=0 ) lowerCAmelCase_ :Optional[int] = [] lowerCAmelCase_ :List[str] = [] for feature in features: lowerCAmelCase_ :Tuple = self.decode_prefix(feature.to(__A ) ) # back to the clip feature # Only support beam search for now lowerCAmelCase_ , lowerCAmelCase_ :Optional[Any] = self.generate_beam( input_embeds=__A , device=__A , eos_token_id=__A ) generated_tokens.append(output_tokens[0] ) generated_seq_lengths.append(seq_lengths[0] ) lowerCAmelCase_ :Tuple = torch.stack(__A ) lowerCAmelCase_ :int = torch.stack(__A ) return generated_tokens, generated_seq_lengths @torch.no_grad() def __lowerCAmelCase ( self , __A=None , __A=None , __A=None , __A = 5 , __A = 67 , __A = 1.0 , __A = None , ) -> Union[str, Any]: lowerCAmelCase_ :Optional[int] = eos_token_id lowerCAmelCase_ :Optional[int] = None lowerCAmelCase_ :Any = None lowerCAmelCase_ :int = torch.ones(__A , device=__A , dtype=torch.int ) lowerCAmelCase_ :Optional[int] = torch.zeros(__A , device=__A , dtype=torch.bool ) if input_embeds is not None: lowerCAmelCase_ :List[str] = input_embeds else: lowerCAmelCase_ :Union[str, Any] = self.transformer.transformer.wte(__A ) for i in range(__A ): lowerCAmelCase_ :Optional[int] = self.transformer(inputs_embeds=__A ) lowerCAmelCase_ :str = outputs.logits lowerCAmelCase_ :str = logits[:, -1, :] / (temperature if temperature > 0 else 1.0) lowerCAmelCase_ :Dict = logits.softmax(-1 ).log() if scores is None: lowerCAmelCase_ , lowerCAmelCase_ :Any = logits.topk(__A , -1 ) lowerCAmelCase_ :Union[str, Any] = generated.expand(__A , *generated.shape[1:] ) lowerCAmelCase_ , lowerCAmelCase_ :List[str] = next_tokens.permute(1 , 0 ), scores.squeeze(0 ) if tokens is None: lowerCAmelCase_ :List[str] = next_tokens else: lowerCAmelCase_ :List[Any] = tokens.expand(__A , *tokens.shape[1:] ) lowerCAmelCase_ :Any = torch.cat((tokens, next_tokens) , dim=1 ) else: lowerCAmelCase_ :List[Any] = -float(np.inf ) lowerCAmelCase_ :int = 0 lowerCAmelCase_ :Optional[int] = scores[:, None] + logits seq_lengths[~is_stopped] += 1 lowerCAmelCase_ :List[Any] = scores_sum / seq_lengths[:, None] lowerCAmelCase_ , lowerCAmelCase_ :Tuple = scores_sum_average.view(-1 ).topk(__A , -1 ) lowerCAmelCase_ :Optional[Any] = next_tokens // scores_sum.shape[1] lowerCAmelCase_ :Dict = seq_lengths[next_tokens_source] lowerCAmelCase_ :Tuple = next_tokens % scores_sum.shape[1] lowerCAmelCase_ :Optional[Any] = next_tokens.unsqueeze(1 ) lowerCAmelCase_ :str = tokens[next_tokens_source] lowerCAmelCase_ :List[Any] = torch.cat((tokens, next_tokens) , dim=1 ) lowerCAmelCase_ :Dict = generated[next_tokens_source] lowerCAmelCase_ :Dict = scores_sum_average * seq_lengths lowerCAmelCase_ :Tuple = is_stopped[next_tokens_source] lowerCAmelCase_ :str = self.transformer.transformer.wte(next_tokens.squeeze() ).view(generated.shape[0] , 1 , -1 ) lowerCAmelCase_ :List[Any] = torch.cat((generated, next_token_embed) , dim=1 ) lowerCAmelCase_ :Optional[int] = is_stopped + next_tokens.eq(__A ).squeeze() if is_stopped.all(): break lowerCAmelCase_ :str = scores / seq_lengths lowerCAmelCase_ :Optional[int] = scores.argsort(descending=__A ) # tokens tensors are already padded to max_seq_length lowerCAmelCase_ :Optional[Any] = [tokens[i] for i in order] lowerCAmelCase_ :Dict = torch.stack(__A , dim=0 ) lowerCAmelCase_ :Tuple = torch.tensor([seq_lengths[i] for i in order] , dtype=seq_lengths.dtype ) return output_texts, seq_lengths
1
0
"""simple docstring""" from scipy.stats import pearsonr import datasets lowerCAmelCase__ = ''' Pearson correlation coefficient and p-value for testing non-correlation. The Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. ''' lowerCAmelCase__ = ''' Args: predictions (`list` of `int`): Predicted class labels, as returned by a model. references (`list` of `int`): Ground truth labels. return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`. Returns: pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation. p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities. Examples: Example 1-A simple example using only predictions and references. >>> pearsonr_metric = datasets.load_metric("pearsonr") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5]) >>> print(round(results[\'pearsonr\'], 2)) -0.74 Example 2-The same as Example 1, but that also returns the `p-value`. >>> pearsonr_metric = datasets.load_metric("pearsonr") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True) >>> print(sorted(list(results.keys()))) [\'p-value\', \'pearsonr\'] >>> print(round(results[\'pearsonr\'], 2)) -0.74 >>> print(round(results[\'p-value\'], 2)) 0.15 ''' lowerCAmelCase__ = ''' @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, Ilhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Antonio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class __snake_case ( datasets.Metric): def SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''float''' ), '''references''': datasets.Value('''float''' ), } ) , reference_urls=['''https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html'''] , ) def SCREAMING_SNAKE_CASE ( self : Any , __lowerCAmelCase : int , __lowerCAmelCase : Dict , __lowerCAmelCase : Optional[Any]=False ): """simple docstring""" if return_pvalue: _lowerCamelCase : List[Any] = pearsonr(__lowerCAmelCase , __lowerCAmelCase ) return {"pearsonr": results[0], "p-value": results[1]} else: return {"pearsonr": float(pearsonr(__lowerCAmelCase , __lowerCAmelCase )[0] )}
72
"""simple docstring""" import inspect from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel, VQModel from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class UpperCAmelCase_ ( _lowercase): def __init__( self : List[Any] , __UpperCamelCase : VQModel , __UpperCamelCase : UNetaDModel , __UpperCamelCase : DDIMScheduler ) -> Optional[Any]: super().__init__() self.register_modules(vqvae=__UpperCamelCase , unet=__UpperCamelCase , scheduler=__UpperCamelCase ) @torch.no_grad() def __call__( self : List[Any] , __UpperCamelCase : int = 1 , __UpperCamelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , __UpperCamelCase : float = 0.0 , __UpperCamelCase : int = 50 , __UpperCamelCase : Optional[str] = "pil" , __UpperCamelCase : bool = True , **__UpperCamelCase : Optional[int] , ) -> Union[Tuple, ImagePipelineOutput]: _UpperCamelCase = randn_tensor( (batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , generator=__UpperCamelCase , ) _UpperCamelCase = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler _UpperCamelCase = latents * self.scheduler.init_noise_sigma self.scheduler.set_timesteps(__UpperCamelCase ) # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature _UpperCamelCase = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) _UpperCamelCase = {} if accepts_eta: _UpperCamelCase = eta for t in self.progress_bar(self.scheduler.timesteps ): _UpperCamelCase = self.scheduler.scale_model_input(__UpperCamelCase , __UpperCamelCase ) # predict the noise residual _UpperCamelCase = self.unet(__UpperCamelCase , __UpperCamelCase ).sample # compute the previous noisy sample x_t -> x_t-1 _UpperCamelCase = self.scheduler.step(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ).prev_sample # decode the image latents with the VAE _UpperCamelCase = self.vqvae.decode(__UpperCamelCase ).sample _UpperCamelCase = (image / 2 + 0.5).clamp(0 , 1 ) _UpperCamelCase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _UpperCamelCase = self.numpy_to_pil(__UpperCamelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=__UpperCamelCase )
256
0
def SCREAMING_SNAKE_CASE( __lowercase = 1_0_0_0 ) -> List[str]: return sum(e for e in range(3 , _a ) if e % 3 == 0 or e % 5 == 0 ) if __name__ == "__main__": print(f'{solution() = }')
361
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_tf_available, is_torch_available, ) UpperCamelCase = { '''configuration_speech_to_text''': ['''SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Speech2TextConfig'''], '''processing_speech_to_text''': ['''Speech2TextProcessor'''], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ['''Speech2TextTokenizer'''] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ['''Speech2TextFeatureExtractor'''] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFSpeech2TextForConditionalGeneration''', '''TFSpeech2TextModel''', '''TFSpeech2TextPreTrainedModel''', ] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Speech2TextForConditionalGeneration''', '''Speech2TextModel''', '''Speech2TextPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_speech_to_text import SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, SpeechaTextConfig from .processing_speech_to_text import SpeechaTextProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speech_to_text import SpeechaTextTokenizer try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_speech_to_text import SpeechaTextFeatureExtractor try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_speech_to_text import ( TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, TFSpeechaTextForConditionalGeneration, TFSpeechaTextModel, TFSpeechaTextPreTrainedModel, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_to_text import ( SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechaTextForConditionalGeneration, SpeechaTextModel, SpeechaTextPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
334
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) lowerCAmelCase_ = { 'configuration_mobilevit': ['MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MobileViTConfig', 'MobileViTOnnxConfig'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['MobileViTFeatureExtractor'] lowerCAmelCase_ = ['MobileViTImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'MobileViTForImageClassification', 'MobileViTForSemanticSegmentation', 'MobileViTModel', 'MobileViTPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFMobileViTForImageClassification', 'TFMobileViTForSemanticSegmentation', 'TFMobileViTModel', 'TFMobileViTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mobilevit import MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileViTConfig, MobileViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilevit import MobileViTFeatureExtractor from .image_processing_mobilevit import MobileViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilevit import ( MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel, MobileViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilevit import ( TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileViTForImageClassification, TFMobileViTForSemanticSegmentation, TFMobileViTModel, TFMobileViTPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
16
import argparse from torch import nn # transformers_old should correspond to branch `save_old_prophetnet_model_structure` here # original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively from transformers_old.modeling_prophetnet import ( ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld, ) from transformers_old.modeling_xlm_prophetnet import ( XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld, ) from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging UpperCAmelCase__ : List[Any] = logging.get_logger(__name__) logging.set_verbosity_info() def lowerCamelCase__ ( a , a ) -> Dict: if "xprophetnet" in prophetnet_checkpoint_path: _A: List[Any] = XLMProphetNetForConditionalGenerationOld.from_pretrained(a ) _A , _A: Union[str, Any] = XLMProphetNetForConditionalGeneration.from_pretrained( a , output_loading_info=a ) else: _A: Dict = ProphetNetForConditionalGenerationOld.from_pretrained(a ) _A , _A: Tuple = ProphetNetForConditionalGeneration.from_pretrained( a , output_loading_info=a ) _A: Optional[int] = ['''key_proj''', '''value_proj''', '''query_proj'''] _A: List[Any] = { '''self_attn''': '''ngram_self_attn''', '''cross_attn''': '''encoder_attn''', '''cross_attn_layer_norm''': '''encoder_attn_layer_norm''', '''feed_forward_layer_norm''': '''final_layer_norm''', '''feed_forward''': '''''', '''intermediate''': '''fc1''', '''output''': '''fc2''', '''key_proj''': '''k_proj''', '''query_proj''': '''q_proj''', '''value_proj''': '''v_proj''', '''word_embeddings''': '''embed_tokens''', '''embeddings_layer_norm''': '''emb_layer_norm''', '''relative_pos_embeddings''': '''relative_linear''', '''ngram_embeddings''': '''ngram_input_embed''', '''position_embeddings''': '''embed_positions''', } for key in loading_info["missing_keys"]: _A: List[str] = key.split('''.''' ) if attributes[0] == "lm_head": _A: Optional[int] = prophet _A: Tuple = prophet_old else: _A: Tuple = prophet.prophetnet _A: Any = prophet_old.model _A: int = False for attribute in attributes: if attribute in mapping: _A: Optional[int] = mapping[attribute] if not hasattr(a , a ) and len(a ) > 0: _A: int = attribute elif hasattr(a , a ): _A: Tuple = attribute if attribute == "weight": assert old_model.weight.shape == model.weight.shape, "Shapes have to match!" _A: Union[str, Any] = old_model.weight logger.info(f"""{attribute} is initialized.""" ) _A: Any = True break elif attribute == "bias": assert old_model.bias.shape == model.bias.shape, "Shapes have to match!" _A: str = old_model.bias logger.info(f"""{attribute} is initialized""" ) _A: Dict = True break elif attribute in special_keys and hasattr(a , '''in_proj_weight''' ): _A: Optional[int] = old_model.in_proj_weight.shape[0] // 3 _A: Tuple = getattr(a , a ) param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match" param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match" if attribute == "query_proj": _A: List[str] = nn.Parameter(old_model.in_proj_weight[:embed_dim, :] ) _A: List[Any] = nn.Parameter(old_model.in_proj_bias[:embed_dim] ) elif attribute == "key_proj": _A: int = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] ) _A: Optional[int] = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] ) elif attribute == "value_proj": _A: List[Any] = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] ) _A: int = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] ) _A: Tuple = True break elif attribute == "position_embeddings": assert ( model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1] ), "Hidden size has to match" assert model.position_embeddings.weight.shape[0] == 5_12, "We want 512 position_embeddings." _A: Union[str, Any] = nn.Parameter(old_model.embed_positions.weight[:5_12, :] ) _A: List[Any] = True break if attribute.isdigit(): _A: Tuple = model[int(a )] _A: int = old_model[int(a )] else: _A: Union[str, Any] = getattr(a , a ) if old_attribute == "": _A: Union[str, Any] = old_model else: if not hasattr(a , a ): raise ValueError(f"""{old_model} does not have {old_attribute}""" ) _A: List[Any] = getattr(a , a ) if not is_key_init: raise ValueError(f"""{key} was not correctly initialized!""" ) print(f"""Saving model to {pytorch_dump_folder_path}""" ) prophet.save_pretrained(a ) if __name__ == "__main__": UpperCAmelCase__ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '--prophetnet_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) UpperCAmelCase__ : Tuple = parser.parse_args() convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
121
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _SCREAMING_SNAKE_CASE : Optional[int] = { """configuration_xlm_roberta_xl""": [ """XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XLMRobertaXLConfig""", """XLMRobertaXLOnnxConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Tuple = [ """XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST""", """XLMRobertaXLForCausalLM""", """XLMRobertaXLForMaskedLM""", """XLMRobertaXLForMultipleChoice""", """XLMRobertaXLForQuestionAnswering""", """XLMRobertaXLForSequenceClassification""", """XLMRobertaXLForTokenClassification""", """XLMRobertaXLModel""", """XLMRobertaXLPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_xlm_roberta_xl import ( XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaXLConfig, XLMRobertaXLOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta_xl import ( XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaXLForCausalLM, XLMRobertaXLForMaskedLM, XLMRobertaXLForMultipleChoice, XLMRobertaXLForQuestionAnswering, XLMRobertaXLForSequenceClassification, XLMRobertaXLForTokenClassification, XLMRobertaXLModel, XLMRobertaXLPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
157
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _SCREAMING_SNAKE_CASE : List[str] = { """configuration_bigbird_pegasus""": [ """BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BigBirdPegasusConfig""", """BigBirdPegasusOnnxConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Optional[Any] = [ """BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST""", """BigBirdPegasusForCausalLM""", """BigBirdPegasusForConditionalGeneration""", """BigBirdPegasusForQuestionAnswering""", """BigBirdPegasusForSequenceClassification""", """BigBirdPegasusModel""", """BigBirdPegasusPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP, BigBirdPegasusConfig, BigBirdPegasusOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST, BigBirdPegasusForCausalLM, BigBirdPegasusForConditionalGeneration, BigBirdPegasusForQuestionAnswering, BigBirdPegasusForSequenceClassification, BigBirdPegasusModel, BigBirdPegasusPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE : Optional[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
157
1
"""simple docstring""" import warnings from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch from ...models import UNetaDModel from ...schedulers import RePaintScheduler from ...utils import PIL_INTERPOLATION, logging, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput a = logging.get_logger(__name__) # pylint: disable=invalid-name def _snake_case ( _snake_case : Union[List, PIL.Image.Image, torch.Tensor] ) -> Union[str, Any]: '''simple docstring''' warnings.warn( 'The preprocess method is deprecated and will be removed in a future version. Please' ' use VaeImageProcessor.preprocess instead' , _snake_case , ) if isinstance(_snake_case , torch.Tensor ): return image elif isinstance(_snake_case , PIL.Image.Image ): _A = [image] if isinstance(image[0] , PIL.Image.Image ): _A , _A = image[0].size _A , _A = (x - x % 8 for x in (w, h)) # resize to integer multiple of 8 _A = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION['lanczos'] ) )[None, :] for i in image] _A = np.concatenate(_snake_case , axis=0 ) _A = np.array(_snake_case ).astype(np.floataa ) / 255.0 _A = image.transpose(0 , 3 , 1 , 2 ) _A = 2.0 * image - 1.0 _A = torch.from_numpy(_snake_case ) elif isinstance(image[0] , torch.Tensor ): _A = torch.cat(_snake_case , dim=0 ) return image def _snake_case ( _snake_case : Union[List, PIL.Image.Image, torch.Tensor] ) -> Tuple: '''simple docstring''' if isinstance(_snake_case , torch.Tensor ): return mask elif isinstance(_snake_case , PIL.Image.Image ): _A = [mask] if isinstance(mask[0] , PIL.Image.Image ): _A , _A = mask[0].size _A , _A = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 _A = [np.array(m.convert('L' ).resize((w, h) , resample=PIL_INTERPOLATION['nearest'] ) )[None, :] for m in mask] _A = np.concatenate(_snake_case , axis=0 ) _A = mask.astype(np.floataa ) / 255.0 _A = 0 _A = 1 _A = torch.from_numpy(_snake_case ) elif isinstance(mask[0] , torch.Tensor ): _A = torch.cat(_snake_case , dim=0 ) return mask class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : UNetaDModel UpperCAmelCase : RePaintScheduler def __init__( self : Optional[int] , _UpperCAmelCase : str , _UpperCAmelCase : Dict ): super().__init__() self.register_modules(unet=_UpperCAmelCase , scheduler=_UpperCAmelCase ) @torch.no_grad() def __call__( self : List[Any] , _UpperCAmelCase : Union[torch.Tensor, PIL.Image.Image] , _UpperCAmelCase : Union[torch.Tensor, PIL.Image.Image] , _UpperCAmelCase : int = 250 , _UpperCAmelCase : float = 0.0 , _UpperCAmelCase : int = 10 , _UpperCAmelCase : int = 10 , _UpperCAmelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , _UpperCAmelCase : Optional[str] = "pil" , _UpperCAmelCase : bool = True , ): _A = image _A = _preprocess_image(_UpperCAmelCase ) _A = original_image.to(device=self.device , dtype=self.unet.dtype ) _A = _preprocess_mask(_UpperCAmelCase ) _A = mask_image.to(device=self.device , dtype=self.unet.dtype ) _A = original_image.shape[0] # sample gaussian noise to begin the loop if isinstance(_UpperCAmelCase , _UpperCAmelCase ) and len(_UpperCAmelCase ) != batch_size: raise ValueError( F'''You have passed a list of generators of length {len(_UpperCAmelCase )}, but requested an effective batch''' F''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) _A = original_image.shape _A = randn_tensor(_UpperCAmelCase , generator=_UpperCAmelCase , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , self.device ) _A = eta _A = self.scheduler.timesteps[0] + 1 _A = generator[0] if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else generator for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): if t < t_last: # predict the noise residual _A = self.unet(_UpperCAmelCase , _UpperCAmelCase ).sample # compute previous image: x_t -> x_t-1 _A = self.scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ).prev_sample else: # compute the reverse: x_t-1 -> x_t _A = self.scheduler.undo_step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) _A = t _A = (image / 2 + 0.5).clamp(0 , 1 ) _A = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _A = self.numpy_to_pil(_UpperCAmelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=_UpperCAmelCase )
315
"""simple docstring""" from ...utils import is_note_seq_available, is_transformers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .notes_encoder import SpectrogramNotesEncoder from .continous_encoder import SpectrogramContEncoder from .pipeline_spectrogram_diffusion import ( SpectrogramContEncoder, SpectrogramDiffusionPipeline, TaFilmDecoder, ) try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .midi_utils import MidiProcessor
315
1
from collections.abc import Iterator, MutableMapping from dataclasses import dataclass from typing import Generic, TypeVar __UpperCAmelCase = TypeVar("""KEY""") __UpperCAmelCase = TypeVar("""VAL""") @dataclass(frozen=a_ , slots=a_ ) class SCREAMING_SNAKE_CASE ( Generic[KEY, VAL] ): """simple docstring""" lowerCamelCase : List[Any] =42 lowerCamelCase : Union[str, Any] =42 class SCREAMING_SNAKE_CASE ( _Item ): """simple docstring""" def __init__( self : str ) -> None: """simple docstring""" super().__init__(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def __bool__( self : Tuple ) -> bool: """simple docstring""" return False __UpperCAmelCase = _DeletedItem() class SCREAMING_SNAKE_CASE ( MutableMapping[KEY, VAL] ): """simple docstring""" def __init__( self : Optional[int] , lowerCAmelCase : List[Any] = 8 , lowerCAmelCase : Optional[Any] = 0.75 ) -> None: """simple docstring""" __lowerCAmelCase : Any = initial_block_size __lowerCAmelCase : list[_Item | None] = [None] * initial_block_size assert 0.0 < capacity_factor < 1.0 __lowerCAmelCase : Optional[Any] = capacity_factor __lowerCAmelCase : Union[str, Any] = 0 def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase : Optional[Any] ) -> int: """simple docstring""" return hash(_SCREAMING_SNAKE_CASE ) % len(self._buckets ) def SCREAMING_SNAKE_CASE ( self : int , lowerCAmelCase : str ) -> int: """simple docstring""" return (ind + 1) % len(self._buckets ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase : List[str] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Dict ) -> bool: """simple docstring""" __lowerCAmelCase : Union[str, Any] = self._buckets[ind] if not stored: __lowerCAmelCase : int = _Item(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) self._len += 1 return True elif stored.key == key: __lowerCAmelCase : Tuple = _Item(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return True else: return False def SCREAMING_SNAKE_CASE ( self : str ) -> bool: """simple docstring""" __lowerCAmelCase : Union[str, Any] = len(self._buckets ) * self._capacity_factor return len(self ) >= int(_SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> bool: """simple docstring""" if len(self._buckets ) <= self._initial_block_size: return False __lowerCAmelCase : Optional[int] = len(self._buckets ) * self._capacity_factor / 2 return len(self ) < limit def SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase : str ) -> None: """simple docstring""" __lowerCAmelCase : Dict = self._buckets __lowerCAmelCase : Union[str, Any] = [None] * new_size __lowerCAmelCase : Optional[int] = 0 for item in old_buckets: if item: self._add_item(item.key , item.val ) def SCREAMING_SNAKE_CASE ( self : Any ) -> None: """simple docstring""" self._resize(len(self._buckets ) * 2 ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> None: """simple docstring""" self._resize(len(self._buckets ) // 2 ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase : Any ) -> Iterator[int]: """simple docstring""" __lowerCAmelCase : Union[str, Any] = self._get_bucket_index(_SCREAMING_SNAKE_CASE ) for _ in range(len(self._buckets ) ): yield ind __lowerCAmelCase : str = self._get_next_ind(_SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Union[str, Any] ) -> None: """simple docstring""" for ind in self._iterate_buckets(_SCREAMING_SNAKE_CASE ): if self._try_set(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): break def __setitem__( self : List[Any] , lowerCAmelCase : Dict , lowerCAmelCase : Any ) -> None: """simple docstring""" if self._is_full(): self._size_up() self._add_item(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def __delitem__( self : str , lowerCAmelCase : List[str] ) -> None: """simple docstring""" for ind in self._iterate_buckets(_SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Union[str, Any] = self._buckets[ind] if item is None: raise KeyError(_SCREAMING_SNAKE_CASE ) if item is _deleted: continue if item.key == key: __lowerCAmelCase : List[Any] = _deleted self._len -= 1 break if self._is_sparse(): self._size_down() def __getitem__( self : Optional[Any] , lowerCAmelCase : List[str] ) -> VAL: """simple docstring""" for ind in self._iterate_buckets(_SCREAMING_SNAKE_CASE ): __lowerCAmelCase : List[Any] = self._buckets[ind] if item is None: break if item is _deleted: continue if item.key == key: return item.val raise KeyError(_SCREAMING_SNAKE_CASE ) def __len__( self : Tuple ) -> int: """simple docstring""" return self._len def __iter__( self : List[str] ) -> Iterator[KEY]: """simple docstring""" yield from (item.key for item in self._buckets if item) def __repr__( self : List[str] ) -> str: """simple docstring""" __lowerCAmelCase : Tuple = ''' ,'''.join( f'''{item.key}: {item.val}''' for item in self._buckets if item ) return f'''HashMap({val_string})'''
371
import warnings from ...utils import logging from .image_processing_glpn import GLPNImageProcessor __UpperCAmelCase = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" def __init__( self : Optional[Any] , *lowerCAmelCase : int , **lowerCAmelCase : Optional[int] ) -> None: """simple docstring""" warnings.warn( """The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use GLPNImageProcessor instead.""" , lowerCAmelCase , ) super().__init__(*lowerCAmelCase , **lowerCAmelCase )
139
0
"""simple docstring""" import unittest from diffusers.models.unet_ad_blocks import * # noqa F403 from diffusers.utils import torch_device from .test_unet_blocks_common import UNetBlockTesterMixin class __UpperCamelCase ( a__ , unittest.TestCase ): lowerCamelCase : Tuple =DownBlockaD # noqa F405 lowerCamelCase : Dict ="""down""" def __a ( self ) -> Union[str, Any]: a : List[Any] = [-0.0_232, -0.9_869, 0.8_054, -0.0_637, -0.1_688, -1.4_264, 0.4_470, -1.3_394, 0.0_904] super().test_output(lowerCAmelCase__ ) class __UpperCamelCase ( a__ , unittest.TestCase ): lowerCamelCase : int =ResnetDownsampleBlockaD # noqa F405 lowerCamelCase : str ="""down""" def __a ( self ) -> List[str]: a : Union[str, Any] = [0.0_710, 0.2_410, -0.7_320, -1.0_757, -1.1_343, 0.3_540, -0.0_133, -0.2_576, 0.0_948] super().test_output(lowerCAmelCase__ ) class __UpperCamelCase ( a__ , unittest.TestCase ): lowerCamelCase : Optional[int] =AttnDownBlockaD # noqa F405 lowerCamelCase : Optional[int] ="""down""" def __a ( self ) -> List[str]: a : str = [0.0_636, 0.8_964, -0.6_234, -1.0_131, 0.0_844, 0.4_935, 0.3_437, 0.0_911, -0.2_957] super().test_output(lowerCAmelCase__ ) class __UpperCamelCase ( a__ , unittest.TestCase ): lowerCamelCase : Dict =CrossAttnDownBlockaD # noqa F405 lowerCamelCase : Any ="""down""" def __a ( self ) -> Any: a, a : Optional[int] = super().prepare_init_args_and_inputs_for_common() a : Optional[Any] = 32 return init_dict, inputs_dict def __a ( self ) -> List[str]: a : Optional[Any] = [0.2_238, -0.7_396, -0.2_255, -0.3_829, 0.1_925, 1.1_665, 0.0_603, -0.7_295, 0.1_983] super().test_output(lowerCAmelCase__ ) class __UpperCamelCase ( a__ , unittest.TestCase ): lowerCamelCase : Optional[int] =SimpleCrossAttnDownBlockaD # noqa F405 lowerCamelCase : int ="""down""" @property def __a ( self ) -> List[str]: return super().get_dummy_input(include_encoder_hidden_states=lowerCAmelCase__ ) def __a ( self ) -> Any: a, a : Optional[int] = super().prepare_init_args_and_inputs_for_common() a : str = 32 return init_dict, inputs_dict @unittest.skipIf(torch_device == "mps" , "MPS result is not consistent" ) def __a ( self ) -> Dict: a : Union[str, Any] = [0.7_921, -0.0_992, -0.1_962, -0.7_695, -0.4_242, 0.7_804, 0.4_737, 0.2_765, 0.3_338] super().test_output(lowerCAmelCase__ ) class __UpperCamelCase ( a__ , unittest.TestCase ): lowerCamelCase : int =SkipDownBlockaD # noqa F405 lowerCamelCase : Optional[int] ="""down""" @property def __a ( self ) -> Any: return super().get_dummy_input(include_skip_sample=lowerCAmelCase__ ) def __a ( self ) -> Dict: a : Any = [-0.0_845, -0.2_087, -0.2_465, 0.0_971, 0.1_900, -0.0_484, 0.2_664, 0.4_179, 0.5_069] super().test_output(lowerCAmelCase__ ) class __UpperCamelCase ( a__ , unittest.TestCase ): lowerCamelCase : List[Any] =AttnSkipDownBlockaD # noqa F405 lowerCamelCase : Tuple ="""down""" @property def __a ( self ) -> Union[str, Any]: return super().get_dummy_input(include_skip_sample=lowerCAmelCase__ ) def __a ( self ) -> Optional[Any]: a : Optional[Any] = [0.5_539, 0.1_609, 0.4_924, 0.0_537, -0.1_995, 0.4_050, 0.0_979, -0.2_721, -0.0_642] super().test_output(lowerCAmelCase__ ) class __UpperCamelCase ( a__ , unittest.TestCase ): lowerCamelCase : List[str] =DownEncoderBlockaD # noqa F405 lowerCamelCase : Optional[Any] ="""down""" @property def __a ( self ) -> int: return super().get_dummy_input(include_temb=lowerCAmelCase__ ) def __a ( self ) -> Union[str, Any]: a : Dict = { "in_channels": 32, "out_channels": 32, } a : Any = self.dummy_input return init_dict, inputs_dict def __a ( self ) -> List[str]: a : List[str] = [1.1_102, 0.5_302, 0.4_872, -0.0_023, -0.8_042, 0.0_483, -0.3_489, -0.5_632, 0.7_626] super().test_output(lowerCAmelCase__ ) class __UpperCamelCase ( a__ , unittest.TestCase ): lowerCamelCase : List[Any] =AttnDownEncoderBlockaD # noqa F405 lowerCamelCase : Optional[Any] ="""down""" @property def __a ( self ) -> Any: return super().get_dummy_input(include_temb=lowerCAmelCase__ ) def __a ( self ) -> Optional[int]: a : Union[str, Any] = { "in_channels": 32, "out_channels": 32, } a : Union[str, Any] = self.dummy_input return init_dict, inputs_dict def __a ( self ) -> str: a : List[Any] = [0.8_966, -0.1_486, 0.8_568, 0.8_141, -0.9_046, -0.1_342, -0.0_972, -0.7_417, 0.1_538] super().test_output(lowerCAmelCase__ ) class __UpperCamelCase ( a__ , unittest.TestCase ): lowerCamelCase : Dict =UNetMidBlockaD # noqa F405 lowerCamelCase : Tuple ="""mid""" def __a ( self ) -> str: a : Optional[Any] = { "in_channels": 32, "temb_channels": 128, } a : Union[str, Any] = self.dummy_input return init_dict, inputs_dict def __a ( self ) -> int: a : Optional[Any] = [-0.1_062, 1.7_248, 0.3_494, 1.4_569, -0.0_910, -1.2_421, -0.9_984, 0.6_736, 1.0_028] super().test_output(lowerCAmelCase__ ) class __UpperCamelCase ( a__ , unittest.TestCase ): lowerCamelCase : Optional[int] =UNetMidBlockaDCrossAttn # noqa F405 lowerCamelCase : Optional[int] ="""mid""" def __a ( self ) -> Union[str, Any]: a, a : Dict = super().prepare_init_args_and_inputs_for_common() a : Tuple = 32 return init_dict, inputs_dict def __a ( self ) -> Optional[Any]: a : str = [0.0_187, 2.4_220, 0.4_484, 1.1_203, -0.6_121, -1.5_122, -0.8_270, 0.7_851, 1.8_335] super().test_output(lowerCAmelCase__ ) class __UpperCamelCase ( a__ , unittest.TestCase ): lowerCamelCase : Optional[int] =UNetMidBlockaDSimpleCrossAttn # noqa F405 lowerCamelCase : str ="""mid""" @property def __a ( self ) -> int: return super().get_dummy_input(include_encoder_hidden_states=lowerCAmelCase__ ) def __a ( self ) -> Dict: a, a : Union[str, Any] = super().prepare_init_args_and_inputs_for_common() a : Tuple = 32 return init_dict, inputs_dict def __a ( self ) -> Union[str, Any]: a : str = [0.7_143, 1.9_974, 0.5_448, 1.3_977, 0.1_282, -1.1_237, -1.4_238, 0.5_530, 0.8_880] super().test_output(lowerCAmelCase__ ) class __UpperCamelCase ( a__ , unittest.TestCase ): lowerCamelCase : Tuple =UpBlockaD # noqa F405 lowerCamelCase : int ="""up""" @property def __a ( self ) -> List[str]: return super().get_dummy_input(include_res_hidden_states_tuple=lowerCAmelCase__ ) def __a ( self ) -> str: a : Optional[int] = [-0.2_041, -0.4_165, -0.3_022, 0.0_041, -0.6_628, -0.7_053, 0.1_928, -0.0_325, 0.0_523] super().test_output(lowerCAmelCase__ ) class __UpperCamelCase ( a__ , unittest.TestCase ): lowerCamelCase : Dict =ResnetUpsampleBlockaD # noqa F405 lowerCamelCase : Any ="""up""" @property def __a ( self ) -> Any: return super().get_dummy_input(include_res_hidden_states_tuple=lowerCAmelCase__ ) def __a ( self ) -> Dict: a : int = [0.2_287, 0.3_549, -0.1_346, 0.4_797, -0.1_715, -0.9_649, 0.7_305, -0.5_864, -0.6_244] super().test_output(lowerCAmelCase__ ) class __UpperCamelCase ( a__ , unittest.TestCase ): lowerCamelCase : int =CrossAttnUpBlockaD # noqa F405 lowerCamelCase : Optional[int] ="""up""" @property def __a ( self ) -> Any: return super().get_dummy_input(include_res_hidden_states_tuple=lowerCAmelCase__ ) def __a ( self ) -> List[Any]: a, a : Any = super().prepare_init_args_and_inputs_for_common() a : int = 32 return init_dict, inputs_dict def __a ( self ) -> int: a : List[str] = [-0.1_403, -0.3_515, -0.0_420, -0.1_425, 0.3_167, 0.5_094, -0.2_181, 0.5_931, 0.5_582] super().test_output(lowerCAmelCase__ ) class __UpperCamelCase ( a__ , unittest.TestCase ): lowerCamelCase : Any =SimpleCrossAttnUpBlockaD # noqa F405 lowerCamelCase : Any ="""up""" @property def __a ( self ) -> str: return super().get_dummy_input(include_res_hidden_states_tuple=lowerCAmelCase__ , include_encoder_hidden_states=lowerCAmelCase__ ) def __a ( self ) -> Dict: a, a : str = super().prepare_init_args_and_inputs_for_common() a : List[str] = 32 return init_dict, inputs_dict def __a ( self ) -> Optional[Any]: a : Dict = [0.2_645, 0.1_480, 0.0_909, 0.8_044, -0.9_758, -0.9_083, 0.0_994, -1.1_453, -0.7_402] super().test_output(lowerCAmelCase__ ) class __UpperCamelCase ( a__ , unittest.TestCase ): lowerCamelCase : Any =AttnUpBlockaD # noqa F405 lowerCamelCase : int ="""up""" @property def __a ( self ) -> Dict: return super().get_dummy_input(include_res_hidden_states_tuple=lowerCAmelCase__ ) @unittest.skipIf(torch_device == "mps" , "MPS result is not consistent" ) def __a ( self ) -> Optional[Any]: a : Any = [0.0_979, 0.1_326, 0.0_021, 0.0_659, 0.2_249, 0.0_059, 0.1_132, 0.5_952, 0.1_033] super().test_output(lowerCAmelCase__ ) class __UpperCamelCase ( a__ , unittest.TestCase ): lowerCamelCase : Union[str, Any] =SkipUpBlockaD # noqa F405 lowerCamelCase : int ="""up""" @property def __a ( self ) -> List[Any]: return super().get_dummy_input(include_res_hidden_states_tuple=lowerCAmelCase__ ) def __a ( self ) -> Optional[Any]: a : Optional[Any] = [-0.0_893, -0.1_234, -0.1_506, -0.0_332, 0.0_123, -0.0_211, 0.0_566, 0.0_143, 0.0_362] super().test_output(lowerCAmelCase__ ) class __UpperCamelCase ( a__ , unittest.TestCase ): lowerCamelCase : List[Any] =AttnSkipUpBlockaD # noqa F405 lowerCamelCase : Dict ="""up""" @property def __a ( self ) -> str: return super().get_dummy_input(include_res_hidden_states_tuple=lowerCAmelCase__ ) def __a ( self ) -> Dict: a : Optional[int] = [0.0_361, 0.0_617, 0.2_787, -0.0_350, 0.0_342, 0.3_421, -0.0_843, 0.0_913, 0.3_015] super().test_output(lowerCAmelCase__ ) class __UpperCamelCase ( a__ , unittest.TestCase ): lowerCamelCase : Any =UpDecoderBlockaD # noqa F405 lowerCamelCase : Optional[int] ="""up""" @property def __a ( self ) -> List[str]: return super().get_dummy_input(include_temb=lowerCAmelCase__ ) def __a ( self ) -> List[str]: a : Optional[int] = {"in_channels": 32, "out_channels": 32} a : Any = self.dummy_input return init_dict, inputs_dict def __a ( self ) -> Union[str, Any]: a : Union[str, Any] = [0.4_404, 0.1_998, -0.9_886, -0.3_320, -0.3_128, -0.7_034, -0.6_955, -0.2_338, -0.3_137] super().test_output(lowerCAmelCase__ ) class __UpperCamelCase ( a__ , unittest.TestCase ): lowerCamelCase : List[str] =AttnUpDecoderBlockaD # noqa F405 lowerCamelCase : List[Any] ="""up""" @property def __a ( self ) -> Optional[int]: return super().get_dummy_input(include_temb=lowerCAmelCase__ ) def __a ( self ) -> Tuple: a : List[Any] = {"in_channels": 32, "out_channels": 32} a : int = self.dummy_input return init_dict, inputs_dict def __a ( self ) -> Optional[Any]: a : Any = [0.6_738, 0.4_491, 0.1_055, 1.0_710, 0.7_316, 0.3_339, 0.3_352, 0.1_023, 0.3_568] super().test_output(lowerCAmelCase__ )
105
'''simple docstring''' import logging import os from dataclasses import dataclass from typing import List, Optional, Union import tqdm from filelock import FileLock from transformers import ( BartTokenizer, BartTokenizerFast, DataProcessor, PreTrainedTokenizer, RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, is_tf_available, is_torch_available, ) SCREAMING_SNAKE_CASE_: str =logging.getLogger(__name__) @dataclass(frozen=UpperCamelCase__ ) class __A : a__ : str a__ : str a__ : Optional[str] = None a__ : Optional[str] = None a__ : Optional[str] = None @dataclass(frozen=UpperCamelCase__ ) class __A : a__ : List[int] a__ : Optional[List[int]] = None a__ : Optional[List[int]] = None a__ : Optional[Union[int, float]] = None a__ : Optional[int] = None if is_torch_available(): import torch from torch.utils.data import Dataset class __A ( UpperCamelCase__ ): a__ : List[InputFeatures] def __init__(self : Any , __a : str , __a : PreTrainedTokenizer , __a : str , __a : Optional[int] = None , __a : Dict=False , __a : bool = False , ): UpperCAmelCase_ = hans_processors[task]() UpperCAmelCase_ = os.path.join( __a , "cached_{}_{}_{}_{}".format( "dev" if evaluate else "train" , tokenizer.__class__.__name__ , str(__a ) , __a , ) , ) UpperCAmelCase_ = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) UpperCAmelCase_ , UpperCAmelCase_ = label_list[2], label_list[1] UpperCAmelCase_ = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. UpperCAmelCase_ = cached_features_file + ".lock" with FileLock(__a ): if os.path.exists(__a ) and not overwrite_cache: logger.info(f"""Loading features from cached file {cached_features_file}""" ) UpperCAmelCase_ = torch.load(__a ) else: logger.info(f"""Creating features from dataset file at {data_dir}""" ) UpperCAmelCase_ = ( processor.get_dev_examples(__a ) if evaluate else processor.get_train_examples(__a ) ) logger.info("Training examples: %s" , len(__a ) ) UpperCAmelCase_ = hans_convert_examples_to_features(__a , __a , __a , __a ) logger.info("Saving features into cached file %s" , __a ) torch.save(self.features , __a ) def __len__(self : List[Any] ): return len(self.features ) def __getitem__(self : Any , __a : Optional[Any] ): return self.features[i] def _lowercase (self : Union[str, Any] ): return self.label_list if is_tf_available(): import tensorflow as tf class __A : a__ : List[InputFeatures] def __init__(self : Union[str, Any] , __a : str , __a : PreTrainedTokenizer , __a : str , __a : Optional[int] = 128 , __a : Any=False , __a : bool = False , ): UpperCAmelCase_ = hans_processors[task]() UpperCAmelCase_ = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) UpperCAmelCase_ , UpperCAmelCase_ = label_list[2], label_list[1] UpperCAmelCase_ = label_list UpperCAmelCase_ = processor.get_dev_examples(__a ) if evaluate else processor.get_train_examples(__a ) UpperCAmelCase_ = hans_convert_examples_to_features(__a , __a , __a , __a ) def gen(): for ex_index, ex in tqdm.tqdm(enumerate(self.features ) , desc="convert examples to features" ): if ex_index % 10000 == 0: logger.info("Writing example %d of %d" % (ex_index, len(__a )) ) yield ( { "example_id": 0, "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label, ) UpperCAmelCase_ = tf.data.Dataset.from_generator( __a , ( { "example_id": tf.intaa, "input_ids": tf.intaa, "attention_mask": tf.intaa, "token_type_ids": tf.intaa, }, tf.intaa, ) , ( { "example_id": tf.TensorShape([] ), "input_ids": tf.TensorShape([None, None] ), "attention_mask": tf.TensorShape([None, None] ), "token_type_ids": tf.TensorShape([None, None] ), }, tf.TensorShape([] ), ) , ) def _lowercase (self : int ): return self.dataset def __len__(self : Any ): return len(self.features ) def __getitem__(self : int , __a : Union[str, Any] ): return self.features[i] def _lowercase (self : int ): return self.label_list class __A ( UpperCamelCase__ ): def _lowercase (self : List[Any] , __a : Dict ): return self._create_examples(self._read_tsv(os.path.join(__a , "heuristics_train_set.txt" ) ) , "train" ) def _lowercase (self : Any , __a : List[Any] ): return self._create_examples(self._read_tsv(os.path.join(__a , "heuristics_evaluation_set.txt" ) ) , "dev" ) def _lowercase (self : Any ): return ["contradiction", "entailment", "neutral"] def _lowercase (self : Union[str, Any] , __a : Optional[int] , __a : Union[str, Any] ): UpperCAmelCase_ = [] for i, line in enumerate(__a ): if i == 0: continue UpperCAmelCase_ = "%s-%s" % (set_type, line[0]) UpperCAmelCase_ = line[5] UpperCAmelCase_ = line[6] UpperCAmelCase_ = line[7][2:] if line[7].startswith("ex" ) else line[7] UpperCAmelCase_ = line[0] examples.append(InputExample(guid=__a , text_a=__a , text_b=__a , label=__a , pairID=__a ) ) return examples def lowerCAmelCase_ ( snake_case_ : List[InputExample] , snake_case_ : List[str] , snake_case_ : int , snake_case_ : PreTrainedTokenizer , ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ = {label: i for i, label in enumerate(snake_case_ )} UpperCAmelCase_ = [] for ex_index, example in tqdm.tqdm(enumerate(snake_case_ ) , desc="convert examples to features" ): if ex_index % 1_00_00 == 0: logger.info("Writing example %d" % (ex_index) ) UpperCAmelCase_ = tokenizer( example.text_a , example.text_b , add_special_tokens=snake_case_ , max_length=snake_case_ , padding="max_length" , truncation=snake_case_ , return_overflowing_tokens=snake_case_ , ) UpperCAmelCase_ = label_map[example.label] if example.label in label_map else 0 UpperCAmelCase_ = int(example.pairID ) features.append(InputFeatures(**snake_case_ , label=snake_case_ , pairID=snake_case_ ) ) for i, example in enumerate(examples[:5] ): logger.info("*** Example ***" ) logger.info(f"""guid: {example}""" ) logger.info(f"""features: {features[i]}""" ) return features SCREAMING_SNAKE_CASE_: int ={ 'hans': 3, } SCREAMING_SNAKE_CASE_: Any ={ 'hans': HansProcessor, }
1
0
'''simple docstring''' import argparse import os import re __snake_case = '''src/diffusers''' # Pattern that looks at the indentation in a line. __snake_case = re.compile(R'''^(\s*)\S''') # Pattern that matches `"key":" and puts `key` in group 0. __snake_case = re.compile(R'''^\s*"([^"]+)":''') # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. __snake_case = re.compile(R'''^\s*_import_structure\["([^"]+)"\]''') # Pattern that matches `"key",` and puts `key` in group 0. __snake_case = re.compile(R'''^\s*"([^"]+)",\s*$''') # Pattern that matches any `[stuff]` and puts `stuff` in group 0. __snake_case = re.compile(R'''\[([^\]]+)\]''') def a ( __a ) -> Tuple: '''simple docstring''' UpperCamelCase__ :Union[str, Any] = _re_indent.search(__a ) return "" if search is None else search.groups()[0] def a ( __a , __a="" , __a=None , __a=None ) -> List[Any]: '''simple docstring''' UpperCamelCase__ :int = 0 UpperCamelCase__ :Optional[Any] = code.split('''\n''' ) if start_prompt is not None: while not lines[index].startswith(__a ): index += 1 UpperCamelCase__ :Optional[Any] = ['''\n'''.join(lines[:index] )] else: UpperCamelCase__ :int = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). UpperCamelCase__ :Dict = [lines[index]] index += 1 while index < len(__a ) and (end_prompt is None or not lines[index].startswith(__a )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(__a ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ''' ''' ): current_block.append(lines[index] ) blocks.append('''\n'''.join(__a ) ) if index < len(__a ) - 1: UpperCamelCase__ :Optional[Any] = [lines[index + 1]] index += 1 else: UpperCamelCase__ :int = [] else: blocks.append('''\n'''.join(__a ) ) UpperCamelCase__ :List[Any] = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(__a ) > 0: blocks.append('''\n'''.join(__a ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(__a ): blocks.append('''\n'''.join(lines[index:] ) ) return blocks def a ( __a ) -> str: '''simple docstring''' def _inner(__a ): return key(__a ).lower().replace('''_''' , '''''' ) return _inner def a ( __a , __a=None ) -> Union[str, Any]: '''simple docstring''' def noop(__a ): return x if key is None: UpperCamelCase__ :Optional[int] = noop # Constants are all uppercase, they go first. UpperCamelCase__ :List[str] = [obj for obj in objects if key(__a ).isupper()] # Classes are not all uppercase but start with a capital, they go second. UpperCamelCase__ :Tuple = [obj for obj in objects if key(__a )[0].isupper() and not key(__a ).isupper()] # Functions begin with a lowercase, they go last. UpperCamelCase__ :int = [obj for obj in objects if not key(__a )[0].isupper()] UpperCamelCase__ :List[Any] = ignore_underscore(__a ) return sorted(__a , key=__a ) + sorted(__a , key=__a ) + sorted(__a , key=__a ) def a ( __a ) -> str: '''simple docstring''' def _replace(__a ): UpperCamelCase__ :Any = match.groups()[0] if "," not in imports: return f'''[{imports}]''' UpperCamelCase__ :Optional[Any] = [part.strip().replace('''"''' , '''''' ) for part in imports.split(''',''' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: UpperCamelCase__ :int = keys[:-1] return "[" + ", ".join([f'''"{k}"''' for k in sort_objects(__a )] ) + "]" UpperCamelCase__ :Dict = import_statement.split('''\n''' ) if len(__a ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. UpperCamelCase__ :str = 2 if lines[1].strip() == '''[''' else 1 UpperCamelCase__ :Optional[int] = [(i, _re_strip_line.search(__a ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] UpperCamelCase__ :Union[str, Any] = sort_objects(__a , key=lambda __a : x[1] ) UpperCamelCase__ :Any = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(__a ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: UpperCamelCase__ :str = _re_bracket_content.sub(_replace , lines[1] ) else: UpperCamelCase__ :Union[str, Any] = [part.strip().replace('''"''' , '''''' ) for part in lines[1].split(''',''' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: UpperCamelCase__ :Dict = keys[:-1] UpperCamelCase__ :Tuple = get_indent(lines[1] ) + ''', '''.join([f'''"{k}"''' for k in sort_objects(__a )] ) return "\n".join(__a ) else: # Finally we have to deal with imports fitting on one line UpperCamelCase__ :int = _re_bracket_content.sub(_replace , __a ) return import_statement def a ( __a , __a=True ) -> Optional[Any]: '''simple docstring''' with open(__a , '''r''' ) as f: UpperCamelCase__ :Any = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 UpperCamelCase__ :Dict = split_code_in_indented_blocks( __a , start_prompt='''_import_structure = {''' , end_prompt='''if TYPE_CHECKING:''' ) # We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(__a ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. UpperCamelCase__ :Optional[Any] = main_blocks[block_idx] UpperCamelCase__ :List[Any] = block.split('''\n''' ) # Get to the start of the imports. UpperCamelCase__ :str = 0 while line_idx < len(__a ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: UpperCamelCase__ :Union[str, Any] = len(__a ) else: line_idx += 1 if line_idx >= len(__a ): continue # Ignore beginning and last line: they don't contain anything. UpperCamelCase__ :Tuple = '''\n'''.join(block_lines[line_idx:-1] ) UpperCamelCase__ :Any = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. UpperCamelCase__ :int = split_code_in_indented_blocks(__a , indent_level=__a ) # We have two categories of import key: list or _import_structure[key].append/extend UpperCamelCase__ :str = _re_direct_key if '''_import_structure''' in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. UpperCamelCase__ :List[str] = [(pattern.search(__a ).groups()[0] if pattern.search(__a ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. UpperCamelCase__ :Union[str, Any] = [(i, key) for i, key in enumerate(__a ) if key is not None] UpperCamelCase__ :List[str] = [x[0] for x in sorted(__a , key=lambda __a : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. UpperCamelCase__ :Union[str, Any] = 0 UpperCamelCase__ :int = [] for i in range(len(__a ) ): if keys[i] is None: reordered_blocks.append(internal_blocks[i] ) else: UpperCamelCase__ :Union[str, Any] = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reordered_blocks.append(__a ) count += 1 # And we put our main block back together with its first and last line. UpperCamelCase__ :str = '''\n'''.join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]] ) if code != "\n".join(__a ): if check_only: return True else: print(f'''Overwriting {file}.''' ) with open(__a , '''w''' ) as f: f.write('''\n'''.join(__a ) ) def a ( __a=True ) -> Any: '''simple docstring''' UpperCamelCase__ :Tuple = [] for root, _, files in os.walk(__a ): if "__init__.py" in files: UpperCamelCase__ :Optional[Any] = sort_imports(os.path.join(__a , '''__init__.py''' ) , check_only=__a ) if result: UpperCamelCase__ :List[str] = [os.path.join(__a , '''__init__.py''' )] if len(__a ) > 0: raise ValueError(f'''Would overwrite {len(__a )} files, run `make style`.''' ) if __name__ == "__main__": __snake_case = argparse.ArgumentParser() parser.add_argument('''--check_only''', action='''store_true''', help='''Whether to only check or fix style.''') __snake_case = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
219
'''simple docstring''' from __future__ import annotations __snake_case = [True] * 1000001 __snake_case = 2 while i * i <= 1000000: if seive[i]: for j in range(i * i, 1000001, i): __snake_case = False i += 1 def a ( __a ) -> bool: '''simple docstring''' return seive[n] def a ( __a ) -> bool: '''simple docstring''' return any(digit in '''02468''' for digit in str(__a ) ) def a ( __a = 1000000 ) -> list[int]: '''simple docstring''' UpperCamelCase__ :Any = [2] # result already includes the number 2. for num in range(3 , limit + 1 , 2 ): if is_prime(__a ) and not contains_an_even_digit(__a ): UpperCamelCase__ :str = str(__a ) UpperCamelCase__ :List[str] = [int(str_num[j:] + str_num[:j] ) for j in range(len(__a ) )] if all(is_prime(__a ) for i in list_nums ): result.append(__a ) return result def a ( ) -> int: '''simple docstring''' return len(find_circular_primes() ) if __name__ == "__main__": print(F"""{len(find_circular_primes()) = }""")
219
1
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mvp import MvpTokenizer __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} # See all MVP models at https://huggingface.co/models?filter=mvp __UpperCamelCase = { '''vocab_file''': { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/vocab.json''', }, '''added_tokens.json''': { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/added_tokens.json''', }, '''merges_file''': { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/tokenizer.json''', }, } __UpperCamelCase = { '''RUCAIBox/mvp''': 1024, } class UpperCamelCase ( lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ = ["input_ids", "attention_mask"] SCREAMING_SNAKE_CASE_ = MvpTokenizer def __init__( self, lowerCAmelCase__=None, lowerCAmelCase__=None, lowerCAmelCase__=None, lowerCAmelCase__="replace", lowerCAmelCase__="<s>", lowerCAmelCase__="</s>", lowerCAmelCase__="</s>", lowerCAmelCase__="<s>", lowerCAmelCase__="<unk>", lowerCAmelCase__="<pad>", lowerCAmelCase__="<mask>", lowerCAmelCase__=False, lowerCAmelCase__=True, **lowerCAmelCase__, ) -> List[str]: super().__init__( lowerCAmelCase__, lowerCAmelCase__, tokenizer_file=lowerCAmelCase__, errors=lowerCAmelCase__, bos_token=lowerCAmelCase__, eos_token=lowerCAmelCase__, sep_token=lowerCAmelCase__, cls_token=lowerCAmelCase__, unk_token=lowerCAmelCase__, pad_token=lowerCAmelCase__, mask_token=lowerCAmelCase__, add_prefix_space=lowerCAmelCase__, trim_offsets=lowerCAmelCase__, **lowerCAmelCase__, ) snake_case_ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__()) if pre_tok_state.get('add_prefix_space', lowerCAmelCase__) != add_prefix_space: snake_case_ = getattr(lowerCAmelCase__, pre_tok_state.pop('type')) snake_case_ = add_prefix_space snake_case_ = pre_tok_class(**lowerCAmelCase__) snake_case_ = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` snake_case_ = 'post_processor' snake_case_ = getattr(self.backend_tokenizer, lowerCAmelCase__, lowerCAmelCase__) if tokenizer_component_instance: snake_case_ = json.loads(tokenizer_component_instance.__getstate__()) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: snake_case_ = tuple(state['sep']) if "cls" in state: snake_case_ = tuple(state['cls']) snake_case_ = False if state.get('add_prefix_space', lowerCAmelCase__) != add_prefix_space: snake_case_ = add_prefix_space snake_case_ = True if state.get('trim_offsets', lowerCAmelCase__) != trim_offsets: snake_case_ = trim_offsets snake_case_ = True if changes_to_apply: snake_case_ = getattr(lowerCAmelCase__, state.pop('type')) snake_case_ = component_class(**lowerCAmelCase__) setattr(self.backend_tokenizer, lowerCAmelCase__, lowerCAmelCase__) @property def a_ ( self) -> str: if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.') return None return str(self._mask_token) @mask_token.setter def a_ ( self, lowerCAmelCase__) -> str: snake_case_ = AddedToken(lowerCAmelCase__, lstrip=lowerCAmelCase__, rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__, lowerCAmelCase__) else value snake_case_ = value def a_ ( self, *lowerCAmelCase__, **lowerCAmelCase__) -> BatchEncoding: snake_case_ = kwargs.get('is_split_into_words', lowerCAmelCase__) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' 'to use it with pretokenized inputs.') return super()._batch_encode_plus(*lowerCAmelCase__, **lowerCAmelCase__) def a_ ( self, *lowerCAmelCase__, **lowerCAmelCase__) -> BatchEncoding: snake_case_ = kwargs.get('is_split_into_words', lowerCAmelCase__) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' 'to use it with pretokenized inputs.') return super()._encode_plus(*lowerCAmelCase__, **lowerCAmelCase__) def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = None) -> Tuple[str]: snake_case_ = self._tokenizer.model.save(lowerCAmelCase__, name=lowerCAmelCase__) return tuple(lowerCAmelCase__) def a_ ( self, lowerCAmelCase__, lowerCAmelCase__=None) -> Tuple: snake_case_ = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = None) -> List[int]: snake_case_ = [self.sep_token_id] snake_case_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0]
69
def snake_case__ ( lowerCAmelCase_ ): """simple docstring""" return " ".join( ''.join(word[::-1] ) if len(lowerCAmelCase_ ) > 4 else word for word in sentence.split() ) if __name__ == "__main__": import doctest doctest.testmod() print(reverse_long_words("Hey wollef sroirraw"))
334
0
def snake_case( __magic_name__ ) -> "list[int]": '''simple docstring''' if upper_limit < 0: raise ValueError('''Limit for the Catalan sequence must be ≥ 0''' ) lowercase : Union[str, Any] = [0] * (upper_limit + 1) # Base case: C(0) = C(1) = 1 lowercase : Optional[Any] = 1 if upper_limit > 0: lowercase : Dict = 1 # Recurrence relation: C(i) = sum(C(j).C(i-j-1)), from j = 0 to i for i in range(2 , upper_limit + 1 ): for j in range(__magic_name__ ): catalan_list[i] += catalan_list[j] * catalan_list[i - j - 1] return catalan_list if __name__ == "__main__": print('\n********* Catalan Numbers Using Dynamic Programming ************\n') print('\n*** Enter -1 at any time to quit ***') print('\nEnter the upper limit (≥ 0) for the Catalan number sequence: ', end='') try: while True: lowerCAmelCase_ = int(input().strip()) if N < 0: print('\n********* Goodbye!! ************') break else: print(f'''The Catalan numbers from 0 through {N} are:''') print(catalan_numbers(N)) print('Try another upper limit for the sequence: ', end='') except (NameError, ValueError): print('\n********* Invalid input, goodbye! ************\n') import doctest doctest.testmod()
364
def snake_case( __magic_name__ , __magic_name__ , __magic_name__ ) -> int: '''simple docstring''' if len(__magic_name__ ) != len(__magic_name__ ): raise ValueError('''The length of profit and weight must be same.''' ) if max_weight <= 0: raise ValueError('''max_weight must greater than zero.''' ) if any(p < 0 for p in profit ): raise ValueError('''Profit can not be negative.''' ) if any(w < 0 for w in weight ): raise ValueError('''Weight can not be negative.''' ) # List created to store profit gained for the 1kg in case of each weight # respectively. Calculate and append profit/weight for each element. lowercase : str = [p / w for p, w in zip(__magic_name__ , __magic_name__ )] # Creating a copy of the list and sorting profit/weight in ascending order lowercase : str = sorted(__magic_name__ ) # declaring useful variables lowercase : Union[str, Any] = len(__magic_name__ ) lowercase : Optional[int] = 0 lowercase : Optional[int] = 0 lowercase : int = 0 # loop till the total weight do not reach max limit e.g. 15 kg and till i<length while limit <= max_weight and i < length: # flag value for encountered greatest element in sorted_profit_by_weight lowercase : Optional[int] = sorted_profit_by_weight[length - i - 1] lowercase : Union[str, Any] = profit_by_weight.index(__magic_name__ ) lowercase : Any = -1 # check if the weight encountered is less than the total weight # encountered before. if max_weight - limit >= weight[index]: limit += weight[index] # Adding profit gained for the given weight 1 === # weight[index]/weight[index] gain += 1 * profit[index] else: # Since the weight encountered is greater than limit, therefore take the # required number of remaining kgs and calculate profit for it. # weight remaining / weight[index] gain += (max_weight - limit) / weight[index] * profit[index] break i += 1 return gain if __name__ == "__main__": print( 'Input profits, weights, and then max_weight (all positive ints) separated by ' 'spaces.' ) lowerCAmelCase_ = [int(x) for x in input('Input profits separated by spaces: ').split()] lowerCAmelCase_ = [int(x) for x in input('Input weights separated by spaces: ').split()] lowerCAmelCase_ = int(input('Max weight allowed: ')) # Function Call calc_profit(profit, weight, max_weight)
116
0
from typing import List from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { '''snap-research/efficientformer-l1-300''': ( '''https://huggingface.co/snap-research/efficientformer-l1-300/resolve/main/config.json''' ), } class _snake_case ( _lowercase ): lowerCamelCase__: int = "efficientformer" def __init__( self: int , __lowerCamelCase: List[int] = [3, 2, 6, 4] , __lowerCamelCase: List[int] = [48, 96, 2_24, 4_48] , __lowerCamelCase: List[bool] = [True, True, True, True] , __lowerCamelCase: int = 4_48 , __lowerCamelCase: int = 32 , __lowerCamelCase: int = 4 , __lowerCamelCase: int = 7 , __lowerCamelCase: int = 5 , __lowerCamelCase: int = 8 , __lowerCamelCase: int = 4 , __lowerCamelCase: float = 0.0 , __lowerCamelCase: int = 16 , __lowerCamelCase: int = 3 , __lowerCamelCase: int = 3 , __lowerCamelCase: int = 3 , __lowerCamelCase: int = 2 , __lowerCamelCase: int = 1 , __lowerCamelCase: float = 0.0 , __lowerCamelCase: int = 1 , __lowerCamelCase: bool = True , __lowerCamelCase: bool = True , __lowerCamelCase: float = 1e-5 , __lowerCamelCase: str = "gelu" , __lowerCamelCase: float = 0.02 , __lowerCamelCase: float = 1e-12 , __lowerCamelCase: int = 2_24 , __lowerCamelCase: float = 1e-05 , **__lowerCamelCase: Optional[int] , ) -> None: super().__init__(**__lowerCamelCase ) __UpperCAmelCase : Optional[int] = hidden_act __UpperCAmelCase : Optional[int] = hidden_dropout_prob __UpperCAmelCase : List[Any] = hidden_sizes __UpperCAmelCase : Optional[int] = num_hidden_layers __UpperCAmelCase : int = num_attention_heads __UpperCAmelCase : List[str] = initializer_range __UpperCAmelCase : str = layer_norm_eps __UpperCAmelCase : Tuple = patch_size __UpperCAmelCase : str = num_channels __UpperCAmelCase : Union[str, Any] = depths __UpperCAmelCase : Tuple = mlp_expansion_ratio __UpperCAmelCase : str = downsamples __UpperCAmelCase : Optional[int] = dim __UpperCAmelCase : Any = key_dim __UpperCAmelCase : List[str] = attention_ratio __UpperCAmelCase : int = resolution __UpperCAmelCase : Union[str, Any] = pool_size __UpperCAmelCase : Union[str, Any] = downsample_patch_size __UpperCAmelCase : Any = downsample_stride __UpperCAmelCase : List[Any] = downsample_pad __UpperCAmelCase : List[str] = drop_path_rate __UpperCAmelCase : str = num_metaad_blocks __UpperCAmelCase : Dict = distillation __UpperCAmelCase : str = use_layer_scale __UpperCAmelCase : int = layer_scale_init_value __UpperCAmelCase : Union[str, Any] = image_size __UpperCAmelCase : List[str] = batch_norm_eps
157
from __future__ import annotations import unittest from transformers import MobileBertConfig, is_tf_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_MODEL_FOR_PRETRAINING_MAPPING, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertModel, ) @require_tf class _snake_case ( _lowercase , _lowercase , unittest.TestCase ): lowerCamelCase__: str = ( ( TFMobileBertModel, TFMobileBertForMaskedLM, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertForMultipleChoice, ) if is_tf_available() else () ) lowerCamelCase__: Optional[Any] = ( { "feature-extraction": TFMobileBertModel, "fill-mask": TFMobileBertForMaskedLM, "question-answering": TFMobileBertForQuestionAnswering, "text-classification": TFMobileBertForSequenceClassification, "token-classification": TFMobileBertForTokenClassification, "zero-shot": TFMobileBertForSequenceClassification, } if is_tf_available() else {} ) lowerCamelCase__: Union[str, Any] = False lowerCamelCase__: Any = False def _lowerCamelCase ( self: Tuple , __lowerCamelCase: List[Any] , __lowerCamelCase: Any , __lowerCamelCase: List[str]=False ) -> Dict: __UpperCAmelCase : Dict = super()._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase ) if return_labels: if model_class in get_values(__lowerCamelCase ): __UpperCAmelCase : List[str] = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) return inputs_dict class _snake_case ( _lowercase ): def __init__( self: str , __lowerCamelCase: Optional[int] , __lowerCamelCase: str=13 , __lowerCamelCase: Any=7 , __lowerCamelCase: int=True , __lowerCamelCase: List[Any]=True , __lowerCamelCase: Any=True , __lowerCamelCase: Optional[Any]=True , __lowerCamelCase: Tuple=99 , __lowerCamelCase: str=32 , __lowerCamelCase: Union[str, Any]=32 , __lowerCamelCase: Dict=2 , __lowerCamelCase: Dict=4 , __lowerCamelCase: Optional[int]=37 , __lowerCamelCase: Optional[int]="gelu" , __lowerCamelCase: Tuple=0.1 , __lowerCamelCase: Optional[int]=0.1 , __lowerCamelCase: int=5_12 , __lowerCamelCase: Optional[int]=16 , __lowerCamelCase: Dict=2 , __lowerCamelCase: List[Any]=0.02 , __lowerCamelCase: List[str]=3 , __lowerCamelCase: List[Any]=4 , __lowerCamelCase: Union[str, Any]=None , ) -> Optional[int]: __UpperCAmelCase : str = parent __UpperCAmelCase : Optional[int] = batch_size __UpperCAmelCase : Any = seq_length __UpperCAmelCase : Dict = is_training __UpperCAmelCase : str = use_input_mask __UpperCAmelCase : Optional[int] = use_token_type_ids __UpperCAmelCase : Dict = use_labels __UpperCAmelCase : int = vocab_size __UpperCAmelCase : Union[str, Any] = hidden_size __UpperCAmelCase : int = num_hidden_layers __UpperCAmelCase : Optional[Any] = num_attention_heads __UpperCAmelCase : Tuple = intermediate_size __UpperCAmelCase : List[Any] = hidden_act __UpperCAmelCase : Optional[Any] = hidden_dropout_prob __UpperCAmelCase : int = attention_probs_dropout_prob __UpperCAmelCase : Tuple = max_position_embeddings __UpperCAmelCase : List[str] = type_vocab_size __UpperCAmelCase : Optional[Any] = type_sequence_label_size __UpperCAmelCase : str = initializer_range __UpperCAmelCase : int = num_labels __UpperCAmelCase : Optional[Any] = num_choices __UpperCAmelCase : Optional[int] = scope __UpperCAmelCase : List[str] = embedding_size def _lowerCamelCase ( self: Tuple ) -> Optional[Any]: __UpperCAmelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase : Union[str, Any] = None if self.use_input_mask: __UpperCAmelCase : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCAmelCase : Tuple = None if self.use_token_type_ids: __UpperCAmelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __UpperCAmelCase : Optional[int] = None __UpperCAmelCase : Tuple = None __UpperCAmelCase : Any = None if self.use_labels: __UpperCAmelCase : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCAmelCase : Tuple = ids_tensor([self.batch_size] , self.num_choices ) __UpperCAmelCase : Dict = MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , embedding_size=self.embedding_size , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowerCamelCase ( self: Tuple , __lowerCamelCase: List[str] , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: Dict , __lowerCamelCase: List[Any] , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: Any , __lowerCamelCase: Optional[Any] ) -> Optional[int]: __UpperCAmelCase : Any = TFMobileBertModel(config=__lowerCamelCase ) __UpperCAmelCase : Optional[Any] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} __UpperCAmelCase : Tuple = model(__lowerCamelCase ) __UpperCAmelCase : Optional[int] = [input_ids, input_mask] __UpperCAmelCase : List[str] = model(__lowerCamelCase ) __UpperCAmelCase : Optional[int] = model(__lowerCamelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def _lowerCamelCase ( self: Optional[Any] , __lowerCamelCase: Any , __lowerCamelCase: List[Any] , __lowerCamelCase: List[Any] , __lowerCamelCase: Optional[int] , __lowerCamelCase: Optional[Any] , __lowerCamelCase: Optional[Any] , __lowerCamelCase: Dict ) -> Optional[int]: __UpperCAmelCase : List[str] = TFMobileBertForMaskedLM(config=__lowerCamelCase ) __UpperCAmelCase : Tuple = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} __UpperCAmelCase : Tuple = model(__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowerCamelCase ( self: Tuple , __lowerCamelCase: str , __lowerCamelCase: Dict , __lowerCamelCase: List[str] , __lowerCamelCase: List[str] , __lowerCamelCase: Optional[int] , __lowerCamelCase: Tuple , __lowerCamelCase: Union[str, Any] ) -> Any: __UpperCAmelCase : Optional[int] = TFMobileBertForNextSentencePrediction(config=__lowerCamelCase ) __UpperCAmelCase : List[Any] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} __UpperCAmelCase : str = model(__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def _lowerCamelCase ( self: List[Any] , __lowerCamelCase: Optional[int] , __lowerCamelCase: Dict , __lowerCamelCase: Dict , __lowerCamelCase: Any , __lowerCamelCase: List[Any] , __lowerCamelCase: Any , __lowerCamelCase: Any ) -> List[str]: __UpperCAmelCase : Optional[Any] = TFMobileBertForPreTraining(config=__lowerCamelCase ) __UpperCAmelCase : List[Any] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} __UpperCAmelCase : List[str] = model(__lowerCamelCase ) self.parent.assertEqual( result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def _lowerCamelCase ( self: Optional[int] , __lowerCamelCase: Dict , __lowerCamelCase: List[Any] , __lowerCamelCase: List[str] , __lowerCamelCase: int , __lowerCamelCase: List[str] , __lowerCamelCase: Any , __lowerCamelCase: Dict ) -> Dict: __UpperCAmelCase : Tuple = self.num_labels __UpperCAmelCase : Tuple = TFMobileBertForSequenceClassification(config=__lowerCamelCase ) __UpperCAmelCase : Optional[int] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} __UpperCAmelCase : Optional[int] = model(__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowerCamelCase ( self: Optional[int] , __lowerCamelCase: Dict , __lowerCamelCase: str , __lowerCamelCase: List[str] , __lowerCamelCase: Any , __lowerCamelCase: str , __lowerCamelCase: List[str] , __lowerCamelCase: Union[str, Any] ) -> Optional[int]: __UpperCAmelCase : Union[str, Any] = self.num_choices __UpperCAmelCase : Tuple = TFMobileBertForMultipleChoice(config=__lowerCamelCase ) __UpperCAmelCase : Dict = tf.tile(tf.expand_dims(__lowerCamelCase , 1 ) , (1, self.num_choices, 1) ) __UpperCAmelCase : str = tf.tile(tf.expand_dims(__lowerCamelCase , 1 ) , (1, self.num_choices, 1) ) __UpperCAmelCase : Optional[Any] = tf.tile(tf.expand_dims(__lowerCamelCase , 1 ) , (1, self.num_choices, 1) ) __UpperCAmelCase : Any = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, } __UpperCAmelCase : Dict = model(__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _lowerCamelCase ( self: Optional[Any] , __lowerCamelCase: List[Any] , __lowerCamelCase: Optional[int] , __lowerCamelCase: str , __lowerCamelCase: Tuple , __lowerCamelCase: Dict , __lowerCamelCase: str , __lowerCamelCase: Optional[int] ) -> Dict: __UpperCAmelCase : List[Any] = self.num_labels __UpperCAmelCase : Optional[int] = TFMobileBertForTokenClassification(config=__lowerCamelCase ) __UpperCAmelCase : Dict = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} __UpperCAmelCase : Optional[Any] = model(__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowerCamelCase ( self: int , __lowerCamelCase: Optional[int] , __lowerCamelCase: int , __lowerCamelCase: List[str] , __lowerCamelCase: Any , __lowerCamelCase: Optional[Any] , __lowerCamelCase: Dict , __lowerCamelCase: int ) -> Tuple: __UpperCAmelCase : Tuple = TFMobileBertForQuestionAnswering(config=__lowerCamelCase ) __UpperCAmelCase : Dict = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} __UpperCAmelCase : str = model(__lowerCamelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowerCamelCase ( self: Tuple ) -> Optional[Any]: __UpperCAmelCase : Tuple = self.prepare_config_and_inputs() ( ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ) : Any = config_and_inputs __UpperCAmelCase : List[str] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict def _lowerCamelCase ( self: List[str] ) -> int: __UpperCAmelCase : List[str] = TFMobileBertModelTest.TFMobileBertModelTester(self ) __UpperCAmelCase : Optional[int] = ConfigTester(self , config_class=__lowerCamelCase , hidden_size=37 ) def _lowerCamelCase ( self: Any ) -> Optional[Any]: self.config_tester.run_common_tests() def _lowerCamelCase ( self: int ) -> int: __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*__lowerCamelCase ) def _lowerCamelCase ( self: int ) -> List[str]: __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*__lowerCamelCase ) def _lowerCamelCase ( self: Optional[Any] ) -> Optional[Any]: __UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*__lowerCamelCase ) def _lowerCamelCase ( self: List[Any] ) -> List[Any]: __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*__lowerCamelCase ) def _lowerCamelCase ( self: Tuple ) -> Any: __UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*__lowerCamelCase ) def _lowerCamelCase ( self: Optional[Any] ) -> Any: __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*__lowerCamelCase ) def _lowerCamelCase ( self: str ) -> str: __UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*__lowerCamelCase ) def _lowerCamelCase ( self: Union[str, Any] ) -> str: __UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*__lowerCamelCase ) @slow def _lowerCamelCase ( self: List[Any] ) -> Union[str, Any]: # for model_name in TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["google/mobilebert-uncased"]: __UpperCAmelCase : Dict = TFMobileBertModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) @require_tf class _snake_case ( unittest.TestCase ): @slow def _lowerCamelCase ( self: Union[str, Any] ) -> str: __UpperCAmelCase : Any = TFMobileBertForPreTraining.from_pretrained("google/mobilebert-uncased" ) __UpperCAmelCase : Union[str, Any] = tf.constant([[0, 1, 2, 3, 4, 5]] ) __UpperCAmelCase : str = model(__lowerCamelCase )[0] __UpperCAmelCase : Any = [1, 6, 3_05_22] self.assertEqual(output.shape , __lowerCamelCase ) __UpperCAmelCase : str = tf.constant( [ [ [-4.5_91_95_47, -9.24_82_95, -9.64_52_56], [-6.7_30_61_75, -6.44_02_84, -6.6_05_28_37], [-7.2_74_35_06, -6.7_84_79_15, -6.02_46_73], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , __lowerCamelCase , atol=1e-4 )
157
1
from __future__ import annotations import numpy as np from numpy import floataa from numpy.typing import NDArray def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , ) -> List[Any]: _lowercase : Any = coefficient_matrix.shape _lowercase : Any = constant_matrix.shape if rowsa != colsa: _lowercase : str = F'''Coefficient matrix dimensions must be nxn but received {rowsa}x{colsa}''' raise ValueError(__a ) if colsa != 1: _lowercase : Tuple = F'''Constant matrix must be nx1 but received {rowsa}x{colsa}''' raise ValueError(__a ) if rowsa != rowsa: _lowercase : List[str] = ( 'Coefficient and constant matrices dimensions must be nxn and nx1 but ' F'''received {rowsa}x{colsa} and {rowsa}x{colsa}''' ) raise ValueError(__a ) if len(__a ) != rowsa: _lowercase : Optional[Any] = ( 'Number of initial values must be equal to number of rows in coefficient ' F'''matrix but received {len(__a )} and {rowsa}''' ) raise ValueError(__a ) if iterations <= 0: raise ValueError('Iterations must be at least 1' ) _lowercase : NDArray[floataa] = np.concatenate( (coefficient_matrix, constant_matrix) , axis=1 ) _lowercase : Dict = table.shape strictly_diagonally_dominant(__a ) # Iterates the whole matrix for given number of times for _ in range(__a ): _lowercase : Any = [] for row in range(__a ): _lowercase : int = 0 for col in range(__a ): if col == row: _lowercase : List[str] = table[row][col] elif col == cols - 1: _lowercase : Tuple = table[row][col] else: temp += (-1) * table[row][col] * init_val[col] _lowercase : List[str] = (temp + val) / denom new_val.append(__a ) _lowercase : Union[str, Any] = new_val return [float(__a ) for i in new_val] def UpperCamelCase_( lowerCamelCase_ ) -> Any: _lowercase : Optional[Any] = table.shape _lowercase : List[Any] = True for i in range(0 , __a ): _lowercase : Union[str, Any] = 0 for j in range(0 , cols - 1 ): if i == j: continue else: total += table[i][j] if table[i][i] <= total: raise ValueError('Coefficient matrix is not strictly diagonally dominant' ) return is_diagonally_dominant # Test Cases if __name__ == "__main__": import doctest doctest.testmod()
355
import argparse from collections import OrderedDict from pathlib import Path import requests import torch from PIL import Image from transformers import GLPNConfig, GLPNForDepthEstimation, GLPNImageProcessor from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE : Union[str, Any] = logging.get_logger(__name__) def UpperCamelCase_( lowerCamelCase_ ) -> Union[str, Any]: _lowercase : int = OrderedDict() for key, value in state_dict.items(): if key.startswith('module.encoder' ): _lowercase : Union[str, Any] = key.replace('module.encoder' , 'glpn.encoder' ) if key.startswith('module.decoder' ): _lowercase : Optional[int] = key.replace('module.decoder' , 'decoder.stages' ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 _lowercase : Tuple = key[key.find('patch_embed' ) + len('patch_embed' )] _lowercase : Dict = key.replace(F'''patch_embed{idx}''' , F'''patch_embeddings.{int(lowerCamelCase_ )-1}''' ) if "norm" in key: _lowercase : Tuple = key.replace('norm' , 'layer_norm' ) if "glpn.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 _lowercase : str = key[key.find('glpn.encoder.layer_norm' ) + len('glpn.encoder.layer_norm' )] _lowercase : Union[str, Any] = key.replace(F'''layer_norm{idx}''' , F'''layer_norm.{int(lowerCamelCase_ )-1}''' ) if "layer_norm1" in key: _lowercase : int = key.replace('layer_norm1' , 'layer_norm_1' ) if "layer_norm2" in key: _lowercase : str = key.replace('layer_norm2' , 'layer_norm_2' ) if "block" in key: # replace for example block1 by block.0 _lowercase : Optional[Any] = key[key.find('block' ) + len('block' )] _lowercase : Optional[int] = key.replace(F'''block{idx}''' , F'''block.{int(lowerCamelCase_ )-1}''' ) if "attn.q" in key: _lowercase : Union[str, Any] = key.replace('attn.q' , 'attention.self.query' ) if "attn.proj" in key: _lowercase : str = key.replace('attn.proj' , 'attention.output.dense' ) if "attn" in key: _lowercase : int = key.replace('attn' , 'attention.self' ) if "fc1" in key: _lowercase : Any = key.replace('fc1' , 'dense1' ) if "fc2" in key: _lowercase : str = key.replace('fc2' , 'dense2' ) if "linear_pred" in key: _lowercase : Optional[Any] = key.replace('linear_pred' , 'classifier' ) if "linear_fuse" in key: _lowercase : List[str] = key.replace('linear_fuse.conv' , 'linear_fuse' ) _lowercase : str = key.replace('linear_fuse.bn' , 'batch_norm' ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 _lowercase : Tuple = key[key.find('linear_c' ) + len('linear_c' )] _lowercase : List[Any] = key.replace(F'''linear_c{idx}''' , F'''linear_c.{int(lowerCamelCase_ )-1}''' ) if "bot_conv" in key: _lowercase : Optional[int] = key.replace('bot_conv' , '0.convolution' ) if "skip_conv1" in key: _lowercase : str = key.replace('skip_conv1' , '1.convolution' ) if "skip_conv2" in key: _lowercase : List[str] = key.replace('skip_conv2' , '2.convolution' ) if "fusion1" in key: _lowercase : List[Any] = key.replace('fusion1' , '1.fusion' ) if "fusion2" in key: _lowercase : List[str] = key.replace('fusion2' , '2.fusion' ) if "fusion3" in key: _lowercase : Optional[int] = key.replace('fusion3' , '3.fusion' ) if "fusion" in key and "conv" in key: _lowercase : Any = key.replace('conv' , 'convolutional_layer' ) if key.startswith('module.last_layer_depth' ): _lowercase : Dict = key.replace('module.last_layer_depth' , 'head.head' ) _lowercase : Dict = value return new_state_dict def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ ) -> str: # for each of the encoder blocks: for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) _lowercase : List[str] = state_dict.pop(F'''glpn.encoder.block.{i}.{j}.attention.self.kv.weight''' ) _lowercase : Union[str, Any] = state_dict.pop(F'''glpn.encoder.block.{i}.{j}.attention.self.kv.bias''' ) # next, add keys and values (in that order) to the state dict _lowercase : List[str] = kv_weight[ : config.hidden_sizes[i], : ] _lowercase : List[str] = kv_bias[: config.hidden_sizes[i]] _lowercase : Any = kv_weight[ config.hidden_sizes[i] :, : ] _lowercase : Optional[Any] = kv_bias[config.hidden_sizes[i] :] def UpperCamelCase_( ) -> Union[str, Any]: _lowercase : int = 'http://images.cocodataset.org/val2017/000000039769.jpg' _lowercase : Dict = Image.open(requests.get(lowerCamelCase_ , stream=lowerCamelCase_ ).raw ) return image @torch.no_grad() def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=False , lowerCamelCase_=None ) -> Dict: _lowercase : str = GLPNConfig(hidden_sizes=[64, 128, 320, 512] , decoder_hidden_size=64 , depths=[3, 8, 27, 3] ) # load image processor (only resize + rescale) _lowercase : str = GLPNImageProcessor() # prepare image _lowercase : List[Any] = prepare_img() _lowercase : List[str] = image_processor(images=lowerCamelCase_ , return_tensors='pt' ).pixel_values logger.info('Converting model...' ) # load original state dict _lowercase : Any = torch.load(lowerCamelCase_ , map_location=torch.device('cpu' ) ) # rename keys _lowercase : List[Any] = rename_keys(lowerCamelCase_ ) # key and value matrices need special treatment read_in_k_v(lowerCamelCase_ , lowerCamelCase_ ) # create HuggingFace model and load state dict _lowercase : Union[str, Any] = GLPNForDepthEstimation(lowerCamelCase_ ) model.load_state_dict(lowerCamelCase_ ) model.eval() # forward pass _lowercase : List[Any] = model(lowerCamelCase_ ) _lowercase : int = outputs.predicted_depth # verify output if model_name is not None: if "nyu" in model_name: _lowercase : Optional[int] = torch.tensor( [[4.41_47, 4.08_73, 4.06_73], [3.78_90, 3.28_81, 3.15_25], [3.76_74, 3.54_23, 3.49_13]] ) elif "kitti" in model_name: _lowercase : str = torch.tensor( [[3.42_91, 2.78_65, 2.51_51], [3.28_41, 2.70_21, 2.35_02], [3.11_47, 2.46_25, 2.24_81]] ) else: raise ValueError(F'''Unknown model name: {model_name}''' ) _lowercase : Optional[Any] = torch.Size([1, 480, 640] ) assert predicted_depth.shape == expected_shape assert torch.allclose(predicted_depth[0, :3, :3] , lowerCamelCase_ , atol=1e-4 ) print('Looks ok!' ) # finally, push to hub if required if push_to_hub: logger.info('Pushing model and image processor to the hub...' ) model.push_to_hub( repo_path_or_name=Path(lowerCamelCase_ , lowerCamelCase_ ) , organization='nielsr' , commit_message='Add model' , use_temp_dir=lowerCamelCase_ , ) image_processor.push_to_hub( repo_path_or_name=Path(lowerCamelCase_ , lowerCamelCase_ ) , organization='nielsr' , commit_message='Add image processor' , use_temp_dir=lowerCamelCase_ , ) if __name__ == "__main__": SCREAMING_SNAKE_CASE : Any = argparse.ArgumentParser() parser.add_argument( "--checkpoint_path", default=None, type=str, help="Path to the original PyTorch checkpoint (.pth file).", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether to upload the model to the HuggingFace hub." ) parser.add_argument( "--model_name", default="glpn-kitti", type=str, help="Name of the model in case you're pushing to the hub.", ) SCREAMING_SNAKE_CASE : List[str] = parser.parse_args() convert_glpn_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
84
0
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import KandinskyPipeline, KandinskyPriorPipeline else: from .pipeline_kandinsky import KandinskyPipeline from .pipeline_kandinsky_imgaimg import KandinskyImgaImgPipeline from .pipeline_kandinsky_inpaint import KandinskyInpaintPipeline from .pipeline_kandinsky_prior import KandinskyPriorPipeline, KandinskyPriorPipelineOutput from .text_encoder import MultilingualCLIP
62
'''simple docstring''' import argparse import math import os from copy import deepcopy import torch from audio_diffusion.models import DiffusionAttnUnetaD from diffusion import sampling from torch import nn from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel A_ = { "gwf-440k": { "url": "https://model-server.zqevans2.workers.dev/gwf-440k.ckpt", "sample_rate": 4_80_00, "sample_size": 6_55_36, }, "jmann-small-190k": { "url": "https://model-server.zqevans2.workers.dev/jmann-small-190k.ckpt", "sample_rate": 4_80_00, "sample_size": 6_55_36, }, "jmann-large-580k": { "url": "https://model-server.zqevans2.workers.dev/jmann-large-580k.ckpt", "sample_rate": 4_80_00, "sample_size": 13_10_72, }, "maestro-uncond-150k": { "url": "https://model-server.zqevans2.workers.dev/maestro-uncond-150k.ckpt", "sample_rate": 1_60_00, "sample_size": 6_55_36, }, "unlocked-uncond-250k": { "url": "https://model-server.zqevans2.workers.dev/unlocked-uncond-250k.ckpt", "sample_rate": 1_60_00, "sample_size": 6_55_36, }, "honk-140k": { "url": "https://model-server.zqevans2.workers.dev/honk-140k.ckpt", "sample_rate": 1_60_00, "sample_size": 6_55_36, }, } def A_ ( snake_case , snake_case ): return torch.atana(snake_case , snake_case ) / math.pi * 2 def A_ ( snake_case ): SCREAMING_SNAKE_CASE:List[Any] = torch.sin(t * math.pi / 2 ) ** 2 SCREAMING_SNAKE_CASE:Any = (1 - sigma**2) ** 0.5 return alpha_sigma_to_t(snake_case , snake_case ) class _snake_case ( _a ): pass class _snake_case ( nn.Module ): def __init__( self : int ,SCREAMING_SNAKE_CASE__ : str ): super().__init__() SCREAMING_SNAKE_CASE:List[Any] = DiffusionAttnUnetaD(SCREAMING_SNAKE_CASE__ ,n_attn_layers=4 ) SCREAMING_SNAKE_CASE:List[str] = deepcopy(self.diffusion ) SCREAMING_SNAKE_CASE:Dict = torch.quasirandom.SobolEngine(1 ,scramble=SCREAMING_SNAKE_CASE__ ) def A_ ( snake_case ): SCREAMING_SNAKE_CASE:List[Any] = MODELS_MAP[model_name]["url"] os.system(F'''wget {url} ./''' ) return F'''./{model_name}.ckpt''' A_ = { "1": "resnets.0", "2": "attentions.0", "3": "resnets.1", "4": "attentions.1", "5": "resnets.2", "6": "attentions.2", } A_ = { "8": "resnets.0", "9": "attentions.0", "10": "resnets.1", "11": "attentions.1", "12": "resnets.2", "13": "attentions.2", } A_ = { "1": "resnets.0", "2": "attentions.0", "3": "resnets.1", "4": "attentions.1", "5": "resnets.2", "6": "attentions.2", "8": "resnets.3", "9": "attentions.3", "10": "resnets.4", "11": "attentions.4", "12": "resnets.5", "13": "attentions.5", } A_ = { "0": "resnets.0", "1": "resnets.1", "2": "resnets.2", "4": "resnets.0", "5": "resnets.1", "6": "resnets.2", } A_ = { "skip": "conv_skip", "main.0": "conv_1", "main.1": "group_norm_1", "main.3": "conv_2", "main.4": "group_norm_2", } A_ = { "norm": "group_norm", "qkv_proj": ["query", "key", "value"], "out_proj": ["proj_attn"], } def A_ ( snake_case ): if name.startswith("skip" ): return name.replace("skip" , RES_CONV_MAP["skip"] ) # name has to be of format main.{digit} if not name.startswith("main." ): raise ValueError(F'''ResConvBlock error with {name}''' ) return name.replace(name[:6] , RES_CONV_MAP[name[:6]] ) def A_ ( snake_case ): for key, value in ATTN_MAP.items(): if name.startswith(snake_case ) and not isinstance(snake_case , snake_case ): return name.replace(snake_case , snake_case ) elif name.startswith(snake_case ): return [name.replace(snake_case , snake_case ) for v in value] raise ValueError(F'''Attn error with {name}''' ) def A_ ( snake_case , snake_case=13 ): SCREAMING_SNAKE_CASE:Optional[Any] = input_string if string.split("." )[0] == "timestep_embed": return string.replace("timestep_embed" , "time_proj" ) SCREAMING_SNAKE_CASE:List[str] = 0 if string.startswith("net.3." ): depth += 1 SCREAMING_SNAKE_CASE:Union[str, Any] = string[6:] elif string.startswith("net." ): SCREAMING_SNAKE_CASE:int = string[4:] while string.startswith("main.7." ): depth += 1 SCREAMING_SNAKE_CASE:Union[str, Any] = string[7:] if string.startswith("main." ): SCREAMING_SNAKE_CASE:str = string[5:] # mid block if string[:2].isdigit(): SCREAMING_SNAKE_CASE:Tuple = string[:2] SCREAMING_SNAKE_CASE:Optional[Any] = string[2:] else: SCREAMING_SNAKE_CASE:Optional[Any] = string[0] SCREAMING_SNAKE_CASE:Optional[Any] = string[1:] if depth == max_depth: SCREAMING_SNAKE_CASE:Any = MID_NUM_TO_LAYER[layer_num] SCREAMING_SNAKE_CASE:List[str] = "mid_block" elif depth > 0 and int(snake_case ) < 7: SCREAMING_SNAKE_CASE:Union[str, Any] = DOWN_NUM_TO_LAYER[layer_num] SCREAMING_SNAKE_CASE:Dict = F'''down_blocks.{depth}''' elif depth > 0 and int(snake_case ) > 7: SCREAMING_SNAKE_CASE:Any = UP_NUM_TO_LAYER[layer_num] SCREAMING_SNAKE_CASE:Union[str, Any] = F'''up_blocks.{max_depth - depth - 1}''' elif depth == 0: SCREAMING_SNAKE_CASE:Optional[int] = DEPTH_0_TO_LAYER[layer_num] SCREAMING_SNAKE_CASE:Any = F'''up_blocks.{max_depth - 1}''' if int(snake_case ) > 3 else "down_blocks.0" if not string_left.startswith("." ): raise ValueError(F'''Naming error with {input_string} and string_left: {string_left}.''' ) SCREAMING_SNAKE_CASE:List[Any] = string_left[1:] if "resnets" in new_layer: SCREAMING_SNAKE_CASE:List[str] = convert_resconv_naming(snake_case ) elif "attentions" in new_layer: SCREAMING_SNAKE_CASE:List[Any] = convert_attn_naming(snake_case ) SCREAMING_SNAKE_CASE:List[Any] = new_string_left if not isinstance(snake_case , snake_case ): SCREAMING_SNAKE_CASE:Tuple = prefix + "." + new_layer + "." + string_left else: SCREAMING_SNAKE_CASE:int = [prefix + "." + new_layer + "." + s for s in string_left] return new_string def A_ ( snake_case ): SCREAMING_SNAKE_CASE:int = {} for k, v in state_dict.items(): if k.endswith("kernel" ): # up- and downsample layers, don't have trainable weights continue SCREAMING_SNAKE_CASE:str = rename(snake_case ) # check if we need to transform from Conv => Linear for attention if isinstance(snake_case , snake_case ): SCREAMING_SNAKE_CASE:Optional[int] = transform_conv_attns(snake_case , snake_case , snake_case ) else: SCREAMING_SNAKE_CASE:Optional[int] = v return new_state_dict def A_ ( snake_case , snake_case , snake_case ): if len(snake_case ) == 1: if len(v.shape ) == 3: # weight SCREAMING_SNAKE_CASE:List[str] = v[:, :, 0] else: # bias SCREAMING_SNAKE_CASE:Optional[Any] = v else: # qkv matrices SCREAMING_SNAKE_CASE:Optional[int] = v.shape[0] SCREAMING_SNAKE_CASE:Optional[Any] = trippled_shape // 3 for i in range(3 ): if len(v.shape ) == 3: SCREAMING_SNAKE_CASE:Union[str, Any] = v[i * single_shape : (i + 1) * single_shape, :, 0] else: SCREAMING_SNAKE_CASE:List[Any] = v[i * single_shape : (i + 1) * single_shape] return new_state_dict def A_ ( snake_case ): SCREAMING_SNAKE_CASE:Union[str, Any] = torch.device("cuda" if torch.cuda.is_available() else "cpu" ) SCREAMING_SNAKE_CASE:List[str] = args.model_path.split("/" )[-1].split("." )[0] if not os.path.isfile(args.model_path ): assert ( model_name == args.model_path ), F'''Make sure to provide one of the official model names {MODELS_MAP.keys()}''' SCREAMING_SNAKE_CASE:List[str] = download(snake_case ) SCREAMING_SNAKE_CASE:List[str] = MODELS_MAP[model_name]["sample_rate"] SCREAMING_SNAKE_CASE:Tuple = MODELS_MAP[model_name]["sample_size"] SCREAMING_SNAKE_CASE:Union[str, Any] = Object() SCREAMING_SNAKE_CASE:int = sample_size SCREAMING_SNAKE_CASE:Any = sample_rate SCREAMING_SNAKE_CASE:List[str] = 0 SCREAMING_SNAKE_CASE:Optional[Any] = UNetaDModel(sample_size=snake_case , sample_rate=snake_case ) SCREAMING_SNAKE_CASE:Optional[Any] = diffusers_model.state_dict() SCREAMING_SNAKE_CASE:Optional[Any] = DiffusionUncond(snake_case ) orig_model.load_state_dict(torch.load(args.model_path , map_location=snake_case )["state_dict"] ) SCREAMING_SNAKE_CASE:Union[str, Any] = orig_model.diffusion_ema.eval() SCREAMING_SNAKE_CASE:Dict = orig_model.state_dict() SCREAMING_SNAKE_CASE:Union[str, Any] = rename_orig_weights(snake_case ) SCREAMING_SNAKE_CASE:Dict = set(renamed_state_dict.keys() ) - set(diffusers_state_dict.keys() ) SCREAMING_SNAKE_CASE:Dict = set(diffusers_state_dict.keys() ) - set(renamed_state_dict.keys() ) assert len(snake_case ) == 0, F'''Problem with {renamed_minus_diffusers}''' assert all(k.endswith("kernel" ) for k in list(snake_case ) ), F'''Problem with {diffusers_minus_renamed}''' for key, value in renamed_state_dict.items(): assert ( diffusers_state_dict[key].squeeze().shape == value.squeeze().shape ), F'''Shape for {key} doesn\'t match. Diffusers: {diffusers_state_dict[key].shape} vs. {value.shape}''' if key == "time_proj.weight": SCREAMING_SNAKE_CASE:Dict = value.squeeze() SCREAMING_SNAKE_CASE:Union[str, Any] = value diffusers_model.load_state_dict(snake_case ) SCREAMING_SNAKE_CASE:int = 100 SCREAMING_SNAKE_CASE:int = 33 SCREAMING_SNAKE_CASE:Any = IPNDMScheduler(num_train_timesteps=snake_case ) SCREAMING_SNAKE_CASE:str = torch.manual_seed(snake_case ) SCREAMING_SNAKE_CASE:Union[str, Any] = torch.randn([1, 2, config.sample_size] , generator=snake_case ).to(snake_case ) SCREAMING_SNAKE_CASE:int = torch.linspace(1 , 0 , steps + 1 , device=snake_case )[:-1] SCREAMING_SNAKE_CASE:List[Any] = get_crash_schedule(snake_case ) SCREAMING_SNAKE_CASE:Union[str, Any] = DanceDiffusionPipeline(unet=snake_case , scheduler=snake_case ) SCREAMING_SNAKE_CASE:Union[str, Any] = torch.manual_seed(33 ) SCREAMING_SNAKE_CASE:Union[str, Any] = pipe(num_inference_steps=snake_case , generator=snake_case ).audios SCREAMING_SNAKE_CASE:Tuple = sampling.iplms_sample(snake_case , snake_case , snake_case , {} ) SCREAMING_SNAKE_CASE:Union[str, Any] = generated.clamp(-1 , 1 ) SCREAMING_SNAKE_CASE:Union[str, Any] = (generated - audio).abs().sum() SCREAMING_SNAKE_CASE:str = (generated - audio).abs().max() if args.save: pipe.save_pretrained(args.checkpoint_path ) print("Diff sum" , snake_case ) print("Diff max" , snake_case ) assert diff_max < 1e-3, F'''Diff max: {diff_max} is too much :-/''' print(F'''Conversion for {model_name} successful!''' ) if __name__ == "__main__": A_ = argparse.ArgumentParser() parser.add_argument("--model_path", default=None, type=str, required=True, help="Path to the model to convert.") parser.add_argument( "--save", default=True, type=bool, required=False, help="Whether to save the converted model or not." ) parser.add_argument("--checkpoint_path", default=None, type=str, required=True, help="Path to the output model.") A_ = parser.parse_args() main(args)
