code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
import math import os from copy import deepcopy import datasets import evaluate import torch import transformers from datasets import load_dataset from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer from accelerate import Accelerator from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import is_tpu_available, set_seed __lowercase = '''true''' def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=82 , SCREAMING_SNAKE_CASE=16 ): '''simple docstring''' set_seed(42 ) __UpperCamelCase :List[str] = RegressionModel() __UpperCamelCase :List[Any] = deepcopy(SCREAMING_SNAKE_CASE ) __UpperCamelCase :Optional[int] = RegressionDataset(length=SCREAMING_SNAKE_CASE ) __UpperCamelCase :List[Any] = DataLoader(SCREAMING_SNAKE_CASE , batch_size=SCREAMING_SNAKE_CASE ) model.to(accelerator.device ) __UpperCamelCase , __UpperCamelCase :Optional[Any] = accelerator.prepare(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return model, ddp_model, dataloader def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False ): '''simple docstring''' __UpperCamelCase :List[str] = AutoTokenizer.from_pretrained('''hf-internal-testing/mrpc-bert-base-cased''' ) __UpperCamelCase :Optional[int] = load_dataset('''glue''' , '''mrpc''' , split='''validation''' ) def tokenize_function(SCREAMING_SNAKE_CASE ): __UpperCamelCase :Optional[Any] = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=SCREAMING_SNAKE_CASE , max_length=SCREAMING_SNAKE_CASE ) return outputs with accelerator.main_process_first(): __UpperCamelCase :Any = dataset.map( SCREAMING_SNAKE_CASE , batched=SCREAMING_SNAKE_CASE , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) __UpperCamelCase :Union[str, Any] = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(SCREAMING_SNAKE_CASE ): if use_longest: return tokenizer.pad(SCREAMING_SNAKE_CASE , padding='''longest''' , return_tensors='''pt''' ) return tokenizer.pad(SCREAMING_SNAKE_CASE , padding='''max_length''' , max_length=128 , return_tensors='''pt''' ) return DataLoader(SCREAMING_SNAKE_CASE , shuffle=SCREAMING_SNAKE_CASE , collate_fn=SCREAMING_SNAKE_CASE , batch_size=16 ) def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase :str = Accelerator(dispatch_batches=SCREAMING_SNAKE_CASE , split_batches=SCREAMING_SNAKE_CASE ) __UpperCamelCase :int = get_dataloader(SCREAMING_SNAKE_CASE , not dispatch_batches ) __UpperCamelCase :List[str] = AutoModelForSequenceClassification.from_pretrained( '''hf-internal-testing/mrpc-bert-base-cased''' , return_dict=SCREAMING_SNAKE_CASE ) __UpperCamelCase , __UpperCamelCase :List[Any] = accelerator.prepare(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase :List[str] = [] for batch in dataloader: __UpperCamelCase , __UpperCamelCase :Tuple = batch.values() with torch.no_grad(): __UpperCamelCase :Any = model(SCREAMING_SNAKE_CASE ) __UpperCamelCase , __UpperCamelCase :Any = accelerator.gather_for_metrics((logit, target) ) logits_and_targets.append((logit, target) ) __UpperCamelCase , __UpperCamelCase :List[Any] = [], [] for logit, targ in logits_and_targets: logits.append(SCREAMING_SNAKE_CASE ) targs.append(SCREAMING_SNAKE_CASE ) __UpperCamelCase , __UpperCamelCase :str = torch.cat(SCREAMING_SNAKE_CASE ), torch.cat(SCREAMING_SNAKE_CASE ) return logits, targs def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=82 , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=16 ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase , __UpperCamelCase :Tuple = get_basic_setup(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __UpperCamelCase , __UpperCamelCase :List[Any] = generate_predictions(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) assert ( len(SCREAMING_SNAKE_CASE ) == num_samples ), f"""Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(SCREAMING_SNAKE_CASE )}""" def lowerCamelCase ( SCREAMING_SNAKE_CASE = False , SCREAMING_SNAKE_CASE = False ): '''simple docstring''' __UpperCamelCase :Dict = evaluate.load('''glue''' , '''mrpc''' ) __UpperCamelCase , __UpperCamelCase :Dict = get_mrpc_setup(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # First do baseline __UpperCamelCase , __UpperCamelCase , __UpperCamelCase :Optional[int] = setup['''no'''] model.to(SCREAMING_SNAKE_CASE ) model.eval() for batch in dataloader: batch.to(SCREAMING_SNAKE_CASE ) with torch.inference_mode(): __UpperCamelCase :Optional[Any] = model(**SCREAMING_SNAKE_CASE ) __UpperCamelCase :List[str] = outputs.logits.argmax(dim=-1 ) metric.add_batch(predictions=SCREAMING_SNAKE_CASE , references=batch['''labels'''] ) __UpperCamelCase :Tuple = metric.compute() # Then do distributed __UpperCamelCase , __UpperCamelCase , __UpperCamelCase :Any = setup['''ddp'''] model.eval() for batch in dataloader: with torch.inference_mode(): __UpperCamelCase :Optional[Any] = model(**SCREAMING_SNAKE_CASE ) __UpperCamelCase :Union[str, Any] = outputs.logits.argmax(dim=-1 ) __UpperCamelCase :Optional[Any] = batch['''labels'''] __UpperCamelCase , __UpperCamelCase :Optional[int] = accelerator.gather_for_metrics((preds, references) ) metric.add_batch(predictions=SCREAMING_SNAKE_CASE , references=SCREAMING_SNAKE_CASE ) __UpperCamelCase :List[Any] = metric.compute() for key in "accuracy f1".split(): assert math.isclose( baseline[key] , distributed[key] ), f"""Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n""" def lowerCamelCase ( ): '''simple docstring''' __UpperCamelCase :str = Accelerator(split_batches=SCREAMING_SNAKE_CASE , dispatch_batches=SCREAMING_SNAKE_CASE ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # These are a bit slower so they should only be ran on the GPU or TPU if torch.cuda.is_available() or is_tpu_available(): if accelerator.is_local_main_process: print('''**Testing gather_for_metrics**''' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: if accelerator.is_local_main_process: print(f"""With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`""" ) test_mrpc(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('''**Test torch metrics**''' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: __UpperCamelCase :Union[str, Any] = Accelerator(split_batches=SCREAMING_SNAKE_CASE , dispatch_batches=SCREAMING_SNAKE_CASE ) if accelerator.is_local_main_process: print(f"""With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99""" ) test_torch_metrics(SCREAMING_SNAKE_CASE , 99 ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('''**Test last batch is not dropped when perfectly divisible**''' ) __UpperCamelCase :Union[str, Any] = Accelerator() test_torch_metrics(SCREAMING_SNAKE_CASE , 512 ) accelerator.state._reset_state() def lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' main() if __name__ == "__main__": main()
43
import numpy as np def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = 1e-12 , SCREAMING_SNAKE_CASE = 100 , ): '''simple docstring''' assert np.shape(SCREAMING_SNAKE_CASE )[0] == np.shape(SCREAMING_SNAKE_CASE )[1] # Ensure proper dimensionality. assert np.shape(SCREAMING_SNAKE_CASE )[0] == np.shape(SCREAMING_SNAKE_CASE )[0] # Ensure inputs are either both complex or both real assert np.iscomplexobj(SCREAMING_SNAKE_CASE ) == np.iscomplexobj(SCREAMING_SNAKE_CASE ) __UpperCamelCase :List[Any] = np.iscomplexobj(SCREAMING_SNAKE_CASE ) if is_complex: # Ensure complex input_matrix is Hermitian assert np.array_equal(SCREAMING_SNAKE_CASE , input_matrix.conj().T ) # Set convergence to False. Will define convergence when we exceed max_iterations # or when we have small changes from one iteration to next. __UpperCamelCase :str = False __UpperCamelCase :int = 0 __UpperCamelCase :Optional[Any] = 0 __UpperCamelCase :Union[str, Any] = 1e12 while not convergence: # Multiple matrix by the vector. __UpperCamelCase :List[str] = np.dot(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Normalize the resulting output vector. __UpperCamelCase :Tuple = w / np.linalg.norm(SCREAMING_SNAKE_CASE ) # Find rayleigh quotient # (faster than usual b/c we know vector is normalized already) __UpperCamelCase :int = vector.conj().T if is_complex else vector.T __UpperCamelCase :Optional[int] = np.dot(SCREAMING_SNAKE_CASE , np.dot(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) # Check convergence. __UpperCamelCase :Optional[Any] = np.abs(lambda_ - lambda_previous ) / lambda_ iterations += 1 if error <= error_tol or iterations >= max_iterations: __UpperCamelCase :Dict = True __UpperCamelCase :List[Any] = lambda_ if is_complex: __UpperCamelCase :Tuple = np.real(lambda_ ) return lambda_, vector def lowerCamelCase ( ): '''simple docstring''' __UpperCamelCase :int = np.array([[41, 4, 20], [4, 26, 30], [20, 30, 50]] ) __UpperCamelCase :Optional[Any] = np.array([41, 4, 20] ) __UpperCamelCase :Any = real_input_matrix.astype(np.complexaaa ) __UpperCamelCase :Dict = np.triu(1j * complex_input_matrix , 1 ) complex_input_matrix += imag_matrix complex_input_matrix += -1 * imag_matrix.T __UpperCamelCase :Optional[int] = np.array([41, 4, 20] ).astype(np.complexaaa ) for problem_type in ["real", "complex"]: if problem_type == "real": __UpperCamelCase :Any = real_input_matrix __UpperCamelCase :int = real_vector elif problem_type == "complex": __UpperCamelCase :Tuple = complex_input_matrix __UpperCamelCase :Optional[Any] = complex_vector # Our implementation. __UpperCamelCase , __UpperCamelCase :Dict = power_iteration(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Numpy implementation. # Get eigenvalues and eigenvectors using built-in numpy # eigh (eigh used for symmetric or hermetian matrices). __UpperCamelCase , __UpperCamelCase :List[Any] = np.linalg.eigh(SCREAMING_SNAKE_CASE ) # Last eigenvalue is the maximum one. __UpperCamelCase :List[Any] = eigen_values[-1] # Last column in this matrix is eigenvector corresponding to largest eigenvalue. __UpperCamelCase :str = eigen_vectors[:, -1] # Check our implementation and numpy gives close answers. assert np.abs(eigen_value - eigen_value_max ) <= 1e-6 # Take absolute values element wise of each eigenvector. # as they are only unique to a minus sign. assert np.linalg.norm(np.abs(SCREAMING_SNAKE_CASE ) - np.abs(SCREAMING_SNAKE_CASE ) ) <= 1e-6 if __name__ == "__main__": import doctest doctest.testmod() test_power_iteration()
43
1
import heapq import sys import numpy as np lowerCamelCase : Dict = tuple[int, int] class lowerCAmelCase : '''simple docstring''' def __init__( self : Optional[int] ) -> List[str]: """simple docstring""" __lowercase : Any = [] __lowercase : Optional[Any] = set() def lowerCAmelCase ( self : str ) -> int: """simple docstring""" if not self.empty(): return self.elements[0][0] else: return float("""inf""" ) def lowerCAmelCase ( self : List[Any] ) -> Any: """simple docstring""" return len(self.elements ) == 0 def lowerCAmelCase ( self : Any , __a : Union[str, Any] , __a : Any ) -> Dict: """simple docstring""" if item not in self.set: heapq.heappush(self.elements , (priority, item) ) self.set.add(__a ) else: # update # print("update", item) __lowercase : List[str] = [] ((__lowercase) , (__lowercase)) : str = heapq.heappop(self.elements ) while x != item: temp.append((pri, x) ) ((__lowercase) , (__lowercase)) : str = heapq.heappop(self.elements ) temp.append((priority, item) ) for pro, xxx in temp: heapq.heappush(self.elements , (pro, xxx) ) def lowerCAmelCase ( self : Tuple , __a : List[Any] ) -> int: """simple docstring""" if item in self.set: self.set.remove(__a ) __lowercase : List[str] = [] ((__lowercase) , (__lowercase)) : Optional[Any] = heapq.heappop(self.elements ) while x != item: temp.append((pro, x) ) ((__lowercase) , (__lowercase)) : Optional[int] = heapq.heappop(self.elements ) for prito, yyy in temp: heapq.heappush(self.elements , (prito, yyy) ) def lowerCAmelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" return self.elements[0][1] def lowerCAmelCase ( self : Optional[Any] ) -> int: """simple docstring""" ((__lowercase) , (__lowercase)) : Union[str, Any] = heapq.heappop(self.elements ) self.set.remove(__a ) return (priority, item) def snake_case_ ( lowerCAmelCase_ : TPos , lowerCAmelCase_ : TPos ): # euclidean distance __lowercase : Union[str, Any] = np.array(lowerCAmelCase_ ) __lowercase : int = np.array(lowerCAmelCase_ ) return np.linalg.norm(a - b ) def snake_case_ ( lowerCAmelCase_ : TPos , lowerCAmelCase_ : TPos ): # integer division by time variable return consistent_heuristic(lowerCAmelCase_ , lowerCAmelCase_ ) // t def snake_case_ ( lowerCAmelCase_ : TPos , lowerCAmelCase_ : TPos ): # manhattan distance return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] ) def snake_case_ ( lowerCAmelCase_ : TPos , lowerCAmelCase_ : int , lowerCAmelCase_ : TPos , lowerCAmelCase_ : dict[TPos, float] ): __lowercase : Optional[Any] = g_function[start] + Wa * heuristics[i](lowerCAmelCase_ , lowerCAmelCase_ ) return ans def snake_case_ ( lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[Any] ): __lowercase : Optional[int] = np.chararray((n, n) ) for i in range(lowerCAmelCase_ ): for j in range(lowerCAmelCase_ ): __lowercase : Union[str, Any] = """*""" for i in range(lowerCAmelCase_ ): for j in range(lowerCAmelCase_ ): if (j, (n - 1) - i) in blocks: __lowercase : Tuple = """#""" __lowercase : int = """-""" __lowercase : List[str] = back_pointer[goal] while x != start: ((__lowercase) , (__lowercase)) : Optional[Any] = x # print(x) __lowercase : Union[str, Any] = """-""" __lowercase : int = back_pointer[x] __lowercase : List[str] = """-""" for i in range(lowerCAmelCase_ ): for j in range(lowerCAmelCase_ ): if (i, j) == (0, n - 1): print(grid[i][j] , end=""" """ ) print("""<-- End position""" , end=""" """ ) else: print(grid[i][j] , end=""" """ ) print() print("""^""" ) print("""Start position""" ) print() print("""# is an obstacle""" ) print("""- is the path taken by algorithm""" ) print("""PATH TAKEN BY THE ALGORITHM IS:-""" ) __lowercase : List[str] = back_pointer[goal] while x != start: print(lowerCAmelCase_ , end=""" """ ) __lowercase : Any = back_pointer[x] print(lowerCAmelCase_ ) sys.exit() def snake_case_ ( lowerCAmelCase_ : TPos ): if p[0] < 0 or p[0] > n - 1: return False if p[1] < 0 or p[1] > n - 1: return False return True def snake_case_ ( lowerCAmelCase_ : Dict , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Optional[Any] , ): for itera in range(lowerCAmelCase_ ): open_list[itera].remove_element(lowerCAmelCase_ ) # print("s", s) # print("j", j) ((__lowercase) , (__lowercase)) : Any = s __lowercase : List[str] = (x - 1, y) __lowercase : Dict = (x + 1, y) __lowercase : Optional[Any] = (x, y + 1) __lowercase : Optional[int] = (x, y - 1) for neighbours in [left, right, up, down]: if neighbours not in blocks: if valid(lowerCAmelCase_ ) and neighbours not in visited: # print("neighbour", neighbours) visited.add(lowerCAmelCase_ ) __lowercase : Optional[Any] = -1 __lowercase : Dict = float("""inf""" ) if valid(lowerCAmelCase_ ) and g_function[neighbours] > g_function[s] + 1: __lowercase : Dict = g_function[s] + 1 __lowercase : Dict = s if neighbours not in close_list_anchor: open_list[0].put(lowerCAmelCase_ , key(lowerCAmelCase_ , 0 , lowerCAmelCase_ , lowerCAmelCase_ ) ) if neighbours not in close_list_inad: for var in range(1 , lowerCAmelCase_ ): if key(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) <= Wa * key( lowerCAmelCase_ , 0 , lowerCAmelCase_ , lowerCAmelCase_ ): open_list[j].put( lowerCAmelCase_ , key(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) ) def snake_case_ ( ): __lowercase : Tuple = [] for x in range(1 , 5 ): for y in range(1 , 6 ): some_list.append((x, y) ) for x in range(15 , 20 ): some_list.append((x, 17) ) for x in range(10 , 19 ): for y in range(1 , 15 ): some_list.append((x, y) ) # L block for x in range(1 , 4 ): for y in range(12 , 19 ): some_list.append((x, y) ) for x in range(3 , 13 ): for y in range(16 , 19 ): some_list.append((x, y) ) return some_list lowerCamelCase : int = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a} lowerCamelCase : Optional[int] = [ (0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1), (10, 1), (11, 1), (12, 1), (13, 1), (14, 1), (15, 1), (16, 1), (17, 1), (18, 1), (19, 1), ] lowerCamelCase : int = make_common_ground() lowerCamelCase : List[str] = blocks_blk # hyper parameters lowerCamelCase : List[str] = 1 lowerCamelCase : Dict = 1 lowerCamelCase : Any = 20 lowerCamelCase : Union[str, Any] = 3 # one consistent and two other inconsistent # start and end destination lowerCamelCase : Tuple = (0, 0) lowerCamelCase : str = (n - 1, n - 1) lowerCamelCase : List[str] = 1 def snake_case_ ( lowerCAmelCase_ : TPos , lowerCAmelCase_ : TPos , lowerCAmelCase_ : int ): __lowercase : Any = {start: 0, goal: float("""inf""" )} __lowercase : List[Any] = {start: -1, goal: -1} __lowercase : Tuple = [] __lowercase : Dict = set() for i in range(lowerCAmelCase_ ): open_list.append(PriorityQueue() ) open_list[i].put(lowerCAmelCase_ , key(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) ) __lowercase : list[int] = [] __lowercase : list[int] = [] while open_list[0].minkey() < float("""inf""" ): for i in range(1 , lowerCAmelCase_ ): # print(open_list[0].minkey(), open_list[i].minkey()) if open_list[i].minkey() <= Wa * open_list[0].minkey(): global t t += 1 if g_function[goal] <= open_list[i].minkey(): if g_function[goal] < float("""inf""" ): do_something(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) else: __lowercase , __lowercase : Tuple = open_list[i].top_show() visited.add(lowerCAmelCase_ ) expand_state( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , ) close_list_inad.append(lowerCAmelCase_ ) else: if g_function[goal] <= open_list[0].minkey(): if g_function[goal] < float("""inf""" ): do_something(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) else: __lowercase : List[str] = open_list[0].top_show() visited.add(lowerCAmelCase_ ) expand_state( lowerCAmelCase_ , 0 , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , ) close_list_anchor.append(lowerCAmelCase_ ) print("""No path found to goal""" ) print() for i in range(n - 1 , -1 , -1 ): for j in range(lowerCAmelCase_ ): if (j, i) in blocks: print("""#""" , end=""" """ ) elif (j, i) in back_pointer: if (j, i) == (n - 1, n - 1): print("""*""" , end=""" """ ) else: print("""-""" , end=""" """ ) else: print("""*""" , end=""" """ ) if (j, i) == (n - 1, n - 1): print("""<-- End position""" , end=""" """ ) print() print("""^""" ) print("""Start position""" ) print() print("""# is an obstacle""" ) print("""- is the path taken by algorithm""" ) if __name__ == "__main__": multi_a_star(start, goal, n_heuristic)
306
import argparse from torch import nn # transformers_old should correspond to branch `save_old_prophetnet_model_structure` here # original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively from transformers_old.modeling_prophetnet import ( ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld, ) from transformers_old.modeling_xlm_prophetnet import ( XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld, ) from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging lowerCamelCase : Tuple = logging.get_logger(__name__) logging.set_verbosity_info() def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : str ): if "xprophetnet" in prophetnet_checkpoint_path: __lowercase : List[str] = XLMProphetNetForConditionalGenerationOld.from_pretrained(lowerCAmelCase_ ) __lowercase , __lowercase : int = XLMProphetNetForConditionalGeneration.from_pretrained( lowerCAmelCase_ , output_loading_info=lowerCAmelCase_ ) else: __lowercase : List[Any] = ProphetNetForConditionalGenerationOld.from_pretrained(lowerCAmelCase_ ) __lowercase , __lowercase : Optional[Any] = ProphetNetForConditionalGeneration.from_pretrained( lowerCAmelCase_ , output_loading_info=lowerCAmelCase_ ) __lowercase : List[str] = ["""key_proj""", """value_proj""", """query_proj"""] __lowercase : Optional[int] = { """self_attn""": """ngram_self_attn""", """cross_attn""": """encoder_attn""", """cross_attn_layer_norm""": """encoder_attn_layer_norm""", """feed_forward_layer_norm""": """final_layer_norm""", """feed_forward""": """""", """intermediate""": """fc1""", """output""": """fc2""", """key_proj""": """k_proj""", """query_proj""": """q_proj""", """value_proj""": """v_proj""", """word_embeddings""": """embed_tokens""", """embeddings_layer_norm""": """emb_layer_norm""", """relative_pos_embeddings""": """relative_linear""", """ngram_embeddings""": """ngram_input_embed""", """position_embeddings""": """embed_positions""", } for key in loading_info["missing_keys"]: __lowercase : Tuple = key.split(""".""" ) if attributes[0] == "lm_head": __lowercase : str = prophet __lowercase : List[str] = prophet_old else: __lowercase : Tuple = prophet.prophetnet __lowercase : Union[str, Any] = prophet_old.model __lowercase : Optional[Any] = False for attribute in attributes: if attribute in mapping: __lowercase : Optional[int] = mapping[attribute] if not hasattr(lowerCAmelCase_ , lowerCAmelCase_ ) and len(lowerCAmelCase_ ) > 0: __lowercase : str = attribute elif hasattr(lowerCAmelCase_ , lowerCAmelCase_ ): __lowercase : List[Any] = attribute if attribute == "weight": assert old_model.weight.shape == model.weight.shape, "Shapes have to match!" __lowercase : Any = old_model.weight logger.info(F"{attribute} is initialized." ) __lowercase : Any = True break elif attribute == "bias": assert old_model.bias.shape == model.bias.shape, "Shapes have to match!" __lowercase : Dict = old_model.bias logger.info(F"{attribute} is initialized" ) __lowercase : int = True break elif attribute in special_keys and hasattr(lowerCAmelCase_ , """in_proj_weight""" ): __lowercase : Dict = old_model.in_proj_weight.shape[0] // 3 __lowercase : Tuple = getattr(lowerCAmelCase_ , lowerCAmelCase_ ) param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match" param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match" if attribute == "query_proj": __lowercase : Union[str, Any] = nn.Parameter(old_model.in_proj_weight[:embed_dim, :] ) __lowercase : int = nn.Parameter(old_model.in_proj_bias[:embed_dim] ) elif attribute == "key_proj": __lowercase : Any = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] ) __lowercase : List[Any] = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] ) elif attribute == "value_proj": __lowercase : Tuple = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] ) __lowercase : int = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] ) __lowercase : int = True break elif attribute == "position_embeddings": assert ( model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1] ), "Hidden size has to match" assert model.position_embeddings.weight.shape[0] == 512, "We want 512 position_embeddings." __lowercase : Optional[Any] = nn.Parameter(old_model.embed_positions.weight[:512, :] ) __lowercase : int = True break if attribute.isdigit(): __lowercase : Tuple = model[int(lowerCAmelCase_ )] __lowercase : int = old_model[int(lowerCAmelCase_ )] else: __lowercase : Union[str, Any] = getattr(lowerCAmelCase_ , lowerCAmelCase_ ) if old_attribute == "": __lowercase : int = old_model else: if not hasattr(lowerCAmelCase_ , lowerCAmelCase_ ): raise ValueError(F"{old_model} does not have {old_attribute}" ) __lowercase : List[Any] = getattr(lowerCAmelCase_ , lowerCAmelCase_ ) if not is_key_init: raise ValueError(F"{key} was not correctly initialized!" ) print(F"Saving model to {pytorch_dump_folder_path}" ) prophet.save_pretrained(lowerCAmelCase_ ) if __name__ == "__main__": lowerCamelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--prophetnet_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) lowerCamelCase : Any = parser.parse_args() convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
306
1
"""simple docstring""" from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup lowerCamelCase_ : Tuple = 'https://www.indeed.co.in/jobs?q=mobile+app+development&l=' def UpperCAmelCase__ ( _UpperCAmelCase = "mumbai" ): """simple docstring""" A_ : str = BeautifulSoup(requests.get(url + location ).content , 'html.parser' ) # This attribute finds out all the specifics listed in a job for job in soup.find_all('div' , attrs={'data-tn-component': 'organicJob'} ): A_ : List[str] = job.find('a' , attrs={'data-tn-element': 'jobTitle'} ).text.strip() A_ : Optional[Any] = job.find('span' , {'class': 'company'} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs('Bangalore'), 1): print(F"Job {i:>2} is {job[0]} at {job[1]}")
286
"""simple docstring""" from arguments import InitializationArguments from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, HfArgumentParser # Configuration lowerCamelCase_ : Any = HfArgumentParser(InitializationArguments) lowerCamelCase_ : Union[str, Any] = parser.parse_args() # Load codeparrot tokenizer trained for Python code tokenization lowerCamelCase_ : List[Any] = AutoTokenizer.from_pretrained(args.tokenizer_name) # Config: "scale_attn_by_layer_idx" and "reorder_and_upcast_attn" are Mistral stability tweaks lowerCamelCase_ : Tuple = { 'vocab_size': len(tokenizer), 'scale_attn_by_inverse_layer_idx': True, 'reorder_and_upcast_attn': True, } # Load model config (GPT-2 large in this case) lowerCamelCase_ : int = AutoConfig.from_pretrained(args.config_name, **config_kwargs) # Initialize new model with config lowerCamelCase_ : Any = AutoModelForCausalLM.from_config(config) # Save model to the hub model.save_pretrained(args.model_name, push_to_hub=args.push_to_hub)
286
1
"""simple docstring""" import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def a__ ( __SCREAMING_SNAKE_CASE ) -> Optional[int]: __lowerCAmelCase: Optional[int] = FileLock(str(tmpdir / "foo.lock" ) ) __lowerCAmelCase: str = FileLock(str(tmpdir / "foo.lock" ) ) __lowerCAmelCase: Tuple = 0.01 with locka.acquire(): with pytest.raises(snake_case_ ): __lowerCAmelCase: int = time.time() locka.acquire(snake_case_ ) assert time.time() - _start > timeout def a__ ( __SCREAMING_SNAKE_CASE ) -> Optional[int]: __lowerCAmelCase: List[str] = "a" * 1_0_0_0 + ".lock" __lowerCAmelCase: List[Any] = FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith(".lock" ) assert not locka._lock_file.endswith(snake_case_ ) assert len(os.path.basename(locka._lock_file ) ) <= 2_5_5 __lowerCAmelCase: Optional[Any] = FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(snake_case_ ): locka.acquire(0 )
368
"""simple docstring""" import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING __A = logging.get_logger(__name__) __A = { "salesforce/blip2-opt-2.7b": "https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json", } class snake_case ( __snake_case ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = """blip_2_vision_model""" def __init__( self : Optional[int] , UpperCamelCase__ : Optional[int]=1_4_0_8 , UpperCamelCase__ : Tuple=6_1_4_4 , UpperCamelCase__ : Tuple=3_9 , UpperCamelCase__ : str=1_6 , UpperCamelCase__ : Optional[Any]=2_2_4 , UpperCamelCase__ : List[str]=1_4 , UpperCamelCase__ : Optional[int]="gelu" , UpperCamelCase__ : Optional[int]=0.00001 , UpperCamelCase__ : Tuple=0.0 , UpperCamelCase__ : Dict=1e-10 , UpperCamelCase__ : List[str]=True , **UpperCamelCase__ : List[str] , )-> int: '''simple docstring''' super().__init__(**UpperCamelCase__) __lowerCAmelCase: List[str] = hidden_size __lowerCAmelCase: Tuple = intermediate_size __lowerCAmelCase: str = num_hidden_layers __lowerCAmelCase: Any = num_attention_heads __lowerCAmelCase: Any = patch_size __lowerCAmelCase: Tuple = image_size __lowerCAmelCase: str = initializer_range __lowerCAmelCase: List[str] = attention_dropout __lowerCAmelCase: List[Any] = layer_norm_eps __lowerCAmelCase: Any = hidden_act __lowerCAmelCase: int = qkv_bias @classmethod def lowercase_ ( cls : List[str] , UpperCamelCase__ : Union[str, os.PathLike] , **UpperCamelCase__ : List[str])-> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(UpperCamelCase__) __lowerCAmelCase , __lowerCAmelCase: List[str] = cls.get_config_dict(UpperCamelCase__ , **UpperCamelCase__) # get the vision config dict if we are loading from Blip2Config if config_dict.get("model_type") == "blip-2": __lowerCAmelCase: Tuple = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type") and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors.") return cls.from_dict(UpperCamelCase__ , **UpperCamelCase__) class snake_case ( __snake_case ): SCREAMING_SNAKE_CASE_ : List[str] = """blip_2_qformer""" def __init__( self : Optional[int] , UpperCamelCase__ : Dict=3_0_5_2_2 , UpperCamelCase__ : Union[str, Any]=7_6_8 , UpperCamelCase__ : Union[str, Any]=1_2 , UpperCamelCase__ : Union[str, Any]=1_2 , UpperCamelCase__ : Optional[int]=3_0_7_2 , UpperCamelCase__ : Optional[Any]="gelu" , UpperCamelCase__ : Tuple=0.1 , UpperCamelCase__ : Optional[Any]=0.1 , UpperCamelCase__ : List[str]=5_1_2 , UpperCamelCase__ : List[Any]=0.02 , UpperCamelCase__ : Dict=1e-12 , UpperCamelCase__ : List[str]=0 , UpperCamelCase__ : Optional[int]="absolute" , UpperCamelCase__ : List[Any]=2 , UpperCamelCase__ : Optional[Any]=1_4_0_8 , **UpperCamelCase__ : List[str] , )-> str: '''simple docstring''' super().__init__(pad_token_id=UpperCamelCase__ , **UpperCamelCase__) __lowerCAmelCase: Tuple = vocab_size __lowerCAmelCase: str = hidden_size __lowerCAmelCase: Dict = num_hidden_layers __lowerCAmelCase: List[Any] = num_attention_heads __lowerCAmelCase: List[Any] = hidden_act __lowerCAmelCase: Optional[int] = intermediate_size __lowerCAmelCase: str = hidden_dropout_prob __lowerCAmelCase: Optional[int] = attention_probs_dropout_prob __lowerCAmelCase: Optional[int] = max_position_embeddings __lowerCAmelCase: int = initializer_range __lowerCAmelCase: List[str] = layer_norm_eps __lowerCAmelCase: Optional[Any] = position_embedding_type __lowerCAmelCase: Dict = cross_attention_frequency __lowerCAmelCase: List[Any] = encoder_hidden_size @classmethod def lowercase_ ( cls : int , UpperCamelCase__ : Union[str, os.PathLike] , **UpperCamelCase__ : Tuple)-> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(UpperCamelCase__) __lowerCAmelCase , __lowerCAmelCase: Optional[int] = cls.get_config_dict(UpperCamelCase__ , **UpperCamelCase__) # get the qformer config dict if we are loading from Blip2Config if config_dict.get("model_type") == "blip-2": __lowerCAmelCase: Any = config_dict["qformer_config"] if "model_type" in config_dict and hasattr(cls , "model_type") and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors.") return cls.from_dict(UpperCamelCase__ , **UpperCamelCase__) class snake_case ( __snake_case ): SCREAMING_SNAKE_CASE_ : Dict = """blip-2""" SCREAMING_SNAKE_CASE_ : str = True def __init__( self : List[Any] , UpperCamelCase__ : Tuple=None , UpperCamelCase__ : Dict=None , UpperCamelCase__ : Optional[int]=None , UpperCamelCase__ : Union[str, Any]=3_2 , **UpperCamelCase__ : Dict)-> List[Any]: '''simple docstring''' super().__init__(**UpperCamelCase__) if vision_config is None: __lowerCAmelCase: Dict = {} logger.info("vision_config is None. initializing the Blip2VisionConfig with default values.") if qformer_config is None: __lowerCAmelCase: Union[str, Any] = {} logger.info("qformer_config is None. Initializing the Blip2QFormerConfig with default values.") if text_config is None: __lowerCAmelCase: Dict = {} logger.info("text_config is None. Initializing the text config with default values (`OPTConfig`).") __lowerCAmelCase: List[str] = BlipaVisionConfig(**UpperCamelCase__) __lowerCAmelCase: str = BlipaQFormerConfig(**UpperCamelCase__) __lowerCAmelCase: Optional[int] = text_config["model_type"] if "model_type" in text_config else "opt" __lowerCAmelCase: Optional[int] = CONFIG_MAPPING[text_model_type](**UpperCamelCase__) __lowerCAmelCase: List[Any] = self.text_config.tie_word_embeddings __lowerCAmelCase: List[Any] = self.text_config.is_encoder_decoder __lowerCAmelCase: int = num_query_tokens __lowerCAmelCase: Union[str, Any] = self.vision_config.hidden_size __lowerCAmelCase: Any = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES __lowerCAmelCase: Dict = 1.0 __lowerCAmelCase: Dict = 0.02 @classmethod def lowercase_ ( cls : str , UpperCamelCase__ : BlipaVisionConfig , UpperCamelCase__ : BlipaQFormerConfig , UpperCamelCase__ : PretrainedConfig , **UpperCamelCase__ : Union[str, Any] , )-> Tuple: '''simple docstring''' return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **UpperCamelCase__ , ) def lowercase_ ( self : Any)-> List[str]: '''simple docstring''' __lowerCAmelCase: str = copy.deepcopy(self.__dict__) __lowerCAmelCase: Optional[int] = self.vision_config.to_dict() __lowerCAmelCase: List[Any] = self.qformer_config.to_dict() __lowerCAmelCase: str = self.text_config.to_dict() __lowerCAmelCase: Tuple = self.__class__.model_type return output
108
0
'''simple docstring''' import collections import json import math import os import re import time from fnmatch import fnmatch from typing import Dict import requests from slack_sdk import WebClient __a = WebClient(token=os.environ["CI_SLACK_BOT_TOKEN"]) def __snake_case( _lowerCAmelCase ) -> Optional[Any]: snake_case__ : List[Any] = test_results.split(""" """ ) snake_case__ : Tuple = 0 snake_case__ : Any = 0 # When the output is short enough, the output is surrounded by = signs: "== OUTPUT ==" # When it is too long, those signs are not present. snake_case__ : Any = expressions[-2] if '=' in expressions[-1] else expressions[-1] for i, expression in enumerate(lowerCAmelCase__ ): if "failed" in expression: failed += int(expressions[i - 1] ) if "passed" in expression: success += int(expressions[i - 1] ) return failed, success, time_spent def __snake_case( _lowerCAmelCase ) -> str: snake_case__ : Optional[Any] = {} snake_case__ : List[str] = None snake_case__ : List[str] = False for line in failures_short_lines.split("""\n""" ): if re.search(r"""_ \[doctest\]""" , lowerCAmelCase__ ): snake_case__ : Optional[Any] = True snake_case__ : Union[str, Any] = line.split(""" """ )[2] elif in_error and not line.split(""" """ )[0].isdigit(): snake_case__ : Union[str, Any] = line snake_case__ : int = False return failures class UpperCAmelCase_ : """simple docstring""" def __init__( self : Optional[Any] , snake_case_ : str , snake_case_ : Dict ): snake_case__ : str = title snake_case__ : Optional[int] = doc_test_results['time_spent'].split(""",""" )[0] snake_case__ : int = doc_test_results['success'] snake_case__ : Dict = doc_test_results['failures'] snake_case__ : Optional[int] = self.n_success + self.n_failures # Failures and success of the modeling tests snake_case__ : Any = doc_test_results @property def lowerCamelCase ( self : List[str] ): snake_case__ : int = [self._time_spent] snake_case__ : Any = 0 for time in time_spent: snake_case__ : Optional[Any] = time.split(""":""" ) # Time can be formatted as xx:xx:xx, as .xx, or as x.xx if the time spent was less than a minute. if len(SCREAMING_SNAKE_CASE_ ) == 1: snake_case__ : Any = [0, 0, time_parts[0]] snake_case__ : List[str] = int(time_parts[0] ), int(time_parts[1] ), float(time_parts[2] ) total_secs += hours * 3_600 + minutes * 60 + seconds snake_case__ : Union[str, Any] = total_secs // 3_600, (total_secs % 3_600) // 60, total_secs % 60 return f"{int(SCREAMING_SNAKE_CASE_ )}h{int(SCREAMING_SNAKE_CASE_ )}m{int(SCREAMING_SNAKE_CASE_ )}s" @property def lowerCamelCase ( self : int ): return {"type": "header", "text": {"type": "plain_text", "text": self.title}} @property def lowerCamelCase ( self : str ): return { "type": "section", "text": { "type": "plain_text", "text": f"🌞 There were no failures: all {self.n_tests} tests passed. The suite ran in {self.time}.", "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": f"https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}", }, } @property def lowerCamelCase ( self : List[Any] ): return { "type": "section", "text": { "type": "plain_text", "text": ( f"There were {self.n_failures} failures, out of {self.n_tests} tests.\nThe suite ran in" f" {self.time}." ), "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": f"https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}", }, } @property def lowerCamelCase ( self : Tuple ): snake_case__ : int = 40 snake_case__ : List[Any] = {k: v['failed'] for k, v in doc_test_results.items() if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )} snake_case__ : List[str] = '' for category, failures in category_failures.items(): if len(SCREAMING_SNAKE_CASE_ ) == 0: continue if report != "": report += "\n\n" report += f"*{category} failures*:".ljust(line_length // 2 ).rjust(line_length // 2 ) + "\n" report += "`" report += "`\n`".join(SCREAMING_SNAKE_CASE_ ) report += "`" return { "type": "section", "text": { "type": "mrkdwn", "text": f"The following examples had failures:\n\n\n{report}\n", }, } @property def lowerCamelCase ( self : int ): snake_case__ : int = [self.header] if self.n_failures > 0: blocks.append(self.failures ) if self.n_failures > 0: blocks.extend([self.category_failures] ) if self.n_failures == 0: blocks.append(self.no_failures ) return json.dumps(SCREAMING_SNAKE_CASE_ ) @staticmethod def lowerCamelCase ( ): snake_case__ : Tuple = [ { 'type': 'section', 'text': { 'type': 'plain_text', 'text': 'There was an issue running the tests.', }, 'accessory': { 'type': 'button', 'text': {'type': 'plain_text', 'text': 'Check Action results', 'emoji': True}, 'url': f"https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}", }, } ] print("""Sending the following payload""" ) print(json.dumps({"""blocks""": json.loads(SCREAMING_SNAKE_CASE_ )} ) ) client.chat_postMessage( channel=os.environ["""CI_SLACK_CHANNEL_ID_DAILY"""] , text="""There was an issue running the tests.""" , blocks=SCREAMING_SNAKE_CASE_ , ) def lowerCamelCase ( self : Union[str, Any] ): print("""Sending the following payload""" ) print(json.dumps({"""blocks""": json.loads(self.payload )} ) ) snake_case__ : Any = f"{self.n_failures} failures out of {self.n_tests} tests," if self.n_failures else 'All tests passed.' snake_case__ : str = client.chat_postMessage( channel=os.environ["""CI_SLACK_CHANNEL_ID_DAILY"""] , blocks=self.payload , text=SCREAMING_SNAKE_CASE_ , ) def lowerCamelCase ( self : str , snake_case_ : int , snake_case_ : Any , snake_case_ : Any , snake_case_ : Dict ): snake_case__ : List[Any] = '' for key, value in failures.items(): snake_case__ : List[Any] = value[:200] + ' [Truncated]' if len(SCREAMING_SNAKE_CASE_ ) > 250 else value failures_text += f"*{key}*\n_{value}_\n\n" snake_case__ : int = job_name snake_case__ : Dict = {'type': 'section', 'text': {'type': 'mrkdwn', 'text': text}} if job_link is not None: snake_case__ : str = { 'type': 'button', 'text': {'type': 'plain_text', 'text': 'GitHub Action job', 'emoji': True}, 'url': job_link, } return [ {"type": "header", "text": {"type": "plain_text", "text": title.upper(), "emoji": True}}, content, {"type": "section", "text": {"type": "mrkdwn", "text": failures_text}}, ] def lowerCamelCase ( self : Union[str, Any] ): if self.thread_ts is None: raise ValueError("""Can only post reply if a post has been made.""" ) snake_case__ : Dict = self.doc_test_results.pop("""job_link""" ) self.doc_test_results.pop("""failures""" ) self.doc_test_results.pop("""success""" ) self.doc_test_results.pop("""time_spent""" ) snake_case__ : Dict = sorted(self.doc_test_results.items() , key=lambda snake_case_ : t[0] ) for job, job_result in sorted_dict: if len(job_result["""failures"""] ): snake_case__ : Tuple = f"*Num failures* :{len(job_result['failed'] )} \n" snake_case__ : List[str] = job_result['failures'] snake_case__ : Union[str, Any] = self.get_reply_blocks(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , text=SCREAMING_SNAKE_CASE_ ) print("""Sending the following reply""" ) print(json.dumps({"""blocks""": blocks} ) ) client.chat_postMessage( channel=os.environ["""CI_SLACK_CHANNEL_ID_DAILY"""] , text=f"Results for {job}" , blocks=SCREAMING_SNAKE_CASE_ , thread_ts=self.thread_ts["""ts"""] , ) time.sleep(1 ) def __snake_case( ) -> str: snake_case__ : Union[str, Any] = os.environ['GITHUB_RUN_ID'] snake_case__ : int = f"https://api.github.com/repos/huggingface/transformers/actions/runs/{run_id}/jobs?per_page=100" snake_case__ : str = requests.get(lowerCAmelCase__ ).json() snake_case__ : List[str] = {} try: jobs.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} ) snake_case__ : Optional[Any] = math.ceil((result["""total_count"""] - 100) / 100 ) for i in range(lowerCAmelCase__ ): snake_case__ : int = requests.get(url + f"&page={i + 2}" ).json() jobs.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} ) return jobs except Exception as e: print("""Unknown error, could not fetch links.""" , lowerCAmelCase__ ) return {} def __snake_case( _lowerCAmelCase ) -> List[Any]: snake_case__ : int = {} if os.path.exists(lowerCAmelCase__ ): snake_case__ : Tuple = os.listdir(lowerCAmelCase__ ) for file in files: try: with open(os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) , encoding="""utf-8""" ) as f: snake_case__ : List[str] = f.read() except UnicodeDecodeError as e: raise ValueError(f"Could not open {os.path.join(lowerCAmelCase__ , lowerCAmelCase__ )}." ) from e return _artifact def __snake_case( ) -> Dict: class UpperCAmelCase_ : """simple docstring""" def __init__( self : Dict , snake_case_ : str ): snake_case__ : List[Any] = name snake_case__ : Tuple = [] def __str__( self : Optional[Any] ): return self.name def lowerCamelCase ( self : List[Any] , snake_case_ : str ): self.paths.append({"""name""": self.name, """path""": path} ) snake_case__ : Dict[str, Artifact] = {} snake_case__ : Any = filter(os.path.isdir , os.listdir() ) for directory in directories: snake_case__ : int = directory if artifact_name not in _available_artifacts: snake_case__ : Optional[Any] = Artifact(lowerCAmelCase__ ) _available_artifacts[artifact_name].add_path(lowerCAmelCase__ ) return _available_artifacts if __name__ == "__main__": __a = get_job_links() __a = retrieve_available_artifacts() __a = collections.OrderedDict( [ ("*.py", "API Examples"), ("*.md", "MD Examples"), ] ) # This dict will contain all the information relative to each doc test category: # - failed: list of failed tests # - failures: dict in the format 'test': 'error_message' __a = { v: { """failed""": [], """failures""": {}, } for v in docs.values() } # Link to the GitHub Action job __a = github_actions_job_links.get("run_doctests") __a = available_artifacts["""doc_tests_gpu_test_reports"""].paths[0] __a = retrieve_artifact(artifact_path["name"]) if "stats" in artifact: __a = handle_test_results(artifact["stats"]) __a = failed __a = success __a = time_spent[1:-1] + """, """ __a = extract_first_line_failure(artifact["failures_short"]) for line in artifact["summary_short"].split("\n"): if re.search("FAILED", line): __a = line.replace("FAILED ", "") __a = line.split()[0].replace("\n", "") if "::" in line: __a = line.split("::") else: __a = line, line for file_regex in docs.keys(): if fnmatch(file_path, file_regex): __a = docs[file_regex] doc_test_results[category]["failed"].append(test) __a = all_failures[test] if test in all_failures else """N/A""" __a = failure break __a = Message("🤗 Results of the doc tests.", doc_test_results) message.post() message.post_reply()
35
"""simple docstring""" import math from enum import Enum from typing import Optional, Union from torch.optim import Optimizer from torch.optim.lr_scheduler import LambdaLR from .utils import logging lowercase__ : Optional[Any] = logging.get_logger(__name__) class UpperCamelCase__ ( lowercase_ ): """simple docstring""" _SCREAMING_SNAKE_CASE = """linear""" _SCREAMING_SNAKE_CASE = """cosine""" _SCREAMING_SNAKE_CASE = """cosine_with_restarts""" _SCREAMING_SNAKE_CASE = """polynomial""" _SCREAMING_SNAKE_CASE = """constant""" _SCREAMING_SNAKE_CASE = """constant_with_warmup""" _SCREAMING_SNAKE_CASE = """piecewise_constant""" def UpperCamelCase_ ( lowerCAmelCase__ : Optimizer , lowerCAmelCase__ : int = -1 ) -> Tuple: """simple docstring""" return LambdaLR(lowerCAmelCase__ , lambda lowerCAmelCase__ : 1 , last_epoch=lowerCAmelCase__ ) def UpperCamelCase_ ( lowerCAmelCase__ : Optimizer , lowerCAmelCase__ : int , lowerCAmelCase__ : int = -1 ) -> str: """simple docstring""" def lr_lambda(lowerCAmelCase__ : int ): if current_step < num_warmup_steps: return float(lowerCAmelCase__ ) / float(max(1.0 , lowerCAmelCase__ ) ) return 1.0 return LambdaLR(lowerCAmelCase__ , lowerCAmelCase__ , last_epoch=lowerCAmelCase__ ) def UpperCamelCase_ ( lowerCAmelCase__ : Optimizer , lowerCAmelCase__ : str , lowerCAmelCase__ : int = -1 ) -> int: """simple docstring""" lowerCAmelCase_ : str = {} lowerCAmelCase_ : Optional[Any] = step_rules.split(',' ) for rule_str in rule_list[:-1]: lowerCAmelCase_ ,lowerCAmelCase_ : Optional[int] = rule_str.split(':' ) lowerCAmelCase_ : List[str] = int(lowerCAmelCase__ ) lowerCAmelCase_ : Optional[int] = float(lowerCAmelCase__ ) lowerCAmelCase_ : Optional[Any] = value lowerCAmelCase_ : str = float(rule_list[-1] ) def create_rules_function(lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : int ): def rule_func(lowerCAmelCase__ : int ) -> float: lowerCAmelCase_ : str = sorted(rules_dict.keys() ) for i, sorted_step in enumerate(lowerCAmelCase__ ): if steps < sorted_step: return rules_dict[sorted_steps[i]] return last_lr_multiple return rule_func lowerCAmelCase_ : Dict = create_rules_function(lowerCAmelCase__ , lowerCAmelCase__ ) return LambdaLR(lowerCAmelCase__ , lowerCAmelCase__ , last_epoch=lowerCAmelCase__ ) def UpperCamelCase_ ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Union[str, Any]=-1 ) -> Any: """simple docstring""" def lr_lambda(lowerCAmelCase__ : int ): if current_step < num_warmup_steps: return float(lowerCAmelCase__ ) / float(max(1 , lowerCAmelCase__ ) ) return max( 0.0 , float(num_training_steps - current_step ) / float(max(1 , num_training_steps - num_warmup_steps ) ) ) return LambdaLR(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def UpperCamelCase_ ( lowerCAmelCase__ : Optimizer , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : float = 0.5 , lowerCAmelCase__ : int = -1 ) -> Union[str, Any]: """simple docstring""" def lr_lambda(lowerCAmelCase__ : Any ): if current_step < num_warmup_steps: return float(lowerCAmelCase__ ) / float(max(1 , lowerCAmelCase__ ) ) lowerCAmelCase_ : List[Any] = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * float(lowerCAmelCase__ ) * 2.0 * progress )) ) return LambdaLR(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def UpperCamelCase_ ( lowerCAmelCase__ : Optimizer , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int = 1 , lowerCAmelCase__ : int = -1 ) -> int: """simple docstring""" def lr_lambda(lowerCAmelCase__ : str ): if current_step < num_warmup_steps: return float(lowerCAmelCase__ ) / float(max(1 , lowerCAmelCase__ ) ) lowerCAmelCase_ : Dict = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) if progress >= 1.0: return 0.0 return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * ((float(lowerCAmelCase__ ) * progress) % 1.0) )) ) return LambdaLR(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def UpperCamelCase_ ( lowerCAmelCase__ : str , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Tuple=1e-7 , lowerCAmelCase__ : Union[str, Any]=1.0 , lowerCAmelCase__ : int=-1 ) -> Optional[Any]: """simple docstring""" lowerCAmelCase_ : Any = optimizer.defaults['lr'] if not (lr_init > lr_end): raise ValueError(f"lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})" ) def lr_lambda(lowerCAmelCase__ : int ): if current_step < num_warmup_steps: return float(lowerCAmelCase__ ) / float(max(1 , lowerCAmelCase__ ) ) elif current_step > num_training_steps: return lr_end / lr_init # as LambdaLR multiplies by lr_init else: lowerCAmelCase_ : Any = lr_init - lr_end lowerCAmelCase_ : int = num_training_steps - num_warmup_steps lowerCAmelCase_ : Dict = 1 - (current_step - num_warmup_steps) / decay_steps lowerCAmelCase_ : Dict = lr_range * pct_remaining**power + lr_end return decay / lr_init # as LambdaLR multiplies by lr_init return LambdaLR(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) lowercase__ : Any = { SchedulerType.LINEAR: get_linear_schedule_with_warmup, SchedulerType.COSINE: get_cosine_schedule_with_warmup, SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup, SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup, SchedulerType.CONSTANT: get_constant_schedule, SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup, SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule, } def UpperCamelCase_ ( lowerCAmelCase__ : Union[str, SchedulerType] , lowerCAmelCase__ : Optimizer , lowerCAmelCase__ : Optional[str] = None , lowerCAmelCase__ : Optional[int] = None , lowerCAmelCase__ : Optional[int] = None , lowerCAmelCase__ : int = 1 , lowerCAmelCase__ : float = 1.0 , lowerCAmelCase__ : int = -1 , ) -> int: """simple docstring""" lowerCAmelCase_ : List[str] = SchedulerType(lowerCAmelCase__ ) lowerCAmelCase_ : List[Any] = TYPE_TO_SCHEDULER_FUNCTION[name] if name == SchedulerType.CONSTANT: return schedule_func(lowerCAmelCase__ , last_epoch=lowerCAmelCase__ ) if name == SchedulerType.PIECEWISE_CONSTANT: return schedule_func(lowerCAmelCase__ , step_rules=lowerCAmelCase__ , last_epoch=lowerCAmelCase__ ) # All other schedulers require `num_warmup_steps` if num_warmup_steps is None: raise ValueError(f"{name} requires `num_warmup_steps`, please provide that argument." ) if name == SchedulerType.CONSTANT_WITH_WARMUP: return schedule_func(lowerCAmelCase__ , num_warmup_steps=lowerCAmelCase__ , last_epoch=lowerCAmelCase__ ) # All other schedulers require `num_training_steps` if num_training_steps is None: raise ValueError(f"{name} requires `num_training_steps`, please provide that argument." ) if name == SchedulerType.COSINE_WITH_RESTARTS: return schedule_func( lowerCAmelCase__ , num_warmup_steps=lowerCAmelCase__ , num_training_steps=lowerCAmelCase__ , num_cycles=lowerCAmelCase__ , last_epoch=lowerCAmelCase__ , ) if name == SchedulerType.POLYNOMIAL: return schedule_func( lowerCAmelCase__ , num_warmup_steps=lowerCAmelCase__ , num_training_steps=lowerCAmelCase__ , power=lowerCAmelCase__ , last_epoch=lowerCAmelCase__ , ) return schedule_func( lowerCAmelCase__ , num_warmup_steps=lowerCAmelCase__ , num_training_steps=lowerCAmelCase__ , last_epoch=lowerCAmelCase__ )
224
0
import argparse from pathlib import Path from typing import Dict, OrderedDict, Tuple import torch from audiocraft.models import MusicGen from transformers import ( AutoFeatureExtractor, AutoTokenizer, EncodecModel, MusicgenDecoderConfig, MusicgenForConditionalGeneration, MusicgenProcessor, TaEncoderModel, ) from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM from transformers.utils import logging logging.set_verbosity_info() lowercase = logging.get_logger(__name__) lowercase = ["""model.decoder.embed_positions.weights"""] def lowerCamelCase_ ( UpperCamelCase__ : Any ): '''simple docstring''' if "emb" in name: UpperCamelCase__ = name.replace('''emb''', '''model.decoder.embed_tokens''' ) if "transformer" in name: UpperCamelCase__ = name.replace('''transformer''', '''model.decoder''' ) if "cross_attention" in name: UpperCamelCase__ = name.replace('''cross_attention''', '''encoder_attn''' ) if "linear1" in name: UpperCamelCase__ = name.replace('''linear1''', '''fc1''' ) if "linear2" in name: UpperCamelCase__ = name.replace('''linear2''', '''fc2''' ) if "norm1" in name: UpperCamelCase__ = name.replace('''norm1''', '''self_attn_layer_norm''' ) if "norm_cross" in name: UpperCamelCase__ = name.replace('''norm_cross''', '''encoder_attn_layer_norm''' ) if "norm2" in name: UpperCamelCase__ = name.replace('''norm2''', '''final_layer_norm''' ) if "out_norm" in name: UpperCamelCase__ = name.replace('''out_norm''', '''model.decoder.layer_norm''' ) if "linears" in name: UpperCamelCase__ = name.replace('''linears''', '''lm_heads''' ) if "condition_provider.conditioners.description.output_proj" in name: UpperCamelCase__ = name.replace('''condition_provider.conditioners.description.output_proj''', '''enc_to_dec_proj''' ) return name def lowerCamelCase_ ( UpperCamelCase__ : OrderedDict, UpperCamelCase__ : int ): '''simple docstring''' UpperCamelCase__ = list(state_dict.keys() ) UpperCamelCase__ = {} for key in keys: UpperCamelCase__ = state_dict.pop(UpperCamelCase__ ) UpperCamelCase__ = rename_keys(UpperCamelCase__ ) if "in_proj_weight" in key: # split fused qkv proj UpperCamelCase__ = val[:hidden_size, :] UpperCamelCase__ = val[hidden_size : 2 * hidden_size, :] UpperCamelCase__ = val[-hidden_size:, :] elif "enc_to_dec_proj" in key: UpperCamelCase__ = val else: UpperCamelCase__ = val return state_dict, enc_dec_proj_state_dict def lowerCamelCase_ ( UpperCamelCase__ : str ): '''simple docstring''' if checkpoint == "small": # default config values UpperCamelCase__ = 1024 UpperCamelCase__ = 24 UpperCamelCase__ = 16 elif checkpoint == "medium": UpperCamelCase__ = 1536 UpperCamelCase__ = 48 UpperCamelCase__ = 24 elif checkpoint == "large": UpperCamelCase__ = 2048 UpperCamelCase__ = 48 UpperCamelCase__ = 32 else: raise ValueError(F"""Checkpoint should be one of `['small', 'medium', 'large']`, got {checkpoint}.""" ) UpperCamelCase__ = MusicgenDecoderConfig( hidden_size=UpperCamelCase__, ffn_dim=hidden_size * 4, num_hidden_layers=UpperCamelCase__, num_attention_heads=UpperCamelCase__, ) return config @torch.no_grad() def lowerCamelCase_ ( UpperCamelCase__ : int, UpperCamelCase__ : Any=None, UpperCamelCase__ : Optional[Any]=None, UpperCamelCase__ : List[Any]="cpu" ): '''simple docstring''' UpperCamelCase__ = MusicGen.get_pretrained(UpperCamelCase__, device=UpperCamelCase__ ) UpperCamelCase__ = decoder_config_from_checkpoint(UpperCamelCase__ ) UpperCamelCase__ = fairseq_model.lm.state_dict() UpperCamelCase__ , UpperCamelCase__ = rename_state_dict( UpperCamelCase__, hidden_size=decoder_config.hidden_size ) UpperCamelCase__ = TaEncoderModel.from_pretrained('''t5-base''' ) UpperCamelCase__ = EncodecModel.from_pretrained('''facebook/encodec_32khz''' ) UpperCamelCase__ = MusicgenForCausalLM(UpperCamelCase__ ).eval() # load all decoder weights - expect that we'll be missing embeddings and enc-dec projection UpperCamelCase__ , UpperCamelCase__ = decoder.load_state_dict(UpperCamelCase__, strict=UpperCamelCase__ ) for key in missing_keys.copy(): if key.startswith(('''text_encoder''', '''audio_encoder''') ) or key in EXPECTED_MISSING_KEYS: missing_keys.remove(UpperCamelCase__ ) if len(UpperCamelCase__ ) > 0: raise ValueError(F"""Missing key(s) in state_dict: {missing_keys}""" ) if len(UpperCamelCase__ ) > 0: raise ValueError(F"""Unexpected key(s) in state_dict: {unexpected_keys}""" ) # init the composite model UpperCamelCase__ = MusicgenForConditionalGeneration(text_encoder=UpperCamelCase__, audio_encoder=UpperCamelCase__, decoder=UpperCamelCase__ ) # load the pre-trained enc-dec projection (from the decoder state dict) model.enc_to_dec_proj.load_state_dict(UpperCamelCase__ ) # check we can do a forward pass UpperCamelCase__ = torch.arange(0, 8, dtype=torch.long ).reshape(2, -1 ) UpperCamelCase__ = input_ids.reshape(2 * 4, -1 ) with torch.no_grad(): UpperCamelCase__ = model(input_ids=UpperCamelCase__, decoder_input_ids=UpperCamelCase__ ).logits if logits.shape != (8, 1, 2048): raise ValueError('''Incorrect shape for logits''' ) # now construct the processor UpperCamelCase__ = AutoTokenizer.from_pretrained('''t5-base''' ) UpperCamelCase__ = AutoFeatureExtractor.from_pretrained('''facebook/encodec_32khz''', padding_side='''left''' ) UpperCamelCase__ = MusicgenProcessor(feature_extractor=UpperCamelCase__, tokenizer=UpperCamelCase__ ) # set the appropriate bos/pad token ids UpperCamelCase__ = 2048 UpperCamelCase__ = 2048 # set other default generation config params UpperCamelCase__ = int(30 * audio_encoder.config.frame_rate ) UpperCamelCase__ = True UpperCamelCase__ = 3.0 if pytorch_dump_folder is not None: Path(UpperCamelCase__ ).mkdir(exist_ok=UpperCamelCase__ ) logger.info(F"""Saving model {checkpoint} to {pytorch_dump_folder}""" ) model.save_pretrained(UpperCamelCase__ ) processor.save_pretrained(UpperCamelCase__ ) if repo_id: logger.info(F"""Pushing model {checkpoint} to {repo_id}""" ) model.push_to_hub(UpperCamelCase__ ) processor.push_to_hub(UpperCamelCase__ ) if __name__ == "__main__": lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint""", default="""small""", type=str, help="""Checkpoint size of the MusicGen model you'd like to convert. Can be one of: `['small', 'medium', 'large']`.""", ) parser.add_argument( """--pytorch_dump_folder""", required=True, default=None, type=str, help="""Path to the output PyTorch model directory.""", ) parser.add_argument( """--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub.""" ) parser.add_argument( """--device""", default="""cpu""", type=str, help="""Torch device to run the conversion, either cpu or cuda.""" ) lowercase = parser.parse_args() convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
35
import warnings from ...utils import logging from .image_processing_clip import CLIPImageProcessor lowercase = logging.get_logger(__name__) class __lowercase ( A ): '''simple docstring''' def __init__( self : Any , *_a : Optional[Any] , **_a : Any ): warnings.warn( '''The class CLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use CLIPImageProcessor instead.''' , _a , ) super().__init__(*_a , **_a )
35
1
'''simple docstring''' A ={ 'a': 'AAAAA', 'b': 'AAAAB', 'c': 'AAABA', 'd': 'AAABB', 'e': 'AABAA', 'f': 'AABAB', 'g': 'AABBA', 'h': 'AABBB', 'i': 'ABAAA', 'j': 'BBBAA', 'k': 'ABAAB', 'l': 'ABABA', 'm': 'ABABB', 'n': 'ABBAA', 'o': 'ABBAB', 'p': 'ABBBA', 'q': 'ABBBB', 'r': 'BAAAA', 's': 'BAAAB', 't': 'BAABA', 'u': 'BAABB', 'v': 'BBBAB', 'w': 'BABAA', 'x': 'BABAB', 'y': 'BABBA', 'z': 'BABBB', ' ': ' ', } A ={value: key for key, value in encode_dict.items()} def snake_case_ (_a : str ): UpperCAmelCase = '''''' for letter in word.lower(): if letter.isalpha() or letter == " ": encoded += encode_dict[letter] else: raise Exception('''encode() accepts only letters of the alphabet and spaces''' ) return encoded def snake_case_ (_a : str ): if set(_a ) - {"A", "B", " "} != set(): raise Exception('''decode() accepts only \'A\', \'B\' and spaces''' ) UpperCAmelCase = '''''' for word in coded.split(): while len(_a ) != 0: decoded += decode_dict[word[:5]] UpperCAmelCase = word[5:] decoded += " " return decoded.strip() if __name__ == "__main__": from doctest import testmod testmod()
34
'''simple docstring''' import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, PerceiverTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): A ='pt' elif is_tf_available(): A ='tf' else: A ='jax' class _a ( __a , unittest.TestCase ): __a : Optional[Any] = PerceiverTokenizer __a : str = False def A ( self : Union[str, Any] ): '''simple docstring''' super().setUp() UpperCAmelCase = PerceiverTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def A ( self : Optional[int] ): '''simple docstring''' return PerceiverTokenizer.from_pretrained('''deepmind/language-perceiver''' ) def A ( self : Union[str, Any] , **lowercase : int ): '''simple docstring''' return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowercase ) def A ( self : Tuple , lowercase : str , lowercase : List[str]=False , lowercase : Union[str, Any]=20 , lowercase : Union[str, Any]=5 ): '''simple docstring''' UpperCAmelCase = [] for i in range(len(lowercase ) ): try: UpperCAmelCase = tokenizer.decode([i] , clean_up_tokenization_spaces=lowercase ) except UnicodeDecodeError: pass toks.append((i, tok) ) UpperCAmelCase = list(filter(lambda lowercase : re.match(R'''^[ a-zA-Z]+$''' , t[1] ) , lowercase ) ) UpperCAmelCase = list(filter(lambda lowercase : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=lowercase ) , lowercase ) ) if max_length is not None and len(lowercase ) > max_length: UpperCAmelCase = toks[:max_length] if min_length is not None and len(lowercase ) < min_length and len(lowercase ) > 0: while len(lowercase ) < min_length: UpperCAmelCase = toks + toks # toks_str = [t[1] for t in toks] UpperCAmelCase = [t[0] for t in toks] # Ensure consistency UpperCAmelCase = tokenizer.decode(lowercase , clean_up_tokenization_spaces=lowercase ) if " " not in output_txt and len(lowercase ) > 1: UpperCAmelCase = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=lowercase ) + ''' ''' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=lowercase ) ) if with_prefix_space: UpperCAmelCase = ''' ''' + output_txt UpperCAmelCase = tokenizer.encode(lowercase , add_special_tokens=lowercase ) return output_txt, output_ids def A ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase = self.perceiver_tokenizer UpperCAmelCase = '''Unicode €.''' UpperCAmelCase = tokenizer(lowercase ) UpperCAmelCase = [4, 91, 116, 111, 105, 117, 106, 107, 38, 232, 136, 178, 52, 5] self.assertEqual(encoded['''input_ids'''] , lowercase ) # decoding UpperCAmelCase = tokenizer.decode(lowercase ) self.assertEqual(lowercase , '''[CLS]Unicode €.[SEP]''' ) UpperCAmelCase = tokenizer('''e è é ê ë''' ) UpperCAmelCase = [4, 107, 38, 201, 174, 38, 201, 175, 38, 201, 176, 38, 201, 177, 5] self.assertEqual(encoded['''input_ids'''] , lowercase ) # decoding UpperCAmelCase = tokenizer.decode(lowercase ) self.assertEqual(lowercase , '''[CLS]e è é ê ë[SEP]''' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('''e è é ê ë''' ) ) , '''[CLS]e è é ê ë[SEP]''' ) def A ( self : str ): '''simple docstring''' UpperCAmelCase = self.perceiver_tokenizer UpperCAmelCase = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] # fmt: off UpperCAmelCase = [4, 71, 38, 114, 117, 116, 109, 38, 118, 103, 120, 103, 109, 120, 103, 118, 110, 38, 108, 117, 120, 38, 121, 123, 115, 115, 103, 120, 111, 128, 103, 122, 111, 117, 116, 52, 5, 0] # fmt: on UpperCAmelCase = tokenizer(lowercase , padding=lowercase , return_tensors=lowercase ) self.assertIsInstance(lowercase , lowercase ) if FRAMEWORK != "jax": UpperCAmelCase = list(batch.input_ids.numpy()[0] ) else: UpperCAmelCase = list(batch.input_ids.tolist()[0] ) self.assertListEqual(lowercase , lowercase ) self.assertEqual((2, 38) , batch.input_ids.shape ) self.assertEqual((2, 38) , batch.attention_mask.shape ) def A ( self : str ): '''simple docstring''' UpperCAmelCase = self.perceiver_tokenizer UpperCAmelCase = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] UpperCAmelCase = tokenizer(lowercase , padding=lowercase , return_tensors=lowercase ) # check if input_ids are returned and no decoder_input_ids self.assertIn('''input_ids''' , lowercase ) self.assertIn('''attention_mask''' , lowercase ) self.assertNotIn('''decoder_input_ids''' , lowercase ) self.assertNotIn('''decoder_attention_mask''' , lowercase ) def A ( self : Dict ): '''simple docstring''' UpperCAmelCase = self.perceiver_tokenizer UpperCAmelCase = [ '''Summary of the text.''', '''Another summary.''', ] UpperCAmelCase = tokenizer( text_target=lowercase , max_length=32 , padding='''max_length''' , truncation=lowercase , return_tensors=lowercase ) self.assertEqual(32 , targets['''input_ids'''].shape[1] ) def A ( self : int ): '''simple docstring''' UpperCAmelCase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test UpperCAmelCase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): # Isolate this from the other tests because we save additional tokens/etc UpperCAmelCase = tempfile.mkdtemp() UpperCAmelCase = ''' He is very happy, UNwant\u00E9d,running''' UpperCAmelCase = tokenizer.encode(lowercase , add_special_tokens=lowercase ) tokenizer.save_pretrained(lowercase ) UpperCAmelCase = tokenizer.__class__.from_pretrained(lowercase ) UpperCAmelCase = after_tokenizer.encode(lowercase , add_special_tokens=lowercase ) self.assertListEqual(lowercase , lowercase ) shutil.rmtree(lowercase ) UpperCAmelCase = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): # Isolate this from the other tests because we save additional tokens/etc UpperCAmelCase = tempfile.mkdtemp() UpperCAmelCase = ''' He is very happy, UNwant\u00E9d,running''' tokenizer.add_tokens(['''bim''', '''bambam'''] ) UpperCAmelCase = tokenizer.additional_special_tokens additional_special_tokens.append('''new_additional_special_token''' ) tokenizer.add_special_tokens({'''additional_special_tokens''': additional_special_tokens} ) UpperCAmelCase = tokenizer.encode(lowercase , add_special_tokens=lowercase ) tokenizer.save_pretrained(lowercase ) UpperCAmelCase = tokenizer.__class__.from_pretrained(lowercase ) UpperCAmelCase = after_tokenizer.encode(lowercase , add_special_tokens=lowercase ) self.assertListEqual(lowercase , lowercase ) self.assertIn('''new_additional_special_token''' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) UpperCAmelCase = tokenizer.__class__.from_pretrained(lowercase , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(lowercase ) def A ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(lowercase ) with open(os.path.join(lowercase , '''special_tokens_map.json''' ) , encoding='''utf-8''' ) as json_file: UpperCAmelCase = json.load(lowercase ) with open(os.path.join(lowercase , '''tokenizer_config.json''' ) , encoding='''utf-8''' ) as json_file: UpperCAmelCase = json.load(lowercase ) UpperCAmelCase = [f"<extra_id_{i}>" for i in range(125 )] UpperCAmelCase = added_tokens_extra_ids + [ '''an_additional_special_token''' ] UpperCAmelCase = added_tokens_extra_ids + [ '''an_additional_special_token''' ] with open(os.path.join(lowercase , '''special_tokens_map.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile: json.dump(lowercase , lowercase ) with open(os.path.join(lowercase , '''tokenizer_config.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile: json.dump(lowercase , lowercase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files UpperCAmelCase = tokenizer_class.from_pretrained( lowercase , ) self.assertIn( '''an_additional_special_token''' , tokenizer_without_change_in_init.additional_special_tokens ) self.assertEqual( ['''an_additional_special_token'''] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['''an_additional_special_token'''] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained UpperCAmelCase = added_tokens_extra_ids + [AddedToken('''a_new_additional_special_token''' , lstrip=lowercase )] UpperCAmelCase = tokenizer_class.from_pretrained( lowercase , additional_special_tokens=lowercase , ) self.assertIn('''a_new_additional_special_token''' , tokenizer.additional_special_tokens ) self.assertEqual( ['''a_new_additional_special_token'''] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['''a_new_additional_special_token'''] ) ) , ) def A ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase = self.perceiver_tokenizer self.assertEqual(tokenizer.decode([178] ) , '''�''' ) def A ( self : Union[str, Any] ): '''simple docstring''' pass def A ( self : Any ): '''simple docstring''' pass def A ( self : Dict ): '''simple docstring''' pass def A ( self : str ): '''simple docstring''' pass def A ( self : List[str] ): '''simple docstring''' UpperCAmelCase = self.get_tokenizers(fast=lowercase , do_lower_case=lowercase ) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): UpperCAmelCase = ['''[CLS]''', '''t''', '''h''', '''i''', '''s''', ''' ''', '''i''', '''s''', ''' ''', '''a''', ''' ''', '''t''', '''e''', '''s''', '''t''', '''[SEP]'''] UpperCAmelCase = tokenizer.convert_tokens_to_string(lowercase ) self.assertIsInstance(lowercase , lowercase )
34
1
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_camembert import CamembertTokenizer else: _snake_case = None _snake_case = logging.get_logger(__name__) _snake_case = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"} _snake_case = { "vocab_file": { "camembert-base": "https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model", }, "tokenizer_file": { "camembert-base": "https://huggingface.co/camembert-base/resolve/main/tokenizer.json", }, } _snake_case = { "camembert-base": 512, } _snake_case = "▁" class UpperCAmelCase_ ( lowerCamelCase_): lowerCamelCase__ = VOCAB_FILES_NAMES lowerCamelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ = ["""input_ids""", """attention_mask"""] lowerCamelCase__ = CamembertTokenizer def __init__( self, __a=None, __a=None, __a="<s>", __a="</s>", __a="</s>", __a="<s>", __a="<unk>", __a="<pad>", __a="<mask>", __a=["<s>NOTUSED", "</s>NOTUSED"], **__a, ): '''simple docstring''' _lowerCAmelCase : Tuple = AddedToken(_UpperCAmelCase, lstrip=_UpperCAmelCase, rstrip=_UpperCAmelCase) if isinstance(_UpperCAmelCase, _UpperCAmelCase) else mask_token super().__init__( _UpperCAmelCase, tokenizer_file=_UpperCAmelCase, bos_token=_UpperCAmelCase, eos_token=_UpperCAmelCase, sep_token=_UpperCAmelCase, cls_token=_UpperCAmelCase, unk_token=_UpperCAmelCase, pad_token=_UpperCAmelCase, mask_token=_UpperCAmelCase, additional_special_tokens=_UpperCAmelCase, **_UpperCAmelCase, ) _lowerCAmelCase : Any = vocab_file _lowerCAmelCase : str = False if not self.vocab_file else True def snake_case__ ( self, __a, __a = None): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _lowerCAmelCase : Tuple = [self.cls_token_id] _lowerCAmelCase : Optional[Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def snake_case__ ( self, __a, __a = None): '''simple docstring''' _lowerCAmelCase : str = [self.sep_token_id] _lowerCAmelCase : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def snake_case__ ( self, __a, __a = None): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer.") if not os.path.isdir(_UpperCAmelCase): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return _lowerCAmelCase : List[Any] = os.path.join( _UpperCAmelCase, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]) if os.path.abspath(self.vocab_file) != os.path.abspath(_UpperCAmelCase): copyfile(self.vocab_file, _UpperCAmelCase) return (out_vocab_file,)
367
import itertools from dataclasses import dataclass from typing import Optional import pandas as pd import pyarrow as pa import datasets from datasets.table import table_cast @dataclass class UpperCAmelCase_ ( datasets.BuilderConfig): lowerCamelCase__ = None class UpperCAmelCase_ ( datasets.ArrowBasedBuilder): lowerCamelCase__ = PandasConfig def snake_case__ ( self): '''simple docstring''' return datasets.DatasetInfo(features=self.config.features) def snake_case__ ( self, __a): '''simple docstring''' if not self.config.data_files: raise ValueError(f"At least one data file must be specified, but got data_files={self.config.data_files}") _lowerCAmelCase : str = dl_manager.download_and_extract(self.config.data_files) if isinstance(__a, (str, list, tuple)): _lowerCAmelCase : str = data_files if isinstance(__a, __a): _lowerCAmelCase : int = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive _lowerCAmelCase : Union[str, Any] = [dl_manager.iter_files(__a) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"files": files})] _lowerCAmelCase : str = [] for split_name, files in data_files.items(): if isinstance(__a, __a): _lowerCAmelCase : Optional[Any] = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive _lowerCAmelCase : str = [dl_manager.iter_files(__a) for file in files] splits.append(datasets.SplitGenerator(name=__a, gen_kwargs={"files": files})) return splits def snake_case__ ( self, __a): '''simple docstring''' if self.config.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example _lowerCAmelCase : str = table_cast(__a, self.config.features.arrow_schema) return pa_table def snake_case__ ( self, __a): '''simple docstring''' for i, file in enumerate(itertools.chain.from_iterable(__a)): with open(__a, "rb") as f: _lowerCAmelCase : Optional[Any] = pa.Table.from_pandas(pd.read_pickle(__a)) yield i, self._cast_table(__a)
300
0
from typing import Optional import pyspark from .. import Features, NamedSplit from ..download import DownloadMode from ..packaged_modules.spark.spark import Spark from .abc import AbstractDatasetReader class __UpperCAmelCase (_UpperCAmelCase ): def __init__( self: str , UpperCAmelCase_: pyspark.sql.DataFrame , UpperCAmelCase_: Optional[NamedSplit] = None , UpperCAmelCase_: Optional[Features] = None , UpperCAmelCase_: bool = True , UpperCAmelCase_: str = None , UpperCAmelCase_: bool = False , UpperCAmelCase_: str = None , UpperCAmelCase_: bool = True , UpperCAmelCase_: str = "arrow" , **UpperCAmelCase_: Dict , ): '''simple docstring''' super().__init__( split=UpperCAmelCase_ , features=UpperCAmelCase_ , cache_dir=UpperCAmelCase_ , keep_in_memory=UpperCAmelCase_ , streaming=UpperCAmelCase_ , **UpperCAmelCase_ , ) _SCREAMING_SNAKE_CASE = load_from_cache_file _SCREAMING_SNAKE_CASE = file_format _SCREAMING_SNAKE_CASE = Spark( df=UpperCAmelCase_ , features=UpperCAmelCase_ , cache_dir=UpperCAmelCase_ , working_dir=UpperCAmelCase_ , **UpperCAmelCase_ , ) def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' if self.streaming: return self.builder.as_streaming_dataset(split=self.split ) _SCREAMING_SNAKE_CASE = None if self._load_from_cache_file else DownloadMode.FORCE_REDOWNLOAD self.builder.download_and_prepare( download_mode=UpperCAmelCase_ , file_format=self._file_format , ) return self.builder.as_dataset(split=self.split )
306
import unittest import numpy as np from transformers import DistilBertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.distilbert.modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, ) class __UpperCAmelCase (unittest.TestCase ): def __init__( self: Optional[Any] , UpperCAmelCase_: Optional[int] , UpperCAmelCase_: List[Any]=13 , UpperCAmelCase_: List[str]=7 , UpperCAmelCase_: Tuple=True , UpperCAmelCase_: List[Any]=True , UpperCAmelCase_: List[str]=True , UpperCAmelCase_: Optional[Any]=True , UpperCAmelCase_: str=99 , UpperCAmelCase_: List[Any]=32 , UpperCAmelCase_: Dict=5 , UpperCAmelCase_: Tuple=4 , UpperCAmelCase_: Optional[Any]=37 , UpperCAmelCase_: Optional[int]="gelu" , UpperCAmelCase_: Optional[Any]=0.1 , UpperCAmelCase_: List[Any]=0.1 , UpperCAmelCase_: List[Any]=512 , UpperCAmelCase_: Any=16 , UpperCAmelCase_: Dict=2 , UpperCAmelCase_: Union[str, Any]=0.02 , UpperCAmelCase_: Union[str, Any]=4 , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = parent _SCREAMING_SNAKE_CASE = batch_size _SCREAMING_SNAKE_CASE = seq_length _SCREAMING_SNAKE_CASE = is_training _SCREAMING_SNAKE_CASE = use_attention_mask _SCREAMING_SNAKE_CASE = use_token_type_ids _SCREAMING_SNAKE_CASE = use_labels _SCREAMING_SNAKE_CASE = vocab_size _SCREAMING_SNAKE_CASE = hidden_size _SCREAMING_SNAKE_CASE = num_hidden_layers _SCREAMING_SNAKE_CASE = num_attention_heads _SCREAMING_SNAKE_CASE = intermediate_size _SCREAMING_SNAKE_CASE = hidden_act _SCREAMING_SNAKE_CASE = hidden_dropout_prob _SCREAMING_SNAKE_CASE = attention_probs_dropout_prob _SCREAMING_SNAKE_CASE = max_position_embeddings _SCREAMING_SNAKE_CASE = type_vocab_size _SCREAMING_SNAKE_CASE = type_sequence_label_size _SCREAMING_SNAKE_CASE = initializer_range _SCREAMING_SNAKE_CASE = num_choices def UpperCamelCase ( self: Tuple ): '''simple docstring''' _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _SCREAMING_SNAKE_CASE = None if self.use_attention_mask: _SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.seq_length] ) _SCREAMING_SNAKE_CASE = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , tie_weights_=UpperCAmelCase_ , ) return config, input_ids, attention_mask def UpperCamelCase ( self: Tuple ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = config_and_inputs _SCREAMING_SNAKE_CASE = {"""input_ids""": input_ids, """attention_mask""": attention_mask} return config, inputs_dict @require_flax class __UpperCAmelCase (_UpperCAmelCase ,unittest.TestCase ): __snake_case : Optional[int] = ( ( FlaxDistilBertModel, FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertForQuestionAnswering, ) if is_flax_available() else () ) def UpperCamelCase ( self: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = FlaxDistilBertModelTester(self ) @slow def UpperCamelCase ( self: List[str] ): '''simple docstring''' for model_class_name in self.all_model_classes: _SCREAMING_SNAKE_CASE = model_class_name.from_pretrained("""distilbert-base-uncased""" ) _SCREAMING_SNAKE_CASE = model(np.ones((1, 1) ) ) self.assertIsNotNone(UpperCAmelCase_ ) @require_flax class __UpperCAmelCase (unittest.TestCase ): @slow def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = FlaxDistilBertModel.from_pretrained("""distilbert-base-uncased""" ) _SCREAMING_SNAKE_CASE = np.array([[0, 345, 232, 328, 740, 140, 1_695, 69, 6_078, 1_588, 2]] ) _SCREAMING_SNAKE_CASE = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ )[0] _SCREAMING_SNAKE_CASE = (1, 11, 768) self.assertEqual(output.shape , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = np.array([[[-0.16_39, 0.32_99, 0.16_48], [-0.17_46, 0.32_89, 0.17_10], [-0.18_84, 0.33_57, 0.18_10]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , UpperCAmelCase_ , atol=1E-4 ) )
306
1
import inspect import unittest from transformers import ConvNextConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextBackbone, ConvNextForImageClassification, ConvNextModel from transformers.models.convnext.modeling_convnext import CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCamelCase_ : def __init__( self , lowerCAmelCase_ , lowerCAmelCase_=13 , lowerCAmelCase_=32 , lowerCAmelCase_=3 , lowerCAmelCase_=4 , lowerCAmelCase_=[10, 20, 30, 40] , lowerCAmelCase_=[2, 2, 3, 2] , lowerCAmelCase_=True , lowerCAmelCase_=True , lowerCAmelCase_=37 , lowerCAmelCase_="gelu" , lowerCAmelCase_=10 , lowerCAmelCase_=0.02 , lowerCAmelCase_=["stage2", "stage3", "stage4"] , lowerCAmelCase_=[2, 3, 4] , lowerCAmelCase_=None , ) -> int: _snake_case = parent _snake_case = batch_size _snake_case = image_size _snake_case = num_channels _snake_case = num_stages _snake_case = hidden_sizes _snake_case = depths _snake_case = is_training _snake_case = use_labels _snake_case = intermediate_size _snake_case = hidden_act _snake_case = num_labels _snake_case = initializer_range _snake_case = out_features _snake_case = out_indices _snake_case = scope def lowerCAmelCase ( self ) -> Any: _snake_case = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _snake_case = None if self.use_labels: _snake_case = ids_tensor([self.batch_size] , self.num_labels ) _snake_case = self.get_config() return config, pixel_values, labels def lowerCAmelCase ( self ) -> List[Any]: return ConvNextConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=lowerCAmelCase_ , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> List[str]: _snake_case = ConvNextModel(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() _snake_case = model(lowerCAmelCase_ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> Optional[Any]: _snake_case = ConvNextForImageClassification(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() _snake_case = model(lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> Optional[int]: _snake_case = ConvNextBackbone(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() _snake_case = model(lowerCAmelCase_ ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None _snake_case = None _snake_case = ConvNextBackbone(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() _snake_case = model(lowerCAmelCase_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def lowerCAmelCase ( self ) -> Dict: _snake_case = self.prepare_config_and_inputs() _snake_case , _snake_case , _snake_case = config_and_inputs _snake_case = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class UpperCamelCase_ ( _lowerCamelCase , _lowerCamelCase , unittest.TestCase ): lowerCAmelCase_ = ( ( ConvNextModel, ConvNextForImageClassification, ConvNextBackbone, ) if is_torch_available() else () ) lowerCAmelCase_ = ( {'''feature-extraction''': ConvNextModel, '''image-classification''': ConvNextForImageClassification} if is_torch_available() else {} ) lowerCAmelCase_ = True lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False def lowerCAmelCase ( self ) -> Dict: _snake_case = ConvNextModelTester(self ) _snake_case = ConfigTester(self , config_class=lowerCAmelCase_ , has_text_modality=lowerCAmelCase_ , hidden_size=37 ) def lowerCAmelCase ( self ) -> Union[str, Any]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCAmelCase ( self ) -> Tuple: return @unittest.skip(reason='ConvNext does not use inputs_embeds' ) def lowerCAmelCase ( self ) -> List[str]: pass @unittest.skip(reason='ConvNext does not support input and output embeddings' ) def lowerCAmelCase ( self ) -> Any: pass @unittest.skip(reason='ConvNext does not use feedforward chunking' ) def lowerCAmelCase ( self ) -> int: pass def lowerCAmelCase ( self ) -> List[str]: _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case = model_class(lowerCAmelCase_ ) _snake_case = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _snake_case = [*signature.parameters.keys()] _snake_case = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowerCAmelCase_ ) def lowerCAmelCase ( self ) -> str: _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase_ ) def lowerCAmelCase ( self ) -> Dict: _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*lowerCAmelCase_ ) def lowerCAmelCase ( self ) -> Optional[Any]: def check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): _snake_case = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() with torch.no_grad(): _snake_case = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) ) _snake_case = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _snake_case = self.model_tester.num_stages self.assertEqual(len(lowerCAmelCase_ ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _snake_case = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) def lowerCAmelCase ( self ) -> Union[str, Any]: _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase_ ) @slow def lowerCAmelCase ( self ) -> str: for model_name in CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case = ConvNextModel.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) def lowerCamelCase__ ( ) -> List[str]: '''simple docstring''' _snake_case = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class UpperCamelCase_ ( unittest.TestCase ): @cached_property def lowerCAmelCase ( self ) -> Optional[Any]: return AutoImageProcessor.from_pretrained('facebook/convnext-tiny-224' ) if is_vision_available() else None @slow def lowerCAmelCase ( self ) -> Any: _snake_case = ConvNextForImageClassification.from_pretrained('facebook/convnext-tiny-224' ).to(lowerCAmelCase_ ) _snake_case = self.default_image_processor _snake_case = prepare_img() _snake_case = image_processor(images=lowerCAmelCase_ , return_tensors='pt' ).to(lowerCAmelCase_ ) # forward pass with torch.no_grad(): _snake_case = model(**lowerCAmelCase_ ) # verify the logits _snake_case = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase_ ) _snake_case = torch.tensor([-0.02_60, -0.47_39, 0.19_11] ).to(lowerCAmelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase_ , atol=1E-4 ) ) @require_torch class UpperCamelCase_ ( unittest.TestCase , _lowerCamelCase ): lowerCAmelCase_ = (ConvNextBackbone,) if is_torch_available() else () lowerCAmelCase_ = ConvNextConfig lowerCAmelCase_ = False def lowerCAmelCase ( self ) -> Dict: _snake_case = ConvNextModelTester(self )
295
from collections import defaultdict from graphs.minimum_spanning_tree_prims import prisms_algorithm as mst def lowerCamelCase__ ( ) -> List[str]: '''simple docstring''' _snake_case , _snake_case = 9, 14 # noqa: F841 _snake_case = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] _snake_case = defaultdict(UpperCamelCase__ ) for nodea, nodea, cost in edges: adjancency[nodea].append([nodea, cost] ) adjancency[nodea].append([nodea, cost] ) _snake_case = mst(UpperCamelCase__ ) _snake_case = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] for answer in expected: _snake_case = tuple(answer[:2] ) _snake_case = tuple(edge[::-1] ) assert edge in result or reverse in result
295
1
import string def UpperCamelCase( __UpperCamelCase : str ): for key in range(len(string.ascii_uppercase ) ): lowerCAmelCase_ : List[Any] = '''''' for symbol in message: if symbol in string.ascii_uppercase: lowerCAmelCase_ : Optional[int] = string.ascii_uppercase.find(__UpperCamelCase ) lowerCAmelCase_ : Optional[int] = num - key if num < 0: lowerCAmelCase_ : int = num + len(string.ascii_uppercase ) lowerCAmelCase_ : int = translated + string.ascii_uppercase[num] else: lowerCAmelCase_ : Optional[int] = translated + symbol print(f"""Decryption using Key #{key}: {translated}""" ) def UpperCamelCase( ): lowerCAmelCase_ : Dict = input('''Encrypted message: ''' ) lowerCAmelCase_ : List[str] = message.upper() decrypt(__UpperCamelCase ) if __name__ == "__main__": import doctest doctest.testmod() main()
103
"""simple docstring""" # Lint as: python3 import os import re import urllib.parse from pathlib import Path from typing import Callable, List, Optional, Union from zipfile import ZipFile from ..utils.file_utils import cached_path, hf_github_url from ..utils.logging import get_logger from ..utils.version import Version lowerCAmelCase__ = get_logger(__name__) class SCREAMING_SNAKE_CASE__ : """simple docstring""" a : Optional[Any] ="dummy_data" a : int ="datasets" a : Tuple =False def __init__( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ = None , snake_case__ = False , snake_case__ = True , snake_case__ = None , ): """simple docstring""" lowerCAmelCase : Tuple = 0 lowerCAmelCase : int = dataset_name lowerCAmelCase : List[Any] = cache_dir lowerCAmelCase : List[str] = use_local_dummy_data lowerCAmelCase : List[str] = config # download_callbacks take a single url as input lowerCAmelCase : List[Callable] = download_callbacks or [] # if False, it doesn't load existing files and it returns the paths of the dummy files relative # to the dummy_data zip file root lowerCAmelCase : Tuple = load_existing_dummy_data # TODO(PVP, QL) might need to make this more general lowerCAmelCase : Union[str, Any] = str(snake_case__ ) # to be downloaded lowerCAmelCase : List[Any] = None lowerCAmelCase : List[Any] = None @property def lowercase__ ( self ): """simple docstring""" if self._dummy_file is None: lowerCAmelCase : Any = self.download_dummy_data() return self._dummy_file @property def lowercase__ ( self ): """simple docstring""" if self.config is not None: # structure is dummy / config_name / version_name return os.path.join("dummy" , self.config.name , self.version_name ) # structure is dummy / version_name return os.path.join("dummy" , self.version_name ) @property def lowercase__ ( self ): """simple docstring""" return os.path.join(self.dummy_data_folder , "dummy_data.zip" ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[Any] = ( self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data ) lowerCAmelCase : str = cached_path( snake_case__ , cache_dir=self.cache_dir , extract_compressed_file=snake_case__ , force_extract=snake_case__ ) return os.path.join(snake_case__ , self.dummy_file_name ) @property def lowercase__ ( self ): """simple docstring""" return os.path.join(self.datasets_scripts_dir , self.dataset_name , self.dummy_zip_file ) @property def lowercase__ ( self ): """simple docstring""" if self._bucket_url is None: lowerCAmelCase : Union[str, Any] = hf_github_url(self.dataset_name , self.dummy_zip_file.replace(os.sep , "/" ) ) return self._bucket_url @property def lowercase__ ( self ): """simple docstring""" if os.path.isdir(self.dummy_file ): return self.dummy_file # else cut off path to file -> example `xsum`. return "/".join(self.dummy_file.replace(os.sep , "/" ).split("/" )[:-1] ) def lowercase__ ( self , snake_case__ , *snake_case__ ): """simple docstring""" if self.load_existing_dummy_data: # dummy data is downloaded and tested lowerCAmelCase : int = self.dummy_file else: # dummy data cannot be downloaded and only the path to dummy file is returned lowerCAmelCase : List[Any] = self.dummy_file_name # special case when data_url is a dict if isinstance(snake_case__ , snake_case__ ): return self.create_dummy_data_dict(snake_case__ , snake_case__ ) elif isinstance(snake_case__ , (list, tuple) ): return self.create_dummy_data_list(snake_case__ , snake_case__ ) else: return self.create_dummy_data_single(snake_case__ , snake_case__ ) def lowercase__ ( self , snake_case__ , *snake_case__ ): """simple docstring""" return self.download_and_extract(snake_case__ ) def lowercase__ ( self , snake_case__ , snake_case__ ): """simple docstring""" return self.download_and_extract(snake_case__ ) def lowercase__ ( self , snake_case__ , *snake_case__ , **snake_case__ ): """simple docstring""" return path def lowercase__ ( self ): """simple docstring""" return {} def lowercase__ ( self , snake_case__ , snake_case__ ): """simple docstring""" lowerCAmelCase : List[Any] = {} for key, single_urls in data_url.items(): for download_callback in self.download_callbacks: if isinstance(snake_case__ , snake_case__ ): for single_url in single_urls: download_callback(snake_case__ ) else: lowerCAmelCase : List[str] = single_urls download_callback(snake_case__ ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus if isinstance(snake_case__ , snake_case__ ): lowerCAmelCase : Tuple = [os.path.join(snake_case__ , urllib.parse.quote_plus(Path(snake_case__ ).name ) ) for x in single_urls] else: lowerCAmelCase : int = single_urls lowerCAmelCase : Any = os.path.join(snake_case__ , urllib.parse.quote_plus(Path(snake_case__ ).name ) ) lowerCAmelCase : Union[str, Any] = value # make sure that values are unique if all(isinstance(snake_case__ , snake_case__ ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len( dummy_data_dict.values() ): # append key to value to make its name unique lowerCAmelCase : Union[str, Any] = {key: value + key for key, value in dummy_data_dict.items()} return dummy_data_dict def lowercase__ ( self , snake_case__ , snake_case__ ): """simple docstring""" lowerCAmelCase : Dict = [] # trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one lowerCAmelCase : Optional[Any] = all(bool(re.findall("[0-9]{3,}-of-[0-9]{3,}" , snake_case__ ) ) for url in data_url ) lowerCAmelCase : Any = all( url.startswith("https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed" ) for url in data_url ) if data_url and (is_tf_records or is_pubmed_records): lowerCAmelCase : int = [data_url[0]] * len(snake_case__ ) for single_url in data_url: for download_callback in self.download_callbacks: download_callback(snake_case__ ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus lowerCAmelCase : Dict = os.path.join(snake_case__ , urllib.parse.quote_plus(single_url.split("/" )[-1] ) ) dummy_data_list.append(snake_case__ ) return dummy_data_list def lowercase__ ( self , snake_case__ , snake_case__ ): """simple docstring""" for download_callback in self.download_callbacks: download_callback(snake_case__ ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus lowerCAmelCase : Tuple = os.path.join(snake_case__ , urllib.parse.quote_plus(data_url.split("/" )[-1] ) ) if os.path.exists(snake_case__ ) or not self.load_existing_dummy_data: return value else: # Backward compatibility, maybe deprecate at one point. # For many datasets with single url calls to dl_manager.download_and_extract, # the dummy_data.zip file is actually the zipped downloaded file # while now we expected the dummy_data.zip file to be a directory containing # the downloaded file. return path_to_dummy_data def lowercase__ ( self ): """simple docstring""" pass def lowercase__ ( self ): """simple docstring""" pass def lowercase__ ( self , snake_case__ ): """simple docstring""" def _iter_archive_members(snake_case__ ): # this preserves the order of the members inside the ZIP archive lowerCAmelCase : str = Path(self.dummy_file ).parent lowerCAmelCase : Optional[Any] = path.relative_to(snake_case__ ) with ZipFile(self.local_path_to_dummy_data ) as zip_file: lowerCAmelCase : List[Any] = zip_file.namelist() for member in members: if member.startswith(relative_path.as_posix() ): yield dummy_parent_path.joinpath(snake_case__ ) lowerCAmelCase : List[Any] = Path(snake_case__ ) lowerCAmelCase : str = _iter_archive_members(snake_case__ ) if self.use_local_dummy_data else path.rglob("*" ) for file_path in file_paths: if file_path.is_file() and not file_path.name.startswith((".", "__") ): yield file_path.relative_to(snake_case__ ).as_posix(), file_path.open("rb" ) def lowercase__ ( self , snake_case__ ): """simple docstring""" if not isinstance(snake_case__ , snake_case__ ): lowerCAmelCase : List[Any] = [paths] for path in paths: if os.path.isfile(snake_case__ ): if os.path.basename(snake_case__ ).startswith((".", "__") ): return yield path else: for dirpath, dirnames, filenames in os.walk(snake_case__ ): if os.path.basename(snake_case__ ).startswith((".", "__") ): continue dirnames.sort() for filename in sorted(snake_case__ ): if filename.startswith((".", "__") ): continue yield os.path.join(snake_case__ , snake_case__ )
108
0
"""simple docstring""" import csv from collections import defaultdict from dataclasses import dataclass, field from typing import List, Optional import matplotlib.pyplot as plt import numpy as np from matplotlib.ticker import ScalarFormatter from transformers import HfArgumentParser def a__ ( SCREAMING_SNAKE_CASE : str=None , SCREAMING_SNAKE_CASE : str=None ): '''simple docstring''' return field(default_factory=lambda: default , metadata=SCREAMING_SNAKE_CASE ) @dataclass class SCREAMING_SNAKE_CASE__ : """simple docstring""" a : str =field( metadata={"help": "The csv file to plot."} , ) a : bool =field( default=lowercase , metadata={"help": "Whether to plot along batch size or sequence length. Defaults to sequence length."} , ) a : bool =field( default=lowercase , metadata={"help": "Whether the csv file has time results or memory results. Defaults to memory results."} , ) a : bool =field( default=lowercase , metadata={"help": "Disable logarithmic scale when plotting"} , ) a : bool =field( default=lowercase , metadata={ "help": "Whether the csv file has training results or inference results. Defaults to inference results." } , ) a : Optional[str] =field( default=lowercase , metadata={"help": "Filename under which the plot will be saved. If unused no plot is saved."} , ) a : Optional[List[str]] =list_field( default=lowercase , metadata={"help": "List of model names that are used instead of the ones in the csv file."} ) def a__ ( SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' try: int(SCREAMING_SNAKE_CASE ) return True except ValueError: return False def a__ ( SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' try: float(SCREAMING_SNAKE_CASE ) return True except ValueError: return False class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self , snake_case__ ): """simple docstring""" lowerCAmelCase : str = args lowerCAmelCase : List[str] = defaultdict(lambda: {"bsz": [], "seq_len": [], "result": {}} ) with open(self.args.csv_file , newline="" ) as csv_file: lowerCAmelCase : List[Any] = csv.DictReader(snake_case__ ) for row in reader: lowerCAmelCase : Dict = row["model"] self.result_dict[model_name]["bsz"].append(int(row["batch_size"] ) ) self.result_dict[model_name]["seq_len"].append(int(row["sequence_length"] ) ) if can_convert_to_int(row["result"] ): # value is not None lowerCAmelCase : Optional[Any] = int(row["result"] ) elif can_convert_to_float(row["result"] ): # value is not None lowerCAmelCase : Any = float(row["result"] ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase , lowerCAmelCase : List[Any] = plt.subplots() lowerCAmelCase : Any = "Time usage" if self.args.is_time else "Memory usage" lowerCAmelCase : str = title_str + " for training" if self.args.is_train else title_str + " for inference" if not self.args.no_log_scale: # set logarithm scales ax.set_xscale("log" ) ax.set_yscale("log" ) for axis in [ax.xaxis, ax.yaxis]: axis.set_major_formatter(ScalarFormatter() ) for model_name_idx, model_name in enumerate(self.result_dict.keys() ): lowerCAmelCase : Tuple = sorted(set(self.result_dict[model_name]["bsz"] ) ) lowerCAmelCase : Dict = sorted(set(self.result_dict[model_name]["seq_len"] ) ) lowerCAmelCase : int = self.result_dict[model_name]["result"] ((lowerCAmelCase) , (lowerCAmelCase)) : List[Any] = ( (batch_sizes, sequence_lengths) if self.args.plot_along_batch else (sequence_lengths, batch_sizes) ) lowerCAmelCase : Dict = ( model_name if self.args.short_model_names is None else self.args.short_model_names[model_name_idx] ) for inner_loop_value in inner_loop_array: if self.args.plot_along_batch: lowerCAmelCase : Optional[Any] = np.asarray( [results[(x, inner_loop_value)] for x in x_axis_array if (x, inner_loop_value) in results] , dtype=snake_case__ , ) else: lowerCAmelCase : List[str] = np.asarray( [results[(inner_loop_value, x)] for x in x_axis_array if (inner_loop_value, x) in results] , dtype=np.floataa , ) ((lowerCAmelCase) , (lowerCAmelCase)) : Tuple = ( ("batch_size", "len") if self.args.plot_along_batch else ("in #tokens", "bsz") ) lowerCAmelCase : int = np.asarray(snake_case__ , snake_case__ )[: len(snake_case__ )] plt.scatter( snake_case__ , snake_case__ , label=f"""{label_model_name} - {inner_loop_label}: {inner_loop_value}""" ) plt.plot(snake_case__ , snake_case__ , "--" ) title_str += f""" {label_model_name} vs.""" lowerCAmelCase : Dict = title_str[:-4] lowerCAmelCase : Optional[int] = "Time in s" if self.args.is_time else "Memory in MB" # plot plt.title(snake_case__ ) plt.xlabel(snake_case__ ) plt.ylabel(snake_case__ ) plt.legend() if self.args.figure_png_file is not None: plt.savefig(self.args.figure_png_file ) else: plt.show() def a__ ( ): '''simple docstring''' lowerCAmelCase : Any = HfArgumentParser(SCREAMING_SNAKE_CASE ) lowerCAmelCase : List[Any] = parser.parse_args_into_dataclasses()[0] lowerCAmelCase : Dict = Plot(args=SCREAMING_SNAKE_CASE ) plot.plot() if __name__ == "__main__": main()
133
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaImgaImgPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class SCREAMING_SNAKE_CASE__ ( lowercase , unittest.TestCase ): """simple docstring""" a : Optional[Any] =KandinskyVaaImgaImgPipeline a : Optional[int] =["image_embeds", "negative_image_embeds", "image"] a : Optional[int] =[ "image_embeds", "negative_image_embeds", "image", ] a : str =[ "generator", "height", "width", "strength", "guidance_scale", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] a : Dict =False @property def lowercase__ ( self ): """simple docstring""" return 32 @property def lowercase__ ( self ): """simple docstring""" return 32 @property def lowercase__ ( self ): """simple docstring""" return self.time_input_dim @property def lowercase__ ( self ): """simple docstring""" return self.time_input_dim * 4 @property def lowercase__ ( self ): """simple docstring""" return 100 @property def lowercase__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowerCAmelCase : List[str] = { "in_channels": 4, # Out channels is double in channels because predicts mean and variance "out_channels": 8, "addition_embed_type": "image", "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "layers_per_block": 1, "encoder_hid_dim": self.text_embedder_hidden_size, "encoder_hid_dim_type": "image_proj", "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": None, } lowerCAmelCase : int = UNetaDConditionModel(**snake_case__ ) return model @property def lowercase__ ( self ): """simple docstring""" return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def lowercase__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowerCAmelCase : Optional[int] = VQModel(**self.dummy_movq_kwargs ) return model def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[Any] = self.dummy_unet lowerCAmelCase : Optional[int] = self.dummy_movq lowerCAmelCase : List[str] = { "num_train_timesteps": 1_000, "beta_schedule": "linear", "beta_start": 0.00085, "beta_end": 0.012, "clip_sample": False, "set_alpha_to_one": False, "steps_offset": 0, "prediction_type": "epsilon", "thresholding": False, } lowerCAmelCase : Tuple = DDIMScheduler(**snake_case__ ) lowerCAmelCase : Optional[Any] = { "unet": unet, "scheduler": scheduler, "movq": movq, } return components def lowercase__ ( self , snake_case__ , snake_case__=0 ): """simple docstring""" lowerCAmelCase : Any = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(snake_case__ ) ).to(snake_case__ ) lowerCAmelCase : Any = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( snake_case__ ) # create init_image lowerCAmelCase : List[Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(snake_case__ ) ).to(snake_case__ ) lowerCAmelCase : List[str] = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCAmelCase : List[str] = Image.fromarray(np.uinta(snake_case__ ) ).convert("RGB" ).resize((256, 256) ) if str(snake_case__ ).startswith("mps" ): lowerCAmelCase : Optional[int] = torch.manual_seed(snake_case__ ) else: lowerCAmelCase : Optional[int] = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) lowerCAmelCase : List[str] = { "image": init_image, "image_embeds": image_embeds, "negative_image_embeds": negative_image_embeds, "generator": generator, "height": 64, "width": 64, "num_inference_steps": 10, "guidance_scale": 7.0, "strength": 0.2, "output_type": "np", } return inputs def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Tuple = "cpu" lowerCAmelCase : Dict = self.get_dummy_components() lowerCAmelCase : Union[str, Any] = self.pipeline_class(**snake_case__ ) lowerCAmelCase : Optional[int] = pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) lowerCAmelCase : int = pipe(**self.get_dummy_inputs(snake_case__ ) ) lowerCAmelCase : Union[str, Any] = output.images lowerCAmelCase : Union[str, Any] = pipe( **self.get_dummy_inputs(snake_case__ ) , return_dict=snake_case__ , )[0] lowerCAmelCase : Optional[Any] = image[0, -3:, -3:, -1] lowerCAmelCase : Optional[int] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCAmelCase : int = np.array( [0.6199778, 0.63984406, 0.46145785, 0.62944984, 0.5622215, 0.47306132, 0.47441456, 0.4607606, 0.48719263] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" @slow @require_torch_gpu class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def lowercase__ ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[Any] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinskyv22/kandinskyv22_img2img_frog.npy" ) lowerCAmelCase : Tuple = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png" ) lowerCAmelCase : Optional[Any] = "A red cartoon frog, 4k" lowerCAmelCase : int = KandinskyVaaPriorPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-prior" , torch_dtype=torch.floataa ) pipe_prior.to(snake_case__ ) lowerCAmelCase : List[Any] = KandinskyVaaImgaImgPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-decoder" , torch_dtype=torch.floataa ) lowerCAmelCase : Tuple = pipeline.to(snake_case__ ) pipeline.set_progress_bar_config(disable=snake_case__ ) lowerCAmelCase : str = torch.Generator(device="cpu" ).manual_seed(0 ) lowerCAmelCase , lowerCAmelCase : Optional[Any] = pipe_prior( snake_case__ , generator=snake_case__ , num_inference_steps=5 , negative_prompt="" , ).to_tuple() lowerCAmelCase : Tuple = pipeline( image=snake_case__ , image_embeds=snake_case__ , negative_image_embeds=snake_case__ , generator=snake_case__ , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type="np" , ) lowerCAmelCase : Optional[Any] = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(snake_case__ , snake_case__ )
133
1
'''simple docstring''' def __snake_case( _lowerCAmelCase ) -> str: if isinstance(_lowerCAmelCase , _lowerCAmelCase ): raise TypeError("""'float' object cannot be interpreted as an integer""" ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ): raise TypeError("""'str' object cannot be interpreted as an integer""" ) if num == 0: return "0b0" snake_case__ : List[str] = False if num < 0: snake_case__ : Optional[int] = True snake_case__ : Optional[int] = -num snake_case__ : list[int] = [] while num > 0: binary.insert(0 , num % 2 ) num >>= 1 if negative: return "-0b" + "".join(str(_lowerCAmelCase ) for e in binary ) return "0b" + "".join(str(_lowerCAmelCase ) for e in binary ) if __name__ == "__main__": import doctest doctest.testmod()
35
'''simple docstring''' from PIL import Image def __snake_case( _lowerCAmelCase , _lowerCAmelCase ) -> Image: def brightness(_lowerCAmelCase ) -> float: return 128 + level + (c - 128) if not -255.0 <= level <= 255.0: raise ValueError("""level must be between -255.0 (black) and 255.0 (white)""" ) return img.point(_lowerCAmelCase ) if __name__ == "__main__": # Load image with Image.open("image_data/lena.jpg") as img: # Change brightness to 100 __a = change_brightness(img, 100) brigt_img.save("image_data/lena_brightness.png", format="png")
35
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging snake_case_ = logging.get_logger(__name__) snake_case_ = { 'YituTech/conv-bert-base': 'https://huggingface.co/YituTech/conv-bert-base/resolve/main/config.json', 'YituTech/conv-bert-medium-small': ( 'https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/config.json' ), 'YituTech/conv-bert-small': 'https://huggingface.co/YituTech/conv-bert-small/resolve/main/config.json', # See all ConvBERT models at https://huggingface.co/models?filter=convbert } class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): A_ : Any = 'convbert' def __init__(self : Tuple , a__ : int=3_0522 , a__ : Union[str, Any]=768 , a__ : Any=12 , a__ : Any=12 , a__ : Optional[Any]=3072 , a__ : List[str]="gelu" , a__ : Optional[int]=0.1 , a__ : Tuple=0.1 , a__ : List[Any]=512 , a__ : Dict=2 , a__ : Tuple=0.0_2 , a__ : Tuple=1E-12 , a__ : Optional[int]=1 , a__ : List[str]=0 , a__ : int=2 , a__ : Tuple=768 , a__ : List[Any]=2 , a__ : Optional[int]=9 , a__ : List[str]=1 , a__ : Dict=None , **a__ : str , ): """simple docstring""" super().__init__( pad_token_id=a__ , bos_token_id=a__ , eos_token_id=a__ , **a__ , ) __snake_case = vocab_size __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = intermediate_size __snake_case = hidden_act __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = max_position_embeddings __snake_case = type_vocab_size __snake_case = initializer_range __snake_case = layer_norm_eps __snake_case = embedding_size __snake_case = head_ratio __snake_case = conv_kernel_size __snake_case = num_groups __snake_case = classifier_dropout class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): @property def a (self : str ): """simple docstring""" if self.task == "multiple-choice": __snake_case = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __snake_case = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ] )
238
def lowerCamelCase__ ( snake_case_ : int = 1000 ) -> int: __snake_case = 2**power __snake_case = str(snake_case_ ) __snake_case = list(snake_case_ ) __snake_case = 0 for i in list_num: sum_of_num += int(snake_case_ ) return sum_of_num if __name__ == "__main__": snake_case_ = int(input('Enter the power of 2: ').strip()) print('2 ^ ', power, ' = ', 2**power) snake_case_ = solution(power) print('Sum of the digits is: ', result)
238
1
"""simple docstring""" from typing import Callable, List, Optional, Union import PIL import torch from transformers import ( CLIPImageProcessor, CLIPSegForImageSegmentation, CLIPSegProcessor, CLIPTextModel, CLIPTokenizer, ) from diffusers import DiffusionPipeline from diffusers.configuration_utils import FrozenDict from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionInpaintPipeline from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import deprecate, is_accelerate_available, logging a__ : str = logging.get_logger(__name__) # pylint: disable=invalid-name class UpperCamelCase_ ( UpperCamelCase): """simple docstring""" def __init__( self : List[Any] , UpperCAmelCase__ : CLIPSegForImageSegmentation , UpperCAmelCase__ : CLIPSegProcessor , UpperCAmelCase__ : AutoencoderKL , UpperCAmelCase__ : CLIPTextModel , UpperCAmelCase__ : CLIPTokenizer , UpperCAmelCase__ : UNetaDConditionModel , UpperCAmelCase__ : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , UpperCAmelCase__ : StableDiffusionSafetyChecker , UpperCAmelCase__ : CLIPImageProcessor , ) -> List[Any]: super().__init__() if hasattr(scheduler.config , "steps_offset" ) and scheduler.config.steps_offset != 1: __SCREAMING_SNAKE_CASE = ( F"""The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`""" F""" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure """ "to update the config accordingly as leaving `steps_offset` might led to incorrect results" " in future versions. If you have downloaded this checkpoint from the Hugging Face Hub," " it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`" " file" ) deprecate("steps_offset!=1" , "1.0.0" , UpperCAmelCase__ , standard_warn=UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = dict(scheduler.config ) __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE = FrozenDict(UpperCAmelCase__ ) if hasattr(scheduler.config , "skip_prk_steps" ) and scheduler.config.skip_prk_steps is False: __SCREAMING_SNAKE_CASE = ( F"""The configuration file of this scheduler: {scheduler} has not set the configuration""" " `skip_prk_steps`. `skip_prk_steps` should be set to True in the configuration file. Please make" " sure to update the config accordingly as not setting `skip_prk_steps` in the config might lead to" " incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face" " Hub, it would be very nice if you could open a Pull request for the" " `scheduler/scheduler_config.json` file" ) deprecate("skip_prk_steps not set" , "1.0.0" , UpperCAmelCase__ , standard_warn=UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = dict(scheduler.config ) __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = FrozenDict(UpperCAmelCase__ ) if safety_checker is None: logger.warning( F"""You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure""" " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" " results in services or applications open to the public. Both the diffusers team and Hugging Face" " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" " it only for use-cases that involve analyzing network behavior or auditing its results. For more" " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." ) self.register_modules( segmentation_model=UpperCAmelCase__ , segmentation_processor=UpperCAmelCase__ , vae=UpperCAmelCase__ , text_encoder=UpperCAmelCase__ , tokenizer=UpperCAmelCase__ , unet=UpperCAmelCase__ , scheduler=UpperCAmelCase__ , safety_checker=UpperCAmelCase__ , feature_extractor=UpperCAmelCase__ , ) def UpperCAmelCase_ ( self : Optional[Any] , UpperCAmelCase__ : Optional[Union[str, int]] = "auto" ) -> List[str]: if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory __SCREAMING_SNAKE_CASE = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(UpperCAmelCase__ ) def UpperCAmelCase_ ( self : Tuple ) -> List[Any]: self.enable_attention_slicing(UpperCAmelCase__ ) def UpperCAmelCase_ ( self : Dict ) -> Dict: if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`" ) __SCREAMING_SNAKE_CASE = torch.device("cuda" ) for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae, self.safety_checker]: if cpu_offloaded_model is not None: cpu_offload(UpperCAmelCase__ , UpperCAmelCase__ ) @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def UpperCAmelCase_ ( self : Union[str, Any] ) -> Any: if self.device != torch.device("meta" ) or not hasattr(self.unet , "_hf_hook" ): return self.device for module in self.unet.modules(): if ( hasattr(UpperCAmelCase__ , "_hf_hook" ) and hasattr(module._hf_hook , "execution_device" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() def __call__( self : List[Any] , UpperCAmelCase__ : Union[str, List[str]] , UpperCAmelCase__ : Union[torch.FloatTensor, PIL.Image.Image] , UpperCAmelCase__ : str , UpperCAmelCase__ : int = 5_1_2 , UpperCAmelCase__ : int = 5_1_2 , UpperCAmelCase__ : int = 5_0 , UpperCAmelCase__ : float = 7.5 , UpperCAmelCase__ : Optional[Union[str, List[str]]] = None , UpperCAmelCase__ : Optional[int] = 1 , UpperCAmelCase__ : float = 0.0 , UpperCAmelCase__ : Optional[torch.Generator] = None , UpperCAmelCase__ : Optional[torch.FloatTensor] = None , UpperCAmelCase__ : Optional[str] = "pil" , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , UpperCAmelCase__ : int = 1 , **UpperCAmelCase__ : Optional[Any] , ) -> Any: __SCREAMING_SNAKE_CASE = self.segmentation_processor( text=[text] , images=[image] , padding="max_length" , return_tensors="pt" ).to(self.device ) __SCREAMING_SNAKE_CASE = self.segmentation_model(**UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = torch.sigmoid(outputs.logits ).cpu().detach().unsqueeze(-1 ).numpy() __SCREAMING_SNAKE_CASE = self.numpy_to_pil(UpperCAmelCase__ )[0].resize(image.size ) # Run inpainting pipeline with the generated mask __SCREAMING_SNAKE_CASE = StableDiffusionInpaintPipeline( vae=self.vae , text_encoder=self.text_encoder , tokenizer=self.tokenizer , unet=self.unet , scheduler=self.scheduler , safety_checker=self.safety_checker , feature_extractor=self.feature_extractor , ) return inpainting_pipeline( prompt=UpperCAmelCase__ , image=UpperCAmelCase__ , mask_image=UpperCAmelCase__ , height=UpperCAmelCase__ , width=UpperCAmelCase__ , num_inference_steps=UpperCAmelCase__ , guidance_scale=UpperCAmelCase__ , negative_prompt=UpperCAmelCase__ , num_images_per_prompt=UpperCAmelCase__ , eta=UpperCAmelCase__ , generator=UpperCAmelCase__ , latents=UpperCAmelCase__ , output_type=UpperCAmelCase__ , return_dict=UpperCAmelCase__ , callback=UpperCAmelCase__ , callback_steps=UpperCAmelCase__ , )
54
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roberta import RobertaTokenizer _lowerCAmelCase : int = logging.get_logger(__name__) _lowerCAmelCase : Optional[int] = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} _lowerCAmelCase : List[Any] = { '''vocab_file''': { '''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/vocab.json''', '''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/vocab.json''', '''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/vocab.json''', '''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/vocab.json''', '''roberta-base-openai-detector''': '''https://huggingface.co/roberta-base-openai-detector/resolve/main/vocab.json''', '''roberta-large-openai-detector''': ( '''https://huggingface.co/roberta-large-openai-detector/resolve/main/vocab.json''' ), }, '''merges_file''': { '''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/merges.txt''', '''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/merges.txt''', '''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/merges.txt''', '''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/merges.txt''', '''roberta-base-openai-detector''': '''https://huggingface.co/roberta-base-openai-detector/resolve/main/merges.txt''', '''roberta-large-openai-detector''': ( '''https://huggingface.co/roberta-large-openai-detector/resolve/main/merges.txt''' ), }, '''tokenizer_file''': { '''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/tokenizer.json''', '''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/tokenizer.json''', '''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/tokenizer.json''', '''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/tokenizer.json''', '''roberta-base-openai-detector''': ( '''https://huggingface.co/roberta-base-openai-detector/resolve/main/tokenizer.json''' ), '''roberta-large-openai-detector''': ( '''https://huggingface.co/roberta-large-openai-detector/resolve/main/tokenizer.json''' ), }, } _lowerCAmelCase : Any = { '''roberta-base''': 512, '''roberta-large''': 512, '''roberta-large-mnli''': 512, '''distilroberta-base''': 512, '''roberta-base-openai-detector''': 512, '''roberta-large-openai-detector''': 512, } class __magic_name__ ( lowerCamelCase__ ): """simple docstring""" __UpperCamelCase = VOCAB_FILES_NAMES __UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase = ['''input_ids''', '''attention_mask'''] __UpperCamelCase = RobertaTokenizer def __init__( self :Dict , snake_case :List[str]=None , snake_case :List[Any]=None , snake_case :Union[str, Any]=None , snake_case :List[str]="replace" , snake_case :Tuple="<s>" , snake_case :Union[str, Any]="</s>" , snake_case :str="</s>" , snake_case :Union[str, Any]="<s>" , snake_case :int="<unk>" , snake_case :Tuple="<pad>" , snake_case :List[str]="<mask>" , snake_case :Any=False , snake_case :Union[str, Any]=True , **snake_case :Optional[int] , ): '''simple docstring''' super().__init__( snake_case , snake_case , tokenizer_file=snake_case , errors=snake_case , bos_token=snake_case , eos_token=snake_case , sep_token=snake_case , cls_token=snake_case , unk_token=snake_case , pad_token=snake_case , mask_token=snake_case , add_prefix_space=snake_case , trim_offsets=snake_case , **snake_case , ) A_ : Optional[Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , snake_case ) != add_prefix_space: A_ : Dict = getattr(snake_case , pre_tok_state.pop("type" ) ) A_ : Optional[int] = add_prefix_space A_ : int = pre_tok_class(**snake_case ) A_ : Optional[int] = add_prefix_space A_ : Optional[int] = "post_processor" A_ : Dict = getattr(self.backend_tokenizer , snake_case , snake_case ) if tokenizer_component_instance: A_ : Dict = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: A_ : List[Any] = tuple(state["sep"] ) if "cls" in state: A_ : Optional[Any] = tuple(state["cls"] ) A_ : Tuple = False if state.get("add_prefix_space" , snake_case ) != add_prefix_space: A_ : List[Any] = add_prefix_space A_ : Optional[int] = True if state.get("trim_offsets" , snake_case ) != trim_offsets: A_ : List[str] = trim_offsets A_ : Any = True if changes_to_apply: A_ : Optional[Any] = getattr(snake_case , state.pop("type" ) ) A_ : Any = component_class(**snake_case ) setattr(self.backend_tokenizer , snake_case , snake_case ) @property def SCREAMING_SNAKE_CASE ( self :List[Any] ): '''simple docstring''' if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def SCREAMING_SNAKE_CASE ( self :Any , snake_case :Dict ): '''simple docstring''' A_ : Dict = AddedToken(snake_case , lstrip=snake_case , rstrip=snake_case ) if isinstance(snake_case , snake_case ) else value A_ : Any = value def SCREAMING_SNAKE_CASE ( self :Dict , *snake_case :Tuple , **snake_case :Union[str, Any] ): '''simple docstring''' A_ : Any = kwargs.get("is_split_into_words" , snake_case ) assert self.add_prefix_space or not is_split_into_words, ( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*snake_case , **snake_case ) def SCREAMING_SNAKE_CASE ( self :List[str] , *snake_case :str , **snake_case :Union[str, Any] ): '''simple docstring''' A_ : Any = kwargs.get("is_split_into_words" , snake_case ) assert self.add_prefix_space or not is_split_into_words, ( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._encode_plus(*snake_case , **snake_case ) def SCREAMING_SNAKE_CASE ( self :Union[str, Any] , snake_case :str , snake_case :Optional[str] = None ): '''simple docstring''' A_ : str = self._tokenizer.model.save(snake_case , name=snake_case ) return tuple(snake_case ) def SCREAMING_SNAKE_CASE ( self :List[str] , snake_case :List[str] , snake_case :Optional[Any]=None ): '''simple docstring''' A_ : int = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def SCREAMING_SNAKE_CASE ( self :Any , snake_case :List[int] , snake_case :Optional[List[int]] = None ): '''simple docstring''' A_ : Any = [self.sep_token_id] A_ : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
300
0
def UpperCAmelCase_ ( __UpperCAmelCase : int , __UpperCAmelCase : Union[str, Any] ) -> List[Any]: SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = len(__UpperCAmelCase ) - 1 while left <= right: # avoid divided by 0 during interpolation if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None SCREAMING_SNAKE_CASE_ = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(__UpperCAmelCase ): return None SCREAMING_SNAKE_CASE_ = sorted_collection[point] if current_item == item: return point else: if point < left: SCREAMING_SNAKE_CASE_ = left SCREAMING_SNAKE_CASE_ = point elif point > right: SCREAMING_SNAKE_CASE_ = right SCREAMING_SNAKE_CASE_ = point else: if item < current_item: SCREAMING_SNAKE_CASE_ = point - 1 else: SCREAMING_SNAKE_CASE_ = point + 1 return None def UpperCAmelCase_ ( __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Tuple , __UpperCAmelCase : Tuple ) -> List[str]: # avoid divided by 0 during interpolation if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None SCREAMING_SNAKE_CASE_ = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(__UpperCAmelCase ): return None if sorted_collection[point] == item: return point elif point < left: return interpolation_search_by_recursion(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) elif point > right: return interpolation_search_by_recursion(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) else: if sorted_collection[point] > item: return interpolation_search_by_recursion( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , point - 1 ) else: return interpolation_search_by_recursion( __UpperCAmelCase , __UpperCAmelCase , point + 1 , __UpperCAmelCase ) def UpperCAmelCase_ ( __UpperCAmelCase : str ) -> List[str]: if collection != sorted(__UpperCAmelCase ): raise ValueError('Collection must be ascending sorted' ) return True if __name__ == "__main__": import sys lowerCamelCase__ : Dict = 0 if debug == 1: lowerCamelCase__ : str = [10, 30, 40, 45, 50, 66, 77, 93] try: __assert_sorted(collection) except ValueError: sys.exit('Sequence must be ascending sorted to apply interpolation search') lowerCamelCase__ : Union[str, Any] = 67 lowerCamelCase__ : Tuple = interpolation_search(collection, target) if result is not None: print(f'''{target} found at positions: {result}''') else: print('Not found')
210
def UpperCAmelCase_ ( __UpperCAmelCase : str ) -> str: SCREAMING_SNAKE_CASE_ = '' for ch in key: if ch == " " or ch not in key_no_dups and ch.isalpha(): key_no_dups += ch return key_no_dups def UpperCAmelCase_ ( __UpperCAmelCase : str ) -> dict[str, str]: SCREAMING_SNAKE_CASE_ = [chr(i + 65 ) for i in range(26 )] # Remove duplicate characters from key SCREAMING_SNAKE_CASE_ = remove_duplicates(key.upper() ) SCREAMING_SNAKE_CASE_ = len(__UpperCAmelCase ) # First fill cipher with key characters SCREAMING_SNAKE_CASE_ = {alphabet[i]: char for i, char in enumerate(__UpperCAmelCase )} # Then map remaining characters in alphabet to # the alphabet from the beginning for i in range(len(__UpperCAmelCase ) , 26 ): SCREAMING_SNAKE_CASE_ = alphabet[i - offset] # Ensure we are not mapping letters to letters previously mapped while char in key: offset -= 1 SCREAMING_SNAKE_CASE_ = alphabet[i - offset] SCREAMING_SNAKE_CASE_ = char return cipher_alphabet def UpperCAmelCase_ ( __UpperCAmelCase : str , __UpperCAmelCase : dict[str, str] ) -> str: return "".join(cipher_map.get(__UpperCAmelCase , __UpperCAmelCase ) for ch in message.upper() ) def UpperCAmelCase_ ( __UpperCAmelCase : str , __UpperCAmelCase : dict[str, str] ) -> str: SCREAMING_SNAKE_CASE_ = {v: k for k, v in cipher_map.items()} return "".join(rev_cipher_map.get(__UpperCAmelCase , __UpperCAmelCase ) for ch in message.upper() ) def UpperCAmelCase_ ( ) -> None: SCREAMING_SNAKE_CASE_ = input('Enter message to encode or decode: ' ).strip() SCREAMING_SNAKE_CASE_ = input('Enter keyword: ' ).strip() SCREAMING_SNAKE_CASE_ = input('Encipher or decipher? E/D:' ).strip()[0].lower() try: SCREAMING_SNAKE_CASE_ = {'e': encipher, 'd': decipher}[option] except KeyError: raise KeyError('invalid input option' ) SCREAMING_SNAKE_CASE_ = create_cipher_map(__UpperCAmelCase ) print(func(__UpperCAmelCase , __UpperCAmelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
210
1
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert_fast import BertTokenizerFast from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} lowerCAmelCase = { '''vocab_file''': { '''facebook/dpr-ctx_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-ctx_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-ctx_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-ctx_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json''' ), }, } lowerCAmelCase = { '''vocab_file''': { '''facebook/dpr-question_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-question_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-question_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-question_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json''' ), }, } lowerCAmelCase = { '''vocab_file''': { '''facebook/dpr-reader-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-reader-multiset-base''': ( '''https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-reader-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-reader-multiset-base''': ( '''https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json''' ), }, } lowerCAmelCase = { '''facebook/dpr-ctx_encoder-single-nq-base''': 5_1_2, '''facebook/dpr-ctx_encoder-multiset-base''': 5_1_2, } lowerCAmelCase = { '''facebook/dpr-question_encoder-single-nq-base''': 5_1_2, '''facebook/dpr-question_encoder-multiset-base''': 5_1_2, } lowerCAmelCase = { '''facebook/dpr-reader-single-nq-base''': 5_1_2, '''facebook/dpr-reader-multiset-base''': 5_1_2, } lowerCAmelCase = { '''facebook/dpr-ctx_encoder-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-ctx_encoder-multiset-base''': {'''do_lower_case''': True}, } lowerCAmelCase = { '''facebook/dpr-question_encoder-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-question_encoder-multiset-base''': {'''do_lower_case''': True}, } lowerCAmelCase = { '''facebook/dpr-reader-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-reader-multiset-base''': {'''do_lower_case''': True}, } class A ( A_ ): UpperCamelCase_ : List[Any] =VOCAB_FILES_NAMES UpperCamelCase_ : Dict =CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ : List[Any] =CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ : Optional[int] =CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION UpperCamelCase_ : int =DPRContextEncoderTokenizer class A ( A_ ): UpperCamelCase_ : Any =VOCAB_FILES_NAMES UpperCamelCase_ : List[str] =QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ : Optional[Any] =QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ : Optional[Any] =QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION UpperCamelCase_ : List[Any] =DPRQuestionEncoderTokenizer lowerCAmelCase = collections.namedtuple( '''DPRSpanPrediction''', ['''span_score''', '''relevance_score''', '''doc_id''', '''start_index''', '''end_index''', '''text'''] ) lowerCAmelCase = collections.namedtuple('''DPRReaderOutput''', ['''start_logits''', '''end_logits''', '''relevance_logits''']) lowerCAmelCase = R''' Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`. It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers), using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)` with the format: [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids> Args: questions (`str` or `List[str]`): The questions to be encoded. You can specify one question for many passages. In this case, the question will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in `titles` or `texts`. titles (`str` or `List[str]`): The passages titles to be encoded. This can be a string or a list of strings if there are several passages. texts (`str` or `List[str]`): The passages texts to be encoded. This can be a string or a list of strings if there are several passages. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): Activates and controls padding. Accepts the following values: - `True` or `\'longest\'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `\'max_length\'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `\'do_not_pad\'` (default): No padding (i.e., can output a batch with sequences of different lengths). truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`): Activates and controls truncation. Accepts the following values: - `True` or `\'longest_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided. - `\'only_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `\'only_second\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `False` or `\'do_not_truncate\'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size). max_length (`int`, *optional*): Controls the maximum length to use by one of the truncation/padding parameters. If left unset or set to `None`, this will use the predefined model maximum length if a maximum length is required by one of the truncation/padding parameters. If the model has no specific maximum input length (like XLNet) truncation/padding to a maximum length will be deactivated. return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `\'tf\'`: Return TensorFlow `tf.constant` objects. - `\'pt\'`: Return PyTorch `torch.Tensor` objects. - `\'np\'`: Return Numpy `np.ndarray` objects. return_attention_mask (`bool`, *optional*): Whether or not to return the attention mask. If not set, will return the attention mask according to the specific tokenizer\'s default, defined by the `return_outputs` attribute. [What are attention masks?](../glossary#attention-mask) Return: `Dict[str, List[List[int]]]`: A dictionary with the following keys: - `input_ids`: List of token ids to be fed to a model. - `attention_mask`: List of indices specifying which tokens should be attended to by the model. ''' @add_start_docstrings(A_ ) class A : def __call__(self , lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = False , lowerCAmelCase = False , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , **lowerCAmelCase , ): if titles is None and texts is None: return super().__call__( lowerCAmelCase , padding=lowerCAmelCase , truncation=lowerCAmelCase , max_length=lowerCAmelCase , return_tensors=lowerCAmelCase , return_attention_mask=lowerCAmelCase , **lowerCAmelCase , ) elif titles is None or texts is None: __lowercase= titles if texts is None else texts return super().__call__( lowerCAmelCase , lowerCAmelCase , padding=lowerCAmelCase , truncation=lowerCAmelCase , max_length=lowerCAmelCase , return_tensors=lowerCAmelCase , return_attention_mask=lowerCAmelCase , **lowerCAmelCase , ) __lowercase= titles if not isinstance(lowerCAmelCase , lowerCAmelCase ) else [titles] __lowercase= texts if not isinstance(lowerCAmelCase , lowerCAmelCase ) else [texts] __lowercase= len(lowerCAmelCase ) __lowercase= questions if not isinstance(lowerCAmelCase , lowerCAmelCase ) else [questions] * n_passages assert len(lowerCAmelCase ) == len( lowerCAmelCase ), f'There should be as many titles than texts but got {len(lowerCAmelCase )} titles and {len(lowerCAmelCase )} texts.' __lowercase= super().__call__(lowerCAmelCase , lowerCAmelCase , padding=lowerCAmelCase , truncation=lowerCAmelCase )['input_ids'] __lowercase= super().__call__(lowerCAmelCase , add_special_tokens=lowerCAmelCase , padding=lowerCAmelCase , truncation=lowerCAmelCase )['input_ids'] __lowercase= { 'input_ids': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(lowerCAmelCase , lowerCAmelCase ) ] } if return_attention_mask is not False: __lowercase= [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) __lowercase= attention_mask return self.pad(lowerCAmelCase , padding=lowerCAmelCase , max_length=lowerCAmelCase , return_tensors=lowerCAmelCase ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = 1_6 , lowerCAmelCase = 6_4 , lowerCAmelCase = 4 , ): __lowercase= reader_input['input_ids'] __lowercase, __lowercase, __lowercase= reader_output[:3] __lowercase= len(lowerCAmelCase ) __lowercase= sorted(range(lowerCAmelCase ) , reverse=lowerCAmelCase , key=relevance_logits.__getitem__ ) __lowercase= [] for doc_id in sorted_docs: __lowercase= list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence __lowercase= sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: __lowercase= sequence_ids.index(self.pad_token_id ) else: __lowercase= len(lowerCAmelCase ) __lowercase= self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=lowerCAmelCase , top_spans=lowerCAmelCase , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=lowerCAmelCase , start_index=lowerCAmelCase , end_index=lowerCAmelCase , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(lowerCAmelCase ) >= num_spans: break return nbest_spans_predictions[:num_spans] def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , ): __lowercase= [] for start_index, start_score in enumerate(lowerCAmelCase ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) __lowercase= sorted(lowerCAmelCase , key=lambda lowerCAmelCase : x[1] , reverse=lowerCAmelCase ) __lowercase= [] for (start_index, end_index), score in scores: assert start_index <= end_index, f'Wrong span indices: [{start_index}:{end_index}]' __lowercase= end_index - start_index + 1 assert length <= max_answer_length, f'Span is too long: {length} > {max_answer_length}' if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(lowerCAmelCase ) == top_spans: break return chosen_span_intervals @add_end_docstrings(A_ ) class A ( A_ , A_ ): UpperCamelCase_ : Optional[int] =VOCAB_FILES_NAMES UpperCamelCase_ : List[str] =READER_PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ : Dict =READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ : Optional[Any] =READER_PRETRAINED_INIT_CONFIGURATION UpperCamelCase_ : Union[str, Any] =['''input_ids''', '''attention_mask'''] UpperCamelCase_ : Dict =DPRReaderTokenizer
295
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCAmelCase = '''▁''' lowerCAmelCase = {'''vocab_file''': '''spiece.model'''} lowerCAmelCase = { '''vocab_file''': {'''google/pegasus-xsum''': '''https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model'''} } lowerCAmelCase = { '''google/pegasus-xsum''': 5_1_2, } lowerCAmelCase = logging.get_logger(__name__) class A ( A_ ): UpperCamelCase_ : Union[str, Any] =VOCAB_FILES_NAMES UpperCamelCase_ : List[Any] =VOCAB_FILES_NAMES UpperCamelCase_ : int =PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ : Tuple =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ : int =['''input_ids''', '''attention_mask'''] def __init__(self , lowerCAmelCase , lowerCAmelCase="<pad>" , lowerCAmelCase="</s>" , lowerCAmelCase="<unk>" , lowerCAmelCase="<mask_2>" , lowerCAmelCase="<mask_1>" , lowerCAmelCase=None , lowerCAmelCase=1_0_3 , lowerCAmelCase = None , **lowerCAmelCase , ): __lowercase= offset if additional_special_tokens is not None: if not isinstance(lowerCAmelCase , lowerCAmelCase ): raise TypeError( f'additional_special_tokens should be of type {type(lowerCAmelCase )}, but is' f' {type(lowerCAmelCase )}' ) __lowercase= ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ f'<unk_{i}>' for i in range(len(lowerCAmelCase ) , self.offset - 1 ) ] if len(set(lowerCAmelCase ) ) != len(lowerCAmelCase ): raise ValueError( 'Please make sure that the provided additional_special_tokens do not contain an incorrectly' f' shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.' ) __lowercase= additional_special_tokens_extended else: __lowercase= [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [f'<unk_{i}>' for i in range(2 , self.offset )] __lowercase= {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=lowerCAmelCase , unk_token=lowerCAmelCase , mask_token=lowerCAmelCase , pad_token=lowerCAmelCase , mask_token_sent=lowerCAmelCase , offset=lowerCAmelCase , additional_special_tokens=lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **lowerCAmelCase , ) __lowercase= mask_token_sent __lowercase= vocab_file __lowercase= spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(lowerCAmelCase ) # add special tokens to encoder dict __lowercase= { 0: self.pad_token, 1: self.eos_token, } if self.mask_token_sent is not None: self.encoder.update( { 2: self.mask_token_sent, 3: self.mask_token, } ) if self.offset > 0: # entries 2-104 are only used for pretraining and called <mask_1>, <mask_2>, unk_2, ...unk_102 # mask_token_sent is already added to list -> so start at 1 self.encoder.update({i + 3: additional_special_tokens[i] for i in range(1 , self.offset - 1 )} ) __lowercase= {v: k for k, v in self.encoder.items()} @property def _A (self ): return len(self.sp_model ) + self.offset def _A (self ): __lowercase= {self.convert_ids_to_tokens(lowerCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__(self ): __lowercase= self.__dict__.copy() __lowercase= None return state def __setstate__(self , lowerCAmelCase ): __lowercase= d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): __lowercase= {} __lowercase= spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _A (self , lowerCAmelCase ): return self.sp_model.encode(lowerCAmelCase , out_type=lowerCAmelCase ) def _A (self , lowerCAmelCase ): if token in self.decoder: return self.decoder[token] elif token in self.added_tokens_decoder: return self.added_tokens_decoder[token] __lowercase= self.sp_model.piece_to_id(lowerCAmelCase ) return sp_id + self.offset def _A (self , lowerCAmelCase ): if index in self.encoder: return self.encoder[index] elif index in self.added_tokens_encoder: return self.added_tokens_encoder[index] else: __lowercase= self.sp_model.IdToPiece(index - self.offset ) return token def _A (self , lowerCAmelCase ): __lowercase= [] __lowercase= '' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(lowerCAmelCase ) + token __lowercase= [] else: current_sub_tokens.append(lowerCAmelCase ) out_string += self.sp_model.decode(lowerCAmelCase ) return out_string.strip() def _A (self , lowerCAmelCase=False ): return 1 def _A (self , lowerCAmelCase ): __lowercase= set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special return [1 if x in all_special_ids else 0 for x in seq] def _A (self , lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase = False ): if already_has_special_tokens: return self._special_token_mask(lowerCAmelCase ) elif token_ids_a is None: return self._special_token_mask(lowerCAmelCase ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def _A (self , lowerCAmelCase , lowerCAmelCase=None ): if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def _A (self , lowerCAmelCase , lowerCAmelCase = None ): if not os.path.isdir(lowerCAmelCase ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return __lowercase= os.path.join( lowerCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(lowerCAmelCase , 'wb' ) as fi: __lowercase= self.sp_model.serialized_model_proto() fi.write(lowerCAmelCase ) return (out_vocab_file,)
295
1
import sys from typing import Tuple import numpy as np import torch from PIL import Image from torch import nn from transformers.image_utils import PILImageResampling from utils import img_tensorize class _a : def __init__( self: List[Any] , UpperCamelCase_: Any , UpperCamelCase_: Any=sys.maxsize ) -> Any: """simple docstring""" lowercase__ = '''bilinear''' lowercase__ = max_size lowercase__ = short_edge_length def __call__( self: List[Any] , UpperCamelCase_: Optional[int] ) -> Any: """simple docstring""" lowercase__ = [] for img in imgs: lowercase__ , lowercase__ = img.shape[:2] # later: provide list and randomly choose index for resize lowercase__ = np.random.randint(self.short_edge_length[0] , self.short_edge_length[1] + 1 ) if size == 0: return img lowercase__ = size * 1.0 / min(UpperCamelCase_ , UpperCamelCase_ ) if h < w: lowercase__ , lowercase__ = size, scale * w else: lowercase__ , lowercase__ = scale * h, size if max(UpperCamelCase_ , UpperCamelCase_ ) > self.max_size: lowercase__ = self.max_size * 1.0 / max(UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = newh * scale lowercase__ = neww * scale lowercase__ = int(neww + 0.5 ) lowercase__ = int(newh + 0.5 ) if img.dtype == np.uinta: lowercase__ = Image.fromarray(UpperCamelCase_ ) lowercase__ = pil_image.resize((neww, newh) , PILImageResampling.BILINEAR ) lowercase__ = np.asarray(UpperCamelCase_ ) else: lowercase__ = img.permute(2 , 0 , 1 ).unsqueeze(0 ) # 3, 0, 1) # hw(c) -> nchw lowercase__ = nn.functional.interpolate( UpperCamelCase_ , (newh, neww) , mode=self.interp_method , align_corners=UpperCamelCase_ ).squeeze(0 ) img_augs.append(UpperCamelCase_ ) return img_augs class _a : def __init__( self: Optional[Any] , UpperCamelCase_: Union[str, Any] ) -> str: """simple docstring""" lowercase__ = ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST] , cfg.INPUT.MAX_SIZE_TEST ) lowercase__ = cfg.INPUT.FORMAT lowercase__ = cfg.SIZE_DIVISIBILITY lowercase__ = cfg.PAD_VALUE lowercase__ = cfg.INPUT.MAX_SIZE_TEST lowercase__ = cfg.MODEL.DEVICE lowercase__ = torch.tensor(cfg.MODEL.PIXEL_STD ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) lowercase__ = torch.tensor(cfg.MODEL.PIXEL_MEAN ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) lowercase__ = lambda UpperCamelCase_ : (x - self.pixel_mean) / self.pixel_std def lowerCamelCase_ ( self: str , UpperCamelCase_: Optional[int] ) -> List[Any]: """simple docstring""" lowercase__ = tuple(max(UpperCamelCase_ ) for s in zip(*[img.shape for img in images] ) ) lowercase__ = [im.shape[-2:] for im in images] lowercase__ = [ nn.functional.pad( UpperCamelCase_ , [0, max_size[-1] - size[1], 0, max_size[-2] - size[0]] , value=self.pad_value , ) for size, im in zip(UpperCamelCase_ , UpperCamelCase_ ) ] return torch.stack(UpperCamelCase_ ), torch.tensor(UpperCamelCase_ ) def __call__( self: Any , UpperCamelCase_: str , UpperCamelCase_: Optional[int]=False ) -> List[Any]: """simple docstring""" with torch.no_grad(): if not isinstance(UpperCamelCase_ , UpperCamelCase_ ): lowercase__ = [images] if single_image: assert len(UpperCamelCase_ ) == 1 for i in range(len(UpperCamelCase_ ) ): if isinstance(images[i] , torch.Tensor ): images.insert(UpperCamelCase_ , images.pop(UpperCamelCase_ ).to(self.device ).float() ) elif not isinstance(images[i] , torch.Tensor ): images.insert( UpperCamelCase_ , torch.as_tensor(img_tensorize(images.pop(UpperCamelCase_ ) , input_format=self.input_format ) ) .to(self.device ) .float() , ) # resize smallest edge lowercase__ = torch.tensor([im.shape[:2] for im in images] ) lowercase__ = self.aug(UpperCamelCase_ ) # transpose images and convert to torch tensors # images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images] # now normalize before pad to avoid useless arithmetic lowercase__ = [self.normalizer(UpperCamelCase_ ) for x in images] # now pad them to do the following operations lowercase__ , lowercase__ = self.pad(UpperCamelCase_ ) # Normalize if self.size_divisibility > 0: raise NotImplementedError() # pad lowercase__ = torch.true_divide(UpperCamelCase_ , UpperCamelCase_ ) if single_image: return images[0], sizes[0], scales_yx[0] else: return images, sizes, scales_yx def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" boxes[:, 0::2] *= scale_yx[:, 1] boxes[:, 1::2] *= scale_yx[:, 0] return boxes def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" assert torch.isfinite(SCREAMING_SNAKE_CASE ).all(), "Box tensor contains infinite or NaN!" lowercase__ , lowercase__ = box_size tensor[:, 0].clamp_(min=0 , max=SCREAMING_SNAKE_CASE ) tensor[:, 1].clamp_(min=0 , max=SCREAMING_SNAKE_CASE ) tensor[:, 2].clamp_(min=0 , max=SCREAMING_SNAKE_CASE ) tensor[:, 3].clamp_(min=0 , max=SCREAMING_SNAKE_CASE )
93
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from pathlib import Path import torch from ...utils import is_npu_available, is_xpu_available from .config_args import ClusterConfig, default_json_config_file from .config_utils import SubcommandHelpFormatter lowerCAmelCase = 'Create a default config file for Accelerate with only a few flags set.' def _a ( SCREAMING_SNAKE_CASE="no" , SCREAMING_SNAKE_CASE = default_json_config_file , SCREAMING_SNAKE_CASE = False ): """simple docstring""" lowercase__ = Path(SCREAMING_SNAKE_CASE ) path.parent.mkdir(parents=SCREAMING_SNAKE_CASE , exist_ok=SCREAMING_SNAKE_CASE ) if path.exists(): print( f'Configuration already exists at {save_location}, will not override. Run `accelerate config` manually or pass a different `save_location`.' ) return False lowercase__ = mixed_precision.lower() if mixed_precision not in ["no", "fp16", "bf16", "fp8"]: raise ValueError( f'`mixed_precision` should be one of \'no\', \'fp16\', \'bf16\', or \'fp8\'. Received {mixed_precision}' ) lowercase__ = { '''compute_environment''': '''LOCAL_MACHINE''', '''mixed_precision''': mixed_precision, } if torch.cuda.is_available(): lowercase__ = torch.cuda.device_count() lowercase__ = num_gpus lowercase__ = False if num_gpus > 1: lowercase__ = '''MULTI_GPU''' else: lowercase__ = '''NO''' elif is_xpu_available() and use_xpu: lowercase__ = torch.xpu.device_count() lowercase__ = num_xpus lowercase__ = False if num_xpus > 1: lowercase__ = '''MULTI_XPU''' else: lowercase__ = '''NO''' elif is_npu_available(): lowercase__ = torch.npu.device_count() lowercase__ = num_npus lowercase__ = False if num_npus > 1: lowercase__ = '''MULTI_NPU''' else: lowercase__ = '''NO''' else: lowercase__ = 0 lowercase__ = True lowercase__ = 1 lowercase__ = '''NO''' lowercase__ = ClusterConfig(**SCREAMING_SNAKE_CASE ) config.to_json_file(SCREAMING_SNAKE_CASE ) return path def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = parser.add_parser('''default''' , parents=SCREAMING_SNAKE_CASE , help=SCREAMING_SNAKE_CASE , formatter_class=SCREAMING_SNAKE_CASE ) parser.add_argument( '''--config_file''' , default=SCREAMING_SNAKE_CASE , help=( '''The path to use to store the config file. Will default to a file named default_config.yaml in the cache ''' '''location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ''' '''such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ''' '''with \'huggingface\'.''' ) , dest='''save_location''' , ) parser.add_argument( '''--mixed_precision''' , choices=['''no''', '''fp16''', '''bf16'''] , type=SCREAMING_SNAKE_CASE , help='''Whether or not to use mixed precision training. ''' '''Choose between FP16 and BF16 (bfloat16) training. ''' '''BF16 training is only supported on Nvidia Ampere GPUs and PyTorch 1.10 or later.''' , default='''no''' , ) parser.set_defaults(func=SCREAMING_SNAKE_CASE ) return parser def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = write_basic_config(args.mixed_precision , args.save_location ) if config_file: print(f'accelerate configuration saved at {config_file}' )
93
1
def __SCREAMING_SNAKE_CASE ( ): '''simple docstring''' _UpperCAmelCase = [] _UpperCAmelCase = 1 while len(snake_case_ ) < 1e6: constant.append(str(snake_case_ ) ) i += 1 _UpperCAmelCase = "".join(snake_case_ ) return ( int(constant[0] ) * int(constant[9] ) * int(constant[99] ) * int(constant[999] ) * int(constant[9999] ) * int(constant[9_9999] ) * int(constant[99_9999] ) ) if __name__ == "__main__": print(solution())
133
import argparse import os import pickle import sys import torch from transformers import TransfoXLConfig, TransfoXLLMHeadModel, load_tf_weights_in_transfo_xl from transformers.models.transfo_xl import tokenization_transfo_xl as data_utils from transformers.models.transfo_xl.tokenization_transfo_xl import CORPUS_NAME, VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() # We do this to be able to load python 2 datasets pickles # See e.g. https://stackoverflow.com/questions/2121874/python-pickling-after-changing-a-modules-directory/2121918#2121918 lowercase_ : Union[str, Any] = data_utils.TransfoXLTokenizer lowercase_ : int = data_utils.TransfoXLCorpus lowercase_ : Dict = data_utils lowercase_ : Dict = data_utils def __SCREAMING_SNAKE_CASE ( snake_case_ , snake_case_ , snake_case_ , snake_case_ ): '''simple docstring''' if transfo_xl_dataset_file: # Convert a pre-processed corpus (see original TensorFlow repo) with open(snake_case_ , "rb" ) as fp: _UpperCAmelCase = pickle.load(snake_case_ , encoding="latin1" ) # Save vocabulary and dataset cache as Dictionaries (should be better than pickles for the long-term) _UpperCAmelCase = pytorch_dump_folder_path + "/" + VOCAB_FILES_NAMES["pretrained_vocab_file"] print(f"""Save vocabulary to {pytorch_vocab_dump_path}""" ) _UpperCAmelCase = corpus.vocab.__dict__ torch.save(snake_case_ , snake_case_ ) _UpperCAmelCase = corpus.__dict__ corpus_dict_no_vocab.pop("vocab" , snake_case_ ) _UpperCAmelCase = pytorch_dump_folder_path + "/" + CORPUS_NAME print(f"""Save dataset to {pytorch_dataset_dump_path}""" ) torch.save(snake_case_ , snake_case_ ) if tf_checkpoint_path: # Convert a pre-trained TensorFlow model _UpperCAmelCase = os.path.abspath(snake_case_ ) _UpperCAmelCase = os.path.abspath(snake_case_ ) print(f"""Converting Transformer XL checkpoint from {tf_path} with config at {config_path}.""" ) # Initialise PyTorch model if transfo_xl_config_file == "": _UpperCAmelCase = TransfoXLConfig() else: _UpperCAmelCase = TransfoXLConfig.from_json_file(snake_case_ ) print(f"""Building PyTorch model from configuration: {config}""" ) _UpperCAmelCase = TransfoXLLMHeadModel(snake_case_ ) _UpperCAmelCase = load_tf_weights_in_transfo_xl(snake_case_ , snake_case_ , snake_case_ ) # Save pytorch-model _UpperCAmelCase = os.path.join(snake_case_ , snake_case_ ) _UpperCAmelCase = os.path.join(snake_case_ , snake_case_ ) print(f"""Save PyTorch model to {os.path.abspath(snake_case_ )}""" ) torch.save(model.state_dict() , snake_case_ ) print(f"""Save configuration file to {os.path.abspath(snake_case_ )}""" ) with open(snake_case_ , "w" , encoding="utf-8" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": lowercase_ : Optional[int] = argparse.ArgumentParser() parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the folder to store the PyTorch model or dataset/vocab.', ) parser.add_argument( '--tf_checkpoint_path', default='', type=str, help='An optional path to a TensorFlow checkpoint path to be converted.', ) parser.add_argument( '--transfo_xl_config_file', default='', type=str, help=( 'An optional config json file corresponding to the pre-trained BERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--transfo_xl_dataset_file', default='', type=str, help='An optional dataset file to be converted in a vocabulary.', ) lowercase_ : List[Any] = parser.parse_args() convert_transfo_xl_checkpoint_to_pytorch( args.tf_checkpoint_path, args.transfo_xl_config_file, args.pytorch_dump_folder_path, args.transfo_xl_dataset_file, )
133
1
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = {"""vocab_file""": """sentencepiece.bpe.model"""} SCREAMING_SNAKE_CASE__ = { """vocab_file""": { """camembert-base""": """https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model""", } } SCREAMING_SNAKE_CASE__ = { """camembert-base""": 5_1_2, } SCREAMING_SNAKE_CASE__ = """▁""" class a_ ( SCREAMING_SNAKE_CASE_ ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = ["""input_ids""", """attention_mask"""] def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE="<s>" , _SCREAMING_SNAKE_CASE="</s>" , _SCREAMING_SNAKE_CASE="</s>" , _SCREAMING_SNAKE_CASE="<s>" , _SCREAMING_SNAKE_CASE="<unk>" , _SCREAMING_SNAKE_CASE="<pad>" , _SCREAMING_SNAKE_CASE="<mask>" , _SCREAMING_SNAKE_CASE=["<s>NOTUSED", "</s>NOTUSED"] , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , ) -> Any: """simple docstring""" UpperCamelCase = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else mask_token UpperCamelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=snake_case__ , eos_token=snake_case__ , unk_token=snake_case__ , sep_token=snake_case__ , cls_token=snake_case__ , pad_token=snake_case__ , mask_token=snake_case__ , additional_special_tokens=snake_case__ , sp_model_kwargs=self.sp_model_kwargs , **snake_case__ , ) UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(snake_case__ ) ) UpperCamelCase = vocab_file # HACK: These tokens were added by fairseq but don't seem to be actually used when duplicated in the actual # sentencepiece vocabulary (this is the case for <s> and </s> UpperCamelCase = {'<s>NOTUSED': 0, '<pad>': 1, '</s>NOTUSED': 2, '<unk>': 3} UpperCamelCase = len(self.fairseq_tokens_to_ids ) UpperCamelCase = len(self.sp_model ) + len(self.fairseq_tokens_to_ids ) UpperCamelCase = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> List[Any]: """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCamelCase = [self.cls_token_id] UpperCamelCase = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = False ) -> List[str]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case__ , token_ids_a=snake_case__ , already_has_special_tokens=snake_case__ ) if token_ids_a is None: return [1] + ([0] * len(snake_case__ )) + [1] return [1] + ([0] * len(snake_case__ )) + [1, 1] + ([0] * len(snake_case__ )) + [1] def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> List[Any]: """simple docstring""" UpperCamelCase = [self.sep_token_id] UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def A__ ( self ) -> Dict: """simple docstring""" return len(self.fairseq_tokens_to_ids ) + len(self.sp_model ) def A__ ( self ) -> Tuple: """simple docstring""" UpperCamelCase = {self.convert_ids_to_tokens(snake_case__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def A__ ( self , _SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" return self.sp_model.encode(snake_case__ , out_type=snake_case__ ) def A__ ( self , _SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] elif self.sp_model.PieceToId(snake_case__ ) == 0: # Convert sentence piece unk token to fairseq unk token index return self.unk_token_id return self.fairseq_offset + self.sp_model.PieceToId(snake_case__ ) def A__ ( self , _SCREAMING_SNAKE_CASE ) -> List[str]: """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def A__ ( self , _SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" UpperCamelCase = [] UpperCamelCase = '' UpperCamelCase = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(snake_case__ ) + token UpperCamelCase = True UpperCamelCase = [] else: current_sub_tokens.append(snake_case__ ) UpperCamelCase = False out_string += self.sp_model.decode(snake_case__ ) return out_string.strip() def __getstate__( self ) -> List[str]: """simple docstring""" UpperCamelCase = self.__dict__.copy() UpperCamelCase = None return state def __setstate__( self , _SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" UpperCamelCase = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): UpperCamelCase = {} UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> int: """simple docstring""" if not os.path.isdir(snake_case__ ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return UpperCamelCase = os.path.join( snake_case__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , snake_case__ ) elif not os.path.isfile(self.vocab_file ): with open(snake_case__ , """wb""" ) as fi: UpperCamelCase = self.sp_model.serialized_model_proto() fi.write(snake_case__ ) return (out_vocab_file,)
353
'''simple docstring''' import importlib.util import json import os import warnings from dataclasses import dataclass, field import torch from ..training_args import TrainingArguments from ..utils import cached_property, is_sagemaker_dp_enabled, logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) def lowercase__ ( )-> Tuple: # Get the sagemaker specific mp parameters from smp_options variable. UpperCamelCase = os.getenv("""SM_HP_MP_PARAMETERS""" , """{}""" ) try: # Parse it and check the field "partitions" is included, it is required for model parallel. UpperCamelCase = json.loads(__UpperCamelCase ) if "partitions" not in smp_options: return False except json.JSONDecodeError: return False # Get the sagemaker specific framework parameters from mpi_options variable. UpperCamelCase = os.getenv("""SM_FRAMEWORK_PARAMS""" , """{}""" ) try: # Parse it and check the field "sagemaker_distributed_dataparallel_enabled". UpperCamelCase = json.loads(__UpperCamelCase ) if not mpi_options.get("""sagemaker_mpi_enabled""" , __UpperCamelCase ): return False except json.JSONDecodeError: return False # Lastly, check if the `smdistributed` module is present. return importlib.util.find_spec("""smdistributed""" ) is not None if is_sagemaker_model_parallel_available(): import smdistributed.modelparallel.torch as smp smp.init() @dataclass class a_ ( lowerCamelCase ): lowercase = field( default="""""" , metadata={"""help""": """Used by the SageMaker launcher to send mp-specific args. Ignored in SageMakerTrainer"""} , ) def A__ ( self ) -> Tuple: """simple docstring""" super().__post_init__() warnings.warn( """`SageMakerTrainingArguments` is deprecated and will be removed in v5 of Transformers. You can use """ """`TrainingArguments` instead.""" , _SCREAMING_SNAKE_CASE , ) @cached_property def A__ ( self ) -> "torch.device": """simple docstring""" logger.info("""PyTorch: setting up devices""" ) if torch.distributed.is_available() and torch.distributed.is_initialized() and self.local_rank == -1: logger.warning( """torch.distributed process group is initialized, but local_rank == -1. """ """In order to use Torch DDP, launch your script with `python -m torch.distributed.launch""" ) if self.no_cuda: UpperCamelCase = torch.device("""cpu""" ) UpperCamelCase = 0 elif is_sagemaker_model_parallel_available(): UpperCamelCase = smp.local_rank() UpperCamelCase = torch.device("""cuda""" , _SCREAMING_SNAKE_CASE ) UpperCamelCase = 1 elif is_sagemaker_dp_enabled(): import smdistributed.dataparallel.torch.torch_smddp # noqa: F401 torch.distributed.init_process_group(backend="""smddp""" , timeout=self.ddp_timeout_delta ) UpperCamelCase = int(os.getenv("""SMDATAPARALLEL_LOCAL_RANK""" ) ) UpperCamelCase = torch.device("""cuda""" , self.local_rank ) UpperCamelCase = 1 elif self.local_rank == -1: # if n_gpu is > 1 we'll use nn.DataParallel. # If you only want to use a specific subset of GPUs use `CUDA_VISIBLE_DEVICES=0` # Explicitly set CUDA to the first (index 0) CUDA device, otherwise `set_device` will # trigger an error that a device index is missing. Index 0 takes into account the # GPUs available in the environment, so `CUDA_VISIBLE_DEVICES=1,2` with `cuda:0` # will use the first GPU in that env, i.e. GPU#1 UpperCamelCase = torch.device("""cuda:0""" if torch.cuda.is_available() else """cpu""" ) # Sometimes the line in the postinit has not been run before we end up here, so just checking we're not at # the default value. UpperCamelCase = torch.cuda.device_count() else: # Here, we'll use torch.distributed. # Initializes the distributed backend which will take care of synchronizing nodes/GPUs if not torch.distributed.is_initialized(): torch.distributed.init_process_group(backend="""nccl""" , timeout=self.ddp_timeout_delta ) UpperCamelCase = torch.device("""cuda""" , self.local_rank ) UpperCamelCase = 1 if device.type == "cuda": torch.cuda.set_device(_SCREAMING_SNAKE_CASE ) return device @property def A__ ( self ) -> Tuple: """simple docstring""" if is_sagemaker_model_parallel_available(): return smp.dp_size() return super().world_size @property def A__ ( self ) -> Optional[Any]: """simple docstring""" return not is_sagemaker_model_parallel_available() @property def A__ ( self ) -> str: """simple docstring""" return False
183
0
"""simple docstring""" _lowercase : int = {0: [2, 3], 1: [0], 2: [1], 3: [4], 4: []} _lowercase : Dict = {0: [1, 2, 3], 1: [2], 2: [0], 3: [4], 4: [5], 5: [3]} def snake_case__ ( __lowerCamelCase : dict[int, list[int]] , __lowerCamelCase : int , __lowerCamelCase : list[bool] ): """simple docstring""" lowerCamelCase__ : str =True lowerCamelCase__ : Optional[int] =[] for neighbour in graph[vert]: if not visited[neighbour]: order += topology_sort(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) order.append(__lowerCamelCase ) return order def snake_case__ ( __lowerCamelCase : dict[int, list[int]] , __lowerCamelCase : int , __lowerCamelCase : list[bool] ): """simple docstring""" lowerCamelCase__ : Tuple =True lowerCamelCase__ : Optional[Any] =[vert] for neighbour in reversed_graph[vert]: if not visited[neighbour]: component += find_components(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) return component def snake_case__ ( __lowerCamelCase : dict[int, list[int]] ): """simple docstring""" lowerCamelCase__ : int =len(__lowerCamelCase ) * [False] lowerCamelCase__ : dict[int, list[int]] ={vert: [] for vert in range(len(__lowerCamelCase ) )} for vert, neighbours in graph.items(): for neighbour in neighbours: reversed_graph[neighbour].append(__lowerCamelCase ) lowerCamelCase__ : Any =[] for i, was_visited in enumerate(__lowerCamelCase ): if not was_visited: order += topology_sort(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) lowerCamelCase__ : Dict =[] lowerCamelCase__ : Dict =len(__lowerCamelCase ) * [False] for i in range(len(__lowerCamelCase ) ): lowerCamelCase__ : List[Any] =order[len(__lowerCamelCase ) - i - 1] if not visited[vert]: lowerCamelCase__ : List[Any] =find_components(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) components_list.append(__lowerCamelCase ) return components_list
238
"""simple docstring""" import argparse import torch from transformers import GPTaConfig, GPTaModel, load_tf_weights_in_gpta from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def snake_case__ ( __lowerCamelCase : List[Any] , __lowerCamelCase : List[str] , __lowerCamelCase : List[Any] ): """simple docstring""" # Construct model if gpta_config_file == "": lowerCamelCase__ : Dict =GPTaConfig() else: lowerCamelCase__ : Tuple =GPTaConfig.from_json_file(__lowerCamelCase ) lowerCamelCase__ : Optional[Any] =GPTaModel(__lowerCamelCase ) # Load weights from numpy load_tf_weights_in_gpta(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # Save pytorch-model lowerCamelCase__ : List[str] =pytorch_dump_folder_path + '''/''' + WEIGHTS_NAME lowerCamelCase__ : int =pytorch_dump_folder_path + '''/''' + CONFIG_NAME print(f'''Save PyTorch model to {pytorch_weights_dump_path}''' ) torch.save(model.state_dict() , __lowerCamelCase ) print(f'''Save configuration file to {pytorch_config_dump_path}''' ) with open(__lowerCamelCase , '''w''' , encoding='''utf-8''' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": _lowercase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--gpt2_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--gpt2_config_file", default="", type=str, help=( "An optional config json file corresponding to the pre-trained OpenAI model. \n" "This specifies the model architecture." ), ) _lowercase : Any = parser.parse_args() convert_gpta_checkpoint_to_pytorch(args.gpta_checkpoint_path, args.gpta_config_file, args.pytorch_dump_folder_path)
238
1
"""simple docstring""" from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class _SCREAMING_SNAKE_CASE( A ): @slow @require_torch def _UpperCamelCase ( self ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE :List[str] = EncoderDecoderModel.from_encoder_decoder_pretrained('''prajjwal1/bert-tiny''' ,'''prajjwal1/bert-tiny''' ) __SCREAMING_SNAKE_CASE :Optional[int] = BertTokenizer.from_pretrained('''bert-base-uncased''' ) __SCREAMING_SNAKE_CASE :Any = bertabert.config.encoder.vocab_size __SCREAMING_SNAKE_CASE :Any = tokenizer.sep_token_id __SCREAMING_SNAKE_CASE :Union[str, Any] = tokenizer.cls_token_id __SCREAMING_SNAKE_CASE :Any = 1_28 __SCREAMING_SNAKE_CASE :Optional[int] = datasets.load_dataset('''cnn_dailymail''' ,'''3.0.0''' ,split='''train[:1%]''' ) __SCREAMING_SNAKE_CASE :Optional[Any] = datasets.load_dataset('''cnn_dailymail''' ,'''3.0.0''' ,split='''validation[:1%]''' ) __SCREAMING_SNAKE_CASE :str = train_dataset.select(range(32 ) ) __SCREAMING_SNAKE_CASE :Any = val_dataset.select(range(16 ) ) __SCREAMING_SNAKE_CASE :Tuple = 4 def _map_to_encoder_decoder_inputs(SCREAMING_SNAKE_CASE__ ): # Tokenizer will automatically set [BOS] <text> [EOS] __SCREAMING_SNAKE_CASE :Dict = tokenizer(batch['''article'''] ,padding='''max_length''' ,truncation=SCREAMING_SNAKE_CASE__ ,max_length=5_12 ) __SCREAMING_SNAKE_CASE :List[str] = tokenizer(batch['''highlights'''] ,padding='''max_length''' ,truncation=SCREAMING_SNAKE_CASE__ ,max_length=1_28 ) __SCREAMING_SNAKE_CASE :List[str] = inputs.input_ids __SCREAMING_SNAKE_CASE :str = inputs.attention_mask __SCREAMING_SNAKE_CASE :Dict = outputs.input_ids __SCREAMING_SNAKE_CASE :Any = outputs.input_ids.copy() __SCREAMING_SNAKE_CASE :Dict = [ [-1_00 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch['''labels'''] ] __SCREAMING_SNAKE_CASE :List[str] = outputs.attention_mask assert all(len(SCREAMING_SNAKE_CASE__ ) == 5_12 for x in inputs.input_ids ) assert all(len(SCREAMING_SNAKE_CASE__ ) == 1_28 for x in outputs.input_ids ) return batch def _compute_metrics(SCREAMING_SNAKE_CASE__ ): __SCREAMING_SNAKE_CASE :Tuple = pred.label_ids __SCREAMING_SNAKE_CASE :int = pred.predictions # all unnecessary tokens are removed __SCREAMING_SNAKE_CASE :Union[str, Any] = tokenizer.batch_decode(SCREAMING_SNAKE_CASE__ ,skip_special_tokens=SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :List[Any] = tokenizer.batch_decode(SCREAMING_SNAKE_CASE__ ,skip_special_tokens=SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :int = sum([int(pred_str[i] == label_str[i] ) for i in range(len(SCREAMING_SNAKE_CASE__ ) )] ) / len(SCREAMING_SNAKE_CASE__ ) return {"accuracy": accuracy} # map train dataset __SCREAMING_SNAKE_CASE :List[Any] = train_dataset.map( _map_to_encoder_decoder_inputs ,batched=SCREAMING_SNAKE_CASE__ ,batch_size=SCREAMING_SNAKE_CASE__ ,remove_columns=['''article''', '''highlights'''] ,) train_dataset.set_format( type='''torch''' ,columns=['''input_ids''', '''attention_mask''', '''decoder_input_ids''', '''decoder_attention_mask''', '''labels'''] ,) # same for validation dataset __SCREAMING_SNAKE_CASE :int = val_dataset.map( _map_to_encoder_decoder_inputs ,batched=SCREAMING_SNAKE_CASE__ ,batch_size=SCREAMING_SNAKE_CASE__ ,remove_columns=['''article''', '''highlights'''] ,) val_dataset.set_format( type='''torch''' ,columns=['''input_ids''', '''attention_mask''', '''decoder_input_ids''', '''decoder_attention_mask''', '''labels'''] ,) __SCREAMING_SNAKE_CASE :Optional[Any] = self.get_auto_remove_tmp_dir() __SCREAMING_SNAKE_CASE :Any = SeqaSeqTrainingArguments( output_dir=SCREAMING_SNAKE_CASE__ ,per_device_train_batch_size=SCREAMING_SNAKE_CASE__ ,per_device_eval_batch_size=SCREAMING_SNAKE_CASE__ ,predict_with_generate=SCREAMING_SNAKE_CASE__ ,evaluation_strategy='''steps''' ,do_train=SCREAMING_SNAKE_CASE__ ,do_eval=SCREAMING_SNAKE_CASE__ ,warmup_steps=0 ,eval_steps=2 ,logging_steps=2 ,) # instantiate trainer __SCREAMING_SNAKE_CASE :Dict = SeqaSeqTrainer( model=SCREAMING_SNAKE_CASE__ ,args=SCREAMING_SNAKE_CASE__ ,compute_metrics=_compute_metrics ,train_dataset=SCREAMING_SNAKE_CASE__ ,eval_dataset=SCREAMING_SNAKE_CASE__ ,tokenizer=SCREAMING_SNAKE_CASE__ ,) # start training trainer.train()
239
"""simple docstring""" def __lowerCamelCase ( a_ : str ) -> list: return [ txt[:a] + txt[a].upper() + txt[a + 1 :] for a in range(len(a_ ) ) if txt[a].isalpha() ] if __name__ == "__main__": __import__("doctest").testmod()
239
1
from ..utils import DummyObject, requires_backends class _UpperCamelCase ( metaclass=_UpperCAmelCase ): """simple docstring""" __a : List[Any] = ['''torch'''] def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> List[str]: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> str: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> str: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class _UpperCamelCase ( metaclass=_UpperCAmelCase ): """simple docstring""" __a : Any = ['''torch'''] def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> str: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Union[str, Any]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> List[str]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class _UpperCamelCase ( metaclass=_UpperCAmelCase ): """simple docstring""" __a : str = ['''torch'''] def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> List[str]: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Tuple: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Tuple: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class _UpperCamelCase ( metaclass=_UpperCAmelCase ): """simple docstring""" __a : Optional[Any] = ['''torch'''] def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> List[str]: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Optional[int]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Tuple: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class _UpperCamelCase ( metaclass=_UpperCAmelCase ): """simple docstring""" __a : Optional[Any] = ['''torch'''] def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> str: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Optional[int]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> int: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class _UpperCamelCase ( metaclass=_UpperCAmelCase ): """simple docstring""" __a : int = ['''torch'''] def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Any: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Dict: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Tuple: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class _UpperCamelCase ( metaclass=_UpperCAmelCase ): """simple docstring""" __a : Any = ['''torch'''] def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Tuple: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Optional[int]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class _UpperCamelCase ( metaclass=_UpperCAmelCase ): """simple docstring""" __a : int = ['''torch'''] def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> int: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> List[Any]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Tuple: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class _UpperCamelCase ( metaclass=_UpperCAmelCase ): """simple docstring""" __a : str = ['''torch'''] def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Any: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Union[str, Any]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class _UpperCamelCase ( metaclass=_UpperCAmelCase ): """simple docstring""" __a : Optional[int] = ['''torch'''] def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> str: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> str: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class _UpperCamelCase ( metaclass=_UpperCAmelCase ): """simple docstring""" __a : Tuple = ['''torch'''] def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Union[str, Any]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Tuple: '''simple docstring''' requires_backends(cls , ['''torch'''] ) def UpperCAmelCase ( *lowercase , **lowercase ): """simple docstring""" requires_backends(lowercase , ['''torch'''] ) def UpperCAmelCase ( *lowercase , **lowercase ): """simple docstring""" requires_backends(lowercase , ['''torch'''] ) def UpperCAmelCase ( *lowercase , **lowercase ): """simple docstring""" requires_backends(lowercase , ['''torch'''] ) def UpperCAmelCase ( *lowercase , **lowercase ): """simple docstring""" requires_backends(lowercase , ['''torch'''] ) def UpperCAmelCase ( *lowercase , **lowercase ): """simple docstring""" requires_backends(lowercase , ['''torch'''] ) def UpperCAmelCase ( *lowercase , **lowercase ): """simple docstring""" requires_backends(lowercase , ['''torch'''] ) def UpperCAmelCase ( *lowercase , **lowercase ): """simple docstring""" requires_backends(lowercase , ['''torch'''] ) class _UpperCamelCase ( metaclass=_UpperCAmelCase ): """simple docstring""" __a : Optional[Any] = ['''torch'''] def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> List[str]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> List[Any]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class _UpperCamelCase ( metaclass=_UpperCAmelCase ): """simple docstring""" __a : List[Any] = ['''torch'''] def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Any: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> List[Any]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Any: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class _UpperCamelCase ( metaclass=_UpperCAmelCase ): """simple docstring""" __a : Optional[int] = ['''torch'''] def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Optional[int]: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Optional[int]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Tuple: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class _UpperCamelCase ( metaclass=_UpperCAmelCase ): """simple docstring""" __a : List[Any] = ['''torch'''] def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Optional[Any]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Any: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class _UpperCamelCase ( metaclass=_UpperCAmelCase ): """simple docstring""" __a : str = ['''torch'''] def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Dict: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> List[str]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Optional[int]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class _UpperCamelCase ( metaclass=_UpperCAmelCase ): """simple docstring""" __a : str = ['''torch'''] def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> str: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> List[str]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Tuple: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class _UpperCamelCase ( metaclass=_UpperCAmelCase ): """simple docstring""" __a : Optional[int] = ['''torch'''] def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> str: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Dict: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Any: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class _UpperCamelCase ( metaclass=_UpperCAmelCase ): """simple docstring""" __a : int = ['''torch'''] def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> int: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Dict: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Any: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class _UpperCamelCase ( metaclass=_UpperCAmelCase ): """simple docstring""" __a : Optional[int] = ['''torch'''] def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> List[str]: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Dict: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Optional[Any]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class _UpperCamelCase ( metaclass=_UpperCAmelCase ): """simple docstring""" __a : Optional[Any] = ['''torch'''] def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> List[str]: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Union[str, Any]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Union[str, Any]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class _UpperCamelCase ( metaclass=_UpperCAmelCase ): """simple docstring""" __a : Optional[int] = ['''torch'''] def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> List[str]: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> int: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Dict: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class _UpperCamelCase ( metaclass=_UpperCAmelCase ): """simple docstring""" __a : Optional[int] = ['''torch'''] def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> str: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> List[Any]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Optional[int]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class _UpperCamelCase ( metaclass=_UpperCAmelCase ): """simple docstring""" __a : Dict = ['''torch'''] def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> List[str]: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Union[str, Any]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Any: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class _UpperCamelCase ( metaclass=_UpperCAmelCase ): """simple docstring""" __a : str = ['''torch'''] def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> int: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Tuple: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Any: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class _UpperCamelCase ( metaclass=_UpperCAmelCase ): """simple docstring""" __a : Any = ['''torch'''] def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Dict: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Tuple: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Union[str, Any]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class _UpperCamelCase ( metaclass=_UpperCAmelCase ): """simple docstring""" __a : Any = ['''torch'''] def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> str: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Optional[int]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Any: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class _UpperCamelCase ( metaclass=_UpperCAmelCase ): """simple docstring""" __a : Union[str, Any] = ['''torch'''] def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Dict: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Any: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class _UpperCamelCase ( metaclass=_UpperCAmelCase ): """simple docstring""" __a : List[str] = ['''torch'''] def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> List[Any]: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> str: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Tuple: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class _UpperCamelCase ( metaclass=_UpperCAmelCase ): """simple docstring""" __a : List[Any] = ['''torch'''] def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> List[Any]: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Optional[int]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> int: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class _UpperCamelCase ( metaclass=_UpperCAmelCase ): """simple docstring""" __a : List[str] = ['''torch'''] def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> List[Any]: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Any: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Optional[Any]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class _UpperCamelCase ( metaclass=_UpperCAmelCase ): """simple docstring""" __a : Any = ['''torch'''] def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> int: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Optional[Any]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class _UpperCamelCase ( metaclass=_UpperCAmelCase ): """simple docstring""" __a : Tuple = ['''torch'''] def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> List[Any]: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> str: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Any: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class _UpperCamelCase ( metaclass=_UpperCAmelCase ): """simple docstring""" __a : Dict = ['''torch'''] def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> int: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> List[str]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Union[str, Any]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class _UpperCamelCase ( metaclass=_UpperCAmelCase ): """simple docstring""" __a : Optional[int] = ['''torch'''] def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Optional[int]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> str: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class _UpperCamelCase ( metaclass=_UpperCAmelCase ): """simple docstring""" __a : Any = ['''torch'''] def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> str: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> List[str]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Optional[Any]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class _UpperCamelCase ( metaclass=_UpperCAmelCase ): """simple docstring""" __a : Optional[Any] = ['''torch'''] def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Optional[int]: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> List[str]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Union[str, Any]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class _UpperCamelCase ( metaclass=_UpperCAmelCase ): """simple docstring""" __a : List[Any] = ['''torch'''] def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Tuple: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Tuple: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Dict: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class _UpperCamelCase ( metaclass=_UpperCAmelCase ): """simple docstring""" __a : Optional[int] = ['''torch'''] def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Any: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> List[Any]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> int: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class _UpperCamelCase ( metaclass=_UpperCAmelCase ): """simple docstring""" __a : List[Any] = ['''torch'''] def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> List[str]: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> str: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Optional[int]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class _UpperCamelCase ( metaclass=_UpperCAmelCase ): """simple docstring""" __a : Optional[int] = ['''torch'''] def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Any: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> List[Any]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Tuple: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class _UpperCamelCase ( metaclass=_UpperCAmelCase ): """simple docstring""" __a : str = ['''torch'''] def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Optional[int]: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> List[Any]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Tuple: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class _UpperCamelCase ( metaclass=_UpperCAmelCase ): """simple docstring""" __a : Tuple = ['''torch'''] def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> List[Any]: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Optional[int]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> int: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class _UpperCamelCase ( metaclass=_UpperCAmelCase ): """simple docstring""" __a : Optional[int] = ['''torch'''] def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Tuple: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Any: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Union[str, Any]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class _UpperCamelCase ( metaclass=_UpperCAmelCase ): """simple docstring""" __a : Any = ['''torch'''] def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Any: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> str: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> str: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class _UpperCamelCase ( metaclass=_UpperCAmelCase ): """simple docstring""" __a : Dict = ['''torch'''] def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Dict: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Optional[Any]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Tuple: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class _UpperCamelCase ( metaclass=_UpperCAmelCase ): """simple docstring""" __a : List[str] = ['''torch'''] def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> List[str]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Optional[Any]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class _UpperCamelCase ( metaclass=_UpperCAmelCase ): """simple docstring""" __a : Optional[int] = ['''torch'''] def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> str: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Tuple: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> int: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class _UpperCamelCase ( metaclass=_UpperCAmelCase ): """simple docstring""" __a : int = ['''torch'''] def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Any: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Any: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class _UpperCamelCase ( metaclass=_UpperCAmelCase ): """simple docstring""" __a : int = ['''torch'''] def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Dict: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> List[str]: '''simple docstring''' requires_backends(cls , ['''torch'''] )
210