139
0
def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : dict ) -> bool: """simple docstring""" SCREAMING_SNAKE_CASE__ = set() # To detect a back edge, keep track of vertices currently in the recursion stack SCREAMING_SNAKE_CASE__ = set() return any( node not in visited and depth_first_search(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) for node in graph ) def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : dict , __UpperCamelCase : int , __UpperCamelCase : set , __UpperCamelCase : set ) -> bool: """simple docstring""" visited.add(__UpperCamelCase ) rec_stk.add(__UpperCamelCase ) for node in graph[vertex]: if node not in visited: if depth_first_search(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): return True elif node in rec_stk: return True # The node needs to be removed from recursion stack before function ends rec_stk.remove(__UpperCamelCase ) return False if __name__ == "__main__": from doctest import testmod testmod()
204
import PIL.Image import PIL.ImageOps from packaging import version from PIL import Image if version.parse(version.parse(PIL.__version__).base_version) >= version.parse('''9.1.0'''): __lowerCamelCase : Optional[Any] = { '''linear''': PIL.Image.Resampling.BILINEAR, '''bilinear''': PIL.Image.Resampling.BILINEAR, '''bicubic''': PIL.Image.Resampling.BICUBIC, '''lanczos''': PIL.Image.Resampling.LANCZOS, '''nearest''': PIL.Image.Resampling.NEAREST, } else: __lowerCamelCase : int = { '''linear''': PIL.Image.LINEAR, '''bilinear''': PIL.Image.BILINEAR, '''bicubic''': PIL.Image.BICUBIC, '''lanczos''': PIL.Image.LANCZOS, '''nearest''': PIL.Image.NEAREST, } def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = (images / 2 + 0.5).clamp(0 , 1 ) SCREAMING_SNAKE_CASE__ = images.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() SCREAMING_SNAKE_CASE__ = numpy_to_pil(__UpperCamelCase ) return images def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> int: """simple docstring""" if images.ndim == 3: SCREAMING_SNAKE_CASE__ = images[None, ...] SCREAMING_SNAKE_CASE__ = (images * 2_55).round().astype("""uint8""" ) if images.shape[-1] == 1: # special case for grayscale (single channel) images SCREAMING_SNAKE_CASE__ = [Image.fromarray(image.squeeze() , mode="""L""" ) for image in images] else: SCREAMING_SNAKE_CASE__ = [Image.fromarray(__UpperCamelCase ) for image in images] return pil_images
204
1
from __future__ import annotations from collections.abc import Callable __lowerCamelCase : Any = list[list[float | int]] def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : Matrix , __UpperCamelCase : Matrix ) -> Matrix: """simple docstring""" SCREAMING_SNAKE_CASE__ = len(__UpperCamelCase ) SCREAMING_SNAKE_CASE__ = [[0 for _ in range(size + 1 )] for _ in range(__UpperCamelCase )] SCREAMING_SNAKE_CASE__ = 42 SCREAMING_SNAKE_CASE__ = 42 SCREAMING_SNAKE_CASE__ = 42 SCREAMING_SNAKE_CASE__ = 42 SCREAMING_SNAKE_CASE__ = 42 SCREAMING_SNAKE_CASE__ = 42 for row in range(__UpperCamelCase ): for col in range(__UpperCamelCase ): SCREAMING_SNAKE_CASE__ = matrix[row][col] SCREAMING_SNAKE_CASE__ = vector[row][0] SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 0 while row < size and col < size: # pivoting SCREAMING_SNAKE_CASE__ = max((abs(augmented[rowa][col] ), rowa) for rowa in range(__UpperCamelCase , __UpperCamelCase ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = augmented[pivot_row], augmented[row] for rowa in range(row + 1 , __UpperCamelCase ): SCREAMING_SNAKE_CASE__ = augmented[rowa][col] / augmented[row][col] SCREAMING_SNAKE_CASE__ = 0 for cola in range(col + 1 , size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1 , __UpperCamelCase ): for row in range(__UpperCamelCase ): SCREAMING_SNAKE_CASE__ = augmented[row][col] / augmented[col][col] for cola in range(__UpperCamelCase , size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(__UpperCamelCase ) ] def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : list[int] ) -> Callable[[int], int]: """simple docstring""" SCREAMING_SNAKE_CASE__ = len(__UpperCamelCase ) SCREAMING_SNAKE_CASE__ = [[0 for _ in range(__UpperCamelCase )] for _ in range(__UpperCamelCase )] SCREAMING_SNAKE_CASE__ = [[0] for _ in range(__UpperCamelCase )] SCREAMING_SNAKE_CASE__ = 42 SCREAMING_SNAKE_CASE__ = 42 SCREAMING_SNAKE_CASE__ = 42 SCREAMING_SNAKE_CASE__ = 42 for x_val, y_val in enumerate(__UpperCamelCase ): for col in range(__UpperCamelCase ): SCREAMING_SNAKE_CASE__ = (x_val + 1) ** (size - col - 1) SCREAMING_SNAKE_CASE__ = y_val SCREAMING_SNAKE_CASE__ = solve(__UpperCamelCase , __UpperCamelCase ) def interpolated_func(__UpperCamelCase : int ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(__UpperCamelCase ) ) return interpolated_func def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> int: """simple docstring""" return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : Callable[[int], int] = question_function , __UpperCamelCase : int = 10 ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ = [func(__UpperCamelCase ) for x_val in range(1 , order + 1 )] SCREAMING_SNAKE_CASE__ = [ interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 ) ] SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 42 SCREAMING_SNAKE_CASE__ = 42 for poly in polynomials: SCREAMING_SNAKE_CASE__ = 1 while func(__UpperCamelCase ) == poly(__UpperCamelCase ): x_val += 1 ret += poly(__UpperCamelCase ) return ret if __name__ == "__main__": print(F"""{solution() = }""")
219
import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler __lowerCamelCase : Any = 16 __lowerCamelCase : List[Any] = 32 def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : Accelerator , __UpperCamelCase : int = 16 , __UpperCamelCase : str = "bert-base-cased" ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__UpperCamelCase ) SCREAMING_SNAKE_CASE__ = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(__UpperCamelCase : Optional[Any] ): # max_length=None => use the model max length (it's actually the default) SCREAMING_SNAKE_CASE__ = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=__UpperCamelCase , max_length=__UpperCamelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset SCREAMING_SNAKE_CASE__ = datasets.map( __UpperCamelCase , batched=__UpperCamelCase , remove_columns=["""idx""", """sentence1""", """sentence2"""] , load_from_cache_file=__UpperCamelCase ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library SCREAMING_SNAKE_CASE__ = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(__UpperCamelCase : List[Any] ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(__UpperCamelCase , padding="""max_length""" , max_length=1_28 , return_tensors="""pt""" ) return tokenizer.pad(__UpperCamelCase , padding="""longest""" , return_tensors="""pt""" ) # Instantiate dataloaders. SCREAMING_SNAKE_CASE__ = DataLoader( tokenized_datasets["""train"""] , shuffle=__UpperCamelCase , collate_fn=__UpperCamelCase , batch_size=__UpperCamelCase ) SCREAMING_SNAKE_CASE__ = DataLoader( tokenized_datasets["""validation"""] , shuffle=__UpperCamelCase , collate_fn=__UpperCamelCase , batch_size=__UpperCamelCase ) return train_dataloader, eval_dataloader def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Optional[int] ) -> List[str]: """simple docstring""" model.eval() SCREAMING_SNAKE_CASE__ = 0 for step, batch in enumerate(__UpperCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): SCREAMING_SNAKE_CASE__ = model(**__UpperCamelCase ) SCREAMING_SNAKE_CASE__ = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = accelerator.gather( (predictions, batch["""labels"""]) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(__UpperCamelCase ) - 1: SCREAMING_SNAKE_CASE__ = predictions[: len(eval_dataloader.dataset ) - samples_seen] SCREAMING_SNAKE_CASE__ = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=__UpperCamelCase , references=__UpperCamelCase , ) SCREAMING_SNAKE_CASE__ = metric.compute() return eval_metric["accuracy"] def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Any ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs SCREAMING_SNAKE_CASE__ = config["""lr"""] SCREAMING_SNAKE_CASE__ = int(config["""num_epochs"""] ) SCREAMING_SNAKE_CASE__ = int(config["""seed"""] ) SCREAMING_SNAKE_CASE__ = int(config["""batch_size"""] ) SCREAMING_SNAKE_CASE__ = args.model_name_or_path set_seed(__UpperCamelCase ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = get_dataloaders(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) SCREAMING_SNAKE_CASE__ = AutoModelForSequenceClassification.from_pretrained(__UpperCamelCase , return_dict=__UpperCamelCase ) # Instantiate optimizer SCREAMING_SNAKE_CASE__ = ( AdamW if accelerator.state.deepspeed_plugin is None or """optimizer""" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) SCREAMING_SNAKE_CASE__ = optimizer_cls(params=model.parameters() , lr=__UpperCamelCase ) if accelerator.state.deepspeed_plugin is not None: SCREAMING_SNAKE_CASE__ = accelerator.state.deepspeed_plugin.deepspeed_config[ """gradient_accumulation_steps""" ] else: SCREAMING_SNAKE_CASE__ = 1 SCREAMING_SNAKE_CASE__ = (len(__UpperCamelCase ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): SCREAMING_SNAKE_CASE__ = get_linear_schedule_with_warmup( optimizer=__UpperCamelCase , num_warmup_steps=0 , num_training_steps=__UpperCamelCase , ) else: SCREAMING_SNAKE_CASE__ = DummyScheduler(__UpperCamelCase , total_num_steps=__UpperCamelCase , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = accelerator.prepare( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # We need to keep track of how many total steps we have iterated over SCREAMING_SNAKE_CASE__ = 0 # We also need to keep track of the stating epoch so files are named properly SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = evaluate.load("""glue""" , """mrpc""" ) SCREAMING_SNAKE_CASE__ = num_epochs if args.partial_train_epoch is not None: SCREAMING_SNAKE_CASE__ = args.partial_train_epoch if args.resume_from_checkpoint: accelerator.load_state(args.resume_from_checkpoint ) SCREAMING_SNAKE_CASE__ = args.resume_from_checkpoint.split("""epoch_""" )[1] SCREAMING_SNAKE_CASE__ = """""" for char in epoch_string: if char.isdigit(): state_epoch_num += char else: break SCREAMING_SNAKE_CASE__ = int(__UpperCamelCase ) + 1 SCREAMING_SNAKE_CASE__ = evaluation_loop(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) accelerator.print("""resumed checkpoint performance:""" , __UpperCamelCase ) accelerator.print("""resumed checkpoint's scheduler's lr:""" , lr_scheduler.get_lr()[0] ) accelerator.print("""resumed optimizers's lr:""" , optimizer.param_groups[0]["""lr"""] ) with open(os.path.join(args.output_dir , f"""state_{starting_epoch-1}.json""" ) , """r""" ) as f: SCREAMING_SNAKE_CASE__ = json.load(__UpperCamelCase ) assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed" assert ( resumed_state["lr"] == lr_scheduler.get_lr()[0] ), "Scheduler learning rate mismatch, loading from checkpoint failed" assert ( resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"] ), "Optimizer learning rate mismatch, loading from checkpoint failed" assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed" return # Now we train the model SCREAMING_SNAKE_CASE__ = {} for epoch in range(__UpperCamelCase , __UpperCamelCase ): model.train() for step, batch in enumerate(__UpperCamelCase ): SCREAMING_SNAKE_CASE__ = model(**__UpperCamelCase ) SCREAMING_SNAKE_CASE__ = outputs.loss SCREAMING_SNAKE_CASE__ = loss / gradient_accumulation_steps accelerator.backward(__UpperCamelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 SCREAMING_SNAKE_CASE__ = f"""epoch_{epoch}""" SCREAMING_SNAKE_CASE__ = os.path.join(args.output_dir , __UpperCamelCase ) accelerator.save_state(__UpperCamelCase ) SCREAMING_SNAKE_CASE__ = evaluation_loop(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) SCREAMING_SNAKE_CASE__ = accuracy SCREAMING_SNAKE_CASE__ = lr_scheduler.get_lr()[0] SCREAMING_SNAKE_CASE__ = optimizer.param_groups[0]["""lr"""] SCREAMING_SNAKE_CASE__ = epoch SCREAMING_SNAKE_CASE__ = overall_step accelerator.print(f"""epoch {epoch}:""" , __UpperCamelCase ) accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , f"""state_{epoch}.json""" ) , """w""" ) as f: json.dump(__UpperCamelCase , __UpperCamelCase ) def __SCREAMING_SNAKE_CASE ( ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser(description="""Simple example of training script tracking peak GPU memory usage.""" ) parser.add_argument( """--model_name_or_path""" , type=__UpperCamelCase , default="""bert-base-cased""" , help="""Path to pretrained model or model identifier from huggingface.co/models.""" , required=__UpperCamelCase , ) parser.add_argument( """--output_dir""" , type=__UpperCamelCase , default=""".""" , help="""Optional save directory where all checkpoint folders will be stored. Default is the current working directory.""" , ) parser.add_argument( """--resume_from_checkpoint""" , type=__UpperCamelCase , default=__UpperCamelCase , help="""If the training should continue from a checkpoint folder.""" , ) parser.add_argument( """--partial_train_epoch""" , type=__UpperCamelCase , default=__UpperCamelCase , help="""If passed, the training will stop after this number of epochs.""" , ) parser.add_argument( """--num_epochs""" , type=__UpperCamelCase , default=2 , help="""Number of train epochs.""" , ) SCREAMING_SNAKE_CASE__ = parser.parse_args() SCREAMING_SNAKE_CASE__ = {"""lr""": 2E-5, """num_epochs""": args.num_epochs, """seed""": 42, """batch_size""": 16} training_function(__UpperCamelCase , __UpperCamelCase ) if __name__ == "__main__": main()
219
1
import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFAutoModel, is_tensorflow_text_available, is_tf_available from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.testing_utils import require_tensorflow_text, require_tf, slow if is_tf_available(): import tensorflow as tf if is_tensorflow_text_available(): from transformers.models.bert import TFBertTokenizer __UpperCAmelCase = ["bert-base-uncased", "bert-base-cased"] __UpperCAmelCase = "hf-internal-testing/tiny-bert-tf-only" if is_tf_available(): class SCREAMING_SNAKE_CASE ( tf.keras.Model ): """simple docstring""" def __init__( self : Any , lowerCAmelCase : Optional[int] ) -> Union[str, Any]: """simple docstring""" super().__init__() __lowerCAmelCase : Tuple = tokenizer __lowerCAmelCase : str = AutoConfig.from_pretrained(_a ) __lowerCAmelCase : Dict = TFAutoModel.from_config(_a ) def SCREAMING_SNAKE_CASE ( self : Any , lowerCAmelCase : Optional[int] ) -> Dict: """simple docstring""" __lowerCAmelCase : Any = self.tokenizer(_a ) __lowerCAmelCase : List[Any] = self.bert(**_a ) return out["pooler_output"] @require_tf @require_tensorflow_text class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self : Dict ) -> Dict: """simple docstring""" super().setUp() __lowerCAmelCase : Union[str, Any] = [ BertTokenizer.from_pretrained(_a ) for checkpoint in (TOKENIZER_CHECKPOINTS * 2) ] # repeat for when fast_bert_tokenizer=false __lowerCAmelCase : Optional[Any] = [TFBertTokenizer.from_pretrained(_a ) for checkpoint in TOKENIZER_CHECKPOINTS] + [ TFBertTokenizer.from_pretrained(_a , use_fast_bert_tokenizer=_a ) for checkpoint in TOKENIZER_CHECKPOINTS ] assert len(self.tokenizers ) == len(self.tf_tokenizers ) __lowerCAmelCase : str = [ "This is a straightforward English test sentence.", "This one has some weird characters\rto\nsee\r\nif those\u00E9break things.", "Now we're going to add some Chinese: 一 二 三 一二三", "And some much more rare Chinese: 齉 堃 齉堃", "Je vais aussi écrire en français pour tester les accents", "Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ", ] __lowerCAmelCase : List[str] = list(zip(self.test_sentences , self.test_sentences[::-1] ) ) def SCREAMING_SNAKE_CASE ( self : str ) -> int: """simple docstring""" for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ): for test_inputs in (self.test_sentences, self.paired_sentences): __lowerCAmelCase : int = tokenizer(_a , return_tensors="""tf""" , padding="""longest""" ) __lowerCAmelCase : int = tf_tokenizer(_a ) for key in python_outputs.keys(): self.assertTrue(tf.reduce_all(python_outputs[key].shape == tf_outputs[key].shape ) ) self.assertTrue(tf.reduce_all(tf.cast(python_outputs[key] , tf.intaa ) == tf_outputs[key] ) ) @slow def SCREAMING_SNAKE_CASE ( self : Dict ) -> List[str]: """simple docstring""" for tf_tokenizer in self.tf_tokenizers: __lowerCAmelCase : Any = tf_tokenizer(self.paired_sentences ) __lowerCAmelCase : List[Any] = tf_tokenizer( text=[sentence[0] for sentence in self.paired_sentences] , text_pair=[sentence[1] for sentence in self.paired_sentences] , ) for key in merged_outputs.keys(): self.assertTrue(tf.reduce_all(tf.cast(merged_outputs[key] , tf.intaa ) == separated_outputs[key] ) ) @slow def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Optional[int]: """simple docstring""" for tf_tokenizer in self.tf_tokenizers: __lowerCAmelCase : Tuple = tf.function(_a ) for test_inputs in (self.test_sentences, self.paired_sentences): __lowerCAmelCase : Optional[Any] = tf.constant(_a ) __lowerCAmelCase : Optional[int] = compiled_tokenizer(_a ) __lowerCAmelCase : Any = tf_tokenizer(_a ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" for tf_tokenizer in self.tf_tokenizers: __lowerCAmelCase : str = ModelToSave(tokenizer=_a ) __lowerCAmelCase : Optional[int] = tf.convert_to_tensor(self.test_sentences ) __lowerCAmelCase : List[Any] = model(_a ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: __lowerCAmelCase : List[Any] = Path(_a ) / "saved.model" model.save(_a ) __lowerCAmelCase : str = tf.keras.models.load_model(_a ) __lowerCAmelCase : str = loaded_model(_a ) # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertLessEqual(tf.reduce_max(tf.abs(out - loaded_output ) ) , 1e-5 )
369
from pathlib import Path import fire def snake_case_ (__A : str , __A : str , __A : int ) -> Any: __lowerCAmelCase : Tuple = Path(__A ) __lowerCAmelCase : Tuple = Path(__A ) dest_dir.mkdir(exist_ok=__A ) for path in src_dir.iterdir(): __lowerCAmelCase : str = [x.rstrip() for x in list(path.open().readlines() )][:n] __lowerCAmelCase : Dict = dest_dir.joinpath(path.name ) print(__A ) dest_path.open("""w""" ).write("""\n""".join(__A ) ) if __name__ == "__main__": fire.Fire(minify)
139
0
"""simple docstring""" import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 _UpperCamelCase : Any = { "return_dict": False, "output_hidden_states": True, "output_attentions": True, "torchscript": True, "torch_dtype": "float16", "use_bfloat16": True, "tf_legacy_loss": True, "pruned_heads": {"a": 1}, "tie_word_embeddings": False, "is_decoder": True, "cross_attention_hidden_size": 1_28, "add_cross_attention": True, "tie_encoder_decoder": True, "max_length": 50, "min_length": 3, "do_sample": True, "early_stopping": True, "num_beams": 3, "num_beam_groups": 3, "diversity_penalty": 0.5, "temperature": 2.0, "top_k": 10, "top_p": 0.7, "typical_p": 0.2, "repetition_penalty": 0.8, "length_penalty": 0.8, "no_repeat_ngram_size": 5, "encoder_no_repeat_ngram_size": 5, "bad_words_ids": [1, 2, 3], "num_return_sequences": 3, "chunk_size_feed_forward": 5, "output_scores": True, "return_dict_in_generate": True, "forced_bos_token_id": 2, "forced_eos_token_id": 3, "remove_invalid_values": True, "architectures": ["BertModel"], "finetuning_task": "translation", "id2label": {0: "label"}, "label2id": {"label": "0"}, "tokenizer_class": "BertTokenizerFast", "prefix": "prefix", "bos_token_id": 6, "pad_token_id": 7, "eos_token_id": 8, "sep_token_id": 9, "decoder_start_token_id": 10, "exponential_decay_length_penalty": (5, 1.0_1), "suppress_tokens": [0, 1], "begin_suppress_tokens": 2, "task_specific_params": {"translation": "some_params"}, "problem_type": "regression", } @is_staging_test class UpperCAmelCase_ ( unittest.TestCase): @classmethod def _UpperCAmelCase ( cls ) -> Dict: lowercase__ : Union[str, Any] = TOKEN HfFolder.save_token(a ) @classmethod def _UpperCAmelCase ( cls ) -> Union[str, Any]: try: delete_repo(token=cls._token , repo_id='test-config' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='valid_org/test-config-org' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='test-dynamic-config' ) except HTTPError: pass def _UpperCAmelCase ( self ) -> List[Any]: lowercase__ : List[Any] = BertConfig( vocab_size=9_9 , hidden_size=3_2 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=3_7 ) config.push_to_hub('test-config' , use_auth_token=self._token ) lowercase__ : Any = BertConfig.from_pretrained(f"""{USER}/test-config""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(a , getattr(a , a ) ) # Reset repo delete_repo(token=self._token , repo_id='test-config' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(a , repo_id='test-config' , push_to_hub=a , use_auth_token=self._token ) lowercase__ : Union[str, Any] = BertConfig.from_pretrained(f"""{USER}/test-config""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(a , getattr(a , a ) ) def _UpperCAmelCase ( self ) -> List[str]: lowercase__ : str = BertConfig( vocab_size=9_9 , hidden_size=3_2 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=3_7 ) config.push_to_hub('valid_org/test-config-org' , use_auth_token=self._token ) lowercase__ : Tuple = BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(a , getattr(a , a ) ) # Reset repo delete_repo(token=self._token , repo_id='valid_org/test-config-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( a , repo_id='valid_org/test-config-org' , push_to_hub=a , use_auth_token=self._token ) lowercase__ : Any = BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(a , getattr(a , a ) ) def _UpperCAmelCase ( self ) -> int: CustomConfig.register_for_auto_class() lowercase__ : Optional[Any] = CustomConfig(attribute=4_2 ) config.push_to_hub('test-dynamic-config' , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map , {'AutoConfig': 'custom_configuration.CustomConfig'} ) lowercase__ : int = AutoConfig.from_pretrained(f"""{USER}/test-dynamic-config""" , trust_remote_code=a ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__ , 'CustomConfig' ) self.assertEqual(new_config.attribute , 4_2 ) class UpperCAmelCase_ ( unittest.TestCase): def _UpperCAmelCase ( self ) -> Dict: lowercase__ : List[Any] = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated lowercase__ : Optional[int] = c.n_embd + 1 # int lowercase__ : Optional[int] = c.resid_pdrop + 1.0 # float lowercase__ : List[Any] = not c.scale_attn_weights # bool lowercase__ : Union[str, Any] = c.summary_type + 'foo' # str c.update_from_string( f"""n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}""" ) self.assertEqual(a , c.n_embd , 'mismatch for key: n_embd' ) self.assertEqual(a , c.resid_pdrop , 'mismatch for key: resid_pdrop' ) self.assertEqual(a , c.scale_attn_weights , 'mismatch for key: scale_attn_weights' ) self.assertEqual(a , c.summary_type , 'mismatch for key: summary_type' ) def _UpperCAmelCase ( self ) -> Union[str, Any]: lowercase__ : List[Any] = PretrainedConfig() lowercase__ : Dict = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( a , ['is_encoder_decoder', '_name_or_path', '_commit_hash', 'transformers_version'] ) lowercase__ : Dict = [key for key, value in config_common_kwargs.items() if value == getattr(a , a )] if len(a ) > 0: raise ValueError( 'The following keys are set with the default values in' ' `test_configuration_common.config_common_kwargs` pick another value for them:' f""" {", ".join(a )}.""" ) def _UpperCAmelCase ( self ) -> Optional[int]: with self.assertRaises(a ): # config is in subfolder, the following should not work without specifying the subfolder lowercase__ : Union[str, Any] = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder' ) lowercase__ : str = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder' , subfolder='bert' ) self.assertIsNotNone(a ) def _UpperCAmelCase ( self ) -> Union[str, Any]: # A mock response for an HTTP head request to emulate server down lowercase__ : List[Any] = mock.Mock() lowercase__ : Optional[int] = 5_0_0 lowercase__ : Any = {} lowercase__ : Union[str, Any] = HTTPError lowercase__ : Any = {} # Download this model to make sure it's in the cache. lowercase__ : Optional[Any] = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('requests.Session.request' , return_value=a ) as mock_head: lowercase__ : Any = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # This check we did call the fake head request mock_head.assert_called() def _UpperCAmelCase ( self ) -> Union[str, Any]: # This test is for deprecated behavior and can be removed in v5 lowercase__ : Union[str, Any] = BertConfig.from_pretrained( 'https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json' ) def _UpperCAmelCase ( self ) -> Dict: lowercase__ : str = AutoConfig.from_pretrained('bert-base-cased' ) lowercase__ : List[str] = ['config.4.0.0.json'] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(a ) lowercase__ : str = 2 json.dump(configuration.to_dict() , open(os.path.join(a , 'config.4.0.0.json' ) , 'w' ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 lowercase__ : Tuple = AutoConfig.from_pretrained(a ) self.assertEqual(new_configuration.hidden_size , 2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 lowercase__ : Any = ['config.42.0.0.json'] lowercase__ : Optional[int] = 7_6_8 configuration.save_pretrained(a ) shutil.move(os.path.join(a , 'config.4.0.0.json' ) , os.path.join(a , 'config.42.0.0.json' ) ) lowercase__ : Dict = AutoConfig.from_pretrained(a ) self.assertEqual(new_configuration.hidden_size , 7_6_8 ) def _UpperCAmelCase ( self ) -> List[Any]: # This repo has two configuration files, one for v4.0.0 and above with a different hidden size. lowercase__ : Dict = 'hf-internal-testing/test-two-configs' import transformers as new_transformers lowercase__ : str = 'v4.0.0' lowercase__ , lowercase__ : str = new_transformers.models.auto.AutoConfig.from_pretrained( a , return_unused_kwargs=a ) self.assertEqual(new_configuration.hidden_size , 2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(a , {} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers lowercase__ : Dict = 'v3.0.0' lowercase__ : List[str] = old_transformers.models.auto.AutoConfig.from_pretrained(a ) self.assertEqual(old_configuration.hidden_size , 7_6_8 )
77
from typing import Any, Dict, Optional import torch import torch.nn.functional as F from torch import nn from ..utils import maybe_allow_in_graph from .activations import get_activation from .attention_processor import Attention from .embeddings import CombinedTimestepLabelEmbeddings @maybe_allow_in_graph class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__=0.0, lowerCamelCase__ = None, lowerCamelCase__ = "geglu", lowerCamelCase__ = None, lowerCamelCase__ = False, lowerCamelCase__ = False, lowerCamelCase__ = False, lowerCamelCase__ = False, lowerCamelCase__ = True, lowerCamelCase__ = "layer_norm", lowerCamelCase__ = False, ): super().__init__() A : Dict = only_cross_attention A : Tuple = (num_embeds_ada_norm is not None) and norm_type == """ada_norm_zero""" A : Union[str, Any] = (num_embeds_ada_norm is not None) and norm_type == """ada_norm""" if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: raise ValueError( f'''`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to''' f''' define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}.''' ) # Define 3 blocks. Each block has its own normalization layer. # 1. Self-Attn if self.use_ada_layer_norm: A : Dict = AdaLayerNorm(lowerCamelCase__, lowerCamelCase__ ) elif self.use_ada_layer_norm_zero: A : List[str] = AdaLayerNormZero(lowerCamelCase__, lowerCamelCase__ ) else: A : Tuple = nn.LayerNorm(lowerCamelCase__, elementwise_affine=lowerCamelCase__ ) A : Any = Attention( query_dim=lowerCamelCase__, heads=lowerCamelCase__, dim_head=lowerCamelCase__, dropout=lowerCamelCase__, bias=lowerCamelCase__, cross_attention_dim=cross_attention_dim if only_cross_attention else None, upcast_attention=lowerCamelCase__, ) # 2. Cross-Attn if cross_attention_dim is not None or double_self_attention: # We currently only use AdaLayerNormZero for self attention where there will only be one attention block. # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during # the second cross attention block. A : int = ( AdaLayerNorm(lowerCamelCase__, lowerCamelCase__ ) if self.use_ada_layer_norm else nn.LayerNorm(lowerCamelCase__, elementwise_affine=lowerCamelCase__ ) ) A : Dict = Attention( query_dim=lowerCamelCase__, cross_attention_dim=cross_attention_dim if not double_self_attention else None, heads=lowerCamelCase__, dim_head=lowerCamelCase__, dropout=lowerCamelCase__, bias=lowerCamelCase__, upcast_attention=lowerCamelCase__, ) # is self-attn if encoder_hidden_states is none else: A : Dict = None A : Dict = None # 3. Feed-forward A : Optional[Any] = nn.LayerNorm(lowerCamelCase__, elementwise_affine=lowerCamelCase__ ) A : int = FeedForward(lowerCamelCase__, dropout=lowerCamelCase__, activation_fn=lowerCamelCase__, final_dropout=lowerCamelCase__ ) # let chunk size default to None A : Optional[Any] = None A : int = 0 def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__ ): # Sets chunk feed-forward A : List[str] = chunk_size A : int = dim def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__ = None, lowerCamelCase__ = None, lowerCamelCase__ = None, lowerCamelCase__ = None, lowerCamelCase__ = None, lowerCamelCase__ = None, ): # Notice that normalization is always applied before the real computation in the following blocks. # 1. Self-Attention if self.use_ada_layer_norm: A : Optional[int] = self.norma(lowerCamelCase__, lowerCamelCase__ ) elif self.use_ada_layer_norm_zero: A , A , A , A , A : Tuple = self.norma( lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, hidden_dtype=hidden_states.dtype ) else: A : Tuple = self.norma(lowerCamelCase__ ) A : Dict = cross_attention_kwargs if cross_attention_kwargs is not None else {} A : str = self.attna( lowerCamelCase__, encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None, attention_mask=lowerCamelCase__, **lowerCamelCase__, ) if self.use_ada_layer_norm_zero: A : List[Any] = gate_msa.unsqueeze(1 ) * attn_output A : str = attn_output + hidden_states # 2. Cross-Attention if self.attna is not None: A : Optional[int] = ( self.norma(lowerCamelCase__, lowerCamelCase__ ) if self.use_ada_layer_norm else self.norma(lowerCamelCase__ ) ) A : Optional[Any] = self.attna( lowerCamelCase__, encoder_hidden_states=lowerCamelCase__, attention_mask=lowerCamelCase__, **lowerCamelCase__, ) A : Dict = attn_output + hidden_states # 3. Feed-forward A : str = self.norma(lowerCamelCase__ ) if self.use_ada_layer_norm_zero: A : Tuple = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] if self._chunk_size is not None: # "feed_forward_chunk_size" can be used to save memory if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0: raise ValueError( f'''`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`.''' ) A : Any = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size A : Optional[Any] = torch.cat( [self.ff(lowerCamelCase__ ) for hid_slice in norm_hidden_states.chunk(lowerCamelCase__, dim=self._chunk_dim )], dim=self._chunk_dim, ) else: A : Dict = self.ff(lowerCamelCase__ ) if self.use_ada_layer_norm_zero: A : Optional[Any] = gate_mlp.unsqueeze(1 ) * ff_output A : Optional[int] = ff_output + hidden_states return hidden_states class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self, lowerCamelCase__, lowerCamelCase__ = None, lowerCamelCase__ = 4, lowerCamelCase__ = 0.0, lowerCamelCase__ = "geglu", lowerCamelCase__ = False, ): super().__init__() A : str = int(dim * mult ) A : Optional[Any] = dim_out if dim_out is not None else dim if activation_fn == "gelu": A : Dict = GELU(lowerCamelCase__, lowerCamelCase__ ) if activation_fn == "gelu-approximate": A : Optional[int] = GELU(lowerCamelCase__, lowerCamelCase__, approximate="""tanh""" ) elif activation_fn == "geglu": A : Any = GEGLU(lowerCamelCase__, lowerCamelCase__ ) elif activation_fn == "geglu-approximate": A : Optional[Any] = ApproximateGELU(lowerCamelCase__, lowerCamelCase__ ) A : Dict = nn.ModuleList([] ) # project in self.net.append(lowerCamelCase__ ) # project dropout self.net.append(nn.Dropout(lowerCamelCase__ ) ) # project out self.net.append(nn.Linear(lowerCamelCase__, lowerCamelCase__ ) ) # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout if final_dropout: self.net.append(nn.Dropout(lowerCamelCase__ ) ) def _lowerCAmelCase ( self, lowerCamelCase__ ): for module in self.net: A : int = module(lowerCamelCase__ ) return hidden_states class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ = "none" ): super().__init__() A : Optional[int] = nn.Linear(lowerCamelCase__, lowerCamelCase__ ) A : int = approximate def _lowerCAmelCase ( self, lowerCamelCase__ ): if gate.device.type != "mps": return F.gelu(lowerCamelCase__, approximate=self.approximate ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ), approximate=self.approximate ).to(dtype=gate.dtype ) def _lowerCAmelCase ( self, lowerCamelCase__ ): A : List[Any] = self.proj(lowerCamelCase__ ) A : Union[str, Any] = self.gelu(lowerCamelCase__ ) return hidden_states class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self, lowerCamelCase__, lowerCamelCase__ ): super().__init__() A : Union[str, Any] = nn.Linear(lowerCamelCase__, dim_out * 2 ) def _lowerCAmelCase ( self, lowerCamelCase__ ): if gate.device.type != "mps": return F.gelu(lowerCamelCase__ ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) ).to(dtype=gate.dtype ) def _lowerCAmelCase ( self, lowerCamelCase__ ): A , A : Any = self.proj(lowerCamelCase__ ).chunk(2, dim=-1 ) return hidden_states * self.gelu(lowerCamelCase__ ) class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self, lowerCamelCase__, lowerCamelCase__ ): super().__init__() A : Union[str, Any] = nn.Linear(lowerCamelCase__, lowerCamelCase__ ) def _lowerCAmelCase ( self, lowerCamelCase__ ): A : List[Any] = self.proj(lowerCamelCase__ ) return x * torch.sigmoid(1.702 * x ) class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self, lowerCamelCase__, lowerCamelCase__ ): super().__init__() A : Dict = nn.Embedding(lowerCamelCase__, lowerCamelCase__ ) A : Tuple = nn.SiLU() A : Tuple = nn.Linear(lowerCamelCase__, embedding_dim * 2 ) A : List[str] = nn.LayerNorm(lowerCamelCase__, elementwise_affine=lowerCamelCase__ ) def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__ ): A : int = self.linear(self.silu(self.emb(lowerCamelCase__ ) ) ) A , A : Optional[int] = torch.chunk(lowerCamelCase__, 2 ) A : Tuple = self.norm(lowerCamelCase__ ) * (1 + scale) + shift return x class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self, lowerCamelCase__, lowerCamelCase__ ): super().__init__() A : Union[str, Any] = CombinedTimestepLabelEmbeddings(lowerCamelCase__, lowerCamelCase__ ) A : List[Any] = nn.SiLU() A : str = nn.Linear(lowerCamelCase__, 6 * embedding_dim, bias=lowerCamelCase__ ) A : List[Any] = nn.LayerNorm(lowerCamelCase__, elementwise_affine=lowerCamelCase__, eps=1e-6 ) def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__=None ): A : Tuple = self.linear(self.silu(self.emb(lowerCamelCase__, lowerCamelCase__, hidden_dtype=lowerCamelCase__ ) ) ) A , A , A , A , A , A : Optional[Any] = emb.chunk(6, dim=1 ) A : List[str] = self.norm(lowerCamelCase__ ) * (1 + scale_msa[:, None]) + shift_msa[:, None] return x, gate_msa, shift_mlp, scale_mlp, gate_mlp class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ = None, lowerCamelCase__ = 1e-5 ): super().__init__() A : int = num_groups A : Dict = eps if act_fn is None: A : Union[str, Any] = None else: A : Optional[int] = get_activation(lowerCamelCase__ ) A : Dict = nn.Linear(lowerCamelCase__, out_dim * 2 ) def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__ ): if self.act: A : Dict = self.act(lowerCamelCase__ ) A : Optional[int] = self.linear(lowerCamelCase__ ) A : int = emb[:, :, None, None] A , A : Tuple = emb.chunk(2, dim=1 ) A : Any = F.group_norm(lowerCamelCase__, self.num_groups, eps=self.eps ) A : List[str] = x * (1 + scale) + shift return x
116
0
'''simple docstring''' from sklearn.metrics import matthews_corrcoef import datasets A : Union[str, Any] = ''' Compute the Matthews correlation coefficient (MCC) The Matthews correlation coefficient is used in machine learning as a measure of the quality of binary and multiclass classifications. It takes into account true and false positives and negatives and is generally regarded as a balanced measure which can be used even if the classes are of very different sizes. The MCC is in essence a correlation coefficient value between -1 and +1. A coefficient of +1 represents a perfect prediction, 0 an average random prediction and -1 an inverse prediction. The statistic is also known as the phi coefficient. [source: Wikipedia] ''' A : List[Any] = ''' Args: predictions (list of int): Predicted labels, as returned by a model. references (list of int): Ground truth labels. sample_weight (list of int, float, or bool): Sample weights. Defaults to `None`. Returns: matthews_correlation (dict containing float): Matthews correlation. Examples: Example 1, a basic example with only predictions and references as inputs: >>> matthews_metric = datasets.load_metric("matthews_correlation") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3]) >>> print(round(results[\'matthews_correlation\'], 2)) 0.54 Example 2, the same example as above, but also including sample weights: >>> matthews_metric = datasets.load_metric("matthews_correlation") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3], ... sample_weight=[0.5, 3, 1, 1, 1, 2]) >>> print(round(results[\'matthews_correlation\'], 2)) 0.1 Example 3, the same example as above, but with sample weights that cause a negative correlation: >>> matthews_metric = datasets.load_metric("matthews_correlation") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3], ... sample_weight=[0.5, 1, 0, 0, 0, 1]) >>> print(round(results[\'matthews_correlation\'], 2)) -0.25 ''' A : List[str] = '''\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowerCamelCase ( datasets.Metric ): """simple docstring""" def A ( self : Optional[int]): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('int32'), 'references': datasets.Value('int32'), }) , reference_urls=[ 'https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html' ] , ) def A ( self : Optional[int] , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Dict=None): return { "matthews_correlation": float(matthews_corrcoef(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , sample_weight=SCREAMING_SNAKE_CASE)), }
362
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) A : List[str] = { '''configuration_electra''': ['''ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ElectraConfig''', '''ElectraOnnxConfig'''], '''tokenization_electra''': ['''ElectraTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : int = ['''ElectraTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : List[str] = [ '''ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ElectraForCausalLM''', '''ElectraForMaskedLM''', '''ElectraForMultipleChoice''', '''ElectraForPreTraining''', '''ElectraForQuestionAnswering''', '''ElectraForSequenceClassification''', '''ElectraForTokenClassification''', '''ElectraModel''', '''ElectraPreTrainedModel''', '''load_tf_weights_in_electra''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Dict = [ '''TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFElectraForMaskedLM''', '''TFElectraForMultipleChoice''', '''TFElectraForPreTraining''', '''TFElectraForQuestionAnswering''', '''TFElectraForSequenceClassification''', '''TFElectraForTokenClassification''', '''TFElectraModel''', '''TFElectraPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : List[Any] = [ '''FlaxElectraForCausalLM''', '''FlaxElectraForMaskedLM''', '''FlaxElectraForMultipleChoice''', '''FlaxElectraForPreTraining''', '''FlaxElectraForQuestionAnswering''', '''FlaxElectraForSequenceClassification''', '''FlaxElectraForTokenClassification''', '''FlaxElectraModel''', '''FlaxElectraPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_electra import ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ElectraConfig, ElectraOnnxConfig from .tokenization_electra import ElectraTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_electra_fast import ElectraTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_electra import ( ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, ElectraForCausalLM, ElectraForMaskedLM, ElectraForMultipleChoice, ElectraForPreTraining, ElectraForQuestionAnswering, ElectraForSequenceClassification, ElectraForTokenClassification, ElectraModel, ElectraPreTrainedModel, load_tf_weights_in_electra, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_electra import ( TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, TFElectraForMaskedLM, TFElectraForMultipleChoice, TFElectraForPreTraining, TFElectraForQuestionAnswering, TFElectraForSequenceClassification, TFElectraForTokenClassification, TFElectraModel, TFElectraPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_electra import ( FlaxElectraForCausalLM, FlaxElectraForMaskedLM, FlaxElectraForMultipleChoice, FlaxElectraForPreTraining, FlaxElectraForQuestionAnswering, FlaxElectraForSequenceClassification, FlaxElectraForTokenClassification, FlaxElectraModel, FlaxElectraPreTrainedModel, ) else: import sys A : Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
227
0
'''simple docstring''' import flax.linen as nn import jax.numpy as jnp from .attention_flax import FlaxTransformeraDModel from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD class A ( nn.Module ): __magic_name__ = 42 __magic_name__ = 42 __magic_name__ = 0.0 __magic_name__ = 1 __magic_name__ = 1 __magic_name__ = True __magic_name__ = False __magic_name__ = False __magic_name__ = False __magic_name__ = jnp.floataa def __lowerCAmelCase ( self ) -> Tuple: """simple docstring""" A : Union[str, Any] = [] A : Union[str, Any] = [] for i in range(self.num_layers ): A : Any = self.in_channels if i == 0 else self.out_channels A : Optional[Any] = FlaxResnetBlockaD( in_channels=SCREAMING_SNAKE_CASE , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(SCREAMING_SNAKE_CASE ) A : Optional[int] = FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(SCREAMING_SNAKE_CASE ) A : Union[str, Any] = resnets A : Union[str, Any] = attentions if self.add_downsample: A : int = FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=True ) -> Union[str, Any]: """simple docstring""" A : Optional[Any] = () for resnet, attn in zip(self.resnets , self.attentions ): A : int = resnet(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , deterministic=SCREAMING_SNAKE_CASE ) A : Dict = attn(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , deterministic=SCREAMING_SNAKE_CASE ) output_states += (hidden_states,) if self.add_downsample: A : Optional[Any] = self.downsamplers_a(SCREAMING_SNAKE_CASE ) output_states += (hidden_states,) return hidden_states, output_states class A ( nn.Module ): __magic_name__ = 42 __magic_name__ = 42 __magic_name__ = 0.0 __magic_name__ = 1 __magic_name__ = True __magic_name__ = jnp.floataa def __lowerCAmelCase ( self ) -> Optional[Any]: """simple docstring""" A : Optional[Any] = [] for i in range(self.num_layers ): A : Optional[Any] = self.in_channels if i == 0 else self.out_channels A : List[str] = FlaxResnetBlockaD( in_channels=SCREAMING_SNAKE_CASE , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(SCREAMING_SNAKE_CASE ) A : Dict = resnets if self.add_downsample: A : Dict = FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=True ) -> Optional[Any]: """simple docstring""" A : str = () for resnet in self.resnets: A : Optional[int] = resnet(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , deterministic=SCREAMING_SNAKE_CASE ) output_states += (hidden_states,) if self.add_downsample: A : Optional[int] = self.downsamplers_a(SCREAMING_SNAKE_CASE ) output_states += (hidden_states,) return hidden_states, output_states class A ( nn.Module ): __magic_name__ = 42 __magic_name__ = 42 __magic_name__ = 42 __magic_name__ = 0.0 __magic_name__ = 1 __magic_name__ = 1 __magic_name__ = True __magic_name__ = False __magic_name__ = False __magic_name__ = False __magic_name__ = jnp.floataa def __lowerCAmelCase ( self ) -> Tuple: """simple docstring""" A : Optional[Any] = [] A : Optional[int] = [] for i in range(self.num_layers ): A : str = self.in_channels if (i == self.num_layers - 1) else self.out_channels A : Dict = self.prev_output_channel if i == 0 else self.out_channels A : List[str] = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(SCREAMING_SNAKE_CASE ) A : int = FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(SCREAMING_SNAKE_CASE ) A : Dict = resnets A : Optional[Any] = attentions if self.add_upsample: A : Optional[int] = FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=True ) -> Optional[int]: """simple docstring""" for resnet, attn in zip(self.resnets , self.attentions ): # pop res hidden states A : List[str] = res_hidden_states_tuple[-1] A : int = res_hidden_states_tuple[:-1] A : List[str] = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) A : Union[str, Any] = resnet(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , deterministic=SCREAMING_SNAKE_CASE ) A : Tuple = attn(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , deterministic=SCREAMING_SNAKE_CASE ) if self.add_upsample: A : Dict = self.upsamplers_a(SCREAMING_SNAKE_CASE ) return hidden_states class A ( nn.Module ): __magic_name__ = 42 __magic_name__ = 42 __magic_name__ = 42 __magic_name__ = 0.0 __magic_name__ = 1 __magic_name__ = True __magic_name__ = jnp.floataa def __lowerCAmelCase ( self ) -> Dict: """simple docstring""" A : int = [] for i in range(self.num_layers ): A : List[Any] = self.in_channels if (i == self.num_layers - 1) else self.out_channels A : List[str] = self.prev_output_channel if i == 0 else self.out_channels A : str = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(SCREAMING_SNAKE_CASE ) A : List[Any] = resnets if self.add_upsample: A : Optional[Any] = FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=True ) -> Tuple: """simple docstring""" for resnet in self.resnets: # pop res hidden states A : Optional[int] = res_hidden_states_tuple[-1] A : Optional[Any] = res_hidden_states_tuple[:-1] A : List[Any] = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) A : Optional[Any] = resnet(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , deterministic=SCREAMING_SNAKE_CASE ) if self.add_upsample: A : List[str] = self.upsamplers_a(SCREAMING_SNAKE_CASE ) return hidden_states class A ( nn.Module ): __magic_name__ = 42 __magic_name__ = 0.0 __magic_name__ = 1 __magic_name__ = 1 __magic_name__ = False __magic_name__ = False __magic_name__ = jnp.floataa def __lowerCAmelCase ( self ) -> Optional[int]: """simple docstring""" A : str = [ FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) ] A : List[Any] = [] for _ in range(self.num_layers ): A : int = FlaxTransformeraDModel( in_channels=self.in_channels , n_heads=self.num_attention_heads , d_head=self.in_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(SCREAMING_SNAKE_CASE ) A : Union[str, Any] = FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(SCREAMING_SNAKE_CASE ) A : List[str] = resnets A : List[str] = attentions def __call__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=True ) -> Dict: """simple docstring""" A : Optional[Any] = self.resnets[0](SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for attn, resnet in zip(self.attentions , self.resnets[1:] ): A : Optional[int] = attn(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , deterministic=SCREAMING_SNAKE_CASE ) A : Union[str, Any] = resnet(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , deterministic=SCREAMING_SNAKE_CASE ) return hidden_states
3
"""simple docstring""" import random import unittest import numpy as np import torch from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionUpscalePipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class _SCREAMING_SNAKE_CASE ( A__ , unittest.TestCase ): # TODO: is there an appropriate internal test set? UpperCAmelCase_ :List[Any] = "ssube/stable-diffusion-x4-upscaler-onnx" def __lowerCAmelCase ( self , __A=0 ) -> Optional[int]: lowerCAmelCase_ :Optional[Any] = floats_tensor((1, 3, 128, 128) , rng=random.Random(__A ) ) lowerCAmelCase_ :List[Any] = torch.manual_seed(__A ) lowerCAmelCase_ :Tuple = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def __lowerCAmelCase ( self ) -> Optional[Any]: lowerCAmelCase_ :Union[str, Any] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) pipe.set_progress_bar_config(disable=__A ) lowerCAmelCase_ :Optional[Any] = self.get_dummy_inputs() lowerCAmelCase_ :Dict = pipe(**__A ).images lowerCAmelCase_ :Any = image[0, -3:, -3:, -1].flatten() # started as 128, should now be 512 assert image.shape == (1, 512, 512, 3) lowerCAmelCase_ :int = np.array( [0.6_9_7_4_7_8_2, 0.6_8_9_0_2_0_9_3, 0.7_0_1_3_5_8_8_5, 0.7_5_8_3_6_1_8, 0.7_8_0_4_5_4_5, 0.7_8_5_4_9_1_2, 0.7_8_6_6_7_4_2_6, 0.7_8_7_4_3_8_6_3, 0.7_8_0_7_0_2_2_3] ) assert np.abs(image_slice - expected_slice ).max() < 1E-1 def __lowerCAmelCase ( self ) -> Union[str, Any]: lowerCAmelCase_ :Tuple = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) lowerCAmelCase_ :Tuple = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=__A ) pipe.set_progress_bar_config(disable=__A ) lowerCAmelCase_ :int = self.get_dummy_inputs() lowerCAmelCase_ :List[str] = pipe(**__A ).images lowerCAmelCase_ :Any = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) lowerCAmelCase_ :str = np.array( [0.6_8_9_8_8_9_2, 0.5_9_2_4_0_5_5_6, 0.5_2_4_9_9_5_2_7, 0.5_8_8_6_6_2_1_5, 0.5_2_2_5_8_2_3_5, 0.5_2_5_7_2_7_1_5, 0.6_2_4_1_4_4_7_3, 0.6_1_7_4_3_8_7, 0.6_2_1_4_9_6_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def __lowerCAmelCase ( self ) -> Union[str, Any]: lowerCAmelCase_ :Tuple = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) lowerCAmelCase_ :Optional[Any] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__A ) lowerCAmelCase_ :List[Any] = self.get_dummy_inputs() lowerCAmelCase_ :Union[str, Any] = pipe(**__A ).images lowerCAmelCase_ :Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) lowerCAmelCase_ :Tuple = np.array( [0.7_6_5_9_2_7_8, 0.7_6_4_3_7_6_6_4, 0.7_5_5_7_9_1_0_7, 0.7_6_9_1_1_1_6, 0.7_7_6_6_6_9_8_6, 0.7_7_2_7_6_7_2, 0.7_7_5_8_6_6_4, 0.7_8_1_2_2_2_6, 0.7_6_9_4_2_5_1_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def __lowerCAmelCase ( self ) -> Union[str, Any]: lowerCAmelCase_ :Union[str, Any] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) lowerCAmelCase_ :Union[str, Any] = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__A ) lowerCAmelCase_ :Union[str, Any] = self.get_dummy_inputs() lowerCAmelCase_ :Optional[Any] = pipe(**__A ).images lowerCAmelCase_ :Any = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) lowerCAmelCase_ :Tuple = np.array( [0.6_9_7_4_7_8_2, 0.6_8_9_0_2_0_9_3, 0.7_0_1_3_5_8_8_5, 0.7_5_8_3_6_1_8, 0.7_8_0_4_5_4_5, 0.7_8_5_4_9_1_2, 0.7_8_6_6_7_4_2_6, 0.7_8_7_4_3_8_6_3, 0.7_8_0_7_0_2_2_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def __lowerCAmelCase ( self ) -> List[str]: lowerCAmelCase_ :List[str] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) lowerCAmelCase_ :Optional[int] = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__A ) lowerCAmelCase_ :List[Any] = self.get_dummy_inputs() lowerCAmelCase_ :Dict = pipe(**__A ).images lowerCAmelCase_ :Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) lowerCAmelCase_ :Dict = np.array( [0.7_7_4_2_4_4_9_6, 0.7_7_3_6_0_1, 0.7_6_4_5_2_8_8, 0.7_7_6_9_5_9_8, 0.7_7_7_2_7_3_9, 0.7_7_3_8_6_8_8, 0.7_8_1_8_7_2_3_3, 0.7_7_8_7_9_5_8_4, 0.7_6_7_0_4_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 @nightly @require_onnxruntime @require_torch_gpu class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): @property def __lowerCAmelCase ( self ) -> List[Any]: return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def __lowerCAmelCase ( self ) -> Tuple: lowerCAmelCase_ :Optional[int] = ort.SessionOptions() lowerCAmelCase_ :Dict = False return options def __lowerCAmelCase ( self ) -> Optional[Any]: lowerCAmelCase_ :Optional[Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/img2img/sketch-mountains-input.jpg""" ) lowerCAmelCase_ :Optional[Any] = init_image.resize((128, 128) ) # using the PNDM scheduler by default lowerCAmelCase_ :Tuple = OnnxStableDiffusionUpscalePipeline.from_pretrained( """ssube/stable-diffusion-x4-upscaler-onnx""" , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=__A ) lowerCAmelCase_ :Union[str, Any] = """A fantasy landscape, trending on artstation""" lowerCAmelCase_ :List[Any] = torch.manual_seed(0 ) lowerCAmelCase_ :str = pipe( prompt=__A , image=__A , guidance_scale=7.5 , num_inference_steps=10 , generator=__A , output_type="""np""" , ) lowerCAmelCase_ :Dict = output.images lowerCAmelCase_ :List[str] = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 512, 3) lowerCAmelCase_ :Optional[Any] = np.array([0.4_8_8_3, 0.4_9_4_7, 0.4_9_8_0, 0.4_9_7_5, 0.4_9_8_2, 0.4_9_8_0, 0.5_0_0_0, 0.5_0_0_6, 0.4_9_7_2] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2 def __lowerCAmelCase ( self ) -> Dict: lowerCAmelCase_ :Optional[int] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/img2img/sketch-mountains-input.jpg""" ) lowerCAmelCase_ :List[str] = init_image.resize((128, 128) ) lowerCAmelCase_ :Any = LMSDiscreteScheduler.from_pretrained( """ssube/stable-diffusion-x4-upscaler-onnx""" , subfolder="""scheduler""" ) lowerCAmelCase_ :Optional[Any] = OnnxStableDiffusionUpscalePipeline.from_pretrained( """ssube/stable-diffusion-x4-upscaler-onnx""" , scheduler=__A , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=__A ) lowerCAmelCase_ :Any = """A fantasy landscape, trending on artstation""" lowerCAmelCase_ :Optional[Any] = torch.manual_seed(0 ) lowerCAmelCase_ :List[str] = pipe( prompt=__A , image=__A , guidance_scale=7.5 , num_inference_steps=20 , generator=__A , output_type="""np""" , ) lowerCAmelCase_ :int = output.images lowerCAmelCase_ :List[Any] = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 512, 3) lowerCAmelCase_ :Union[str, Any] = np.array( [0.5_0_1_7_3_7_5_3, 0.5_0_2_2_3_3_5_6, 0.5_0_2_0_3_9, 0.5_0_2_3_3_0_3_6, 0.5_0_2_3_7_2_5, 0.5_0_2_2_6_0_1, 0.5_0_1_8_7_5_8, 0.5_0_2_3_4_0_8_5, 0.5_0_2_4_1_5_6_6] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2
84
0
"""simple docstring""" import math def _a ( _SCREAMING_SNAKE_CASE ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(_SCREAMING_SNAKE_CASE ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def _a ( _SCREAMING_SNAKE_CASE = 10_001 ) -> int: try: snake_case_ = int(_SCREAMING_SNAKE_CASE ) except (TypeError, ValueError): raise TypeError("""Parameter nth must be int or castable to int.""" ) from None if nth <= 0: raise ValueError("""Parameter nth must be greater than or equal to one.""" ) snake_case_ = [] snake_case_ = 2 while len(_SCREAMING_SNAKE_CASE ) < nth: if is_prime(_SCREAMING_SNAKE_CASE ): primes.append(_SCREAMING_SNAKE_CASE ) num += 1 else: num += 1 return primes[len(_SCREAMING_SNAKE_CASE ) - 1] if __name__ == "__main__": print(f"""{solution() = }""")
233
"""simple docstring""" import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler __SCREAMING_SNAKE_CASE : Tuple = 16 __SCREAMING_SNAKE_CASE : int = 32 def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 16 , _SCREAMING_SNAKE_CASE = "bert-base-cased" ) -> Optional[Any]: snake_case_ = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) snake_case_ = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(_SCREAMING_SNAKE_CASE ): # max_length=None => use the model max length (it's actually the default) snake_case_ = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=_SCREAMING_SNAKE_CASE , max_length=_SCREAMING_SNAKE_CASE ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset snake_case_ = datasets.map( _SCREAMING_SNAKE_CASE , batched=_SCREAMING_SNAKE_CASE , remove_columns=["""idx""", """sentence1""", """sentence2"""] , load_from_cache_file=_SCREAMING_SNAKE_CASE ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library snake_case_ = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(_SCREAMING_SNAKE_CASE ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(_SCREAMING_SNAKE_CASE , padding="""max_length""" , max_length=128 , return_tensors="""pt""" ) return tokenizer.pad(_SCREAMING_SNAKE_CASE , padding="""longest""" , return_tensors="""pt""" ) # Instantiate dataloaders. snake_case_ = DataLoader( tokenized_datasets["""train"""] , shuffle=_SCREAMING_SNAKE_CASE , collate_fn=_SCREAMING_SNAKE_CASE , batch_size=_SCREAMING_SNAKE_CASE ) snake_case_ = DataLoader( tokenized_datasets["""validation"""] , shuffle=_SCREAMING_SNAKE_CASE , collate_fn=_SCREAMING_SNAKE_CASE , batch_size=_SCREAMING_SNAKE_CASE ) return train_dataloader, eval_dataloader def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[str]: # Initialize accelerator snake_case_ = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs snake_case_ = config["""lr"""] snake_case_ = int(config["""num_epochs"""] ) snake_case_ = int(config["""seed"""] ) snake_case_ = int(config["""batch_size"""] ) snake_case_ = args.model_name_or_path set_seed(_SCREAMING_SNAKE_CASE ) snake_case_ , snake_case_ = get_dataloaders(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) snake_case_ = AutoModelForSequenceClassification.from_pretrained(_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE ) # Instantiate optimizer snake_case_ = ( AdamW if accelerator.state.deepspeed_plugin is None or """optimizer""" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) snake_case_ = optimizer_cls(params=model.parameters() , lr=_SCREAMING_SNAKE_CASE ) if accelerator.state.deepspeed_plugin is not None: snake_case_ = accelerator.state.deepspeed_plugin.deepspeed_config[ """gradient_accumulation_steps""" ] else: snake_case_ = 1 snake_case_ = (len(_SCREAMING_SNAKE_CASE ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): snake_case_ = get_linear_schedule_with_warmup( optimizer=_SCREAMING_SNAKE_CASE , num_warmup_steps=0 , num_training_steps=_SCREAMING_SNAKE_CASE , ) else: snake_case_ = DummyScheduler(_SCREAMING_SNAKE_CASE , total_num_steps=_SCREAMING_SNAKE_CASE , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ = accelerator.prepare( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # We need to keep track of how many total steps we have iterated over snake_case_ = 0 # We also need to keep track of the stating epoch so files are named properly snake_case_ = 0 # Now we train the model snake_case_ = evaluate.load("""glue""" , """mrpc""" ) snake_case_ = 0 snake_case_ = {} for epoch in range(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): model.train() for step, batch in enumerate(_SCREAMING_SNAKE_CASE ): snake_case_ = model(**_SCREAMING_SNAKE_CASE ) snake_case_ = outputs.loss snake_case_ = loss / gradient_accumulation_steps accelerator.backward(_SCREAMING_SNAKE_CASE ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 model.eval() snake_case_ = 0 for step, batch in enumerate(_SCREAMING_SNAKE_CASE ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): snake_case_ = model(**_SCREAMING_SNAKE_CASE ) snake_case_ = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times snake_case_ , snake_case_ = accelerator.gather( (predictions, batch["""labels"""]) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(_SCREAMING_SNAKE_CASE ) - 1: snake_case_ = predictions[: len(eval_dataloader.dataset ) - samples_seen] snake_case_ = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=_SCREAMING_SNAKE_CASE , references=_SCREAMING_SNAKE_CASE , ) snake_case_ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""" , _SCREAMING_SNAKE_CASE ) snake_case_ = eval_metric["""accuracy"""] if best_performance < eval_metric["accuracy"]: snake_case_ = eval_metric["""accuracy"""] if args.performance_lower_bound is not None: assert ( args.performance_lower_bound <= best_performance ), f"""Best performance metric {best_performance} is lower than the lower bound {args.performance_lower_bound}""" accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , """all_results.json""" ) , """w""" ) as f: json.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def _a ( ) -> int: snake_case_ = argparse.ArgumentParser(description="""Simple example of training script tracking peak GPU memory usage.""" ) parser.add_argument( """--model_name_or_path""" , type=_SCREAMING_SNAKE_CASE , default="""bert-base-cased""" , help="""Path to pretrained model or model identifier from huggingface.co/models.""" , required=_SCREAMING_SNAKE_CASE , ) parser.add_argument( """--output_dir""" , type=_SCREAMING_SNAKE_CASE , default=""".""" , help="""Optional save directory where all checkpoint folders will be stored. Default is the current working directory.""" , ) parser.add_argument( """--performance_lower_bound""" , type=_SCREAMING_SNAKE_CASE , default=_SCREAMING_SNAKE_CASE , help="""Optional lower bound for the performance metric. If set, the training will throw error when the performance metric drops below this value.""" , ) parser.add_argument( """--num_epochs""" , type=_SCREAMING_SNAKE_CASE , default=3 , help="""Number of train epochs.""" , ) snake_case_ = parser.parse_args() snake_case_ = {"""lr""": 2E-5, """num_epochs""": args.num_epochs, """seed""": 42, """batch_size""": 16} training_function(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
233
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase : List[Any] = { "configuration_mobilebert": [ "MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MobileBertConfig", "MobileBertOnnxConfig", ], "tokenization_mobilebert": ["MobileBertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : List[str] = ["MobileBertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : List[Any] = [ "MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "MobileBertForMaskedLM", "MobileBertForMultipleChoice", "MobileBertForNextSentencePrediction", "MobileBertForPreTraining", "MobileBertForQuestionAnswering", "MobileBertForSequenceClassification", "MobileBertForTokenClassification", "MobileBertLayer", "MobileBertModel", "MobileBertPreTrainedModel", "load_tf_weights_in_mobilebert", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : List[Any] = [ "TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFMobileBertForMaskedLM", "TFMobileBertForMultipleChoice", "TFMobileBertForNextSentencePrediction", "TFMobileBertForPreTraining", "TFMobileBertForQuestionAnswering", "TFMobileBertForSequenceClassification", "TFMobileBertForTokenClassification", "TFMobileBertMainLayer", "TFMobileBertModel", "TFMobileBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mobilebert import ( MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileBertConfig, MobileBertOnnxConfig, ) from .tokenization_mobilebert import MobileBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mobilebert_fast import MobileBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilebert import ( MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertLayer, MobileBertModel, MobileBertPreTrainedModel, load_tf_weights_in_mobilebert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilebert import ( TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertMainLayer, TFMobileBertModel, TFMobileBertPreTrainedModel, ) else: import sys lowerCamelCase : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
204
from typing import Dict, Iterable, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract lowerCamelCase : List[str] = logging.get_logger(__name__) def _SCREAMING_SNAKE_CASE ( lowercase : Tuple , lowercase : Optional[int] , lowercase : Optional[int] ): '''simple docstring''' return [ int(10_00 * (box[0] / width) ), int(10_00 * (box[1] / height) ), int(10_00 * (box[2] / width) ), int(10_00 * (box[3] / height) ), ] def _SCREAMING_SNAKE_CASE ( lowercase : np.ndarray , lowercase : Optional[str] , lowercase : Optional[str] ): '''simple docstring''' lowerCamelCase_ = to_pil_image(lowercase ) lowerCamelCase_ , lowerCamelCase_ = pil_image.size lowerCamelCase_ = pytesseract.image_to_data(lowercase , lang=lowercase , output_type='dict' , config=lowercase ) lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = data['text'], data['left'], data['top'], data['width'], data['height'] # filter empty words and corresponding coordinates lowerCamelCase_ = [idx for idx, word in enumerate(lowercase ) if not word.strip()] lowerCamelCase_ = [word for idx, word in enumerate(lowercase ) if idx not in irrelevant_indices] lowerCamelCase_ = [coord for idx, coord in enumerate(lowercase ) if idx not in irrelevant_indices] lowerCamelCase_ = [coord for idx, coord in enumerate(lowercase ) if idx not in irrelevant_indices] lowerCamelCase_ = [coord for idx, coord in enumerate(lowercase ) if idx not in irrelevant_indices] lowerCamelCase_ = [coord for idx, coord in enumerate(lowercase ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format lowerCamelCase_ = [] for x, y, w, h in zip(lowercase , lowercase , lowercase , lowercase ): lowerCamelCase_ = [x, y, x + w, y + h] actual_boxes.append(lowercase ) # finally, normalize the bounding boxes lowerCamelCase_ = [] for box in actual_boxes: normalized_boxes.append(normalize_box(lowercase , lowercase , lowercase ) ) assert len(lowercase ) == len(lowercase ), "Not as many words as there are bounding boxes" return words, normalized_boxes class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = ['''pixel_values'''] def __init__( self : int , A_ : bool = True , A_ : Dict[str, int] = None , A_ : PILImageResampling = PILImageResampling.BILINEAR , A_ : bool = True , A_ : float = 1 / 255 , A_ : bool = True , A_ : Union[float, Iterable[float]] = None , A_ : Union[float, Iterable[float]] = None , A_ : bool = True , A_ : Optional[str] = None , A_ : Optional[str] = "" , **A_ : Optional[int] , ) -> None: """simple docstring""" super().__init__(**A_ ) lowerCamelCase_ = size if size is not None else {'height': 224, 'width': 224} lowerCamelCase_ = get_size_dict(A_ ) lowerCamelCase_ = do_resize lowerCamelCase_ = size lowerCamelCase_ = resample lowerCamelCase_ = do_rescale lowerCamelCase_ = rescale_value lowerCamelCase_ = do_normalize lowerCamelCase_ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowerCamelCase_ = image_std if image_std is not None else IMAGENET_STANDARD_STD lowerCamelCase_ = apply_ocr lowerCamelCase_ = ocr_lang lowerCamelCase_ = tesseract_config def a__ ( self : str , A_ : np.ndarray , A_ : Dict[str, int] , A_ : PILImageResampling = PILImageResampling.BILINEAR , A_ : Optional[Union[str, ChannelDimension]] = None , **A_ : str , ) -> np.ndarray: """simple docstring""" lowerCamelCase_ = get_size_dict(A_ ) if "height" not in size or "width" not in size: raise ValueError(f"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""" ) lowerCamelCase_ = (size['height'], size['width']) return resize(A_ , size=A_ , resample=A_ , data_format=A_ , **A_ ) def a__ ( self : Any , A_ : np.ndarray , A_ : Union[int, float] , A_ : Optional[Union[str, ChannelDimension]] = None , **A_ : Optional[Any] , ) -> np.ndarray: """simple docstring""" return rescale(A_ , scale=A_ , data_format=A_ , **A_ ) def a__ ( self : Union[str, Any] , A_ : np.ndarray , A_ : Union[float, Iterable[float]] , A_ : Union[float, Iterable[float]] , A_ : Optional[Union[str, ChannelDimension]] = None , **A_ : int , ) -> np.ndarray: """simple docstring""" return normalize(A_ , mean=A_ , std=A_ , data_format=A_ , **A_ ) def a__ ( self : List[Any] , A_ : ImageInput , A_ : bool = None , A_ : Dict[str, int] = None , A_ : Dict=None , A_ : bool = None , A_ : float = None , A_ : bool = None , A_ : Union[float, Iterable[float]] = None , A_ : Union[float, Iterable[float]] = None , A_ : bool = None , A_ : Optional[str] = None , A_ : Optional[str] = None , A_ : Optional[Union[str, TensorType]] = None , A_ : ChannelDimension = ChannelDimension.FIRST , **A_ : Any , ) -> PIL.Image.Image: """simple docstring""" lowerCamelCase_ = do_resize if do_resize is not None else self.do_resize lowerCamelCase_ = size if size is not None else self.size lowerCamelCase_ = get_size_dict(A_ ) lowerCamelCase_ = resample if resample is not None else self.resample lowerCamelCase_ = do_rescale if do_rescale is not None else self.do_rescale lowerCamelCase_ = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCamelCase_ = do_normalize if do_normalize is not None else self.do_normalize lowerCamelCase_ = image_mean if image_mean is not None else self.image_mean lowerCamelCase_ = image_std if image_std is not None else self.image_std lowerCamelCase_ = apply_ocr if apply_ocr is not None else self.apply_ocr lowerCamelCase_ = ocr_lang if ocr_lang is not None else self.ocr_lang lowerCamelCase_ = tesseract_config if tesseract_config is not None else self.tesseract_config lowerCamelCase_ = make_list_of_images(A_ ) if not valid_images(A_ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('If do_normalize is True, image_mean and image_std must be specified.' ) # All transformations expect numpy arrays. lowerCamelCase_ = [to_numpy_array(A_ ) for image in images] # Tesseract OCR to get words + normalized bounding boxes if apply_ocr: requires_backends(self , 'pytesseract' ) lowerCamelCase_ = [] lowerCamelCase_ = [] for image in images: lowerCamelCase_ , lowerCamelCase_ = apply_tesseract(A_ , A_ , A_ ) words_batch.append(A_ ) boxes_batch.append(A_ ) if do_resize: lowerCamelCase_ = [self.resize(image=A_ , size=A_ , resample=A_ ) for image in images] if do_rescale: lowerCamelCase_ = [self.rescale(image=A_ , scale=A_ ) for image in images] if do_normalize: lowerCamelCase_ = [self.normalize(image=A_ , mean=A_ , std=A_ ) for image in images] lowerCamelCase_ = [to_channel_dimension_format(A_ , A_ ) for image in images] lowerCamelCase_ = BatchFeature(data={'pixel_values': images} , tensor_type=A_ ) if apply_ocr: lowerCamelCase_ = words_batch lowerCamelCase_ = boxes_batch return data
204
1
from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { '''sayakpaul/vit-msn-base''': '''https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json''', # See all ViT MSN models at https://huggingface.co/models?filter=vit_msn } class __lowercase ( __a ): '''simple docstring''' a : Any = "vit_msn" def __init__(self ,_lowerCamelCase=768 ,_lowerCamelCase=12 ,_lowerCamelCase=12 ,_lowerCamelCase=3072 ,_lowerCamelCase="gelu" ,_lowerCamelCase=0.0 ,_lowerCamelCase=0.0 ,_lowerCamelCase=0.0_2 ,_lowerCamelCase=1E-0_6 ,_lowerCamelCase=224 ,_lowerCamelCase=16 ,_lowerCamelCase=3 ,_lowerCamelCase=True ,**_lowerCamelCase ,) -> str: '''simple docstring''' super().__init__(**UpperCamelCase__ ) __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = initializer_range __lowercase = layer_norm_eps __lowercase = image_size __lowercase = patch_size __lowercase = num_channels __lowercase = qkv_bias
369
'''simple docstring''' # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from ...utils import deprecate from ..controlnet.pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline # noqa: F401 deprecate( '''stable diffusion controlnet''', '''0.22.0''', '''Importing `FlaxStableDiffusionControlNetPipeline` from diffusers.pipelines.stable_diffusion.flax_pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import FlaxStableDiffusionControlNetPipeline` instead.''', standard_warn=False, stacklevel=3, )
217
0
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot import BlenderbotTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation UpperCAmelCase_ : List[Any] = logging.get_logger(__name__) UpperCAmelCase_ : List[str] = { '''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_config_file''': '''tokenizer_config.json''', } UpperCAmelCase_ : Optional[Any] = { '''vocab_file''': {'''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'''}, '''merges_file''': {'''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'''}, '''tokenizer_config_file''': { '''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json''' }, } UpperCAmelCase_ : Optional[int] = {'''facebook/blenderbot-3B''': 1_28} class _SCREAMING_SNAKE_CASE ( _a ): snake_case__ : Optional[Any] = VOCAB_FILES_NAMES snake_case__ : List[str] = PRETRAINED_VOCAB_FILES_MAP snake_case__ : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case__ : Dict = ["""input_ids""", """attention_mask"""] snake_case__ : Union[str, Any] = BlenderbotTokenizer def __init__( self : Union[str, Any] , __lowerCamelCase : Optional[Any]=None , __lowerCamelCase : str=None , __lowerCamelCase : Tuple=None , __lowerCamelCase : int="replace" , __lowerCamelCase : Optional[Any]="<s>" , __lowerCamelCase : List[Any]="</s>" , __lowerCamelCase : Dict="</s>" , __lowerCamelCase : List[str]="<s>" , __lowerCamelCase : int="<unk>" , __lowerCamelCase : Union[str, Any]="<pad>" , __lowerCamelCase : List[Any]="<mask>" , __lowerCamelCase : Dict=False , __lowerCamelCase : Dict=True , **__lowerCamelCase : Dict , ): super().__init__( __lowerCamelCase , __lowerCamelCase , tokenizer_file=__lowerCamelCase , errors=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , sep_token=__lowerCamelCase , cls_token=__lowerCamelCase , unk_token=__lowerCamelCase , pad_token=__lowerCamelCase , mask_token=__lowerCamelCase , add_prefix_space=__lowerCamelCase , trim_offsets=__lowerCamelCase , **__lowerCamelCase , ) UpperCamelCase :Union[str, Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" , __lowerCamelCase ) != add_prefix_space: UpperCamelCase :Tuple = getattr(__lowerCamelCase , pre_tok_state.pop("""type""" ) ) UpperCamelCase :List[str] = add_prefix_space UpperCamelCase :Optional[int] = pre_tok_class(**__lowerCamelCase ) UpperCamelCase :Any = add_prefix_space UpperCamelCase :int = """post_processor""" UpperCamelCase :str = getattr(self.backend_tokenizer , __lowerCamelCase , __lowerCamelCase ) if tokenizer_component_instance: UpperCamelCase :str = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: UpperCamelCase :Tuple = tuple(state["""sep"""] ) if "cls" in state: UpperCamelCase :int = tuple(state["""cls"""] ) UpperCamelCase :List[Any] = False if state.get("""add_prefix_space""" , __lowerCamelCase ) != add_prefix_space: UpperCamelCase :int = add_prefix_space UpperCamelCase :Dict = True if state.get("""trim_offsets""" , __lowerCamelCase ) != trim_offsets: UpperCamelCase :Optional[Any] = trim_offsets UpperCamelCase :Union[str, Any] = True if changes_to_apply: UpperCamelCase :str = getattr(__lowerCamelCase , state.pop("""type""" ) ) UpperCamelCase :Any = component_class(**__lowerCamelCase ) setattr(self.backend_tokenizer , __lowerCamelCase , __lowerCamelCase ) @property # Copied from transformers.models.roberta.tokenization_roberta_fast.RobertaTokenizerFast.mask_token with Roberta->Blenderbot, RoBERTa->Blenderbot def _A ( self : Union[str, Any] ): if self._mask_token is None: if self.verbose: logger.error("""Using mask_token, but it is not set yet.""" ) return None return str(self._mask_token ) @mask_token.setter def _A ( self : str , __lowerCamelCase : int ): UpperCamelCase :int = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else value UpperCamelCase :str = value def _A ( self : Union[str, Any] , *__lowerCamelCase : List[Any] , **__lowerCamelCase : List[Any] ): UpperCamelCase :int = kwargs.get("""is_split_into_words""" , __lowerCamelCase ) assert self.add_prefix_space or not is_split_into_words, ( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*__lowerCamelCase , **__lowerCamelCase ) def _A ( self : Tuple , *__lowerCamelCase : Any , **__lowerCamelCase : str ): UpperCamelCase :Tuple = kwargs.get("""is_split_into_words""" , __lowerCamelCase ) assert self.add_prefix_space or not is_split_into_words, ( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._encode_plus(*__lowerCamelCase , **__lowerCamelCase ) def _A ( self : str , __lowerCamelCase : str , __lowerCamelCase : Optional[str] = None ): UpperCamelCase :List[Any] = self._tokenizer.model.save(__lowerCamelCase , name=__lowerCamelCase ) return tuple(__lowerCamelCase ) def _A ( self : Optional[int] , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ): UpperCamelCase :Optional[Any] = [self.sep_token_id] UpperCamelCase :Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _A ( self : List[Any] , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ): return token_ids_a + [self.eos_token_id] def _A ( self : Union[str, Any] , __lowerCamelCase : "Conversation" ): UpperCamelCase :Optional[int] = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(""" """ + text ) else: # Generated responses should contain them already. inputs.append(__lowerCamelCase ) UpperCamelCase :Union[str, Any] = """ """.join(__lowerCamelCase ) UpperCamelCase :Tuple = self.encode(__lowerCamelCase ) if len(__lowerCamelCase ) > self.model_max_length: UpperCamelCase :List[str] = input_ids[-self.model_max_length :] logger.warning(F"""Trimmed input from conversation as it was longer than {self.model_max_length} tokens.""" ) return input_ids
38
'''simple docstring''' # Logistic Regression from scratch # In[62]: # In[63]: # importing all the required libraries import numpy as np from matplotlib import pyplot as plt from sklearn import datasets def A_ ( snake_case ): return 1 / (1 + np.exp(-z )) def A_ ( snake_case , snake_case ): return (-y * np.log(snake_case ) - (1 - y) * np.log(1 - h )).mean() def A_ ( snake_case , snake_case , snake_case ): SCREAMING_SNAKE_CASE:Dict = np.dot(snake_case , snake_case ) return np.sum(y * scores - np.log(1 + np.exp(snake_case ) ) ) def A_ ( snake_case , snake_case , snake_case , snake_case=70000 ): SCREAMING_SNAKE_CASE:List[str] = np.zeros(x.shape[1] ) for iterations in range(snake_case ): SCREAMING_SNAKE_CASE:Union[str, Any] = np.dot(snake_case , snake_case ) SCREAMING_SNAKE_CASE:Dict = sigmoid_function(snake_case ) SCREAMING_SNAKE_CASE:List[str] = np.dot(x.T , h - y ) / y.size SCREAMING_SNAKE_CASE:Any = theta - alpha * gradient # updating the weights SCREAMING_SNAKE_CASE:Dict = np.dot(snake_case , snake_case ) SCREAMING_SNAKE_CASE:Union[str, Any] = sigmoid_function(snake_case ) SCREAMING_SNAKE_CASE:Dict = cost_function(snake_case , snake_case ) if iterations % 100 == 0: print(F'''loss: {j} \t''' ) # printing the loss after every 100 iterations return theta # In[68]: if __name__ == "__main__": A_ = datasets.load_iris() A_ = iris.data[:, :2] A_ = (iris.target != 0) * 1 A_ = 0.1 A_ = logistic_reg(alpha, x, y, max_iterations=7_00_00) print("theta: ", theta) # printing the theta i.e our weights vector def A_ ( snake_case ): return sigmoid_function( np.dot(snake_case , snake_case ) ) # predicting the value of probability from the logistic regression algorithm plt.figure(figsize=(10, 6)) plt.scatter(x[y == 0][:, 0], x[y == 0][:, 1], color="b", label="0") plt.scatter(x[y == 1][:, 0], x[y == 1][:, 1], color="r", label="1") ((A_) , (A_)) = (x[:, 0].min(), x[:, 0].max()) ((A_) , (A_)) = (x[:, 1].min(), x[:, 1].max()) ((A_) , (A_)) = np.meshgrid(np.linspace(xa_min, xa_max), np.linspace(xa_min, xa_max)) A_ = np.c_[xxa.ravel(), xxa.ravel()] A_ = predict_prob(grid).reshape(xxa.shape) plt.contour(xxa, xxa, probs, [0.5], linewidths=1, colors="black") plt.legend() plt.show()
139
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL UpperCamelCase__ =logging.get_logger(__name__) class lowerCAmelCase__( __lowercase ): '''simple docstring''' __snake_case = ['pixel_values'] def __init__( self , __lowerCamelCase = True , __lowerCamelCase = None , __lowerCamelCase = PIL.Image.BICUBIC , __lowerCamelCase = True , __lowerCamelCase = None , __lowerCamelCase = 1 / 2_5_5 , __lowerCamelCase = True , __lowerCamelCase = True , __lowerCamelCase = None , __lowerCamelCase = None , **__lowerCamelCase , ) -> None: super().__init__(**__lowerCamelCase ) _SCREAMING_SNAKE_CASE : int = size if size is not None else {"height": 2_5_6, "width": 2_5_6} _SCREAMING_SNAKE_CASE : List[Any] = get_size_dict(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[Any] = crop_size if crop_size is not None else {"height": 2_2_4, "width": 2_2_4} _SCREAMING_SNAKE_CASE : Optional[int] = get_size_dict(__lowerCamelCase , param_name="crop_size" ) _SCREAMING_SNAKE_CASE : str = do_resize _SCREAMING_SNAKE_CASE : Optional[Any] = size _SCREAMING_SNAKE_CASE : str = resample _SCREAMING_SNAKE_CASE : Union[str, Any] = do_center_crop _SCREAMING_SNAKE_CASE : Dict = crop_size _SCREAMING_SNAKE_CASE : Tuple = do_rescale _SCREAMING_SNAKE_CASE : Dict = rescale_factor _SCREAMING_SNAKE_CASE : Optional[Any] = do_normalize _SCREAMING_SNAKE_CASE : str = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _SCREAMING_SNAKE_CASE : int = image_std if image_std is not None else IMAGENET_STANDARD_STD def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = PIL.Image.BICUBIC , __lowerCamelCase = None , **__lowerCamelCase , ) -> np.ndarray: _SCREAMING_SNAKE_CASE : List[str] = get_size_dict(__lowerCamelCase ) if "height" not in size or "width" not in size: raise ValueError(F"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""" ) return resize( __lowerCamelCase , size=(size["height"], size["width"]) , resample=__lowerCamelCase , data_format=__lowerCamelCase , **__lowerCamelCase ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = None , **__lowerCamelCase , ) -> np.ndarray: _SCREAMING_SNAKE_CASE : List[str] = get_size_dict(__lowerCamelCase ) if "height" not in size or "width" not in size: raise ValueError(F"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""" ) return center_crop(__lowerCamelCase , size=(size["height"], size["width"]) , data_format=__lowerCamelCase , **__lowerCamelCase ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = None , **__lowerCamelCase , ) -> Tuple: return rescale(__lowerCamelCase , scale=__lowerCamelCase , data_format=__lowerCamelCase , **__lowerCamelCase ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = None , **__lowerCamelCase , ) -> np.ndarray: return normalize(__lowerCamelCase , mean=__lowerCamelCase , std=__lowerCamelCase , data_format=__lowerCamelCase , **__lowerCamelCase ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase=None , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase = ChannelDimension.FIRST , **__lowerCamelCase , ) -> PIL.Image.Image: _SCREAMING_SNAKE_CASE : List[str] = do_resize if do_resize is not None else self.do_resize _SCREAMING_SNAKE_CASE : Optional[Any] = resample if resample is not None else self.resample _SCREAMING_SNAKE_CASE : str = do_center_crop if do_center_crop is not None else self.do_center_crop _SCREAMING_SNAKE_CASE : Optional[Any] = do_rescale if do_rescale is not None else self.do_rescale _SCREAMING_SNAKE_CASE : int = rescale_factor if rescale_factor is not None else self.rescale_factor _SCREAMING_SNAKE_CASE : List[str] = do_normalize if do_normalize is not None else self.do_normalize _SCREAMING_SNAKE_CASE : Tuple = image_mean if image_mean is not None else self.image_mean _SCREAMING_SNAKE_CASE : int = image_std if image_std is not None else self.image_std _SCREAMING_SNAKE_CASE : List[str] = size if size is not None else self.size _SCREAMING_SNAKE_CASE : Union[str, Any] = get_size_dict(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Tuple = crop_size if crop_size is not None else self.crop_size _SCREAMING_SNAKE_CASE : List[str] = get_size_dict(__lowerCamelCase , param_name="crop_size" ) _SCREAMING_SNAKE_CASE : Tuple = make_list_of_images(__lowerCamelCase ) if not valid_images(__lowerCamelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. _SCREAMING_SNAKE_CASE : int = [to_numpy_array(__lowerCamelCase ) for image in images] if do_resize: _SCREAMING_SNAKE_CASE : Dict = [self.resize(image=__lowerCamelCase , size=__lowerCamelCase , resample=__lowerCamelCase ) for image in images] if do_center_crop: _SCREAMING_SNAKE_CASE : Dict = [self.center_crop(image=__lowerCamelCase , size=__lowerCamelCase ) for image in images] if do_rescale: _SCREAMING_SNAKE_CASE : Optional[int] = [self.rescale(image=__lowerCamelCase , scale=__lowerCamelCase ) for image in images] if do_normalize: _SCREAMING_SNAKE_CASE : Optional[Any] = [self.normalize(image=__lowerCamelCase , mean=__lowerCamelCase , std=__lowerCamelCase ) for image in images] _SCREAMING_SNAKE_CASE : str = [to_channel_dimension_format(__lowerCamelCase , __lowerCamelCase ) for image in images] _SCREAMING_SNAKE_CASE : Optional[Any] = {"pixel_values": images} return BatchFeature(data=__lowerCamelCase , tensor_type=__lowerCamelCase )
325