import inspect import unittest import warnings from math import ceil, floor from transformers import LevitConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_MAPPING, LevitForImageClassification, LevitForImageClassificationWithTeacher, LevitModel, ) from transformers.models.levit.modeling_levit import LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class _UpperCamelCase ( _UpperCAmelCase ): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: '''simple docstring''' __lowercase = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(lowerCAmelCase__ , '''hidden_sizes''' ) ) self.parent.assertTrue(hasattr(lowerCAmelCase__ , '''num_attention_heads''' ) ) class _UpperCamelCase : """simple docstring""" def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=13 , lowerCAmelCase__=64 , lowerCAmelCase__=3 , lowerCAmelCase__=3 , lowerCAmelCase__=2 , lowerCAmelCase__=1 , lowerCAmelCase__=16 , lowerCAmelCase__=[1_28, 2_56, 3_84] , lowerCAmelCase__=[4, 6, 8] , lowerCAmelCase__=[2, 3, 4] , lowerCAmelCase__=[16, 16, 16] , lowerCAmelCase__=0 , lowerCAmelCase__=[2, 2, 2] , lowerCAmelCase__=[2, 2, 2] , lowerCAmelCase__=0.02 , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=2 , ) -> Tuple: '''simple docstring''' __lowercase = parent __lowercase = batch_size __lowercase = image_size __lowercase = num_channels __lowercase = kernel_size __lowercase = stride __lowercase = padding __lowercase = hidden_sizes __lowercase = num_attention_heads __lowercase = depths __lowercase = key_dim __lowercase = drop_path_rate __lowercase = patch_size __lowercase = attention_ratio __lowercase = mlp_ratio __lowercase = initializer_range __lowercase = [ ['''Subsample''', key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ['''Subsample''', key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] __lowercase = is_training __lowercase = use_labels __lowercase = num_labels __lowercase = initializer_range def _SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: '''simple docstring''' __lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size] , self.num_labels ) __lowercase = self.get_config() return config, pixel_values, labels def _SCREAMING_SNAKE_CASE ( self ) -> int: '''simple docstring''' return LevitConfig( image_size=self.image_size , num_channels=self.num_channels , kernel_size=self.kernel_size , stride=self.stride , padding=self.padding , patch_size=self.patch_size , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , depths=self.depths , key_dim=self.key_dim , drop_path_rate=self.drop_path_rate , mlp_ratio=self.mlp_ratio , attention_ratio=self.attention_ratio , initializer_range=self.initializer_range , down_ops=self.down_ops , ) def _SCREAMING_SNAKE_CASE ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Tuple: '''simple docstring''' __lowercase = LevitModel(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __lowercase = model(lowerCAmelCase__ ) __lowercase = (self.image_size, self.image_size) __lowercase , __lowercase = image_size[0], image_size[1] for _ in range(4 ): __lowercase = floor(((height + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) __lowercase = floor(((width + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, ceil(height / 4 ) * ceil(width / 4 ), self.hidden_sizes[-1]) , ) def _SCREAMING_SNAKE_CASE ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> str: '''simple docstring''' __lowercase = self.num_labels __lowercase = LevitForImageClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __lowercase = model(lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: '''simple docstring''' __lowercase = self.prepare_config_and_inputs() __lowercase , __lowercase , __lowercase = config_and_inputs __lowercase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class _UpperCamelCase ( _UpperCAmelCase ,_UpperCAmelCase ,unittest.TestCase ): """simple docstring""" __a : int = ( (LevitModel, LevitForImageClassification, LevitForImageClassificationWithTeacher) if is_torch_available() else () ) __a : List[str] = ( { '''feature-extraction''': LevitModel, '''image-classification''': (LevitForImageClassification, LevitForImageClassificationWithTeacher), } if is_torch_available() else {} ) __a : int = False __a : Dict = False __a : Optional[Any] = False __a : Optional[int] = False __a : Dict = False def _SCREAMING_SNAKE_CASE ( self ) -> List[Any]: '''simple docstring''' __lowercase = LevitModelTester(self ) __lowercase = ConfigTester(self , config_class=lowerCAmelCase__ , has_text_modality=lowerCAmelCase__ , hidden_size=37 ) def _SCREAMING_SNAKE_CASE ( self ) -> List[Any]: '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _SCREAMING_SNAKE_CASE ( self ) -> List[str]: '''simple docstring''' return @unittest.skip(reason='''Levit does not use inputs_embeds''' ) def _SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: '''simple docstring''' pass @unittest.skip(reason='''Levit does not support input and output embeddings''' ) def _SCREAMING_SNAKE_CASE ( self ) -> List[str]: '''simple docstring''' pass @unittest.skip(reason='''Levit does not output attentions''' ) def _SCREAMING_SNAKE_CASE ( self ) -> Tuple: '''simple docstring''' pass def _SCREAMING_SNAKE_CASE ( self ) -> str: '''simple docstring''' __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = model_class(lowerCAmelCase__ ) __lowercase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase = [*signature.parameters.keys()] __lowercase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowerCAmelCase__ ) def _SCREAMING_SNAKE_CASE ( self ) -> List[str]: '''simple docstring''' def check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): __lowercase = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() with torch.no_grad(): __lowercase = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) __lowercase = outputs.hidden_states __lowercase = len(self.model_tester.depths ) + 1 self.assertEqual(len(lowerCAmelCase__ ) , lowerCAmelCase__ ) __lowercase = (self.model_tester.image_size, self.model_tester.image_size) __lowercase , __lowercase = image_size[0], image_size[1] for _ in range(4 ): __lowercase = floor( ( (height + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) __lowercase = floor( ( (width + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [ height * width, self.model_tester.hidden_sizes[0], ] , ) __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = True check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowercase = True check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def _SCREAMING_SNAKE_CASE ( self ) -> int: '''simple docstring''' pass def _SCREAMING_SNAKE_CASE ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=False ) -> str: '''simple docstring''' __lowercase = super()._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ , return_labels=lowerCAmelCase__ ) if return_labels: if model_class.__name__ == "LevitForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def _SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: '''simple docstring''' __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__ ) def _SCREAMING_SNAKE_CASE ( self ) -> Dict: '''simple docstring''' __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase__ ) def _SCREAMING_SNAKE_CASE ( self ) -> List[str]: '''simple docstring''' if not self.model_tester.is_training: return __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() __lowercase = True for model_class in self.all_model_classes: # LevitForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(lowerCAmelCase__ ) or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue __lowercase = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.train() __lowercase = self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ , return_labels=lowerCAmelCase__ ) __lowercase = model(**lowerCAmelCase__ ).loss loss.backward() def _SCREAMING_SNAKE_CASE ( self ) -> Any: '''simple docstring''' __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return __lowercase = False __lowercase = True for model_class in self.all_model_classes: if model_class in get_values(lowerCAmelCase__ ) or not model_class.supports_gradient_checkpointing: continue # LevitForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "LevitForImageClassificationWithTeacher": continue __lowercase = model_class(lowerCAmelCase__ ) model.gradient_checkpointing_enable() model.to(lowerCAmelCase__ ) model.train() __lowercase = self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ , return_labels=lowerCAmelCase__ ) __lowercase = model(**lowerCAmelCase__ ).loss loss.backward() def _SCREAMING_SNAKE_CASE ( self ) -> str: '''simple docstring''' __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() __lowercase = [ {'''title''': '''multi_label_classification''', '''num_labels''': 2, '''dtype''': torch.float}, {'''title''': '''single_label_classification''', '''num_labels''': 1, '''dtype''': torch.long}, {'''title''': '''regression''', '''num_labels''': 1, '''dtype''': torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(lowerCAmelCase__ ), ] or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=F"Testing {model_class} with {problem_type['title']}" ): __lowercase = problem_type['''title'''] __lowercase = problem_type['''num_labels'''] __lowercase = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.train() __lowercase = self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ , return_labels=lowerCAmelCase__ ) if problem_type["num_labels"] > 1: __lowercase = inputs['''labels'''].unsqueeze(1 ).repeat(1 , problem_type['''num_labels'''] ) __lowercase = inputs['''labels'''].to(problem_type['''dtype'''] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=lowerCAmelCase__ ) as warning_list: __lowercase = model(**lowerCAmelCase__ ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( F"Something is going wrong in the regression problem: intercepted {w.message}" ) loss.backward() @slow def _SCREAMING_SNAKE_CASE ( self ) -> Dict: '''simple docstring''' for model_name in LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = LevitModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) def UpperCAmelCase ( ): """simple docstring""" __lowercase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class _UpperCamelCase ( unittest.TestCase ): """simple docstring""" @cached_property def _SCREAMING_SNAKE_CASE ( self ) -> str: '''simple docstring''' return LevitImageProcessor.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def _SCREAMING_SNAKE_CASE ( self ) -> Dict: '''simple docstring''' __lowercase = LevitForImageClassificationWithTeacher.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( lowerCAmelCase__ ) __lowercase = self.default_image_processor __lowercase = prepare_img() __lowercase = image_processor(images=lowerCAmelCase__ , return_tensors='''pt''' ).to(lowerCAmelCase__ ) # forward pass with torch.no_grad(): __lowercase = model(**lowerCAmelCase__ ) # verify the logits __lowercase = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase__ ) __lowercase = torch.tensor([1.0448, -0.3745, -1.8317] ).to(lowerCAmelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase__ , atol=1E-4 ) )
210
1
'''simple docstring''' import numpy as np # Importing the Keras libraries and packages import tensorflow as tf from tensorflow.keras import layers, models if __name__ == "__main__": # Initialising the CNN # (Sequential- Building the model layer by layer) __lowerCAmelCase : Union[str, Any] =models.Sequential() # Step 1 - Convolution # Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel # (3,3) is the kernel size (filter matrix) classifier.add( layers.ConvaD(32, (3, 3), input_shape=(64, 64, 3), activation="relu") ) # Step 2 - Pooling classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Adding a second convolutional layer classifier.add(layers.ConvaD(32, (3, 3), activation="relu")) classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Step 3 - Flattening classifier.add(layers.Flatten()) # Step 4 - Full connection classifier.add(layers.Dense(units=128, activation="relu")) classifier.add(layers.Dense(units=1, activation="sigmoid")) # Compiling the CNN classifier.compile( optimizer="adam", loss="binary_crossentropy", metrics=["accuracy"] ) # Part 2 - Fitting the CNN to the images # Load Trained model weights # from keras.models import load_model # regressor=load_model('cnn.h5') __lowerCAmelCase : Optional[Any] =tf.keras.preprocessing.image.ImageDataGenerator( rescale=1.0 / 255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True ) __lowerCAmelCase : Tuple =tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 255) __lowerCAmelCase : Any =train_datagen.flow_from_directory( "dataset/training_set", target_size=(64, 64), batch_size=32, class_mode="binary" ) __lowerCAmelCase : Dict =test_datagen.flow_from_directory( "dataset/test_set", target_size=(64, 64), batch_size=32, class_mode="binary" ) classifier.fit_generator( training_set, steps_per_epoch=5, epochs=30, validation_data=test_set ) classifier.save("cnn.h5") # Part 3 - Making new predictions __lowerCAmelCase : Dict =tf.keras.preprocessing.image.load_img( "dataset/single_prediction/image.png", target_size=(64, 64) ) __lowerCAmelCase : str =tf.keras.preprocessing.image.img_to_array(test_image) __lowerCAmelCase : List[Any] =np.expand_dims(test_image, axis=0) __lowerCAmelCase : int =classifier.predict(test_image) # training_set.class_indices if result[0][0] == 0: __lowerCAmelCase : Any ="Normal" if result[0][0] == 1: __lowerCAmelCase : Optional[int] ="Abnormality detected"
123
'''simple docstring''' def UpperCamelCase ( _lowerCamelCase : int = 1_00_00_00 ): A__ = set(range(3 , _lowerCamelCase , 2 ) ) primes.add(2 ) for p in range(3 , _lowerCamelCase , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , _lowerCamelCase , _lowerCamelCase ) ) ) A__ = [float(_lowerCamelCase ) for n in range(limit + 1 )] for p in primes: for n in range(_lowerCamelCase , limit + 1 , _lowerCamelCase ): phi[n] *= 1 - 1 / p return int(sum(phi[2:] ) ) if __name__ == "__main__": print(f"""{solution() = }""")
123
1
'''simple docstring''' import math import sys def snake_case_ ( __SCREAMING_SNAKE_CASE : str ): """simple docstring""" lowercase_ : str = '''''' try: with open(__SCREAMING_SNAKE_CASE , '''rb''' ) as binary_file: lowercase_ : str = binary_file.read() for dat in data: lowercase_ : Union[str, Any] = F'''{dat:08b}''' result += curr_byte return result except OSError: print('''File not accessible''' ) sys.exit() def snake_case_ ( __SCREAMING_SNAKE_CASE : str ): """simple docstring""" lowercase_ : List[Any] = {'''0''': '''0''', '''1''': '''1'''} lowercase_ , lowercase_ : int = '''''', '''''' lowercase_ : Optional[int] = len(__SCREAMING_SNAKE_CASE ) for i in range(len(__SCREAMING_SNAKE_CASE ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue lowercase_ : str = lexicon[curr_string] result += last_match_id lowercase_ : Optional[Any] = last_match_id + '''0''' if math.loga(__SCREAMING_SNAKE_CASE ).is_integer(): lowercase_ : str = {} for curr_key in list(__SCREAMING_SNAKE_CASE ): lowercase_ : str = lexicon.pop(__SCREAMING_SNAKE_CASE ) lowercase_ : Union[str, Any] = new_lex lowercase_ : Union[str, Any] = last_match_id + '''1''' index += 1 lowercase_ : List[str] = '''''' return result def snake_case_ ( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str ): """simple docstring""" lowercase_ : int = 8 try: with open(__SCREAMING_SNAKE_CASE , '''wb''' ) as opened_file: lowercase_ : Union[str, Any] = [ to_write[i : i + byte_length] for i in range(0 , len(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append('''10000000''' ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array[:-1]: opened_file.write(int(__SCREAMING_SNAKE_CASE , 2 ).to_bytes(1 , byteorder='''big''' ) ) except OSError: print('''File not accessible''' ) sys.exit() def snake_case_ ( __SCREAMING_SNAKE_CASE : str ): """simple docstring""" lowercase_ : Tuple = 0 for letter in data_bits: if letter == "1": break counter += 1 lowercase_ : int = data_bits[counter:] lowercase_ : int = data_bits[counter + 1 :] return data_bits def snake_case_ ( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str ): """simple docstring""" lowercase_ : Optional[int] = read_file_binary(__SCREAMING_SNAKE_CASE ) lowercase_ : Dict = remove_prefix(__SCREAMING_SNAKE_CASE ) lowercase_ : Any = decompress_data(__SCREAMING_SNAKE_CASE ) write_file_binary(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
93
'''simple docstring''' import json import os import tempfile from transformers.testing_utils import check_json_file_has_correct_format class lowerCAmelCase__ : lowerCAmelCase_ = None def _snake_case ( self ): """simple docstring""" lowercase_ : Tuple = self.feature_extraction_class(**self.feat_extract_dict ) lowercase_ : Any = json.loads(feat_extract.to_json_string() ) for key, value in self.feat_extract_dict.items(): self.assertEqual(obj[key] , __SCREAMING_SNAKE_CASE ) def _snake_case ( self ): """simple docstring""" lowercase_ : str = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: lowercase_ : str = os.path.join(__SCREAMING_SNAKE_CASE , '''feat_extract.json''' ) feat_extract_first.to_json_file(__SCREAMING_SNAKE_CASE ) lowercase_ : str = self.feature_extraction_class.from_json_file(__SCREAMING_SNAKE_CASE ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def _snake_case ( self ): """simple docstring""" lowercase_ : Tuple = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: lowercase_ : Union[str, Any] = feat_extract_first.save_pretrained(__SCREAMING_SNAKE_CASE )[0] check_json_file_has_correct_format(__SCREAMING_SNAKE_CASE ) lowercase_ : str = self.feature_extraction_class.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def _snake_case ( self ): """simple docstring""" lowercase_ : Optional[Any] = self.feature_extraction_class() self.assertIsNotNone(__SCREAMING_SNAKE_CASE )
93
1
import itertools import os import random import tempfile import unittest import numpy as np from datasets import load_dataset from transformers import is_speech_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import WhisperFeatureExtractor if is_torch_available(): import torch _lowerCamelCase = random.Random() def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int , __UpperCamelCase : str=1.0 , __UpperCamelCase : List[Any]=None , __UpperCamelCase : List[str]=None ) -> List[str]: if rng is None: UpperCAmelCase_ = global_rng UpperCAmelCase_ = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class a ( unittest.TestCase ): '''simple docstring''' def __init__( self : Dict , __snake_case : Any , __snake_case : List[Any]=7 , __snake_case : Tuple=4_00 , __snake_case : Any=20_00 , __snake_case : Dict=10 , __snake_case : str=1_60 , __snake_case : List[str]=8 , __snake_case : Dict=0.0 , __snake_case : int=40_00 , __snake_case : str=False , __snake_case : Any=True , ): UpperCAmelCase_ = parent UpperCAmelCase_ = batch_size UpperCAmelCase_ = min_seq_length UpperCAmelCase_ = max_seq_length UpperCAmelCase_ = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) UpperCAmelCase_ = padding_value UpperCAmelCase_ = sampling_rate UpperCAmelCase_ = return_attention_mask UpperCAmelCase_ = do_normalize UpperCAmelCase_ = feature_size UpperCAmelCase_ = chunk_length UpperCAmelCase_ = hop_length def lowerCamelCase_ ( self : Dict ): return { "feature_size": self.feature_size, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def lowerCamelCase_ ( self : str , __snake_case : Optional[int]=False , __snake_case : Optional[int]=False ): def _flatten(__snake_case : Any ): return list(itertools.chain(*_a ) ) if equal_length: UpperCAmelCase_ = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size UpperCAmelCase_ = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: UpperCAmelCase_ = [np.asarray(_a ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class a ( _A , unittest.TestCase ): '''simple docstring''' lowerCAmelCase : Dict = WhisperFeatureExtractor if is_speech_available() else None def lowerCamelCase_ ( self : int ): UpperCAmelCase_ = WhisperFeatureExtractionTester(self ) def lowerCamelCase_ ( self : Any ): UpperCAmelCase_ = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: UpperCAmelCase_ = feat_extract_first.save_pretrained(_a )[0] check_json_file_has_correct_format(_a ) UpperCAmelCase_ = self.feature_extraction_class.from_pretrained(_a ) UpperCAmelCase_ = feat_extract_first.to_dict() UpperCAmelCase_ = feat_extract_second.to_dict() UpperCAmelCase_ = feat_extract_first.mel_filters UpperCAmelCase_ = feat_extract_second.mel_filters self.assertTrue(np.allclose(_a , _a ) ) self.assertEqual(_a , _a ) def lowerCamelCase_ ( self : Tuple ): UpperCAmelCase_ = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: UpperCAmelCase_ = os.path.join(_a , '''feat_extract.json''' ) feat_extract_first.to_json_file(_a ) UpperCAmelCase_ = self.feature_extraction_class.from_json_file(_a ) UpperCAmelCase_ = feat_extract_first.to_dict() UpperCAmelCase_ = feat_extract_second.to_dict() UpperCAmelCase_ = feat_extract_first.mel_filters UpperCAmelCase_ = feat_extract_second.mel_filters self.assertTrue(np.allclose(_a , _a ) ) self.assertEqual(_a , _a ) def lowerCamelCase_ ( self : List[str] ): # Tests that all call wrap to encode_plus and batch_encode_plus UpperCAmelCase_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 UpperCAmelCase_ = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] UpperCAmelCase_ = [np.asarray(_a ) for speech_input in speech_inputs] # Test feature size UpperCAmelCase_ = feature_extractor(_a , padding='''max_length''' , return_tensors='''np''' ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.nb_max_frames ) self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size ) # Test not batched input UpperCAmelCase_ = feature_extractor(speech_inputs[0] , return_tensors='''np''' ).input_features UpperCAmelCase_ = feature_extractor(np_speech_inputs[0] , return_tensors='''np''' ).input_features self.assertTrue(np.allclose(_a , _a , atol=1E-3 ) ) # Test batched UpperCAmelCase_ = feature_extractor(_a , return_tensors='''np''' ).input_features UpperCAmelCase_ = feature_extractor(_a , return_tensors='''np''' ).input_features for enc_seq_a, enc_seq_a in zip(_a , _a ): self.assertTrue(np.allclose(_a , _a , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. UpperCAmelCase_ = [floats_list((1, x) )[0] for x in (8_00, 8_00, 8_00)] UpperCAmelCase_ = np.asarray(_a ) UpperCAmelCase_ = feature_extractor(_a , return_tensors='''np''' ).input_features UpperCAmelCase_ = feature_extractor(_a , return_tensors='''np''' ).input_features for enc_seq_a, enc_seq_a in zip(_a , _a ): self.assertTrue(np.allclose(_a , _a , atol=1E-3 ) ) # Test truncation required UpperCAmelCase_ = [floats_list((1, x) )[0] for x in range(2_00 , (feature_extractor.n_samples + 5_00) , 2_00 )] UpperCAmelCase_ = [np.asarray(_a ) for speech_input in speech_inputs] UpperCAmelCase_ = [x[: feature_extractor.n_samples] for x in speech_inputs] UpperCAmelCase_ = [np.asarray(_a ) for speech_input in speech_inputs_truncated] UpperCAmelCase_ = feature_extractor(_a , return_tensors='''np''' ).input_features UpperCAmelCase_ = feature_extractor(_a , return_tensors='''np''' ).input_features for enc_seq_a, enc_seq_a in zip(_a , _a ): self.assertTrue(np.allclose(_a , _a , atol=1E-3 ) ) def lowerCamelCase_ ( self : Any ): import torch UpperCAmelCase_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCAmelCase_ = np.random.rand(1_00 , 32 ).astype(np.floataa ) UpperCAmelCase_ = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: UpperCAmelCase_ = feature_extractor.pad([{'''input_features''': inputs}] , return_tensors='''np''' ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) UpperCAmelCase_ = feature_extractor.pad([{'''input_features''': inputs}] , return_tensors='''pt''' ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def lowerCamelCase_ ( self : List[str] , __snake_case : Any ): UpperCAmelCase_ = load_dataset('''hf-internal-testing/librispeech_asr_dummy''' , '''clean''' , split='''validation''' ) # automatic decoding with librispeech UpperCAmelCase_ = ds.sort('''id''' ).select(range(_a ) )[:num_samples]["audio"] return [x["array"] for x in speech_samples] def lowerCamelCase_ ( self : str ): # fmt: off UpperCAmelCase_ = torch.tensor( [ 0.1_193, -0.0_946, -0.1_098, -0.0_196, 0.0_225, -0.0_690, -0.1_736, 0.0_951, 0.0_971, -0.0_817, -0.0_702, 0.0_162, 0.0_260, 0.0_017, -0.0_192, -0.1_678, 0.0_709, -0.1_867, -0.0_655, -0.0_274, -0.0_234, -0.1_884, -0.0_516, -0.0_554, -0.0_274, -0.1_425, -0.1_423, 0.0_837, 0.0_377, -0.0_854 ] ) # fmt: on UpperCAmelCase_ = self._load_datasamples(1 ) UpperCAmelCase_ = WhisperFeatureExtractor() UpperCAmelCase_ = feature_extractor(_a , return_tensors='''pt''' ).input_features self.assertEqual(input_features.shape , (1, 80, 30_00) ) self.assertTrue(torch.allclose(input_features[0, 0, :30] , _a , atol=1E-4 ) ) def lowerCamelCase_ ( self : Any ): UpperCAmelCase_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCAmelCase_ = self._load_datasamples(1 )[0] UpperCAmelCase_ = ((audio - audio.min()) / (audio.max() - audio.min())) * 6_55_35 # Rescale to [0, 65535] to show issue UpperCAmelCase_ = feat_extract.zero_mean_unit_var_norm([audio] , attention_mask=_a )[0] self.assertTrue(np.all(np.mean(_a ) < 1E-3 ) ) self.assertTrue(np.all(np.abs(np.var(_a ) - 1 ) < 1E-3 ) )
369
def SCREAMING_SNAKE_CASE ( __UpperCamelCase : float , __UpperCamelCase : float ) -> float: if density <= 0: raise ValueError('''Impossible fluid density''' ) if bulk_modulus <= 0: raise ValueError('''Impossible bulk modulus''' ) return (bulk_modulus / density) ** 0.5 if __name__ == "__main__": import doctest doctest.testmod()
177
0
import os import zipfile import pytest from datasets.utils.extract import ( BzipaExtractor, Extractor, GzipExtractor, LzaExtractor, SevenZipExtractor, TarExtractor, XzExtractor, ZipExtractor, ZstdExtractor, ) from .utils import require_lza, require_pyazr, require_zstandard @pytest.mark.parametrize( 'compression_format, is_archive' , [ ('7z', True), ('bz2', False), ('gzip', False), ('lz4', False), ('tar', True), ('xz', False), ('zip', True), ('zstd', False), ] , ) def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , ) -> List[str]: _lowercase : Dict = { '7z': (seven_zip_file, SevenZipExtractor), 'bz2': (bza_file, BzipaExtractor), 'gzip': (gz_file, GzipExtractor), 'lz4': (lza_file, LzaExtractor), 'tar': (tar_file, TarExtractor), 'xz': (xz_file, XzExtractor), 'zip': (zip_file, ZipExtractor), 'zstd': (zstd_file, ZstdExtractor), } _lowercase , _lowercase : int = input_paths_and_base_extractors[compression_format] if input_path is None: _lowercase : Optional[int] = F'''for \'{compression_format}\' compression_format, ''' if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(lowerCamelCase_ ) assert base_extractor.is_extractable(lowerCamelCase_ ) _lowercase : str = tmp_path / ('extracted' if is_archive else 'extracted.txt') base_extractor.extract(lowerCamelCase_ , lowerCamelCase_ ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name _lowercase : Union[str, Any] = file_path.read_text(encoding='utf-8' ) else: _lowercase : List[Any] = output_path.read_text(encoding='utf-8' ) _lowercase : Tuple = text_file.read_text(encoding='utf-8' ) assert extracted_file_content == expected_file_content @pytest.mark.parametrize( 'compression_format, is_archive' , [ ('7z', True), ('bz2', False), ('gzip', False), ('lz4', False), ('tar', True), ('xz', False), ('zip', True), ('zstd', False), ] , ) def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , ) -> List[str]: _lowercase : List[Any] = { '7z': seven_zip_file, 'bz2': bza_file, 'gzip': gz_file, 'lz4': lza_file, 'tar': tar_file, 'xz': xz_file, 'zip': zip_file, 'zstd': zstd_file, } _lowercase : int = input_paths[compression_format] if input_path is None: _lowercase : Tuple = F'''for \'{compression_format}\' compression_format, ''' if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(lowerCamelCase_ ) _lowercase : List[Any] = Extractor.infer_extractor_format(lowerCamelCase_ ) assert extractor_format is not None _lowercase : int = tmp_path / ('extracted' if is_archive else 'extracted.txt') Extractor.extract(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name _lowercase : Optional[int] = file_path.read_text(encoding='utf-8' ) else: _lowercase : Any = output_path.read_text(encoding='utf-8' ) _lowercase : Any = text_file.read_text(encoding='utf-8' ) assert extracted_file_content == expected_file_content @pytest.fixture def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ ) -> Optional[int]: import tarfile _lowercase : Union[str, Any] = tmp_path / 'data_dot_dot' directory.mkdir() _lowercase : Tuple = directory / 'tar_file_with_dot_dot.tar' with tarfile.TarFile(lowerCamelCase_ , 'w' ) as f: f.add(lowerCamelCase_ , arcname=os.path.join('..' , text_file.name ) ) return path @pytest.fixture def UpperCamelCase_( lowerCamelCase_ ) -> Optional[Any]: import tarfile _lowercase : int = tmp_path / 'data_sym_link' directory.mkdir() _lowercase : Union[str, Any] = directory / 'tar_file_with_sym_link.tar' os.symlink('..' , directory / 'subdir' , target_is_directory=lowerCamelCase_ ) with tarfile.TarFile(lowerCamelCase_ , 'w' ) as f: f.add(str(directory / 'subdir' ) , arcname='subdir' ) # str required by os.readlink on Windows and Python < 3.8 return path @pytest.mark.parametrize( 'insecure_tar_file, error_log' , [('tar_file_with_dot_dot', 'illegal path'), ('tar_file_with_sym_link', 'Symlink')] , ) def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> int: _lowercase : Dict = { 'tar_file_with_dot_dot': tar_file_with_dot_dot, 'tar_file_with_sym_link': tar_file_with_sym_link, } _lowercase : List[Any] = insecure_tar_files[insecure_tar_file] _lowercase : List[str] = tmp_path / 'extracted' TarExtractor.extract(lowerCamelCase_ , lowerCamelCase_ ) assert caplog.text for record in caplog.records: assert record.levelname == "ERROR" assert error_log in record.msg def UpperCamelCase_( lowerCamelCase_ ) -> Union[str, Any]: # We should have less false positives than zipfile.is_zipfile # We do that by checking only the magic number _lowercase : List[Any] = tmpdir / 'not_a_zip_file' # From: https://github.com/python/cpython/pull/5053 _lowercase : Union[str, Any] = ( B'\x89PNG\r\n\x1a\n\x00\x00\x00\rIHDR\x00\x00\x00\x01\x00\x00' B'\x00\x02\x08\x06\x00\x00\x00\x99\x81\xb6\'\x00\x00\x00\x15I' B'DATx\x01\x01\n\x00\xf5\xff\x00PK\x05\x06\x00PK\x06\x06\x07' B'\xac\x01N\xc6|a\r\x00\x00\x00\x00IEND\xaeB`\x82' ) with not_a_zip_file.open('wb' ) as f: f.write(lowerCamelCase_ ) assert zipfile.is_zipfile(str(lowerCamelCase_ ) ) # is a false positive for `zipfile` assert not ZipExtractor.is_extractable(lowerCamelCase_ ) # but we're right
21
"""simple docstring""" import json import os from collections import Counter import torch import torchvision import torchvision.transforms as transforms from PIL import Image from torch import nn from torch.utils.data import Dataset _SCREAMING_SNAKE_CASE : List[Any] = {1: (1, 1), 2: (2, 1), 3: (3, 1), 4: (2, 2), 5: (5, 1), 6: (3, 2), 7: (7, 1), 8: (4, 2), 9: (3, 3)} class a ( nn.Module ): def __init__( self : int , __SCREAMING_SNAKE_CASE : Tuple ) -> List[Any]: super().__init__() lowerCamelCase_ = torchvision.models.resnetaaa(pretrained=__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = list(model.children() )[:-2] lowerCamelCase_ = nn.Sequential(*__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = nn.AdaptiveAvgPoolad(POOLING_BREAKDOWN[args.num_image_embeds] ) def UpperCamelCase ( self : List[Any] , __SCREAMING_SNAKE_CASE : Any ) -> Any: # Bx3x224x224 -> Bx2048x7x7 -> Bx2048xN -> BxNx2048 lowerCamelCase_ = self.pool(self.model(__SCREAMING_SNAKE_CASE ) ) lowerCamelCase_ = torch.flatten(__SCREAMING_SNAKE_CASE , start_dim=2 ) lowerCamelCase_ = out.transpose(1 , 2 ).contiguous() return out # BxNx2048 class a ( __snake_case ): def __init__( self : Dict , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : List[Any] ) -> Optional[Any]: lowerCamelCase_ = [json.loads(__SCREAMING_SNAKE_CASE ) for l in open(__SCREAMING_SNAKE_CASE )] lowerCamelCase_ = os.path.dirname(__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = tokenizer lowerCamelCase_ = labels lowerCamelCase_ = len(__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = max_seq_length lowerCamelCase_ = transforms def __len__( self : Any ) -> Any: return len(self.data ) def __getitem__( self : Optional[Any] , __SCREAMING_SNAKE_CASE : List[str] ) -> List[str]: lowerCamelCase_ = torch.LongTensor(self.tokenizer.encode(self.data[index]['text'] , add_special_tokens=__SCREAMING_SNAKE_CASE ) ) lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = sentence[0], sentence[1:-1], sentence[-1] lowerCamelCase_ = sentence[: self.max_seq_length] lowerCamelCase_ = torch.zeros(self.n_classes ) lowerCamelCase_ = 1 lowerCamelCase_ = Image.open(os.path.join(self.data_dir , self.data[index]['img'] ) ).convert('RGB' ) lowerCamelCase_ = self.transforms(__SCREAMING_SNAKE_CASE ) return { "image_start_token": start_token, "image_end_token": end_token, "sentence": sentence, "image": image, "label": label, } def UpperCamelCase ( self : Dict ) -> Dict: lowerCamelCase_ = Counter() for row in self.data: label_freqs.update(row['label'] ) return label_freqs def lowerCamelCase__ ( _lowerCamelCase : Union[str, Any] ) -> str: lowerCamelCase_ = [len(row['sentence'] ) for row in batch] lowerCamelCase_ , lowerCamelCase_ = len(_lowerCamelCase ), max(_lowerCamelCase ) lowerCamelCase_ = torch.zeros(_lowerCamelCase , _lowerCamelCase , dtype=torch.long ) lowerCamelCase_ = torch.zeros(_lowerCamelCase , _lowerCamelCase , dtype=torch.long ) for i_batch, (input_row, length) in enumerate(zip(_lowerCamelCase , _lowerCamelCase ) ): lowerCamelCase_ = input_row['sentence'] lowerCamelCase_ = 1 lowerCamelCase_ = torch.stack([row['image'] for row in batch] ) lowerCamelCase_ = torch.stack([row['label'] for row in batch] ) lowerCamelCase_ = torch.stack([row['image_start_token'] for row in batch] ) lowerCamelCase_ = torch.stack([row['image_end_token'] for row in batch] ) return text_tensor, mask_tensor, img_tensor, img_start_token, img_end_token, tgt_tensor def lowerCamelCase__ ( ) -> List[str]: return [ "Crime", "Drama", "Thriller", "Action", "Comedy", "Romance", "Documentary", "Short", "Mystery", "History", "Family", "Adventure", "Fantasy", "Sci-Fi", "Western", "Horror", "Sport", "War", "Music", "Musical", "Animation", "Biography", "Film-Noir", ] def lowerCamelCase__ ( ) -> Union[str, Any]: return transforms.Compose( [ transforms.Resize(256 ), transforms.CenterCrop(224 ), transforms.ToTensor(), transforms.Normalize( mean=[0.46_77_70_44, 0.44_53_14_29, 0.40_66_10_17] , std=[0.12_22_19_94, 0.12_14_58_35, 0.14_38_04_69] , ), ] )
183
0
from ...utils import is_note_seq_available, is_transformers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .notes_encoder import SpectrogramNotesEncoder from .continous_encoder import SpectrogramContEncoder from .pipeline_spectrogram_diffusion import ( SpectrogramContEncoder, SpectrogramDiffusionPipeline, TaFilmDecoder, ) try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .midi_utils import MidiProcessor
238
from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_herbert import HerbertTokenizer snake_case_ = logging.get_logger(__name__) snake_case_ = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} snake_case_ = { 'vocab_file': { 'allegro/herbert-base-cased': 'https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json' }, 'merges_file': { 'allegro/herbert-base-cased': 'https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt' }, } snake_case_ = {'allegro/herbert-base-cased': 514} snake_case_ = {} class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): A_ : Dict = VOCAB_FILES_NAMES A_ : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP A_ : Optional[int] = PRETRAINED_INIT_CONFIGURATION A_ : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ : Any = HerbertTokenizer def __init__(self : Dict , a__ : Tuple=None , a__ : Optional[int]=None , a__ : List[str]=None , a__ : Optional[int]="<s>" , a__ : Optional[Any]="<unk>" , a__ : Any="<pad>" , a__ : List[Any]="<mask>" , a__ : Any="</s>" , **a__ : Tuple , ): """simple docstring""" super().__init__( a__ , a__ , tokenizer_file=a__ , cls_token=a__ , unk_token=a__ , pad_token=a__ , mask_token=a__ , sep_token=a__ , **a__ , ) def a (self : List[str] , a__ : List[int] , a__ : Optional[List[int]] = None ): """simple docstring""" __snake_case = [self.cls_token_id] __snake_case = [self.sep_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def a (self : List[str] , a__ : List[int] , a__ : Optional[List[int]] = None , a__ : bool = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=a__ , token_ids_a=a__ , already_has_special_tokens=a__ ) if token_ids_a is None: return [1] + ([0] * len(a__ )) + [1] return [1] + ([0] * len(a__ )) + [1] + ([0] * len(a__ )) + [1] def a (self : Optional[int] , a__ : List[int] , a__ : Optional[List[int]] = None ): """simple docstring""" __snake_case = [self.sep_token_id] __snake_case = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def a (self : int , a__ : str , a__ : Optional[str] = None ): """simple docstring""" __snake_case = self._tokenizer.model.save(a__ , name=a__ ) return tuple(a__ )
238
1
'''simple docstring''' from math import loga def lowerCamelCase ( UpperCAmelCase__ : int ) -> int: if a < 0: raise ValueError("""Input value must be a positive integer""" ) elif isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): raise TypeError("""Input value must be a 'int' type""" ) return 0 if (a == 0) else int(loga(a & -a ) ) if __name__ == "__main__": import doctest doctest.testmod()
239
'''simple docstring''' from itertools import product def lowerCamelCase ( UpperCAmelCase__ : int , UpperCAmelCase__ : int ) -> list[int]: lowercase_ : List[Any] = sides_number lowercase_ : Dict = max_face_number * dice_number lowercase_ : List[str] = [0] * (max_total + 1) lowercase_ : Union[str, Any] = 1 lowercase_ : Dict = range(UpperCAmelCase__ , max_face_number + 1 ) for dice_numbers in product(UpperCAmelCase__ , repeat=UpperCAmelCase__ ): lowercase_ : Any = sum(UpperCAmelCase__ ) totals_frequencies[total] += 1 return totals_frequencies def lowerCamelCase ( ) -> float: lowercase_ : Optional[Any] = total_frequency_distribution( sides_number=4 , dice_number=9 ) lowercase_ : List[str] = total_frequency_distribution( sides_number=6 , dice_number=6 ) lowercase_ : Union[str, Any] = 0 lowercase_ : Tuple = 9 lowercase_ : Optional[int] = 4 * 9 lowercase_ : List[Any] = 6 for peter_total in range(UpperCAmelCase__ , max_peter_total + 1 ): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total] ) lowercase_ : str = (4**9) * (6**6) lowercase_ : List[Any] = peter_wins_count / total_games_number lowercase_ : Dict = round(UpperCAmelCase__ , ndigits=7 ) return rounded_peter_win_probability if __name__ == "__main__": print(f"""{solution() = }""")
239
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A = { """configuration_pegasus_x""": ["""PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP""", """PegasusXConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ """PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST""", """PegasusXForConditionalGeneration""", """PegasusXModel""", """PegasusXPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pegasus_x import ( PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST, PegasusXForConditionalGeneration, PegasusXModel, PegasusXPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
360
"""simple docstring""" import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self , __UpperCAmelCase , __UpperCAmelCase=3 , __UpperCAmelCase=3_2 , __UpperCAmelCase=3 , __UpperCAmelCase=1_0 , __UpperCAmelCase=[1_0, 2_0, 3_0, 4_0] , __UpperCAmelCase=[1, 1, 2, 1] , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase="relu" , __UpperCAmelCase=3 , __UpperCAmelCase=None , ): '''simple docstring''' lowerCAmelCase__ :Optional[Any] = parent lowerCAmelCase__ :Dict = batch_size lowerCAmelCase__ :Optional[int] = image_size lowerCAmelCase__ :Any = num_channels lowerCAmelCase__ :Union[str, Any] = embeddings_size lowerCAmelCase__ :Optional[int] = hidden_sizes lowerCAmelCase__ :Optional[int] = depths lowerCAmelCase__ :Tuple = is_training lowerCAmelCase__ :Tuple = use_labels lowerCAmelCase__ :str = hidden_act lowerCAmelCase__ :List[Any] = num_labels lowerCAmelCase__ :Union[str, Any] = scope lowerCAmelCase__ :Any = len(__UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase__ :Any = self.get_config() return config, pixel_values def snake_case ( self ): '''simple docstring''' return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :int = FlaxRegNetModel(config=__UpperCAmelCase ) lowerCAmelCase__ :List[str] = model(__UpperCAmelCase ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2) , ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :Optional[Any] = self.num_labels lowerCAmelCase__ :int = FlaxRegNetForImageClassification(config=__UpperCAmelCase ) lowerCAmelCase__ :Any = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Optional[Any] = self.prepare_config_and_inputs() lowerCAmelCase__ , lowerCAmelCase__ :List[Any] = config_and_inputs lowerCAmelCase__ :Optional[Any] = {'pixel_values': pixel_values} return config, inputs_dict @require_flax class _lowerCAmelCase ( a , unittest.TestCase ): """simple docstring""" __magic_name__ :List[str] = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () __magic_name__ :Any = False __magic_name__ :int = False __magic_name__ :Any = False def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :str = FlaxRegNetModelTester(self ) lowerCAmelCase__ :Optional[int] = ConfigTester(self , config_class=__UpperCAmelCase , has_text_modality=__UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def snake_case ( self ): '''simple docstring''' return def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__UpperCAmelCase ) @unittest.skip(reason='RegNet does not use inputs_embeds' ) def snake_case ( self ): '''simple docstring''' pass @unittest.skip(reason='RegNet does not support input and output embeddings' ) def snake_case ( self ): '''simple docstring''' pass def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ :Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ :Optional[int] = model_class(__UpperCAmelCase ) lowerCAmelCase__ :List[Any] = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase__ :str = [*signature.parameters.keys()] lowerCAmelCase__ :Tuple = ['pixel_values'] self.assertListEqual(arg_names[:1] , __UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' def check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): lowerCAmelCase__ :List[Any] = model_class(__UpperCAmelCase ) lowerCAmelCase__ :Dict = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) lowerCAmelCase__ :List[str] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowerCAmelCase__ :Optional[Any] = self.model_tester.num_stages self.assertEqual(len(__UpperCAmelCase ) , expected_num_stages + 1 ) lowerCAmelCase__ , lowerCAmelCase__ :List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ :str = True check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase__ :Optional[Any] = True check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ :Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowerCAmelCase__ :Tuple = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ :Optional[int] = model_class(__UpperCAmelCase ) @jax.jit def model_jitted(__UpperCAmelCase , **__UpperCAmelCase ): return model(pixel_values=__UpperCAmelCase , **__UpperCAmelCase ) with self.subTest('JIT Enabled' ): lowerCAmelCase__ :Dict = model_jitted(**__UpperCAmelCase ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): lowerCAmelCase__ :Union[str, Any] = model_jitted(**__UpperCAmelCase ).to_tuple() self.assertEqual(len(__UpperCAmelCase ) , len(__UpperCAmelCase ) ) for jitted_output, output in zip(__UpperCAmelCase , __UpperCAmelCase ): self.assertEqual(jitted_output.shape , output.shape ) def __A () ->Optional[int]: """simple docstring""" lowerCAmelCase__ :Optional[int] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_flax class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def snake_case ( self ): '''simple docstring''' return AutoImageProcessor.from_pretrained('facebook/regnet-y-040' ) if is_vision_available() else None @slow def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Tuple = FlaxRegNetForImageClassification.from_pretrained('facebook/regnet-y-040' ) lowerCAmelCase__ :Any = self.default_image_processor lowerCAmelCase__ :Dict = prepare_img() lowerCAmelCase__ :Optional[int] = image_processor(images=__UpperCAmelCase , return_tensors='np' ) lowerCAmelCase__ :List[str] = model(**__UpperCAmelCase ) # verify the logits lowerCAmelCase__ :Union[str, Any] = (1, 1_0_0_0) self.assertEqual(outputs.logits.shape , __UpperCAmelCase ) lowerCAmelCase__ :Any = jnp.array([-0.41_80, -1.50_51, -3.48_36] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , __UpperCAmelCase , atol=1E-4 ) )
254
0
def lowerCAmelCase_ ( __lowerCamelCase ): if not isinstance(__lowerCamelCase , __lowerCamelCase ): __snake_case : Optional[int] = F'Input value of [number={number}] must be an integer' raise TypeError(__lowerCamelCase ) if number < 1: __snake_case : List[Any] = F'Input value of [number={number}] must be > 0' raise ValueError(__lowerCamelCase ) __snake_case : Tuple = 1 for i in range(1 , __lowerCamelCase ): current_number *= 4 * i - 2 current_number //= i + 1 return current_number if __name__ == "__main__": import doctest doctest.testmod()
123
# XXX: we want transformers master here - in the absense of conftest manipulating sys.path: # hack it in for now: import sys from pathlib import Path _snake_case : Dict = Path(__file__).resolve().parents[3] / "src" sys.path.insert(1, str(git_repo_path)) import dataclasses # noqa import io # noqa import itertools # noqa import json # noqa import os # noqa import unittest # noqa from copy import deepcopy # noqa from parameterized import parameterized # noqa from transformers import TrainingArguments, is_torch_available # noqa from transformers.deepspeed import is_deepspeed_available # noqa from transformers.file_utils import WEIGHTS_NAME # noqa from transformers.testing_utils import ( # noqa CaptureLogger, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, mockenv_context, require_deepspeed, require_torch_gpu, require_torch_multi_gpu, slow, ) from transformers.trainer_utils import set_seed # noqa set_seed(42) _snake_case : List[str] = {"base": "patrickvonplaten/wav2vec2_tiny_random", "robust": "patrickvonplaten/wav2vec2_tiny_random_robust"} _snake_case : List[str] = "zero2" _snake_case : Any = "zero3" _snake_case : Dict = [ZEROa, ZEROa] def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): # customize the test name generator function as we want both params to appear in the sub-test # name, as by default it shows only the first param __snake_case : Optional[Any] = parameterized.to_safe_name("_".join(str(__lowerCamelCase ) for x in param.args ) ) return F'{func.__name__}_{param_based_name}' # Cartesian-product of zero stages with models to test _snake_case : Union[str, Any] = list(itertools.product(stages, models.keys())) @slow @require_deepspeed @require_torch_gpu class a (_lowerCAmelCase ): """simple docstring""" @parameterized.expand(lowerCamelCase , name_func=lowerCamelCase ) def __snake_case ( self : Any , lowerCamelCase : List[Any] , lowerCamelCase : Dict ) -> Union[str, Any]: self.run_and_check( stage=lowerCamelCase , model=lowerCamelCase , distributed=lowerCamelCase , fpaa=lowerCamelCase , ) @require_torch_multi_gpu @parameterized.expand(lowerCamelCase , name_func=lowerCamelCase ) def __snake_case ( self : Optional[Any] , lowerCamelCase : Optional[Any] , lowerCamelCase : List[Any] ) -> int: self.run_and_check( stage=lowerCamelCase , model=lowerCamelCase , distributed=lowerCamelCase , fpaa=lowerCamelCase , ) @parameterized.expand(lowerCamelCase , name_func=lowerCamelCase ) def __snake_case ( self : List[Any] , lowerCamelCase : Any , lowerCamelCase : int ) -> Dict: self.run_and_check( stage=lowerCamelCase , model=lowerCamelCase , distributed=lowerCamelCase , fpaa=lowerCamelCase , ) @require_torch_multi_gpu @parameterized.expand(lowerCamelCase , name_func=lowerCamelCase ) def __snake_case ( self : str , lowerCamelCase : str , lowerCamelCase : Any ) -> str: self.run_and_check( stage=lowerCamelCase , model=lowerCamelCase , distributed=lowerCamelCase , fpaa=lowerCamelCase , ) def __snake_case ( self : str , lowerCamelCase : List[Any] ) -> Union[str, Any]: # XXX: run_asr is premature and doesn't save any results # so all we check for now is that the process didn't fail pass def __snake_case ( self : List[Any] , lowerCamelCase : str , lowerCamelCase : str , lowerCamelCase : int = 10 , lowerCamelCase : bool = True , lowerCamelCase : bool = True , lowerCamelCase : bool = True , ) -> Tuple: __snake_case : Any = models[model] __snake_case : Tuple = self.run_trainer( stage=lowerCamelCase , model_name=lowerCamelCase , eval_steps=lowerCamelCase , num_train_epochs=1 , distributed=lowerCamelCase , fpaa=lowerCamelCase , ) self.do_checks(lowerCamelCase ) return output_dir def __snake_case ( self : Optional[Any] , lowerCamelCase : str , lowerCamelCase : str , lowerCamelCase : int = 10 , lowerCamelCase : int = 1 , lowerCamelCase : bool = True , lowerCamelCase : bool = True , ) -> Tuple: __snake_case : Optional[int] = self.get_auto_remove_tmp_dir("./xxx" , after=lowerCamelCase ) __snake_case : Optional[int] = F'\n --model_name_or_path {model_name}\n --dataset_name hf-internal-testing/librispeech_asr_dummy\n --dataset_config_name clean\n --train_split_name validation\n --validation_split_name validation\n --output_dir {output_dir}\n --num_train_epochs {str(lowerCamelCase )}\n --per_device_train_batch_size 2\n --per_device_eval_batch_size 2\n --evaluation_strategy steps\n --learning_rate 5e-4\n --warmup_steps 8\n --orthography timit\n --preprocessing_num_workers 1\n --group_by_length\n --freeze_feature_extractor\n --report_to none\n --save_steps 0\n --eval_steps {eval_steps}\n --report_to none\n '.split() if fpaa: args.extend(["--fp16"] ) # currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true, # hence the separate config files __snake_case : Optional[int] = F'--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json'.split() __snake_case : Dict = [F'{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py'] __snake_case : Any = self.get_launcher(lowerCamelCase ) __snake_case : Optional[Any] = launcher + script + args + ds_args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(lowerCamelCase , env=self.get_env() ) return output_dir def __snake_case ( self : str , lowerCamelCase : str=False ) -> Any: # 1. explicitly set --num_nodes=1 just in case these tests end up run on a multi-node setup # - it won't be able to handle that # 2. for now testing with just 2 gpus max (since some quality tests may give different # results with mode gpus because we use very little data) __snake_case : Dict = min(2 , get_gpu_count() ) if distributed else 1 return F'deepspeed --num_nodes 1 --num_gpus {num_gpus}'.split()
123
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _snake_case = { "configuration_rembert": ["REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "RemBertConfig", "RemBertOnnxConfig"] } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ["RemBertTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ["RemBertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "RemBertForCausalLM", "RemBertForMaskedLM", "RemBertForMultipleChoice", "RemBertForQuestionAnswering", "RemBertForSequenceClassification", "RemBertForTokenClassification", "RemBertLayer", "RemBertModel", "RemBertPreTrainedModel", "load_tf_weights_in_rembert", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFRemBertForCausalLM", "TFRemBertForMaskedLM", "TFRemBertForMultipleChoice", "TFRemBertForQuestionAnswering", "TFRemBertForSequenceClassification", "TFRemBertForTokenClassification", "TFRemBertLayer", "TFRemBertModel", "TFRemBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_rembert import REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RemBertConfig, RemBertOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert import RemBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert_fast import RemBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rembert import ( REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, RemBertForCausalLM, RemBertForMaskedLM, RemBertForMultipleChoice, RemBertForQuestionAnswering, RemBertForSequenceClassification, RemBertForTokenClassification, RemBertLayer, RemBertModel, RemBertPreTrainedModel, load_tf_weights_in_rembert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rembert import ( TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFRemBertForCausalLM, TFRemBertForMaskedLM, TFRemBertForMultipleChoice, TFRemBertForQuestionAnswering, TFRemBertForSequenceClassification, TFRemBertForTokenClassification, TFRemBertLayer, TFRemBertModel, TFRemBertPreTrainedModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
300
import secrets from random import shuffle from string import ascii_letters, ascii_lowercase, ascii_uppercase, digits, punctuation def A ( _lowerCamelCase = 8 ): '''simple docstring''' _lowerCAmelCase : Optional[int] = ascii_letters + digits + punctuation return "".join(secrets.choice(_lowerCamelCase ) for _ in range(_lowerCamelCase ) ) def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' i -= len(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = i // 3 _lowerCAmelCase : List[Any] = i % 3 # chars = chars_incl + random_letters(ascii_letters, i / 3 + remainder) + # random_number(digits, i / 3) + random_characters(punctuation, i / 3) _lowerCAmelCase : str = ( chars_incl + random(_lowerCamelCase , quotient + remainder ) + random(_lowerCamelCase , _lowerCamelCase ) + random(_lowerCamelCase , _lowerCamelCase ) ) _lowerCAmelCase : str = list(_lowerCamelCase ) shuffle(_lowerCamelCase ) return "".join(_lowerCamelCase ) # random is a generalised function for letters, characters and numbers def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' return "".join(secrets.choice(_lowerCamelCase ) for _ in range(_lowerCamelCase ) ) def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' pass # Put your code here... def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' pass # Put your code here... def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' pass # Put your code here... def A ( _lowerCamelCase , _lowerCamelCase = 8 ): '''simple docstring''' if len(_lowerCamelCase ) < min_length: # Your Password must be at least 8 characters long return False _lowerCAmelCase : Tuple = any(char in ascii_uppercase for char in password ) _lowerCAmelCase : Tuple = any(char in ascii_lowercase for char in password ) _lowerCAmelCase : Optional[Any] = any(char in digits for char in password ) _lowerCAmelCase : Tuple = any(char in punctuation for char in password ) return upper and lower and num and spec_char # Passwords should contain UPPERCASE, lowerase # numbers, and special characters def A ( ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = int(input("Please indicate the max length of your password: " ).strip() ) _lowerCAmelCase : Tuple = input( "Please indicate the characters that must be in your password: " ).strip() print("Password generated:" , password_generator(_lowerCamelCase ) ) print( "Alternative Password generated:" , alternative_password_generator(_lowerCamelCase , _lowerCamelCase ) , ) print("[If you are thinking of using this passsword, You better save it.]" ) if __name__ == "__main__": main()
300
1
def SCREAMING_SNAKE_CASE_ ( __magic_name__ : int , __magic_name__ : int , __magic_name__ : int ) -> float: """simple docstring""" UpperCamelCase :Tuple = (num_of_terms / 2) * (2 * first_term + (num_of_terms - 1) * common_diff) # formula for sum of series return total def SCREAMING_SNAKE_CASE_ ( ) -> Any: """simple docstring""" print(sum_of_series(1 , 1 , 10 ) ) if __name__ == "__main__": import doctest doctest.testmod()
38
"""simple docstring""" from collections import defaultdict from typing import Optional from ..image_utils import load_image from ..utils import ( add_end_docstrings, is_torch_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_MASK_GENERATION_MAPPING __A = logging.get_logger(__name__) @add_end_docstrings(_UpperCAmelCase ) class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" def __init__( self , **_UpperCAmelCase ): super().__init__(**_UpperCAmelCase ) requires_backends(self , '''vision''' ) requires_backends(self , '''torch''' ) if self.framework != "pt": raise ValueError(F"""The {self.__class__} is only available in PyTorch.""" ) self.check_model_type(_UpperCAmelCase ) def _snake_case ( self , **_UpperCAmelCase ): lowercase__: List[Any] = {} lowercase__: List[Any] = {} lowercase__: Dict = {} # preprocess args if "points_per_batch" in kwargs: lowercase__: Dict = kwargs['''points_per_batch'''] if "points_per_crop" in kwargs: lowercase__: Any = kwargs['''points_per_crop'''] if "crops_n_layers" in kwargs: lowercase__: Union[str, Any] = kwargs['''crops_n_layers'''] if "crop_overlap_ratio" in kwargs: lowercase__: Optional[Any] = kwargs['''crop_overlap_ratio'''] if "crop_n_points_downscale_factor" in kwargs: lowercase__: Union[str, Any] = kwargs['''crop_n_points_downscale_factor'''] # postprocess args if "pred_iou_thresh" in kwargs: lowercase__: Any = kwargs['''pred_iou_thresh'''] if "stability_score_offset" in kwargs: lowercase__: Tuple = kwargs['''stability_score_offset'''] if "mask_threshold" in kwargs: lowercase__: List[str] = kwargs['''mask_threshold'''] if "stability_score_thresh" in kwargs: lowercase__: str = kwargs['''stability_score_thresh'''] if "crops_nms_thresh" in kwargs: lowercase__: List[str] = kwargs['''crops_nms_thresh'''] if "output_rle_mask" in kwargs: lowercase__: Dict = kwargs['''output_rle_mask'''] if "output_bboxes_mask" in kwargs: lowercase__: int = kwargs['''output_bboxes_mask'''] return preprocess_kwargs, forward_params, postprocess_kwargs def __call__( self , _UpperCAmelCase , *_UpperCAmelCase , _UpperCAmelCase=None , _UpperCAmelCase=None , **_UpperCAmelCase ): return super().__call__(_UpperCAmelCase , *_UpperCAmelCase , num_workers=_UpperCAmelCase , batch_size=_UpperCAmelCase , **_UpperCAmelCase ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase=64 , _UpperCAmelCase = 0 , _UpperCAmelCase = 512 / 1500 , _UpperCAmelCase = 32 , _UpperCAmelCase = 1 , ): lowercase__: Union[str, Any] = load_image(_UpperCAmelCase ) lowercase__: Dict = self.image_processor.size['''longest_edge'''] lowercase__, lowercase__, lowercase__, lowercase__: Optional[Any] = self.image_processor.generate_crop_boxes( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) lowercase__: List[Any] = self.image_processor(images=_UpperCAmelCase , return_tensors='''pt''' ) with self.device_placement(): if self.framework == "pt": lowercase__: Tuple = self.get_inference_context() with inference_context(): lowercase__: Optional[Any] = self._ensure_tensor_on_device(_UpperCAmelCase , device=self.device ) lowercase__: Any = self.model.get_image_embeddings(model_inputs.pop('''pixel_values''' ) ) lowercase__: Tuple = image_embeddings lowercase__: Optional[Any] = grid_points.shape[1] lowercase__: Tuple = points_per_batch if points_per_batch is not None else n_points if points_per_batch <= 0: raise ValueError( '''Cannot have points_per_batch<=0. Must be >=1 to returned batched outputs. ''' '''To return all points at once, set points_per_batch to None''' ) for i in range(0 , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: Dict = grid_points[:, i : i + points_per_batch, :, :] lowercase__: int = input_labels[:, i : i + points_per_batch] lowercase__: Any = i == n_points - points_per_batch yield { "input_points": batched_points, "input_labels": labels, "input_boxes": crop_boxes, "is_last": is_last, **model_inputs, } def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase=0.88 , _UpperCAmelCase=0.95 , _UpperCAmelCase=0 , _UpperCAmelCase=1 , ): lowercase__: List[Any] = model_inputs.pop('''input_boxes''' ) lowercase__: List[Any] = model_inputs.pop('''is_last''' ) lowercase__: Any = model_inputs.pop('''original_sizes''' ).tolist() lowercase__: Union[str, Any] = model_inputs.pop('''reshaped_input_sizes''' ).tolist() lowercase__: List[Any] = self.model(**_UpperCAmelCase ) # post processing happens here in order to avoid CPU GPU copies of ALL the masks lowercase__: int = model_outputs['''pred_masks'''] lowercase__: str = self.image_processor.post_process_masks( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , binarize=_UpperCAmelCase ) lowercase__: str = model_outputs['''iou_scores'''] lowercase__, lowercase__, lowercase__: Optional[int] = self.image_processor.filter_masks( masks[0] , iou_scores[0] , original_sizes[0] , input_boxes[0] , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ) return { "masks": masks, "is_last": is_last, "boxes": boxes, "iou_scores": iou_scores, } def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=0.7 , ): lowercase__: int = [] lowercase__: str = [] lowercase__: List[Any] = [] for model_output in model_outputs: all_scores.append(model_output.pop('''iou_scores''' ) ) all_masks.extend(model_output.pop('''masks''' ) ) all_boxes.append(model_output.pop('''boxes''' ) ) lowercase__: Any = torch.cat(_UpperCAmelCase ) lowercase__: Dict = torch.cat(_UpperCAmelCase ) lowercase__, lowercase__, lowercase__, lowercase__: Any = self.image_processor.post_process_for_mask_generation( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) lowercase__: Union[str, Any] = defaultdict(_UpperCAmelCase ) for output in model_outputs: for k, v in output.items(): extra[k].append(_UpperCAmelCase ) lowercase__: Any = {} if output_rle_mask: lowercase__: Optional[Any] = rle_mask if output_bboxes_mask: lowercase__: Optional[int] = bounding_boxes return {"masks": output_masks, "scores": iou_scores, **optional, **extra}
177
0
from __future__ import annotations from decimal import Decimal from math import * # noqa: F403 from sympy import diff def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ = 10**-10 ) -> float: """simple docstring""" A__ = a while True: A__ = Decimal(lowercase_ ) - ( Decimal(eval(lowercase_ ) ) / Decimal(eval(str(diff(lowercase_ ) ) ) ) # noqa: S307 ) # This number dictates the accuracy of the answer if abs(eval(lowercase_ ) ) < precision: # noqa: S307 return float(lowercase_ ) # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(F'''The root of sin(x) = 0 is {newton_raphson('sin(x)', 2)}''') # Find root of polynomial print(F'''The root of x**2 - 5*x + 2 = 0 is {newton_raphson('x**2 - 5*x + 2', 0.4)}''') # Find Square Root of 5 print(F'''The root of log(x) - 1 = 0 is {newton_raphson('log(x) - 1', 2)}''') # Exponential Roots print(F'''The root of exp(x) - 1 = 0 is {newton_raphson('exp(x) - 1', 0)}''')
371
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> str: """simple docstring""" return " ".join( ''''''.join(word[::-1] ) if len(lowercase_ ) > 4 else word for word in sentence.split() ) if __name__ == "__main__": import doctest doctest.testmod() print(reverse_long_words("""Hey wollef sroirraw"""))
231
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowercase : List[Any] = logging.get_logger(__name__) _lowercase : Optional[Any] = { "google/vit-base-patch16-224": "https://huggingface.co/vit-base-patch16-224/resolve/main/config.json", # See all ViT models at https://huggingface.co/models?filter=vit } class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ): '''simple docstring''' _a = 'vit' def __init__( self : int, lowerCamelCase : Any=768, lowerCamelCase : int=12, lowerCamelCase : Optional[Any]=12, lowerCamelCase : Dict=3072, lowerCamelCase : Any="gelu", lowerCamelCase : Optional[Any]=0.0, lowerCamelCase : Any=0.0, lowerCamelCase : int=0.02, lowerCamelCase : List[Any]=1E-12, lowerCamelCase : Optional[Any]=224, lowerCamelCase : List[str]=16, lowerCamelCase : Optional[Any]=3, lowerCamelCase : str=True, lowerCamelCase : Union[str, Any]=16, **lowerCamelCase : List[str], )-> int: super().__init__(**lowerCamelCase ) lowerCamelCase__ : str =hidden_size lowerCamelCase__ : str =num_hidden_layers lowerCamelCase__ : Any =num_attention_heads lowerCamelCase__ : Optional[Any] =intermediate_size lowerCamelCase__ : Tuple =hidden_act lowerCamelCase__ : str =hidden_dropout_prob lowerCamelCase__ : Tuple =attention_probs_dropout_prob lowerCamelCase__ : Union[str, Any] =initializer_range lowerCamelCase__ : Optional[int] =layer_norm_eps lowerCamelCase__ : Union[str, Any] =image_size lowerCamelCase__ : List[Any] =patch_size lowerCamelCase__ : Optional[int] =num_channels lowerCamelCase__ : Optional[int] =qkv_bias lowerCamelCase__ : List[Any] =encoder_stride class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ): '''simple docstring''' _a = version.parse('1.11' ) @property def snake_case ( self : Union[str, Any] )-> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def snake_case ( self : List[Any] )-> float: return 1E-4
238
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _lowercase : List[Any] = { "configuration_tapas": ["TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP", "TapasConfig"], "tokenization_tapas": ["TapasTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Optional[Any] = [ "TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST", "TapasForMaskedLM", "TapasForQuestionAnswering", "TapasForSequenceClassification", "TapasModel", "TapasPreTrainedModel", "load_tf_weights_in_tapas", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : str = [ "TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST", "TFTapasForMaskedLM", "TFTapasForQuestionAnswering", "TFTapasForSequenceClassification", "TFTapasModel", "TFTapasPreTrainedModel", ] if TYPE_CHECKING: from .configuration_tapas import TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP, TapasConfig from .tokenization_tapas import TapasTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tapas import ( TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasPreTrainedModel, load_tf_weights_in_tapas, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_tapas import ( TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TFTapasForMaskedLM, TFTapasForQuestionAnswering, TFTapasForSequenceClassification, TFTapasModel, TFTapasPreTrainedModel, ) else: import sys _lowercase : List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
238
1
'''simple docstring''' from __future__ import annotations from math import gcd def _lowerCAmelCase ( __snake_case : int , __snake_case : int = 2 , __snake_case : int = 1 , __snake_case : int = 3 , ) -> int | None: # A value less than 2 can cause an infinite loop in the algorithm. if num < 2: raise ValueError('The input value cannot be less than 2' ) # Because of the relationship between ``f(f(x))`` and ``f(x)``, this # algorithm struggles to find factors that are divisible by two. # As a workaround, we specifically check for two and even inputs. # See: https://math.stackexchange.com/a/2856214/165820 if num > 2 and num % 2 == 0: return 2 # Pollard's Rho algorithm requires a function that returns pseudorandom # values between 0 <= X < ``num``. It doesn't need to be random in the # sense that the output value is cryptographically secure or difficult # to calculate, it only needs to be random in the sense that all output # values should be equally likely to appear. # For this reason, Pollard suggested using ``f(x) = (x**2 - 1) % num`` # However, the success of Pollard's algorithm isn't guaranteed and is # determined in part by the initial seed and the chosen random function. # To make retries easier, we will instead use ``f(x) = (x**2 + C) % num`` # where ``C`` is a value that we can modify between each attempt. def rand_fn(__snake_case : int , __snake_case : int , __snake_case : int ) -> int: return (pow(__snake_case , 2 ) + step) % modulus for _ in range(__snake_case ): # These track the position within the cycle detection logic. __A : int = seed __A : Union[str, Any] = seed while True: # At each iteration, the tortoise moves one step and the hare moves two. __A : List[Any] = rand_fn(__snake_case , __snake_case , __snake_case ) __A : Optional[Any] = rand_fn(__snake_case , __snake_case , __snake_case ) __A : Any = rand_fn(__snake_case , __snake_case , __snake_case ) # At some point both the tortoise and the hare will enter a cycle whose # length ``p`` is a divisor of ``num``. Once in that cycle, at some point # the tortoise and hare will end up on the same value modulo ``p``. # We can detect when this happens because the position difference between # the tortoise and the hare will share a common divisor with ``num``. __A : Optional[int] = gcd(hare - tortoise , __snake_case ) if divisor == 1: # No common divisor yet, just keep searching. continue else: # We found a common divisor! if divisor == num: # Unfortunately, the divisor is ``num`` itself and is useless. break else: # The divisor is a nontrivial factor of ``num``! return divisor # If we made it here, then this attempt failed. # We need to pick a new starting seed for the tortoise and hare # in addition to a new step value for the random function. # To keep this example implementation deterministic, the # new values will be generated based on currently available # values instead of using something like ``random.randint``. # We can use the hare's position as the new seed. # This is actually what Richard Brent's the "optimized" variant does. __A : Union[str, Any] = hare # The new step value for the random function can just be incremented. # At first the results will be similar to what the old function would # have produced, but the value will quickly diverge after a bit. step += 1 # We haven't found a divisor within the requested number of attempts. # We were unlucky or ``num`` itself is actually prime. return None if __name__ == "__main__": import argparse lowercase__ : str = argparse.ArgumentParser() parser.add_argument( '''num''', type=int, help='''The value to find a divisor of''', ) parser.add_argument( '''--attempts''', type=int, default=3, help='''The number of attempts before giving up''', ) lowercase__ : Optional[int] = parser.parse_args() lowercase__ : int = pollard_rho(args.num, attempts=args.attempts) if divisor is None: print(f"""{args.num} is probably prime""") else: lowercase__ : List[str] = args.num // divisor print(f"""{args.num} = {divisor} * {quotient}""")
190
'''simple docstring''' import inspect import tempfile from collections import OrderedDict, UserDict from collections.abc import MutableMapping from contextlib import ExitStack, contextmanager from dataclasses import fields from enum import Enum from typing import Any, ContextManager, List, Tuple import numpy as np from .import_utils import is_flax_available, is_tf_available, is_torch_available, is_torch_fx_proxy if is_flax_available(): import jax.numpy as jnp class SCREAMING_SNAKE_CASE (a__ ): def __get__( self , _UpperCAmelCase , _UpperCAmelCase=None): '''simple docstring''' if obj is None: return self if self.fget is None: raise AttributeError('unreadable attribute') __A : Optional[Any] = '__cached_' + self.fget.__name__ __A : Union[str, Any] = getattr(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) if cached is None: __A : int = self.fget(_UpperCAmelCase) setattr(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) return cached def _lowerCAmelCase ( __snake_case : Optional[Any] ) -> Tuple: __A : Dict = val.lower() if val in {"y", "yes", "t", "true", "on", "1"}: return 1 if val in {"n", "no", "f", "false", "off", "0"}: return 0 raise ValueError(f'invalid truth value {val!r}' ) def _lowerCAmelCase ( __snake_case : int ) -> Tuple: if is_torch_fx_proxy(__snake_case ): return True if is_torch_available(): import torch if isinstance(__snake_case , torch.Tensor ): return True if is_tf_available(): import tensorflow as tf if isinstance(__snake_case , tf.Tensor ): return True if is_flax_available(): import jax.numpy as jnp from jax.core import Tracer if isinstance(__snake_case , (jnp.ndarray, Tracer) ): return True return isinstance(__snake_case , np.ndarray ) def _lowerCAmelCase ( __snake_case : Dict ) -> List[str]: return isinstance(__snake_case , np.ndarray ) def _lowerCAmelCase ( __snake_case : Optional[int] ) -> Any: return _is_numpy(__snake_case ) def _lowerCAmelCase ( __snake_case : int ) -> Union[str, Any]: import torch return isinstance(__snake_case , torch.Tensor ) def _lowerCAmelCase ( __snake_case : str ) -> Optional[int]: return False if not is_torch_available() else _is_torch(__snake_case ) def _lowerCAmelCase ( __snake_case : Any ) -> List[Any]: import torch return isinstance(__snake_case , torch.device ) def _lowerCAmelCase ( __snake_case : List[Any] ) -> Dict: return False if not is_torch_available() else _is_torch_device(__snake_case ) def _lowerCAmelCase ( __snake_case : Union[str, Any] ) -> Optional[int]: import torch if isinstance(__snake_case , __snake_case ): if hasattr(__snake_case , __snake_case ): __A : str = getattr(__snake_case , __snake_case ) else: return False return isinstance(__snake_case , torch.dtype ) def _lowerCAmelCase ( __snake_case : Optional[Any] ) -> Any: return False if not is_torch_available() else _is_torch_dtype(__snake_case ) def _lowerCAmelCase ( __snake_case : List[str] ) -> int: import tensorflow as tf return isinstance(__snake_case , tf.Tensor ) def _lowerCAmelCase ( __snake_case : Dict ) -> List[Any]: return False if not is_tf_available() else _is_tensorflow(__snake_case ) def _lowerCAmelCase ( __snake_case : str ) -> List[str]: import tensorflow as tf # the `is_symbolic_tensor` predicate is only available starting with TF 2.14 if hasattr(__snake_case , 'is_symbolic_tensor' ): return tf.is_symbolic_tensor(__snake_case ) return type(__snake_case ) == tf.Tensor def _lowerCAmelCase ( __snake_case : Dict ) -> Tuple: return False if not is_tf_available() else _is_tf_symbolic_tensor(__snake_case ) def _lowerCAmelCase ( __snake_case : int ) -> Union[str, Any]: import jax.numpy as jnp # noqa: F811 return isinstance(__snake_case , jnp.ndarray ) def _lowerCAmelCase ( __snake_case : int ) -> List[str]: return False if not is_flax_available() else _is_jax(__snake_case ) def _lowerCAmelCase ( __snake_case : Optional[Any] ) -> Dict: if isinstance(__snake_case , (dict, UserDict) ): return {k: to_py_obj(__snake_case ) for k, v in obj.items()} elif isinstance(__snake_case , (list, tuple) ): return [to_py_obj(__snake_case ) for o in obj] elif is_tf_tensor(__snake_case ): return obj.numpy().tolist() elif is_torch_tensor(__snake_case ): return obj.detach().cpu().tolist() elif is_jax_tensor(__snake_case ): return np.asarray(__snake_case ).tolist() elif isinstance(__snake_case , (np.ndarray, np.number) ): # tolist also works on 0d np arrays return obj.tolist() else: return obj def _lowerCAmelCase ( __snake_case : Tuple ) -> Optional[int]: if isinstance(__snake_case , (dict, UserDict) ): return {k: to_numpy(__snake_case ) for k, v in obj.items()} elif isinstance(__snake_case , (list, tuple) ): return np.array(__snake_case ) elif is_tf_tensor(__snake_case ): return obj.numpy() elif is_torch_tensor(__snake_case ): return obj.detach().cpu().numpy() elif is_jax_tensor(__snake_case ): return np.asarray(__snake_case ) else: return obj class SCREAMING_SNAKE_CASE (a__ ): def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[str] = fields(self) # Safety and consistency checks if not len(_UpperCAmelCase): raise ValueError(F'{self.__class__.__name__} has no fields.') if not all(field.default is None for field in class_fields[1:]): raise ValueError(F'{self.__class__.__name__} should not have more than one required field.') __A : Tuple = getattr(self , class_fields[0].name) __A : Tuple = all(getattr(self , field.name) is None for field in class_fields[1:]) if other_fields_are_none and not is_tensor(_UpperCAmelCase): if isinstance(_UpperCAmelCase , _UpperCAmelCase): __A : List[str] = first_field.items() __A : List[Any] = True else: try: __A : List[Any] = iter(_UpperCAmelCase) __A : Optional[Any] = True except TypeError: __A : List[Any] = False # if we provided an iterator as first field and the iterator is a (key, value) iterator # set the associated fields if first_field_iterator: for idx, element in enumerate(_UpperCAmelCase): if ( not isinstance(_UpperCAmelCase , (list, tuple)) or not len(_UpperCAmelCase) == 2 or not isinstance(element[0] , _UpperCAmelCase) ): if idx == 0: # If we do not have an iterator of key/values, set it as attribute __A : Optional[int] = first_field else: # If we have a mixed iterator, raise an error raise ValueError( F'Cannot set key/value for {element}. It needs to be a tuple (key, value).') break setattr(self , element[0] , element[1]) if element[1] is not None: __A : Optional[int] = element[1] elif first_field is not None: __A : Dict = first_field else: for field in class_fields: __A : List[str] = getattr(self , field.name) if v is not None: __A : Union[str, Any] = v def __delitem__( self , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' raise Exception(F'You cannot use ``__delitem__`` on a {self.__class__.__name__} instance.') def SCREAMING_SNAKE_CASE ( self , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' raise Exception(F'You cannot use ``setdefault`` on a {self.__class__.__name__} instance.') def SCREAMING_SNAKE_CASE ( self , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' raise Exception(F'You cannot use ``pop`` on a {self.__class__.__name__} instance.') def SCREAMING_SNAKE_CASE ( self , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' raise Exception(F'You cannot use ``update`` on a {self.__class__.__name__} instance.') def __getitem__( self , _UpperCAmelCase): '''simple docstring''' if isinstance(_UpperCAmelCase , _UpperCAmelCase): __A : List[Any] = dict(self.items()) return inner_dict[k] else: return self.to_tuple()[k] def __setattr__( self , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' if name in self.keys() and value is not None: # Don't call self.__setitem__ to avoid recursion errors super().__setitem__(_UpperCAmelCase , _UpperCAmelCase) super().__setattr__(_UpperCAmelCase , _UpperCAmelCase) def __setitem__( self , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' super().__setitem__(_UpperCAmelCase , _UpperCAmelCase) # Don't call self.__setattr__ to avoid recursion errors super().__setattr__(_UpperCAmelCase , _UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' return tuple(self[k] for k in self.keys()) class SCREAMING_SNAKE_CASE (a__ , a__ ): @classmethod def SCREAMING_SNAKE_CASE ( cls , _UpperCAmelCase): '''simple docstring''' raise ValueError( F'{value} is not a valid {cls.__name__}, please select one of {list(cls._valueamember_map_.keys())}') class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = '''longest''' lowerCAmelCase = '''max_length''' lowerCAmelCase = '''do_not_pad''' class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = '''pt''' lowerCAmelCase = '''tf''' lowerCAmelCase = '''np''' lowerCAmelCase = '''jax''' class SCREAMING_SNAKE_CASE : def __init__( self , _UpperCAmelCase): '''simple docstring''' __A : Optional[Any] = context_managers __A : Optional[int] = ExitStack() def __enter__( self): '''simple docstring''' for context_manager in self.context_managers: self.stack.enter_context(_UpperCAmelCase) def __exit__( self , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' self.stack.__exit__(*_UpperCAmelCase , **_UpperCAmelCase) def _lowerCAmelCase ( __snake_case : List[str] ) -> int: __A : Any = infer_framework(__snake_case ) if framework == "tf": __A : int = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": __A : Any = inspect.signature(model_class.forward ) # PyTorch models else: __A : Union[str, Any] = inspect.signature(model_class.__call__ ) # Flax models for p in signature.parameters: if p == "return_loss" and signature.parameters[p].default is True: return True return False def _lowerCAmelCase ( __snake_case : int ) -> List[Any]: __A : Any = model_class.__name__ __A : Optional[int] = infer_framework(__snake_case ) if framework == "tf": __A : List[str] = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": __A : List[Any] = inspect.signature(model_class.forward ) # PyTorch models else: __A : List[Any] = inspect.signature(model_class.__call__ ) # Flax models if "QuestionAnswering" in model_name: return [p for p in signature.parameters if "label" in p or p in ("start_positions", "end_positions")] else: return [p for p in signature.parameters if "label" in p] def _lowerCAmelCase ( __snake_case : MutableMapping , __snake_case : str = "" , __snake_case : str = "." ) -> Union[str, Any]: def _flatten_dict(__snake_case : Tuple , __snake_case : List[Any]="" , __snake_case : Tuple="." ): for k, v in d.items(): __A : List[Any] = str(__snake_case ) + delimiter + str(__snake_case ) if parent_key else k if v and isinstance(__snake_case , __snake_case ): yield from flatten_dict(__snake_case , __snake_case , delimiter=__snake_case ).items() else: yield key, v return dict(_flatten_dict(__snake_case , __snake_case , __snake_case ) ) @contextmanager def _lowerCAmelCase ( __snake_case : Any , __snake_case : bool = False ) -> List[str]: if use_temp_dir: with tempfile.TemporaryDirectory() as tmp_dir: yield tmp_dir else: yield working_dir def _lowerCAmelCase ( __snake_case : Optional[Any] , __snake_case : Optional[Any]=None ) -> int: if is_numpy_array(__snake_case ): return np.transpose(__snake_case , axes=__snake_case ) elif is_torch_tensor(__snake_case ): return array.T if axes is None else array.permute(*__snake_case ) elif is_tf_tensor(__snake_case ): import tensorflow as tf return tf.transpose(__snake_case , perm=__snake_case ) elif is_jax_tensor(__snake_case ): return jnp.transpose(__snake_case , axes=__snake_case ) else: raise ValueError(f'Type not supported for transpose: {type(__snake_case )}.' ) def _lowerCAmelCase ( __snake_case : List[Any] , __snake_case : str ) -> str: if is_numpy_array(__snake_case ): return np.reshape(__snake_case , __snake_case ) elif is_torch_tensor(__snake_case ): return array.reshape(*__snake_case ) elif is_tf_tensor(__snake_case ): import tensorflow as tf return tf.reshape(__snake_case , __snake_case ) elif is_jax_tensor(__snake_case ): return jnp.reshape(__snake_case , __snake_case ) else: raise ValueError(f'Type not supported for reshape: {type(__snake_case )}.' ) def _lowerCAmelCase ( __snake_case : Tuple , __snake_case : List[str]=None ) -> Any: if is_numpy_array(__snake_case ): return np.squeeze(__snake_case , axis=__snake_case ) elif is_torch_tensor(__snake_case ): return array.squeeze() if axis is None else array.squeeze(dim=__snake_case ) elif is_tf_tensor(__snake_case ): import tensorflow as tf return tf.squeeze(__snake_case , axis=__snake_case ) elif is_jax_tensor(__snake_case ): return jnp.squeeze(__snake_case , axis=__snake_case ) else: raise ValueError(f'Type not supported for squeeze: {type(__snake_case )}.' ) def _lowerCAmelCase ( __snake_case : Union[str, Any] , __snake_case : List[Any] ) -> int: if is_numpy_array(__snake_case ): return np.expand_dims(__snake_case , __snake_case ) elif is_torch_tensor(__snake_case ): return array.unsqueeze(dim=__snake_case ) elif is_tf_tensor(__snake_case ): import tensorflow as tf return tf.expand_dims(__snake_case , axis=__snake_case ) elif is_jax_tensor(__snake_case ): return jnp.expand_dims(__snake_case , axis=__snake_case ) else: raise ValueError(f'Type not supported for expand_dims: {type(__snake_case )}.' ) def _lowerCAmelCase ( __snake_case : Optional[Any] ) -> Dict: if is_numpy_array(__snake_case ): return np.size(__snake_case ) elif is_torch_tensor(__snake_case ): return array.numel() elif is_tf_tensor(__snake_case ): import tensorflow as tf return tf.size(__snake_case ) elif is_jax_tensor(__snake_case ): return array.size else: raise ValueError(f'Type not supported for expand_dims: {type(__snake_case )}.' ) def _lowerCAmelCase ( __snake_case : str , __snake_case : Tuple ) -> Union[str, Any]: for key, value in auto_map.items(): if isinstance(__snake_case , (tuple, list) ): __A : Tuple = [f'{repo_id}--{v}' if (v is not None and '--' not in v) else v for v in value] elif value is not None and "--" not in value: __A : Dict = f'{repo_id}--{value}' return auto_map def _lowerCAmelCase ( __snake_case : List[str] ) -> int: for base_class in inspect.getmro(__snake_case ): __A : int = base_class.__module__ __A : List[str] = base_class.__name__ if module.startswith('tensorflow' ) or module.startswith('keras' ) or name == "TFPreTrainedModel": return "tf" elif module.startswith('torch' ) or name == "PreTrainedModel": return "pt" elif module.startswith('flax' ) or module.startswith('jax' ) or name == "FlaxPreTrainedModel": return "flax" else: raise TypeError(f'Could not infer framework from class {model_class}.' )
190
1
'''simple docstring''' import unittest from transformers import AutoTokenizer, FalconConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, ) class lowerCAmelCase__ : def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=7 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=99 , __SCREAMING_SNAKE_CASE=32 , __SCREAMING_SNAKE_CASE=5 , __SCREAMING_SNAKE_CASE=4 , __SCREAMING_SNAKE_CASE=37 , __SCREAMING_SNAKE_CASE="gelu" , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=5_12 , __SCREAMING_SNAKE_CASE=16 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=4 , __SCREAMING_SNAKE_CASE=None , ): """simple docstring""" lowercase_ : int = parent lowercase_ : Tuple = batch_size lowercase_ : Optional[int] = seq_length lowercase_ : Any = is_training lowercase_ : Optional[Any] = use_input_mask lowercase_ : int = use_token_type_ids lowercase_ : Any = use_labels lowercase_ : Union[str, Any] = vocab_size lowercase_ : Any = hidden_size lowercase_ : List[str] = num_hidden_layers lowercase_ : Union[str, Any] = num_attention_heads lowercase_ : Tuple = intermediate_size lowercase_ : Optional[Any] = hidden_act lowercase_ : List[str] = hidden_dropout_prob lowercase_ : Any = attention_probs_dropout_prob lowercase_ : Union[str, Any] = max_position_embeddings lowercase_ : Optional[int] = type_vocab_size lowercase_ : List[str] = type_sequence_label_size lowercase_ : int = initializer_range lowercase_ : Union[str, Any] = num_labels lowercase_ : str = num_choices lowercase_ : Tuple = scope def _snake_case ( self ): """simple docstring""" lowercase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase_ : Dict = None if self.use_input_mask: lowercase_ : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) lowercase_ : List[Any] = None lowercase_ : List[str] = None lowercase_ : str = None lowercase_ : List[Any] = None if self.use_labels: lowercase_ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase_ : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) lowercase_ : str = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _snake_case ( self ): """simple docstring""" return FalconConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__UpperCAmelCase , initializer_range=self.initializer_range , pad_token_id=1 , new_decoder_architecture=__UpperCAmelCase , ) def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase_ : Optional[Any] = FalconModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() lowercase_ : Optional[int] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase ) lowercase_ : Union[str, Any] = model(__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , ): """simple docstring""" lowercase_ : str = True lowercase_ : str = FalconModel(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() lowercase_ : Union[str, Any] = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , ) lowercase_ : int = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , ) lowercase_ : Optional[int] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , ): """simple docstring""" lowercase_ : Union[str, Any] = FalconForCausalLM(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() lowercase_ : Any = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , ): """simple docstring""" lowercase_ : Optional[int] = True lowercase_ : Tuple = True lowercase_ : Union[str, Any] = FalconForCausalLM(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() # first forward pass lowercase_ : str = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , use_cache=__UpperCAmelCase , ) lowercase_ : int = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids lowercase_ : Tuple = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowercase_ : Optional[Any] = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and lowercase_ : List[str] = torch.cat([input_ids, next_tokens] , dim=-1 ) lowercase_ : Optional[int] = torch.cat([input_mask, next_mask] , dim=-1 ) lowercase_ : Optional[Any] = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , output_hidden_states=__UpperCAmelCase , )["""hidden_states"""][0] lowercase_ : Dict = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , past_key_values=__UpperCAmelCase , output_hidden_states=__UpperCAmelCase , )["""hidden_states"""][0] # select random slice lowercase_ : int = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowercase_ : Union[str, Any] = output_from_no_past[:, -3:, random_slice_idx].detach() lowercase_ : Any = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-3 ) ) def _snake_case ( self ): """simple docstring""" lowercase_ : int = self.prepare_config_and_inputs() ( lowercase_ ) : Any = config_and_inputs lowercase_ : List[Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class lowerCAmelCase__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): lowerCAmelCase_ = ( ( FalconModel, FalconForCausalLM, FalconForSequenceClassification, FalconForTokenClassification, FalconForQuestionAnswering, ) if is_torch_available() else () ) lowerCAmelCase_ = (FalconForCausalLM,) if is_torch_available() else () lowerCAmelCase_ = ( { "feature-extraction": FalconModel, "text-classification": FalconForSequenceClassification, "text-generation": FalconForCausalLM, "question-answering": FalconForQuestionAnswering, "token-classification": FalconForTokenClassification, "zero-shot": FalconForSequenceClassification, } if is_torch_available() else {} ) lowerCAmelCase_ = False lowerCAmelCase_ = False def _snake_case ( self ): """simple docstring""" lowercase_ : Optional[Any] = FalconModelTester(self ) lowercase_ : Optional[Any] = ConfigTester(self , config_class=__UpperCAmelCase , hidden_size=37 ) def _snake_case ( self ): """simple docstring""" self.config_tester.run_common_tests() def _snake_case ( self ): """simple docstring""" lowercase_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) def _snake_case ( self ): """simple docstring""" lowercase_ : int = self.model_tester.prepare_config_and_inputs() for alibi in [True, False]: lowercase_ : Union[str, Any] = alibi self.model_tester.create_and_check_model(__UpperCAmelCase , *__UpperCAmelCase ) def _snake_case ( self ): """simple docstring""" lowercase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ : Tuple = 3 lowercase_ : List[Any] = input_dict["""input_ids"""] lowercase_ : str = input_ids.ne(1 ).to(__UpperCAmelCase ) lowercase_ : Any = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowercase_ : Union[str, Any] = FalconForSequenceClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() lowercase_ : Optional[Any] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _snake_case ( self ): """simple docstring""" lowercase_ : Any = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ : Optional[int] = 3 lowercase_ : Optional[int] = """single_label_classification""" lowercase_ : str = input_dict["""input_ids"""] lowercase_ : List[Any] = input_ids.ne(1 ).to(__UpperCAmelCase ) lowercase_ : Dict = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowercase_ : str = FalconForSequenceClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() lowercase_ : int = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _snake_case ( self ): """simple docstring""" lowercase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ : Tuple = input_dict["""input_ids"""] lowercase_ : List[Any] = FalconForCausalLM(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() lowercase_ : List[str] = model(__UpperCAmelCase , use_cache=__UpperCAmelCase ) lowercase_ : List[Any] = input_ids.shape[0] lowercase_ : List[str] = model._convert_to_rw_cache(result.past_key_values ) lowercase_ : List[str] = model._convert_cache_to_standard_format(__UpperCAmelCase , __UpperCAmelCase ) for layer in range(len(__UpperCAmelCase ) ): for tensor_idx in range(2 ): self.assertTrue(rw_cache[layer][tensor_idx].ndim == 3 ) self.assertTrue(result.past_key_values[layer][tensor_idx].ndim == 4 ) self.assertTrue( torch.all(result.past_key_values[layer][tensor_idx] == standard_cache[layer][tensor_idx] ) ) def _snake_case ( self ): """simple docstring""" lowercase_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ : Tuple = 3 lowercase_ : Dict = """multi_label_classification""" lowercase_ : int = input_dict["""input_ids"""] lowercase_ : Optional[Any] = input_ids.ne(1 ).to(__UpperCAmelCase ) lowercase_ : List[Any] = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) lowercase_ : Any = FalconForSequenceClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() lowercase_ : List[Any] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _snake_case ( self ): """simple docstring""" for model_class in self.all_generative_model_classes: lowercase_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() # If it doesn't support cache, pass the test if not hasattr(__UpperCAmelCase , '''use_cache''' ): return lowercase_ : int = model_class(__UpperCAmelCase ).to(__UpperCAmelCase ) if "use_cache" not in inputs: lowercase_ : List[Any] = True lowercase_ : Optional[Any] = model(**__UpperCAmelCase ) # If "past_key_values" is not returned, pass the test (e.g. RWKV uses a different cache name and format) if "past_key_values" not in outputs: return lowercase_ : str = ( getattr(__UpperCAmelCase , '''decoder_layers''' , __UpperCAmelCase ) or getattr(__UpperCAmelCase , '''num_decoder_layers''' , __UpperCAmelCase ) or config.num_hidden_layers ) lowercase_ : Union[str, Any] = getattr(__UpperCAmelCase , '''num_kv_heads''' , config.num_attention_heads ) lowercase_ : List[str] = getattr(__UpperCAmelCase , '''d_model''' , config.hidden_size ) lowercase_ : Optional[int] = embed_dim // num_attention_heads lowercase_ : Optional[Any] = outputs["""past_key_values"""] self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase ) lowercase_ : str = inputs["""input_ids"""].shape for i in range(__UpperCAmelCase ): if config.new_decoder_architecture: lowercase_ : Tuple = config.num_attention_heads elif config.multi_query: lowercase_ : List[str] = 1 self.assertEqual(len(past_kv[0] ) , 2 ) # K V for the decoder = 2 self.assertEqual( past_kv[i][0].shape , (batch_size, num_attention_heads, seq_length, per_head_embed_dim) ) self.assertEqual( past_kv[i][1].shape , (batch_size, num_attention_heads, seq_length, per_head_embed_dim) ) @require_torch class lowerCAmelCase__ ( unittest.TestCase ): @slow def _snake_case ( self ): """simple docstring""" lowercase_ : Optional[int] = AutoTokenizer.from_pretrained('''Rocketknight1/falcon-rw-1b''' ) lowercase_ : List[str] = FalconForCausalLM.from_pretrained('''Rocketknight1/falcon-rw-1b''' ) model.eval() model.to(__UpperCAmelCase ) lowercase_ : Any = tokenizer('''My favorite food is''' , return_tensors='''pt''' ).to(__UpperCAmelCase ) lowercase_ : Any = ( """My favorite food is pizza. I love it so much that I have a pizza party every year for my birthday.""" ) lowercase_ : Tuple = model.generate(**__UpperCAmelCase , do_sample=__UpperCAmelCase , max_new_tokens=19 ) lowercase_ : int = tokenizer.batch_decode(__UpperCAmelCase )[0] self.assertEqual(__UpperCAmelCase , __UpperCAmelCase ) @slow def _snake_case ( self ): """simple docstring""" for repo in ["Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b"]: lowercase_ : Tuple = AutoTokenizer.from_pretrained(__UpperCAmelCase ) lowercase_ : Tuple = FalconForCausalLM.from_pretrained(__UpperCAmelCase ) model.eval() model.to(__UpperCAmelCase ) lowercase_ : Optional[int] = tokenizer('''My favorite food is''' , return_tensors='''pt''' ).to(__UpperCAmelCase ) # We just test that these run without errors - the models are randomly initialized # and so the actual text outputs will be garbage model.generate(**__UpperCAmelCase , do_sample=__UpperCAmelCase , max_new_tokens=4 ) model.generate(**__UpperCAmelCase , do_sample=__UpperCAmelCase , max_new_tokens=4 ) model.generate(**__UpperCAmelCase , num_beams=2 , max_new_tokens=4 ) @slow def _snake_case ( self ): """simple docstring""" with torch.no_grad(): for repo in [ "Rocketknight1/falcon-rw-1b", "Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b", ]: lowercase_ : Union[str, Any] = AutoTokenizer.from_pretrained(__UpperCAmelCase ) lowercase_ : List[Any] = FalconForCausalLM.from_pretrained(__UpperCAmelCase ) model.eval() model.to(device=__UpperCAmelCase ) lowercase_ : Union[str, Any] = tokenizer('''My favorite food is''' , return_tensors='''pt''' ).to(__UpperCAmelCase ) # Test results are the same with and without cache lowercase_ : List[str] = model.generate(**__UpperCAmelCase , do_sample=__UpperCAmelCase , max_new_tokens=20 , use_cache=__UpperCAmelCase ) lowercase_ : Any = model.generate(**__UpperCAmelCase , do_sample=__UpperCAmelCase , max_new_tokens=20 , use_cache=__UpperCAmelCase ) self.assertTrue((outputs_cache - outputs_no_cache).sum().item() == 0 )
93
'''simple docstring''' import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def lowercase_ ( lowerCAmelCase__ : Union[str, Any] ): """simple docstring""" __UpperCAmelCase : Optional[int] = FileLock(str(tmpdir / """foo.lock""" ) ) __UpperCAmelCase : List[str] = FileLock(str(tmpdir / """foo.lock""" ) ) __UpperCAmelCase : Any = 0.01 with locka.acquire(): with pytest.raises(lowerCAmelCase__ ): __UpperCAmelCase : List[Any] = time.time() locka.acquire(lowerCAmelCase__ ) assert time.time() - _start > timeout def lowercase_ ( lowerCAmelCase__ : str ): """simple docstring""" __UpperCAmelCase : str = """a""" * 1000 + """.lock""" __UpperCAmelCase : List[str] = FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith(""".lock""" ) assert not locka._lock_file.endswith(lowerCAmelCase__ ) assert len(os.path.basename(locka._lock_file ) ) <= 255 __UpperCAmelCase : Union[str, Any] = FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(lowerCAmelCase__ ): locka.acquire(0 )
254
0
import inspect import os import re from transformers.configuration_utils import PretrainedConfig from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py lowercase : Tuple = '''src/transformers''' # This is to make sure the transformers module imported is the one in the repo. lowercase : str = direct_transformers_import(PATH_TO_TRANSFORMERS) lowercase : Any = transformers.models.auto.configuration_auto.CONFIG_MAPPING lowercase : str = { # used to compute the property `self.chunk_length` '''EncodecConfig''': ['''overlap'''], # used as `self.bert_model = BertModel(config, ...)` '''DPRConfig''': True, # not used in modeling files, but it's an important information '''FSMTConfig''': ['''langs'''], # used internally in the configuration class file '''GPTNeoConfig''': ['''attention_types'''], # used internally in the configuration class file '''EsmConfig''': ['''is_folding_model'''], # used during training (despite we don't have training script for these models yet) '''Mask2FormerConfig''': ['''ignore_value'''], # `ignore_value` used during training (despite we don't have training script for these models yet) # `norm` used in conversion script (despite not using in the modeling file) '''OneFormerConfig''': ['''ignore_value''', '''norm'''], # used during preprocessing and collation, see `collating_graphormer.py` '''GraphormerConfig''': ['''spatial_pos_max'''], # used internally in the configuration class file '''T5Config''': ['''feed_forward_proj'''], # used internally in the configuration class file # `tokenizer_class` get default value `T5Tokenizer` intentionally '''MT5Config''': ['''feed_forward_proj''', '''tokenizer_class'''], '''UMT5Config''': ['''feed_forward_proj''', '''tokenizer_class'''], # used internally in the configuration class file '''LongT5Config''': ['''feed_forward_proj'''], # used internally in the configuration class file '''SwitchTransformersConfig''': ['''feed_forward_proj'''], # having default values other than `1e-5` - we can't fix them without breaking '''BioGptConfig''': ['''layer_norm_eps'''], # having default values other than `1e-5` - we can't fix them without breaking '''GLPNConfig''': ['''layer_norm_eps'''], # having default values other than `1e-5` - we can't fix them without breaking '''SegformerConfig''': ['''layer_norm_eps'''], # having default values other than `1e-5` - we can't fix them without breaking '''CvtConfig''': ['''layer_norm_eps'''], # having default values other than `1e-5` - we can't fix them without breaking '''PerceiverConfig''': ['''layer_norm_eps'''], # used internally to calculate the feature size '''InformerConfig''': ['''num_static_real_features''', '''num_time_features'''], # used internally to calculate the feature size '''TimeSeriesTransformerConfig''': ['''num_static_real_features''', '''num_time_features'''], # used internally to calculate the feature size '''AutoformerConfig''': ['''num_static_real_features''', '''num_time_features'''], # used internally to calculate `mlp_dim` '''SamVisionConfig''': ['''mlp_ratio'''], # For (head) training, but so far not implemented '''ClapAudioConfig''': ['''num_classes'''], # Not used, but providing useful information to users '''SpeechT5HifiGanConfig''': ['''sampling_rate'''], } # TODO (ydshieh): Check the failing cases, try to fix them or move some cases to the above block once we are sure SPECIAL_CASES_TO_ALLOW.update( { '''CLIPSegConfig''': True, '''DeformableDetrConfig''': True, '''DetaConfig''': True, '''DinatConfig''': True, '''DonutSwinConfig''': True, '''EfficientFormerConfig''': True, '''FSMTConfig''': True, '''JukeboxConfig''': True, '''LayoutLMv2Config''': True, '''MaskFormerSwinConfig''': True, '''MT5Config''': True, '''NatConfig''': True, '''OneFormerConfig''': True, '''PerceiverConfig''': True, '''RagConfig''': True, '''SpeechT5Config''': True, '''SwinConfig''': True, '''Swin2SRConfig''': True, '''Swinv2Config''': True, '''SwitchTransformersConfig''': True, '''TableTransformerConfig''': True, '''TapasConfig''': True, '''TransfoXLConfig''': True, '''UniSpeechConfig''': True, '''UniSpeechSatConfig''': True, '''WavLMConfig''': True, '''WhisperConfig''': True, # TODO: @Arthur (for `alignment_head` and `alignment_layer`) '''JukeboxPriorConfig''': True, # TODO: @Younes (for `is_decoder`) '''Pix2StructTextConfig''': True, } ) def lowerCAmelCase__ ( _a : Optional[int] , _a : str , _a : int , _a : List[Any] ): snake_case_ : Tuple = False for attribute in attributes: for modeling_source in source_strings: # check if we can find `config.xxx`, `getattr(config, "xxx", ...)` or `getattr(self.config, "xxx", ...)` if ( F'''config.{attribute}''' in modeling_source or F'''getattr(config, "{attribute}"''' in modeling_source or F'''getattr(self.config, "{attribute}"''' in modeling_source ): snake_case_ : Tuple = True # Deal with multi-line cases elif ( re.search( RF'''getattr[ \t\v\n\r\f]*\([ \t\v\n\r\f]*(self\.)?config,[ \t\v\n\r\f]*"{attribute}"''' , _a , ) is not None ): snake_case_ : str = True # `SequenceSummary` is called with `SequenceSummary(config)` elif attribute in [ "summary_type", "summary_use_proj", "summary_activation", "summary_last_dropout", "summary_proj_to_labels", "summary_first_dropout", ]: if "SequenceSummary" in modeling_source: snake_case_ : str = True if attribute_used: break if attribute_used: break # common and important attributes, even if they do not always appear in the modeling files snake_case_ : List[Any] = [ "bos_index", "eos_index", "pad_index", "unk_index", "mask_index", "image_size", "use_cache", "out_features", "out_indices", ] snake_case_ : List[str] = ["encoder_no_repeat_ngram_size"] # Special cases to be allowed snake_case_ : Optional[Any] = True if not attribute_used: snake_case_ : Any = False for attribute in attributes: # Allow if the default value in the configuration class is different from the one in `PretrainedConfig` if attribute in ["is_encoder_decoder"] and default_value is True: snake_case_ : Tuple = True elif attribute in ["tie_word_embeddings"] and default_value is False: snake_case_ : Dict = True # Allow cases without checking the default value in the configuration class elif attribute in attributes_to_allow + attributes_used_in_generation: snake_case_ : Union[str, Any] = True elif attribute.endswith("_token_id" ): snake_case_ : Dict = True # configuration class specific cases if not case_allowed: snake_case_ : Any = SPECIAL_CASES_TO_ALLOW.get(config_class.__name__ , [] ) snake_case_ : int = allowed_cases is True or attribute in allowed_cases return attribute_used or case_allowed def lowerCAmelCase__ ( _a : int ): snake_case_ : str = dict(inspect.signature(config_class.__init__ ).parameters ) snake_case_ : Optional[Any] = [x for x in list(signature.keys() ) if x not in ["self", "kwargs"]] snake_case_ : Optional[Any] = [signature[param].default for param in parameter_names] # If `attribute_map` exists, an attribute can have different names to be used in the modeling files, and as long # as one variant is used, the test should pass snake_case_ : Union[str, Any] = {} if len(config_class.attribute_map ) > 0: snake_case_ : Union[str, Any] = {v: k for k, v in config_class.attribute_map.items()} # Get the path to modeling source files snake_case_ : Union[str, Any] = inspect.getsourcefile(_a ) snake_case_ : Optional[int] = os.path.dirname(_a ) # Let's check against all frameworks: as long as one framework uses an attribute, we are good. snake_case_ : Optional[int] = [os.path.join(_a , _a ) for fn in os.listdir(_a ) if fn.startswith("modeling_" )] # Get the source code strings snake_case_ : Tuple = [] for path in modeling_paths: if os.path.isfile(_a ): with open(_a ) as fp: modeling_sources.append(fp.read() ) snake_case_ : str = [] for config_param, default_value in zip(_a , _a ): # `attributes` here is all the variant names for `config_param` snake_case_ : List[str] = [config_param] # some configuration classes have non-empty `attribute_map`, and both names could be used in the # corresponding modeling files. As long as one of them appears, it is fine. if config_param in reversed_attribute_map: attributes.append(reversed_attribute_map[config_param] ) if not check_attribute_being_used(_a , _a , _a , _a ): unused_attributes.append(attributes[0] ) return sorted(_a ) def lowerCAmelCase__ ( ): snake_case_ : str = {} for _config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in _config_class.__module__: continue # Some config classes are not in `CONFIG_MAPPING` (e.g. `CLIPVisionConfig`, `Blip2VisionConfig`, etc.) snake_case_ : str = [ cls for name, cls in inspect.getmembers( inspect.getmodule(_config_class ) , lambda _a : inspect.isclass(_a ) and issubclass(_a , _a ) and inspect.getmodule(_a ) == inspect.getmodule(_config_class ) , ) ] for config_class in config_classes_in_module: snake_case_ : int = check_config_attributes_being_used(_a ) if len(_a ) > 0: snake_case_ : Tuple = unused_attributes if len(_a ) > 0: snake_case_ : Optional[Any] = "The following configuration classes contain unused attributes in the corresponding modeling files:\n" for name, attributes in configs_with_unused_attributes.items(): error += F'''{name}: {attributes}\n''' raise ValueError(_a ) if __name__ == "__main__": check_config_attributes()
36
import shutil import tempfile import unittest from unittest.mock import patch from transformers import ( DefaultFlowCallback, IntervalStrategy, PrinterCallback, ProgressCallback, Trainer, TrainerCallback, TrainingArguments, is_torch_available, ) from transformers.testing_utils import require_torch if is_torch_available(): from transformers.trainer import DEFAULT_CALLBACKS from .test_trainer import RegressionDataset, RegressionModelConfig, RegressionPreTrainedModel class UpperCAmelCase_ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' def __init__( self ) -> Dict: snake_case_ : int = [] def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Any: self.events.append("on_init_end" ) def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Dict: self.events.append("on_train_begin" ) def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Tuple: self.events.append("on_train_end" ) def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> List[Any]: self.events.append("on_epoch_begin" ) def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Union[str, Any]: self.events.append("on_epoch_end" ) def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> List[str]: self.events.append("on_step_begin" ) def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Tuple: self.events.append("on_step_end" ) def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> List[str]: self.events.append("on_evaluate" ) def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Tuple: self.events.append("on_predict" ) def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Union[str, Any]: self.events.append("on_save" ) def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> List[str]: self.events.append("on_log" ) def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Optional[int]: self.events.append("on_prediction_step" ) @require_torch class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def _lowerCAmelCase ( self ) -> Any: snake_case_ : Optional[int] = tempfile.mkdtemp() def _lowerCAmelCase ( self ) -> Optional[Any]: shutil.rmtree(self.output_dir ) def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE=0 , _SCREAMING_SNAKE_CASE=0 , _SCREAMING_SNAKE_CASE=64 , _SCREAMING_SNAKE_CASE=64 , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=False , **_SCREAMING_SNAKE_CASE ) -> Dict: # disable_tqdm in TrainingArguments has a flaky default since it depends on the level of logging. We make sure # its set to False since the tests later on depend on its value. snake_case_ : Any = RegressionDataset(length=_SCREAMING_SNAKE_CASE ) snake_case_ : Dict = RegressionDataset(length=_SCREAMING_SNAKE_CASE ) snake_case_ : List[Any] = RegressionModelConfig(a=_SCREAMING_SNAKE_CASE , b=_SCREAMING_SNAKE_CASE ) snake_case_ : List[str] = RegressionPreTrainedModel(_SCREAMING_SNAKE_CASE ) snake_case_ : Tuple = TrainingArguments(self.output_dir , disable_tqdm=_SCREAMING_SNAKE_CASE , report_to=[] , **_SCREAMING_SNAKE_CASE ) return Trainer( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , train_dataset=_SCREAMING_SNAKE_CASE , eval_dataset=_SCREAMING_SNAKE_CASE , callbacks=_SCREAMING_SNAKE_CASE , ) def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[Any]: self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , len(_SCREAMING_SNAKE_CASE ) ) # Order doesn't matter snake_case_ : List[str] = sorted(_SCREAMING_SNAKE_CASE , key=lambda _SCREAMING_SNAKE_CASE : cb.__name__ if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else cb.__class__.__name__ ) snake_case_ : List[str] = sorted(_SCREAMING_SNAKE_CASE , key=lambda _SCREAMING_SNAKE_CASE : cb.__name__ if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else cb.__class__.__name__ ) for cba, cba in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): self.assertEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): self.assertEqual(_SCREAMING_SNAKE_CASE , cba.__class__ ) elif not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): self.assertEqual(cba.__class__ , _SCREAMING_SNAKE_CASE ) else: self.assertEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE ) -> int: snake_case_ : int = ["on_init_end", "on_train_begin"] snake_case_ : Any = 0 snake_case_ : Dict = len(trainer.get_eval_dataloader() ) snake_case_ : Tuple = ["on_prediction_step"] * len(trainer.get_eval_dataloader() ) + ["on_log", "on_evaluate"] for _ in range(trainer.state.num_train_epochs ): expected_events.append("on_epoch_begin" ) for _ in range(_SCREAMING_SNAKE_CASE ): step += 1 expected_events += ["on_step_begin", "on_step_end"] if step % trainer.args.logging_steps == 0: expected_events.append("on_log" ) if trainer.args.evaluation_strategy == IntervalStrategy.STEPS and step % trainer.args.eval_steps == 0: expected_events += evaluation_events.copy() if step % trainer.args.save_steps == 0: expected_events.append("on_save" ) expected_events.append("on_epoch_end" ) if trainer.args.evaluation_strategy == IntervalStrategy.EPOCH: expected_events += evaluation_events.copy() expected_events += ["on_log", "on_train_end"] return expected_events def _lowerCAmelCase ( self ) -> int: snake_case_ : Dict = self.get_trainer() snake_case_ : Any = DEFAULT_CALLBACKS.copy() + [ProgressCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , _SCREAMING_SNAKE_CASE ) # Callbacks passed at init are added to the default callbacks snake_case_ : int = self.get_trainer(callbacks=[MyTestTrainerCallback] ) expected_callbacks.append(_SCREAMING_SNAKE_CASE ) self.check_callbacks_equality(trainer.callback_handler.callbacks , _SCREAMING_SNAKE_CASE ) # TrainingArguments.disable_tqdm controls if use ProgressCallback or PrinterCallback snake_case_ : Optional[int] = self.get_trainer(disable_tqdm=_SCREAMING_SNAKE_CASE ) snake_case_ : Dict = DEFAULT_CALLBACKS.copy() + [PrinterCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , _SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( self ) -> Optional[int]: snake_case_ : Tuple = DEFAULT_CALLBACKS.copy() + [ProgressCallback] snake_case_ : List[str] = self.get_trainer() # We can add, pop, or remove by class name trainer.remove_callback(_SCREAMING_SNAKE_CASE ) expected_callbacks.remove(_SCREAMING_SNAKE_CASE ) self.check_callbacks_equality(trainer.callback_handler.callbacks , _SCREAMING_SNAKE_CASE ) snake_case_ : Union[str, Any] = self.get_trainer() snake_case_ : List[Any] = trainer.pop_callback(_SCREAMING_SNAKE_CASE ) self.assertEqual(cb.__class__ , _SCREAMING_SNAKE_CASE ) self.check_callbacks_equality(trainer.callback_handler.callbacks , _SCREAMING_SNAKE_CASE ) trainer.add_callback(_SCREAMING_SNAKE_CASE ) expected_callbacks.insert(0 , _SCREAMING_SNAKE_CASE ) self.check_callbacks_equality(trainer.callback_handler.callbacks , _SCREAMING_SNAKE_CASE ) # We can also add, pop, or remove by instance snake_case_ : str = self.get_trainer() snake_case_ : Tuple = trainer.callback_handler.callbacks[0] trainer.remove_callback(_SCREAMING_SNAKE_CASE ) expected_callbacks.remove(_SCREAMING_SNAKE_CASE ) self.check_callbacks_equality(trainer.callback_handler.callbacks , _SCREAMING_SNAKE_CASE ) snake_case_ : str = self.get_trainer() snake_case_ : List[Any] = trainer.callback_handler.callbacks[0] snake_case_ : List[str] = trainer.pop_callback(_SCREAMING_SNAKE_CASE ) self.assertEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) self.check_callbacks_equality(trainer.callback_handler.callbacks , _SCREAMING_SNAKE_CASE ) trainer.add_callback(_SCREAMING_SNAKE_CASE ) expected_callbacks.insert(0 , _SCREAMING_SNAKE_CASE ) self.check_callbacks_equality(trainer.callback_handler.callbacks , _SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( self ) -> Union[str, Any]: import warnings # XXX: for now ignore scatter_gather warnings in this test since it's not relevant to what's being tested warnings.simplefilter(action="ignore" , category=_SCREAMING_SNAKE_CASE ) snake_case_ : List[str] = self.get_trainer(callbacks=[MyTestTrainerCallback] ) trainer.train() snake_case_ : Optional[Any] = trainer.callback_handler.callbacks[-2].events self.assertEqual(_SCREAMING_SNAKE_CASE , self.get_expected_events(_SCREAMING_SNAKE_CASE ) ) # Independent log/save/eval snake_case_ : int = self.get_trainer(callbacks=[MyTestTrainerCallback] , logging_steps=5 ) trainer.train() snake_case_ : Tuple = trainer.callback_handler.callbacks[-2].events self.assertEqual(_SCREAMING_SNAKE_CASE , self.get_expected_events(_SCREAMING_SNAKE_CASE ) ) snake_case_ : Any = self.get_trainer(callbacks=[MyTestTrainerCallback] , save_steps=5 ) trainer.train() snake_case_ : Tuple = trainer.callback_handler.callbacks[-2].events self.assertEqual(_SCREAMING_SNAKE_CASE , self.get_expected_events(_SCREAMING_SNAKE_CASE ) ) snake_case_ : Dict = self.get_trainer(callbacks=[MyTestTrainerCallback] , eval_steps=5 , evaluation_strategy="steps" ) trainer.train() snake_case_ : List[Any] = trainer.callback_handler.callbacks[-2].events self.assertEqual(_SCREAMING_SNAKE_CASE , self.get_expected_events(_SCREAMING_SNAKE_CASE ) ) snake_case_ : List[str] = self.get_trainer(callbacks=[MyTestTrainerCallback] , evaluation_strategy="epoch" ) trainer.train() snake_case_ : Union[str, Any] = trainer.callback_handler.callbacks[-2].events self.assertEqual(_SCREAMING_SNAKE_CASE , self.get_expected_events(_SCREAMING_SNAKE_CASE ) ) # A bit of everything snake_case_ : Any = self.get_trainer( callbacks=[MyTestTrainerCallback] , logging_steps=3 , save_steps=10 , eval_steps=5 , evaluation_strategy="steps" , ) trainer.train() snake_case_ : List[str] = trainer.callback_handler.callbacks[-2].events self.assertEqual(_SCREAMING_SNAKE_CASE , self.get_expected_events(_SCREAMING_SNAKE_CASE ) ) # warning should be emitted for duplicated callbacks with patch("transformers.trainer_callback.logger.warning" ) as warn_mock: snake_case_ : int = self.get_trainer( callbacks=[MyTestTrainerCallback, MyTestTrainerCallback] , ) assert str(_SCREAMING_SNAKE_CASE ) in warn_mock.call_args[0][0]
36
1
def __snake_case ( _lowerCAmelCase : int ) -> None: A_ : Optional[int] = generate_pascal_triangle(_lowerCAmelCase ) for row_idx in range(_lowerCAmelCase ): # Print left spaces for _ in range(num_rows - row_idx - 1 ): print(end=" " ) # Print row values for col_idx in range(row_idx + 1 ): if col_idx != row_idx: print(triangle[row_idx][col_idx] , end=" " ) else: print(triangle[row_idx][col_idx] , end="" ) print() def __snake_case ( _lowerCAmelCase : int ) -> list[list[int]]: if not isinstance(_lowerCAmelCase , _lowerCAmelCase ): raise TypeError("The input value of 'num_rows' should be 'int'" ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( "The input value of 'num_rows' should be greater than or equal to 0" ) A_ : list[list[int]] = [] for current_row_idx in range(_lowerCAmelCase ): A_ : List[str] = populate_current_row(_lowerCAmelCase , _lowerCAmelCase ) triangle.append(_lowerCAmelCase ) return triangle def __snake_case ( _lowerCAmelCase : list[list[int]] , _lowerCAmelCase : int ) -> list[int]: A_ : Dict = [-1] * (current_row_idx + 1) # first and last elements of current row are equal to 1 A_ , A_ : Any = 1, 1 for current_col_idx in range(1 , _lowerCAmelCase ): calculate_current_element( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) return current_row def __snake_case ( _lowerCAmelCase : list[list[int]] , _lowerCAmelCase : list[int] , _lowerCAmelCase : int , _lowerCAmelCase : int , ) -> None: A_ : Optional[Any] = triangle[current_row_idx - 1][current_col_idx - 1] A_ : str = triangle[current_row_idx - 1][current_col_idx] A_ : List[Any] = above_to_left_elt + above_to_right_elt def __snake_case ( _lowerCAmelCase : int ) -> list[list[int]]: if not isinstance(_lowerCAmelCase , _lowerCAmelCase ): raise TypeError("The input value of 'num_rows' should be 'int'" ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( "The input value of 'num_rows' should be greater than or equal to 0" ) A_ : list[list[int]] = [[1]] for row_index in range(1 , _lowerCAmelCase ): A_ : str = [0] + result[-1] + [0] A_ : Optional[Any] = row_index + 1 # Calculate the number of distinct elements in a row A_ : Dict = sum(divmod(_lowerCAmelCase , 2 ) ) A_ : Any = [ temp_row[i - 1] + temp_row[i] for i in range(1 , distinct_elements + 1 ) ] A_ : Optional[Any] = row_first_half[: (row_index + 1) // 2] row_second_half.reverse() A_ : Union[str, Any] = row_first_half + row_second_half result.append(_lowerCAmelCase ) return result def __snake_case ( ) -> None: from collections.abc import Callable from timeit import timeit def benchmark_a_function(_lowerCAmelCase : Callable , _lowerCAmelCase : int ) -> None: A_ : str = f"{func.__name__}({value})" A_ : Optional[int] = timeit(f"__main__.{call}" , setup="import __main__" ) # print(f"{call:38} = {func(value)} -- {timing:.4f} seconds") print(f"{call:38} -- {timing:.4f} seconds" ) for value in range(15 ): # (1, 7, 14): for func in (generate_pascal_triangle, generate_pascal_triangle_optimized): benchmark_a_function(_lowerCAmelCase , _lowerCAmelCase ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
300
import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel from ...utils import logging _lowerCAmelCase : List[str] = logging.get_logger(__name__) def __snake_case ( _lowerCAmelCase : int , _lowerCAmelCase : Any ) -> Dict: A_ : Optional[Any] = nn.functional.normalize(_lowerCAmelCase ) A_ : List[str] = nn.functional.normalize(_lowerCAmelCase ) return torch.mm(_lowerCAmelCase , normalized_text_embeds.t() ) class __magic_name__ ( lowerCamelCase__ ): """simple docstring""" __UpperCamelCase = CLIPConfig __UpperCamelCase = ['''CLIPEncoderLayer'''] def __init__( self :int , snake_case :CLIPConfig ): '''simple docstring''' super().__init__(snake_case ) A_ : int = CLIPVisionModel(config.vision_config ) A_ : List[str] = nn.Linear(config.vision_config.hidden_size , config.projection_dim , bias=snake_case ) A_ : Tuple = nn.Parameter(torch.ones(17 , config.projection_dim ) , requires_grad=snake_case ) A_ : str = nn.Parameter(torch.ones(3 , config.projection_dim ) , requires_grad=snake_case ) A_ : List[str] = nn.Parameter(torch.ones(17 ) , requires_grad=snake_case ) A_ : int = nn.Parameter(torch.ones(3 ) , requires_grad=snake_case ) @torch.no_grad() def SCREAMING_SNAKE_CASE ( self :Union[str, Any] , snake_case :Dict , snake_case :Any ): '''simple docstring''' A_ : List[Any] = self.vision_model(snake_case )[1] # pooled_output A_ : List[Any] = self.visual_projection(snake_case ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 A_ : Optional[Any] = cosine_distance(snake_case , self.special_care_embeds ).cpu().float().numpy() A_ : Tuple = cosine_distance(snake_case , self.concept_embeds ).cpu().float().numpy() A_ : Union[str, Any] = [] A_ : Any = image_embeds.shape[0] for i in range(snake_case ): A_ : Optional[int] = {"special_scores": {}, "special_care": [], "concept_scores": {}, "bad_concepts": []} # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign images A_ : Optional[Any] = 0.0 for concept_idx in range(len(special_cos_dist[0] ) ): A_ : Optional[Any] = special_cos_dist[i][concept_idx] A_ : Tuple = self.special_care_embeds_weights[concept_idx].item() A_ : Union[str, Any] = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["special_scores"][concept_idx] > 0: result_img["special_care"].append({concept_idx, result_img["special_scores"][concept_idx]} ) A_ : Any = 0.01 for concept_idx in range(len(cos_dist[0] ) ): A_ : Tuple = cos_dist[i][concept_idx] A_ : Tuple = self.concept_embeds_weights[concept_idx].item() A_ : Tuple = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["concept_scores"][concept_idx] > 0: result_img["bad_concepts"].append(snake_case ) result.append(snake_case ) A_ : Any = [len(res["bad_concepts"] ) > 0 for res in result] return images, has_nsfw_concepts @torch.no_grad() def SCREAMING_SNAKE_CASE ( self :Union[str, Any] , snake_case :torch.FloatTensor , snake_case :torch.FloatTensor ): '''simple docstring''' A_ : List[str] = self.vision_model(snake_case )[1] # pooled_output A_ : int = self.visual_projection(snake_case ) A_ : Tuple = cosine_distance(snake_case , self.special_care_embeds ) A_ : Tuple = cosine_distance(snake_case , self.concept_embeds ) # increase this value to create a stronger `nsfw` filter # at the cost of increasing the possibility of filtering benign images A_ : Optional[Any] = 0.0 A_ : Tuple = special_cos_dist - self.special_care_embeds_weights + adjustment # special_scores = special_scores.round(decimals=3) A_ : Optional[Any] = torch.any(special_scores > 0 , dim=1 ) A_ : Optional[Any] = special_care * 0.01 A_ : Optional[int] = special_adjustment.unsqueeze(1 ).expand(-1 , cos_dist.shape[1] ) A_ : Union[str, Any] = (cos_dist - self.concept_embeds_weights) + special_adjustment # concept_scores = concept_scores.round(decimals=3) A_ : Union[str, Any] = torch.any(concept_scores > 0 , dim=1 ) return images, has_nsfw_concepts
300
1
"""simple docstring""" import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import is_accelerate_available, is_torch_available, is_transformers_available, is_xformers_available from . import BaseDiffusersCLICommand def __lowerCamelCase ( __UpperCamelCase ) -> Optional[Any]: """simple docstring""" return EnvironmentCommand() class __lowerCamelCase ( A__ ): '''simple docstring''' @staticmethod def lowerCamelCase ( a_ : ArgumentParser ): lowerCAmelCase_ : Optional[int] = parser.add_parser("env" ) download_parser.set_defaults(func=a_ ) def lowerCamelCase ( self : Tuple ): lowerCAmelCase_ : Dict = huggingface_hub.__version__ lowerCAmelCase_ : Any = "not installed" lowerCAmelCase_ : List[str] = "NA" if is_torch_available(): import torch lowerCAmelCase_ : Union[str, Any] = torch.__version__ lowerCAmelCase_ : Optional[Any] = torch.cuda.is_available() lowerCAmelCase_ : Any = "not installed" if is_transformers_available(): import transformers lowerCAmelCase_ : List[Any] = transformers.__version__ lowerCAmelCase_ : Optional[Any] = "not installed" if is_accelerate_available(): import accelerate lowerCAmelCase_ : str = accelerate.__version__ lowerCAmelCase_ : Optional[Any] = "not installed" if is_xformers_available(): import xformers lowerCAmelCase_ : List[Any] = xformers.__version__ lowerCAmelCase_ : Any = { "`diffusers` version": version, "Platform": platform.platform(), "Python version": platform.python_version(), "PyTorch version (GPU?)": f'''{pt_version} ({pt_cuda_available})''', "Huggingface_hub version": hub_version, "Transformers version": transformers_version, "Accelerate version": accelerate_version, "xFormers version": xformers_version, "Using GPU in script?": "<fill in>", "Using distributed or parallel set-up in script?": "<fill in>", } print("\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n" ) print(self.format_dict(a_ ) ) return info @staticmethod def lowerCamelCase ( a_ : Union[str, Any] ): return "\n".join([f'''- {prop}: {val}''' for prop, val in d.items()] ) + "\n"
365
"""simple docstring""" from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = { """EleutherAI/gpt-neo-1.3B""": """https://huggingface.co/EleutherAI/gpt-neo-1.3B/resolve/main/config.json""", # See all GPTNeo models at https://huggingface.co/models?filter=gpt_neo } class __lowerCamelCase ( A__ ): '''simple docstring''' a_ : Union[str, Any] = """gpt_neo""" a_ : List[Any] = ["""past_key_values"""] a_ : Optional[Any] = {"""num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers"""} def __init__( self : Optional[int] , a_ : List[str]=5_02_57 , a_ : List[str]=20_48 , a_ : Union[str, Any]=20_48 , a_ : Union[str, Any]=24 , a_ : Optional[int]=[[["global", "local"], 12]] , a_ : str=16 , a_ : Optional[Any]=None , a_ : str=2_56 , a_ : Union[str, Any]="gelu_new" , a_ : Optional[int]=0.0 , a_ : Optional[Any]=0.0 , a_ : List[Any]=0.0 , a_ : List[Any]=0.1 , a_ : Optional[Any]=1e-5 , a_ : Optional[Any]=0.02 , a_ : int=True , a_ : Optional[Any]=5_02_56 , a_ : Tuple=5_02_56 , **a_ : str , ): lowerCAmelCase_ : Optional[Any] = vocab_size lowerCAmelCase_ : str = max_position_embeddings lowerCAmelCase_ : Tuple = hidden_size lowerCAmelCase_ : Union[str, Any] = num_layers lowerCAmelCase_ : str = num_heads lowerCAmelCase_ : List[str] = intermediate_size lowerCAmelCase_ : Union[str, Any] = window_size lowerCAmelCase_ : Any = activation_function lowerCAmelCase_ : str = resid_dropout lowerCAmelCase_ : Union[str, Any] = embed_dropout lowerCAmelCase_ : Optional[Any] = attention_dropout lowerCAmelCase_ : Dict = classifier_dropout lowerCAmelCase_ : int = layer_norm_epsilon lowerCAmelCase_ : Dict = initializer_range lowerCAmelCase_ : List[Any] = use_cache lowerCAmelCase_ : Optional[int] = bos_token_id lowerCAmelCase_ : str = eos_token_id lowerCAmelCase_ : Optional[Any] = attention_types lowerCAmelCase_ : Optional[Any] = self.expand_attention_types_params(a_ ) if len(self.attention_layers ) != self.num_layers: raise ValueError( "Configuration for convolutional module is incorrect. " "It is required that `len(config.attention_layers)` == `config.num_layers` " f'''but is `len(config.attention_layers) = {len(self.attention_layers )}`, ''' f'''`config.num_layers = {self.num_layers}`. ''' "`config.attention_layers` is prepared using `config.attention_types`. " "Please verify the value of `config.attention_types` argument." ) super().__init__(bos_token_id=a_ , eos_token_id=a_ , **a_ ) @staticmethod def lowerCamelCase ( a_ : Optional[Any] ): lowerCAmelCase_ : int = [] for item in attention_types: for _ in range(item[1] ): attentions.extend(item[0] ) return attentions def __lowerCamelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> int: """simple docstring""" import torch lowerCAmelCase_ : str = input.size() lowerCAmelCase_ : List[Any] = len(__UpperCamelCase ) lowerCAmelCase_ : Tuple = shape[dimension] lowerCAmelCase_ : Tuple = torch.arange(0 , __UpperCamelCase , __UpperCamelCase ) lowerCAmelCase_ : List[Any] = torch.div(sizedim - size , __UpperCamelCase , rounding_mode="floor" ) + 1 lowerCAmelCase_ : Dict = torch.arange(__UpperCamelCase ) + low_indices[:min_length][:, None] lowerCAmelCase_ : Tuple = [slice(__UpperCamelCase )] * rank lowerCAmelCase_ : List[str] = indices lowerCAmelCase_ : Dict = input[s] lowerCAmelCase_ : Tuple = list(range(0 , rank + 1 ) ) perm.append(perm.pop(dimension + 1 ) ) return sliced.permute(__UpperCamelCase ) def __lowerCamelCase ( __UpperCamelCase , __UpperCamelCase ) -> Any: """simple docstring""" import torch lowerCAmelCase_ : Optional[int] = torch.arange(1 , __UpperCamelCase ) lowerCAmelCase_ : Tuple = torch.remainder(__UpperCamelCase , __UpperCamelCase ) lowerCAmelCase_ : Tuple = remainders == 0 lowerCAmelCase_ : List[Any] = candidates[divisor_indices] lowerCAmelCase_ : List[str] = torch.max(__UpperCamelCase ) return largest_divisor, torch.div(__UpperCamelCase , __UpperCamelCase , rounding_mode="floor" ) class __lowerCamelCase ( A__ ): '''simple docstring''' @property def lowerCamelCase ( self : List[str] ): lowerCAmelCase_ : Any = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}} ) if self.use_past: self.fill_with_past_key_values_(a_ , direction="inputs" ) lowerCAmelCase_ : int = {0: "batch", 1: "past_sequence + sequence"} else: lowerCAmelCase_ : str = {0: "batch", 1: "sequence"} return common_inputs @property def lowerCamelCase ( self : int ): return self._config.num_heads def lowerCamelCase ( self : Optional[Any] , a_ : PreTrainedTokenizer , a_ : int = -1 , a_ : int = -1 , a_ : bool = False , a_ : Optional[TensorType] = None , ): lowerCAmelCase_ : int = super(a_ , self ).generate_dummy_inputs( a_ , batch_size=a_ , seq_length=a_ , is_pair=a_ , framework=a_ ) # We need to order the input in the way they appears in the forward() lowerCAmelCase_ : str = OrderedDict({"input_ids": common_inputs["input_ids"]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch lowerCAmelCase_ , lowerCAmelCase_ : Optional[Any] = common_inputs["input_ids"].shape # Not using the same length for past_key_values lowerCAmelCase_ : str = seqlen + 2 lowerCAmelCase_ : Tuple = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) lowerCAmelCase_ : Optional[int] = [ (torch.zeros(a_ ), torch.zeros(a_ )) for _ in range(self.num_layers ) ] lowerCAmelCase_ : Tuple = common_inputs["attention_mask"] if self.use_past: lowerCAmelCase_ : List[str] = ordered_inputs["attention_mask"].dtype lowerCAmelCase_ : Optional[Any] = torch.cat( [ordered_inputs["attention_mask"], torch.ones(a_ , a_ , dtype=a_ )] , dim=1 ) return ordered_inputs @property def lowerCamelCase ( self : Union[str, Any] ): return 13
161
0
from .constants import ( MODEL_NAME, OPTIMIZER_NAME, RNG_STATE_NAME, SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, SCALER_NAME, SCHEDULER_NAME, TORCH_LAUNCH_PARAMS, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ) from .dataclasses import ( BnbQuantizationConfig, ComputeEnvironment, CustomDtype, DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, DynamoBackend, FPaRecipeKwargs, FullyShardedDataParallelPlugin, GradientAccumulationPlugin, GradScalerKwargs, InitProcessGroupKwargs, KwargsHandler, LoggerType, MegatronLMPlugin, PrecisionType, ProjectConfiguration, RNGType, SageMakerDistributedType, TensorInformation, TorchDynamoPlugin, ) from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env from .imports import ( get_ccl_version, is_abit_bnb_available, is_abit_bnb_available, is_aim_available, is_bfaa_available, is_bnb_available, is_botoa_available, is_ccl_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_fpa_available, is_ipex_available, is_megatron_lm_available, is_mlflow_available, is_mps_available, is_npu_available, is_rich_available, is_safetensors_available, is_sagemaker_available, is_tensorboard_available, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) from .modeling import ( check_device_map, check_tied_parameters_in_config, check_tied_parameters_on_same_device, compute_module_sizes, convert_file_size_to_int, dtype_byte_size, find_tied_parameters, get_balanced_memory, get_max_layer_size, get_max_memory, get_mixed_precision_context_manager, id_tensor_storage, infer_auto_device_map, load_checkpoint_in_model, load_offloaded_weights, load_state_dict, named_module_tensors, retie_parameters, set_module_tensor_to_device, shard_checkpoint, ) from .offload import ( OffloadedWeightsLoader, PrefixedDataset, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, save_offload_index, ) from .operations import ( broadcast, broadcast_object_list, concatenate, convert_outputs_to_fpaa, convert_to_fpaa, find_batch_size, find_device, gather, gather_object, get_data_structure, honor_type, initialize_tensors, is_namedtuple, is_tensor_information, is_torch_tensor, listify, pad_across_processes, recursively_apply, reduce, send_to_device, slice_tensors, ) from .versions import compare_versions, is_torch_version if is_deepspeed_available(): from .deepspeed import ( DeepSpeedEngineWrapper, DeepSpeedOptimizerWrapper, DeepSpeedSchedulerWrapper, DummyOptim, DummyScheduler, HfDeepSpeedConfig, ) from .bnb import has_abit_bnb_layers, load_and_quantize_model from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer from .launch import ( PrepareForLaunch, _filter_args, prepare_deepspeed_cmd_env, prepare_multi_gpu_env, prepare_sagemager_args_inputs, prepare_simple_launcher_cmd_env, prepare_tpu, ) from .megatron_lm import ( AbstractTrainStep, BertTrainStep, GPTTrainStep, MegatronEngine, MegatronLMDummyDataLoader, MegatronLMDummyScheduler, MegatronLMOptimizerWrapper, MegatronLMSchedulerWrapper, TaTrainStep, avg_losses_across_data_parallel_group, gather_across_data_parallel_groups, ) from .megatron_lm import initialize as megatron_lm_initialize from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader from .megatron_lm import prepare_model as megatron_lm_prepare_model from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler from .memory import find_executable_batch_size, release_memory from .other import ( extract_model_from_parallel, get_pretty_name, is_port_in_use, merge_dicts, patch_environment, save, wait_for_everyone, write_basic_config, ) from .random import set_seed, synchronize_rng_state, synchronize_rng_states from .torch_xla import install_xla from .tqdm import tqdm from .transformer_engine import convert_model, has_transformer_engine_layers
138
import argparse import pytorch_lightning as pl import torch from torch import nn from transformers import LongformerForQuestionAnswering, LongformerModel class _lowerCAmelCase ( pl.LightningModule ): def __init__( self , _UpperCamelCase ) -> List[str]: super().__init__() lowerCAmelCase_ = model lowerCAmelCase_ = 2 lowerCAmelCase_ = nn.Linear(self.model.config.hidden_size , self.num_labels ) def __a ( self ) -> Tuple: pass def lowerCamelCase__ ( __lowerCAmelCase : str , __lowerCAmelCase : str , __lowerCAmelCase : str ): """simple docstring""" lowerCAmelCase_ = LongformerModel.from_pretrained(__lowerCAmelCase ) lowerCAmelCase_ = LightningModel(__lowerCAmelCase ) lowerCAmelCase_ = torch.load(__lowerCAmelCase , map_location=torch.device("cpu" ) ) lightning_model.load_state_dict(ckpt["state_dict"] ) # init longformer question answering model lowerCAmelCase_ = LongformerForQuestionAnswering.from_pretrained(__lowerCAmelCase ) # transfer weights longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict() ) longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict() ) longformer_for_qa.eval() # save model longformer_for_qa.save_pretrained(__lowerCAmelCase ) print(F"""Conversion successful. Model saved under {pytorch_dump_folder_path}""" ) if __name__ == "__main__": _A = argparse.ArgumentParser() # Required parameters parser.add_argument( "--longformer_model", default=None, type=str, required=True, help="model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.", ) parser.add_argument( "--longformer_question_answering_ckpt_path", default=None, type=str, required=True, help="Path the official PyTorch Lightning Checkpoint.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) _A = parser.parse_args() convert_longformer_qa_checkpoint_to_pytorch( args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path )
231
0
import math import tensorflow as tf from packaging import version def A ( lowercase ) -> str: '''simple docstring''' UpperCamelCase = tf.convert_to_tensor(lowercase ) UpperCamelCase = 0.5 * (1.0 + tf.math.erf(x / tf.cast(tf.sqrt(2.0 ) , x.dtype ) )) return x * cdf def A ( lowercase ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase = tf.convert_to_tensor(lowercase ) UpperCamelCase = tf.cast(math.pi , x.dtype ) UpperCamelCase = tf.cast(0.0_4_4_7_1_5 , x.dtype ) UpperCamelCase = 0.5 * (1.0 + tf.tanh(tf.sqrt(2.0 / pi ) * (x + coeff * tf.pow(lowercase , 3 )) )) return x * cdf def A ( lowercase ) -> Optional[int]: '''simple docstring''' UpperCamelCase = tf.convert_to_tensor(lowercase ) return x * tf.tanh(tf.math.softplus(lowercase ) ) def A ( lowercase ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase = tf.convert_to_tensor(lowercase ) UpperCamelCase = tf.cast(0.0_4_4_7_1_5 , x.dtype ) UpperCamelCase = tf.cast(0.7_9_7_8_8_4_5_6_0_8 , x.dtype ) return 0.5 * x * (1.0 + tf.tanh(x * coeffa * (1.0 + coeffa * x * x) )) def A ( lowercase ) -> Optional[int]: '''simple docstring''' UpperCamelCase = tf.convert_to_tensor(lowercase ) UpperCamelCase = tf.cast(1.7_0_2 , x.dtype ) return x * tf.math.sigmoid(coeff * x ) def A ( lowercase ) -> Dict: '''simple docstring''' return tf.clip_by_value(_gelu(lowercase ) , -10 , 10 ) def A ( lowercase , lowercase=-1 ) -> Dict: '''simple docstring''' UpperCamelCase , UpperCamelCase = tf.split(lowercase , 2 , axis=lowercase ) return a * tf.math.sigmoid(lowercase ) if version.parse(tf.version.VERSION) >= version.parse("2.4"): def A ( lowercase ) -> Dict: '''simple docstring''' return tf.keras.activations.gelu(lowercase , approximate=lowercase ) _UpperCAmelCase : List[str] = tf.keras.activations.gelu _UpperCAmelCase : List[Any] = approximate_gelu_wrap else: _UpperCAmelCase : List[Any] = _gelu _UpperCAmelCase : Any = _gelu_new _UpperCAmelCase : Tuple = { "gelu": gelu, "gelu_10": gelu_aa, "gelu_fast": gelu_fast, "gelu_new": gelu_new, "glu": glu, "mish": mish, "quick_gelu": quick_gelu, "relu": tf.keras.activations.relu, "sigmoid": tf.keras.activations.sigmoid, "silu": tf.keras.activations.swish, "swish": tf.keras.activations.swish, "tanh": tf.keras.activations.tanh, } def A ( lowercase ) -> Optional[Any]: '''simple docstring''' if activation_string in ACTaFN: return ACTaFN[activation_string] else: raise KeyError(f'''function {activation_string} not found in ACT2FN mapping {list(ACTaFN.keys() )}''' )
110
from typing import Optional, Union import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models.modeling_utils import ModelMixin class lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): @register_to_config def __init__( self , A_ = 768 , ) -> List[Any]: """simple docstring""" super().__init__() UpperCamelCase = nn.Parameter(torch.zeros(1 , A_ ) ) UpperCamelCase = nn.Parameter(torch.ones(1 , A_ ) ) def __UpperCamelCase ( self , A_ = None , A_ = None , ) -> Any: """simple docstring""" UpperCamelCase = nn.Parameter(self.mean.to(A_ ).to(A_ ) ) UpperCamelCase = nn.Parameter(self.std.to(A_ ).to(A_ ) ) return self def __UpperCamelCase ( self , A_ ) -> Dict: """simple docstring""" UpperCamelCase = (embeds - self.mean) * 1.0 / self.std return embeds def __UpperCamelCase ( self , A_ ) -> Dict: """simple docstring""" UpperCamelCase = (embeds * self.std) + self.mean return embeds
110
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase__ : Tuple = {'''configuration_vit_msn''': ['''VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ViTMSNConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : Union[str, Any] = [ '''VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ViTMSNModel''', '''ViTMSNForImageClassification''', '''ViTMSNPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_msn import ( VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMSNForImageClassification, ViTMSNModel, ViTMSNPreTrainedModel, ) else: import sys lowercase__ : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
190
'''simple docstring''' import numpy as np import pandas as pd from sklearn.preprocessing import MinMaxScaler from tensorflow.keras.layers import LSTM, Dense from tensorflow.keras.models import Sequential if __name__ == "__main__": lowercase__ : List[Any] = pd.read_csv('''sample_data.csv''', header=None) lowercase__ : Union[str, Any] = df.shape[:1][0] # If you're using some other dataset input the target column lowercase__ : Any = df.iloc[:, 1:2] lowercase__ : int = actual_data.values.reshape(len_data, 1) lowercase__ : int = MinMaxScaler().fit_transform(actual_data) lowercase__ : Dict = 10 lowercase__ : List[str] = 5 lowercase__ : Dict = 20 lowercase__ : Dict = len_data - periods * look_back lowercase__ : Any = actual_data[:division] lowercase__ : Optional[int] = actual_data[division - look_back :] lowercase__ , lowercase__ : Optional[Any] = [], [] lowercase__ , lowercase__ : Tuple = [], [] for i in range(0, len(train_data) - forward_days - look_back + 1): train_x.append(train_data[i : i + look_back]) train_y.append(train_data[i + look_back : i + look_back + forward_days]) for i in range(0, len(test_data) - forward_days - look_back + 1): test_x.append(test_data[i : i + look_back]) test_y.append(test_data[i + look_back : i + look_back + forward_days]) lowercase__ : List[Any] = np.array(train_x) lowercase__ : List[Any] = np.array(test_x) lowercase__ : str = np.array([list(i.ravel()) for i in train_y]) lowercase__ : Any = np.array([list(i.ravel()) for i in test_y]) lowercase__ : Optional[Any] = Sequential() model.add(LSTM(1_28, input_shape=(look_back, 1), return_sequences=True)) model.add(LSTM(64, input_shape=(1_28, 1))) model.add(Dense(forward_days)) model.compile(loss='''mean_squared_error''', optimizer='''adam''') lowercase__ : Tuple = model.fit( x_train, y_train, epochs=1_50, verbose=1, shuffle=True, batch_size=4 ) lowercase__ : int = model.predict(x_test)
190
1
from __future__ import annotations from decimal import Decimal from math import * # noqa: F403 from sympy import diff def _lowercase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = 10**-10 ) -> float: lowerCamelCase =a while True: lowerCamelCase =Decimal(_UpperCAmelCase ) - ( Decimal(eval(_UpperCAmelCase ) ) / Decimal(eval(str(diff(_UpperCAmelCase ) ) ) ) # noqa: S307 ) # This number dictates the accuracy of the answer if abs(eval(_UpperCAmelCase ) ) < precision: # noqa: S307 return float(_UpperCAmelCase ) # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(F"The root of sin(x) = 0 is {newton_raphson('sin(x)', 2)}") # Find root of polynomial print(F"The root of x**2 - 5*x + 2 = 0 is {newton_raphson('x**2 - 5*x + 2', 0.4)}") # Find Square Root of 5 print(F"The root of log(x) - 1 = 0 is {newton_raphson('log(x) - 1', 2)}") # Exponential Roots print(F"The root of exp(x) - 1 = 0 is {newton_raphson('exp(x) - 1', 0)}")
262
import random import unittest import torch from diffusers import IFInpaintingSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __A ( a , a , unittest.TestCase ): __A = IFInpaintingSuperResolutionPipeline __A = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"""width""", """height"""} __A = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({"""original_image"""} ) __A = PipelineTesterMixin.required_optional_params - {"""latents"""} def _snake_case ( self ): return self._get_superresolution_dummy_components() def _snake_case ( self , UpperCAmelCase_ , UpperCAmelCase_=0 ): if str(UpperCAmelCase_ ).startswith("""mps""" ): lowerCamelCase =torch.manual_seed(UpperCAmelCase_ ) else: lowerCamelCase =torch.Generator(device=UpperCAmelCase_ ).manual_seed(UpperCAmelCase_ ) lowerCamelCase =floats_tensor((1, 3, 16, 16) , rng=random.Random(UpperCAmelCase_ ) ).to(UpperCAmelCase_ ) lowerCamelCase =floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCAmelCase_ ) ).to(UpperCAmelCase_ ) lowerCamelCase =floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCAmelCase_ ) ).to(UpperCAmelCase_ ) lowerCamelCase ={ """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """original_image""": original_image, """mask_image""": mask_image, """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def _snake_case ( self ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def _snake_case ( self ): self._test_save_load_optional_components() @unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""" ) def _snake_case ( self ): # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1E-1 ) def _snake_case ( self ): self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def _snake_case ( self ): self._test_save_load_local() def _snake_case ( self ): self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
262
1
from math import ceil def A ( _lowerCamelCase = 1_001 ): '''simple docstring''' _lowerCAmelCase : int = 1 for i in range(1 , int(ceil(n / 2.0 ) ) ): _lowerCAmelCase : List[Any] = 2 * i + 1 _lowerCAmelCase : str = 2 * i _lowerCAmelCase : List[str] = total + 4 * odd**2 - 6 * even return total if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution()) else: try: _snake_case = int(sys.argv[1]) print(solution(n)) except ValueError: print("Invalid entry - please enter a number")
36
from PIL import Image def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase : int = image.size _lowerCAmelCase : Any = 0 _lowerCAmelCase : Tuple = image.load() for i in range(_lowerCamelCase ): for j in range(_lowerCamelCase ): _lowerCAmelCase : Union[str, Any] = pixels[j, i] mean += pixel mean //= width * height for j in range(_lowerCamelCase ): for i in range(_lowerCamelCase ): _lowerCAmelCase : Optional[Any] = 255 if pixels[i, j] > mean else 0 return image if __name__ == "__main__": _snake_case = mean_threshold(Image.open("path_to_image").convert("L")) image.save("output_image_path")
36
1
import comet # From: unbabel-comet import torch import datasets _lowerCamelCase : int = datasets.logging.get_logger(__name__) _lowerCamelCase : List[Any] = "\\n@inproceedings{rei-EtAl:2020:WMT,\n author = {Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon},\n title = {Unbabel's Participation in the WMT20 Metrics Shared Task},\n booktitle = {Proceedings of the Fifth Conference on Machine Translation},\n month = {November},\n year = {2020},\n address = {Online},\n publisher = {Association for Computational Linguistics},\n pages = {909--918},\n}\n@inproceedings{rei-etal-2020-comet,\n title = \"{COMET}: A Neural Framework for {MT} Evaluation\",\n author = \"Rei, Ricardo and\n Stewart, Craig and\n Farinha, Ana C and\n Lavie, Alon\",\n booktitle = \"Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)\",\n month = nov,\n year = \"2020\",\n address = \"Online\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/2020.emnlp-main.213\",\n pages = \"2685--2702\",\n}\n" _lowerCamelCase : int = "\\nCrosslingual Optimized Metric for Evaluation of Translation (COMET) is an open-source framework used to train Machine Translation metrics that achieve high levels of correlation with different types of human judgments (HTER, DA's or MQM).\nWith the release of the framework the authors also released fully trained models that were used to compete in the WMT20 Metrics Shared Task achieving SOTA in that years competition.\n\nSee the [README.md] file at https://unbabel.github.io/COMET/html/models.html for more information.\n" _lowerCamelCase : str = "\nCOMET score.\n\nArgs:\n\n`sources` (list of str): Source sentences\n`predictions` (list of str): candidate translations\n`references` (list of str): reference translations\n`cuda` (bool): If set to True, runs COMET using GPU\n`show_progress` (bool): Shows progress\n`model`: COMET model to be used. Will default to `wmt-large-da-estimator-1719` if None.\n\nReturns:\n `samples`: List of dictionaries with `src`, `mt`, `ref` and `score`.\n `scores`: List of scores.\n\nExamples:\n\n >>> comet_metric = datasets.load_metric('comet')\n >>> # comet_metric = load_metric('comet', 'wmt20-comet-da') # you can also choose which model to use\n >>> source = [\"Dem Feuer konnte Einhalt geboten werden\", \"Schulen und Kindergärten wurden eröffnet.\"]\n >>> hypothesis = [\"The fire could be stopped\", \"Schools and kindergartens were open\"]\n >>> reference = [\"They were able to control the fire.\", \"Schools and kindergartens opened\"]\n >>> results = comet_metric.compute(predictions=hypothesis, references=reference, sources=source)\n >>> print([round(v, 2) for v in results[\"scores\"]])\n [0.19, 0.92]\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __UpperCAmelCase ( datasets.Metric ): def __magic_name__ ( self : List[Any] ): return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, homepage='''https://unbabel.github.io/COMET/html/index.html''', inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { '''sources''': datasets.Value('''string''', id='''sequence''' ), '''predictions''': datasets.Value('''string''', id='''sequence''' ), '''references''': datasets.Value('''string''', id='''sequence''' ), } ), codebase_urls=['''https://github.com/Unbabel/COMET'''], reference_urls=[ '''https://github.com/Unbabel/COMET''', '''https://www.aclweb.org/anthology/2020.emnlp-main.213/''', '''http://www.statmt.org/wmt20/pdf/2020.wmt-1.101.pdf6''', ], ) def __magic_name__ ( self : Tuple, __A : Any ): if self.config_name == "default": UpperCAmelCase : Union[str, Any] = comet.load_from_checkpoint(comet.download_model('''wmt20-comet-da''' ) ) else: UpperCAmelCase : Tuple = comet.load_from_checkpoint(comet.download_model(self.config_name ) ) def __magic_name__ ( self : Optional[int], __A : Optional[Any], __A : Optional[Any], __A : int, __A : Optional[int]=None, __A : List[str]=False ): if gpus is None: UpperCAmelCase : Union[str, Any] = 1 if torch.cuda.is_available() else 0 UpperCAmelCase : Dict = {"src": sources, "mt": predictions, "ref": references} UpperCAmelCase : Union[str, Any] = [dict(zip(UpperCamelCase__, UpperCamelCase__ ) ) for t in zip(*data.values() )] UpperCAmelCase : str = self.scorer.predict(UpperCamelCase__, gpus=UpperCamelCase__, progress_bar=UpperCamelCase__ ) return {"mean_score": mean_score, "scores": scores}
369
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _lowerCamelCase : str = {"configuration_xlnet": ["XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLNetConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : List[Any] = ["XLNetTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Optional[Any] = ["XLNetTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Dict = [ "XLNET_PRETRAINED_MODEL_ARCHIVE_LIST", "XLNetForMultipleChoice", "XLNetForQuestionAnswering", "XLNetForQuestionAnsweringSimple", "XLNetForSequenceClassification", "XLNetForTokenClassification", "XLNetLMHeadModel", "XLNetModel", "XLNetPreTrainedModel", "load_tf_weights_in_xlnet", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Union[str, Any] = [ "TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST", "TFXLNetForMultipleChoice", "TFXLNetForQuestionAnsweringSimple", "TFXLNetForSequenceClassification", "TFXLNetForTokenClassification", "TFXLNetLMHeadModel", "TFXLNetMainLayer", "TFXLNetModel", "TFXLNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet import XLNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet_fast import XLNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlnet import ( XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, XLNetForMultipleChoice, XLNetForQuestionAnswering, XLNetForQuestionAnsweringSimple, XLNetForSequenceClassification, XLNetForTokenClassification, XLNetLMHeadModel, XLNetModel, XLNetPreTrainedModel, load_tf_weights_in_xlnet, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlnet import ( TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLNetForMultipleChoice, TFXLNetForQuestionAnsweringSimple, TFXLNetForSequenceClassification, TFXLNetForTokenClassification, TFXLNetLMHeadModel, TFXLNetMainLayer, TFXLNetModel, TFXLNetPreTrainedModel, ) else: import sys _lowerCamelCase : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
99
0
"""simple docstring""" import unittest from transformers import AutoTokenizer, NystromformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, NystromformerModel, ) from transformers.models.nystromformer.modeling_nystromformer import NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST class __snake_case : def __init__( self : List[Any] , __lowerCAmelCase : Any , __lowerCAmelCase : List[Any]=1_3 , __lowerCAmelCase : Dict=7 , __lowerCAmelCase : Tuple=True , __lowerCAmelCase : Any=True , __lowerCAmelCase : Optional[Any]=True , __lowerCAmelCase : int=True , __lowerCAmelCase : Optional[int]=9_9 , __lowerCAmelCase : Tuple=3_2 , __lowerCAmelCase : int=5 , __lowerCAmelCase : Any=4 , __lowerCAmelCase : str=3_7 , __lowerCAmelCase : Optional[Any]="gelu" , __lowerCAmelCase : Tuple=0.1 , __lowerCAmelCase : List[str]=0.1 , __lowerCAmelCase : Optional[int]=5_1_2 , __lowerCAmelCase : Tuple=1_6 , __lowerCAmelCase : Any=2 , __lowerCAmelCase : Tuple=0.02 , __lowerCAmelCase : Tuple=3 , __lowerCAmelCase : List[Any]=4 , __lowerCAmelCase : Optional[int]=None , ): """simple docstring""" _lowerCamelCase : List[str] = parent _lowerCamelCase : str = batch_size _lowerCamelCase : Tuple = seq_length _lowerCamelCase : Dict = is_training _lowerCamelCase : Any = use_input_mask _lowerCamelCase : List[Any] = use_token_type_ids _lowerCamelCase : Optional[int] = use_labels _lowerCamelCase : int = vocab_size _lowerCamelCase : Any = hidden_size _lowerCamelCase : List[Any] = num_hidden_layers _lowerCamelCase : Optional[Any] = num_attention_heads _lowerCamelCase : int = intermediate_size _lowerCamelCase : str = hidden_act _lowerCamelCase : str = hidden_dropout_prob _lowerCamelCase : Optional[int] = attention_probs_dropout_prob _lowerCamelCase : Tuple = max_position_embeddings _lowerCamelCase : List[str] = type_vocab_size _lowerCamelCase : Optional[Any] = type_sequence_label_size _lowerCamelCase : Union[str, Any] = initializer_range _lowerCamelCase : Tuple = num_labels _lowerCamelCase : Union[str, Any] = num_choices _lowerCamelCase : Optional[Any] = scope def SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" _lowerCamelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCamelCase : Any = None if self.use_input_mask: _lowerCamelCase : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCamelCase : Tuple = None if self.use_token_type_ids: _lowerCamelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _lowerCamelCase : Optional[int] = None _lowerCamelCase : Optional[Any] = None _lowerCamelCase : Union[str, Any] = None if self.use_labels: _lowerCamelCase : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCamelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowerCamelCase : Optional[int] = ids_tensor([self.batch_size] , self.num_choices ) _lowerCamelCase : List[str] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" return NystromformerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_A , initializer_range=self.initializer_range , ) def SCREAMING_SNAKE_CASE ( self : List[str] , __lowerCAmelCase : Dict , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : str , __lowerCAmelCase : str , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Union[str, Any] ): """simple docstring""" _lowerCamelCase : List[Any] = NystromformerModel(config=_A ) model.to(_A ) model.eval() _lowerCamelCase : List[str] = model(_A , attention_mask=_A , token_type_ids=_A ) _lowerCamelCase : int = model(_A , token_type_ids=_A ) _lowerCamelCase : Union[str, Any] = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE ( self : Dict , __lowerCAmelCase : List[str] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Any , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Tuple , __lowerCAmelCase : List[Any] ): """simple docstring""" _lowerCamelCase : Tuple = NystromformerForMaskedLM(config=_A ) model.to(_A ) model.eval() _lowerCamelCase : Tuple = model(_A , attention_mask=_A , token_type_ids=_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : str , __lowerCAmelCase : Dict , __lowerCAmelCase : Any , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Any , __lowerCAmelCase : List[Any] ): """simple docstring""" _lowerCamelCase : Any = NystromformerForQuestionAnswering(config=_A ) model.to(_A ) model.eval() _lowerCamelCase : int = model( _A , attention_mask=_A , token_type_ids=_A , start_positions=_A , end_positions=_A , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE ( self : Optional[int] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Dict , __lowerCAmelCase : Any , __lowerCAmelCase : Tuple , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Any ): """simple docstring""" _lowerCamelCase : List[Any] = self.num_labels _lowerCamelCase : Tuple = NystromformerForSequenceClassification(_A ) model.to(_A ) model.eval() _lowerCamelCase : Any = model(_A , attention_mask=_A , token_type_ids=_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE ( self : Any , __lowerCAmelCase : str , __lowerCAmelCase : str , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : str , __lowerCAmelCase : List[str] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : str ): """simple docstring""" _lowerCamelCase : Dict = self.num_labels _lowerCamelCase : Dict = NystromformerForTokenClassification(config=_A ) model.to(_A ) model.eval() _lowerCamelCase : Dict = model(_A , attention_mask=_A , token_type_ids=_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE ( self : Tuple , __lowerCAmelCase : Dict , __lowerCAmelCase : Dict , __lowerCAmelCase : str , __lowerCAmelCase : Any , __lowerCAmelCase : Tuple , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Union[str, Any] ): """simple docstring""" _lowerCamelCase : Union[str, Any] = self.num_choices _lowerCamelCase : Dict = NystromformerForMultipleChoice(config=_A ) model.to(_A ) model.eval() _lowerCamelCase : Union[str, Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowerCamelCase : Dict = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowerCamelCase : Union[str, Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowerCamelCase : Optional[Any] = model( _A , attention_mask=_A , token_type_ids=_A , labels=_A , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" _lowerCamelCase : Any = self.prepare_config_and_inputs() ( ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ) : Optional[int] = config_and_inputs _lowerCamelCase : Dict = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class __snake_case ( _lowercase , _lowercase , unittest.TestCase): snake_case__ : List[str] = ( ( NystromformerModel, NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, ) if is_torch_available() else () ) snake_case__ : Tuple = ( { 'feature-extraction': NystromformerModel, 'fill-mask': NystromformerForMaskedLM, 'question-answering': NystromformerForQuestionAnswering, 'text-classification': NystromformerForSequenceClassification, 'token-classification': NystromformerForTokenClassification, 'zero-shot': NystromformerForSequenceClassification, } if is_torch_available() else {} ) snake_case__ : Any = False snake_case__ : Dict = False def SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" _lowerCamelCase : str = NystromformerModelTester(self ) _lowerCamelCase : Union[str, Any] = ConfigTester(self , config_class=_A , hidden_size=3_7 ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self : List[str] ): """simple docstring""" _lowerCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" _lowerCamelCase : int = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _lowerCamelCase : Dict = type self.model_tester.create_and_check_model(*_A ) def SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" _lowerCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_A ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" _lowerCamelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_A ) def SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" _lowerCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_A ) def SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" _lowerCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_A ) def SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" _lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_A ) @slow def SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" for model_name in NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCamelCase : Dict = NystromformerModel.from_pretrained(_A ) self.assertIsNotNone(_A ) @require_torch class __snake_case ( unittest.TestCase): @slow def SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" _lowerCamelCase : str = NystromformerModel.from_pretrained('''uw-madison/nystromformer-512''' ) _lowerCamelCase : Optional[Any] = torch.tensor([[0, 1, 2, 3, 4, 5]] ) with torch.no_grad(): _lowerCamelCase : str = model(_A )[0] _lowerCamelCase : List[Any] = torch.Size((1, 6, 7_6_8) ) self.assertEqual(output.shape , _A ) _lowerCamelCase : Optional[Any] = torch.tensor( [[[-0.45_32, -0.09_36, 0.51_37], [-0.26_76, 0.06_28, 0.61_86], [-0.36_29, -0.17_26, 0.47_16]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _A , atol=1E-4 ) ) @slow def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" _lowerCamelCase : Tuple = '''the [MASK] of Belgium is Brussels''' _lowerCamelCase : Dict = AutoTokenizer.from_pretrained('''uw-madison/nystromformer-512''' ) _lowerCamelCase : Optional[Any] = NystromformerForMaskedLM.from_pretrained('''uw-madison/nystromformer-512''' ) _lowerCamelCase : Dict = tokenizer(_A , return_tensors='''pt''' ) with torch.no_grad(): _lowerCamelCase : Optional[int] = model(encoding.input_ids ).logits _lowerCamelCase : List[Any] = token_logits[:, 2, :].argmax(-1 )[0] self.assertEqual(tokenizer.decode(_A ) , '''capital''' )
72
'''simple docstring''' from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax a__ : Any = logging.get_logger(__name__) @add_end_docstrings(SCREAMING_SNAKE_CASE) class UpperCamelCase__ ( SCREAMING_SNAKE_CASE): def __init__( self :List[str] , **_A :Any ) -> Tuple: '''simple docstring''' super().__init__(**_A ) requires_backends(self , 'vision' ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == 'tf' else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__( self :Any , _A :Union[str, List[str], "Image", List["Image"]] , **_A :Optional[int] ) -> Union[str, Any]: '''simple docstring''' return super().__call__(_A , **_A ) def lowercase_ ( self :Optional[int] , **_A :Dict ) -> Optional[Any]: '''simple docstring''' __A = {} if "candidate_labels" in kwargs: __A = kwargs['candidate_labels'] if "hypothesis_template" in kwargs: __A = kwargs['hypothesis_template'] return preprocess_params, {}, {} def lowercase_ ( self :Optional[int] , _A :str , _A :str=None , _A :Tuple="This is a photo of {}." ) -> Optional[int]: '''simple docstring''' __A = load_image(_A ) __A = self.image_processor(images=[image] , return_tensors=self.framework ) __A = candidate_labels __A = [hypothesis_template.format(_A ) for x in candidate_labels] __A = self.tokenizer(_A , return_tensors=self.framework , padding=_A ) __A = [text_inputs] return inputs def lowercase_ ( self :List[str] , _A :Tuple ) -> Tuple: '''simple docstring''' __A = model_inputs.pop('candidate_labels' ) __A = model_inputs.pop('text_inputs' ) if isinstance(text_inputs[0] , _A ): __A = text_inputs[0] else: # Batching case. __A = text_inputs[0][0] __A = self.model(**_A , **_A ) __A = { 'candidate_labels': candidate_labels, 'logits': outputs.logits_per_image, } return model_outputs def lowercase_ ( self :List[str] , _A :Optional[int] ) -> Dict: '''simple docstring''' __A = model_outputs.pop('candidate_labels' ) __A = model_outputs['logits'][0] if self.framework == "pt": __A = logits.softmax(dim=-1 ).squeeze(-1 ) __A = probs.tolist() if not isinstance(_A , _A ): __A = [scores] elif self.framework == "tf": __A = stable_softmax(_A , axis=-1 ) __A = probs.numpy().tolist() else: raise ValueError(F'Unsupported framework: {self.framework}' ) __A = [ {'score': score, 'label': candidate_label} for score, candidate_label in sorted(zip(_A , _A ) , key=lambda _A : -x[0] ) ] return result
161
0
"""simple docstring""" from typing import Any, Callable, Dict, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker a ="""CompVis/stable-diffusion-v1-1""" a ="""CompVis/stable-diffusion-v1-2""" a ="""CompVis/stable-diffusion-v1-3""" a ="""CompVis/stable-diffusion-v1-4""" class A_ ( SCREAMING_SNAKE_CASE ): def __init__( self : Any ,SCREAMING_SNAKE_CASE__ : AutoencoderKL ,SCREAMING_SNAKE_CASE__ : CLIPTextModel ,SCREAMING_SNAKE_CASE__ : CLIPTokenizer ,SCREAMING_SNAKE_CASE__ : UNetaDConditionModel ,SCREAMING_SNAKE_CASE__ : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] ,SCREAMING_SNAKE_CASE__ : StableDiffusionSafetyChecker ,SCREAMING_SNAKE_CASE__ : CLIPImageProcessor ,SCREAMING_SNAKE_CASE__ : bool = True ,): super()._init_() __lowerCamelCase : List[Any] = StableDiffusionPipeline.from_pretrained(SCREAMING_SNAKE_CASE__) __lowerCamelCase : str = StableDiffusionPipeline.from_pretrained(SCREAMING_SNAKE_CASE__) __lowerCamelCase : Union[str, Any] = StableDiffusionPipeline.from_pretrained(SCREAMING_SNAKE_CASE__) __lowerCamelCase : Dict = StableDiffusionPipeline( vae=SCREAMING_SNAKE_CASE__ ,text_encoder=SCREAMING_SNAKE_CASE__ ,tokenizer=SCREAMING_SNAKE_CASE__ ,unet=SCREAMING_SNAKE_CASE__ ,scheduler=SCREAMING_SNAKE_CASE__ ,safety_checker=SCREAMING_SNAKE_CASE__ ,feature_extractor=SCREAMING_SNAKE_CASE__ ,requires_safety_checker=SCREAMING_SNAKE_CASE__ ,) self.register_modules(pipelinea=self.pipea ,pipelinea=self.pipea ,pipelinea=self.pipea ,pipelinea=self.pipea) @property def lowerCAmelCase ( self : int): return {k: getattr(self ,SCREAMING_SNAKE_CASE__) for k in self.config.keys() if not k.startswith('_')} def lowerCAmelCase ( self : int ,SCREAMING_SNAKE_CASE__ : Optional[Union[str, int]] = "auto"): if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory __lowerCamelCase : Any = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(SCREAMING_SNAKE_CASE__) def lowerCAmelCase ( self : Optional[Any]): self.enable_attention_slicing(SCREAMING_SNAKE_CASE__) @torch.no_grad() def lowerCAmelCase ( self : List[Any] ,SCREAMING_SNAKE_CASE__ : Union[str, List[str]] ,SCREAMING_SNAKE_CASE__ : int = 5_1_2 ,SCREAMING_SNAKE_CASE__ : int = 5_1_2 ,SCREAMING_SNAKE_CASE__ : int = 5_0 ,SCREAMING_SNAKE_CASE__ : float = 7.5 ,SCREAMING_SNAKE_CASE__ : Optional[Union[str, List[str]]] = None ,SCREAMING_SNAKE_CASE__ : Optional[int] = 1 ,SCREAMING_SNAKE_CASE__ : float = 0.0 ,SCREAMING_SNAKE_CASE__ : Optional[torch.Generator] = None ,SCREAMING_SNAKE_CASE__ : Optional[torch.FloatTensor] = None ,SCREAMING_SNAKE_CASE__ : Optional[str] = "pil" ,SCREAMING_SNAKE_CASE__ : bool = True ,SCREAMING_SNAKE_CASE__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None ,SCREAMING_SNAKE_CASE__ : int = 1 ,**SCREAMING_SNAKE_CASE__ : Any ,): return self.pipea( prompt=SCREAMING_SNAKE_CASE__ ,height=SCREAMING_SNAKE_CASE__ ,width=SCREAMING_SNAKE_CASE__ ,num_inference_steps=SCREAMING_SNAKE_CASE__ ,guidance_scale=SCREAMING_SNAKE_CASE__ ,negative_prompt=SCREAMING_SNAKE_CASE__ ,num_images_per_prompt=SCREAMING_SNAKE_CASE__ ,eta=SCREAMING_SNAKE_CASE__ ,generator=SCREAMING_SNAKE_CASE__ ,latents=SCREAMING_SNAKE_CASE__ ,output_type=SCREAMING_SNAKE_CASE__ ,return_dict=SCREAMING_SNAKE_CASE__ ,callback=SCREAMING_SNAKE_CASE__ ,callback_steps=SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ,) @torch.no_grad() def lowerCAmelCase ( self : List[Any] ,SCREAMING_SNAKE_CASE__ : Union[str, List[str]] ,SCREAMING_SNAKE_CASE__ : int = 5_1_2 ,SCREAMING_SNAKE_CASE__ : int = 5_1_2 ,SCREAMING_SNAKE_CASE__ : int = 5_0 ,SCREAMING_SNAKE_CASE__ : float = 7.5 ,SCREAMING_SNAKE_CASE__ : Optional[Union[str, List[str]]] = None ,SCREAMING_SNAKE_CASE__ : Optional[int] = 1 ,SCREAMING_SNAKE_CASE__ : float = 0.0 ,SCREAMING_SNAKE_CASE__ : Optional[torch.Generator] = None ,SCREAMING_SNAKE_CASE__ : Optional[torch.FloatTensor] = None ,SCREAMING_SNAKE_CASE__ : Optional[str] = "pil" ,SCREAMING_SNAKE_CASE__ : bool = True ,SCREAMING_SNAKE_CASE__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None ,SCREAMING_SNAKE_CASE__ : int = 1 ,**SCREAMING_SNAKE_CASE__ : List[str] ,): return self.pipea( prompt=SCREAMING_SNAKE_CASE__ ,height=SCREAMING_SNAKE_CASE__ ,width=SCREAMING_SNAKE_CASE__ ,num_inference_steps=SCREAMING_SNAKE_CASE__ ,guidance_scale=SCREAMING_SNAKE_CASE__ ,negative_prompt=SCREAMING_SNAKE_CASE__ ,num_images_per_prompt=SCREAMING_SNAKE_CASE__ ,eta=SCREAMING_SNAKE_CASE__ ,generator=SCREAMING_SNAKE_CASE__ ,latents=SCREAMING_SNAKE_CASE__ ,output_type=SCREAMING_SNAKE_CASE__ ,return_dict=SCREAMING_SNAKE_CASE__ ,callback=SCREAMING_SNAKE_CASE__ ,callback_steps=SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ,) @torch.no_grad() def lowerCAmelCase ( self : Tuple ,SCREAMING_SNAKE_CASE__ : Union[str, List[str]] ,SCREAMING_SNAKE_CASE__ : int = 5_1_2 ,SCREAMING_SNAKE_CASE__ : int = 5_1_2 ,SCREAMING_SNAKE_CASE__ : int = 5_0 ,SCREAMING_SNAKE_CASE__ : float = 7.5 ,SCREAMING_SNAKE_CASE__ : Optional[Union[str, List[str]]] = None ,SCREAMING_SNAKE_CASE__ : Optional[int] = 1 ,SCREAMING_SNAKE_CASE__ : float = 0.0 ,SCREAMING_SNAKE_CASE__ : Optional[torch.Generator] = None ,SCREAMING_SNAKE_CASE__ : Optional[torch.FloatTensor] = None ,SCREAMING_SNAKE_CASE__ : Optional[str] = "pil" ,SCREAMING_SNAKE_CASE__ : bool = True ,SCREAMING_SNAKE_CASE__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None ,SCREAMING_SNAKE_CASE__ : int = 1 ,**SCREAMING_SNAKE_CASE__ : int ,): return self.pipea( prompt=SCREAMING_SNAKE_CASE__ ,height=SCREAMING_SNAKE_CASE__ ,width=SCREAMING_SNAKE_CASE__ ,num_inference_steps=SCREAMING_SNAKE_CASE__ ,guidance_scale=SCREAMING_SNAKE_CASE__ ,negative_prompt=SCREAMING_SNAKE_CASE__ ,num_images_per_prompt=SCREAMING_SNAKE_CASE__ ,eta=SCREAMING_SNAKE_CASE__ ,generator=SCREAMING_SNAKE_CASE__ ,latents=SCREAMING_SNAKE_CASE__ ,output_type=SCREAMING_SNAKE_CASE__ ,return_dict=SCREAMING_SNAKE_CASE__ ,callback=SCREAMING_SNAKE_CASE__ ,callback_steps=SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ,) @torch.no_grad() def lowerCAmelCase ( self : Optional[int] ,SCREAMING_SNAKE_CASE__ : Union[str, List[str]] ,SCREAMING_SNAKE_CASE__ : int = 5_1_2 ,SCREAMING_SNAKE_CASE__ : int = 5_1_2 ,SCREAMING_SNAKE_CASE__ : int = 5_0 ,SCREAMING_SNAKE_CASE__ : float = 7.5 ,SCREAMING_SNAKE_CASE__ : Optional[Union[str, List[str]]] = None ,SCREAMING_SNAKE_CASE__ : Optional[int] = 1 ,SCREAMING_SNAKE_CASE__ : float = 0.0 ,SCREAMING_SNAKE_CASE__ : Optional[torch.Generator] = None ,SCREAMING_SNAKE_CASE__ : Optional[torch.FloatTensor] = None ,SCREAMING_SNAKE_CASE__ : Optional[str] = "pil" ,SCREAMING_SNAKE_CASE__ : bool = True ,SCREAMING_SNAKE_CASE__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None ,SCREAMING_SNAKE_CASE__ : int = 1 ,**SCREAMING_SNAKE_CASE__ : List[str] ,): return self.pipea( prompt=SCREAMING_SNAKE_CASE__ ,height=SCREAMING_SNAKE_CASE__ ,width=SCREAMING_SNAKE_CASE__ ,num_inference_steps=SCREAMING_SNAKE_CASE__ ,guidance_scale=SCREAMING_SNAKE_CASE__ ,negative_prompt=SCREAMING_SNAKE_CASE__ ,num_images_per_prompt=SCREAMING_SNAKE_CASE__ ,eta=SCREAMING_SNAKE_CASE__ ,generator=SCREAMING_SNAKE_CASE__ ,latents=SCREAMING_SNAKE_CASE__ ,output_type=SCREAMING_SNAKE_CASE__ ,return_dict=SCREAMING_SNAKE_CASE__ ,callback=SCREAMING_SNAKE_CASE__ ,callback_steps=SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ,) @torch.no_grad() def lowerCAmelCase ( self : Dict ,SCREAMING_SNAKE_CASE__ : Union[str, List[str]] ,SCREAMING_SNAKE_CASE__ : int = 5_1_2 ,SCREAMING_SNAKE_CASE__ : int = 5_1_2 ,SCREAMING_SNAKE_CASE__ : int = 5_0 ,SCREAMING_SNAKE_CASE__ : float = 7.5 ,SCREAMING_SNAKE_CASE__ : Optional[Union[str, List[str]]] = None ,SCREAMING_SNAKE_CASE__ : Optional[int] = 1 ,SCREAMING_SNAKE_CASE__ : float = 0.0 ,SCREAMING_SNAKE_CASE__ : Optional[torch.Generator] = None ,SCREAMING_SNAKE_CASE__ : Optional[torch.FloatTensor] = None ,SCREAMING_SNAKE_CASE__ : Optional[str] = "pil" ,SCREAMING_SNAKE_CASE__ : bool = True ,SCREAMING_SNAKE_CASE__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None ,SCREAMING_SNAKE_CASE__ : int = 1 ,**SCREAMING_SNAKE_CASE__ : List[Any] ,): __lowerCamelCase : Optional[Any] = 'cuda' if torch.cuda.is_available() else 'cpu' self.to(SCREAMING_SNAKE_CASE__) # Checks if the height and width are divisible by 8 or not if height % 8 != 0 or width % 8 != 0: raise ValueError(F"`height` and `width` must be divisible by 8 but are {height} and {width}.") # Get first result from Stable Diffusion Checkpoint v1.1 __lowerCamelCase : str = self.textaimg_sda_a( prompt=SCREAMING_SNAKE_CASE__ ,height=SCREAMING_SNAKE_CASE__ ,width=SCREAMING_SNAKE_CASE__ ,num_inference_steps=SCREAMING_SNAKE_CASE__ ,guidance_scale=SCREAMING_SNAKE_CASE__ ,negative_prompt=SCREAMING_SNAKE_CASE__ ,num_images_per_prompt=SCREAMING_SNAKE_CASE__ ,eta=SCREAMING_SNAKE_CASE__ ,generator=SCREAMING_SNAKE_CASE__ ,latents=SCREAMING_SNAKE_CASE__ ,output_type=SCREAMING_SNAKE_CASE__ ,return_dict=SCREAMING_SNAKE_CASE__ ,callback=SCREAMING_SNAKE_CASE__ ,callback_steps=SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ,) # Get first result from Stable Diffusion Checkpoint v1.2 __lowerCamelCase : str = self.textaimg_sda_a( prompt=SCREAMING_SNAKE_CASE__ ,height=SCREAMING_SNAKE_CASE__ ,width=SCREAMING_SNAKE_CASE__ ,num_inference_steps=SCREAMING_SNAKE_CASE__ ,guidance_scale=SCREAMING_SNAKE_CASE__ ,negative_prompt=SCREAMING_SNAKE_CASE__ ,num_images_per_prompt=SCREAMING_SNAKE_CASE__ ,eta=SCREAMING_SNAKE_CASE__ ,generator=SCREAMING_SNAKE_CASE__ ,latents=SCREAMING_SNAKE_CASE__ ,output_type=SCREAMING_SNAKE_CASE__ ,return_dict=SCREAMING_SNAKE_CASE__ ,callback=SCREAMING_SNAKE_CASE__ ,callback_steps=SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ,) # Get first result from Stable Diffusion Checkpoint v1.3 __lowerCamelCase : List[str] = self.textaimg_sda_a( prompt=SCREAMING_SNAKE_CASE__ ,height=SCREAMING_SNAKE_CASE__ ,width=SCREAMING_SNAKE_CASE__ ,num_inference_steps=SCREAMING_SNAKE_CASE__ ,guidance_scale=SCREAMING_SNAKE_CASE__ ,negative_prompt=SCREAMING_SNAKE_CASE__ ,num_images_per_prompt=SCREAMING_SNAKE_CASE__ ,eta=SCREAMING_SNAKE_CASE__ ,generator=SCREAMING_SNAKE_CASE__ ,latents=SCREAMING_SNAKE_CASE__ ,output_type=SCREAMING_SNAKE_CASE__ ,return_dict=SCREAMING_SNAKE_CASE__ ,callback=SCREAMING_SNAKE_CASE__ ,callback_steps=SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ,) # Get first result from Stable Diffusion Checkpoint v1.4 __lowerCamelCase : str = self.textaimg_sda_a( prompt=SCREAMING_SNAKE_CASE__ ,height=SCREAMING_SNAKE_CASE__ ,width=SCREAMING_SNAKE_CASE__ ,num_inference_steps=SCREAMING_SNAKE_CASE__ ,guidance_scale=SCREAMING_SNAKE_CASE__ ,negative_prompt=SCREAMING_SNAKE_CASE__ ,num_images_per_prompt=SCREAMING_SNAKE_CASE__ ,eta=SCREAMING_SNAKE_CASE__ ,generator=SCREAMING_SNAKE_CASE__ ,latents=SCREAMING_SNAKE_CASE__ ,output_type=SCREAMING_SNAKE_CASE__ ,return_dict=SCREAMING_SNAKE_CASE__ ,callback=SCREAMING_SNAKE_CASE__ ,callback_steps=SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ,) # Get all result images into a single list and pass it via StableDiffusionPipelineOutput for final result return StableDiffusionPipelineOutput([resa[0], resa[0], resa[0], resa[0]])
371
import argparse import intel_extension_for_pytorch as ipex import torch from diffusers import DPMSolverMultistepScheduler, StableDiffusionPipeline a =argparse.ArgumentParser("""Stable Diffusion script with intel optimization""", add_help=False) parser.add_argument("""--dpm""", action="""store_true""", help="""Enable DPMSolver or not""") parser.add_argument("""--steps""", default=None, type=int, help="""Num inference steps""") a =parser.parse_args() a ="""cpu""" a ="""a lovely <dicoo> in red dress and hat, in the snowly and brightly night, with many brighly buildings""" a ="""path-to-your-trained-model""" a =StableDiffusionPipeline.from_pretrained(model_id) if args.dpm: a =DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) a =pipe.to(device) # to channels last a =pipe.unet.to(memory_format=torch.channels_last) a =pipe.vae.to(memory_format=torch.channels_last) a =pipe.text_encoder.to(memory_format=torch.channels_last) if pipe.requires_safety_checker: a =pipe.safety_checker.to(memory_format=torch.channels_last) # optimize with ipex a =torch.randn(2, 4, 64, 64) a =torch.rand(1) * 999 a =torch.randn(2, 77, 768) a =(sample, timestep, encoder_hidden_status) try: a =ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True, sample_input=input_example) except Exception: a =ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True) a =ipex.optimize(pipe.vae.eval(), dtype=torch.bfloataa, inplace=True) a =ipex.optimize(pipe.text_encoder.eval(), dtype=torch.bfloataa, inplace=True) if pipe.requires_safety_checker: a =ipex.optimize(pipe.safety_checker.eval(), dtype=torch.bfloataa, inplace=True) # compute a =666 a =torch.Generator(device).manual_seed(seed) a ={"""generator""": generator} if args.steps is not None: a =args.steps with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloataa): a =pipe(prompt, **generate_kwargs).images[0] # save image image.save("""generated.png""")
113
0
from typing import Callable, Optional from .. import Features from ..packaged_modules.generator.generator import Generator from .abc import AbstractDatasetInputStream class _a ( UpperCamelCase__ ): def __init__( self: Tuple , UpperCamelCase_: Callable , UpperCamelCase_: Optional[Features] = None , UpperCamelCase_: str = None , UpperCamelCase_: bool = False , UpperCamelCase_: bool = False , UpperCamelCase_: Optional[dict] = None , UpperCamelCase_: Optional[int] = None , **UpperCamelCase_: Optional[int] , ) -> str: """simple docstring""" super().__init__( features=UpperCamelCase_ , cache_dir=UpperCamelCase_ , keep_in_memory=UpperCamelCase_ , streaming=UpperCamelCase_ , num_proc=UpperCamelCase_ , **UpperCamelCase_ , ) lowercase__ = Generator( cache_dir=UpperCamelCase_ , features=UpperCamelCase_ , generator=UpperCamelCase_ , gen_kwargs=UpperCamelCase_ , **UpperCamelCase_ , ) def lowerCamelCase_ ( self: Dict ) -> Any: """simple docstring""" if self.streaming: lowercase__ = self.builder.as_streaming_dataset(split='''train''' ) # Build regular (map-style) dataset else: lowercase__ = None lowercase__ = None lowercase__ = None lowercase__ = None self.builder.download_and_prepare( download_config=UpperCamelCase_ , download_mode=UpperCamelCase_ , verification_mode=UpperCamelCase_ , base_path=UpperCamelCase_ , num_proc=self.num_proc , ) lowercase__ = self.builder.as_dataset( split='''train''' , verification_mode=UpperCamelCase_ , in_memory=self.keep_in_memory ) return dataset
110
import os import re import shutil from argparse import ArgumentParser, Namespace from datasets.commands import BaseDatasetsCLICommand from datasets.utils.logging import get_logger lowerCAmelCase = '<<<<<<< This should probably be modified because it mentions: ' lowerCAmelCase = '=======\n>>>>>>>\n' lowerCAmelCase = [ 'TextEncoderConfig', 'ByteTextEncoder', 'SubwordTextEncoder', 'encoder_config', 'maybe_build_from_corpus', 'manual_dir', ] lowerCAmelCase = [ # (pattern, replacement) # Order is important here for some replacements (R'tfds\.core', R'datasets'), (R'tf\.io\.gfile\.GFile', R'open'), (R'tf\.([\w\d]+)', R'datasets.Value(\'\1\')'), (R'tfds\.features\.Text\(\)', R'datasets.Value(\'string\')'), (R'tfds\.features\.Text\(', R'datasets.Value(\'string\'),'), (R'features\s*=\s*tfds.features.FeaturesDict\(', R'features=datasets.Features('), (R'tfds\.features\.FeaturesDict\(', R'dict('), (R'The TensorFlow Datasets Authors', R'The TensorFlow Datasets Authors and the HuggingFace Datasets Authors'), (R'tfds\.', R'datasets.'), (R'dl_manager\.manual_dir', R'self.config.data_dir'), (R'self\.builder_config', R'self.config'), ] def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" return ConvertCommand(args.tfds_path , args.datasets_directory ) class _a ( UpperCamelCase__ ): @staticmethod def lowerCamelCase_ ( UpperCamelCase_: ArgumentParser ) -> int: """simple docstring""" lowercase__ = parser.add_parser( '''convert''' , help='''Convert a TensorFlow Datasets dataset to a HuggingFace Datasets dataset.''' , ) train_parser.add_argument( '''--tfds_path''' , type=UpperCamelCase_ , required=UpperCamelCase_ , help='''Path to a TensorFlow Datasets folder to convert or a single tfds file to convert.''' , ) train_parser.add_argument( '''--datasets_directory''' , type=UpperCamelCase_ , required=UpperCamelCase_ , help='''Path to the HuggingFace Datasets folder.''' ) train_parser.set_defaults(func=UpperCamelCase_ ) def __init__( self: int , UpperCamelCase_: str , UpperCamelCase_: str , *UpperCamelCase_: Optional[int] ) -> Union[str, Any]: """simple docstring""" lowercase__ = get_logger('''datasets-cli/converting''' ) lowercase__ = tfds_path lowercase__ = datasets_directory def lowerCamelCase_ ( self: int ) -> Optional[int]: """simple docstring""" if os.path.isdir(self._tfds_path ): lowercase__ = os.path.abspath(self._tfds_path ) elif os.path.isfile(self._tfds_path ): lowercase__ = os.path.dirname(self._tfds_path ) else: raise ValueError('''--tfds_path is neither a directory nor a file. Please check path.''' ) lowercase__ = os.path.abspath(self._datasets_directory ) self._logger.info(f'Converting datasets from {abs_tfds_path} to {abs_datasets_path}' ) lowercase__ = [] lowercase__ = [] lowercase__ = {} if os.path.isdir(self._tfds_path ): lowercase__ = os.listdir(UpperCamelCase_ ) else: lowercase__ = [os.path.basename(self._tfds_path )] for f_name in file_names: self._logger.info(f'Looking at file {f_name}' ) lowercase__ = os.path.join(UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = os.path.join(UpperCamelCase_ , UpperCamelCase_ ) if not os.path.isfile(UpperCamelCase_ ) or "__init__" in f_name or "_test" in f_name or ".py" not in f_name: self._logger.info('''Skipping file''' ) continue with open(UpperCamelCase_ , encoding='''utf-8''' ) as f: lowercase__ = f.readlines() lowercase__ = [] lowercase__ = False lowercase__ = False lowercase__ = [] for line in lines: lowercase__ = line # Convert imports if "import tensorflow.compat.v2 as tf" in out_line: continue elif "@tfds.core" in out_line: continue elif "builder=self" in out_line: continue elif "import tensorflow_datasets.public_api as tfds" in out_line: lowercase__ = '''import datasets\n''' elif "import tensorflow" in out_line: # order is important here lowercase__ = '''''' continue elif "from absl import logging" in out_line: lowercase__ = '''from datasets import logging\n''' elif "getLogger" in out_line: lowercase__ = out_line.replace('''getLogger''' , '''get_logger''' ) elif any(expression in out_line for expression in TO_HIGHLIGHT ): lowercase__ = True lowercase__ = list(filter(lambda UpperCamelCase_ : e in out_line , UpperCamelCase_ ) ) out_lines.append(HIGHLIGHT_MESSAGE_PRE + str(UpperCamelCase_ ) + '''\n''' ) out_lines.append(UpperCamelCase_ ) out_lines.append(UpperCamelCase_ ) continue else: for pattern, replacement in TO_CONVERT: lowercase__ = re.sub(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # Take care of saving utilities (to later move them together with main script) if "tensorflow_datasets" in out_line: lowercase__ = re.match(r'''from\stensorflow_datasets.*import\s([^\.\r\n]+)''' , UpperCamelCase_ ) tfds_imports.extend(imp.strip() for imp in match.group(1 ).split(''',''' ) ) lowercase__ = '''from . import ''' + match.group(1 ) # Check we have not forget anything if "tf." in out_line or "tfds." in out_line or "tensorflow_datasets" in out_line: raise ValueError(f'Error converting {out_line.strip()}' ) if "GeneratorBasedBuilder" in out_line or "BeamBasedBuilder" in out_line: lowercase__ = True out_lines.append(UpperCamelCase_ ) if is_builder or "wmt" in f_name: # We create a new directory for each dataset lowercase__ = f_name.replace('''.py''' , '''''' ) lowercase__ = os.path.join(UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = os.path.join(UpperCamelCase_ , UpperCamelCase_ ) os.makedirs(UpperCamelCase_ , exist_ok=UpperCamelCase_ ) self._logger.info(f'Adding directory {output_dir}' ) imports_to_builder_map.update({imp: output_dir for imp in tfds_imports} ) else: # Utilities will be moved at the end utils_files.append(UpperCamelCase_ ) if needs_manual_update: with_manual_update.append(UpperCamelCase_ ) with open(UpperCamelCase_ , '''w''' , encoding='''utf-8''' ) as f: f.writelines(UpperCamelCase_ ) self._logger.info(f'Converted in {output_file}' ) for utils_file in utils_files: try: lowercase__ = os.path.basename(UpperCamelCase_ ) lowercase__ = imports_to_builder_map[f_name.replace('''.py''' , '''''' )] self._logger.info(f'Moving {dest_folder} to {utils_file}' ) shutil.copy(UpperCamelCase_ , UpperCamelCase_ ) except KeyError: self._logger.error(f'Cannot find destination folder for {utils_file}. Please copy manually.' ) if with_manual_update: for file_path in with_manual_update: self._logger.warning( f'You need to manually update file {file_path} to remove configurations using \'TextEncoderConfig\'.' )
110
1
"""simple docstring""" import unittest from transformers import MPNetConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MPNetForMaskedLM, MPNetForMultipleChoice, MPNetForQuestionAnswering, MPNetForSequenceClassification, MPNetForTokenClassification, MPNetModel, ) class __a : '''simple docstring''' def __init__( self , _a , _a=13 , _a=7 , _a=True , _a=True , _a=False , _a=True , _a=99 , _a=64 , _a=5 , _a=4 , _a=64 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=16 , _a=2 , _a=0.02 , _a=3 , _a=4 , _a=None , ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = parent SCREAMING_SNAKE_CASE__ : List[Any] = batch_size SCREAMING_SNAKE_CASE__ : str = seq_length SCREAMING_SNAKE_CASE__ : Tuple = is_training SCREAMING_SNAKE_CASE__ : int = use_input_mask SCREAMING_SNAKE_CASE__ : int = use_token_type_ids SCREAMING_SNAKE_CASE__ : Any = use_labels SCREAMING_SNAKE_CASE__ : Optional[int] = vocab_size SCREAMING_SNAKE_CASE__ : List[str] = hidden_size SCREAMING_SNAKE_CASE__ : Any = num_hidden_layers SCREAMING_SNAKE_CASE__ : Tuple = num_attention_heads SCREAMING_SNAKE_CASE__ : Tuple = intermediate_size SCREAMING_SNAKE_CASE__ : List[Any] = hidden_act SCREAMING_SNAKE_CASE__ : Tuple = hidden_dropout_prob SCREAMING_SNAKE_CASE__ : List[Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ : str = max_position_embeddings SCREAMING_SNAKE_CASE__ : Dict = type_vocab_size SCREAMING_SNAKE_CASE__ : Dict = type_sequence_label_size SCREAMING_SNAKE_CASE__ : int = initializer_range SCREAMING_SNAKE_CASE__ : Tuple = num_labels SCREAMING_SNAKE_CASE__ : Optional[Any] = num_choices SCREAMING_SNAKE_CASE__ : int = scope def _a ( self ) -> Tuple: """simple docstring""" return MPNetConfig.from_pretrained("""microsoft/mpnet-base""" ) def _a ( self ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE__ : int = None if self.use_input_mask: SCREAMING_SNAKE_CASE__ : Any = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = None SCREAMING_SNAKE_CASE__ : List[str] = None SCREAMING_SNAKE_CASE__ : int = None if self.use_labels: SCREAMING_SNAKE_CASE__ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE__ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE__ : Dict = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE__ : str = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def _a ( self ) -> Tuple: """simple docstring""" return MPNetConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def _a ( self , _a , _a , _a , _a , _a , _a ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = MPNetModel(config=_a ) model.to(_a ) model.eval() SCREAMING_SNAKE_CASE__ : Union[str, Any] = model(_a , _a ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = model(_a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def _a ( self , _a , _a , _a , _a , _a , _a ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = MPNetForQuestionAnswering(config=_a ) model.to(_a ) model.eval() SCREAMING_SNAKE_CASE__ : Union[str, Any] = model( _a , attention_mask=_a , start_positions=_a , end_positions=_a , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _a ( self , _a , _a , _a , _a , _a , _a ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = self.num_labels SCREAMING_SNAKE_CASE__ : List[Any] = MPNetForSequenceClassification(_a ) model.to(_a ) model.eval() SCREAMING_SNAKE_CASE__ : Optional[Any] = model(_a , attention_mask=_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _a ( self , _a , _a , _a , _a , _a , _a ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = self.num_choices SCREAMING_SNAKE_CASE__ : str = MPNetForMultipleChoice(config=_a ) model.to(_a ) model.eval() SCREAMING_SNAKE_CASE__ : List[Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE__ : int = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE__ : Tuple = model( _a , attention_mask=_a , labels=_a , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _a ( self , _a , _a , _a , _a , _a , _a ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = self.num_labels SCREAMING_SNAKE_CASE__ : Optional[int] = MPNetForTokenClassification(config=_a ) model.to(_a ) model.eval() SCREAMING_SNAKE_CASE__ : Tuple = model(_a , attention_mask=_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _a ( self ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = self.prepare_config_and_inputs() ((SCREAMING_SNAKE_CASE__) , (SCREAMING_SNAKE_CASE__) , (SCREAMING_SNAKE_CASE__) , (SCREAMING_SNAKE_CASE__) , (SCREAMING_SNAKE_CASE__) , (SCREAMING_SNAKE_CASE__)) : int = config_and_inputs SCREAMING_SNAKE_CASE__ : Tuple = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class __a (UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase): '''simple docstring''' _SCREAMING_SNAKE_CASE :Dict = ( ( MPNetForMaskedLM, MPNetForMultipleChoice, MPNetForQuestionAnswering, MPNetForSequenceClassification, MPNetForTokenClassification, MPNetModel, ) if is_torch_available() else () ) _SCREAMING_SNAKE_CASE :Tuple = ( { """feature-extraction""": MPNetModel, """fill-mask""": MPNetForMaskedLM, """question-answering""": MPNetForQuestionAnswering, """text-classification""": MPNetForSequenceClassification, """token-classification""": MPNetForTokenClassification, """zero-shot""": MPNetForSequenceClassification, } if is_torch_available() else {} ) _SCREAMING_SNAKE_CASE :Tuple = False _SCREAMING_SNAKE_CASE :Any = True def _a ( self ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = MPNetModelTester(self ) SCREAMING_SNAKE_CASE__ : Optional[int] = ConfigTester(self , config_class=_a , hidden_size=37 ) def _a ( self ) -> Optional[int]: """simple docstring""" self.config_tester.run_common_tests() def _a ( self ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_model(*_a ) def _a ( self ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_sequence_classification(*_a ) def _a ( self ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_multiple_choice(*_a ) def _a ( self ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_token_classification(*_a ) def _a ( self ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_question_answering(*_a ) @require_torch class __a (unittest.TestCase): '''simple docstring''' @slow def _a ( self ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = MPNetModel.from_pretrained("""microsoft/mpnet-base""" ) SCREAMING_SNAKE_CASE__ : List[str] = torch.tensor([[0, 345, 232, 328, 740, 140, 1_695, 69, 6_078, 1_588, 2]] ) SCREAMING_SNAKE_CASE__ : Any = model(_a )[0] SCREAMING_SNAKE_CASE__ : Tuple = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , _a ) SCREAMING_SNAKE_CASE__ : List[Any] = torch.tensor( [[[-0.0_550, 0.1_943, -0.0_740], [-0.0_562, 0.2_211, -0.0_579], [-0.0_437, 0.3_337, -0.0_641]]] ) # compare the actual values for a slice. self.assertTrue(torch.allclose(output[:, :3, :3] , _a , atol=1E-4 ) )