from math import acos, sin from typing import List, Tuple, Union import numpy as np import torch from PIL import Image from ...models import AutoencoderKL, UNetaDConditionModel from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import randn_tensor from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput from .mel import Mel class lowerCAmelCase__( __lowercase ): '''simple docstring''' __snake_case = ['vqvae'] def __init__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) -> List[Any]: super().__init__() self.register_modules(unet=__lowerCamelCase , scheduler=__lowerCamelCase , mel=__lowerCamelCase , vqvae=__lowerCamelCase ) def UpperCamelCase_ ( self ) -> int: return 5_0 if isinstance(self.scheduler , __lowerCamelCase ) else 1_0_0_0 @torch.no_grad() def __call__( self , __lowerCamelCase = 1 , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase = 0 , __lowerCamelCase = 0 , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase = 0 , __lowerCamelCase = 0 , __lowerCamelCase = None , __lowerCamelCase = 0 , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase=True , ) -> Union[ Union[AudioPipelineOutput, ImagePipelineOutput], Tuple[List[Image.Image], Tuple[int, List[np.ndarray]]], ]: _SCREAMING_SNAKE_CASE : List[str] = steps or self.get_default_steps() self.scheduler.set_timesteps(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Dict = step_generator or generator # For backwards compatibility if type(self.unet.config.sample_size ) == int: _SCREAMING_SNAKE_CASE : Optional[int] = (self.unet.config.sample_size, self.unet.config.sample_size) if noise is None: _SCREAMING_SNAKE_CASE : Union[str, Any] = randn_tensor( ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1], ) , generator=__lowerCamelCase , device=self.device , ) _SCREAMING_SNAKE_CASE : Union[str, Any] = noise _SCREAMING_SNAKE_CASE : Optional[int] = None if audio_file is not None or raw_audio is not None: self.mel.load_audio(__lowerCamelCase , __lowerCamelCase ) _SCREAMING_SNAKE_CASE : Dict = self.mel.audio_slice_to_image(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[Any] = np.frombuffer(input_image.tobytes() , dtype="uint8" ).reshape( (input_image.height, input_image.width) ) _SCREAMING_SNAKE_CASE : Optional[int] = (input_image / 2_5_5) * 2 - 1 _SCREAMING_SNAKE_CASE : List[Any] = torch.tensor(input_image[np.newaxis, :, :] , dtype=torch.float ).to(self.device ) if self.vqvae is not None: _SCREAMING_SNAKE_CASE : Union[str, Any] = self.vqvae.encode(torch.unsqueeze(__lowerCamelCase , 0 ) ).latent_dist.sample( generator=__lowerCamelCase )[0] _SCREAMING_SNAKE_CASE : int = self.vqvae.config.scaling_factor * input_images if start_step > 0: _SCREAMING_SNAKE_CASE : List[Any] = self.scheduler.add_noise(__lowerCamelCase , __lowerCamelCase , self.scheduler.timesteps[start_step - 1] ) _SCREAMING_SNAKE_CASE : int = ( self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length ) _SCREAMING_SNAKE_CASE : Optional[Any] = int(mask_start_secs * pixels_per_second ) _SCREAMING_SNAKE_CASE : Optional[int] = int(mask_end_secs * pixels_per_second ) _SCREAMING_SNAKE_CASE : Optional[Any] = self.scheduler.add_noise(__lowerCamelCase , __lowerCamelCase , torch.tensor(self.scheduler.timesteps[start_step:] ) ) for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:] ) ): if isinstance(self.unet , __lowerCamelCase ): _SCREAMING_SNAKE_CASE : List[str] = self.unet(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )["sample"] else: _SCREAMING_SNAKE_CASE : str = self.unet(__lowerCamelCase , __lowerCamelCase )["sample"] if isinstance(self.scheduler , __lowerCamelCase ): _SCREAMING_SNAKE_CASE : Union[str, Any] = self.scheduler.step( model_output=__lowerCamelCase , timestep=__lowerCamelCase , sample=__lowerCamelCase , eta=__lowerCamelCase , generator=__lowerCamelCase , )["prev_sample"] else: _SCREAMING_SNAKE_CASE : List[Any] = self.scheduler.step( model_output=__lowerCamelCase , timestep=__lowerCamelCase , sample=__lowerCamelCase , generator=__lowerCamelCase , )["prev_sample"] if mask is not None: if mask_start > 0: _SCREAMING_SNAKE_CASE : str = mask[:, step, :, :mask_start] if mask_end > 0: _SCREAMING_SNAKE_CASE : Dict = mask[:, step, :, -mask_end:] if self.vqvae is not None: # 0.18215 was scaling factor used in training to ensure unit variance _SCREAMING_SNAKE_CASE : Optional[Any] = 1 / self.vqvae.config.scaling_factor * images _SCREAMING_SNAKE_CASE : Dict = self.vqvae.decode(__lowerCamelCase )["sample"] _SCREAMING_SNAKE_CASE : Union[str, Any] = (images / 2 + 0.5).clamp(0 , 1 ) _SCREAMING_SNAKE_CASE : Union[str, Any] = images.cpu().permute(0 , 2 , 3 , 1 ).numpy() _SCREAMING_SNAKE_CASE : List[str] = (images * 2_5_5).round().astype("uint8" ) _SCREAMING_SNAKE_CASE : Tuple = list( (Image.fromarray(_[:, :, 0] ) for _ in images) if images.shape[3] == 1 else (Image.fromarray(__lowerCamelCase , mode="RGB" ).convert("L" ) for _ in images) ) _SCREAMING_SNAKE_CASE : Tuple = [self.mel.image_to_audio(__lowerCamelCase ) for _ in images] if not return_dict: return images, (self.mel.get_sample_rate(), audios) return BaseOutput(**AudioPipelineOutput(np.array(__lowerCamelCase )[:, np.newaxis, :] ) , **ImagePipelineOutput(__lowerCamelCase ) ) @torch.no_grad() def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase = 5_0 ) -> np.ndarray: assert isinstance(self.scheduler , __lowerCamelCase ) self.scheduler.set_timesteps(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[int] = np.array( [np.frombuffer(image.tobytes() , dtype="uint8" ).reshape((1, image.height, image.width) ) for image in images] ) _SCREAMING_SNAKE_CASE : Union[str, Any] = (sample / 2_5_5) * 2 - 1 _SCREAMING_SNAKE_CASE : Any = torch.Tensor(__lowerCamelCase ).to(self.device ) for t in self.progress_bar(torch.flip(self.scheduler.timesteps , (0,) ) ): _SCREAMING_SNAKE_CASE : Optional[int] = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps _SCREAMING_SNAKE_CASE : Optional[Any] = self.scheduler.alphas_cumprod[t] _SCREAMING_SNAKE_CASE : List[str] = ( self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod ) _SCREAMING_SNAKE_CASE : Optional[int] = 1 - alpha_prod_t _SCREAMING_SNAKE_CASE : Optional[int] = self.unet(__lowerCamelCase , __lowerCamelCase )["sample"] _SCREAMING_SNAKE_CASE : List[str] = (1 - alpha_prod_t_prev) ** 0.5 * model_output _SCREAMING_SNAKE_CASE : str = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5) _SCREAMING_SNAKE_CASE : List[str] = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output return sample @staticmethod def UpperCamelCase_ ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> torch.Tensor: _SCREAMING_SNAKE_CASE : Any = acos(torch.dot(torch.flatten(__lowerCamelCase ) , torch.flatten(__lowerCamelCase ) ) / torch.norm(__lowerCamelCase ) / torch.norm(__lowerCamelCase ) ) return sin((1 - alpha) * theta ) * xa / sin(__lowerCamelCase ) + sin(alpha * theta ) * xa / sin(__lowerCamelCase )
325
1
from math import ceil def _UpperCAmelCase ( a__ , a__): '''simple docstring''' a_ : Union[str, Any] = list(range(0 , a__)) a_ : Union[str, Any] = [item for sublist in list(device_map.values()) for item in sublist] # Duplicate check a_ : str = [] for i in device_map_blocks: if device_map_blocks.count(a__) > 1 and i not in duplicate_blocks: duplicate_blocks.append(a__) # Missing blocks a_ : str = [i for i in blocks if i not in device_map_blocks] a_ : Union[str, Any] = [i for i in device_map_blocks if i not in blocks] if len(a__) != 0: raise ValueError( """Duplicate attention blocks specified in device_map. Attention blocks must be specified to one device.""" """ These attention blocks were specified more than once: """ + str(a__)) if len(a__) != 0: raise ValueError( """There are attention blocks for this model that are not specified in the device_map. Add these attention """ """blocks to a device on the device_map: """ + str(a__)) if len(a__) != 0: raise ValueError( """The device_map contains more attention blocks than this model has. Remove these from the device_map:""" + str(a__)) def _UpperCAmelCase ( a__ , a__): '''simple docstring''' a_ : List[Any] = list(range(a__)) a_ : Optional[int] = int(ceil(n_layers / len(a__))) a_ : str = [layers[i : i + n_blocks] for i in range(0 , a__ , a__)] return dict(zip(a__ , a__))
248
from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING _lowercase: Union[str, Any] = logging.get_logger(__name__) @add_end_docstrings(lowerCAmelCase ) class _lowercase ( lowerCAmelCase ): """simple docstring""" def __init__(self , *lowerCamelCase_ , **lowerCamelCase_ ): """simple docstring""" super().__init__(*lowerCamelCase_ , **lowerCamelCase_ ) requires_backends(self , "vision" ) self.check_model_type( TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == "tf" else MODEL_FOR_VISION_2_SEQ_MAPPING ) def UpperCamelCase_ (self , lowerCamelCase_=None , lowerCamelCase_=None , lowerCamelCase_=None ): """simple docstring""" a = {} a = {} if prompt is not None: a = prompt if generate_kwargs is not None: a = generate_kwargs if max_new_tokens is not None: if "generate_kwargs" not in forward_kwargs: a = {} if "max_new_tokens" in forward_kwargs["generate_kwargs"]: raise ValueError( "'max_new_tokens' is defined twice, once in 'generate_kwargs' and once as a direct parameter," " please use only one" ) a = max_new_tokens return preprocess_params, forward_kwargs, {} def __call__(self , lowerCamelCase_ , **lowerCamelCase_ ): """simple docstring""" return super().__call__(lowerCamelCase_ , **lowerCamelCase_ ) def UpperCamelCase_ (self , lowerCamelCase_ , lowerCamelCase_=None ): """simple docstring""" a = load_image(lowerCamelCase_ ) if prompt is not None: if not isinstance(lowerCamelCase_ , lowerCamelCase_ ): raise ValueError( F'''Received an invalid text input, got - {type(lowerCamelCase_ )} - but expected a single string. ''' "Note also that one single text can be provided for conditional image to text generation." ) a = self.model.config.model_type if model_type == "git": a = self.image_processor(images=lowerCamelCase_ , return_tensors=self.framework ) a = self.tokenizer(text=lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ).input_ids a = [self.tokenizer.cls_token_id] + input_ids a = torch.tensor(lowerCamelCase_ ).unsqueeze(0 ) model_inputs.update({"input_ids": input_ids} ) elif model_type == "pix2struct": a = self.image_processor(images=lowerCamelCase_ , header_text=lowerCamelCase_ , return_tensors=self.framework ) elif model_type != "vision-encoder-decoder": # vision-encoder-decoder does not support conditional generation a = self.image_processor(images=lowerCamelCase_ , return_tensors=self.framework ) a = self.tokenizer(lowerCamelCase_ , return_tensors=self.framework ) model_inputs.update(lowerCamelCase_ ) else: raise ValueError(F'''Model type {model_type} does not support conditional text generation''' ) else: a = self.image_processor(images=lowerCamelCase_ , return_tensors=self.framework ) if self.model.config.model_type == "git" and prompt is None: a = None return model_inputs def UpperCamelCase_ (self , lowerCamelCase_ , lowerCamelCase_=None ): """simple docstring""" if ( "input_ids" in model_inputs and isinstance(model_inputs["input_ids"] , lowerCamelCase_ ) and all(x is None for x in model_inputs["input_ids"] ) ): a = None if generate_kwargs is None: a = {} # FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py` # parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas # the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name` # in the `_prepare_model_inputs` method. a = model_inputs.pop(self.model.main_input_name ) a = self.model.generate(lowerCamelCase_ , **lowerCamelCase_ , **lowerCamelCase_ ) return model_outputs def UpperCamelCase_ (self , lowerCamelCase_ ): """simple docstring""" a = [] for output_ids in model_outputs: a = { "generated_text": self.tokenizer.decode( lowerCamelCase_ , skip_special_tokens=lowerCamelCase_ , ) } records.append(lowerCamelCase_ ) return records
227
0
import argparse import collections import numpy as np import torch from flax import traverse_util from tax import checkpoints from transformers import MTaConfig, UMTaEncoderModel, UMTaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def a_ ( lowerCAmelCase_ : List[Any], lowerCAmelCase_ : int, lowerCAmelCase_ : Optional[Any] ): return params[F"""{prefix}/{prefix}/relpos_bias/rel_embedding"""][:, i, :] def a_ ( lowerCAmelCase_ : int, lowerCAmelCase_ : Optional[int], lowerCAmelCase_ : Optional[Any], lowerCAmelCase_ : Union[str, Any]="attention" ): __lowerCAmelCase = __lowerCAmelCase = np.ascontiguousarray(params[F"""{prefix}/{prefix}/{layer_name}/key/kernel"""][:, i, :, :] ) __lowerCAmelCase = k_tmp.reshape(k_tmp.shape[0], k_tmp.shape[1] * k_tmp.shape[2] ) __lowerCAmelCase = np.ascontiguousarray(params[F"""{prefix}/{prefix}/{layer_name}/out/kernel"""][:, i, :, :] ) __lowerCAmelCase = o_tmp.reshape(o_tmp.shape[0] * o_tmp.shape[1], o_tmp.shape[2] ) __lowerCAmelCase = np.ascontiguousarray(params[F"""{prefix}/{prefix}/{layer_name}/query/kernel"""][:, i, :, :] ) __lowerCAmelCase = q_tmp.reshape(q_tmp.shape[0], q_tmp.shape[1] * q_tmp.shape[2] ) __lowerCAmelCase = np.ascontiguousarray(params[F"""{prefix}/{prefix}/{layer_name}/value/kernel"""][:, i, :, :] ) __lowerCAmelCase = v_tmp.reshape(v_tmp.shape[0], v_tmp.shape[1] * v_tmp.shape[2] ) return k, o, q, v def a_ ( lowerCAmelCase_ : Any, lowerCAmelCase_ : int, lowerCAmelCase_ : Optional[Any], lowerCAmelCase_ : str=False ): if split_mlp_wi: __lowerCAmelCase = params[F"""{prefix}/{prefix}/mlp/wi_0/kernel"""][:, i, :] __lowerCAmelCase = params[F"""{prefix}/{prefix}/mlp/wi_1/kernel"""][:, i, :] __lowerCAmelCase = (wi_a, wi_a) else: __lowerCAmelCase = params[F"""{prefix}/{prefix}/mlp/wi/kernel"""][:, i, :] __lowerCAmelCase = params[F"""{prefix}/{prefix}/mlp/wo/kernel"""][:, i, :] return wi, wo def a_ ( lowerCAmelCase_ : Optional[int], lowerCAmelCase_ : int, lowerCAmelCase_ : Dict, lowerCAmelCase_ : int ): return params[F"""{prefix}/{prefix}/{layer_name}/scale"""][:, i] def a_ ( lowerCAmelCase_ : dict, *, lowerCAmelCase_ : int, lowerCAmelCase_ : bool, lowerCAmelCase_ : bool = False ): __lowerCAmelCase = traverse_util.flatten_dict(variables['target'] ) __lowerCAmelCase = {'/'.join(lowerCAmelCase_ ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi __lowerCAmelCase = 'encoder/encoder/mlp/wi_0/kernel' in old print('Split MLP:', lowerCAmelCase_ ) __lowerCAmelCase = collections.OrderedDict() # Shared embeddings. __lowerCAmelCase = old['token_embedder/embedding'] # Encoder. for i in range(lowerCAmelCase_ ): # Block i, layer 0 (Self Attention). __lowerCAmelCase = tax_layer_norm_lookup(lowerCAmelCase_, lowerCAmelCase_, 'encoder', 'pre_attention_layer_norm' ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = tax_attention_lookup(lowerCAmelCase_, lowerCAmelCase_, 'encoder', 'attention' ) __lowerCAmelCase = layer_norm __lowerCAmelCase = k.T __lowerCAmelCase = o.T __lowerCAmelCase = q.T __lowerCAmelCase = v.T # Block i, layer 1 (MLP). __lowerCAmelCase = tax_layer_norm_lookup(lowerCAmelCase_, lowerCAmelCase_, 'encoder', 'pre_mlp_layer_norm' ) __lowerCAmelCase , __lowerCAmelCase = tax_mlp_lookup(lowerCAmelCase_, lowerCAmelCase_, 'encoder', lowerCAmelCase_ ) __lowerCAmelCase = layer_norm if split_mlp_wi: __lowerCAmelCase = wi[0].T __lowerCAmelCase = wi[1].T else: __lowerCAmelCase = wi.T __lowerCAmelCase = wo.T if scalable_attention: # convert the rel_embedding of each layer __lowerCAmelCase = tax_relpos_bias_lookup( lowerCAmelCase_, lowerCAmelCase_, 'encoder' ).T __lowerCAmelCase = old['encoder/encoder_norm/scale'] if not scalable_attention: __lowerCAmelCase = tax_relpos_bias_lookup( lowerCAmelCase_, 0, 'encoder' ).T __lowerCAmelCase = tax_relpos_bias_lookup( lowerCAmelCase_, 0, 'decoder' ).T if not is_encoder_only: # Decoder. for i in range(lowerCAmelCase_ ): # Block i, layer 0 (Self Attention). __lowerCAmelCase = tax_layer_norm_lookup(lowerCAmelCase_, lowerCAmelCase_, 'decoder', 'pre_self_attention_layer_norm' ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = tax_attention_lookup(lowerCAmelCase_, lowerCAmelCase_, 'decoder', 'self_attention' ) __lowerCAmelCase = layer_norm __lowerCAmelCase = k.T __lowerCAmelCase = o.T __lowerCAmelCase = q.T __lowerCAmelCase = v.T # Block i, layer 1 (Cross Attention). __lowerCAmelCase = tax_layer_norm_lookup(lowerCAmelCase_, lowerCAmelCase_, 'decoder', 'pre_cross_attention_layer_norm' ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = tax_attention_lookup(lowerCAmelCase_, lowerCAmelCase_, 'decoder', 'encoder_decoder_attention' ) __lowerCAmelCase = layer_norm __lowerCAmelCase = k.T __lowerCAmelCase = o.T __lowerCAmelCase = q.T __lowerCAmelCase = v.T # Block i, layer 2 (MLP). __lowerCAmelCase = tax_layer_norm_lookup(lowerCAmelCase_, lowerCAmelCase_, 'decoder', 'pre_mlp_layer_norm' ) __lowerCAmelCase , __lowerCAmelCase = tax_mlp_lookup(lowerCAmelCase_, lowerCAmelCase_, 'decoder', lowerCAmelCase_ ) __lowerCAmelCase = layer_norm if split_mlp_wi: __lowerCAmelCase = wi[0].T __lowerCAmelCase = wi[1].T else: __lowerCAmelCase = wi.T __lowerCAmelCase = wo.T if scalable_attention: # convert the rel_embedding of each layer __lowerCAmelCase = tax_relpos_bias_lookup(lowerCAmelCase_, lowerCAmelCase_, 'decoder' ).T __lowerCAmelCase = old['decoder/decoder_norm/scale'] # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: __lowerCAmelCase = old['decoder/logits_dense/kernel'].T return new def a_ ( lowerCAmelCase_ : Tuple, lowerCAmelCase_ : bool ): __lowerCAmelCase = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: __lowerCAmelCase = state_dict['shared.weight'] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: __lowerCAmelCase = state_dict['shared.weight'] if "lm_head.weight" not in state_dict: # For old 1.0 models. print('Using shared word embeddings as lm_head.' ) __lowerCAmelCase = state_dict['shared.weight'] return state_dict def a_ ( lowerCAmelCase_ : int, lowerCAmelCase_ : List[Any], lowerCAmelCase_ : Dict, lowerCAmelCase_ : List[str], lowerCAmelCase_ : List[Any] ): __lowerCAmelCase = checkpoints.load_tax_checkpoint(lowerCAmelCase_ ) __lowerCAmelCase = convert_tax_to_pytorch( lowerCAmelCase_, num_layers=config.num_layers, is_encoder_only=lowerCAmelCase_, scalable_attention=lowerCAmelCase_ ) __lowerCAmelCase = make_state_dict(lowerCAmelCase_, lowerCAmelCase_ ) model.load_state_dict(lowerCAmelCase_, strict=lowerCAmelCase_ ) def a_ ( lowerCAmelCase_ : Optional[Any], lowerCAmelCase_ : int, lowerCAmelCase_ : Union[str, Any], lowerCAmelCase_ : bool = False, lowerCAmelCase_ : bool = False, ): __lowerCAmelCase = MTaConfig.from_json_file(lowerCAmelCase_ ) print(F"""Building PyTorch model from configuration: {config}""" ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: __lowerCAmelCase = UMTaEncoderModel(lowerCAmelCase_ ) else: __lowerCAmelCase = UMTaForConditionalGeneration(lowerCAmelCase_ ) # Load weights from tf checkpoint load_tax_weights_in_ta(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) # Save pytorch-model print(F"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(lowerCAmelCase_ ) # Verify that we can load the checkpoint. model.from_pretrained(lowerCAmelCase_ ) print('Done' ) if __name__ == "__main__": _snake_case : Any = argparse.ArgumentParser(description='Converts a native T5X checkpoint into a PyTorch checkpoint.') # Required parameters parser.add_argument( '--t5x_checkpoint_path', default=None, type=str, required=True, help='Path to the T5X checkpoint.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.', ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--is_encoder_only', action='store_true', help='Check if the model is encoder-decoder model', default=False ) parser.add_argument( '--scalable_attention', action='store_true', help='Whether the model uses scaled attention (umt5 model)', default=False, ) _snake_case : List[str] = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only, args.scalable_attention, )
207
from dataclasses import dataclass from typing import Optional import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .modeling_utils import ModelMixin @dataclass class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" a_ = 42 class _UpperCAmelCase ( _UpperCamelCase , _UpperCamelCase ): """simple docstring""" @register_to_config def __init__( self : Optional[int] , lowerCAmelCase_ : int = 1_6 , lowerCAmelCase_ : int = 8_8 , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : int = 1 , lowerCAmelCase_ : float = 0.0 , lowerCAmelCase_ : int = 3_2 , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : str = "geglu" , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : bool = True , ) -> Dict: super().__init__() __lowerCAmelCase = num_attention_heads __lowerCAmelCase = attention_head_dim __lowerCAmelCase = num_attention_heads * attention_head_dim __lowerCAmelCase = in_channels __lowerCAmelCase = torch.nn.GroupNorm(num_groups=lowerCAmelCase_ , num_channels=lowerCAmelCase_ , eps=1e-6 , affine=lowerCAmelCase_ ) __lowerCAmelCase = nn.Linear(lowerCAmelCase_ , lowerCAmelCase_ ) # 3. Define transformers blocks __lowerCAmelCase = nn.ModuleList( [ BasicTransformerBlock( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , dropout=lowerCAmelCase_ , cross_attention_dim=lowerCAmelCase_ , activation_fn=lowerCAmelCase_ , attention_bias=lowerCAmelCase_ , double_self_attention=lowerCAmelCase_ , norm_elementwise_affine=lowerCAmelCase_ , ) for d in range(lowerCAmelCase_ ) ] ) __lowerCAmelCase = nn.Linear(lowerCAmelCase_ , lowerCAmelCase_ ) def lowercase ( self : Dict , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[Any]=None , lowerCAmelCase_ : Optional[int]=None , lowerCAmelCase_ : Union[str, Any]=None , lowerCAmelCase_ : Optional[int]=1 , lowerCAmelCase_ : Optional[int]=None , lowerCAmelCase_ : bool = True , ) -> str: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = hidden_states.shape __lowerCAmelCase = batch_frames // num_frames __lowerCAmelCase = hidden_states __lowerCAmelCase = hidden_states[None, :].reshape(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) __lowerCAmelCase = hidden_states.permute(0 , 2 , 1 , 3 , 4 ) __lowerCAmelCase = self.norm(lowerCAmelCase_ ) __lowerCAmelCase = hidden_states.permute(0 , 3 , 4 , 2 , 1 ).reshape(batch_size * height * width , lowerCAmelCase_ , lowerCAmelCase_ ) __lowerCAmelCase = self.proj_in(lowerCAmelCase_ ) # 2. Blocks for block in self.transformer_blocks: __lowerCAmelCase = block( lowerCAmelCase_ , encoder_hidden_states=lowerCAmelCase_ , timestep=lowerCAmelCase_ , cross_attention_kwargs=lowerCAmelCase_ , class_labels=lowerCAmelCase_ , ) # 3. Output __lowerCAmelCase = self.proj_out(lowerCAmelCase_ ) __lowerCAmelCase = ( hidden_states[None, None, :] .reshape(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) .permute(0 , 3 , 4 , 1 , 2 ) .contiguous() ) __lowerCAmelCase = hidden_states.reshape(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) __lowerCAmelCase = hidden_states + residual if not return_dict: return (output,) return TransformerTemporalModelOutput(sample=lowerCAmelCase_ )
207
1
def snake_case_ ( lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : int , lowerCAmelCase_ : str ): if height >= 1: move_tower(height - 1 , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) move_disk(lowerCAmelCase_ , lowerCAmelCase_ ) move_tower(height - 1 , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) def snake_case_ ( lowerCAmelCase_ : int , lowerCAmelCase_ : Dict ): print("""moving disk from""" , lowerCAmelCase_ , """to""" , lowerCAmelCase_ ) def snake_case_ ( ): __lowercase : Tuple = int(input("""Height of hanoi: """ ).strip() ) move_tower(lowerCAmelCase_ , """A""" , """B""" , """C""" ) if __name__ == "__main__": main()
233
# flake8: noqa # Lint as: python3 lowerCamelCase : Optional[Any] = [ '''VerificationMode''', '''Version''', '''disable_progress_bar''', '''enable_progress_bar''', '''is_progress_bar_enabled''', '''experimental''', ] from .info_utils import VerificationMode from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled from .version import Version from .experimental import experimental
233
1
'''simple docstring''' import argparse import torch from transformers import BertForMaskedLM if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser( description=( '''Extraction some layers of the full BertForMaskedLM or RObertaForMaskedLM for Transfer Learned''' ''' Distillation''' ) ) parser.add_argument('''--model_type''', default='''bert''', choices=['''bert''']) parser.add_argument('''--model_name''', default='''bert-base-uncased''', type=str) parser.add_argument('''--dump_checkpoint''', default='''serialization_dir/tf_bert-base-uncased_0247911.pth''', type=str) parser.add_argument('''--vocab_transform''', action='''store_true''') __UpperCAmelCase = parser.parse_args() if args.model_type == "bert": __UpperCAmelCase = BertForMaskedLM.from_pretrained(args.model_name) __UpperCAmelCase = '''bert''' else: raise ValueError('''args.model_type should be "bert".''') __UpperCAmelCase = model.state_dict() __UpperCAmelCase = {} for w in ["word_embeddings", "position_embeddings"]: __UpperCAmelCase = state_dict[f"""{prefix}.embeddings.{w}.weight"""] for w in ["weight", "bias"]: __UpperCAmelCase = state_dict[f"""{prefix}.embeddings.LayerNorm.{w}"""] __UpperCAmelCase = 0 for teacher_idx in [0, 2, 4, 7, 9, 11]: for w in ["weight", "bias"]: __UpperCAmelCase = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.self.query.{w}""" ] __UpperCAmelCase = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.self.key.{w}""" ] __UpperCAmelCase = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.self.value.{w}""" ] __UpperCAmelCase = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.output.dense.{w}""" ] __UpperCAmelCase = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.output.LayerNorm.{w}""" ] __UpperCAmelCase = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.intermediate.dense.{w}""" ] __UpperCAmelCase = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.output.dense.{w}""" ] __UpperCAmelCase = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.output.LayerNorm.{w}""" ] std_idx += 1 __UpperCAmelCase = state_dict['''cls.predictions.decoder.weight'''] __UpperCAmelCase = state_dict['''cls.predictions.bias'''] if args.vocab_transform: for w in ["weight", "bias"]: __UpperCAmelCase = state_dict[f"""cls.predictions.transform.dense.{w}"""] __UpperCAmelCase = state_dict[f"""cls.predictions.transform.LayerNorm.{w}"""] print(f"""N layers selected for distillation: {std_idx}""") print(f"""Number of params transferred for distillation: {len(compressed_sd.keys())}""") print(f"""Save transferred checkpoint to {args.dump_checkpoint}.""") torch.save(compressed_sd, args.dump_checkpoint)
228
'''simple docstring''' def _snake_case ( A = 10 ) -> str: if not isinstance(A , A ) or n < 0: raise ValueError('''Invalid input''' ) lowerCAmelCase__ = 10**n lowerCAmelCase__ = 28433 * (pow(2 , 7830457 , A )) + 1 return str(number % modulus ) if __name__ == "__main__": from doctest import testmod testmod() print(f"""{solution(10) = }""")
228
1
'''simple docstring''' def _UpperCamelCase ( __A , __A ) -> Dict: '''simple docstring''' UpperCamelCase__ = 0 while b > 0: if b & 1: res += a a += a b >>= 1 return res def _UpperCamelCase ( __A , __A , __A ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase__ = 0 while b > 0: if b & 1: UpperCamelCase__ = ((res % c) + (a % c)) % c a += a b >>= 1 return res
80
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roberta import RobertaTokenizer __A = logging.get_logger(__name__) __A = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} __A = { "vocab_file": { "roberta-base": "https://huggingface.co/roberta-base/resolve/main/vocab.json", "roberta-large": "https://huggingface.co/roberta-large/resolve/main/vocab.json", "roberta-large-mnli": "https://huggingface.co/roberta-large-mnli/resolve/main/vocab.json", "distilroberta-base": "https://huggingface.co/distilroberta-base/resolve/main/vocab.json", "roberta-base-openai-detector": "https://huggingface.co/roberta-base-openai-detector/resolve/main/vocab.json", "roberta-large-openai-detector": ( "https://huggingface.co/roberta-large-openai-detector/resolve/main/vocab.json" ), }, "merges_file": { "roberta-base": "https://huggingface.co/roberta-base/resolve/main/merges.txt", "roberta-large": "https://huggingface.co/roberta-large/resolve/main/merges.txt", "roberta-large-mnli": "https://huggingface.co/roberta-large-mnli/resolve/main/merges.txt", "distilroberta-base": "https://huggingface.co/distilroberta-base/resolve/main/merges.txt", "roberta-base-openai-detector": "https://huggingface.co/roberta-base-openai-detector/resolve/main/merges.txt", "roberta-large-openai-detector": ( "https://huggingface.co/roberta-large-openai-detector/resolve/main/merges.txt" ), }, "tokenizer_file": { "roberta-base": "https://huggingface.co/roberta-base/resolve/main/tokenizer.json", "roberta-large": "https://huggingface.co/roberta-large/resolve/main/tokenizer.json", "roberta-large-mnli": "https://huggingface.co/roberta-large-mnli/resolve/main/tokenizer.json", "distilroberta-base": "https://huggingface.co/distilroberta-base/resolve/main/tokenizer.json", "roberta-base-openai-detector": ( "https://huggingface.co/roberta-base-openai-detector/resolve/main/tokenizer.json" ), "roberta-large-openai-detector": ( "https://huggingface.co/roberta-large-openai-detector/resolve/main/tokenizer.json" ), }, } __A = { "roberta-base": 512, "roberta-large": 512, "roberta-large-mnli": 512, "distilroberta-base": 512, "roberta-base-openai-detector": 512, "roberta-large-openai-detector": 512, } class snake_case ( __snake_case ): SCREAMING_SNAKE_CASE_ : str = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ : Optional[int] = ["""input_ids""", """attention_mask"""] SCREAMING_SNAKE_CASE_ : Any = RobertaTokenizer def __init__( self : Optional[int] , UpperCamelCase__ : int=None , UpperCamelCase__ : Union[str, Any]=None , UpperCamelCase__ : Optional[Any]=None , UpperCamelCase__ : int="replace" , UpperCamelCase__ : Union[str, Any]="<s>" , UpperCamelCase__ : List[Any]="</s>" , UpperCamelCase__ : Any="</s>" , UpperCamelCase__ : Union[str, Any]="<s>" , UpperCamelCase__ : str="<unk>" , UpperCamelCase__ : Optional[int]="<pad>" , UpperCamelCase__ : int="<mask>" , UpperCamelCase__ : Optional[int]=False , UpperCamelCase__ : Optional[Any]=True , **UpperCamelCase__ : Tuple , )-> Optional[int]: '''simple docstring''' super().__init__( UpperCamelCase__ , UpperCamelCase__ , tokenizer_file=UpperCamelCase__ , errors=UpperCamelCase__ , bos_token=UpperCamelCase__ , eos_token=UpperCamelCase__ , sep_token=UpperCamelCase__ , cls_token=UpperCamelCase__ , unk_token=UpperCamelCase__ , pad_token=UpperCamelCase__ , mask_token=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ , trim_offsets=UpperCamelCase__ , **UpperCamelCase__ , ) __lowerCAmelCase: Tuple = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__()) if pre_tok_state.get("add_prefix_space" , UpperCamelCase__) != add_prefix_space: __lowerCAmelCase: str = getattr(UpperCamelCase__ , pre_tok_state.pop("type")) __lowerCAmelCase: Optional[int] = add_prefix_space __lowerCAmelCase: Dict = pre_tok_class(**UpperCamelCase__) __lowerCAmelCase: Any = add_prefix_space __lowerCAmelCase: int = "post_processor" __lowerCAmelCase: Optional[Any] = getattr(self.backend_tokenizer , UpperCamelCase__ , UpperCamelCase__) if tokenizer_component_instance: __lowerCAmelCase: Dict = json.loads(tokenizer_component_instance.__getstate__()) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: __lowerCAmelCase: List[Any] = tuple(state["sep"]) if "cls" in state: __lowerCAmelCase: str = tuple(state["cls"]) __lowerCAmelCase: str = False if state.get("add_prefix_space" , UpperCamelCase__) != add_prefix_space: __lowerCAmelCase: Optional[Any] = add_prefix_space __lowerCAmelCase: List[str] = True if state.get("trim_offsets" , UpperCamelCase__) != trim_offsets: __lowerCAmelCase: Any = trim_offsets __lowerCAmelCase: List[str] = True if changes_to_apply: __lowerCAmelCase: str = getattr(UpperCamelCase__ , state.pop("type")) __lowerCAmelCase: List[str] = component_class(**UpperCamelCase__) setattr(self.backend_tokenizer , UpperCamelCase__ , UpperCamelCase__) @property def lowercase_ ( self : List[str])-> str: '''simple docstring''' if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet.") return None return str(self._mask_token) @mask_token.setter def lowercase_ ( self : Tuple , UpperCamelCase__ : Optional[int])-> Optional[Any]: '''simple docstring''' __lowerCAmelCase: List[Any] = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__) if isinstance(UpperCamelCase__ , UpperCamelCase__) else value __lowerCAmelCase: int = value def lowercase_ ( self : Any , *UpperCamelCase__ : str , **UpperCamelCase__ : List[Any])-> BatchEncoding: '''simple docstring''' __lowerCAmelCase: List[Any] = kwargs.get("is_split_into_words" , UpperCamelCase__) assert self.add_prefix_space or not is_split_into_words, ( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*UpperCamelCase__ , **UpperCamelCase__) def lowercase_ ( self : int , *UpperCamelCase__ : Dict , **UpperCamelCase__ : List[str])-> BatchEncoding: '''simple docstring''' __lowerCAmelCase: Optional[Any] = kwargs.get("is_split_into_words" , UpperCamelCase__) assert self.add_prefix_space or not is_split_into_words, ( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._encode_plus(*UpperCamelCase__ , **UpperCamelCase__) def lowercase_ ( self : Any , UpperCamelCase__ : str , UpperCamelCase__ : Optional[str] = None)-> Tuple[str]: '''simple docstring''' __lowerCAmelCase: str = self._tokenizer.model.save(UpperCamelCase__ , name=UpperCamelCase__) return tuple(UpperCamelCase__) def lowercase_ ( self : Dict , UpperCamelCase__ : Any , UpperCamelCase__ : Union[str, Any]=None)-> Optional[Any]: '''simple docstring''' __lowerCAmelCase: str = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def lowercase_ ( self : int , UpperCamelCase__ : List[int] , UpperCamelCase__ : Optional[List[int]] = None)-> List[int]: '''simple docstring''' __lowerCAmelCase: Optional[Any] = [self.sep_token_id] __lowerCAmelCase: str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0]
217
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_speech_available, is_torch_available UpperCAmelCase = { """configuration_audio_spectrogram_transformer""": [ """AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ASTConfig""", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = [ """AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """ASTForAudioClassification""", """ASTModel""", """ASTPreTrainedModel""", ] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = ["""ASTFeatureExtractor"""] if TYPE_CHECKING: from .configuration_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ASTConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ASTForAudioClassification, ASTModel, ASTPreTrainedModel, ) try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_audio_spectrogram_transformer import ASTFeatureExtractor else: import sys UpperCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
359
"""simple docstring""" def lowercase ( a__ : Tuple , a__ : str ) -> Tuple: return (pointa[0] - pointa[0]) ** 2 + (pointa[1] - pointa[1]) ** 2 def lowercase ( a__ : Optional[int] , a__ : List[str]=0 ) -> Optional[Any]: return sorted(a__ , key=lambda a__ : x[column] ) def lowercase ( a__ : Optional[int] , a__ : Optional[int] , a__ : Tuple=float('''inf''' ) ) -> int: for i in range(points_counts - 1 ): for j in range(i + 1 , a__ ): _UpperCamelCase = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: _UpperCamelCase = current_dis return min_dis def lowercase ( a__ : Union[str, Any] , a__ : Optional[Any] , a__ : Optional[Any]=float('''inf''' ) ) -> str: for i in range(min(6 , points_counts - 1 ) , a__ ): for j in range(max(0 , i - 6 ) , a__ ): _UpperCamelCase = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: _UpperCamelCase = current_dis return min_dis def lowercase ( a__ : int , a__ : str , a__ : Any ) -> str: # base case if points_counts <= 3: return dis_between_closest_pair(a__ , a__ ) # recursion _UpperCamelCase = points_counts // 2 _UpperCamelCase = closest_pair_of_points_sqr( a__ , points_sorted_on_y[:mid] , a__ ) _UpperCamelCase = closest_pair_of_points_sqr( a__ , points_sorted_on_y[mid:] , points_counts - mid ) _UpperCamelCase = min(a__ , a__ ) _UpperCamelCase = [] for point in points_sorted_on_x: if abs(point[0] - points_sorted_on_x[mid][0] ) < closest_pair_dis: cross_strip.append(a__ ) _UpperCamelCase = dis_between_closest_in_strip( a__ , len(a__ ) , a__ ) return min(a__ , a__ ) def lowercase ( a__ : Dict , a__ : List[Any] ) -> Optional[Any]: _UpperCamelCase = column_based_sort(a__ , column=0 ) _UpperCamelCase = column_based_sort(a__ , column=1 ) return ( closest_pair_of_points_sqr( a__ , a__ , a__ ) ) ** 0.5 if __name__ == "__main__": UpperCAmelCase = [(2, 3), (12, 30), (40, 50), (5, 1), (12, 10), (3, 4)] print("""Distance:""", closest_pair_of_points(points, len(points)))
54
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available SCREAMING_SNAKE_CASE__ = { """configuration_xlm""": ["""XLM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XLMConfig""", """XLMOnnxConfig"""], """tokenization_xlm""": ["""XLMTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ """XLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """XLMForMultipleChoice""", """XLMForQuestionAnswering""", """XLMForQuestionAnsweringSimple""", """XLMForSequenceClassification""", """XLMForTokenClassification""", """XLMModel""", """XLMPreTrainedModel""", """XLMWithLMHeadModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ """TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFXLMForMultipleChoice""", """TFXLMForQuestionAnsweringSimple""", """TFXLMForSequenceClassification""", """TFXLMForTokenClassification""", """TFXLMMainLayer""", """TFXLMModel""", """TFXLMPreTrainedModel""", """TFXLMWithLMHeadModel""", ] if TYPE_CHECKING: from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig from .tokenization_xlm import XLMTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
325
from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_outputs import ( BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import logging from .configuration_regnet import RegNetConfig SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) # General docstring SCREAMING_SNAKE_CASE__ = """RegNetConfig""" # Base docstring SCREAMING_SNAKE_CASE__ = """facebook/regnet-y-040""" SCREAMING_SNAKE_CASE__ = [1, 1088, 7, 7] # Image classification docstring SCREAMING_SNAKE_CASE__ = """facebook/regnet-y-040""" SCREAMING_SNAKE_CASE__ = """tabby, tabby cat""" SCREAMING_SNAKE_CASE__ = [ """facebook/regnet-y-040""", # See all regnet models at https://huggingface.co/models?filter=regnet ] class A__ ( nn.Module ): def __init__( self : str , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int = 3 , _UpperCAmelCase : int = 1 , _UpperCAmelCase : int = 1 , _UpperCAmelCase : Optional[str] = "relu" , ) -> Optional[Any]: """simple docstring""" super().__init__() __lowercase = nn.Convad( _UpperCAmelCase , _UpperCAmelCase , kernel_size=_UpperCAmelCase , stride=_UpperCAmelCase , padding=kernel_size // 2 , groups=_UpperCAmelCase , bias=_UpperCAmelCase , ) __lowercase = nn.BatchNormad(_UpperCAmelCase ) __lowercase = ACTaFN[activation] if activation is not None else nn.Identity() def a__ ( self : Tuple , _UpperCAmelCase : List[str] ) -> str: """simple docstring""" __lowercase = self.convolution(_UpperCAmelCase ) __lowercase = self.normalization(_UpperCAmelCase ) __lowercase = self.activation(_UpperCAmelCase ) return hidden_state class A__ ( nn.Module ): def __init__( self : Union[str, Any] , _UpperCAmelCase : RegNetConfig ) -> Any: """simple docstring""" super().__init__() __lowercase = RegNetConvLayer( config.num_channels , config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act ) __lowercase = config.num_channels def a__ ( self : Optional[Any] , _UpperCAmelCase : Any ) -> Union[str, Any]: """simple docstring""" __lowercase = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( 'Make sure that the channel dimension of the pixel values match with the one set in the configuration.' ) __lowercase = self.embedder(_UpperCAmelCase ) return hidden_state class A__ ( nn.Module ): def __init__( self : List[str] , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int = 2 ) -> Optional[int]: """simple docstring""" super().__init__() __lowercase = nn.Convad(_UpperCAmelCase , _UpperCAmelCase , kernel_size=1 , stride=_UpperCAmelCase , bias=_UpperCAmelCase ) __lowercase = nn.BatchNormad(_UpperCAmelCase ) def a__ ( self : int , _UpperCAmelCase : Tensor ) -> Tensor: """simple docstring""" __lowercase = self.convolution(_UpperCAmelCase ) __lowercase = self.normalization(_UpperCAmelCase ) return hidden_state class A__ ( nn.Module ): def __init__( self : int , _UpperCAmelCase : int , _UpperCAmelCase : int ) -> str: """simple docstring""" super().__init__() __lowercase = nn.AdaptiveAvgPoolad((1, 1) ) __lowercase = nn.Sequential( nn.Convad(_UpperCAmelCase , _UpperCAmelCase , kernel_size=1 ) , nn.ReLU() , nn.Convad(_UpperCAmelCase , _UpperCAmelCase , kernel_size=1 ) , nn.Sigmoid() , ) def a__ ( self : str , _UpperCAmelCase : Dict ) -> str: """simple docstring""" __lowercase = self.pooler(_UpperCAmelCase ) __lowercase = self.attention(_UpperCAmelCase ) __lowercase = hidden_state * attention return hidden_state class A__ ( nn.Module ): def __init__( self : Optional[int] , _UpperCAmelCase : RegNetConfig , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int = 1 ) -> Tuple: """simple docstring""" super().__init__() __lowercase = in_channels != out_channels or stride != 1 __lowercase = max(1 , out_channels // config.groups_width ) __lowercase = ( RegNetShortCut(_UpperCAmelCase , _UpperCAmelCase , stride=_UpperCAmelCase ) if should_apply_shortcut else nn.Identity() ) __lowercase = nn.Sequential( RegNetConvLayer(_UpperCAmelCase , _UpperCAmelCase , kernel_size=1 , activation=config.hidden_act ) , RegNetConvLayer(_UpperCAmelCase , _UpperCAmelCase , stride=_UpperCAmelCase , groups=_UpperCAmelCase , activation=config.hidden_act ) , RegNetConvLayer(_UpperCAmelCase , _UpperCAmelCase , kernel_size=1 , activation=_UpperCAmelCase ) , ) __lowercase = ACTaFN[config.hidden_act] def a__ ( self : List[str] , _UpperCAmelCase : Tuple ) -> List[Any]: """simple docstring""" __lowercase = hidden_state __lowercase = self.layer(_UpperCAmelCase ) __lowercase = self.shortcut(_UpperCAmelCase ) hidden_state += residual __lowercase = self.activation(_UpperCAmelCase ) return hidden_state class A__ ( nn.Module ): def __init__( self : Union[str, Any] , _UpperCAmelCase : RegNetConfig , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int = 1 ) -> Optional[Any]: """simple docstring""" super().__init__() __lowercase = in_channels != out_channels or stride != 1 __lowercase = max(1 , out_channels // config.groups_width ) __lowercase = ( RegNetShortCut(_UpperCAmelCase , _UpperCAmelCase , stride=_UpperCAmelCase ) if should_apply_shortcut else nn.Identity() ) __lowercase = nn.Sequential( RegNetConvLayer(_UpperCAmelCase , _UpperCAmelCase , kernel_size=1 , activation=config.hidden_act ) , RegNetConvLayer(_UpperCAmelCase , _UpperCAmelCase , stride=_UpperCAmelCase , groups=_UpperCAmelCase , activation=config.hidden_act ) , RegNetSELayer(_UpperCAmelCase , reduced_channels=int(round(in_channels / 4 ) ) ) , RegNetConvLayer(_UpperCAmelCase , _UpperCAmelCase , kernel_size=1 , activation=_UpperCAmelCase ) , ) __lowercase = ACTaFN[config.hidden_act] def a__ ( self : Tuple , _UpperCAmelCase : Any ) -> List[str]: """simple docstring""" __lowercase = hidden_state __lowercase = self.layer(_UpperCAmelCase ) __lowercase = self.shortcut(_UpperCAmelCase ) hidden_state += residual __lowercase = self.activation(_UpperCAmelCase ) return hidden_state class A__ ( nn.Module ): def __init__( self : List[Any] , _UpperCAmelCase : RegNetConfig , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int = 2 , _UpperCAmelCase : int = 2 , ) -> Dict: """simple docstring""" super().__init__() __lowercase = RegNetXLayer if config.layer_type == 'x' else RegNetYLayer __lowercase = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , stride=_UpperCAmelCase , ) , *[layer(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) for _ in range(depth - 1 )] , ) def a__ ( self : Any , _UpperCAmelCase : str ) -> int: """simple docstring""" __lowercase = self.layers(_UpperCAmelCase ) return hidden_state class A__ ( nn.Module ): def __init__( self : Any , _UpperCAmelCase : RegNetConfig ) -> int: """simple docstring""" super().__init__() __lowercase = nn.ModuleList([] ) # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( RegNetStage( _UpperCAmelCase , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) ) __lowercase = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(_UpperCAmelCase , config.depths[1:] ): self.stages.append(RegNetStage(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , depth=_UpperCAmelCase ) ) def a__ ( self : int , _UpperCAmelCase : Tensor , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = True ) -> BaseModelOutputWithNoAttention: """simple docstring""" __lowercase = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: __lowercase = hidden_states + (hidden_state,) __lowercase = stage_module(_UpperCAmelCase ) if output_hidden_states: __lowercase = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=_UpperCAmelCase , hidden_states=_UpperCAmelCase ) class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : Optional[Any] = RegNetConfig lowerCAmelCase__ : Optional[int] = "regnet" lowerCAmelCase__ : Dict = "pixel_values" lowerCAmelCase__ : List[str] = True def a__ ( self : Any , _UpperCAmelCase : Any ) -> Dict: """simple docstring""" if isinstance(_UpperCAmelCase , nn.Convad ): nn.init.kaiming_normal_(module.weight , mode='fan_out' , nonlinearity='relu' ) elif isinstance(_UpperCAmelCase , (nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight , 1 ) nn.init.constant_(module.bias , 0 ) def a__ ( self : Any , _UpperCAmelCase : Any , _UpperCAmelCase : Optional[Any]=False ) -> Dict: """simple docstring""" if isinstance(_UpperCAmelCase , _UpperCAmelCase ): __lowercase = value SCREAMING_SNAKE_CASE__ = r""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`RegNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ SCREAMING_SNAKE_CASE__ = r""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConvNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare RegNet model outputting raw features without any specific head on top." , lowerCAmelCase__ , ) # Copied from transformers.models.resnet.modeling_resnet.ResNetModel with RESNET->REGNET,ResNet->RegNet class A__ ( lowerCAmelCase__ ): def __init__( self : List[Any] , _UpperCAmelCase : Any ) -> str: """simple docstring""" super().__init__(_UpperCAmelCase ) __lowercase = config __lowercase = RegNetEmbeddings(_UpperCAmelCase ) __lowercase = RegNetEncoder(_UpperCAmelCase ) __lowercase = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_UpperCAmelCase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=_UpperCAmelCase , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def a__ ( self : Tuple , _UpperCAmelCase : Tensor , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[bool] = None ) -> BaseModelOutputWithPoolingAndNoAttention: """simple docstring""" __lowercase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __lowercase = return_dict if return_dict is not None else self.config.use_return_dict __lowercase = self.embedder(_UpperCAmelCase ) __lowercase = self.encoder( _UpperCAmelCase , output_hidden_states=_UpperCAmelCase , return_dict=_UpperCAmelCase ) __lowercase = encoder_outputs[0] __lowercase = self.pooler(_UpperCAmelCase ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=_UpperCAmelCase , pooler_output=_UpperCAmelCase , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( "\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " , lowerCAmelCase__ , ) # Copied from transformers.models.resnet.modeling_resnet.ResNetForImageClassification with RESNET->REGNET,ResNet->RegNet,resnet->regnet class A__ ( lowerCAmelCase__ ): def __init__( self : str , _UpperCAmelCase : List[Any] ) -> Tuple: """simple docstring""" super().__init__(_UpperCAmelCase ) __lowercase = config.num_labels __lowercase = RegNetModel(_UpperCAmelCase ) # classification head __lowercase = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_UpperCAmelCase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=_UpperCAmelCase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def a__ ( self : List[Any] , _UpperCAmelCase : Optional[torch.FloatTensor] = None , _UpperCAmelCase : Optional[torch.LongTensor] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[bool] = None , ) -> ImageClassifierOutputWithNoAttention: """simple docstring""" __lowercase = return_dict if return_dict is not None else self.config.use_return_dict __lowercase = self.regnet(_UpperCAmelCase , output_hidden_states=_UpperCAmelCase , return_dict=_UpperCAmelCase ) __lowercase = outputs.pooler_output if return_dict else outputs[1] __lowercase = self.classifier(_UpperCAmelCase ) __lowercase = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: __lowercase = 'regression' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): __lowercase = 'single_label_classification' else: __lowercase = 'multi_label_classification' if self.config.problem_type == "regression": __lowercase = MSELoss() if self.num_labels == 1: __lowercase = loss_fct(logits.squeeze() , labels.squeeze() ) else: __lowercase = loss_fct(_UpperCAmelCase , _UpperCAmelCase ) elif self.config.problem_type == "single_label_classification": __lowercase = CrossEntropyLoss() __lowercase = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": __lowercase = BCEWithLogitsLoss() __lowercase = loss_fct(_UpperCAmelCase , _UpperCAmelCase ) if not return_dict: __lowercase = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=_UpperCAmelCase , logits=_UpperCAmelCase , hidden_states=outputs.hidden_states )
325
1
'''simple docstring''' def a ( __a ) -> list: '''simple docstring''' UpperCamelCase__ :Tuple = [0] * len(__a ) for i in range(1 , len(__a ) ): # use last results for better performance - dynamic programming UpperCamelCase__ :str = prefix_result[i - 1] while j > 0 and input_string[i] != input_string[j]: UpperCamelCase__ :Any = prefix_result[j - 1] if input_string[i] == input_string[j]: j += 1 UpperCamelCase__ :int = j return prefix_result def a ( __a ) -> int: '''simple docstring''' return max(prefix_function(__a ) ) if __name__ == "__main__": import doctest doctest.testmod()
363
'''simple docstring''' from argparse import ArgumentParser from .env import EnvironmentCommand def a ( ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase__ :Union[str, Any] = ArgumentParser('''Diffusers CLI tool''' , usage='''diffusers-cli <command> [<args>]''' ) UpperCamelCase__ :Union[str, Any] = parser.add_subparsers(help='''diffusers-cli command helpers''' ) # Register commands EnvironmentCommand.register_subcommand(__a ) # Let's go UpperCamelCase__ :Optional[int] = parser.parse_args() if not hasattr(__a , '''func''' ): parser.print_help() exit(1 ) # Run UpperCamelCase__ :Optional[int] = args.func(__a ) service.run() if __name__ == "__main__": main()
219
0
import collections import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging A__ : str = logging.get_logger(__name__) A__ : Union[str, Any] = '▁' A__ : Dict = {'vocab_file': 'prophetnet.tokenizer'} A__ : Optional[int] = { 'vocab_file': { 'microsoft/xprophetnet-large-wiki100-cased': ( 'https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/prophetnet.tokenizer' ), } } A__ : Union[str, Any] = { 'microsoft/xprophetnet-large-wiki100-cased': {'do_lower_case': False}, } A__ : Any = { 'microsoft/xprophetnet-large-wiki100-cased': 5_12, } def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = collections.OrderedDict() with open(lowerCamelCase_ , '''r''' , encoding='''utf-8''' ) as reader: lowercase__ = reader.readlines() for index, token in enumerate(lowerCamelCase_ ): lowercase__ = token.rstrip('''\n''' ) lowercase__ = index return vocab class _UpperCAmelCase ( A__ ): """simple docstring""" lowercase__ = VOCAB_FILES_NAMES lowercase__ = PRETRAINED_VOCAB_FILES_MAP lowercase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ = ["""input_ids""", """attention_mask"""] def __init__( self : Union[str, Any], lowerCamelCase : Any, lowerCamelCase : str="[SEP]", lowerCamelCase : Dict="[SEP]", lowerCamelCase : Optional[int]="[SEP]", lowerCamelCase : List[str]="[UNK]", lowerCamelCase : Optional[int]="[PAD]", lowerCamelCase : Optional[int]="[CLS]", lowerCamelCase : Union[str, Any]="[MASK]", lowerCamelCase : Optional[Dict[str, Any]] = None, **lowerCamelCase : Tuple, ): '''simple docstring''' lowercase__ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=lowerCamelCase, eos_token=lowerCamelCase, sep_token=lowerCamelCase, unk_token=lowerCamelCase, pad_token=lowerCamelCase, cls_token=lowerCamelCase, mask_token=lowerCamelCase, sp_model_kwargs=self.sp_model_kwargs, **lowerCamelCase, ) try: import sentencepiece as spm except ImportError: logger.warning( '''You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece''' ''' pip install sentencepiece''' ) raise lowercase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(lowerCamelCase ) ) lowercase__ = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # put special tokens and [unused] tokens into the vocab lowercase__ = {'''[PAD]''': 0, '''[CLS]''': 1, '''[SEP]''': 2, '''[UNK]''': 3, '''[MASK]''': 4} for i in range(10 ): lowercase__ = F"""[unused{i}]""" lowercase__ = 5 + i # The first "real" token "," has position 15 in the embedding vocab and position 3 in the spm vocab lowercase__ = 12 lowercase__ = {v: k for k, v in self.fairseq_tokens_to_ids.items()} for k in self.fairseq_tokens_to_ids.keys(): self.unique_no_split_tokens.append(lowerCamelCase ) def __getstate__( self : List[Any] ): '''simple docstring''' lowercase__ = self.__dict__.copy() lowercase__ = None return state def __setstate__( self : Optional[Any], lowerCamelCase : Optional[Any] ): '''simple docstring''' lowercase__ = d try: import sentencepiece as spm except ImportError: logger.warning( '''You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece''' ''' pip install sentencepiece''' ) raise # for backward compatibility if not hasattr(self, '''sp_model_kwargs''' ): lowercase__ = {} lowercase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowercase__ ( self : List[str], lowerCamelCase : List[int], lowerCamelCase : Optional[List[int]] = None, lowerCamelCase : bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase, token_ids_a=lowerCamelCase, already_has_special_tokens=lowerCamelCase ) if token_ids_a is None: return ([0] * len(lowerCamelCase )) + [1] return ([0] * len(lowerCamelCase )) + [1] + ([0] * len(lowerCamelCase )) + [1] def lowercase__ ( self : List[str], lowerCamelCase : List[int], lowerCamelCase : Optional[List[int]] = None ): '''simple docstring''' lowercase__ = [self.sep_token_id] if token_ids_a is None: return len(token_ids_a + sep ) * [0] return len(token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def lowercase__ ( self : str ): '''simple docstring''' return len(self.sp_model ) + self.fairseq_offset def lowercase__ ( self : Optional[int] ): '''simple docstring''' lowercase__ = {self.convert_ids_to_tokens(lowerCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowercase__ ( self : List[Any], lowerCamelCase : str ): '''simple docstring''' return self.sp_model.encode(lowerCamelCase, out_type=lowerCamelCase ) def lowercase__ ( self : int, lowerCamelCase : Any ): '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] lowercase__ = self.sp_model.PieceToId(lowerCamelCase ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def lowercase__ ( self : Optional[Any], lowerCamelCase : int ): '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def lowercase__ ( self : Union[str, Any], lowerCamelCase : Dict ): '''simple docstring''' lowercase__ = ''''''.join(lowerCamelCase ).replace(lowerCamelCase, ''' ''' ).strip() return out_string def lowercase__ ( self : Optional[int], lowerCamelCase : str, lowerCamelCase : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(lowerCamelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return lowercase__ = os.path.join( lowerCamelCase, (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file, lowerCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(lowerCamelCase, '''wb''' ) as fi: lowercase__ = self.sp_model.serialized_model_proto() fi.write(lowerCamelCase ) return (out_vocab_file,) def lowercase__ ( self : Any, lowerCamelCase : List[int], lowerCamelCase : Optional[List[int]] = None ): '''simple docstring''' if token_ids_a is None: return token_ids_a + [self.sep_token_id] lowercase__ = [self.sep_token_id] return token_ids_a + sep + token_ids_a + sep
207
import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DPMSolverMultistepScheduler, TextToVideoSDPipeline, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, load_numpy, skip_mps, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class _UpperCAmelCase ( A__ ,unittest.TestCase ): """simple docstring""" lowercase__ = TextToVideoSDPipeline lowercase__ = TEXT_TO_IMAGE_PARAMS lowercase__ = TEXT_TO_IMAGE_BATCH_PARAMS # No `output_type`. lowercase__ = frozenset( [ """num_inference_steps""", """generator""", """latents""", """return_dict""", """callback""", """callback_steps""", ] ) def lowercase__ ( self : str ): '''simple docstring''' torch.manual_seed(0 ) lowercase__ = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64), layers_per_block=2, sample_size=32, in_channels=4, out_channels=4, down_block_types=('''CrossAttnDownBlock3D''', '''CrossAttnDownBlock3D''', '''CrossAttnDownBlock3D''', '''DownBlock3D'''), up_block_types=('''UpBlock3D''', '''CrossAttnUpBlock3D''', '''CrossAttnUpBlock3D''', '''CrossAttnUpBlock3D'''), cross_attention_dim=32, attention_head_dim=4, ) lowercase__ = DDIMScheduler( beta_start=0.00085, beta_end=0.012, beta_schedule='''scaled_linear''', clip_sample=lowerCamelCase, set_alpha_to_one=lowerCamelCase, ) torch.manual_seed(0 ) lowercase__ = AutoencoderKL( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''], up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''], latent_channels=4, sample_size=128, ) torch.manual_seed(0 ) lowercase__ = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1E-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1_000, hidden_act='''gelu''', projection_dim=512, ) lowercase__ = CLIPTextModel(lowerCamelCase ) lowercase__ = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) lowercase__ = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, } return components def lowercase__ ( self : int, lowerCamelCase : Union[str, Any], lowerCamelCase : int=0 ): '''simple docstring''' if str(lowerCamelCase ).startswith('''mps''' ): lowercase__ = torch.manual_seed(lowerCamelCase ) else: lowercase__ = torch.Generator(device=lowerCamelCase ).manual_seed(lowerCamelCase ) lowercase__ = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''pt''', } return inputs def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase__ = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowercase__ = self.get_dummy_components() lowercase__ = TextToVideoSDPipeline(**lowerCamelCase ) lowercase__ = sd_pipe.to(lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase ) lowercase__ = self.get_dummy_inputs(lowerCamelCase ) lowercase__ = '''np''' lowercase__ = sd_pipe(**lowerCamelCase ).frames lowercase__ = frames[0][-3:, -3:, -1] assert frames[0].shape == (64, 64, 3) lowercase__ = np.array([158.0, 160.0, 153.0, 125.0, 100.0, 121.0, 111.0, 93.0, 113.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowercase__ ( self : str ): '''simple docstring''' self._test_attention_slicing_forward_pass(test_mean_pixel_difference=lowerCamelCase, expected_max_diff=3E-3 ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available(), reason='''XFormers attention is only available with CUDA and `xformers` installed''', ) def lowercase__ ( self : Optional[int] ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=lowerCamelCase, expected_max_diff=1E-2 ) @unittest.skip(reason='''Batching needs to be properly figured out first for this pipeline.''' ) def lowercase__ ( self : Optional[int] ): '''simple docstring''' pass @unittest.skip(reason='''Batching needs to be properly figured out first for this pipeline.''' ) def lowercase__ ( self : Optional[Any] ): '''simple docstring''' pass @unittest.skip(reason='''`num_images_per_prompt` argument is not supported for this pipeline.''' ) def lowercase__ ( self : int ): '''simple docstring''' pass def lowercase__ ( self : List[Any] ): '''simple docstring''' return super().test_progress_bar() @slow @skip_mps class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase__ ( self : int ): '''simple docstring''' lowercase__ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video.npy''' ) lowercase__ = TextToVideoSDPipeline.from_pretrained('''damo-vilab/text-to-video-ms-1.7b''' ) lowercase__ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) lowercase__ = pipe.to('''cuda''' ) lowercase__ = '''Spiderman is surfing''' lowercase__ = torch.Generator(device='''cpu''' ).manual_seed(0 ) lowercase__ = pipe(lowerCamelCase, generator=lowerCamelCase, num_inference_steps=25, output_type='''pt''' ).frames lowercase__ = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5E-2 def lowercase__ ( self : int ): '''simple docstring''' lowercase__ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video_2step.npy''' ) lowercase__ = TextToVideoSDPipeline.from_pretrained('''damo-vilab/text-to-video-ms-1.7b''' ) lowercase__ = pipe.to('''cuda''' ) lowercase__ = '''Spiderman is surfing''' lowercase__ = torch.Generator(device='''cpu''' ).manual_seed(0 ) lowercase__ = pipe(lowerCamelCase, generator=lowerCamelCase, num_inference_steps=2, output_type='''pt''' ).frames lowercase__ = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5E-2
207
1
from __future__ import annotations def _A ( __magic_name__ ): if len(__magic_name__ ) == 0: return [] lowercase__ , lowercase__ = min(__magic_name__ ), max(__magic_name__ ) lowercase__ = int(max_value - min_value ) + 1 lowercase__ = [[] for _ in range(__magic_name__ )] for i in my_list: buckets[int(i - min_value )].append(__magic_name__ ) return [v for bucket in buckets for v in sorted(__magic_name__ )] if __name__ == "__main__": from doctest import testmod testmod() assert bucket_sort([4, 5, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bucket_sort([0, 1, -10, 15, 2, -2]) == [-10, -2, 0, 1, 2, 15]
201
from __future__ import annotations from collections import deque class lowerCAmelCase : def __init__( self :List[Any] , _lowercase :list[str] ): '''simple docstring''' lowercase__ = [] self.adlist.append( {"value": "", "next_states": [], "fail_state": 0, "output": []} ) for keyword in keywords: self.add_keyword(_lowercase ) self.set_fail_transitions() def UpperCAmelCase ( self :str , _lowercase :int , _lowercase :str ): '''simple docstring''' for state in self.adlist[current_state]["next_states"]: if char == self.adlist[state]["value"]: return state return None def UpperCAmelCase ( self :List[str] , _lowercase :str ): '''simple docstring''' lowercase__ = 0 for character in keyword: lowercase__ = self.find_next_state(_lowercase , _lowercase ) if next_state is None: self.adlist.append( { "value": character, "next_states": [], "fail_state": 0, "output": [], } ) self.adlist[current_state]["next_states"].append(len(self.adlist ) - 1 ) lowercase__ = len(self.adlist ) - 1 else: lowercase__ = next_state self.adlist[current_state]["output"].append(_lowercase ) def UpperCAmelCase ( self :int ): '''simple docstring''' lowercase__ = deque() for node in self.adlist[0]["next_states"]: q.append(_lowercase ) lowercase__ = 0 while q: lowercase__ = q.popleft() for child in self.adlist[r]["next_states"]: q.append(_lowercase ) lowercase__ = self.adlist[r]["fail_state"] while ( self.find_next_state(_lowercase , self.adlist[child]["value"] ) is None and state != 0 ): lowercase__ = self.adlist[state]["fail_state"] lowercase__ = self.find_next_state( _lowercase , self.adlist[child]["value"] ) if self.adlist[child]["fail_state"] is None: lowercase__ = 0 lowercase__ = ( self.adlist[child]["output"] + self.adlist[self.adlist[child]["fail_state"]]["output"] ) def UpperCAmelCase ( self :Optional[Any] , _lowercase :str ): '''simple docstring''' lowercase__ = {} # returns a dict with keywords and list of its occurrences lowercase__ = 0 for i in range(len(_lowercase ) ): while ( self.find_next_state(_lowercase , string[i] ) is None and current_state != 0 ): lowercase__ = self.adlist[current_state]["fail_state"] lowercase__ = self.find_next_state(_lowercase , string[i] ) if next_state is None: lowercase__ = 0 else: lowercase__ = next_state for key in self.adlist[current_state]["output"]: if key not in result: lowercase__ = [] result[key].append(i - len(_lowercase ) + 1 ) return result if __name__ == "__main__": import doctest doctest.testmod()
201
1
from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin from .unet_ad_blocks import get_down_block, get_mid_block, get_out_block, get_up_block @dataclass class __lowerCAmelCase ( __magic_name__ ): UpperCamelCase__ = 42 class __lowerCAmelCase ( __magic_name__ , __magic_name__ ): @register_to_config def __init__( self :Union[str, Any] , __magic_name__ :int = 6_5536 , __magic_name__ :Optional[int] = None , __magic_name__ :int = 2 , __magic_name__ :int = 2 , __magic_name__ :int = 0 , __magic_name__ :str = "fourier" , __magic_name__ :bool = True , __magic_name__ :bool = False , __magic_name__ :float = 0.0 , __magic_name__ :Tuple[str] = ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") , __magic_name__ :Tuple[str] = ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") , __magic_name__ :Tuple[str] = "UNetMidBlock1D" , __magic_name__ :str = None , __magic_name__ :Tuple[int] = (32, 32, 64) , __magic_name__ :str = None , __magic_name__ :int = 8 , __magic_name__ :int = 1 , __magic_name__ :bool = False , ): '''simple docstring''' super().__init__() a = sample_size # time if time_embedding_type == "fourier": a = GaussianFourierProjection( embedding_size=8 , set_W_to_weight=__magic_name__ , log=__magic_name__ , flip_sin_to_cos=__magic_name__ ) a = 2 * block_out_channels[0] elif time_embedding_type == "positional": a = Timesteps( block_out_channels[0] , flip_sin_to_cos=__magic_name__ , downscale_freq_shift=__magic_name__ ) a = block_out_channels[0] if use_timestep_embedding: a = block_out_channels[0] * 4 a = TimestepEmbedding( in_channels=__magic_name__ , time_embed_dim=__magic_name__ , act_fn=__magic_name__ , out_dim=block_out_channels[0] , ) a = nn.ModuleList([] ) a = None a = nn.ModuleList([] ) a = None # down a = in_channels for i, down_block_type in enumerate(__magic_name__ ): a = output_channel a = block_out_channels[i] if i == 0: input_channel += extra_in_channels a = i == len(__magic_name__ ) - 1 a = get_down_block( __magic_name__ , num_layers=__magic_name__ , in_channels=__magic_name__ , out_channels=__magic_name__ , temb_channels=block_out_channels[0] , add_downsample=not is_final_block or downsample_each_block , ) self.down_blocks.append(__magic_name__ ) # mid a = get_mid_block( __magic_name__ , in_channels=block_out_channels[-1] , mid_channels=block_out_channels[-1] , out_channels=block_out_channels[-1] , embed_dim=block_out_channels[0] , num_layers=__magic_name__ , add_downsample=__magic_name__ , ) # up a = list(reversed(__magic_name__ ) ) a = reversed_block_out_channels[0] if out_block_type is None: a = out_channels else: a = block_out_channels[0] for i, up_block_type in enumerate(__magic_name__ ): a = output_channel a = ( reversed_block_out_channels[i + 1] if i < len(__magic_name__ ) - 1 else final_upsample_channels ) a = i == len(__magic_name__ ) - 1 a = get_up_block( __magic_name__ , num_layers=__magic_name__ , in_channels=__magic_name__ , out_channels=__magic_name__ , temb_channels=block_out_channels[0] , add_upsample=not is_final_block , ) self.up_blocks.append(__magic_name__ ) a = output_channel # out a = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4 , 32 ) a = get_out_block( out_block_type=__magic_name__ , num_groups_out=__magic_name__ , embed_dim=block_out_channels[0] , out_channels=__magic_name__ , act_fn=__magic_name__ , fc_dim=block_out_channels[-1] // 4 , ) def lowerCamelCase__ ( self :Tuple , __magic_name__ :torch.FloatTensor , __magic_name__ :Union[torch.Tensor, float, int] , __magic_name__ :bool = True , ): '''simple docstring''' a = timestep if not torch.is_tensor(__magic_name__ ): a = torch.tensor([timesteps] , dtype=torch.long , device=sample.device ) elif torch.is_tensor(__magic_name__ ) and len(timesteps.shape ) == 0: a = timesteps[None].to(sample.device ) a = self.time_proj(__magic_name__ ) if self.config.use_timestep_embedding: a = self.time_mlp(__magic_name__ ) else: a = timestep_embed[..., None] a = timestep_embed.repeat([1, 1, sample.shape[2]] ).to(sample.dtype ) a = timestep_embed.broadcast_to((sample.shape[:1] + timestep_embed.shape[1:]) ) # 2. down a = () for downsample_block in self.down_blocks: a , a = downsample_block(hidden_states=__magic_name__ , temb=__magic_name__ ) down_block_res_samples += res_samples # 3. mid if self.mid_block: a = self.mid_block(__magic_name__ , __magic_name__ ) # 4. up for i, upsample_block in enumerate(self.up_blocks ): a = down_block_res_samples[-1:] a = down_block_res_samples[:-1] a = upsample_block(__magic_name__ , res_hidden_states_tuple=__magic_name__ , temb=__magic_name__ ) # 5. post-process if self.out_block: a = self.out_block(__magic_name__ , __magic_name__ ) if not return_dict: return (sample,) return UNetaDOutput(sample=__magic_name__ )
228
def __A ( __lowerCamelCase ) -> int: a = hex_num.strip() if not hex_num: raise ValueError("""No value was passed to the function""" ) a = hex_num[0] == """-""" if is_negative: a = hex_num[1:] try: a = int(__lowerCamelCase , 16 ) except ValueError: raise ValueError("""Invalid value was passed to the function""" ) a = """""" while int_num > 0: a = str(int_num % 2 ) + bin_str int_num >>= 1 return int(("""-""" + bin_str) if is_negative else bin_str ) if __name__ == "__main__": import doctest doctest.testmod()
228
1
import json import os import shutil import warnings from argparse import ArgumentParser, Namespace from pathlib import Path from typing import List from ..utils import logging from . import BaseTransformersCLICommand try: from cookiecutter.main import cookiecutter __magic_name__: List[Any] = True except ImportError: __magic_name__: Union[str, Any] = False __magic_name__: Any = logging.get_logger(__name__) # pylint: disable=invalid-name def UpperCamelCase ( _A ): """simple docstring""" return AddNewModelCommand(args.testing, args.testing_file, path=args.path ) class snake_case__ ( _lowerCAmelCase ): @staticmethod def __magic_name__ ( lowerCAmelCase__ ) -> Optional[int]: __magic_name__ : List[str] = parser.add_parser("""add-new-model""" ) add_new_model_parser.add_argument("""--testing""" , action="""store_true""" , help="""If in testing mode.""" ) add_new_model_parser.add_argument("""--testing_file""" , type=lowerCAmelCase__ , help="""Configuration file on which to run.""" ) add_new_model_parser.add_argument( """--path""" , type=lowerCAmelCase__ , help="""Path to cookiecutter. Should only be used for testing purposes.""" ) add_new_model_parser.set_defaults(func=lowerCAmelCase__ ) def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=None , *lowerCAmelCase__ ) -> Dict: __magic_name__ : str = testing __magic_name__ : Any = testing_file __magic_name__ : Optional[Any] = path def __magic_name__ ( self ) -> List[Any]: warnings.warn( """The command `transformers-cli add-new-model` is deprecated and will be removed in v5 of Transformers. """ """It is not actively maintained anymore, so might give a result that won't pass all tests and quality """ """checks, you should use `transformers-cli add-new-model-like` instead.""" ) if not _has_cookiecutter: raise ImportError( """Model creation dependencies are required to use the `add_new_model` command. Install them by running """ """the following at the root of your `transformers` clone:\n\n\t$ pip install -e .[modelcreation]\n""" ) # Ensure that there is no other `cookiecutter-template-xxx` directory in the current working directory __magic_name__ : List[str] = [directory for directory in os.listdir() if """cookiecutter-template-""" == directory[:22]] if len(lowerCAmelCase__ ) > 0: raise ValueError( """Several directories starting with `cookiecutter-template-` in current working directory. """ """Please clean your directory by removing all folders starting with `cookiecutter-template-` or """ """change your working directory.""" ) __magic_name__ : Optional[Any] = ( Path(lowerCAmelCase__ ).parent.parent.parent.parent if self._path is None else Path(self._path ).parent.parent ) __magic_name__ : Optional[Any] = path_to_transformer_root / """templates""" / """adding_a_new_model""" # Execute cookiecutter if not self._testing: cookiecutter(str(lowerCAmelCase__ ) ) else: with open(self._testing_file , """r""" ) as configuration_file: __magic_name__ : Any = json.load(lowerCAmelCase__ ) cookiecutter( str(path_to_cookiecutter if self._path is None else self._path ) , no_input=lowerCAmelCase__ , extra_context=lowerCAmelCase__ , ) __magic_name__ : List[str] = [directory for directory in os.listdir() if """cookiecutter-template-""" in directory[:22]][0] # Retrieve configuration with open(directory + """/configuration.json""" , """r""" ) as configuration_file: __magic_name__ : int = json.load(lowerCAmelCase__ ) __magic_name__ : List[Any] = configuration["""lowercase_modelname"""] __magic_name__ : List[Any] = configuration["""generate_tensorflow_pytorch_and_flax"""] os.remove(F'{directory}/configuration.json' ) __magic_name__ : Dict = """PyTorch""" in generate_tensorflow_pytorch_and_flax __magic_name__ : Optional[int] = """TensorFlow""" in generate_tensorflow_pytorch_and_flax __magic_name__ : Dict = """Flax""" in generate_tensorflow_pytorch_and_flax __magic_name__ : Any = F'{path_to_transformer_root}/src/transformers/models/{lowercase_model_name}' os.makedirs(lowerCAmelCase__ , exist_ok=lowerCAmelCase__ ) os.makedirs(F'{path_to_transformer_root}/tests/models/{lowercase_model_name}' , exist_ok=lowerCAmelCase__ ) # Tests require submodules as they have parent imports with open(F'{path_to_transformer_root}/tests/models/{lowercase_model_name}/__init__.py' , """w""" ): pass shutil.move( F'{directory}/__init__.py' , F'{model_dir}/__init__.py' , ) shutil.move( F'{directory}/configuration_{lowercase_model_name}.py' , F'{model_dir}/configuration_{lowercase_model_name}.py' , ) def remove_copy_lines(lowerCAmelCase__ ): with open(lowerCAmelCase__ , """r""" ) as f: __magic_name__ : List[Any] = f.readlines() with open(lowerCAmelCase__ , """w""" ) as f: for line in lines: if "# Copied from transformers." not in line: f.write(lowerCAmelCase__ ) if output_pytorch: if not self._testing: remove_copy_lines(F'{directory}/modeling_{lowercase_model_name}.py' ) shutil.move( F'{directory}/modeling_{lowercase_model_name}.py' , F'{model_dir}/modeling_{lowercase_model_name}.py' , ) shutil.move( F'{directory}/test_modeling_{lowercase_model_name}.py' , F'{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_{lowercase_model_name}.py' , ) else: os.remove(F'{directory}/modeling_{lowercase_model_name}.py' ) os.remove(F'{directory}/test_modeling_{lowercase_model_name}.py' ) if output_tensorflow: if not self._testing: remove_copy_lines(F'{directory}/modeling_tf_{lowercase_model_name}.py' ) shutil.move( F'{directory}/modeling_tf_{lowercase_model_name}.py' , F'{model_dir}/modeling_tf_{lowercase_model_name}.py' , ) shutil.move( F'{directory}/test_modeling_tf_{lowercase_model_name}.py' , F'{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_tf_{lowercase_model_name}.py' , ) else: os.remove(F'{directory}/modeling_tf_{lowercase_model_name}.py' ) os.remove(F'{directory}/test_modeling_tf_{lowercase_model_name}.py' ) if output_flax: if not self._testing: remove_copy_lines(F'{directory}/modeling_flax_{lowercase_model_name}.py' ) shutil.move( F'{directory}/modeling_flax_{lowercase_model_name}.py' , F'{model_dir}/modeling_flax_{lowercase_model_name}.py' , ) shutil.move( F'{directory}/test_modeling_flax_{lowercase_model_name}.py' , F'{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_flax_{lowercase_model_name}.py' , ) else: os.remove(F'{directory}/modeling_flax_{lowercase_model_name}.py' ) os.remove(F'{directory}/test_modeling_flax_{lowercase_model_name}.py' ) shutil.move( F'{directory}/{lowercase_model_name}.md' , F'{path_to_transformer_root}/docs/source/en/model_doc/{lowercase_model_name}.md' , ) shutil.move( F'{directory}/tokenization_{lowercase_model_name}.py' , F'{model_dir}/tokenization_{lowercase_model_name}.py' , ) shutil.move( F'{directory}/tokenization_fast_{lowercase_model_name}.py' , F'{model_dir}/tokenization_{lowercase_model_name}_fast.py' , ) from os import fdopen, remove from shutil import copymode, move from tempfile import mkstemp def replace(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): # Create temp file __magic_name__ ,__magic_name__ : Union[str, Any] = mkstemp() __magic_name__ : Optional[int] = False with fdopen(lowerCAmelCase__ , """w""" ) as new_file: with open(lowerCAmelCase__ ) as old_file: for line in old_file: new_file.write(lowerCAmelCase__ ) if line_to_copy_below in line: __magic_name__ : Dict = True for line_to_copy in lines_to_copy: new_file.write(lowerCAmelCase__ ) if not line_found: raise ValueError(F'Line {line_to_copy_below} was not found in file.' ) # Copy the file permissions from the old file to the new file copymode(lowerCAmelCase__ , lowerCAmelCase__ ) # Remove original file remove(lowerCAmelCase__ ) # Move new file move(lowerCAmelCase__ , lowerCAmelCase__ ) def skip_units(lowerCAmelCase__ ): return ( ("generating PyTorch" in line and not output_pytorch) or ("generating TensorFlow" in line and not output_tensorflow) or ("generating Flax" in line and not output_flax) ) def replace_in_files(lowerCAmelCase__ ): with open(lowerCAmelCase__ ) as datafile: __magic_name__ : Dict = [] __magic_name__ : Optional[int] = False __magic_name__ : Union[str, Any] = False for line in datafile: if "# To replace in: " in line and "##" not in line: __magic_name__ : List[str] = line.split("""\"""" )[1] __magic_name__ : Optional[Any] = skip_units(lowerCAmelCase__ ) elif "# Below: " in line and "##" not in line: __magic_name__ : int = line.split("""\"""" )[1] __magic_name__ : List[str] = skip_units(lowerCAmelCase__ ) elif "# End." in line and "##" not in line: if not skip_file and not skip_snippet: replace(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) __magic_name__ : str = [] elif "# Replace with" in line and "##" not in line: __magic_name__ : Any = [] elif "##" not in line: lines_to_copy.append(lowerCAmelCase__ ) remove(lowerCAmelCase__ ) replace_in_files(F'{directory}/to_replace_{lowercase_model_name}.py' ) os.rmdir(lowerCAmelCase__ )
138
import math from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->UnCLIP class snake_case__ ( _lowerCAmelCase ): lowercase__ : torch.FloatTensor lowercase__ : Optional[torch.FloatTensor] = None def UpperCamelCase ( _A, _A=0.999, _A="cosine", ): """simple docstring""" if alpha_transform_type == "cosine": def alpha_bar_fn(_A ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(_A ): return math.exp(t * -12.0 ) else: raise ValueError(f'Unsupported alpha_tranform_type: {alpha_transform_type}' ) __magic_name__ : Optional[Any] = [] for i in range(_A ): __magic_name__ : Dict = i / num_diffusion_timesteps __magic_name__ : Any = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(_A ) / alpha_bar_fn(_A ), _A ) ) return torch.tensor(_A, dtype=torch.floataa ) class snake_case__ ( _lowerCAmelCase , _lowerCAmelCase ): @register_to_config def __init__( self , lowerCAmelCase__ = 10_00 , lowerCAmelCase__ = "fixed_small_log" , lowerCAmelCase__ = True , lowerCAmelCase__ = 1.0 , lowerCAmelCase__ = "epsilon" , lowerCAmelCase__ = "squaredcos_cap_v2" , ) -> Union[str, Any]: if beta_schedule != "squaredcos_cap_v2": raise ValueError("""UnCLIPScheduler only supports `beta_schedule`: 'squaredcos_cap_v2'""" ) __magic_name__ : Tuple = betas_for_alpha_bar(lowerCAmelCase__ ) __magic_name__ : Union[str, Any] = 1.0 - self.betas __magic_name__ : str = torch.cumprod(self.alphas , dim=0 ) __magic_name__ : Any = torch.tensor(1.0 ) # standard deviation of the initial noise distribution __magic_name__ : Tuple = 1.0 # setable values __magic_name__ : List[Any] = None __magic_name__ : int = torch.from_numpy(np.arange(0 , lowerCAmelCase__ )[::-1].copy() ) __magic_name__ : List[Any] = variance_type def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> torch.FloatTensor: return sample def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> str: __magic_name__ : List[Any] = num_inference_steps __magic_name__ : Union[str, Any] = (self.config.num_train_timesteps - 1) / (self.num_inference_steps - 1) __magic_name__ : List[Any] = (np.arange(0 , lowerCAmelCase__ ) * step_ratio).round()[::-1].copy().astype(np.intaa ) __magic_name__ : Dict = torch.from_numpy(lowerCAmelCase__ ).to(lowerCAmelCase__ ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None ) -> Tuple: if prev_timestep is None: __magic_name__ : int = t - 1 __magic_name__ : Optional[Any] = self.alphas_cumprod[t] __magic_name__ : Any = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one __magic_name__ : Tuple = 1 - alpha_prod_t __magic_name__ : int = 1 - alpha_prod_t_prev if prev_timestep == t - 1: __magic_name__ : List[str] = self.betas[t] else: __magic_name__ : List[Any] = 1 - alpha_prod_t / alpha_prod_t_prev # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample __magic_name__ : Dict = beta_prod_t_prev / beta_prod_t * beta if variance_type is None: __magic_name__ : str = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small_log": __magic_name__ : str = torch.log(torch.clamp(lowerCAmelCase__ , min=1e-2_0 ) ) __magic_name__ : Optional[Any] = torch.exp(0.5 * variance ) elif variance_type == "learned_range": # NOTE difference with DDPM scheduler __magic_name__ : List[str] = variance.log() __magic_name__ : Optional[int] = beta.log() __magic_name__ : Any = (predicted_variance + 1) / 2 __magic_name__ : Any = frac * max_log + (1 - frac) * min_log return variance def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__=None , lowerCAmelCase__ = True , ) -> Union[UnCLIPSchedulerOutput, Tuple]: __magic_name__ : List[Any] = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type == "learned_range": __magic_name__ ,__magic_name__ : List[Any] = torch.split(lowerCAmelCase__ , sample.shape[1] , dim=1 ) else: __magic_name__ : List[str] = None # 1. compute alphas, betas if prev_timestep is None: __magic_name__ : Union[str, Any] = t - 1 __magic_name__ : List[str] = self.alphas_cumprod[t] __magic_name__ : Dict = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one __magic_name__ : Any = 1 - alpha_prod_t __magic_name__ : Dict = 1 - alpha_prod_t_prev if prev_timestep == t - 1: __magic_name__ : Union[str, Any] = self.betas[t] __magic_name__ : int = self.alphas[t] else: __magic_name__ : Tuple = 1 - alpha_prod_t / alpha_prod_t_prev __magic_name__ : Tuple = 1 - beta # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": __magic_name__ : Optional[int] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": __magic_name__ : Tuple = model_output else: raise ValueError( F'prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `sample`' """ for the UnCLIPScheduler.""" ) # 3. Clip "predicted x_0" if self.config.clip_sample: __magic_name__ : Tuple = torch.clamp( lowerCAmelCase__ , -self.config.clip_sample_range , self.config.clip_sample_range ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __magic_name__ : List[Any] = (alpha_prod_t_prev ** 0.5 * beta) / beta_prod_t __magic_name__ : Dict = alpha ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __magic_name__ : str = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise __magic_name__ : Tuple = 0 if t > 0: __magic_name__ : Any = randn_tensor( model_output.shape , dtype=model_output.dtype , generator=lowerCAmelCase__ , device=model_output.device ) __magic_name__ : Tuple = self._get_variance( lowerCAmelCase__ , predicted_variance=lowerCAmelCase__ , prev_timestep=lowerCAmelCase__ , ) if self.variance_type == "fixed_small_log": __magic_name__ : Tuple = variance elif self.variance_type == "learned_range": __magic_name__ : int = (0.5 * variance).exp() else: raise ValueError( F'variance_type given as {self.variance_type} must be one of `fixed_small_log` or `learned_range`' """ for the UnCLIPScheduler.""" ) __magic_name__ : Tuple = variance * variance_noise __magic_name__ : List[str] = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return UnCLIPSchedulerOutput(prev_sample=lowerCAmelCase__ , pred_original_sample=lowerCAmelCase__ ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ) -> torch.FloatTensor: # Make sure alphas_cumprod and timestep have same device and dtype as original_samples __magic_name__ : List[str] = self.alphas_cumprod.to(device=original_samples.device , dtype=original_samples.dtype ) __magic_name__ : Any = timesteps.to(original_samples.device ) __magic_name__ : int = alphas_cumprod[timesteps] ** 0.5 __magic_name__ : Union[str, Any] = sqrt_alpha_prod.flatten() while len(sqrt_alpha_prod.shape ) < len(original_samples.shape ): __magic_name__ : int = sqrt_alpha_prod.unsqueeze(-1 ) __magic_name__ : Any = (1 - alphas_cumprod[timesteps]) ** 0.5 __magic_name__ : str = sqrt_one_minus_alpha_prod.flatten() while len(sqrt_one_minus_alpha_prod.shape ) < len(original_samples.shape ): __magic_name__ : Any = sqrt_one_minus_alpha_prod.unsqueeze(-1 ) __magic_name__ : Any = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples
138
1
def _snake_case( SCREAMING_SNAKE_CASE__ : int = 600851475143 ) -> int: '''simple docstring''' try: A__ = int(SCREAMING_SNAKE_CASE__ ) except (TypeError, ValueError): raise TypeError('Parameter n must be int or castable to int.' ) if n <= 0: raise ValueError('Parameter n must be greater than or equal to one.' ) A__ = 2 A__ = 0 if n == 2: return 2 while n > 2: while n % i != 0: i += 1 A__ = i while n % i == 0: A__ = n // i i += 1 return int(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": print(f"""{solution() = }""")
7
"""simple docstring""" import math import random def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ = False ): '''simple docstring''' if deriv: return value * (1 - value) return 1 / (1 + math.exp(-value )) # Initial Value a__ : Tuple = 0.02 def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = float(2 * (random.randint(1 , 100 )) - 1 ) for _ in range(lowerCAmelCase_ ): # Forward propagation __SCREAMING_SNAKE_CASE = sigmoid_function(INITIAL_VALUE * weight ) # How much did we miss? __SCREAMING_SNAKE_CASE = (expected / 100) - layer_a # Error delta __SCREAMING_SNAKE_CASE = layer_1_error * sigmoid_function(lowerCAmelCase_ , lowerCAmelCase_ ) # Update weight weight += INITIAL_VALUE * layer_1_delta return layer_a * 100 if __name__ == "__main__": import doctest doctest.testmod() a__ : List[str] = int(input('''Expected value: ''')) a__ : str = int(input('''Number of propagations: ''')) print(forward_propagation(expected, number_propagations))
54
0
def _lowercase ( _UpperCAmelCase = 60_08_51_47_51_43 ) -> int: try: lowerCamelCase =int(_UpperCAmelCase ) except (TypeError, ValueError): raise TypeError("""Parameter n must be int or castable to int.""" ) if n <= 0: raise ValueError("""Parameter n must be greater than or equal to one.""" ) lowerCamelCase =1 lowerCamelCase =2 while i * i <= n: while n % i == 0: lowerCamelCase =i n //= i i += 1 if n > 1: lowerCamelCase =n return int(_UpperCAmelCase ) if __name__ == "__main__": print(F"{solution() = }")
262
from json import JSONDecodeError # Workaround for requests.exceptions.JSONDecodeError import requests def _lowercase ( _UpperCAmelCase = "isbn/0140328726" ) -> dict: lowerCamelCase =olid.strip().strip("""/""" ) # Remove leading/trailing whitespace & slashes if new_olid.count("""/""" ) != 1: lowerCamelCase =F"""{olid} is not a valid Open Library olid""" raise ValueError(_UpperCAmelCase ) return requests.get(F"""https://openlibrary.org/{new_olid}.json""" ).json() def _lowercase ( _UpperCAmelCase ) -> dict: lowerCamelCase ={ """title""": """Title""", """publish_date""": """Publish date""", """authors""": """Authors""", """number_of_pages""": """Number of pages:""", """first_sentence""": """First sentence""", """isbn_10""": """ISBN (10)""", """isbn_13""": """ISBN (13)""", } lowerCamelCase ={better_key: ol_book_data[key] for key, better_key in desired_keys.items()} lowerCamelCase =[ get_openlibrary_data(author["""key"""] )["""name"""] for author in data["""Authors"""] ] lowerCamelCase =data["""First sentence"""]["""value"""] for key, value in data.items(): if isinstance(_UpperCAmelCase , _UpperCAmelCase ): lowerCamelCase =""", """.join(_UpperCAmelCase ) return data if __name__ == "__main__": import doctest doctest.testmod() while True: UpperCAmelCase__ : List[str] =input('''\nEnter the ISBN code to search (or \'quit\' to stop): ''').strip() if isbn.lower() in ("", "q", "quit", "exit", "stop"): break if len(isbn) not in (10, 13) or not isbn.isdigit(): print(F"Sorry, {isbn} is not a valid ISBN. Please, input a valid ISBN.") continue print(F"\nSearching Open Library for ISBN: {isbn}...\n") try: UpperCAmelCase__ : Dict =summarize_book(get_openlibrary_data(F"isbn/{isbn}")) print('''\n'''.join(F"{key}: {value}" for key, value in book_summary.items())) except JSONDecodeError: # Workaround for requests.exceptions.RequestException: print(F"Sorry, there are no results for ISBN: {isbn}.")