56
"""simple docstring""" import importlib.metadata import warnings from copy import deepcopy from packaging import version from ..utils import logging from .import_utils import is_accelerate_available, is_bitsandbytes_available if is_bitsandbytes_available(): import bitsandbytes as bnb import torch import torch.nn as nn from ..pytorch_utils import ConvaD if is_accelerate_available(): from accelerate import init_empty_weights from accelerate.utils import find_tied_parameters a :Optional[Any] = logging.get_logger(__name__) def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=None ) -> List[str]: # Recurse if needed if "." in tensor_name: SCREAMING_SNAKE_CASE__ : List[Any] = tensor_name.split(""".""" ) for split in splits[:-1]: SCREAMING_SNAKE_CASE__ : Dict = getattr(__lowerCAmelCase , __lowerCAmelCase ) if new_module is None: raise ValueError(F'''{module} has no attribute {split}.''' ) SCREAMING_SNAKE_CASE__ : Optional[Any] = new_module SCREAMING_SNAKE_CASE__ : Any = splits[-1] if tensor_name not in module._parameters and tensor_name not in module._buffers: raise ValueError(F'''{module} does not have a parameter or a buffer named {tensor_name}.''' ) SCREAMING_SNAKE_CASE__ : List[str] = tensor_name in module._buffers SCREAMING_SNAKE_CASE__ : Dict = getattr(__lowerCAmelCase , __lowerCAmelCase ) if old_value.device == torch.device("""meta""" ) and device not in ["meta", torch.device("""meta""" )] and value is None: raise ValueError(F'''{tensor_name} is on the meta device, we need a `value` to put in on {device}.''' ) SCREAMING_SNAKE_CASE__ : List[str] = False SCREAMING_SNAKE_CASE__ : str = False if is_buffer or not is_bitsandbytes_available(): SCREAMING_SNAKE_CASE__ : Optional[int] = False SCREAMING_SNAKE_CASE__ : List[Any] = False else: SCREAMING_SNAKE_CASE__ : str = hasattr(bnb.nn , """Params4bit""" ) and isinstance(module._parameters[tensor_name] , bnb.nn.Paramsabit ) SCREAMING_SNAKE_CASE__ : str = isinstance(module._parameters[tensor_name] , bnb.nn.IntaParams ) if is_abit or is_abit: SCREAMING_SNAKE_CASE__ : Dict = module._parameters[tensor_name] if param.device.type != "cuda": if value is None: SCREAMING_SNAKE_CASE__ : Tuple = old_value.to(__lowerCAmelCase ) elif isinstance(__lowerCAmelCase , torch.Tensor ): SCREAMING_SNAKE_CASE__ : int = value.to("""cpu""" ) if value.dtype == torch.inta: SCREAMING_SNAKE_CASE__ : str = version.parse(importlib.metadata.version("""bitsandbytes""" ) ) > version.parse( """0.37.2""" ) if not is_abit_serializable: raise ValueError( """Detected int8 weights but the version of bitsandbytes is not compatible with int8 serialization. """ """Make sure to download the latest `bitsandbytes` version. `pip install --upgrade bitsandbytes`.""" ) else: SCREAMING_SNAKE_CASE__ : Optional[Any] = torch.tensor(__lowerCAmelCase , device="""cpu""" ) # Support models using `Conv1D` in place of `nn.Linear` (e.g. gpt2) by transposing the weight matrix prior to quantization. # Since weights are saved in the correct "orientation", we skip transposing when loading. if issubclass(module.source_cls , __lowerCAmelCase ) and fpaa_statistics is None: SCREAMING_SNAKE_CASE__ : Optional[int] = new_value.T SCREAMING_SNAKE_CASE__ : Union[str, Any] = old_value.__dict__ if is_abit: SCREAMING_SNAKE_CASE__ : str = bnb.nn.IntaParams(__lowerCAmelCase , requires_grad=__lowerCAmelCase , **__lowerCAmelCase ).to(__lowerCAmelCase ) elif is_abit: SCREAMING_SNAKE_CASE__ : Union[str, Any] = bnb.nn.Paramsabit(__lowerCAmelCase , requires_grad=__lowerCAmelCase , **__lowerCAmelCase ).to(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : Optional[Any] = new_value if fpaa_statistics is not None: setattr(module.weight , """SCB""" , fpaa_statistics.to(__lowerCAmelCase ) ) else: if value is None: SCREAMING_SNAKE_CASE__ : str = old_value.to(__lowerCAmelCase ) elif isinstance(__lowerCAmelCase , torch.Tensor ): SCREAMING_SNAKE_CASE__ : List[str] = value.to(__lowerCAmelCase ) else: SCREAMING_SNAKE_CASE__ : Optional[int] = torch.tensor(__lowerCAmelCase , device=__lowerCAmelCase ) if is_buffer: SCREAMING_SNAKE_CASE__ : List[str] = new_value else: SCREAMING_SNAKE_CASE__ : List[Any] = nn.Parameter(__lowerCAmelCase , requires_grad=old_value.requires_grad ) SCREAMING_SNAKE_CASE__ : Dict = new_value def _lowercase ( __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=False ) -> List[Any]: for name, module in model.named_children(): if current_key_name is None: SCREAMING_SNAKE_CASE__ : Union[str, Any] = [] current_key_name.append(__lowerCAmelCase ) if (isinstance(__lowerCAmelCase , nn.Linear ) or isinstance(__lowerCAmelCase , __lowerCAmelCase )) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` if not any(key in """.""".join(__lowerCAmelCase ) for key in modules_to_not_convert ): with init_empty_weights(): if isinstance(__lowerCAmelCase , __lowerCAmelCase ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Tuple = module.weight.shape else: SCREAMING_SNAKE_CASE__ : str = module.in_features SCREAMING_SNAKE_CASE__ : Dict = module.out_features if quantization_config.quantization_method() == "llm_int8": SCREAMING_SNAKE_CASE__ : Dict = bnb.nn.LinearabitLt( __lowerCAmelCase , __lowerCAmelCase , module.bias is not None , has_fpaa_weights=quantization_config.llm_inta_has_fpaa_weight , threshold=quantization_config.llm_inta_threshold , ) SCREAMING_SNAKE_CASE__ : Tuple = True else: if ( quantization_config.llm_inta_skip_modules is not None and name in quantization_config.llm_inta_skip_modules ): pass else: SCREAMING_SNAKE_CASE__ : Optional[int] = bnb.nn.Linearabit( __lowerCAmelCase , __lowerCAmelCase , module.bias is not None , quantization_config.bnb_abit_compute_dtype , compress_statistics=quantization_config.bnb_abit_use_double_quant , quant_type=quantization_config.bnb_abit_quant_type , ) SCREAMING_SNAKE_CASE__ : int = True # Store the module class in case we need to transpose the weight later SCREAMING_SNAKE_CASE__ : Dict = type(__lowerCAmelCase ) # Force requires grad to False to avoid unexpected errors model._modules[name].requires_grad_(__lowerCAmelCase ) if len(list(module.children() ) ) > 0: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Tuple = _replace_with_bnb_linear( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , has_been_replaced=__lowerCAmelCase , ) # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def _lowercase ( __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None ) -> str: SCREAMING_SNAKE_CASE__ : int = ["""lm_head"""] if modules_to_not_convert is None else modules_to_not_convert SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Any = _replace_with_bnb_linear( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) if not has_been_replaced: logger.warning( """You are loading your model in 8bit or 4bit but no linear modules were found in your model.""" """ Please double check your model architecture, or submit an issue on github if you think this is""" """ a bug.""" ) return model def _lowercase ( *__lowerCAmelCase , **__lowerCAmelCase ) -> Any: warnings.warn( """`replace_8bit_linear` will be deprecated in a future version, please use `replace_with_bnb_linear` instead""" , __lowerCAmelCase , ) return replace_with_bnb_linear(*__lowerCAmelCase , **__lowerCAmelCase ) def _lowercase ( *__lowerCAmelCase , **__lowerCAmelCase ) -> Union[str, Any]: warnings.warn( """`set_module_8bit_tensor_to_device` will be deprecated in a future version, please use `set_module_quantized_tensor_to_device` instead""" , __lowerCAmelCase , ) return set_module_quantized_tensor_to_device(*__lowerCAmelCase , **__lowerCAmelCase ) def _lowercase ( __lowerCAmelCase ) -> Tuple: SCREAMING_SNAKE_CASE__ : List[Any] = deepcopy(__lowerCAmelCase ) # this has 0 cost since it is done inside `init_empty_weights` context manager` tied_model.tie_weights() SCREAMING_SNAKE_CASE__ : List[str] = find_tied_parameters(__lowerCAmelCase ) # For compatibility with Accelerate < 0.18 if isinstance(__lowerCAmelCase , __lowerCAmelCase ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: SCREAMING_SNAKE_CASE__ : List[Any] = sum(__lowerCAmelCase , [] ) SCREAMING_SNAKE_CASE__ : str = len(__lowerCAmelCase ) > 0 # Check if it is a base model SCREAMING_SNAKE_CASE__ : Optional[int] = not hasattr(__lowerCAmelCase , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head SCREAMING_SNAKE_CASE__ : int = list(model.named_children() ) SCREAMING_SNAKE_CASE__ : str = [list_modules[-1][0]] # add last module together with tied weights SCREAMING_SNAKE_CASE__ : Any = set(__lowerCAmelCase ) - set(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : Any = list(set(__lowerCAmelCase ) ) + list(__lowerCAmelCase ) # remove ".weight" from the keys SCREAMING_SNAKE_CASE__ : Any = [""".weight""", """.bias"""] SCREAMING_SNAKE_CASE__ : Optional[Any] = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: SCREAMING_SNAKE_CASE__ : Optional[int] = name.replace(__lowerCAmelCase , """""" ) filtered_module_names.append(__lowerCAmelCase ) return filtered_module_names
56
1
import itertools import os from collections import Counter, defaultdict from concurrent.futures import ThreadPoolExecutor, as_completed import numpy as np import datasets from .execute import check_correctness _UpperCAmelCase : Any ="""\ @misc{chen2021evaluating, title={Evaluating Large Language Models Trained on Code}, author={Mark Chen and Jerry Tworek and Heewoo Jun and Qiming Yuan \ and Henrique Ponde de Oliveira Pinto and Jared Kaplan and Harri Edwards \ and Yuri Burda and Nicholas Joseph and Greg Brockman and Alex Ray \ and Raul Puri and Gretchen Krueger and Michael Petrov and Heidy Khlaaf \ and Girish Sastry and Pamela Mishkin and Brooke Chan and Scott Gray \ and Nick Ryder and Mikhail Pavlov and Alethea Power and Lukasz Kaiser \ and Mohammad Bavarian and Clemens Winter and Philippe Tillet \ and Felipe Petroski Such and Dave Cummings and Matthias Plappert \ and Fotios Chantzis and Elizabeth Barnes and Ariel Herbert-Voss \ and William Hebgen Guss and Alex Nichol and Alex Paino and Nikolas Tezak \ and Jie Tang and Igor Babuschkin and Suchir Balaji and Shantanu Jain \ and William Saunders and Christopher Hesse and Andrew N. Carr \ and Jan Leike and Josh Achiam and Vedant Misra and Evan Morikawa \ and Alec Radford and Matthew Knight and Miles Brundage and Mira Murati \ and Katie Mayer and Peter Welinder and Bob McGrew and Dario Amodei \ and Sam McCandlish and Ilya Sutskever and Wojciech Zaremba}, year={2021}, eprint={2107.03374}, archivePrefix={arXiv}, primaryClass={cs.LG} } """ _UpperCAmelCase : Optional[Any] ="""\ This metric implements the evaluation harness for the HumanEval problem solving dataset described in the paper \"Evaluating Large Language Models Trained on Code\" (https://arxiv.org/abs/2107.03374). """ _UpperCAmelCase : List[Any] =""" Calculates how good are predictions given some references, using certain scores Args: predictions: list of candidates to evaluate. Each candidates should be a list of strings with several code candidates to solve the problem. references: a list with a test for each prediction. Each test should evaluate the correctness of a code candidate. k: number of code candidates to consider in the evaluation (Default: [1, 10, 100]) num_workers: number of workers used to evaluate the canidate programs (Default: 4). timeout: Returns: pass_at_k: dict with pass rates for each k results: dict with granular results of each unittest Examples: >>> code_eval = datasets.load_metric(\"code_eval\") >>> test_cases = [\"assert add(2,3)==5\"] >>> candidates = [[\"def add(a,b): return a*b\", \"def add(a, b): return a+b\"]] >>> pass_at_k, results = code_eval.compute(references=test_cases, predictions=candidates, k=[1, 2]) >>> print(pass_at_k) {'pass@1': 0.5, 'pass@2': 1.0} """ _UpperCAmelCase : Union[str, Any] =""" ################################################################################ !!!WARNING!!! ################################################################################ The \"code_eval\" metric executes untrusted model-generated code in Python. Although it is highly unlikely that model-generated code will do something overtly malicious in response to this test suite, model-generated code may act destructively due to a lack of model capability or alignment. Users are strongly encouraged to sandbox this evaluation suite so that it does not perform destructive actions on their host or network. For more information on how OpenAI sandboxes its code, see the paper \"Evaluating Large Language Models Trained on Code\" (https://arxiv.org/abs/2107.03374). Once you have read this disclaimer and taken appropriate precautions, set the environment variable HF_ALLOW_CODE_EVAL=\"1\". Within Python you can to this with: >>> import os >>> os.environ[\"HF_ALLOW_CODE_EVAL\"] = \"1\" ################################################################################\ """ _UpperCAmelCase : str ="""The MIT License Copyright (c) OpenAI (https://openai.com) Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the \"Software\"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.""" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class snake_case__( datasets.Metric ): '''simple docstring''' def lowercase_ ( self ) -> Dict: return datasets.MetricInfo( # This is the description that will appear on the metrics page. description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''string''' ) ), '''references''': datasets.Value('''string''' ), } ) , homepage='''https://github.com/openai/human-eval''' , codebase_urls=['''https://github.com/openai/human-eval'''] , reference_urls=['''https://github.com/openai/human-eval'''] , license=_LICENSE , ) def lowercase_ ( self , __lowercase , __lowercase , __lowercase=[1, 1_0, 1_0_0] , __lowercase=4 , __lowercase=3.0 ) -> Optional[Any]: if os.getenv('''HF_ALLOW_CODE_EVAL''' , 0 ) != "1": raise ValueError(_WARNING ) if os.name == "nt": raise NotImplementedError('''This metric is currently not supported on Windows.''' ) with ThreadPoolExecutor(max_workers=__lowercase ) as executor: lowerCAmelCase_ : Optional[Any] = [] lowerCAmelCase_ : Any = Counter() lowerCAmelCase_ : List[Any] = 0 lowerCAmelCase_ : Optional[int] = defaultdict(__lowercase ) for task_id, (candidates, test_case) in enumerate(zip(__lowercase , __lowercase ) ): for candidate in candidates: lowerCAmelCase_ : Union[str, Any] = candidate + '''\n''' + test_case lowerCAmelCase_ : List[str] = (test_program, timeout, task_id, completion_id[task_id]) lowerCAmelCase_ : Optional[Any] = executor.submit(__lowercase , *__lowercase ) futures.append(__lowercase ) completion_id[task_id] += 1 n_samples += 1 for future in as_completed(__lowercase ): lowerCAmelCase_ : Tuple = future.result() results[result["task_id"]].append((result['''completion_id'''], result) ) lowerCAmelCase_ , lowerCAmelCase_ : List[str] = [], [] for result in results.values(): result.sort() lowerCAmelCase_ : Any = [r[1]['''passed'''] for r in result] total.append(len(__lowercase ) ) correct.append(sum(__lowercase ) ) lowerCAmelCase_ : Dict = np.array(__lowercase ) lowerCAmelCase_ : List[str] = np.array(__lowercase ) lowerCAmelCase_ : Optional[int] = k lowerCAmelCase_ : Tuple = {f"""pass@{k}""": estimate_pass_at_k(__lowercase , __lowercase , __lowercase ).mean() for k in ks if (total >= k).all()} return pass_at_k, results def lowerCAmelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> Optional[Any]: def estimator(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> float: if n - c < k: return 1.0 return 1.0 - np.prod(1.0 - k / np.arange(n - c + 1 , n + 1 ) ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): lowerCAmelCase_ : Dict = itertools.repeat(lowerCAmelCase_ , len(lowerCAmelCase_ ) ) else: assert len(lowerCAmelCase_ ) == len(lowerCAmelCase_ ) lowerCAmelCase_ : Optional[int] = iter(lowerCAmelCase_ ) return np.array([estimator(int(lowerCAmelCase_ ) , int(lowerCAmelCase_ ) , lowerCAmelCase_ ) for n, c in zip(lowerCAmelCase_ , lowerCAmelCase_ )] )
262
from math import sqrt def lowerCAmelCase ( lowerCAmelCase_ )-> bool: assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and ( number >= 0 ), "'number' must been an int and positive" lowerCAmelCase_ : List[Any] = True # 0 and 1 are none primes. if number <= 1: lowerCAmelCase_ : Optional[int] = False for divisor in range(2 , int(round(sqrt(lowerCAmelCase_ ) ) ) + 1 ): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: lowerCAmelCase_ : Tuple = False break # precondition assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ), "'status' must been from type bool" return status def lowerCAmelCase ( lowerCAmelCase_ )-> Tuple: assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N lowerCAmelCase_ : Tuple = list(range(2 , n + 1 ) ) lowerCAmelCase_ : Optional[int] = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(lowerCAmelCase_ ) ): for j in range(i + 1 , len(lowerCAmelCase_ ) ): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): lowerCAmelCase_ : str = 0 # filters actual prime numbers. lowerCAmelCase_ : Optional[int] = [x for x in begin_list if x != 0] # precondition assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ), "'ans' must been from type list" return ans def lowerCAmelCase ( lowerCAmelCase_ )-> Optional[Any]: assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and (n > 2), "'N' must been an int and > 2" lowerCAmelCase_ : List[Any] = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2 , n + 1 ): if is_prime(lowerCAmelCase_ ): ans.append(lowerCAmelCase_ ) # precondition assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ), "'ans' must been from type list" return ans def lowerCAmelCase ( lowerCAmelCase_ )-> List[Any]: assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and number >= 0, "'number' must been an int and >= 0" lowerCAmelCase_ : int = [] # this list will be returns of the function. # potential prime number factors. lowerCAmelCase_ : List[Any] = 2 lowerCAmelCase_ : Optional[int] = number if number == 0 or number == 1: ans.append(lowerCAmelCase_ ) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(lowerCAmelCase_ ): while quotient != 1: if is_prime(lowerCAmelCase_ ) and (quotient % factor == 0): ans.append(lowerCAmelCase_ ) quotient /= factor else: factor += 1 else: ans.append(lowerCAmelCase_ ) # precondition assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ), "'ans' must been from type list" return ans def lowerCAmelCase ( lowerCAmelCase_ )-> Optional[int]: assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and ( number >= 0 ), "'number' bust been an int and >= 0" lowerCAmelCase_ : Dict = 0 # prime factorization of 'number' lowerCAmelCase_ : Any = prime_factorization(lowerCAmelCase_ ) lowerCAmelCase_ : Tuple = max(lowerCAmelCase_ ) # precondition assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ), "'ans' must been from type int" return ans def lowerCAmelCase ( lowerCAmelCase_ )-> int: assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and ( number >= 0 ), "'number' bust been an int and >= 0" lowerCAmelCase_ : List[Any] = 0 # prime factorization of 'number' lowerCAmelCase_ : Dict = prime_factorization(lowerCAmelCase_ ) lowerCAmelCase_ : int = min(lowerCAmelCase_ ) # precondition assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ), "'ans' must been from type int" return ans def lowerCAmelCase ( lowerCAmelCase_ )-> Optional[Any]: assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ), "'number' must been an int" assert isinstance(number % 2 == 0 , lowerCAmelCase_ ), "compare bust been from type bool" return number % 2 == 0 def lowerCAmelCase ( lowerCAmelCase_ )-> List[Any]: assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ), "'number' must been an int" assert isinstance(number % 2 != 0 , lowerCAmelCase_ ), "compare bust been from type bool" return number % 2 != 0 def lowerCAmelCase ( lowerCAmelCase_ )-> List[str]: assert ( isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and (number > 2) and is_even(lowerCAmelCase_ ) ), "'number' must been an int, even and > 2" lowerCAmelCase_ : str = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' lowerCAmelCase_ : int = get_prime_numbers(lowerCAmelCase_ ) lowerCAmelCase_ : List[str] = len(lowerCAmelCase_ ) # run variable for while-loops. lowerCAmelCase_ : Union[str, Any] = 0 lowerCAmelCase_ : Tuple = None # exit variable. for break up the loops lowerCAmelCase_ : int = True while i < len_pn and loop: lowerCAmelCase_ : int = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: lowerCAmelCase_ : Tuple = False ans.append(prime_numbers[i] ) ans.append(prime_numbers[j] ) j += 1 i += 1 # precondition assert ( isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and (len(lowerCAmelCase_ ) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0] ) and is_prime(ans[1] ) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def lowerCAmelCase ( lowerCAmelCase_ , lowerCAmelCase_ )-> Dict: assert ( isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." lowerCAmelCase_ : int = 0 while numbera != 0: lowerCAmelCase_ : str = numbera % numbera lowerCAmelCase_ : List[Any] = numbera lowerCAmelCase_ : Any = rest # precondition assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def lowerCAmelCase ( lowerCAmelCase_ , lowerCAmelCase_ )-> Optional[int]: assert ( isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." lowerCAmelCase_ : List[Any] = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' lowerCAmelCase_ : int = prime_factorization(lowerCAmelCase_ ) lowerCAmelCase_ : int = prime_factorization(lowerCAmelCase_ ) elif numbera == 1 or numbera == 1: lowerCAmelCase_ : Union[str, Any] = [] lowerCAmelCase_ : List[str] = [] lowerCAmelCase_ : Union[str, Any] = max(lowerCAmelCase_ , lowerCAmelCase_ ) lowerCAmelCase_ : Optional[int] = 0 lowerCAmelCase_ : Dict = 0 lowerCAmelCase_ : Union[str, Any] = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: lowerCAmelCase_ : Optional[Any] = prime_fac_a.count(lowerCAmelCase_ ) lowerCAmelCase_ : Tuple = prime_fac_a.count(lowerCAmelCase_ ) for _ in range(max(lowerCAmelCase_ , lowerCAmelCase_ ) ): ans *= n else: lowerCAmelCase_ : List[str] = prime_fac_a.count(lowerCAmelCase_ ) for _ in range(lowerCAmelCase_ ): ans *= n done.append(lowerCAmelCase_ ) # iterates through primeFac2 for n in prime_fac_a: if n not in done: lowerCAmelCase_ : Optional[Any] = prime_fac_a.count(lowerCAmelCase_ ) for _ in range(lowerCAmelCase_ ): ans *= n done.append(lowerCAmelCase_ ) # precondition assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def lowerCAmelCase ( lowerCAmelCase_ )-> int: assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and (n >= 0), "'number' must been a positive int" lowerCAmelCase_ : List[Any] = 0 lowerCAmelCase_ : Optional[int] = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(lowerCAmelCase_ ): ans += 1 # precondition assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and is_prime( lowerCAmelCase_ ), "'ans' must been a prime number and from type int" return ans def lowerCAmelCase ( lowerCAmelCase_ , lowerCAmelCase_ )-> List[Any]: assert ( is_prime(lowerCAmelCase_ ) and is_prime(lowerCAmelCase_ ) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" lowerCAmelCase_ : Union[str, Any] = p_number_a + 1 # jump to the next number lowerCAmelCase_ : Optional[int] = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(lowerCAmelCase_ ): number += 1 while number < p_number_a: ans.append(lowerCAmelCase_ ) number += 1 # fetch the next prime number. while not is_prime(lowerCAmelCase_ ): number += 1 # precondition assert ( isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and ans[0] != p_number_a and ans[len(lowerCAmelCase_ ) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def lowerCAmelCase ( lowerCAmelCase_ )-> Tuple: assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and (n >= 1), "'n' must been int and >= 1" lowerCAmelCase_ : List[Any] = [] # will be returned. for divisor in range(1 , n + 1 ): if n % divisor == 0: ans.append(lowerCAmelCase_ ) # precondition assert ans[0] == 1 and ans[len(lowerCAmelCase_ ) - 1] == n, "Error in function getDivisiors(...)" return ans def lowerCAmelCase ( lowerCAmelCase_ )-> List[Any]: assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and ( number > 1 ), "'number' must been an int and >= 1" lowerCAmelCase_ : Union[str, Any] = get_divisors(lowerCAmelCase_ ) # precondition assert ( isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and (divisors[0] == 1) and (divisors[len(lowerCAmelCase_ ) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1] ) == number def lowerCAmelCase ( lowerCAmelCase_ , lowerCAmelCase_ )-> Union[str, Any]: assert ( isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. lowerCAmelCase_ : Optional[Any] = gcd(abs(lowerCAmelCase_ ) , abs(lowerCAmelCase_ ) ) # precondition assert ( isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def lowerCAmelCase ( lowerCAmelCase_ )-> Tuple: assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and (n >= 0), "'n' must been a int and >= 0" lowerCAmelCase_ : Any = 1 # this will be return. for factor in range(1 , n + 1 ): ans *= factor return ans def lowerCAmelCase ( lowerCAmelCase_ )-> int: assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and (n >= 0), "'n' must been an int and >= 0" lowerCAmelCase_ : Any = 0 lowerCAmelCase_ : List[Any] = 1 lowerCAmelCase_ : Union[str, Any] = 1 # this will be return for _ in range(n - 1 ): lowerCAmelCase_ : Union[str, Any] = ans ans += fiba lowerCAmelCase_ : Optional[Any] = tmp return ans
262
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _a : Union[str, Any] = logging.get_logger(__name__) _a : Dict = { """google/canine-s""": """https://huggingface.co/google/canine-s/resolve/main/config.json""", # See all CANINE models at https://huggingface.co/models?filter=canine } class _UpperCAmelCase ( lowerCAmelCase_ ): a : str ="""canine""" def __init__( self,__SCREAMING_SNAKE_CASE=7_68,__SCREAMING_SNAKE_CASE=12,__SCREAMING_SNAKE_CASE=12,__SCREAMING_SNAKE_CASE=30_72,__SCREAMING_SNAKE_CASE="gelu",__SCREAMING_SNAKE_CASE=0.1,__SCREAMING_SNAKE_CASE=0.1,__SCREAMING_SNAKE_CASE=1_63_84,__SCREAMING_SNAKE_CASE=16,__SCREAMING_SNAKE_CASE=0.02,__SCREAMING_SNAKE_CASE=1e-12,__SCREAMING_SNAKE_CASE=0,__SCREAMING_SNAKE_CASE=0XE0_00,__SCREAMING_SNAKE_CASE=0XE0_01,__SCREAMING_SNAKE_CASE=4,__SCREAMING_SNAKE_CASE=4,__SCREAMING_SNAKE_CASE=8,__SCREAMING_SNAKE_CASE=1_63_84,__SCREAMING_SNAKE_CASE=1_28,**__SCREAMING_SNAKE_CASE,): '''simple docstring''' super().__init__(pad_token_id=__SCREAMING_SNAKE_CASE,bos_token_id=__SCREAMING_SNAKE_CASE,eos_token_id=__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = max_position_embeddings __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_act __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = initializer_range __lowerCAmelCase = type_vocab_size __lowerCAmelCase = layer_norm_eps # Character config: __lowerCAmelCase = downsampling_rate __lowerCAmelCase = upsampling_kernel_size __lowerCAmelCase = num_hash_functions __lowerCAmelCase = num_hash_buckets __lowerCAmelCase = local_transformer_stride
361
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _a : List[Any] = { """configuration_squeezebert""": [ """SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """SqueezeBertConfig""", """SqueezeBertOnnxConfig""", ], """tokenization_squeezebert""": ["""SqueezeBertTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Optional[Any] = ["""SqueezeBertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : str = [ """SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """SqueezeBertForMaskedLM""", """SqueezeBertForMultipleChoice""", """SqueezeBertForQuestionAnswering""", """SqueezeBertForSequenceClassification""", """SqueezeBertForTokenClassification""", """SqueezeBertModel""", """SqueezeBertModule""", """SqueezeBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_squeezebert import ( SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, SqueezeBertConfig, SqueezeBertOnnxConfig, ) from .tokenization_squeezebert import SqueezeBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_squeezebert_fast import SqueezeBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_squeezebert import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, SqueezeBertModule, SqueezeBertPreTrainedModel, ) else: import sys _a : str = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
46
0
"""simple docstring""" from collections import defaultdict from math import ceil, sqrt def __SCREAMING_SNAKE_CASE ( A_ = 1_00_00_00 , A_ = 10 ): lowerCAmelCase__ : defaultdict = defaultdict(A_ ) for outer_width in range(3 , (t_limit // 4) + 2 ): if outer_width * outer_width > t_limit: lowerCAmelCase__ : int = max( ceil(sqrt(outer_width * outer_width - t_limit ) ) , 1 ) else: lowerCAmelCase__ : Tuple = 1 hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2 for hole_width in range(A_ , outer_width - 1 , 2 ): count[outer_width * outer_width - hole_width * hole_width] += 1 return sum(1 for n in count.values() if 1 <= n <= 10 ) if __name__ == "__main__": print(F'''{solution() = }''')
106
from ...utils import is_torch_available, is_transformers_available if is_transformers_available() and is_torch_available(): from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
99
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __SCREAMING_SNAKE_CASE : int = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : Dict = { '''alibaba-damo/mgp-str-base''': '''https://huggingface.co/alibaba-damo/mgp-str-base/resolve/main/config.json''', } class lowerCamelCase_( A__ ): '''simple docstring''' lowercase__ : List[str] = 'mgp-str' def __init__( self , lowerCamelCase__=[3_2, 1_2_8] , lowerCamelCase__=4 , lowerCamelCase__=3 , lowerCamelCase__=2_7 , lowerCamelCase__=3_8 , lowerCamelCase__=5_0_2_5_7 , lowerCamelCase__=3_0_5_2_2 , lowerCamelCase__=7_6_8 , lowerCamelCase__=1_2 , lowerCamelCase__=1_2 , lowerCamelCase__=4.0 , lowerCamelCase__=True , lowerCamelCase__=False , lowerCamelCase__=1e-5 , lowerCamelCase__=0.0 , lowerCamelCase__=0.0 , lowerCamelCase__=0.0 , lowerCamelCase__=False , lowerCamelCase__=0.0_2 , **lowerCamelCase__ , ): super().__init__(**lowerCamelCase__ ) _lowerCamelCase = image_size _lowerCamelCase = patch_size _lowerCamelCase = num_channels _lowerCamelCase = max_token_length _lowerCamelCase = num_character_labels _lowerCamelCase = num_bpe_labels _lowerCamelCase = num_wordpiece_labels _lowerCamelCase = hidden_size _lowerCamelCase = num_hidden_layers _lowerCamelCase = num_attention_heads _lowerCamelCase = mlp_ratio _lowerCamelCase = distilled _lowerCamelCase = layer_norm_eps _lowerCamelCase = drop_rate _lowerCamelCase = qkv_bias _lowerCamelCase = attn_drop_rate _lowerCamelCase = drop_path_rate _lowerCamelCase = output_aa_attentions _lowerCamelCase = initializer_range
73
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __SCREAMING_SNAKE_CASE : int = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : Dict = { '''alibaba-damo/mgp-str-base''': '''https://huggingface.co/alibaba-damo/mgp-str-base/resolve/main/config.json''', } class lowerCamelCase_( A__ ): '''simple docstring''' lowercase__ : List[str] = 'mgp-str' def __init__( self , lowerCamelCase__=[3_2, 1_2_8] , lowerCamelCase__=4 , lowerCamelCase__=3 , lowerCamelCase__=2_7 , lowerCamelCase__=3_8 , lowerCamelCase__=5_0_2_5_7 , lowerCamelCase__=3_0_5_2_2 , lowerCamelCase__=7_6_8 , lowerCamelCase__=1_2 , lowerCamelCase__=1_2 , lowerCamelCase__=4.0 , lowerCamelCase__=True , lowerCamelCase__=False , lowerCamelCase__=1e-5 , lowerCamelCase__=0.0 , lowerCamelCase__=0.0 , lowerCamelCase__=0.0 , lowerCamelCase__=False , lowerCamelCase__=0.0_2 , **lowerCamelCase__ , ): super().__init__(**lowerCamelCase__ ) _lowerCamelCase = image_size _lowerCamelCase = patch_size _lowerCamelCase = num_channels _lowerCamelCase = max_token_length _lowerCamelCase = num_character_labels _lowerCamelCase = num_bpe_labels _lowerCamelCase = num_wordpiece_labels _lowerCamelCase = hidden_size _lowerCamelCase = num_hidden_layers _lowerCamelCase = num_attention_heads _lowerCamelCase = mlp_ratio _lowerCamelCase = distilled _lowerCamelCase = layer_norm_eps _lowerCamelCase = drop_rate _lowerCamelCase = qkv_bias _lowerCamelCase = attn_drop_rate _lowerCamelCase = drop_path_rate _lowerCamelCase = output_aa_attentions _lowerCamelCase = initializer_range
73
1
import unittest from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers @require_sentencepiece @slow # see https://github.com/huggingface/transformers/issues/11457 class _snake_case ( lowerCamelCase_ , unittest.TestCase ): '''simple docstring''' A__ : Optional[Any] = BarthezTokenizer A__ : Dict = BarthezTokenizerFast A__ : List[Any] = True A__ : Union[str, Any] = True def A__ ( self: List[Any] ) -> Dict: super().setUp() UpperCAmelCase_ : Optional[int] = BarthezTokenizerFast.from_pretrained("""moussaKam/mbarthez""" ) tokenizer.save_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ,legacy_format=lowerCAmelCase__ ) UpperCAmelCase_ : Optional[Any] = tokenizer def A__ ( self: str ) -> Any: UpperCAmelCase_ : int = """<pad>""" UpperCAmelCase_ : Optional[Any] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase__ ) ,lowerCAmelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase__ ) ,lowerCAmelCase__ ) def A__ ( self: int ) -> Dict: UpperCAmelCase_ : Optional[int] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] ,"""<s>""" ) self.assertEqual(vocab_keys[1] ,"""<pad>""" ) self.assertEqual(vocab_keys[-1] ,"""<mask>""" ) self.assertEqual(len(lowerCAmelCase__ ) ,101122 ) def A__ ( self: Dict ) -> List[str]: self.assertEqual(self.get_tokenizer().vocab_size ,101122 ) @require_torch def A__ ( self: Optional[int] ) -> str: UpperCAmelCase_ : Union[str, Any] = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] UpperCAmelCase_ : List[str] = [0, 57, 3018, 70307, 91, 2] UpperCAmelCase_ : Union[str, Any] = self.tokenizer( lowerCAmelCase__ ,max_length=len(lowerCAmelCase__ ) ,padding=lowerCAmelCase__ ,truncation=lowerCAmelCase__ ,return_tensors="""pt""" ) self.assertIsInstance(lowerCAmelCase__ ,lowerCAmelCase__ ) self.assertEqual((2, 6) ,batch.input_ids.shape ) self.assertEqual((2, 6) ,batch.attention_mask.shape ) UpperCAmelCase_ : Optional[Any] = batch.input_ids.tolist()[0] self.assertListEqual(lowerCAmelCase__ ,lowerCAmelCase__ ) def A__ ( self: Tuple ) -> Union[str, Any]: if not self.test_rust_tokenizer: return UpperCAmelCase_ : int = self.get_tokenizer() UpperCAmelCase_ : Dict = self.get_rust_tokenizer() UpperCAmelCase_ : int = """I was born in 92000, and this is falsé.""" UpperCAmelCase_ : int = tokenizer.tokenize(lowerCAmelCase__ ) UpperCAmelCase_ : Optional[int] = rust_tokenizer.tokenize(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ ,lowerCAmelCase__ ) UpperCAmelCase_ : Union[str, Any] = tokenizer.encode(lowerCAmelCase__ ,add_special_tokens=lowerCAmelCase__ ) UpperCAmelCase_ : int = rust_tokenizer.encode(lowerCAmelCase__ ,add_special_tokens=lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ ,lowerCAmelCase__ ) UpperCAmelCase_ : List[Any] = self.get_rust_tokenizer() UpperCAmelCase_ : Tuple = tokenizer.encode(lowerCAmelCase__ ) UpperCAmelCase_ : int = rust_tokenizer.encode(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ ,lowerCAmelCase__ ) @slow def A__ ( self: Optional[int] ) -> str: # fmt: off UpperCAmelCase_ : str = {"""input_ids""": [[0, 490, 14328, 4507, 354, 47, 43669, 95, 25, 78117, 20215, 19779, 190, 22, 400, 4, 35343, 80310, 603, 86, 24937, 105, 33438, 94762, 196, 39642, 7, 15, 15933, 173, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 10534, 87, 25, 66, 3358, 196, 55289, 8, 82961, 81, 2204, 75203, 7, 15, 763, 12956, 216, 178, 14328, 9595, 1377, 69693, 7, 448, 71021, 196, 18106, 1437, 13974, 108, 9083, 4, 49315, 7, 39, 86, 1326, 2793, 46333, 4, 448, 196, 74588, 7, 49315, 7, 39, 21, 822, 38470, 74, 21, 66723, 62480, 8, 22050, 5, 2]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # moussaKam/mbarthez is a french model. So we also use french texts. UpperCAmelCase_ : str = [ """Le transformeur est un modèle d\'apprentissage profond introduit en 2017, """ """utilisé principalement dans le domaine du traitement automatique des langues (TAL).""", """À l\'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus """ """pour gérer des données séquentielles, telles que le langage naturel, pour des tâches """ """telles que la traduction et la synthèse de texte.""", ] self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase__ ,model_name="""moussaKam/mbarthez""" ,revision="""c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6""" ,sequences=lowerCAmelCase__ ,)
345
"""simple docstring""" __UpperCamelCase = 0 # The first color of the flag. __UpperCamelCase = 1 # The second color of the flag. __UpperCamelCase = 2 # The third color of the flag. __UpperCamelCase = (red, white, blue) def lowercase (SCREAMING_SNAKE_CASE_ : list ) -> list: if not sequence: return [] if len(SCREAMING_SNAKE_CASE_ ) == 1: return list(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = len(SCREAMING_SNAKE_CASE_ ) - 1 SCREAMING_SNAKE_CASE = 0 while mid <= high: if sequence[mid] == colors[0]: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = sequence[mid], sequence[low] low += 1 mid += 1 elif sequence[mid] == colors[1]: mid += 1 elif sequence[mid] == colors[2]: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = sequence[high], sequence[mid] high -= 1 else: SCREAMING_SNAKE_CASE = F'The elements inside the sequence must contains only {colors} values' raise ValueError(SCREAMING_SNAKE_CASE_ ) return sequence if __name__ == "__main__": import doctest doctest.testmod() __UpperCamelCase = input('''Enter numbers separated by commas:\n''').strip() __UpperCamelCase = [int(item.strip()) for item in user_input.split(''',''')] print(f'''{dutch_national_flag_sort(unsorted)}''')
113
0
'''simple docstring''' from __future__ import annotations from statistics import mean def UpperCAmelCase ( lowerCamelCase_ :list[int] , lowerCamelCase_ :list[int] , lowerCamelCase_ :int ): '''simple docstring''' snake_case_ : Optional[Any] = [0] * no_of_processes snake_case_ : Union[str, Any] = [0] * no_of_processes # Initialize remaining_time to waiting_time. for i in range(_lowercase ): snake_case_ : Any = burst_time[i] snake_case_ : list[int] = [] snake_case_ : str = 0 snake_case_ : Tuple = 0 # When processes are not completed, # A process whose arrival time has passed \ # and has remaining execution time is put into the ready_process. # The shortest process in the ready_process, target_process is executed. while completed != no_of_processes: snake_case_ : List[str] = [] snake_case_ : Dict = -1 for i in range(_lowercase ): if (arrival_time[i] <= total_time) and (remaining_time[i] > 0): ready_process.append(_lowercase ) if len(_lowercase ) > 0: snake_case_ : Optional[Any] = ready_process[0] for i in ready_process: if remaining_time[i] < remaining_time[target_process]: snake_case_ : Optional[int] = i total_time += burst_time[target_process] completed += 1 snake_case_ : Optional[int] = 0 snake_case_ : Tuple = ( total_time - arrival_time[target_process] - burst_time[target_process] ) else: total_time += 1 return waiting_time def UpperCAmelCase ( lowerCamelCase_ :list[int] , lowerCamelCase_ :int , lowerCamelCase_ :list[int] ): '''simple docstring''' snake_case_ : Union[str, Any] = [0] * no_of_processes for i in range(_lowercase ): snake_case_ : Union[str, Any] = burst_time[i] + waiting_time[i] return turn_around_time if __name__ == "__main__": print('[TEST CASE 01]') __A : Optional[int] = 4 __A : Union[str, Any] = [2, 5, 3, 7] __A : Optional[int] = [0, 0, 0, 0] __A : List[str] = calculate_waitingtime(arrival_time, burst_time, no_of_processes) __A : List[Any] = calculate_turnaroundtime( burst_time, no_of_processes, waiting_time ) # Printing the Result print('PID\tBurst Time\tArrival Time\tWaiting Time\tTurnaround Time') for i, process_id in enumerate(list(range(1, 5))): print( F'{process_id}\t{burst_time[i]}\t\t\t{arrival_time[i]}\t\t\t\t' F'{waiting_time[i]}\t\t\t\t{turn_around_time[i]}' ) print(F'\nAverage waiting time = {mean(waiting_time):.5f}') print(F'Average turnaround time = {mean(turn_around_time):.5f}')
362
'''simple docstring''' def UpperCAmelCase ( lowerCamelCase_ :list ): '''simple docstring''' if len(lowerCamelCase_ ) <= 1: return lst snake_case_ : Union[str, Any] = 1 while i < len(lowerCamelCase_ ): if lst[i - 1] <= lst[i]: i += 1 else: snake_case_ , snake_case_ : Union[str, Any] = lst[i], lst[i - 1] i -= 1 if i == 0: snake_case_ : int = 1 return lst if __name__ == "__main__": __A : Optional[int] = input('Enter numbers separated by a comma:\n').strip() __A : int = [int(item) for item in user_input.split(',')] print(gnome_sort(unsorted))
8
0
'''simple docstring''' a : Union[str, Any] = '0.18.2' from .configuration_utils import ConfigMixin from .utils import ( OptionalDependencyNotAvailable, is_flax_available, is_inflect_available, is_invisible_watermark_available, is_k_diffusion_available, is_k_diffusion_version, is_librosa_available, is_note_seq_available, is_onnx_available, is_scipy_available, is_torch_available, is_torchsde_available, is_transformers_available, is_transformers_version, is_unidecode_available, logging, ) try: if not is_onnx_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_onnx_objects import * # noqa F403 else: from .pipelines import OnnxRuntimeModel try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_pt_objects import * # noqa F403 else: from .models import ( AutoencoderKL, ControlNetModel, ModelMixin, PriorTransformer, TaFilmDecoder, TransformeraDModel, UNetaDModel, UNetaDConditionModel, UNetaDModel, UNetaDConditionModel, VQModel, ) from .optimization import ( get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, get_scheduler, ) from .pipelines import ( AudioPipelineOutput, ConsistencyModelPipeline, DanceDiffusionPipeline, DDIMPipeline, DDPMPipeline, DiffusionPipeline, DiTPipeline, ImagePipelineOutput, KarrasVePipeline, LDMPipeline, LDMSuperResolutionPipeline, PNDMPipeline, RePaintPipeline, ScoreSdeVePipeline, ) from .schedulers import ( CMStochasticIterativeScheduler, DDIMInverseScheduler, DDIMParallelScheduler, DDIMScheduler, DDPMParallelScheduler, DDPMScheduler, DEISMultistepScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, HeunDiscreteScheduler, IPNDMScheduler, KarrasVeScheduler, KDPMaAncestralDiscreteScheduler, KDPMaDiscreteScheduler, PNDMScheduler, RePaintScheduler, SchedulerMixin, ScoreSdeVeScheduler, UnCLIPScheduler, UniPCMultistepScheduler, VQDiffusionScheduler, ) from .training_utils import EMAModel try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .schedulers import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .schedulers import DPMSolverSDEScheduler try: if not (is_torch_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipelines import ( AltDiffusionImgaImgPipeline, AltDiffusionPipeline, AudioLDMPipeline, CycleDiffusionPipeline, IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ImageTextPipelineOutput, KandinskyImgaImgPipeline, KandinskyInpaintPipeline, KandinskyPipeline, KandinskyPriorPipeline, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaControlnetPipeline, KandinskyVaaImgaImgPipeline, KandinskyVaaInpaintPipeline, KandinskyVaaPipeline, KandinskyVaaPriorEmbaEmbPipeline, KandinskyVaaPriorPipeline, LDMTextToImagePipeline, PaintByExamplePipeline, SemanticStableDiffusionPipeline, ShapEImgaImgPipeline, ShapEPipeline, StableDiffusionAttendAndExcitePipeline, StableDiffusionControlNetImgaImgPipeline, StableDiffusionControlNetInpaintPipeline, StableDiffusionControlNetPipeline, StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionImageVariationPipeline, StableDiffusionImgaImgPipeline, StableDiffusionInpaintPipeline, StableDiffusionInpaintPipelineLegacy, StableDiffusionInstructPixaPixPipeline, StableDiffusionLatentUpscalePipeline, StableDiffusionLDMaDPipeline, StableDiffusionModelEditingPipeline, StableDiffusionPanoramaPipeline, StableDiffusionParadigmsPipeline, StableDiffusionPipeline, StableDiffusionPipelineSafe, StableDiffusionPixaPixZeroPipeline, StableDiffusionSAGPipeline, StableDiffusionUpscalePipeline, StableUnCLIPImgaImgPipeline, StableUnCLIPPipeline, TextToVideoSDPipeline, TextToVideoZeroPipeline, UnCLIPImageVariationPipeline, UnCLIPPipeline, UniDiffuserModel, UniDiffuserPipeline, UniDiffuserTextDecoder, VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, VideoToVideoSDPipeline, VQDiffusionPipeline, ) try: if not (is_torch_available() and is_transformers_available() and is_invisible_watermark_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_invisible_watermark_objects import * # noqa F403 else: from .pipelines import StableDiffusionXLImgaImgPipeline, StableDiffusionXLPipeline try: if not (is_torch_available() and is_transformers_available() and is_k_diffusion_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipelines import StableDiffusionKDiffusionPipeline try: if not (is_torch_available() and is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_onnx_objects import * # noqa F403 else: from .pipelines import ( OnnxStableDiffusionImgaImgPipeline, OnnxStableDiffusionInpaintPipeline, OnnxStableDiffusionInpaintPipelineLegacy, OnnxStableDiffusionPipeline, OnnxStableDiffusionUpscalePipeline, StableDiffusionOnnxPipeline, ) try: if not (is_torch_available() and is_librosa_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_librosa_objects import * # noqa F403 else: from .pipelines import AudioDiffusionPipeline, Mel try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .pipelines import SpectrogramDiffusionPipeline try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_objects import * # noqa F403 else: from .models.controlnet_flax import FlaxControlNetModel from .models.modeling_flax_utils import FlaxModelMixin from .models.unet_ad_condition_flax import FlaxUNetaDConditionModel from .models.vae_flax import FlaxAutoencoderKL from .pipelines import FlaxDiffusionPipeline from .schedulers import ( FlaxDDIMScheduler, FlaxDDPMScheduler, FlaxDPMSolverMultistepScheduler, FlaxKarrasVeScheduler, FlaxLMSDiscreteScheduler, FlaxPNDMScheduler, FlaxSchedulerMixin, FlaxScoreSdeVeScheduler, ) try: if not (is_flax_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_and_transformers_objects import * # noqa F403 else: from .pipelines import ( FlaxStableDiffusionControlNetPipeline, FlaxStableDiffusionImgaImgPipeline, FlaxStableDiffusionInpaintPipeline, FlaxStableDiffusionPipeline, ) try: if not (is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_note_seq_objects import * # noqa F403 else: from .pipelines import MidiProcessor
56
'''simple docstring''' import re from filelock import FileLock try: import nltk a : Union[str, Any] = True except (ImportError, ModuleNotFoundError): a : Any = False if NLTK_AVAILABLE: with FileLock('.lock') as lock: nltk.download('punkt', quiet=True) def __magic_name__ ( __UpperCAmelCase ) -> str: '''simple docstring''' re.sub('''<n>''', '''''', __UpperCAmelCase ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(__UpperCAmelCase ) )
56
1
from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = { """tanreinama/GPTSAN-2.8B-spout_is_uniform""": ( """https://huggingface.co/tanreinama/GPTSAN-2.8B-spout_is_uniform/resolve/main/config.json""" ), } class UpperCamelCase__ ( lowerCAmelCase_ ): '''simple docstring''' __snake_case : int = "gptsan-japanese" __snake_case : List[Any] = [ "past_key_values", ] __snake_case : Union[str, Any] = { "hidden_size": "d_model", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self : int ,lowerCamelCase__ : Optional[int]=36000 ,lowerCamelCase__ : List[str]=1280 ,lowerCamelCase__ : List[str]=1024 ,lowerCamelCase__ : int=8192 ,lowerCamelCase__ : int=4096 ,lowerCamelCase__ : Any=128 ,lowerCamelCase__ : Union[str, Any]=10 ,lowerCamelCase__ : Optional[Any]=0 ,lowerCamelCase__ : Dict=16 ,lowerCamelCase__ : Tuple=16 ,lowerCamelCase__ : Dict=128 ,lowerCamelCase__ : Optional[Any]=0.0 ,lowerCamelCase__ : int=1e-5 ,lowerCamelCase__ : int=False ,lowerCamelCase__ : Optional[int]=0.0 ,lowerCamelCase__ : List[Any]="float32" ,lowerCamelCase__ : Union[str, Any]=False ,lowerCamelCase__ : Union[str, Any]=False ,lowerCamelCase__ : List[str]=False ,lowerCamelCase__ : Dict=0.002 ,lowerCamelCase__ : Optional[Any]=False ,lowerCamelCase__ : List[Any]=True ,lowerCamelCase__ : int=35998 ,lowerCamelCase__ : Optional[Any]=35995 ,lowerCamelCase__ : Tuple=35999 ,**lowerCamelCase__ : Union[str, Any] ,) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = max_position_embeddings SCREAMING_SNAKE_CASE = d_model SCREAMING_SNAKE_CASE = d_ff SCREAMING_SNAKE_CASE = d_ext SCREAMING_SNAKE_CASE = d_spout SCREAMING_SNAKE_CASE = num_switch_layers SCREAMING_SNAKE_CASE = num_ext_layers SCREAMING_SNAKE_CASE = num_switch_layers + num_ext_layers SCREAMING_SNAKE_CASE = num_heads SCREAMING_SNAKE_CASE = num_experts SCREAMING_SNAKE_CASE = expert_capacity SCREAMING_SNAKE_CASE = dropout_rate SCREAMING_SNAKE_CASE = layer_norm_epsilon SCREAMING_SNAKE_CASE = router_bias SCREAMING_SNAKE_CASE = router_jitter_noise SCREAMING_SNAKE_CASE = router_dtype SCREAMING_SNAKE_CASE = router_ignore_padding_tokens SCREAMING_SNAKE_CASE = output_hidden_states SCREAMING_SNAKE_CASE = output_attentions SCREAMING_SNAKE_CASE = initializer_factor SCREAMING_SNAKE_CASE = output_router_logits SCREAMING_SNAKE_CASE = use_cache super().__init__( separator_token_id=lowerCamelCase__ ,pad_token_id=lowerCamelCase__ ,eos_token_id=lowerCamelCase__ ,**lowerCamelCase__ ,)
359
from typing import List, Optional, TypeVar from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .info import DatasetInfo from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets from .splits import NamedSplit from .utils import logging from .utils.py_utils import Literal SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = TypeVar("""DatasetType""", Dataset, IterableDataset) def __lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = "first_exhausted" , ) -> DatasetType: '''simple docstring''' from .arrow_dataset import Dataset from .iterable_dataset import IterableDataset if not datasets: raise ValueError("""Unable to interleave an empty list of datasets.""" ) for i, dataset in enumerate(_SCREAMING_SNAKE_CASE ): if not isinstance(_SCREAMING_SNAKE_CASE , (Dataset, IterableDataset) ): if isinstance(_SCREAMING_SNAKE_CASE , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( F"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} """ """is an empty dataset dictionary.""" ) raise ValueError( F"""Dataset at position {i} has at least one split: {list(_SCREAMING_SNAKE_CASE )}\n""" F"""Please pick one to interleave with the other datasets, for example: dataset['{next(iter(_SCREAMING_SNAKE_CASE ) )}']""" ) raise ValueError( F"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(_SCREAMING_SNAKE_CASE ).__name__}.""" ) if i == 0: SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE = ( (Dataset, IterableDataset) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else (IterableDataset, Dataset) ) elif not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise ValueError( F"""Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.""" ) if stopping_strategy not in ["first_exhausted", "all_exhausted"]: raise ValueError(F"""{stopping_strategy} is not supported. Please enter a valid stopping_strategy.""" ) if dataset_type is Dataset: return _interleave_map_style_datasets( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , info=_SCREAMING_SNAKE_CASE , split=_SCREAMING_SNAKE_CASE , stopping_strategy=_SCREAMING_SNAKE_CASE ) else: return _interleave_iterable_datasets( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , info=_SCREAMING_SNAKE_CASE , split=_SCREAMING_SNAKE_CASE , stopping_strategy=_SCREAMING_SNAKE_CASE ) def __lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 0 , ) -> DatasetType: '''simple docstring''' if not dsets: raise ValueError("""Unable to concatenate an empty list of datasets.""" ) for i, dataset in enumerate(_SCREAMING_SNAKE_CASE ): if not isinstance(_SCREAMING_SNAKE_CASE , (Dataset, IterableDataset) ): if isinstance(_SCREAMING_SNAKE_CASE , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( F"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} """ """is an empty dataset dictionary.""" ) raise ValueError( F"""Dataset at position {i} has at least one split: {list(_SCREAMING_SNAKE_CASE )}\n""" F"""Please pick one to interleave with the other datasets, for example: dataset['{next(iter(_SCREAMING_SNAKE_CASE ) )}']""" ) raise ValueError( F"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(_SCREAMING_SNAKE_CASE ).__name__}.""" ) if i == 0: SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE = ( (Dataset, IterableDataset) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else (IterableDataset, Dataset) ) elif not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise ValueError( F"""Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.""" ) if dataset_type is Dataset: return _concatenate_map_style_datasets(_SCREAMING_SNAKE_CASE , info=_SCREAMING_SNAKE_CASE , split=_SCREAMING_SNAKE_CASE , axis=_SCREAMING_SNAKE_CASE ) else: return _concatenate_iterable_datasets(_SCREAMING_SNAKE_CASE , info=_SCREAMING_SNAKE_CASE , split=_SCREAMING_SNAKE_CASE , axis=_SCREAMING_SNAKE_CASE )
193
0
"""simple docstring""" import os import sys lowerCamelCase__ : Dict = os.path.join(os.path.dirname(__file__), '''src''') sys.path.append(SRC_DIR) from transformers import ( AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForQuestionAnswering, AutoModelForSequenceClassification, AutoTokenizer, add_start_docstrings, ) lowerCamelCase__ : str = [ '''torch''', '''numpy''', '''tokenizers''', '''filelock''', '''requests''', '''tqdm''', '''regex''', '''sentencepiece''', '''sacremoses''', '''importlib_metadata''', '''huggingface_hub''', ] @add_start_docstrings(AutoConfig.__doc__ ) def UpperCamelCase ( *_lowerCAmelCase : int, **_lowerCAmelCase : Union[str, Any] ) -> Union[str, Any]: return AutoConfig.from_pretrained(*_lowerCAmelCase, **_lowerCAmelCase ) @add_start_docstrings(AutoTokenizer.__doc__ ) def UpperCamelCase ( *_lowerCAmelCase : List[Any], **_lowerCAmelCase : Optional[int] ) -> List[str]: return AutoTokenizer.from_pretrained(*_lowerCAmelCase, **_lowerCAmelCase ) @add_start_docstrings(AutoModel.__doc__ ) def UpperCamelCase ( *_lowerCAmelCase : Optional[int], **_lowerCAmelCase : Any ) -> Tuple: return AutoModel.from_pretrained(*_lowerCAmelCase, **_lowerCAmelCase ) @add_start_docstrings(AutoModelForCausalLM.__doc__ ) def UpperCamelCase ( *_lowerCAmelCase : Optional[Any], **_lowerCAmelCase : List[str] ) -> List[Any]: return AutoModelForCausalLM.from_pretrained(*_lowerCAmelCase, **_lowerCAmelCase ) @add_start_docstrings(AutoModelForMaskedLM.__doc__ ) def UpperCamelCase ( *_lowerCAmelCase : Optional[Any], **_lowerCAmelCase : str ) -> Tuple: return AutoModelForMaskedLM.from_pretrained(*_lowerCAmelCase, **_lowerCAmelCase ) @add_start_docstrings(AutoModelForSequenceClassification.__doc__ ) def UpperCamelCase ( *_lowerCAmelCase : List[Any], **_lowerCAmelCase : Optional[Any] ) -> Union[str, Any]: return AutoModelForSequenceClassification.from_pretrained(*_lowerCAmelCase, **_lowerCAmelCase ) @add_start_docstrings(AutoModelForQuestionAnswering.__doc__ ) def UpperCamelCase ( *_lowerCAmelCase : Tuple, **_lowerCAmelCase : int ) -> List[str]: return AutoModelForQuestionAnswering.from_pretrained(*_lowerCAmelCase, **_lowerCAmelCase )
246
"""simple docstring""" import argparse from collections import OrderedDict from pathlib import Path import requests import torch from PIL import Image from transformers import GLPNConfig, GLPNForDepthEstimation, GLPNImageProcessor from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' lowerCAmelCase = OrderedDict() for key, value in state_dict.items(): if key.startswith("""module.encoder""" ): lowerCAmelCase = key.replace("""module.encoder""" , """glpn.encoder""" ) if key.startswith("""module.decoder""" ): lowerCAmelCase = key.replace("""module.decoder""" , """decoder.stages""" ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 lowerCAmelCase = key[key.find("""patch_embed""" ) + len("""patch_embed""" )] lowerCAmelCase = key.replace(F'patch_embed{idx}' , F'patch_embeddings.{int(SCREAMING_SNAKE_CASE )-1}' ) if "norm" in key: lowerCAmelCase = key.replace("""norm""" , """layer_norm""" ) if "glpn.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 lowerCAmelCase = key[key.find("""glpn.encoder.layer_norm""" ) + len("""glpn.encoder.layer_norm""" )] lowerCAmelCase = key.replace(F'layer_norm{idx}' , F'layer_norm.{int(SCREAMING_SNAKE_CASE )-1}' ) if "layer_norm1" in key: lowerCAmelCase = key.replace("""layer_norm1""" , """layer_norm_1""" ) if "layer_norm2" in key: lowerCAmelCase = key.replace("""layer_norm2""" , """layer_norm_2""" ) if "block" in key: # replace for example block1 by block.0 lowerCAmelCase = key[key.find("""block""" ) + len("""block""" )] lowerCAmelCase = key.replace(F'block{idx}' , F'block.{int(SCREAMING_SNAKE_CASE )-1}' ) if "attn.q" in key: lowerCAmelCase = key.replace("""attn.q""" , """attention.self.query""" ) if "attn.proj" in key: lowerCAmelCase = key.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in key: lowerCAmelCase = key.replace("""attn""" , """attention.self""" ) if "fc1" in key: lowerCAmelCase = key.replace("""fc1""" , """dense1""" ) if "fc2" in key: lowerCAmelCase = key.replace("""fc2""" , """dense2""" ) if "linear_pred" in key: lowerCAmelCase = key.replace("""linear_pred""" , """classifier""" ) if "linear_fuse" in key: lowerCAmelCase = key.replace("""linear_fuse.conv""" , """linear_fuse""" ) lowerCAmelCase = key.replace("""linear_fuse.bn""" , """batch_norm""" ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 lowerCAmelCase = key[key.find("""linear_c""" ) + len("""linear_c""" )] lowerCAmelCase = key.replace(F'linear_c{idx}' , F'linear_c.{int(SCREAMING_SNAKE_CASE )-1}' ) if "bot_conv" in key: lowerCAmelCase = key.replace("""bot_conv""" , """0.convolution""" ) if "skip_conv1" in key: lowerCAmelCase = key.replace("""skip_conv1""" , """1.convolution""" ) if "skip_conv2" in key: lowerCAmelCase = key.replace("""skip_conv2""" , """2.convolution""" ) if "fusion1" in key: lowerCAmelCase = key.replace("""fusion1""" , """1.fusion""" ) if "fusion2" in key: lowerCAmelCase = key.replace("""fusion2""" , """2.fusion""" ) if "fusion3" in key: lowerCAmelCase = key.replace("""fusion3""" , """3.fusion""" ) if "fusion" in key and "conv" in key: lowerCAmelCase = key.replace("""conv""" , """convolutional_layer""" ) if key.startswith("""module.last_layer_depth""" ): lowerCAmelCase = key.replace("""module.last_layer_depth""" , """head.head""" ) lowerCAmelCase = value return new_state_dict def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) lowerCAmelCase = state_dict.pop(F'glpn.encoder.block.{i}.{j}.attention.self.kv.weight' ) lowerCAmelCase = state_dict.pop(F'glpn.encoder.block.{i}.{j}.attention.self.kv.bias' ) # next, add keys and values (in that order) to the state dict lowerCAmelCase = kv_weight[ : config.hidden_sizes[i], : ] lowerCAmelCase = kv_bias[: config.hidden_sizes[i]] lowerCAmelCase = kv_weight[ config.hidden_sizes[i] :, : ] lowerCAmelCase = kv_bias[config.hidden_sizes[i] :] def UpperCAmelCase__ ( ): '''simple docstring''' lowerCAmelCase = """http://images.cocodataset.org/val2017/000000039769.jpg""" lowerCAmelCase = Image.open(requests.get(SCREAMING_SNAKE_CASE , stream=SCREAMING_SNAKE_CASE ).raw ) return image @torch.no_grad() def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Union[str, Any]=False , SCREAMING_SNAKE_CASE : Union[str, Any]=None ): '''simple docstring''' lowerCAmelCase = GLPNConfig(hidden_sizes=[64, 1_28, 3_20, 5_12] , decoder_hidden_size=64 , depths=[3, 8, 27, 3] ) # load image processor (only resize + rescale) lowerCAmelCase = GLPNImageProcessor() # prepare image lowerCAmelCase = prepare_img() lowerCAmelCase = image_processor(images=SCREAMING_SNAKE_CASE , return_tensors="""pt""" ).pixel_values logger.info("""Converting model...""" ) # load original state dict lowerCAmelCase = torch.load(SCREAMING_SNAKE_CASE , map_location=torch.device("""cpu""" ) ) # rename keys lowerCAmelCase = rename_keys(SCREAMING_SNAKE_CASE ) # key and value matrices need special treatment read_in_k_v(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # create HuggingFace model and load state dict lowerCAmelCase = GLPNForDepthEstimation(SCREAMING_SNAKE_CASE ) model.load_state_dict(SCREAMING_SNAKE_CASE ) model.eval() # forward pass lowerCAmelCase = model(SCREAMING_SNAKE_CASE ) lowerCAmelCase = outputs.predicted_depth # verify output if model_name is not None: if "nyu" in model_name: lowerCAmelCase = torch.tensor( [[4.41_47, 4.08_73, 4.06_73], [3.78_90, 3.28_81, 3.15_25], [3.76_74, 3.54_23, 3.49_13]] ) elif "kitti" in model_name: lowerCAmelCase = torch.tensor( [[3.42_91, 2.78_65, 2.51_51], [3.28_41, 2.70_21, 2.35_02], [3.11_47, 2.46_25, 2.24_81]] ) else: raise ValueError(F'Unknown model name: {model_name}' ) lowerCAmelCase = torch.Size([1, 4_80, 6_40] ) assert predicted_depth.shape == expected_shape assert torch.allclose(predicted_depth[0, :3, :3] , SCREAMING_SNAKE_CASE , atol=1e-4 ) print("""Looks ok!""" ) # finally, push to hub if required if push_to_hub: logger.info("""Pushing model and image processor to the hub...""" ) model.push_to_hub( repo_path_or_name=Path(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , organization="""nielsr""" , commit_message="""Add model""" , use_temp_dir=SCREAMING_SNAKE_CASE , ) image_processor.push_to_hub( repo_path_or_name=Path(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , organization="""nielsr""" , commit_message="""Add image processor""" , use_temp_dir=SCREAMING_SNAKE_CASE , ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() parser.add_argument( "--checkpoint_path", default=None, type=str, help="Path to the original PyTorch checkpoint (.pth file).", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether to upload the model to the HuggingFace hub." ) parser.add_argument( "--model_name", default="glpn-kitti", type=str, help="Name of the model in case you're pushing to the hub.", ) SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_glpn_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
46
0
"""simple docstring""" from __future__ import annotations _SCREAMING_SNAKE_CASE : List[str] = [-1_0, -5, 0, 5, 5.1, 1_1, 1_3, 2_1, 3, 4, -2_1, -1_0, -5, -1, 0] _SCREAMING_SNAKE_CASE : str = [-5, 0, 5, 5.1, 1_1, 1_3, 2_1, -1, 4, -1, -1_0, -5, -1, 0, -1] def _lowerCAmelCase ( UpperCAmelCase : list[float] ): '''simple docstring''' UpperCamelCase__ : Union[str, Any] =[] UpperCamelCase__ : List[Any] =len(UpperCAmelCase ) for i in range(UpperCAmelCase ): UpperCamelCase__ : float =-1 for j in range(i + 1 , UpperCAmelCase ): if arr[i] < arr[j]: UpperCamelCase__ : Union[str, Any] =arr[j] break result.append(UpperCAmelCase ) return result def _lowerCAmelCase ( UpperCAmelCase : list[float] ): '''simple docstring''' UpperCamelCase__ : Tuple =[] for i, outer in enumerate(UpperCAmelCase ): UpperCamelCase__ : float =-1 for inner in arr[i + 1 :]: if outer < inner: UpperCamelCase__ : Dict =inner break result.append(UpperCAmelCase ) return result def _lowerCAmelCase ( UpperCAmelCase : list[float] ): '''simple docstring''' UpperCamelCase__ : Optional[int] =len(UpperCAmelCase ) UpperCamelCase__ : list[float] =[] UpperCamelCase__ : list[float] =[-1] * arr_size for index in reversed(range(UpperCAmelCase ) ): if stack: while stack[-1] <= arr[index]: stack.pop() if not stack: break if stack: UpperCamelCase__ : Dict =stack[-1] stack.append(arr[index] ) return result if __name__ == "__main__": from doctest import testmod from timeit import timeit testmod() print(next_greatest_element_slow(arr)) print(next_greatest_element_fast(arr)) print(next_greatest_element(arr)) _SCREAMING_SNAKE_CASE : str = ( """from __main__ import arr, next_greatest_element_slow, """ """next_greatest_element_fast, next_greatest_element""" ) print( """next_greatest_element_slow():""", timeit("""next_greatest_element_slow(arr)""", setup=setup), ) print( """next_greatest_element_fast():""", timeit("""next_greatest_element_fast(arr)""", setup=setup), ) print( """ next_greatest_element():""", timeit("""next_greatest_element(arr)""", setup=setup), )
157
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _SCREAMING_SNAKE_CASE : List[str] = { """configuration_bigbird_pegasus""": [ """BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BigBirdPegasusConfig""", """BigBirdPegasusOnnxConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Optional[Any] = [ """BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST""", """BigBirdPegasusForCausalLM""", """BigBirdPegasusForConditionalGeneration""", """BigBirdPegasusForQuestionAnswering""", """BigBirdPegasusForSequenceClassification""", """BigBirdPegasusModel""", """BigBirdPegasusPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP, BigBirdPegasusConfig, BigBirdPegasusOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST, BigBirdPegasusForCausalLM, BigBirdPegasusForConditionalGeneration, BigBirdPegasusForQuestionAnswering, BigBirdPegasusForSequenceClassification, BigBirdPegasusModel, BigBirdPegasusPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE : Optional[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
157
1
from dataclasses import dataclass from typing import Optional import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .modeling_utils import ModelMixin @dataclass class A_ ( SCREAMING_SNAKE_CASE ): _UpperCAmelCase : torch.FloatTensor class A_ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): @register_to_config def __init__( self : List[Any] ,SCREAMING_SNAKE_CASE__ : int = 1_6 ,SCREAMING_SNAKE_CASE__ : int = 8_8 ,SCREAMING_SNAKE_CASE__ : Optional[int] = None ,SCREAMING_SNAKE_CASE__ : Optional[int] = None ,SCREAMING_SNAKE_CASE__ : int = 1 ,SCREAMING_SNAKE_CASE__ : float = 0.0 ,SCREAMING_SNAKE_CASE__ : int = 3_2 ,SCREAMING_SNAKE_CASE__ : Optional[int] = None ,SCREAMING_SNAKE_CASE__ : bool = False ,SCREAMING_SNAKE_CASE__ : Optional[int] = None ,SCREAMING_SNAKE_CASE__ : str = "geglu" ,SCREAMING_SNAKE_CASE__ : bool = True ,SCREAMING_SNAKE_CASE__ : bool = True ,): super().__init__() __lowerCamelCase : List[str] = num_attention_heads __lowerCamelCase : str = attention_head_dim __lowerCamelCase : Union[str, Any] = num_attention_heads * attention_head_dim __lowerCamelCase : Optional[Any] = in_channels __lowerCamelCase : Tuple = torch.nn.GroupNorm(num_groups=SCREAMING_SNAKE_CASE__ ,num_channels=SCREAMING_SNAKE_CASE__ ,eps=1E-6 ,affine=SCREAMING_SNAKE_CASE__) __lowerCamelCase : Dict = nn.Linear(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) # 3. Define transformers blocks __lowerCamelCase : List[Any] = nn.ModuleList( [ BasicTransformerBlock( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,dropout=SCREAMING_SNAKE_CASE__ ,cross_attention_dim=SCREAMING_SNAKE_CASE__ ,activation_fn=SCREAMING_SNAKE_CASE__ ,attention_bias=SCREAMING_SNAKE_CASE__ ,double_self_attention=SCREAMING_SNAKE_CASE__ ,norm_elementwise_affine=SCREAMING_SNAKE_CASE__ ,) for d in range(SCREAMING_SNAKE_CASE__) ]) __lowerCamelCase : List[str] = nn.Linear(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) def lowerCAmelCase ( self : List[str] ,SCREAMING_SNAKE_CASE__ : Union[str, Any] ,SCREAMING_SNAKE_CASE__ : Any=None ,SCREAMING_SNAKE_CASE__ : List[Any]=None ,SCREAMING_SNAKE_CASE__ : Union[str, Any]=None ,SCREAMING_SNAKE_CASE__ : Optional[int]=1 ,SCREAMING_SNAKE_CASE__ : str=None ,SCREAMING_SNAKE_CASE__ : bool = True ,): __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Any = hidden_states.shape __lowerCamelCase : List[str] = batch_frames // num_frames __lowerCamelCase : int = hidden_states __lowerCamelCase : Optional[int] = hidden_states[None, :].reshape(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) __lowerCamelCase : int = hidden_states.permute(0 ,2 ,1 ,3 ,4) __lowerCamelCase : Any = self.norm(SCREAMING_SNAKE_CASE__) __lowerCamelCase : Dict = hidden_states.permute(0 ,3 ,4 ,2 ,1).reshape(batch_size * height * width ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) __lowerCamelCase : Dict = self.proj_in(SCREAMING_SNAKE_CASE__) # 2. Blocks for block in self.transformer_blocks: __lowerCamelCase : Union[str, Any] = block( SCREAMING_SNAKE_CASE__ ,encoder_hidden_states=SCREAMING_SNAKE_CASE__ ,timestep=SCREAMING_SNAKE_CASE__ ,cross_attention_kwargs=SCREAMING_SNAKE_CASE__ ,class_labels=SCREAMING_SNAKE_CASE__ ,) # 3. Output __lowerCamelCase : Optional[Any] = self.proj_out(SCREAMING_SNAKE_CASE__) __lowerCamelCase : Tuple = ( hidden_states[None, None, :] .reshape(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) .permute(0 ,3 ,4 ,1 ,2) .contiguous() ) __lowerCamelCase : List[str] = hidden_states.reshape(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) __lowerCamelCase : Dict = hidden_states + residual if not return_dict: return (output,) return TransformerTemporalModelOutput(sample=SCREAMING_SNAKE_CASE__)
73
def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ ) -> int: __lowerCamelCase : Optional[int] = 0 __lowerCamelCase : Dict = len(lowerCamelCase__ ) - 1 while left <= right: # avoid divided by 0 during interpolation if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None __lowerCamelCase : str = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(lowerCamelCase__ ): return None __lowerCamelCase : Tuple = sorted_collection[point] if current_item == item: return point else: if point < left: __lowerCamelCase : List[Any] = left __lowerCamelCase : Tuple = point elif point > right: __lowerCamelCase : Dict = right __lowerCamelCase : str = point else: if item < current_item: __lowerCamelCase : Dict = point - 1 else: __lowerCamelCase : Dict = point + 1 return None def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Any: # avoid divided by 0 during interpolation if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None __lowerCamelCase : Optional[int] = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(lowerCamelCase__ ): return None if sorted_collection[point] == item: return point elif point < left: return interpolation_search_by_recursion(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) elif point > right: return interpolation_search_by_recursion(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) else: if sorted_collection[point] > item: return interpolation_search_by_recursion( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , point - 1 ) else: return interpolation_search_by_recursion( lowerCamelCase__ , lowerCamelCase__ , point + 1 , lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> Optional[Any]: if collection != sorted(lowerCamelCase__ ): raise ValueError('Collection must be ascending sorted' ) return True if __name__ == "__main__": import sys a =0 if debug == 1: a =[10, 30, 40, 45, 50, 66, 77, 93] try: __assert_sorted(collection) except ValueError: sys.exit("""Sequence must be ascending sorted to apply interpolation search""") a =67 a =interpolation_search(collection, target) if result is not None: print(F"""{target} found at positions: {result}""") else: print("""Not found""")
73
1
"""simple docstring""" import inspect import os import re from transformers.configuration_utils import PretrainedConfig from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py __lowercase = """src/transformers""" # This is to make sure the transformers module imported is the one in the repo. __lowercase = direct_transformers_import(PATH_TO_TRANSFORMERS) __lowercase = transformers.models.auto.configuration_auto.CONFIG_MAPPING __lowercase = { # used to compute the property `self.chunk_length` """EncodecConfig""": ["""overlap"""], # used as `self.bert_model = BertModel(config, ...)` """DPRConfig""": True, # not used in modeling files, but it's an important information """FSMTConfig""": ["""langs"""], # used internally in the configuration class file """GPTNeoConfig""": ["""attention_types"""], # used internally in the configuration class file """EsmConfig""": ["""is_folding_model"""], # used during training (despite we don't have training script for these models yet) """Mask2FormerConfig""": ["""ignore_value"""], # `ignore_value` used during training (despite we don't have training script for these models yet) # `norm` used in conversion script (despite not using in the modeling file) """OneFormerConfig""": ["""ignore_value""", """norm"""], # used during preprocessing and collation, see `collating_graphormer.py` """GraphormerConfig""": ["""spatial_pos_max"""], # used internally in the configuration class file """T5Config""": ["""feed_forward_proj"""], # used internally in the configuration class file # `tokenizer_class` get default value `T5Tokenizer` intentionally """MT5Config""": ["""feed_forward_proj""", """tokenizer_class"""], """UMT5Config""": ["""feed_forward_proj""", """tokenizer_class"""], # used internally in the configuration class file """LongT5Config""": ["""feed_forward_proj"""], # used internally in the configuration class file """SwitchTransformersConfig""": ["""feed_forward_proj"""], # having default values other than `1e-5` - we can't fix them without breaking """BioGptConfig""": ["""layer_norm_eps"""], # having default values other than `1e-5` - we can't fix them without breaking """GLPNConfig""": ["""layer_norm_eps"""], # having default values other than `1e-5` - we can't fix them without breaking """SegformerConfig""": ["""layer_norm_eps"""], # having default values other than `1e-5` - we can't fix them without breaking """CvtConfig""": ["""layer_norm_eps"""], # having default values other than `1e-5` - we can't fix them without breaking """PerceiverConfig""": ["""layer_norm_eps"""], # used internally to calculate the feature size """InformerConfig""": ["""num_static_real_features""", """num_time_features"""], # used internally to calculate the feature size """TimeSeriesTransformerConfig""": ["""num_static_real_features""", """num_time_features"""], # used internally to calculate the feature size """AutoformerConfig""": ["""num_static_real_features""", """num_time_features"""], # used internally to calculate `mlp_dim` """SamVisionConfig""": ["""mlp_ratio"""], # For (head) training, but so far not implemented """ClapAudioConfig""": ["""num_classes"""], # Not used, but providing useful information to users """SpeechT5HifiGanConfig""": ["""sampling_rate"""], } # TODO (ydshieh): Check the failing cases, try to fix them or move some cases to the above block once we are sure SPECIAL_CASES_TO_ALLOW.update( { """CLIPSegConfig""": True, """DeformableDetrConfig""": True, """DetaConfig""": True, """DinatConfig""": True, """DonutSwinConfig""": True, """EfficientFormerConfig""": True, """FSMTConfig""": True, """JukeboxConfig""": True, """LayoutLMv2Config""": True, """MaskFormerSwinConfig""": True, """MT5Config""": True, """NatConfig""": True, """OneFormerConfig""": True, """PerceiverConfig""": True, """RagConfig""": True, """SpeechT5Config""": True, """SwinConfig""": True, """Swin2SRConfig""": True, """Swinv2Config""": True, """SwitchTransformersConfig""": True, """TableTransformerConfig""": True, """TapasConfig""": True, """TransfoXLConfig""": True, """UniSpeechConfig""": True, """UniSpeechSatConfig""": True, """WavLMConfig""": True, """WhisperConfig""": True, # TODO: @Arthur (for `alignment_head` and `alignment_layer`) """JukeboxPriorConfig""": True, # TODO: @Younes (for `is_decoder`) """Pix2StructTextConfig""": True, } ) def lowercase ( A_ , A_ , A_ , A_ )-> Optional[Any]: '''simple docstring''' a : List[str] = False for attribute in attributes: for modeling_source in source_strings: # check if we can find `config.xxx`, `getattr(config, "xxx", ...)` or `getattr(self.config, "xxx", ...)` if ( F'''config.{attribute}''' in modeling_source or F'''getattr(config, "{attribute}"''' in modeling_source or F'''getattr(self.config, "{attribute}"''' in modeling_source ): a : str = True # Deal with multi-line cases elif ( re.search( RF'''getattr[ \t\v\n\r\f]*\([ \t\v\n\r\f]*(self\.)?config,[ \t\v\n\r\f]*"{attribute}"''' , A_ , ) is not None ): a : List[Any] = True # `SequenceSummary` is called with `SequenceSummary(config)` elif attribute in [ "summary_type", "summary_use_proj", "summary_activation", "summary_last_dropout", "summary_proj_to_labels", "summary_first_dropout", ]: if "SequenceSummary" in modeling_source: a : str = True if attribute_used: break if attribute_used: break # common and important attributes, even if they do not always appear in the modeling files a : Tuple = [ "bos_index", "eos_index", "pad_index", "unk_index", "mask_index", "image_size", "use_cache", "out_features", "out_indices", ] a : str = ["encoder_no_repeat_ngram_size"] # Special cases to be allowed a : int = True if not attribute_used: a : Dict = False for attribute in attributes: # Allow if the default value in the configuration class is different from the one in `PretrainedConfig` if attribute in ["is_encoder_decoder"] and default_value is True: a : Optional[int] = True elif attribute in ["tie_word_embeddings"] and default_value is False: a : List[Any] = True # Allow cases without checking the default value in the configuration class elif attribute in attributes_to_allow + attributes_used_in_generation: a : str = True elif attribute.endswith("_token_id" ): a : str = True # configuration class specific cases if not case_allowed: a : Union[str, Any] = SPECIAL_CASES_TO_ALLOW.get(config_class.__name__ , [] ) a : Optional[Any] = allowed_cases is True or attribute in allowed_cases return attribute_used or case_allowed def lowercase ( A_ )-> Tuple: '''simple docstring''' a : Optional[int] = dict(inspect.signature(config_class.__init__ ).parameters ) a : Any = [x for x in list(signature.keys() ) if x not in ["self", "kwargs"]] a : str = [signature[param].default for param in parameter_names] # If `attribute_map` exists, an attribute can have different names to be used in the modeling files, and as long # as one variant is used, the test should pass a : Dict = {} if len(config_class.attribute_map ) > 0: a : int = {v: k for k, v in config_class.attribute_map.items()} # Get the path to modeling source files a : int = inspect.getsourcefile(A_ ) a : Union[str, Any] = os.path.dirname(A_ ) # Let's check against all frameworks: as long as one framework uses an attribute, we are good. a : Optional[Any] = [os.path.join(A_ , A_ ) for fn in os.listdir(A_ ) if fn.startswith("modeling_" )] # Get the source code strings a : Tuple = [] for path in modeling_paths: if os.path.isfile(A_ ): with open(A_ ) as fp: modeling_sources.append(fp.read() ) a : Optional[Any] = [] for config_param, default_value in zip(A_ , A_ ): # `attributes` here is all the variant names for `config_param` a : str = [config_param] # some configuration classes have non-empty `attribute_map`, and both names could be used in the # corresponding modeling files. As long as one of them appears, it is fine. if config_param in reversed_attribute_map: attributes.append(reversed_attribute_map[config_param] ) if not check_attribute_being_used(A_ , A_ , A_ , A_ ): unused_attributes.append(attributes[0] ) return sorted(A_ ) def lowercase ( )-> str: '''simple docstring''' a : List[Any] = {} for _config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in _config_class.__module__: continue # Some config classes are not in `CONFIG_MAPPING` (e.g. `CLIPVisionConfig`, `Blip2VisionConfig`, etc.) a : str = [ cls for name, cls in inspect.getmembers( inspect.getmodule(_config_class ) , lambda A_ : inspect.isclass(A_ ) and issubclass(A_ , A_ ) and inspect.getmodule(A_ ) == inspect.getmodule(_config_class ) , ) ] for config_class in config_classes_in_module: a : Union[str, Any] = check_config_attributes_being_used(A_ ) if len(A_ ) > 0: a : Dict = unused_attributes if len(A_ ) > 0: a : Union[str, Any] = "The following configuration classes contain unused attributes in the corresponding modeling files:\n" for name, attributes in configs_with_unused_attributes.items(): error += F'''{name}: {attributes}\n''' raise ValueError(A_ ) if __name__ == "__main__": check_config_attributes()
366
"""simple docstring""" def lowercase ( A_ , A_ )-> float: '''simple docstring''' def get_matched_characters(A_ , A_ ) -> str: a : Optional[int] = [] a : List[Any] = min(len(_stra ) , len(_stra ) ) // 2 for i, l in enumerate(_stra ): a : int = int(max(0 , i - limit ) ) a : Optional[int] = int(min(i + limit + 1 , len(_stra ) ) ) if l in _stra[left:right]: matched.append(A_ ) a : int = F'''{_stra[0:_stra.index(A_ )]} {_stra[_stra.index(A_ ) + 1:]}''' return "".join(A_ ) # matching characters a : Tuple = get_matched_characters(A_ , A_ ) a : str = get_matched_characters(A_ , A_ ) a : List[str] = len(A_ ) # transposition a : Union[str, Any] = ( len([(ca, ca) for ca, ca in zip(A_ , A_ ) if ca != ca] ) // 2 ) if not match_count: a : Tuple = 0.0 else: a : List[str] = ( 1 / 3 * ( match_count / len(A_ ) + match_count / len(A_ ) + (match_count - transpositions) / match_count ) ) # common prefix up to 4 characters a : Union[str, Any] = 0 for ca, ca in zip(stra[:4] , stra[:4] ): if ca == ca: prefix_len += 1 else: break return jaro + 0.1 * prefix_len * (1 - jaro) if __name__ == "__main__": import doctest doctest.testmod() print(jaro_winkler("""hello""", """world"""))
226
0
'''simple docstring''' import math def __lowercase ( ) -> None: '''simple docstring''' _A = input("Enter message: " ) _A = int(input(F'''Enter key [2-{len(__lowercase ) - 1}]: ''' ) ) _A = input("Encryption/Decryption [e/d]: " ) if mode.lower().startswith("e" ): _A = encrypt_message(__lowercase , __lowercase ) elif mode.lower().startswith("d" ): _A = decrypt_message(__lowercase , __lowercase ) # Append pipe symbol (vertical bar) to identify spaces at the end. print(F'''Output:\n{text + '|'}''' ) def __lowercase ( __lowercase , __lowercase ) -> str: '''simple docstring''' _A = [""] * key for col in range(__lowercase ): _A = col while pointer < len(__lowercase ): cipher_text[col] += message[pointer] pointer += key return "".join(__lowercase ) def __lowercase ( __lowercase , __lowercase ) -> str: '''simple docstring''' _A = math.ceil(len(__lowercase ) / key ) _A = key _A = (num_cols * num_rows) - len(__lowercase ) _A = [""] * num_cols _A = 0 _A = 0 for symbol in message: plain_text[col] += symbol col += 1 if ( (col == num_cols) or (col == num_cols - 1) and (row >= num_rows - num_shaded_boxes) ): _A = 0 row += 1 return "".join(__lowercase ) if __name__ == "__main__": import doctest doctest.testmod() main()
79
import gc import unittest from parameterized import parameterized from diffusers import FlaxUNetaDConditionModel from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import load_hf_numpy, require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp @slow @require_flax class snake_case_ ( unittest.TestCase ): '''simple docstring''' def snake_case__( self : Any , _UpperCamelCase : Any , _UpperCamelCase : Tuple ) ->List[Any]: return f'''gaussian_noise_s={seed}_shape={'_'.join([str(_UpperCamelCase ) for s in shape] )}.npy''' def snake_case__( self : Any ) ->List[str]: # clean up the VRAM after each test super().tearDown() gc.collect() def snake_case__( self : int , _UpperCamelCase : Union[str, Any]=0 , _UpperCamelCase : int=(4, 4, 6_4, 6_4) , _UpperCamelCase : Optional[int]=False ) ->Tuple: snake_case_ = jnp.bfloataa if fpaa else jnp.floataa snake_case_ = jnp.array(load_hf_numpy(self.get_file_format(_UpperCamelCase , _UpperCamelCase ) ) , dtype=_UpperCamelCase ) return image def snake_case__( self : List[Any] , _UpperCamelCase : Optional[Any]=False , _UpperCamelCase : Optional[int]="CompVis/stable-diffusion-v1-4" ) ->Optional[Any]: snake_case_ = jnp.bfloataa if fpaa else jnp.floataa snake_case_ = '''bf16''' if fpaa else None snake_case_, snake_case_ = FlaxUNetaDConditionModel.from_pretrained( _UpperCamelCase , subfolder='''unet''' , dtype=_UpperCamelCase , revision=_UpperCamelCase ) return model, params def snake_case__( self : Dict , _UpperCamelCase : List[Any]=0 , _UpperCamelCase : Tuple=(4, 7_7, 7_6_8) , _UpperCamelCase : List[Any]=False ) ->int: snake_case_ = jnp.bfloataa if fpaa else jnp.floataa snake_case_ = jnp.array(load_hf_numpy(self.get_file_format(_UpperCamelCase , _UpperCamelCase ) ) , dtype=_UpperCamelCase ) return hidden_states @parameterized.expand( [ # fmt: off [8_3, 4, [-0.2323, -0.1304, 0.0813, -0.3093, -0.0919, -0.1571, -0.1125, -0.5806]], [1_7, 0.55, [-0.0831, -0.2443, 0.0901, -0.0919, 0.3396, 0.0103, -0.3743, 0.0701]], [8, 0.89, [-0.4863, 0.0859, 0.0875, -0.1658, 0.9199, -0.0114, 0.4839, 0.4639]], [3, 1_0_0_0, [-0.5649, 0.2402, -0.5518, 0.1248, 1.1328, -0.2443, -0.0325, -1.0078]], # fmt: on ] ) def snake_case__( self : Optional[Any] , _UpperCamelCase : List[Any] , _UpperCamelCase : List[str] , _UpperCamelCase : Optional[int] ) ->Union[str, Any]: snake_case_, snake_case_ = self.get_unet_model(model_id='''CompVis/stable-diffusion-v1-4''' , fpaa=_UpperCamelCase ) snake_case_ = self.get_latents(_UpperCamelCase , fpaa=_UpperCamelCase ) snake_case_ = self.get_encoder_hidden_states(_UpperCamelCase , fpaa=_UpperCamelCase ) snake_case_ = model.apply( {'''params''': params} , _UpperCamelCase , jnp.array(_UpperCamelCase , dtype=jnp.intaa ) , encoder_hidden_states=_UpperCamelCase , ).sample assert sample.shape == latents.shape snake_case_ = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) snake_case_ = jnp.array(_UpperCamelCase , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, in the same hardware assert jnp.allclose(_UpperCamelCase , _UpperCamelCase , atol=1e-2 ) @parameterized.expand( [ # fmt: off [8_3, 4, [0.1514, 0.0807, 0.1624, 0.1016, -0.1896, 0.0263, 0.0677, 0.2310]], [1_7, 0.55, [0.1164, -0.0216, 0.0170, 0.1589, -0.3120, 0.1005, -0.0581, -0.1458]], [8, 0.89, [-0.1758, -0.0169, 0.1004, -0.1411, 0.1312, 0.1103, -0.1996, 0.2139]], [3, 1_0_0_0, [0.1214, 0.0352, -0.0731, -0.1562, -0.0994, -0.0906, -0.2340, -0.0539]], # fmt: on ] ) def snake_case__( self : Optional[int] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : str ) ->Dict: snake_case_, snake_case_ = self.get_unet_model(model_id='''stabilityai/stable-diffusion-2''' , fpaa=_UpperCamelCase ) snake_case_ = self.get_latents(_UpperCamelCase , shape=(4, 4, 9_6, 9_6) , fpaa=_UpperCamelCase ) snake_case_ = self.get_encoder_hidden_states(_UpperCamelCase , shape=(4, 7_7, 1_0_2_4) , fpaa=_UpperCamelCase ) snake_case_ = model.apply( {'''params''': params} , _UpperCamelCase , jnp.array(_UpperCamelCase , dtype=jnp.intaa ) , encoder_hidden_states=_UpperCamelCase , ).sample assert sample.shape == latents.shape snake_case_ = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) snake_case_ = jnp.array(_UpperCamelCase , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, on the same hardware assert jnp.allclose(_UpperCamelCase , _UpperCamelCase , atol=1e-2 )
8
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __a: int = { """configuration_bloom""": ["""BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BloomConfig""", """BloomOnnxConfig"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a: str = ["""BloomTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a: Dict = [ """BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST""", """BloomForCausalLM""", """BloomModel""", """BloomPreTrainedModel""", """BloomForSequenceClassification""", """BloomForTokenClassification""", """BloomForQuestionAnswering""", ] if TYPE_CHECKING: from .configuration_bloom import BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP, BloomConfig, BloomOnnxConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bloom_fast import BloomTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bloom import ( BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST, BloomForCausalLM, BloomForQuestionAnswering, BloomForSequenceClassification, BloomForTokenClassification, BloomModel, BloomPreTrainedModel, ) else: import sys __a: Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
214
'''simple docstring''' import pytest import datasets.config from datasets.utils.info_utils import is_small_dataset @pytest.mark.parametrize('''dataset_size''' , [None, 400 * 2**20, 600 * 2**20] ) @pytest.mark.parametrize('''input_in_memory_max_size''' , ['''default''', 0, 100 * 2**20, 900 * 2**20] ) def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): if input_in_memory_max_size != "default": monkeypatch.setattr(datasets.config , '''IN_MEMORY_MAX_SIZE''' , UpperCAmelCase ) lowercase__ : List[Any] = datasets.config.IN_MEMORY_MAX_SIZE if input_in_memory_max_size == "default": assert in_memory_max_size == 0 else: assert in_memory_max_size == input_in_memory_max_size if dataset_size and in_memory_max_size: lowercase__ : str = dataset_size < in_memory_max_size else: lowercase__ : Optional[int] = False lowercase__ : Optional[Any] = is_small_dataset(UpperCAmelCase ) assert result == expected
214
1
'''simple docstring''' import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class UpperCAmelCase : __lowercase = None __lowercase = False __lowercase = False __lowercase = False __lowercase = None __lowercase = None __lowercase = False __lowercase = False __lowercase = False __lowercase = True __lowercase = None __lowercase = 1 __lowercase = None __lowercase = False __lowercase = None __lowercase = None def UpperCAmelCase_ ( self :Tuple )-> int: return self.__class__(**{k: copy.deepcopy(__lowerCamelCase ) for k, v in self.__dict__.items()} )
237
import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionTextToImagePipeline from diffusers.utils.testing_utils import nightly, require_torch_gpu, torch_device a__: List[str] = False class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): pass @nightly @require_torch_gpu class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def UpperCamelCase ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase ( self ): A__ = VersatileDiffusionTextToImagePipeline.from_pretrained('''shi-labs/versatile-diffusion''' ) # remove text_unet pipe.remove_unused_weights() pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) A__ = '''A painting of a squirrel eating a burger ''' A__ = torch.manual_seed(0 ) A__ = pipe( prompt=__lowerCamelCase,generator=__lowerCamelCase,guidance_scale=7.5,num_inference_steps=2,output_type='''numpy''' ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(__lowerCamelCase ) A__ = VersatileDiffusionTextToImagePipeline.from_pretrained(__lowerCamelCase ) pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) A__ = generator.manual_seed(0 ) A__ = pipe( prompt=__lowerCamelCase,generator=__lowerCamelCase,guidance_scale=7.5,num_inference_steps=2,output_type='''numpy''' ).images assert np.abs(image - new_image ).sum() < 1E-5, "Models don't have the same forward pass" def UpperCamelCase ( self ): A__ = VersatileDiffusionTextToImagePipeline.from_pretrained( '''shi-labs/versatile-diffusion''',torch_dtype=torch.floataa ) pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) A__ = '''A painting of a squirrel eating a burger ''' A__ = torch.manual_seed(0 ) A__ = pipe( prompt=__lowerCamelCase,generator=__lowerCamelCase,guidance_scale=7.5,num_inference_steps=50,output_type='''numpy''' ).images A__ = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) A__ = np.array([0.3367, 0.3169, 0.2656, 0.3870, 0.4790, 0.3796, 0.4009, 0.4878, 0.4778] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
193
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices A = logging.get_logger(__name__) A = { "facebook/convnextv2-tiny-1k-224": "https://huggingface.co/facebook/convnextv2-tiny-1k-224/resolve/main/config.json", } class __lowercase ( lowerCamelCase__ , lowerCamelCase__ ): __lowerCAmelCase = '''convnextv2''' def __init__( self , _UpperCAmelCase=3 , _UpperCAmelCase=4 , _UpperCAmelCase=4 , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.0_2 , _UpperCAmelCase=1e-1_2 , _UpperCAmelCase=0.0 , _UpperCAmelCase=224 , _UpperCAmelCase=None , _UpperCAmelCase=None , **_UpperCAmelCase , ): super().__init__(**__A ) __a : int = num_channels __a : Union[str, Any] = patch_size __a : Optional[int] = num_stages __a : Optional[Any] = [96, 192, 384, 768] if hidden_sizes is None else hidden_sizes __a : Dict = [3, 3, 9, 3] if depths is None else depths __a : Tuple = hidden_act __a : Union[str, Any] = initializer_range __a : Dict = layer_norm_eps __a : Union[str, Any] = drop_path_rate __a : Union[str, Any] = image_size __a : int = ['''stem'''] + [f"""stage{idx}""" for idx in range(1 , len(self.depths ) + 1 )] __a : List[Any] = get_aligned_output_features_output_indices( out_features=__A , out_indices=__A , stage_names=self.stage_names )
361
"""simple docstring""" def __A ( a_ :float) -> float: if edge <= 0 or not isinstance(a_ , a_): raise ValueError('''Length must be a positive.''') return 3 * ((25 + 10 * (5 ** (1 / 2))) ** (1 / 2)) * (edge**2) def __A ( a_ :float) -> float: if edge <= 0 or not isinstance(a_ , a_): raise ValueError('''Length must be a positive.''') return ((15 + (7 * (5 ** (1 / 2)))) / 4) * (edge**3) if __name__ == "__main__": import doctest doctest.testmod()
188
0
import argparse import os import jax as jnp import numpy as onp import torch import torch.nn as nn from music_spectrogram_diffusion import inference from tax import checkpoints from diffusers import DDPMScheduler, OnnxRuntimeModel, SpectrogramDiffusionPipeline from diffusers.pipelines.spectrogram_diffusion import SpectrogramContEncoder, SpectrogramNotesEncoder, TaFilmDecoder _snake_case = '''base_with_context''' def _UpperCamelCase ( snake_case__, snake_case__ ) -> Dict: __UpperCAmelCase : int = nn.Parameter(torch.FloatTensor(weights["token_embedder"]["embedding"] ) ) __UpperCAmelCase : List[str] = nn.Parameter( torch.FloatTensor(weights["Embed_0"]["embedding"] ), requires_grad=snake_case__ ) for lyr_num, lyr in enumerate(model.encoders ): __UpperCAmelCase : Dict = weights[f'''layers_{lyr_num}'''] __UpperCAmelCase : Dict = nn.Parameter( torch.FloatTensor(ly_weight["pre_attention_layer_norm"]["scale"] ) ) __UpperCAmelCase : Optional[int] = ly_weight["attention"] __UpperCAmelCase : Any = nn.Parameter(torch.FloatTensor(attention_weights["query"]["kernel"].T ) ) __UpperCAmelCase : Tuple = nn.Parameter(torch.FloatTensor(attention_weights["key"]["kernel"].T ) ) __UpperCAmelCase : Union[str, Any] = nn.Parameter(torch.FloatTensor(attention_weights["value"]["kernel"].T ) ) __UpperCAmelCase : Optional[int] = nn.Parameter(torch.FloatTensor(attention_weights["out"]["kernel"].T ) ) __UpperCAmelCase : Optional[int] = nn.Parameter(torch.FloatTensor(ly_weight["pre_mlp_layer_norm"]["scale"] ) ) __UpperCAmelCase : Dict = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_0"]["kernel"].T ) ) __UpperCAmelCase : Dict = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_1"]["kernel"].T ) ) __UpperCAmelCase : Any = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wo"]["kernel"].T ) ) __UpperCAmelCase : str = nn.Parameter(torch.FloatTensor(weights["encoder_norm"]["scale"] ) ) return model def _UpperCamelCase ( snake_case__, snake_case__ ) -> Union[str, Any]: __UpperCAmelCase : List[Any] = nn.Parameter(torch.FloatTensor(weights["input_proj"]["kernel"].T ) ) __UpperCAmelCase : List[str] = nn.Parameter( torch.FloatTensor(weights["Embed_0"]["embedding"] ), requires_grad=snake_case__ ) for lyr_num, lyr in enumerate(model.encoders ): __UpperCAmelCase : str = weights[f'''layers_{lyr_num}'''] __UpperCAmelCase : Optional[Any] = ly_weight["attention"] __UpperCAmelCase : List[Any] = nn.Parameter(torch.FloatTensor(attention_weights["query"]["kernel"].T ) ) __UpperCAmelCase : Dict = nn.Parameter(torch.FloatTensor(attention_weights["key"]["kernel"].T ) ) __UpperCAmelCase : str = nn.Parameter(torch.FloatTensor(attention_weights["value"]["kernel"].T ) ) __UpperCAmelCase : Optional[int] = nn.Parameter(torch.FloatTensor(attention_weights["out"]["kernel"].T ) ) __UpperCAmelCase : Any = nn.Parameter( torch.FloatTensor(ly_weight["pre_attention_layer_norm"]["scale"] ) ) __UpperCAmelCase : int = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_0"]["kernel"].T ) ) __UpperCAmelCase : List[Any] = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_1"]["kernel"].T ) ) __UpperCAmelCase : Tuple = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wo"]["kernel"].T ) ) __UpperCAmelCase : int = nn.Parameter(torch.FloatTensor(ly_weight["pre_mlp_layer_norm"]["scale"] ) ) __UpperCAmelCase : str = nn.Parameter(torch.FloatTensor(weights["encoder_norm"]["scale"] ) ) return model def _UpperCamelCase ( snake_case__, snake_case__ ) -> str: __UpperCAmelCase : Optional[Any] = nn.Parameter(torch.FloatTensor(weights["time_emb_dense0"]["kernel"].T ) ) __UpperCAmelCase : Any = nn.Parameter(torch.FloatTensor(weights["time_emb_dense1"]["kernel"].T ) ) __UpperCAmelCase : int = nn.Parameter( torch.FloatTensor(weights["Embed_0"]["embedding"] ), requires_grad=snake_case__ ) __UpperCAmelCase : int = nn.Parameter( torch.FloatTensor(weights["continuous_inputs_projection"]["kernel"].T ) ) for lyr_num, lyr in enumerate(model.decoders ): __UpperCAmelCase : int = weights[f'''layers_{lyr_num}'''] __UpperCAmelCase : int = nn.Parameter( torch.FloatTensor(ly_weight["pre_self_attention_layer_norm"]["scale"] ) ) __UpperCAmelCase : Any = nn.Parameter( torch.FloatTensor(ly_weight["FiLMLayer_0"]["DenseGeneral_0"]["kernel"].T ) ) __UpperCAmelCase : List[str] = ly_weight["self_attention"] __UpperCAmelCase : str = nn.Parameter(torch.FloatTensor(attention_weights["query"]["kernel"].T ) ) __UpperCAmelCase : Optional[int] = nn.Parameter(torch.FloatTensor(attention_weights["key"]["kernel"].T ) ) __UpperCAmelCase : Optional[int] = nn.Parameter(torch.FloatTensor(attention_weights["value"]["kernel"].T ) ) __UpperCAmelCase : Dict = nn.Parameter(torch.FloatTensor(attention_weights["out"]["kernel"].T ) ) __UpperCAmelCase : Dict = ly_weight["MultiHeadDotProductAttention_0"] __UpperCAmelCase : List[Any] = nn.Parameter(torch.FloatTensor(attention_weights["query"]["kernel"].T ) ) __UpperCAmelCase : Dict = nn.Parameter(torch.FloatTensor(attention_weights["key"]["kernel"].T ) ) __UpperCAmelCase : Optional[Any] = nn.Parameter(torch.FloatTensor(attention_weights["value"]["kernel"].T ) ) __UpperCAmelCase : Optional[int] = nn.Parameter(torch.FloatTensor(attention_weights["out"]["kernel"].T ) ) __UpperCAmelCase : List[Any] = nn.Parameter( torch.FloatTensor(ly_weight["pre_cross_attention_layer_norm"]["scale"] ) ) __UpperCAmelCase : Optional[Any] = nn.Parameter(torch.FloatTensor(ly_weight["pre_mlp_layer_norm"]["scale"] ) ) __UpperCAmelCase : Dict = nn.Parameter( torch.FloatTensor(ly_weight["FiLMLayer_1"]["DenseGeneral_0"]["kernel"].T ) ) __UpperCAmelCase : List[str] = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_0"]["kernel"].T ) ) __UpperCAmelCase : int = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_1"]["kernel"].T ) ) __UpperCAmelCase : Tuple = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wo"]["kernel"].T ) ) __UpperCAmelCase : int = nn.Parameter(torch.FloatTensor(weights["decoder_norm"]["scale"] ) ) __UpperCAmelCase : Tuple = nn.Parameter(torch.FloatTensor(weights["spec_out_dense"]["kernel"].T ) ) return model def _UpperCamelCase ( snake_case__ ) -> int: __UpperCAmelCase : Union[str, Any] = checkpoints.load_tax_checkpoint(args.checkpoint_path ) __UpperCAmelCase : str = jnp.tree_util.tree_map(onp.array, snake_case__ ) __UpperCAmelCase : Optional[int] = [ "from __gin__ import dynamic_registration", "from music_spectrogram_diffusion.models.diffusion import diffusion_utils", "diffusion_utils.ClassifierFreeGuidanceConfig.eval_condition_weight = 2.0", "diffusion_utils.DiffusionConfig.classifier_free_guidance = @diffusion_utils.ClassifierFreeGuidanceConfig()", ] __UpperCAmelCase : List[Any] = os.path.join(args.checkpoint_path, "..", "config.gin" ) __UpperCAmelCase : Tuple = inference.parse_training_gin_file(snake_case__, snake_case__ ) __UpperCAmelCase : Optional[int] = inference.InferenceModel(args.checkpoint_path, snake_case__ ) __UpperCAmelCase : str = DDPMScheduler(beta_schedule="squaredcos_cap_v2", variance_type="fixed_large" ) __UpperCAmelCase : Optional[int] = SpectrogramNotesEncoder( max_length=synth_model.sequence_length["inputs"], vocab_size=synth_model.model.module.config.vocab_size, d_model=synth_model.model.module.config.emb_dim, dropout_rate=synth_model.model.module.config.dropout_rate, num_layers=synth_model.model.module.config.num_encoder_layers, num_heads=synth_model.model.module.config.num_heads, d_kv=synth_model.model.module.config.head_dim, d_ff=synth_model.model.module.config.mlp_dim, feed_forward_proj="gated-gelu", ) __UpperCAmelCase : Tuple = SpectrogramContEncoder( input_dims=synth_model.audio_codec.n_dims, targets_context_length=synth_model.sequence_length["targets_context"], d_model=synth_model.model.module.config.emb_dim, dropout_rate=synth_model.model.module.config.dropout_rate, num_layers=synth_model.model.module.config.num_encoder_layers, num_heads=synth_model.model.module.config.num_heads, d_kv=synth_model.model.module.config.head_dim, d_ff=synth_model.model.module.config.mlp_dim, feed_forward_proj="gated-gelu", ) __UpperCAmelCase : str = TaFilmDecoder( input_dims=synth_model.audio_codec.n_dims, targets_length=synth_model.sequence_length["targets_context"], max_decoder_noise_time=synth_model.model.module.config.max_decoder_noise_time, d_model=synth_model.model.module.config.emb_dim, num_layers=synth_model.model.module.config.num_decoder_layers, num_heads=synth_model.model.module.config.num_heads, d_kv=synth_model.model.module.config.head_dim, d_ff=synth_model.model.module.config.mlp_dim, dropout_rate=synth_model.model.module.config.dropout_rate, ) __UpperCAmelCase : Union[str, Any] = load_notes_encoder(ta_checkpoint["target"]["token_encoder"], snake_case__ ) __UpperCAmelCase : List[str] = load_continuous_encoder(ta_checkpoint["target"]["continuous_encoder"], snake_case__ ) __UpperCAmelCase : Dict = load_decoder(ta_checkpoint["target"]["decoder"], snake_case__ ) __UpperCAmelCase : Tuple = OnnxRuntimeModel.from_pretrained("kashif/soundstream_mel_decoder" ) __UpperCAmelCase : Union[str, Any] = SpectrogramDiffusionPipeline( notes_encoder=snake_case__, continuous_encoder=snake_case__, decoder=snake_case__, scheduler=snake_case__, melgan=snake_case__, ) if args.save: pipe.save_pretrained(args.output_path ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() parser.add_argument('''--output_path''', default=None, type=str, required=True, help='''Path to the converted model.''') parser.add_argument( '''--save''', default=True, type=bool, required=False, help='''Whether to save the converted model or not.''' ) parser.add_argument( '''--checkpoint_path''', default=F'{MODEL}/checkpoint_500000', type=str, required=False, help='''Path to the original jax model checkpoint.''', ) _snake_case = parser.parse_args() main(args)
157
from __future__ import annotations import unittest from transformers import MobileBertConfig, is_tf_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_MODEL_FOR_PRETRAINING_MAPPING, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertModel, ) @require_tf class _snake_case ( _lowercase , _lowercase , unittest.TestCase ): lowerCamelCase__: str = ( ( TFMobileBertModel, TFMobileBertForMaskedLM, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertForMultipleChoice, ) if is_tf_available() else () ) lowerCamelCase__: Optional[Any] = ( { "feature-extraction": TFMobileBertModel, "fill-mask": TFMobileBertForMaskedLM, "question-answering": TFMobileBertForQuestionAnswering, "text-classification": TFMobileBertForSequenceClassification, "token-classification": TFMobileBertForTokenClassification, "zero-shot": TFMobileBertForSequenceClassification, } if is_tf_available() else {} ) lowerCamelCase__: Union[str, Any] = False lowerCamelCase__: Any = False def _lowerCamelCase ( self: Tuple , __lowerCamelCase: List[Any] , __lowerCamelCase: Any , __lowerCamelCase: List[str]=False ) -> Dict: __UpperCAmelCase : Dict = super()._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase ) if return_labels: if model_class in get_values(__lowerCamelCase ): __UpperCAmelCase : List[str] = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) return inputs_dict class _snake_case ( _lowercase ): def __init__( self: str , __lowerCamelCase: Optional[int] , __lowerCamelCase: str=13 , __lowerCamelCase: Any=7 , __lowerCamelCase: int=True , __lowerCamelCase: List[Any]=True , __lowerCamelCase: Any=True , __lowerCamelCase: Optional[Any]=True , __lowerCamelCase: Tuple=99 , __lowerCamelCase: str=32 , __lowerCamelCase: Union[str, Any]=32 , __lowerCamelCase: Dict=2 , __lowerCamelCase: Dict=4 , __lowerCamelCase: Optional[int]=37 , __lowerCamelCase: Optional[int]="gelu" , __lowerCamelCase: Tuple=0.1 , __lowerCamelCase: Optional[int]=0.1 , __lowerCamelCase: int=5_12 , __lowerCamelCase: Optional[int]=16 , __lowerCamelCase: Dict=2 , __lowerCamelCase: List[Any]=0.02 , __lowerCamelCase: List[str]=3 , __lowerCamelCase: List[Any]=4 , __lowerCamelCase: Union[str, Any]=None , ) -> Optional[int]: __UpperCAmelCase : str = parent __UpperCAmelCase : Optional[int] = batch_size __UpperCAmelCase : Any = seq_length __UpperCAmelCase : Dict = is_training __UpperCAmelCase : str = use_input_mask __UpperCAmelCase : Optional[int] = use_token_type_ids __UpperCAmelCase : Dict = use_labels __UpperCAmelCase : int = vocab_size __UpperCAmelCase : Union[str, Any] = hidden_size __UpperCAmelCase : int = num_hidden_layers __UpperCAmelCase : Optional[Any] = num_attention_heads __UpperCAmelCase : Tuple = intermediate_size __UpperCAmelCase : List[Any] = hidden_act __UpperCAmelCase : Optional[Any] = hidden_dropout_prob __UpperCAmelCase : int = attention_probs_dropout_prob __UpperCAmelCase : Tuple = max_position_embeddings __UpperCAmelCase : List[str] = type_vocab_size __UpperCAmelCase : Optional[Any] = type_sequence_label_size __UpperCAmelCase : str = initializer_range __UpperCAmelCase : int = num_labels __UpperCAmelCase : Optional[Any] = num_choices __UpperCAmelCase : Optional[int] = scope __UpperCAmelCase : List[str] = embedding_size def _lowerCamelCase ( self: Tuple ) -> Optional[Any]: __UpperCAmelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase : Union[str, Any] = None if self.use_input_mask: __UpperCAmelCase : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCAmelCase : Tuple = None if self.use_token_type_ids: __UpperCAmelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __UpperCAmelCase : Optional[int] = None __UpperCAmelCase : Tuple = None __UpperCAmelCase : Any = None if self.use_labels: __UpperCAmelCase : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCAmelCase : Tuple = ids_tensor([self.batch_size] , self.num_choices ) __UpperCAmelCase : Dict = MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , embedding_size=self.embedding_size , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowerCamelCase ( self: Tuple , __lowerCamelCase: List[str] , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: Dict , __lowerCamelCase: List[Any] , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: Any , __lowerCamelCase: Optional[Any] ) -> Optional[int]: __UpperCAmelCase : Any = TFMobileBertModel(config=__lowerCamelCase ) __UpperCAmelCase : Optional[Any] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} __UpperCAmelCase : Tuple = model(__lowerCamelCase ) __UpperCAmelCase : Optional[int] = [input_ids, input_mask] __UpperCAmelCase : List[str] = model(__lowerCamelCase ) __UpperCAmelCase : Optional[int] = model(__lowerCamelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def _lowerCamelCase ( self: Optional[Any] , __lowerCamelCase: Any , __lowerCamelCase: List[Any] , __lowerCamelCase: List[Any] , __lowerCamelCase: Optional[int] , __lowerCamelCase: Optional[Any] , __lowerCamelCase: Optional[Any] , __lowerCamelCase: Dict ) -> Optional[int]: __UpperCAmelCase : List[str] = TFMobileBertForMaskedLM(config=__lowerCamelCase ) __UpperCAmelCase : Tuple = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} __UpperCAmelCase : Tuple = model(__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowerCamelCase ( self: Tuple , __lowerCamelCase: str , __lowerCamelCase: Dict , __lowerCamelCase: List[str] , __lowerCamelCase: List[str] , __lowerCamelCase: Optional[int] , __lowerCamelCase: Tuple , __lowerCamelCase: Union[str, Any] ) -> Any: __UpperCAmelCase : Optional[int] = TFMobileBertForNextSentencePrediction(config=__lowerCamelCase ) __UpperCAmelCase : List[Any] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} __UpperCAmelCase : str = model(__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def _lowerCamelCase ( self: List[Any] , __lowerCamelCase: Optional[int] , __lowerCamelCase: Dict , __lowerCamelCase: Dict , __lowerCamelCase: Any , __lowerCamelCase: List[Any] , __lowerCamelCase: Any , __lowerCamelCase: Any ) -> List[str]: __UpperCAmelCase : Optional[Any] = TFMobileBertForPreTraining(config=__lowerCamelCase ) __UpperCAmelCase : List[Any] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} __UpperCAmelCase : List[str] = model(__lowerCamelCase ) self.parent.assertEqual( result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def _lowerCamelCase ( self: Optional[int] , __lowerCamelCase: Dict , __lowerCamelCase: List[Any] , __lowerCamelCase: List[str] , __lowerCamelCase: int , __lowerCamelCase: List[str] , __lowerCamelCase: Any , __lowerCamelCase: Dict ) -> Dict: __UpperCAmelCase : Tuple = self.num_labels __UpperCAmelCase : Tuple = TFMobileBertForSequenceClassification(config=__lowerCamelCase ) __UpperCAmelCase : Optional[int] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} __UpperCAmelCase : Optional[int] = model(__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowerCamelCase ( self: Optional[int] , __lowerCamelCase: Dict , __lowerCamelCase: str , __lowerCamelCase: List[str] , __lowerCamelCase: Any , __lowerCamelCase: str , __lowerCamelCase: List[str] , __lowerCamelCase: Union[str, Any] ) -> Optional[int]: __UpperCAmelCase : Union[str, Any] = self.num_choices __UpperCAmelCase : Tuple = TFMobileBertForMultipleChoice(config=__lowerCamelCase ) __UpperCAmelCase : Dict = tf.tile(tf.expand_dims(__lowerCamelCase , 1 ) , (1, self.num_choices, 1) ) __UpperCAmelCase : str = tf.tile(tf.expand_dims(__lowerCamelCase , 1 ) , (1, self.num_choices, 1) ) __UpperCAmelCase : Optional[Any] = tf.tile(tf.expand_dims(__lowerCamelCase , 1 ) , (1, self.num_choices, 1) ) __UpperCAmelCase : Any = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, } __UpperCAmelCase : Dict = model(__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _lowerCamelCase ( self: Optional[Any] , __lowerCamelCase: List[Any] , __lowerCamelCase: Optional[int] , __lowerCamelCase: str , __lowerCamelCase: Tuple , __lowerCamelCase: Dict , __lowerCamelCase: str , __lowerCamelCase: Optional[int] ) -> Dict: __UpperCAmelCase : List[Any] = self.num_labels __UpperCAmelCase : Optional[int] = TFMobileBertForTokenClassification(config=__lowerCamelCase ) __UpperCAmelCase : Dict = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} __UpperCAmelCase : Optional[Any] = model(__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowerCamelCase ( self: int , __lowerCamelCase: Optional[int] , __lowerCamelCase: int , __lowerCamelCase: List[str] , __lowerCamelCase: Any , __lowerCamelCase: Optional[Any] , __lowerCamelCase: Dict , __lowerCamelCase: int ) -> Tuple: __UpperCAmelCase : Tuple = TFMobileBertForQuestionAnswering(config=__lowerCamelCase ) __UpperCAmelCase : Dict = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} __UpperCAmelCase : str = model(__lowerCamelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowerCamelCase ( self: Tuple ) -> Optional[Any]: __UpperCAmelCase : Tuple = self.prepare_config_and_inputs() ( ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ) : Any = config_and_inputs __UpperCAmelCase : List[str] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict def _lowerCamelCase ( self: List[str] ) -> int: __UpperCAmelCase : List[str] = TFMobileBertModelTest.TFMobileBertModelTester(self ) __UpperCAmelCase : Optional[int] = ConfigTester(self , config_class=__lowerCamelCase , hidden_size=37 ) def _lowerCamelCase ( self: Any ) -> Optional[Any]: self.config_tester.run_common_tests() def _lowerCamelCase ( self: int ) -> int: __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*__lowerCamelCase ) def _lowerCamelCase ( self: int ) -> List[str]: __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*__lowerCamelCase ) def _lowerCamelCase ( self: Optional[Any] ) -> Optional[Any]: __UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*__lowerCamelCase ) def _lowerCamelCase ( self: List[Any] ) -> List[Any]: __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*__lowerCamelCase ) def _lowerCamelCase ( self: Tuple ) -> Any: __UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*__lowerCamelCase ) def _lowerCamelCase ( self: Optional[Any] ) -> Any: __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*__lowerCamelCase ) def _lowerCamelCase ( self: str ) -> str: __UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*__lowerCamelCase ) def _lowerCamelCase ( self: Union[str, Any] ) -> str: __UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*__lowerCamelCase ) @slow def _lowerCamelCase ( self: List[Any] ) -> Union[str, Any]: # for model_name in TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["google/mobilebert-uncased"]: __UpperCAmelCase : Dict = TFMobileBertModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) @require_tf class _snake_case ( unittest.TestCase ): @slow def _lowerCamelCase ( self: Union[str, Any] ) -> str: __UpperCAmelCase : Any = TFMobileBertForPreTraining.from_pretrained("google/mobilebert-uncased" ) __UpperCAmelCase : Union[str, Any] = tf.constant([[0, 1, 2, 3, 4, 5]] ) __UpperCAmelCase : str = model(__lowerCamelCase )[0] __UpperCAmelCase : Any = [1, 6, 3_05_22] self.assertEqual(output.shape , __lowerCamelCase ) __UpperCAmelCase : str = tf.constant( [ [ [-4.5_91_95_47, -9.24_82_95, -9.64_52_56], [-6.7_30_61_75, -6.44_02_84, -6.6_05_28_37], [-7.2_74_35_06, -6.7_84_79_15, -6.02_46_73], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , __lowerCamelCase , atol=1e-4 )
157
1
"""simple docstring""" from __future__ import annotations import matplotlib.pyplot as plt # type: ignore import numpy # initial triangle of Koch snowflake lowerCAmelCase : Union[str, Any] = numpy.array([0, 0]) lowerCAmelCase : List[str] = numpy.array([0.5, 0.8_6_6_0_2_5_4]) lowerCAmelCase : Dict = numpy.array([1, 0]) lowerCAmelCase : List[Any] = [VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1] def a__ ( snake_case__ , snake_case__ ) -> list[numpy.ndarray]: lowerCamelCase = initial_vectors for _ in range(snake_case__ ): lowerCamelCase = iteration_step(snake_case__ ) return vectors def a__ ( snake_case__ ) -> list[numpy.ndarray]: lowerCamelCase = [] for i, start_vector in enumerate(vectors[:-1] ): lowerCamelCase = vectors[i + 1] new_vectors.append(snake_case__ ) lowerCamelCase = end_vector - start_vector new_vectors.append(start_vector + difference_vector / 3 ) new_vectors.append( start_vector + difference_vector / 3 + rotate(difference_vector / 3 , 60 ) ) new_vectors.append(start_vector + difference_vector * 2 / 3 ) new_vectors.append(vectors[-1] ) return new_vectors def a__ ( snake_case__ , snake_case__ ) -> numpy.ndarray: lowerCamelCase = numpy.radians(snake_case__ ) lowerCamelCase , lowerCamelCase = numpy.cos(snake_case__ ), numpy.sin(snake_case__ ) lowerCamelCase = numpy.array(((c, -s), (s, c)) ) return numpy.dot(snake_case__ , snake_case__ ) def a__ ( snake_case__ ) -> None: lowerCamelCase = plt.gca() axes.set_aspect("""equal""" ) # matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all # y-coordinates as inputs, which are constructed from the vector-list using # zip() lowerCamelCase , lowerCamelCase = zip(*snake_case__ ) plt.plot(snake_case__ , snake_case__ ) plt.show() if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase : Dict = iterate(INITIAL_VECTORS, 5) plot(processed_vectors)
168
"""simple docstring""" # DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from typing import Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import randn_tensor from .scheduling_utils import SchedulerMixin class __magic_name__ ( UpperCAmelCase__ , UpperCAmelCase__ ): '''simple docstring''' __UpperCamelCase = 1 @register_to_config def __init__( self , _a=2_000 , _a=0.1 , _a=20 , _a=1e-3 ): """simple docstring""" lowerCamelCase = None lowerCamelCase = None lowerCamelCase = None def _lowerCAmelCase ( self , _a , _a = None ): """simple docstring""" lowerCamelCase = torch.linspace(1 , self.config.sampling_eps , _a , device=_a ) def _lowerCAmelCase ( self , _a , _a , _a , _a=None ): """simple docstring""" if self.timesteps is None: raise ValueError( """`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler""" ) # TODO(Patrick) better comments + non-PyTorch # postprocess model score lowerCamelCase = ( -0.25 * t**2 * (self.config.beta_max - self.config.beta_min) - 0.5 * t * self.config.beta_min ) lowerCamelCase = torch.sqrt(1.0 - torch.exp(2.0 * log_mean_coeff ) ) lowerCamelCase = std.flatten() while len(std.shape ) < len(score.shape ): lowerCamelCase = std.unsqueeze(-1 ) lowerCamelCase = -score / std # compute lowerCamelCase = -1.0 / len(self.timesteps ) lowerCamelCase = self.config.beta_min + t * (self.config.beta_max - self.config.beta_min) lowerCamelCase = beta_t.flatten() while len(beta_t.shape ) < len(x.shape ): lowerCamelCase = beta_t.unsqueeze(-1 ) lowerCamelCase = -0.5 * beta_t * x lowerCamelCase = torch.sqrt(_a ) lowerCamelCase = drift - diffusion**2 * score lowerCamelCase = x + drift * dt # add noise lowerCamelCase = randn_tensor(x.shape , layout=x.layout , generator=_a , device=x.device , dtype=x.dtype ) lowerCamelCase = x_mean + diffusion * math.sqrt(-dt ) * noise return x, x_mean def __len__( self ): """simple docstring""" return self.config.num_train_timesteps
168
1
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.local_sgd import LocalSGD ######################################################################## # This is a fully working simple example to use Accelerate # with LocalSGD, which is a method to synchronize model # parameters every K batches. It is different, but complementary # to gradient accumulation. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## __A : int = 16 __A : Dict = 32 def __SCREAMING_SNAKE_CASE ( UpperCamelCase__ , UpperCamelCase__ = 16 ) -> Dict: '''simple docstring''' UpperCAmelCase = AutoTokenizer.from_pretrained('''bert-base-cased''' ) UpperCAmelCase = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(UpperCamelCase__ ): # max_length=None => use the model max length (it's actually the default) UpperCAmelCase = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): UpperCAmelCase = datasets.map( _UpperCAmelCase , batched=_UpperCAmelCase , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library UpperCAmelCase = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(UpperCamelCase__ ): # On TPU it's best to pad everything to the same length or training will be very slow. UpperCAmelCase = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": UpperCAmelCase = 16 elif accelerator.mixed_precision != "no": UpperCAmelCase = 8 else: UpperCAmelCase = None return tokenizer.pad( _UpperCAmelCase , padding='''longest''' , max_length=_UpperCAmelCase , pad_to_multiple_of=_UpperCAmelCase , return_tensors='''pt''' , ) # Instantiate dataloaders. UpperCAmelCase = DataLoader( tokenized_datasets['''train'''] , shuffle=_UpperCAmelCase , collate_fn=_UpperCAmelCase , batch_size=_UpperCAmelCase ) UpperCAmelCase = DataLoader( tokenized_datasets['''validation'''] , shuffle=_UpperCAmelCase , collate_fn=_UpperCAmelCase , batch_size=_UpperCAmelCase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1": from accelerate.test_utils.training import mocked_dataloaders __A : List[str] = mocked_dataloaders # noqa: F811 def __SCREAMING_SNAKE_CASE ( UpperCamelCase__ , UpperCamelCase__ ) -> str: '''simple docstring''' if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , _UpperCAmelCase ) == "1": UpperCAmelCase = 2 # New Code # UpperCAmelCase = int(args.gradient_accumulation_steps ) UpperCAmelCase = int(args.local_sgd_steps ) # Initialize accelerator UpperCAmelCase = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=_UpperCAmelCase ) if accelerator.distributed_type not in [DistributedType.NO, DistributedType.MULTI_CPU, DistributedType.MULTI_GPU]: raise NotImplementedError('''LocalSGD is supported only for CPUs and GPUs (no DeepSpeed or MegatronLM)''' ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCAmelCase = config['''lr'''] UpperCAmelCase = int(config['''num_epochs'''] ) UpperCAmelCase = int(config['''seed'''] ) UpperCAmelCase = int(config['''batch_size'''] ) UpperCAmelCase = evaluate.load('''glue''' , '''mrpc''' ) set_seed(_UpperCAmelCase ) UpperCAmelCase = get_dataloaders(_UpperCAmelCase , _UpperCAmelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCAmelCase = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=_UpperCAmelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). UpperCAmelCase = model.to(accelerator.device ) # Instantiate optimizer UpperCAmelCase = AdamW(params=model.parameters() , lr=_UpperCAmelCase ) # Instantiate scheduler UpperCAmelCase = get_linear_schedule_with_warmup( optimizer=_UpperCAmelCase , num_warmup_steps=100 , num_training_steps=(len(_UpperCAmelCase ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCAmelCase = accelerator.prepare( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # Now we train the model for epoch in range(_UpperCAmelCase ): model.train() with LocalSGD( accelerator=_UpperCAmelCase , model=_UpperCAmelCase , local_sgd_steps=_UpperCAmelCase , enabled=local_sgd_steps is not None ) as local_sgd: for step, batch in enumerate(_UpperCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(_UpperCAmelCase ): UpperCAmelCase = model(**_UpperCAmelCase ) UpperCAmelCase = output.loss accelerator.backward(_UpperCAmelCase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() # LocalSGD-specific line local_sgd.step() model.eval() for step, batch in enumerate(_UpperCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): UpperCAmelCase = model(**_UpperCAmelCase ) UpperCAmelCase = outputs.logits.argmax(dim=-1 ) UpperCAmelCase = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=_UpperCAmelCase , references=_UpperCAmelCase , ) UpperCAmelCase = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"""epoch {epoch}:""" , _UpperCAmelCase ) def __SCREAMING_SNAKE_CASE ( ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=_UpperCAmelCase , default=_UpperCAmelCase , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) # New Code # parser.add_argument( '''--gradient_accumulation_steps''' , type=_UpperCAmelCase , default=1 , help='''The number of minibatches to be ran before gradients are accumulated.''' , ) parser.add_argument( '''--local_sgd_steps''' , type=_UpperCAmelCase , default=8 , help='''Number of local SGD steps or None to disable local SGD''' ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) UpperCAmelCase = parser.parse_args() UpperCAmelCase = {'''lr''': 2E-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(_UpperCAmelCase , _UpperCAmelCase ) if __name__ == "__main__": main()
273
import json import os import tempfile from transformers.testing_utils import check_json_file_has_correct_format class UpperCAmelCase__ : '''simple docstring''' UpperCamelCase = None def snake_case__ ( self : List[str] ): '''simple docstring''' __UpperCAmelCase : List[Any] = self.feature_extraction_class(**self.feat_extract_dict ) __UpperCAmelCase : Optional[int] = json.loads(feat_extract.to_json_string() ) for key, value in self.feat_extract_dict.items(): self.assertEqual(obj[key] , a_ ) def snake_case__ ( self : Any ): '''simple docstring''' __UpperCAmelCase : str = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __UpperCAmelCase : Union[str, Any] = os.path.join(a_ , '''feat_extract.json''' ) feat_extract_first.to_json_file(a_ ) __UpperCAmelCase : Any = self.feature_extraction_class.from_json_file(a_ ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def snake_case__ ( self : Optional[int] ): '''simple docstring''' __UpperCAmelCase : Tuple = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __UpperCAmelCase : List[str] = feat_extract_first.save_pretrained(a_ )[0] check_json_file_has_correct_format(a_ ) __UpperCAmelCase : Optional[Any] = self.feature_extraction_class.from_pretrained(a_ ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def snake_case__ ( self : Dict ): '''simple docstring''' __UpperCAmelCase : int = self.feature_extraction_class() self.assertIsNotNone(a_ )
226
0
'''simple docstring''' from operator import delitem, getitem, setitem import pytest from data_structures.hashing.hash_map import HashMap def a_ ( lowerCamelCase : Tuple ): return getitem, k def a_ ( lowerCamelCase : Optional[int] , lowerCamelCase : Optional[int] ): return setitem, k, v def a_ ( lowerCamelCase : Any ): return delitem, k def a_ ( lowerCamelCase : Optional[Any] , lowerCamelCase : List[Any] , *lowerCamelCase : Tuple ): try: return fun(lowerCamelCase , *lowerCamelCase ), None except Exception as e: return None, e __snake_case =( _set("""key_a""", """val_a"""), _set("""key_b""", """val_b"""), ) __snake_case =[ _set("""key_a""", """val_a"""), _set("""key_a""", """val_b"""), ] __snake_case =[ _set("""key_a""", """val_a"""), _set("""key_b""", """val_b"""), _del("""key_a"""), _del("""key_b"""), _set("""key_a""", """val_a"""), _del("""key_a"""), ] __snake_case =[ _get("""key_a"""), _del("""key_a"""), _set("""key_a""", """val_a"""), _del("""key_a"""), _del("""key_a"""), _get("""key_a"""), ] __snake_case =[ *[_set(x, x) for x in range(5)], # guaranteed upsize ] __snake_case =[ *[_set(x, x) for x in range(5)], # guaranteed upsize *[_del(x) for x in range(5)], _set("""key_a""", """val_b"""), ] @pytest.mark.parametrize( 'operations' , ( pytest.param(_add_items , id='add items' ), pytest.param(_overwrite_items , id='overwrite items' ), pytest.param(_delete_items , id='delete items' ), pytest.param(_access_absent_items , id='access absent items' ), pytest.param(_add_with_resize_up , id='add with resize up' ), pytest.param(_add_with_resize_down , id='add with resize down' ), ) , ) def a_ ( lowerCamelCase : List[str] ): lowerCAmelCase = HashMap(initial_block_size=4 ) lowerCAmelCase = {} for _, (fun, *args) in enumerate(lowerCamelCase ): lowerCAmelCase , lowerCAmelCase = _run_operation(lowerCamelCase , lowerCamelCase , *lowerCamelCase ) lowerCAmelCase , lowerCAmelCase = _run_operation(lowerCamelCase , lowerCamelCase , *lowerCamelCase ) assert my_res == py_res assert str(lowerCamelCase ) == str(lowerCamelCase ) assert set(lowerCamelCase ) == set(lowerCamelCase ) assert len(lowerCamelCase ) == len(lowerCamelCase ) assert set(my.items() ) == set(py.items() ) def a_ ( ): def is_public(lowerCamelCase : str ) -> bool: return not name.startswith('_' ) lowerCAmelCase = {name for name in dir({} ) if is_public(lowerCamelCase )} lowerCAmelCase = {name for name in dir(HashMap() ) if is_public(lowerCamelCase )} assert dict_public_names > hash_public_names
55
'''simple docstring''' from .data_collator import ( DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForSeqaSeq, DataCollatorForSOP, DataCollatorForTokenClassification, DataCollatorForWholeWordMask, DataCollatorWithPadding, DefaultDataCollator, default_data_collator, ) from .metrics import glue_compute_metrics, xnli_compute_metrics from .processors import ( DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor, SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels, squad_convert_examples_to_features, xnli_output_modes, xnli_processors, xnli_tasks_num_labels, )
55
1
def snake_case__ ( SCREAMING_SNAKE_CASE_ : list[list[int | float]] ): '''simple docstring''' lowercase__ : List[Any] = len(SCREAMING_SNAKE_CASE_ ) lowercase__ : str = len(matrix[0] ) lowercase__ : Tuple = min(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for row in range(SCREAMING_SNAKE_CASE_ ): # Check if diagonal element is not zero if matrix[row][row] != 0: # Eliminate all the elements below the diagonal for col in range(row + 1 , SCREAMING_SNAKE_CASE_ ): lowercase__ : Optional[int] = matrix[col][row] / matrix[row][row] for i in range(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): matrix[col][i] -= multiplier * matrix[row][i] else: # Find a non-zero diagonal element to swap rows lowercase__ : Optional[int] = True for i in range(row + 1 , SCREAMING_SNAKE_CASE_ ): if matrix[i][row] != 0: lowercase__ , lowercase__ : str = matrix[i], matrix[row] lowercase__ : Dict = False break if reduce: rank -= 1 for i in range(SCREAMING_SNAKE_CASE_ ): lowercase__ : List[Any] = matrix[i][rank] # Reduce the row pointer by one to stay on the same row row -= 1 return rank if __name__ == "__main__": import doctest doctest.testmod()
214
def snake_case__ ( SCREAMING_SNAKE_CASE_ : str ): '''simple docstring''' if not all(char in '01' for char in bin_string ): raise ValueError('Non-binary value was passed to the function' ) if not bin_string: raise ValueError('Empty string was passed to the function' ) lowercase__ : Union[str, Any] = '' while len(SCREAMING_SNAKE_CASE_ ) % 3 != 0: lowercase__ : List[str] = '0' + bin_string lowercase__ : Any = [ bin_string[index : index + 3] for index in range(len(SCREAMING_SNAKE_CASE_ ) ) if index % 3 == 0 ] for bin_group in bin_string_in_3_list: lowercase__ : str = 0 for index, val in enumerate(SCREAMING_SNAKE_CASE_ ): oct_val += int(2 ** (2 - index) * int(SCREAMING_SNAKE_CASE_ ) ) oct_string += str(SCREAMING_SNAKE_CASE_ ) return oct_string if __name__ == "__main__": from doctest import testmod testmod()
214
1
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # and perform gradient accumulation # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## A__ = 16 A__ = 32 def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase = 16 ) -> int: """simple docstring""" snake_case__ : Any = AutoTokenizer.from_pretrained('''bert-base-cased''' ) snake_case__ : List[Any] = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(__lowerCAmelCase ): # max_length=None => use the model max length (it's actually the default) snake_case__ : Optional[Any] = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=__lowerCAmelCase , max_length=__lowerCAmelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): snake_case__ : Optional[int] = datasets.map( __lowerCAmelCase , batched=__lowerCAmelCase , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library snake_case__ : Optional[Any] = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(__lowerCAmelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. snake_case__ : List[Any] = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": snake_case__ : Optional[int] = 16 elif accelerator.mixed_precision != "no": snake_case__ : int = 8 else: snake_case__ : List[str] = None return tokenizer.pad( __lowerCAmelCase , padding='''longest''' , max_length=__lowerCAmelCase , pad_to_multiple_of=__lowerCAmelCase , return_tensors='''pt''' , ) # Instantiate dataloaders. snake_case__ : Dict = DataLoader( tokenized_datasets['''train'''] , shuffle=__lowerCAmelCase , collate_fn=__lowerCAmelCase , batch_size=__lowerCAmelCase ) snake_case__ : Tuple = DataLoader( tokenized_datasets['''validation'''] , shuffle=__lowerCAmelCase , collate_fn=__lowerCAmelCase , batch_size=__lowerCAmelCase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''', None) == "1": from accelerate.test_utils.training import mocked_dataloaders A__ = mocked_dataloaders # noqa: F811 def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase ) -> Tuple: """simple docstring""" if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , __lowerCAmelCase ) == "1": snake_case__ : Union[str, Any] = 2 # New Code # snake_case__ : Tuple = int(args.gradient_accumulation_steps ) # Initialize accelerator snake_case__ : Optional[int] = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=__lowerCAmelCase ) if accelerator.distributed_type == DistributedType.TPU and gradient_accumulation_steps > 1: raise NotImplementedError( '''Gradient accumulation on TPUs is currently not supported. Pass `gradient_accumulation_steps=1`''' ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs snake_case__ : Optional[int] = config['''lr'''] snake_case__ : Optional[int] = int(config['''num_epochs'''] ) snake_case__ : Tuple = int(config['''seed'''] ) snake_case__ : Optional[int] = int(config['''batch_size'''] ) snake_case__ : List[str] = evaluate.load('''glue''' , '''mrpc''' ) set_seed(__lowerCAmelCase ) snake_case__ , snake_case__ : str = get_dataloaders(__lowerCAmelCase , __lowerCAmelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) snake_case__ : Optional[Any] = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=__lowerCAmelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). snake_case__ : List[Any] = model.to(accelerator.device ) # Instantiate optimizer snake_case__ : int = AdamW(params=model.parameters() , lr=__lowerCAmelCase ) # Instantiate scheduler snake_case__ : List[Any] = get_linear_schedule_with_warmup( optimizer=__lowerCAmelCase , num_warmup_steps=100 , num_training_steps=(len(__lowerCAmelCase ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ : Dict = accelerator.prepare( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # Now we train the model for epoch in range(__lowerCAmelCase ): model.train() for step, batch in enumerate(__lowerCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(__lowerCAmelCase ): snake_case__ : Optional[int] = model(**__lowerCAmelCase ) snake_case__ : Union[str, Any] = output.loss accelerator.backward(__lowerCAmelCase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(__lowerCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): snake_case__ : Tuple = model(**__lowerCAmelCase ) snake_case__ : Union[str, Any] = outputs.logits.argmax(dim=-1 ) snake_case__ , snake_case__ : Any = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=__lowerCAmelCase , references=__lowerCAmelCase , ) snake_case__ : str = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""" , __lowerCAmelCase ) def _lowerCAmelCase ( ) -> Tuple: """simple docstring""" snake_case__ : Any = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=__lowerCAmelCase , default=__lowerCAmelCase , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) # New Code # parser.add_argument( '''--gradient_accumulation_steps''' , type=__lowerCAmelCase , default=1 , help='''The number of minibatches to be ran before gradients are accumulated.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) snake_case__ : List[str] = parser.parse_args() snake_case__ : Tuple = {'''lr''': 2E-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(__lowerCAmelCase , __lowerCAmelCase ) if __name__ == "__main__": main()
363
from __future__ import annotations import random # Maximum size of the population. Bigger could be faster but is more memory expensive. A__ = 200 # Number of elements selected in every generation of evolution. The selection takes # place from best to worst of that generation and must be smaller than N_POPULATION. A__ = 50 # Probability that an element of a generation can mutate, changing one of its genes. # This will guarantee that all genes will be used during evolution. A__ = 0.4 # Just a seed to improve randomness required by the algorithm. random.seed(random.randint(0, 1000)) def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase ) -> tuple[str, float]: """simple docstring""" snake_case__ : List[Any] = len([g for position, g in enumerate(__lowerCAmelCase ) if g == main_target[position]] ) return (item, float(__lowerCAmelCase )) def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase ) -> tuple[str, str]: """simple docstring""" snake_case__ : Tuple = random.randint(0 , len(__lowerCAmelCase ) - 1 ) snake_case__ : Optional[Any] = parent_a[:random_slice] + parent_a[random_slice:] snake_case__ : Any = parent_a[:random_slice] + parent_a[random_slice:] return (child_a, child_a) def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase ) -> str: """simple docstring""" snake_case__ : Dict = list(__lowerCAmelCase ) if random.uniform(0 , 1 ) < MUTATION_PROBABILITY: snake_case__ : List[str] = random.choice(__lowerCAmelCase ) return "".join(__lowerCAmelCase ) def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ) -> list[str]: """simple docstring""" snake_case__ : Dict = [] # Generate more children proportionally to the fitness score. snake_case__ : List[str] = int(parent_a[1] * 100 ) + 1 snake_case__ : Optional[int] = 10 if child_n >= 10 else child_n for _ in range(__lowerCAmelCase ): snake_case__ : List[str] = population_score[random.randint(0 , __lowerCAmelCase )][0] snake_case__ , snake_case__ : Union[str, Any] = crossover(parent_a[0] , __lowerCAmelCase ) # Append new string to the population list. pop.append(mutate(__lowerCAmelCase , __lowerCAmelCase ) ) pop.append(mutate(__lowerCAmelCase , __lowerCAmelCase ) ) return pop def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = True ) -> tuple[int, int, str]: """simple docstring""" if N_POPULATION < N_SELECTED: snake_case__ : List[str] = f"""{N_POPULATION} must be bigger than {N_SELECTED}""" raise ValueError(__lowerCAmelCase ) # Verify that the target contains no genes besides the ones inside genes variable. snake_case__ : List[Any] = sorted({c for c in target if c not in genes} ) if not_in_genes_list: snake_case__ : List[str] = f"""{not_in_genes_list} is not in genes list, evolution cannot converge""" raise ValueError(__lowerCAmelCase ) # Generate random starting population. snake_case__ : Tuple = [] for _ in range(__lowerCAmelCase ): population.append(''''''.join([random.choice(__lowerCAmelCase ) for i in range(len(__lowerCAmelCase ) )] ) ) # Just some logs to know what the algorithms is doing. snake_case__ , snake_case__ : Union[str, Any] = 0, 0 # This loop will end when we find a perfect match for our target. while True: generation += 1 total_population += len(__lowerCAmelCase ) # Random population created. Now it's time to evaluate. # Adding a bit of concurrency can make everything faster, # # import concurrent.futures # population_score: list[tuple[str, float]] = [] # with concurrent.futures.ThreadPoolExecutor( # max_workers=NUM_WORKERS) as executor: # futures = {executor.submit(evaluate, item) for item in population} # concurrent.futures.wait(futures) # population_score = [item.result() for item in futures] # # but with a simple algorithm like this, it will probably be slower. # We just need to call evaluate for every item inside the population. snake_case__ : str = [evaluate(__lowerCAmelCase , __lowerCAmelCase ) for item in population] # Check if there is a matching evolution. snake_case__ : str = sorted(__lowerCAmelCase , key=lambda __lowerCAmelCase : x[1] , reverse=__lowerCAmelCase ) if population_score[0][0] == target: return (generation, total_population, population_score[0][0]) # Print the best result every 10 generation. # Just to know that the algorithm is working. if debug and generation % 10 == 0: print( f"""\nGeneration: {generation}""" f"""\nTotal Population:{total_population}""" f"""\nBest score: {population_score[0][1]}""" f"""\nBest string: {population_score[0][0]}""" ) # Flush the old population, keeping some of the best evolutions. # Keeping this avoid regression of evolution. snake_case__ : Optional[Any] = population[: int(N_POPULATION / 3 )] population.clear() population.extend(__lowerCAmelCase ) # Normalize population score to be between 0 and 1. snake_case__ : Dict = [ (item, score / len(__lowerCAmelCase )) for item, score in population_score ] # This is selection for i in range(__lowerCAmelCase ): population.extend(select(population_score[int(__lowerCAmelCase )] , __lowerCAmelCase , __lowerCAmelCase ) ) # Check if the population has already reached the maximum value and if so, # break the cycle. If this check is disabled, the algorithm will take # forever to compute large strings, but will also calculate small strings in # a far fewer generations. if len(__lowerCAmelCase ) > N_POPULATION: break if __name__ == "__main__": A__ = ( '''This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!''' ) A__ = list( ''' ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm''' '''nopqrstuvwxyz.,;!?+-*#@^\'èéòà€ù=)(&%$£/\\''' ) A__ , A__ , A__ = basic(target_str, genes_list) print( f"""\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}""" )
44
0
import unittest from pathlib import Path from tempfile import NamedTemporaryFile, TemporaryDirectory from transformers import BertConfig, BertTokenizerFast, FeatureExtractionPipeline from transformers.convert_graph_to_onnx import ( convert, ensure_valid_input, generate_identified_filename, infer_shapes, quantize, ) from transformers.testing_utils import require_tf, require_tokenizers, require_torch, slow class __lowerCAmelCase : def _lowercase ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> List[str]: '''simple docstring''' return None class __lowerCAmelCase : def _lowercase ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[Any]: '''simple docstring''' return None class __lowerCAmelCase ( unittest.TestCase): _lowercase : Any = [ # (model_name, model_kwargs) ("""bert-base-cased""", {}), ("""gpt2""", {"""use_cache""": False}), # We don't support exporting GPT2 past keys anymore ] @require_tf @slow def _lowercase ( self ) -> Dict: '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(lowerCAmelCase__ , "tf" , 1_2 , **lowerCAmelCase__ ) @require_torch @slow def _lowercase ( self ) -> str: '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(lowerCAmelCase__ , "pt" , 1_2 , **lowerCAmelCase__ ) @require_torch @slow def _lowercase ( self ) -> List[Any]: '''simple docstring''' from transformers import BertModel a__ : Union[str, Any] =["[UNK]", "[SEP]", "[CLS]", "[PAD]", "[MASK]", "some", "other", "words"] with NamedTemporaryFile(mode="w+t" ) as vocab_file: vocab_file.write("\n".join(lowerCAmelCase__ ) ) vocab_file.flush() a__ : Union[str, Any] =BertTokenizerFast(vocab_file.name ) with TemporaryDirectory() as bert_save_dir: a__ : Any =BertModel(BertConfig(vocab_size=len(lowerCAmelCase__ ) ) ) model.save_pretrained(lowerCAmelCase__ ) self._test_export(lowerCAmelCase__ , "pt" , 1_2 , lowerCAmelCase__ ) @require_tf @slow def _lowercase ( self ) -> Optional[int]: '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: a__ : Optional[int] =self._test_export(lowerCAmelCase__ , "tf" , 1_2 , **lowerCAmelCase__ ) a__ : List[str] =quantize(Path(lowerCAmelCase__ ) ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(lowerCAmelCase__ ).stat().st_size: self.fail("Quantized model is bigger than initial ONNX model" ) @require_torch @slow def _lowercase ( self ) -> Any: '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: a__ : List[str] =self._test_export(lowerCAmelCase__ , "pt" , 1_2 , **lowerCAmelCase__ ) a__ : List[Any] =quantize(lowerCAmelCase__ ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(lowerCAmelCase__ ).stat().st_size: self.fail("Quantized model is bigger than initial ONNX model" ) def _lowercase ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=None , **lowerCAmelCase__ ) -> str: '''simple docstring''' try: # Compute path with TemporaryDirectory() as tempdir: a__ : Any =Path(lowerCAmelCase__ ).joinpath("model.onnx" ) # Remove folder if exists if path.parent.exists(): path.parent.rmdir() # Export convert(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ) return path except Exception as e: self.fail(lowerCAmelCase__ ) @require_torch @require_tokenizers @slow def _lowercase ( self ) -> int: '''simple docstring''' from transformers import BertModel a__ : List[Any] =BertModel(BertConfig.from_pretrained("lysandre/tiny-bert-random" ) ) a__ : int =BertTokenizerFast.from_pretrained("lysandre/tiny-bert-random" ) self._test_infer_dynamic_axis(lowerCAmelCase__ , lowerCAmelCase__ , "pt" ) @require_tf @require_tokenizers @slow def _lowercase ( self ) -> Optional[Any]: '''simple docstring''' from transformers import TFBertModel a__ : Any =TFBertModel(BertConfig.from_pretrained("lysandre/tiny-bert-random" ) ) a__ : str =BertTokenizerFast.from_pretrained("lysandre/tiny-bert-random" ) self._test_infer_dynamic_axis(lowerCAmelCase__ , lowerCAmelCase__ , "tf" ) def _lowercase ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Tuple: '''simple docstring''' a__ : int =FeatureExtractionPipeline(lowerCAmelCase__ , lowerCAmelCase__ ) a__ : int =["input_ids", "token_type_ids", "attention_mask", "output_0", "output_1"] a__ , a__ , a__ , a__ : str =infer_shapes(lowerCAmelCase__ , lowerCAmelCase__ ) # Assert all variables are present self.assertEqual(len(lowerCAmelCase__ ) , len(lowerCAmelCase__ ) ) self.assertTrue(all(var_name in shapes for var_name in variable_names ) ) self.assertSequenceEqual(variable_names[:3] , lowerCAmelCase__ ) self.assertSequenceEqual(variable_names[3:] , lowerCAmelCase__ ) # Assert inputs are {0: batch, 1: sequence} for var_name in ["input_ids", "token_type_ids", "attention_mask"]: self.assertDictEqual(shapes[var_name] , {0: "batch", 1: "sequence"} ) # Assert outputs are {0: batch, 1: sequence} and {0: batch} self.assertDictEqual(shapes["output_0"] , {0: "batch", 1: "sequence"} ) self.assertDictEqual(shapes["output_1"] , {0: "batch"} ) def _lowercase ( self ) -> Dict: '''simple docstring''' a__ : int =["input_ids", "attention_mask", "token_type_ids"] a__ : Any ={"input_ids": [1, 2, 3, 4], "attention_mask": [0, 0, 0, 0], "token_type_ids": [1, 1, 1, 1]} a__ , a__ : Tuple =ensure_valid_input(FuncContiguousArgs() , lowerCAmelCase__ , lowerCAmelCase__ ) # Should have exactly the same number of args (all are valid) self.assertEqual(len(lowerCAmelCase__ ) , 3 ) # Should have exactly the same input names self.assertEqual(set(lowerCAmelCase__ ) , set(lowerCAmelCase__ ) ) # Parameter should be reordered according to their respective place in the function: # (input_ids, token_type_ids, attention_mask) self.assertEqual(lowerCAmelCase__ , (tokens["input_ids"], tokens["token_type_ids"], tokens["attention_mask"]) ) # Generated args are interleaved with another args (for instance parameter "past" in GPT2) a__ , a__ : Any =ensure_valid_input(FuncNonContiguousArgs() , lowerCAmelCase__ , lowerCAmelCase__ ) # Should have exactly the one arg (all before the one not provided "some_other_args") self.assertEqual(len(lowerCAmelCase__ ) , 1 ) self.assertEqual(len(lowerCAmelCase__ ) , 1 ) # Should have only "input_ids" self.assertEqual(inputs_args[0] , tokens["input_ids"] ) self.assertEqual(ordered_input_names[0] , "input_ids" ) def _lowercase ( self ) -> Tuple: '''simple docstring''' a__ : List[Any] =generate_identified_filename(Path("/home/something/my_fake_model.onnx" ) , "-test" ) self.assertEqual("/home/something/my_fake_model-test.onnx" , generated.as_posix() )
95
import os def UpperCAmelCase__ ( _A : Any ): '''simple docstring''' a__ =len(grid[0] ) a__ =len(_A ) a__ =0 a__ =0 a__ =0 # Check vertically, horizontally, diagonally at the same time (only works # for nxn grid) for i in range(_A ): for j in range(n_rows - 3 ): a__ =grid[j][i] * grid[j + 1][i] * grid[j + 2][i] * grid[j + 3][i] a__ =grid[i][j] * grid[i][j + 1] * grid[i][j + 2] * grid[i][j + 3] # Left-to-right diagonal (\) product if i < n_columns - 3: a__ =( grid[i][j] * grid[i + 1][j + 1] * grid[i + 2][j + 2] * grid[i + 3][j + 3] ) # Right-to-left diagonal(/) product if i > 2: a__ =( grid[i][j] * grid[i - 1][j + 1] * grid[i - 2][j + 2] * grid[i - 3][j + 3] ) a__ =max( _A , _A , _A , _A ) if max_product > largest: a__ =max_product return largest def UpperCAmelCase__ ( ): '''simple docstring''' a__ =[] with open(os.path.dirname(_A ) + '''/grid.txt''' ) as file: for line in file: grid.append(line.strip('''\n''' ).split(''' ''' ) ) a__ =[[int(_A ) for i in grid[j]] for j in range(len(_A ) )] return largest_product(_A ) if __name__ == "__main__": print(solution())
188
0
'''simple docstring''' import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel from diffusers import DDIMScheduler, LDMPipeline, UNetaDModel, VQModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" @property def A ( self : Dict): torch.manual_seed(0) _A : int = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , ) return model @property def A ( self : Dict): torch.manual_seed(0) _A : Union[str, Any] = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=3 , ) return model @property def A ( self : Union[str, Any]): torch.manual_seed(0) _A : int = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModel(_a) def A ( self : Optional[int]): _A : List[str] = self.dummy_uncond_unet _A : int = DDIMScheduler() _A : List[Any] = self.dummy_vq_model _A : str = LDMPipeline(unet=_a , vqvae=_a , scheduler=_a) ldm.to(_a) ldm.set_progress_bar_config(disable=_a) _A : List[str] = torch.manual_seed(0) _A : Any = ldm(generator=_a , num_inference_steps=2 , output_type='numpy').images _A : Optional[int] = torch.manual_seed(0) _A : str = ldm(generator=_a , num_inference_steps=2 , output_type='numpy' , return_dict=_a)[0] _A : Optional[Any] = image[0, -3:, -3:, -1] _A : List[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _A : Optional[int] = np.array([0.8512, 0.818, 0.6411, 0.6808, 0.4465, 0.5618, 0.46, 0.6231, 0.5172]) _A : Union[str, Any] = 1e-2 if torch_device != 'mps' else 3e-2 assert np.abs(image_slice.flatten() - expected_slice).max() < tolerance assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < tolerance @slow @require_torch class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" def A ( self : Optional[int]): _A : str = LDMPipeline.from_pretrained('CompVis/ldm-celebahq-256') ldm.to(_a) ldm.set_progress_bar_config(disable=_a) _A : int = torch.manual_seed(0) _A : Any = ldm(generator=_a , num_inference_steps=5 , output_type='numpy').images _A : int = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) _A : Union[str, Any] = np.array([0.4399, 0.4_4975, 0.4_6825, 0.474, 0.4359, 0.4581, 0.4_5095, 0.4341, 0.4447]) _A : Optional[int] = 1e-2 if torch_device != 'mps' else 3e-2 assert np.abs(image_slice.flatten() - expected_slice).max() < tolerance
363
'''simple docstring''' import unittest import numpy as np import torch from torch import nn from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import enable_full_determinism, skip_mps from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __lowerCamelCase ( a_ , unittest.TestCase ): """simple docstring""" a = KandinskyVaaPriorPipeline a = ["prompt"] a = ["prompt", "negative_prompt"] a = [ "num_images_per_prompt", "generator", "num_inference_steps", "latents", "negative_prompt", "guidance_scale", "output_type", "return_dict", ] a = False @property def A ( self : List[str]): return 32 @property def A ( self : List[Any]): return 32 @property def A ( self : Dict): return self.time_input_dim @property def A ( self : Tuple): return self.time_input_dim * 4 @property def A ( self : Optional[int]): return 100 @property def A ( self : Dict): _A : Tuple = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') return tokenizer @property def A ( self : Optional[Any]): torch.manual_seed(0) _A : Any = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(SCREAMING_SNAKE_CASE) @property def A ( self : List[Any]): torch.manual_seed(0) _A : Optional[Any] = { 'num_attention_heads': 2, 'attention_head_dim': 12, 'embedding_dim': self.text_embedder_hidden_size, 'num_layers': 1, } _A : Any = PriorTransformer(**SCREAMING_SNAKE_CASE) # clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0 _A : str = nn.Parameter(torch.ones(model.clip_std.shape)) return model @property def A ( self : List[str]): torch.manual_seed(0) _A : List[Any] = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=224 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=14 , ) _A : Union[str, Any] = CLIPVisionModelWithProjection(SCREAMING_SNAKE_CASE) return model @property def A ( self : int): _A : Optional[Any] = CLIPImageProcessor( crop_size=224 , do_center_crop=SCREAMING_SNAKE_CASE , do_normalize=SCREAMING_SNAKE_CASE , do_resize=SCREAMING_SNAKE_CASE , image_mean=[0.4814_5466, 0.457_8275, 0.4082_1073] , image_std=[0.2686_2954, 0.2613_0258, 0.2757_7711] , resample=3 , size=224 , ) return image_processor def A ( self : Optional[Any]): _A : Optional[int] = self.dummy_prior _A : Dict = self.dummy_image_encoder _A : Dict = self.dummy_text_encoder _A : str = self.dummy_tokenizer _A : Optional[Any] = self.dummy_image_processor _A : Optional[Any] = UnCLIPScheduler( variance_type='fixed_small_log' , prediction_type='sample' , num_train_timesteps=1000 , clip_sample=SCREAMING_SNAKE_CASE , clip_sample_range=10.0 , ) _A : Dict = { 'prior': prior, 'image_encoder': image_encoder, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'scheduler': scheduler, 'image_processor': image_processor, } return components def A ( self : Tuple , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : List[str]=0): if str(SCREAMING_SNAKE_CASE).startswith('mps'): _A : Dict = torch.manual_seed(SCREAMING_SNAKE_CASE) else: _A : int = torch.Generator(device=SCREAMING_SNAKE_CASE).manual_seed(SCREAMING_SNAKE_CASE) _A : List[Any] = { 'prompt': 'horse', 'generator': generator, 'guidance_scale': 4.0, 'num_inference_steps': 2, 'output_type': 'np', } return inputs def A ( self : List[Any]): _A : str = 'cpu' _A : Tuple = self.get_dummy_components() _A : List[Any] = self.pipeline_class(**SCREAMING_SNAKE_CASE) _A : Any = pipe.to(SCREAMING_SNAKE_CASE) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE) _A : Dict = pipe(**self.get_dummy_inputs(SCREAMING_SNAKE_CASE)) _A : str = output.image_embeds _A : Optional[int] = pipe( **self.get_dummy_inputs(SCREAMING_SNAKE_CASE) , return_dict=SCREAMING_SNAKE_CASE , )[0] _A : Optional[int] = image[0, -10:] _A : int = image_from_tuple[0, -10:] assert image.shape == (1, 32) _A : Dict = np.array( [-0.0532, 1.7120, 0.3656, -1.0852, -0.8946, -1.1756, 0.4348, 0.2482, 0.5146, -0.1156]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 @skip_mps def A ( self : Any): _A : Tuple = torch_device == 'cpu' _A : Optional[int] = True _A : Tuple = False self._test_inference_batch_single_identical( test_max_difference=SCREAMING_SNAKE_CASE , relax_max_difference=SCREAMING_SNAKE_CASE , test_mean_pixel_difference=SCREAMING_SNAKE_CASE , ) @skip_mps def A ( self : int): _A : Tuple = torch_device == 'cpu' _A : Optional[Any] = False self._test_attention_slicing_forward_pass( test_max_difference=SCREAMING_SNAKE_CASE , test_mean_pixel_difference=SCREAMING_SNAKE_CASE , )
227
0
'''simple docstring''' from diffusers.utils.testing_utils import require_onnxruntime @require_onnxruntime class a : pass
168
'''simple docstring''' from __future__ import annotations from collections.abc import Callable from typing import Any, Generic, TypeVar a_ : Any = TypeVar("T") class a ( Generic[T] ): def __init__( self , __magic_name__ , __magic_name__ ) -> None: _a = None _a = len(__magic_name__ ) _a = [any_type for _ in range(self.N )] + arr _a = fnc self.build() def __UpperCAmelCase ( self ) -> None: for p in range(self.N - 1 , 0 , -1 ): _a = self.fn(self.st[p * 2] , self.st[p * 2 + 1] ) def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ ) -> None: p += self.N _a = v while p > 1: _a = p // 2 _a = self.fn(self.st[p * 2] , self.st[p * 2 + 1] ) def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ ) -> T | None: # noqa: E741 _a , _a = l + self.N, r + self.N _a = None while l <= r: if l % 2 == 1: _a = self.st[l] if res is None else self.fn(__magic_name__ , self.st[l] ) if r % 2 == 0: _a = self.st[r] if res is None else self.fn(__magic_name__ , self.st[r] ) _a , _a = (l + 1) // 2, (r - 1) // 2 return res if __name__ == "__main__": from functools import reduce a_ : Union[str, Any] = [1, 1_0, -2, 9, -3, 8, 4, -7, 5, 6, 1_1, -1_2] a_ : str = { 0: 7, 1: 2, 2: 6, 3: -1_4, 4: 5, 5: 4, 6: 7, 7: -1_0, 8: 9, 9: 1_0, 1_0: 1_2, 1_1: 1, } a_ : Dict = SegmentTree(test_array, min) a_ : Optional[int] = SegmentTree(test_array, max) a_ : int = SegmentTree(test_array, lambda a, b: a + b) def _A () -> None: '''simple docstring''' for i in range(len(lowerCAmelCase__ ) ): for j in range(lowerCAmelCase__ , len(lowerCAmelCase__ ) ): _a = reduce(lowerCAmelCase__ , test_array[i : j + 1] ) _a = reduce(lowerCAmelCase__ , test_array[i : j + 1] ) _a = reduce(lambda lowerCAmelCase__ , lowerCAmelCase__ : a + b , test_array[i : j + 1] ) assert min_range == min_segment_tree.query(lowerCAmelCase__ , lowerCAmelCase__ ) assert max_range == max_segment_tree.query(lowerCAmelCase__ , lowerCAmelCase__ ) assert sum_range == sum_segment_tree.query(lowerCAmelCase__ , lowerCAmelCase__ ) test_all_segments() for index, value in test_updates.items(): a_ : Optional[Any] = value min_segment_tree.update(index, value) max_segment_tree.update(index, value) sum_segment_tree.update(index, value) test_all_segments()
168
1
# Copyright (c) 2021-, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #################################################################################################### # # Note: If when running this conversion script you're getting an exception: # ModuleNotFoundError: No module named 'megatron.model.enums' # you need to tell python where to find the clone of Megatron-LM, e.g.: # # cd /tmp # git clone https://github.com/NVIDIA/Megatron-LM # PYTHONPATH=/tmp/Megatron-LM python src/transformers/models/megatron_gpt2/convert_megatron_gpt2_checkpoint.py ... # # if you already have it cloned elsewhere, simply adjust the path to the existing path # # If the training was done using a Megatron-LM fork, e.g., # https://github.com/microsoft/Megatron-DeepSpeed/ then chances are that you need to have that one # in your path, i.e., /path/to/Megatron-DeepSpeed/ # import argparse import os import re import zipfile import torch from transformers import AutoTokenizer, GPTaConfig def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_=0 ) -> Optional[Any]: # Format the message. if name is None: UpperCamelCase_ = None else: UpperCamelCase_ = "." * max(0 , spaces - 2 ) + "# {:" + str(50 - spaces ) + "s}" UpperCamelCase_ = fmt.format(UpperCamelCase_ ) # Print and recurse (if needed). if isinstance(UpperCamelCase_ , UpperCamelCase_ ): if msg is not None: print(UpperCamelCase_ ) for k in val.keys(): recursive_print(UpperCamelCase_ , val[k] , spaces + 2 ) elif isinstance(UpperCamelCase_ , torch.Tensor ): print(UpperCamelCase_ , ":" , val.size() ) else: print(UpperCamelCase_ , ":" , UpperCamelCase_ ) def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> Tuple: # Permutes layout of param tensor to [num_splits * num_heads * hidden_size, :] # for compatibility with later versions of NVIDIA Megatron-LM. # The inverse operation is performed inside Megatron-LM to read checkpoints: # https://github.com/NVIDIA/Megatron-LM/blob/v2.4/megatron/checkpointing.py#L209 # If param is the weight tensor of the self-attention block, the returned tensor # will have to be transposed one more time to be read by HuggingFace GPT2. UpperCamelCase_ = param.size() if checkpoint_version == 1.0: # version 1.0 stores [num_heads * hidden_size * num_splits, :] UpperCamelCase_ = (num_heads, hidden_size, num_splits) + input_shape[1:] UpperCamelCase_ = param.view(*UpperCamelCase_ ) UpperCamelCase_ = param.transpose(0 , 2 ) UpperCamelCase_ = param.transpose(1 , 2 ).contiguous() elif checkpoint_version >= 2.0: # other versions store [num_heads * num_splits * hidden_size, :] UpperCamelCase_ = (num_heads, num_splits, hidden_size) + input_shape[1:] UpperCamelCase_ = param.view(*UpperCamelCase_ ) UpperCamelCase_ = param.transpose(0 , 1 ).contiguous() UpperCamelCase_ = param.view(*UpperCamelCase_ ) return param def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> Optional[int]: # The converted output model. UpperCamelCase_ = {} # old versions did not store training args UpperCamelCase_ = input_state_dict.get("args" , UpperCamelCase_ ) if ds_args is not None: # do not make the user write a config file when the exact dimensions/sizes are already in the checkpoint # from pprint import pprint # pprint(vars(ds_args)) UpperCamelCase_ = ds_args.padded_vocab_size UpperCamelCase_ = ds_args.max_position_embeddings UpperCamelCase_ = ds_args.hidden_size UpperCamelCase_ = ds_args.num_layers UpperCamelCase_ = ds_args.num_attention_heads UpperCamelCase_ = ds_args.ffn_hidden_size # pprint(config) # The number of heads. UpperCamelCase_ = config.n_head # The hidden_size per head. UpperCamelCase_ = config.n_embd // config.n_head # Megatron-LM checkpoint version if "checkpoint_version" in input_state_dict.keys(): UpperCamelCase_ = input_state_dict["checkpoint_version"] else: UpperCamelCase_ = 0.0 # The model. UpperCamelCase_ = input_state_dict["model"] # The language model. UpperCamelCase_ = model["language_model"] # The embeddings. UpperCamelCase_ = lm["embedding"] # The word embeddings. UpperCamelCase_ = embeddings["word_embeddings"]["weight"] # Truncate the embedding table to vocab_size rows. UpperCamelCase_ = word_embeddings[: config.vocab_size, :] UpperCamelCase_ = word_embeddings # The position embeddings. UpperCamelCase_ = embeddings["position_embeddings"]["weight"] # Read the causal mask dimension (seqlen). [max_sequence_length, hidden_size] UpperCamelCase_ = pos_embeddings.size(0 ) if n_positions != config.n_positions: raise ValueError( F'''pos_embeddings.max_sequence_length={n_positions} and config.n_positions={config.n_positions} don\'t match''' ) # Store the position embeddings. UpperCamelCase_ = pos_embeddings # The transformer. UpperCamelCase_ = lm["transformer"] if "transformer" in lm.keys() else lm["encoder"] # The regex to extract layer names. UpperCamelCase_ = re.compile(r"layers\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)" ) # The simple map of names for "automated" rules. UpperCamelCase_ = { "attention.dense": ".attn.c_proj.", "self_attention.dense": ".attn.c_proj.", "mlp.dense_h_to_4h": ".mlp.c_fc.", "mlp.dense_4h_to_h": ".mlp.c_proj.", } # Extract the layers. for key, val in transformer.items(): # Match the name. UpperCamelCase_ = layer_re.match(UpperCamelCase_ ) # Stop if that's not a layer if m is None: break # The index of the layer. UpperCamelCase_ = int(m.group(1 ) ) # The name of the operation. UpperCamelCase_ = m.group(2 ) # Is it a weight or a bias? UpperCamelCase_ = m.group(3 ) # The name of the layer. UpperCamelCase_ = F'''transformer.h.{layer_idx}''' # For layernorm(s), simply store the layer norm. if op_name.endswith("layernorm" ): UpperCamelCase_ = "ln_1" if op_name.startswith("input" ) else "ln_2" UpperCamelCase_ = val # Transpose the QKV matrix. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "weight": # Insert a tensor of 1x1xDxD bias. UpperCamelCase_ = torch.tril(torch.ones((n_positions, n_positions) , dtype=torch.floataa ) ).view( 1 , 1 , UpperCamelCase_ , UpperCamelCase_ ) UpperCamelCase_ = causal_mask # Insert a "dummy" tensor for masked_bias. UpperCamelCase_ = torch.tensor(-1e4 , dtype=torch.floataa ) UpperCamelCase_ = masked_bias UpperCamelCase_ = fix_query_key_value_ordering(UpperCamelCase_ , UpperCamelCase_ , 3 , UpperCamelCase_ , UpperCamelCase_ ) # Megatron stores (3*D) x D but transformers-GPT2 expects D x 3*D. UpperCamelCase_ = out_val.transpose(0 , 1 ).contiguous() # Store. UpperCamelCase_ = out_val # Transpose the bias. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "bias": UpperCamelCase_ = fix_query_key_value_ordering(UpperCamelCase_ , UpperCamelCase_ , 3 , UpperCamelCase_ , UpperCamelCase_ ) # Store. No change of shape. UpperCamelCase_ = out_val # Transpose the weights. elif weight_or_bias == "weight": UpperCamelCase_ = megatron_to_transformers[op_name] UpperCamelCase_ = val.transpose(0 , 1 ) # Copy the bias. elif weight_or_bias == "bias": UpperCamelCase_ = megatron_to_transformers[op_name] UpperCamelCase_ = val # DEBUG. assert config.n_layer == layer_idx + 1 # The final layernorm. UpperCamelCase_ = transformer["final_layernorm.weight"] UpperCamelCase_ = transformer["final_layernorm.bias"] # For LM head, transformers' wants the matrix to weight embeddings. UpperCamelCase_ = word_embeddings # It should be done! return output_state_dict def lowerCAmelCase_ ( ) -> int: # Create the argument parser. UpperCamelCase_ = argparse.ArgumentParser() parser.add_argument("--print-checkpoint-structure" , action="store_true" ) parser.add_argument( "path_to_checkpoint" , type=UpperCamelCase_ , help="Path to the checkpoint file (.zip archive or direct .pt file)" , ) parser.add_argument( "--config_file" , default="" , type=UpperCamelCase_ , help="An optional config json file describing the pre-trained model." , ) UpperCamelCase_ = parser.parse_args() # Extract the basename. UpperCamelCase_ = os.path.dirname(args.path_to_checkpoint ) # Load the model. # the .zip is very optional, let's keep it for backward compatibility print(F'''Extracting PyTorch state dictionary from {args.path_to_checkpoint}''' ) if args.path_to_checkpoint.endswith(".zip" ): with zipfile.ZipFile(args.path_to_checkpoint , "r" ) as checkpoint: with checkpoint.open("release/mp_rank_00/model_optim_rng.pt" ) as pytorch_dict: UpperCamelCase_ = torch.load(UpperCamelCase_ , map_location="cpu" ) else: UpperCamelCase_ = torch.load(args.path_to_checkpoint , map_location="cpu" ) UpperCamelCase_ = input_state_dict.get("args" , UpperCamelCase_ ) # Read the config, or default to the model released by NVIDIA. if args.config_file == "": if ds_args is not None: if ds_args.bias_gelu_fusion: UpperCamelCase_ = "gelu_fast" elif ds_args.openai_gelu: UpperCamelCase_ = "gelu_new" else: UpperCamelCase_ = "gelu" else: # in the very early days this used to be "gelu_new" UpperCamelCase_ = "gelu_new" # Spell out all parameters in case the defaults change. UpperCamelCase_ = GPTaConfig( vocab_size=50257 , n_positions=1024 , n_embd=1024 , n_layer=24 , n_head=16 , n_inner=4096 , activation_function=UpperCamelCase_ , resid_pdrop=0.1 , embd_pdrop=0.1 , attn_pdrop=0.1 , layer_norm_epsilon=1e-5 , initializer_range=0.02 , summary_type="cls_index" , summary_use_proj=UpperCamelCase_ , summary_activation=UpperCamelCase_ , summary_proj_to_labels=UpperCamelCase_ , summary_first_dropout=0.1 , scale_attn_weights=UpperCamelCase_ , use_cache=UpperCamelCase_ , bos_token_id=50256 , eos_token_id=50256 , ) else: UpperCamelCase_ = GPTaConfig.from_json_file(args.config_file ) UpperCamelCase_ = ["GPT2LMHeadModel"] # Convert. print("Converting" ) UpperCamelCase_ = convert_megatron_checkpoint(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # Print the structure of converted state dict. if args.print_checkpoint_structure: recursive_print(UpperCamelCase_ , UpperCamelCase_ ) # Add tokenizer class info to config # see https://github.com/huggingface/transformers/issues/13906) if ds_args is not None: UpperCamelCase_ = ds_args.tokenizer_type if tokenizer_type == "GPT2BPETokenizer": UpperCamelCase_ = "gpt2" elif tokenizer_type == "PretrainedFromHF": UpperCamelCase_ = ds_args.tokenizer_name_or_path else: raise ValueError(F'''Unrecognized tokenizer_type {tokenizer_type}''' ) else: UpperCamelCase_ = "gpt2" UpperCamelCase_ = AutoTokenizer.from_pretrained(UpperCamelCase_ ) UpperCamelCase_ = type(UpperCamelCase_ ).__name__ UpperCamelCase_ = tokenizer_class # Store the config to file. print("Saving config" ) config.save_pretrained(UpperCamelCase_ ) # Save tokenizer based on args print(F'''Adding {tokenizer_class} tokenizer files''' ) tokenizer.save_pretrained(UpperCamelCase_ ) # Store the state_dict to file. UpperCamelCase_ = os.path.join(UpperCamelCase_ , "pytorch_model.bin" ) print(F'''Saving checkpoint to "{output_checkpoint_file}"''' ) torch.save(UpperCamelCase_ , UpperCamelCase_ ) #################################################################################################### if __name__ == "__main__": main() ####################################################################################################
366
def lowerCAmelCase_ ( UpperCamelCase_ ) -> int: UpperCamelCase_ = len(UpperCamelCase_ ) UpperCamelCase_ = len(matrix[0] ) UpperCamelCase_ = min(UpperCamelCase_ , UpperCamelCase_ ) for row in range(UpperCamelCase_ ): # Check if diagonal element is not zero if matrix[row][row] != 0: # Eliminate all the elements below the diagonal for col in range(row + 1 , UpperCamelCase_ ): UpperCamelCase_ = matrix[col][row] / matrix[row][row] for i in range(UpperCamelCase_ , UpperCamelCase_ ): matrix[col][i] -= multiplier * matrix[row][i] else: # Find a non-zero diagonal element to swap rows UpperCamelCase_ = True for i in range(row + 1 , UpperCamelCase_ ): if matrix[i][row] != 0: UpperCamelCase_ , UpperCamelCase_ = matrix[i], matrix[row] UpperCamelCase_ = False break if reduce: rank -= 1 for i in range(UpperCamelCase_ ): UpperCamelCase_ = matrix[i][rank] # Reduce the row pointer by one to stay on the same row row -= 1 return rank if __name__ == "__main__": import doctest doctest.testmod()
328
0
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging a_ : int = logging.get_logger(__name__) a_ : Union[str, Any] = { """BridgeTower/bridgetower-base""": """https://huggingface.co/BridgeTower/bridgetower-base/blob/main/config.json""", """BridgeTower/bridgetower-base-itm-mlm""": ( """https://huggingface.co/BridgeTower/bridgetower-base-itm-mlm/blob/main/config.json""" ), } class snake_case ( lowercase ): """simple docstring""" _lowerCamelCase = "bridgetower_vision_model" def __init__( self , UpperCamelCase=768 , UpperCamelCase=12 , UpperCamelCase=3 , UpperCamelCase=16 , UpperCamelCase=288 , UpperCamelCase=1 , UpperCamelCase=1e-05 , UpperCamelCase=False , UpperCamelCase=True , UpperCamelCase=False , **UpperCamelCase , ): """simple docstring""" super().__init__(**UpperCamelCase ) lowerCamelCase_ = hidden_size lowerCamelCase_ = num_hidden_layers lowerCamelCase_ = num_channels lowerCamelCase_ = patch_size lowerCamelCase_ = image_size lowerCamelCase_ = initializer_factor lowerCamelCase_ = layer_norm_eps lowerCamelCase_ = stop_gradient lowerCamelCase_ = share_layernorm lowerCamelCase_ = remove_last_layer @classmethod def snake_case ( cls , UpperCamelCase , **UpperCamelCase ): """simple docstring""" lowerCamelCase_ ,lowerCamelCase_ = cls.get_config_dict(UpperCamelCase , **UpperCamelCase ) if config_dict.get("model_type" ) == "bridgetower": lowerCamelCase_ = config_dict["text_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(UpperCamelCase , **UpperCamelCase ) class snake_case ( lowercase ): """simple docstring""" _lowerCamelCase = "bridgetower_text_model" def __init__( self , UpperCamelCase=5_0265 , UpperCamelCase=768 , UpperCamelCase=12 , UpperCamelCase=12 , UpperCamelCase=1 , UpperCamelCase=3072 , UpperCamelCase="gelu" , UpperCamelCase=0.1 , UpperCamelCase=0.1 , UpperCamelCase=514 , UpperCamelCase=1 , UpperCamelCase=1e-05 , UpperCamelCase=1 , UpperCamelCase=0 , UpperCamelCase=2 , UpperCamelCase="absolute" , UpperCamelCase=True , **UpperCamelCase , ): """simple docstring""" super().__init__(**UpperCamelCase ) lowerCamelCase_ = vocab_size lowerCamelCase_ = hidden_size lowerCamelCase_ = num_hidden_layers lowerCamelCase_ = num_attention_heads lowerCamelCase_ = hidden_act lowerCamelCase_ = initializer_factor lowerCamelCase_ = intermediate_size lowerCamelCase_ = hidden_dropout_prob lowerCamelCase_ = attention_probs_dropout_prob lowerCamelCase_ = max_position_embeddings lowerCamelCase_ = type_vocab_size lowerCamelCase_ = layer_norm_eps lowerCamelCase_ = position_embedding_type lowerCamelCase_ = use_cache lowerCamelCase_ = pad_token_id lowerCamelCase_ = bos_token_id lowerCamelCase_ = eos_token_id @classmethod def snake_case ( cls , UpperCamelCase , **UpperCamelCase ): """simple docstring""" lowerCamelCase_ ,lowerCamelCase_ = cls.get_config_dict(UpperCamelCase , **UpperCamelCase ) if config_dict.get("model_type" ) == "bridgetower": lowerCamelCase_ = config_dict["text_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(UpperCamelCase , **UpperCamelCase ) class snake_case ( lowercase ): """simple docstring""" _lowerCamelCase = "bridgetower" def __init__( self , UpperCamelCase=True , UpperCamelCase="gelu" , UpperCamelCase=768 , UpperCamelCase=1 , UpperCamelCase=1e-05 , UpperCamelCase=False , UpperCamelCase="add" , UpperCamelCase=12 , UpperCamelCase=6 , UpperCamelCase=False , UpperCamelCase=False , UpperCamelCase=None , UpperCamelCase=None , **UpperCamelCase , ): """simple docstring""" # TODO: remove this once the Hub files are updated. lowerCamelCase_ = kwargs.pop("text_config_dict" , UpperCamelCase ) lowerCamelCase_ = kwargs.pop("vision_config_dict" , UpperCamelCase ) super().__init__(**UpperCamelCase ) lowerCamelCase_ = share_cross_modal_transformer_layers lowerCamelCase_ = hidden_act lowerCamelCase_ = hidden_size lowerCamelCase_ = initializer_factor lowerCamelCase_ = layer_norm_eps lowerCamelCase_ = share_link_tower_layers lowerCamelCase_ = link_tower_type lowerCamelCase_ = num_attention_heads lowerCamelCase_ = num_hidden_layers lowerCamelCase_ = tie_word_embeddings lowerCamelCase_ = init_layernorm_from_vision_encoder if text_config is None: lowerCamelCase_ = {} logger.info("`text_config` is `None`. Initializing the `BridgeTowerTextConfig` with default values." ) if vision_config is None: lowerCamelCase_ = {} logger.info("`vision_config` is `None`. Initializing the `BridgeTowerVisionConfig` with default values." ) lowerCamelCase_ = BridgeTowerTextConfig(**UpperCamelCase ) lowerCamelCase_ = BridgeTowerVisionConfig(**UpperCamelCase ) @classmethod def snake_case ( cls , UpperCamelCase , UpperCamelCase , **UpperCamelCase ): """simple docstring""" return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **UpperCamelCase ) def snake_case ( self ): """simple docstring""" lowerCamelCase_ = copy.deepcopy(self.__dict__ ) lowerCamelCase_ = self.text_config.to_dict() lowerCamelCase_ = self.vision_config.to_dict() lowerCamelCase_ = self.__class__.model_type return output
55
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import SeqaSeqTrainer from seqaseq_training_args import SeqaSeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( SeqaSeqDataCollator, SeqaSeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) a_ : Optional[Any] = logging.getLogger(__name__) @dataclass class snake_case : """simple docstring""" _lowerCamelCase = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) _lowerCamelCase = field( default=lowercase , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) _lowerCamelCase = field( default=lowercase , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) _lowerCamelCase = field( default=lowercase , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) _lowerCamelCase = field(default=lowercase , metadata={"help": "Whether tp freeze the encoder."} ) _lowerCamelCase = field(default=lowercase , metadata={"help": "Whether to freeze the embeddings."} ) @dataclass class snake_case : """simple docstring""" _lowerCamelCase = field( metadata={"help": "The input data dir. Should contain the .tsv files (or other data files) for the task."} ) _lowerCamelCase = field( default="summarization" , metadata={"help": "Task name, summarization (or summarization_{dataset} for pegasus) or translation"} , ) _lowerCamelCase = field( default=10_24 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) _lowerCamelCase = field( default=1_28 , metadata={ "help": ( "The maximum total sequence length for target text after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) _lowerCamelCase = field( default=1_42 , metadata={ "help": ( "The maximum total sequence length for validation target text after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded. " "This argument is also used to override the ``max_length`` param of ``model.generate``, which is used " "during ``evaluate`` and ``predict``." ) } , ) _lowerCamelCase = field( default=1_42 , metadata={ "help": ( "The maximum total sequence length for test target text after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) _lowerCamelCase = field(default=-1 , metadata={"help": "# training examples. -1 means use all."} ) _lowerCamelCase = field(default=-1 , metadata={"help": "# validation examples. -1 means use all."} ) _lowerCamelCase = field(default=-1 , metadata={"help": "# test examples. -1 means use all."} ) _lowerCamelCase = field(default=lowercase , metadata={"help": "Source language id for translation."} ) _lowerCamelCase = field(default=lowercase , metadata={"help": "Target language id for translation."} ) _lowerCamelCase = field(default=lowercase , metadata={"help": "# num_beams to use for evaluation."} ) _lowerCamelCase = field( default=lowercase , metadata={"help": "If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined."} , ) def __snake_case ( UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Any , UpperCAmelCase_ : List[Any] ): logger.info(F'''***** {split} metrics *****''' ) for key in sorted(metrics.keys() ): logger.info(F''' {key} = {metrics[key]}''' ) save_json(UpperCAmelCase_ , os.path.join(UpperCAmelCase_ , F'''{split}_results.json''' ) ) def __snake_case ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowerCamelCase_ = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ = parser.parse_args_into_dataclasses() check_output_dir(UpperCAmelCase_ ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info("Training/evaluation parameters %s" , UpperCAmelCase_ ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowerCamelCase_ = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) lowerCamelCase_ = ("encoder_layerdrop", "decoder_layerdrop", "dropout", "attention_dropout") for p in extra_model_params: if getattr(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): assert hasattr(UpperCAmelCase_ , UpperCAmelCase_ ), F'''({config.__class__.__name__}) doesn\'t have a `{p}` attribute''' setattr(UpperCAmelCase_ , UpperCAmelCase_ , getattr(UpperCAmelCase_ , UpperCAmelCase_ ) ) lowerCamelCase_ = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) lowerCamelCase_ = AutoModelForSeqaSeqLM.from_pretrained( model_args.model_name_or_path , from_tf=".ckpt" in model_args.model_name_or_path , config=UpperCAmelCase_ , cache_dir=model_args.cache_dir , ) # use task specific params use_task_specific_params(UpperCAmelCase_ , data_args.task ) # set num_beams for evaluation if data_args.eval_beams is None: lowerCamelCase_ = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(UpperCAmelCase_ , (MBartTokenizer, MBartTokenizerFast) ): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): lowerCamelCase_ = tokenizer.lang_code_to_id[data_args.tgt_lang] else: lowerCamelCase_ = tokenizer.convert_tokens_to_ids(data_args.tgt_lang ) if model_args.freeze_embeds: freeze_embeds(UpperCAmelCase_ ) if model_args.freeze_encoder: freeze_params(model.get_encoder() ) assert_all_frozen(model.get_encoder() ) lowerCamelCase_ = SeqaSeqDataset # Get datasets lowerCamelCase_ = ( dataset_class( UpperCAmelCase_ , type_path="train" , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or "" , ) if training_args.do_train else None ) lowerCamelCase_ = ( dataset_class( UpperCAmelCase_ , type_path="val" , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or "" , ) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) lowerCamelCase_ = ( dataset_class( UpperCAmelCase_ , type_path="test" , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or "" , ) if training_args.do_predict else None ) # Initialize our Trainer lowerCamelCase_ = ( build_compute_metrics_fn(data_args.task , UpperCAmelCase_ ) if training_args.predict_with_generate else None ) lowerCamelCase_ = SeqaSeqTrainer( model=UpperCAmelCase_ , args=UpperCAmelCase_ , data_args=UpperCAmelCase_ , train_dataset=UpperCAmelCase_ , eval_dataset=UpperCAmelCase_ , data_collator=SeqaSeqDataCollator( UpperCAmelCase_ , UpperCAmelCase_ , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , ) lowerCamelCase_ = {} # Training if training_args.do_train: logger.info("*** Train ***" ) lowerCamelCase_ = trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) lowerCamelCase_ = train_result.metrics lowerCamelCase_ = data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics("train" , UpperCAmelCase_ , training_args.output_dir ) all_metrics.update(UpperCAmelCase_ ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , "trainer_state.json" ) ) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir ) # Evaluation if training_args.do_eval: logger.info("*** Evaluate ***" ) lowerCamelCase_ = trainer.evaluate(metric_key_prefix="val" ) lowerCamelCase_ = data_args.n_val lowerCamelCase_ = round(metrics["val_loss"] , 4 ) if trainer.is_world_process_zero(): handle_metrics("val" , UpperCAmelCase_ , training_args.output_dir ) all_metrics.update(UpperCAmelCase_ ) if training_args.do_predict: logger.info("*** Predict ***" ) lowerCamelCase_ = trainer.predict(test_dataset=UpperCAmelCase_ , metric_key_prefix="test" ) lowerCamelCase_ = test_output.metrics lowerCamelCase_ = data_args.n_test if trainer.is_world_process_zero(): lowerCamelCase_ = round(metrics["test_loss"] , 4 ) handle_metrics("test" , UpperCAmelCase_ , training_args.output_dir ) all_metrics.update(UpperCAmelCase_ ) if training_args.predict_with_generate: lowerCamelCase_ = tokenizer.batch_decode( test_output.predictions , skip_special_tokens=UpperCAmelCase_ , clean_up_tokenization_spaces=UpperCAmelCase_ ) lowerCamelCase_ = lmap(str.strip , UpperCAmelCase_ ) write_txt_file(UpperCAmelCase_ , os.path.join(training_args.output_dir , "test_generations.txt" ) ) if trainer.is_world_process_zero(): save_json(UpperCAmelCase_ , os.path.join(training_args.output_dir , "all_results.json" ) ) return all_metrics def __snake_case ( UpperCAmelCase_ : Dict ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
55
1
"""simple docstring""" import argparse import torch from transformers import LxmertConfig, LxmertForPreTraining, load_tf_weights_in_lxmert from transformers.utils import logging logging.set_verbosity_info() def _snake_case ( UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[Any] ): # Initialise PyTorch model A__ = LxmertConfig.from_json_file(UpperCAmelCase_ ) print(F"""Building PyTorch model from configuration: {config}""" ) A__ = LxmertForPreTraining(UpperCAmelCase_ ) # Load weights from tf checkpoint load_tf_weights_in_lxmert(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) # Save pytorch-model print(F"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , UpperCAmelCase_ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.', ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) SCREAMING_SNAKE_CASE_ : Optional[Any] = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
69
"""simple docstring""" import unittest from transformers import DebertaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, ) from transformers.models.deberta.modeling_deberta import DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST class a ( _lowerCamelCase ): """simple docstring""" def __init__( self: int , UpperCamelCase: int , UpperCamelCase: Union[str, Any]=13 , UpperCamelCase: List[Any]=7 , UpperCamelCase: Any=True , UpperCamelCase: Optional[Any]=True , UpperCamelCase: Optional[Any]=True , UpperCamelCase: str=True , UpperCamelCase: Optional[int]=99 , UpperCamelCase: Optional[Any]=32 , UpperCamelCase: Tuple=5 , UpperCamelCase: Optional[int]=4 , UpperCamelCase: int=37 , UpperCamelCase: str="gelu" , UpperCamelCase: Optional[Any]=0.1 , UpperCamelCase: List[Any]=0.1 , UpperCamelCase: Tuple=5_12 , UpperCamelCase: List[str]=16 , UpperCamelCase: List[str]=2 , UpperCamelCase: List[Any]=0.02 , UpperCamelCase: List[str]=False , UpperCamelCase: int=True , UpperCamelCase: Union[str, Any]="None" , UpperCamelCase: Optional[int]=3 , UpperCamelCase: List[str]=4 , UpperCamelCase: List[str]=None , ): """simple docstring""" A__ = parent A__ = batch_size A__ = seq_length A__ = is_training A__ = use_input_mask A__ = use_token_type_ids A__ = use_labels A__ = vocab_size A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_size A__ = hidden_act A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = max_position_embeddings A__ = type_vocab_size A__ = type_sequence_label_size A__ = initializer_range A__ = num_labels A__ = num_choices A__ = relative_attention A__ = position_biased_input A__ = pos_att_type A__ = scope def UpperCamelCase ( self: Tuple ): """simple docstring""" A__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A__ = None if self.use_input_mask: A__ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) A__ = None if self.use_token_type_ids: A__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) A__ = None A__ = None A__ = None if self.use_labels: A__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A__ = ids_tensor([self.batch_size] , self.num_choices ) A__ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase ( self: str ): """simple docstring""" return DebertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def UpperCamelCase ( self: Optional[int] ): """simple docstring""" A__ = self.get_config() A__ = 3_00 return config def UpperCamelCase ( self: List[Any] , UpperCamelCase: str ): """simple docstring""" self.parent.assertListEqual(list(result.loss.size() ) , [] ) def UpperCamelCase ( self: Tuple , UpperCamelCase: List[Any] , UpperCamelCase: List[str] , UpperCamelCase: List[Any] , UpperCamelCase: List[str] , UpperCamelCase: List[str] , UpperCamelCase: Optional[Any] , UpperCamelCase: Tuple ): """simple docstring""" A__ = DebertaModel(config=UpperCamelCase ) model.to(UpperCamelCase ) model.eval() A__ = model(UpperCamelCase , attention_mask=UpperCamelCase , token_type_ids=UpperCamelCase )[0] A__ = model(UpperCamelCase , token_type_ids=UpperCamelCase )[0] A__ = model(UpperCamelCase )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def UpperCamelCase ( self: List[str] , UpperCamelCase: Optional[int] , UpperCamelCase: Optional[Any] , UpperCamelCase: Union[str, Any] , UpperCamelCase: Tuple , UpperCamelCase: Tuple , UpperCamelCase: str , UpperCamelCase: Any ): """simple docstring""" A__ = DebertaForMaskedLM(config=UpperCamelCase ) model.to(UpperCamelCase ) model.eval() A__ = model(UpperCamelCase , attention_mask=UpperCamelCase , token_type_ids=UpperCamelCase , labels=UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase ( self: Union[str, Any] , UpperCamelCase: Union[str, Any] , UpperCamelCase: List[Any] , UpperCamelCase: int , UpperCamelCase: Dict , UpperCamelCase: Dict , UpperCamelCase: Tuple , UpperCamelCase: str ): """simple docstring""" A__ = self.num_labels A__ = DebertaForSequenceClassification(UpperCamelCase ) model.to(UpperCamelCase ) model.eval() A__ = model(UpperCamelCase , attention_mask=UpperCamelCase , token_type_ids=UpperCamelCase , labels=UpperCamelCase ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(UpperCamelCase ) def UpperCamelCase ( self: Optional[int] , UpperCamelCase: List[Any] , UpperCamelCase: Any , UpperCamelCase: Dict , UpperCamelCase: int , UpperCamelCase: Optional[Any] , UpperCamelCase: str , UpperCamelCase: int ): """simple docstring""" A__ = self.num_labels A__ = DebertaForTokenClassification(config=UpperCamelCase ) model.to(UpperCamelCase ) model.eval() A__ = model(UpperCamelCase , attention_mask=UpperCamelCase , token_type_ids=UpperCamelCase , labels=UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase ( self: Tuple , UpperCamelCase: Tuple , UpperCamelCase: Optional[int] , UpperCamelCase: Tuple , UpperCamelCase: int , UpperCamelCase: int , UpperCamelCase: Tuple , UpperCamelCase: Any ): """simple docstring""" A__ = DebertaForQuestionAnswering(config=UpperCamelCase ) model.to(UpperCamelCase ) model.eval() A__ = model( UpperCamelCase , attention_mask=UpperCamelCase , token_type_ids=UpperCamelCase , start_positions=UpperCamelCase , end_positions=UpperCamelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase ( self: str ): """simple docstring""" A__ = self.prepare_config_and_inputs() ( ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ) = config_and_inputs A__ = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class a ( _lowerCamelCase, _lowerCamelCase, unittest.TestCase ): """simple docstring""" UpperCAmelCase = ( ( DebertaModel, DebertaForMaskedLM, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaForQuestionAnswering, ) if is_torch_available() else () ) UpperCAmelCase = ( { "feature-extraction": DebertaModel, "fill-mask": DebertaForMaskedLM, "question-answering": DebertaForQuestionAnswering, "text-classification": DebertaForSequenceClassification, "token-classification": DebertaForTokenClassification, "zero-shot": DebertaForSequenceClassification, } if is_torch_available() else {} ) UpperCAmelCase = True UpperCAmelCase = False UpperCAmelCase = False UpperCAmelCase = False UpperCAmelCase = False def UpperCamelCase ( self: Union[str, Any] ): """simple docstring""" A__ = DebertaModelTester(self ) A__ = ConfigTester(self , config_class=UpperCamelCase , hidden_size=37 ) def UpperCamelCase ( self: int ): """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase ( self: List[str] ): """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*UpperCamelCase ) def UpperCamelCase ( self: str ): """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*UpperCamelCase ) def UpperCamelCase ( self: List[Any] ): """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*UpperCamelCase ) def UpperCamelCase ( self: Optional[int] ): """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*UpperCamelCase ) def UpperCamelCase ( self: Tuple ): """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*UpperCamelCase ) @slow def UpperCamelCase ( self: Union[str, Any] ): """simple docstring""" for model_name in DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ = DebertaModel.from_pretrained(UpperCamelCase ) self.assertIsNotNone(UpperCamelCase ) @require_torch @require_sentencepiece @require_tokenizers class a ( unittest.TestCase ): """simple docstring""" @unittest.skip(reason="""Model not available yet""" ) def UpperCamelCase ( self: Any ): """simple docstring""" pass @slow def UpperCamelCase ( self: Optional[Any] ): """simple docstring""" A__ = DebertaModel.from_pretrained("""microsoft/deberta-base""" ) A__ = torch.tensor([[0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2]] ) A__ = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): A__ = model(UpperCamelCase , attention_mask=UpperCamelCase )[0] # compare the actual values for a slice. A__ = torch.tensor( [[[-0.5_986, -0.8_055, -0.8_462], [1.4_484, -0.9_348, -0.8_059], [0.3_123, 0.0_032, -1.4_131]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , UpperCamelCase , atol=1e-4 ) , f"""{output[:, 1:4, 1:4]}""" )