262
1
import logging import os import sys import warnings from dataclasses import dataclass, field from random import randint from typing import Optional import datasets import evaluate import numpy as np from datasets import DatasetDict, load_dataset import transformers from transformers import ( AutoConfig, AutoFeatureExtractor, AutoModelForAudioClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version UpperCamelCase = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') require_version('''datasets>=1.14.0''', '''To fix: pip install -r examples/pytorch/audio-classification/requirements.txt''') def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ = 1_60_00 ) -> List[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = int(round(sample_rate * max_length ) ) if len(__UpperCamelCase ) <= sample_length: return wav _SCREAMING_SNAKE_CASE = randint(0 ,len(__UpperCamelCase ) - sample_length - 1 ) return wav[random_offset : random_offset + sample_length] @dataclass class __UpperCAmelCase : __snake_case : Optional[Any] = field(default=lowerCamelCase_ ,metadata={"help": "Name of a dataset from the datasets package"} ) __snake_case : List[str] = field( default=lowerCamelCase_ ,metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) __snake_case : List[Any] = field( default=lowerCamelCase_ ,metadata={"help": "A file containing the training audio paths and labels."} ) __snake_case : Dict = field( default=lowerCamelCase_ ,metadata={"help": "A file containing the validation audio paths and labels."} ) __snake_case : Optional[Any] = field( default="train" ,metadata={ "help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'" } ,) __snake_case : Any = field( default="validation" ,metadata={ "help": ( "The name of the training data set split to use (via the datasets library). Defaults to 'validation'" ) } ,) __snake_case : str = field( default="audio" ,metadata={"help": "The name of the dataset column containing the audio data. Defaults to 'audio'"} ,) __snake_case : Dict = field( default="label" ,metadata={"help": "The name of the dataset column containing the labels. Defaults to 'label'"} ) __snake_case : Union[str, Any] = field( default=lowerCamelCase_ ,metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } ,) __snake_case : Any = field( default=lowerCamelCase_ ,metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } ,) __snake_case : Optional[int] = field( default=20 ,metadata={"help": "Audio clips will be randomly cut to this length during training if the value is set."} ,) @dataclass class __UpperCAmelCase : __snake_case : List[Any] = field( default="facebook/wav2vec2-base" ,metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ,) __snake_case : List[Any] = field( default=lowerCamelCase_ ,metadata={"help": "Pretrained config name or path if not the same as model_name"} ) __snake_case : Optional[Any] = field( default=lowerCamelCase_ ,metadata={"help": "Where do you want to store the pretrained models downloaded from the Hub"} ) __snake_case : Optional[int] = field( default="main" ,metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} ,) __snake_case : List[Any] = field( default=lowerCamelCase_ ,metadata={"help": "Name or path of preprocessor config."} ) __snake_case : Optional[int] = field( default=lowerCamelCase_ ,metadata={"help": "Whether to freeze the feature encoder layers of the model."} ) __snake_case : int = field( default=lowerCamelCase_ ,metadata={"help": "Whether to generate an attention mask in the feature extractor."} ) __snake_case : str = field( default=lowerCamelCase_ ,metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } ,) __snake_case : List[Any] = field( default=lowerCamelCase_ ,metadata={"help": "Whether to freeze the feature extractor layers of the model."} ) __snake_case : int = field( default=lowerCamelCase_ ,metadata={"help": "Will enable to load a pretrained model whose head dimensions are different."} ,) def UpperCamelCase ( self: Any ): '''simple docstring''' if not self.freeze_feature_extractor and self.freeze_feature_encoder: warnings.warn( """The argument `--freeze_feature_extractor` is deprecated and """ """will be removed in a future version. Use `--freeze_feature_encoder`""" """instead. Setting `freeze_feature_encoder==True`.""" , _lowercase , ) if self.freeze_feature_extractor and not self.freeze_feature_encoder: raise ValueError( """The argument `--freeze_feature_extractor` is deprecated and """ """should not be used in combination with `--freeze_feature_encoder`.""" """Only make use of `--freeze_feature_encoder`.""" ) def __lowerCamelCase ( ) -> Union[str, Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("""run_audio_classification""" ,__UpperCamelCase ,__UpperCamelCase ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" ,datefmt="""%m/%d/%Y %H:%M:%S""" ,handlers=[logging.StreamHandler(sys.stdout )] ,) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() _SCREAMING_SNAKE_CASE = training_args.get_process_log_level() logger.setLevel(__UpperCamelCase ) transformers.utils.logging.set_verbosity(__UpperCamelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu} ' + F'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) logger.info(F'Training/evaluation parameters {training_args}' ) # Set seed before initializing model. set_seed(training_args.seed ) # Detecting last checkpoint. _SCREAMING_SNAKE_CASE = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _SCREAMING_SNAKE_CASE = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'Output directory ({training_args.output_dir}) already exists and is not empty. ' """Use --overwrite_output_dir to train from scratch.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Initialize our dataset and prepare it for the audio classification task. _SCREAMING_SNAKE_CASE = DatasetDict() _SCREAMING_SNAKE_CASE = load_dataset( data_args.dataset_name ,data_args.dataset_config_name ,split=data_args.train_split_name ,use_auth_token=True if model_args.use_auth_token else None ,) _SCREAMING_SNAKE_CASE = load_dataset( data_args.dataset_name ,data_args.dataset_config_name ,split=data_args.eval_split_name ,use_auth_token=True if model_args.use_auth_token else None ,) if data_args.audio_column_name not in raw_datasets["train"].column_names: raise ValueError( F'--audio_column_name {data_args.audio_column_name} not found in dataset \'{data_args.dataset_name}\'. ' """Make sure to set `--audio_column_name` to the correct audio column - one of """ F'{", ".join(raw_datasets["train"].column_names )}.' ) if data_args.label_column_name not in raw_datasets["train"].column_names: raise ValueError( F'--label_column_name {data_args.label_column_name} not found in dataset \'{data_args.dataset_name}\'. ' """Make sure to set `--label_column_name` to the correct text column - one of """ F'{", ".join(raw_datasets["train"].column_names )}.' ) # Setting `return_attention_mask=True` is the way to get a correctly masked mean-pooling over # transformer outputs in the classifier, but it doesn't always lead to better accuracy _SCREAMING_SNAKE_CASE = AutoFeatureExtractor.from_pretrained( model_args.feature_extractor_name or model_args.model_name_or_path ,return_attention_mask=model_args.attention_mask ,cache_dir=model_args.cache_dir ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,) # `datasets` takes care of automatically loading and resampling the audio, # so we just need to set the correct target sampling rate. _SCREAMING_SNAKE_CASE = raw_datasets.cast_column( data_args.audio_column_name ,datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate ) ) _SCREAMING_SNAKE_CASE = feature_extractor.model_input_names[0] def train_transforms(snake_case__ ): _SCREAMING_SNAKE_CASE = [] for audio in batch[data_args.audio_column_name]: _SCREAMING_SNAKE_CASE = random_subsample( audio["""array"""] ,max_length=data_args.max_length_seconds ,sample_rate=feature_extractor.sampling_rate ) subsampled_wavs.append(__UpperCamelCase ) _SCREAMING_SNAKE_CASE = feature_extractor(__UpperCamelCase ,sampling_rate=feature_extractor.sampling_rate ) _SCREAMING_SNAKE_CASE = {model_input_name: inputs.get(__UpperCamelCase )} _SCREAMING_SNAKE_CASE = list(batch[data_args.label_column_name] ) return output_batch def val_transforms(snake_case__ ): _SCREAMING_SNAKE_CASE = [audio["""array"""] for audio in batch[data_args.audio_column_name]] _SCREAMING_SNAKE_CASE = feature_extractor(__UpperCamelCase ,sampling_rate=feature_extractor.sampling_rate ) _SCREAMING_SNAKE_CASE = {model_input_name: inputs.get(__UpperCamelCase )} _SCREAMING_SNAKE_CASE = list(batch[data_args.label_column_name] ) return output_batch # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. _SCREAMING_SNAKE_CASE = raw_datasets["""train"""].features[data_args.label_column_name].names _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = {}, {} for i, label in enumerate(__UpperCamelCase ): _SCREAMING_SNAKE_CASE = str(__UpperCamelCase ) _SCREAMING_SNAKE_CASE = label # Load the accuracy metric from the datasets package _SCREAMING_SNAKE_CASE = evaluate.load("""accuracy""" ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with # `predictions` and `label_ids` fields) and has to return a dictionary string to float. def compute_metrics(snake_case__ ): _SCREAMING_SNAKE_CASE = np.argmax(eval_pred.predictions ,axis=1 ) return metric.compute(predictions=__UpperCamelCase ,references=eval_pred.label_ids ) _SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path ,num_labels=len(__UpperCamelCase ) ,labelaid=__UpperCamelCase ,idalabel=__UpperCamelCase ,finetuning_task="""audio-classification""" ,cache_dir=model_args.cache_dir ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,) _SCREAMING_SNAKE_CASE = AutoModelForAudioClassification.from_pretrained( model_args.model_name_or_path ,from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) ,config=__UpperCamelCase ,cache_dir=model_args.cache_dir ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,ignore_mismatched_sizes=model_args.ignore_mismatched_sizes ,) # freeze the convolutional waveform encoder if model_args.freeze_feature_encoder: model.freeze_feature_encoder() if training_args.do_train: if data_args.max_train_samples is not None: _SCREAMING_SNAKE_CASE = ( raw_datasets["""train"""].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms raw_datasets["train"].set_transform(__UpperCamelCase ,output_all_columns=__UpperCamelCase ) if training_args.do_eval: if data_args.max_eval_samples is not None: _SCREAMING_SNAKE_CASE = ( raw_datasets["""eval"""].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms raw_datasets["eval"].set_transform(__UpperCamelCase ,output_all_columns=__UpperCamelCase ) # Initialize our trainer _SCREAMING_SNAKE_CASE = Trainer( model=__UpperCamelCase ,args=__UpperCamelCase ,train_dataset=raw_datasets["""train"""] if training_args.do_train else None ,eval_dataset=raw_datasets["""eval"""] if training_args.do_eval else None ,compute_metrics=__UpperCamelCase ,tokenizer=__UpperCamelCase ,) # Training if training_args.do_train: _SCREAMING_SNAKE_CASE = None if training_args.resume_from_checkpoint is not None: _SCREAMING_SNAKE_CASE = training_args.resume_from_checkpoint elif last_checkpoint is not None: _SCREAMING_SNAKE_CASE = last_checkpoint _SCREAMING_SNAKE_CASE = trainer.train(resume_from_checkpoint=__UpperCamelCase ) trainer.save_model() trainer.log_metrics("""train""" ,train_result.metrics ) trainer.save_metrics("""train""" ,train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: _SCREAMING_SNAKE_CASE = trainer.evaluate() trainer.log_metrics("""eval""" ,__UpperCamelCase ) trainer.save_metrics("""eval""" ,__UpperCamelCase ) # Write model card and (optionally) push to hub _SCREAMING_SNAKE_CASE = { """finetuned_from""": model_args.model_name_or_path, """tasks""": """audio-classification""", """dataset""": data_args.dataset_name, """tags""": ["""audio-classification"""], } if training_args.push_to_hub: trainer.push_to_hub(**__UpperCamelCase ) else: trainer.create_model_card(**__UpperCamelCase ) if __name__ == "__main__": main()
306
import re from flax.core.frozen_dict import freeze from flax.traverse_util import flatten_dict, unflatten_dict from jax.experimental import PartitionSpec as P # Sentinels __lowerCamelCase : List[str] = object() # For specifying empty leaf dict `{}` __lowerCamelCase : Optional[int] = object() def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[Any] , __UpperCamelCase : List[str] ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = tuple((re.compile(x + """$""" ) for x in qs) ) for i in range(len(__UpperCamelCase ) - len(__UpperCamelCase ) + 1 ): SCREAMING_SNAKE_CASE__ = [x.match(__UpperCamelCase ) for x, y in zip(__UpperCamelCase , ks[i:] )] if matches and all(__UpperCamelCase ): return True return False def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[int] ) -> List[str]: """simple docstring""" def replace(__UpperCamelCase : Tuple , __UpperCamelCase : Any ): for rule, replacement in rules: if _match(__UpperCamelCase , __UpperCamelCase ): return replacement return val return replace def __SCREAMING_SNAKE_CASE ( ) -> List[Any]: """simple docstring""" return [ # embeddings (("transformer", "wpe", "embedding"), P("""mp""" , __UpperCamelCase )), (("transformer", "wte", "embedding"), P("""mp""" , __UpperCamelCase )), # atention (("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(__UpperCamelCase , """mp""" )), (("attention", "out_proj", "kernel"), P("""mp""" , __UpperCamelCase )), (("attention", "out_proj", "bias"), None), # mlp (("mlp", "c_fc", "kernel"), P(__UpperCamelCase , """mp""" )), (("mlp", "c_fc", "bias"), P("""mp""" )), (("mlp", "c_proj", "kernel"), P("""mp""" , __UpperCamelCase )), (("mlp", "c_proj", "bias"), None), # layer norms ((r"ln_\d+", "bias"), None), ((r"\d+", r"ln_\d+", "scale"), None), (("ln_f", "bias"), None), (("ln_f", "scale"), None), ] def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : Union[str, Any] ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ = _get_partition_rules() SCREAMING_SNAKE_CASE__ = _replacement_rules(__UpperCamelCase ) SCREAMING_SNAKE_CASE__ = {k: _unmatched for k in flatten_dict(__UpperCamelCase )} SCREAMING_SNAKE_CASE__ = {k: replace(__UpperCamelCase , __UpperCamelCase ) for k, v in initd.items()} assert _unmatched not in result.values(), "Incomplete partition spec." return freeze(unflatten_dict(__UpperCamelCase ) )
219
0
'''simple docstring''' import pytest _lowerCamelCase = """__dummy_dataset1__""" _lowerCamelCase = """ import json import os import datasets REPO_URL = \"https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/\" URLS = {\"train\": REPO_URL + \"wikiann-bn-train.jsonl\", \"validation\": REPO_URL + \"wikiann-bn-validation.jsonl\"} class __DummyDataset1__(datasets.GeneratorBasedBuilder): def _info(self): features = datasets.Features( { \"tokens\": datasets.Sequence(datasets.Value(\"string\")), \"ner_tags\": datasets.Sequence( datasets.features.ClassLabel( names=[ \"O\", \"B-PER\", \"I-PER\", \"B-ORG\", \"I-ORG\", \"B-LOC\", \"I-LOC\", ] ) ), \"langs\": datasets.Sequence(datasets.Value(\"string\")), \"spans\": datasets.Sequence(datasets.Value(\"string\")), } ) return datasets.DatasetInfo(features=features) def _split_generators(self, dl_manager): dl_path = dl_manager.download(URLS) return [ datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={\"filepath\": dl_path[\"train\"]}), datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={\"filepath\": dl_path[\"validation\"]}), ] def _generate_examples(self, filepath): with open(filepath, \"r\", encoding=\"utf-8\") as f: for i, line in enumerate(f): yield i, json.loads(line) """ @pytest.fixture def __lowerCamelCase ( ) -> int: """simple docstring""" return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def __lowerCamelCase ( ) -> Union[str, Any]: """simple docstring""" return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def __lowerCamelCase ( A__ , A__ , A__ ) -> List[str]: """simple docstring""" UpperCamelCase = dataset_loading_script_name UpperCamelCase = tmp_path / 'datasets' / script_name script_dir.mkdir(parents=A__ ) UpperCamelCase = script_dir / F"""{script_name}.py""" with open(A__ , 'w' ) as f: f.write(A__ ) return str(A__ )
364
'''simple docstring''' import unittest from transformers import ( MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TextGenerationPipeline, logging, pipeline, ) from transformers.testing_utils import ( CaptureLogger, is_pipeline_test, require_accelerate, require_tf, require_torch, require_torch_gpu, require_torch_or_tf, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE = MODEL_FOR_CAUSAL_LM_MAPPING _SCREAMING_SNAKE_CASE = TF_MODEL_FOR_CAUSAL_LM_MAPPING @require_torch def A ( self : Union[str, Any] ): """simple docstring""" UpperCamelCase = pipeline(task='text-generation' , model='sshleifer/tiny-ctrl' , framework='pt' ) # Using `do_sample=False` to force deterministic output UpperCamelCase = text_generator('This is a test' , do_sample=UpperCamelCase__ ) self.assertEqual( UpperCamelCase__ , [ { 'generated_text': ( 'This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.' ' oscope. FiliFili@@' ) } ] , ) UpperCamelCase = text_generator(['This is a test', 'This is a second test'] ) self.assertEqual( UpperCamelCase__ , [ [ { 'generated_text': ( 'This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.' ' oscope. FiliFili@@' ) } ], [ { 'generated_text': ( 'This is a second test ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy' ' oscope. oscope. FiliFili@@' ) } ], ] , ) UpperCamelCase = text_generator('This is a test' , do_sample=UpperCamelCase__ , num_return_sequences=2 , return_tensors=UpperCamelCase__ ) self.assertEqual( UpperCamelCase__ , [ {'generated_token_ids': ANY(UpperCamelCase__ )}, {'generated_token_ids': ANY(UpperCamelCase__ )}, ] , ) UpperCamelCase = text_generator.model.config.eos_token_id UpperCamelCase = '<pad>' UpperCamelCase = text_generator( ['This is a test', 'This is a second test'] , do_sample=UpperCamelCase__ , num_return_sequences=2 , batch_size=2 , return_tensors=UpperCamelCase__ , ) self.assertEqual( UpperCamelCase__ , [ [ {'generated_token_ids': ANY(UpperCamelCase__ )}, {'generated_token_ids': ANY(UpperCamelCase__ )}, ], [ {'generated_token_ids': ANY(UpperCamelCase__ )}, {'generated_token_ids': ANY(UpperCamelCase__ )}, ], ] , ) @require_tf def A ( self : List[Any] ): """simple docstring""" UpperCamelCase = pipeline(task='text-generation' , model='sshleifer/tiny-ctrl' , framework='tf' ) # Using `do_sample=False` to force deterministic output UpperCamelCase = text_generator('This is a test' , do_sample=UpperCamelCase__ ) self.assertEqual( UpperCamelCase__ , [ { 'generated_text': ( 'This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵' ' please,' ) } ] , ) UpperCamelCase = text_generator(['This is a test', 'This is a second test'] , do_sample=UpperCamelCase__ ) self.assertEqual( UpperCamelCase__ , [ [ { 'generated_text': ( 'This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵' ' please,' ) } ], [ { 'generated_text': ( 'This is a second test Chieftain Chieftain prefecture prefecture prefecture Cannes Cannes' ' Cannes 閲閲Cannes Cannes Cannes 攵 please,' ) } ], ] , ) def A ( self : List[str] , UpperCamelCase__ : Any , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : List[Any] ): """simple docstring""" UpperCamelCase = TextGenerationPipeline(model=UpperCamelCase__ , tokenizer=UpperCamelCase__ ) return text_generator, ["This is a test", "Another test"] def A ( self : int ): """simple docstring""" UpperCamelCase = 'Hello I believe in' UpperCamelCase = pipeline('text-generation' , model='hf-internal-testing/tiny-random-gpt2' ) UpperCamelCase = text_generator(UpperCamelCase__ ) self.assertEqual( UpperCamelCase__ , [{'generated_text': 'Hello I believe in fe fe fe fe fe fe fe fe fe fe fe fe'}] , ) UpperCamelCase = text_generator(UpperCamelCase__ , stop_sequence=' fe' ) self.assertEqual(UpperCamelCase__ , [{'generated_text': 'Hello I believe in fe'}] ) def A ( self : List[Any] , UpperCamelCase__ : int , UpperCamelCase__ : Union[str, Any] ): """simple docstring""" UpperCamelCase = text_generator.model UpperCamelCase = text_generator.tokenizer UpperCamelCase = text_generator('This is a test' ) self.assertEqual(UpperCamelCase__ , [{'generated_text': ANY(UpperCamelCase__ )}] ) self.assertTrue(outputs[0]['generated_text'].startswith('This is a test' ) ) UpperCamelCase = text_generator('This is a test' , return_full_text=UpperCamelCase__ ) self.assertEqual(UpperCamelCase__ , [{'generated_text': ANY(UpperCamelCase__ )}] ) self.assertNotIn('This is a test' , outputs[0]['generated_text'] ) UpperCamelCase = pipeline(task='text-generation' , model=UpperCamelCase__ , tokenizer=UpperCamelCase__ , return_full_text=UpperCamelCase__ ) UpperCamelCase = text_generator('This is a test' ) self.assertEqual(UpperCamelCase__ , [{'generated_text': ANY(UpperCamelCase__ )}] ) self.assertNotIn('This is a test' , outputs[0]['generated_text'] ) UpperCamelCase = text_generator('This is a test' , return_full_text=UpperCamelCase__ ) self.assertEqual(UpperCamelCase__ , [{'generated_text': ANY(UpperCamelCase__ )}] ) self.assertTrue(outputs[0]['generated_text'].startswith('This is a test' ) ) UpperCamelCase = text_generator(['This is great !', 'Something else'] , num_return_sequences=2 , do_sample=UpperCamelCase__ ) self.assertEqual( UpperCamelCase__ , [ [{'generated_text': ANY(UpperCamelCase__ )}, {'generated_text': ANY(UpperCamelCase__ )}], [{'generated_text': ANY(UpperCamelCase__ )}, {'generated_text': ANY(UpperCamelCase__ )}], ] , ) if text_generator.tokenizer.pad_token is not None: UpperCamelCase = text_generator( ['This is great !', 'Something else'] , num_return_sequences=2 , batch_size=2 , do_sample=UpperCamelCase__ ) self.assertEqual( UpperCamelCase__ , [ [{'generated_text': ANY(UpperCamelCase__ )}, {'generated_text': ANY(UpperCamelCase__ )}], [{'generated_text': ANY(UpperCamelCase__ )}, {'generated_text': ANY(UpperCamelCase__ )}], ] , ) with self.assertRaises(UpperCamelCase__ ): UpperCamelCase = text_generator('test' , return_full_text=UpperCamelCase__ , return_text=UpperCamelCase__ ) with self.assertRaises(UpperCamelCase__ ): UpperCamelCase = text_generator('test' , return_full_text=UpperCamelCase__ , return_tensors=UpperCamelCase__ ) with self.assertRaises(UpperCamelCase__ ): UpperCamelCase = text_generator('test' , return_text=UpperCamelCase__ , return_tensors=UpperCamelCase__ ) # Empty prompt is slighly special # it requires BOS token to exist. # Special case for Pegasus which will always append EOS so will # work even without BOS. if ( text_generator.tokenizer.bos_token_id is not None or "Pegasus" in tokenizer.__class__.__name__ or "Git" in model.__class__.__name__ ): UpperCamelCase = text_generator('' ) self.assertEqual(UpperCamelCase__ , [{'generated_text': ANY(UpperCamelCase__ )}] ) else: with self.assertRaises((ValueError, AssertionError) ): UpperCamelCase = text_generator('' ) if text_generator.framework == "tf": # TF generation does not support max_new_tokens, and it's impossible # to control long generation with only max_length without # fancy calculation, dismissing tests for now. return # We don't care about infinite range models. # They already work. # Skip this test for XGLM, since it uses sinusoidal positional embeddings which are resized on-the-fly. UpperCamelCase = ['RwkvForCausalLM', 'XGLMForCausalLM', 'GPTNeoXForCausalLM'] if ( tokenizer.model_max_length < 1_0_0_0_0 and text_generator.model.__class__.__name__ not in EXTRA_MODELS_CAN_HANDLE_LONG_INPUTS ): # Handling of large generations with self.assertRaises((RuntimeError, IndexError, ValueError, AssertionError) ): text_generator('This is a test' * 5_0_0 , max_new_tokens=2_0 ) UpperCamelCase = text_generator('This is a test' * 5_0_0 , handle_long_generation='hole' , max_new_tokens=2_0 ) # Hole strategy cannot work with self.assertRaises(UpperCamelCase__ ): text_generator( 'This is a test' * 5_0_0 , handle_long_generation='hole' , max_new_tokens=tokenizer.model_max_length + 1_0 , ) @require_torch @require_accelerate @require_torch_gpu def A ( self : int ): """simple docstring""" import torch # Classic `model_kwargs` UpperCamelCase = pipeline( model='hf-internal-testing/tiny-random-bloom' , model_kwargs={'device_map': 'auto', 'torch_dtype': torch.bfloataa} , ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) UpperCamelCase = pipe('This is a test' ) self.assertEqual( UpperCamelCase__ , [ { 'generated_text': ( 'This is a test test test test test test test test test test test test test test test test' ' test' ) } ] , ) # Upgraded those two to real pipeline arguments (they just get sent for the model as they're unlikely to mean anything else.) UpperCamelCase = pipeline(model='hf-internal-testing/tiny-random-bloom' , device_map='auto' , torch_dtype=torch.bfloataa ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) UpperCamelCase = pipe('This is a test' ) self.assertEqual( UpperCamelCase__ , [ { 'generated_text': ( 'This is a test test test test test test test test test test test test test test test test' ' test' ) } ] , ) # torch_dtype will be automatically set to float32 if not provided - check: https://github.com/huggingface/transformers/pull/20602 UpperCamelCase = pipeline(model='hf-internal-testing/tiny-random-bloom' , device_map='auto' ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.floataa ) UpperCamelCase = pipe('This is a test' ) self.assertEqual( UpperCamelCase__ , [ { 'generated_text': ( 'This is a test test test test test test test test test test test test test test test test' ' test' ) } ] , ) @require_torch @require_torch_gpu def A ( self : int ): """simple docstring""" import torch UpperCamelCase = pipeline(model='hf-internal-testing/tiny-random-bloom' , device=0 , torch_dtype=torch.floataa ) pipe('This is a test' ) @require_torch @require_accelerate @require_torch_gpu def A ( self : Any ): """simple docstring""" import torch UpperCamelCase = pipeline(model='hf-internal-testing/tiny-random-bloom' , device_map='auto' , torch_dtype=torch.floataa ) pipe('This is a test' , do_sample=UpperCamelCase__ , top_p=0.5 ) def A ( self : Optional[int] ): """simple docstring""" UpperCamelCase = 'Hello world' UpperCamelCase = pipeline('text-generation' , model='hf-internal-testing/tiny-random-gpt2' ) if text_generator.model.framework == "tf": UpperCamelCase = logging.get_logger('transformers.generation.tf_utils' ) else: UpperCamelCase = logging.get_logger('transformers.generation.utils' ) UpperCamelCase = 'Both `max_new_tokens`' # The beggining of the message to be checked in this test # Both are set by the user -> log warning with CaptureLogger(UpperCamelCase__ ) as cl: UpperCamelCase = text_generator(UpperCamelCase__ , max_length=1_0 , max_new_tokens=1 ) self.assertIn(UpperCamelCase__ , cl.out ) # The user only sets one -> no warning with CaptureLogger(UpperCamelCase__ ) as cl: UpperCamelCase = text_generator(UpperCamelCase__ , max_new_tokens=1 ) self.assertNotIn(UpperCamelCase__ , cl.out ) with CaptureLogger(UpperCamelCase__ ) as cl: UpperCamelCase = text_generator(UpperCamelCase__ , max_length=1_0 ) self.assertNotIn(UpperCamelCase__ , cl.out )
249
0
UpperCAmelCase_ = 0 # The first color of the flag. UpperCAmelCase_ = 1 # The second color of the flag. UpperCAmelCase_ = 2 # The third color of the flag. UpperCAmelCase_ = (red, white, blue) def lowerCAmelCase_ ( __UpperCAmelCase: list ) -> list: if not sequence: return [] if len(__UpperCAmelCase ) == 1: return list(__UpperCAmelCase ) UpperCamelCase__ : List[str] = 0 UpperCamelCase__ : int = len(__UpperCAmelCase ) - 1 UpperCamelCase__ : Dict = 0 while mid <= high: if sequence[mid] == colors[0]: UpperCamelCase__ ,UpperCamelCase__ : Union[str, Any] = sequence[mid], sequence[low] low += 1 mid += 1 elif sequence[mid] == colors[1]: mid += 1 elif sequence[mid] == colors[2]: UpperCamelCase__ ,UpperCamelCase__ : Dict = sequence[high], sequence[mid] high -= 1 else: UpperCamelCase__ : Optional[Any] = f"The elements inside the sequence must contains only {colors} values" raise ValueError(__UpperCAmelCase ) return sequence if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase_ = input('Enter numbers separated by commas:\n').strip() UpperCAmelCase_ = [int(item.strip()) for item in user_input.split(',')] print(F'''{dutch_national_flag_sort(unsorted)}''')
201
from __future__ import annotations def lowerCAmelCase_ ( __UpperCAmelCase: list[int] , __UpperCAmelCase: int ) -> list[int]: UpperCamelCase__ : Optional[int] = 0 UpperCamelCase__ : Tuple = len(__UpperCAmelCase ) - 1 while i < j: if nums[i] + nums[j] == target: return [i, j] elif nums[i] + nums[j] < target: UpperCamelCase__ : Tuple = i + 1 else: UpperCamelCase__ : str = j - 1 return [] if __name__ == "__main__": import doctest doctest.testmod() print(F'''{two_pointer([2, 7, 11, 15], 9) = }''')
201
1
'''simple docstring''' import numpy as np def lowerCAmelCase_ ( snake_case_ : Union[str, Any] , snake_case_ : Any , snake_case_ : Dict , snake_case_ : Tuple , snake_case_ : List[Any] ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = int(np.ceil((x_end - xa) / h ) ) UpperCAmelCase_ = np.zeros((n + 1,) ) UpperCAmelCase_ = ya UpperCAmelCase_ = xa for k in range(snake_case_ ): UpperCAmelCase_ = f(snake_case_ , y[k] ) UpperCAmelCase_ = f(x + 0.5 * h , y[k] + 0.5 * h * ka ) UpperCAmelCase_ = f(x + 0.5 * h , y[k] + 0.5 * h * ka ) UpperCAmelCase_ = f(x + h , y[k] + h * ka ) UpperCAmelCase_ = y[k] + (1 / 6) * h * (ka + 2 * ka + 2 * ka + ka) x += h return y if __name__ == "__main__": import doctest doctest.testmod()
106
'''simple docstring''' import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def lowerCAmelCase_ ( snake_case_ : Union[str, Any] ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ = FileLock(str(tmpdir / "foo.lock" ) ) UpperCAmelCase_ = FileLock(str(tmpdir / "foo.lock" ) ) UpperCAmelCase_ = 0.01 with locka.acquire(): with pytest.raises(snake_case_ ): UpperCAmelCase_ = time.time() locka.acquire(snake_case_ ) assert time.time() - _start > timeout def lowerCAmelCase_ ( snake_case_ : int ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ = "a" * 10_00 + ".lock" UpperCAmelCase_ = FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith(".lock" ) assert not locka._lock_file.endswith(snake_case_ ) assert len(os.path.basename(locka._lock_file ) ) <= 2_55 UpperCAmelCase_ = FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(snake_case_ ): locka.acquire(0 )
106
1
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> bool: '''simple docstring''' lowerCAmelCase : Optional[Any] = [int(_UpperCAmelCase ) for i in ip_va_address.split('.' ) if i.isdigit()] return len(_UpperCAmelCase ) == 4 and all(0 <= int(_UpperCAmelCase ) <= 254 for octet in octets ) if __name__ == "__main__": __A : Any = input().strip() __A : Dict = '''valid''' if is_ip_va_address_valid(ip) else '''invalid''' print(F'{ip} is a {valid_or_invalid} IP v4 address.')
138
from __future__ import annotations import math import numpy as np from numpy.linalg import norm def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' return math.sqrt(sum(pow(a - b, 2 ) for a, b in zip(_UpperCAmelCase, _UpperCAmelCase ) ) ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> list[list[list[float] | float]]: '''simple docstring''' if dataset.ndim != value_array.ndim: lowerCAmelCase : List[Any] = ( 'Wrong input data\'s dimensions... ' f"dataset : {dataset.ndim}, value_array : {value_array.ndim}" ) raise ValueError(_UpperCAmelCase ) try: if dataset.shape[1] != value_array.shape[1]: lowerCAmelCase : Dict = ( 'Wrong input data\'s shape... ' f"dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}" ) raise ValueError(_UpperCAmelCase ) except IndexError: if dataset.ndim != value_array.ndim: raise TypeError('Wrong shape' ) if dataset.dtype != value_array.dtype: lowerCAmelCase : Any = ( 'Input data have different datatype... ' f"dataset : {dataset.dtype}, value_array : {value_array.dtype}" ) raise TypeError(_UpperCAmelCase ) lowerCAmelCase : int = [] for value in value_array: lowerCAmelCase : Tuple = euclidean(_UpperCAmelCase, dataset[0] ) lowerCAmelCase : Tuple = dataset[0].tolist() for dataset_value in dataset[1:]: lowerCAmelCase : Dict = euclidean(_UpperCAmelCase, _UpperCAmelCase ) if dist > temp_dist: lowerCAmelCase : Tuple = temp_dist lowerCAmelCase : Tuple = dataset_value.tolist() answer.append([vector, dist] ) return answer def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' return np.dot(_UpperCAmelCase, _UpperCAmelCase ) / (norm(_UpperCAmelCase ) * norm(_UpperCAmelCase )) if __name__ == "__main__": import doctest doctest.testmod()
138
1
import argparse from pathlib import Path import fairseq import torch from fairseq.models.xmod import XMODModel as FairseqXmodModel from packaging import version from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse("0.12.2"): raise Exception("requires fairseq >= 0.12.2") if version.parse(fairseq.__version__) > version.parse("2"): raise Exception("requires fairseq < v2") logging.set_verbosity_info() _lowerCamelCase : Optional[int] = logging.get_logger(__name__) _lowerCamelCase : Union[str, Any] = "Hello, World!" _lowerCamelCase : Dict = "en_XX" def _UpperCAmelCase (UpperCamelCase_ : str , UpperCamelCase_ : str , UpperCamelCase_ : bool ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = Path("""data_bin""" ) _lowerCAmelCase : Dict = FairseqXmodModel.from_pretrained( model_name_or_path=str(Path(UpperCamelCase_ ).parent ) , checkpoint_file=Path(UpperCamelCase_ ).name , _name="""xmod_base""" , arch="""xmod_base""" , task="""multilingual_masked_lm""" , data_name_or_path=str(UpperCamelCase_ ) , bpe="""sentencepiece""" , sentencepiece_model=str(Path(UpperCamelCase_ ).parent / """sentencepiece.bpe.model""" ) , src_dict=str(data_dir / """dict.txt""" ) , ) xmod.eval() # disable dropout print(UpperCamelCase_ ) _lowerCAmelCase : Optional[int] = xmod.model.encoder.sentence_encoder _lowerCAmelCase : str = XmodConfig( vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=514 , type_vocab_size=1 , layer_norm_eps=1E-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , """bottleneck""" , 2 ) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , ) if classification_head: _lowerCAmelCase : Any = xmod.model.classification_heads["""mnli"""].out_proj.weight.shape[0] print("""Our X-MOD config:""" , UpperCamelCase_ ) _lowerCAmelCase : List[str] = XmodForSequenceClassification(UpperCamelCase_ ) if classification_head else XmodForMaskedLM(UpperCamelCase_ ) model.eval() # Now let's copy all the weights. # Embeddings _lowerCAmelCase : Union[str, Any] = xmod_sent_encoder.embed_tokens.weight _lowerCAmelCase : int = xmod_sent_encoder.embed_positions.weight _lowerCAmelCase : Optional[int] = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them. _lowerCAmelCase : Dict = xmod_sent_encoder.layernorm_embedding.weight _lowerCAmelCase : Optional[Any] = xmod_sent_encoder.layernorm_embedding.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer _lowerCAmelCase : List[Any] = model.roberta.encoder.layer[i] _lowerCAmelCase : Union[str, Any] = xmod_sent_encoder.layers[i] # self attention _lowerCAmelCase : Optional[int] = layer.attention.self if not ( xmod_layer.self_attn.k_proj.weight.data.shape == xmod_layer.self_attn.q_proj.weight.data.shape == xmod_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ): raise AssertionError("""Dimensions of self-attention weights do not match.""" ) _lowerCAmelCase : Tuple = xmod_layer.self_attn.q_proj.weight _lowerCAmelCase : Dict = xmod_layer.self_attn.q_proj.bias _lowerCAmelCase : int = xmod_layer.self_attn.k_proj.weight _lowerCAmelCase : int = xmod_layer.self_attn.k_proj.bias _lowerCAmelCase : str = xmod_layer.self_attn.v_proj.weight _lowerCAmelCase : List[str] = xmod_layer.self_attn.v_proj.bias # self-attention output _lowerCAmelCase : Union[str, Any] = layer.attention.output if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape: raise AssertionError("""Dimensions of self-attention output weights do not match.""" ) _lowerCAmelCase : List[Any] = xmod_layer.self_attn.out_proj.weight _lowerCAmelCase : str = xmod_layer.self_attn.out_proj.bias _lowerCAmelCase : Dict = xmod_layer.self_attn_layer_norm.weight _lowerCAmelCase : str = xmod_layer.self_attn_layer_norm.bias # intermediate _lowerCAmelCase : Any = layer.intermediate if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError("""Dimensions of intermediate weights do not match.""" ) _lowerCAmelCase : Optional[int] = xmod_layer.fca.weight _lowerCAmelCase : List[str] = xmod_layer.fca.bias # output _lowerCAmelCase : Optional[int] = layer.output if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError("""Dimensions of feed-forward weights do not match.""" ) _lowerCAmelCase : Dict = xmod_layer.fca.weight _lowerCAmelCase : Optional[int] = xmod_layer.fca.bias _lowerCAmelCase : str = xmod_layer.final_layer_norm.weight _lowerCAmelCase : Tuple = xmod_layer.final_layer_norm.bias if bert_output.adapter_layer_norm is not None: _lowerCAmelCase : List[str] = xmod_layer.adapter_layer_norm.weight _lowerCAmelCase : Union[str, Any] = xmod_layer.adapter_layer_norm.bias if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ): raise AssertionError("""Lists of language adapters do not match.""" ) for lang_code, adapter in xmod_layer.adapter_modules.items(): _lowerCAmelCase : str = bert_output.adapter_modules[lang_code] _lowerCAmelCase : Optional[int] = xmod_layer.adapter_modules[lang_code] _lowerCAmelCase : Optional[Any] = from_adapter.fca.weight _lowerCAmelCase : Dict = from_adapter.fca.bias _lowerCAmelCase : Tuple = from_adapter.fca.weight _lowerCAmelCase : Any = from_adapter.fca.bias # end of layer if xmod_sent_encoder.layer_norm is not None: _lowerCAmelCase : int = xmod_sent_encoder.layer_norm.weight _lowerCAmelCase : List[Any] = xmod_sent_encoder.layer_norm.bias if classification_head: _lowerCAmelCase : int = xmod.model.classification_heads["""mnli"""].dense.weight _lowerCAmelCase : Dict = xmod.model.classification_heads["""mnli"""].dense.bias _lowerCAmelCase : int = xmod.model.classification_heads["""mnli"""].out_proj.weight _lowerCAmelCase : Union[str, Any] = xmod.model.classification_heads["""mnli"""].out_proj.bias else: # LM Head _lowerCAmelCase : List[str] = xmod.model.encoder.lm_head.dense.weight _lowerCAmelCase : Union[str, Any] = xmod.model.encoder.lm_head.dense.bias _lowerCAmelCase : str = xmod.model.encoder.lm_head.layer_norm.weight _lowerCAmelCase : str = xmod.model.encoder.lm_head.layer_norm.bias _lowerCAmelCase : Optional[int] = xmod.model.encoder.lm_head.weight _lowerCAmelCase : List[str] = xmod.model.encoder.lm_head.bias # Let's check that we get the same results. _lowerCAmelCase : int = xmod.encode(UpperCamelCase_ ).unsqueeze(0 ) # batch of size 1 model.roberta.set_default_language(UpperCamelCase_ ) _lowerCAmelCase : Optional[int] = model(UpperCamelCase_ )[0] if classification_head: _lowerCAmelCase : Any = xmod.model.classification_heads["""mnli"""](xmod.extract_features(UpperCamelCase_ ) ) else: _lowerCAmelCase : Optional[int] = xmod.model(UpperCamelCase_ , lang_id=[SAMPLE_LANGUAGE] )[0] print(our_output.shape , their_output.shape ) _lowerCAmelCase : Any = torch.max(torch.abs(our_output - their_output ) ).item() print(F"max_absolute_diff = {max_absolute_diff}" ) # ~ 1e-7 _lowerCAmelCase : List[Any] = torch.allclose(UpperCamelCase_ , UpperCamelCase_ , atol=1E-3 ) print("""Do both models output the same tensors?""" , """🔥""" if success else """💩""" ) if not success: raise Exception("""Something went wRoNg""" ) Path(UpperCamelCase_ ).mkdir(parents=UpperCamelCase_ , exist_ok=UpperCamelCase_ ) print(F"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(UpperCamelCase_ ) if __name__ == "__main__": _lowerCamelCase : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--xmod_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--classification_head", action="store_true", help="Whether to convert a final classification head." ) _lowerCamelCase : Tuple = parser.parse_args() convert_xmod_checkpoint_to_pytorch( args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
159
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCamelCase : List[Any] = logging.get_logger(__name__) _lowerCamelCase : Union[str, Any] = { "kssteven/ibert-roberta-base": "https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json", "kssteven/ibert-roberta-large": "https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json", "kssteven/ibert-roberta-large-mnli": ( "https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json" ), } class __snake_case (_a ): lowerCAmelCase__ = "ibert" def __init__( self : int , _UpperCAmelCase : Optional[int]=3_0522 , _UpperCAmelCase : Union[str, Any]=768 , _UpperCAmelCase : str=12 , _UpperCAmelCase : List[str]=12 , _UpperCAmelCase : Any=3072 , _UpperCAmelCase : Optional[Any]="gelu" , _UpperCAmelCase : Optional[Any]=0.1 , _UpperCAmelCase : Any=0.1 , _UpperCAmelCase : Dict=512 , _UpperCAmelCase : Any=2 , _UpperCAmelCase : Tuple=0.02 , _UpperCAmelCase : str=1E-12 , _UpperCAmelCase : str=1 , _UpperCAmelCase : Any=0 , _UpperCAmelCase : Union[str, Any]=2 , _UpperCAmelCase : List[str]="absolute" , _UpperCAmelCase : Optional[int]=False , _UpperCAmelCase : Any="none" , **_UpperCAmelCase : Optional[int] , ) -> Optional[int]: '''simple docstring''' super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase ) _lowerCAmelCase : str = vocab_size _lowerCAmelCase : Any = hidden_size _lowerCAmelCase : str = num_hidden_layers _lowerCAmelCase : List[Any] = num_attention_heads _lowerCAmelCase : Optional[int] = hidden_act _lowerCAmelCase : Optional[Any] = intermediate_size _lowerCAmelCase : int = hidden_dropout_prob _lowerCAmelCase : Tuple = attention_probs_dropout_prob _lowerCAmelCase : Optional[Any] = max_position_embeddings _lowerCAmelCase : Union[str, Any] = type_vocab_size _lowerCAmelCase : Dict = initializer_range _lowerCAmelCase : Any = layer_norm_eps _lowerCAmelCase : str = position_embedding_type _lowerCAmelCase : int = quant_mode _lowerCAmelCase : str = force_dequant class __snake_case (_a ): @property def SCREAMING_SNAKE_CASE ( self : str ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": _lowerCAmelCase : Optional[int] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: _lowerCAmelCase : Optional[Any] = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
159
1
import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging _UpperCAmelCase : Any =logging.get_logger(__name__) class snake_case__( UpperCAmelCase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] = ["""input_features""", """is_longer"""] def __init__( self , __lowercase=6_4 , __lowercase=4_8_0_0_0 , __lowercase=4_8_0 , __lowercase=1_0 , __lowercase=1_0_2_4 , __lowercase=0.0 , __lowercase=False , __lowercase = 0 , __lowercase = 1_4_0_0_0 , __lowercase = None , __lowercase = "fusion" , __lowercase = "repeatpad" , **__lowercase , ) -> List[str]: super().__init__( feature_size=__lowercase , sampling_rate=__lowercase , padding_value=__lowercase , return_attention_mask=__lowercase , **__lowercase , ) lowerCAmelCase_ : int = top_db lowerCAmelCase_ : List[Any] = truncation lowerCAmelCase_ : Tuple = padding lowerCAmelCase_ : int = fft_window_size lowerCAmelCase_ : str = (fft_window_size >> 1) + 1 lowerCAmelCase_ : Any = hop_length lowerCAmelCase_ : Tuple = max_length_s lowerCAmelCase_ : List[Any] = max_length_s * sampling_rate lowerCAmelCase_ : Dict = sampling_rate lowerCAmelCase_ : Optional[Any] = frequency_min lowerCAmelCase_ : Optional[Any] = frequency_max lowerCAmelCase_ : Union[str, Any] = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=__lowercase , min_frequency=__lowercase , max_frequency=__lowercase , sampling_rate=__lowercase , norm=__lowercase , mel_scale='''htk''' , ) lowerCAmelCase_ : Tuple = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=__lowercase , min_frequency=__lowercase , max_frequency=__lowercase , sampling_rate=__lowercase , norm='''slaney''' , mel_scale='''slaney''' , ) def lowercase_ ( self ) -> Dict[str, Any]: lowerCAmelCase_ : Any = copy.deepcopy(self.__dict__ ) lowerCAmelCase_ : int = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def lowercase_ ( self , __lowercase , __lowercase = None ) -> np.ndarray: lowerCAmelCase_ : Tuple = spectrogram( __lowercase , window_function(self.fft_window_size , '''hann''' ) , frame_length=self.fft_window_size , hop_length=self.hop_length , power=2.0 , mel_filters=__lowercase , log_mel='''dB''' , ) return log_mel_spectrogram.T def lowercase_ ( self , __lowercase , __lowercase , __lowercase ) -> Dict: lowerCAmelCase_ : str = np.array_split(list(range(0 , total_frames - chunk_frames + 1 ) ) , 3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk lowerCAmelCase_ : Optional[Any] = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk lowerCAmelCase_ : Dict = [0] # randomly choose index for each part lowerCAmelCase_ : Dict = np.random.choice(ranges[0] ) lowerCAmelCase_ : Optional[int] = np.random.choice(ranges[1] ) lowerCAmelCase_ : Any = np.random.choice(ranges[2] ) lowerCAmelCase_ : str = mel[idx_front : idx_front + chunk_frames, :] lowerCAmelCase_ : int = mel[idx_middle : idx_middle + chunk_frames, :] lowerCAmelCase_ : List[str] = mel[idx_back : idx_back + chunk_frames, :] lowerCAmelCase_ : Optional[int] = torch.tensor(mel[None, None, :] ) lowerCAmelCase_ : Optional[int] = torch.nn.functional.interpolate( __lowercase , size=[chunk_frames, 6_4] , mode='''bilinear''' , align_corners=__lowercase ) lowerCAmelCase_ : str = mel_shrink[0][0].numpy() lowerCAmelCase_ : List[Any] = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] , axis=0 ) return mel_fusion def lowercase_ ( self , __lowercase , __lowercase , __lowercase , __lowercase ) -> np.array: if waveform.shape[0] > max_length: if truncation == "rand_trunc": lowerCAmelCase_ : Dict = True # random crop to max_length (for compatibility) -> this should be handled by self.pad lowerCAmelCase_ : List[Any] = len(__lowercase ) - max_length lowerCAmelCase_ : Tuple = np.random.randint(0 , overflow + 1 ) lowerCAmelCase_ : Any = waveform[idx : idx + max_length] lowerCAmelCase_ : Tuple = self._np_extract_fbank_features(__lowercase , self.mel_filters_slaney )[None, :] elif truncation == "fusion": lowerCAmelCase_ : List[str] = self._np_extract_fbank_features(__lowercase , self.mel_filters ) lowerCAmelCase_ : Tuple = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed lowerCAmelCase_ : Union[str, Any] = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. lowerCAmelCase_ : Any = np.stack([mel, mel, mel, mel] , axis=0 ) lowerCAmelCase_ : List[Any] = False else: lowerCAmelCase_ : Union[str, Any] = self._random_mel_fusion(__lowercase , __lowercase , __lowercase ) lowerCAmelCase_ : Tuple = True else: raise NotImplementedError(f"""data_truncating {truncation} not implemented""" ) else: lowerCAmelCase_ : List[Any] = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": lowerCAmelCase_ : Any = int(max_length / len(__lowercase ) ) lowerCAmelCase_ : str = np.stack(np.tile(__lowercase , n_repeat + 1 ) )[:max_length] if padding == "repeatpad": lowerCAmelCase_ : Optional[int] = int(max_length / len(__lowercase ) ) lowerCAmelCase_ : Any = np.stack(np.tile(__lowercase , __lowercase ) ) lowerCAmelCase_ : int = np.pad(__lowercase , (0, max_length - waveform.shape[0]) , mode='''constant''' , constant_values=0 ) if truncation == "fusion": lowerCAmelCase_ : List[Any] = self._np_extract_fbank_features(__lowercase , self.mel_filters ) lowerCAmelCase_ : str = np.stack([input_mel, input_mel, input_mel, input_mel] , axis=0 ) else: lowerCAmelCase_ : List[Any] = self._np_extract_fbank_features(__lowercase , self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self , __lowercase , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , **__lowercase , ) -> BatchFeature: lowerCAmelCase_ : Dict = truncation if truncation is not None else self.truncation lowerCAmelCase_ : List[Any] = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"""The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a""" f""" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input""" f""" was sampled with {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) lowerCAmelCase_ : int = isinstance(__lowercase , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f"""Only mono-channel audio is supported for input to {self}""" ) lowerCAmelCase_ : List[str] = is_batched_numpy or ( isinstance(__lowercase , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: lowerCAmelCase_ : Any = [np.asarray(__lowercase , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(__lowercase , np.ndarray ): lowerCAmelCase_ : int = np.asarray(__lowercase , dtype=np.floataa ) elif isinstance(__lowercase , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): lowerCAmelCase_ : Any = raw_speech.astype(np.floataa ) # always return batch if not is_batched: lowerCAmelCase_ : Any = [np.asarray(__lowercase )] # convert to mel spectrogram, truncate and pad if needed. lowerCAmelCase_ : int = [ self._get_input_mel(__lowercase , max_length if max_length else self.nb_max_samples , __lowercase , __lowercase ) for waveform in raw_speech ] lowerCAmelCase_ : str = [] lowerCAmelCase_ : Tuple = [] for mel, longer in padded_inputs: input_mel.append(__lowercase ) is_longer.append(__lowercase ) if truncation == "fusion" and sum(__lowercase ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer lowerCAmelCase_ : Optional[int] = np.random.randint(0 , len(__lowercase ) ) lowerCAmelCase_ : str = True if isinstance(input_mel[0] , __lowercase ): lowerCAmelCase_ : Tuple = [np.asarray(__lowercase , dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool lowerCAmelCase_ : Optional[int] = [[longer] for longer in is_longer] lowerCAmelCase_ : List[str] = {'''input_features''': input_mel, '''is_longer''': is_longer} lowerCAmelCase_ : int = BatchFeature(__lowercase ) if return_tensors is not None: lowerCAmelCase_ : Any = input_features.convert_to_tensors(__lowercase ) return input_features
262
import unittest from transformers import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING, is_vision_available, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class snake_case__: '''simple docstring''' @staticmethod def lowercase_ ( *__lowercase , **__lowercase ) -> Union[str, Any]: pass @is_pipeline_test @require_vision @require_torch class snake_case__( unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Union[str, Any] = MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING def lowercase_ ( self , __lowercase , __lowercase , __lowercase ) -> List[str]: lowerCAmelCase_ : Union[str, Any] = pipeline( '''zero-shot-object-detection''' , model='''hf-internal-testing/tiny-random-owlvit-object-detection''' ) lowerCAmelCase_ : str = [ { '''image''': '''./tests/fixtures/tests_samples/COCO/000000039769.png''', '''candidate_labels''': ['''cat''', '''remote''', '''couch'''], } ] return object_detector, examples def lowercase_ ( self , __lowercase , __lowercase ) -> str: lowerCAmelCase_ : Tuple = object_detector(examples[0] , threshold=0.0 ) lowerCAmelCase_ : Dict = len(__lowercase ) self.assertGreater(__lowercase , 0 ) self.assertEqual( __lowercase , [ { '''score''': ANY(__lowercase ), '''label''': ANY(__lowercase ), '''box''': {'''xmin''': ANY(__lowercase ), '''ymin''': ANY(__lowercase ), '''xmax''': ANY(__lowercase ), '''ymax''': ANY(__lowercase )}, } for i in range(__lowercase ) ] , ) @require_tf @unittest.skip('''Zero Shot Object Detection not implemented in TF''' ) def lowercase_ ( self ) -> List[str]: pass @require_torch def lowercase_ ( self ) -> int: lowerCAmelCase_ : Union[str, Any] = pipeline( '''zero-shot-object-detection''' , model='''hf-internal-testing/tiny-random-owlvit-object-detection''' ) lowerCAmelCase_ : Union[str, Any] = object_detector( '''./tests/fixtures/tests_samples/COCO/000000039769.png''' , candidate_labels=['''cat''', '''remote''', '''couch'''] , threshold=0.64 , ) self.assertEqual( nested_simplify(__lowercase , decimals=4 ) , [ {'''score''': 0.72_35, '''label''': '''cat''', '''box''': {'''xmin''': 2_0_4, '''ymin''': 1_6_7, '''xmax''': 2_3_2, '''ymax''': 1_9_0}}, {'''score''': 0.72_18, '''label''': '''remote''', '''box''': {'''xmin''': 2_0_4, '''ymin''': 1_6_7, '''xmax''': 2_3_2, '''ymax''': 1_9_0}}, {'''score''': 0.71_84, '''label''': '''couch''', '''box''': {'''xmin''': 2_0_4, '''ymin''': 1_6_7, '''xmax''': 2_3_2, '''ymax''': 1_9_0}}, {'''score''': 0.67_48, '''label''': '''remote''', '''box''': {'''xmin''': 5_7_1, '''ymin''': 8_3, '''xmax''': 5_9_8, '''ymax''': 1_0_3}}, {'''score''': 0.66_56, '''label''': '''cat''', '''box''': {'''xmin''': 5_7_1, '''ymin''': 8_3, '''xmax''': 5_9_8, '''ymax''': 1_0_3}}, {'''score''': 0.66_14, '''label''': '''couch''', '''box''': {'''xmin''': 5_7_1, '''ymin''': 8_3, '''xmax''': 5_9_8, '''ymax''': 1_0_3}}, {'''score''': 0.64_56, '''label''': '''remote''', '''box''': {'''xmin''': 4_9_4, '''ymin''': 1_0_5, '''xmax''': 5_2_1, '''ymax''': 1_2_7}}, {'''score''': 0.6_42, '''label''': '''remote''', '''box''': {'''xmin''': 6_7, '''ymin''': 2_7_4, '''xmax''': 9_3, '''ymax''': 2_9_7}}, {'''score''': 0.64_19, '''label''': '''cat''', '''box''': {'''xmin''': 4_9_4, '''ymin''': 1_0_5, '''xmax''': 5_2_1, '''ymax''': 1_2_7}}, ] , ) lowerCAmelCase_ : Union[str, Any] = object_detector( [ { '''image''': '''./tests/fixtures/tests_samples/COCO/000000039769.png''', '''candidate_labels''': ['''cat''', '''remote''', '''couch'''], } ] , threshold=0.64 , ) self.assertEqual( nested_simplify(__lowercase , decimals=4 ) , [ [ {'''score''': 0.72_35, '''label''': '''cat''', '''box''': {'''xmin''': 2_0_4, '''ymin''': 1_6_7, '''xmax''': 2_3_2, '''ymax''': 1_9_0}}, {'''score''': 0.72_18, '''label''': '''remote''', '''box''': {'''xmin''': 2_0_4, '''ymin''': 1_6_7, '''xmax''': 2_3_2, '''ymax''': 1_9_0}}, {'''score''': 0.71_84, '''label''': '''couch''', '''box''': {'''xmin''': 2_0_4, '''ymin''': 1_6_7, '''xmax''': 2_3_2, '''ymax''': 1_9_0}}, {'''score''': 0.67_48, '''label''': '''remote''', '''box''': {'''xmin''': 5_7_1, '''ymin''': 8_3, '''xmax''': 5_9_8, '''ymax''': 1_0_3}}, {'''score''': 0.66_56, '''label''': '''cat''', '''box''': {'''xmin''': 5_7_1, '''ymin''': 8_3, '''xmax''': 5_9_8, '''ymax''': 1_0_3}}, {'''score''': 0.66_14, '''label''': '''couch''', '''box''': {'''xmin''': 5_7_1, '''ymin''': 8_3, '''xmax''': 5_9_8, '''ymax''': 1_0_3}}, {'''score''': 0.64_56, '''label''': '''remote''', '''box''': {'''xmin''': 4_9_4, '''ymin''': 1_0_5, '''xmax''': 5_2_1, '''ymax''': 1_2_7}}, {'''score''': 0.6_42, '''label''': '''remote''', '''box''': {'''xmin''': 6_7, '''ymin''': 2_7_4, '''xmax''': 9_3, '''ymax''': 2_9_7}}, {'''score''': 0.64_19, '''label''': '''cat''', '''box''': {'''xmin''': 4_9_4, '''ymin''': 1_0_5, '''xmax''': 5_2_1, '''ymax''': 1_2_7}}, ] ] , ) @require_torch @slow def lowercase_ ( self ) -> Union[str, Any]: lowerCAmelCase_ : Any = pipeline('''zero-shot-object-detection''' ) lowerCAmelCase_ : Dict = object_detector( '''http://images.cocodataset.org/val2017/000000039769.jpg''' , candidate_labels=['''cat''', '''remote''', '''couch'''] , ) self.assertEqual( nested_simplify(__lowercase , decimals=4 ) , [ {'''score''': 0.28_68, '''label''': '''cat''', '''box''': {'''xmin''': 3_2_4, '''ymin''': 2_0, '''xmax''': 6_4_0, '''ymax''': 3_7_3}}, {'''score''': 0.2_77, '''label''': '''remote''', '''box''': {'''xmin''': 4_0, '''ymin''': 7_2, '''xmax''': 1_7_7, '''ymax''': 1_1_5}}, {'''score''': 0.25_37, '''label''': '''cat''', '''box''': {'''xmin''': 1, '''ymin''': 5_5, '''xmax''': 3_1_5, '''ymax''': 4_7_2}}, {'''score''': 0.14_74, '''label''': '''remote''', '''box''': {'''xmin''': 3_3_5, '''ymin''': 7_4, '''xmax''': 3_7_1, '''ymax''': 1_8_7}}, {'''score''': 0.12_08, '''label''': '''couch''', '''box''': {'''xmin''': 4, '''ymin''': 0, '''xmax''': 6_4_2, '''ymax''': 4_7_6}}, ] , ) lowerCAmelCase_ : Tuple = object_detector( [ { '''image''': '''http://images.cocodataset.org/val2017/000000039769.jpg''', '''candidate_labels''': ['''cat''', '''remote''', '''couch'''], }, { '''image''': '''http://images.cocodataset.org/val2017/000000039769.jpg''', '''candidate_labels''': ['''cat''', '''remote''', '''couch'''], }, ] , ) self.assertEqual( nested_simplify(__lowercase , decimals=4 ) , [ [ {'''score''': 0.28_68, '''label''': '''cat''', '''box''': {'''xmin''': 3_2_4, '''ymin''': 2_0, '''xmax''': 6_4_0, '''ymax''': 3_7_3}}, {'''score''': 0.2_77, '''label''': '''remote''', '''box''': {'''xmin''': 4_0, '''ymin''': 7_2, '''xmax''': 1_7_7, '''ymax''': 1_1_5}}, {'''score''': 0.25_37, '''label''': '''cat''', '''box''': {'''xmin''': 1, '''ymin''': 5_5, '''xmax''': 3_1_5, '''ymax''': 4_7_2}}, {'''score''': 0.14_74, '''label''': '''remote''', '''box''': {'''xmin''': 3_3_5, '''ymin''': 7_4, '''xmax''': 3_7_1, '''ymax''': 1_8_7}}, {'''score''': 0.12_08, '''label''': '''couch''', '''box''': {'''xmin''': 4, '''ymin''': 0, '''xmax''': 6_4_2, '''ymax''': 4_7_6}}, ], [ {'''score''': 0.28_68, '''label''': '''cat''', '''box''': {'''xmin''': 3_2_4, '''ymin''': 2_0, '''xmax''': 6_4_0, '''ymax''': 3_7_3}}, {'''score''': 0.2_77, '''label''': '''remote''', '''box''': {'''xmin''': 4_0, '''ymin''': 7_2, '''xmax''': 1_7_7, '''ymax''': 1_1_5}}, {'''score''': 0.25_37, '''label''': '''cat''', '''box''': {'''xmin''': 1, '''ymin''': 5_5, '''xmax''': 3_1_5, '''ymax''': 4_7_2}}, {'''score''': 0.14_74, '''label''': '''remote''', '''box''': {'''xmin''': 3_3_5, '''ymin''': 7_4, '''xmax''': 3_7_1, '''ymax''': 1_8_7}}, {'''score''': 0.12_08, '''label''': '''couch''', '''box''': {'''xmin''': 4, '''ymin''': 0, '''xmax''': 6_4_2, '''ymax''': 4_7_6}}, ], ] , ) @require_tf @unittest.skip('''Zero Shot Object Detection not implemented in TF''' ) def lowercase_ ( self ) -> List[str]: pass @require_torch @slow def lowercase_ ( self ) -> Optional[int]: lowerCAmelCase_ : Any = 0.2 lowerCAmelCase_ : List[Any] = pipeline('''zero-shot-object-detection''' ) lowerCAmelCase_ : Optional[Any] = object_detector( '''http://images.cocodataset.org/val2017/000000039769.jpg''' , candidate_labels=['''cat''', '''remote''', '''couch'''] , threshold=__lowercase , ) self.assertEqual( nested_simplify(__lowercase , decimals=4 ) , [ {'''score''': 0.28_68, '''label''': '''cat''', '''box''': {'''xmin''': 3_2_4, '''ymin''': 2_0, '''xmax''': 6_4_0, '''ymax''': 3_7_3}}, {'''score''': 0.2_77, '''label''': '''remote''', '''box''': {'''xmin''': 4_0, '''ymin''': 7_2, '''xmax''': 1_7_7, '''ymax''': 1_1_5}}, {'''score''': 0.25_37, '''label''': '''cat''', '''box''': {'''xmin''': 1, '''ymin''': 5_5, '''xmax''': 3_1_5, '''ymax''': 4_7_2}}, ] , ) @require_torch @slow def lowercase_ ( self ) -> Optional[int]: lowerCAmelCase_ : Dict = 2 lowerCAmelCase_ : Union[str, Any] = pipeline('''zero-shot-object-detection''' ) lowerCAmelCase_ : Optional[Any] = object_detector( '''http://images.cocodataset.org/val2017/000000039769.jpg''' , candidate_labels=['''cat''', '''remote''', '''couch'''] , top_k=__lowercase , ) self.assertEqual( nested_simplify(__lowercase , decimals=4 ) , [ {'''score''': 0.28_68, '''label''': '''cat''', '''box''': {'''xmin''': 3_2_4, '''ymin''': 2_0, '''xmax''': 6_4_0, '''ymax''': 3_7_3}}, {'''score''': 0.2_77, '''label''': '''remote''', '''box''': {'''xmin''': 4_0, '''ymin''': 7_2, '''xmax''': 1_7_7, '''ymax''': 1_1_5}}, ] , )
262
1
"""simple docstring""" import json import os import re import sys import urllib.request import requests from bsa import BeautifulSoup _lowerCAmelCase : Any = { '''User-Agent''': '''Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36''' ''' (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582''' } def lowerCamelCase_( _lowerCamelCase = "dhaka" , _lowerCamelCase = 5 ) -> str: '''simple docstring''' _lowerCamelCase : Dict = min(_lowerCamelCase , 50 ) # Prevent abuse! _lowerCamelCase : Optional[Any] = { '''q''': query, '''tbm''': '''isch''', '''hl''': '''en''', '''ijn''': '''0''', } _lowerCamelCase : Dict = requests.get("https://www.google.com/search" , params=_lowerCamelCase , headers=_lowerCamelCase ) _lowerCamelCase : str = BeautifulSoup(html.text , "html.parser" ) _lowerCamelCase : Optional[Any] = ''''''.join( re.findall(R"AF_initDataCallback\(([^<]+)\);" , str(soup.select("script" ) ) ) ) _lowerCamelCase : Dict = json.dumps(_lowerCamelCase ) _lowerCamelCase : Optional[Any] = json.loads(_lowerCamelCase ) _lowerCamelCase : List[str] = re.findall( R"\[\"GRID_STATE0\",null,\[\[1,\[0,\".*?\",(.*),\"All\"," , _lowerCamelCase , ) if not matched_google_image_data: return 0 _lowerCamelCase : Tuple = re.sub( R"\[\"(https\:\/\/encrypted-tbn0\.gstatic\.com\/images\?.*?)\",\d+,\d+\]" , "" , str(_lowerCamelCase ) , ) _lowerCamelCase : Optional[Any] = re.findall( R"(?:\'|,),\[\"(https:|http.*?)\",\d+,\d+\]" , _lowerCamelCase , ) for index, fixed_full_res_image in enumerate(_lowerCamelCase ): if index >= max_images: return index _lowerCamelCase : Any = bytes(_lowerCamelCase , "ascii" ).decode( "unicode-escape" ) _lowerCamelCase : str = bytes(_lowerCamelCase , "ascii" ).decode( "unicode-escape" ) _lowerCamelCase : Tuple = urllib.request.build_opener() _lowerCamelCase : List[Any] = [ ( '''User-Agent''', '''Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36''' ''' (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582''', ) ] urllib.request.install_opener(_lowerCamelCase ) _lowerCamelCase : Optional[int] = F"""query_{query.replace(' ' , '_' )}""" if not os.path.exists(_lowerCamelCase ): os.makedirs(_lowerCamelCase ) urllib.request.urlretrieve( # noqa: S310 _lowerCamelCase , F"""{path_name}/original_size_img_{index}.jpg""" ) return index if __name__ == "__main__": try: _lowerCAmelCase : str = download_images_from_google_query(sys.argv[1]) print(f'''{image_count} images were downloaded to disk.''') except IndexError: print('''Please provide a search term.''') raise
371
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) _lowerCAmelCase : List[str] = { '''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/config.json''', '''umberto-commoncrawl-cased-v1''': ( '''https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json''' ), '''umberto-wikipedia-uncased-v1''': ( '''https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json''' ), } class A_ ( _a ): lowerCAmelCase__ = 'camembert' def __init__( self: Tuple ,__lowerCAmelCase: Union[str, Any]=30_522 ,__lowerCAmelCase: Optional[Any]=768 ,__lowerCAmelCase: Union[str, Any]=12 ,__lowerCAmelCase: int=12 ,__lowerCAmelCase: Optional[int]=3_072 ,__lowerCAmelCase: Dict="gelu" ,__lowerCAmelCase: Union[str, Any]=0.1 ,__lowerCAmelCase: Optional[Any]=0.1 ,__lowerCAmelCase: int=512 ,__lowerCAmelCase: Union[str, Any]=2 ,__lowerCAmelCase: Tuple=0.02 ,__lowerCAmelCase: Dict=1e-12 ,__lowerCAmelCase: Any=1 ,__lowerCAmelCase: Any=0 ,__lowerCAmelCase: Optional[int]=2 ,__lowerCAmelCase: Any="absolute" ,__lowerCAmelCase: Dict=True ,__lowerCAmelCase: Tuple=None ,**__lowerCAmelCase: Dict ,): '''simple docstring''' super().__init__(pad_token_id=__lowerCAmelCase ,bos_token_id=__lowerCAmelCase ,eos_token_id=__lowerCAmelCase ,**__lowerCAmelCase ) _lowerCamelCase : List[str] = vocab_size _lowerCamelCase : Any = hidden_size _lowerCamelCase : Union[str, Any] = num_hidden_layers _lowerCamelCase : str = num_attention_heads _lowerCamelCase : List[Any] = hidden_act _lowerCamelCase : int = intermediate_size _lowerCamelCase : str = hidden_dropout_prob _lowerCamelCase : List[str] = attention_probs_dropout_prob _lowerCamelCase : Optional[Any] = max_position_embeddings _lowerCamelCase : str = type_vocab_size _lowerCamelCase : Dict = initializer_range _lowerCamelCase : Union[str, Any] = layer_norm_eps _lowerCamelCase : Tuple = position_embedding_type _lowerCamelCase : List[Any] = use_cache _lowerCamelCase : Dict = classifier_dropout class A_ ( _a ): @property def _lowercase ( self: Any ): '''simple docstring''' if self.task == "multiple-choice": _lowerCamelCase : Union[str, Any] = {0: "batch", 1: "choice", 2: "sequence"} else: _lowerCamelCase : int = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
340
0
"""simple docstring""" import shutil import tempfile import unittest from transformers import ( SPIECE_UNDERLINE, AddedToken, BatchEncoding, NllbTokenizer, NllbTokenizerFast, is_torch_available, ) from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin _lowercase = get_tests_dir('''fixtures/test_sentencepiece.model''') if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right _lowercase = 25_60_47 _lowercase = 25_61_45 @require_sentencepiece @require_tokenizers class lowerCAmelCase_ ( _lowercase , unittest.TestCase ): '''simple docstring''' _lowerCamelCase: Union[str, Any] = NllbTokenizer _lowerCamelCase: Dict = NllbTokenizerFast _lowerCamelCase: str = True _lowerCamelCase: int = True _lowerCamelCase: str = {} def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Any: super().setUp() # We have a SentencePiece fixture for testing A = NllbTokenizer(A_ ,keep_accents=A_ ) tokenizer.save_pretrained(self.tmpdirname ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> str: A = NllbTokenizer(A_ ,keep_accents=A_ ) A = tokenizer.tokenize('This is a test' ) self.assertListEqual(A_ ,['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(A_ ) ,[value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] ,) A = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( A_ ,[ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] ,) A = tokenizer.convert_tokens_to_ids(A_ ) self.assertListEqual( A_ ,[ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] ,) A = tokenizer.convert_ids_to_tokens(A_ ) self.assertListEqual( A_ ,[ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] ,) def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Tuple: A = (self.rust_tokenizer_class, 'hf-internal-testing/tiny-random-nllb', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): A = self.rust_tokenizer_class.from_pretrained(A_ ,**A_ ) A = self.tokenizer_class.from_pretrained(A_ ,**A_ ) A = tempfile.mkdtemp() A = tokenizer_r.save_pretrained(A_ ) A = tokenizer_p.save_pretrained(A_ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) A = tuple(f for f in tokenizer_r_files if 'tokenizer.json' not in f ) self.assertSequenceEqual(A_ ,A_ ) # Checks everything loads correctly in the same way A = tokenizer_r.from_pretrained(A_ ) A = tokenizer_p.from_pretrained(A_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(A_ ,A_ ) ) shutil.rmtree(A_ ) # Save tokenizer rust, legacy_format=True A = tempfile.mkdtemp() A = tokenizer_r.save_pretrained(A_ ,legacy_format=A_ ) A = tokenizer_p.save_pretrained(A_ ) # Checks it save with the same files self.assertSequenceEqual(A_ ,A_ ) # Checks everything loads correctly in the same way A = tokenizer_r.from_pretrained(A_ ) A = tokenizer_p.from_pretrained(A_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(A_ ,A_ ) ) shutil.rmtree(A_ ) # Save tokenizer rust, legacy_format=False A = tempfile.mkdtemp() A = tokenizer_r.save_pretrained(A_ ,legacy_format=A_ ) A = tokenizer_p.save_pretrained(A_ ) # Checks it saved the tokenizer.json file self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way A = tokenizer_r.from_pretrained(A_ ) A = tokenizer_p.from_pretrained(A_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(A_ ,A_ ) ) shutil.rmtree(A_ ) @require_torch def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[int]: if not self.test_seqaseq: return A = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): # Longer text that will definitely require truncation. A = [ ' UN Chief Says There Is No Military Solution in Syria', ' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for' ' Syria is that \'there is no military solution\' to the nearly five-year conflict and more weapons' ' will only worsen the violence and misery for millions of people.', ] A = [ 'Şeful ONU declară că nu există o soluţie militară în Siria', 'Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al' ' Rusiei pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi' ' că noi arme nu vor face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.', ] try: A = tokenizer.prepare_seqaseq_batch( src_texts=A_ ,tgt_texts=A_ ,max_length=3 ,max_target_length=10 ,return_tensors='pt' ,src_lang='eng_Latn' ,tgt_lang='ron_Latn' ,) except NotImplementedError: return self.assertEqual(batch.input_ids.shape[1] ,3 ) self.assertEqual(batch.labels.shape[1] ,10 ) # max_target_length will default to max_length if not specified A = tokenizer.prepare_seqaseq_batch( A_ ,tgt_texts=A_ ,max_length=3 ,return_tensors='pt' ) self.assertEqual(batch.input_ids.shape[1] ,3 ) self.assertEqual(batch.labels.shape[1] ,3 ) A = tokenizer.prepare_seqaseq_batch( src_texts=A_ ,max_length=3 ,max_target_length=10 ,return_tensors='pt' ) self.assertEqual(batch_encoder_only.input_ids.shape[1] ,3 ) self.assertEqual(batch_encoder_only.attention_mask.shape[1] ,3 ) self.assertNotIn('decoder_input_ids' ,A_ ) @unittest.skip('Unfortunately way too slow to build a BPE with SentencePiece.' ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Optional[Any]: pass def _SCREAMING_SNAKE_CASE ( self : str ) -> Any: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): A = [AddedToken('<special>' ,lstrip=A_ )] A = self.rust_tokenizer_class.from_pretrained( A_ ,additional_special_tokens=A_ ,**A_ ) A = tokenizer_r.encode('Hey this is a <special> token' ) A = tokenizer_r.encode('<special>' ,add_special_tokens=A_ )[0] self.assertTrue(special_token_id in r_output ) if self.test_slow_tokenizer: A = self.rust_tokenizer_class.from_pretrained( A_ ,additional_special_tokens=A_ ,**A_ ,) A = self.tokenizer_class.from_pretrained( A_ ,additional_special_tokens=A_ ,**A_ ) A = tokenizer_p.encode('Hey this is a <special> token' ) A = tokenizer_cr.encode('Hey this is a <special> token' ) self.assertEqual(A_ ,A_ ) self.assertEqual(A_ ,A_ ) self.assertTrue(special_token_id in p_output ) self.assertTrue(special_token_id in cr_output ) @require_torch @require_sentencepiece @require_tokenizers class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' _lowerCamelCase: Optional[Any] = '''facebook/nllb-200-distilled-600M''' _lowerCamelCase: Any = [ ''' UN Chief Says There Is No Military Solution in Syria''', ''' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.''', ] _lowerCamelCase: Dict = [ '''Şeful ONU declară că nu există o soluţie militară în Siria''', '''Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei''' ''' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor''' ''' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.''', ] _lowerCamelCase: List[str] = [ 256047, 16297, 134408, 8165, 248066, 14734, 950, 1135, 105721, 3573, 83, 27352, 108, 49486, 2, ] @classmethod def _SCREAMING_SNAKE_CASE ( cls : int ) -> List[str]: A = NllbTokenizer.from_pretrained( cls.checkpoint_name ,src_lang='eng_Latn' ,tgt_lang='ron_Latn' ) A = 1 return cls def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[int]: self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ace_Arab'] ,25_6001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ace_Latn'] ,25_6002 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['fra_Latn'] ,25_6057 ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[Any]: A = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens ,A_ ) def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> str: self.assertIn(A_ ,self.tokenizer.all_special_ids ) # fmt: off A = [RO_CODE, 4254, 9_8068, 11_2923, 3_9072, 3909, 713, 10_2767, 26, 1_7314, 3_5642, 1_4683, 3_3118, 2022, 6_6987, 2, 25_6047] # fmt: on A = self.tokenizer.decode(A_ ,skip_special_tokens=A_ ) A = self.tokenizer.decode(generated_ids[1:] ,skip_special_tokens=A_ ) self.assertEqual(A_ ,A_ ) self.assertNotIn(self.tokenizer.eos_token ,A_ ) def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Union[str, Any]: A = ['this is gunna be a long sentence ' * 20] assert isinstance(src_text[0] ,A_ ) A = 10 A = self.tokenizer(A_ ,max_length=A_ ,truncation=A_ ).input_ids[0] self.assertEqual(ids[-1] ,2 ) self.assertEqual(ids[0] ,A_ ) self.assertEqual(len(A_ ) ,A_ ) def _SCREAMING_SNAKE_CASE ( self : str ) -> Tuple: self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['<mask>', 'ar_AR'] ) ,[25_6203, 3] ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[Any]: A = tempfile.mkdtemp() A = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(A_ ) A = NllbTokenizer.from_pretrained(A_ ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids ,A_ ) @require_torch def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> str: A = self.tokenizer( self.src_text ,text_target=self.tgt_text ,padding=A_ ,truncation=A_ ,max_length=len(self.expected_src_tokens ) ,return_tensors='pt' ,) A = shift_tokens_right( batch['labels'] ,self.tokenizer.pad_token_id ,self.tokenizer.lang_code_to_id['ron_Latn'] ) self.assertIsInstance(A_ ,A_ ) self.assertEqual((2, 15) ,batch.input_ids.shape ) self.assertEqual((2, 15) ,batch.attention_mask.shape ) A = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens ,A_ ) self.assertEqual(A_ ,batch.decoder_input_ids[0, 0] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens ,[EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens ,[self.tokenizer.eos_token_id] ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Any: A = self.tokenizer(self.src_text ,padding=A_ ,truncation=A_ ,max_length=3 ,return_tensors='pt' ) A = self.tokenizer( text_target=self.tgt_text ,padding=A_ ,truncation=A_ ,max_length=10 ,return_tensors='pt' ) A = targets['input_ids'] A = shift_tokens_right( A_ ,self.tokenizer.pad_token_id ,decoder_start_token_id=self.tokenizer.lang_code_to_id[self.tokenizer.tgt_lang] ,) self.assertEqual(batch.input_ids.shape[1] ,3 ) self.assertEqual(batch.decoder_input_ids.shape[1] ,10 ) @require_torch def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[Any]: A = self.tokenizer._build_translation_inputs( 'A test' ,return_tensors='pt' ,src_lang='eng_Latn' ,tgt_lang='fra_Latn' ) self.assertEqual( nested_simplify(A_ ) ,{ # A, test, EOS, en_XX 'input_ids': [[25_6047, 70, 7356, 2]], 'attention_mask': [[1, 1, 1, 1]], # ar_AR 'forced_bos_token_id': 25_6057, } ,) @require_torch def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Dict: A = True A = self.tokenizer( 'UN Chief says there is no military solution in Syria' ,src_lang='eng_Latn' ,tgt_lang='fra_Latn' ) self.assertEqual( inputs.input_ids ,[1_6297, 13_4408, 2_5653, 6370, 248, 254, 10_3929, 9_4995, 108, 4_9486, 2, 25_6047] ) A = False A = self.tokenizer( 'UN Chief says there is no military solution in Syria' ,src_lang='eng_Latn' ,tgt_lang='fra_Latn' ) self.assertEqual( inputs.input_ids ,[25_6047, 1_6297, 13_4408, 2_5653, 6370, 248, 254, 10_3929, 9_4995, 108, 4_9486, 2] )
74
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) a_ = { 'configuration_xlm_roberta': [ 'XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XLMRobertaConfig', 'XLMRobertaOnnxConfig', ], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ['XLMRobertaTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ['XLMRobertaTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'XLMRobertaForCausalLM', 'XLMRobertaForMaskedLM', 'XLMRobertaForMultipleChoice', 'XLMRobertaForQuestionAnswering', 'XLMRobertaForSequenceClassification', 'XLMRobertaForTokenClassification', 'XLMRobertaModel', 'XLMRobertaPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFXLMRobertaForCausalLM', 'TFXLMRobertaForMaskedLM', 'TFXLMRobertaForMultipleChoice', 'TFXLMRobertaForQuestionAnswering', 'TFXLMRobertaForSequenceClassification', 'TFXLMRobertaForTokenClassification', 'TFXLMRobertaModel', 'TFXLMRobertaPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'FlaxXLMRobertaForMaskedLM', 'FlaxXLMRobertaForCausalLM', 'FlaxXLMRobertaForMultipleChoice', 'FlaxXLMRobertaForQuestionAnswering', 'FlaxXLMRobertaForSequenceClassification', 'FlaxXLMRobertaForTokenClassification', 'FlaxXLMRobertaModel', 'FlaxXLMRobertaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaConfig, XLMRobertaOnnxConfig, ) try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta import XLMRobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta_fast import XLMRobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaForCausalLM, XLMRobertaForMaskedLM, XLMRobertaForMultipleChoice, XLMRobertaForQuestionAnswering, XLMRobertaForSequenceClassification, XLMRobertaForTokenClassification, XLMRobertaModel, XLMRobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm_roberta import ( TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMRobertaForCausalLM, TFXLMRobertaForMaskedLM, TFXLMRobertaForMultipleChoice, TFXLMRobertaForQuestionAnswering, TFXLMRobertaForSequenceClassification, TFXLMRobertaForTokenClassification, TFXLMRobertaModel, TFXLMRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xlm_roberta import ( FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxXLMRobertaForCausalLM, FlaxXLMRobertaForMaskedLM, FlaxXLMRobertaForMultipleChoice, FlaxXLMRobertaForQuestionAnswering, FlaxXLMRobertaForSequenceClassification, FlaxXLMRobertaForTokenClassification, FlaxXLMRobertaModel, FlaxXLMRobertaPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
249
0
from __future__ import annotations def UpperCamelCase_( snake_case__: int = 4 ) -> list[list[int]]: UpperCAmelCase__ = abs(snake_case__ ) or 4 return [[1 + x + y * row_size for x in range(snake_case__ )] for y in range(snake_case__ )] def UpperCamelCase_( snake_case__: list[list[int]] ) -> list[list[int]]: return reverse_row(transpose(snake_case__ ) ) # OR.. transpose(reverse_column(matrix)) def UpperCamelCase_( snake_case__: list[list[int]] ) -> list[list[int]]: return reverse_row(reverse_column(snake_case__ ) ) # OR.. reverse_column(reverse_row(matrix)) def UpperCamelCase_( snake_case__: list[list[int]] ) -> list[list[int]]: return reverse_column(transpose(snake_case__ ) ) # OR.. transpose(reverse_row(matrix)) def UpperCamelCase_( snake_case__: list[list[int]] ) -> list[list[int]]: UpperCAmelCase__ = [list(snake_case__ ) for x in zip(*snake_case__ )] return matrix def UpperCamelCase_( snake_case__: list[list[int]] ) -> list[list[int]]: UpperCAmelCase__ = matrix[::-1] return matrix def UpperCamelCase_( snake_case__: list[list[int]] ) -> list[list[int]]: UpperCAmelCase__ = [x[::-1] for x in matrix] return matrix def UpperCamelCase_( snake_case__: list[list[int]] ) -> None: for i in matrix: print(*snake_case__ ) if __name__ == "__main__": _UpperCamelCase = make_matrix() print('''\norigin:\n''') print_matrix(matrix) print('''\nrotate 90 counterclockwise:\n''') print_matrix(rotate_aa(matrix)) _UpperCamelCase = make_matrix() print('''\norigin:\n''') print_matrix(matrix) print('''\nrotate 180:\n''') print_matrix(rotate_aaa(matrix)) _UpperCamelCase = make_matrix() print('''\norigin:\n''') print_matrix(matrix) print('''\nrotate 270 counterclockwise:\n''') print_matrix(rotate_aaa(matrix))
335
import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class lowercase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' @register_to_config def __init__(self , *, __a = 4 , __a = 768 , __a , __a , ) -> str: """simple docstring""" super().__init__() UpperCAmelCase__ = nn.Parameter(torch.zeros(__a ) ) # parameters for additional clip time embeddings UpperCAmelCase__ = nn.Linear(__a , __a ) UpperCAmelCase__ = nn.Linear(__a , __a ) # parameters for encoder hidden states UpperCAmelCase__ = clip_extra_context_tokens UpperCAmelCase__ = nn.Linear( __a , self.clip_extra_context_tokens * cross_attention_dim ) UpperCAmelCase__ = nn.Linear(__a , __a ) UpperCAmelCase__ = nn.LayerNorm(__a ) def UpperCamelCase__ (self , *, __a , __a , __a , __a ) -> Optional[Any]: """simple docstring""" if do_classifier_free_guidance: # Add the classifier free guidance embeddings to the image embeddings UpperCAmelCase__ = image_embeddings.shape[0] UpperCAmelCase__ = self.learned_classifier_free_guidance_embeddings.unsqueeze(0 ) UpperCAmelCase__ = classifier_free_guidance_embeddings.expand( __a , -1 ) UpperCAmelCase__ = torch.cat([classifier_free_guidance_embeddings, image_embeddings] , dim=0 ) # The image embeddings batch size and the text embeddings batch size are equal assert image_embeddings.shape[0] == prompt_embeds.shape[0] UpperCAmelCase__ = prompt_embeds.shape[0] # "Specifically, we modify the architecture described in Nichol et al. (2021) by projecting and # adding CLIP embeddings to the existing timestep embedding, ... UpperCAmelCase__ = self.embedding_proj(__a ) UpperCAmelCase__ = self.clip_image_embeddings_project_to_time_embeddings(__a ) UpperCAmelCase__ = time_projected_image_embeddings + time_projected_prompt_embeds # ... and by projecting CLIP embeddings into four # extra tokens of context that are concatenated to the sequence of outputs from the GLIDE text encoder" UpperCAmelCase__ = self.clip_extra_context_tokens_proj(__a ) UpperCAmelCase__ = clip_extra_context_tokens.reshape(__a , -1 , self.clip_extra_context_tokens ) UpperCAmelCase__ = clip_extra_context_tokens.permute(0 , 2 , 1 ) UpperCAmelCase__ = self.encoder_hidden_states_proj(__a ) UpperCAmelCase__ = self.text_encoder_hidden_states_norm(__a ) UpperCAmelCase__ = torch.cat([clip_extra_context_tokens, text_encoder_hidden_states] , dim=1 ) return text_encoder_hidden_states, additive_clip_time_embeddings
335
1
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from transformers.utils import is_vision_available from transformers.utils.generic import TensorType from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import logging if is_vision_available(): import PIL __UpperCamelCase : Any = logging.get_logger(__name__) def __SCREAMING_SNAKE_CASE ( A_ ): if isinstance(A_ , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(A_ , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(A_ ): return [[videos]] raise ValueError(f'Could not make batched video from {videos}' ) class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" lowercase__ = ["pixel_values"] def __init__( self : Tuple ,lowercase_ : bool = True ,lowercase_ : Dict[str, int] = None ,lowercase_ : PILImageResampling = PILImageResampling.BILINEAR ,lowercase_ : bool = True ,lowercase_ : Dict[str, int] = None ,lowercase_ : bool = True ,lowercase_ : Union[int, float] = 1 / 2_5_5 ,lowercase_ : bool = True ,lowercase_ : bool = True ,lowercase_ : Optional[Union[float, List[float]]] = None ,lowercase_ : Optional[Union[float, List[float]]] = None ,**lowercase_ : str ,): super().__init__(**lowercase_ ) lowerCAmelCase__ : Union[str, Any] = size if size is not None else {'''shortest_edge''': 2_5_6} lowerCAmelCase__ : Any = get_size_dict(lowercase_ ,default_to_square=lowercase_ ) lowerCAmelCase__ : Dict = crop_size if crop_size is not None else {'''height''': 2_2_4, '''width''': 2_2_4} lowerCAmelCase__ : List[str] = get_size_dict(lowercase_ ,param_name='''crop_size''' ) lowerCAmelCase__ : Union[str, Any] = do_resize lowerCAmelCase__ : Optional[Any] = size lowerCAmelCase__ : Any = do_center_crop lowerCAmelCase__ : int = crop_size lowerCAmelCase__ : List[Any] = resample lowerCAmelCase__ : Tuple = do_rescale lowerCAmelCase__ : List[Any] = rescale_factor lowerCAmelCase__ : str = offset lowerCAmelCase__ : Any = do_normalize lowerCAmelCase__ : Tuple = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowerCAmelCase__ : Optional[Any] = image_std if image_std is not None else IMAGENET_STANDARD_STD def __lowerCAmelCase ( self : Tuple ,lowercase_ : np.ndarray ,lowercase_ : Dict[str, int] ,lowercase_ : PILImageResampling = PILImageResampling.BILINEAR ,lowercase_ : Optional[Union[str, ChannelDimension]] = None ,**lowercase_ : Optional[Any] ,): lowerCAmelCase__ : Any = get_size_dict(lowercase_ ,default_to_square=lowercase_ ) if "shortest_edge" in size: lowerCAmelCase__ : Any = get_resize_output_image_size(lowercase_ ,size['''shortest_edge'''] ,default_to_square=lowercase_ ) elif "height" in size and "width" in size: lowerCAmelCase__ : Dict = (size['''height'''], size['''width''']) else: raise ValueError(F'Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}' ) return resize(lowercase_ ,size=lowercase_ ,resample=lowercase_ ,data_format=lowercase_ ,**lowercase_ ) def __lowerCAmelCase ( self : Optional[int] ,lowercase_ : np.ndarray ,lowercase_ : Dict[str, int] ,lowercase_ : Optional[Union[str, ChannelDimension]] = None ,**lowercase_ : Dict ,): lowerCAmelCase__ : List[Any] = get_size_dict(lowercase_ ) if "height" not in size or "width" not in size: raise ValueError(F'Size must have \'height\' and \'width\' as keys. Got {size.keys()}' ) return center_crop(lowercase_ ,size=(size['''height'''], size['''width''']) ,data_format=lowercase_ ,**lowercase_ ) def __lowerCAmelCase ( self : int ,lowercase_ : np.ndarray ,lowercase_ : Union[int, float] ,lowercase_ : bool = True ,lowercase_ : Optional[Union[str, ChannelDimension]] = None ,**lowercase_ : Dict ,): lowerCAmelCase__ : int = image.astype(np.floataa ) if offset: lowerCAmelCase__ : Tuple = image - (scale / 2) return rescale(lowercase_ ,scale=lowercase_ ,data_format=lowercase_ ,**lowercase_ ) def __lowerCAmelCase ( self : Any ,lowercase_ : np.ndarray ,lowercase_ : Union[float, List[float]] ,lowercase_ : Union[float, List[float]] ,lowercase_ : Optional[Union[str, ChannelDimension]] = None ,**lowercase_ : Dict ,): return normalize(lowercase_ ,mean=lowercase_ ,std=lowercase_ ,data_format=lowercase_ ,**lowercase_ ) def __lowerCAmelCase ( self : Tuple ,lowercase_ : ImageInput ,lowercase_ : bool = None ,lowercase_ : Dict[str, int] = None ,lowercase_ : PILImageResampling = None ,lowercase_ : bool = None ,lowercase_ : Dict[str, int] = None ,lowercase_ : bool = None ,lowercase_ : float = None ,lowercase_ : bool = None ,lowercase_ : bool = None ,lowercase_ : Optional[Union[float, List[float]]] = None ,lowercase_ : Optional[Union[float, List[float]]] = None ,lowercase_ : Optional[ChannelDimension] = ChannelDimension.FIRST ,): if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) if offset and not do_rescale: raise ValueError('''For offset, do_rescale must also be set to True.''' ) # All transformations expect numpy arrays. lowerCAmelCase__ : List[Any] = to_numpy_array(lowercase_ ) if do_resize: lowerCAmelCase__ : Optional[int] = self.resize(image=lowercase_ ,size=lowercase_ ,resample=lowercase_ ) if do_center_crop: lowerCAmelCase__ : Union[str, Any] = self.center_crop(lowercase_ ,size=lowercase_ ) if do_rescale: lowerCAmelCase__ : Any = self.rescale(image=lowercase_ ,scale=lowercase_ ,offset=lowercase_ ) if do_normalize: lowerCAmelCase__ : List[str] = self.normalize(image=lowercase_ ,mean=lowercase_ ,std=lowercase_ ) lowerCAmelCase__ : Optional[Any] = to_channel_dimension_format(lowercase_ ,lowercase_ ) return image def __lowerCAmelCase ( self : Tuple ,lowercase_ : ImageInput ,lowercase_ : bool = None ,lowercase_ : Dict[str, int] = None ,lowercase_ : PILImageResampling = None ,lowercase_ : bool = None ,lowercase_ : Dict[str, int] = None ,lowercase_ : bool = None ,lowercase_ : float = None ,lowercase_ : bool = None ,lowercase_ : bool = None ,lowercase_ : Optional[Union[float, List[float]]] = None ,lowercase_ : Optional[Union[float, List[float]]] = None ,lowercase_ : Optional[Union[str, TensorType]] = None ,lowercase_ : ChannelDimension = ChannelDimension.FIRST ,**lowercase_ : Optional[int] ,): lowerCAmelCase__ : int = do_resize if do_resize is not None else self.do_resize lowerCAmelCase__ : str = resample if resample is not None else self.resample lowerCAmelCase__ : Optional[int] = do_center_crop if do_center_crop is not None else self.do_center_crop lowerCAmelCase__ : Optional[Any] = do_rescale if do_rescale is not None else self.do_rescale lowerCAmelCase__ : List[str] = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCAmelCase__ : str = offset if offset is not None else self.offset lowerCAmelCase__ : Tuple = do_normalize if do_normalize is not None else self.do_normalize lowerCAmelCase__ : int = image_mean if image_mean is not None else self.image_mean lowerCAmelCase__ : Optional[Any] = image_std if image_std is not None else self.image_std lowerCAmelCase__ : Optional[int] = size if size is not None else self.size lowerCAmelCase__ : Optional[int] = get_size_dict(lowercase_ ,default_to_square=lowercase_ ) lowerCAmelCase__ : Any = crop_size if crop_size is not None else self.crop_size lowerCAmelCase__ : Dict = get_size_dict(lowercase_ ,param_name='''crop_size''' ) if not valid_images(lowercase_ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) lowerCAmelCase__ : Tuple = make_batched(lowercase_ ) lowerCAmelCase__ : Optional[int] = [ [ self._preprocess_image( image=lowercase_ ,do_resize=lowercase_ ,size=lowercase_ ,resample=lowercase_ ,do_center_crop=lowercase_ ,crop_size=lowercase_ ,do_rescale=lowercase_ ,rescale_factor=lowercase_ ,offset=lowercase_ ,do_normalize=lowercase_ ,image_mean=lowercase_ ,image_std=lowercase_ ,data_format=lowercase_ ,) for img in video ] for video in videos ] lowerCAmelCase__ : Dict = {'''pixel_values''': videos} return BatchFeature(data=lowercase_ ,tensor_type=lowercase_ )