69
1
'''simple docstring''' def __lowercase ( __lowercase ) -> int: '''simple docstring''' if not grid or not grid[0]: raise TypeError("The grid does not contain the appropriate information" ) for cell_n in range(1 , len(grid[0] ) ): grid[0][cell_n] += grid[0][cell_n - 1] _A = grid[0] for row_n in range(1 , len(__lowercase ) ): _A = grid[row_n] _A = fill_row(__lowercase , __lowercase ) _A = grid[row_n] return grid[-1][-1] def __lowercase ( __lowercase , __lowercase ) -> list: '''simple docstring''' current_row[0] += row_above[0] for cell_n in range(1 , len(__lowercase ) ): current_row[cell_n] += min(current_row[cell_n - 1] , row_above[cell_n] ) return current_row if __name__ == "__main__": import doctest doctest.testmod()
79
"""simple docstring""" # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from ...utils import deprecate from ..controlnet.multicontrolnet import MultiControlNetModel # noqa: F401 from ..controlnet.pipeline_controlnet import StableDiffusionControlNetPipeline # noqa: F401 deprecate( 'stable diffusion controlnet', '0.22.0', 'Importing `StableDiffusionControlNetPipeline` or `MultiControlNetModel` from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import StableDiffusionControlNetPipeline` instead.', standard_warn=False, stacklevel=3, )
44
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = { """alibaba-damo/mgp-str-base""": """https://huggingface.co/alibaba-damo/mgp-str-base/resolve/main/config.json""", } class UpperCAmelCase__ ( lowercase__ ): """simple docstring""" __UpperCAmelCase : Optional[Any] = '''mgp-str''' def __init__( self : str ,_a : Any=[32, 128] ,_a : Any=4 ,_a : int=3 ,_a : int=27 ,_a : Union[str, Any]=38 ,_a : List[Any]=5_0257 ,_a : str=3_0522 ,_a : Any=768 ,_a : Union[str, Any]=12 ,_a : Any=12 ,_a : int=4.0 ,_a : Dict=True ,_a : Any=False ,_a : Any=1E-5 ,_a : Optional[Any]=0.0 ,_a : Dict=0.0 ,_a : List[Any]=0.0 ,_a : Optional[int]=False ,_a : Optional[Any]=0.02 ,**_a : List[str] ,): '''simple docstring''' super().__init__(**_a ) _a : List[Any] = image_size _a : List[str] = patch_size _a : str = num_channels _a : Optional[Any] = max_token_length _a : Dict = num_character_labels _a : Union[str, Any] = num_bpe_labels _a : Tuple = num_wordpiece_labels _a : int = hidden_size _a : int = num_hidden_layers _a : Union[str, Any] = num_attention_heads _a : Optional[int] = mlp_ratio _a : List[str] = distilled _a : str = layer_norm_eps _a : int = drop_rate _a : List[Any] = qkv_bias _a : List[Any] = attn_drop_rate _a : Dict = drop_path_rate _a : Union[str, Any] = output_aa_attentions _a : Optional[int] = initializer_range
5
'''simple docstring''' import argparse from collections import defaultdict import yaml __lowerCAmelCase = """docs/source/en/_toctree.yml""" def UpperCAmelCase_ (__a : str ): """simple docstring""" _a : Any = defaultdict(__a ) for doc in model_doc: counts[doc["local"]] += 1 _a : List[str] = [key for key, value in counts.items() if value > 1] _a : str = [] for duplicate_key in duplicates: _a : Union[str, Any] = list({doc['title'] for doc in model_doc if doc['local'] == duplicate_key} ) if len(__a ) > 1: raise ValueError( f"""{duplicate_key} is present several times in the documentation table of content at """ '`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the ' 'others.' ) # Only add this once new_doc.append({'local': duplicate_key, 'title': titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in model_doc if counts[doc['local']] == 1] ) # Sort return sorted(__a , key=lambda __a : s["title"].lower() ) def UpperCAmelCase_ (__a : Optional[int]=False ): """simple docstring""" with open(__a , encoding='utf-8' ) as f: _a : Tuple = yaml.safe_load(f.read() ) # Get to the API doc _a : Union[str, Any] = 0 while content[api_idx]["title"] != "API": api_idx += 1 _a : Union[str, Any] = content[api_idx]['sections'] # Then to the model doc _a : List[str] = 0 while api_doc[model_idx]["title"] != "Models": model_idx += 1 _a : List[str] = api_doc[model_idx]['sections'] _a : List[Any] = [(idx, section) for idx, section in enumerate(__a ) if 'sections' in section] _a : Tuple = False for idx, modality_doc in modalities_docs: _a : List[Any] = modality_doc['sections'] _a : Any = clean_model_doc_toc(__a ) if old_modality_doc != new_modality_doc: _a : Union[str, Any] = True if overwrite: _a : str = new_modality_doc if diff: if overwrite: _a : Dict = model_doc _a : Dict = api_doc with open(__a , 'w' , encoding='utf-8' ) as f: f.write(yaml.dump(__a , allow_unicode=__a ) ) else: raise ValueError( 'The model doc part of the table of content is not properly sorted, run `make style` to fix this.' ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") __lowerCAmelCase = parser.parse_args() check_model_doc(args.fix_and_overwrite)
5
1
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def a ( ): '''simple docstring''' lowercase_ = ArgumentParser('''Accelerate CLI tool''' , usage='''accelerate <command> [<args>]''' , allow_abbrev=snake_case__ ) lowercase_ = parser.add_subparsers(help='''accelerate command helpers''' ) # Register commands get_config_parser(subparsers=snake_case__ ) env_command_parser(subparsers=snake_case__ ) launch_command_parser(subparsers=snake_case__ ) tpu_command_parser(subparsers=snake_case__ ) test_command_parser(subparsers=snake_case__ ) # Let's go lowercase_ = parser.parse_args() if not hasattr(snake_case__ , '''func''' ): parser.print_help() exit(1 ) # Run args.func(snake_case__ ) if __name__ == "__main__": main()
30
import argparse import torch from datasets import load_dataset from donut import DonutModel from transformers import ( DonutImageProcessor, DonutProcessor, DonutSwinConfig, DonutSwinModel, MBartConfig, MBartForCausalLM, VisionEncoderDecoderModel, XLMRobertaTokenizerFast, ) def a( A : Tuple ) -> Optional[Any]: """simple docstring""" a = model.config a = DonutSwinConfig( image_size=original_config.input_size , patch_size=4 , depths=original_config.encoder_layer , num_heads=[4, 8, 16, 32] , window_size=original_config.window_size , embed_dim=128 , ) a = MBartConfig( is_decoder=A , is_encoder_decoder=A , add_cross_attention=A , decoder_layers=original_config.decoder_layer , max_position_embeddings=original_config.max_position_embeddings , vocab_size=len( model.decoder.tokenizer ) , scale_embedding=A , add_final_layer_norm=A , ) return encoder_config, decoder_config def a( A : List[Any] ) -> Union[str, Any]: """simple docstring""" if "encoder.model" in name: a = name.replace("encoder.model" , "encoder" ) if "decoder.model" in name: a = name.replace("decoder.model" , "decoder" ) if "patch_embed.proj" in name: a = name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" ) if "patch_embed.norm" in name: a = name.replace("patch_embed.norm" , "embeddings.norm" ) if name.startswith("encoder" ): if "layers" in name: a = "encoder." + name if "attn.proj" in name: a = name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name and "mask" not in name: a = name.replace("attn" , "attention.self" ) if "norm1" in name: a = name.replace("norm1" , "layernorm_before" ) if "norm2" in name: a = name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: a = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: a = name.replace("mlp.fc2" , "output.dense" ) if name == "encoder.norm.weight": a = "encoder.layernorm.weight" if name == "encoder.norm.bias": a = "encoder.layernorm.bias" return name def a( A : Union[str, Any] , A : Tuple ) -> List[Any]: """simple docstring""" for key in orig_state_dict.copy().keys(): a = orig_state_dict.pop(A ) if "qkv" in key: a = key.split("." ) a = int(key_split[3] ) a = int(key_split[5] ) a = model.encoder.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: a = val[:dim, :] a = val[dim : dim * 2, :] a = val[-dim:, :] else: a = val[:dim] a = val[dim : dim * 2] a = val[-dim:] elif "attn_mask" in key or key in ["encoder.model.norm.weight", "encoder.model.norm.bias"]: # HuggingFace implementation doesn't use attn_mask buffer # and model doesn't use final LayerNorms for the encoder pass else: a = val return orig_state_dict def a( A : List[Any] , A : Tuple=None , A : List[Any]=False ) -> Optional[int]: """simple docstring""" a = DonutModel.from_pretrained(A ).eval() # load HuggingFace model a , a = get_configs(A ) a = DonutSwinModel(A ) a = MBartForCausalLM(A ) a = VisionEncoderDecoderModel(encoder=A , decoder=A ) model.eval() a = original_model.state_dict() a = convert_state_dict(A , A ) model.load_state_dict(A ) # verify results on scanned document a = load_dataset("hf-internal-testing/example-documents" ) a = dataset["test"][0]["image"].convert("RGB" ) a = XLMRobertaTokenizerFast.from_pretrained(A , from_slow=A ) a = DonutImageProcessor( do_align_long_axis=original_model.config.align_long_axis , size=original_model.config.input_size[::-1] ) a = DonutProcessor(A , A ) a = processor(A , return_tensors="pt" ).pixel_values if model_name == "naver-clova-ix/donut-base-finetuned-docvqa": a = "<s_docvqa><s_question>{user_input}</s_question><s_answer>" a = "When is the coffee break?" a = task_prompt.replace("{user_input}" , A ) elif model_name == "naver-clova-ix/donut-base-finetuned-rvlcdip": a = "<s_rvlcdip>" elif model_name in [ "naver-clova-ix/donut-base-finetuned-cord-v1", "naver-clova-ix/donut-base-finetuned-cord-v1-2560", ]: a = "<s_cord>" elif model_name == "naver-clova-ix/donut-base-finetuned-cord-v2": a = "s_cord-v2>" elif model_name == "naver-clova-ix/donut-base-finetuned-zhtrainticket": a = "<s_zhtrainticket>" elif model_name in ["naver-clova-ix/donut-proto", "naver-clova-ix/donut-base"]: # use a random prompt a = "hello world" else: raise ValueError("Model name not supported" ) a = original_model.decoder.tokenizer(A , add_special_tokens=A , return_tensors="pt" )[ "input_ids" ] a = original_model.encoder.model.patch_embed(A ) a , a = model.encoder.embeddings(A ) assert torch.allclose(A , A , atol=1e-3 ) # verify encoder hidden states a = original_model.encoder(A ) a = model.encoder(A ).last_hidden_state assert torch.allclose(A , A , atol=1e-2 ) # verify decoder hidden states a = original_model(A , A , A ).logits a = model(A , decoder_input_ids=A ).logits assert torch.allclose(A , A , atol=1e-3 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(f'''Saving model and processor to {pytorch_dump_folder_path}''' ) model.save_pretrained(A ) processor.save_pretrained(A ) if push_to_hub: model.push_to_hub("nielsr/" + model_name.split("/" )[-1] , commit_message="Update model" ) processor.push_to_hub("nielsr/" + model_name.split("/" )[-1] , commit_message="Update model" ) if __name__ == "__main__": _lowercase: Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="naver-clova-ix/donut-base-finetuned-docvqa", required=False, type=str, help="Name of the original model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, required=False, type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model and processor to the 🤗 hub.", ) _lowercase: Optional[Any] = parser.parse_args() convert_donut_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
227
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase_ = { "configuration_upernet": ["UperNetConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "UperNetForSemanticSegmentation", "UperNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_upernet import UperNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_upernet import UperNetForSemanticSegmentation, UperNetPreTrainedModel else: import sys lowercase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
368
import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class A_ ( unittest.TestCase ): '''simple docstring''' def __init__( self: int , a: Optional[Any] , a: Optional[Any]=3 , a: List[str]=32 , a: Optional[int]=3 , a: Any=10 , a: List[str]=[10, 20, 30, 40] , a: Any=[1, 1, 2, 1] , a: Optional[int]=True , a: List[str]=True , a: Tuple="relu" , a: List[Any]=3 , a: List[Any]=None , ): __lowerCamelCase : Union[str, Any] = parent __lowerCamelCase : Any = batch_size __lowerCamelCase : List[str] = image_size __lowerCamelCase : Tuple = num_channels __lowerCamelCase : int = embeddings_size __lowerCamelCase : Optional[int] = hidden_sizes __lowerCamelCase : Optional[Any] = depths __lowerCamelCase : Optional[int] = is_training __lowerCamelCase : List[str] = use_labels __lowerCamelCase : Dict = hidden_act __lowerCamelCase : Union[str, Any] = num_labels __lowerCamelCase : Tuple = scope __lowerCamelCase : Union[str, Any] = len(a ) def _snake_case ( self: int ): __lowerCamelCase : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCamelCase : List[str] = self.get_config() return config, pixel_values def _snake_case ( self: List[str] ): return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def _snake_case ( self: Tuple , a: Optional[int] , a: int ): __lowerCamelCase : Optional[Any] = FlaxRegNetModel(config=a ) __lowerCamelCase : List[str] = model(a ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def _snake_case ( self: Optional[int] , a: List[Any] , a: List[Any] ): __lowerCamelCase : Tuple = self.num_labels __lowerCamelCase : Union[str, Any] = FlaxRegNetForImageClassification(config=a ) __lowerCamelCase : List[Any] = model(a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _snake_case ( self: Optional[Any] ): __lowerCamelCase : Union[str, Any] = self.prepare_config_and_inputs() __lowerCamelCase , __lowerCamelCase : str = config_and_inputs __lowerCamelCase : Tuple = {'pixel_values': pixel_values} return config, inputs_dict @require_flax class A_ ( __UpperCamelCase , unittest.TestCase ): '''simple docstring''' __snake_case = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () __snake_case = False __snake_case = False __snake_case = False def _snake_case ( self: Tuple ): __lowerCamelCase : Dict = FlaxRegNetModelTester(self ) __lowerCamelCase : List[str] = ConfigTester(self , config_class=a , has_text_modality=a ) def _snake_case ( self: Union[str, Any] ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _snake_case ( self: List[Any] ): return def _snake_case ( self: Dict ): __lowerCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a ) def _snake_case ( self: Optional[int] ): __lowerCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*a ) @unittest.skip(reason='RegNet does not use inputs_embeds' ) def _snake_case ( self: Tuple ): pass @unittest.skip(reason='RegNet does not support input and output embeddings' ) def _snake_case ( self: str ): pass def _snake_case ( self: List[Any] ): __lowerCamelCase , __lowerCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase : Optional[Any] = model_class(a ) __lowerCamelCase : Dict = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCamelCase : Union[str, Any] = [*signature.parameters.keys()] __lowerCamelCase : Union[str, Any] = ['pixel_values'] self.assertListEqual(arg_names[:1] , a ) def _snake_case ( self: List[str] ): def check_hidden_states_output(a: List[Any] , a: List[Any] , a: Union[str, Any] ): __lowerCamelCase : str = model_class(a ) __lowerCamelCase : Optional[Any] = model(**self._prepare_for_class(a , a ) ) __lowerCamelCase : List[str] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __lowerCamelCase : List[str] = self.model_tester.num_stages self.assertEqual(len(a ) , expected_num_stages + 1 ) __lowerCamelCase , __lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase : int = True check_hidden_states_output(a , a , a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowerCamelCase : List[Any] = True check_hidden_states_output(a , a , a ) def _snake_case ( self: Dict ): __lowerCamelCase , __lowerCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __lowerCamelCase : str = self._prepare_for_class(a , a ) __lowerCamelCase : List[str] = model_class(a ) @jax.jit def model_jitted(a: Optional[int] , **a: str ): return model(pixel_values=a , **a ) with self.subTest('JIT Enabled' ): __lowerCamelCase : List[str] = model_jitted(**a ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): __lowerCamelCase : Optional[int] = model_jitted(**a ).to_tuple() self.assertEqual(len(a ) , len(a ) ) for jitted_output, output in zip(a , a ): self.assertEqual(jitted_output.shape , output.shape ) def UpperCamelCase__ ( ): __lowerCamelCase : List[str] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_flax class A_ ( unittest.TestCase ): '''simple docstring''' @cached_property def _snake_case ( self: Tuple ): return AutoImageProcessor.from_pretrained('facebook/regnet-y-040' ) if is_vision_available() else None @slow def _snake_case ( self: Optional[Any] ): __lowerCamelCase : Optional[Any] = FlaxRegNetForImageClassification.from_pretrained('facebook/regnet-y-040' ) __lowerCamelCase : Tuple = self.default_image_processor __lowerCamelCase : int = prepare_img() __lowerCamelCase : Tuple = image_processor(images=a , return_tensors='np' ) __lowerCamelCase : List[Any] = model(**a ) # verify the logits __lowerCamelCase : str = (1, 1000) self.assertEqual(outputs.logits.shape , a ) __lowerCamelCase : int = jnp.array([-0.4_1_8_0, -1.5_0_5_1, -3.4_8_3_6] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , a , atol=1e-4 ) )
194
0
import inspect import logging import os import random import shutil import tempfile import unittest import pytest import torch from torch import nn from torch.utils.data import DataLoader, TensorDataset from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_cuda from accelerate.utils import ProjectConfiguration, set_seed __a :Optional[Any] = logging.getLogger(__name__) def __snake_case ( __UpperCamelCase : Any=2 ,__UpperCamelCase : Union[str, Any]=3 ,__UpperCamelCase : Union[str, Any]=16 ,__UpperCamelCase : int = 10 ,__UpperCamelCase : int = 2 ): """simple docstring""" def get_dataset(__UpperCamelCase : Optional[int] ): A_ = torch.randn(batch_size * n_batches ,1 ) return TensorDataset(__UpperCamelCase ,a * x + b + 0.1 * torch.randn(batch_size * n_batches ,1 ) ) A_ = get_dataset(__UpperCamelCase ) A_ = get_dataset(__UpperCamelCase ) A_ = DataLoader(__UpperCamelCase ,shuffle=__UpperCamelCase ,batch_size=__UpperCamelCase ,num_workers=4 ) A_ = DataLoader(__UpperCamelCase ,shuffle=__UpperCamelCase ,batch_size=__UpperCamelCase ,num_workers=4 ) return (train_dataloader, valid_dataloader) def __snake_case ( __UpperCamelCase : List[str] ,__UpperCamelCase : int ,__UpperCamelCase : List[str] ,__UpperCamelCase : Optional[int] ,__UpperCamelCase : int ,__UpperCamelCase : str=None ): """simple docstring""" A_ = [] for epoch in range(__UpperCamelCase ): # Train quickly model.train() for batch in dataloader: A_ , A_ = batch A_ = model(__UpperCamelCase ) A_ = torch.nn.functional.mse_loss(__UpperCamelCase ,__UpperCamelCase ) accelerator.backward(__UpperCamelCase ) optimizer.step() optimizer.zero_grad() rands.append(random.random() ) # Introduce some randomness if scheduler is not None: scheduler.step() return rands class _a ( nn.Module ): """simple docstring""" def __init__( self : str ): super().__init__() A_ = nn.Parameter(torch.randn(1 ) ) A_ = nn.Parameter(torch.randn(1 ) ) def __A ( self : str , UpperCAmelCase : List[Any] ): return x * self.a + self.b class _a ( unittest.TestCase ): """simple docstring""" def __A ( self : List[Any] ): with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) A_ = DummyModel() A_ = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) A_ , A_ = dummy_dataloaders() A_ = ProjectConfiguration(total_limit=1 , project_dir=SCREAMING_SNAKE_CASE_ , automatic_checkpoint_naming=SCREAMING_SNAKE_CASE_ ) # Train baseline A_ = Accelerator(project_config=SCREAMING_SNAKE_CASE_ ) A_ , A_ , A_ , A_ = accelerator.prepare( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Save initial accelerator.save_state() # Save second state accelerator.save_state() self.assertEqual(len(os.listdir(accelerator.project_dir ) ) , 1 ) def __A ( self : Tuple ): with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) A_ = DummyModel() A_ = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) A_ , A_ = dummy_dataloaders() # Train baseline A_ = Accelerator() A_ , A_ , A_ , A_ = accelerator.prepare( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Save initial A_ = os.path.join(SCREAMING_SNAKE_CASE_ , "initial" ) accelerator.save_state(SCREAMING_SNAKE_CASE_ ) ((A_) , (A_)) = model.a.item(), model.b.item() A_ = optimizer.state_dict() A_ = train(3 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ((A_) , (A_)) = model.a.item(), model.b.item() A_ = optimizer.state_dict() # Train partially set_seed(42 ) A_ = DummyModel() A_ = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) A_ , A_ = dummy_dataloaders() A_ = Accelerator() A_ , A_ , A_ , A_ = accelerator.prepare( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) accelerator.load_state(SCREAMING_SNAKE_CASE_ ) ((A_) , (A_)) = model.a.item(), model.b.item() A_ = optimizer.state_dict() self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) A_ = train(2 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Save everything A_ = os.path.join(SCREAMING_SNAKE_CASE_ , "checkpoint" ) accelerator.save_state(SCREAMING_SNAKE_CASE_ ) # Load everything back in and make sure all states work accelerator.load_state(SCREAMING_SNAKE_CASE_ ) test_rands += train(1 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ((A_) , (A_)) = model.a.item(), model.b.item() A_ = optimizer.state_dict() self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def __A ( self : Any ): with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) A_ = DummyModel() A_ = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) A_ , A_ = dummy_dataloaders() A_ = ProjectConfiguration(automatic_checkpoint_naming=SCREAMING_SNAKE_CASE_ ) # Train baseline A_ = Accelerator(project_dir=SCREAMING_SNAKE_CASE_ , project_config=SCREAMING_SNAKE_CASE_ ) A_ , A_ , A_ , A_ = accelerator.prepare( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Save initial accelerator.save_state() ((A_) , (A_)) = model.a.item(), model.b.item() A_ = optimizer.state_dict() A_ = train(3 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ((A_) , (A_)) = model.a.item(), model.b.item() A_ = optimizer.state_dict() # Train partially set_seed(42 ) A_ = DummyModel() A_ = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) A_ , A_ = dummy_dataloaders() A_ = ProjectConfiguration(iteration=1 , automatic_checkpoint_naming=SCREAMING_SNAKE_CASE_ ) A_ = Accelerator(project_dir=SCREAMING_SNAKE_CASE_ , project_config=SCREAMING_SNAKE_CASE_ ) A_ , A_ , A_ , A_ = accelerator.prepare( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) accelerator.load_state(os.path.join(SCREAMING_SNAKE_CASE_ , "checkpoints" , "checkpoint_0" ) ) ((A_) , (A_)) = model.a.item(), model.b.item() A_ = optimizer.state_dict() self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) A_ = train(2 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Save everything accelerator.save_state() # Load everything back in and make sure all states work accelerator.load_state(os.path.join(SCREAMING_SNAKE_CASE_ , "checkpoints" , "checkpoint_1" ) ) test_rands += train(1 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ((A_) , (A_)) = model.a.item(), model.b.item() A_ = optimizer.state_dict() self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def __A ( self : List[str] ): A_ = torch.tensor([1, 2, 3] ) A_ = torch.tensor([2, 3, 4] ) A_ = DummyModel() A_ = torch.optim.Adam(net.parameters() ) A_ = Accelerator() with self.assertRaises(SCREAMING_SNAKE_CASE_ ) as ve: accelerator.register_for_checkpointing(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) A_ = str(ve.exception ) self.assertTrue("Item at index 0" in message ) self.assertTrue("Item at index 1" in message ) self.assertFalse("Item at index 2" in message ) self.assertFalse("Item at index 3" in message ) def __A ( self : str ): with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) A_ = DummyModel() A_ = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) A_ = torch.optim.lr_scheduler.StepLR(SCREAMING_SNAKE_CASE_ , step_size=1 , gamma=0.99 ) A_ , A_ = dummy_dataloaders() A_ = ProjectConfiguration(automatic_checkpoint_naming=SCREAMING_SNAKE_CASE_ ) # Train baseline A_ = Accelerator(project_dir=SCREAMING_SNAKE_CASE_ , project_config=SCREAMING_SNAKE_CASE_ ) A_ , A_ , A_ , A_ , A_ = accelerator.prepare( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Save initial accelerator.save_state() A_ = scheduler.state_dict() train(3 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertNotEqual(SCREAMING_SNAKE_CASE_ , scheduler.state_dict() ) # Load everything back in and make sure all states work accelerator.load_state(os.path.join(SCREAMING_SNAKE_CASE_ , "checkpoints" , "checkpoint_0" ) ) self.assertEqual(SCREAMING_SNAKE_CASE_ , scheduler.state_dict() ) def __A ( self : List[Any] ): with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) A_ = DummyModel() A_ = ProjectConfiguration(automatic_checkpoint_naming=SCREAMING_SNAKE_CASE_ , total_limit=2 ) # Train baseline A_ = Accelerator(project_dir=SCREAMING_SNAKE_CASE_ , project_config=SCREAMING_SNAKE_CASE_ ) A_ = accelerator.prepare(SCREAMING_SNAKE_CASE_ ) # Save 3 states: for _ in range(11 ): accelerator.save_state() self.assertTrue(not os.path.exists(os.path.join(SCREAMING_SNAKE_CASE_ , "checkpoints" , "checkpoint_0" ) ) ) self.assertTrue(os.path.exists(os.path.join(SCREAMING_SNAKE_CASE_ , "checkpoints" , "checkpoint_9" ) ) ) self.assertTrue(os.path.exists(os.path.join(SCREAMING_SNAKE_CASE_ , "checkpoints" , "checkpoint_10" ) ) ) @require_cuda def __A ( self : Dict ): A_ = ["torchrun", f'''--nproc_per_node={torch.cuda.device_count()}''', inspect.getfile(self.__class__ )] execute_subprocess_async(SCREAMING_SNAKE_CASE_ , env=os.environ.copy() ) if __name__ == "__main__": __a :Optional[int] = "/tmp/accelerate/state_checkpointing" __a :List[Any] = DummyModel() __a :Tuple = torch.optim.Adam(params=model.parameters(), lr=1e-3) __a :int = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.99) __a :str = dummy_dataloaders() __a :Union[str, Any] = ProjectConfiguration(automatic_checkpoint_naming=True) # Train baseline __a :List[str] = Accelerator(project_dir=savedir, project_config=project_config, mixed_precision='no') if accelerator.process_index == 0: if os.path.exists(savedir): shutil.rmtree(savedir) os.makedirs(savedir) __a :Dict = accelerator.prepare( model, optimizer, train_dataloader, valid_dataloader, scheduler ) __a :str = accelerator.prepare(model, optimizer) train(3, model, train_dataloader, optimizer, accelerator, scheduler) # Check that the intial optimizer is loaded on the GPU for group in optimizer.param_groups: __a :int = group["params"][0].device break assert param_device.type == accelerator.device.type __a :Union[str, Any] = model.cpu() accelerator.wait_for_everyone() accelerator.save_state() accelerator.wait_for_everyone() # Check CPU state accelerator.load_state(os.path.join(savedir, 'checkpoints', 'checkpoint_0'), map_location='cpu') for group in optimizer.param_groups: __a :Any = group["params"][0].device break assert ( param_device.type == torch.device('cpu').type ), F"Loaded optimizer states did not match, expected to be loaded on the CPU but got {param_device}" # Check device state model.to(accelerator.device) accelerator.load_state(os.path.join(savedir, 'checkpoints', 'checkpoint_0'), map_location='on_device') for group in optimizer.param_groups: __a :List[Any] = group["params"][0].device break assert ( param_device.type == accelerator.device.type ), F"Loaded optimizer states did not match, expected to be loaded on {accelerator.device} but got {param_device}" # Check error with pytest.raises(TypeError, match='Unsupported optimizer map location passed'): accelerator.load_state(os.path.join(savedir, 'checkpoints', 'checkpoint_0'), map_location='invalid') accelerator.wait_for_everyone() if accelerator.process_index == 0: shutil.rmtree(savedir) accelerator.wait_for_everyone()
312
import math def A_ ( snake_case : int ) -> bool: '''simple docstring''' return math.sqrt(snake_case ) * math.sqrt(snake_case ) == num def A_ ( snake_case : int ) -> bool: '''simple docstring''' __UpperCamelCase = 0 __UpperCamelCase = n while left <= right: __UpperCamelCase = (left + right) // 2 if mid**2 == n: return True elif mid**2 > n: __UpperCamelCase = mid - 1 else: __UpperCamelCase = mid + 1 return False if __name__ == "__main__": import doctest doctest.testmod()
328
0
from __future__ import annotations import math def _A ( SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : int ): """simple docstring""" a__ : List[str] =u for i in range(1 , SCREAMING_SNAKE_CASE ): a__ : Optional[Any] =temp * (u - i) return temp def _A ( ): """simple docstring""" a__ : Tuple =int(input("enter the numbers of values: " ) ) a__ : list[list[float]] =[] for _ in range(SCREAMING_SNAKE_CASE ): y.append([] ) for i in range(SCREAMING_SNAKE_CASE ): for j in range(SCREAMING_SNAKE_CASE ): y[i].append(SCREAMING_SNAKE_CASE ) a__ : Optional[Any] =0 print("enter the values of parameters in a list: " ) a__ : List[str] =list(map(SCREAMING_SNAKE_CASE , input().split() ) ) print("enter the values of corresponding parameters: " ) for i in range(SCREAMING_SNAKE_CASE ): a__ : Tuple =float(input() ) a__ : int =int(input("enter the value to interpolate: " ) ) a__ : Union[str, Any] =(value - x[0]) / (x[1] - x[0]) # for calculating forward difference table for i in range(1 , SCREAMING_SNAKE_CASE ): for j in range(n - i ): a__ : Optional[int] =y[j + 1][i - 1] - y[j][i - 1] a__ : List[str] =y[0][0] for i in range(1 , SCREAMING_SNAKE_CASE ): summ += (ucal(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) * y[0][i]) / math.factorial(SCREAMING_SNAKE_CASE ) print(f'''the value at {value} is {summ}''' ) if __name__ == "__main__": main()
148
# Usage: # ./gen-card-facebook-wmt19.py import os from pathlib import Path def _A ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Tuple ): """simple docstring""" a__ : List[Any] ={ "en": "Machine learning is great, isn't it?", "ru": "Машинное обучение - это здорово, не так ли?", "de": "Maschinelles Lernen ist großartig, oder?", } # BLUE scores as follows: # "pair": [fairseq, transformers] a__ : List[Any] ={ "ru-en": ["[41.3](http://matrix.statmt.org/matrix/output/1907?run_id=6937)", "39.20"], "en-ru": ["[36.4](http://matrix.statmt.org/matrix/output/1914?run_id=6724)", "33.47"], "en-de": ["[43.1](http://matrix.statmt.org/matrix/output/1909?run_id=6862)", "42.83"], "de-en": ["[42.3](http://matrix.statmt.org/matrix/output/1902?run_id=6750)", "41.35"], } a__ : Optional[int] =f'''{src_lang}-{tgt_lang}''' a__ : Any =f''' --- language: - {src_lang} - {tgt_lang} thumbnail: tags: - translation - wmt19 - facebook license: apache-2.0 datasets: - wmt19 metrics: - bleu --- # FSMT ## Model description This is a ported version of [fairseq wmt19 transformer](https://github.com/pytorch/fairseq/blob/master/examples/wmt19/README.md) for {src_lang}-{tgt_lang}. For more details, please see, [Facebook FAIR\'s WMT19 News Translation Task Submission](https://arxiv.org/abs/1907.06616). The abbreviation FSMT stands for FairSeqMachineTranslation All four models are available: * [wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru) * [wmt19-ru-en](https://huggingface.co/facebook/wmt19-ru-en) * [wmt19-en-de](https://huggingface.co/facebook/wmt19-en-de) * [wmt19-de-en](https://huggingface.co/facebook/wmt19-de-en) ## Intended uses & limitations #### How to use ```python from transformers import FSMTForConditionalGeneration, FSMTTokenizer mname = "facebook/wmt19-{src_lang}-{tgt_lang}" tokenizer = FSMTTokenizer.from_pretrained(mname) model = FSMTForConditionalGeneration.from_pretrained(mname) input = "{texts[src_lang]}" input_ids = tokenizer.encode(input, return_tensors="pt") outputs = model.generate(input_ids) decoded = tokenizer.decode(outputs[0], skip_special_tokens=True) print(decoded) # {texts[tgt_lang]} ``` #### Limitations and bias - The original (and this ported model) doesn\'t seem to handle well inputs with repeated sub-phrases, [content gets truncated](https://discuss.huggingface.co/t/issues-with-translating-inputs-containing-repeated-phrases/981) ## Training data Pretrained weights were left identical to the original model released by fairseq. For more details, please, see the [paper](https://arxiv.org/abs/1907.06616). ## Eval results pair | fairseq | transformers -------|---------|---------- {pair} | {scores[pair][0]} | {scores[pair][1]} The score is slightly below the score reported by `fairseq`, since `transformers`` currently doesn\'t support: - model ensemble, therefore the best performing checkpoint was ported (``model4.pt``). - re-ranking The score was calculated using this code: ```bash git clone https://github.com/huggingface/transformers cd transformers export PAIR={pair} export DATA_DIR=data/$PAIR export SAVE_DIR=data/$PAIR export BS=8 export NUM_BEAMS=15 mkdir -p $DATA_DIR sacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source sacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target echo $PAIR PYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS ``` note: fairseq reports using a beam of 50, so you should get a slightly higher score if re-run with `--num_beams 50`. ## Data Sources - [training, etc.](http://www.statmt.org/wmt19/) - [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561) ### BibTeX entry and citation info ```bibtex @inproceedings{{..., year={{2020}}, title={{Facebook FAIR\'s WMT19 News Translation Task Submission}}, author={{Ng, Nathan and Yee, Kyra and Baevski, Alexei and Ott, Myle and Auli, Michael and Edunov, Sergey}}, booktitle={{Proc. of WMT}}, }} ``` ## TODO - port model ensemble (fairseq uses 4 model checkpoints) ''' os.makedirs(SCREAMING_SNAKE_CASE , exist_ok=SCREAMING_SNAKE_CASE ) a__ : Tuple =os.path.join(SCREAMING_SNAKE_CASE , "README.md" ) print(f'''Generating {path}''' ) with open(SCREAMING_SNAKE_CASE , "w" , encoding="utf-8" ) as f: f.write(SCREAMING_SNAKE_CASE ) # make sure we are under the root of the project UpperCAmelCase : str = Path(__file__).resolve().parent.parent.parent UpperCAmelCase : Dict = repo_dir / """model_cards""" for model_name in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[str] = model_name.split("""-""") UpperCAmelCase : Tuple = model_cards_dir / """facebook""" / model_name write_model_card(model_card_dir, src_lang=src_lang, tgt_lang=tgt_lang)
148
1
"""simple docstring""" import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTForImageClassification, ViTForMaskedImageModeling, ViTModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class UpperCamelCase : def __init__( self, lowerCAmelCase__, lowerCAmelCase__=13, lowerCAmelCase__=30, lowerCAmelCase__=2, lowerCAmelCase__=3, lowerCAmelCase__=True, lowerCAmelCase__=True, lowerCAmelCase__=32, lowerCAmelCase__=5, lowerCAmelCase__=4, lowerCAmelCase__=37, lowerCAmelCase__="gelu", lowerCAmelCase__=0.1, lowerCAmelCase__=0.1, lowerCAmelCase__=10, lowerCAmelCase__=0.02, lowerCAmelCase__=None, lowerCAmelCase__=2, ) -> Any: snake_case_ = parent snake_case_ = batch_size snake_case_ = image_size snake_case_ = patch_size snake_case_ = num_channels snake_case_ = is_training snake_case_ = use_labels snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = type_sequence_label_size snake_case_ = initializer_range snake_case_ = scope snake_case_ = encoder_stride # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) snake_case_ = (image_size // patch_size) ** 2 snake_case_ = num_patches + 1 def a_ ( self) -> Any: snake_case_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) snake_case_ = None if self.use_labels: snake_case_ = ids_tensor([self.batch_size], self.type_sequence_label_size) snake_case_ = self.get_config() return config, pixel_values, labels def a_ ( self) -> Union[str, Any]: return ViTConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=lowerCAmelCase__, initializer_range=self.initializer_range, encoder_stride=self.encoder_stride, ) def a_ ( self, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__) -> Union[str, Any]: snake_case_ = ViTModel(config=lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() snake_case_ = model(lowerCAmelCase__) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def a_ ( self, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__) -> str: snake_case_ = ViTForMaskedImageModeling(config=lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() snake_case_ = model(lowerCAmelCase__) self.parent.assertEqual( result.reconstruction.shape, (self.batch_size, self.num_channels, self.image_size, self.image_size)) # test greyscale images snake_case_ = 1 snake_case_ = ViTForMaskedImageModeling(lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() snake_case_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) snake_case_ = model(lowerCAmelCase__) self.parent.assertEqual(result.reconstruction.shape, (self.batch_size, 1, self.image_size, self.image_size)) def a_ ( self, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__) -> Optional[int]: snake_case_ = self.type_sequence_label_size snake_case_ = ViTForImageClassification(lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() snake_case_ = model(lowerCAmelCase__, labels=lowerCAmelCase__) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size)) # test greyscale images snake_case_ = 1 snake_case_ = ViTForImageClassification(lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() snake_case_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) snake_case_ = model(lowerCAmelCase__) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size)) def a_ ( self) -> Any: snake_case_ = self.prepare_config_and_inputs() ( ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ) = config_and_inputs snake_case_ = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ = ( ( ViTModel, ViTForImageClassification, ViTForMaskedImageModeling, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE_ = ( {"feature-extraction": ViTModel, "image-classification": ViTForImageClassification} if is_torch_available() else {} ) SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = False def a_ ( self) -> Optional[int]: snake_case_ = ViTModelTester(self) snake_case_ = ConfigTester(self, config_class=lowerCAmelCase__, has_text_modality=lowerCAmelCase__, hidden_size=37) def a_ ( self) -> str: self.config_tester.run_common_tests() @unittest.skip(reason='ViT does not use inputs_embeds') def a_ ( self) -> List[str]: pass def a_ ( self) -> Optional[Any]: snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ = model_class(lowerCAmelCase__) self.assertIsInstance(model.get_input_embeddings(), (nn.Module)) snake_case_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCAmelCase__, nn.Linear)) def a_ ( self) -> List[str]: snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ = model_class(lowerCAmelCase__) snake_case_ = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case_ = [*signature.parameters.keys()] snake_case_ = ['pixel_values'] self.assertListEqual(arg_names[:1], lowerCAmelCase__) def a_ ( self) -> Dict: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__) def a_ ( self) -> int: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowerCAmelCase__) def a_ ( self) -> Any: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase__) @slow def a_ ( self) -> str: for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case_ = ViTModel.from_pretrained(lowerCAmelCase__) self.assertIsNotNone(lowerCAmelCase__) def UpperCAmelCase ( ) -> List[Any]: snake_case_ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class UpperCamelCase ( unittest.TestCase ): @cached_property def a_ ( self) -> Dict: return ViTImageProcessor.from_pretrained('google/vit-base-patch16-224') if is_vision_available() else None @slow def a_ ( self) -> List[Any]: snake_case_ = ViTForImageClassification.from_pretrained('google/vit-base-patch16-224').to(lowerCAmelCase__) snake_case_ = self.default_image_processor snake_case_ = prepare_img() snake_case_ = image_processor(images=lowerCAmelCase__, return_tensors='pt').to(lowerCAmelCase__) # forward pass with torch.no_grad(): snake_case_ = model(**lowerCAmelCase__) # verify the logits snake_case_ = torch.Size((1, 1000)) self.assertEqual(outputs.logits.shape, lowerCAmelCase__) snake_case_ = torch.tensor([-0.2744, 0.8215, -0.0836]).to(lowerCAmelCase__) self.assertTrue(torch.allclose(outputs.logits[0, :3], lowerCAmelCase__, atol=1e-4)) @slow def a_ ( self) -> List[Any]: # ViT models have an `interpolate_pos_encoding` argument in their forward method, # allowing to interpolate the pre-trained position embeddings in order to use # the model on higher resolutions. The DINO model by Facebook AI leverages this # to visualize self-attention on higher resolution images. snake_case_ = ViTModel.from_pretrained('facebook/dino-vits8').to(lowerCAmelCase__) snake_case_ = ViTImageProcessor.from_pretrained('facebook/dino-vits8', size=480) snake_case_ = prepare_img() snake_case_ = image_processor(images=lowerCAmelCase__, return_tensors='pt') snake_case_ = inputs.pixel_values.to(lowerCAmelCase__) # forward pass with torch.no_grad(): snake_case_ = model(lowerCAmelCase__, interpolate_pos_encoding=lowerCAmelCase__) # verify the logits snake_case_ = torch.Size((1, 3601, 384)) self.assertEqual(outputs.last_hidden_state.shape, lowerCAmelCase__) snake_case_ = torch.tensor( [[4.2340, 4.3906, -6.6692], [4.5463, 1.8928, -6.7257], [4.4429, 0.8496, -5.8585]]).to(lowerCAmelCase__) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3], lowerCAmelCase__, atol=1e-4)) @slow @require_accelerate @require_torch_gpu def a_ ( self) -> Union[str, Any]: snake_case_ = ViTModel.from_pretrained('facebook/dino-vits8', torch_dtype=torch.floataa, device_map='auto') snake_case_ = self.default_image_processor snake_case_ = prepare_img() snake_case_ = image_processor(images=lowerCAmelCase__, return_tensors='pt') snake_case_ = inputs.pixel_values.to(lowerCAmelCase__) # forward pass to make sure inference works in fp16 with torch.no_grad(): snake_case_ = model(lowerCAmelCase__)
69
"""simple docstring""" def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> int: while a != 0: snake_case_ , snake_case_ = b % a, a return b def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> int: if gcd(UpperCAmelCase , UpperCAmelCase ) != 1: snake_case_ = f'mod inverse of {a!r} and {m!r} does not exist' raise ValueError(UpperCAmelCase ) snake_case_ , snake_case_ , snake_case_ = 1, 0, a snake_case_ , snake_case_ , snake_case_ = 0, 1, m while va != 0: snake_case_ = ua // va snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ = (ua - q * va), (ua - q * va), (ua - q * va), va, va, va return ua % m
69
1
from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _snake_case ( _lowercase ): lowerCamelCase__: List[Any] = ["image_processor", "tokenizer"] lowerCamelCase__: List[str] = "AutoImageProcessor" lowerCamelCase__: List[Any] = "AutoTokenizer" def __init__( self: int , __lowerCamelCase: List[Any] , __lowerCamelCase: int ) -> Optional[Any]: super().__init__(__lowerCamelCase , __lowerCamelCase ) __UpperCAmelCase : Optional[Any] = self.image_processor def __call__( self: List[str] , __lowerCamelCase: Optional[int]=None , __lowerCamelCase: Union[str, Any]=None , __lowerCamelCase: Union[str, Any]=None , **__lowerCamelCase: Optional[int] ) -> Union[str, Any]: if text is None and images is None: raise ValueError("You have to specify either text or images. Both cannot be none." ) if text is not None: __UpperCAmelCase : Optional[int] = self.tokenizer(__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase ) if images is not None: __UpperCAmelCase : str = self.image_processor(__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase ) if text is not None and images is not None: __UpperCAmelCase : Tuple = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__lowerCamelCase ) , tensor_type=__lowerCamelCase ) def _lowerCamelCase ( self: Any , *__lowerCamelCase: str , **__lowerCamelCase: List[Any] ) -> Optional[Any]: return self.tokenizer.batch_decode(*__lowerCamelCase , **__lowerCamelCase ) def _lowerCamelCase ( self: Optional[int] , *__lowerCamelCase: Optional[Any] , **__lowerCamelCase: List[str] ) -> Optional[int]: return self.tokenizer.decode(*__lowerCamelCase , **__lowerCamelCase ) @property def _lowerCamelCase ( self: str ) -> int: return ["input_ids", "attention_mask", "pixel_values"]
342
import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import numpy as np import pytest from datasets.arrow_dataset import Dataset from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex from .utils import require_elasticsearch, require_faiss _snake_case = pytest.mark.integration @require_faiss class _snake_case ( _lowercase ): def _lowerCamelCase ( self: Union[str, Any] ) -> str: __UpperCAmelCase : Optional[int] = Dataset.from_dict({"filename": ["my_name-train" + "_" + str(__lowerCamelCase ) for x in np.arange(30 ).tolist()]} ) return dset def _lowerCamelCase ( self: Optional[Any] ) -> Tuple: import faiss __UpperCAmelCase : Dataset = self._create_dummy_dataset() __UpperCAmelCase : int = dset.map( lambda __lowerCamelCase , __lowerCamelCase : {"vecs": i * np.ones(5 , dtype=np.floataa )} , with_indices=__lowerCamelCase , keep_in_memory=__lowerCamelCase ) __UpperCAmelCase : Tuple = dset.add_faiss_index("vecs" , batch_size=1_00 , metric_type=faiss.METRIC_INNER_PRODUCT ) __UpperCAmelCase , __UpperCAmelCase : Dict = dset.get_nearest_examples("vecs" , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples["filename"][0] , "my_name-train_29" ) dset.drop_index("vecs" ) def _lowerCamelCase ( self: List[str] ) -> int: import faiss __UpperCAmelCase : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name="vecs" , batch_size=1_00 , metric_type=faiss.METRIC_INNER_PRODUCT , ) __UpperCAmelCase , __UpperCAmelCase : Tuple = dset.get_nearest_examples("vecs" , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples["filename"][0] , "my_name-train_29" ) def _lowerCamelCase ( self: Optional[int] ) -> Dict: import faiss __UpperCAmelCase : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name="vecs" , metric_type=faiss.METRIC_INNER_PRODUCT , ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=__lowerCamelCase ) as tmp_file: dset.save_faiss_index("vecs" , tmp_file.name ) dset.load_faiss_index("vecs2" , tmp_file.name ) os.unlink(tmp_file.name ) __UpperCAmelCase , __UpperCAmelCase : List[Any] = dset.get_nearest_examples("vecs2" , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples["filename"][0] , "my_name-train_29" ) def _lowerCamelCase ( self: List[Any] ) -> List[Any]: __UpperCAmelCase : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name="vecs" ) dset.drop_index("vecs" ) self.assertRaises(__lowerCamelCase , partial(dset.get_nearest_examples , "vecs2" , np.ones(5 , dtype=np.floataa ) ) ) def _lowerCamelCase ( self: List[str] ) -> Dict: from elasticsearch import Elasticsearch __UpperCAmelCase : Dataset = self._create_dummy_dataset() with patch("elasticsearch.Elasticsearch.search" ) as mocked_search, patch( "elasticsearch.client.IndicesClient.create" ) as mocked_index_create, patch("elasticsearch.helpers.streaming_bulk" ) as mocked_bulk: __UpperCAmelCase : int = {"acknowledged": True} mocked_bulk.return_value([(True, None)] * 30 ) __UpperCAmelCase : Dict = {"hits": {"hits": [{"_score": 1, "_id": 29}]}} __UpperCAmelCase : Any = Elasticsearch() dset.add_elasticsearch_index("filename" , es_client=__lowerCamelCase ) __UpperCAmelCase , __UpperCAmelCase : Optional[int] = dset.get_nearest_examples("filename" , "my_name-train_29" ) self.assertEqual(examples["filename"][0] , "my_name-train_29" ) @require_faiss class _snake_case ( _lowercase ): def _lowerCamelCase ( self: List[str] ) -> Optional[int]: import faiss __UpperCAmelCase : int = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) # add vectors index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsNotNone(index.faiss_index ) self.assertEqual(index.faiss_index.ntotal , 5 ) index.add_vectors(np.zeros((5, 5) , dtype=np.floataa ) ) self.assertEqual(index.faiss_index.ntotal , 10 ) # single query __UpperCAmelCase : Dict = np.zeros(5 , dtype=np.floataa ) __UpperCAmelCase : List[str] = 1 __UpperCAmelCase , __UpperCAmelCase : List[str] = index.search(__lowerCamelCase ) self.assertRaises(__lowerCamelCase , index.search , query.reshape(-1 , 1 ) ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) # batched queries __UpperCAmelCase : List[str] = np.eye(5 , dtype=np.floataa )[::-1] __UpperCAmelCase , __UpperCAmelCase : Any = index.search_batch(__lowerCamelCase ) self.assertRaises(__lowerCamelCase , index.search_batch , queries[0] ) __UpperCAmelCase : Dict = [scores[0] for scores in total_scores] __UpperCAmelCase : int = [indices[0] for indices in total_indices] self.assertGreater(np.min(__lowerCamelCase ) , 0 ) self.assertListEqual([4, 3, 2, 1, 0] , __lowerCamelCase ) def _lowerCamelCase ( self: Any ) -> List[str]: import faiss __UpperCAmelCase : Dict = FaissIndex(string_factory="Flat" ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) __UpperCAmelCase : Optional[Any] = FaissIndex(string_factory="LSH" ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexLSH ) with self.assertRaises(__lowerCamelCase ): __UpperCAmelCase : Any = FaissIndex(string_factory="Flat" , custom_index=faiss.IndexFlat(5 ) ) def _lowerCamelCase ( self: List[str] ) -> Dict: import faiss __UpperCAmelCase : str = faiss.IndexFlat(5 ) __UpperCAmelCase : int = FaissIndex(custom_index=__lowerCamelCase ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) def _lowerCamelCase ( self: Union[str, Any] ) -> int: import faiss __UpperCAmelCase : Any = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=__lowerCamelCase ) as tmp_file: index.save(tmp_file.name ) __UpperCAmelCase : List[str] = FaissIndex.load(tmp_file.name ) os.unlink(tmp_file.name ) __UpperCAmelCase : Tuple = np.zeros(5 , dtype=np.floataa ) __UpperCAmelCase : Tuple = 1 __UpperCAmelCase , __UpperCAmelCase : List[Any] = index.search(__lowerCamelCase ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) @require_faiss def _UpperCamelCase ( snake_case__ ) -> Optional[Any]: import faiss __UpperCAmelCase : Optional[Any] = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5, dtype=np.floataa ) ) __UpperCAmelCase : Optional[Any] = "index.faiss" __UpperCAmelCase : Optional[int] = f'''mock://{index_name}''' index.save(snake_case__, storage_options=mockfs.storage_options ) __UpperCAmelCase : Dict = FaissIndex.load(snake_case__, storage_options=mockfs.storage_options ) __UpperCAmelCase : str = np.zeros(5, dtype=np.floataa ) __UpperCAmelCase : Any = 1 __UpperCAmelCase , __UpperCAmelCase : List[str] = index.search(snake_case__ ) assert scores[0] > 0 assert indices[0] == 1 @require_elasticsearch class _snake_case ( _lowercase ): def _lowerCamelCase ( self: str ) -> Union[str, Any]: from elasticsearch import Elasticsearch with patch("elasticsearch.Elasticsearch.search" ) as mocked_search, patch( "elasticsearch.client.IndicesClient.create" ) as mocked_index_create, patch("elasticsearch.helpers.streaming_bulk" ) as mocked_bulk: __UpperCAmelCase : Optional[Any] = Elasticsearch() __UpperCAmelCase : Dict = {"acknowledged": True} __UpperCAmelCase : Any = ElasticSearchIndex(es_client=__lowerCamelCase ) mocked_bulk.return_value([(True, None)] * 3 ) index.add_documents(["foo", "bar", "foobar"] ) # single query __UpperCAmelCase : Dict = "foo" __UpperCAmelCase : Optional[Any] = {"hits": {"hits": [{"_score": 1, "_id": 0}]}} __UpperCAmelCase , __UpperCAmelCase : Optional[int] = index.search(__lowerCamelCase ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # single query with timeout __UpperCAmelCase : int = "foo" __UpperCAmelCase : Optional[Any] = {"hits": {"hits": [{"_score": 1, "_id": 0}]}} __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = index.search(__lowerCamelCase , request_timeout=30 ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # batched queries __UpperCAmelCase : int = ["foo", "bar", "foobar"] __UpperCAmelCase : Union[str, Any] = {"hits": {"hits": [{"_score": 1, "_id": 1}]}} __UpperCAmelCase , __UpperCAmelCase : List[Any] = index.search_batch(__lowerCamelCase ) __UpperCAmelCase : Tuple = [scores[0] for scores in total_scores] __UpperCAmelCase : Optional[int] = [indices[0] for indices in total_indices] self.assertGreater(np.min(__lowerCamelCase ) , 0 ) self.assertListEqual([1, 1, 1] , __lowerCamelCase ) # batched queries with timeout __UpperCAmelCase : str = ["foo", "bar", "foobar"] __UpperCAmelCase : Tuple = {"hits": {"hits": [{"_score": 1, "_id": 1}]}} __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = index.search_batch(__lowerCamelCase , request_timeout=30 ) __UpperCAmelCase : Union[str, Any] = [scores[0] for scores in total_scores] __UpperCAmelCase : List[Any] = [indices[0] for indices in total_indices] self.assertGreater(np.min(__lowerCamelCase ) , 0 ) self.assertListEqual([1, 1, 1] , __lowerCamelCase )
342
1
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { '''alibaba-damo/mgp-str-base''': '''https://huggingface.co/alibaba-damo/mgp-str-base/resolve/main/config.json''', } class lowerCamelCase__ ( lowerCAmelCase): SCREAMING_SNAKE_CASE__ = '''mgp-str''' def __init__(self , UpperCAmelCase=[3_2, 1_2_8] , UpperCAmelCase=4 , UpperCAmelCase=3 , UpperCAmelCase=2_7 , UpperCAmelCase=3_8 , UpperCAmelCase=5_0_2_5_7 , UpperCAmelCase=3_0_5_2_2 , UpperCAmelCase=7_6_8 , UpperCAmelCase=1_2 , UpperCAmelCase=1_2 , UpperCAmelCase=4.0 , UpperCAmelCase=True , UpperCAmelCase=False , UpperCAmelCase=1e-5 , UpperCAmelCase=0.0 , UpperCAmelCase=0.0 , UpperCAmelCase=0.0 , UpperCAmelCase=False , UpperCAmelCase=0.02 , **UpperCAmelCase , ) -> Optional[Any]: super().__init__(**UpperCAmelCase ) _lowercase =image_size _lowercase =patch_size _lowercase =num_channels _lowercase =max_token_length _lowercase =num_character_labels _lowercase =num_bpe_labels _lowercase =num_wordpiece_labels _lowercase =hidden_size _lowercase =num_hidden_layers _lowercase =num_attention_heads _lowercase =mlp_ratio _lowercase =distilled _lowercase =layer_norm_eps _lowercase =drop_rate _lowercase =qkv_bias _lowercase =attn_drop_rate _lowercase =drop_path_rate _lowercase =output_aa_attentions _lowercase =initializer_range
5
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase__ = { '''configuration_timesformer''': ['''TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TimesformerConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ '''TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TimesformerModel''', '''TimesformerForVideoClassification''', '''TimesformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_timesformer import TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimesformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timesformer import ( TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimesformerForVideoClassification, TimesformerModel, TimesformerPreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
5
1
import argparse import json import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( VideoMAEConfig, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEImageProcessor, ) def __UpperCAmelCase ( __lowerCamelCase ) -> Optional[Any]: lowercase__ : Optional[int] = VideoMAEConfig() set_architecture_configs(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if "finetuned" not in model_name: lowercase__ : str = False if "finetuned" in model_name: lowercase__ : Optional[Any] = '''huggingface/label-files''' if "kinetics" in model_name: lowercase__ : Union[str, Any] = 4_00 lowercase__ : List[Any] = '''kinetics400-id2label.json''' elif "ssv2" in model_name: lowercase__ : int = 1_74 lowercase__ : Optional[Any] = '''something-something-v2-id2label.json''' else: raise ValueError('''Model name should either contain \'kinetics\' or \'ssv2\' in case it\'s fine-tuned.''' ) lowercase__ : Any = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , repo_type='''dataset''' ) , '''r''' ) ) lowercase__ : int = {int(SCREAMING_SNAKE_CASE__ ): v for k, v in idalabel.items()} lowercase__ : Dict = idalabel lowercase__ : Tuple = {v: k for k, v in idalabel.items()} return config def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Tuple: if "small" in model_name: lowercase__ : Optional[int] = 3_84 lowercase__ : Optional[int] = 15_36 lowercase__ : Optional[Any] = 12 lowercase__ : Any = 16 lowercase__ : List[Any] = 12 lowercase__ : Tuple = 3 lowercase__ : List[Any] = 1_92 lowercase__ : List[str] = 7_68 elif "large" in model_name: lowercase__ : Optional[int] = 10_24 lowercase__ : Dict = 40_96 lowercase__ : Dict = 24 lowercase__ : List[Any] = 16 lowercase__ : Optional[Any] = 12 lowercase__ : List[str] = 8 lowercase__ : Optional[int] = 5_12 lowercase__ : str = 20_48 elif "huge" in model_name: lowercase__ : Union[str, Any] = 12_80 lowercase__ : int = 51_20 lowercase__ : Tuple = 32 lowercase__ : Union[str, Any] = 16 lowercase__ : Tuple = 12 lowercase__ : Optional[int] = 8 lowercase__ : List[str] = 6_40 lowercase__ : Tuple = 25_60 elif "base" not in model_name: raise ValueError('''Model name should include either \"small\", \"base\", \"large\", or \"huge\"''' ) def __UpperCAmelCase ( __lowerCamelCase ) -> Dict: if "encoder." in name: lowercase__ : str = name.replace('''encoder.''' , '''''' ) if "cls_token" in name: lowercase__ : List[str] = name.replace('''cls_token''' , '''videomae.embeddings.cls_token''' ) if "decoder_pos_embed" in name: lowercase__ : List[Any] = name.replace('''decoder_pos_embed''' , '''decoder.decoder_pos_embed''' ) if "pos_embed" in name and "decoder" not in name: lowercase__ : List[str] = name.replace('''pos_embed''' , '''videomae.embeddings.position_embeddings''' ) if "patch_embed.proj" in name: lowercase__ : List[str] = name.replace('''patch_embed.proj''' , '''videomae.embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: lowercase__ : Dict = name.replace('''patch_embed.norm''' , '''videomae.embeddings.norm''' ) if "decoder.blocks" in name: lowercase__ : List[str] = name.replace('''decoder.blocks''' , '''decoder.decoder_layers''' ) if "blocks" in name: lowercase__ : Tuple = name.replace('''blocks''' , '''videomae.encoder.layer''' ) if "attn.proj" in name: lowercase__ : Any = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name and "bias" not in name: lowercase__ : Tuple = name.replace('''attn''' , '''attention.self''' ) if "attn" in name: lowercase__ : List[Any] = name.replace('''attn''' , '''attention.attention''' ) if "norm1" in name: lowercase__ : Union[str, Any] = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: lowercase__ : int = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: lowercase__ : Optional[int] = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: lowercase__ : List[Any] = name.replace('''mlp.fc2''' , '''output.dense''' ) if "decoder_embed" in name: lowercase__ : Tuple = name.replace('''decoder_embed''' , '''decoder.decoder_embed''' ) if "decoder_norm" in name: lowercase__ : Union[str, Any] = name.replace('''decoder_norm''' , '''decoder.decoder_norm''' ) if "decoder_pred" in name: lowercase__ : Tuple = name.replace('''decoder_pred''' , '''decoder.decoder_pred''' ) if "norm.weight" in name and "decoder" not in name and "fc" not in name: lowercase__ : Any = name.replace('''norm.weight''' , '''videomae.layernorm.weight''' ) if "norm.bias" in name and "decoder" not in name and "fc" not in name: lowercase__ : Optional[Any] = name.replace('''norm.bias''' , '''videomae.layernorm.bias''' ) if "head" in name and "decoder" not in name: lowercase__ : Any = name.replace('''head''' , '''classifier''' ) return name def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> str: for key in orig_state_dict.copy().keys(): lowercase__ : Any = orig_state_dict.pop(SCREAMING_SNAKE_CASE__ ) if key.startswith('''encoder.''' ): lowercase__ : Union[str, Any] = key.replace('''encoder.''' , '''''' ) if "qkv" in key: lowercase__ : str = key.split('''.''' ) if key.startswith('''decoder.blocks''' ): lowercase__ : Optional[Any] = config.decoder_hidden_size lowercase__ : List[Any] = int(key_split[2] ) lowercase__ : Any = '''decoder.decoder_layers.''' if "weight" in key: lowercase__ : Optional[Any] = val[:dim, :] lowercase__ : int = val[dim : dim * 2, :] lowercase__ : Dict = val[-dim:, :] else: lowercase__ : Any = config.hidden_size lowercase__ : Dict = int(key_split[1] ) lowercase__ : int = '''videomae.encoder.layer.''' if "weight" in key: lowercase__ : List[Any] = val[:dim, :] lowercase__ : Any = val[dim : dim * 2, :] lowercase__ : Any = val[-dim:, :] else: lowercase__ : Tuple = val return orig_state_dict def __UpperCAmelCase ( ) -> List[Any]: lowercase__ : List[Any] = hf_hub_download( repo_id='''hf-internal-testing/spaghetti-video''' , filename='''eating_spaghetti.npy''' , repo_type='''dataset''' ) lowercase__ : List[Any] = np.load(SCREAMING_SNAKE_CASE__ ) return list(SCREAMING_SNAKE_CASE__ ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Optional[Any]: lowercase__ : str = get_videomae_config(SCREAMING_SNAKE_CASE__ ) if "finetuned" in model_name: lowercase__ : Union[str, Any] = VideoMAEForVideoClassification(SCREAMING_SNAKE_CASE__ ) else: lowercase__ : Dict = VideoMAEForPreTraining(SCREAMING_SNAKE_CASE__ ) # download original checkpoint, hosted on Google Drive lowercase__ : List[str] = '''pytorch_model.bin''' gdown.cached_download(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , quiet=SCREAMING_SNAKE_CASE__ ) lowercase__ : Optional[int] = torch.load(SCREAMING_SNAKE_CASE__ , map_location='''cpu''' ) if "model" in files: lowercase__ : str = files['''model'''] else: lowercase__ : List[Any] = files['''module'''] lowercase__ : str = convert_state_dict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) model.load_state_dict(SCREAMING_SNAKE_CASE__ ) model.eval() # verify model on basic input lowercase__ : Optional[Any] = VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) lowercase__ : Any = prepare_video() lowercase__ : int = image_processor(SCREAMING_SNAKE_CASE__ , return_tensors='''pt''' ) if "finetuned" not in model_name: lowercase__ : Any = hf_hub_download(repo_id='''hf-internal-testing/bool-masked-pos''' , filename='''bool_masked_pos.pt''' ) lowercase__ : Union[str, Any] = torch.load(SCREAMING_SNAKE_CASE__ ) lowercase__ : Optional[int] = model(**SCREAMING_SNAKE_CASE__ ) lowercase__ : int = outputs.logits lowercase__ : int = [ '''videomae-small-finetuned-kinetics''', '''videomae-small-finetuned-ssv2''', # Kinetics-400 checkpoints (short = pretrained only for 800 epochs instead of 1600) '''videomae-base-short''', '''videomae-base-short-finetuned-kinetics''', '''videomae-base''', '''videomae-base-finetuned-kinetics''', '''videomae-large''', '''videomae-large-finetuned-kinetics''', '''videomae-huge-finetuned-kinetics''', # Something-Something-v2 checkpoints (short = pretrained only for 800 epochs instead of 2400) '''videomae-base-short-ssv2''', '''videomae-base-short-finetuned-ssv2''', '''videomae-base-ssv2''', '''videomae-base-finetuned-ssv2''', ] # NOTE: logits were tested with image_mean and image_std equal to [0.5, 0.5, 0.5] and [0.5, 0.5, 0.5] if model_name == "videomae-small-finetuned-kinetics": lowercase__ : List[str] = torch.Size([1, 4_00] ) lowercase__ : Dict = torch.tensor([-0.9_2_9_1, -0.4_0_6_1, -0.9_3_0_7] ) elif model_name == "videomae-small-finetuned-ssv2": lowercase__ : Optional[Any] = torch.Size([1, 1_74] ) lowercase__ : List[str] = torch.tensor([0.2_6_7_1, -0.4_6_8_9, -0.8_2_3_5] ) elif model_name == "videomae-base": lowercase__ : str = torch.Size([1, 14_08, 15_36] ) lowercase__ : Dict = torch.tensor([[0.7_7_3_9, 0.7_9_6_8, 0.7_0_8_9], [0.6_7_0_1, 0.7_4_8_7, 0.6_2_0_9], [0.4_2_8_7, 0.5_1_5_8, 0.4_7_7_3]] ) elif model_name == "videomae-base-short": lowercase__ : Union[str, Any] = torch.Size([1, 14_08, 15_36] ) lowercase__ : Union[str, Any] = torch.tensor([[0.7_9_9_4, 0.9_6_1_2, 0.8_5_0_8], [0.7_4_0_1, 0.8_9_5_8, 0.8_3_0_2], [0.5_8_6_2, 0.7_4_6_8, 0.7_3_2_5]] ) # we verified the loss both for normalized and unnormalized targets for this one lowercase__ : Tuple = torch.tensor([0.5_1_4_2] ) if config.norm_pix_loss else torch.tensor([0.6_4_6_9] ) elif model_name == "videomae-large": lowercase__ : Optional[Any] = torch.Size([1, 14_08, 15_36] ) lowercase__ : Union[str, Any] = torch.tensor([[0.7_1_4_9, 0.7_9_9_7, 0.6_9_6_6], [0.6_7_6_8, 0.7_8_6_9, 0.6_9_4_8], [0.5_1_3_9, 0.6_2_2_1, 0.5_6_0_5]] ) elif model_name == "videomae-large-finetuned-kinetics": lowercase__ : Dict = torch.Size([1, 4_00] ) lowercase__ : List[str] = torch.tensor([0.0_7_7_1, 0.0_0_1_1, -0.3_6_2_5] ) elif model_name == "videomae-huge-finetuned-kinetics": lowercase__ : Any = torch.Size([1, 4_00] ) lowercase__ : str = torch.tensor([0.2_4_3_3, 0.1_6_3_2, -0.4_8_9_4] ) elif model_name == "videomae-base-short-finetuned-kinetics": lowercase__ : str = torch.Size([1, 4_00] ) lowercase__ : Optional[Any] = torch.tensor([0.6_5_8_8, 0.0_9_9_0, -0.2_4_9_3] ) elif model_name == "videomae-base-finetuned-kinetics": lowercase__ : str = torch.Size([1, 4_00] ) lowercase__ : List[Any] = torch.tensor([0.3_6_6_9, -0.0_6_8_8, -0.2_4_2_1] ) elif model_name == "videomae-base-short-ssv2": lowercase__ : str = torch.Size([1, 14_08, 15_36] ) lowercase__ : int = torch.tensor([[0.4_7_1_2, 0.5_2_9_6, 0.5_7_8_6], [0.2_2_7_8, 0.2_7_2_9, 0.4_0_2_6], [0.0_3_5_2, 0.0_7_3_0, 0.2_5_0_6]] ) elif model_name == "videomae-base-short-finetuned-ssv2": lowercase__ : Optional[int] = torch.Size([1, 1_74] ) lowercase__ : Optional[Any] = torch.tensor([-0.0_5_3_7, -0.1_5_3_9, -0.3_2_6_6] ) elif model_name == "videomae-base-ssv2": lowercase__ : int = torch.Size([1, 14_08, 15_36] ) lowercase__ : List[Any] = torch.tensor([[0.8_1_3_1, 0.8_7_2_7, 0.8_5_4_6], [0.7_3_6_6, 0.9_3_7_7, 0.8_8_7_0], [0.5_9_3_5, 0.8_8_7_4, 0.8_5_6_4]] ) elif model_name == "videomae-base-finetuned-ssv2": lowercase__ : str = torch.Size([1, 1_74] ) lowercase__ : Any = torch.tensor([0.1_9_6_1, -0.8_3_3_7, -0.6_3_8_9] ) else: raise ValueError(f"""Model name not supported. Should be one of {model_names}""" ) # verify logits assert logits.shape == expected_shape if "finetuned" in model_name: assert torch.allclose(logits[0, :3] , SCREAMING_SNAKE_CASE__ , atol=1E-4 ) else: print('''Logits:''' , logits[0, :3, :3] ) assert torch.allclose(logits[0, :3, :3] , SCREAMING_SNAKE_CASE__ , atol=1E-4 ) print('''Logits ok!''' ) # verify loss, if applicable if model_name == "videomae-base-short": lowercase__ : Optional[int] = outputs.loss assert torch.allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , atol=1E-4 ) print('''Loss ok!''' ) if pytorch_dump_folder_path is not None: print(f"""Saving model and image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE__ ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) if push_to_hub: print('''Pushing to the hub...''' ) model.push_to_hub(SCREAMING_SNAKE_CASE__ , organization='''nielsr''' ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://drive.google.com/u/1/uc?id=1tEhLyskjb755TJ65ptsrafUG2llSwQE1&amp;export=download&amp;confirm=t&amp;uuid=aa3276eb-fb7e-482a-adec-dc7171df14c4', type=str, help=( 'URL of the original PyTorch checkpoint (on Google Drive) you\'d like to convert. Should be a direct' ' download link.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default='/Users/nielsrogge/Documents/VideoMAE/Test', type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument('--model_name', default='videomae-base', type=str, help='Name of the model.') parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) lowerCAmelCase_ = parser.parse_args() convert_videomae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
367
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import ScoreSdeVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class __A ( A_ ): '''simple docstring''' lowerCAmelCase : UNetaDModel lowerCAmelCase : ScoreSdeVeScheduler def __init__( self : Optional[Any] ,_snake_case : UNetaDModel ,_snake_case : ScoreSdeVeScheduler ) -> str: """simple docstring""" super().__init__() self.register_modules(unet=_snake_case ,scheduler=_snake_case ) @torch.no_grad() def __call__( self : Any ,_snake_case : int = 1 ,_snake_case : int = 2_000 ,_snake_case : Optional[Union[torch.Generator, List[torch.Generator]]] = None ,_snake_case : Optional[str] = "pil" ,_snake_case : bool = True ,**_snake_case : Any ,) -> Union[ImagePipelineOutput, Tuple]: """simple docstring""" lowercase__ : Optional[Any] = self.unet.config.sample_size lowercase__ : Dict = (batch_size, 3, img_size, img_size) lowercase__ : Tuple = self.unet lowercase__ : Any = randn_tensor(_snake_case ,generator=_snake_case ) * self.scheduler.init_noise_sigma lowercase__ : Union[str, Any] = sample.to(self.device ) self.scheduler.set_timesteps(_snake_case ) self.scheduler.set_sigmas(_snake_case ) for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): lowercase__ : Tuple = self.scheduler.sigmas[i] * torch.ones(shape[0] ,device=self.device ) # correction step for _ in range(self.scheduler.config.correct_steps ): lowercase__ : List[str] = self.unet(_snake_case ,_snake_case ).sample lowercase__ : Optional[Any] = self.scheduler.step_correct(_snake_case ,_snake_case ,generator=_snake_case ).prev_sample # prediction step lowercase__ : str = model(_snake_case ,_snake_case ).sample lowercase__ : List[Any] = self.scheduler.step_pred(_snake_case ,_snake_case ,_snake_case ,generator=_snake_case ) lowercase__ , lowercase__ : Optional[int] = output.prev_sample, output.prev_sample_mean lowercase__ : Union[str, Any] = sample_mean.clamp(0 ,1 ) lowercase__ : int = sample.cpu().permute(0 ,2 ,3 ,1 ).numpy() if output_type == "pil": lowercase__ : Any = self.numpy_to_pil(_snake_case ) if not return_dict: return (sample,) return ImagePipelineOutput(images=_snake_case )
302
0
'''simple docstring''' import os from typing import List, Optional, Union from ...tokenization_utils import PreTrainedTokenizer from ...tokenization_utils_base import AddedToken from ...utils import logging a__ : List[str] = logging.get_logger(__name__) a__ : Optional[int] = {'vocab_file': 'vocab.txt'} a__ : Optional[Any] = { 'vocab_file': { 'facebook/esm2_t6_8M_UR50D': 'https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt', 'facebook/esm2_t12_35M_UR50D': 'https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt', }, } a__ : Optional[int] = { 'facebook/esm2_t6_8M_UR50D': 1_0_2_4, 'facebook/esm2_t12_35M_UR50D': 1_0_2_4, } def _UpperCamelCase ( __A ) -> str: '''simple docstring''' with open(__A , "r" ) as f: UpperCamelCase__ = f.read().splitlines() return [l.strip() for l in lines] class lowercase_ ( a__ ): __UpperCAmelCase = VOCAB_FILES_NAMES __UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase = ['input_ids', 'attention_mask'] def __init__( self , a , a="<unk>" , a="<cls>" , a="<pad>" , a="<mask>" , a="<eos>" , **a , ): super().__init__(**a ) UpperCamelCase__ = load_vocab_file(a ) UpperCamelCase__ = dict(enumerate(self.all_tokens ) ) UpperCamelCase__ = {tok: ind for ind, tok in enumerate(self.all_tokens )} UpperCamelCase__ = unk_token UpperCamelCase__ = cls_token UpperCamelCase__ = pad_token UpperCamelCase__ = mask_token UpperCamelCase__ = eos_token UpperCamelCase__ = self.all_tokens self._create_trie(self.unique_no_split_tokens ) def __a ( self , a ): return self._id_to_token.get(a , self.unk_token ) def __a ( self , a ): return self._token_to_id.get(a , self._token_to_id.get(self.unk_token ) ) def __a ( self , a , **a ): return text.split() def __a ( self , a=False ): return len(self._id_to_token ) def __a ( self ): return {token: i for i, token in enumerate(self.all_tokens )} def __a ( self , a ): return self._token_to_id.get(a , self._token_to_id.get(self.unk_token ) ) def __a ( self , a ): return self._id_to_token.get(a , self.unk_token ) def __a ( self , a , a = None ): UpperCamelCase__ = [self.cls_token_id] UpperCamelCase__ = [self.eos_token_id] # No sep token in ESM vocabulary if token_ids_a is None: if self.eos_token_id is None: return cls + token_ids_a else: return cls + token_ids_a + sep elif self.eos_token_id is None: raise ValueError("Cannot tokenize multiple sequences when EOS token is not set!" ) return cls + token_ids_a + sep + token_ids_a + sep # Multiple inputs always have an EOS token def __a ( self , a , a = None , a = False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( "You should not supply a second sequence if the provided sequence of " "ids is already formatted with special tokens for the model." ) return [1 if token in self.all_special_ids else 0 for token in token_ids_a] UpperCamelCase__ = [1] + ([0] * len(a )) + [1] if token_ids_a is not None: mask += [0] * len(a ) + [1] return mask def __a ( self , a , a ): UpperCamelCase__ = os.path.join(a , (filename_prefix + "-" if filename_prefix else "") + "vocab.txt" ) with open(a , "w" ) as f: f.write("\n".join(self.all_tokens ) ) return (vocab_file,) @property def __a ( self ): return self.get_vocab_size(with_added_tokens=a ) def __a ( self , a , a = False ): return super()._add_tokens(a , special_tokens=a )
80
"""simple docstring""" import json import os from pathlib import Path import pytest from datasets.download.download_config import DownloadConfig from datasets.download.download_manager import DownloadManager from datasets.utils.file_utils import hash_url_to_filename _a = """http://www.mocksite.com/file1.txt""" _a = """\"text\": [\"foo\", \"foo\"]""" _a = """6d8ce9aa78a471c7477201efbeabd3bb01ac2e7d100a6dc024ba1608361f90a8""" class _UpperCAmelCase: lowercase__ = 2_00 lowercase__ = {'Content-Length': '100'} lowercase__ = {} def UpperCAmelCase ( self , **__a) -> Optional[int]: '''simple docstring''' return [bytes(__a , '''utf-8''')] def lowerCamelCase__ ( *__snake_case, **__snake_case ) -> int: """simple docstring""" return MockResponse() @pytest.mark.parametrize('''urls_type''', [str, list, dict] ) def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case ) -> Dict: """simple docstring""" import requests monkeypatch.setattr(__snake_case, '''request''', __snake_case ) _UpperCamelCase = URL if issubclass(__snake_case, __snake_case ): _UpperCamelCase = url elif issubclass(__snake_case, __snake_case ): _UpperCamelCase = [url] elif issubclass(__snake_case, __snake_case ): _UpperCamelCase = {'''train''': url} _UpperCamelCase = '''dummy''' _UpperCamelCase = '''downloads''' _UpperCamelCase = tmp_path _UpperCamelCase = DownloadConfig( cache_dir=os.path.join(__snake_case, __snake_case ), use_etag=__snake_case, ) _UpperCamelCase = DownloadManager(dataset_name=__snake_case, download_config=__snake_case ) _UpperCamelCase = dl_manager.download(__snake_case ) _UpperCamelCase = urls for downloaded_paths in [downloaded_paths]: if isinstance(__snake_case, __snake_case ): _UpperCamelCase = [downloaded_paths] _UpperCamelCase = [urls] elif isinstance(__snake_case, __snake_case ): assert "train" in downloaded_paths.keys() _UpperCamelCase = downloaded_paths.values() _UpperCamelCase = urls.values() assert downloaded_paths for downloaded_path, input_url in zip(__snake_case, __snake_case ): assert downloaded_path == dl_manager.downloaded_paths[input_url] _UpperCamelCase = Path(__snake_case ) _UpperCamelCase = downloaded_path.parts assert parts[-1] == HASH assert parts[-2] == cache_subdir assert downloaded_path.exists() _UpperCamelCase = downloaded_path.read_text() assert content == CONTENT _UpperCamelCase = downloaded_path.with_suffix('''.json''' ) assert metadata_downloaded_path.exists() _UpperCamelCase = json.loads(metadata_downloaded_path.read_text() ) assert metadata_content == {"url": URL, "etag": None} @pytest.mark.parametrize('''paths_type''', [str, list, dict] ) def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case ) -> List[str]: """simple docstring""" _UpperCamelCase = str(__snake_case ) if issubclass(__snake_case, __snake_case ): _UpperCamelCase = filename elif issubclass(__snake_case, __snake_case ): _UpperCamelCase = [filename] elif issubclass(__snake_case, __snake_case ): _UpperCamelCase = {'''train''': filename} _UpperCamelCase = '''dummy''' _UpperCamelCase = xz_file.parent _UpperCamelCase = '''extracted''' _UpperCamelCase = DownloadConfig( cache_dir=__snake_case, use_etag=__snake_case, ) _UpperCamelCase = DownloadManager(dataset_name=__snake_case, download_config=__snake_case ) _UpperCamelCase = dl_manager.extract(__snake_case ) _UpperCamelCase = paths for extracted_paths in [extracted_paths]: if isinstance(__snake_case, __snake_case ): _UpperCamelCase = [extracted_paths] _UpperCamelCase = [paths] elif isinstance(__snake_case, __snake_case ): assert "train" in extracted_paths.keys() _UpperCamelCase = extracted_paths.values() _UpperCamelCase = paths.values() assert extracted_paths for extracted_path, input_path in zip(__snake_case, __snake_case ): assert extracted_path == dl_manager.extracted_paths[input_path] _UpperCamelCase = Path(__snake_case ) _UpperCamelCase = extracted_path.parts assert parts[-1] == hash_url_to_filename(__snake_case, etag=__snake_case ) assert parts[-2] == extracted_subdir assert extracted_path.exists() _UpperCamelCase = extracted_path.read_text() _UpperCamelCase = text_file.read_text() assert extracted_file_content == expected_file_content def lowerCamelCase__ ( __snake_case, __snake_case ) -> Optional[Any]: """simple docstring""" assert path.endswith('''.jsonl''' ) for num_items, line in enumerate(__snake_case, start=1 ): _UpperCamelCase = json.loads(line.decode('''utf-8''' ) ) assert item.keys() == {"col_1", "col_2", "col_3"} assert num_items == 4 @pytest.mark.parametrize('''archive_jsonl''', ['''tar_jsonl_path''', '''zip_jsonl_path'''] ) def lowerCamelCase__ ( __snake_case, __snake_case ) -> int: """simple docstring""" _UpperCamelCase = request.getfixturevalue(__snake_case ) _UpperCamelCase = DownloadManager() for num_jsonl, (path, file) in enumerate(dl_manager.iter_archive(__snake_case ), start=1 ): _test_jsonl(__snake_case, __snake_case ) assert num_jsonl == 2 @pytest.mark.parametrize('''archive_nested_jsonl''', ['''tar_nested_jsonl_path''', '''zip_nested_jsonl_path'''] ) def lowerCamelCase__ ( __snake_case, __snake_case ) -> int: """simple docstring""" _UpperCamelCase = request.getfixturevalue(__snake_case ) _UpperCamelCase = DownloadManager() for num_tar, (path, file) in enumerate(dl_manager.iter_archive(__snake_case ), start=1 ): for num_jsonl, (subpath, subfile) in enumerate(dl_manager.iter_archive(__snake_case ), start=1 ): _test_jsonl(__snake_case, __snake_case ) assert num_tar == 1 assert num_jsonl == 2 def lowerCamelCase__ ( __snake_case ) -> Dict: """simple docstring""" _UpperCamelCase = DownloadManager() for num_file, file in enumerate(dl_manager.iter_files(__snake_case ), start=1 ): assert os.path.basename(__snake_case ) == ("test.txt" if num_file == 1 else "train.txt") assert num_file == 2
194
0
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import ( AutoProcessor, BertTokenizerFast, BlipImageProcessor, GPTaTokenizer, InstructBlipProcessor, PreTrainedTokenizerFast, ) @require_vision class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def _lowerCAmelCase ( self ) -> List[str]: snake_case_ : Any = tempfile.mkdtemp() snake_case_ : Optional[int] = BlipImageProcessor() snake_case_ : Tuple = GPTaTokenizer.from_pretrained("hf-internal-testing/tiny-random-GPT2Model" ) snake_case_ : List[str] = BertTokenizerFast.from_pretrained("hf-internal-testing/tiny-random-bert" ) snake_case_ : Union[str, Any] = InstructBlipProcessor(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) processor.save_pretrained(self.tmpdirname ) def _lowerCAmelCase ( self , **_SCREAMING_SNAKE_CASE ) -> Dict: return AutoProcessor.from_pretrained(self.tmpdirname , **_SCREAMING_SNAKE_CASE ).tokenizer def _lowerCAmelCase ( self , **_SCREAMING_SNAKE_CASE ) -> List[str]: return AutoProcessor.from_pretrained(self.tmpdirname , **_SCREAMING_SNAKE_CASE ).image_processor def _lowerCAmelCase ( self , **_SCREAMING_SNAKE_CASE ) -> Dict: return AutoProcessor.from_pretrained(self.tmpdirname , **_SCREAMING_SNAKE_CASE ).qformer_tokenizer def _lowerCAmelCase ( self ) -> List[Any]: shutil.rmtree(self.tmpdirname ) def _lowerCAmelCase ( self ) -> Dict: snake_case_ : str = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] snake_case_ : List[str] = [Image.fromarray(np.moveaxis(_SCREAMING_SNAKE_CASE , 0 , -1 ) ) for x in image_inputs] return image_inputs def _lowerCAmelCase ( self ) -> Tuple: snake_case_ : List[Any] = InstructBlipProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() , qformer_tokenizer=self.get_qformer_tokenizer() , ) processor.save_pretrained(self.tmpdirname ) snake_case_ : Any = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) snake_case_ : Any = self.get_image_processor(do_normalize=_SCREAMING_SNAKE_CASE , padding_value=1.0 ) snake_case_ : Union[str, Any] = InstructBlipProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=_SCREAMING_SNAKE_CASE , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _SCREAMING_SNAKE_CASE ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _SCREAMING_SNAKE_CASE ) self.assertIsInstance(processor.qformer_tokenizer , _SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( self ) -> List[Any]: snake_case_ : str = self.get_image_processor() snake_case_ : Union[str, Any] = self.get_tokenizer() snake_case_ : Union[str, Any] = self.get_qformer_tokenizer() snake_case_ : Union[str, Any] = InstructBlipProcessor( tokenizer=_SCREAMING_SNAKE_CASE , image_processor=_SCREAMING_SNAKE_CASE , qformer_tokenizer=_SCREAMING_SNAKE_CASE ) snake_case_ : Optional[Any] = self.prepare_image_inputs() snake_case_ : List[str] = image_processor(_SCREAMING_SNAKE_CASE , return_tensors="np" ) snake_case_ : Optional[Any] = processor(images=_SCREAMING_SNAKE_CASE , return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def _lowerCAmelCase ( self ) -> Optional[int]: snake_case_ : Optional[int] = self.get_image_processor() snake_case_ : List[str] = self.get_tokenizer() snake_case_ : List[Any] = self.get_qformer_tokenizer() snake_case_ : List[Any] = InstructBlipProcessor( tokenizer=_SCREAMING_SNAKE_CASE , image_processor=_SCREAMING_SNAKE_CASE , qformer_tokenizer=_SCREAMING_SNAKE_CASE ) snake_case_ : str = "lower newer" snake_case_ : List[Any] = processor(text=_SCREAMING_SNAKE_CASE ) snake_case_ : Any = tokenizer(_SCREAMING_SNAKE_CASE , return_token_type_ids=_SCREAMING_SNAKE_CASE ) snake_case_ : List[Any] = qformer_tokenizer(_SCREAMING_SNAKE_CASE , return_token_type_ids=_SCREAMING_SNAKE_CASE ) for key in encoded_tokens.keys(): self.assertListEqual(encoded_tokens[key] , encoded_processor[key] ) for key in encoded_tokens_qformer.keys(): self.assertListEqual(encoded_tokens_qformer[key] , encoded_processor["qformer_" + key] ) def _lowerCAmelCase ( self ) -> List[Any]: snake_case_ : List[str] = self.get_image_processor() snake_case_ : Union[str, Any] = self.get_tokenizer() snake_case_ : Union[str, Any] = self.get_qformer_tokenizer() snake_case_ : Optional[Any] = InstructBlipProcessor( tokenizer=_SCREAMING_SNAKE_CASE , image_processor=_SCREAMING_SNAKE_CASE , qformer_tokenizer=_SCREAMING_SNAKE_CASE ) snake_case_ : Union[str, Any] = "lower newer" snake_case_ : Dict = self.prepare_image_inputs() snake_case_ : str = processor(text=_SCREAMING_SNAKE_CASE , images=_SCREAMING_SNAKE_CASE ) self.assertListEqual( list(inputs.keys() ) , ["input_ids", "attention_mask", "qformer_input_ids", "qformer_attention_mask", "pixel_values"] , ) # test if it raises when no input is passed with pytest.raises(_SCREAMING_SNAKE_CASE ): processor() def _lowerCAmelCase ( self ) -> Optional[int]: snake_case_ : Any = self.get_image_processor() snake_case_ : str = self.get_tokenizer() snake_case_ : Optional[int] = self.get_qformer_tokenizer() snake_case_ : List[str] = InstructBlipProcessor( tokenizer=_SCREAMING_SNAKE_CASE , image_processor=_SCREAMING_SNAKE_CASE , qformer_tokenizer=_SCREAMING_SNAKE_CASE ) snake_case_ : Union[str, Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] snake_case_ : Any = processor.batch_decode(_SCREAMING_SNAKE_CASE ) snake_case_ : Tuple = tokenizer.batch_decode(_SCREAMING_SNAKE_CASE ) self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( self ) -> str: snake_case_ : Tuple = self.get_image_processor() snake_case_ : Dict = self.get_tokenizer() snake_case_ : List[str] = self.get_qformer_tokenizer() snake_case_ : Union[str, Any] = InstructBlipProcessor( tokenizer=_SCREAMING_SNAKE_CASE , image_processor=_SCREAMING_SNAKE_CASE , qformer_tokenizer=_SCREAMING_SNAKE_CASE ) snake_case_ : Tuple = "lower newer" snake_case_ : Dict = self.prepare_image_inputs() snake_case_ : Tuple = processor(text=_SCREAMING_SNAKE_CASE , images=_SCREAMING_SNAKE_CASE ) self.assertListEqual( list(inputs.keys() ) , ["input_ids", "attention_mask", "qformer_input_ids", "qformer_attention_mask", "pixel_values"] , )
36
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowercase : Union[str, Any] = logging.get_logger(__name__) class UpperCAmelCase_ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' A : List[Any] = ['pixel_values'] def __init__( self , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = PIL.Image.BICUBIC , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 1 / 255 , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , ) -> None: super().__init__(**_SCREAMING_SNAKE_CASE ) snake_case_ : Optional[Any] = size if size is not None else {"height": 256, "width": 256} snake_case_ : int = get_size_dict(_SCREAMING_SNAKE_CASE ) snake_case_ : Tuple = crop_size if crop_size is not None else {"height": 224, "width": 224} snake_case_ : Dict = get_size_dict(_SCREAMING_SNAKE_CASE , param_name="crop_size" ) snake_case_ : str = do_resize snake_case_ : Tuple = size snake_case_ : Tuple = resample snake_case_ : Dict = do_center_crop snake_case_ : Any = crop_size snake_case_ : int = do_rescale snake_case_ : Union[str, Any] = rescale_factor snake_case_ : Optional[int] = do_normalize snake_case_ : Union[str, Any] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN snake_case_ : Optional[Any] = image_std if image_std is not None else IMAGENET_STANDARD_STD def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = PIL.Image.BICUBIC , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , ) -> np.ndarray: snake_case_ : List[Any] = get_size_dict(_SCREAMING_SNAKE_CASE ) if "height" not in size or "width" not in size: raise ValueError(f'''The size dictionary must have keys \'height\' and \'width\'. Got {size.keys()}''' ) return resize( _SCREAMING_SNAKE_CASE , size=(size["height"], size["width"]) , resample=_SCREAMING_SNAKE_CASE , data_format=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , ) -> np.ndarray: snake_case_ : str = get_size_dict(_SCREAMING_SNAKE_CASE ) if "height" not in size or "width" not in size: raise ValueError(f'''The size dictionary must have keys \'height\' and \'width\'. Got {size.keys()}''' ) return center_crop(_SCREAMING_SNAKE_CASE , size=(size["height"], size["width"]) , data_format=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , ) -> Optional[int]: return rescale(_SCREAMING_SNAKE_CASE , scale=_SCREAMING_SNAKE_CASE , data_format=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , ) -> np.ndarray: return normalize(_SCREAMING_SNAKE_CASE , mean=_SCREAMING_SNAKE_CASE , std=_SCREAMING_SNAKE_CASE , data_format=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = ChannelDimension.FIRST , **_SCREAMING_SNAKE_CASE , ) -> PIL.Image.Image: snake_case_ : Optional[Any] = do_resize if do_resize is not None else self.do_resize snake_case_ : Tuple = resample if resample is not None else self.resample snake_case_ : Optional[int] = do_center_crop if do_center_crop is not None else self.do_center_crop snake_case_ : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale snake_case_ : Optional[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor snake_case_ : Tuple = do_normalize if do_normalize is not None else self.do_normalize snake_case_ : Union[str, Any] = image_mean if image_mean is not None else self.image_mean snake_case_ : Optional[int] = image_std if image_std is not None else self.image_std snake_case_ : Optional[Any] = size if size is not None else self.size snake_case_ : int = get_size_dict(_SCREAMING_SNAKE_CASE ) snake_case_ : str = crop_size if crop_size is not None else self.crop_size snake_case_ : Optional[Any] = get_size_dict(_SCREAMING_SNAKE_CASE , param_name="crop_size" ) snake_case_ : int = make_list_of_images(_SCREAMING_SNAKE_CASE ) if not valid_images(_SCREAMING_SNAKE_CASE ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. snake_case_ : Optional[int] = [to_numpy_array(_SCREAMING_SNAKE_CASE ) for image in images] if do_resize: snake_case_ : Optional[Any] = [self.resize(image=_SCREAMING_SNAKE_CASE , size=_SCREAMING_SNAKE_CASE , resample=_SCREAMING_SNAKE_CASE ) for image in images] if do_center_crop: snake_case_ : List[Any] = [self.center_crop(image=_SCREAMING_SNAKE_CASE , size=_SCREAMING_SNAKE_CASE ) for image in images] if do_rescale: snake_case_ : Optional[int] = [self.rescale(image=_SCREAMING_SNAKE_CASE , scale=_SCREAMING_SNAKE_CASE ) for image in images] if do_normalize: snake_case_ : List[str] = [self.normalize(image=_SCREAMING_SNAKE_CASE , mean=_SCREAMING_SNAKE_CASE , std=_SCREAMING_SNAKE_CASE ) for image in images] snake_case_ : int = [to_channel_dimension_format(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for image in images] snake_case_ : List[str] = {"pixel_values": images} return BatchFeature(data=_SCREAMING_SNAKE_CASE , tensor_type=_SCREAMING_SNAKE_CASE )
36
1
"""simple docstring""" from __future__ import annotations import bisect def UpperCamelCase__ ( lowercase__ : list[int] , lowercase__ : int , lowercase__ : int = 0 , lowercase__ : int = -1 ): if hi < 0: snake_case : Tuple = len(lowercase__ ) while lo < hi: snake_case : Dict = lo + (hi - lo) // 2 if sorted_collection[mid] < item: snake_case : Optional[int] = mid + 1 else: snake_case : int = mid return lo def UpperCamelCase__ ( lowercase__ : list[int] , lowercase__ : int , lowercase__ : int = 0 , lowercase__ : int = -1 ): if hi < 0: snake_case : Tuple = len(lowercase__ ) while lo < hi: snake_case : Optional[Any] = lo + (hi - lo) // 2 if sorted_collection[mid] <= item: snake_case : Any = mid + 1 else: snake_case : Optional[Any] = mid return lo def UpperCamelCase__ ( lowercase__ : list[int] , lowercase__ : int , lowercase__ : int = 0 , lowercase__ : int = -1 ): sorted_collection.insert(bisect_left(lowercase__ , lowercase__ , lowercase__ , lowercase__ ) , lowercase__ ) def UpperCamelCase__ ( lowercase__ : list[int] , lowercase__ : int , lowercase__ : int = 0 , lowercase__ : int = -1 ): sorted_collection.insert(bisect_right(lowercase__ , lowercase__ , lowercase__ , lowercase__ ) , lowercase__ ) def UpperCamelCase__ ( lowercase__ : list[int] , lowercase__ : int ): snake_case : Any = 0 snake_case : Union[str, Any] = len(lowercase__ ) - 1 while left <= right: snake_case : Optional[int] = left + (right - left) // 2 snake_case : List[Any] = sorted_collection[midpoint] if current_item == item: return midpoint elif item < current_item: snake_case : Any = midpoint - 1 else: snake_case : Optional[Any] = midpoint + 1 return None def UpperCamelCase__ ( lowercase__ : list[int] , lowercase__ : int ): snake_case : Optional[int] = bisect.bisect_left(lowercase__ , lowercase__ ) if index != len(lowercase__ ) and sorted_collection[index] == item: return index return None def UpperCamelCase__ ( lowercase__ : list[int] , lowercase__ : int , lowercase__ : int , lowercase__ : int ): if right < left: return None snake_case : Union[str, Any] = left + (right - left) // 2 if sorted_collection[midpoint] == item: return midpoint elif sorted_collection[midpoint] > item: return binary_search_by_recursion(lowercase__ , lowercase__ , lowercase__ , midpoint - 1 ) else: return binary_search_by_recursion(lowercase__ , lowercase__ , midpoint + 1 , lowercase__ ) if __name__ == "__main__": __A = input("Enter numbers separated by comma:\n").strip() __A = sorted(int(item) for item in user_input.split(",")) __A = int(input("Enter a single number to be found in the list:\n")) __A = binary_search(collection, target) if result is None: print(f'{target} was not found in {collection}.') else: print(f'{target} was found at position {result} in {collection}.')