106
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.test_utils import execute_subprocess_async def __SCREAMING_SNAKE_CASE ( A_=None ): if subparsers is not None: lowerCAmelCase__ : Optional[Any] = subparsers.add_parser('''test''' ) else: lowerCAmelCase__ : List[str] = argparse.ArgumentParser('''Accelerate test command''' ) parser.add_argument( '''--config_file''' , default=A_ , help=( '''The path to use to store the config file. Will default to a file named default_config.yaml in the cache ''' '''location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ''' '''such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ''' '''with \'huggingface\'.''' ) , ) if subparsers is not None: parser.set_defaults(func=A_ ) return parser def __SCREAMING_SNAKE_CASE ( A_ ): lowerCAmelCase__ : Optional[int] = os.path.sep.join(__file__.split(os.path.sep )[:-2] + ['''test_utils''', '''scripts''', '''test_script.py'''] ) if args.config_file is None: lowerCAmelCase__ : Optional[Any] = script_name else: lowerCAmelCase__ : Any = f'--config_file={args.config_file} {script_name}' lowerCAmelCase__ : List[Any] = ['''accelerate-launch'''] + test_args.split() lowerCAmelCase__ : int = execute_subprocess_async(A_ , env=os.environ.copy() ) if result.returncode == 0: print('''Test is a success! You are ready for your distributed training!''' ) def __SCREAMING_SNAKE_CASE ( ): lowerCAmelCase__ : Any = test_command_parser() lowerCAmelCase__ : List[Any] = parser.parse_args() test_command(A_ ) if __name__ == "__main__": main()
106
1
"""simple docstring""" import functools from typing import Any def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) or len(lowerCAmelCase_ ) == 0: raise ValueError("the string should be not empty string" ) if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) or not all( isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and len(lowerCAmelCase_ ) > 0 for item in words ): raise ValueError("the words should be a list of non-empty strings" ) # Build trie __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = "WORD_KEEPER" for word in words: __SCREAMING_SNAKE_CASE = trie for c in word: if c not in trie_node: __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = trie_node[c] __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = len(lowerCAmelCase_ ) # Dynamic programming method @functools.cache def is_breakable(lowerCAmelCase_ ) -> bool: if index == len_string: return True __SCREAMING_SNAKE_CASE = trie for i in range(lowerCAmelCase_ , lowerCAmelCase_ ): __SCREAMING_SNAKE_CASE = trie_node.get(string[i] , lowerCAmelCase_ ) if trie_node is None: return False if trie_node.get(lowerCAmelCase_ , lowerCAmelCase_ ) and is_breakable(i + 1 ): return True return False return is_breakable(0 ) if __name__ == "__main__": import doctest doctest.testmod()
195
"""simple docstring""" import numpy as np import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModelWithProjection, PreTrainedModel from ...utils import logging a__ : Optional[Any] = logging.get_logger(__name__) class UpperCamelCase_ ( UpperCamelCase): """simple docstring""" snake_case__ : int = CLIPConfig snake_case__ : str = ["CLIPEncoderLayer"] def __init__( self : Optional[int] , UpperCAmelCase__ : CLIPConfig ) -> Dict: super().__init__(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = CLIPVisionModelWithProjection(config.vision_config ) __SCREAMING_SNAKE_CASE = nn.Linear(config.vision_config.projection_dim , 1 ) __SCREAMING_SNAKE_CASE = nn.Linear(config.vision_config.projection_dim , 1 ) @torch.no_grad() def UpperCAmelCase_ ( self : str , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : str , UpperCAmelCase__ : int=0.5 , UpperCAmelCase__ : Optional[int]=0.5 ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE = self.vision_model(UpperCAmelCase__ )[0] __SCREAMING_SNAKE_CASE = self.p_head(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = nsfw_detected.flatten() __SCREAMING_SNAKE_CASE = nsfw_detected > p_threshold __SCREAMING_SNAKE_CASE = nsfw_detected.tolist() if any(UpperCAmelCase__ ): logger.warning( "Potential NSFW content was detected in one or more images. A black image will be returned instead." " Try again with a different prompt and/or seed." ) for idx, nsfw_detected_ in enumerate(UpperCAmelCase__ ): if nsfw_detected_: __SCREAMING_SNAKE_CASE = np.zeros(images[idx].shape ) __SCREAMING_SNAKE_CASE = self.w_head(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = watermark_detected.flatten() __SCREAMING_SNAKE_CASE = watermark_detected > w_threshold __SCREAMING_SNAKE_CASE = watermark_detected.tolist() if any(UpperCAmelCase__ ): logger.warning( "Potential watermarked content was detected in one or more images. A black image will be returned instead." " Try again with a different prompt and/or seed." ) for idx, watermark_detected_ in enumerate(UpperCAmelCase__ ): if watermark_detected_: __SCREAMING_SNAKE_CASE = np.zeros(images[idx].shape ) return images, nsfw_detected, watermark_detected
195
1
SCREAMING_SNAKE_CASE :dict[str, float] = { "joule": 1.0, "kilojoule": 10_00, "megajoule": 1_00_00_00, "gigajoule": 10_00_00_00_00, "wattsecond": 1.0, "watthour": 36_00, "kilowatthour": 3_60_00_00, "newtonmeter": 1.0, "calorie_nutr": 41_86.8, "kilocalorie_nutr": 4_18_68_00.00, "electronvolt": 1.6_0217_6634e-19, "britishthermalunit_it": 10_55.0_55_85, "footpound": 1.35_5818, } def _lowerCAmelCase ( lowerCAmelCase_ :str , lowerCAmelCase_ :str , lowerCAmelCase_ :float )->float: '''simple docstring''' if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION: snake_case_ = ( F'''Incorrect \'from_type\' or \'to_type\' value: {from_type!r}, {to_type!r}\n''' F'''Valid values are: {', '.join(lowerCAmelCase_ )}''' ) raise ValueError(lowerCAmelCase_ ) return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type] if __name__ == "__main__": import doctest doctest.testmod()
159
from typing import Union import fire import torch from tqdm import tqdm def _lowerCAmelCase ( lowerCAmelCase_ :str , lowerCAmelCase_ :str = "cpu" , lowerCAmelCase_ :Union[str, None] = None )->None: '''simple docstring''' snake_case_ = torch.load(lowerCAmelCase_ , map_location=lowerCAmelCase_ ) for k, v in tqdm(state_dict.items() ): if not isinstance(lowerCAmelCase_ , torch.Tensor ): raise TypeError("FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin" ) snake_case_ = v.half() if save_path is None: # overwrite src_path snake_case_ = src_path torch.save(lowerCAmelCase_ , lowerCAmelCase_ ) if __name__ == "__main__": fire.Fire(convert)
159
1
import importlib import os import fsspec import pytest from fsspec import register_implementation from fsspec.registry import _registry as _fsspec_registry from datasets.filesystems import COMPRESSION_FILESYSTEMS, HfFileSystem, extract_path_from_uri, is_remote_filesystem from .utils import require_lza, require_zstandard def a_ ( lowerCAmelCase_ : List[Any] ): assert "mock" in _fsspec_registry assert "bz2" in _fsspec_registry def a_ ( ): assert "mock" not in _fsspec_registry assert "bz2" in _fsspec_registry def a_ ( ): __lowerCAmelCase = 'mock-s3-bucket' __lowerCAmelCase = F"""s3://{mock_bucket}""" __lowerCAmelCase = extract_path_from_uri(lowerCAmelCase_ ) assert dataset_path.startswith('s3://' ) is False __lowerCAmelCase = './local/path' __lowerCAmelCase = extract_path_from_uri(lowerCAmelCase_ ) assert dataset_path == new_dataset_path def a_ ( lowerCAmelCase_ : Tuple ): __lowerCAmelCase = is_remote_filesystem(lowerCAmelCase_ ) assert is_remote is True __lowerCAmelCase = fsspec.filesystem('file' ) __lowerCAmelCase = is_remote_filesystem(lowerCAmelCase_ ) assert is_remote is False @pytest.mark.parametrize('compression_fs_class', lowerCAmelCase_ ) def a_ ( lowerCAmelCase_ : Optional[int], lowerCAmelCase_ : Optional[Any], lowerCAmelCase_ : Tuple, lowerCAmelCase_ : int, lowerCAmelCase_ : List[Any], lowerCAmelCase_ : Any, lowerCAmelCase_ : Dict ): __lowerCAmelCase = {'gzip': gz_file, 'xz': xz_file, 'zstd': zstd_file, 'bz2': bza_file, 'lz4': lza_file} __lowerCAmelCase = input_paths[compression_fs_class.protocol] if input_path is None: __lowerCAmelCase = F"""for '{compression_fs_class.protocol}' compression protocol, """ if compression_fs_class.protocol == "lz4": reason += require_lza.kwargs["reason"] elif compression_fs_class.protocol == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(lowerCAmelCase_ ) __lowerCAmelCase = fsspec.filesystem(compression_fs_class.protocol, fo=lowerCAmelCase_ ) assert isinstance(lowerCAmelCase_, lowerCAmelCase_ ) __lowerCAmelCase = os.path.basename(lowerCAmelCase_ ) __lowerCAmelCase = expected_filename[: expected_filename.rindex('.' )] assert fs.glob('*' ) == [expected_filename] with fs.open(lowerCAmelCase_, 'r', encoding='utf-8' ) as f, open(lowerCAmelCase_, encoding='utf-8' ) as expected_file: assert f.read() == expected_file.read() @pytest.mark.parametrize('protocol', ['zip', 'gzip'] ) def a_ ( lowerCAmelCase_ : str, lowerCAmelCase_ : List[str], lowerCAmelCase_ : Dict ): __lowerCAmelCase = {'zip': zip_jsonl_path, 'gzip': jsonl_gz_path} __lowerCAmelCase = compressed_file_paths[protocol] __lowerCAmelCase = 'dataset.jsonl' __lowerCAmelCase = F"""{protocol}://{member_file_path}::{compressed_file_path}""" __lowerCAmelCase , *__lowerCAmelCase = fsspec.get_fs_token_paths(lowerCAmelCase_ ) assert fs.isfile(lowerCAmelCase_ ) assert not fs.isfile('non_existing_' + member_file_path ) @pytest.mark.integration def a_ ( lowerCAmelCase_ : Union[str, Any], lowerCAmelCase_ : Tuple, lowerCAmelCase_ : str, lowerCAmelCase_ : str ): __lowerCAmelCase = hf_api.dataset_info(lowerCAmelCase_, token=lowerCAmelCase_ ) __lowerCAmelCase = HfFileSystem(repo_info=lowerCAmelCase_, token=lowerCAmelCase_ ) assert sorted(hffs.glob('*' ) ) == [".gitattributes", "data"] assert hffs.isdir('data' ) assert hffs.isfile('.gitattributes' ) and hffs.isfile('data/text_data.txt' ) with open(lowerCAmelCase_ ) as f: assert hffs.open('data/text_data.txt', 'r' ).read() == f.read() def a_ ( ): __lowerCAmelCase = 'bz2' # Import module import datasets.filesystems # Overwrite protocol and reload register_implementation(lowerCAmelCase_, lowerCAmelCase_, clobber=lowerCAmelCase_ ) with pytest.warns(lowerCAmelCase_ ) as warning_info: importlib.reload(datasets.filesystems ) assert len(lowerCAmelCase_ ) == 1 assert ( str(warning_info[0].message ) == F"""A filesystem protocol was already set for {protocol} and will be overwritten.""" )
207
import warnings from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch from ...models import UNetaDModel from ...schedulers import RePaintScheduler from ...utils import PIL_INTERPOLATION, logging, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput _snake_case : Union[str, Any] = logging.get_logger(__name__) # pylint: disable=invalid-name def a_ ( lowerCAmelCase_ : Union[List, PIL.Image.Image, torch.Tensor] ): warnings.warn( 'The preprocess method is deprecated and will be removed in a future version. Please' ' use VaeImageProcessor.preprocess instead', lowerCAmelCase_, ) if isinstance(lowerCAmelCase_, torch.Tensor ): return image elif isinstance(lowerCAmelCase_, PIL.Image.Image ): __lowerCAmelCase = [image] if isinstance(image[0], PIL.Image.Image ): __lowerCAmelCase , __lowerCAmelCase = image[0].size __lowerCAmelCase , __lowerCAmelCase = (x - x % 8 for x in (w, h)) # resize to integer multiple of 8 __lowerCAmelCase = [np.array(i.resize((w, h), resample=PIL_INTERPOLATION['lanczos'] ) )[None, :] for i in image] __lowerCAmelCase = np.concatenate(lowerCAmelCase_, axis=0 ) __lowerCAmelCase = np.array(lowerCAmelCase_ ).astype(np.floataa ) / 255.0 __lowerCAmelCase = image.transpose(0, 3, 1, 2 ) __lowerCAmelCase = 2.0 * image - 1.0 __lowerCAmelCase = torch.from_numpy(lowerCAmelCase_ ) elif isinstance(image[0], torch.Tensor ): __lowerCAmelCase = torch.cat(lowerCAmelCase_, dim=0 ) return image def a_ ( lowerCAmelCase_ : Union[List, PIL.Image.Image, torch.Tensor] ): if isinstance(lowerCAmelCase_, torch.Tensor ): return mask elif isinstance(lowerCAmelCase_, PIL.Image.Image ): __lowerCAmelCase = [mask] if isinstance(mask[0], PIL.Image.Image ): __lowerCAmelCase , __lowerCAmelCase = mask[0].size __lowerCAmelCase , __lowerCAmelCase = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 __lowerCAmelCase = [np.array(m.convert('L' ).resize((w, h), resample=PIL_INTERPOLATION['nearest'] ) )[None, :] for m in mask] __lowerCAmelCase = np.concatenate(lowerCAmelCase_, axis=0 ) __lowerCAmelCase = mask.astype(np.floataa ) / 255.0 __lowerCAmelCase = 0 __lowerCAmelCase = 1 __lowerCAmelCase = torch.from_numpy(lowerCAmelCase_ ) elif isinstance(mask[0], torch.Tensor ): __lowerCAmelCase = torch.cat(lowerCAmelCase_, dim=0 ) return mask class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" a_ = 42 a_ = 42 def __init__( self : Optional[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : List[Any] ) -> Optional[int]: super().__init__() self.register_modules(unet=lowerCAmelCase_ , scheduler=lowerCAmelCase_ ) @torch.no_grad() def __call__( self : Dict , lowerCAmelCase_ : Union[torch.Tensor, PIL.Image.Image] , lowerCAmelCase_ : Union[torch.Tensor, PIL.Image.Image] , lowerCAmelCase_ : int = 2_5_0 , lowerCAmelCase_ : float = 0.0 , lowerCAmelCase_ : int = 1_0 , lowerCAmelCase_ : int = 1_0 , lowerCAmelCase_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowerCAmelCase_ : Optional[str] = "pil" , lowerCAmelCase_ : bool = True , ) -> Union[ImagePipelineOutput, Tuple]: __lowerCAmelCase = image __lowerCAmelCase = _preprocess_image(lowerCAmelCase_ ) __lowerCAmelCase = original_image.to(device=self.device , dtype=self.unet.dtype ) __lowerCAmelCase = _preprocess_mask(lowerCAmelCase_ ) __lowerCAmelCase = mask_image.to(device=self.device , dtype=self.unet.dtype ) __lowerCAmelCase = original_image.shape[0] # sample gaussian noise to begin the loop if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and len(lowerCAmelCase_ ) != batch_size: raise ValueError( f"""You have passed a list of generators of length {len(lowerCAmelCase_ )}, but requested an effective batch""" f""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) __lowerCAmelCase = original_image.shape __lowerCAmelCase = randn_tensor(lowerCAmelCase_ , generator=lowerCAmelCase_ , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , self.device ) __lowerCAmelCase = eta __lowerCAmelCase = self.scheduler.timesteps[0] + 1 __lowerCAmelCase = generator[0] if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else generator for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): if t < t_last: # predict the noise residual __lowerCAmelCase = self.unet(lowerCAmelCase_ , lowerCAmelCase_ ).sample # compute previous image: x_t -> x_t-1 __lowerCAmelCase = self.scheduler.step(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ).prev_sample else: # compute the reverse: x_t-1 -> x_t __lowerCAmelCase = self.scheduler.undo_step(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) __lowerCAmelCase = t __lowerCAmelCase = (image / 2 + 0.5).clamp(0 , 1 ) __lowerCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __lowerCAmelCase = self.numpy_to_pil(lowerCAmelCase_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowerCAmelCase_ )
207
1
"""simple docstring""" def _lowerCamelCase ( _UpperCamelCase = 6008_5147_5143 ): '''simple docstring''' try: __lowerCAmelCase = int(_UpperCamelCase ) except (TypeError, ValueError): raise TypeError("Parameter n must be int or castable to int." ) if n <= 0: raise ValueError("Parameter n must be greater than or equal to one." ) __lowerCAmelCase = 2 __lowerCAmelCase = 0 if n == 2: return 2 while n > 2: while n % i != 0: i += 1 __lowerCAmelCase = i while n % i == 0: __lowerCAmelCase = n // i i += 1 return int(_UpperCamelCase ) if __name__ == "__main__": print(f'''{solution() = }''')
57
from collections import defaultdict def _a ( UpperCamelCase_ : int ) -> int: """simple docstring""" lowerCAmelCase__ = 1 lowerCAmelCase__ = True for v in tree[start]: if v not in visited: ret += dfs(UpperCamelCase_ ) if ret % 2 == 0: cuts.append(UpperCamelCase_ ) return ret def _a ( ) -> Optional[Any]: """simple docstring""" dfs(1 ) if __name__ == "__main__": a_, a_ = 10, 9 a_ = defaultdict(list) a_ = {} a_ = [] a_ = 0 a_ = [(2, 1), (3, 1), (4, 3), (5, 2), (6, 1), (7, 2), (8, 6), (9, 8), (10, 8)] for u, v in edges: tree[u].append(v) tree[v].append(u) even_tree() print(len(cuts) - 1)
340
0
"""simple docstring""" def UpperCAmelCase__ ( lowerCAmelCase__ :int = 6_0_0_8_5_1_4_7_5_1_4_3 ) -> Any: '''simple docstring''' try: lowercase = int(UpperCamelCase__ ) except (TypeError, ValueError): raise TypeError("""Parameter n must be int or castable to int.""" ) if n <= 0: raise ValueError("""Parameter n must be greater than or equal to one.""" ) lowercase = 2 lowercase = 0 if n == 2: return 2 while n > 2: while n % i != 0: i += 1 lowercase = i while n % i == 0: lowercase = n // i i += 1 return int(UpperCamelCase__ ) if __name__ == "__main__": print(F"""{solution() = }""")
351
"""simple docstring""" import json import os import unittest from transformers.models.gptsan_japanese.tokenization_gptsan_japanese import ( VOCAB_FILES_NAMES, GPTSanJapaneseTokenizer, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _A ( lowerCAmelCase , unittest.TestCase ): snake_case__ : Optional[int] = GPTSanJapaneseTokenizer snake_case__ : int = False snake_case__ : Tuple = {'do_clean_text': False, 'add_prefix_space': False} def A__ ( self ): """simple docstring""" super().setUp() # fmt: off lowercase = ["""こん""", """こんに""", """にちは""", """ばんは""", """世界,㔺界""", """、""", """。""", """<BR>""", """<SP>""", """<TAB>""", """<URL>""", """<EMAIL>""", """<TEL>""", """<DATE>""", """<PRICE>""", """<BLOCK>""", """<KIGOU>""", """<U2000U2BFF>""", """<|emoji1|>""", """<unk>""", """<|bagoftoken|>""", """<|endoftext|>"""] # fmt: on lowercase = {"""emoji""": {"""\ud83d\ude00""": """<|emoji1|>"""}, """emoji_inv""": {"""<|emoji1|>""": """\ud83d\ude00"""}} # 😀 lowercase = {"""unk_token""": """<unk>"""} lowercase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) lowercase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""emoji_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) with open(self.emoji_file , """w""" ) as emoji_writer: emoji_writer.write(json.dumps(__lowerCAmelCase ) ) def A__ ( self , **__lowerCAmelCase ): """simple docstring""" kwargs.update(self.special_tokens_map ) return GPTSanJapaneseTokenizer.from_pretrained(self.tmpdirname , **__lowerCAmelCase ) def A__ ( self , __lowerCAmelCase ): """simple docstring""" lowercase = """こんにちは、世界。 \nこんばんは、㔺界。😀""" lowercase = """こんにちは、世界。 \nこんばんは、世界。😀""" return input_text, output_text def A__ ( self , __lowerCAmelCase ): """simple docstring""" lowercase , lowercase = self.get_input_output_texts(__lowerCAmelCase ) lowercase = tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) lowercase = tokenizer.decode(__lowerCAmelCase , clean_up_tokenization_spaces=__lowerCAmelCase ) return text, ids def A__ ( self ): """simple docstring""" pass # TODO add if relevant def A__ ( self ): """simple docstring""" pass # TODO add if relevant def A__ ( self ): """simple docstring""" pass # TODO add if relevant def A__ ( self ): """simple docstring""" lowercase = self.get_tokenizer() # Testing tokenization lowercase = """こんにちは、世界。 こんばんは、㔺界。""" lowercase = ["""こん""", """にちは""", """、""", """世界""", """。""", """<SP>""", """こん""", """ばんは""", """、""", """㔺界""", """。"""] lowercase = tokenizer.tokenize(__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) # Testing conversion to ids without special tokens lowercase = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6] lowercase = tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) # Testing conversion to ids with special tokens lowercase = tokens + [tokenizer.unk_token] lowercase = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6, 19] lowercase = tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) def A__ ( self ): """simple docstring""" lowercase = self.get_tokenizer() # Testing tokenization lowercase = """こんにちは、<|bagoftoken|>世界。こんばんは、<|bagoftoken|>㔺界。""" lowercase = """こんにちは、、、、世界。こんばんは、、、、世界。""" lowercase = tokenizer.encode(__lowerCAmelCase ) lowercase = tokenizer.decode(__lowerCAmelCase ) self.assertEqual(__lowerCAmelCase , __lowerCAmelCase ) @slow def A__ ( self ): """simple docstring""" lowercase = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) # Testing tokenization lowercase = """こんにちは、世界。""" lowercase = """こんばんは、㔺界。😀""" lowercase = """こんにちは、世界。こんばんは、世界。😀""" lowercase = tokenizer.encode(prefix_text + input_text ) lowercase = tokenizer.encode("""""" , prefix_text=prefix_text + input_text ) lowercase = tokenizer.encode(__lowerCAmelCase , prefix_text=__lowerCAmelCase ) lowercase = tokenizer.decode(__lowerCAmelCase ) lowercase = tokenizer.decode(__lowerCAmelCase ) lowercase = tokenizer.decode(__lowerCAmelCase ) self.assertEqual(__lowerCAmelCase , __lowerCAmelCase ) self.assertEqual(__lowerCAmelCase , __lowerCAmelCase ) self.assertEqual(__lowerCAmelCase , __lowerCAmelCase ) @slow def A__ ( self ): """simple docstring""" lowercase = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) # Testing tokenization lowercase = """こんにちは、世界。""" lowercase = """こんばんは、㔺界。😀""" lowercase = len(tokenizer.encode(__lowerCAmelCase ) ) - 2 lowercase = len(tokenizer.encode(__lowerCAmelCase ) ) - 2 lowercase = [1] + [0] * (len_prefix + len_text + 1) lowercase = [1] * (len_prefix + len_text + 1) + [0] lowercase = [1] + [1] * (len_prefix) + [0] * (len_text + 1) lowercase = tokenizer(prefix_text + input_text ).token_type_ids lowercase = tokenizer("""""" , prefix_text=prefix_text + input_text ).token_type_ids lowercase = tokenizer(__lowerCAmelCase , prefix_text=__lowerCAmelCase ).token_type_ids self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) @slow def A__ ( self ): """simple docstring""" lowercase = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) lowercase = tokenizer.encode("""あンいワ""" ) lowercase = tokenizer.encode("""""" , prefix_text="""あンいワ""" ) lowercase = tokenizer.encode("""いワ""" , prefix_text="""あン""" ) self.assertEqual(tokenizer.decode(__lowerCAmelCase ) , tokenizer.decode(__lowerCAmelCase ) ) self.assertEqual(tokenizer.decode(__lowerCAmelCase ) , tokenizer.decode(__lowerCAmelCase ) ) self.assertNotEqual(__lowerCAmelCase , __lowerCAmelCase ) self.assertNotEqual(__lowerCAmelCase , __lowerCAmelCase ) self.assertEqual(x_token_a[1] , x_token_a[-1] ) # SEG token self.assertEqual(x_token_a[1] , x_token_a[3] ) # SEG token @slow def A__ ( self ): """simple docstring""" lowercase = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) lowercase = [["""武田信玄""", """は、"""], ["""織田信長""", """の配下の、"""]] lowercase = tokenizer(__lowerCAmelCase , padding=__lowerCAmelCase ) lowercase = tokenizer.batch_encode_plus(__lowerCAmelCase , padding=__lowerCAmelCase ) # fmt: off lowercase = [[3_5993, 8640, 2_5948, 3_5998, 3_0647, 3_5675, 3_5999, 3_5999], [3_5993, 1_0382, 9868, 3_5998, 3_0646, 9459, 3_0646, 3_5675]] lowercase = [[1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0]] lowercase = [[1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1]] # fmt: on self.assertListEqual(x_token.input_ids , __lowerCAmelCase ) self.assertListEqual(x_token.token_type_ids , __lowerCAmelCase ) self.assertListEqual(x_token.attention_mask , __lowerCAmelCase ) self.assertListEqual(x_token_a.input_ids , __lowerCAmelCase ) self.assertListEqual(x_token_a.token_type_ids , __lowerCAmelCase ) self.assertListEqual(x_token_a.attention_mask , __lowerCAmelCase ) def A__ ( self ): """simple docstring""" pass def A__ ( self ): """simple docstring""" pass
32
0
"""simple docstring""" def _snake_case ( UpperCAmelCase_ : int = 400_0000 ): A__ = [0, 1] A__ = 0 while fib[i] <= n: fib.append(fib[i] + fib[i + 1] ) if fib[i + 2] > n: break i += 1 A__ = 0 for j in range(len(UpperCAmelCase_ ) - 1 ): if fib[j] % 2 == 0: total += fib[j] return total if __name__ == "__main__": print(f"""{solution() = }""")
335
"""simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = tuple[float, float, float] SCREAMING_SNAKE_CASE_ : Optional[int] = tuple[float, float, float] def _snake_case ( UpperCAmelCase_ : Pointad , UpperCAmelCase_ : Pointad ): A__ = end_pointa[0] - end_pointa[0] A__ = end_pointa[1] - end_pointa[1] A__ = end_pointa[2] - end_pointa[2] return (x, y, z) def _snake_case ( UpperCAmelCase_ : Vectorad , UpperCAmelCase_ : Vectorad ): A__ = ab[1] * ac[2] - ab[2] * ac[1] # *i A__ = (ab[0] * ac[2] - ab[2] * ac[0]) * -1 # *j A__ = ab[0] * ac[1] - ab[1] * ac[0] # *k return (x, y, z) def _snake_case ( UpperCAmelCase_ : Vectorad , UpperCAmelCase_ : int ): return tuple(round(UpperCAmelCase_ , UpperCAmelCase_ ) for x in vector ) == (0, 0, 0) def _snake_case ( UpperCAmelCase_ : Pointad , UpperCAmelCase_ : Pointad , UpperCAmelCase_ : Pointad , UpperCAmelCase_ : int = 10 ): A__ = create_vector(UpperCAmelCase_ , UpperCAmelCase_ ) A__ = create_vector(UpperCAmelCase_ , UpperCAmelCase_ ) return is_zero_vector(get_ad_vectors_cross(UpperCAmelCase_ , UpperCAmelCase_ ) , UpperCAmelCase_ )
335
1
'''simple docstring''' import html from ...feature_extraction_utils import BatchFeature, FeatureExtractionMixin from ...utils import is_bsa_available, logging, requires_backends if is_bsa_available(): import bsa from bsa import BeautifulSoup _lowerCAmelCase = logging.get_logger(__name__) class lowerCAmelCase_( lowerCamelCase_ ): '''simple docstring''' def __init__( self ,**__UpperCAmelCase ) -> Dict: requires_backends(self ,["""bs4"""] ) super().__init__(**lowerCAmelCase__ ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> Dict: lowerCAmelCase__ : Dict = [] lowerCAmelCase__ : List[str] = [] lowerCAmelCase__ : int = element if element.name else element.parent for parent in child.parents: # type: bs4.element.Tag lowerCAmelCase__ : Tuple = parent.find_all(child.name ,recursive=lowerCAmelCase__ ) xpath_tags.append(child.name ) xpath_subscripts.append( 0 if 1 == len(lowerCAmelCase__ ) else next(i for i, s in enumerate(lowerCAmelCase__ ,1 ) if s is child ) ) lowerCAmelCase__ : Any = parent xpath_tags.reverse() xpath_subscripts.reverse() return xpath_tags, xpath_subscripts def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> Optional[Any]: lowerCAmelCase__ : Optional[int] = BeautifulSoup(lowerCAmelCase__ ,"""html.parser""" ) lowerCAmelCase__ : List[Any] = [] lowerCAmelCase__ : Union[str, Any] = [] lowerCAmelCase__ : str = [] for element in html_code.descendants: if type(lowerCAmelCase__ ) == bsa.element.NavigableString: if type(element.parent ) != bsa.element.Tag: continue lowerCAmelCase__ : int = html.unescape(lowerCAmelCase__ ).strip() if not text_in_this_tag: continue all_doc_strings.append(lowerCAmelCase__ ) lowerCAmelCase__ , lowerCAmelCase__ : List[str] = self.xpath_soup(lowerCAmelCase__ ) stringaxtag_seq.append(lowerCAmelCase__ ) stringaxsubs_seq.append(lowerCAmelCase__ ) if len(lowerCAmelCase__ ) != len(lowerCAmelCase__ ): raise ValueError("""Number of doc strings and xtags does not correspond""" ) if len(lowerCAmelCase__ ) != len(lowerCAmelCase__ ): raise ValueError("""Number of doc strings and xsubs does not correspond""" ) return all_doc_strings, stringaxtag_seq, stringaxsubs_seq def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase ) -> List[Any]: lowerCAmelCase__ : Optional[int] = """""" for tagname, subs in zip(lowerCAmelCase__ ,lowerCAmelCase__ ): xpath += F"""/{tagname}""" if subs != 0: xpath += F"""[{subs}]""" return xpath def __call__( self ,__UpperCAmelCase ) -> BatchFeature: lowerCAmelCase__ : Any = False # Check that strings has a valid type if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCAmelCase__ : Optional[Any] = True elif isinstance(lowerCAmelCase__ ,(list, tuple) ): if len(lowerCAmelCase__ ) == 0 or isinstance(html_strings[0] ,lowerCAmelCase__ ): lowerCAmelCase__ : Any = True if not valid_strings: raise ValueError( """HTML strings must of type `str`, `List[str]` (batch of examples), """ F"""but is of type {type(lowerCAmelCase__ )}.""" ) lowerCAmelCase__ : List[Any] = bool(isinstance(lowerCAmelCase__ ,(list, tuple) ) and (isinstance(html_strings[0] ,lowerCAmelCase__ )) ) if not is_batched: lowerCAmelCase__ : Union[str, Any] = [html_strings] # Get nodes + xpaths lowerCAmelCase__ : Optional[Any] = [] lowerCAmelCase__ : Dict = [] for html_string in html_strings: lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Optional[Any] = self.get_three_from_single(lowerCAmelCase__ ) nodes.append(lowerCAmelCase__ ) lowerCAmelCase__ : Optional[int] = [] for node, tag_list, sub_list in zip(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCAmelCase__ : List[str] = self.construct_xpath(lowerCAmelCase__ ,lowerCAmelCase__ ) xpath_strings.append(lowerCAmelCase__ ) xpaths.append(lowerCAmelCase__ ) # return as Dict lowerCAmelCase__ : Optional[int] = {"""nodes""": nodes, """xpaths""": xpaths} lowerCAmelCase__ : int = BatchFeature(data=lowerCAmelCase__ ,tensor_type=lowerCAmelCase__ ) return encoded_inputs
366
'''simple docstring''' import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class lowerCAmelCase_: '''simple docstring''' __lowercase : Optional[Union[str, Path]] = None __lowercase : bool = False __lowercase : bool = False __lowercase : bool = False __lowercase : Optional[Dict] = None __lowercase : Optional[str] = None __lowercase : bool = False __lowercase : bool = False __lowercase : bool = False __lowercase : bool = True __lowercase : Optional[int] = None __lowercase : int = 1 __lowercase : Optional[Union[str, bool]] = None __lowercase : bool = False __lowercase : Optional[Dict] = None __lowercase : Optional[str] = None def UpperCAmelCase_ ( self ) -> "DownloadConfig": return self.__class__(**{k: copy.deepcopy(__UpperCAmelCase ) for k, v in self.__dict__.items()} )
184
0
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = {'''openai-gpt''': '''https://huggingface.co/openai-gpt/resolve/main/config.json'''} class A_ ( __lowerCamelCase ): '''simple docstring''' _UpperCamelCase : Optional[Any] = """openai-gpt""" _UpperCamelCase : Optional[Any] = { """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self , snake_case=4_0478 , snake_case=512 , snake_case=768 , snake_case=12 , snake_case=12 , snake_case="gelu" , snake_case=0.1 , snake_case=0.1 , snake_case=0.1 , snake_case=1E-5 , snake_case=0.02 , snake_case="cls_index" , snake_case=True , snake_case=None , snake_case=True , snake_case=0.1 , **snake_case , ): lowercase = vocab_size lowercase = n_positions lowercase = n_embd lowercase = n_layer lowercase = n_head lowercase = afn lowercase = resid_pdrop lowercase = embd_pdrop lowercase = attn_pdrop lowercase = layer_norm_epsilon lowercase = initializer_range lowercase = summary_type lowercase = summary_use_proj lowercase = summary_activation lowercase = summary_first_dropout lowercase = summary_proj_to_labels super().__init__(**snake_case )
195
import shutil import tempfile import unittest from unittest.mock import patch from transformers import ( DefaultFlowCallback, IntervalStrategy, PrinterCallback, ProgressCallback, Trainer, TrainerCallback, TrainingArguments, is_torch_available, ) from transformers.testing_utils import require_torch if is_torch_available(): from transformers.trainer import DEFAULT_CALLBACKS from .test_trainer import RegressionDataset, RegressionModelConfig, RegressionPreTrainedModel class A_ ( __lowerCamelCase ): '''simple docstring''' def __init__( self ): lowercase = [] def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case , snake_case , **snake_case ): self.events.append('on_init_end' ) def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case , snake_case , **snake_case ): self.events.append('on_train_begin' ) def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case , snake_case , **snake_case ): self.events.append('on_train_end' ) def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case , snake_case , **snake_case ): self.events.append('on_epoch_begin' ) def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case , snake_case , **snake_case ): self.events.append('on_epoch_end' ) def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case , snake_case , **snake_case ): self.events.append('on_step_begin' ) def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case , snake_case , **snake_case ): self.events.append('on_step_end' ) def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case , snake_case , **snake_case ): self.events.append('on_evaluate' ) def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case , snake_case , **snake_case ): self.events.append('on_predict' ) def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case , snake_case , **snake_case ): self.events.append('on_save' ) def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case , snake_case , **snake_case ): self.events.append('on_log' ) def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case , snake_case , **snake_case ): self.events.append('on_prediction_step' ) @require_torch class A_ ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self ): lowercase = tempfile.mkdtemp() def SCREAMING_SNAKE_CASE__ ( self ): shutil.rmtree(self.output_dir ) def SCREAMING_SNAKE_CASE__ ( self , snake_case=0 , snake_case=0 , snake_case=64 , snake_case=64 , snake_case=None , snake_case=False , **snake_case ): # disable_tqdm in TrainingArguments has a flaky default since it depends on the level of logging. We make sure # its set to False since the tests later on depend on its value. lowercase = RegressionDataset(length=snake_case ) lowercase = RegressionDataset(length=snake_case ) lowercase = RegressionModelConfig(a=snake_case , b=snake_case ) lowercase = RegressionPreTrainedModel(snake_case ) lowercase = TrainingArguments(self.output_dir , disable_tqdm=snake_case , report_to=[] , **snake_case ) return Trainer( snake_case , snake_case , train_dataset=snake_case , eval_dataset=snake_case , callbacks=snake_case , ) def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case ): self.assertEqual(len(snake_case ) , len(snake_case ) ) # Order doesn't matter lowercase = sorted(snake_case , key=lambda snake_case : cb.__name__ if isinstance(snake_case , snake_case ) else cb.__class__.__name__ ) lowercase = sorted(snake_case , key=lambda snake_case : cb.__name__ if isinstance(snake_case , snake_case ) else cb.__class__.__name__ ) for cba, cba in zip(snake_case , snake_case ): if isinstance(snake_case , snake_case ) and isinstance(snake_case , snake_case ): self.assertEqual(snake_case , snake_case ) elif isinstance(snake_case , snake_case ) and not isinstance(snake_case , snake_case ): self.assertEqual(snake_case , cba.__class__ ) elif not isinstance(snake_case , snake_case ) and isinstance(snake_case , snake_case ): self.assertEqual(cba.__class__ , snake_case ) else: self.assertEqual(snake_case , snake_case ) def SCREAMING_SNAKE_CASE__ ( self , snake_case ): lowercase = ['on_init_end', 'on_train_begin'] lowercase = 0 lowercase = len(trainer.get_eval_dataloader() ) lowercase = ['on_prediction_step'] * len(trainer.get_eval_dataloader() ) + ['on_log', 'on_evaluate'] for _ in range(trainer.state.num_train_epochs ): expected_events.append('on_epoch_begin' ) for _ in range(snake_case ): step += 1 expected_events += ["on_step_begin", "on_step_end"] if step % trainer.args.logging_steps == 0: expected_events.append('on_log' ) if trainer.args.evaluation_strategy == IntervalStrategy.STEPS and step % trainer.args.eval_steps == 0: expected_events += evaluation_events.copy() if step % trainer.args.save_steps == 0: expected_events.append('on_save' ) expected_events.append('on_epoch_end' ) if trainer.args.evaluation_strategy == IntervalStrategy.EPOCH: expected_events += evaluation_events.copy() expected_events += ["on_log", "on_train_end"] return expected_events def SCREAMING_SNAKE_CASE__ ( self ): lowercase = self.get_trainer() lowercase = DEFAULT_CALLBACKS.copy() + [ProgressCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , snake_case ) # Callbacks passed at init are added to the default callbacks lowercase = self.get_trainer(callbacks=[MyTestTrainerCallback] ) expected_callbacks.append(snake_case ) self.check_callbacks_equality(trainer.callback_handler.callbacks , snake_case ) # TrainingArguments.disable_tqdm controls if use ProgressCallback or PrinterCallback lowercase = self.get_trainer(disable_tqdm=snake_case ) lowercase = DEFAULT_CALLBACKS.copy() + [PrinterCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , snake_case ) def SCREAMING_SNAKE_CASE__ ( self ): lowercase = DEFAULT_CALLBACKS.copy() + [ProgressCallback] lowercase = self.get_trainer() # We can add, pop, or remove by class name trainer.remove_callback(snake_case ) expected_callbacks.remove(snake_case ) self.check_callbacks_equality(trainer.callback_handler.callbacks , snake_case ) lowercase = self.get_trainer() lowercase = trainer.pop_callback(snake_case ) self.assertEqual(cb.__class__ , snake_case ) self.check_callbacks_equality(trainer.callback_handler.callbacks , snake_case ) trainer.add_callback(snake_case ) expected_callbacks.insert(0 , snake_case ) self.check_callbacks_equality(trainer.callback_handler.callbacks , snake_case ) # We can also add, pop, or remove by instance lowercase = self.get_trainer() lowercase = trainer.callback_handler.callbacks[0] trainer.remove_callback(snake_case ) expected_callbacks.remove(snake_case ) self.check_callbacks_equality(trainer.callback_handler.callbacks , snake_case ) lowercase = self.get_trainer() lowercase = trainer.callback_handler.callbacks[0] lowercase = trainer.pop_callback(snake_case ) self.assertEqual(snake_case , snake_case ) self.check_callbacks_equality(trainer.callback_handler.callbacks , snake_case ) trainer.add_callback(snake_case ) expected_callbacks.insert(0 , snake_case ) self.check_callbacks_equality(trainer.callback_handler.callbacks , snake_case ) def SCREAMING_SNAKE_CASE__ ( self ): import warnings # XXX: for now ignore scatter_gather warnings in this test since it's not relevant to what's being tested warnings.simplefilter(action='ignore' , category=snake_case ) lowercase = self.get_trainer(callbacks=[MyTestTrainerCallback] ) trainer.train() lowercase = trainer.callback_handler.callbacks[-2].events self.assertEqual(snake_case , self.get_expected_events(snake_case ) ) # Independent log/save/eval lowercase = self.get_trainer(callbacks=[MyTestTrainerCallback] , logging_steps=5 ) trainer.train() lowercase = trainer.callback_handler.callbacks[-2].events self.assertEqual(snake_case , self.get_expected_events(snake_case ) ) lowercase = self.get_trainer(callbacks=[MyTestTrainerCallback] , save_steps=5 ) trainer.train() lowercase = trainer.callback_handler.callbacks[-2].events self.assertEqual(snake_case , self.get_expected_events(snake_case ) ) lowercase = self.get_trainer(callbacks=[MyTestTrainerCallback] , eval_steps=5 , evaluation_strategy='steps' ) trainer.train() lowercase = trainer.callback_handler.callbacks[-2].events self.assertEqual(snake_case , self.get_expected_events(snake_case ) ) lowercase = self.get_trainer(callbacks=[MyTestTrainerCallback] , evaluation_strategy='epoch' ) trainer.train() lowercase = trainer.callback_handler.callbacks[-2].events self.assertEqual(snake_case , self.get_expected_events(snake_case ) ) # A bit of everything lowercase = self.get_trainer( callbacks=[MyTestTrainerCallback] , logging_steps=3 , save_steps=10 , eval_steps=5 , evaluation_strategy='steps' , ) trainer.train() lowercase = trainer.callback_handler.callbacks[-2].events self.assertEqual(snake_case , self.get_expected_events(snake_case ) ) # warning should be emitted for duplicated callbacks with patch('transformers.trainer_callback.logger.warning' ) as warn_mock: lowercase = self.get_trainer( callbacks=[MyTestTrainerCallback, MyTestTrainerCallback] , ) assert str(snake_case ) in warn_mock.call_args[0][0]
195
1
from dataclasses import dataclass from typing import Optional import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .modeling_utils import ModelMixin @dataclass class __lowerCAmelCase ( lowerCAmelCase): _a = 42 class __lowerCAmelCase ( lowerCAmelCase , lowerCAmelCase): @register_to_config def __init__( self: Union[str, Any] , _lowerCAmelCase: int = 16 , _lowerCAmelCase: int = 88 , _lowerCAmelCase: Optional[int] = None , _lowerCAmelCase: Optional[int] = None , _lowerCAmelCase: int = 1 , _lowerCAmelCase: float = 0.0 , _lowerCAmelCase: int = 32 , _lowerCAmelCase: Optional[int] = None , _lowerCAmelCase: bool = False , _lowerCAmelCase: Optional[int] = None , _lowerCAmelCase: str = "geglu" , _lowerCAmelCase: bool = True , _lowerCAmelCase: bool = True , ): super().__init__() lowercase :Union[str, Any] = num_attention_heads lowercase :Union[str, Any] = attention_head_dim lowercase :Tuple = num_attention_heads * attention_head_dim lowercase :int = in_channels lowercase :int = torch.nn.GroupNorm(num_groups=_lowerCAmelCase , num_channels=_lowerCAmelCase , eps=1e-6 , affine=_lowerCAmelCase ) lowercase :Dict = nn.Linear(_lowerCAmelCase , _lowerCAmelCase ) # 3. Define transformers blocks lowercase :Union[str, Any] = nn.ModuleList( [ BasicTransformerBlock( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , dropout=_lowerCAmelCase , cross_attention_dim=_lowerCAmelCase , activation_fn=_lowerCAmelCase , attention_bias=_lowerCAmelCase , double_self_attention=_lowerCAmelCase , norm_elementwise_affine=_lowerCAmelCase , ) for d in range(_lowerCAmelCase ) ] ) lowercase :Optional[Any] = nn.Linear(_lowerCAmelCase , _lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self: Tuple , _lowerCAmelCase: List[str] , _lowerCAmelCase: Tuple=None , _lowerCAmelCase: List[str]=None , _lowerCAmelCase: int=None , _lowerCAmelCase: Dict=1 , _lowerCAmelCase: Union[str, Any]=None , _lowerCAmelCase: bool = True , ): lowercase :Dict = hidden_states.shape lowercase :str = batch_frames // num_frames lowercase :Tuple = hidden_states lowercase :str = hidden_states[None, :].reshape(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) lowercase :Dict = hidden_states.permute(0 , 2 , 1 , 3 , 4 ) lowercase :str = self.norm(_lowerCAmelCase ) lowercase :int = hidden_states.permute(0 , 3 , 4 , 2 , 1 ).reshape(batch_size * height * width , _lowerCAmelCase , _lowerCAmelCase ) lowercase :int = self.proj_in(_lowerCAmelCase ) # 2. Blocks for block in self.transformer_blocks: lowercase :Optional[Any] = block( _lowerCAmelCase , encoder_hidden_states=_lowerCAmelCase , timestep=_lowerCAmelCase , cross_attention_kwargs=_lowerCAmelCase , class_labels=_lowerCAmelCase , ) # 3. Output lowercase :Any = self.proj_out(_lowerCAmelCase ) lowercase :str = ( hidden_states[None, None, :] .reshape(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) .permute(0 , 3 , 4 , 1 , 2 ) .contiguous() ) lowercase :Union[str, Any] = hidden_states.reshape(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) lowercase :Tuple = hidden_states + residual if not return_dict: return (output,) return TransformerTemporalModelOutput(sample=_lowerCAmelCase )
360
# DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion # and https://github.com/hojonathanho/diffusion import math from dataclasses import dataclass from typing import List, Optional, Tuple, Union import numpy as np import torch from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.schedulers.scheduling_utils import SchedulerMixin from diffusers.utils import BaseOutput, deprecate @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->DDIM class __lowerCAmelCase ( lowerCAmelCase): _a = 42 _a = None def UpperCAmelCase__ ( lowerCamelCase, lowerCamelCase=0.999, lowerCamelCase="cosine", ): if alpha_transform_type == "cosine": def alpha_bar_fn(lowerCamelCase ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(lowerCamelCase ): return math.exp(t * -12.0 ) else: raise ValueError(F"Unsupported alpha_tranform_type: {alpha_transform_type}" ) lowercase :Optional[int] = [] for i in range(lowerCamelCase ): lowercase :Any = i / num_diffusion_timesteps lowercase :str = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(lowerCamelCase ) / alpha_bar_fn(lowerCamelCase ), lowerCamelCase ) ) return torch.tensor(lowerCamelCase, dtype=torch.floataa ) class __lowerCAmelCase ( lowerCAmelCase , lowerCAmelCase): _a = 1 @register_to_config def __init__( self: Any , _lowerCAmelCase: int = 10_00 , _lowerCAmelCase: float = 0.00_01 , _lowerCAmelCase: float = 0.02 , _lowerCAmelCase: str = "linear" , _lowerCAmelCase: Optional[Union[np.ndarray, List[float]]] = None , _lowerCAmelCase: bool = True , _lowerCAmelCase: bool = True , _lowerCAmelCase: int = 0 , _lowerCAmelCase: str = "epsilon" , _lowerCAmelCase: float = 1.0 , **_lowerCAmelCase: Union[str, Any] , ): if kwargs.get("set_alpha_to_one" , _lowerCAmelCase ) is not None: lowercase :Optional[int] = ( "The `set_alpha_to_one` argument is deprecated. Please use `set_alpha_to_zero` instead." ) deprecate("set_alpha_to_one" , "1.0.0" , _lowerCAmelCase , standard_warn=_lowerCAmelCase ) lowercase :str = kwargs["set_alpha_to_one"] if trained_betas is not None: lowercase :int = torch.tensor(_lowerCAmelCase , dtype=torch.floataa ) elif beta_schedule == "linear": lowercase :List[Any] = torch.linspace(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. lowercase :Tuple = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , _lowerCAmelCase , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule lowercase :Any = betas_for_alpha_bar(_lowerCAmelCase ) else: raise NotImplementedError(F"{beta_schedule} does is not implemented for {self.__class__}" ) lowercase :Dict = 1.0 - self.betas lowercase :Dict = torch.cumprod(self.alphas , dim=0 ) # At every step in inverted ddim, we are looking into the next alphas_cumprod # For the final step, there is no next alphas_cumprod, and the index is out of bounds # `set_alpha_to_zero` decides whether we set this parameter simply to zero # in this case, self.step() just output the predicted noise # or whether we use the final alpha of the "non-previous" one. lowercase :Any = torch.tensor(0.0 ) if set_alpha_to_zero else self.alphas_cumprod[-1] # standard deviation of the initial noise distribution lowercase :Union[str, Any] = 1.0 # setable values lowercase :str = None lowercase :List[Any] = torch.from_numpy(np.arange(0 , _lowerCAmelCase ).copy().astype(np.intaa ) ) def SCREAMING_SNAKE_CASE ( self: Optional[Any] , _lowerCAmelCase: torch.FloatTensor , _lowerCAmelCase: Optional[int] = None ): return sample def SCREAMING_SNAKE_CASE ( self: Union[str, Any] , _lowerCAmelCase: int , _lowerCAmelCase: Union[str, torch.device] = None ): if num_inference_steps > self.config.num_train_timesteps: raise ValueError( F"`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:" F" {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle" F" maximal {self.config.num_train_timesteps} timesteps." ) lowercase :List[Any] = num_inference_steps lowercase :Optional[Any] = self.config.num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 lowercase :str = (np.arange(0 , _lowerCAmelCase ) * step_ratio).round().copy().astype(np.intaa ) lowercase :str = torch.from_numpy(_lowerCAmelCase ).to(_lowerCAmelCase ) self.timesteps += self.config.steps_offset def SCREAMING_SNAKE_CASE ( self: List[str] , _lowerCAmelCase: torch.FloatTensor , _lowerCAmelCase: int , _lowerCAmelCase: torch.FloatTensor , _lowerCAmelCase: float = 0.0 , _lowerCAmelCase: bool = False , _lowerCAmelCase: Optional[torch.FloatTensor] = None , _lowerCAmelCase: bool = True , ): # 1. get previous step value (=t+1) lowercase :int = timestep + self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas # change original implementation to exactly match noise levels for analogous forward process lowercase :List[Any] = self.alphas_cumprod[timestep] lowercase :Dict = ( self.alphas_cumprod[prev_timestep] if prev_timestep < self.config.num_train_timesteps else self.final_alpha_cumprod ) lowercase :Optional[Any] = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf if self.config.prediction_type == "epsilon": lowercase :int = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 lowercase :Optional[Any] = model_output elif self.config.prediction_type == "sample": lowercase :Union[str, Any] = model_output lowercase :List[str] = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 elif self.config.prediction_type == "v_prediction": lowercase :Dict = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output lowercase :str = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample else: raise ValueError( F"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or" " `v_prediction`" ) # 4. Clip or threshold "predicted x_0" if self.config.clip_sample: lowercase :Optional[Any] = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) # 5. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf lowercase :List[Any] = (1 - alpha_prod_t_prev) ** 0.5 * pred_epsilon # 6. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf lowercase :Tuple = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if not return_dict: return (prev_sample, pred_original_sample) return DDIMSchedulerOutput(prev_sample=_lowerCAmelCase , pred_original_sample=_lowerCAmelCase ) def __len__( self: List[str] ): return self.config.num_train_timesteps
158
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging A__ : int = logging.get_logger(__name__) A__ : Any = '▁' A__ : Dict = {'vocab_file': 'sentencepiece.bpe.model', 'monolingual_vocab_file': 'dict.txt'} A__ : int = { 'vocab_file': { 'vinai/bartpho-syllable': 'https://huggingface.co/vinai/bartpho-syllable/resolve/main/sentencepiece.bpe.model', }, 'monolingual_vocab_file': { 'vinai/bartpho-syllable': 'https://huggingface.co/vinai/bartpho-syllable/resolve/main/dict.txt', }, } A__ : Optional[Any] = {'vinai/bartpho-syllable': 10_24} class _UpperCAmelCase ( A__ ): """simple docstring""" lowercase__ = VOCAB_FILES_NAMES lowercase__ = PRETRAINED_VOCAB_FILES_MAP lowercase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ = ["""input_ids""", """attention_mask"""] def __init__( self : Tuple, lowerCamelCase : Optional[int], lowerCamelCase : int, lowerCamelCase : int="<s>", lowerCamelCase : Any="</s>", lowerCamelCase : Tuple="</s>", lowerCamelCase : Union[str, Any]="<s>", lowerCamelCase : Union[str, Any]="<unk>", lowerCamelCase : Dict="<pad>", lowerCamelCase : Optional[Any]="<mask>", lowerCamelCase : Optional[Dict[str, Any]] = None, **lowerCamelCase : Tuple, ): '''simple docstring''' # Mask token behave like a normal word, i.e. include the space before it lowercase__ = AddedToken(lowerCamelCase, lstrip=lowerCamelCase, rstrip=lowerCamelCase ) if isinstance(lowerCamelCase, lowerCamelCase ) else mask_token lowercase__ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=lowerCamelCase, eos_token=lowerCamelCase, unk_token=lowerCamelCase, sep_token=lowerCamelCase, cls_token=lowerCamelCase, pad_token=lowerCamelCase, mask_token=lowerCamelCase, sp_model_kwargs=self.sp_model_kwargs, **lowerCamelCase, ) lowercase__ = vocab_file lowercase__ = monolingual_vocab_file lowercase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(lowerCamelCase ) ) # Load the reduced vocab # Keep order of special tokens for backward compatibility lowercase__ = {} lowercase__ = 0 for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]: if str(lowerCamelCase ) not in self.fairseq_tokens_to_ids: lowercase__ = cnt cnt += 1 with open(lowerCamelCase, '''r''', encoding='''utf-8''' ) as f: for line in f.readlines(): lowercase__ = line.strip().split()[0] lowercase__ = len(self.fairseq_tokens_to_ids ) if str(lowerCamelCase ) not in self.fairseq_tokens_to_ids: lowercase__ = len(self.fairseq_tokens_to_ids ) lowercase__ = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self : str ): '''simple docstring''' lowercase__ = self.__dict__.copy() lowercase__ = None lowercase__ = self.sp_model.serialized_model_proto() return state def __setstate__( self : str, lowerCamelCase : int ): '''simple docstring''' lowercase__ = d # for backward compatibility if not hasattr(self, '''sp_model_kwargs''' ): lowercase__ = {} lowercase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def lowercase__ ( self : Union[str, Any], lowerCamelCase : List[int], lowerCamelCase : Optional[List[int]] = None ): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowercase__ = [self.cls_token_id] lowercase__ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowercase__ ( self : int, lowerCamelCase : List[int], lowerCamelCase : Optional[List[int]] = None, lowerCamelCase : bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase, token_ids_a=lowerCamelCase, already_has_special_tokens=lowerCamelCase ) if token_ids_a is None: return [1] + ([0] * len(lowerCamelCase )) + [1] return [1] + ([0] * len(lowerCamelCase )) + [1, 1] + ([0] * len(lowerCamelCase )) + [1] def lowercase__ ( self : str, lowerCamelCase : List[int], lowerCamelCase : Optional[List[int]] = None ): '''simple docstring''' lowercase__ = [self.sep_token_id] lowercase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def lowercase__ ( self : Optional[int] ): '''simple docstring''' return len(self.fairseq_ids_to_tokens ) def lowercase__ ( self : List[str] ): '''simple docstring''' lowercase__ = {self.convert_ids_to_tokens(lowerCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowercase__ ( self : Optional[Any], lowerCamelCase : str ): '''simple docstring''' return self.sp_model.encode(lowerCamelCase, out_type=lowerCamelCase ) def lowercase__ ( self : int, lowerCamelCase : Optional[Any] ): '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] else: return self.unk_token_id def lowercase__ ( self : List[Any], lowerCamelCase : str ): '''simple docstring''' return self.fairseq_ids_to_tokens[index] def lowercase__ ( self : Union[str, Any], lowerCamelCase : Union[str, Any] ): '''simple docstring''' lowercase__ = ''''''.join(lowerCamelCase ).replace(lowerCamelCase, ''' ''' ).strip() return out_string def lowercase__ ( self : List[Any], lowerCamelCase : str, lowerCamelCase : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(lowerCamelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return lowercase__ = os.path.join( lowerCamelCase, (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) lowercase__ = os.path.join( lowerCamelCase, (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''monolingual_vocab_file'''], ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file, lowerCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(lowerCamelCase, '''wb''' ) as fi: lowercase__ = self.sp_model.serialized_model_proto() fi.write(lowerCamelCase ) if os.path.abspath(self.monolingual_vocab_file ) != os.path.abspath( lowerCamelCase ) and os.path.isfile(self.monolingual_vocab_file ): copyfile(self.monolingual_vocab_file, lowerCamelCase ) elif not os.path.isfile(self.monolingual_vocab_file ): with open(lowerCamelCase, '''w''', encoding='''utf-8''' ) as fp: for token in self.fairseq_tokens_to_ids: if token not in self.all_special_tokens: fp.write(F"""{str(lowerCamelCase )} \n""" ) return out_vocab_file, out_monolingual_vocab_file
207
from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class _UpperCAmelCase ( A__ ): """simple docstring""" lowercase__ = ["""image_processor""", """tokenizer"""] lowercase__ = """BlipImageProcessor""" lowercase__ = ("""BertTokenizer""", """BertTokenizerFast""") def __init__( self : Dict, lowerCamelCase : Dict, lowerCamelCase : str ): '''simple docstring''' lowercase__ = False super().__init__(lowerCamelCase, lowerCamelCase ) lowercase__ = self.image_processor def __call__( self : int, lowerCamelCase : ImageInput = None, lowerCamelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None, lowerCamelCase : bool = True, lowerCamelCase : Union[bool, str, PaddingStrategy] = False, lowerCamelCase : Union[bool, str, TruncationStrategy] = None, lowerCamelCase : Optional[int] = None, lowerCamelCase : int = 0, lowerCamelCase : Optional[int] = None, lowerCamelCase : Optional[bool] = None, lowerCamelCase : bool = False, lowerCamelCase : bool = False, lowerCamelCase : bool = False, lowerCamelCase : bool = False, lowerCamelCase : bool = False, lowerCamelCase : bool = True, lowerCamelCase : Optional[Union[str, TensorType]] = None, **lowerCamelCase : Any, ): '''simple docstring''' if images is None and text is None: raise ValueError('''You have to specify either images or text.''' ) # Get only text if images is None: lowercase__ = self.tokenizer lowercase__ = self.tokenizer( text=lowerCamelCase, add_special_tokens=lowerCamelCase, padding=lowerCamelCase, truncation=lowerCamelCase, max_length=lowerCamelCase, stride=lowerCamelCase, pad_to_multiple_of=lowerCamelCase, return_attention_mask=lowerCamelCase, return_overflowing_tokens=lowerCamelCase, return_special_tokens_mask=lowerCamelCase, return_offsets_mapping=lowerCamelCase, return_token_type_ids=lowerCamelCase, return_length=lowerCamelCase, verbose=lowerCamelCase, return_tensors=lowerCamelCase, **lowerCamelCase, ) return text_encoding # add pixel_values lowercase__ = self.image_processor(lowerCamelCase, return_tensors=lowerCamelCase ) if text is not None: lowercase__ = self.tokenizer( text=lowerCamelCase, add_special_tokens=lowerCamelCase, padding=lowerCamelCase, truncation=lowerCamelCase, max_length=lowerCamelCase, stride=lowerCamelCase, pad_to_multiple_of=lowerCamelCase, return_attention_mask=lowerCamelCase, return_overflowing_tokens=lowerCamelCase, return_special_tokens_mask=lowerCamelCase, return_offsets_mapping=lowerCamelCase, return_token_type_ids=lowerCamelCase, return_length=lowerCamelCase, verbose=lowerCamelCase, return_tensors=lowerCamelCase, **lowerCamelCase, ) else: lowercase__ = None if text_encoding is not None: encoding_image_processor.update(lowerCamelCase ) return encoding_image_processor def lowercase__ ( self : Tuple, *lowerCamelCase : Union[str, Any], **lowerCamelCase : Optional[int] ): '''simple docstring''' return self.tokenizer.batch_decode(*lowerCamelCase, **lowerCamelCase ) def lowercase__ ( self : List[str], *lowerCamelCase : int, **lowerCamelCase : List[str] ): '''simple docstring''' return self.tokenizer.decode(*lowerCamelCase, **lowerCamelCase ) @property def lowercase__ ( self : List[str] ): '''simple docstring''' lowercase__ = self.tokenizer.model_input_names lowercase__ = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
207
1
def lowerCAmelCase_ ( __a ) -> bool: """simple docstring""" lowerCamelCase__: Union[str, Any] =0 for ch in input_str: lowerCamelCase__: Union[str, Any] =ord(__a ) lowerCamelCase__: int =pow(2 , __a ) # If we already turned on bit for current character's unicode if bitmap >> ch_unicode & 1 == 1: return False bitmap |= ch_bit_index_on return True if __name__ == "__main__": import doctest doctest.testmod()
273
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { "distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/config.json", "distilbert-base-uncased-distilled-squad": ( "https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/config.json" ), "distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/config.json", "distilbert-base-cased-distilled-squad": ( "https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/config.json" ), "distilbert-base-german-cased": "https://huggingface.co/distilbert-base-german-cased/resolve/main/config.json", "distilbert-base-multilingual-cased": ( "https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/config.json" ), "distilbert-base-uncased-finetuned-sst-2-english": ( "https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english/resolve/main/config.json" ), } class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = "distilbert" lowercase_ = { "hidden_size": "dim", "num_attention_heads": "n_heads", "num_hidden_layers": "n_layers", } def __init__(self : Any , UpperCAmelCase_ : str=30_522 , UpperCAmelCase_ : Union[str, Any]=512 , UpperCAmelCase_ : int=False , UpperCAmelCase_ : Optional[Any]=6 , UpperCAmelCase_ : Optional[Any]=12 , UpperCAmelCase_ : Any=768 , UpperCAmelCase_ : List[Any]=4 * 768 , UpperCAmelCase_ : Tuple=0.1 , UpperCAmelCase_ : List[Any]=0.1 , UpperCAmelCase_ : Any="gelu" , UpperCAmelCase_ : int=0.02 , UpperCAmelCase_ : Optional[Any]=0.1 , UpperCAmelCase_ : Optional[int]=0.2 , UpperCAmelCase_ : int=0 , **UpperCAmelCase_ : List[Any] , ) ->Any: '''simple docstring''' lowerCamelCase__: int =vocab_size lowerCamelCase__: Any =max_position_embeddings lowerCamelCase__: Optional[int] =sinusoidal_pos_embds lowerCamelCase__: str =n_layers lowerCamelCase__: str =n_heads lowerCamelCase__: str =dim lowerCamelCase__: Optional[Any] =hidden_dim lowerCamelCase__: Dict =dropout lowerCamelCase__: Optional[Any] =attention_dropout lowerCamelCase__: int =activation lowerCamelCase__: Dict =initializer_range lowerCamelCase__: Optional[Any] =qa_dropout lowerCamelCase__: int =seq_classif_dropout super().__init__(**UpperCAmelCase_ , pad_token_id=UpperCAmelCase_) class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' @property def SCREAMING_SNAKE_CASE_ (self : List[str]) ->Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": lowerCamelCase__: Dict ={0: "batch", 1: "choice", 2: "sequence"} else: lowerCamelCase__: Optional[int] ={0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ])
273
1
'''simple docstring''' import inspect import unittest from transformers import ViTHybridConfig from transformers.testing_utils import require_accelerate, require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel from transformers.models.vit_hybrid.modeling_vit_hybrid import VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class a__ : def __init__( self : Tuple , a : Optional[int] , a : Optional[Any]=13 , a : List[Any]=64 , a : str=2 , a : int=3 , a : Union[str, Any]=True , a : List[str]=True , a : str=32 , a : List[Any]=5 , a : int=4 , a : Optional[int]=37 , a : Any="gelu" , a : List[Any]=0.1 , a : Tuple=0.1 , a : int=10 , a : Optional[int]=0.02 , a : int=[1, 16, 4, 4] , a : Dict=None , ): """simple docstring""" __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = image_size __lowerCamelCase = patch_size __lowerCamelCase = num_channels __lowerCamelCase = is_training __lowerCamelCase = use_labels __lowerCamelCase = hidden_size __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = intermediate_size __lowerCamelCase = hidden_act __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = type_sequence_label_size __lowerCamelCase = initializer_range __lowerCamelCase = scope __lowerCamelCase = backbone_featmap_shape # in ViT hybrid, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) # the number of patches is based on the feature map of the backbone, which by default uses an output stride # of 32, which means that the feature map has a spatial resolution of 1/32 of the input image size __lowerCamelCase = (self.image_size // 32) ** 2 __lowerCamelCase = num_patches + 1 def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): """simple docstring""" __lowerCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCamelCase = None if self.use_labels: __lowerCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCamelCase = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE__ ( self : Dict ): """simple docstring""" __lowerCamelCase = { '''global_padding''': '''same''', '''layer_type''': '''bottleneck''', '''depths''': [3, 4, 9], '''out_features''': ['''stage1''', '''stage2''', '''stage3'''], '''embedding_dynamic_padding''': True, '''hidden_sizes''': [4, 8, 16, 32], '''num_groups''': 2, } return ViTHybridConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=a , initializer_range=self.initializer_range , backbone_featmap_shape=self.backbone_featmap_shape , backbone_config=a , ) def SCREAMING_SNAKE_CASE__ ( self : List[str] , a : Any , a : Optional[int] , a : Tuple ): """simple docstring""" __lowerCamelCase = ViTHybridModel(config=a ) model.to(a ) model.eval() __lowerCamelCase = model(a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE__ ( self : Any , a : Dict , a : Dict , a : Union[str, Any] ): """simple docstring""" __lowerCamelCase = self.type_sequence_label_size __lowerCamelCase = ViTHybridForImageClassification(a ) model.to(a ) model.eval() __lowerCamelCase = model(a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def SCREAMING_SNAKE_CASE__ ( self : Any ): """simple docstring""" __lowerCamelCase = self.prepare_config_and_inputs() __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = config_and_inputs __lowerCamelCase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class a__ ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): lowerCamelCase : Optional[Any] =(ViTHybridModel, ViTHybridForImageClassification) if is_torch_available() else () lowerCamelCase : Tuple =( {"feature-extraction": ViTHybridModel, "image-classification": ViTHybridForImageClassification} if is_torch_available() else {} ) lowerCamelCase : List[Any] =False lowerCamelCase : Tuple =False lowerCamelCase : List[str] =False def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): """simple docstring""" __lowerCamelCase = ViTHybridModelTester(self ) __lowerCamelCase = ConfigTester(self , config_class=a , has_text_modality=a , hidden_size=37 ) def SCREAMING_SNAKE_CASE__ ( self : str ): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='''ViT does not use inputs_embeds''' ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" pass def SCREAMING_SNAKE_CASE__ ( self : Any ): """simple docstring""" __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase = model_class(a ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __lowerCamelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(a , nn.Linear ) ) def SCREAMING_SNAKE_CASE__ ( self : Any ): """simple docstring""" __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase = model_class(a ) __lowerCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCamelCase = [*signature.parameters.keys()] __lowerCamelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , a ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): """simple docstring""" __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a ) def SCREAMING_SNAKE_CASE__ ( self : str ): """simple docstring""" __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*a ) def SCREAMING_SNAKE_CASE__ ( self : str ): """simple docstring""" __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCamelCase = _config_zero_init(a ) for model_class in self.all_model_classes: __lowerCamelCase = model_class(config=a ) # Skip the check for the backbone for name, module in model.named_modules(): if module.__class__.__name__ == "ViTHybridPatchEmbeddings": __lowerCamelCase = [f"""{name}.{key}""" for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @slow def SCREAMING_SNAKE_CASE__ ( self : Any ): """simple docstring""" for model_name in VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCamelCase = ViTHybridModel.from_pretrained(a ) self.assertIsNotNone(a ) def __lowerCAmelCase ( ) -> Optional[int]: __lowerCamelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class a__ ( unittest.TestCase ): @cached_property def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): """simple docstring""" return ( ViTHybridImageProcessor.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def SCREAMING_SNAKE_CASE__ ( self : Any ): """simple docstring""" __lowerCamelCase = ViTHybridForImageClassification.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( a ) __lowerCamelCase = self.default_image_processor __lowerCamelCase = prepare_img() __lowerCamelCase = image_processor(images=a , return_tensors='''pt''' ).to(a ) # forward pass with torch.no_grad(): __lowerCamelCase = model(**a ) # verify the logits __lowerCamelCase = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , a ) __lowerCamelCase = torch.tensor([-1.90_90, -0.49_93, -0.23_89] ).to(a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , a , atol=1e-4 ) ) @slow @require_accelerate def SCREAMING_SNAKE_CASE__ ( self : str ): """simple docstring""" __lowerCamelCase = ViTHybridImageProcessor.from_pretrained('''google/vit-hybrid-base-bit-384''' ) __lowerCamelCase = ViTHybridForImageClassification.from_pretrained('''google/vit-hybrid-base-bit-384''' , device_map='''auto''' ) __lowerCamelCase = prepare_img() __lowerCamelCase = image_processor(images=a , return_tensors='''pt''' ) __lowerCamelCase = model(**a ) __lowerCamelCase = outputs.logits # model predicts one of the 1000 ImageNet classes __lowerCamelCase = logits.argmax(-1 ).item() self.assertTrue(model.config.idalabel[predicted_class_idx] , '''tabby, tabby cat''' )
67
import inspect import re from hashlib import shaaaa from typing import Dict, List from .arrow import arrow from .audiofolder import audiofolder from .csv import csv from .imagefolder import imagefolder from .json import json from .pandas import pandas from .parquet import parquet from .sql import sql # noqa F401 from .text import text def SCREAMING_SNAKE_CASE_ ( __A : List[str] ) -> str: """simple docstring""" a_ : Tuple = [] for line in lines: a_ : Any = re.sub(R'#.*' , '' , __A ) # remove comments if line: filtered_lines.append(__A ) a_ : Tuple = '\n'.join(__A ) # Make a hash from all this code a_ : Tuple = full_str.encode('utf-8' ) return shaaaa(__A ).hexdigest() # get importable module names and hash for caching UpperCAmelCase_ : List[Any] = { 'csv': (csv.__name__, _hash_python_lines(inspect.getsource(csv).splitlines())), 'json': (json.__name__, _hash_python_lines(inspect.getsource(json).splitlines())), 'pandas': (pandas.__name__, _hash_python_lines(inspect.getsource(pandas).splitlines())), 'parquet': (parquet.__name__, _hash_python_lines(inspect.getsource(parquet).splitlines())), 'arrow': (arrow.__name__, _hash_python_lines(inspect.getsource(arrow).splitlines())), 'text': (text.__name__, _hash_python_lines(inspect.getsource(text).splitlines())), 'imagefolder': (imagefolder.__name__, _hash_python_lines(inspect.getsource(imagefolder).splitlines())), 'audiofolder': (audiofolder.__name__, _hash_python_lines(inspect.getsource(audiofolder).splitlines())), } # Used to infer the module to use based on the data files extensions UpperCAmelCase_ : Dict = { '.csv': ('csv', {}), '.tsv': ('csv', {'sep': '\t'}), '.json': ('json', {}), '.jsonl': ('json', {}), '.parquet': ('parquet', {}), '.arrow': ('arrow', {}), '.txt': ('text', {}), } _EXTENSION_TO_MODULE.update({ext: ('imagefolder', {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ('imagefolder', {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext: ('audiofolder', {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ('audiofolder', {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) UpperCAmelCase_ : Optional[int] = {'imagefolder', 'audiofolder'} # Used to filter data files based on extensions given a module name UpperCAmelCase_ : Dict[str, List[str]] = {} for _ext, (_module, _) in _EXTENSION_TO_MODULE.items(): _MODULE_TO_EXTENSIONS.setdefault(_module, []).append(_ext) _MODULE_TO_EXTENSIONS["imagefolder"].append('.zip') _MODULE_TO_EXTENSIONS["audiofolder"].append('.zip')
32
0
def _a ( SCREAMING_SNAKE_CASE_ : int = 50 ): __lowerCAmelCase = [1] * (length + 1) for row_length in range(3 , length + 1 ): for block_length in range(3 , row_length + 1 ): for block_start in range(row_length - block_length ): ways_number[row_length] += ways_number[ row_length - block_start - block_length - 1 ] ways_number[row_length] += 1 return ways_number[length] if __name__ == "__main__": print(f'''{solution() = }''')
351
import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) UpperCamelCase__ = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class a__ : _a : str = field( default=snake_case__ , metadata={"""help""": """Model type selected in the list: """ + """, """.join(snake_case__ )} ) _a : str = field( default=snake_case__ , metadata={"""help""": """The input data dir. Should contain the .json files for the SQuAD task."""} ) _a : int = field( default=1_2_8 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) _a : int = field( default=1_2_8 , metadata={"""help""": """When splitting up a long document into chunks, how much stride to take between chunks."""} , ) _a : int = field( default=6_4 , metadata={ """help""": ( """The maximum number of tokens for the question. Questions longer than this will """ """be truncated to this length.""" ) } , ) _a : int = field( default=3_0 , metadata={ """help""": ( """The maximum length of an answer that can be generated. This is needed because the start """ """and end predictions are not conditioned on one another.""" ) } , ) _a : bool = field( default=snake_case__ , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) _a : bool = field( default=snake_case__ , metadata={"""help""": """If true, the SQuAD examples contain some that do not have an answer."""} ) _a : float = field( default=0.0 , metadata={"""help""": """If null_score - best_non_null is greater than the threshold predict null."""} ) _a : int = field( default=2_0 , metadata={"""help""": """If null_score - best_non_null is greater than the threshold predict null."""} ) _a : int = field( default=0 , metadata={ """help""": ( """language id of input for language-specific xlm models (see""" """ tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)""" ) } , ) _a : int = field(default=1 , metadata={"""help""": """multiple threads for converting example to features"""} ) class a__ ( snake_case__ ): _a : Any = """train""" _a : Union[str, Any] = """dev""" class a__ ( snake_case__ ): _a : SquadDataTrainingArguments _a : List[SquadFeatures] _a : Split _a : bool def __init__( self , _A , _A , _A = None , _A = Split.train , _A = False , _A = None , _A = "pt" , ): """simple docstring""" __lowerCAmelCase = args __lowerCAmelCase = is_language_sensitive __lowerCAmelCase = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(_A , _A ): try: __lowerCAmelCase = Split[mode] except KeyError: raise KeyError("mode is not a valid split name" ) __lowerCAmelCase = mode # Load data features from cache or dataset file __lowerCAmelCase = "v2" if args.version_2_with_negative else "v1" __lowerCAmelCase = os.path.join( cache_dir if cache_dir is not None else args.data_dir , f"""cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}""" , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. __lowerCAmelCase = cached_features_file + ".lock" with FileLock(_A ): if os.path.exists(_A ) and not args.overwrite_cache: __lowerCAmelCase = time.time() __lowerCAmelCase = torch.load(_A ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. __lowerCAmelCase = self.old_features["features"] __lowerCAmelCase = self.old_features.get("dataset" , _A ) __lowerCAmelCase = self.old_features.get("examples" , _A ) logger.info( f"""Loading features from cached file {cached_features_file} [took %.3f s]""" , time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( f"""Deleting cached file {cached_features_file} will allow dataset and examples to be cached in""" " future run" ) else: if mode == Split.dev: __lowerCAmelCase = self.processor.get_dev_examples(args.data_dir ) else: __lowerCAmelCase = self.processor.get_train_examples(args.data_dir ) __lowerCAmelCase , __lowerCAmelCase = squad_convert_examples_to_features( examples=self.examples , tokenizer=_A , max_seq_length=args.max_seq_length , doc_stride=args.doc_stride , max_query_length=args.max_query_length , is_training=mode == Split.train , threads=args.threads , return_dataset=_A , ) __lowerCAmelCase = time.time() torch.save( {"features": self.features, "dataset": self.dataset, "examples": self.examples} , _A , ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f"""Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]""" ) def __len__( self ): """simple docstring""" return len(self.features ) def __getitem__( self , _A ): """simple docstring""" __lowerCAmelCase = self.features[i] __lowerCAmelCase = torch.tensor(feature.input_ids , dtype=torch.long ) __lowerCAmelCase = torch.tensor(feature.attention_mask , dtype=torch.long ) __lowerCAmelCase = torch.tensor(feature.token_type_ids , dtype=torch.long ) __lowerCAmelCase = torch.tensor(feature.cls_index , dtype=torch.long ) __lowerCAmelCase = torch.tensor(feature.p_mask , dtype=torch.float ) __lowerCAmelCase = torch.tensor(feature.is_impossible , dtype=torch.float ) __lowerCAmelCase = { "input_ids": input_ids, "attention_mask": attention_mask, "token_type_ids": token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({"cls_index": cls_index, "p_mask": p_mask} ) if self.args.version_2_with_negative: inputs.update({"is_impossible": is_impossible} ) if self.is_language_sensitive: inputs.update({"langs": (torch.ones(input_ids.shape , dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: __lowerCAmelCase = torch.tensor(feature.start_position , dtype=torch.long ) __lowerCAmelCase = torch.tensor(feature.end_position , dtype=torch.long ) inputs.update({"start_positions": start_positions, "end_positions": end_positions} ) return inputs
102
0
'''simple docstring''' import math def snake_case_ (_a : float , _a : float ): return math.pow(_a , 2 ) - a def snake_case_ (_a : float ): return 2 * x def snake_case_ (_a : float ): UpperCAmelCase = 2.0 while start <= a: UpperCAmelCase = math.pow(_a , 2 ) return start def snake_case_ (_a : float , _a : int = 9_9_9_9 , _a : float = 0.00_0000_0000_0001 ): if a < 0: raise ValueError('''math domain error''' ) UpperCAmelCase = get_initial_point(_a ) for _ in range(_a ): UpperCAmelCase = value UpperCAmelCase = value - fx(_a , _a ) / fx_derivative(_a ) if abs(prev_value - value ) < tolerance: return value return value if __name__ == "__main__": from doctest import testmod testmod()
34
from collections import defaultdict from pathlib import Path import pandas as pd from rouge_cli import calculate_rouge_path from utils import calculate_rouge A : Optional[int] = [ "Prosecutor: \"No videos were used in the crash investigation\" German papers say they saw a cell phone video of the" " final seconds on board Flight 9525. The Germanwings co-pilot says he had a \"previous episode of severe" " depression\" German airline confirms it knew of Andreas Lubitz's depression years before he took control.", "The Palestinian Authority officially becomes the 123rd member of the International Criminal Court. The formal" " accession was marked with a ceremony at The Hague, in the Netherlands. The Palestinians signed the ICC's" " founding Rome Statute in January. Israel and the United States opposed the Palestinians' efforts to join the" " body.", "Amnesty International releases its annual report on the death penalty. The report catalogs the use of" " state-sanctioned killing as a punitive measure across the globe. At least 607 people were executed around the" " world in 2014, compared to 778 in 2013. The U.S. remains one of the worst offenders for imposing capital" " punishment.", ] A : List[Any] = [ "Marseille prosecutor says \"so far no videos were used in the crash investigation\" despite media reports ." " Journalists at Bild and Paris Match are \"very confident\" the video clip is real, an editor says . Andreas Lubitz" " had informed his Lufthansa training school of an episode of severe depression, airline says .", "Membership gives the ICC jurisdiction over alleged crimes committed in Palestinian territories since last June ." " Israel and the United States opposed the move, which could open the door to war crimes investigations against" " Israelis .", "Amnesty's annual death penalty report catalogs encouraging signs, but setbacks in numbers of those sentenced to" " death . Organization claims that governments around the world are using the threat of terrorism to advance" " executions . The number of executions worldwide has gone down by almost 22% compared with 2013, but death" " sentences up by 28% .", ] def lowercase_ ( ): """simple docstring""" lowerCamelCase__ : Dict = calculate_rouge(_A , _A , bootstrap_aggregation=_A , rouge_keys=["rouge2", "rougeL"] ) assert isinstance(_A , _A ) lowerCamelCase__ : List[Any] = calculate_rouge(_A , _A , bootstrap_aggregation=_A , rouge_keys=["rouge2"] ) assert ( pd.DataFrame(no_aggregation["rouge2"] ).fmeasure.mean() == pd.DataFrame(no_aggregation_just_ra["rouge2"] ).fmeasure.mean() ) def lowercase_ ( ): """simple docstring""" lowerCamelCase__ : Any = "rougeLsum" lowerCamelCase__ : List[str] = calculate_rouge(_A , _A , newline_sep=_A , rouge_keys=[k] )[k] lowerCamelCase__ : str = calculate_rouge(_A , _A , newline_sep=_A , rouge_keys=[k] )[k] assert score > score_no_sep def lowercase_ ( ): """simple docstring""" lowerCamelCase__ : int = ["rouge1", "rouge2", "rougeL"] lowerCamelCase__ : Union[str, Any] = calculate_rouge(_A , _A , newline_sep=_A , rouge_keys=_A ) lowerCamelCase__ : Any = calculate_rouge(_A , _A , newline_sep=_A , rouge_keys=_A ) assert score_sep == score_no_sep def lowercase_ ( ): """simple docstring""" lowerCamelCase__ : Optional[Any] = [ "Her older sister, Margot Frank, died in 1945, a month earlier than previously thought.", "Marseille prosecutor says \"so far no videos were used in the crash investigation\" despite media reports .", ] lowerCamelCase__ : Tuple = [ "Margot Frank, died in 1945, a month earlier than previously thought.", "Prosecutor: \"No videos were used in the crash investigation\" German papers say they saw a cell phone video of" " the final seconds on board Flight 9525.", ] assert calculate_rouge(_A , _A , newline_sep=_A ) == calculate_rouge(_A , _A , newline_sep=_A ) def lowercase_ ( ): """simple docstring""" lowerCamelCase__ : List[str] = [ "\" \"a person who has such a video needs to immediately give it to the investigators,\" prosecutor says .<n> \"it is a very disturbing scene,\" editor-in-chief of bild online tells \"erin burnett: outfront\" " ] lowerCamelCase__ : str = [ " Marseille prosecutor says \"so far no videos were used in the crash investigation\" despite media reports . Journalists at Bild and Paris Match are \"very confident\" the video clip is real, an editor says . Andreas Lubitz had informed his Lufthansa training school of an episode of severe depression, airline says ." ] lowerCamelCase__ : Union[str, Any] = calculate_rouge(_A , _A , rouge_keys=["rougeLsum"] , newline_sep=_A )["rougeLsum"] lowerCamelCase__ : List[str] = calculate_rouge(_A , _A , rouge_keys=["rougeLsum"] )["rougeLsum"] assert new_score > prev_score def lowercase_ ( ): """simple docstring""" lowerCamelCase__ : Tuple = Path("examples/seq2seq/test_data/wmt_en_ro" ) lowerCamelCase__ : Any = calculate_rouge_path(data_dir.joinpath("test.source" ) , data_dir.joinpath("test.target" ) ) assert isinstance(_A , _A ) lowerCamelCase__ : str = calculate_rouge_path( data_dir.joinpath("test.source" ) , data_dir.joinpath("test.target" ) , bootstrap_aggregation=_A ) assert isinstance(_A , _A )
184
0
import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotConfig, is_flax_available from transformers.testing_utils import jax_device, require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html _A = 'platform' import jax import jax.numpy as jnp from transformers import BlenderbotTokenizer from transformers.models.blenderbot.modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, shift_tokens_right, ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : str=None , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None , SCREAMING_SNAKE_CASE__ : Dict=None , SCREAMING_SNAKE_CASE__ : Tuple=None , SCREAMING_SNAKE_CASE__ : Any=None , SCREAMING_SNAKE_CASE__ : str=None , ): if attention_mask is None: __UpperCamelCase =np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: __UpperCamelCase =np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: __UpperCamelCase =np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: __UpperCamelCase =np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: __UpperCamelCase =np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class UpperCAmelCase__ : """simple docstring""" def __init__( self , A_ , A_=13 , A_=7 , A_=True , A_=False , A_=99 , A_=16 , A_=2 , A_=4 , A_=4 , A_="gelu" , A_=0.1 , A_=0.1 , A_=32 , A_=2 , A_=1 , A_=0 , A_=0.02 , ) -> List[str]: __UpperCamelCase =parent __UpperCamelCase =batch_size __UpperCamelCase =seq_length __UpperCamelCase =is_training __UpperCamelCase =use_labels __UpperCamelCase =vocab_size __UpperCamelCase =hidden_size __UpperCamelCase =num_hidden_layers __UpperCamelCase =num_attention_heads __UpperCamelCase =intermediate_size __UpperCamelCase =hidden_act __UpperCamelCase =hidden_dropout_prob __UpperCamelCase =attention_probs_dropout_prob __UpperCamelCase =max_position_embeddings __UpperCamelCase =eos_token_id __UpperCamelCase =pad_token_id __UpperCamelCase =bos_token_id __UpperCamelCase =initializer_range def _a ( self ) -> List[str]: __UpperCamelCase =np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size ) __UpperCamelCase =np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 ) __UpperCamelCase =shift_tokens_right(A_ , 1 , 2 ) __UpperCamelCase =BlenderbotConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=A_ , ) __UpperCamelCase =prepare_blenderbot_inputs_dict(A_ , A_ , A_ ) return config, inputs_dict def _a ( self ) -> Dict: __UpperCamelCase , __UpperCamelCase =self.prepare_config_and_inputs() return config, inputs_dict def _a ( self , A_ , A_ , A_ ) -> Optional[Any]: __UpperCamelCase =20 __UpperCamelCase =model_class_name(A_ ) __UpperCamelCase =model.encode(inputs_dict['input_ids'] ) __UpperCamelCase , __UpperCamelCase =( inputs_dict['decoder_input_ids'], inputs_dict['decoder_attention_mask'], ) __UpperCamelCase =model.init_cache(decoder_input_ids.shape[0] , A_ , A_ ) __UpperCamelCase =jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype='i4' ) __UpperCamelCase =jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) __UpperCamelCase =model.decode( decoder_input_ids[:, :-1] , A_ , decoder_attention_mask=A_ , past_key_values=A_ , decoder_position_ids=A_ , ) __UpperCamelCase =jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='i4' ) __UpperCamelCase =model.decode( decoder_input_ids[:, -1:] , A_ , decoder_attention_mask=A_ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=A_ , ) __UpperCamelCase =model.decode(A_ , A_ ) __UpperCamelCase =np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=f'Max diff is {diff}' ) def _a ( self , A_ , A_ , A_ ) -> List[str]: __UpperCamelCase =20 __UpperCamelCase =model_class_name(A_ ) __UpperCamelCase =model.encode(inputs_dict['input_ids'] ) __UpperCamelCase , __UpperCamelCase =( inputs_dict['decoder_input_ids'], inputs_dict['decoder_attention_mask'], ) __UpperCamelCase =jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) __UpperCamelCase =model.init_cache(decoder_input_ids.shape[0] , A_ , A_ ) __UpperCamelCase =jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) __UpperCamelCase =model.decode( decoder_input_ids[:, :-1] , A_ , decoder_attention_mask=A_ , past_key_values=A_ , decoder_position_ids=A_ , ) __UpperCamelCase =jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='i4' ) __UpperCamelCase =model.decode( decoder_input_ids[:, -1:] , A_ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=A_ , decoder_position_ids=A_ , ) __UpperCamelCase =model.decode(A_ , A_ , decoder_attention_mask=A_ ) __UpperCamelCase =np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=f'Max diff is {diff}' ) @require_flax class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : Any = 9_9 def _a ( self ) -> Any: __UpperCamelCase =np.array( [ [71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 82, 2], [5, 97, 17, 39, 94, 40, 2], [76, 83, 94, 25, 70, 78, 2], [87, 59, 41, 35, 48, 66, 2], [55, 13, 16, 58, 5, 2, 1], # note padding [64, 27, 31, 51, 12, 75, 2], [52, 64, 86, 17, 83, 39, 2], [48, 61, 9, 24, 71, 82, 2], [26, 1, 60, 48, 22, 13, 2], [21, 5, 62, 28, 14, 76, 2], [45, 98, 37, 86, 59, 48, 2], [70, 70, 50, 9, 28, 0, 2], ] , dtype=np.intaa , ) __UpperCamelCase =input_ids.shape[0] __UpperCamelCase =BlenderbotConfig( vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def _a ( self ) -> Optional[Any]: __UpperCamelCase , __UpperCamelCase , __UpperCamelCase =self._get_config_and_data() __UpperCamelCase =FlaxBlenderbotForConditionalGeneration(A_ ) __UpperCamelCase =lm_model(input_ids=A_ ) __UpperCamelCase =(batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs['logits'].shape , A_ ) def _a ( self ) -> Any: __UpperCamelCase =BlenderbotConfig( vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , ) __UpperCamelCase =FlaxBlenderbotForConditionalGeneration(A_ ) __UpperCamelCase =np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa ) __UpperCamelCase =np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa ) __UpperCamelCase =lm_model(input_ids=A_ , decoder_input_ids=A_ ) __UpperCamelCase =(*summary.shape, config.vocab_size) self.assertEqual(outputs['logits'].shape , A_ ) def _a ( self ) -> Union[str, Any]: __UpperCamelCase =np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa ) __UpperCamelCase =shift_tokens_right(A_ , 1 , 2 ) __UpperCamelCase =np.equal(A_ , 1 ).astype(np.floataa ).sum() __UpperCamelCase =np.equal(A_ , 1 ).astype(np.floataa ).sum() self.assertEqual(shifted.shape , input_ids.shape ) self.assertEqual(A_ , n_pad_before - 1 ) self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() ) @require_flax class UpperCAmelCase__ ( A_ , unittest.TestCase , A_ ): """simple docstring""" UpperCAmelCase__ : Tuple = True UpperCAmelCase__ : Any = ( ( FlaxBlenderbotModel, FlaxBlenderbotForConditionalGeneration, ) if is_flax_available() else () ) UpperCAmelCase__ : str = (FlaxBlenderbotForConditionalGeneration,) if is_flax_available() else () def _a ( self ) -> Dict: __UpperCamelCase =FlaxBlenderbotModelTester(self ) def _a ( self ) -> Optional[Any]: __UpperCamelCase , __UpperCamelCase =self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(A_ , A_ , A_ ) def _a ( self ) -> Tuple: __UpperCamelCase , __UpperCamelCase =self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(A_ , A_ , A_ ) def _a ( self ) -> Optional[Any]: __UpperCamelCase , __UpperCamelCase =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __UpperCamelCase =self._prepare_for_class(A_ , A_ ) __UpperCamelCase =model_class(A_ ) @jax.jit def encode_jitted(A_ , A_=None , **A_ ): return model.encode(input_ids=A_ , attention_mask=A_ ) with self.subTest('JIT Enabled' ): __UpperCamelCase =encode_jitted(**A_ ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): __UpperCamelCase =encode_jitted(**A_ ).to_tuple() self.assertEqual(len(A_ ) , len(A_ ) ) for jitted_output, output in zip(A_ , A_ ): self.assertEqual(jitted_output.shape , output.shape ) def _a ( self ) -> Union[str, Any]: __UpperCamelCase , __UpperCamelCase =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __UpperCamelCase =model_class(A_ ) __UpperCamelCase =model.encode(inputs_dict['input_ids'] , inputs_dict['attention_mask'] ) __UpperCamelCase ={ 'decoder_input_ids': inputs_dict['decoder_input_ids'], 'decoder_attention_mask': inputs_dict['decoder_attention_mask'], 'encoder_outputs': encoder_outputs, } @jax.jit def decode_jitted(A_ , A_ , A_ ): return model.decode( decoder_input_ids=A_ , decoder_attention_mask=A_ , encoder_outputs=A_ , ) with self.subTest('JIT Enabled' ): __UpperCamelCase =decode_jitted(**A_ ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): __UpperCamelCase =decode_jitted(**A_ ).to_tuple() self.assertEqual(len(A_ ) , len(A_ ) ) for jitted_output, output in zip(A_ , A_ ): self.assertEqual(jitted_output.shape , output.shape ) @slow def _a ( self ) -> List[Any]: for model_class_name in self.all_model_classes: __UpperCamelCase =model_class_name.from_pretrained('facebook/blenderbot-400M-distill' ) # FlaxBlenderbotForSequenceClassification expects eos token in input_ids __UpperCamelCase =np.ones((1, 1) ) * model.config.eos_token_id __UpperCamelCase =model(A_ ) self.assertIsNotNone(A_ ) @unittest.skipUnless(jax_device != 'cpu' , '3B test too slow on CPU.' ) @slow def _a ( self ) -> Any: __UpperCamelCase ={'num_beams': 1, 'early_stopping': True, 'min_length': 15, 'max_length': 25} __UpperCamelCase ={'skip_special_tokens': True, 'clean_up_tokenization_spaces': True} __UpperCamelCase =FlaxBlenderbotForConditionalGeneration.from_pretrained('facebook/blenderbot-3B' , from_pt=A_ ) __UpperCamelCase =BlenderbotTokenizer.from_pretrained('facebook/blenderbot-3B' ) __UpperCamelCase =['Sam'] __UpperCamelCase =tokenizer(A_ , return_tensors='jax' ) __UpperCamelCase =model.generate(**A_ , **A_ ) __UpperCamelCase ='Sam is a great name. It means "sun" in Gaelic.' __UpperCamelCase =tokenizer.batch_decode(A_ , **A_ ) assert generated_txt[0].strip() == tgt_text
117
import warnings from ...utils import logging from .image_processing_imagegpt import ImageGPTImageProcessor _A = logging.get_logger(__name__) class UpperCAmelCase__ ( A_ ): """simple docstring""" def __init__( self , *A_ , **A_ ) -> None: warnings.warn( 'The class ImageGPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use ImageGPTImageProcessor instead.' , A_ , ) super().__init__(*A_ , **A_ )
117
1
"""simple docstring""" import os from pathlib import Path from unittest.mock import patch import pytest import zstandard as zstd from datasets.download.download_config import DownloadConfig from datasets.utils.file_utils import ( OfflineModeIsEnabled, cached_path, fsspec_get, fsspec_head, ftp_get, ftp_head, get_from_cache, http_get, http_head, ) lowerCAmelCase__ : Any = '\\n Text data.\n Second line of data.' lowerCAmelCase__ : Dict = 'file' @pytest.fixture(scope='session' ) def a_ ( lowerCamelCase ): UpperCAmelCase__ = tmp_path_factory.mktemp('data' ) / (FILE_PATH + '.zstd') UpperCAmelCase__ = bytes(SCREAMING_SNAKE_CASE_ , 'utf-8' ) with zstd.open(SCREAMING_SNAKE_CASE_ , 'wb' ) as f: f.write(SCREAMING_SNAKE_CASE_ ) return path @pytest.fixture def a_ ( lowerCamelCase ): with open(os.path.join(tmpfs.local_root_dir , SCREAMING_SNAKE_CASE_ ) , 'w' ) as f: f.write(SCREAMING_SNAKE_CASE_ ) return FILE_PATH @pytest.mark.parametrize('compression_format' , ['gzip', 'xz', 'zstd'] ) def a_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): UpperCAmelCase__ = {'gzip': gz_file, 'xz': xz_file, 'zstd': zstd_path} UpperCAmelCase__ = input_paths[compression_format] UpperCAmelCase__ = tmp_path / 'cache' UpperCAmelCase__ = DownloadConfig(cache_dir=SCREAMING_SNAKE_CASE_ , extract_compressed_file=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase__ = cached_path(SCREAMING_SNAKE_CASE_ , download_config=SCREAMING_SNAKE_CASE_ ) with open(SCREAMING_SNAKE_CASE_ ) as f: UpperCAmelCase__ = f.read() with open(SCREAMING_SNAKE_CASE_ ) as f: UpperCAmelCase__ = f.read() assert extracted_file_content == expected_file_content @pytest.mark.parametrize('default_extracted' , [True, False] ) @pytest.mark.parametrize('default_cache_dir' , [True, False] ) def a_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): UpperCAmelCase__ = 'custom_cache' UpperCAmelCase__ = 'custom_extracted_dir' UpperCAmelCase__ = tmp_path / 'custom_extracted_path' if default_extracted: UpperCAmelCase__ = ('downloads' if default_cache_dir else custom_cache_dir, 'extracted') else: monkeypatch.setattr('datasets.config.EXTRACTED_DATASETS_DIR' , SCREAMING_SNAKE_CASE_ ) monkeypatch.setattr('datasets.config.EXTRACTED_DATASETS_PATH' , str(SCREAMING_SNAKE_CASE_ ) ) UpperCAmelCase__ = custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir) UpperCAmelCase__ = xz_file UpperCAmelCase__ = ( DownloadConfig(extract_compressed_file=SCREAMING_SNAKE_CASE_ ) if default_cache_dir else DownloadConfig(cache_dir=tmp_path / custom_cache_dir , extract_compressed_file=SCREAMING_SNAKE_CASE_ ) ) UpperCAmelCase__ = cached_path(SCREAMING_SNAKE_CASE_ , download_config=SCREAMING_SNAKE_CASE_ ) assert Path(SCREAMING_SNAKE_CASE_ ).parent.parts[-2:] == expected def a_ ( lowerCamelCase ): UpperCAmelCase__ = str(Path(SCREAMING_SNAKE_CASE_ ).resolve() ) assert cached_path(SCREAMING_SNAKE_CASE_ ) == text_file # relative path UpperCAmelCase__ = str(Path(SCREAMING_SNAKE_CASE_ ).resolve().relative_to(Path(os.getcwd() ) ) ) assert cached_path(SCREAMING_SNAKE_CASE_ ) == text_file def a_ ( lowerCamelCase ): UpperCAmelCase__ = str(tmp_path.resolve() / '__missing_file__.txt' ) with pytest.raises(SCREAMING_SNAKE_CASE_ ): cached_path(SCREAMING_SNAKE_CASE_ ) # relative path UpperCAmelCase__ = './__missing_file__.txt' with pytest.raises(SCREAMING_SNAKE_CASE_ ): cached_path(SCREAMING_SNAKE_CASE_ ) def a_ ( lowerCamelCase ): UpperCAmelCase__ = get_from_cache(f'''tmp://{tmpfs_file}''' ) with open(SCREAMING_SNAKE_CASE_ ) as f: UpperCAmelCase__ = f.read() assert output_file_content == FILE_CONTENT @patch('datasets.config.HF_DATASETS_OFFLINE' , SCREAMING_SNAKE_CASE_ ) def a_ ( ): with pytest.raises(SCREAMING_SNAKE_CASE_ ): cached_path('https://huggingface.co' ) @patch('datasets.config.HF_DATASETS_OFFLINE' , SCREAMING_SNAKE_CASE_ ) def a_ ( lowerCamelCase ): UpperCAmelCase__ = tmp_path_factory.mktemp('data' ) / 'file.html' with pytest.raises(SCREAMING_SNAKE_CASE_ ): http_get('https://huggingface.co' , temp_file=SCREAMING_SNAKE_CASE_ ) with pytest.raises(SCREAMING_SNAKE_CASE_ ): http_head('https://huggingface.co' ) @patch('datasets.config.HF_DATASETS_OFFLINE' , SCREAMING_SNAKE_CASE_ ) def a_ ( lowerCamelCase ): UpperCAmelCase__ = tmp_path_factory.mktemp('data' ) / 'file.html' with pytest.raises(SCREAMING_SNAKE_CASE_ ): ftp_get('ftp://huggingface.co' , temp_file=SCREAMING_SNAKE_CASE_ ) with pytest.raises(SCREAMING_SNAKE_CASE_ ): ftp_head('ftp://huggingface.co' ) @patch('datasets.config.HF_DATASETS_OFFLINE' , SCREAMING_SNAKE_CASE_ ) def a_ ( lowerCamelCase ): UpperCAmelCase__ = tmp_path_factory.mktemp('data' ) / 'file.html' with pytest.raises(SCREAMING_SNAKE_CASE_ ): fsspec_get('s3://huggingface.co' , temp_file=SCREAMING_SNAKE_CASE_ ) with pytest.raises(SCREAMING_SNAKE_CASE_ ): fsspec_head('s3://huggingface.co' )
98
'''simple docstring''' import math from numpy import inf from scipy.integrate import quad def __a(SCREAMING_SNAKE_CASE_ : float ): '''simple docstring''' if num <= 0: raise ValueError("math domain error" ) return quad(SCREAMING_SNAKE_CASE_ , 0 , SCREAMING_SNAKE_CASE_ , args=(SCREAMING_SNAKE_CASE_) )[0] def __a(SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float ): '''simple docstring''' return math.pow(SCREAMING_SNAKE_CASE_ , z - 1 ) * math.exp(-x ) if __name__ == "__main__": from doctest import testmod testmod()
158
0
import random from .binary_exp_mod import bin_exp_mod def UpperCAmelCase_ (_lowerCAmelCase : Any , _lowerCAmelCase : List[str]=10_00 ): if n < 2: return False if n % 2 == 0: return n == 2 # this means n is odd __UpperCamelCase : Any = n - 1 __UpperCamelCase : str = 0 while d % 2 == 0: d /= 2 exp += 1 # n - 1=d*(2**exp) __UpperCamelCase : Dict = 0 while count < prec: __UpperCamelCase : Tuple = random.randint(2 , n - 1 ) __UpperCamelCase : Optional[Any] = bin_exp_mod(lowercase_ , lowercase_ , lowercase_ ) if b != 1: __UpperCamelCase : int = True for _ in range(lowercase_ ): if b == n - 1: __UpperCamelCase : Dict = False break __UpperCamelCase : Any = b * b b %= n if flag: return False count += 1 return True if __name__ == "__main__": lowercase : str = abs(int(input("Enter bound : ").strip())) print("Here\'s the list of primes:") print(", ".join(str(i) for i in range(n + 1) if is_prime_big(i)))
362
import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ConvNextConfig, UperNetConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import UperNetForSemanticSegmentation from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self , __UpperCamelCase , __UpperCamelCase=13 , __UpperCamelCase=32 , __UpperCamelCase=3 , __UpperCamelCase=4 , __UpperCamelCase=[10, 20, 30, 40] , __UpperCamelCase=[2, 2, 3, 2] , __UpperCamelCase=True , __UpperCamelCase=True , __UpperCamelCase=37 , __UpperCamelCase="gelu" , __UpperCamelCase=10 , __UpperCamelCase=0.02 , __UpperCamelCase=["stage2", "stage3", "stage4"] , __UpperCamelCase=3 , __UpperCamelCase=None , ) -> str: '''simple docstring''' __UpperCamelCase : Union[str, Any] = parent __UpperCamelCase : List[Any] = batch_size __UpperCamelCase : Union[str, Any] = image_size __UpperCamelCase : Any = num_channels __UpperCamelCase : Union[str, Any] = num_stages __UpperCamelCase : List[Any] = hidden_sizes __UpperCamelCase : Optional[Any] = depths __UpperCamelCase : Dict = is_training __UpperCamelCase : List[Any] = use_labels __UpperCamelCase : str = intermediate_size __UpperCamelCase : int = hidden_act __UpperCamelCase : Tuple = type_sequence_label_size __UpperCamelCase : List[Any] = initializer_range __UpperCamelCase : List[Any] = out_features __UpperCamelCase : Optional[Any] = num_labels __UpperCamelCase : Optional[Any] = scope __UpperCamelCase : List[Any] = num_stages def __lowerCamelCase ( self ) -> Optional[int]: '''simple docstring''' __UpperCamelCase : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCamelCase : Optional[Any] = None if self.use_labels: __UpperCamelCase : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCamelCase : int = self.get_config() return config, pixel_values, labels def __lowerCamelCase ( self ) -> List[str]: '''simple docstring''' return ConvNextConfig( num_channels=self.num_channels , num_stages=self.num_stages , hidden_sizes=self.hidden_sizes , depths=self.depths , is_training=self.is_training , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , out_features=self.out_features , ) def __lowerCamelCase ( self ) -> str: '''simple docstring''' return UperNetConfig( backbone_config=self.get_backbone_config() , hidden_size=5_12 , pool_scales=[1, 2, 3, 6] , use_auxiliary_head=__UpperCamelCase , auxiliary_loss_weight=0.4 , auxiliary_in_channels=40 , auxiliary_channels=2_56 , auxiliary_num_convs=1 , auxiliary_concat_input=__UpperCamelCase , loss_ignore_index=2_55 , num_labels=self.num_labels , ) def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> List[Any]: '''simple docstring''' __UpperCamelCase : Union[str, Any] = UperNetForSemanticSegmentation(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() __UpperCamelCase : List[str] = model(__UpperCamelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def __lowerCamelCase ( self ) -> Union[str, Any]: '''simple docstring''' __UpperCamelCase : int = self.prepare_config_and_inputs() ( ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ) : Optional[int] = config_and_inputs __UpperCamelCase : Optional[int] = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): """simple docstring""" lowercase : Any = (UperNetForSemanticSegmentation,) if is_torch_available() else () lowercase : Dict = {'image-segmentation': UperNetForSemanticSegmentation} if is_torch_available() else {} lowercase : Union[str, Any] = False lowercase : Tuple = False lowercase : Optional[int] = False lowercase : Tuple = False lowercase : List[str] = False lowercase : Any = False def __lowerCamelCase ( self ) -> int: '''simple docstring''' __UpperCamelCase : Tuple = UperNetModelTester(self ) __UpperCamelCase : str = ConfigTester(self , config_class=__UpperCamelCase , has_text_modality=__UpperCamelCase , hidden_size=37 ) def __lowerCamelCase ( self ) -> Dict: '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __lowerCamelCase ( self ) -> Tuple: '''simple docstring''' return def __lowerCamelCase ( self ) -> Dict: '''simple docstring''' __UpperCamelCase , __UpperCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCamelCase : Tuple = model_class(__UpperCamelCase ) __UpperCamelCase : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCamelCase : List[str] = [*signature.parameters.keys()] __UpperCamelCase : List[str] = ["pixel_values"] self.assertListEqual(arg_names[:1] , __UpperCamelCase ) def __lowerCamelCase ( self ) -> Optional[int]: '''simple docstring''' __UpperCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__UpperCamelCase ) @unittest.skip(reason="UperNet does not use inputs_embeds" ) def __lowerCamelCase ( self ) -> List[Any]: '''simple docstring''' pass @unittest.skip(reason="UperNet does not support input and output embeddings" ) def __lowerCamelCase ( self ) -> List[str]: '''simple docstring''' pass @unittest.skip(reason="UperNet does not have a base model" ) def __lowerCamelCase ( self ) -> Union[str, Any]: '''simple docstring''' pass @unittest.skip(reason="UperNet does not have a base model" ) def __lowerCamelCase ( self ) -> List[Any]: '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason="UperNet has some layers using `add_module` which doesn't work well with `nn.DataParallel`" ) def __lowerCamelCase ( self ) -> Union[str, Any]: '''simple docstring''' pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def __lowerCamelCase ( self ) -> Dict: '''simple docstring''' pass def __lowerCamelCase ( self ) -> Union[str, Any]: '''simple docstring''' def check_hidden_states_output(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): __UpperCamelCase : int = model_class(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() with torch.no_grad(): __UpperCamelCase : Any = model(**self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) ) __UpperCamelCase : Optional[int] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __UpperCamelCase : int = self.model_tester.num_stages self.assertEqual(len(__UpperCamelCase ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) __UpperCamelCase , __UpperCamelCase : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCamelCase : Any = True check_hidden_states_output(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __UpperCamelCase : List[str] = True check_hidden_states_output(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) def __lowerCamelCase ( self ) -> int: '''simple docstring''' __UpperCamelCase , __UpperCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() __UpperCamelCase : Tuple = _config_zero_init(__UpperCamelCase ) __UpperCamelCase : int = _config_zero_init(configs_no_init.backbone_config ) for model_class in self.all_model_classes: __UpperCamelCase : List[str] = model_class(config=__UpperCamelCase ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @unittest.skip(reason="UperNet does not have tied weights" ) def __lowerCamelCase ( self ) -> int: '''simple docstring''' pass @slow def __lowerCamelCase ( self ) -> Optional[int]: '''simple docstring''' for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase : str = UperNetForSemanticSegmentation.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) def UpperCAmelCase_ (): __UpperCamelCase : Union[str, Any] = hf_hub_download( repo_id="hf-internal-testing/fixtures_ade20k" , repo_type="dataset" , filename="ADE_val_00000001.jpg" ) __UpperCamelCase : List[str] = Image.open(_lowerCAmelCase ).convert("RGB" ) return image @require_torch @require_vision @slow class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def __lowerCamelCase ( self ) -> str: '''simple docstring''' __UpperCamelCase : Optional[Any] = AutoImageProcessor.from_pretrained("openmmlab/upernet-swin-tiny" ) __UpperCamelCase : Dict = UperNetForSemanticSegmentation.from_pretrained("openmmlab/upernet-swin-tiny" ).to(__UpperCamelCase ) __UpperCamelCase : Dict = prepare_img() __UpperCamelCase : Any = processor(images=__UpperCamelCase , return_tensors="pt" ).to(__UpperCamelCase ) with torch.no_grad(): __UpperCamelCase : Any = model(**__UpperCamelCase ) __UpperCamelCase : Tuple = torch.Size((1, model.config.num_labels, 5_12, 5_12) ) self.assertEqual(outputs.logits.shape , __UpperCamelCase ) __UpperCamelCase : Union[str, Any] = torch.tensor( [[-7.5958, -7.5958, -7.4302], [-7.5958, -7.5958, -7.4302], [-7.4797, -7.4797, -7.3068]] ).to(__UpperCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , __UpperCamelCase , atol=1E-4 ) ) def __lowerCamelCase ( self ) -> int: '''simple docstring''' __UpperCamelCase : Optional[Any] = AutoImageProcessor.from_pretrained("openmmlab/upernet-convnext-tiny" ) __UpperCamelCase : List[Any] = UperNetForSemanticSegmentation.from_pretrained("openmmlab/upernet-convnext-tiny" ).to(__UpperCamelCase ) __UpperCamelCase : Dict = prepare_img() __UpperCamelCase : int = processor(images=__UpperCamelCase , return_tensors="pt" ).to(__UpperCamelCase ) with torch.no_grad(): __UpperCamelCase : int = model(**__UpperCamelCase ) __UpperCamelCase : Dict = torch.Size((1, model.config.num_labels, 5_12, 5_12) ) self.assertEqual(outputs.logits.shape , __UpperCamelCase ) __UpperCamelCase : Union[str, Any] = torch.tensor( [[-8.8110, -8.8110, -8.6521], [-8.8110, -8.8110, -8.6521], [-8.7746, -8.7746, -8.6130]] ).to(__UpperCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , __UpperCamelCase , atol=1E-4 ) )
171
0
import dataclasses import json import sys import types from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser, ArgumentTypeError from copy import copy from enum import Enum from inspect import isclass from pathlib import Path from typing import Any, Callable, Dict, Iterable, List, Literal, NewType, Optional, Tuple, Union, get_type_hints import yaml __A : List[Any] = NewType("DataClass", Any) __A : Optional[Any] = NewType("DataClassType", Any) def __SCREAMING_SNAKE_CASE ( UpperCamelCase__ ) -> Optional[int]: '''simple docstring''' if isinstance(UpperCamelCase__ , UpperCamelCase__ ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise ArgumentTypeError( F"""Truthy value expected: got {v} but expected one of yes/no, true/false, t/f, y/n, 1/0 (case insensitive).""" ) def __SCREAMING_SNAKE_CASE ( UpperCamelCase__ ) -> Callable[[str], Any]: '''simple docstring''' UpperCAmelCase = {str(UpperCamelCase__ ): choice for choice in choices} return lambda UpperCamelCase__ : str_to_choice.get(UpperCamelCase__ , UpperCamelCase__ ) def __SCREAMING_SNAKE_CASE ( *, UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = dataclasses.MISSING , UpperCamelCase__ = dataclasses.MISSING , UpperCamelCase__ = None , **UpperCamelCase__ , ) -> dataclasses.Field: '''simple docstring''' if metadata is None: # Important, don't use as default param in function signature because dict is mutable and shared across function calls UpperCAmelCase = {} if aliases is not None: UpperCAmelCase = aliases if help is not None: UpperCAmelCase = help return dataclasses.field(metadata=UpperCamelCase__ , default=UpperCamelCase__ , default_factory=UpperCamelCase__ , **UpperCamelCase__ ) class A_ (a_ ): UpperCAmelCase__ = 42 def __init__( self , _A , **_A ): '''simple docstring''' if "formatter_class" not in kwargs: UpperCAmelCase = ArgumentDefaultsHelpFormatter super().__init__(**_A ) if dataclasses.is_dataclass(_A ): UpperCAmelCase = [dataclass_types] UpperCAmelCase = list(_A ) for dtype in self.dataclass_types: self._add_dataclass_arguments(_A ) @staticmethod def _lowercase ( _A , _A ): '''simple docstring''' UpperCAmelCase = F"""--{field.name}""" UpperCAmelCase = field.metadata.copy() # field.metadata is not used at all by Data Classes, # it is provided as a third-party extension mechanism. if isinstance(field.type , _A ): raise RuntimeError( '''Unresolved type detected, which should have been done with the help of ''' '''`typing.get_type_hints` method by default''' ) UpperCAmelCase = kwargs.pop('''aliases''' , [] ) if isinstance(_A , _A ): UpperCAmelCase = [aliases] UpperCAmelCase = getattr(field.type , '''__origin__''' , field.type ) if origin_type is Union or (hasattr(_A , '''UnionType''' ) and isinstance(_A , types.UnionType )): if str not in field.type.__args__ and ( len(field.type.__args__ ) != 2 or type(_A ) not in field.type.__args__ ): raise ValueError( '''Only `Union[X, NoneType]` (i.e., `Optional[X]`) is allowed for `Union` because''' ''' the argument parser only supports one type per argument.''' F""" Problem encountered in field '{field.name}'.""" ) if type(_A ) not in field.type.__args__: # filter `str` in Union UpperCAmelCase = field.type.__args__[0] if field.type.__args__[1] == str else field.type.__args__[1] UpperCAmelCase = getattr(field.type , '''__origin__''' , field.type ) elif bool not in field.type.__args__: # filter `NoneType` in Union (except for `Union[bool, NoneType]`) UpperCAmelCase = ( field.type.__args__[0] if isinstance(_A , field.type.__args__[1] ) else field.type.__args__[1] ) UpperCAmelCase = getattr(field.type , '''__origin__''' , field.type ) # A variable to store kwargs for a boolean field, if needed # so that we can init a `no_*` complement argument (see below) UpperCAmelCase = {} if origin_type is Literal or (isinstance(field.type , _A ) and issubclass(field.type , _A )): if origin_type is Literal: UpperCAmelCase = field.type.__args__ else: UpperCAmelCase = [x.value for x in field.type] UpperCAmelCase = make_choice_type_function(kwargs['''choices'''] ) if field.default is not dataclasses.MISSING: UpperCAmelCase = field.default else: UpperCAmelCase = True elif field.type is bool or field.type == Optional[bool]: # Copy the currect kwargs to use to instantiate a `no_*` complement argument below. # We do not initialize it here because the `no_*` alternative must be instantiated after the real argument UpperCAmelCase = copy(_A ) # Hack because type=bool in argparse does not behave as we want. UpperCAmelCase = string_to_bool if field.type is bool or (field.default is not None and field.default is not dataclasses.MISSING): # Default value is False if we have no default when of type bool. UpperCAmelCase = False if field.default is dataclasses.MISSING else field.default # This is the value that will get picked if we don't include --field_name in any way UpperCAmelCase = default # This tells argparse we accept 0 or 1 value after --field_name UpperCAmelCase = '''?''' # This is the value that will get picked if we do --field_name (without value) UpperCAmelCase = True elif isclass(_A ) and issubclass(_A , _A ): UpperCAmelCase = field.type.__args__[0] UpperCAmelCase = '''+''' if field.default_factory is not dataclasses.MISSING: UpperCAmelCase = field.default_factory() elif field.default is dataclasses.MISSING: UpperCAmelCase = True else: UpperCAmelCase = field.type if field.default is not dataclasses.MISSING: UpperCAmelCase = field.default elif field.default_factory is not dataclasses.MISSING: UpperCAmelCase = field.default_factory() else: UpperCAmelCase = True parser.add_argument(_A , *_A , **_A ) # Add a complement `no_*` argument for a boolean field AFTER the initial field has already been added. # Order is important for arguments with the same destination! # We use a copy of earlier kwargs because the original kwargs have changed a lot before reaching down # here and we do not need those changes/additional keys. if field.default is True and (field.type is bool or field.type == Optional[bool]): UpperCAmelCase = False parser.add_argument(F"""--no_{field.name}""" , action='''store_false''' , dest=field.name , **_A ) def _lowercase ( self , _A ): '''simple docstring''' if hasattr(_A , '''_argument_group_name''' ): UpperCAmelCase = self.add_argument_group(dtype._argument_group_name ) else: UpperCAmelCase = self try: UpperCAmelCase = get_type_hints(_A ) except NameError: raise RuntimeError( F"""Type resolution failed for {dtype}. Try declaring the class in global scope or """ '''removing line of `from __future__ import annotations` which opts in Postponed ''' '''Evaluation of Annotations (PEP 563)''' ) except TypeError as ex: # Remove this block when we drop Python 3.9 support if sys.version_info[:2] < (3, 1_0) and "unsupported operand type(s) for |" in str(_A ): UpperCAmelCase = '''.'''.join(map(_A , sys.version_info[:3] ) ) raise RuntimeError( F"""Type resolution failed for {dtype} on Python {python_version}. Try removing """ '''line of `from __future__ import annotations` which opts in union types as ''' '''`X | Y` (PEP 604) via Postponed Evaluation of Annotations (PEP 563). To ''' '''support Python versions that lower than 3.10, you need to use ''' '''`typing.Union[X, Y]` instead of `X | Y` and `typing.Optional[X]` instead of ''' '''`X | None`.''' ) from ex raise for field in dataclasses.fields(_A ): if not field.init: continue UpperCAmelCase = type_hints[field.name] self._parse_dataclass_field(_A , _A ) def _lowercase ( self , _A=None , _A=False , _A=True , _A=None , _A=None , ): '''simple docstring''' if args_file_flag or args_filename or (look_for_args_file and len(sys.argv )): UpperCAmelCase = [] if args_filename: args_files.append(Path(_A ) ) elif look_for_args_file and len(sys.argv ): args_files.append(Path(sys.argv[0] ).with_suffix('''.args''' ) ) # args files specified via command line flag should overwrite default args files so we add them last if args_file_flag: # Create special parser just to extract the args_file_flag values UpperCAmelCase = ArgumentParser() args_file_parser.add_argument(_A , type=_A , action='''append''' ) # Use only remaining args for further parsing (remove the args_file_flag) UpperCAmelCase , UpperCAmelCase = args_file_parser.parse_known_args(args=_A ) UpperCAmelCase = vars(_A ).get(args_file_flag.lstrip('''-''' ) , _A ) if cmd_args_file_paths: args_files.extend([Path(_A ) for p in cmd_args_file_paths] ) UpperCAmelCase = [] for args_file in args_files: if args_file.exists(): file_args += args_file.read_text().split() # in case of duplicate arguments the last one has precedence # args specified via the command line should overwrite args from files, so we add them last UpperCAmelCase = file_args + args if args is not None else file_args + sys.argv[1:] UpperCAmelCase , UpperCAmelCase = self.parse_known_args(args=_A ) UpperCAmelCase = [] for dtype in self.dataclass_types: UpperCAmelCase = {f.name for f in dataclasses.fields(_A ) if f.init} UpperCAmelCase = {k: v for k, v in vars(_A ).items() if k in keys} for k in keys: delattr(_A , _A ) UpperCAmelCase = dtype(**_A ) outputs.append(_A ) if len(namespace.__dict__ ) > 0: # additional namespace. outputs.append(_A ) if return_remaining_strings: return (*outputs, remaining_args) else: if remaining_args: raise ValueError(F"""Some specified arguments are not used by the HfArgumentParser: {remaining_args}""" ) return (*outputs,) def _lowercase ( self , _A , _A = False ): '''simple docstring''' UpperCAmelCase = set(args.keys() ) UpperCAmelCase = [] for dtype in self.dataclass_types: UpperCAmelCase = {f.name for f in dataclasses.fields(_A ) if f.init} UpperCAmelCase = {k: v for k, v in args.items() if k in keys} unused_keys.difference_update(inputs.keys() ) UpperCAmelCase = dtype(**_A ) outputs.append(_A ) if not allow_extra_keys and unused_keys: raise ValueError(F"""Some keys are not used by the HfArgumentParser: {sorted(_A )}""" ) return tuple(_A ) def _lowercase ( self , _A , _A = False ): '''simple docstring''' with open(Path(_A ) , encoding='''utf-8''' ) as open_json_file: UpperCAmelCase = json.loads(open_json_file.read() ) UpperCAmelCase = self.parse_dict(_A , allow_extra_keys=_A ) return tuple(_A ) def _lowercase ( self , _A , _A = False ): '''simple docstring''' UpperCAmelCase = self.parse_dict(yaml.safe_load(Path(_A ).read_text() ) , allow_extra_keys=_A ) return tuple(_A )
273
import tempfile import numpy as np import torch from transformers import AutoTokenizer, TaEncoderModel from diffusers import DDPMScheduler, UNetaDConditionModel from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.pipelines.deepfloyd_if import IFWatermarker from diffusers.utils.testing_utils import torch_device from ..test_pipelines_common import to_np class A_ : def _lowercase ( self ): '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase = TaEncoderModel.from_pretrained('''hf-internal-testing/tiny-random-t5''' ) torch.manual_seed(0 ) UpperCAmelCase = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-t5''' ) torch.manual_seed(0 ) UpperCAmelCase = UNetaDConditionModel( sample_size=3_2 , layers_per_block=1 , block_out_channels=[3_2, 6_4] , down_block_types=[ '''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D''', ] , mid_block_type='''UNetMidBlock2DSimpleCrossAttn''' , up_block_types=['''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''] , in_channels=3 , out_channels=6 , cross_attention_dim=3_2 , encoder_hid_dim=3_2 , attention_head_dim=8 , addition_embed_type='''text''' , addition_embed_type_num_heads=2 , cross_attention_norm='''group_norm''' , resnet_time_scale_shift='''scale_shift''' , act_fn='''gelu''' , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) UpperCAmelCase = DDPMScheduler( num_train_timesteps=1_0_0_0 , beta_schedule='''squaredcos_cap_v2''' , beta_start=0.00_01 , beta_end=0.02 , thresholding=_A , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type='''epsilon''' , variance_type='''learned_range''' , ) torch.manual_seed(0 ) UpperCAmelCase = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def _lowercase ( self ): '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase = TaEncoderModel.from_pretrained('''hf-internal-testing/tiny-random-t5''' ) torch.manual_seed(0 ) UpperCAmelCase = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-t5''' ) torch.manual_seed(0 ) UpperCAmelCase = UNetaDConditionModel( sample_size=3_2 , layers_per_block=[1, 2] , block_out_channels=[3_2, 6_4] , down_block_types=[ '''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D''', ] , mid_block_type='''UNetMidBlock2DSimpleCrossAttn''' , up_block_types=['''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''] , in_channels=6 , out_channels=6 , cross_attention_dim=3_2 , encoder_hid_dim=3_2 , attention_head_dim=8 , addition_embed_type='''text''' , addition_embed_type_num_heads=2 , cross_attention_norm='''group_norm''' , resnet_time_scale_shift='''scale_shift''' , act_fn='''gelu''' , class_embed_type='''timestep''' , mid_block_scale_factor=1.4_14 , time_embedding_act_fn='''gelu''' , time_embedding_dim=3_2 , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) UpperCAmelCase = DDPMScheduler( num_train_timesteps=1_0_0_0 , beta_schedule='''squaredcos_cap_v2''' , beta_start=0.00_01 , beta_end=0.02 , thresholding=_A , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type='''epsilon''' , variance_type='''learned_range''' , ) torch.manual_seed(0 ) UpperCAmelCase = DDPMScheduler( num_train_timesteps=1_0_0_0 , beta_schedule='''squaredcos_cap_v2''' , beta_start=0.00_01 , beta_end=0.02 , ) torch.manual_seed(0 ) UpperCAmelCase = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "image_noising_scheduler": image_noising_scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = self.get_dummy_components() UpperCAmelCase = self.pipeline_class(**_A ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) UpperCAmelCase = self.get_dummy_inputs(_A ) UpperCAmelCase = inputs['''prompt'''] UpperCAmelCase = inputs['''generator'''] UpperCAmelCase = inputs['''num_inference_steps'''] UpperCAmelCase = inputs['''output_type'''] if "image" in inputs: UpperCAmelCase = inputs['''image'''] else: UpperCAmelCase = None if "mask_image" in inputs: UpperCAmelCase = inputs['''mask_image'''] else: UpperCAmelCase = None if "original_image" in inputs: UpperCAmelCase = inputs['''original_image'''] else: UpperCAmelCase = None UpperCAmelCase , UpperCAmelCase = pipe.encode_prompt(_A ) # inputs with prompt converted to embeddings UpperCAmelCase = { '''prompt_embeds''': prompt_embeds, '''negative_prompt_embeds''': negative_prompt_embeds, '''generator''': generator, '''num_inference_steps''': num_inference_steps, '''output_type''': output_type, } if image is not None: UpperCAmelCase = image if mask_image is not None: UpperCAmelCase = mask_image if original_image is not None: UpperCAmelCase = original_image # set all optional components to None for optional_component in pipe._optional_components: setattr(_A , _A , _A ) UpperCAmelCase = pipe(**_A )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(_A ) UpperCAmelCase = self.pipeline_class.from_pretrained(_A ) pipe_loaded.to(_A ) pipe_loaded.set_progress_bar_config(disable=_A ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests for optional_component in pipe._optional_components: self.assertTrue( getattr(_A , _A ) is None , F"""`{optional_component}` did not stay set to None after loading.""" , ) UpperCAmelCase = self.get_dummy_inputs(_A ) UpperCAmelCase = inputs['''generator'''] UpperCAmelCase = inputs['''num_inference_steps'''] UpperCAmelCase = inputs['''output_type'''] # inputs with prompt converted to embeddings UpperCAmelCase = { '''prompt_embeds''': prompt_embeds, '''negative_prompt_embeds''': negative_prompt_embeds, '''generator''': generator, '''num_inference_steps''': num_inference_steps, '''output_type''': output_type, } if image is not None: UpperCAmelCase = image if mask_image is not None: UpperCAmelCase = mask_image if original_image is not None: UpperCAmelCase = original_image UpperCAmelCase = pipe_loaded(**_A )[0] UpperCAmelCase = np.abs(to_np(_A ) - to_np(_A ) ).max() self.assertLess(_A , 1E-4 ) def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = self.get_dummy_components() UpperCAmelCase = self.pipeline_class(**_A ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) UpperCAmelCase = self.get_dummy_inputs(_A ) UpperCAmelCase = pipe(**_A )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(_A ) UpperCAmelCase = self.pipeline_class.from_pretrained(_A ) pipe_loaded.to(_A ) pipe_loaded.set_progress_bar_config(disable=_A ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests UpperCAmelCase = self.get_dummy_inputs(_A ) UpperCAmelCase = pipe_loaded(**_A )[0] UpperCAmelCase = np.abs(to_np(_A ) - to_np(_A ) ).max() self.assertLess(_A , 1E-4 )
273
1
"""simple docstring""" lowerCamelCase__ = """0.21.0""" from .accelerator import Accelerator from .big_modeling import ( cpu_offload, cpu_offload_with_hook, disk_offload, dispatch_model, init_empty_weights, init_on_device, load_checkpoint_and_dispatch, ) from .data_loader import skip_first_batches from .launchers import debug_launcher, notebook_launcher from .state import PartialState from .utils import ( DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, FullyShardedDataParallelPlugin, GradScalerKwargs, InitProcessGroupKwargs, find_executable_batch_size, infer_auto_device_map, is_rich_available, load_checkpoint_in_model, synchronize_rng_states, ) if is_rich_available(): from .utils import rich
363
"""simple docstring""" import json import os import tempfile import unittest import unittest.mock as mock from pathlib import Path from requests.exceptions import HTTPError from transformers.utils import ( CONFIG_NAME, FLAX_WEIGHTS_NAME, TF2_WEIGHTS_NAME, TRANSFORMERS_CACHE, WEIGHTS_NAME, cached_file, get_file_from_repo, has_file, ) lowerCamelCase__ = """hf-internal-testing/tiny-random-bert""" lowerCamelCase__ = os.path.join(TRANSFORMERS_CACHE, """models--hf-internal-testing--tiny-random-bert""") lowerCamelCase__ = """9b8c223d42b2188cb49d29af482996f9d0f3e5a6""" class A__ ( unittest.TestCase): def __lowerCamelCase ( self ): __lowerCAmelCase : Union[str, Any] = cached_file(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Should have downloaded the file in here self.assertTrue(os.path.isdir(_SCREAMING_SNAKE_CASE ) ) # Cache should contain at least those three subfolders: for subfolder in ["blobs", "refs", "snapshots"]: self.assertTrue(os.path.isdir(os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) ) with open(os.path.join(_SCREAMING_SNAKE_CASE , 'refs' , 'main' ) ) as f: __lowerCAmelCase : List[Any] = f.read() self.assertEqual(_SCREAMING_SNAKE_CASE , os.path.join(_SCREAMING_SNAKE_CASE , 'snapshots' , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) self.assertTrue(os.path.isfile(_SCREAMING_SNAKE_CASE ) ) # File is cached at the same place the second time. __lowerCAmelCase : Union[str, Any] = cached_file(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) self.assertEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Using a specific revision to test the full commit hash. __lowerCAmelCase : Union[str, Any] = cached_file(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , revision='9b8c223' ) self.assertEqual(_SCREAMING_SNAKE_CASE , os.path.join(_SCREAMING_SNAKE_CASE , 'snapshots' , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) def __lowerCamelCase ( self ): with self.assertRaisesRegex(_SCREAMING_SNAKE_CASE , 'is not a valid model identifier' ): __lowerCAmelCase : Optional[Any] = cached_file('tiny-random-bert' , _SCREAMING_SNAKE_CASE ) with self.assertRaisesRegex(_SCREAMING_SNAKE_CASE , 'is not a valid git identifier' ): __lowerCAmelCase : str = cached_file(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , revision='aaaa' ) with self.assertRaisesRegex(_SCREAMING_SNAKE_CASE , 'does not appear to have a file named' ): __lowerCAmelCase : Optional[Any] = cached_file(_SCREAMING_SNAKE_CASE , 'conf' ) def __lowerCamelCase ( self ): with self.assertRaisesRegex(_SCREAMING_SNAKE_CASE , 'does not appear to have a file named' ): __lowerCAmelCase : Optional[int] = cached_file(_SCREAMING_SNAKE_CASE , 'conf' ) with open(os.path.join(_SCREAMING_SNAKE_CASE , 'refs' , 'main' ) ) as f: __lowerCAmelCase : Tuple = f.read() self.assertTrue(os.path.isfile(os.path.join(_SCREAMING_SNAKE_CASE , '.no_exist' , _SCREAMING_SNAKE_CASE , 'conf' ) ) ) __lowerCAmelCase : List[Any] = cached_file(_SCREAMING_SNAKE_CASE , 'conf' , _raise_exceptions_for_missing_entries=_SCREAMING_SNAKE_CASE ) self.assertIsNone(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : List[str] = cached_file(_SCREAMING_SNAKE_CASE , 'conf' , local_files_only=_SCREAMING_SNAKE_CASE , _raise_exceptions_for_missing_entries=_SCREAMING_SNAKE_CASE ) self.assertIsNone(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : List[Any] = mock.Mock() __lowerCAmelCase : Tuple = 5_00 __lowerCAmelCase : List[Any] = {} __lowerCAmelCase : Dict = HTTPError __lowerCAmelCase : str = {} # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('requests.Session.request' , return_value=_SCREAMING_SNAKE_CASE ) as mock_head: __lowerCAmelCase : Optional[Any] = cached_file(_SCREAMING_SNAKE_CASE , 'conf' , _raise_exceptions_for_connection_errors=_SCREAMING_SNAKE_CASE ) self.assertIsNone(_SCREAMING_SNAKE_CASE ) # This check we did call the fake head request mock_head.assert_called() def __lowerCamelCase ( self ): self.assertTrue(has_file('hf-internal-testing/tiny-bert-pt-only' , _SCREAMING_SNAKE_CASE ) ) self.assertFalse(has_file('hf-internal-testing/tiny-bert-pt-only' , _SCREAMING_SNAKE_CASE ) ) self.assertFalse(has_file('hf-internal-testing/tiny-bert-pt-only' , _SCREAMING_SNAKE_CASE ) ) def __lowerCamelCase ( self ): # `get_file_from_repo` returns None if the file does not exist self.assertIsNone(get_file_from_repo('bert-base-cased' , 'ahah.txt' ) ) # The function raises if the repository does not exist. with self.assertRaisesRegex(_SCREAMING_SNAKE_CASE , 'is not a valid model identifier' ): get_file_from_repo('bert-base-case' , _SCREAMING_SNAKE_CASE ) # The function raises if the revision does not exist. with self.assertRaisesRegex(_SCREAMING_SNAKE_CASE , 'is not a valid git identifier' ): get_file_from_repo('bert-base-cased' , _SCREAMING_SNAKE_CASE , revision='ahaha' ) __lowerCAmelCase : Union[str, Any] = get_file_from_repo('bert-base-cased' , _SCREAMING_SNAKE_CASE ) # The name is the cached name which is not very easy to test, so instead we load the content. __lowerCAmelCase : List[Any] = json.loads(open(_SCREAMING_SNAKE_CASE , 'r' ).read() ) self.assertEqual(config['hidden_size'] , 7_68 ) def __lowerCamelCase ( self ): with tempfile.TemporaryDirectory() as tmp_dir: __lowerCAmelCase : str = Path(_SCREAMING_SNAKE_CASE ) / 'a.txt' filename.touch() self.assertEqual(get_file_from_repo(_SCREAMING_SNAKE_CASE , 'a.txt' ) , str(_SCREAMING_SNAKE_CASE ) ) self.assertIsNone(get_file_from_repo(_SCREAMING_SNAKE_CASE , 'b.txt' ) )
182
0
"""simple docstring""" from __future__ import annotations def lowercase ( _snake_case : float , _snake_case : float , _snake_case : float , ) ->tuple: """simple docstring""" if (electron_conc, hole_conc, intrinsic_conc).count(0 ) != 1: raise ValueError('''You cannot supply more or less than 2 values''' ) elif electron_conc < 0: raise ValueError('''Electron concentration cannot be negative in a semiconductor''' ) elif hole_conc < 0: raise ValueError('''Hole concentration cannot be negative in a semiconductor''' ) elif intrinsic_conc < 0: raise ValueError( '''Intrinsic concentration cannot be negative in a semiconductor''' ) elif electron_conc == 0: return ( "electron_conc", intrinsic_conc**2 / hole_conc, ) elif hole_conc == 0: return ( "hole_conc", intrinsic_conc**2 / electron_conc, ) elif intrinsic_conc == 0: return ( "intrinsic_conc", (electron_conc * hole_conc) ** 0.5, ) else: return (-1, -1) if __name__ == "__main__": import doctest doctest.testmod()
102
"""simple docstring""" import numpy as np def lowercase ( _snake_case : int , _snake_case : Optional[Any] , _snake_case : Optional[int] , _snake_case : int , _snake_case : Union[str, Any] ) ->Dict: """simple docstring""" __snake_case : Union[str, Any] = int(np.ceil((x_end - xa) / h ) ) __snake_case : Dict = np.zeros((n + 1,) ) __snake_case : List[Any] = ya __snake_case : int = xa for k in range(_snake_case ): __snake_case : Any = f(_snake_case , y[k] ) __snake_case : List[Any] = f(x + 0.5 * h , y[k] + 0.5 * h * ka ) __snake_case : int = f(x + 0.5 * h , y[k] + 0.5 * h * ka ) __snake_case : Optional[int] = f(x + h , y[k] + h * ka ) __snake_case : Optional[int] = y[k] + (1 / 6) * h * (ka + 2 * ka + 2 * ka + ka) x += h return y if __name__ == "__main__": import doctest doctest.testmod()
102
1
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyImgaImgPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class lowercase ( _lowerCamelCase , unittest.TestCase): """simple docstring""" a__ : str = KandinskyImgaImgPipeline a__ : Any = ["prompt", "image_embeds", "negative_image_embeds", "image"] a__ : int = [ "prompt", "negative_prompt", "image_embeds", "negative_image_embeds", "image", ] a__ : List[Any] = [ "generator", "height", "width", "strength", "guidance_scale", "negative_prompt", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] a__ : Union[str, Any] = False @property def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[Any]: return 32 @property def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Tuple: return 32 @property def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Union[str, Any]: return self.time_input_dim @property def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> int: return self.time_input_dim * 4 @property def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Any: return 100 @property def _SCREAMING_SNAKE_CASE ( self : Any ) -> List[str]: UpperCAmelCase_= XLMRobertaTokenizerFast.from_pretrained("""YiYiXu/tiny-random-mclip-base""" ) return tokenizer @property def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Union[str, Any]: torch.manual_seed(0 ) UpperCAmelCase_= MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1_005 , ) UpperCAmelCase_= MultilingualCLIP(lowercase_ ) UpperCAmelCase_= text_encoder.eval() return text_encoder @property def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[Any]: torch.manual_seed(0 ) UpperCAmelCase_= { """in_channels""": 4, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """text_image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """text_image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } UpperCAmelCase_= UNetaDConditionModel(**lowercase_ ) return model @property def _SCREAMING_SNAKE_CASE ( self : str ) -> List[Any]: return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def _SCREAMING_SNAKE_CASE ( self : int ) -> int: torch.manual_seed(0 ) UpperCAmelCase_= VQModel(**self.dummy_movq_kwargs ) return model def _SCREAMING_SNAKE_CASE ( self : str ) -> Dict: UpperCAmelCase_= self.dummy_text_encoder UpperCAmelCase_= self.dummy_tokenizer UpperCAmelCase_= self.dummy_unet UpperCAmelCase_= self.dummy_movq UpperCAmelCase_= { """num_train_timesteps""": 1_000, """beta_schedule""": """linear""", """beta_start""": 0.00_085, """beta_end""": 0.012, """clip_sample""": False, """set_alpha_to_one""": False, """steps_offset""": 0, """prediction_type""": """epsilon""", """thresholding""": False, } UpperCAmelCase_= DDIMScheduler(**lowercase_ ) UpperCAmelCase_= { """text_encoder""": text_encoder, """tokenizer""": tokenizer, """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def _SCREAMING_SNAKE_CASE ( self : Tuple , __UpperCAmelCase : Tuple , __UpperCAmelCase : Union[str, Any]=0 ) -> List[str]: UpperCAmelCase_= floats_tensor((1, self.cross_attention_dim) , rng=random.Random(lowercase_ ) ).to(lowercase_ ) UpperCAmelCase_= floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(lowercase_ ) # create init_image UpperCAmelCase_= floats_tensor((1, 3, 64, 64) , rng=random.Random(lowercase_ ) ).to(lowercase_ ) UpperCAmelCase_= image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase_= Image.fromarray(np.uinta(lowercase_ ) ).convert("""RGB""" ).resize((256, 256) ) if str(lowercase_ ).startswith("""mps""" ): UpperCAmelCase_= torch.manual_seed(lowercase_ ) else: UpperCAmelCase_= torch.Generator(device=lowercase_ ).manual_seed(lowercase_ ) UpperCAmelCase_= { """prompt""": """horse""", """image""": init_image, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 10, """guidance_scale""": 7.0, """strength""": 0.2, """output_type""": """np""", } return inputs def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Tuple: UpperCAmelCase_= """cpu""" UpperCAmelCase_= self.get_dummy_components() UpperCAmelCase_= self.pipeline_class(**lowercase_ ) UpperCAmelCase_= pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) UpperCAmelCase_= pipe(**self.get_dummy_inputs(lowercase_ ) ) UpperCAmelCase_= output.images UpperCAmelCase_= pipe( **self.get_dummy_inputs(lowercase_ ) , return_dict=lowercase_ , )[0] UpperCAmelCase_= image[0, -3:, -3:, -1] UpperCAmelCase_= image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase_= np.array( [0.61_474_943, 0.6_073_539, 0.43_308_544, 0.5_928_269, 0.47_493_595, 0.46_755_973, 0.4_613_838, 0.45_368_797, 0.50_119_233] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" @slow @require_torch_gpu class lowercase ( unittest.TestCase): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Union[str, Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _SCREAMING_SNAKE_CASE ( self : str ) -> List[str]: UpperCAmelCase_= load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/kandinsky_img2img_frog.npy""" ) UpperCAmelCase_= load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) UpperCAmelCase_= """A red cartoon frog, 4k""" UpperCAmelCase_= KandinskyPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(lowercase_ ) UpperCAmelCase_= KandinskyImgaImgPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1""" , torch_dtype=torch.floataa ) UpperCAmelCase_= pipeline.to(lowercase_ ) pipeline.set_progress_bar_config(disable=lowercase_ ) UpperCAmelCase_= torch.Generator(device="""cpu""" ).manual_seed(0 ) UpperCAmelCase_, UpperCAmelCase_= pipe_prior( lowercase_ , generator=lowercase_ , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() UpperCAmelCase_= pipeline( lowercase_ , image=lowercase_ , image_embeds=lowercase_ , negative_image_embeds=lowercase_ , generator=lowercase_ , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type="""np""" , ) UpperCAmelCase_= output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(lowercase_ , lowercase_ )
356
from typing import Optional import pyspark from .. import Features, NamedSplit from ..download import DownloadMode from ..packaged_modules.spark.spark import Spark from .abc import AbstractDatasetReader class lowercase ( snake_case__): """simple docstring""" def __init__( self : int , __UpperCAmelCase : pyspark.sql.DataFrame , __UpperCAmelCase : Optional[NamedSplit] = None , __UpperCAmelCase : Optional[Features] = None , __UpperCAmelCase : bool = True , __UpperCAmelCase : str = None , __UpperCAmelCase : bool = False , __UpperCAmelCase : str = None , __UpperCAmelCase : bool = True , __UpperCAmelCase : str = "arrow" , **__UpperCAmelCase : str , ) -> Dict: super().__init__( split=__UpperCAmelCase , features=__UpperCAmelCase , cache_dir=__UpperCAmelCase , keep_in_memory=__UpperCAmelCase , streaming=__UpperCAmelCase , **__UpperCAmelCase , ) UpperCAmelCase_= load_from_cache_file UpperCAmelCase_= file_format UpperCAmelCase_= Spark( df=__UpperCAmelCase , features=__UpperCAmelCase , cache_dir=__UpperCAmelCase , working_dir=__UpperCAmelCase , **__UpperCAmelCase , ) def _SCREAMING_SNAKE_CASE ( self : Any ) -> Dict: if self.streaming: return self.builder.as_streaming_dataset(split=self.split ) UpperCAmelCase_= None if self._load_from_cache_file else DownloadMode.FORCE_REDOWNLOAD self.builder.download_and_prepare( download_mode=__UpperCAmelCase , file_format=self._file_format , ) return self.builder.as_dataset(split=self.split )
277
0
import gzip import hashlib import json import multiprocessing import os import re import shutil import time from pathlib import Path import numpy as np from arguments import PreprocessingArguments from datasets import load_dataset from minhash_deduplication import deduplicate_dataset from transformers import AutoTokenizer, HfArgumentParser snake_case__ : int = re.compile(r'\s+') def _a ( lowerCamelCase: Tuple ) -> List[str]: '''simple docstring''' return {"hash": hashlib.mda(re.sub(lowerCamelCase , '''''' , example['''content'''] ).encode('''utf-8''' ) ).hexdigest()} def _a ( lowerCamelCase: int ) -> Tuple: '''simple docstring''' __A = [len(lowerCamelCase ) for line in example['''content'''].splitlines()] return {"line_mean": np.mean(lowerCamelCase ), "line_max": max(lowerCamelCase )} def _a ( lowerCamelCase: Optional[int] ) -> Optional[Any]: '''simple docstring''' __A = np.mean([c.isalnum() for c in example['''content''']] ) return {"alpha_frac": alpha_frac} def _a ( lowerCamelCase: Dict , lowerCamelCase: Optional[Any] ) -> Any: '''simple docstring''' if example["hash"] in uniques: uniques.remove(example['''hash'''] ) return True else: return False def _a ( lowerCamelCase: Optional[Any] , lowerCamelCase: List[str]=5 ) -> Any: '''simple docstring''' __A = ['''auto-generated''', '''autogenerated''', '''automatically generated'''] __A = example['''content'''].splitlines() for _, line in zip(range(lowerCamelCase ) , lowerCamelCase ): for keyword in keywords: if keyword in line.lower(): return {"autogenerated": True} else: return {"autogenerated": False} def _a ( lowerCamelCase: List[Any] , lowerCamelCase: List[str]=5 , lowerCamelCase: str=0.05 ) -> int: '''simple docstring''' __A = ['''unit tests''', '''test file''', '''configuration file'''] __A = example['''content'''].splitlines() __A = 0 __A = 0 # first test for _, line in zip(range(lowerCamelCase ) , lowerCamelCase ): for keyword in keywords: if keyword in line.lower(): return {"config_or_test": True} # second test __A = example['''content'''].count('''\n''' ) __A = int(coeff * nlines ) for line in lines: count_config += line.lower().count('''config''' ) count_test += line.lower().count('''test''' ) if count_config > threshold or count_test > threshold: return {"config_or_test": True} return {"config_or_test": False} def _a ( lowerCamelCase: List[str] ) -> int: '''simple docstring''' __A = ['''def ''', '''class ''', '''for ''', '''while '''] __A = example['''content'''].splitlines() for line in lines: for keyword in keywords: if keyword in line.lower(): return {"has_no_keywords": False} return {"has_no_keywords": True} def _a ( lowerCamelCase: Any , lowerCamelCase: Tuple=4 ) -> Optional[int]: '''simple docstring''' __A = example['''content'''].splitlines() __A = 0 for line in lines: counter += line.lower().count('''=''' ) if counter > minimum: return {"has_few_assignments": False} return {"has_few_assignments": True} def _a ( lowerCamelCase: Any ) -> int: '''simple docstring''' __A = tokenizer(example['''content'''] , truncation=lowerCamelCase )['''input_ids'''] __A = len(example['''content'''] ) / len(lowerCamelCase ) return {"ratio": ratio} def _a ( lowerCamelCase: Optional[Any] ) -> str: '''simple docstring''' __A = {} results.update(get_hash(lowerCamelCase ) ) results.update(line_stats(lowerCamelCase ) ) results.update(alpha_stats(lowerCamelCase ) ) results.update(char_token_ratio(lowerCamelCase ) ) results.update(is_autogenerated(lowerCamelCase ) ) results.update(is_config_or_test(lowerCamelCase ) ) results.update(has_no_keywords(lowerCamelCase ) ) results.update(has_few_assignments(lowerCamelCase ) ) return results def _a ( lowerCamelCase: int , lowerCamelCase: List[Any] , lowerCamelCase: Optional[int] ) -> str: '''simple docstring''' if not check_uniques(lowerCamelCase , lowerCamelCase ): return False elif example["autogenerated"]: return False elif example["line_max"] > args.line_max: return False elif example["line_mean"] > args.line_mean: return False elif example["alpha_frac"] < args.alpha_frac: return False elif example["ratio"] < args.min_token_ratio: return False elif example["config_or_test"] and np.random.rand() <= args.filter_proba: return False elif example["has_no_keywords"] and np.random.rand() <= args.filter_proba: return False elif example["has_few_assignments"]: return False else: return True def _a ( lowerCamelCase: int ) -> int: '''simple docstring''' with open(lowerCamelCase , '''rb''' ) as f_in: with gzip.open(str(lowerCamelCase ) + '''.gz''' , '''wb''' , compresslevel=6 ) as f_out: shutil.copyfileobj(lowerCamelCase , lowerCamelCase ) os.unlink(lowerCamelCase ) # Settings snake_case__ : Any = HfArgumentParser(PreprocessingArguments) snake_case__ : Dict = parser.parse_args() if args.num_workers is None: snake_case__ : Optional[int] = multiprocessing.cpu_count() snake_case__ : int = AutoTokenizer.from_pretrained(args.tokenizer_dir) # Load dataset snake_case__ : Tuple = time.time() snake_case__ : Optional[int] = load_dataset(args.dataset_name, split='train') print(f'Time to load dataset: {time.time()-t_start:.2f}') # Run preprocessing snake_case__ : Dict = time.time() snake_case__ : Tuple = ds.map(preprocess, num_proc=args.num_workers) print(f'Time to preprocess dataset: {time.time()-t_start:.2f}') # Deduplicate hashes snake_case__ : int = set(ds.unique('hash')) snake_case__ : Union[str, Any] = len(uniques) / len(ds) print(f'Fraction of duplicates: {1-frac:.2%}') # Deduplicate data and apply heuristics snake_case__ : Optional[Any] = time.time() snake_case__ : Optional[Any] = ds.filter(filter, fn_kwargs={'uniques': uniques, 'args': args}) print(f'Time to filter dataset: {time.time()-t_start:.2f}') print(f'Size of filtered dataset: {len(ds_filter)}') # Deduplicate with minhash and jaccard similarity if args.near_deduplication: snake_case__ : Union[str, Any] = time.time() snake_case__ , snake_case__ : Tuple = deduplicate_dataset(ds_filter, args.jaccard_threshold) print(f'Time to deduplicate dataset: {time.time()-t_start:.2f}') print(f'Size of deduplicate dataset: {len(ds_filter)}') # Save data in batches of samples_per_file snake_case__ : int = Path(args.output_dir) output_dir.mkdir(exist_ok=True) # save duplicate_clusters in the output_dir as artifacts # not sure it is the right place the save it if args.near_deduplication: with open(output_dir / 'duplicate_clusters.json', 'w') as f: json.dump(duplicate_clusters, f) snake_case__ : str = output_dir / 'data' data_dir.mkdir(exist_ok=True) snake_case__ : int = time.time() for file_number, index in enumerate(range(0, len(ds_filter), args.samples_per_file)): snake_case__ : str = str(data_dir / f'file-{file_number+1:012}.json') snake_case__ : Union[str, Any] = min(len(ds_filter), index + args.samples_per_file) ds_filter.select(list(range(index, end_index))).to_json(file_path) compress_file(file_path) print(f'Time to save dataset: {time.time()-t_start:.2f}')
117
import argparse import torch from transformers import BertForMaskedLM if __name__ == "__main__": snake_case__ : Optional[int] = argparse.ArgumentParser( description=( 'Extraction some layers of the full BertForMaskedLM or RObertaForMaskedLM for Transfer Learned' ' Distillation' ) ) parser.add_argument('--model_type', default='bert', choices=['bert']) parser.add_argument('--model_name', default='bert-base-uncased', type=str) parser.add_argument('--dump_checkpoint', default='serialization_dir/tf_bert-base-uncased_0247911.pth', type=str) parser.add_argument('--vocab_transform', action='store_true') snake_case__ : Optional[int] = parser.parse_args() if args.model_type == "bert": snake_case__ : Dict = BertForMaskedLM.from_pretrained(args.model_name) snake_case__ : Union[str, Any] = 'bert' else: raise ValueError('args.model_type should be "bert".') snake_case__ : Optional[int] = model.state_dict() snake_case__ : List[Any] = {} for w in ["word_embeddings", "position_embeddings"]: snake_case__ : Tuple = state_dict[f'{prefix}.embeddings.{w}.weight'] for w in ["weight", "bias"]: snake_case__ : Optional[Any] = state_dict[f'{prefix}.embeddings.LayerNorm.{w}'] snake_case__ : int = 0 for teacher_idx in [0, 2, 4, 7, 9, 11]: for w in ["weight", "bias"]: snake_case__ : Union[str, Any] = state_dict[ f'{prefix}.encoder.layer.{teacher_idx}.attention.self.query.{w}' ] snake_case__ : Dict = state_dict[ f'{prefix}.encoder.layer.{teacher_idx}.attention.self.key.{w}' ] snake_case__ : int = state_dict[ f'{prefix}.encoder.layer.{teacher_idx}.attention.self.value.{w}' ] snake_case__ : int = state_dict[ f'{prefix}.encoder.layer.{teacher_idx}.attention.output.dense.{w}' ] snake_case__ : Optional[int] = state_dict[ f'{prefix}.encoder.layer.{teacher_idx}.attention.output.LayerNorm.{w}' ] snake_case__ : Optional[Any] = state_dict[ f'{prefix}.encoder.layer.{teacher_idx}.intermediate.dense.{w}' ] snake_case__ : List[str] = state_dict[ f'{prefix}.encoder.layer.{teacher_idx}.output.dense.{w}' ] snake_case__ : int = state_dict[ f'{prefix}.encoder.layer.{teacher_idx}.output.LayerNorm.{w}' ] std_idx += 1 snake_case__ : Optional[int] = state_dict['cls.predictions.decoder.weight'] snake_case__ : str = state_dict['cls.predictions.bias'] if args.vocab_transform: for w in ["weight", "bias"]: snake_case__ : int = state_dict[f'cls.predictions.transform.dense.{w}'] snake_case__ : Optional[int] = state_dict[f'cls.predictions.transform.LayerNorm.{w}'] print(f'N layers selected for distillation: {std_idx}') print(f'Number of params transferred for distillation: {len(compressed_sd.keys())}') print(f'Save transferred checkpoint to {args.dump_checkpoint}.') torch.save(compressed_sd, args.dump_checkpoint)
117
1
import os import re import unicodedata from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import is_torch_available, logging if is_torch_available(): import torch if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __UpperCamelCase : int = logging.get_logger(__name__) __UpperCamelCase : Dict = {"vocab_file": "spiece.model"} __UpperCamelCase : Optional[Any] = { "vocab_file": { "AI-Sweden/gpt-sw3-126m": "https://huggingface.co/AI-Sweden/gpt-sw3-126m/resolve/main/spiece.model", "AI-Sweden/gpt-sw3-350m": "https://huggingface.co/AI-Sweden/gpt-sw3-350m/resolve/main/spiece.model", "AI-Sweden/gpt-sw3-1.6b": "https://huggingface.co/AI-Sweden/gpt-sw3-1.6b/resolve/main/spiece.model", "AI-Sweden/gpt-sw3-6.7b": "https://huggingface.co/AI-Sweden/gpt-sw3-6.7b/resolve/main/spiece.model", "AI-Sweden/gpt-sw3-20b": "https://huggingface.co/AI-Sweden/gpt-sw3-20b/resolve/main/spiece.model", } } __UpperCamelCase : List[Any] = { "AI-Sweden/gpt-sw3-126m": 2_048, "AI-Sweden/gpt-sw3-350m": 2_048, "AI-Sweden/gpt-sw3-1.6b": 2_048, "AI-Sweden/gpt-sw3-6.7b": 2_048, "AI-Sweden/gpt-sw3-20b": 2_048, } class __lowerCAmelCase ( __lowercase ): UpperCamelCase__ = VOCAB_FILES_NAMES UpperCamelCase__ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase__ = ["input_ids", "attention_mask"] def __init__( self :List[Any] , __magic_name__ :Dict , __magic_name__ :Dict=False , __magic_name__ :Union[str, Any]=False , __magic_name__ :Union[str, Any]=False , __magic_name__ :int=None , __magic_name__ :Optional[Any]=None , __magic_name__ :Dict=None , __magic_name__ :List[Any]=None , __magic_name__ :List[Any] = None , **__magic_name__ :Any , ): '''simple docstring''' a = {} if sp_model_kwargs is None else sp_model_kwargs a = kwargs.get("""name_or_path""" ) if name_or_path is None: logger.warning( """name_or_path not provided, will work for all GPTSw3 models except gpt-sw3-7b,""" """ you are testing the model, this can safely be ignored""" ) a = '''None''' # Default definitions for our 2 tokenizer versions, with None-checks to enable proper testing a = '''<|endoftext|>''' if eos_token is None else eos_token a = '''<unk>''' if unk_token is None else unk_token if "gpt-sw3-7b" in name_or_path: a = unk_token if pad_token is None else pad_token a = eos_token if bos_token is None else bos_token else: a = '''<pad>''' if pad_token is None else pad_token a = '''<s>''' if bos_token is None else bos_token super().__init__( do_lower_case=_a , remove_space=_a , keep_accents=_a , bos_token=_a , eos_token=_a , unk_token=_a , pad_token=_a , sp_model_kwargs=self.sp_model_kwargs , **_a , ) a = do_lower_case a = remove_space a = keep_accents a = vocab_file a = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_a ) # Used for whitespace normalization in input texts # fmt : off a = {''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', '''''', '''„'''} # fmt : on # Regular expression to remove non-printing characters (e.g. some unicode control chars) in preprocessing a = re.compile( F'[{"".join(map(_a , list(range(0 , 9 ) ) + list(range(11 , 32 ) ) + list(range(127 , 160 ) ) + [160, 173, 8203] ) )}]' ) def __getstate__( self :Optional[Any] ): '''simple docstring''' a = self.__dict__.copy() a = None return state def __setstate__( self :Tuple , __magic_name__ :Any ): '''simple docstring''' a = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): a = {} a = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) @property # Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.vocab_size def lowerCamelCase__ ( self :Optional[Any] ): '''simple docstring''' return len(self.sp_model ) def lowerCamelCase__ ( self :Union[str, Any] , __magic_name__ :int ): '''simple docstring''' a = self.non_printing_characters_re.sub("""""" , _a ) # Normalize whitespaces a = ''''''.join([char if char not in self.whitespaces else """ """ for char in text] ) # NFC Unicode normalization a = unicodedata.normalize("""NFC""" , _a ) return text def lowerCamelCase__ ( self :Optional[Any] , __magic_name__ :Optional[int] , **__magic_name__ :List[str] ): '''simple docstring''' a = self.preprocess_text(_a ) return self.sp_model.encode(_a , out_type=_a ) def lowerCamelCase__ ( self :List[Any] , __magic_name__ :int ): '''simple docstring''' return self.sp_model.PieceToId(_a ) def lowerCamelCase__ ( self :Optional[int] , __magic_name__ :Optional[Any] ): '''simple docstring''' return self.sp_model.IdToPiece(_a ) @staticmethod def lowerCamelCase__ ( __magic_name__ :int ): '''simple docstring''' return out_string def lowerCamelCase__ ( self :str , __magic_name__ :str ): '''simple docstring''' a = [] a = '''''' a = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: # TODO: Check if this is needed, as it ensures that decode(encode(doc)) != doc by adding extra whitespace in the decoded document if not prev_is_special: out_string += " " out_string += self.sp_model.decode(_a ) + token a = True a = [] else: current_sub_tokens.append(_a ) a = False out_string += self.sp_model.decode(_a ) return out_string def lowerCamelCase__ ( self :Tuple ): '''simple docstring''' a = {self.convert_ids_to_tokens(_a ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowerCamelCase__ ( self :int , __magic_name__ :Optional[Any] , __magic_name__ :Optional[Any] = None ): '''simple docstring''' if not os.path.isdir(_a ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return a = os.path.join( _a , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_a ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _a ) elif not os.path.isfile(self.vocab_file ): with open(_a , """wb""" ) as fi: a = self.sp_model.serialized_model_proto() fi.write(_a ) return (out_vocab_file,) def lowerCamelCase__ ( self :str , __magic_name__ :List[Any] , __magic_name__ :Tuple = False ): '''simple docstring''' if isinstance(_a , _a ): a = self.preprocess_text(_a ) a = self.sp_model.encode(_a ) else: a = [self.preprocess_text(_a ) for t in text] a = self.sp_model.encode(_a ) if return_tensors is True or return_tensors == "pt": a = torch.tensor(_a ) return token_ids def lowerCamelCase__ ( self :List[str] , __magic_name__ :Union[str, Any] ): '''simple docstring''' return self.sp_model.decode(_a ) def lowerCamelCase__ ( self :Dict , __magic_name__ :Dict ): '''simple docstring''' a = [F'User: {text}' if is_user else F'Bot: {text}' for is_user, text in conversation.iter_texts()] a = ( F'{self.eos_token}{self.bos_token}' + F'{self.bos_token}'.join(_a ) + F'{self.bos_token}Bot:' ) return self.encode(text=_a )
365
import pytest import datasets.config from datasets.utils.info_utils import is_small_dataset @pytest.mark.parametrize("""dataset_size""" , [None, 400 * 2**20, 600 * 2**20] ) @pytest.mark.parametrize("""input_in_memory_max_size""" , ["""default""", 0, 100 * 2**20, 900 * 2**20] ) def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Any: if input_in_memory_max_size != "default": monkeypatch.setattr(datasets.config , """IN_MEMORY_MAX_SIZE""" , __lowerCamelCase ) a = datasets.config.IN_MEMORY_MAX_SIZE if input_in_memory_max_size == "default": assert in_memory_max_size == 0 else: assert in_memory_max_size == input_in_memory_max_size if dataset_size and in_memory_max_size: a = dataset_size < in_memory_max_size else: a = False a = is_small_dataset(__lowerCamelCase ) assert result == expected
347
0
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_video_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import VivitImageProcessor class lowerCamelCase_ (unittest.TestCase ): '''simple docstring''' def __init__( self : int , A : Dict , A : Optional[int]=7 , A : Tuple=3 , A : Optional[Any]=10 , A : int=18 , A : Dict=30 , A : List[str]=400 , A : int=True , A : Optional[Any]=None , A : Optional[Any]=True , A : List[Any]=[0.5, 0.5, 0.5] , A : List[str]=[0.5, 0.5, 0.5] , A : Optional[int]=None , ): _UpperCAmelCase : Dict = size if size is not None else {"shortest_edge": 18} _UpperCAmelCase : Optional[Any] = crop_size if crop_size is not None else {"height": 18, "width": 18} _UpperCAmelCase : Tuple = parent _UpperCAmelCase : Any = batch_size _UpperCAmelCase : Optional[int] = num_channels _UpperCAmelCase : Optional[Any] = num_frames _UpperCAmelCase : Any = image_size _UpperCAmelCase : Dict = min_resolution _UpperCAmelCase : Any = max_resolution _UpperCAmelCase : Optional[int] = do_resize _UpperCAmelCase : str = size _UpperCAmelCase : List[Any] = do_normalize _UpperCAmelCase : Any = image_mean _UpperCAmelCase : Tuple = image_std _UpperCAmelCase : Any = crop_size def _A ( self : List[Any] ): return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class lowerCamelCase_ (snake_case__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase: Dict = VivitImageProcessor if is_vision_available() else None def _A ( self : int ): _UpperCAmelCase : Tuple = VivitImageProcessingTester(self ) @property def _A ( self : Optional[Any] ): return self.image_processor_tester.prepare_image_processor_dict() def _A ( self : Union[str, Any] ): _UpperCAmelCase : str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A , "image_mean" ) ) self.assertTrue(hasattr(A , "image_std" ) ) self.assertTrue(hasattr(A , "do_normalize" ) ) self.assertTrue(hasattr(A , "do_resize" ) ) self.assertTrue(hasattr(A , "do_center_crop" ) ) self.assertTrue(hasattr(A , "size" ) ) def _A ( self : List[Any] ): _UpperCAmelCase : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 18} ) self.assertEqual(image_processor.crop_size , {"height": 18, "width": 18} ) _UpperCAmelCase : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"shortest_edge": 42} ) self.assertEqual(image_processor.crop_size , {"height": 84, "width": 84} ) def _A ( self : Tuple ): # Initialize image_processing _UpperCAmelCase : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL videos _UpperCAmelCase : Any = prepare_video_inputs(self.image_processor_tester , equal_resolution=A ) for video in video_inputs: self.assertIsInstance(A , A ) self.assertIsInstance(video[0] , Image.Image ) # Test not batched input _UpperCAmelCase : str = image_processing(video_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched _UpperCAmelCase : List[Any] = image_processing(A , return_tensors="pt" ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def _A ( self : List[Any] ): # Initialize image_processing _UpperCAmelCase : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _UpperCAmelCase : List[Any] = prepare_video_inputs(self.image_processor_tester , equal_resolution=A , numpify=A ) for video in video_inputs: self.assertIsInstance(A , A ) self.assertIsInstance(video[0] , np.ndarray ) # Test not batched input _UpperCAmelCase : Tuple = image_processing(video_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched _UpperCAmelCase : Optional[int] = image_processing(A , return_tensors="pt" ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def _A ( self : List[Any] ): # Initialize image_processing _UpperCAmelCase : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _UpperCAmelCase : Optional[int] = prepare_video_inputs(self.image_processor_tester , equal_resolution=A , torchify=A ) for video in video_inputs: self.assertIsInstance(A , A ) self.assertIsInstance(video[0] , torch.Tensor ) # Test not batched input _UpperCAmelCase : Optional[Any] = image_processing(video_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched _UpperCAmelCase : List[Any] = image_processing(A , return_tensors="pt" ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , )
31
"""simple docstring""" import unittest from transformers import TrOCRConfig from transformers.testing_utils import is_torch_available, require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM @require_torch class lowerCamelCase : '''simple docstring''' def __init__(self , _lowerCamelCase , _lowerCamelCase=99 , _lowerCamelCase=13 , _lowerCamelCase=16 , _lowerCamelCase=7 , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=False , _lowerCamelCase=True , _lowerCamelCase=2 , _lowerCamelCase=32 , _lowerCamelCase=4 , _lowerCamelCase=4 , _lowerCamelCase=30 , _lowerCamelCase=0 , _lowerCamelCase=1 , _lowerCamelCase=2 , _lowerCamelCase=None , ): """simple docstring""" UpperCAmelCase__ : int = parent UpperCAmelCase__ : Optional[Any] = batch_size UpperCAmelCase__ : Union[str, Any] = decoder_seq_length # For common tests UpperCAmelCase__ : int = self.decoder_seq_length UpperCAmelCase__ : Optional[Any] = is_training UpperCAmelCase__ : Optional[Any] = use_attention_mask UpperCAmelCase__ : List[Any] = use_labels UpperCAmelCase__ : Optional[Any] = vocab_size UpperCAmelCase__ : List[Any] = d_model UpperCAmelCase__ : List[str] = d_model UpperCAmelCase__ : Dict = decoder_layers UpperCAmelCase__ : Any = decoder_layers UpperCAmelCase__ : Tuple = decoder_ffn_dim UpperCAmelCase__ : Any = decoder_attention_heads UpperCAmelCase__ : List[str] = decoder_attention_heads UpperCAmelCase__ : List[str] = eos_token_id UpperCAmelCase__ : int = bos_token_id UpperCAmelCase__ : Optional[int] = pad_token_id UpperCAmelCase__ : Any = decoder_start_token_id UpperCAmelCase__ : Dict = use_cache UpperCAmelCase__ : Optional[Any] = max_position_embeddings UpperCAmelCase__ : Optional[int] = None UpperCAmelCase__ : Dict = decoder_seq_length UpperCAmelCase__ : str = 2 UpperCAmelCase__ : List[str] = 1 def _a (self ): """simple docstring""" UpperCAmelCase__ : List[str] = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) UpperCAmelCase__ : List[str] = None if self.use_attention_mask: UpperCAmelCase__ : Union[str, Any] = ids_tensor([self.batch_size, self.decoder_seq_length] , vocab_size=2 ) UpperCAmelCase__ : Any = None if self.use_labels: UpperCAmelCase__ : List[Any] = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) UpperCAmelCase__ : Union[str, Any] = TrOCRConfig( vocab_size=self.vocab_size , d_model=self.d_model , decoder_layers=self.decoder_layers , decoder_ffn_dim=self.decoder_ffn_dim , decoder_attention_heads=self.decoder_attention_heads , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , use_cache=self.use_cache , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , max_position_embeddings=self.max_position_embeddings , ) return (config, input_ids, attention_mask, lm_labels) def _a (self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ): """simple docstring""" UpperCAmelCase__ : List[str] = True UpperCAmelCase__ : str = TrOCRDecoder(config=_lowerCamelCase ).to(_lowerCamelCase ).eval() UpperCAmelCase__ : Any = input_ids[:2] input_ids[input_ids == 0] += 1 # first forward pass UpperCAmelCase__ : Optional[Any] = model(_lowerCamelCase , use_cache=_lowerCamelCase ) UpperCAmelCase__ : str = model(_lowerCamelCase ) UpperCAmelCase__ : Optional[int] = model(_lowerCamelCase , use_cache=_lowerCamelCase ) self.parent.assertTrue(len(_lowerCamelCase ) == len(_lowerCamelCase ) ) self.parent.assertTrue(len(_lowerCamelCase ) == len(_lowerCamelCase ) + 1 ) UpperCAmelCase__ : List[Any] = outputs["""past_key_values"""] # create hypothetical next token and extent to next_input_ids UpperCAmelCase__ : List[str] = ids_tensor((2, 1) , config.vocab_size - 1 ) + 1 # append to next input_ids and UpperCAmelCase__ : Any = torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCAmelCase__ : int = model(_lowerCamelCase )["""last_hidden_state"""] UpperCAmelCase__ : Dict = model(_lowerCamelCase , past_key_values=_lowerCamelCase )["""last_hidden_state"""] # select random slice UpperCAmelCase__ : Any = ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCAmelCase__ : int = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() UpperCAmelCase__ : Dict = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice assert torch.allclose(_lowerCamelCase , _lowerCamelCase , atol=1e-3 ) def _a (self ): """simple docstring""" UpperCAmelCase__ : Tuple = self.prepare_config_and_inputs() UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Any = config_and_inputs UpperCAmelCase__ : Optional[int] = {"""input_ids""": input_ids, """attention_mask""": attention_mask} return config, inputs_dict @require_torch class lowerCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE = (TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else () SCREAMING_SNAKE_CASE = (TrOCRForCausalLM,) if is_torch_available() else () SCREAMING_SNAKE_CASE = {'text-generation': TrOCRForCausalLM} if is_torch_available() else {} SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = False def _a (self ): """simple docstring""" UpperCAmelCase__ : Union[str, Any] = TrOCRStandaloneDecoderModelTester(self , is_training=_lowerCamelCase ) UpperCAmelCase__ : Union[str, Any] = ConfigTester(self , config_class=_lowerCamelCase ) def _a (self ): """simple docstring""" pass def _a (self ): """simple docstring""" pass def _a (self ): """simple docstring""" pass def _a (self ): """simple docstring""" self.config_tester.run_common_tests() def _a (self ): """simple docstring""" UpperCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past(*_lowerCamelCase ) def _a (self ): """simple docstring""" return @unittest.skip("""The model doesn't support left padding""" ) # and it's not used enough to be worth fixing :) def _a (self ): """simple docstring""" pass
171
0
"""simple docstring""" class lowerCamelCase_: '''simple docstring''' def __init__( self , lowerCamelCase__ ): _lowerCamelCase = len(_a ) _lowerCamelCase = [0] * len_array if len_array > 0: _lowerCamelCase = array[0] for i in range(1 , _a ): _lowerCamelCase = self.prefix_sum[i - 1] + array[i] def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ ): if start == 0: return self.prefix_sum[end] return self.prefix_sum[end] - self.prefix_sum[start - 1] def snake_case__ ( self , lowerCamelCase__ ): _lowerCamelCase = {0} for sum_item in self.prefix_sum: if sum_item - target_sum in sums: return True sums.add(_a ) return False if __name__ == "__main__": import doctest doctest.testmod()
363
"""simple docstring""" import argparse from collections import defaultdict def lowerCAmelCase_( lowercase_ : str , lowercase_ : Dict , lowercase_ : Tuple , lowercase_ : str , lowercase_ : str ) -> Optional[int]: _lowerCamelCase = F"""{file}_{class_name}_{test_name}""" done_test[_id] += 1 with open(lowercase_ , '''r''' ) as f: _lowerCamelCase = f.readlines() _lowerCamelCase = F"""class {class_name}(""" _lowerCamelCase = F"""{4 * " "}def {test_name}(""" _lowerCamelCase = F"""{8 * " "}{correct_line.split()[0]}""" _lowerCamelCase = F"""{16 * " "}{correct_line.split()[0]}""" _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = 0 _lowerCamelCase = 0 _lowerCamelCase = [] for line in lines: if line.startswith(lowercase_ ): _lowerCamelCase = True elif in_class and line.startswith(lowercase_ ): _lowerCamelCase = True elif in_class and in_func and (line.startswith(lowercase_ ) or line.startswith(lowercase_ )): _lowerCamelCase = len(line.split(correct_line.split()[0] )[0] ) count += 1 if count == done_test[_id]: _lowerCamelCase = True if in_class and in_func and in_line: if ")" not in line: continue else: _lowerCamelCase = True if in_class and in_func and in_line and insert_line: new_lines.append(F"""{spaces * " "}{correct_line}""" ) _lowerCamelCase = _lowerCamelCase = _lowerCamelCase = _lowerCamelCase = False else: new_lines.append(lowercase_ ) with open(lowercase_ , '''w''' ) as f: for line in new_lines: f.write(lowercase_ ) def lowerCAmelCase_( lowercase_ : str , lowercase_ : Union[str, Any]=None ) -> Any: if fail is not None: with open(lowercase_ , '''r''' ) as f: _lowerCamelCase = {l.strip() for l in f.readlines()} else: _lowerCamelCase = None with open(lowercase_ , '''r''' ) as f: _lowerCamelCase = f.readlines() _lowerCamelCase = defaultdict(lowercase_ ) for line in correct_lines: _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = line.split(''';''' ) if test_failures is None or "::".join([file, class_name, test_name] ) in test_failures: overwrite_file(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE : Optional[Any] = argparse.ArgumentParser() parser.add_argument('''--correct_filename''', help='''filename of tests with expected result''') parser.add_argument('''--fail_filename''', help='''filename of test failures''', type=str, default=None) __SCREAMING_SNAKE_CASE : Dict = parser.parse_args() main(args.correct_filename, args.fail_filename)
73
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { 'andreasmadsen/efficient_mlm_m0.40': ( 'https://huggingface.co/andreasmadsen/efficient_mlm_m0.40/resolve/main/config.json' ), } class _snake_case ( UpperCamelCase_ ): '''simple docstring''' A__ : List[Any] = "roberta-prelayernorm" def __init__( self: Tuple ,lowerCamelCase_: int=50265 ,lowerCamelCase_: Optional[int]=768 ,lowerCamelCase_: List[str]=12 ,lowerCamelCase_: Any=12 ,lowerCamelCase_: Any=3072 ,lowerCamelCase_: Union[str, Any]="gelu" ,lowerCamelCase_: Dict=0.1 ,lowerCamelCase_: str=0.1 ,lowerCamelCase_: List[str]=512 ,lowerCamelCase_: Optional[int]=2 ,lowerCamelCase_: Union[str, Any]=0.0_2 ,lowerCamelCase_: Optional[int]=1e-12 ,lowerCamelCase_: Dict=1 ,lowerCamelCase_: Any=0 ,lowerCamelCase_: Dict=2 ,lowerCamelCase_: Dict="absolute" ,lowerCamelCase_: List[str]=True ,lowerCamelCase_: Tuple=None ,**lowerCamelCase_: List[Any] ,) -> Tuple: super().__init__(pad_token_id=UpperCamelCase__ ,bos_token_id=UpperCamelCase__ ,eos_token_id=UpperCamelCase__ ,**UpperCamelCase__ ) UpperCAmelCase_ : Tuple = vocab_size UpperCAmelCase_ : str = hidden_size UpperCAmelCase_ : int = num_hidden_layers UpperCAmelCase_ : List[Any] = num_attention_heads UpperCAmelCase_ : Optional[Any] = hidden_act UpperCAmelCase_ : str = intermediate_size UpperCAmelCase_ : List[str] = hidden_dropout_prob UpperCAmelCase_ : Dict = attention_probs_dropout_prob UpperCAmelCase_ : int = max_position_embeddings UpperCAmelCase_ : List[str] = type_vocab_size UpperCAmelCase_ : Any = initializer_range UpperCAmelCase_ : List[str] = layer_norm_eps UpperCAmelCase_ : Optional[int] = position_embedding_type UpperCAmelCase_ : Tuple = use_cache UpperCAmelCase_ : int = classifier_dropout class _snake_case ( UpperCamelCase_ ): '''simple docstring''' @property def A__ ( self: Optional[int] ) -> Union[str, Any]: if self.task == "multiple-choice": UpperCAmelCase_ : List[Any] = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: UpperCAmelCase_ : Tuple = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
345
import pytest from datasets.splits import SplitDict, SplitInfo from datasets.utils.py_utils import asdict @pytest.mark.parametrize( '''split_dict''' , [ SplitDict(), SplitDict({'''train''': SplitInfo(name='''train''' , num_bytes=1_337 , num_examples=42 , dataset_name='''my_dataset''' )} ), SplitDict({'''train''': SplitInfo(name='''train''' , num_bytes=1_337 , num_examples=42 )} ), SplitDict({'''train''': SplitInfo()} ), ] , ) def A ( _lowercase ): SCREAMING_SNAKE_CASE : Tuple = split_dict._to_yaml_list() assert len(_lowercase ) == len(_lowercase ) SCREAMING_SNAKE_CASE : Tuple = SplitDict._from_yaml_list(_lowercase ) for split_name, split_info in split_dict.items(): # dataset_name field is deprecated, and is therefore not part of the YAML dump SCREAMING_SNAKE_CASE : Any = None # the split name of split_dict takes over the name of the split info object SCREAMING_SNAKE_CASE : Optional[Any] = split_name assert split_dict == reloaded @pytest.mark.parametrize( '''split_info''' , [SplitInfo(), SplitInfo(dataset_name=_lowercase ), SplitInfo(dataset_name='''my_dataset''' )] ) def A ( _lowercase ): # For backward compatibility, we need asdict(split_dict) to return split info dictrionaries with the "dataset_name" # field even if it's deprecated. This way old versionso of `datasets` can still reload dataset_infos.json files SCREAMING_SNAKE_CASE : List[Any] = asdict(SplitDict({'''train''': split_info} ) ) assert "dataset_name" in split_dict_asdict["train"] assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name
182
0
"""simple docstring""" import logging import os from dataclasses import dataclass from typing import List, Optional, Union import tqdm from filelock import FileLock from transformers import ( BartTokenizer, BartTokenizerFast, DataProcessor, PreTrainedTokenizer, RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, is_tf_available, is_torch_available, ) _SCREAMING_SNAKE_CASE : Tuple = logging.getLogger(__name__) @dataclass(frozen=snake_case__ ) class __a : """simple docstring""" SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = None @dataclass(frozen=snake_case__ ) class __a : """simple docstring""" SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = None if is_torch_available(): import torch from torch.utils.data import Dataset class __a ( snake_case__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = 42 def __init__( self : Optional[int] , lowercase_ : str , lowercase_ : PreTrainedTokenizer , lowercase_ : str , lowercase_ : Optional[int] = None , lowercase_ : Optional[int]=False , lowercase_ : bool = False , ): UpperCamelCase__ : Tuple =hans_processors[task]() UpperCamelCase__ : Union[str, Any] =os.path.join( lowercase_ , '''cached_{}_{}_{}_{}'''.format( '''dev''' if evaluate else '''train''' , tokenizer.__class__.__name__ , str(lowercase_ ) , lowercase_ , ) , ) UpperCamelCase__ : int =processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) UpperCamelCase__ , UpperCamelCase__ : Union[str, Any] =label_list[2], label_list[1] UpperCamelCase__ : List[Any] =label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. UpperCamelCase__ : Any =cached_features_file + '''.lock''' with FileLock(lowercase_ ): if os.path.exists(lowercase_ ) and not overwrite_cache: logger.info(f'''Loading features from cached file {cached_features_file}''' ) UpperCamelCase__ : Optional[int] =torch.load(lowercase_ ) else: logger.info(f'''Creating features from dataset file at {data_dir}''' ) UpperCamelCase__ : str =( processor.get_dev_examples(lowercase_ ) if evaluate else processor.get_train_examples(lowercase_ ) ) logger.info('''Training examples: %s''' , len(lowercase_ ) ) UpperCamelCase__ : Tuple =hans_convert_examples_to_features(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) logger.info('''Saving features into cached file %s''' , lowercase_ ) torch.save(self.features , lowercase_ ) def __len__( self : Union[str, Any] ): return len(self.features ) def __getitem__( self : Optional[int] , lowercase_ : Optional[Any] ): return self.features[i] def _lowerCAmelCase ( self : int ): return self.label_list if is_tf_available(): import tensorflow as tf class __a : """simple docstring""" SCREAMING_SNAKE_CASE_ = 42 def __init__( self : Any , lowercase_ : str , lowercase_ : PreTrainedTokenizer , lowercase_ : str , lowercase_ : Optional[int] = 128 , lowercase_ : Union[str, Any]=False , lowercase_ : bool = False , ): UpperCamelCase__ : Any =hans_processors[task]() UpperCamelCase__ : Tuple =processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) UpperCamelCase__ , UpperCamelCase__ : Tuple =label_list[2], label_list[1] UpperCamelCase__ : Union[str, Any] =label_list UpperCamelCase__ : Any =processor.get_dev_examples(lowercase_ ) if evaluate else processor.get_train_examples(lowercase_ ) UpperCamelCase__ : Union[str, Any] =hans_convert_examples_to_features(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) def gen(): for ex_index, ex in tqdm.tqdm(enumerate(self.features ) , desc='''convert examples to features''' ): if ex_index % 1_0000 == 0: logger.info('''Writing example %d of %d''' % (ex_index, len(lowercase_ )) ) yield ( { "example_id": 0, "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label, ) UpperCamelCase__ : Optional[Any] =tf.data.Dataset.from_generator( lowercase_ , ( { '''example_id''': tf.intaa, '''input_ids''': tf.intaa, '''attention_mask''': tf.intaa, '''token_type_ids''': tf.intaa, }, tf.intaa, ) , ( { '''example_id''': tf.TensorShape([] ), '''input_ids''': tf.TensorShape([None, None] ), '''attention_mask''': tf.TensorShape([None, None] ), '''token_type_ids''': tf.TensorShape([None, None] ), }, tf.TensorShape([] ), ) , ) def _lowerCAmelCase ( self : Optional[Any] ): return self.dataset def __len__( self : str ): return len(self.features ) def __getitem__( self : List[str] , lowercase_ : Dict ): return self.features[i] def _lowerCAmelCase ( self : Dict ): return self.label_list class __a ( snake_case__ ): """simple docstring""" def _lowerCAmelCase ( self : List[Any] , lowercase_ : Union[str, Any] ): return self._create_examples(self._read_tsv(os.path.join(lowercase_ , '''heuristics_train_set.txt''' ) ) , '''train''' ) def _lowerCAmelCase ( self : Tuple , lowercase_ : Optional[int] ): return self._create_examples(self._read_tsv(os.path.join(lowercase_ , '''heuristics_evaluation_set.txt''' ) ) , '''dev''' ) def _lowerCAmelCase ( self : List[Any] ): return ["contradiction", "entailment", "neutral"] def _lowerCAmelCase ( self : Tuple , lowercase_ : Union[str, Any] , lowercase_ : List[str] ): UpperCamelCase__ : Tuple =[] for i, line in enumerate(lowercase_ ): if i == 0: continue UpperCamelCase__ : str ='''%s-%s''' % (set_type, line[0]) UpperCamelCase__ : str =line[5] UpperCamelCase__ : Any =line[6] UpperCamelCase__ : Optional[int] =line[7][2:] if line[7].startswith('''ex''' ) else line[7] UpperCamelCase__ : str =line[0] examples.append(InputExample(guid=lowercase_ , text_a=lowercase_ , text_b=lowercase_ , label=lowercase_ , pairID=lowercase_ ) ) return examples def _lowerCAmelCase ( UpperCAmelCase : List[InputExample] , UpperCAmelCase : List[str] , UpperCAmelCase : int , UpperCAmelCase : PreTrainedTokenizer , ): '''simple docstring''' UpperCamelCase__ : List[str] ={label: i for i, label in enumerate(UpperCAmelCase )} UpperCamelCase__ : int =[] for ex_index, example in tqdm.tqdm(enumerate(UpperCAmelCase ) , desc='''convert examples to features''' ): if ex_index % 10_000 == 0: logger.info('''Writing example %d''' % (ex_index) ) UpperCamelCase__ : str =tokenizer( example.text_a , example.text_b , add_special_tokens=UpperCAmelCase , max_length=UpperCAmelCase , padding='''max_length''' , truncation=UpperCAmelCase , return_overflowing_tokens=UpperCAmelCase , ) UpperCamelCase__ : str =label_map[example.label] if example.label in label_map else 0 UpperCamelCase__ : int =int(example.pairID ) features.append(InputFeatures(**UpperCAmelCase , label=UpperCAmelCase , pairID=UpperCAmelCase ) ) for i, example in enumerate(examples[:5] ): logger.info('''*** Example ***''' ) logger.info(F'''guid: {example}''' ) logger.info(F'''features: {features[i]}''' ) return features _SCREAMING_SNAKE_CASE : List[str] = { """hans""": 3, } _SCREAMING_SNAKE_CASE : Tuple = { """hans""": HansProcessor, }
157
"""simple docstring""" import os import shutil from pathlib import Path from typing import Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ..utils import ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME, is_onnx_available, logging if is_onnx_available(): import onnxruntime as ort _SCREAMING_SNAKE_CASE : Optional[int] = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : List[Any] = { """tensor(bool)""": np.bool_, """tensor(int8)""": np.inta, """tensor(uint8)""": np.uinta, """tensor(int16)""": np.intaa, """tensor(uint16)""": np.uintaa, """tensor(int32)""": np.intaa, """tensor(uint32)""": np.uintaa, """tensor(int64)""": np.intaa, """tensor(uint64)""": np.uintaa, """tensor(float16)""": np.floataa, """tensor(float)""": np.floataa, """tensor(double)""": np.floataa, } class __a : """simple docstring""" def __init__( self : Optional[Any] , lowercase_ : Tuple=None , **lowercase_ : int ): logger.info('''`diffusers.OnnxRuntimeModel` is experimental and might change in the future.''' ) UpperCamelCase__ : Optional[Any] =model UpperCamelCase__ : str =kwargs.get('''model_save_dir''' , lowercase_ ) UpperCamelCase__ : int =kwargs.get('''latest_model_name''' , lowercase_ ) def __call__( self : Any , **lowercase_ : Any ): UpperCamelCase__ : str ={k: np.array(lowercase_ ) for k, v in kwargs.items()} return self.model.run(lowercase_ , lowercase_ ) @staticmethod def _lowerCAmelCase ( lowercase_ : Union[str, Path] , lowercase_ : Dict=None , lowercase_ : Optional[Any]=None ): if provider is None: logger.info('''No onnxruntime provider specified, using CPUExecutionProvider''' ) UpperCamelCase__ : List[str] ='''CPUExecutionProvider''' return ort.InferenceSession(lowercase_ , providers=[provider] , sess_options=lowercase_ ) def _lowerCAmelCase ( self : Union[str, Any] , lowercase_ : Union[str, Path] , lowercase_ : Optional[str] = None , **lowercase_ : Union[str, Any] ): UpperCamelCase__ : Union[str, Any] =file_name if file_name is not None else ONNX_WEIGHTS_NAME UpperCamelCase__ : Tuple =self.model_save_dir.joinpath(self.latest_model_name ) UpperCamelCase__ : str =Path(lowercase_ ).joinpath(lowercase_ ) try: shutil.copyfile(lowercase_ , lowercase_ ) except shutil.SameFileError: pass # copy external weights (for models >2GB) UpperCamelCase__ : List[str] =self.model_save_dir.joinpath(lowercase_ ) if src_path.exists(): UpperCamelCase__ : List[str] =Path(lowercase_ ).joinpath(lowercase_ ) try: shutil.copyfile(lowercase_ , lowercase_ ) except shutil.SameFileError: pass def _lowerCAmelCase ( self : Tuple , lowercase_ : Union[str, os.PathLike] , **lowercase_ : int , ): if os.path.isfile(lowercase_ ): logger.error(f'''Provided path ({save_directory}) should be a directory, not a file''' ) return os.makedirs(lowercase_ , exist_ok=lowercase_ ) # saving model weights/files self._save_pretrained(lowercase_ , **lowercase_ ) @classmethod def _lowerCAmelCase ( cls : List[str] , lowercase_ : Union[str, Path] , lowercase_ : Optional[Union[bool, str, None]] = None , lowercase_ : Optional[Union[str, None]] = None , lowercase_ : bool = False , lowercase_ : Optional[str] = None , lowercase_ : Optional[str] = None , lowercase_ : Optional[str] = None , lowercase_ : Optional["ort.SessionOptions"] = None , **lowercase_ : List[Any] , ): UpperCamelCase__ : Union[str, Any] =file_name if file_name is not None else ONNX_WEIGHTS_NAME # load model from local directory if os.path.isdir(lowercase_ ): UpperCamelCase__ : Any =OnnxRuntimeModel.load_model( os.path.join(lowercase_ , lowercase_ ) , provider=lowercase_ , sess_options=lowercase_ ) UpperCamelCase__ : List[str] =Path(lowercase_ ) # load model from hub else: # download model UpperCamelCase__ : Tuple =hf_hub_download( repo_id=lowercase_ , filename=lowercase_ , use_auth_token=lowercase_ , revision=lowercase_ , cache_dir=lowercase_ , force_download=lowercase_ , ) UpperCamelCase__ : Any =Path(lowercase_ ).parent UpperCamelCase__ : List[Any] =Path(lowercase_ ).name UpperCamelCase__ : Optional[int] =OnnxRuntimeModel.load_model(lowercase_ , provider=lowercase_ , sess_options=lowercase_ ) return cls(model=lowercase_ , **lowercase_ ) @classmethod def _lowerCAmelCase ( cls : Dict , lowercase_ : Union[str, Path] , lowercase_ : bool = True , lowercase_ : Optional[str] = None , lowercase_ : Optional[str] = None , **lowercase_ : List[Any] , ): UpperCamelCase__ : Dict =None if len(str(lowercase_ ).split('''@''' ) ) == 2: UpperCamelCase__ , UpperCamelCase__ : Union[str, Any] =model_id.split('''@''' ) return cls._from_pretrained( model_id=lowercase_ , revision=lowercase_ , cache_dir=lowercase_ , force_download=lowercase_ , use_auth_token=lowercase_ , **lowercase_ , )
157
1
import argparse from pathlib import Path from transformers import AutoConfig, AutoTokenizer, RagConfig, RagSequenceForGeneration, RagTokenForGeneration def lowerCAmelCase_ ( __A, __A, __A, __A, __A = None, __A = None, __A = None, ) -> str: '''simple docstring''' if config_name_or_path is None: UpperCAmelCase__ = "facebook/rag-token-base" if model_type == "rag_token" else "facebook/rag-sequence-base" if generator_tokenizer_name_or_path is None: UpperCAmelCase__ = generator_name_or_path if question_encoder_tokenizer_name_or_path is None: UpperCAmelCase__ = question_encoder_name_or_path UpperCAmelCase__ = RagTokenForGeneration if model_type == "rag_token" else RagSequenceForGeneration # Save model. UpperCAmelCase__ = RagConfig.from_pretrained(__A ) UpperCAmelCase__ = AutoConfig.from_pretrained(__A ) UpperCAmelCase__ = AutoConfig.from_pretrained(__A ) UpperCAmelCase__ = gen_config UpperCAmelCase__ = question_encoder_config UpperCAmelCase__ = model_class.from_pretrained_question_encoder_generator( __A, __A, config=__A ) rag_model.save_pretrained(__A ) # Sanity check. model_class.from_pretrained(__A ) # Save tokenizers. UpperCAmelCase__ = AutoTokenizer.from_pretrained(__A ) gen_tokenizer.save_pretrained(dest_dir / "generator_tokenizer/" ) UpperCAmelCase__ = AutoTokenizer.from_pretrained(__A ) question_encoder_tokenizer.save_pretrained(dest_dir / "question_encoder_tokenizer/" ) if __name__ == "__main__": UpperCamelCase__ = argparse.ArgumentParser() parser.add_argument( '--model_type', choices=['rag_sequence', 'rag_token'], required=True, type=str, help='RAG model type: rag_sequence, rag_token', ) parser.add_argument('--dest', type=str, required=True, help='Path to the output checkpoint directory.') parser.add_argument('--generator_name_or_path', type=str, required=True, help='Generator model identifier') parser.add_argument( '--question_encoder_name_or_path', type=str, required=True, help='Question encoder model identifier' ) parser.add_argument( '--generator_tokenizer_name_or_path', type=str, help='Generator tokenizer identifier, if not specified, resolves to ``generator_name_or_path``', ) parser.add_argument( '--question_encoder_tokenizer_name_or_path', type=str, help='Question encoder tokenizer identifier, if not specified, resolves to ``question_encoder_name_or_path``', ) parser.add_argument( '--config_name_or_path', type=str, help=( 'Identifier of the model config to use, if not provided, resolves to a base config for a given' ' ``model_type``' ), ) UpperCamelCase__ = parser.parse_args() UpperCamelCase__ = Path(args.dest) dest_dir.mkdir(exist_ok=True) consolidate( args.model_type, args.generator_name_or_path, args.question_encoder_name_or_path, dest_dir, args.config_name_or_path, args.generator_tokenizer_name_or_path, args.question_encoder_tokenizer_name_or_path, )
65
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class snake_case__ : """simple docstring""" def __init__( self : List[str], _snake_case : Any, _snake_case : int=1_3, _snake_case : Optional[int]=7, _snake_case : int=True, _snake_case : Optional[Any]=True, _snake_case : Optional[Any]=True, _snake_case : Union[str, Any]=9_9, _snake_case : Optional[Any]=3_2, _snake_case : Tuple=5, _snake_case : str=4, _snake_case : Any=3_7, _snake_case : int="gelu", _snake_case : Optional[Any]=0.1, _snake_case : str=0.1, _snake_case : str=5_1_2, _snake_case : Dict=1_6, _snake_case : str=2, _snake_case : Union[str, Any]=0.0_2, _snake_case : Optional[int]=3, _snake_case : Union[str, Any]=4, _snake_case : Tuple=None, ) ->Optional[Any]: snake_case__ : Optional[int] = parent snake_case__ : List[Any] = batch_size snake_case__ : Tuple = seq_length snake_case__ : str = is_training snake_case__ : Optional[int] = use_token_type_ids snake_case__ : Any = use_labels snake_case__ : Dict = vocab_size snake_case__ : str = hidden_size snake_case__ : Union[str, Any] = num_hidden_layers snake_case__ : List[str] = num_attention_heads snake_case__ : Union[str, Any] = intermediate_size snake_case__ : List[Any] = hidden_act snake_case__ : int = hidden_dropout_prob snake_case__ : str = attention_probs_dropout_prob snake_case__ : Any = max_position_embeddings snake_case__ : Union[str, Any] = type_vocab_size snake_case__ : Optional[Any] = type_sequence_label_size snake_case__ : Optional[int] = initializer_range snake_case__ : Optional[int] = num_labels snake_case__ : str = num_choices snake_case__ : int = scope snake_case__ : List[str] = self.vocab_size - 1 def lowercase_ ( self : Union[str, Any] ) ->Tuple: snake_case__ : List[str] = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) snake_case__ : List[str] = None if self.use_token_type_ids: snake_case__ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size ) snake_case__ : Tuple = None snake_case__ : str = None snake_case__ : List[Any] = None if self.use_labels: snake_case__ : Dict = ids_tensor([self.batch_size], self.type_sequence_label_size ) snake_case__ : int = ids_tensor([self.batch_size, self.seq_length], self.num_labels ) snake_case__ : List[str] = ids_tensor([self.batch_size], self.num_choices ) snake_case__ : Union[str, Any] = OpenAIGPTConfig( vocab_size=self.vocab_size, n_embd=self.hidden_size, n_layer=self.num_hidden_layers, n_head=self.num_attention_heads, n_positions=self.max_position_embeddings, pad_token_id=self.pad_token_id, ) snake_case__ : List[str] = ids_tensor([self.num_hidden_layers, self.num_attention_heads], 2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def lowercase_ ( self : Any, _snake_case : List[str], _snake_case : Any, _snake_case : List[Any], _snake_case : Tuple, *_snake_case : Optional[Any] ) ->Tuple: snake_case__ : Union[str, Any] = OpenAIGPTModel(config=_snake_case ) model.to(_snake_case ) model.eval() snake_case__ : Optional[Any] = model(_snake_case, token_type_ids=_snake_case, head_mask=_snake_case ) snake_case__ : Union[str, Any] = model(_snake_case, token_type_ids=_snake_case ) snake_case__ : Optional[Any] = model(_snake_case ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase_ ( self : Optional[int], _snake_case : Optional[Any], _snake_case : Union[str, Any], _snake_case : Optional[int], _snake_case : List[Any], *_snake_case : Dict ) ->Optional[int]: snake_case__ : Optional[Any] = OpenAIGPTLMHeadModel(_snake_case ) model.to(_snake_case ) model.eval() snake_case__ : Tuple = model(_snake_case, token_type_ids=_snake_case, labels=_snake_case ) self.parent.assertEqual(result.loss.shape, () ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase_ ( self : int, _snake_case : Tuple, _snake_case : List[str], _snake_case : List[Any], _snake_case : List[Any], *_snake_case : List[Any] ) ->Optional[int]: snake_case__ : List[str] = OpenAIGPTDoubleHeadsModel(_snake_case ) model.to(_snake_case ) model.eval() snake_case__ : Optional[Any] = model(_snake_case, token_type_ids=_snake_case, labels=_snake_case ) self.parent.assertEqual(result.loss.shape, () ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase_ ( self : Optional[int], _snake_case : Tuple, _snake_case : Dict, _snake_case : List[str], _snake_case : Optional[Any], *_snake_case : Union[str, Any] ) ->str: snake_case__ : List[str] = self.num_labels snake_case__ : Dict = OpenAIGPTForSequenceClassification(_snake_case ) model.to(_snake_case ) model.eval() snake_case__ : List[str] = ids_tensor([self.batch_size], self.type_sequence_label_size ) snake_case__ : List[str] = model(_snake_case, token_type_ids=_snake_case, labels=_snake_case ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def lowercase_ ( self : Dict ) ->int: snake_case__ : List[Any] = self.prepare_config_and_inputs() ( ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ) : Optional[Any] = config_and_inputs snake_case__ : str = { 'input_ids': input_ids, 'token_type_ids': token_type_ids, 'head_mask': head_mask, } return config, inputs_dict @require_torch class snake_case__ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) _SCREAMING_SNAKE_CASE = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly _SCREAMING_SNAKE_CASE = ( { """feature-extraction""": OpenAIGPTModel, """text-classification""": OpenAIGPTForSequenceClassification, """text-generation""": OpenAIGPTLMHeadModel, """zero-shot""": OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def lowercase_ ( self : Optional[int], _snake_case : Union[str, Any], _snake_case : int, _snake_case : Tuple, _snake_case : Tuple, _snake_case : List[str] ) ->Optional[Any]: if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def lowercase_ ( self : Optional[Any], _snake_case : Union[str, Any], _snake_case : List[str], _snake_case : Any=False ) ->Tuple: snake_case__ : Optional[int] = super()._prepare_for_class(_snake_case, _snake_case, return_labels=_snake_case ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": snake_case__ : Union[str, Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length), dtype=torch.long, device=_snake_case, ) snake_case__ : List[Any] = inputs_dict['labels'] snake_case__ : List[Any] = inputs_dict['labels'] snake_case__ : Any = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices), dtype=torch.long, device=_snake_case, ) snake_case__ : Tuple = torch.zeros( self.model_tester.batch_size, dtype=torch.long, device=_snake_case ) return inputs_dict def lowercase_ ( self : Union[str, Any] ) ->List[str]: snake_case__ : List[str] = OpenAIGPTModelTester(self ) snake_case__ : Any = ConfigTester(self, config_class=_snake_case, n_embd=3_7 ) def lowercase_ ( self : Optional[int] ) ->str: self.config_tester.run_common_tests() def lowercase_ ( self : int ) ->Tuple: snake_case__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*_snake_case ) def lowercase_ ( self : Tuple ) ->List[str]: snake_case__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*_snake_case ) def lowercase_ ( self : Dict ) ->int: snake_case__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*_snake_case ) def lowercase_ ( self : int ) ->str: snake_case__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*_snake_case ) @slow def lowercase_ ( self : Optional[Any] ) ->str: for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case__ : Optional[int] = OpenAIGPTModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) @require_torch class snake_case__ ( unittest.TestCase ): """simple docstring""" @slow def lowercase_ ( self : Tuple ) ->Optional[int]: snake_case__ : Union[str, Any] = OpenAIGPTLMHeadModel.from_pretrained('openai-gpt' ) model.to(_snake_case ) snake_case__ : Tuple = torch.tensor([[4_8_1, 4_7_3_5, 5_4_4]], dtype=torch.long, device=_snake_case ) # the president is snake_case__ : int = [ 4_8_1, 4_7_3_5, 5_4_4, 2_4_6, 9_6_3, 8_7_0, 7_6_2, 2_3_9, 2_4_4, 4_0_4_7_7, 2_4_4, 2_4_9, 7_1_9, 8_8_1, 4_8_7, 5_4_4, 2_4_0, 2_4_4, 6_0_3, 4_8_1, ] # the president is a very good man. " \n " i\'m sure he is, " said the snake_case__ : Optional[int] = model.generate(_snake_case, do_sample=_snake_case ) self.assertListEqual(output_ids[0].tolist(), _snake_case )
277
0
'''simple docstring''' import itertools from dataclasses import dataclass from typing import List, Optional import pyarrow as pa import pyarrow.parquet as pq import datasets from datasets.table import table_cast a_ = datasets.utils.logging.get_logger(__name__) @dataclass class __SCREAMING_SNAKE_CASE ( datasets.BuilderConfig ): snake_case_ = 1_0000 snake_case_ = None snake_case_ = None class __SCREAMING_SNAKE_CASE ( datasets.ArrowBasedBuilder ): snake_case_ = ParquetConfig def __magic_name__ ( self : str ) -> Any: return datasets.DatasetInfo(features=self.config.features ) def __magic_name__ ( self : Union[str, Any] , __lowercase : List[str] ) -> Union[str, Any]: if not self.config.data_files: raise ValueError(F"At least one data file must be specified, but got data_files={self.config.data_files}" ) SCREAMING_SNAKE_CASE__ : Optional[int] =dl_manager.download_and_extract(self.config.data_files ) if isinstance(__lowercase , (str, list, tuple) ): SCREAMING_SNAKE_CASE__ : Optional[Any] =data_files if isinstance(__lowercase , __lowercase ): SCREAMING_SNAKE_CASE__ : Optional[int] =[files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive SCREAMING_SNAKE_CASE__ : Optional[Any] =[dl_manager.iter_files(__lowercase ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files} )] SCREAMING_SNAKE_CASE__ : str =[] for split_name, files in data_files.items(): if isinstance(__lowercase , __lowercase ): SCREAMING_SNAKE_CASE__ : Optional[int] =[files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive SCREAMING_SNAKE_CASE__ : Any =[dl_manager.iter_files(__lowercase ) for file in files] # Infer features is they are stoed in the arrow schema if self.info.features is None: for file in itertools.chain.from_iterable(__lowercase ): with open(__lowercase , '''rb''' ) as f: SCREAMING_SNAKE_CASE__ : Optional[int] =datasets.Features.from_arrow_schema(pq.read_schema(__lowercase ) ) break splits.append(datasets.SplitGenerator(name=__lowercase , gen_kwargs={'''files''': files} ) ) return splits def __magic_name__ ( self : Tuple , __lowercase : pa.Table ) -> pa.Table: if self.info.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example SCREAMING_SNAKE_CASE__ : List[str] =table_cast(__lowercase , self.info.features.arrow_schema ) return pa_table def __magic_name__ ( self : Optional[int] , __lowercase : Any ) -> List[Any]: SCREAMING_SNAKE_CASE__ : List[str] =self.info.features.arrow_schema if self.info.features is not None else None if self.info.features is not None and self.config.columns is not None: if sorted(field.name for field in schema ) != sorted(self.config.columns ): raise ValueError( F"Tried to load parquet data with columns '{self.config.columns}' with mismatching features '{self.info.features}'" ) for file_idx, file in enumerate(itertools.chain.from_iterable(__lowercase ) ): with open(__lowercase , '''rb''' ) as f: SCREAMING_SNAKE_CASE__ : Union[str, Any] =pq.ParquetFile(__lowercase ) try: for batch_idx, record_batch in enumerate( parquet_file.iter_batches(batch_size=self.config.batch_size , columns=self.config.columns ) ): SCREAMING_SNAKE_CASE__ : Union[str, Any] =pa.Table.from_batches([record_batch] ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield F"{file_idx}_{batch_idx}", self._cast_table(__lowercase ) except ValueError as e: logger.error(F"Failed to read file '{file}' with error {type(__lowercase )}: {e}" ) raise
222
'''simple docstring''' from decimal import Decimal, getcontext from math import ceil, factorial def _a( UpperCamelCase__ : int ): '''simple docstring''' if not isinstance(UpperCamelCase__, UpperCamelCase__ ): raise TypeError('''Undefined for non-integers''' ) elif precision < 1: raise ValueError('''Undefined for non-natural numbers''' ) SCREAMING_SNAKE_CASE__ : Optional[Any] =precision SCREAMING_SNAKE_CASE__ : int =ceil(precision / 1_4 ) SCREAMING_SNAKE_CASE__ : int =4_2_6_8_8_0 * Decimal(1_0_0_0_5 ).sqrt() SCREAMING_SNAKE_CASE__ : Tuple =1 SCREAMING_SNAKE_CASE__ : Any =1_3_5_9_1_4_0_9 SCREAMING_SNAKE_CASE__ : List[Any] =Decimal(UpperCamelCase__ ) for k in range(1, UpperCamelCase__ ): SCREAMING_SNAKE_CASE__ : str =factorial(6 * k ) // (factorial(3 * k ) * factorial(UpperCamelCase__ ) ** 3) linear_term += 5_4_5_1_4_0_1_3_4 exponential_term *= -2_6_2_5_3_7_4_1_2_6_4_0_7_6_8_0_0_0 partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term return str(constant_term / partial_sum )[:-1] if __name__ == "__main__": a_ = 5_0 print(F'''The first {n} digits of pi is: {pi(n)}''')
222
1
import os import unittest from huggingface_hub.utils import are_progress_bars_disabled import transformers.models.bart.tokenization_bart from transformers import logging from transformers.testing_utils import CaptureLogger, mockenv, mockenv_context from transformers.utils.logging import disable_progress_bar, enable_progress_bar class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self : int ): __A = logging.get_logger() # the current default level is logging.WARNING __A = logging.get_verbosity() logging.set_verbosity_error() self.assertEqual(logger.getEffectiveLevel() ,logging.get_verbosity() ) logging.set_verbosity_warning() self.assertEqual(logger.getEffectiveLevel() ,logging.get_verbosity() ) logging.set_verbosity_info() self.assertEqual(logger.getEffectiveLevel() ,logging.get_verbosity() ) logging.set_verbosity_debug() self.assertEqual(logger.getEffectiveLevel() ,logging.get_verbosity() ) # restore to the original level logging.set_verbosity(A ) def UpperCamelCase_ ( self : Dict ): __A = logging.get_verbosity() __A = logging.get_logger("transformers.models.bart.tokenization_bart" ) __A = "Testing 1, 2, 3" # should be able to log warnings (if default settings weren't overridden by `pytest --log-level-all`) if level_origin <= logging.WARNING: with CaptureLogger(A ) as cl: logger.warning(A ) self.assertEqual(cl.out ,msg + "\n" ) # this is setting the level for all of `transformers.*` loggers logging.set_verbosity_error() # should not be able to log warnings with CaptureLogger(A ) as cl: logger.warning(A ) self.assertEqual(cl.out ,"" ) # should be able to log warnings again logging.set_verbosity_warning() with CaptureLogger(A ) as cl: logger.warning(A ) self.assertEqual(cl.out ,msg + "\n" ) # restore to the original level logging.set_verbosity(A ) @mockenv(TRANSFORMERS_VERBOSITY="error" ) def UpperCamelCase_ ( self : Optional[Any] ): # reset for the env var to take effect, next time some logger call is made transformers.utils.logging._reset_library_root_logger() # this action activates the env var __A = logging.get_logger("transformers.models.bart.tokenization_bart" ) __A = os.getenv("TRANSFORMERS_VERBOSITY" ,A ) __A = logging.log_levels[env_level_str] __A = logging.get_verbosity() self.assertEqual( A ,A ,f'''TRANSFORMERS_VERBOSITY={env_level_str}/{env_level}, but internal verbosity is {current_level}''' ,) # restore to the original level __A = "" transformers.utils.logging._reset_library_root_logger() @mockenv(TRANSFORMERS_VERBOSITY="super-error" ) def UpperCamelCase_ ( self : Tuple ): # reset for the env var to take effect, next time some logger call is made transformers.utils.logging._reset_library_root_logger() __A = logging.logging.getLogger() with CaptureLogger(A ) as cl: # this action activates the env var logging.get_logger("transformers.models.bart.tokenization_bart" ) self.assertIn("Unknown option TRANSFORMERS_VERBOSITY=super-error" ,cl.out ) # no need to restore as nothing was changed def UpperCamelCase_ ( self : int ): # testing `logger.warning_advice()` transformers.utils.logging._reset_library_root_logger() __A = logging.get_logger("transformers.models.bart.tokenization_bart" ) __A = "Testing 1, 2, 3" with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS="1" ): # nothing should be logged as env var disables this method with CaptureLogger(A ) as cl: logger.warning_advice(A ) self.assertEqual(cl.out ,"" ) with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS="" ): # should log normally as TRANSFORMERS_NO_ADVISORY_WARNINGS is unset with CaptureLogger(A ) as cl: logger.warning_advice(A ) self.assertEqual(cl.out ,msg + "\n" ) def UpperCAmelCase ( ) -> List[str]: """simple docstring""" disable_progress_bar() assert are_progress_bars_disabled() enable_progress_bar() assert not are_progress_bars_disabled()
15
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto.configuration_auto import CONFIG_MAPPING __SCREAMING_SNAKE_CASE : Any = logging.get_logger(__name__) class __A (snake_case__): '''simple docstring''' __lowercase: int = """upernet""" def __init__( self : str , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : str=512 , UpperCAmelCase_ : int=0.02 , UpperCAmelCase_ : Optional[Any]=[1, 2, 3, 6] , UpperCAmelCase_ : Optional[int]=True , UpperCAmelCase_ : Tuple=0.4 , UpperCAmelCase_ : Tuple=384 , UpperCAmelCase_ : Union[str, Any]=256 , UpperCAmelCase_ : str=1 , UpperCAmelCase_ : Tuple=False , UpperCAmelCase_ : Tuple=255 , **UpperCAmelCase_ : Dict , ) ->Union[str, Any]: """simple docstring""" super().__init__(**UpperCAmelCase_ ) if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) snake_case_ = CONFIG_MAPPING["""resnet"""](out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] ) elif isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): snake_case_ = backbone_config.get("""model_type""" ) snake_case_ = CONFIG_MAPPING[backbone_model_type] snake_case_ = config_class.from_dict(UpperCAmelCase_ ) snake_case_ = backbone_config snake_case_ = hidden_size snake_case_ = initializer_range snake_case_ = pool_scales snake_case_ = use_auxiliary_head snake_case_ = auxiliary_loss_weight snake_case_ = auxiliary_in_channels snake_case_ = auxiliary_channels snake_case_ = auxiliary_num_convs snake_case_ = auxiliary_concat_input snake_case_ = loss_ignore_index def lowerCAmelCase ( self : str ) ->Optional[Any]: """simple docstring""" snake_case_ = copy.deepcopy(self.__dict__ ) snake_case_ = self.backbone_config.to_dict() snake_case_ = self.__class__.model_type return output
347
0
"""simple docstring""" import json import os import tempfile import datasets from utils import generate_example_dataset, get_duration UpperCamelCase_ = 50000 UpperCamelCase_ = 5000 UpperCamelCase_ , UpperCamelCase_ = os.path.split(__file__) UpperCamelCase_ = os.path.join(RESULTS_BASEPATH, 'results', RESULTS_FILENAME.replace('.py', '.json')) @get_duration def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ) ->Union[str, Any]: """simple docstring""" for i in range(UpperCAmelCase ): a_ = dataset[i] @get_duration def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->Union[str, Any]: """simple docstring""" for i in range(0 , len(UpperCAmelCase ) , UpperCAmelCase ): a_ = dataset[i : i + batch_size] @get_duration def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->List[str]: """simple docstring""" with dataset.formatted_as(type=UpperCAmelCase ): for i in range(UpperCAmelCase ): a_ = dataset[i] @get_duration def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->Tuple: """simple docstring""" with dataset.formatted_as(type=UpperCAmelCase ): for i in range(0 , UpperCAmelCase , UpperCAmelCase ): a_ = dataset[i : i + batch_size] def UpperCamelCase ( ) ->Optional[int]: """simple docstring""" a_ = {"num examples": SPEED_TEST_N_EXAMPLES} a_ = [ (read, {"length": SMALL_TEST}), (read, {"length": SPEED_TEST_N_EXAMPLES}), (read_batch, {"length": SPEED_TEST_N_EXAMPLES, "batch_size": 10}), (read_batch, {"length": SPEED_TEST_N_EXAMPLES, "batch_size": 100}), (read_batch, {"length": SPEED_TEST_N_EXAMPLES, "batch_size": 1_000}), (read_formatted, {"type": "numpy", "length": SMALL_TEST}), (read_formatted, {"type": "pandas", "length": SMALL_TEST}), (read_formatted, {"type": "torch", "length": SMALL_TEST}), (read_formatted, {"type": "tensorflow", "length": SMALL_TEST}), (read_formatted_batch, {"type": "numpy", "length": SMALL_TEST, "batch_size": 10}), (read_formatted_batch, {"type": "numpy", "length": SMALL_TEST, "batch_size": 1_000}), ] a_ = [ (read, {"length": SMALL_TEST}), (read, {"length": SPEED_TEST_N_EXAMPLES}), (read_batch, {"length": SPEED_TEST_N_EXAMPLES, "batch_size": 10}), (read_batch, {"length": SPEED_TEST_N_EXAMPLES, "batch_size": 100}), (read_batch, {"length": SPEED_TEST_N_EXAMPLES, "batch_size": 1_000}), (read_formatted, {"type": "numpy", "length": SMALL_TEST}), (read_formatted_batch, {"type": "numpy", "length": SMALL_TEST, "batch_size": 10}), (read_formatted_batch, {"type": "numpy", "length": SMALL_TEST, "batch_size": 1_000}), ] with tempfile.TemporaryDirectory() as tmp_dir: print("generating dataset" ) a_ = datasets.Features( {"list": datasets.Sequence(datasets.Value("float32" ) ), "numbers": datasets.Value("float32" )} ) a_ = generate_example_dataset( os.path.join(UpperCAmelCase , "dataset.arrow" ) , UpperCAmelCase , num_examples=UpperCAmelCase , seq_shapes={"list": (100,)} , ) print("first set of iterations" ) for func, kwargs in functions: print(func.__name__ , str(UpperCAmelCase ) ) a_ = func(UpperCAmelCase , **UpperCAmelCase ) print("shuffling dataset" ) a_ = dataset.shuffle() print("Second set of iterations (after shuffling" ) for func, kwargs in functions_shuffled: print("shuffled " , func.__name__ , str(UpperCAmelCase ) ) a_ = func( UpperCAmelCase , **UpperCAmelCase ) with open(UpperCAmelCase , "wb" ) as f: f.write(json.dumps(UpperCAmelCase ).encode("utf-8" ) ) if __name__ == "__main__": # useful to run the profiler benchmark_iterating()
371
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) UpperCamelCase_ = { 'configuration_swiftformer': [ 'SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SwiftFormerConfig', 'SwiftFormerOnnxConfig', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ 'SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'SwiftFormerForImageClassification', 'SwiftFormerModel', 'SwiftFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_swiftformer import ( SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, SwiftFormerConfig, SwiftFormerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swiftformer import ( SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, SwiftFormerForImageClassification, SwiftFormerModel, SwiftFormerPreTrainedModel, ) else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
303
0
"""simple docstring""" from __future__ import annotations import bisect def lowercase ( __snake_case : list[int] , __snake_case : int , __snake_case : int = 0 , __snake_case : int = -1 ): if hi < 0: lowercase_ : List[Any] = len(__snake_case ) while lo < hi: lowercase_ : Union[str, Any] = lo + (hi - lo) // 2 if sorted_collection[mid] < item: lowercase_ : str = mid + 1 else: lowercase_ : List[str] = mid return lo def lowercase ( __snake_case : list[int] , __snake_case : int , __snake_case : int = 0 , __snake_case : int = -1 ): if hi < 0: lowercase_ : Any = len(__snake_case ) while lo < hi: lowercase_ : Dict = lo + (hi - lo) // 2 if sorted_collection[mid] <= item: lowercase_ : Optional[int] = mid + 1 else: lowercase_ : Any = mid return lo def lowercase ( __snake_case : list[int] , __snake_case : int , __snake_case : int = 0 , __snake_case : int = -1 ): sorted_collection.insert(bisect_left(__snake_case , __snake_case , __snake_case , __snake_case ) , __snake_case ) def lowercase ( __snake_case : list[int] , __snake_case : int , __snake_case : int = 0 , __snake_case : int = -1 ): sorted_collection.insert(bisect_right(__snake_case , __snake_case , __snake_case , __snake_case ) , __snake_case ) def lowercase ( __snake_case : list[int] , __snake_case : int ): lowercase_ : Optional[int] = 0 lowercase_ : Tuple = len(__snake_case ) - 1 while left <= right: lowercase_ : str = left + (right - left) // 2 lowercase_ : Dict = sorted_collection[midpoint] if current_item == item: return midpoint elif item < current_item: lowercase_ : Dict = midpoint - 1 else: lowercase_ : Tuple = midpoint + 1 return None def lowercase ( __snake_case : list[int] , __snake_case : int ): lowercase_ : int = bisect.bisect_left(__snake_case , __snake_case ) if index != len(__snake_case ) and sorted_collection[index] == item: return index return None def lowercase ( __snake_case : list[int] , __snake_case : int , __snake_case : int , __snake_case : int ): if right < left: return None lowercase_ : List[str] = left + (right - left) // 2 if sorted_collection[midpoint] == item: return midpoint elif sorted_collection[midpoint] > item: return binary_search_by_recursion(__snake_case , __snake_case , __snake_case , midpoint - 1 ) else: return binary_search_by_recursion(__snake_case , __snake_case , midpoint + 1 , __snake_case ) if __name__ == "__main__": __A : Dict = input('''Enter numbers separated by comma:\n''').strip() __A : List[str] = sorted(int(item) for item in user_input.split(''',''')) __A : Optional[int] = int(input('''Enter a single number to be found in the list:\n''')) __A : int = binary_search(collection, target) if result is None: print(F"""{target} was not found in {collection}.""") else: print(F"""{target} was found at position {result} in {collection}.""")
33
from __future__ import annotations import time a =list[tuple[int, int]] a =[ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] a =[[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right class A_ : def __init__( self : List[str] ,SCREAMING_SNAKE_CASE__ : int ,SCREAMING_SNAKE_CASE__ : int ,SCREAMING_SNAKE_CASE__ : int ,SCREAMING_SNAKE_CASE__ : int ,SCREAMING_SNAKE_CASE__ : Node | None): __lowerCamelCase : Tuple = pos_x __lowerCamelCase : List[str] = pos_y __lowerCamelCase : str = (pos_y, pos_x) __lowerCamelCase : str = goal_x __lowerCamelCase : int = goal_y __lowerCamelCase : List[Any] = parent class A_ : def __init__( self : Union[str, Any] ,SCREAMING_SNAKE_CASE__ : tuple[int, int] ,SCREAMING_SNAKE_CASE__ : tuple[int, int]): __lowerCamelCase : Any = Node(start[1] ,start[0] ,goal[1] ,goal[0] ,SCREAMING_SNAKE_CASE__) __lowerCamelCase : List[Any] = Node(goal[1] ,goal[0] ,goal[1] ,goal[0] ,SCREAMING_SNAKE_CASE__) __lowerCamelCase : Union[str, Any] = [self.start] __lowerCamelCase : List[str] = False def lowerCAmelCase ( self : List[Any]): while self.node_queue: __lowerCamelCase : Any = self.node_queue.pop(0) if current_node.pos == self.target.pos: __lowerCamelCase : Dict = True return self.retrace_path(SCREAMING_SNAKE_CASE__) __lowerCamelCase : Tuple = self.get_successors(SCREAMING_SNAKE_CASE__) for node in successors: self.node_queue.append(SCREAMING_SNAKE_CASE__) if not self.reached: return [self.start.pos] return None def lowerCAmelCase ( self : str ,SCREAMING_SNAKE_CASE__ : Node): __lowerCamelCase : Union[str, Any] = [] for action in delta: __lowerCamelCase : Optional[Any] = parent.pos_x + action[1] __lowerCamelCase : Optional[int] = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0]) - 1 and 0 <= pos_y <= len(SCREAMING_SNAKE_CASE__) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,self.target.pos_y ,self.target.pos_x ,SCREAMING_SNAKE_CASE__)) return successors def lowerCAmelCase ( self : Optional[int] ,SCREAMING_SNAKE_CASE__ : Node | None): __lowerCamelCase : List[Any] = node __lowerCamelCase : int = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x)) __lowerCamelCase : int = current_node.parent path.reverse() return path class A_ : def __init__( self : Optional[Any] ,SCREAMING_SNAKE_CASE__ : Union[str, Any] ,SCREAMING_SNAKE_CASE__ : int): __lowerCamelCase : int = BreadthFirstSearch(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) __lowerCamelCase : Optional[Any] = BreadthFirstSearch(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) __lowerCamelCase : Optional[Any] = False def lowerCAmelCase ( self : str): while self.fwd_bfs.node_queue or self.bwd_bfs.node_queue: __lowerCamelCase : Any = self.fwd_bfs.node_queue.pop(0) __lowerCamelCase : Any = self.bwd_bfs.node_queue.pop(0) if current_bwd_node.pos == current_fwd_node.pos: __lowerCamelCase : List[str] = True return self.retrace_bidirectional_path( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) __lowerCamelCase : Optional[Any] = current_bwd_node __lowerCamelCase : int = current_fwd_node __lowerCamelCase : str = { self.fwd_bfs: self.fwd_bfs.get_successors(SCREAMING_SNAKE_CASE__), self.bwd_bfs: self.bwd_bfs.get_successors(SCREAMING_SNAKE_CASE__), } for bfs in [self.fwd_bfs, self.bwd_bfs]: for node in successors[bfs]: bfs.node_queue.append(SCREAMING_SNAKE_CASE__) if not self.reached: return [self.fwd_bfs.start.pos] return None def lowerCAmelCase ( self : Dict ,SCREAMING_SNAKE_CASE__ : Node ,SCREAMING_SNAKE_CASE__ : Node): __lowerCamelCase : List[Any] = self.fwd_bfs.retrace_path(SCREAMING_SNAKE_CASE__) __lowerCamelCase : str = self.bwd_bfs.retrace_path(SCREAMING_SNAKE_CASE__) bwd_path.pop() bwd_path.reverse() __lowerCamelCase : List[Any] = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] import doctest doctest.testmod() a =(0, 0) a =(len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) a =time.time() a =BreadthFirstSearch(init, goal) a =bfs.search() a =time.time() - start_bfs_time print("""Unidirectional BFS computation time : """, bfs_time) a =time.time() a =BidirectionalBreadthFirstSearch(init, goal) a =bd_bfs.search() a =time.time() - start_bd_bfs_time print("""Bidirectional BFS computation time : """, bd_bfs_time)
73
0
import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaPriorEmbaEmbPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class SCREAMING_SNAKE_CASE ( lowerCAmelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase_ : List[str] = KandinskyVaaControlnetImgaImgPipeline UpperCamelCase_ : Tuple = ['''image_embeds''', '''negative_image_embeds''', '''image''', '''hint'''] UpperCamelCase_ : Optional[Any] = ['''image_embeds''', '''negative_image_embeds''', '''image''', '''hint'''] UpperCamelCase_ : List[str] = [ '''generator''', '''height''', '''width''', '''strength''', '''guidance_scale''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] UpperCamelCase_ : Union[str, Any] = False @property def _A ( self : Any ): return 32 @property def _A ( self : Union[str, Any] ): return 32 @property def _A ( self : List[Any] ): return self.time_input_dim @property def _A ( self : Any ): return self.time_input_dim * 4 @property def _A ( self : Tuple ): return 100 @property def _A ( self : Any ): torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : int = { "in_channels": 8, # Out channels is double in channels because predicts mean and variance "out_channels": 8, "addition_embed_type": "image_hint", "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "layers_per_block": 1, "encoder_hid_dim": self.text_embedder_hidden_size, "encoder_hid_dim_type": "image_proj", "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": None, } SCREAMING_SNAKE_CASE : List[str] = UNetaDConditionModel(**_snake_case ) return model @property def _A ( self : Optional[Any] ): return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def _A ( self : int ): torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Any = VQModel(**self.dummy_movq_kwargs ) return model def _A ( self : Tuple ): SCREAMING_SNAKE_CASE : Optional[Any] = self.dummy_unet SCREAMING_SNAKE_CASE : str = self.dummy_movq SCREAMING_SNAKE_CASE : Optional[Any] = { "num_train_timesteps": 1000, "beta_schedule": "linear", "beta_start": 0.00_085, "beta_end": 0.012, "clip_sample": False, "set_alpha_to_one": False, "steps_offset": 0, "prediction_type": "epsilon", "thresholding": False, } SCREAMING_SNAKE_CASE : str = DDIMScheduler(**_snake_case ) SCREAMING_SNAKE_CASE : str = { "unet": unet, "scheduler": scheduler, "movq": movq, } return components def _A ( self : Tuple , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[Any]=0 ): SCREAMING_SNAKE_CASE : Any = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(_snake_case ) ).to(_snake_case ) SCREAMING_SNAKE_CASE : Optional[Any] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( _snake_case ) # create init_image SCREAMING_SNAKE_CASE : List[str] = floats_tensor((1, 3, 64, 64) , rng=random.Random(_snake_case ) ).to(_snake_case ) SCREAMING_SNAKE_CASE : int = image.cpu().permute(0 , 2 , 3 , 1 )[0] SCREAMING_SNAKE_CASE : Optional[Any] = Image.fromarray(np.uinta(_snake_case ) ).convert("RGB" ).resize((256, 256) ) # create hint SCREAMING_SNAKE_CASE : int = floats_tensor((1, 3, 64, 64) , rng=random.Random(_snake_case ) ).to(_snake_case ) if str(_snake_case ).startswith("mps" ): SCREAMING_SNAKE_CASE : Union[str, Any] = torch.manual_seed(_snake_case ) else: SCREAMING_SNAKE_CASE : List[Any] = torch.Generator(device=_snake_case ).manual_seed(_snake_case ) SCREAMING_SNAKE_CASE : Tuple = { "image": init_image, "image_embeds": image_embeds, "negative_image_embeds": negative_image_embeds, "hint": hint, "generator": generator, "height": 64, "width": 64, "num_inference_steps": 10, "guidance_scale": 7.0, "strength": 0.2, "output_type": "np", } return inputs def _A ( self : str ): SCREAMING_SNAKE_CASE : Any = "cpu" SCREAMING_SNAKE_CASE : Any = self.get_dummy_components() SCREAMING_SNAKE_CASE : str = self.pipeline_class(**_snake_case ) SCREAMING_SNAKE_CASE : int = pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) SCREAMING_SNAKE_CASE : Optional[Any] = pipe(**self.get_dummy_inputs(_snake_case ) ) SCREAMING_SNAKE_CASE : Any = output.images SCREAMING_SNAKE_CASE : int = pipe( **self.get_dummy_inputs(_snake_case ) , return_dict=_snake_case , )[0] SCREAMING_SNAKE_CASE : Any = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE : Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) SCREAMING_SNAKE_CASE : Dict = np.array( [0.54_985_034, 0.55_509_365, 0.52_561_504, 0.5_570_494, 0.5_593_818, 0.5_263_979, 0.50_285_643, 0.5_069_846, 0.51_196_736] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def _A ( self : Optional[int] ): super().tearDown() gc.collect() torch.cuda.empty_cache() def _A ( self : Optional[Any] ): SCREAMING_SNAKE_CASE : Any = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinskyv22/kandinskyv22_controlnet_img2img_robotcat_fp16.npy" ) SCREAMING_SNAKE_CASE : List[Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png" ) SCREAMING_SNAKE_CASE : Any = init_image.resize((512, 512) ) SCREAMING_SNAKE_CASE : Tuple = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinskyv22/hint_image_cat.png" ) SCREAMING_SNAKE_CASE : Optional[Any] = torch.from_numpy(np.array(_snake_case ) ).float() / 255.0 SCREAMING_SNAKE_CASE : Any = hint.permute(2 , 0 , 1 ).unsqueeze(0 ) SCREAMING_SNAKE_CASE : Any = "A robot, 4k photo" SCREAMING_SNAKE_CASE : List[str] = KandinskyVaaPriorEmbaEmbPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-prior" , torch_dtype=torch.floataa ) pipe_prior.to(_snake_case ) SCREAMING_SNAKE_CASE : Optional[int] = KandinskyVaaControlnetImgaImgPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-controlnet-depth" , torch_dtype=torch.floataa ) SCREAMING_SNAKE_CASE : Dict = pipeline.to(_snake_case ) pipeline.set_progress_bar_config(disable=_snake_case ) SCREAMING_SNAKE_CASE : Dict = torch.Generator(device="cpu" ).manual_seed(0 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = pipe_prior( _snake_case , image=_snake_case , strength=0.85 , generator=_snake_case , negative_prompt="" , ).to_tuple() SCREAMING_SNAKE_CASE : Optional[Any] = pipeline( image=_snake_case , image_embeds=_snake_case , negative_image_embeds=_snake_case , hint=_snake_case , generator=_snake_case , num_inference_steps=100 , height=512 , width=512 , strength=0.5 , output_type="np" , ) SCREAMING_SNAKE_CASE : Any = output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(_snake_case , _snake_case )
361
import argparse import json import os import numpy as np import PIL import requests import tensorflow.keras.applications.efficientnet as efficientnet import torch from huggingface_hub import hf_hub_download from PIL import Image from tensorflow.keras.preprocessing import image from transformers import ( EfficientNetConfig, EfficientNetForImageClassification, EfficientNetImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() snake_case = logging.get_logger(__name__) snake_case = { """b0""": efficientnet.EfficientNetBa, """b1""": efficientnet.EfficientNetBa, """b2""": efficientnet.EfficientNetBa, """b3""": efficientnet.EfficientNetBa, """b4""": efficientnet.EfficientNetBa, """b5""": efficientnet.EfficientNetBa, """b6""": efficientnet.EfficientNetBa, """b7""": efficientnet.EfficientNetBa, } snake_case = { """b0""": { """hidden_dim""": 1_280, """width_coef""": 1.0, """depth_coef""": 1.0, """image_size""": 224, """dropout_rate""": 0.2, """dw_padding""": [], }, """b1""": { """hidden_dim""": 1_280, """width_coef""": 1.0, """depth_coef""": 1.1, """image_size""": 240, """dropout_rate""": 0.2, """dw_padding""": [16], }, """b2""": { """hidden_dim""": 1_408, """width_coef""": 1.1, """depth_coef""": 1.2, """image_size""": 260, """dropout_rate""": 0.3, """dw_padding""": [5, 8, 16], }, """b3""": { """hidden_dim""": 1_536, """width_coef""": 1.2, """depth_coef""": 1.4, """image_size""": 300, """dropout_rate""": 0.3, """dw_padding""": [5, 18], }, """b4""": { """hidden_dim""": 1_792, """width_coef""": 1.4, """depth_coef""": 1.8, """image_size""": 380, """dropout_rate""": 0.4, """dw_padding""": [6], }, """b5""": { """hidden_dim""": 2_048, """width_coef""": 1.6, """depth_coef""": 2.2, """image_size""": 456, """dropout_rate""": 0.4, """dw_padding""": [13, 27], }, """b6""": { """hidden_dim""": 2_304, """width_coef""": 1.8, """depth_coef""": 2.6, """image_size""": 528, """dropout_rate""": 0.5, """dw_padding""": [31], }, """b7""": { """hidden_dim""": 2_560, """width_coef""": 2.0, """depth_coef""": 3.1, """image_size""": 600, """dropout_rate""": 0.5, """dw_padding""": [18], }, } def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : str = EfficientNetConfig() SCREAMING_SNAKE_CASE : str = CONFIG_MAP[model_name]["hidden_dim"] SCREAMING_SNAKE_CASE : Tuple = CONFIG_MAP[model_name]["width_coef"] SCREAMING_SNAKE_CASE : Optional[int] = CONFIG_MAP[model_name]["depth_coef"] SCREAMING_SNAKE_CASE : Union[str, Any] = CONFIG_MAP[model_name]["image_size"] SCREAMING_SNAKE_CASE : Any = CONFIG_MAP[model_name]["dropout_rate"] SCREAMING_SNAKE_CASE : str = CONFIG_MAP[model_name]["dw_padding"] SCREAMING_SNAKE_CASE : str = "huggingface/label-files" SCREAMING_SNAKE_CASE : str = "imagenet-1k-id2label.json" SCREAMING_SNAKE_CASE : str = 1000 SCREAMING_SNAKE_CASE : List[Any] = json.load(open(hf_hub_download(lowercase , lowercase , repo_type="dataset" ) , "r" ) ) SCREAMING_SNAKE_CASE : Tuple = {int(lowercase ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE : Union[str, Any] = idalabel SCREAMING_SNAKE_CASE : Union[str, Any] = {v: k for k, v in idalabel.items()} return config def lowerCamelCase__ ( ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = "http://images.cocodataset.org/val2017/000000039769.jpg" SCREAMING_SNAKE_CASE : List[Any] = Image.open(requests.get(lowercase , stream=lowercase ).raw ) return im def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = CONFIG_MAP[model_name]["image_size"] SCREAMING_SNAKE_CASE : int = EfficientNetImageProcessor( size={"height": size, "width": size} , image_mean=[0.485, 0.456, 0.406] , image_std=[0.47853944, 0.4732864, 0.47434163] , do_center_crop=lowercase , ) return preprocessor def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = [v.split("_" )[0].split("block" )[1] for v in original_param_names if v.startswith("block" )] SCREAMING_SNAKE_CASE : List[str] = sorted(set(lowercase ) ) SCREAMING_SNAKE_CASE : List[str] = len(lowercase ) SCREAMING_SNAKE_CASE : Optional[int] = {b: str(lowercase ) for b, i in zip(lowercase , range(lowercase ) )} SCREAMING_SNAKE_CASE : Dict = [] rename_keys.append(("stem_conv/kernel:0", "embeddings.convolution.weight") ) rename_keys.append(("stem_bn/gamma:0", "embeddings.batchnorm.weight") ) rename_keys.append(("stem_bn/beta:0", "embeddings.batchnorm.bias") ) rename_keys.append(("stem_bn/moving_mean:0", "embeddings.batchnorm.running_mean") ) rename_keys.append(("stem_bn/moving_variance:0", "embeddings.batchnorm.running_var") ) for b in block_names: SCREAMING_SNAKE_CASE : Tuple = block_name_mapping[b] rename_keys.append((F'''block{b}_expand_conv/kernel:0''', F'''encoder.blocks.{hf_b}.expansion.expand_conv.weight''') ) rename_keys.append((F'''block{b}_expand_bn/gamma:0''', F'''encoder.blocks.{hf_b}.expansion.expand_bn.weight''') ) rename_keys.append((F'''block{b}_expand_bn/beta:0''', F'''encoder.blocks.{hf_b}.expansion.expand_bn.bias''') ) rename_keys.append( (F'''block{b}_expand_bn/moving_mean:0''', F'''encoder.blocks.{hf_b}.expansion.expand_bn.running_mean''') ) rename_keys.append( (F'''block{b}_expand_bn/moving_variance:0''', F'''encoder.blocks.{hf_b}.expansion.expand_bn.running_var''') ) rename_keys.append( (F'''block{b}_dwconv/depthwise_kernel:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight''') ) rename_keys.append((F'''block{b}_bn/gamma:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight''') ) rename_keys.append((F'''block{b}_bn/beta:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias''') ) rename_keys.append( (F'''block{b}_bn/moving_mean:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean''') ) rename_keys.append( (F'''block{b}_bn/moving_variance:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var''') ) rename_keys.append((F'''block{b}_se_reduce/kernel:0''', F'''encoder.blocks.{hf_b}.squeeze_excite.reduce.weight''') ) rename_keys.append((F'''block{b}_se_reduce/bias:0''', F'''encoder.blocks.{hf_b}.squeeze_excite.reduce.bias''') ) rename_keys.append((F'''block{b}_se_expand/kernel:0''', F'''encoder.blocks.{hf_b}.squeeze_excite.expand.weight''') ) rename_keys.append((F'''block{b}_se_expand/bias:0''', F'''encoder.blocks.{hf_b}.squeeze_excite.expand.bias''') ) rename_keys.append( (F'''block{b}_project_conv/kernel:0''', F'''encoder.blocks.{hf_b}.projection.project_conv.weight''') ) rename_keys.append((F'''block{b}_project_bn/gamma:0''', F'''encoder.blocks.{hf_b}.projection.project_bn.weight''') ) rename_keys.append((F'''block{b}_project_bn/beta:0''', F'''encoder.blocks.{hf_b}.projection.project_bn.bias''') ) rename_keys.append( (F'''block{b}_project_bn/moving_mean:0''', F'''encoder.blocks.{hf_b}.projection.project_bn.running_mean''') ) rename_keys.append( (F'''block{b}_project_bn/moving_variance:0''', F'''encoder.blocks.{hf_b}.projection.project_bn.running_var''') ) rename_keys.append(("top_conv/kernel:0", "encoder.top_conv.weight") ) rename_keys.append(("top_bn/gamma:0", "encoder.top_bn.weight") ) rename_keys.append(("top_bn/beta:0", "encoder.top_bn.bias") ) rename_keys.append(("top_bn/moving_mean:0", "encoder.top_bn.running_mean") ) rename_keys.append(("top_bn/moving_variance:0", "encoder.top_bn.running_var") ) SCREAMING_SNAKE_CASE : int = {} for item in rename_keys: if item[0] in original_param_names: SCREAMING_SNAKE_CASE : Any = "efficientnet." + item[1] SCREAMING_SNAKE_CASE : Optional[Any] = "classifier.weight" SCREAMING_SNAKE_CASE : List[str] = "classifier.bias" return key_mapping def lowerCamelCase__ ( lowercase , lowercase , lowercase ): """simple docstring""" for key, value in tf_params.items(): if "normalization" in key: continue SCREAMING_SNAKE_CASE : str = key_mapping[key] if "_conv" in key and "kernel" in key: SCREAMING_SNAKE_CASE : Dict = torch.from_numpy(lowercase ).permute(3 , 2 , 0 , 1 ) elif "depthwise_kernel" in key: SCREAMING_SNAKE_CASE : int = torch.from_numpy(lowercase ).permute(2 , 3 , 0 , 1 ) elif "kernel" in key: SCREAMING_SNAKE_CASE : List[str] = torch.from_numpy(np.transpose(lowercase ) ) else: SCREAMING_SNAKE_CASE : Dict = torch.from_numpy(lowercase ) # Replace HF parameters with original TF model parameters assert hf_params[hf_key].shape == new_hf_value.shape hf_params[hf_key].copy_(lowercase ) @torch.no_grad() def lowerCamelCase__ ( lowercase , lowercase , lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = model_classes[model_name]( include_top=lowercase , weights="imagenet" , input_tensor=lowercase , input_shape=lowercase , pooling=lowercase , classes=1000 , classifier_activation="softmax" , ) SCREAMING_SNAKE_CASE : List[Any] = original_model.trainable_variables SCREAMING_SNAKE_CASE : Dict = original_model.non_trainable_variables SCREAMING_SNAKE_CASE : Dict = {param.name: param.numpy() for param in tf_params} for param in tf_non_train_params: SCREAMING_SNAKE_CASE : Tuple = param.numpy() SCREAMING_SNAKE_CASE : Tuple = list(tf_params.keys() ) # Load HuggingFace model SCREAMING_SNAKE_CASE : Tuple = get_efficientnet_config(lowercase ) SCREAMING_SNAKE_CASE : str = EfficientNetForImageClassification(lowercase ).eval() SCREAMING_SNAKE_CASE : Dict = hf_model.state_dict() # Create src-to-dst parameter name mapping dictionary print("Converting parameters..." ) SCREAMING_SNAKE_CASE : Dict = rename_keys(lowercase ) replace_params(lowercase , lowercase , lowercase ) # Initialize preprocessor and preprocess input image SCREAMING_SNAKE_CASE : Optional[int] = convert_image_processor(lowercase ) SCREAMING_SNAKE_CASE : int = preprocessor(images=prepare_img() , return_tensors="pt" ) # HF model inference hf_model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE : List[str] = hf_model(**lowercase ) SCREAMING_SNAKE_CASE : Optional[int] = outputs.logits.detach().numpy() # Original model inference SCREAMING_SNAKE_CASE : int = False SCREAMING_SNAKE_CASE : List[str] = CONFIG_MAP[model_name]["image_size"] SCREAMING_SNAKE_CASE : Any = prepare_img().resize((image_size, image_size) , resample=PIL.Image.NEAREST ) SCREAMING_SNAKE_CASE : Tuple = image.img_to_array(lowercase ) SCREAMING_SNAKE_CASE : Tuple = np.expand_dims(lowercase , axis=0 ) SCREAMING_SNAKE_CASE : Any = original_model.predict(lowercase ) # Check whether original and HF model outputs match -> np.allclose assert np.allclose(lowercase , lowercase , atol=1E-3 ), "The predicted logits are not the same." print("Model outputs match!" ) if save_model: # Create folder to save model if not os.path.isdir(lowercase ): os.mkdir(lowercase ) # Save converted model and image processor hf_model.save_pretrained(lowercase ) preprocessor.save_pretrained(lowercase ) if push_to_hub: # Push model and image processor to hub print(F'''Pushing converted {model_name} to the hub...''' ) SCREAMING_SNAKE_CASE : Union[str, Any] = F'''efficientnet-{model_name}''' preprocessor.push_to_hub(lowercase ) hf_model.push_to_hub(lowercase ) if __name__ == "__main__": snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""b0""", type=str, help="""Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].""", ) parser.add_argument( """--pytorch_dump_folder_path""", default="""hf_model""", type=str, help="""Path to the output PyTorch model directory.""", ) parser.add_argument("""--save_model""", action="""store_true""", help="""Save model to local""") parser.add_argument("""--push_to_hub""", action="""store_true""", help="""Push model and image processor to the hub""") snake_case = parser.parse_args() convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
319
0
from typing import Callable, Dict, Optional, Tuple import torch from torch import nn from torch.distributions import ( AffineTransform, Distribution, Independent, NegativeBinomial, Normal, StudentT, TransformedDistribution, ) class _snake_case ( _lowercase ): def __init__( self: List[str] , __lowerCamelCase: Distribution , __lowerCamelCase: Any=None , __lowerCamelCase: Optional[int]=None , __lowerCamelCase: Optional[Any]=0 ) -> str: __UpperCAmelCase : Dict = 1.0 if scale is None else scale __UpperCAmelCase : Tuple = 0.0 if loc is None else loc super().__init__(__lowerCamelCase , [AffineTransform(loc=self.loc , scale=self.scale , event_dim=__lowerCamelCase )] ) @property def _lowerCamelCase ( self: Any ) -> Optional[int]: return self.base_dist.mean * self.scale + self.loc @property def _lowerCamelCase ( self: Union[str, Any] ) -> int: return self.base_dist.variance * self.scale**2 @property def _lowerCamelCase ( self: Union[str, Any] ) -> int: return self.variance.sqrt() class _snake_case ( nn.Module ): def __init__( self: List[Any] , __lowerCamelCase: int , __lowerCamelCase: Dict[str, int] , __lowerCamelCase: Callable[..., Tuple[torch.Tensor]] , **__lowerCamelCase: Optional[Any] ) -> None: super().__init__(**__lowerCamelCase ) __UpperCAmelCase : Union[str, Any] = args_dim __UpperCAmelCase : Any = nn.ModuleList([nn.Linear(__lowerCamelCase , __lowerCamelCase ) for dim in args_dim.values()] ) __UpperCAmelCase : Union[str, Any] = domain_map def _lowerCamelCase ( self: int , __lowerCamelCase: torch.Tensor ) -> Tuple[torch.Tensor]: __UpperCAmelCase : List[Any] = [proj(__lowerCamelCase ) for proj in self.proj] return self.domain_map(*__lowerCamelCase ) class _snake_case ( nn.Module ): def __init__( self: int , __lowerCamelCase: List[Any] ) -> Tuple: super().__init__() __UpperCAmelCase : Dict = function def _lowerCamelCase ( self: Dict , __lowerCamelCase: Any , *__lowerCamelCase: List[Any] ) -> List[str]: return self.function(__lowerCamelCase , *__lowerCamelCase ) class _snake_case : lowerCamelCase__: type lowerCamelCase__: int lowerCamelCase__: Dict[str, int] def __init__( self: Dict , __lowerCamelCase: int = 1 ) -> None: __UpperCAmelCase : str = dim __UpperCAmelCase : Tuple = {k: dim * self.args_dim[k] for k in self.args_dim} def _lowerCamelCase ( self: Any , __lowerCamelCase: List[Any] ) -> Union[str, Any]: if self.dim == 1: return self.distribution_class(*__lowerCamelCase ) else: return Independent(self.distribution_class(*__lowerCamelCase ) , 1 ) def _lowerCamelCase ( self: Any , __lowerCamelCase: List[str] , __lowerCamelCase: Optional[torch.Tensor] = None , __lowerCamelCase: Optional[torch.Tensor] = None , ) -> Distribution: __UpperCAmelCase : Tuple = self._base_distribution(__lowerCamelCase ) if loc is None and scale is None: return distr else: return AffineTransformed(__lowerCamelCase , loc=__lowerCamelCase , scale=__lowerCamelCase , event_dim=self.event_dim ) @property def _lowerCamelCase ( self: str ) -> Tuple: return () if self.dim == 1 else (self.dim,) @property def _lowerCamelCase ( self: Optional[Any] ) -> int: return len(self.event_shape ) @property def _lowerCamelCase ( self: str ) -> float: return 0.0 def _lowerCamelCase ( self: Optional[Any] , __lowerCamelCase: int ) -> nn.Module: return ParameterProjection( in_features=__lowerCamelCase , args_dim=self.args_dim , domain_map=LambdaLayer(self.domain_map ) , ) def _lowerCamelCase ( self: str , *__lowerCamelCase: torch.Tensor ) -> int: raise NotImplementedError() @staticmethod def _lowerCamelCase ( __lowerCamelCase: torch.Tensor ) -> torch.Tensor: return (x + torch.sqrt(torch.square(__lowerCamelCase ) + 4.0 )) / 2.0 class _snake_case ( _lowercase ): lowerCamelCase__: Dict[str, int] = {"df": 1, "loc": 1, "scale": 1} lowerCamelCase__: type = StudentT @classmethod def _lowerCamelCase ( cls: Tuple , __lowerCamelCase: torch.Tensor , __lowerCamelCase: torch.Tensor , __lowerCamelCase: torch.Tensor ) -> str: __UpperCAmelCase : List[Any] = cls.squareplus(__lowerCamelCase ).clamp_min(torch.finfo(scale.dtype ).eps ) __UpperCAmelCase : Optional[int] = 2.0 + cls.squareplus(__lowerCamelCase ) return df.squeeze(-1 ), loc.squeeze(-1 ), scale.squeeze(-1 ) class _snake_case ( _lowercase ): lowerCamelCase__: Dict[str, int] = {"loc": 1, "scale": 1} lowerCamelCase__: type = Normal @classmethod def _lowerCamelCase ( cls: List[str] , __lowerCamelCase: torch.Tensor , __lowerCamelCase: torch.Tensor ) -> Union[str, Any]: __UpperCAmelCase : Any = cls.squareplus(__lowerCamelCase ).clamp_min(torch.finfo(scale.dtype ).eps ) return loc.squeeze(-1 ), scale.squeeze(-1 ) class _snake_case ( _lowercase ): lowerCamelCase__: Dict[str, int] = {"total_count": 1, "logits": 1} lowerCamelCase__: type = NegativeBinomial @classmethod def _lowerCamelCase ( cls: Tuple , __lowerCamelCase: torch.Tensor , __lowerCamelCase: torch.Tensor ) -> int: __UpperCAmelCase : Dict = cls.squareplus(__lowerCamelCase ) return total_count.squeeze(-1 ), logits.squeeze(-1 ) def _lowerCamelCase ( self: List[str] , __lowerCamelCase: List[str] ) -> Distribution: __UpperCAmelCase , __UpperCAmelCase : str = distr_args if self.dim == 1: return self.distribution_class(total_count=__lowerCamelCase , logits=__lowerCamelCase ) else: return Independent(self.distribution_class(total_count=__lowerCamelCase , logits=__lowerCamelCase ) , 1 ) def _lowerCamelCase ( self: int , __lowerCamelCase: List[str] , __lowerCamelCase: Optional[torch.Tensor] = None , __lowerCamelCase: Optional[torch.Tensor] = None ) -> Distribution: __UpperCAmelCase , __UpperCAmelCase : List[str] = distr_args if scale is not None: # See scaling property of Gamma. logits += scale.log() return self._base_distribution((total_count, logits) )
157
import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizer from diffusers import ( AltDiffusionImgaImgPipeline, AutoencoderKL, PNDMScheduler, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class _snake_case ( unittest.TestCase ): def _lowerCamelCase ( self: Any ) -> List[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _lowerCamelCase ( self: Dict ) -> int: __UpperCAmelCase : Any = 1 __UpperCAmelCase : List[Any] = 3 __UpperCAmelCase : Optional[int] = (32, 32) __UpperCAmelCase : str = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(__lowerCamelCase ) return image @property def _lowerCamelCase ( self: List[Any] ) -> str: torch.manual_seed(0 ) __UpperCAmelCase : int = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) return model @property def _lowerCamelCase ( self: List[str] ) -> int: torch.manual_seed(0 ) __UpperCAmelCase : int = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) return model @property def _lowerCamelCase ( self: int ) -> List[str]: torch.manual_seed(0 ) __UpperCAmelCase : Optional[int] = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=50_06 , ) return RobertaSeriesModelWithTransformation(__lowerCamelCase ) @property def _lowerCamelCase ( self: Optional[Any] ) -> Optional[Any]: def extract(*__lowerCamelCase: List[str] , **__lowerCamelCase: Optional[int] ): class _snake_case : def __init__( self: List[str] ) -> int: __UpperCAmelCase : Tuple = torch.ones([0] ) def _lowerCamelCase ( self: int , __lowerCamelCase: Optional[int] ) -> int: self.pixel_values.to(__lowerCamelCase ) return self return Out() return extract def _lowerCamelCase ( self: Dict ) -> Union[str, Any]: __UpperCAmelCase : List[Any] = "cpu" # ensure determinism for the device-dependent torch.Generator __UpperCAmelCase : List[Any] = self.dummy_cond_unet __UpperCAmelCase : int = PNDMScheduler(skip_prk_steps=__lowerCamelCase ) __UpperCAmelCase : Optional[Any] = self.dummy_vae __UpperCAmelCase : List[str] = self.dummy_text_encoder __UpperCAmelCase : Tuple = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta" ) __UpperCAmelCase : int = 77 __UpperCAmelCase : List[str] = self.dummy_image.to(__lowerCamelCase ) __UpperCAmelCase : Dict = init_image / 2 + 0.5 # make sure here that pndm scheduler skips prk __UpperCAmelCase : Optional[Any] = AltDiffusionImgaImgPipeline( unet=__lowerCamelCase , scheduler=__lowerCamelCase , vae=__lowerCamelCase , text_encoder=__lowerCamelCase , tokenizer=__lowerCamelCase , safety_checker=__lowerCamelCase , feature_extractor=self.dummy_extractor , ) __UpperCAmelCase : Union[str, Any] = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=__lowerCamelCase ) __UpperCAmelCase : List[str] = alt_pipe.to(__lowerCamelCase ) alt_pipe.set_progress_bar_config(disable=__lowerCamelCase ) __UpperCAmelCase : Optional[int] = "A painting of a squirrel eating a burger" __UpperCAmelCase : Optional[int] = torch.Generator(device=__lowerCamelCase ).manual_seed(0 ) __UpperCAmelCase : List[Any] = alt_pipe( [prompt] , generator=__lowerCamelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , image=__lowerCamelCase , ) __UpperCAmelCase : List[Any] = output.images __UpperCAmelCase : Tuple = torch.Generator(device=__lowerCamelCase ).manual_seed(0 ) __UpperCAmelCase : Tuple = alt_pipe( [prompt] , generator=__lowerCamelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , image=__lowerCamelCase , return_dict=__lowerCamelCase , )[0] __UpperCAmelCase : str = image[0, -3:, -3:, -1] __UpperCAmelCase : Tuple = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __UpperCAmelCase : Tuple = np.array([0.44_27, 0.37_31, 0.42_49, 0.49_41, 0.45_46, 0.41_48, 0.41_93, 0.46_66, 0.44_99] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-3 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5e-3 @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def _lowerCamelCase ( self: Tuple ) -> Optional[int]: __UpperCAmelCase : List[Any] = self.dummy_cond_unet __UpperCAmelCase : List[Any] = PNDMScheduler(skip_prk_steps=__lowerCamelCase ) __UpperCAmelCase : Any = self.dummy_vae __UpperCAmelCase : Tuple = self.dummy_text_encoder __UpperCAmelCase : Optional[Any] = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta" ) __UpperCAmelCase : Dict = 77 __UpperCAmelCase : Tuple = self.dummy_image.to(__lowerCamelCase ) # put models in fp16 __UpperCAmelCase : Any = unet.half() __UpperCAmelCase : Optional[Any] = vae.half() __UpperCAmelCase : Optional[int] = bert.half() # make sure here that pndm scheduler skips prk __UpperCAmelCase : List[Any] = AltDiffusionImgaImgPipeline( unet=__lowerCamelCase , scheduler=__lowerCamelCase , vae=__lowerCamelCase , text_encoder=__lowerCamelCase , tokenizer=__lowerCamelCase , safety_checker=__lowerCamelCase , feature_extractor=self.dummy_extractor , ) __UpperCAmelCase : Any = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=__lowerCamelCase ) __UpperCAmelCase : Any = alt_pipe.to(__lowerCamelCase ) alt_pipe.set_progress_bar_config(disable=__lowerCamelCase ) __UpperCAmelCase : int = "A painting of a squirrel eating a burger" __UpperCAmelCase : Optional[Any] = torch.manual_seed(0 ) __UpperCAmelCase : Any = alt_pipe( [prompt] , generator=__lowerCamelCase , num_inference_steps=2 , output_type="np" , image=__lowerCamelCase , ).images assert image.shape == (1, 32, 32, 3) @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def _lowerCamelCase ( self: int ) -> List[str]: __UpperCAmelCase : int = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) # resize to resolution that is divisible by 8 but not 16 or 32 __UpperCAmelCase : List[Any] = init_image.resize((7_60, 5_04) ) __UpperCAmelCase : Any = "BAAI/AltDiffusion" __UpperCAmelCase : Union[str, Any] = AltDiffusionImgaImgPipeline.from_pretrained( __lowerCamelCase , safety_checker=__lowerCamelCase , ) pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) pipe.enable_attention_slicing() __UpperCAmelCase : str = "A fantasy landscape, trending on artstation" __UpperCAmelCase : Union[str, Any] = torch.manual_seed(0 ) __UpperCAmelCase : List[Any] = pipe( prompt=__lowerCamelCase , image=__lowerCamelCase , strength=0.75 , guidance_scale=7.5 , generator=__lowerCamelCase , output_type="np" , ) __UpperCAmelCase : List[Any] = output.images[0] __UpperCAmelCase : str = image[2_55:2_58, 3_83:3_86, -1] assert image.shape == (5_04, 7_60, 3) __UpperCAmelCase : int = np.array([0.93_58, 0.93_97, 0.95_99, 0.99_01, 1.00_00, 1.00_00, 0.98_82, 1.00_00, 1.00_00] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class _snake_case ( unittest.TestCase ): def _lowerCamelCase ( self: Union[str, Any] ) -> List[str]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCamelCase ( self: List[Any] ) -> List[Any]: __UpperCAmelCase : List[str] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) __UpperCAmelCase : Union[str, Any] = init_image.resize((7_68, 5_12) ) __UpperCAmelCase : Any = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy" ) __UpperCAmelCase : Union[str, Any] = "BAAI/AltDiffusion" __UpperCAmelCase : Optional[Any] = AltDiffusionImgaImgPipeline.from_pretrained( __lowerCamelCase , safety_checker=__lowerCamelCase , ) pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) pipe.enable_attention_slicing() __UpperCAmelCase : List[Any] = "A fantasy landscape, trending on artstation" __UpperCAmelCase : Union[str, Any] = torch.manual_seed(0 ) __UpperCAmelCase : str = pipe( prompt=__lowerCamelCase , image=__lowerCamelCase , strength=0.75 , guidance_scale=7.5 , generator=__lowerCamelCase , output_type="np" , ) __UpperCAmelCase : str = output.images[0] assert image.shape == (5_12, 7_68, 3) # img2img is flaky across GPUs even in fp32, so using MAE here assert np.abs(expected_image - image ).max() < 1e-2
157
1
'''simple docstring''' import os import numpy import onnx def lowerCAmelCase_ ( snake_case_ : Union[str, Any] , snake_case_ : Optional[int] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ = a.name UpperCAmelCase_ = b.name UpperCAmelCase_ = "" UpperCAmelCase_ = "" UpperCAmelCase_ = a == b UpperCAmelCase_ = name_a UpperCAmelCase_ = name_b return res def lowerCAmelCase_ ( snake_case_ : Any , snake_case_ : Tuple , snake_case_ : Union[str, Any] ) -> Any: '''simple docstring''' for i, input_name in enumerate(node_proto.input ): if input_name == name: node_proto.input.insert(snake_case_ , snake_case_ ) node_proto.input.pop(i + 1 ) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g , snake_case_ , snake_case_ ) _graph_replace_input_with(node_proto.attribute[1].g , snake_case_ , snake_case_ ) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g , snake_case_ , snake_case_ ) def lowerCAmelCase_ ( snake_case_ : List[str] , snake_case_ : List[str] , snake_case_ : Union[str, Any] ) -> Optional[int]: '''simple docstring''' for n in graph_proto.node: _node_replace_input_with(snake_case_ , snake_case_ , snake_case_ ) def lowerCAmelCase_ ( snake_case_ : List[str] , snake_case_ : Any , snake_case_ : Optional[Any] ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ = list(model.graph.initializer ) UpperCAmelCase_ = list(model_without_ext.graph.initializer ) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i UpperCAmelCase_ = inits[i].name UpperCAmelCase_ = inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i] ) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph , snake_case_ , snake_case_ ) def lowerCAmelCase_ ( snake_case_ : int ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ = os.path.dirname(snake_case_ ) UpperCAmelCase_ = os.path.basename(snake_case_ ) UpperCAmelCase_ = onnx.load(os.path.join(snake_case_ , snake_case_ ) ) UpperCAmelCase_ = list(model.graph.initializer ) UpperCAmelCase_ = set() UpperCAmelCase_ = {} UpperCAmelCase_ = [] UpperCAmelCase_ = 0 for i in range(len(snake_case_ ) ): if i in dup_set: continue for j in range(i + 1 , len(snake_case_ ) ): if j in dup_set: continue if _is_equal_tensor_proto(inits[i] , inits[j] ): dup_set.add(snake_case_ ) dup_set.add(snake_case_ ) UpperCAmelCase_ = inits[j].data_type UpperCAmelCase_ = numpy.prod(inits[j].dims ) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 11: mem_size *= 8 else: print("unexpected data type: " , snake_case_ ) total_reduced_size += mem_size UpperCAmelCase_ = inits[i].name UpperCAmelCase_ = inits[j].name if name_i in dup_map: dup_map[name_i].append(snake_case_ ) else: UpperCAmelCase_ = [name_j] ind_to_replace.append((j, i) ) print("total reduced size: " , total_reduced_size / 10_24 / 10_24 / 10_24 , "GB" ) UpperCAmelCase_ = sorted(snake_case_ ) _remove_dup_initializers_from_model(snake_case_ , snake_case_ , snake_case_ ) UpperCAmelCase_ = "optimized_" + model_file_name UpperCAmelCase_ = os.path.join(snake_case_ , snake_case_ ) onnx.save(snake_case_ , snake_case_ ) return new_model
359
'''simple docstring''' # Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib SCREAMING_SNAKE_CASE_: List[str] =get_logger() SCREAMING_SNAKE_CASE_: Optional[dict] =None class __A ( TensorFormatter[Mapping, """jax.Array""", Mapping] ): def __init__(self : List[Any] , __a : Optional[int]=None , __a : Any=None , **__a : Dict ): super().__init__(features=__a ) import jax from jaxlib.xla_client import Device if isinstance(__a , __a ): raise ValueError( f"""Expected {device} to be a `str` not {type(__a )}, as `jaxlib.xla_extension.Device` """ "is not serializable neither with `pickle` nor with `dill`. Instead you can surround " "the device with `str()` to get its string identifier that will be internally mapped " "to the actual `jaxlib.xla_extension.Device`." ) UpperCAmelCase_ = device if isinstance(__a , __a ) else str(jax.devices()[0] ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: UpperCAmelCase_ = self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys() ): logger.warning( f"""Device with string identifier {self.device} not listed among the available """ f"""devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default """ f"""device: {str(jax.devices()[0] )}.""" ) UpperCAmelCase_ = str(jax.devices()[0] ) UpperCAmelCase_ = jnp_array_kwargs @staticmethod def _lowercase (): import jax return {str(__a ): device for device in jax.devices()} def _lowercase (self : str , __a : Tuple ): import jax import jax.numpy as jnp if isinstance(__a , __a ) and column: if all( isinstance(__a , jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return jnp.stack(__a , axis=0 ) return column def _lowercase (self : Any , __a : Optional[int] ): import jax import jax.numpy as jnp if isinstance(__a , (str, bytes, type(__a )) ): return value elif isinstance(__a , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() UpperCAmelCase_ = {} if isinstance(__a , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: UpperCAmelCase_ = {"dtype": jnp.intaa} else: UpperCAmelCase_ = {"dtype": jnp.intaa} elif isinstance(__a , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): UpperCAmelCase_ = {"dtype": jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(__a , PIL.Image.Image ): UpperCAmelCase_ = np.asarray(__a ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: UpperCAmelCase_ = self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device] ): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(__a , **{**default_dtype, **self.jnp_array_kwargs} ) def _lowercase (self : int , __a : Any ): import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(__a , torch.Tensor ): return self._tensorize(data_struct.detach().cpu().numpy()[()] ) if hasattr(__a , "__array__" ) and not isinstance(__a , jax.Array ): UpperCAmelCase_ = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(__a , np.ndarray ): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(__a ) for substruct in data_struct] ) elif isinstance(__a , (list, tuple) ): return self._consolidate([self.recursive_tensorize(__a ) for substruct in data_struct] ) return self._tensorize(__a ) def _lowercase (self : Union[str, Any] , __a : dict ): return map_nested(self._recursive_tensorize , __a , map_list=__a ) def _lowercase (self : str , __a : pa.Table ): UpperCAmelCase_ = self.numpy_arrow_extractor().extract_row(__a ) UpperCAmelCase_ = self.python_features_decoder.decode_row(__a ) return self.recursive_tensorize(__a ) def _lowercase (self : Tuple , __a : pa.Table ): UpperCAmelCase_ = self.numpy_arrow_extractor().extract_column(__a ) UpperCAmelCase_ = self.python_features_decoder.decode_column(__a , pa_table.column_names[0] ) UpperCAmelCase_ = self.recursive_tensorize(__a ) UpperCAmelCase_ = self._consolidate(__a ) return column def _lowercase (self : str , __a : pa.Table ): UpperCAmelCase_ = self.numpy_arrow_extractor().extract_batch(__a ) UpperCAmelCase_ = self.python_features_decoder.decode_batch(__a ) UpperCAmelCase_ = self.recursive_tensorize(__a ) for column_name in batch: UpperCAmelCase_ = self._consolidate(batch[column_name] ) return batch
106
0
"""simple docstring""" import unittest from transformers import CamembertTokenizer, CamembertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import is_torch_available from ...test_tokenization_common import TokenizerTesterMixin __SCREAMING_SNAKE_CASE : Union[str, Any] = get_tests_dir('fixtures/test_sentencepiece.model') __SCREAMING_SNAKE_CASE : Optional[Any] = get_tests_dir('fixtures/test_sentencepiece_bpe.model') __SCREAMING_SNAKE_CASE : Tuple = 'pt' if is_torch_available() else 'tf' @require_sentencepiece @require_tokenizers class __A (__A , unittest.TestCase): '''simple docstring''' __lowercase: List[Any] = CamembertTokenizer __lowercase: str = CamembertTokenizerFast __lowercase: str = True __lowercase: Any = True def lowerCAmelCase ( self : Tuple ) ->Optional[Any]: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing snake_case_ = CamembertTokenizer(__UpperCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCAmelCase ( self : List[Any] ) ->List[str]: """simple docstring""" snake_case_ = """<pad>""" snake_case_ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__UpperCAmelCase ) , __UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__UpperCAmelCase ) , __UpperCAmelCase ) def lowerCAmelCase ( self : int ) ->Dict: """simple docstring""" snake_case_ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>NOTUSED""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(vocab_keys[-1] , """<mask>""" ) self.assertEqual(len(__UpperCAmelCase ) , 1_004 ) def lowerCAmelCase ( self : str ) ->Tuple: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1_005 ) def lowerCAmelCase ( self : Tuple ) ->List[Any]: """simple docstring""" snake_case_ = CamembertTokenizer(__UpperCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) snake_case_ = CamembertTokenizerFast.from_pretrained(self.tmpdirname ) snake_case_ = """I was born in 92000, and this is falsé.""" snake_case_ = tokenizer.encode(__UpperCAmelCase ) snake_case_ = rust_tokenizer.encode(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) snake_case_ = tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) snake_case_ = rust_tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) # <unk> tokens are not the same for `rust` than for `slow`. # Because spm gives back raw token instead of `unk` in EncodeAsPieces # tokens = tokenizer.tokenize(sequence) snake_case_ = tokenizer.convert_ids_to_tokens(__UpperCAmelCase ) snake_case_ = rust_tokenizer.tokenize(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) def lowerCAmelCase ( self : Optional[Any] ) ->Dict: """simple docstring""" if not self.test_rust_tokenizer: return snake_case_ = self.get_tokenizer() snake_case_ = self.get_rust_tokenizer() snake_case_ = """I was born in 92000, and this is falsé.""" snake_case_ = tokenizer.tokenize(__UpperCAmelCase ) snake_case_ = rust_tokenizer.tokenize(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) snake_case_ = tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) snake_case_ = rust_tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) snake_case_ = self.get_rust_tokenizer() snake_case_ = tokenizer.encode(__UpperCAmelCase ) snake_case_ = rust_tokenizer.encode(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) @slow def lowerCAmelCase ( self : Any ) ->Dict: """simple docstring""" snake_case_ = {"""input_ids""": [[5, 54, 7_196, 297, 30, 23, 776, 18, 11, 3_215, 3_705, 8_252, 22, 3_164, 1_181, 2_116, 29, 16, 813, 25, 791, 3_314, 20, 3_446, 38, 27_575, 120, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [5, 468, 17, 11, 9_088, 20, 1_517, 8, 22_804, 18_818, 10, 38, 629, 607, 607, 142, 19, 7_196, 867, 56, 10_326, 24, 2_267, 20, 416, 5_072, 15_612, 233, 734, 7, 2_399, 27, 16, 3_015, 1_649, 7, 24, 20, 4_338, 2_399, 27, 13, 3_400, 14, 13, 6_189, 8, 930, 9, 6]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # camembert is a french model. So we also use french texts. snake_case_ = [ """Le transformeur est un modèle d\'apprentissage profond introduit en 2017, """ """utilisé principalement dans le domaine du traitement automatique des langues (TAL).""", """À l\'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus """ """pour gérer des données séquentielles, telles que le langage naturel, pour des tâches """ """telles que la traduction et la synthèse de texte.""", ] self.tokenizer_integration_test_util( expected_encoding=__UpperCAmelCase , model_name="""camembert-base""" , revision="""3a0641d9a1aeb7e848a74299e7e4c4bca216b4cf""" , sequences=__UpperCAmelCase , )
347
"""simple docstring""" import collections import json import math import os import re import time from fnmatch import fnmatch from typing import Dict import requests from slack_sdk import WebClient __lowerCamelCase = WebClient(token=os.environ["CI_SLACK_BOT_TOKEN"]) def UpperCAmelCase ( UpperCamelCase__ ): """simple docstring""" A__ = test_results.split(' ' ) A__ = 0 A__ = 0 # When the output is short enough, the output is surrounded by = signs: "== OUTPUT ==" # When it is too long, those signs are not present. A__ = expressions[-2] if '=' in expressions[-1] else expressions[-1] for i, expression in enumerate(UpperCamelCase__ ): if "failed" in expression: failed += int(expressions[i - 1] ) if "passed" in expression: success += int(expressions[i - 1] ) return failed, success, time_spent def UpperCAmelCase ( UpperCamelCase__ ): """simple docstring""" A__ = {} A__ = None A__ = False for line in failures_short_lines.split('\n' ): if re.search(r'_ \[doctest\]' , UpperCamelCase__ ): A__ = True A__ = line.split(' ' )[2] elif in_error and not line.split(' ' )[0].isdigit(): A__ = line A__ = False return failures class UpperCamelCase__: def __init__( self ,__UpperCAmelCase ,__UpperCAmelCase ) -> Dict: A__ = title A__ = doc_test_results['time_spent'].split(',' )[0] A__ = doc_test_results['success'] A__ = doc_test_results['failures'] A__ = self.n_success + self.n_failures # Failures and success of the modeling tests A__ = doc_test_results @property def snake_case__ ( self ) -> str: A__ = [self._time_spent] A__ = 0 for time in time_spent: A__ = time.split(':' ) # Time can be formatted as xx:xx:xx, as .xx, or as x.xx if the time spent was less than a minute. if len(__UpperCAmelCase ) == 1: A__ = [0, 0, time_parts[0]] A__ , A__ , A__ = int(time_parts[0] ), int(time_parts[1] ), float(time_parts[2] ) total_secs += hours * 36_00 + minutes * 60 + seconds A__ , A__ , A__ = total_secs // 36_00, (total_secs % 36_00) // 60, total_secs % 60 return f'''{int(__UpperCAmelCase )}h{int(__UpperCAmelCase )}m{int(__UpperCAmelCase )}s''' @property def snake_case__ ( self ) -> Dict: return {"type": "header", "text": {"type": "plain_text", "text": self.title}} @property def snake_case__ ( self ) -> Dict: return { "type": "section", "text": { "type": "plain_text", "text": f'''🌞 There were no failures: all {self.n_tests} tests passed. The suite ran in {self.time}.''', "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": f'''https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}''', }, } @property def snake_case__ ( self ) -> Dict: return { "type": "section", "text": { "type": "plain_text", "text": ( f'''There were {self.n_failures} failures, out of {self.n_tests} tests.\nThe suite ran in''' f''' {self.time}.''' ), "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": f'''https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}''', }, } @property def snake_case__ ( self ) -> Dict: A__ = 40 A__ = {k: v['failed'] for k, v in doc_test_results.items() if isinstance(__UpperCAmelCase ,__UpperCAmelCase )} A__ = '' for category, failures in category_failures.items(): if len(__UpperCAmelCase ) == 0: continue if report != "": report += "\n\n" report += f'''*{category} failures*:'''.ljust(line_length // 2 ).rjust(line_length // 2 ) + "\n" report += "`" report += "`\n`".join(__UpperCAmelCase ) report += "`" return { "type": "section", "text": { "type": "mrkdwn", "text": f'''The following examples had failures:\n\n\n{report}\n''', }, } @property def snake_case__ ( self ) -> str: A__ = [self.header] if self.n_failures > 0: blocks.append(self.failures ) if self.n_failures > 0: blocks.extend([self.category_failures] ) if self.n_failures == 0: blocks.append(self.no_failures ) return json.dumps(__UpperCAmelCase ) @staticmethod def snake_case__ ( ) -> Any: A__ = [ { 'type': 'section', 'text': { 'type': 'plain_text', 'text': 'There was an issue running the tests.', }, 'accessory': { 'type': 'button', 'text': {'type': 'plain_text', 'text': 'Check Action results', 'emoji': True}, 'url': f'''https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}''', }, } ] print('Sending the following payload' ) print(json.dumps({'blocks': json.loads(__UpperCAmelCase )} ) ) client.chat_postMessage( channel=os.environ['CI_SLACK_CHANNEL_ID_DAILY'] ,text='There was an issue running the tests.' ,blocks=__UpperCAmelCase ,) def snake_case__ ( self ) -> int: print('Sending the following payload' ) print(json.dumps({'blocks': json.loads(self.payload )} ) ) A__ = f'''{self.n_failures} failures out of {self.n_tests} tests,''' if self.n_failures else 'All tests passed.' A__ = client.chat_postMessage( channel=os.environ['CI_SLACK_CHANNEL_ID_DAILY'] ,blocks=self.payload ,text=__UpperCAmelCase ,) def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) -> int: A__ = '' for key, value in failures.items(): A__ = value[:2_00] + ' [Truncated]' if len(__UpperCAmelCase ) > 2_50 else value failures_text += f'''*{key}*\n_{value}_\n\n''' A__ = job_name A__ = {'type': 'section', 'text': {'type': 'mrkdwn', 'text': text}} if job_link is not None: A__ = { 'type': 'button', 'text': {'type': 'plain_text', 'text': 'GitHub Action job', 'emoji': True}, 'url': job_link, } return [ {"type": "header", "text": {"type": "plain_text", "text": title.upper(), "emoji": True}}, content, {"type": "section", "text": {"type": "mrkdwn", "text": failures_text}}, ] def snake_case__ ( self ) -> Dict: if self.thread_ts is None: raise ValueError('Can only post reply if a post has been made.' ) A__ = self.doc_test_results.pop('job_link' ) self.doc_test_results.pop('failures' ) self.doc_test_results.pop('success' ) self.doc_test_results.pop('time_spent' ) A__ = sorted(self.doc_test_results.items() ,key=lambda __UpperCAmelCase : t[0] ) for job, job_result in sorted_dict: if len(job_result['failures'] ): A__ = f'''*Num failures* :{len(job_result["failed"] )} \n''' A__ = job_result['failures'] A__ = self.get_reply_blocks(__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,text=__UpperCAmelCase ) print('Sending the following reply' ) print(json.dumps({'blocks': blocks} ) ) client.chat_postMessage( channel=os.environ['CI_SLACK_CHANNEL_ID_DAILY'] ,text=f'''Results for {job}''' ,blocks=__UpperCAmelCase ,thread_ts=self.thread_ts['ts'] ,) time.sleep(1 ) def UpperCAmelCase ( ): """simple docstring""" A__ = os.environ['GITHUB_RUN_ID'] A__ = F'''https://api.github.com/repos/huggingface/transformers/actions/runs/{run_id}/jobs?per_page=100''' A__ = requests.get(UpperCamelCase__ ).json() A__ = {} try: jobs.update({job['name']: job['html_url'] for job in result['jobs']} ) A__ = math.ceil((result['total_count'] - 100) / 100 ) for i in range(UpperCamelCase__ ): A__ = requests.get(url + F'''&page={i + 2}''' ).json() jobs.update({job['name']: job['html_url'] for job in result['jobs']} ) return jobs except Exception as e: print('Unknown error, could not fetch links.' , UpperCamelCase__ ) return {} def UpperCAmelCase ( UpperCamelCase__ ): """simple docstring""" A__ = {} if os.path.exists(UpperCamelCase__ ): A__ = os.listdir(UpperCamelCase__ ) for file in files: try: with open(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) , encoding='utf-8' ) as f: A__ = f.read() except UnicodeDecodeError as e: raise ValueError(F'''Could not open {os.path.join(UpperCamelCase__ , UpperCamelCase__ )}.''' ) from e return _artifact def UpperCAmelCase ( ): """simple docstring""" class UpperCamelCase__: def __init__( self ,__UpperCAmelCase ) -> Optional[Any]: A__ = name A__ = [] def __str__( self ) -> List[str]: return self.name def snake_case__ ( self ,__UpperCAmelCase ) -> int: self.paths.append({'name': self.name, 'path': path} ) A__ = {} A__ = filter(os.path.isdir , os.listdir() ) for directory in directories: A__ = directory if artifact_name not in _available_artifacts: A__ = Artifact(UpperCamelCase__ ) _available_artifacts[artifact_name].add_path(UpperCamelCase__ ) return _available_artifacts if __name__ == "__main__": __lowerCamelCase = get_job_links() __lowerCamelCase = retrieve_available_artifacts() __lowerCamelCase = collections.OrderedDict( [ ("*.py", "API Examples"), ("*.md", "MD Examples"), ] ) # This dict will contain all the information relative to each doc test category: # - failed: list of failed tests # - failures: dict in the format 'test': 'error_message' __lowerCamelCase = { v: { "failed": [], "failures": {}, } for v in docs.values() } # Link to the GitHub Action job __lowerCamelCase = github_actions_job_links.get("run_doctests") __lowerCamelCase = available_artifacts["doc_tests_gpu_test_reports"].paths[0] __lowerCamelCase = retrieve_artifact(artifact_path["name"]) if "stats" in artifact: __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = handle_test_results(artifact["stats"]) __lowerCamelCase = failed __lowerCamelCase = success __lowerCamelCase = time_spent[1:-1] + ", " __lowerCamelCase = extract_first_line_failure(artifact["failures_short"]) for line in artifact["summary_short"].split("\n"): if re.search("FAILED", line): __lowerCamelCase = line.replace("FAILED ", "") __lowerCamelCase = line.split()[0].replace("\n", "") if "::" in line: __lowerCamelCase , __lowerCamelCase = line.split("::") else: __lowerCamelCase , __lowerCamelCase = line, line for file_regex in docs.keys(): if fnmatch(file_path, file_regex): __lowerCamelCase = docs[file_regex] doc_test_results[category]["failed"].append(test) __lowerCamelCase = all_failures[test] if test in all_failures else "N/A" __lowerCamelCase = failure break __lowerCamelCase = Message("🤗 Results of the doc tests.", doc_test_results) message.post() message.post_reply()
221
0
import requests from bsa import BeautifulSoup def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> str: '''simple docstring''' lowerCAmelCase : int = BeautifulSoup(requests.get(_UpperCAmelCase, params=_UpperCAmelCase ).content, 'html.parser' ) lowerCAmelCase : Union[str, Any] = soup.find('div', attrs={'class': 'gs_ri'} ) lowerCAmelCase : int = div.find('div', attrs={'class': 'gs_fl'} ).find_all('a' ) return anchors[2].get_text() if __name__ == "__main__": __A : Optional[Any] = { '''title''': ( '''Precisely geometry controlled microsupercapacitors for ultrahigh areal ''' '''capacitance, volumetric capacitance, and energy density''' ), '''journal''': '''Chem. Mater.''', '''volume''': 30, '''pages''': '''3979-3990''', '''year''': 2018, '''hl''': '''en''', } print(get_citation('''https://scholar.google.com/scholar_lookup''', params=params))
323
import numpy as np # Importing the Keras libraries and packages import tensorflow as tf from tensorflow.keras import layers, models if __name__ == "__main__": # Initialising the CNN # (Sequential- Building the model layer by layer) __A : Dict = models.Sequential() # Step 1 - Convolution # Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel # (3,3) is the kernel size (filter matrix) classifier.add( layers.ConvaD(32, (3, 3), input_shape=(64, 64, 3), activation='''relu''') ) # Step 2 - Pooling classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Adding a second convolutional layer classifier.add(layers.ConvaD(32, (3, 3), activation='''relu''')) classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Step 3 - Flattening classifier.add(layers.Flatten()) # Step 4 - Full connection classifier.add(layers.Dense(units=128, activation='''relu''')) classifier.add(layers.Dense(units=1, activation='''sigmoid''')) # Compiling the CNN classifier.compile( optimizer='''adam''', loss='''binary_crossentropy''', metrics=['''accuracy'''] ) # Part 2 - Fitting the CNN to the images # Load Trained model weights # from keras.models import load_model # regressor=load_model('cnn.h5') __A : List[Any] = tf.keras.preprocessing.image.ImageDataGenerator( rescale=1.0 / 255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True ) __A : List[str] = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 255) __A : Any = train_datagen.flow_from_directory( '''dataset/training_set''', target_size=(64, 64), batch_size=32, class_mode='''binary''' ) __A : Tuple = test_datagen.flow_from_directory( '''dataset/test_set''', target_size=(64, 64), batch_size=32, class_mode='''binary''' ) classifier.fit_generator( training_set, steps_per_epoch=5, epochs=30, validation_data=test_set ) classifier.save('''cnn.h5''') # Part 3 - Making new predictions __A : Any = tf.keras.preprocessing.image.load_img( '''dataset/single_prediction/image.png''', target_size=(64, 64) ) __A : List[str] = tf.keras.preprocessing.image.img_to_array(test_image) __A : Optional[Any] = np.expand_dims(test_image, axis=0) __A : int = classifier.predict(test_image) # training_set.class_indices if result[0][0] == 0: __A : Optional[int] = '''Normal''' if result[0][0] == 1: __A : str = '''Abnormality detected'''
323
1
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetaImageProcessor class snake_case_ (unittest.TestCase ): def __init__( self :str ,__snake_case :Tuple ,__snake_case :str=7 ,__snake_case :Optional[Any]=3 ,__snake_case :List[str]=30 ,__snake_case :Any=4_00 ,__snake_case :List[Any]=True ,__snake_case :Optional[int]=None ,__snake_case :Tuple=True ,__snake_case :int=[0.5, 0.5, 0.5] ,__snake_case :Union[str, Any]=[0.5, 0.5, 0.5] ,__snake_case :Dict=True ,__snake_case :Union[str, Any]=1 / 2_55 ,__snake_case :Optional[int]=True ,) -> str: a__ = size if size is not None else {'''shortest_edge''': 18, '''longest_edge''': 13_33} a__ = parent a__ = batch_size a__ = num_channels a__ = min_resolution a__ = max_resolution a__ = do_resize a__ = size a__ = do_normalize a__ = image_mean a__ = image_std a__ = do_rescale a__ = rescale_factor a__ = do_pad def lowerCamelCase__( self :Optional[Any] ) -> List[str]: return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def lowerCamelCase__( self :List[Any] ,__snake_case :str ,__snake_case :Any=False ) -> Dict: if not batched: a__ = image_inputs[0] if isinstance(_A ,Image.Image ): a__ = image.size else: a__ = image.shape[1], image.shape[2] if w < h: a__ = int(self.size['shortest_edge'] * h / w ) a__ = self.size['''shortest_edge'''] elif w > h: a__ = self.size['''shortest_edge'''] a__ = int(self.size['shortest_edge'] * w / h ) else: a__ = self.size['''shortest_edge'''] a__ = self.size['''shortest_edge'''] else: a__ = [] for image in image_inputs: a__ = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) a__ = max(_A ,key=lambda __snake_case : item[0] )[0] a__ = max(_A ,key=lambda __snake_case : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class snake_case_ (lowerCAmelCase__ , unittest.TestCase ): UpperCAmelCase__ : Optional[int] = DetaImageProcessor if is_vision_available() else None def lowerCamelCase__( self :Any ) -> Union[str, Any]: a__ = DetaImageProcessingTester(self ) @property def lowerCamelCase__( self :Union[str, Any] ) -> List[str]: return self.image_processor_tester.prepare_image_processor_dict() def lowerCamelCase__( self :int ) -> Dict: a__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_A ,'image_mean' ) ) self.assertTrue(hasattr(_A ,'image_std' ) ) self.assertTrue(hasattr(_A ,'do_normalize' ) ) self.assertTrue(hasattr(_A ,'do_resize' ) ) self.assertTrue(hasattr(_A ,'do_rescale' ) ) self.assertTrue(hasattr(_A ,'do_pad' ) ) self.assertTrue(hasattr(_A ,'size' ) ) def lowerCamelCase__( self :Tuple ) -> Union[str, Any]: a__ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{'shortest_edge': 18, 'longest_edge': 13_33} ) self.assertEqual(image_processor.do_pad ,_A ) def lowerCamelCase__( self :str ) -> Dict: pass def lowerCamelCase__( self :str ) -> int: a__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images a__ = prepare_image_inputs(self.image_processor_tester ,equal_resolution=_A ) for image in image_inputs: self.assertIsInstance(_A ,Image.Image ) # Test not batched input a__ = image_processing(image_inputs[0] ,return_tensors='pt' ).pixel_values a__ = self.image_processor_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape ,(1, self.image_processor_tester.num_channels, expected_height, expected_width) ,) # Test batched a__ = self.image_processor_tester.get_expected_values(_A ,batched=_A ) a__ = image_processing(_A ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) ,) def lowerCamelCase__( self :Any ) -> List[Any]: a__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors a__ = prepare_image_inputs(self.image_processor_tester ,equal_resolution=_A ,numpify=_A ) for image in image_inputs: self.assertIsInstance(_A ,np.ndarray ) # Test not batched input a__ = image_processing(image_inputs[0] ,return_tensors='pt' ).pixel_values a__ = self.image_processor_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape ,(1, self.image_processor_tester.num_channels, expected_height, expected_width) ,) # Test batched a__ = image_processing(_A ,return_tensors='pt' ).pixel_values a__ = self.image_processor_tester.get_expected_values(_A ,batched=_A ) self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) ,) def lowerCamelCase__( self :Optional[int] ) -> List[Any]: a__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors a__ = prepare_image_inputs(self.image_processor_tester ,equal_resolution=_A ,torchify=_A ) for image in image_inputs: self.assertIsInstance(_A ,torch.Tensor ) # Test not batched input a__ = image_processing(image_inputs[0] ,return_tensors='pt' ).pixel_values a__ = self.image_processor_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape ,(1, self.image_processor_tester.num_channels, expected_height, expected_width) ,) # Test batched a__ = image_processing(_A ,return_tensors='pt' ).pixel_values a__ = self.image_processor_tester.get_expected_values(_A ,batched=_A ) self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) ,) @slow def lowerCamelCase__( self :Optional[int] ) -> str: a__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_annotations.txt' ,'r' ) as f: a__ = json.loads(f.read() ) a__ = {'''image_id''': 3_97_69, '''annotations''': target} # encode them a__ = DetaImageProcessor() a__ = image_processing(images=_A ,annotations=_A ,return_tensors='pt' ) # verify pixel values a__ = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding['pixel_values'].shape ,_A ) a__ = torch.tensor([0.27_96, 0.31_38, 0.34_81] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] ,_A ,atol=1E-4 ) ) # verify area a__ = torch.tensor([58_87.96_00, 1_12_50.20_61, 48_93_53.84_38, 83_71_22.75_00, 14_79_67.51_56, 16_57_32.34_38] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] ,_A ) ) # verify boxes a__ = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape ,_A ) a__ = torch.tensor([0.55_03, 0.27_65, 0.06_04, 0.22_15] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] ,_A ,atol=1E-3 ) ) # verify image_id a__ = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] ,_A ) ) # verify is_crowd a__ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] ,_A ) ) # verify class_labels a__ = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] ,_A ) ) # verify orig_size a__ = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] ,_A ) ) # verify size a__ = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] ,_A ) ) @slow def lowerCamelCase__( self :Optional[int] ) -> Optional[Any]: a__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt' ,'r' ) as f: a__ = json.loads(f.read() ) a__ = {'''file_name''': '''000000039769.png''', '''image_id''': 3_97_69, '''segments_info''': target} a__ = pathlib.Path('./tests/fixtures/tests_samples/COCO/coco_panoptic' ) # encode them a__ = DetaImageProcessor(format='coco_panoptic' ) a__ = image_processing(images=_A ,annotations=_A ,masks_path=_A ,return_tensors='pt' ) # verify pixel values a__ = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding['pixel_values'].shape ,_A ) a__ = torch.tensor([0.27_96, 0.31_38, 0.34_81] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] ,_A ,atol=1E-4 ) ) # verify area a__ = torch.tensor([14_79_79.68_75, 16_55_27.04_69, 48_46_38.59_38, 1_12_92.93_75, 58_79.65_62, 76_34.11_47] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] ,_A ) ) # verify boxes a__ = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape ,_A ) a__ = torch.tensor([0.26_25, 0.54_37, 0.46_88, 0.86_25] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] ,_A ,atol=1E-3 ) ) # verify image_id a__ = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] ,_A ) ) # verify is_crowd a__ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] ,_A ) ) # verify class_labels a__ = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] ,_A ) ) # verify masks a__ = 82_28_73 self.assertEqual(encoding['labels'][0]['masks'].sum().item() ,_A ) # verify orig_size a__ = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] ,_A ) ) # verify size a__ = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] ,_A ) )
240
from __future__ import annotations import numpy as np def a__ ( snake_case ): """simple docstring""" return np.maximum(0 , snake_case ) if __name__ == "__main__": print(np.array(relu([-1, 0, 5]))) # --> [0, 0, 5]
303
0
def lowerCamelCase__ ( lowercase , lowercase , lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = [False] * len(lowercase ) SCREAMING_SNAKE_CASE : Any = [] queue.append(lowercase ) SCREAMING_SNAKE_CASE : Union[str, Any] = True while queue: SCREAMING_SNAKE_CASE : Tuple = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(lowercase ) SCREAMING_SNAKE_CASE : str = True SCREAMING_SNAKE_CASE : Optional[int] = u return visited[t] def lowerCamelCase__ ( lowercase , lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = [-1] * (len(lowercase )) SCREAMING_SNAKE_CASE : Union[str, Any] = 0 while bfs(lowercase , lowercase , lowercase , lowercase ): SCREAMING_SNAKE_CASE : Optional[int] = float("Inf" ) SCREAMING_SNAKE_CASE : List[str] = sink while s != source: # Find the minimum value in select path SCREAMING_SNAKE_CASE : int = min(lowercase , graph[parent[s]][s] ) SCREAMING_SNAKE_CASE : List[str] = parent[s] max_flow += path_flow SCREAMING_SNAKE_CASE : Any = sink while v != source: SCREAMING_SNAKE_CASE : Optional[int] = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow SCREAMING_SNAKE_CASE : int = parent[v] return max_flow snake_case = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] snake_case , snake_case = 0, 5 print(ford_fulkerson(graph, source, sink))
319
from math import sqrt def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = 0 for i in range(1 , int(sqrt(lowercase ) + 1 ) ): if n % i == 0 and i != sqrt(lowercase ): total += i + n // i elif i == sqrt(lowercase ): total += i return total - n def lowerCamelCase__ ( lowercase = 10000 ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = sum( i for i in range(1 , lowercase ) if sum_of_divisors(sum_of_divisors(lowercase ) ) == i and sum_of_divisors(lowercase ) != i ) return total if __name__ == "__main__": print(solution(int(str(input()).strip())))
319
1
"""simple docstring""" import json import os from functools import lru_cache from typing import TYPE_CHECKING, List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation UpperCAmelCase__ : Tuple = logging.get_logger(__name__) UpperCAmelCase__ : List[Any] = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_config_file': 'tokenizer_config.json', } UpperCAmelCase__ : List[str] = { 'vocab_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'}, 'merges_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'}, 'tokenizer_config_file': { 'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json' }, } UpperCAmelCase__ : str = {'facebook/blenderbot-3B': 1_2_8} @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def lowercase_ ( ): SCREAMING_SNAKE_CASE__ : Dict = ( list(range(ord("""!""" ) ,ord("""~""" ) + 1 ) ) + list(range(ord("""¡""" ) ,ord("""¬""" ) + 1 ) ) + list(range(ord("""®""" ) ,ord("""ÿ""" ) + 1 ) ) ) SCREAMING_SNAKE_CASE__ : List[Any] = bs[:] SCREAMING_SNAKE_CASE__ : Optional[int] = 0 for b in range(2**8 ): if b not in bs: bs.append(_snake_case ) cs.append(2**8 + n ) n += 1 SCREAMING_SNAKE_CASE__ : List[Any] = [chr(_snake_case ) for n in cs] return dict(zip(_snake_case ,_snake_case ) ) def lowercase_ ( _snake_case ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = set() SCREAMING_SNAKE_CASE__ : Optional[Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) SCREAMING_SNAKE_CASE__ : Tuple = char return pairs class lowerCAmelCase_ (a__ ): """simple docstring""" __UpperCamelCase : Dict = VOCAB_FILES_NAMES __UpperCamelCase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase : Tuple = ['''input_ids''', '''attention_mask'''] def __init__(self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__="replace" , SCREAMING_SNAKE_CASE__="<s>" , SCREAMING_SNAKE_CASE__="</s>" , SCREAMING_SNAKE_CASE__="</s>" , SCREAMING_SNAKE_CASE__="<s>" , SCREAMING_SNAKE_CASE__="<unk>" , SCREAMING_SNAKE_CASE__="<pad>" , SCREAMING_SNAKE_CASE__="<mask>" , SCREAMING_SNAKE_CASE__=False , **SCREAMING_SNAKE_CASE__ , ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = AddedToken(SCREAMING_SNAKE_CASE__ , lstrip=SCREAMING_SNAKE_CASE__ , rstrip=SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else bos_token SCREAMING_SNAKE_CASE__ : Dict = AddedToken(SCREAMING_SNAKE_CASE__ , lstrip=SCREAMING_SNAKE_CASE__ , rstrip=SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else eos_token SCREAMING_SNAKE_CASE__ : str = AddedToken(SCREAMING_SNAKE_CASE__ , lstrip=SCREAMING_SNAKE_CASE__ , rstrip=SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else sep_token SCREAMING_SNAKE_CASE__ : Any = AddedToken(SCREAMING_SNAKE_CASE__ , lstrip=SCREAMING_SNAKE_CASE__ , rstrip=SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else cls_token SCREAMING_SNAKE_CASE__ : Union[str, Any] = AddedToken(SCREAMING_SNAKE_CASE__ , lstrip=SCREAMING_SNAKE_CASE__ , rstrip=SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else unk_token SCREAMING_SNAKE_CASE__ : Any = AddedToken(SCREAMING_SNAKE_CASE__ , lstrip=SCREAMING_SNAKE_CASE__ , rstrip=SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it SCREAMING_SNAKE_CASE__ : int = AddedToken(SCREAMING_SNAKE_CASE__ , lstrip=SCREAMING_SNAKE_CASE__ , rstrip=SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else mask_token super().__init__( errors=SCREAMING_SNAKE_CASE__ , bos_token=SCREAMING_SNAKE_CASE__ , eos_token=SCREAMING_SNAKE_CASE__ , unk_token=SCREAMING_SNAKE_CASE__ , sep_token=SCREAMING_SNAKE_CASE__ , cls_token=SCREAMING_SNAKE_CASE__ , pad_token=SCREAMING_SNAKE_CASE__ , mask_token=SCREAMING_SNAKE_CASE__ , add_prefix_space=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) with open(SCREAMING_SNAKE_CASE__ , encoding="""utf-8""" ) as vocab_handle: SCREAMING_SNAKE_CASE__ : int = json.load(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Dict = {v: k for k, v in self.encoder.items()} SCREAMING_SNAKE_CASE__ : List[Any] = errors # how to handle errors in decoding SCREAMING_SNAKE_CASE__ : List[str] = bytes_to_unicode() SCREAMING_SNAKE_CASE__ : List[str] = {v: k for k, v in self.byte_encoder.items()} with open(SCREAMING_SNAKE_CASE__ , encoding="""utf-8""" ) as merges_handle: SCREAMING_SNAKE_CASE__ : Dict = merges_handle.read().split("""\n""" )[1:-1] SCREAMING_SNAKE_CASE__ : Union[str, Any] = [tuple(merge.split() ) for merge in bpe_merges] SCREAMING_SNAKE_CASE__ : Optional[Any] = dict(zip(SCREAMING_SNAKE_CASE__ , range(len(SCREAMING_SNAKE_CASE__ ) ) ) ) SCREAMING_SNAKE_CASE__ : Optional[int] = {} SCREAMING_SNAKE_CASE__ : List[str] = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions SCREAMING_SNAKE_CASE__ : Tuple = re.compile(r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""" ) @property # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot def __magic_name__ (self ) -> int: """simple docstring""" return len(self.encoder ) def __magic_name__ (self ) -> int: """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def __magic_name__ (self , SCREAMING_SNAKE_CASE__ ) -> Tuple: """simple docstring""" if token in self.cache: return self.cache[token] SCREAMING_SNAKE_CASE__ : int = tuple(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = get_pairs(SCREAMING_SNAKE_CASE__ ) if not pairs: return token while True: SCREAMING_SNAKE_CASE__ : Optional[int] = min(SCREAMING_SNAKE_CASE__ , key=lambda SCREAMING_SNAKE_CASE__ : self.bpe_ranks.get(SCREAMING_SNAKE_CASE__ , float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[Any] = bigram SCREAMING_SNAKE_CASE__ : Any = [] SCREAMING_SNAKE_CASE__ : Optional[Any] = 0 while i < len(SCREAMING_SNAKE_CASE__ ): try: SCREAMING_SNAKE_CASE__ : Tuple = word.index(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) SCREAMING_SNAKE_CASE__ : Dict = j if word[i] == first and i < len(SCREAMING_SNAKE_CASE__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 SCREAMING_SNAKE_CASE__ : str = tuple(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : List[Any] = new_word if len(SCREAMING_SNAKE_CASE__ ) == 1: break else: SCREAMING_SNAKE_CASE__ : Tuple = get_pairs(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : List[str] = """ """.join(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = word return word def __magic_name__ (self , SCREAMING_SNAKE_CASE__ ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = [] for token in re.findall(self.pat , SCREAMING_SNAKE_CASE__ ): SCREAMING_SNAKE_CASE__ : List[Any] = """""".join( self.byte_encoder[b] for b in token.encode("""utf-8""" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(SCREAMING_SNAKE_CASE__ ).split(""" """ ) ) return bpe_tokens def __magic_name__ (self , SCREAMING_SNAKE_CASE__ ) -> Optional[int]: """simple docstring""" return self.encoder.get(SCREAMING_SNAKE_CASE__ , self.encoder.get(self.unk_token ) ) def __magic_name__ (self , SCREAMING_SNAKE_CASE__ ) -> str: """simple docstring""" return self.decoder.get(SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self , SCREAMING_SNAKE_CASE__ ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = """""".join(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = bytearray([self.byte_decoder[c] for c in text] ).decode("""utf-8""" , errors=self.errors ) return text def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(SCREAMING_SNAKE_CASE__ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return SCREAMING_SNAKE_CASE__ : List[Any] = os.path.join( SCREAMING_SNAKE_CASE__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) SCREAMING_SNAKE_CASE__ : Optional[int] = os.path.join( SCREAMING_SNAKE_CASE__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) with open(SCREAMING_SNAKE_CASE__ , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=SCREAMING_SNAKE_CASE__ , ensure_ascii=SCREAMING_SNAKE_CASE__ ) + """\n""" ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = 0 with open(SCREAMING_SNAKE_CASE__ , """w""" , encoding="""utf-8""" ) as writer: writer.write("""#version: 0.2\n""" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda SCREAMING_SNAKE_CASE__ : kv[1] ): if index != token_index: logger.warning( F'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' """ Please check that the tokenizer is not corrupted!""" ) SCREAMING_SNAKE_CASE__ : str = token_index writer.write(""" """.join(SCREAMING_SNAKE_CASE__ ) + """\n""" ) index += 1 return vocab_file, merge_file def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=SCREAMING_SNAKE_CASE__ , token_ids_a=SCREAMING_SNAKE_CASE__ , already_has_special_tokens=SCREAMING_SNAKE_CASE__ ) if token_ids_a is None: return [1] + ([0] * len(SCREAMING_SNAKE_CASE__ )) + [1] return [1] + ([0] * len(SCREAMING_SNAKE_CASE__ )) + [1, 1] + ([0] * len(SCREAMING_SNAKE_CASE__ )) + [1] def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ) -> List[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = [self.sep_token_id] SCREAMING_SNAKE_CASE__ : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=False , **SCREAMING_SNAKE_CASE__ ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = kwargs.pop("""add_prefix_space""" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(SCREAMING_SNAKE_CASE__ ) > 0 and not text[0].isspace()): SCREAMING_SNAKE_CASE__ : List[Any] = """ """ + text return (text, kwargs) def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ) -> int: """simple docstring""" return token_ids_a + [self.eos_token_id] def __magic_name__ (self , SCREAMING_SNAKE_CASE__ ) -> List[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(""" """ + text ) else: # Generated responses should contain them already. inputs.append(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : List[str] = """ """.join(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Dict = self.encode(SCREAMING_SNAKE_CASE__ ) if len(SCREAMING_SNAKE_CASE__ ) > self.model_max_length: SCREAMING_SNAKE_CASE__ : Any = input_ids[-self.model_max_length :] logger.warning(F'''Trimmed input from conversation as it was longer than {self.model_max_length} tokens.''' ) return input_ids
25
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { '''YituTech/conv-bert-base''': '''https://huggingface.co/YituTech/conv-bert-base/resolve/main/config.json''', '''YituTech/conv-bert-medium-small''': ( '''https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/config.json''' ), '''YituTech/conv-bert-small''': '''https://huggingface.co/YituTech/conv-bert-small/resolve/main/config.json''', # See all ConvBERT models at https://huggingface.co/models?filter=convbert } class lowerCAmelCase_ ( UpperCAmelCase_ ): '''simple docstring''' UpperCamelCase_ : Optional[Any] = """convbert""" def __init__( self : Dict , SCREAMING_SNAKE_CASE_ : Dict=3_05_22 , SCREAMING_SNAKE_CASE_ : int=7_68 , SCREAMING_SNAKE_CASE_ : List[str]=12 , SCREAMING_SNAKE_CASE_ : List[str]=12 , SCREAMING_SNAKE_CASE_ : Dict=30_72 , SCREAMING_SNAKE_CASE_ : Optional[int]="gelu" , SCREAMING_SNAKE_CASE_ : List[Any]=0.1 , SCREAMING_SNAKE_CASE_ : int=0.1 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=5_12 , SCREAMING_SNAKE_CASE_ : List[Any]=2 , SCREAMING_SNAKE_CASE_ : List[str]=0.02 , SCREAMING_SNAKE_CASE_ : int=1E-12 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=1 , SCREAMING_SNAKE_CASE_ : int=0 , SCREAMING_SNAKE_CASE_ : str=2 , SCREAMING_SNAKE_CASE_ : List[Any]=7_68 , SCREAMING_SNAKE_CASE_ : Optional[Any]=2 , SCREAMING_SNAKE_CASE_ : Any=9 , SCREAMING_SNAKE_CASE_ : Tuple=1 , SCREAMING_SNAKE_CASE_ : List[Any]=None , **SCREAMING_SNAKE_CASE_ : List[str] , ) -> List[Any]: '''simple docstring''' super().__init__( pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) A: Dict = vocab_size A: Tuple = hidden_size A: Optional[int] = num_hidden_layers A: List[str] = num_attention_heads A: int = intermediate_size A: int = hidden_act A: List[str] = hidden_dropout_prob A: int = attention_probs_dropout_prob A: Tuple = max_position_embeddings A: Any = type_vocab_size A: str = initializer_range A: Union[str, Any] = layer_norm_eps A: str = embedding_size A: Optional[int] = head_ratio A: List[Any] = conv_kernel_size A: List[Any] = num_groups A: Optional[int] = classifier_dropout class lowerCAmelCase_ ( UpperCAmelCase_ ): '''simple docstring''' @property def _snake_case ( self : Optional[Any] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": A: Tuple = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: A: List[str] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ] )
319
0
'''simple docstring''' from unittest import TestCase from datasets import Dataset from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters def _a( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : str ={ '''repo_name''': ['''test_repo1''', '''test_repo2''', '''test_repo3'''], '''path''': ['''test_1.py''', '''test_2.py''', '''unit_test.py'''], '''content''': ['''a ''' * 2_0, '''a ''' * 3_0, '''b ''' * 7], } SCREAMING_SNAKE_CASE__ : Tuple =Dataset.from_dict(UpperCamelCase__ ) return dataset class __SCREAMING_SNAKE_CASE ( lowerCamelCase ): def __magic_name__ ( self : List[Any] ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ : Optional[Any] =get_dataset() SCREAMING_SNAKE_CASE__ : Dict =make_duplicate_clusters(__lowercase , 0.85 ) self.assertEqual(len(duplicate_clusters[0] ) , 2 ) def __magic_name__ ( self : List[Any] ) -> Tuple: SCREAMING_SNAKE_CASE__ : Optional[Any] =get_dataset() SCREAMING_SNAKE_CASE__ : List[Any] =deduplicate_dataset(__lowercase ) self.assertEqual(len(__lowercase ) , 2 ) print(__lowercase ) self.assertEqual(duplicate_clusters[0][0]['''copies'''] , 2 ) self.assertEqual(duplicate_clusters[0][0]['''is_extreme'''] , __lowercase )
364
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a_ = { 'configuration_megatron_bert': ['MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MegatronBertConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'MegatronBertForCausalLM', 'MegatronBertForMaskedLM', 'MegatronBertForMultipleChoice', 'MegatronBertForNextSentencePrediction', 'MegatronBertForPreTraining', 'MegatronBertForQuestionAnswering', 'MegatronBertForSequenceClassification', 'MegatronBertForTokenClassification', 'MegatronBertModel', 'MegatronBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_megatron_bert import MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MegatronBertConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_megatron_bert import ( MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, MegatronBertPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
222
0
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SwiftFormerConfig, SwiftFormerForImageClassification, ViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() __snake_case = logging.get_logger(__name__) __snake_case = torch.device("""cpu""") def _A ( ): UpperCamelCase :List[str] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' UpperCamelCase :Any = Image.open(requests.get(A_ , stream=A_ ).raw ) return im def _A ( SCREAMING_SNAKE_CASE__ : List[str] ): if swiftformer_name == "swiftformer_xs": return torch.tensor([-2.1_7_0_3e0_0, 2.1_1_0_7e0_0, -2.0_8_1_1e0_0, 8.8_6_8_5e-0_1, 2.4_3_6_0e-0_1] ) elif swiftformer_name == "swiftformer_s": return torch.tensor([3.9_6_3_6e-0_1, 2.3_4_7_8e-0_1, -1.6_9_6_3e0_0, -1.7_3_8_1e0_0, -8.6_3_3_7e-0_1] ) elif swiftformer_name == "swiftformer_l1": return torch.tensor([-4.2_7_6_8e-0_1, -4.7_4_2_9e-0_1, -1.0_8_9_7e0_0, -1.0_2_4_8e0_0, 3.5_5_2_3e-0_2] ) elif swiftformer_name == "swiftformer_l3": return torch.tensor([-2.5_3_3_0e-0_1, 2.4_2_1_1e-0_1, -6.0_1_8_5e-0_1, -8.2_7_8_9e-0_1, -6.0_4_4_6e-0_2] ) def _A ( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Union[str, Any] ): UpperCamelCase :Union[str, Any] = dct.pop(A_ ) UpperCamelCase :Optional[Any] = val def _A ( SCREAMING_SNAKE_CASE__ : Any ): UpperCamelCase :Optional[Any] = [] for k in state_dict.keys(): UpperCamelCase :int = k if ".pwconv" in k: UpperCamelCase :Dict = k_new.replace('''.pwconv''' , '''.point_wise_conv''' ) if ".dwconv" in k: UpperCamelCase :Dict = k_new.replace('''.dwconv''' , '''.depth_wise_conv''' ) if ".Proj." in k: UpperCamelCase :Any = k_new.replace('''.Proj.''' , '''.proj.''' ) if "patch_embed" in k_new: UpperCamelCase :Union[str, Any] = k_new.replace('''patch_embed''' , '''swiftformer.patch_embed.patch_embedding''' ) if "network" in k_new: UpperCamelCase :Dict = k_new.split('''.''' ) if ls[2].isdigit(): UpperCamelCase :List[str] = '''swiftformer.encoder.network.''' + ls[1] + '''.blocks.''' + ls[2] + '''.''' + '''.'''.join(ls[3:] ) else: UpperCamelCase :List[str] = k_new.replace('''network''' , '''swiftformer.encoder.network''' ) rename_keys.append((k, k_new) ) return rename_keys @torch.no_grad() def _A ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Any ): UpperCamelCase :int = SwiftFormerConfig() # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size UpperCamelCase :Any = 1000 UpperCamelCase :Union[str, Any] = '''huggingface/label-files''' UpperCamelCase :int = '''imagenet-1k-id2label.json''' UpperCamelCase :int = json.load(open(hf_hub_download(A_ , A_ , repo_type='''dataset''' ) , '''r''' ) ) UpperCamelCase :Optional[int] = {int(A_ ): v for k, v in idalabel.items()} UpperCamelCase :int = idalabel UpperCamelCase :int = {v: k for k, v in idalabel.items()} # size of the architecture if swiftformer_name == "swiftformer_xs": UpperCamelCase :Optional[int] = [3, 3, 6, 4] UpperCamelCase :Dict = [48, 56, 112, 220] elif swiftformer_name == "swiftformer_s": UpperCamelCase :Any = [3, 3, 9, 6] UpperCamelCase :Optional[int] = [48, 64, 168, 224] elif swiftformer_name == "swiftformer_l1": UpperCamelCase :Any = [4, 3, 10, 5] UpperCamelCase :List[Any] = [48, 96, 192, 384] elif swiftformer_name == "swiftformer_l3": UpperCamelCase :str = [4, 4, 12, 6] UpperCamelCase :List[str] = [64, 128, 320, 512] # load state_dict of original model, remove and rename some keys if original_ckpt: if original_ckpt.startswith('''https''' ): UpperCamelCase :Tuple = torch.hub.load_state_dict_from_url(A_ , map_location='''cpu''' , check_hash=A_ ) else: UpperCamelCase :str = torch.load(A_ , map_location='''cpu''' ) UpperCamelCase :Optional[int] = checkpoint UpperCamelCase :Dict = create_rename_keys(A_ ) for rename_key_src, rename_key_dest in rename_keys: rename_key(A_ , A_ , A_ ) # load HuggingFace model UpperCamelCase :Tuple = SwiftFormerForImageClassification(A_ ).eval() hf_model.load_state_dict(A_ ) # prepare test inputs UpperCamelCase :Optional[int] = prepare_img() UpperCamelCase :List[Any] = ViTImageProcessor.from_pretrained('''preprocessor_config''' ) UpperCamelCase :int = processor(images=A_ , return_tensors='''pt''' ) # compare outputs from both models UpperCamelCase :str = get_expected_output(A_ ) UpperCamelCase :int = hf_model(inputs['''pixel_values'''] ).logits assert hf_logits.shape == torch.Size([1, 1000] ) assert torch.allclose(hf_logits[0, 0:5] , A_ , atol=1e-3 ) Path(A_ ).mkdir(exist_ok=A_ ) print(F'''Saving model {swiftformer_name} to {pytorch_dump_folder_path}''' ) hf_model.save_pretrained(A_ ) if __name__ == "__main__": __snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( """--swiftformer_name""", default="""swiftformer_xs""", choices=["""swiftformer_xs""", """swiftformer_s""", """swiftformer_l1""", """swiftformer_l3"""], type=str, help="""Name of the SwiftFormer model you\'d like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default="""./converted_outputs/""", type=str, help="""Path to the output PyTorch model directory.""", ) parser.add_argument("""--original_ckpt""", default=None, type=str, help="""Path to the original model checkpoint.""") __snake_case = parser.parse_args() convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
259
"""simple docstring""" import importlib import math import os from dataclasses import dataclass from enum import Enum from typing import Any, Dict, Optional, Tuple, Union import flax import jax.numpy as jnp from ..utils import BaseOutput __UpperCamelCase : Optional[Any] = '''scheduler_config.json''' class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" lowercase__ = 1 lowercase__ = 2 lowercase__ = 3 lowercase__ = 4 lowercase__ = 5 @dataclass class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" lowercase__ = 42 class SCREAMING_SNAKE_CASE : """simple docstring""" lowercase__ = SCHEDULER_CONFIG_NAME lowercase__ = ["dtype"] lowercase__ = [] lowercase__ = True @classmethod def __lowerCAmelCase ( cls : List[Any] ,lowercase_ : Dict[str, Any] = None ,lowercase_ : Optional[str] = None ,lowercase_ : Optional[int]=False ,**lowercase_ : Any ,): lowerCAmelCase__ ,lowerCAmelCase__ : Dict = cls.load_config( pretrained_model_name_or_path=lowercase_ ,subfolder=lowercase_ ,return_unused_kwargs=lowercase_ ,**lowercase_ ,) lowerCAmelCase__ ,lowerCAmelCase__ : Union[str, Any] = cls.from_config(lowercase_ ,return_unused_kwargs=lowercase_ ,**lowercase_ ) if hasattr(lowercase_ ,'''create_state''' ) and getattr(lowercase_ ,'''has_state''' ,lowercase_ ): lowerCAmelCase__ : List[Any] = scheduler.create_state() if return_unused_kwargs: return scheduler, state, unused_kwargs return scheduler, state def __lowerCAmelCase ( self : Tuple ,lowercase_ : Union[str, os.PathLike] ,lowercase_ : bool = False ,**lowercase_ : str ): self.save_config(save_directory=lowercase_ ,push_to_hub=lowercase_ ,**lowercase_ ) @property def __lowerCAmelCase ( self : List[str] ): return self._get_compatibles() @classmethod def __lowerCAmelCase ( cls : List[Any] ): lowerCAmelCase__ : Tuple = list(set([cls.__name__] + cls._compatibles ) ) lowerCAmelCase__ : Tuple = importlib.import_module(__name__.split('''.''' )[0] ) lowerCAmelCase__ : Union[str, Any] = [ getattr(lowercase_ ,lowercase_ ) for c in compatible_classes_str if hasattr(lowercase_ ,lowercase_ ) ] return compatible_classes def __SCREAMING_SNAKE_CASE ( A_ , A_ ): assert len(A_ ) >= x.ndim return jnp.broadcast_to(x.reshape(x.shape + (1,) * (len(A_ ) - x.ndim) ) , A_ ) def __SCREAMING_SNAKE_CASE ( A_ , A_=0.999 , A_=jnp.floataa ): def alpha_bar(A_ ): return math.cos((time_step + 0.008) / 1.008 * math.pi / 2 ) ** 2 lowerCAmelCase__ : Optional[Any] = [] for i in range(A_ ): lowerCAmelCase__ : str = i / num_diffusion_timesteps lowerCAmelCase__ : Union[str, Any] = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar(A_ ) / alpha_bar(A_ ) , A_ ) ) return jnp.array(A_ , dtype=A_ ) @flax.struct.dataclass class SCREAMING_SNAKE_CASE : """simple docstring""" lowercase__ = 42 lowercase__ = 42 lowercase__ = 42 @classmethod def __lowerCAmelCase ( cls : Union[str, Any] ,lowercase_ : List[Any] ): lowerCAmelCase__ : Optional[int] = scheduler.config if config.trained_betas is not None: lowerCAmelCase__ : Any = jnp.asarray(config.trained_betas ,dtype=scheduler.dtype ) elif config.beta_schedule == "linear": lowerCAmelCase__ : Union[str, Any] = jnp.linspace(config.beta_start ,config.beta_end ,config.num_train_timesteps ,dtype=scheduler.dtype ) elif config.beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. lowerCAmelCase__ : int = ( jnp.linspace( config.beta_start**0.5 ,config.beta_end**0.5 ,config.num_train_timesteps ,dtype=scheduler.dtype ) ** 2 ) elif config.beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule lowerCAmelCase__ : List[Any] = betas_for_alpha_bar(config.num_train_timesteps ,dtype=scheduler.dtype ) else: raise NotImplementedError( F'beta_schedule {config.beta_schedule} is not implemented for scheduler {scheduler.__class__.__name__}' ) lowerCAmelCase__ : str = 1.0 - betas lowerCAmelCase__ : Union[str, Any] = jnp.cumprod(lowercase_ ,axis=0 ) return cls( alphas=lowercase_ ,betas=lowercase_ ,alphas_cumprod=lowercase_ ,) def __SCREAMING_SNAKE_CASE ( A_ , A_ , A_ , A_ ): lowerCAmelCase__ : Any = state.alphas_cumprod lowerCAmelCase__ : Optional[Any] = alphas_cumprod[timesteps] ** 0.5 lowerCAmelCase__ : Tuple = sqrt_alpha_prod.flatten() lowerCAmelCase__ : str = broadcast_to_shape_from_left(A_ , original_samples.shape ) lowerCAmelCase__ : Optional[Any] = (1 - alphas_cumprod[timesteps]) ** 0.5 lowerCAmelCase__ : Optional[Any] = sqrt_one_minus_alpha_prod.flatten() lowerCAmelCase__ : Optional[int] = broadcast_to_shape_from_left(A_ , original_samples.shape ) return sqrt_alpha_prod, sqrt_one_minus_alpha_prod def __SCREAMING_SNAKE_CASE ( A_ , A_ , A_ , A_ ): lowerCAmelCase__ ,lowerCAmelCase__ : List[Any] = get_sqrt_alpha_prod(A_ , A_ , A_ , A_ ) lowerCAmelCase__ : str = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples def __SCREAMING_SNAKE_CASE ( A_ , A_ , A_ , A_ ): lowerCAmelCase__ ,lowerCAmelCase__ : List[Any] = get_sqrt_alpha_prod(A_ , A_ , A_ , A_ ) lowerCAmelCase__ : Union[str, Any] = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample return velocity
106
0
from unittest.mock import patch import pyspark from datasets.packaged_modules.spark.spark import ( Spark, SparkExamplesIterable, _generate_iterable_examples, ) from ..utils import ( require_dill_gt_0_3_2, require_not_windows, ) def lowerCamelCase ( UpperCAmelCase__ : int , UpperCAmelCase__ : List[Any] ) -> Optional[int]: lowercase_ : List[Any] = [] for part_id in partition_order: lowercase_ : Optional[int] = df.where(F'''SPARK_PARTITION_ID() = {part_id}''' ).collect() for row_idx, row in enumerate(UpperCAmelCase__ ): expected_row_ids_and_row_dicts.append((F'''{part_id}_{row_idx}''', row.asDict()) ) return expected_row_ids_and_row_dicts @require_not_windows @require_dill_gt_0_3_2 def lowerCamelCase ( ) -> Union[str, Any]: lowercase_ : List[str] = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() lowercase_ : Any = spark.range(100 ).repartition(1 ) lowercase_ : Optional[int] = Spark(UpperCAmelCase__ ) # The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means # that each partition can hold 2 rows. spark_builder._repartition_df_if_needed(max_shard_size=16 ) # Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions. assert spark_builder.df.rdd.getNumPartitions() == 50 @require_not_windows @require_dill_gt_0_3_2 def lowerCamelCase ( ) -> int: lowercase_ : List[Any] = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() lowercase_ : List[str] = spark.range(10 ).repartition(2 ) lowercase_ : int = [1, 0] lowercase_ : Any = _generate_iterable_examples(UpperCAmelCase__ , UpperCAmelCase__ ) # Reverse the partitions. lowercase_ : str = _get_expected_row_ids_and_row_dicts_for_partition_order(UpperCAmelCase__ , UpperCAmelCase__ ) for i, (row_id, row_dict) in enumerate(generate_fn() ): lowercase_ : Union[str, Any] = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def lowerCamelCase ( ) -> Union[str, Any]: lowercase_ : Union[str, Any] = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() lowercase_ : Dict = spark.range(10 ).repartition(1 ) lowercase_ : List[Any] = SparkExamplesIterable(UpperCAmelCase__ ) assert it.n_shards == 1 for i, (row_id, row_dict) in enumerate(UpperCAmelCase__ ): assert row_id == F'''0_{i}''' assert row_dict == {"id": i} @require_not_windows @require_dill_gt_0_3_2 def lowerCamelCase ( ) -> Tuple: lowercase_ : Union[str, Any] = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() lowercase_ : int = spark.range(30 ).repartition(3 ) # Mock the generator so that shuffle reverses the partition indices. with patch("""numpy.random.Generator""" ) as generator_mock: lowercase_ : Tuple = lambda UpperCAmelCase__ : x.reverse() lowercase_ : List[str] = _get_expected_row_ids_and_row_dicts_for_partition_order(UpperCAmelCase__ , [2, 1, 0] ) lowercase_ : Union[str, Any] = SparkExamplesIterable(UpperCAmelCase__ ).shuffle_data_sources(UpperCAmelCase__ ) assert shuffled_it.n_shards == 3 for i, (row_id, row_dict) in enumerate(UpperCAmelCase__ ): lowercase_ : Any = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def lowerCamelCase ( ) -> List[Any]: lowercase_ : Dict = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() lowercase_ : int = spark.range(20 ).repartition(4 ) # Partitions 0 and 2 lowercase_ : Union[str, Any] = SparkExamplesIterable(UpperCAmelCase__ ).shard_data_sources(worker_id=0 , num_workers=2 ) assert shard_it_a.n_shards == 2 lowercase_ : str = _get_expected_row_ids_and_row_dicts_for_partition_order(UpperCAmelCase__ , [0, 2] ) for i, (row_id, row_dict) in enumerate(UpperCAmelCase__ ): lowercase_ : Any = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict # Partitions 1 and 3 lowercase_ : Optional[Any] = SparkExamplesIterable(UpperCAmelCase__ ).shard_data_sources(worker_id=1 , num_workers=2 ) assert shard_it_a.n_shards == 2 lowercase_ : Any = _get_expected_row_ids_and_row_dicts_for_partition_order(UpperCAmelCase__ , [1, 3] ) for i, (row_id, row_dict) in enumerate(UpperCAmelCase__ ): lowercase_ : Tuple = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def lowerCamelCase ( ) -> Union[str, Any]: lowercase_ : Union[str, Any] = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() lowercase_ : Dict = spark.range(100 ).repartition(1 ) lowercase_ : str = Spark(UpperCAmelCase__ ) # Choose a small max_shard_size for maximum partitioning. spark_builder._repartition_df_if_needed(max_shard_size=1 ) # The new number of partitions should not be greater than the number of rows. assert spark_builder.df.rdd.getNumPartitions() == 100
371
'''simple docstring''' import copy import tempfile import unittest from huggingface_hub import HfFolder, delete_repo from parameterized import parameterized from requests.exceptions import HTTPError from transformers import AutoConfig, GenerationConfig from transformers.testing_utils import TOKEN, USER, is_staging_test class __magic_name__ ( unittest.TestCase): @parameterized.expand([(None,), ("""foo.json""",)] ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] , lowercase_ : str ): lowercase_ : Union[str, Any] = GenerationConfig( do_sample=lowercase_ , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowercase_ , config_name=lowercase_ ) lowercase_ : Optional[int] = GenerationConfig.from_pretrained(lowercase_ , config_name=lowercase_ ) # Checks parameters that were specified self.assertEqual(loaded_config.do_sample , lowercase_ ) self.assertEqual(loaded_config.temperature , 0.7 ) self.assertEqual(loaded_config.length_penalty , 1.0 ) self.assertEqual(loaded_config.bad_words_ids , [[1, 2, 3], [4, 5]] ) # Checks parameters that were not specified (defaults) self.assertEqual(loaded_config.top_k , 50 ) self.assertEqual(loaded_config.max_length , 20 ) self.assertEqual(loaded_config.max_time , lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Tuple ): lowercase_ : int = AutoConfig.from_pretrained("""gpt2""" ) lowercase_ : List[Any] = GenerationConfig.from_model_config(lowercase_ ) lowercase_ : Optional[int] = GenerationConfig() # The generation config has loaded a few non-default parameters from the model config self.assertNotEqual(lowercase_ , lowercase_ ) # One of those parameters is eos_token_id -- check if it matches self.assertNotEqual(generation_config_from_model.eos_token_id , default_generation_config.eos_token_id ) self.assertEqual(generation_config_from_model.eos_token_id , model_config.eos_token_id ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ): lowercase_ : Optional[int] = GenerationConfig() lowercase_ : int = { """max_new_tokens""": 1024, """foo""": """bar""", } lowercase_ : List[str] = copy.deepcopy(lowercase_ ) lowercase_ : Tuple = generation_config.update(**lowercase_ ) # update_kwargs was not modified (no side effects) self.assertEqual(lowercase_ , lowercase_ ) # update_kwargs was used to update the config on valid attributes self.assertEqual(generation_config.max_new_tokens , 1024 ) # `.update()` returns a dictionary of unused kwargs self.assertEqual(lowercase_ , {"""foo""": """bar"""} ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): lowercase_ : Dict = GenerationConfig() lowercase_ : int = """bar""" with tempfile.TemporaryDirectory("""test-generation-config""" ) as tmp_dir: generation_config.save_pretrained(lowercase_ ) lowercase_ : Optional[int] = GenerationConfig.from_pretrained(lowercase_ ) # update_kwargs was used to update the config on valid attributes self.assertEqual(new_config.foo , """bar""" ) lowercase_ : List[str] = GenerationConfig.from_model_config(lowercase_ ) assert not hasattr(lowercase_ , """foo""" ) # no new kwargs should be initialized if from config def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): lowercase_ : Optional[int] = GenerationConfig() self.assertEqual(default_config.temperature , 1.0 ) self.assertEqual(default_config.do_sample , lowercase_ ) self.assertEqual(default_config.num_beams , 1 ) lowercase_ : Dict = GenerationConfig( do_sample=lowercase_ , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) self.assertEqual(config.temperature , 0.7 ) self.assertEqual(config.do_sample , lowercase_ ) self.assertEqual(config.num_beams , 1 ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowercase_ ) lowercase_ : Tuple = GenerationConfig.from_pretrained(lowercase_ , temperature=1.0 ) self.assertEqual(loaded_config.temperature , 1.0 ) self.assertEqual(loaded_config.do_sample , lowercase_ ) self.assertEqual(loaded_config.num_beams , 1 ) # default value @is_staging_test class __magic_name__ ( unittest.TestCase): @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Any ): lowercase_ : int = TOKEN HfFolder.save_token(lowercase_ ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : List[Any] ): try: delete_repo(token=cls._token , repo_id="""test-generation-config""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""valid_org/test-generation-config-org""" ) except HTTPError: pass def SCREAMING_SNAKE_CASE_ ( self : Any ): lowercase_ : Tuple = GenerationConfig( do_sample=lowercase_ , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub("""test-generation-config""" , use_auth_token=self._token ) lowercase_ : List[Any] = GenerationConfig.from_pretrained(f'''{USER}/test-generation-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowercase_ , getattr(lowercase_ , lowercase_ ) ) # Reset repo delete_repo(token=self._token , repo_id="""test-generation-config""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( lowercase_ , repo_id="""test-generation-config""" , push_to_hub=lowercase_ , use_auth_token=self._token ) lowercase_ : int = GenerationConfig.from_pretrained(f'''{USER}/test-generation-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowercase_ , getattr(lowercase_ , lowercase_ ) ) def SCREAMING_SNAKE_CASE_ ( self : Any ): lowercase_ : List[Any] = GenerationConfig( do_sample=lowercase_ , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub("""valid_org/test-generation-config-org""" , use_auth_token=self._token ) lowercase_ : Optional[Any] = GenerationConfig.from_pretrained("""valid_org/test-generation-config-org""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowercase_ , getattr(lowercase_ , lowercase_ ) ) # Reset repo delete_repo(token=self._token , repo_id="""valid_org/test-generation-config-org""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( lowercase_ , repo_id="""valid_org/test-generation-config-org""" , push_to_hub=lowercase_ , use_auth_token=self._token ) lowercase_ : int = GenerationConfig.from_pretrained("""valid_org/test-generation-config-org""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowercase_ , getattr(lowercase_ , lowercase_ ) )
21
0
'''simple docstring''' import math import time from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class UpperCamelCase__ ( lowercase_ ): """simple docstring""" def __init__( self : Optional[Any] , *lowerCamelCase_ : str , lowerCamelCase_ : Optional[int]=None , lowerCamelCase_ : Any=None , **lowerCamelCase_ : int ): '''simple docstring''' super().__init__(*lowerCamelCase_ , **lowerCamelCase_ ) SCREAMING_SNAKE_CASE : int = eval_examples SCREAMING_SNAKE_CASE : Tuple = post_process_function def lowerCamelCase_ ( self : Optional[Any] , lowerCamelCase_ : Any=None , lowerCamelCase_ : str=None , lowerCamelCase_ : Any=None , lowerCamelCase_ : str = "eval" ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = self.eval_dataset if eval_dataset is None else eval_dataset SCREAMING_SNAKE_CASE : Optional[Any] = self.get_eval_dataloader(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[int] = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. SCREAMING_SNAKE_CASE : Any = self.compute_metrics SCREAMING_SNAKE_CASE : Optional[int] = None SCREAMING_SNAKE_CASE : List[Any] = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop SCREAMING_SNAKE_CASE : Any = time.time() try: SCREAMING_SNAKE_CASE : int = eval_loop( lowerCamelCase_ , description="""Evaluation""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=lowerCamelCase_ , metric_key_prefix=lowerCamelCase_ , ) finally: SCREAMING_SNAKE_CASE : int = compute_metrics SCREAMING_SNAKE_CASE : List[Any] = self.args.eval_batch_size * self.args.world_size if f'''{metric_key_prefix}_jit_compilation_time''' in output.metrics: start_time += output.metrics[f'''{metric_key_prefix}_jit_compilation_time'''] output.metrics.update( speed_metrics( lowerCamelCase_ , lowerCamelCase_ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default SCREAMING_SNAKE_CASE : Dict = self.post_process_function(lowerCamelCase_ , lowerCamelCase_ , output.predictions ) SCREAMING_SNAKE_CASE : Dict = self.compute_metrics(lowerCamelCase_ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f'''{metric_key_prefix}_''' ): SCREAMING_SNAKE_CASE : List[str] = metrics.pop(lowerCamelCase_ ) metrics.update(output.metrics ) else: SCREAMING_SNAKE_CASE : Union[str, Any] = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(lowerCamelCase_ ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) SCREAMING_SNAKE_CASE : Optional[Any] = self.callback_handler.on_evaluate(self.args , self.state , self.control , lowerCamelCase_ ) return metrics def lowerCamelCase_ ( self : Union[str, Any] , lowerCamelCase_ : List[Any] , lowerCamelCase_ : List[Any] , lowerCamelCase_ : List[Any]=None , lowerCamelCase_ : str = "test" ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = self.get_test_dataloader(lowerCamelCase_ ) # Temporarily disable metric computation, we will do it in the loop here. SCREAMING_SNAKE_CASE : int = self.compute_metrics SCREAMING_SNAKE_CASE : Union[str, Any] = None SCREAMING_SNAKE_CASE : List[str] = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop SCREAMING_SNAKE_CASE : Any = time.time() try: SCREAMING_SNAKE_CASE : int = eval_loop( lowerCamelCase_ , description="""Prediction""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=lowerCamelCase_ , metric_key_prefix=lowerCamelCase_ , ) finally: SCREAMING_SNAKE_CASE : Tuple = compute_metrics SCREAMING_SNAKE_CASE : int = self.args.eval_batch_size * self.args.world_size if f'''{metric_key_prefix}_jit_compilation_time''' in output.metrics: start_time += output.metrics[f'''{metric_key_prefix}_jit_compilation_time'''] output.metrics.update( speed_metrics( lowerCamelCase_ , lowerCamelCase_ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output SCREAMING_SNAKE_CASE : str = self.post_process_function(lowerCamelCase_ , lowerCamelCase_ , output.predictions , """predict""" ) SCREAMING_SNAKE_CASE : Optional[int] = self.compute_metrics(lowerCamelCase_ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f'''{metric_key_prefix}_''' ): SCREAMING_SNAKE_CASE : Union[str, Any] = metrics.pop(lowerCamelCase_ ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=lowerCamelCase_ )
323
'''simple docstring''' import unittest from diffusers import FlaxAutoencoderKL from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax from .test_modeling_common_flax import FlaxModelTesterMixin if is_flax_available(): import jax @require_flax class UpperCamelCase__ ( lowercase_ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = FlaxAutoencoderKL @property def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = 4 SCREAMING_SNAKE_CASE : str = 3 SCREAMING_SNAKE_CASE : List[Any] = (32, 32) SCREAMING_SNAKE_CASE : Tuple = jax.random.PRNGKey(0 ) SCREAMING_SNAKE_CASE : Any = jax.random.uniform(lowerCamelCase_ , ((batch_size, num_channels) + sizes) ) return {"sample": image, "prng_key": prng_key} def lowerCamelCase_ ( self : List[str] ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = { """block_out_channels""": [32, 64], """in_channels""": 3, """out_channels""": 3, """down_block_types""": ["""DownEncoderBlock2D""", """DownEncoderBlock2D"""], """up_block_types""": ["""UpDecoderBlock2D""", """UpDecoderBlock2D"""], """latent_channels""": 4, } SCREAMING_SNAKE_CASE : List[Any] = self.dummy_input return init_dict, inputs_dict
323
1
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, PNDMScheduler, StableDiffusionLDMaDPipeline, UNetaDConditionModel, ) from diffusers.utils import nightly, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS enable_full_determinism() class __magic_name__ ( unittest.TestCase ): SCREAMING_SNAKE_CASE = StableDiffusionLDMaDPipeline SCREAMING_SNAKE_CASE = TEXT_TO_IMAGE_PARAMS SCREAMING_SNAKE_CASE = TEXT_TO_IMAGE_BATCH_PARAMS SCREAMING_SNAKE_CASE = TEXT_TO_IMAGE_IMAGE_PARAMS def __magic_name__ ( self ) -> Optional[Any]: '''simple docstring''' torch.manual_seed(0 ) __a =UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) __a =DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=__snake_case , set_alpha_to_one=__snake_case , ) torch.manual_seed(0 ) __a =AutoencoderKL( block_out_channels=[32, 64] , in_channels=6 , out_channels=6 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0 ) __a =CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) __a =CLIPTextModel(__snake_case ) __a =CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) __a ={ 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def __magic_name__ ( self , __snake_case , __snake_case=0 ) -> Union[str, Any]: '''simple docstring''' if str(__snake_case ).startswith('mps' ): __a =torch.manual_seed(__snake_case ) else: __a =torch.Generator(device=__snake_case ).manual_seed(__snake_case ) __a ={ 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def __magic_name__ ( self ) -> Optional[Any]: '''simple docstring''' __a ='cpu' # ensure determinism for the device-dependent torch.Generator __a =self.get_dummy_components() __a =StableDiffusionLDMaDPipeline(**__snake_case ) __a =ldmad_pipe.to(__snake_case ) ldmad_pipe.set_progress_bar_config(disable=__snake_case ) __a =self.get_dummy_inputs(__snake_case ) __a =ldmad_pipe(**__snake_case ) __a , __a =output.rgb, output.depth __a =rgb[0, -3:, -3:, -1] __a =depth[0, -3:, -1] assert rgb.shape == (1, 64, 64, 3) assert depth.shape == (1, 64, 64) __a =np.array( [0.3733_8176, 0.7_0247, 0.7420_3193, 0.5164_3604, 0.5825_6793, 0.6093_2136, 0.418_1095, 0.4835_5877, 0.4653_5262] ) __a =np.array([103.4_6727, 85.81_2004, 87.84_9236] ) assert np.abs(image_slice_rgb.flatten() - expected_slice_rgb ).max() < 1e-2 assert np.abs(image_slice_depth.flatten() - expected_slice_depth ).max() < 1e-2 def __magic_name__ ( self ) -> List[str]: '''simple docstring''' __a =self.get_dummy_components() __a =StableDiffusionLDMaDPipeline(**__snake_case ) __a =ldmad_pipe.to(__snake_case ) ldmad_pipe.set_progress_bar_config(disable=__snake_case ) __a =self.get_dummy_inputs(__snake_case ) __a =3 * [inputs['prompt']] # forward __a =ldmad_pipe(**__snake_case ) __a , __a =output.rgb, output.depth __a =rgb_slice_a[0, -3:, -3:, -1] __a =depth_slice_a[0, -3:, -1] __a =self.get_dummy_inputs(__snake_case ) __a =3 * [inputs.pop('prompt' )] __a =ldmad_pipe.tokenizer( __snake_case , padding='max_length' , max_length=ldmad_pipe.tokenizer.model_max_length , truncation=__snake_case , return_tensors='pt' , ) __a =text_inputs['input_ids'].to(__snake_case ) __a =ldmad_pipe.text_encoder(__snake_case )[0] __a =prompt_embeds # forward __a =ldmad_pipe(**__snake_case ) __a , __a =output.rgb, output.depth __a =rgb_slice_a[0, -3:, -3:, -1] __a =depth_slice_a[0, -3:, -1] assert np.abs(rgb_slice_a.flatten() - rgb_slice_a.flatten() ).max() < 1e-4 assert np.abs(depth_slice_a.flatten() - depth_slice_a.flatten() ).max() < 1e-4 def __magic_name__ ( self ) -> Tuple: '''simple docstring''' __a ='cpu' # ensure determinism for the device-dependent torch.Generator __a =self.get_dummy_components() __a =PNDMScheduler(skip_prk_steps=__snake_case ) __a =StableDiffusionLDMaDPipeline(**__snake_case ) __a =ldmad_pipe.to(__snake_case ) ldmad_pipe.set_progress_bar_config(disable=__snake_case ) __a =self.get_dummy_inputs(__snake_case ) __a ='french fries' __a =ldmad_pipe(**__snake_case , negative_prompt=__snake_case ) __a , __a =output.rgb, output.depth __a =rgb[0, -3:, -3:, -1] __a =depth[0, -3:, -1] assert rgb.shape == (1, 64, 64, 3) assert depth.shape == (1, 64, 64) __a =np.array( [0.3_7044, 0.7181_1503, 0.722_3251, 0.4860_3675, 0.563_8391, 0.636_4948, 0.4283_3704, 0.490_1315, 0.4792_6217] ) __a =np.array([107.8_4738, 84.6_2802, 89.96_2135] ) assert np.abs(rgb_slice.flatten() - expected_slice_rgb ).max() < 1e-2 assert np.abs(depth_slice.flatten() - expected_slice_depth ).max() < 1e-2 @slow @require_torch_gpu class __magic_name__ ( unittest.TestCase ): def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __magic_name__ ( self , __snake_case , __snake_case="cpu" , __snake_case=torch.floataa , __snake_case=0 ) -> Optional[int]: '''simple docstring''' __a =torch.Generator(device=__snake_case ).manual_seed(__snake_case ) __a =np.random.RandomState(__snake_case ).standard_normal((1, 4, 64, 64) ) __a =torch.from_numpy(__snake_case ).to(device=__snake_case , dtype=__snake_case ) __a ={ 'prompt': 'a photograph of an astronaut riding a horse', 'latents': latents, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def __magic_name__ ( self ) -> List[str]: '''simple docstring''' __a =StableDiffusionLDMaDPipeline.from_pretrained('Intel/ldm3d' ) __a =ldmad_pipe.to(__snake_case ) ldmad_pipe.set_progress_bar_config(disable=__snake_case ) __a =self.get_inputs(__snake_case ) __a =ldmad_pipe(**__snake_case ) __a , __a =output.rgb, output.depth __a =rgb[0, -3:, -3:, -1].flatten() __a =rgb[0, -3:, -1].flatten() assert rgb.shape == (1, 512, 512, 3) assert depth.shape == (1, 512, 512) __a =np.array( [0.5380_5465, 0.5670_7305, 0.548_6515, 0.5701_2236, 0.581_4511, 0.5625_3487, 0.5484_3014, 0.5509_2263, 0.645_9706] ) __a =np.array( [0.926_3781, 0.667_8672, 0.548_6515, 0.9220_2145, 0.6783_1135, 0.5625_3487, 0.924_1694, 0.755_1478, 0.645_9706] ) assert np.abs(rgb_slice - expected_slice_rgb ).max() < 3e-3 assert np.abs(depth_slice - expected_slice_depth ).max() < 3e-3 @nightly @require_torch_gpu class __magic_name__ ( unittest.TestCase ): def __magic_name__ ( self ) -> Tuple: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __magic_name__ ( self , __snake_case , __snake_case="cpu" , __snake_case=torch.floataa , __snake_case=0 ) -> Optional[int]: '''simple docstring''' __a =torch.Generator(device=__snake_case ).manual_seed(__snake_case ) __a =np.random.RandomState(__snake_case ).standard_normal((1, 4, 64, 64) ) __a =torch.from_numpy(__snake_case ).to(device=__snake_case , dtype=__snake_case ) __a ={ 'prompt': 'a photograph of an astronaut riding a horse', 'latents': latents, 'generator': generator, 'num_inference_steps': 50, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def __magic_name__ ( self ) -> Optional[Any]: '''simple docstring''' __a =StableDiffusionLDMaDPipeline.from_pretrained('Intel/ldm3d' ).to(__snake_case ) ldmad_pipe.set_progress_bar_config(disable=__snake_case ) __a =self.get_inputs(__snake_case ) __a =ldmad_pipe(**__snake_case ) __a , __a =output.rgb, output.depth __a =0.49_5586 __a =0.3379_5515 __a =112.4_8518 __a =98.48_9746 assert np.abs(expected_rgb_mean - rgb.mean() ) < 1e-3 assert np.abs(expected_rgb_std - rgb.std() ) < 1e-3 assert np.abs(expected_depth_mean - depth.mean() ) < 1e-3 assert np.abs(expected_depth_std - depth.std() ) < 1e-3 def __magic_name__ ( self ) -> Tuple: '''simple docstring''' __a =StableDiffusionLDMaDPipeline.from_pretrained('Intel/ldm3d-4c' ).to(__snake_case ) ldmad_pipe.set_progress_bar_config(disable=__snake_case ) __a =self.get_inputs(__snake_case ) __a =ldmad_pipe(**__snake_case ) __a , __a =output.rgb, output.depth __a =0.419_4127 __a =0.3537_5586 __a =0.563_8502 __a =0.3468_6103 assert rgb.shape == (1, 512, 512, 3) assert depth.shape == (1, 512, 512, 1) assert np.abs(expected_rgb_mean - rgb.mean() ) < 1e-3 assert np.abs(expected_rgb_std - rgb.std() ) < 1e-3 assert np.abs(expected_depth_mean - depth.mean() ) < 1e-3 assert np.abs(expected_depth_std - depth.std() ) < 1e-3
308
import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor _lowerCAmelCase : Any = logging.get_logger(__name__) class __magic_name__ ( lowerCAmelCase_ ): def __init__( self , *__snake_case , **__snake_case ) -> None: '''simple docstring''' warnings.warn( 'The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use MobileViTImageProcessor instead.' , __snake_case , ) super().__init__(*__snake_case , **__snake_case )
308
1
'''simple docstring''' import torch from diffusers import KDPMaDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class lowerCAmelCase_ ( UpperCAmelCase_ ): '''simple docstring''' UpperCamelCase_ : Any = (KDPMaDiscreteScheduler,) UpperCamelCase_ : str = 10 def _snake_case ( self : Optional[Any] , **SCREAMING_SNAKE_CASE_ : Any ) -> Dict: '''simple docstring''' A: str = { '''num_train_timesteps''': 11_00, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', } config.update(**SCREAMING_SNAKE_CASE_ ) return config def _snake_case ( self : Union[str, Any] ) -> Any: '''simple docstring''' for timesteps in [10, 50, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=SCREAMING_SNAKE_CASE_ ) def _snake_case ( self : int ) -> Optional[Any]: '''simple docstring''' for beta_start, beta_end in zip([0.0_0001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=SCREAMING_SNAKE_CASE_ , beta_end=SCREAMING_SNAKE_CASE_ ) def _snake_case ( self : str ) -> Optional[int]: '''simple docstring''' for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=SCREAMING_SNAKE_CASE_ ) def _snake_case ( self : List[Any] ) -> int: '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=SCREAMING_SNAKE_CASE_ ) def _snake_case ( self : int ) -> Tuple: '''simple docstring''' A: Union[str, Any] = self.scheduler_classes[0] A: int = self.get_scheduler_config(prediction_type='''v_prediction''' ) A: int = scheduler_class(**SCREAMING_SNAKE_CASE_ ) scheduler.set_timesteps(self.num_inference_steps ) A: Union[str, Any] = self.dummy_model() A: Any = self.dummy_sample_deter * scheduler.init_noise_sigma A: str = sample.to(SCREAMING_SNAKE_CASE_ ) for i, t in enumerate(scheduler.timesteps ): A: Optional[Any] = scheduler.scale_model_input(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) A: int = model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) A: Dict = scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) A: Optional[int] = output.prev_sample A: int = torch.sum(torch.abs(SCREAMING_SNAKE_CASE_ ) ) A: Dict = torch.mean(torch.abs(SCREAMING_SNAKE_CASE_ ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 4.6934E-07 ) < 1E-2 assert abs(result_mean.item() - 6.1112E-10 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 4.693428650170972E-07 ) < 1E-2 assert abs(result_mean.item() - 0.0002 ) < 1E-3 def _snake_case ( self : int ) -> Dict: '''simple docstring''' if torch_device == "mps": return A: List[Any] = self.scheduler_classes[0] A: int = self.get_scheduler_config() A: Dict = scheduler_class(**SCREAMING_SNAKE_CASE_ ) scheduler.set_timesteps(self.num_inference_steps ) A: str = self.dummy_model() A: Dict = self.dummy_sample_deter * scheduler.init_noise_sigma A: Dict = sample.to(SCREAMING_SNAKE_CASE_ ) for i, t in enumerate(scheduler.timesteps ): A: Tuple = scheduler.scale_model_input(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) A: Union[str, Any] = model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) A: Union[str, Any] = scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) A: Tuple = output.prev_sample A: List[str] = torch.sum(torch.abs(SCREAMING_SNAKE_CASE_ ) ) A: Union[str, Any] = torch.mean(torch.abs(SCREAMING_SNAKE_CASE_ ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 20.4125 ) < 1E-2 assert abs(result_mean.item() - 0.0266 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 20.4125 ) < 1E-2 assert abs(result_mean.item() - 0.0266 ) < 1E-3 def _snake_case ( self : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' if torch_device == "mps": return A: str = self.scheduler_classes[0] A: Any = self.get_scheduler_config() A: int = scheduler_class(**SCREAMING_SNAKE_CASE_ ) scheduler.set_timesteps(self.num_inference_steps , device=SCREAMING_SNAKE_CASE_ ) A: str = self.dummy_model() A: int = self.dummy_sample_deter.to(SCREAMING_SNAKE_CASE_ ) * scheduler.init_noise_sigma for t in scheduler.timesteps: A: List[Any] = scheduler.scale_model_input(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) A: int = model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) A: Optional[int] = scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) A: Union[str, Any] = output.prev_sample A: List[str] = torch.sum(torch.abs(SCREAMING_SNAKE_CASE_ ) ) A: str = torch.mean(torch.abs(SCREAMING_SNAKE_CASE_ ) ) if str(SCREAMING_SNAKE_CASE_ ).startswith('''cpu''' ): # The following sum varies between 148 and 156 on mps. Why? assert abs(result_sum.item() - 20.4125 ) < 1E-2 assert abs(result_mean.item() - 0.0266 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 20.4125 ) < 1E-2 assert abs(result_mean.item() - 0.0266 ) < 1E-3
319
'''simple docstring''' def SCREAMING_SNAKE_CASE( __lowercase , __lowercase = 0 ) -> list: A: Dict = length or len(__lowercase ) A: Dict = False for i in range(length - 1 ): if list_data[i] > list_data[i + 1]: A , A: Tuple = list_data[i + 1], list_data[i] A: Union[str, Any] = True return list_data if not swapped else bubble_sort(__lowercase , length - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
319
1
"""simple docstring""" import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs __lowerCamelCase = imread(R"digital_image_processing/image_data/lena_small.jpg") __lowerCamelCase = cvtColor(img, COLOR_BGR2GRAY) def UpperCAmelCase ( ): """simple docstring""" A__ = cn.convert_to_negative(UpperCamelCase__ ) # assert negative_img array for at least one True assert negative_img.any() def UpperCAmelCase ( ): """simple docstring""" with Image.open('digital_image_processing/image_data/lena_small.jpg' ) as img: # Work around assertion for response assert str(cc.change_contrast(UpperCamelCase__ , 110 ) ).startswith( '<PIL.Image.Image image mode=RGB size=100x100 at' ) def UpperCAmelCase ( ): """simple docstring""" A__ = canny.gen_gaussian_kernel(9 , sigma=1.4 ) # Assert ambiguous array assert resp.all() def UpperCAmelCase ( ): """simple docstring""" A__ = imread('digital_image_processing/image_data/lena_small.jpg' , 0 ) # assert ambiguous array for all == True assert canny_img.all() A__ = canny.canny(UpperCamelCase__ ) # assert canny array for at least one True assert canny_array.any() def UpperCAmelCase ( ): """simple docstring""" assert gg.gaussian_filter(UpperCamelCase__ , 5 , sigma=0.9 ).all() def UpperCAmelCase ( ): """simple docstring""" A__ = array([[0.2_5, 0.5, 0.2_5], [0.5, -3, 0.5], [0.2_5, 0.5, 0.2_5]] ) A__ = conv.img_convolve(UpperCamelCase__ , UpperCamelCase__ ).astype(UpperCamelCase__ ) assert res.any() def UpperCAmelCase ( ): """simple docstring""" assert med.median_filter(UpperCamelCase__ , 3 ).any() def UpperCAmelCase ( ): """simple docstring""" A__ , A__ = sob.sobel_filter(UpperCamelCase__ ) assert grad.any() and theta.any() def UpperCAmelCase ( ): """simple docstring""" A__ = sp.make_sepia(UpperCamelCase__ , 20 ) assert sepia.all() def UpperCAmelCase ( UpperCamelCase__ = "digital_image_processing/image_data/lena_small.jpg" ): """simple docstring""" A__ = bs.Burkes(imread(UpperCamelCase__ , 1 ) , 120 ) burkes.process() assert burkes.output_img.any() def UpperCAmelCase ( UpperCamelCase__ = "digital_image_processing/image_data/lena_small.jpg" , ): """simple docstring""" A__ = rs.NearestNeighbour(imread(UpperCamelCase__ , 1 ) , 400 , 200 ) nn.process() assert nn.output.any() def UpperCAmelCase ( ): """simple docstring""" A__ = 'digital_image_processing/image_data/lena.jpg' # Reading the image and converting it to grayscale. A__ = imread(UpperCamelCase__ , 0 ) # Test for get_neighbors_pixel function() return not None A__ = 0 A__ = 0 A__ = image[x_coordinate][y_coordinate] A__ = lbp.get_neighbors_pixel( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image A__ = np.zeros((image.shape[0], image.shape[1]) ) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0 , image.shape[0] ): for j in range(0 , image.shape[1] ): A__ = lbp.local_binary_value(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) assert lbp_image.any()
154
"""simple docstring""" import argparse import os import re import numpy as np import PIL import torch from timm import create_model from torch.optim.lr_scheduler import OneCycleLR from torch.utils.data import DataLoader, Dataset from torchvision.transforms import Compose, RandomResizedCrop, Resize, ToTensor from accelerate import Accelerator def UpperCAmelCase ( UpperCamelCase__ ): """simple docstring""" A__ = fname.split(os.path.sep )[-1] return re.search(r'^(.*)_\d+\.jpg$' , UpperCamelCase__ ).groups()[0] class UpperCamelCase__( __A ): def __init__( self ,__UpperCAmelCase ,__UpperCAmelCase=None ,__UpperCAmelCase=None ) -> List[str]: A__ = file_names A__ = image_transform A__ = label_to_id def __len__( self ) -> Dict: return len(self.file_names ) def __getitem__( self ,__UpperCAmelCase ) -> Union[str, Any]: A__ = self.file_names[idx] A__ = PIL.Image.open(__UpperCAmelCase ) A__ = raw_image.convert('RGB' ) if self.image_transform is not None: A__ = self.image_transform(__UpperCAmelCase ) A__ = extract_label(__UpperCAmelCase ) if self.label_to_id is not None: A__ = self.label_to_id[label] return {"image": image, "label": label} def UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__ ): """simple docstring""" if args.with_tracking: A__ = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with='all' , project_dir=args.project_dir ) else: A__ = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs A__ = config['lr'] A__ = int(config['num_epochs'] ) A__ = int(config['seed'] ) A__ = int(config['batch_size'] ) A__ = config['image_size'] if not isinstance(UpperCamelCase__ , (list, tuple) ): A__ = (image_size, image_size) # Parse out whether we are saving every epoch or after a certain number of batches if hasattr(args.checkpointing_steps , 'isdigit' ): if args.checkpointing_steps == "epoch": A__ = args.checkpointing_steps elif args.checkpointing_steps.isdigit(): A__ = int(args.checkpointing_steps ) else: raise ValueError( F'''Argument `checkpointing_steps` must be either a number or `epoch`. `{args.checkpointing_steps}` passed.''' ) else: A__ = None # We need to initialize the trackers we use, and also store our configuration if args.with_tracking: A__ = os.path.split(UpperCamelCase__ )[-1].split('.' )[0] accelerator.init_trackers(UpperCamelCase__ , UpperCamelCase__ ) # Grab all the image filenames A__ = [os.path.join(args.data_dir , UpperCamelCase__ ) for fname in os.listdir(args.data_dir ) if fname.endswith('.jpg' )] # Build the label correspondences A__ = [extract_label(UpperCamelCase__ ) for fname in file_names] A__ = list(set(UpperCamelCase__ ) ) id_to_label.sort() A__ = {lbl: i for i, lbl in enumerate(UpperCamelCase__ )} # Set the seed before splitting the data. np.random.seed(UpperCamelCase__ ) torch.manual_seed(UpperCamelCase__ ) torch.cuda.manual_seed_all(UpperCamelCase__ ) # Split our filenames between train and validation A__ = np.random.permutation(len(UpperCamelCase__ ) ) A__ = int(0.8 * len(UpperCamelCase__ ) ) A__ = random_perm[:cut] A__ = random_perm[cut:] # For training we use a simple RandomResizedCrop A__ = Compose([RandomResizedCrop(UpperCamelCase__ , scale=(0.5, 1.0) ), ToTensor()] ) A__ = PetsDataset( [file_names[i] for i in train_split] , image_transform=UpperCamelCase__ , label_to_id=UpperCamelCase__ ) # For evaluation, we use a deterministic Resize A__ = Compose([Resize(UpperCamelCase__ ), ToTensor()] ) A__ = PetsDataset([file_names[i] for i in eval_split] , image_transform=UpperCamelCase__ , label_to_id=UpperCamelCase__ ) # Instantiate dataloaders. A__ = DataLoader(UpperCamelCase__ , shuffle=UpperCamelCase__ , batch_size=UpperCamelCase__ , num_workers=4 ) A__ = DataLoader(UpperCamelCase__ , shuffle=UpperCamelCase__ , batch_size=UpperCamelCase__ , num_workers=4 ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) A__ = create_model('resnet50d' , pretrained=UpperCamelCase__ , num_classes=len(UpperCamelCase__ ) ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). A__ = model.to(accelerator.device ) # Freezing the base model for param in model.parameters(): A__ = False for param in model.get_classifier().parameters(): A__ = True # We normalize the batches of images to be a bit faster. A__ = torch.tensor(model.default_cfg['mean'] )[None, :, None, None].to(accelerator.device ) A__ = torch.tensor(model.default_cfg['std'] )[None, :, None, None].to(accelerator.device ) # Instantiate optimizer A__ = torch.optim.Adam(params=model.parameters() , lr=lr / 25 ) # Instantiate learning rate scheduler A__ = OneCycleLR(optimizer=UpperCamelCase__ , max_lr=UpperCamelCase__ , epochs=UpperCamelCase__ , steps_per_epoch=len(UpperCamelCase__ ) ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. A__ , A__ , A__ , A__ , A__ = accelerator.prepare( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # We need to keep track of how many total steps we have iterated over A__ = 0 # We also need to keep track of the starting epoch so files are named properly A__ = 0 # Potentially load in the weights and states from a previous save if args.resume_from_checkpoint: if args.resume_from_checkpoint is not None or args.resume_from_checkpoint != "": accelerator.print(F'''Resumed from checkpoint: {args.resume_from_checkpoint}''' ) accelerator.load_state(args.resume_from_checkpoint ) A__ = os.path.basename(args.resume_from_checkpoint ) else: # Get the most recent checkpoint A__ = [f.name for f in os.scandir(os.getcwd() ) if f.is_dir()] dirs.sort(key=os.path.getctime ) A__ = dirs[-1] # Sorts folders by date modified, most recent checkpoint is the last # Extract `epoch_{i}` or `step_{i}` A__ = os.path.splitext(UpperCamelCase__ )[0] if "epoch" in training_difference: A__ = int(training_difference.replace('epoch_' , '' ) ) + 1 A__ = None else: A__ = int(training_difference.replace('step_' , '' ) ) A__ = resume_step // len(UpperCamelCase__ ) resume_step -= starting_epoch * len(UpperCamelCase__ ) # Now we train the model for epoch in range(UpperCamelCase__ , UpperCamelCase__ ): model.train() if args.with_tracking: A__ = 0 if args.resume_from_checkpoint and epoch == starting_epoch and resume_step is not None: # We need to skip steps until we reach the resumed step A__ = accelerator.skip_first_batches(UpperCamelCase__ , UpperCamelCase__ ) overall_step += resume_step else: # After the first iteration though, we need to go back to the original dataloader A__ = train_dataloader for batch in active_dataloader: # We could avoid this line since we set the accelerator with `device_placement=True`. A__ = {k: v.to(accelerator.device ) for k, v in batch.items()} A__ = (batch['image'] - mean) / std A__ = model(UpperCamelCase__ ) A__ = torch.nn.functional.cross_entropy(UpperCamelCase__ , batch['label'] ) # We keep track of the loss at each epoch if args.with_tracking: total_loss += loss.detach().float() accelerator.backward(UpperCamelCase__ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 if isinstance(UpperCamelCase__ , UpperCamelCase__ ): A__ = F'''step_{overall_step}''' if overall_step % checkpointing_steps == 0: if args.output_dir is not None: A__ = os.path.join(args.output_dir , UpperCamelCase__ ) accelerator.save_state(UpperCamelCase__ ) model.eval() A__ = 0 A__ = 0 for step, batch in enumerate(UpperCamelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. A__ = {k: v.to(accelerator.device ) for k, v in batch.items()} A__ = (batch['image'] - mean) / std with torch.no_grad(): A__ = model(UpperCamelCase__ ) A__ = outputs.argmax(dim=-1 ) A__ , A__ = accelerator.gather_for_metrics((predictions, batch['label']) ) A__ = predictions == references num_elems += accurate_preds.shape[0] accurate += accurate_preds.long().sum() A__ = accurate.item() / num_elems # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}: {100 * eval_metric:.2f}''' ) if args.with_tracking: accelerator.log( { 'accuracy': 100 * eval_metric, 'train_loss': total_loss.item() / len(UpperCamelCase__ ), 'epoch': epoch, } , step=UpperCamelCase__ , ) if checkpointing_steps == "epoch": A__ = F'''epoch_{epoch}''' if args.output_dir is not None: A__ = os.path.join(args.output_dir , UpperCamelCase__ ) accelerator.save_state(UpperCamelCase__ ) if args.with_tracking: accelerator.end_training() def UpperCAmelCase ( ): """simple docstring""" A__ = argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument('--data_dir' , required=UpperCamelCase__ , help='The data folder on disk.' ) parser.add_argument('--fp16' , action='store_true' , help='If passed, will use FP16 training.' ) parser.add_argument( '--mixed_precision' , type=UpperCamelCase__ , default=UpperCamelCase__ , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.' , ) parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.' ) parser.add_argument( '--checkpointing_steps' , type=UpperCamelCase__ , default=UpperCamelCase__ , help='Whether the various states should be saved at the end of every n steps, or \'epoch\' for each epoch.' , ) parser.add_argument( '--output_dir' , type=UpperCamelCase__ , default='.' , help='Optional save directory where all checkpoint folders will be stored. Default is the current working directory.' , ) parser.add_argument( '--resume_from_checkpoint' , type=UpperCamelCase__ , default=UpperCamelCase__ , help='If the training should continue from a checkpoint folder.' , ) parser.add_argument( '--with_tracking' , action='store_true' , help='Whether to load in all available experiment trackers from the environment and use them for logging.' , ) parser.add_argument( '--project_dir' , type=UpperCamelCase__ , default='logs' , help='Location on where to store experiment tracking logs` and relevent project information' , ) A__ = parser.parse_args() A__ = {'lr': 3E-2, 'num_epochs': 3, 'seed': 42, 'batch_size': 64, 'image_size': 224} training_function(UpperCamelCase__ , UpperCamelCase__ ) if __name__ == "__main__": main()
154
1