148
"""simple docstring""" import argparse import os import jax as jnp import numpy as onp import torch import torch.nn as nn from music_spectrogram_diffusion import inference from tax import checkpoints from diffusers import DDPMScheduler, OnnxRuntimeModel, SpectrogramDiffusionPipeline from diffusers.pipelines.spectrogram_diffusion import SpectrogramContEncoder, SpectrogramNotesEncoder, TaFilmDecoder __A = "base_with_context" def UpperCamelCase__ ( lowercase__ : Optional[Any] , lowercase__ : List[Any] ): snake_case : Dict = nn.Parameter(torch.FloatTensor(weights["token_embedder"]["embedding"] ) ) snake_case : Tuple = nn.Parameter( torch.FloatTensor(weights["Embed_0"]["embedding"] ) , requires_grad=lowercase__ ) for lyr_num, lyr in enumerate(model.encoders ): snake_case : Tuple = weights[F'''layers_{lyr_num}'''] snake_case : List[Any] = nn.Parameter( torch.FloatTensor(ly_weight["pre_attention_layer_norm"]["scale"] ) ) snake_case : List[Any] = ly_weight["attention"] snake_case : List[Any] = nn.Parameter(torch.FloatTensor(attention_weights["query"]["kernel"].T ) ) snake_case : List[Any] = nn.Parameter(torch.FloatTensor(attention_weights["key"]["kernel"].T ) ) snake_case : Any = nn.Parameter(torch.FloatTensor(attention_weights["value"]["kernel"].T ) ) snake_case : List[str] = nn.Parameter(torch.FloatTensor(attention_weights["out"]["kernel"].T ) ) snake_case : Tuple = nn.Parameter(torch.FloatTensor(ly_weight["pre_mlp_layer_norm"]["scale"] ) ) snake_case : Dict = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_0"]["kernel"].T ) ) snake_case : str = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_1"]["kernel"].T ) ) snake_case : Union[str, Any] = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wo"]["kernel"].T ) ) snake_case : List[Any] = nn.Parameter(torch.FloatTensor(weights["encoder_norm"]["scale"] ) ) return model def UpperCamelCase__ ( lowercase__ : Tuple , lowercase__ : List[Any] ): snake_case : Optional[Any] = nn.Parameter(torch.FloatTensor(weights["input_proj"]["kernel"].T ) ) snake_case : Union[str, Any] = nn.Parameter( torch.FloatTensor(weights["Embed_0"]["embedding"] ) , requires_grad=lowercase__ ) for lyr_num, lyr in enumerate(model.encoders ): snake_case : str = weights[F'''layers_{lyr_num}'''] snake_case : Any = ly_weight["attention"] snake_case : Union[str, Any] = nn.Parameter(torch.FloatTensor(attention_weights["query"]["kernel"].T ) ) snake_case : Optional[int] = nn.Parameter(torch.FloatTensor(attention_weights["key"]["kernel"].T ) ) snake_case : Dict = nn.Parameter(torch.FloatTensor(attention_weights["value"]["kernel"].T ) ) snake_case : int = nn.Parameter(torch.FloatTensor(attention_weights["out"]["kernel"].T ) ) snake_case : List[Any] = nn.Parameter( torch.FloatTensor(ly_weight["pre_attention_layer_norm"]["scale"] ) ) snake_case : Optional[int] = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_0"]["kernel"].T ) ) snake_case : str = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_1"]["kernel"].T ) ) snake_case : Optional[Any] = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wo"]["kernel"].T ) ) snake_case : Optional[Any] = nn.Parameter(torch.FloatTensor(ly_weight["pre_mlp_layer_norm"]["scale"] ) ) snake_case : int = nn.Parameter(torch.FloatTensor(weights["encoder_norm"]["scale"] ) ) return model def UpperCamelCase__ ( lowercase__ : str , lowercase__ : Union[str, Any] ): snake_case : int = nn.Parameter(torch.FloatTensor(weights["time_emb_dense0"]["kernel"].T ) ) snake_case : List[Any] = nn.Parameter(torch.FloatTensor(weights["time_emb_dense1"]["kernel"].T ) ) snake_case : Tuple = nn.Parameter( torch.FloatTensor(weights["Embed_0"]["embedding"] ) , requires_grad=lowercase__ ) snake_case : Tuple = nn.Parameter( torch.FloatTensor(weights["continuous_inputs_projection"]["kernel"].T ) ) for lyr_num, lyr in enumerate(model.decoders ): snake_case : Union[str, Any] = weights[F'''layers_{lyr_num}'''] snake_case : List[str] = nn.Parameter( torch.FloatTensor(ly_weight["pre_self_attention_layer_norm"]["scale"] ) ) snake_case : Any = nn.Parameter( torch.FloatTensor(ly_weight["FiLMLayer_0"]["DenseGeneral_0"]["kernel"].T ) ) snake_case : Union[str, Any] = ly_weight["self_attention"] snake_case : List[str] = nn.Parameter(torch.FloatTensor(attention_weights["query"]["kernel"].T ) ) snake_case : Any = nn.Parameter(torch.FloatTensor(attention_weights["key"]["kernel"].T ) ) snake_case : Optional[Any] = nn.Parameter(torch.FloatTensor(attention_weights["value"]["kernel"].T ) ) snake_case : str = nn.Parameter(torch.FloatTensor(attention_weights["out"]["kernel"].T ) ) snake_case : List[str] = ly_weight["MultiHeadDotProductAttention_0"] snake_case : Tuple = nn.Parameter(torch.FloatTensor(attention_weights["query"]["kernel"].T ) ) snake_case : Dict = nn.Parameter(torch.FloatTensor(attention_weights["key"]["kernel"].T ) ) snake_case : str = nn.Parameter(torch.FloatTensor(attention_weights["value"]["kernel"].T ) ) snake_case : Union[str, Any] = nn.Parameter(torch.FloatTensor(attention_weights["out"]["kernel"].T ) ) snake_case : Union[str, Any] = nn.Parameter( torch.FloatTensor(ly_weight["pre_cross_attention_layer_norm"]["scale"] ) ) snake_case : Dict = nn.Parameter(torch.FloatTensor(ly_weight["pre_mlp_layer_norm"]["scale"] ) ) snake_case : Tuple = nn.Parameter( torch.FloatTensor(ly_weight["FiLMLayer_1"]["DenseGeneral_0"]["kernel"].T ) ) snake_case : Tuple = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_0"]["kernel"].T ) ) snake_case : Any = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_1"]["kernel"].T ) ) snake_case : str = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wo"]["kernel"].T ) ) snake_case : List[str] = nn.Parameter(torch.FloatTensor(weights["decoder_norm"]["scale"] ) ) snake_case : List[Any] = nn.Parameter(torch.FloatTensor(weights["spec_out_dense"]["kernel"].T ) ) return model def UpperCamelCase__ ( lowercase__ : Any ): snake_case : Union[str, Any] = checkpoints.load_tax_checkpoint(args.checkpoint_path ) snake_case : List[Any] = jnp.tree_util.tree_map(onp.array , lowercase__ ) snake_case : Tuple = [ "from __gin__ import dynamic_registration", "from music_spectrogram_diffusion.models.diffusion import diffusion_utils", "diffusion_utils.ClassifierFreeGuidanceConfig.eval_condition_weight = 2.0", "diffusion_utils.DiffusionConfig.classifier_free_guidance = @diffusion_utils.ClassifierFreeGuidanceConfig()", ] snake_case : List[str] = os.path.join(args.checkpoint_path , ".." , "config.gin" ) snake_case : List[str] = inference.parse_training_gin_file(lowercase__ , lowercase__ ) snake_case : List[Any] = inference.InferenceModel(args.checkpoint_path , lowercase__ ) snake_case : str = DDPMScheduler(beta_schedule="squaredcos_cap_v2" , variance_type="fixed_large" ) snake_case : int = SpectrogramNotesEncoder( max_length=synth_model.sequence_length["inputs"] , vocab_size=synth_model.model.module.config.vocab_size , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj="gated-gelu" , ) snake_case : Tuple = SpectrogramContEncoder( input_dims=synth_model.audio_codec.n_dims , targets_context_length=synth_model.sequence_length["targets_context"] , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj="gated-gelu" , ) snake_case : str = TaFilmDecoder( input_dims=synth_model.audio_codec.n_dims , targets_length=synth_model.sequence_length["targets_context"] , max_decoder_noise_time=synth_model.model.module.config.max_decoder_noise_time , d_model=synth_model.model.module.config.emb_dim , num_layers=synth_model.model.module.config.num_decoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , dropout_rate=synth_model.model.module.config.dropout_rate , ) snake_case : Optional[int] = load_notes_encoder(ta_checkpoint["target"]["token_encoder"] , lowercase__ ) snake_case : Any = load_continuous_encoder(ta_checkpoint["target"]["continuous_encoder"] , lowercase__ ) snake_case : List[Any] = load_decoder(ta_checkpoint["target"]["decoder"] , lowercase__ ) snake_case : int = OnnxRuntimeModel.from_pretrained("kashif/soundstream_mel_decoder" ) snake_case : Tuple = SpectrogramDiffusionPipeline( notes_encoder=lowercase__ , continuous_encoder=lowercase__ , decoder=lowercase__ , scheduler=lowercase__ , melgan=lowercase__ , ) if args.save: pipe.save_pretrained(args.output_path ) if __name__ == "__main__": __A = argparse.ArgumentParser() parser.add_argument("--output_path", default=None, type=str, required=True, help="Path to the converted model.") parser.add_argument( "--save", default=True, type=bool, required=False, help="Whether to save the converted model or not." ) parser.add_argument( "--checkpoint_path", default=f'{MODEL}/checkpoint_500000', type=str, required=False, help="Path to the original jax model checkpoint.", ) __A = parser.parse_args() main(args)
148
1
"""simple docstring""" import itertools import random import unittest import numpy as np from transformers import BatchFeature, SpeechTaFeatureExtractor from transformers.testing_utils import require_torch from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch _UpperCAmelCase : Any = random.Random() def A ( lowercase , lowercase=1.0 , lowercase=None , lowercase=None ) -> Optional[Any]: '''simple docstring''' if rng is None: UpperCamelCase = global_rng UpperCamelCase = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch class lowercase ( unittest.TestCase ): def __init__( self , A_ , A_=7 , A_=400 , A_=2_000 , A_=1 , A_=0.0 , A_=16_000 , A_=True , A_=80 , A_=16 , A_=64 , A_="hann_window" , A_=80 , A_=7_600 , A_=1e-10 , A_=True , ) -> Optional[int]: """simple docstring""" UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = min_seq_length UpperCamelCase = max_seq_length UpperCamelCase = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) UpperCamelCase = feature_size UpperCamelCase = padding_value UpperCamelCase = sampling_rate UpperCamelCase = do_normalize UpperCamelCase = num_mel_bins UpperCamelCase = hop_length UpperCamelCase = win_length UpperCamelCase = win_function UpperCamelCase = fmin UpperCamelCase = fmax UpperCamelCase = mel_floor UpperCamelCase = return_attention_mask def __UpperCamelCase ( self ) -> Dict: """simple docstring""" return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "do_normalize": self.do_normalize, "num_mel_bins": self.num_mel_bins, "hop_length": self.hop_length, "win_length": self.win_length, "win_function": self.win_function, "fmin": self.fmin, "fmax": self.fmax, "mel_floor": self.mel_floor, "return_attention_mask": self.return_attention_mask, } def __UpperCamelCase ( self , A_=False , A_=False ) -> Tuple: """simple docstring""" def _flatten(A_ ): return list(itertools.chain(*__A ) ) if equal_length: UpperCamelCase = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size UpperCamelCase = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: UpperCamelCase = [np.asarray(__A ) for x in speech_inputs] return speech_inputs def __UpperCamelCase ( self , A_=False , A_=False ) -> str: """simple docstring""" if equal_length: UpperCamelCase = [floats_list((self.max_seq_length, self.num_mel_bins) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size UpperCamelCase = [ floats_list((x, self.num_mel_bins) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: UpperCamelCase = [np.asarray(__A ) for x in speech_inputs] return speech_inputs @require_torch class lowercase ( lowerCamelCase__ , unittest.TestCase ): __lowercase : Union[str, Any] = SpeechTaFeatureExtractor def __UpperCamelCase ( self ) -> Tuple: """simple docstring""" UpperCamelCase = SpeechTaFeatureExtractionTester(self ) def __UpperCamelCase ( self , A_ ) -> Tuple: """simple docstring""" self.assertTrue(np.all(np.mean(__A , axis=0 ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(__A , axis=0 ) - 1 ) < 1e-3 ) ) def __UpperCamelCase ( self ) -> Optional[int]: """simple docstring""" # Tests that all call wrap to encode_plus and batch_encode_plus UpperCamelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 UpperCamelCase = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] UpperCamelCase = [np.asarray(__A ) for speech_input in speech_inputs] # Test not batched input UpperCamelCase = feat_extract(speech_inputs[0] , return_tensors='np' ).input_values UpperCamelCase = feat_extract(np_speech_inputs[0] , return_tensors='np' ).input_values self.assertTrue(np.allclose(__A , __A , atol=1e-3 ) ) # Test batched UpperCamelCase = feat_extract(__A , return_tensors='np' ).input_values UpperCamelCase = feat_extract(__A , return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(__A , __A ): self.assertTrue(np.allclose(__A , __A , atol=1e-3 ) ) def __UpperCamelCase ( self ) -> Tuple: """simple docstring""" UpperCamelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] UpperCamelCase = ['''longest''', '''max_length''', '''do_not_pad'''] UpperCamelCase = [None, 1_600, None] for max_length, padding in zip(__A , __A ): UpperCamelCase = feat_extract(__A , padding=__A , max_length=__A , return_tensors='np' ) UpperCamelCase = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self.assertTrue(input_values[0][800:].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_values[1][:1_000] ) self.assertTrue(input_values[0][1_000:].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_values[2][:1_200] ) def __UpperCamelCase ( self ) -> int: """simple docstring""" UpperCamelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase = range(800 , 1_400 , 200 ) UpperCamelCase = [floats_list((1, x) )[0] for x in lengths] UpperCamelCase = ['''longest''', '''max_length''', '''do_not_pad'''] UpperCamelCase = [None, 1_600, None] for max_length, padding in zip(__A , __A ): UpperCamelCase = feat_extract(__A , max_length=__A , padding=__A ) UpperCamelCase = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self._check_zero_mean_unit_variance(input_values[1][:1_000] ) self._check_zero_mean_unit_variance(input_values[2][:1_200] ) def __UpperCamelCase ( self ) -> Tuple: """simple docstring""" UpperCamelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] UpperCamelCase = feat_extract( __A , truncation=__A , max_length=1_000 , padding='max_length' , return_tensors='np' ) UpperCamelCase = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1] ) self._check_zero_mean_unit_variance(input_values[2] ) def __UpperCamelCase ( self ) -> List[str]: """simple docstring""" UpperCamelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] UpperCamelCase = feat_extract( __A , truncation=__A , max_length=1_000 , padding='longest' , return_tensors='np' ) UpperCamelCase = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1_000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertTrue(input_values.shape == (3, 1_000) ) UpperCamelCase = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] UpperCamelCase = feat_extract( __A , truncation=__A , max_length=2_000 , padding='longest' , return_tensors='np' ) UpperCamelCase = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1_000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length > longest -> then pad to longest self.assertTrue(input_values.shape == (3, 1_200) ) def __UpperCamelCase ( self ) -> List[Any]: """simple docstring""" UpperCamelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase = np.random.rand(100 ).astype(np.floataa ) UpperCamelCase = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: UpperCamelCase = feature_extractor.pad([{'input_values': inputs}] , return_tensors='np' ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) UpperCamelCase = feature_extractor.pad([{'input_values': inputs}] , return_tensors='pt' ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def __UpperCamelCase ( self ) -> Any: """simple docstring""" # Tests that all call wrap to encode_plus and batch_encode_plus UpperCamelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 UpperCamelCase = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] UpperCamelCase = [np.asarray(__A ) for speech_input in speech_inputs] # Test feature size UpperCamelCase = feature_extractor(audio_target=__A , padding=__A , return_tensors='np' ).input_values self.assertTrue(input_values.ndim == 3 ) self.assertTrue(input_values.shape[-1] == feature_extractor.num_mel_bins ) # Test not batched input UpperCamelCase = feature_extractor(speech_inputs[0] , return_tensors='np' ).input_values UpperCamelCase = feature_extractor(np_speech_inputs[0] , return_tensors='np' ).input_values self.assertTrue(np.allclose(__A , __A , atol=1e-3 ) ) # Test batched UpperCamelCase = feature_extractor(__A , return_tensors='np' ).input_values UpperCamelCase = feature_extractor(__A , return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(__A , __A ): self.assertTrue(np.allclose(__A , __A , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. UpperCamelCase = [floats_list((1, x) )[0] for x in (800, 800, 800)] UpperCamelCase = np.asarray(__A ) UpperCamelCase = feature_extractor(__A , return_tensors='np' ).input_values UpperCamelCase = feature_extractor(__A , return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(__A , __A ): self.assertTrue(np.allclose(__A , __A , atol=1e-3 ) ) def __UpperCamelCase ( self ) -> Tuple: """simple docstring""" UpperCamelCase = self.feat_extract_tester.prepare_inputs_for_target() UpperCamelCase = self.feature_extraction_class(**self.feat_extract_dict ) UpperCamelCase = feat_extract.model_input_names[0] UpperCamelCase = BatchFeature({input_name: speech_inputs} ) self.assertTrue(all(len(__A ) == len(__A ) for x, y in zip(__A , processed_features[input_name] ) ) ) UpperCamelCase = self.feat_extract_tester.prepare_inputs_for_target(equal_length=__A ) UpperCamelCase = BatchFeature({input_name: speech_inputs} , tensor_type='np' ) UpperCamelCase = processed_features[input_name] if len(batch_features_input.shape ) < 3: UpperCamelCase = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def __UpperCamelCase ( self ) -> List[str]: """simple docstring""" UpperCamelCase = self.feat_extract_tester.prepare_inputs_for_target(equal_length=__A ) UpperCamelCase = self.feature_extraction_class(**self.feat_extract_dict ) UpperCamelCase = feat_extract.model_input_names[0] UpperCamelCase = BatchFeature({input_name: speech_inputs} , tensor_type='pt' ) UpperCamelCase = processed_features[input_name] if len(batch_features_input.shape ) < 3: UpperCamelCase = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def __UpperCamelCase ( self ) -> int: """simple docstring""" UpperCamelCase = self.feature_extraction_class(**self.feat_extract_dict ) UpperCamelCase = self.feat_extract_tester.prepare_inputs_for_target() UpperCamelCase = feat_extract.model_input_names[0] UpperCamelCase = BatchFeature({input_name: speech_inputs} ) UpperCamelCase = feat_extract.num_mel_bins # hack! UpperCamelCase = feat_extract.pad(__A , padding='longest' , return_tensors='np' )[input_name] UpperCamelCase = feat_extract.pad(__A , padding='longest' , return_tensors='pt' )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1e-2 ) def __UpperCamelCase ( self ) -> Any: """simple docstring""" UpperCamelCase = self.feat_extract_dict UpperCamelCase = True UpperCamelCase = self.feature_extraction_class(**__A ) UpperCamelCase = self.feat_extract_tester.prepare_inputs_for_target() UpperCamelCase = [len(__A ) for x in speech_inputs] UpperCamelCase = feat_extract.model_input_names[0] UpperCamelCase = BatchFeature({input_name: speech_inputs} ) UpperCamelCase = feat_extract.num_mel_bins # hack! UpperCamelCase = feat_extract.pad(__A , padding='longest' , return_tensors='np' ) self.assertIn('attention_mask' , __A ) self.assertListEqual(list(processed.attention_mask.shape ) , list(processed[input_name].shape[:2] ) ) self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() , __A ) def __UpperCamelCase ( self ) -> Dict: """simple docstring""" UpperCamelCase = self.feat_extract_dict UpperCamelCase = True UpperCamelCase = self.feature_extraction_class(**__A ) UpperCamelCase = self.feat_extract_tester.prepare_inputs_for_target() UpperCamelCase = [len(__A ) for x in speech_inputs] UpperCamelCase = feat_extract.model_input_names[0] UpperCamelCase = BatchFeature({input_name: speech_inputs} ) UpperCamelCase = min(__A ) UpperCamelCase = feat_extract.num_mel_bins # hack! UpperCamelCase = feat_extract.pad( __A , padding='max_length' , max_length=__A , truncation=__A , return_tensors='np' ) self.assertIn('attention_mask' , __A ) self.assertListEqual( list(processed_pad.attention_mask.shape ) , [processed_pad[input_name].shape[0], max_length] ) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() , [max_length for x in speech_inputs] ) def __UpperCamelCase ( self , A_ ) -> Optional[int]: """simple docstring""" from datasets import load_dataset UpperCamelCase = load_dataset('hf-internal-testing/librispeech_asr_dummy' , 'clean' , split='validation' ) # automatic decoding with librispeech UpperCamelCase = ds.sort('id' ).select(range(__A ) )[:num_samples]['''audio'''] return [x["array"] for x in speech_samples] def __UpperCamelCase ( self ) -> int: """simple docstring""" # fmt: off UpperCamelCase = torch.tensor( [2.3804e-03, 2.0752e-03, 1.9836e-03, 2.1057e-03, 1.6174e-03, 3.0518e-04, 9.1553e-05, 3.3569e-04, 9.7656e-04, 1.8311e-03, 2.0142e-03, 2.1057e-03, 1.7395e-03, 4.5776e-04, -3.9673e-04, 4.5776e-04, 1.0071e-03, 9.1553e-05, 4.8828e-04, 1.1597e-03, 7.3242e-04, 9.4604e-04, 1.8005e-03, 1.8311e-03, 8.8501e-04, 4.2725e-04, 4.8828e-04, 7.3242e-04, 1.0986e-03, 2.1057e-03] ) # fmt: on UpperCamelCase = self._load_datasamples(1 ) UpperCamelCase = SpeechTaFeatureExtractor() UpperCamelCase = feature_extractor(__A , return_tensors='pt' ).input_values self.assertEquals(input_values.shape , (1, 93_680) ) self.assertTrue(torch.allclose(input_values[0, :30] , __A , atol=1e-6 ) ) def __UpperCamelCase ( self ) -> Optional[int]: """simple docstring""" # fmt: off UpperCamelCase = torch.tensor( [-2.6870, -3.0104, -3.1356, -3.5352, -3.0044, -3.0353, -3.4719, -3.6777, -3.1520, -2.9435, -2.6553, -2.8795, -2.9944, -2.5921, -3.0279, -3.0386, -3.0864, -3.1291, -3.2353, -2.7444, -2.6831, -2.7287, -3.1761, -3.1571, -3.2726, -3.0582, -3.1007, -3.4533, -3.4695, -3.0998] ) # fmt: on UpperCamelCase = self._load_datasamples(1 ) UpperCamelCase = SpeechTaFeatureExtractor() UpperCamelCase = feature_extractor(audio_target=__A , return_tensors='pt' ).input_values self.assertEquals(input_values.shape , (1, 366, 80) ) self.assertTrue(torch.allclose(input_values[0, 0, :30] , __A , atol=1e-4 ) )
361
import darl # noqa import gym import tqdm from diffusers.experimental import ValueGuidedRLPipeline _UpperCAmelCase : Optional[Any] = { "n_samples": 64, "horizon": 32, "num_inference_steps": 20, "n_guide_steps": 2, # can set to 0 for faster sampling, does not use value network "scale_grad_by_std": True, "scale": 0.1, "eta": 0.0, "t_grad_cutoff": 2, "device": "cpu", } if __name__ == "__main__": _UpperCAmelCase : int = "hopper-medium-v2" _UpperCAmelCase : Tuple = gym.make(env_name) _UpperCAmelCase : Any = ValueGuidedRLPipeline.from_pretrained( "bglick13/hopper-medium-v2-value-function-hor32", env=env, ) env.seed(0) _UpperCAmelCase : Optional[Any] = env.reset() _UpperCAmelCase : Union[str, Any] = 0 _UpperCAmelCase : Union[str, Any] = 0 _UpperCAmelCase : Dict = 1_000 _UpperCAmelCase : Tuple = [obs.copy()] try: for t in tqdm.tqdm(range(T)): # call the policy _UpperCAmelCase : int = pipeline(obs, planning_horizon=32) # execute action in environment _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : List[Any] = env.step(denorm_actions) _UpperCAmelCase : int = env.get_normalized_score(total_reward) # update return total_reward += reward total_score += score print( F'''Step: {t}, Reward: {reward}, Total Reward: {total_reward}, Score: {score}, Total Score:''' F''' {total_score}''' ) # save observations for rendering rollout.append(next_observation.copy()) _UpperCAmelCase : Union[str, Any] = next_observation except KeyboardInterrupt: pass print(F'''Total reward: {total_reward}''')
110
0
import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm __magic_name__: Any = re.compile("[^A-Za-z_0-9]") # parameters used in DuplicationIndex __magic_name__: List[Any] = 10 __magic_name__: Union[str, Any] = 256 def UpperCamelCase ( _A ): """simple docstring""" if len(_A ) < MIN_NUM_TOKENS: return None __magic_name__ : List[Any] = MinHash(num_perm=_A ) for token in set(_A ): min_hash.update(token.encode() ) return min_hash def UpperCamelCase ( _A ): """simple docstring""" return {t for t in NON_ALPHA.split(_A ) if len(t.strip() ) > 0} class snake_case__ : def __init__( self , *, lowerCAmelCase__ = 0.8_5 , ) -> Any: __magic_name__ : Optional[int] = duplication_jaccard_threshold __magic_name__ : Optional[int] = NUM_PERM __magic_name__ : Any = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm ) __magic_name__ : Any = defaultdict(lowerCAmelCase__ ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> None: __magic_name__ : List[str] = self._index.query(lowerCAmelCase__ ) if code_key in self._index.keys: print(F'Duplicate key {code_key}' ) return self._index.insert(lowerCAmelCase__ , lowerCAmelCase__ ) if len(lowerCAmelCase__ ) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(lowerCAmelCase__ ) break else: self._duplicate_clusters[close_duplicates[0]].add(lowerCAmelCase__ ) def __magic_name__ ( self ) -> List[List[Dict]]: __magic_name__ : str = [] for base, duplicates in self._duplicate_clusters.items(): __magic_name__ : Union[str, Any] = [base] + list(lowerCAmelCase__ ) # reformat the cluster to be a list of dict __magic_name__ : Optional[Any] = [{"""base_index""": el[0], """repo_name""": el[1], """path""": el[2]} for el in cluster] duplicate_clusters.append(lowerCAmelCase__ ) return duplicate_clusters def __magic_name__ ( self , lowerCAmelCase__ ) -> None: __magic_name__ : Any = self.get_duplicate_clusters() with open(lowerCAmelCase__ , """w""" ) as f: json.dump(lowerCAmelCase__ , lowerCAmelCase__ ) def UpperCamelCase ( _A ): """simple docstring""" __magic_name__ ,__magic_name__ : Tuple = element __magic_name__ : int = get_min_hash([t for t in NON_ALPHA.split(data["""content"""] ) if len(t.strip() ) > 0] ) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def UpperCamelCase ( _A ): """simple docstring""" with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash, ThreadedIterator(_A, max_queue_size=10000 ), chunksize=100, ): if data is not None: yield data def UpperCamelCase ( _A, _A ): """simple docstring""" __magic_name__ : Any = DuplicationIndex(duplication_jaccard_threshold=_A ) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(_A ) ), max_queue_size=100 ) ): di.add(_A, _A ) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def UpperCamelCase ( _A, _A ): """simple docstring""" __magic_name__ : Tuple = get_tokens(_A ) __magic_name__ : str = get_tokens(_A ) return len(tokensa & tokensa ) / len(tokensa | tokensa ) __magic_name__: List[Any] = None def UpperCamelCase ( _A, _A ): """simple docstring""" __magic_name__ : List[str] = [] for elementa in cluster: __magic_name__ : Tuple = _shared_dataset[elementa["""base_index"""]]["""content"""] for elementa in extremes: __magic_name__ : List[Any] = _shared_dataset[elementa["""base_index"""]]["""content"""] if jaccard_similarity(_A, _A ) >= jaccard_threshold: elementa["copies"] += 1 break else: __magic_name__ : Union[str, Any] = 1 extremes.append(_A ) return extremes def UpperCamelCase ( _A, _A, _A ): """simple docstring""" global _shared_dataset __magic_name__ : str = dataset __magic_name__ : Optional[int] = [] __magic_name__ : Tuple = partial(_find_cluster_extremes_shared, jaccard_threshold=_A ) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( _A, _A, ), total=len(_A ), ): extremes_list.append(_A ) return extremes_list def UpperCamelCase ( _A, _A = 0.85 ): """simple docstring""" __magic_name__ : List[Any] = make_duplicate_clusters(_A, _A ) __magic_name__ : List[str] = {x["""base_index"""] for cluster in duplicate_clusters for x in cluster} __magic_name__ : Tuple = {} __magic_name__ : Union[str, Any] = find_extremes(_A, _A, _A ) for extremes in extremes_clusters: for element in extremes: __magic_name__ : Tuple = element __magic_name__ : Tuple = duplicate_indices - set(extreme_dict.keys() ) __magic_name__ : Tuple = dataset.filter(lambda _A, _A : idx not in remove_indices, with_indices=_A ) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: __magic_name__ : List[str] = element["""base_index"""] in extreme_dict if element["is_extreme"]: __magic_name__ : Dict = extreme_dict[element["""base_index"""]]["""copies"""] print(f'Original dataset size: {len(_A )}' ) print(f'Number of duplicate clusters: {len(_A )}' ) print(f'Files in duplicate cluster: {len(_A )}' ) print(f'Unique files in duplicate cluster: {len(_A )}' ) print(f'Filtered dataset size: {len(_A )}' ) return ds_filter, duplicate_clusters
342
import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class snake_case__ ( _lowerCAmelCase , unittest.TestCase ): lowercase__ : Optional[Any] = MgpstrTokenizer lowercase__ : int = False lowercase__ : Any = {} lowercase__ : Optional[int] = False def __magic_name__ ( self ) -> Optional[Any]: super().setUp() # fmt: off __magic_name__ : List[str] = ["""[GO]""", """[s]""", """0""", """1""", """2""", """3""", """4""", """5""", """6""", """7""", """8""", """9""", """a""", """b""", """c""", """d""", """e""", """f""", """g""", """h""", """i""", """j""", """k""", """l""", """m""", """n""", """o""", """p""", """q""", """r""", """s""", """t""", """u""", """v""", """w""", """x""", """y""", """z"""] # fmt: on __magic_name__ : List[Any] = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__ ) ) ) ) __magic_name__ : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(lowerCAmelCase__ ) + """\n""" ) def __magic_name__ ( self , **lowerCAmelCase__ ) -> Optional[int]: return MgpstrTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ) def __magic_name__ ( self , lowerCAmelCase__ ) -> Optional[int]: __magic_name__ : List[str] = """tester""" __magic_name__ : int = """tester""" return input_text, output_text @unittest.skip("""MGP-STR always lower cases letters.""" ) def __magic_name__ ( self ) -> str: pass def __magic_name__ ( self ) -> List[str]: __magic_name__ : List[Any] = self.get_tokenizers(do_lower_case=lowerCAmelCase__ ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): __magic_name__ : Dict = """[SPECIAL_TOKEN]""" tokenizer.add_special_tokens({"""cls_token""": special_token} ) __magic_name__ : List[str] = tokenizer.encode([special_token] , add_special_tokens=lowerCAmelCase__ ) self.assertEqual(len(lowerCAmelCase__ ) , 1 ) __magic_name__ : Tuple = tokenizer.decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ ) self.assertTrue(special_token not in decoded ) def __magic_name__ ( self ) -> Union[str, Any]: __magic_name__ : int = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): __magic_name__ ,__magic_name__ : Optional[Any] = self.get_input_output_texts(lowerCAmelCase__ ) __magic_name__ : List[Any] = tokenizer.tokenize(lowerCAmelCase__ ) __magic_name__ : Any = tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) __magic_name__ : Union[str, Any] = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) __magic_name__ : List[Any] = tokenizer.convert_ids_to_tokens(lowerCAmelCase__ ) self.assertNotEqual(len(lowerCAmelCase__ ) , 0 ) __magic_name__ : Optional[int] = tokenizer.decode(lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertEqual(text_a.replace(""" """ , """""" ) , lowerCAmelCase__ ) @unittest.skip("""MGP-STR tokenizer only handles one sequence.""" ) def __magic_name__ ( self ) -> Tuple: pass @unittest.skip("""inputs cannot be pretokenized in MgpstrTokenizer""" ) def __magic_name__ ( self ) -> Optional[Any]: pass
342
1
import os import numpy import onnx def UpperCamelCase( lowercase_ , lowercase_ ) -> Optional[int]: '''simple docstring''' snake_case_ = a.name snake_case_ = b.name snake_case_ = """""" snake_case_ = """""" snake_case_ = a == b snake_case_ = name_a snake_case_ = name_b return res def UpperCamelCase( lowercase_ , lowercase_ , lowercase_ ) -> List[str]: '''simple docstring''' for i, input_name in enumerate(node_proto.input ): if input_name == name: node_proto.input.insert(_a , _a ) node_proto.input.pop(i + 1 ) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g , _a , _a ) _graph_replace_input_with(node_proto.attribute[1].g , _a , _a ) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g , _a , _a ) def UpperCamelCase( lowercase_ , lowercase_ , lowercase_ ) -> str: '''simple docstring''' for n in graph_proto.node: _node_replace_input_with(_a , _a , _a ) def UpperCamelCase( lowercase_ , lowercase_ , lowercase_ ) -> Any: '''simple docstring''' snake_case_ = list(model.graph.initializer ) snake_case_ = list(model_without_ext.graph.initializer ) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i snake_case_ = inits[i].name snake_case_ = inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i] ) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph , _a , _a ) def UpperCamelCase( lowercase_ ) -> List[Any]: '''simple docstring''' snake_case_ = os.path.dirname(_a ) snake_case_ = os.path.basename(_a ) snake_case_ = onnx.load(os.path.join(_a , _a ) ) snake_case_ = list(model.graph.initializer ) snake_case_ = set() snake_case_ = {} snake_case_ = [] snake_case_ = 0 for i in range(len(_a ) ): if i in dup_set: continue for j in range(i + 1 , len(_a ) ): if j in dup_set: continue if _is_equal_tensor_proto(inits[i] , inits[j] ): dup_set.add(_a ) dup_set.add(_a ) snake_case_ = inits[j].data_type snake_case_ = numpy.prod(inits[j].dims ) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 11: mem_size *= 8 else: print("""unexpected data type: """ , _a ) total_reduced_size += mem_size snake_case_ = inits[i].name snake_case_ = inits[j].name if name_i in dup_map: dup_map[name_i].append(_a ) else: snake_case_ = [name_j] ind_to_replace.append((j, i) ) print("""total reduced size: """ , total_reduced_size / 1024 / 1024 / 1024 , """GB""" ) snake_case_ = sorted(_a ) _remove_dup_initializers_from_model(_a , _a , _a ) snake_case_ = """optimized_""" + model_file_name snake_case_ = os.path.join(_a , _a ) onnx.save(_a , _a ) return new_model
364
import enum import os from hashlib import shaaaa from typing import Optional from .. import config from .logging import get_logger lowerCamelCase_ = get_logger(__name__) class __lowerCamelCase ( enum.Enum ): lowerCamelCase_ : Dict = 'all_checks' lowerCamelCase_ : Any = 'basic_checks' lowerCamelCase_ : Any = 'no_checks' class __lowerCamelCase ( __snake_case ): pass class __lowerCamelCase ( __snake_case ): pass class __lowerCamelCase ( __snake_case ): pass class __lowerCamelCase ( __snake_case ): pass def UpperCamelCase( lowercase_ , lowercase_ , lowercase_=None ) -> List[str]: '''simple docstring''' if expected_checksums is None: logger.info("""Unable to verify checksums.""" ) return if len(set(lowercase_ ) - set(lowercase_ ) ) > 0: raise ExpectedMoreDownloadedFiles(str(set(lowercase_ ) - set(lowercase_ ) ) ) if len(set(lowercase_ ) - set(lowercase_ ) ) > 0: raise UnexpectedDownloadedFile(str(set(lowercase_ ) - set(lowercase_ ) ) ) snake_case_ = [url for url in expected_checksums if expected_checksums[url] != recorded_checksums[url]] snake_case_ = """ for """ + verification_name if verification_name is not None else """""" if len(lowercase_ ) > 0: raise NonMatchingChecksumError( f'''Checksums didn\'t match{for_verification_name}:\n''' f'''{bad_urls}\n''' """Set `verification_mode='no_checks'` to skip checksums verification and ignore this error""" ) logger.info("""All the checksums matched successfully""" + for_verification_name ) class __lowerCamelCase ( __snake_case ): pass class __lowerCamelCase ( __snake_case ): pass class __lowerCamelCase ( __snake_case ): pass class __lowerCamelCase ( __snake_case ): pass def UpperCamelCase( lowercase_ , lowercase_ ) -> Dict: '''simple docstring''' if expected_splits is None: logger.info("""Unable to verify splits sizes.""" ) return if len(set(lowercase_ ) - set(lowercase_ ) ) > 0: raise ExpectedMoreSplits(str(set(lowercase_ ) - set(lowercase_ ) ) ) if len(set(lowercase_ ) - set(lowercase_ ) ) > 0: raise UnexpectedSplits(str(set(lowercase_ ) - set(lowercase_ ) ) ) snake_case_ = [ {"""expected""": expected_splits[name], """recorded""": recorded_splits[name]} for name in expected_splits if expected_splits[name].num_examples != recorded_splits[name].num_examples ] if len(lowercase_ ) > 0: raise NonMatchingSplitsSizesError(str(lowercase_ ) ) logger.info("""All the splits matched successfully.""" ) def UpperCamelCase( lowercase_ , lowercase_ = True ) -> dict: '''simple docstring''' if record_checksum: snake_case_ = shaaaa() with open(lowercase_ , """rb""" ) as f: for chunk in iter(lambda: f.read(1 << 20 ) , B"""""" ): m.update(lowercase_ ) snake_case_ = m.hexdigest() else: snake_case_ = None return {"num_bytes": os.path.getsize(lowercase_ ), "checksum": checksum} def UpperCamelCase( lowercase_ ) -> List[str]: '''simple docstring''' if dataset_size and config.IN_MEMORY_MAX_SIZE: return dataset_size < config.IN_MEMORY_MAX_SIZE else: return False
34
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging a__ : Union[str, Any] = logging.get_logger(__name__) a__ : int = { '''bigcode/gpt_bigcode-santacoder''': '''https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json''', } class UpperCamelCase_ ( UpperCamelCase): """simple docstring""" snake_case__ : Any = "gpt_bigcode" snake_case__ : str = ["past_key_values"] snake_case__ : Optional[Any] = { "hidden_size": "n_embd", "max_position_embeddings": "n_positions", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : List[Any] , UpperCAmelCase__ : Any=5_0_2_5_7 , UpperCAmelCase__ : Optional[int]=1_0_2_4 , UpperCAmelCase__ : int=7_6_8 , UpperCAmelCase__ : Dict=1_2 , UpperCAmelCase__ : Any=1_2 , UpperCAmelCase__ : List[str]=None , UpperCAmelCase__ : str="gelu_pytorch_tanh" , UpperCAmelCase__ : List[Any]=0.1 , UpperCAmelCase__ : int=0.1 , UpperCAmelCase__ : List[str]=0.1 , UpperCAmelCase__ : List[str]=1E-5 , UpperCAmelCase__ : Any=0.02 , UpperCAmelCase__ : List[str]=True , UpperCAmelCase__ : Any=True , UpperCAmelCase__ : str=5_0_2_5_6 , UpperCAmelCase__ : Union[str, Any]=5_0_2_5_6 , UpperCAmelCase__ : Union[str, Any]=True , UpperCAmelCase__ : Union[str, Any]=True , UpperCAmelCase__ : Union[str, Any]=True , **UpperCAmelCase__ : List[str] , ) -> Dict: __SCREAMING_SNAKE_CASE = vocab_size __SCREAMING_SNAKE_CASE = n_positions __SCREAMING_SNAKE_CASE = n_embd __SCREAMING_SNAKE_CASE = n_layer __SCREAMING_SNAKE_CASE = n_head __SCREAMING_SNAKE_CASE = n_inner __SCREAMING_SNAKE_CASE = activation_function __SCREAMING_SNAKE_CASE = resid_pdrop __SCREAMING_SNAKE_CASE = embd_pdrop __SCREAMING_SNAKE_CASE = attn_pdrop __SCREAMING_SNAKE_CASE = layer_norm_epsilon __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = scale_attn_weights __SCREAMING_SNAKE_CASE = use_cache __SCREAMING_SNAKE_CASE = attention_softmax_in_fpaa __SCREAMING_SNAKE_CASE = scale_attention_softmax_in_fpaa __SCREAMING_SNAKE_CASE = multi_query __SCREAMING_SNAKE_CASE = bos_token_id __SCREAMING_SNAKE_CASE = eos_token_id super().__init__(bos_token_id=UpperCAmelCase__ , eos_token_id=UpperCAmelCase__ , **UpperCAmelCase__ )
54
from __future__ import annotations lowerCamelCase__ = """#""" class SCREAMING_SNAKE_CASE : def __init__( self : Optional[Any] ): '''simple docstring''' __a = {} def UpperCamelCase_ ( self : Optional[Any] , __lowercase : str ): '''simple docstring''' __a = self._trie for char in text: if char not in trie: __a = {} __a = trie[char] __a = True def UpperCamelCase_ ( self : Tuple , __lowercase : str ): '''simple docstring''' __a = self._trie for char in prefix: if char in trie: __a = trie[char] else: return [] return self._elements(__lowercase ) def UpperCamelCase_ ( self : Optional[int] , __lowercase : dict ): '''simple docstring''' __a = [] for c, v in d.items(): __a = [""" """] if c == END else [(c + s) for s in self._elements(__lowercase )] result.extend(__lowercase ) return tuple(__lowercase ) lowerCamelCase__ = Trie() lowerCamelCase__ = ("""depart""", """detergent""", """daring""", """dog""", """deer""", """deal""") for word in words: trie.insert_word(word) def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : str ): """simple docstring""" __a = trie.find_word(_SCREAMING_SNAKE_CASE ) return tuple(string + word for word in suffixes ) def lowerCAmelCase__ ( ): """simple docstring""" print(autocomplete_using_trie("""de""" ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
302
0
'''simple docstring''' import warnings from ...utils import logging from .image_processing_clip import CLIPImageProcessor UpperCamelCase__ : Union[str, Any] = logging.get_logger(__name__) class _lowerCAmelCase ( __A ): """simple docstring""" def __init__( self , *_lowerCamelCase , **_lowerCamelCase ) -> List[Any]: warnings.warn( """The class CLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use CLIPImageProcessor instead.""" , _lowerCAmelCase , ) super().__init__(*_lowerCAmelCase , **_lowerCAmelCase )
354
'''simple docstring''' import gc import importlib.metadata import tempfile import unittest from packaging import version from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoTokenizer, BitsAndBytesConfig, pipeline, ) from transformers.testing_utils import ( is_torch_available, require_accelerate, require_bitsandbytes, require_torch, require_torch_gpu, require_torch_multi_gpu, slow, ) def UpperCAmelCase ( a_ ) -> Any: """simple docstring""" if model.config.model_type == "gpt2": return model.transformer.h[0].mlp.c_fc return model.transformer.h[0].mlp.dense_ah_to_h if is_torch_available(): import torch import torch.nn as nn class _lowerCAmelCase ( nn.Module ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase ) -> str: super().__init__() A_ : Any = module A_ : Any = nn.Sequential( nn.Linear(module.in_features , _lowerCamelCase , bias=_lowerCamelCase ) , nn.Linear(_lowerCamelCase , module.out_features , bias=_lowerCamelCase ) , ) A_ : Union[str, Any] = (2.0 / (5 * min(module.in_features , module.out_features ))) ** 0.5 nn.init.normal_(self.adapter[0].weight , std=_lowerCamelCase ) nn.init.zeros_(self.adapter[1].weight ) self.adapter.to(module.weight.device ) def UpperCAmelCase_ ( self , _lowerCamelCase , *_lowerCamelCase , **_lowerCamelCase ) -> List[Any]: return self.module(_lowerCamelCase , *_lowerCamelCase , **_lowerCamelCase ) + self.adapter(_lowerCamelCase ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" lowerCamelCase = '''bigscience/bloom-1b7''' # Constant values lowerCamelCase = 2.1_0_9_6_5_9_5_5_2_6_9_2_5_7_4 lowerCamelCase = '''Hello my name is''' lowerCamelCase = set() EXPECTED_OUTPUTS.add('''Hello my name is John and I am a professional photographer. I''' ) EXPECTED_OUTPUTS.add('''Hello my name is John.\nI am a friend of your father.\n''' ) EXPECTED_OUTPUTS.add('''Hello my name is John Doe, I am a student at the University''' ) lowerCamelCase = 10 def UpperCAmelCase_ ( self ) -> List[str]: # Models and tokenizer A_ : List[str] = AutoTokenizer.from_pretrained(self.model_name ) class _lowerCAmelCase ( __A ): """simple docstring""" def UpperCAmelCase_ ( self ) -> Optional[Any]: super().setUp() # Models and tokenizer A_ : List[str] = AutoModelForCausalLM.from_pretrained( self.model_name , torch_dtype=torch.floataa , device_map="""auto""" ) A_ : List[Any] = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=_lowerCamelCase , device_map="""auto""" ) def UpperCAmelCase_ ( self ) -> Optional[int]: del self.model_fpaa del self.model_abit gc.collect() torch.cuda.empty_cache() def UpperCAmelCase_ ( self ) -> List[Any]: A_ : str = self.model_abit.config self.assertTrue(hasattr(_lowerCamelCase , """quantization_config""" ) ) A_ : Union[str, Any] = config.to_dict() A_ : Optional[int] = config.to_diff_dict() A_ : Tuple = config.to_json_string() def UpperCAmelCase_ ( self ) -> str: from bitsandbytes.nn import Paramsabit A_ : List[Any] = self.model_fpaa.get_memory_footprint() A_ : Tuple = self.model_abit.get_memory_footprint() self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE ) A_ : Union[str, Any] = get_some_linear_layer(self.model_abit ) self.assertTrue(linear.weight.__class__ == Paramsabit ) def UpperCAmelCase_ ( self ) -> List[str]: from transformers import TaPreTrainedModel self.model_fpaa.get_memory_footprint() self.model_abit.get_memory_footprint() for name, module in self.model_abit.named_modules(): if isinstance(_lowerCamelCase , torch.nn.Linear ): if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules: # 4-bit parameters are packed in uint8 variables self.assertTrue(module.weight.dtype == torch.uinta ) def UpperCAmelCase_ ( self ) -> Optional[Any]: A_ : List[str] = self.tokenizer(self.input_text , return_tensors="""pt""" ) A_ : int = self.model_abit.generate(input_ids=encoded_input["""input_ids"""].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=_lowerCamelCase ) , self.EXPECTED_OUTPUTS ) def UpperCAmelCase_ ( self ) -> Any: A_ : Dict = BitsAndBytesConfig() A_ : Tuple = True A_ : Any = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=_lowerCamelCase , device_map="""auto""" ) A_ : Optional[int] = self.tokenizer(self.input_text , return_tensors="""pt""" ) A_ : Optional[Any] = model_abit_from_config.generate( input_ids=encoded_input["""input_ids"""].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=_lowerCamelCase ) , self.EXPECTED_OUTPUTS ) def UpperCAmelCase_ ( self ) -> List[Any]: with self.assertRaises(_lowerCamelCase ), tempfile.TemporaryDirectory() as tmpdirname: self.model_abit.save_pretrained(_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> List[str]: A_ : Union[str, Any] = BitsAndBytesConfig() with self.assertRaises(_lowerCamelCase ): A_ : List[Any] = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=_lowerCamelCase , load_in_abit=_lowerCamelCase , device_map="""auto""" , bnb_abit_quant_type="""nf4""" , ) def UpperCAmelCase_ ( self ) -> str: with self.assertRaises(_lowerCamelCase ): # Tries with `str` self.model_abit.to("""cpu""" ) with self.assertRaises(_lowerCamelCase ): # Tries with a `dtype`` self.model_abit.to(torch.floataa ) with self.assertRaises(_lowerCamelCase ): # Tries with a `device` self.model_abit.to(torch.device("""cuda:0""" ) ) with self.assertRaises(_lowerCamelCase ): # Tries with a `device` self.model_abit.float() with self.assertRaises(_lowerCamelCase ): # Tries with a `device` self.model_abit.half() # Test if we did not break anything A_ : Optional[int] = self.tokenizer(self.input_text , return_tensors="""pt""" ) A_ : Tuple = self.model_fpaa.to(torch.floataa ) A_ : int = self.model_fpaa.generate(input_ids=encoded_input["""input_ids"""].to(0 ) , max_new_tokens=10 ) # Check this does not throw an error A_ : Any = self.model_fpaa.to("""cpu""" ) # Check this does not throw an error A_ : str = self.model_fpaa.half() # Check this does not throw an error A_ : Any = self.model_fpaa.float() def UpperCAmelCase_ ( self ) -> Dict: A_ : Optional[Any] = AutoModelForSeqaSeqLM.from_pretrained("""t5-small""" , load_in_abit=_lowerCamelCase , device_map="""auto""" ) self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @classmethod def UpperCAmelCase_ ( cls ) -> Optional[int]: A_ : Optional[int] = """t5-small""" A_ : List[str] = """google/flan-t5-small""" # flan-t5 uses dense-act instead of dense-relu-dense A_ : List[str] = AutoTokenizer.from_pretrained(cls.model_name ) A_ : Optional[Any] = """Translate in German: Hello, my dog is cute""" def UpperCAmelCase_ ( self ) -> Optional[Any]: gc.collect() torch.cuda.empty_cache() def UpperCAmelCase_ ( self ) -> Union[str, Any]: from transformers import TaForConditionalGeneration A_ : Optional[int] = TaForConditionalGeneration._keep_in_fpaa_modules A_ : Any = None # test with `t5-small` A_ : int = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=_lowerCamelCase , device_map="""auto""" ) A_ : Optional[Any] = self.tokenizer(self.input_text , return_tensors="""pt""" ).to(0 ) A_ : Optional[int] = model.generate(**_lowerCamelCase ) # test with `flan-t5-small` A_ : Tuple = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=_lowerCamelCase , device_map="""auto""" ) A_ : Dict = self.tokenizer(self.input_text , return_tensors="""pt""" ).to(0 ) A_ : str = model.generate(**_lowerCamelCase ) A_ : Optional[int] = modules def UpperCAmelCase_ ( self ) -> List[Any]: import bitsandbytes as bnb from transformers import TaForConditionalGeneration # test with `t5-small` A_ : str = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=_lowerCamelCase , device_map="""auto""" ) # there was a bug with decoders - this test checks that it is fixed self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit ) ) A_ : Any = self.tokenizer(self.input_text , return_tensors="""pt""" ).to(0 ) A_ : List[Any] = model.generate(**_lowerCamelCase ) # test with `flan-t5-small` A_ : Union[str, Any] = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=_lowerCamelCase , device_map="""auto""" ) A_ : int = self.tokenizer(self.input_text , return_tensors="""pt""" ).to(0 ) A_ : Optional[int] = model.generate(**_lowerCamelCase ) class _lowerCAmelCase ( __A ): """simple docstring""" def UpperCAmelCase_ ( self ) -> int: super().setUp() # model_name A_ : Dict = """bigscience/bloom-560m""" A_ : Union[str, Any] = """t5-small""" # Different types of model A_ : Optional[Any] = AutoModel.from_pretrained(self.model_name , load_in_abit=_lowerCamelCase , device_map="""auto""" ) # Sequence classification model A_ : Dict = AutoModelForSequenceClassification.from_pretrained( self.model_name , load_in_abit=_lowerCamelCase , device_map="""auto""" ) # CausalLM model A_ : Any = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=_lowerCamelCase , device_map="""auto""" ) # Seq2seq model A_ : Tuple = AutoModelForSeqaSeqLM.from_pretrained( self.seq_to_seq_name , load_in_abit=_lowerCamelCase , device_map="""auto""" ) def UpperCAmelCase_ ( self ) -> Optional[Any]: del self.base_model del self.sequence_model del self.model_abit del self.seq_to_seq_model gc.collect() torch.cuda.empty_cache() def UpperCAmelCase_ ( self ) -> List[Any]: from bitsandbytes.nn import Paramsabit self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit ) # Other heads should be nn.Parameter self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter ) class _lowerCAmelCase ( __A ): """simple docstring""" def UpperCAmelCase_ ( self ) -> str: super().setUp() def UpperCAmelCase_ ( self ) -> Any: del self.pipe gc.collect() torch.cuda.empty_cache() def UpperCAmelCase_ ( self ) -> Optional[Any]: A_ : List[str] = pipeline( """text-generation""" , model=self.model_name , model_kwargs={"""device_map""": """auto""", """load_in_4bit""": True, """torch_dtype""": torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , ) # Real second forward pass A_ : int = self.pipe(self.input_text ) self.assertIn(pipeline_output[0]["""generated_text"""] , self.EXPECTED_OUTPUTS ) @require_torch_multi_gpu class _lowerCAmelCase ( __A ): """simple docstring""" def UpperCAmelCase_ ( self ) -> str: super().setUp() def UpperCAmelCase_ ( self ) -> str: A_ : List[str] = AutoModelForCausalLM.from_pretrained( self.model_name , load_in_abit=_lowerCamelCase , device_map="""balanced""" ) # Check correct device map self.assertEqual(set(model_parallel.hf_device_map.values() ) , {0, 1} ) # Check that inference pass works on the model A_ : str = self.tokenizer(self.input_text , return_tensors="""pt""" ) # Second real batch A_ : int = model_parallel.generate(input_ids=encoded_input["""input_ids"""].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=_lowerCamelCase ) , self.EXPECTED_OUTPUTS ) class _lowerCAmelCase ( __A ): """simple docstring""" def UpperCAmelCase_ ( self ) -> Tuple: A_ : Union[str, Any] = """facebook/opt-350m""" super().setUp() def UpperCAmelCase_ ( self ) -> Optional[Any]: if version.parse(importlib.metadata.version("""bitsandbytes""" ) ) < version.parse("""0.37.0""" ): return # Step 1: freeze all parameters A_ : Any = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=_lowerCamelCase ) self.assertEqual(set(model.hf_device_map.values() ) , {torch.cuda.current_device()} ) for param in model.parameters(): A_ : Optional[Any] = False # freeze the model - train adapters later if param.ndim == 1: # cast the small parameters (e.g. layernorm) to fp32 for stability A_ : Any = param.data.to(torch.floataa ) # Step 2: add adapters for _, module in model.named_modules(): if "OPTAttention" in repr(type(_lowerCamelCase ) ): A_ : int = LoRALayer(module.q_proj , rank=16 ) A_ : Optional[int] = LoRALayer(module.k_proj , rank=16 ) A_ : Union[str, Any] = LoRALayer(module.v_proj , rank=16 ) # Step 3: dummy batch A_ : Dict = self.tokenizer("""Test batch """ , return_tensors="""pt""" ).to(0 ) # Step 4: Check if the gradient is not None with torch.cuda.amp.autocast(): A_ : Dict = model.forward(**_lowerCamelCase ) out.logits.norm().backward() for module in model.modules(): if isinstance(_lowerCamelCase , _lowerCamelCase ): self.assertTrue(module.adapter[1].weight.grad is not None ) self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 ) elif isinstance(_lowerCamelCase , nn.Embedding ): self.assertTrue(module.weight.grad is None ) class _lowerCAmelCase ( __A ): """simple docstring""" lowerCamelCase = '''gpt2-xl''' lowerCamelCase = 3.3_1_9_1_8_5_4_8_5_4_1_5_2_1_8_7
164
0
import unittest from transformers import DebertaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, ) from transformers.models.deberta.modeling_deberta import DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCAmelCase_ ( a): def __init__( self, __a, __a=13, __a=7, __a=True, __a=True, __a=True, __a=True, __a=99, __a=32, __a=5, __a=4, __a=37, __a="gelu", __a=0.1, __a=0.1, __a=512, __a=16, __a=2, __a=0.02, __a=False, __a=True, __a="None", __a=3, __a=4, __a=None, ): '''simple docstring''' _lowerCAmelCase : List[str] = parent _lowerCAmelCase : Optional[Any] = batch_size _lowerCAmelCase : Any = seq_length _lowerCAmelCase : List[str] = is_training _lowerCAmelCase : Tuple = use_input_mask _lowerCAmelCase : Union[str, Any] = use_token_type_ids _lowerCAmelCase : str = use_labels _lowerCAmelCase : Tuple = vocab_size _lowerCAmelCase : Dict = hidden_size _lowerCAmelCase : Any = num_hidden_layers _lowerCAmelCase : List[Any] = num_attention_heads _lowerCAmelCase : Optional[Any] = intermediate_size _lowerCAmelCase : Tuple = hidden_act _lowerCAmelCase : int = hidden_dropout_prob _lowerCAmelCase : Union[str, Any] = attention_probs_dropout_prob _lowerCAmelCase : Union[str, Any] = max_position_embeddings _lowerCAmelCase : str = type_vocab_size _lowerCAmelCase : Union[str, Any] = type_sequence_label_size _lowerCAmelCase : Union[str, Any] = initializer_range _lowerCAmelCase : int = num_labels _lowerCAmelCase : Optional[Any] = num_choices _lowerCAmelCase : List[str] = relative_attention _lowerCAmelCase : Optional[int] = position_biased_input _lowerCAmelCase : Union[str, Any] = pos_att_type _lowerCAmelCase : Dict = scope def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) _lowerCAmelCase : List[str] = None if self.use_input_mask: _lowerCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length], vocab_size=2) _lowerCAmelCase : int = None if self.use_token_type_ids: _lowerCAmelCase : str = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) _lowerCAmelCase : Dict = None _lowerCAmelCase : Tuple = None _lowerCAmelCase : Dict = None if self.use_labels: _lowerCAmelCase : Union[str, Any] = ids_tensor([self.batch_size], self.type_sequence_label_size) _lowerCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length], self.num_labels) _lowerCAmelCase : Optional[Any] = ids_tensor([self.batch_size], self.num_choices) _lowerCAmelCase : Any = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case__ ( self): '''simple docstring''' return DebertaConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_range=self.initializer_range, relative_attention=self.relative_attention, position_biased_input=self.position_biased_input, pos_att_type=self.pos_att_type, ) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : str = self.get_config() _lowerCAmelCase : Optional[int] = 300 return config def snake_case__ ( self, __a): '''simple docstring''' self.parent.assertListEqual(list(result.loss.size()), []) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : str = DebertaModel(config=__a) model.to(__a) model.eval() _lowerCAmelCase : Optional[Any] = model(__a, attention_mask=__a, token_type_ids=__a)[0] _lowerCAmelCase : Any = model(__a, token_type_ids=__a)[0] _lowerCAmelCase : Optional[Any] = model(__a)[0] self.parent.assertListEqual(list(sequence_output.size()), [self.batch_size, self.seq_length, self.hidden_size]) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = DebertaForMaskedLM(config=__a) model.to(__a) model.eval() _lowerCAmelCase : Union[str, Any] = model(__a, attention_mask=__a, token_type_ids=__a, labels=__a) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : Dict = self.num_labels _lowerCAmelCase : str = DebertaForSequenceClassification(__a) model.to(__a) model.eval() _lowerCAmelCase : List[Any] = model(__a, attention_mask=__a, token_type_ids=__a, labels=__a) self.parent.assertListEqual(list(result.logits.size()), [self.batch_size, self.num_labels]) self.check_loss_output(__a) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : str = self.num_labels _lowerCAmelCase : List[str] = DebertaForTokenClassification(config=__a) model.to(__a) model.eval() _lowerCAmelCase : int = model(__a, attention_mask=__a, token_type_ids=__a, labels=__a) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : List[Any] = DebertaForQuestionAnswering(config=__a) model.to(__a) model.eval() _lowerCAmelCase : int = model( __a, attention_mask=__a, token_type_ids=__a, start_positions=__a, end_positions=__a, ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.prepare_config_and_inputs() ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) : Dict = config_and_inputs _lowerCAmelCase : Union[str, Any] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class UpperCAmelCase_ ( a , a , unittest.TestCase): lowerCamelCase__ = ( ( DebertaModel, DebertaForMaskedLM, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaForQuestionAnswering, ) if is_torch_available() else () ) lowerCamelCase__ = ( { 'feature-extraction': DebertaModel, 'fill-mask': DebertaForMaskedLM, 'question-answering': DebertaForQuestionAnswering, 'text-classification': DebertaForSequenceClassification, 'token-classification': DebertaForTokenClassification, 'zero-shot': DebertaForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase__ = True lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = DebertaModelTester(self) _lowerCAmelCase : str = ConfigTester(self, config_class=__a, hidden_size=37) def snake_case__ ( self): '''simple docstring''' self.config_tester.run_common_tests() def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*__a) @slow def snake_case__ ( self): '''simple docstring''' for model_name in DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase : List[str] = DebertaModel.from_pretrained(__a) self.assertIsNotNone(__a) @require_torch @require_sentencepiece @require_tokenizers class UpperCAmelCase_ ( unittest.TestCase): @unittest.skip(reason="Model not available yet") def snake_case__ ( self): '''simple docstring''' pass @slow def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = DebertaModel.from_pretrained("microsoft/deberta-base") _lowerCAmelCase : Any = torch.tensor([[0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2]]) _lowerCAmelCase : str = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]) with torch.no_grad(): _lowerCAmelCase : Dict = model(__a, attention_mask=__a)[0] # compare the actual values for a slice. _lowerCAmelCase : Dict = torch.tensor( [[[-0.5_986, -0.8_055, -0.8_462], [1.4_484, -0.9_348, -0.8_059], [0.3_123, 0.0_032, -1.4_131]]]) self.assertTrue(torch.allclose(output[:, 1:4, 1:4], __a, atol=1E-4), f"{output[:, 1:4, 1:4]}")
36
def A ( _lowerCamelCase ): '''simple docstring''' if bit_count < 0: raise ValueError("The given input must be positive" ) # get the generated string sequence _lowerCAmelCase : List[str] = gray_code_sequence_string(_lowerCamelCase ) # # convert them to integers for i in range(len(_lowerCamelCase ) ): _lowerCAmelCase : List[str] = int(sequence[i] , 2 ) return sequence def A ( _lowerCamelCase ): '''simple docstring''' if bit_count == 0: return ["0"] if bit_count == 1: return ["0", "1"] _lowerCAmelCase : List[Any] = 1 << bit_count # defines the length of the sequence # 1<< n is equivalent to 2^n # recursive answer will generate answer for n-1 bits _lowerCAmelCase : Optional[int] = gray_code_sequence_string(bit_count - 1 ) _lowerCAmelCase : str = [] # append 0 to first half of the smaller sequence generated for i in range(seq_len // 2 ): _lowerCAmelCase : Dict = "0" + smaller_sequence[i] sequence.append(_lowerCamelCase ) # append 1 to second half ... start from the end of the list for i in reversed(range(seq_len // 2 ) ): _lowerCAmelCase : Optional[Any] = "1" + smaller_sequence[i] sequence.append(_lowerCamelCase ) return sequence if __name__ == "__main__": import doctest doctest.testmod()
36
1
import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class lowerCamelCase_ ( lowerCamelCase__ ): '''simple docstring''' a__ = (DDPMScheduler,) def SCREAMING_SNAKE_CASE__ ( self : List[Any] , **__lowerCamelCase : str ) -> Tuple: A : List[Any] = { '''num_train_timesteps''': 10_00, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''variance_type''': '''fixed_small''', '''clip_sample''': True, } config.update(**snake_case__ ) return config def SCREAMING_SNAKE_CASE__ ( self : int ) -> Union[str, Any]: for timesteps in [1, 5, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=snake_case__ ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> int: for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=snake_case__ , beta_end=snake_case__ ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> List[str]: for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=snake_case__ ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> Any: for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=snake_case__ ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> Dict: for clip_sample in [True, False]: self.check_over_configs(clip_sample=snake_case__ ) def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> Any: self.check_over_configs(thresholding=snake_case__ ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=snake_case__ , prediction_type=snake_case__ , sample_max_value=snake_case__ , ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> Dict: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=snake_case__ ) def SCREAMING_SNAKE_CASE__ ( self : int ) -> Dict: for t in [0, 5_00, 9_99]: self.check_over_forward(time_step=snake_case__ ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> List[Any]: A : Optional[int] = self.scheduler_classes[0] A : int = self.get_scheduler_config() A : int = scheduler_class(**snake_case__ ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(4_87 ) - 0.00979 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(9_99 ) - 0.02 ) ) < 1e-5 def SCREAMING_SNAKE_CASE__ ( self : List[Any] ) -> List[Any]: A : Optional[Any] = self.scheduler_classes[0] A : Dict = self.get_scheduler_config() A : Optional[Any] = scheduler_class(**snake_case__ ) A : int = len(snake_case__ ) A : str = self.dummy_model() A : str = self.dummy_sample_deter A : Dict = torch.manual_seed(0 ) for t in reversed(range(snake_case__ ) ): # 1. predict noise residual A : str = model(snake_case__ , snake_case__ ) # 2. predict previous mean of sample x_t-1 A : Optional[int] = scheduler.step(snake_case__ , snake_case__ , snake_case__ , generator=snake_case__ ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance A : Dict = pred_prev_sample A : int = torch.sum(torch.abs(snake_case__ ) ) A : Union[str, Any] = torch.mean(torch.abs(snake_case__ ) ) assert abs(result_sum.item() - 258.9606 ) < 1e-2 assert abs(result_mean.item() - 0.3372 ) < 1e-3 def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> List[Any]: A : Union[str, Any] = self.scheduler_classes[0] A : Dict = self.get_scheduler_config(prediction_type="v_prediction" ) A : Any = scheduler_class(**snake_case__ ) A : Optional[int] = len(snake_case__ ) A : int = self.dummy_model() A : Union[str, Any] = self.dummy_sample_deter A : Tuple = torch.manual_seed(0 ) for t in reversed(range(snake_case__ ) ): # 1. predict noise residual A : Optional[Any] = model(snake_case__ , snake_case__ ) # 2. predict previous mean of sample x_t-1 A : List[Any] = scheduler.step(snake_case__ , snake_case__ , snake_case__ , generator=snake_case__ ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance A : str = pred_prev_sample A : Union[str, Any] = torch.sum(torch.abs(snake_case__ ) ) A : List[str] = torch.mean(torch.abs(snake_case__ ) ) assert abs(result_sum.item() - 202.0296 ) < 1e-2 assert abs(result_mean.item() - 0.2631 ) < 1e-3 def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> str: A : List[str] = self.scheduler_classes[0] A : Optional[Any] = self.get_scheduler_config() A : str = scheduler_class(**snake_case__ ) A : Optional[int] = [1_00, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=snake_case__ ) A : Optional[int] = scheduler.timesteps for i, timestep in enumerate(snake_case__ ): if i == len(snake_case__ ) - 1: A : str = -1 else: A : Dict = timesteps[i + 1] A : List[Any] = scheduler.previous_timestep(snake_case__ ) A : Optional[int] = prev_t.item() self.assertEqual(snake_case__ , snake_case__ ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> List[Any]: A : Union[str, Any] = self.scheduler_classes[0] A : Union[str, Any] = self.get_scheduler_config() A : Optional[int] = scheduler_class(**snake_case__ ) A : Optional[int] = [1_00, 87, 50, 51, 0] with self.assertRaises(snake_case__ , msg="`custom_timesteps` must be in descending order." ): scheduler.set_timesteps(timesteps=snake_case__ ) def SCREAMING_SNAKE_CASE__ ( self : Any ) -> Optional[int]: A : int = self.scheduler_classes[0] A : Tuple = self.get_scheduler_config() A : Tuple = scheduler_class(**snake_case__ ) A : List[str] = [1_00, 87, 50, 1, 0] A : Any = len(snake_case__ ) with self.assertRaises(snake_case__ , msg="Can only pass one of `num_inference_steps` or `custom_timesteps`." ): scheduler.set_timesteps(num_inference_steps=snake_case__ , timesteps=snake_case__ ) def SCREAMING_SNAKE_CASE__ ( self : Any ) -> str: A : Tuple = self.scheduler_classes[0] A : List[Any] = self.get_scheduler_config() A : List[Any] = scheduler_class(**snake_case__ ) A : int = [scheduler.config.num_train_timesteps] with self.assertRaises( snake_case__ , msg="`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}" , ): scheduler.set_timesteps(timesteps=snake_case__ )
362
import argparse import csv import logging import os import random import numpy as np import torch from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset from tqdm import tqdm, trange from transformers import ( CONFIG_NAME, WEIGHTS_NAME, AdamW, OpenAIGPTDoubleHeadsModel, OpenAIGPTTokenizer, get_linear_schedule_with_warmup, ) logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""", datefmt="""%m/%d/%Y %H:%M:%S""", level=logging.INFO ) __SCREAMING_SNAKE_CASE = logging.getLogger(__name__) def UpperCAmelCase ( _lowerCamelCase , _lowerCamelCase ): A : Dict = np.argmax(_lowerCamelCase , axis=1 ) return np.sum(outputs == labels ) def UpperCAmelCase ( _lowerCamelCase ): with open(_lowerCamelCase , encoding="utf_8" ) as f: A : Dict = csv.reader(_lowerCamelCase ) A : Optional[int] = [] next(_lowerCamelCase ) # skip the first line for line in tqdm(_lowerCamelCase ): output.append((" ".join(line[1:5] ), line[5], line[6], int(line[-1] ) - 1) ) return output def UpperCAmelCase ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): A : str = [] for dataset in encoded_datasets: A : List[str] = len(_lowerCamelCase ) A : Dict = np.zeros((n_batch, 2, input_len) , dtype=np.intaa ) A : List[str] = np.zeros((n_batch, 2) , dtype=np.intaa ) A : Any = np.full((n_batch, 2, input_len) , fill_value=-100 , dtype=np.intaa ) A : str = np.zeros((n_batch,) , dtype=np.intaa ) for ( i, (story, conta, conta, mc_label), ) in enumerate(_lowerCamelCase ): A : Optional[int] = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] A : str = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] A : str = with_conta A : Any = with_conta A : Union[str, Any] = len(_lowerCamelCase ) - 1 A : Dict = len(_lowerCamelCase ) - 1 A : int = with_conta A : int = with_conta A : int = mc_label A : Optional[Any] = (input_ids, mc_token_ids, lm_labels, mc_labels) tensor_datasets.append(tuple(torch.tensor(_lowerCamelCase ) for t in all_inputs ) ) return tensor_datasets def UpperCAmelCase ( ): A : Any = argparse.ArgumentParser() parser.add_argument("--model_name" , type=_lowerCamelCase , default="openai-gpt" , help="pretrained model name" ) parser.add_argument("--do_train" , action="store_true" , help="Whether to run training." ) parser.add_argument("--do_eval" , action="store_true" , help="Whether to run eval on the dev set." ) parser.add_argument( "--output_dir" , default=_lowerCamelCase , type=_lowerCamelCase , required=_lowerCamelCase , help="The output directory where the model predictions and checkpoints will be written." , ) parser.add_argument("--train_dataset" , type=_lowerCamelCase , default="" ) parser.add_argument("--eval_dataset" , type=_lowerCamelCase , default="" ) parser.add_argument("--seed" , type=_lowerCamelCase , default=42 ) parser.add_argument("--num_train_epochs" , type=_lowerCamelCase , default=3 ) parser.add_argument("--train_batch_size" , type=_lowerCamelCase , default=8 ) parser.add_argument("--eval_batch_size" , type=_lowerCamelCase , default=16 ) parser.add_argument("--adam_epsilon" , default=1e-8 , type=_lowerCamelCase , help="Epsilon for Adam optimizer." ) parser.add_argument("--max_grad_norm" , type=_lowerCamelCase , default=1 ) parser.add_argument( "--max_steps" , default=-1 , type=_lowerCamelCase , help=( "If > 0: set total number of training steps to perform. Override num_train_epochs." ) , ) parser.add_argument( "--gradient_accumulation_steps" , type=_lowerCamelCase , default=1 , help="Number of updates steps to accumulate before performing a backward/update pass." , ) parser.add_argument("--learning_rate" , type=_lowerCamelCase , default=6.25e-5 ) parser.add_argument("--warmup_steps" , default=0 , type=_lowerCamelCase , help="Linear warmup over warmup_steps." ) parser.add_argument("--lr_schedule" , type=_lowerCamelCase , default="warmup_linear" ) parser.add_argument("--weight_decay" , type=_lowerCamelCase , default=0.01 ) parser.add_argument("--lm_coef" , type=_lowerCamelCase , default=0.9 ) parser.add_argument("--n_valid" , type=_lowerCamelCase , default=374 ) parser.add_argument("--server_ip" , type=_lowerCamelCase , default="" , help="Can be used for distant debugging." ) parser.add_argument("--server_port" , type=_lowerCamelCase , default="" , help="Can be used for distant debugging." ) A : List[Any] = parser.parse_args() print(_lowerCamelCase ) if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print("Waiting for debugger attach" ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=_lowerCamelCase ) ptvsd.wait_for_attach() random.seed(args.seed ) np.random.seed(args.seed ) torch.manual_seed(args.seed ) torch.cuda.manual_seed_all(args.seed ) A : Union[str, Any] = torch.device("cuda" if torch.cuda.is_available() else "cpu" ) A : List[Any] = torch.cuda.device_count() logger.info("device: {}, n_gpu {}".format(_lowerCamelCase , _lowerCamelCase ) ) if not args.do_train and not args.do_eval: raise ValueError("At least one of `do_train` or `do_eval` must be True." ) if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) # Load tokenizer and model # This loading functions also add new tokens and embeddings called `special tokens` # These new embeddings will be fine-tuned on the RocStories dataset A : List[Any] = ["_start_", "_delimiter_", "_classify_"] A : Dict = OpenAIGPTTokenizer.from_pretrained(args.model_name ) tokenizer.add_tokens(_lowerCamelCase ) A : str = tokenizer.convert_tokens_to_ids(_lowerCamelCase ) A : str = OpenAIGPTDoubleHeadsModel.from_pretrained(args.model_name ) model.resize_token_embeddings(len(_lowerCamelCase ) ) model.to(_lowerCamelCase ) # Load and encode the datasets def tokenize_and_encode(_lowerCamelCase ): if isinstance(_lowerCamelCase , _lowerCamelCase ): return tokenizer.convert_tokens_to_ids(tokenizer.tokenize(_lowerCamelCase ) ) elif isinstance(_lowerCamelCase , _lowerCamelCase ): return obj return [tokenize_and_encode(_lowerCamelCase ) for o in obj] logger.info("Encoding dataset..." ) A : List[str] = load_rocstories_dataset(args.train_dataset ) A : List[str] = load_rocstories_dataset(args.eval_dataset ) A : str = (train_dataset, eval_dataset) A : Any = tokenize_and_encode(_lowerCamelCase ) # Compute the max input length for the Transformer A : Any = model.config.n_positions // 2 - 2 A : List[str] = max( len(story[:max_length] ) + max(len(conta[:max_length] ) , len(conta[:max_length] ) ) + 3 for dataset in encoded_datasets for story, conta, conta, _ in dataset ) A : Dict = min(_lowerCamelCase , model.config.n_positions ) # Max size of input for the pre-trained model # Prepare inputs tensors and dataloaders A : List[Any] = pre_process_datasets(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , *_lowerCamelCase ) A , A : Dict = tensor_datasets[0], tensor_datasets[1] A : Union[str, Any] = TensorDataset(*_lowerCamelCase ) A : Dict = RandomSampler(_lowerCamelCase ) A : Dict = DataLoader(_lowerCamelCase , sampler=_lowerCamelCase , batch_size=args.train_batch_size ) A : int = TensorDataset(*_lowerCamelCase ) A : List[str] = SequentialSampler(_lowerCamelCase ) A : Dict = DataLoader(_lowerCamelCase , sampler=_lowerCamelCase , batch_size=args.eval_batch_size ) # Prepare optimizer if args.do_train: if args.max_steps > 0: A : Any = args.max_steps A : str = args.max_steps // (len(_lowerCamelCase ) // args.gradient_accumulation_steps) + 1 else: A : Optional[int] = len(_lowerCamelCase ) // args.gradient_accumulation_steps * args.num_train_epochs A : str = list(model.named_parameters() ) A : Tuple = ["bias", "LayerNorm.bias", "LayerNorm.weight"] A : List[Any] = [ { "params": [p for n, p in param_optimizer if not any(nd in n for nd in no_decay )], "weight_decay": args.weight_decay, }, {"params": [p for n, p in param_optimizer if any(nd in n for nd in no_decay )], "weight_decay": 0.0}, ] A : Optional[Any] = AdamW(_lowerCamelCase , lr=args.learning_rate , eps=args.adam_epsilon ) A : Any = get_linear_schedule_with_warmup( _lowerCamelCase , num_warmup_steps=args.warmup_steps , num_training_steps=_lowerCamelCase ) if args.do_train: A , A , A : Tuple = 0, 0, None model.train() for _ in trange(int(args.num_train_epochs ) , desc="Epoch" ): A : List[Any] = 0 A : Any = 0 A : Dict = tqdm(_lowerCamelCase , desc="Training" ) for step, batch in enumerate(_lowerCamelCase ): A : List[str] = tuple(t.to(_lowerCamelCase ) for t in batch ) A , A , A , A : Any = batch A : Any = model(_lowerCamelCase , mc_token_ids=_lowerCamelCase , lm_labels=_lowerCamelCase , mc_labels=_lowerCamelCase ) A : Any = args.lm_coef * losses[0] + losses[1] loss.backward() optimizer.step() scheduler.step() optimizer.zero_grad() tr_loss += loss.item() A : Dict = ( loss.item() if exp_average_loss is None else 0.7 * exp_average_loss + 0.3 * loss.item() ) nb_tr_steps += 1 A : Optional[int] = "Training loss: {:.2e} lr: {:.2e}".format(_lowerCamelCase , scheduler.get_lr()[0] ) # Save a trained model if args.do_train: # Save a trained model, configuration and tokenizer A : Tuple = model.module if hasattr(_lowerCamelCase , "module" ) else model # Only save the model itself # If we save using the predefined names, we can load using `from_pretrained` A : Dict = os.path.join(args.output_dir , _lowerCamelCase ) A : Any = os.path.join(args.output_dir , _lowerCamelCase ) torch.save(model_to_save.state_dict() , _lowerCamelCase ) model_to_save.config.to_json_file(_lowerCamelCase ) tokenizer.save_vocabulary(args.output_dir ) # Load a trained model and vocabulary that you have fine-tuned A : Optional[Any] = OpenAIGPTDoubleHeadsModel.from_pretrained(args.output_dir ) A : List[str] = OpenAIGPTTokenizer.from_pretrained(args.output_dir ) model.to(_lowerCamelCase ) if args.do_eval: model.eval() A , A : Union[str, Any] = 0, 0 A , A : List[Any] = 0, 0 for batch in tqdm(_lowerCamelCase , desc="Evaluating" ): A : List[str] = tuple(t.to(_lowerCamelCase ) for t in batch ) A , A , A , A : Optional[int] = batch with torch.no_grad(): A , A , A , A : Any = model( _lowerCamelCase , mc_token_ids=_lowerCamelCase , lm_labels=_lowerCamelCase , mc_labels=_lowerCamelCase ) A : Dict = mc_logits.detach().cpu().numpy() A : Union[str, Any] = mc_labels.to("cpu" ).numpy() A : Union[str, Any] = accuracy(_lowerCamelCase , _lowerCamelCase ) eval_loss += mc_loss.mean().item() eval_accuracy += tmp_eval_accuracy nb_eval_examples += input_ids.size(0 ) nb_eval_steps += 1 A : Union[str, Any] = eval_loss / nb_eval_steps A : Tuple = eval_accuracy / nb_eval_examples A : Optional[int] = tr_loss / nb_tr_steps if args.do_train else None A : Dict = {"eval_loss": eval_loss, "eval_accuracy": eval_accuracy, "train_loss": train_loss} A : Optional[Any] = os.path.join(args.output_dir , "eval_results.txt" ) with open(_lowerCamelCase , "w" ) as writer: logger.info("***** Eval results *****" ) for key in sorted(result.keys() ): logger.info(" %s = %s" , _lowerCamelCase , str(result[key] ) ) writer.write("%s = %s\n" % (key, str(result[key] )) ) if __name__ == "__main__": main()
256
0
"""simple docstring""" import argparse import requests import torch from PIL import Image from transformers import SwinConfig, SwinForMaskedImageModeling, ViTImageProcessor def _snake_case ( lowercase__ ): _lowerCamelCase : Optional[int] = SwinConfig(image_size=192 ) if "base" in model_name: _lowerCamelCase : Optional[int] = 6 _lowerCamelCase : int = 128 _lowerCamelCase : List[Any] = (2, 2, 18, 2) _lowerCamelCase : Optional[int] = (4, 8, 16, 32) elif "large" in model_name: _lowerCamelCase : int = 12 _lowerCamelCase : str = 192 _lowerCamelCase : Tuple = (2, 2, 18, 2) _lowerCamelCase : Optional[int] = (6, 12, 24, 48) else: raise ValueError('Model not supported, only supports base and large variants' ) _lowerCamelCase : List[str] = window_size _lowerCamelCase : int = embed_dim _lowerCamelCase : Optional[Any] = depths _lowerCamelCase : Any = num_heads return config def _snake_case ( lowercase__ ): if "encoder.mask_token" in name: _lowerCamelCase : Dict = name.replace('encoder.mask_token' , 'embeddings.mask_token' ) if "encoder.patch_embed.proj" in name: _lowerCamelCase : Any = name.replace('encoder.patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "encoder.patch_embed.norm" in name: _lowerCamelCase : List[str] = name.replace('encoder.patch_embed.norm' , 'embeddings.norm' ) if "attn.proj" in name: _lowerCamelCase : Tuple = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: _lowerCamelCase : str = name.replace('attn' , 'attention.self' ) if "norm1" in name: _lowerCamelCase : Dict = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: _lowerCamelCase : Union[str, Any] = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: _lowerCamelCase : Optional[Any] = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: _lowerCamelCase : int = name.replace('mlp.fc2' , 'output.dense' ) if name == "encoder.norm.weight": _lowerCamelCase : int = 'layernorm.weight' if name == "encoder.norm.bias": _lowerCamelCase : List[str] = 'layernorm.bias' if "decoder" in name: pass else: _lowerCamelCase : Union[str, Any] = 'swin.' + name return name def _snake_case ( lowercase__ , lowercase__ ): for key in orig_state_dict.copy().keys(): _lowerCamelCase : Any = orig_state_dict.pop(lowercase__ ) if "attn_mask" in key: pass elif "qkv" in key: _lowerCamelCase : List[Any] = key.split('.' ) _lowerCamelCase : Dict = int(key_split[2] ) _lowerCamelCase : List[Any] = int(key_split[4] ) _lowerCamelCase : Optional[Any] = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: _lowerCamelCase : Optional[Any] = val[:dim, :] _lowerCamelCase : Any = val[ dim : dim * 2, : ] _lowerCamelCase : Optional[Any] = val[-dim:, :] else: _lowerCamelCase : str = val[ :dim ] _lowerCamelCase : Optional[int] = val[ dim : dim * 2 ] _lowerCamelCase : List[Any] = val[ -dim: ] else: _lowerCamelCase : Optional[int] = val return orig_state_dict def _snake_case ( lowercase__ , lowercase__ , lowercase__ , lowercase__ ): _lowerCamelCase : Optional[Any] = torch.load(lowercase__ , map_location='cpu' )['model'] _lowerCamelCase : Optional[Any] = get_swin_config(lowercase__ ) _lowerCamelCase : Optional[int] = SwinForMaskedImageModeling(lowercase__ ) model.eval() _lowerCamelCase : List[Any] = convert_state_dict(lowercase__ , lowercase__ ) model.load_state_dict(lowercase__ ) _lowerCamelCase : int = 'http://images.cocodataset.org/val2017/000000039769.jpg' _lowerCamelCase : int = ViTImageProcessor(size={'height': 192, 'width': 192} ) _lowerCamelCase : Union[str, Any] = Image.open(requests.get(lowercase__ , stream=lowercase__ ).raw ) _lowerCamelCase : Union[str, Any] = image_processor(images=lowercase__ , return_tensors='pt' ) with torch.no_grad(): _lowerCamelCase : List[Any] = model(**lowercase__ ).logits print(outputs.keys() ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(lowercase__ ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(lowercase__ ) if push_to_hub: print(f'''Pushing model and image processor for {model_name} to hub''' ) model.push_to_hub(f'''microsoft/{model_name}''' ) image_processor.push_to_hub(f'''microsoft/{model_name}''' ) if __name__ == "__main__": lowercase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""swin-base-simmim-window6-192""", type=str, choices=["""swin-base-simmim-window6-192""", """swin-large-simmim-window12-192"""], help="""Name of the Swin SimMIM model you'd like to convert.""", ) parser.add_argument( """--checkpoint_path""", default="""/Users/nielsrogge/Documents/SwinSimMIM/simmim_pretrain__swin_base__img192_window6__100ep.pth""", type=str, help="""Path to the original PyTorch checkpoint (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) lowercase__ = parser.parse_args() convert_swin_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
96
import inspect import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py lowerCAmelCase = 'src/transformers' # This is to make sure the transformers module imported is the one in the repo. lowerCAmelCase = direct_transformers_import(PATH_TO_TRANSFORMERS) lowerCAmelCase = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` lowerCAmelCase = re.compile(R'\[(.+?)\]\((https://huggingface\.co/.+?)\)') lowerCAmelCase = { 'DecisionTransformerConfig', 'EncoderDecoderConfig', 'MusicgenConfig', 'RagConfig', 'SpeechEncoderDecoderConfig', 'TimmBackboneConfig', 'VisionEncoderDecoderConfig', 'VisionTextDualEncoderConfig', 'LlamaConfig', } def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = None # source code of `config_class` lowercase__ = inspect.getsource(SCREAMING_SNAKE_CASE ) lowercase__ = _re_checkpoint.findall(SCREAMING_SNAKE_CASE ) # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` for ckpt_name, ckpt_link in checkpoints: # allow the link to end with `/` if ckpt_link.endswith('''/''' ): lowercase__ = ckpt_link[:-1] # verify the checkpoint name corresponds to the checkpoint link lowercase__ = f'https://huggingface.co/{ckpt_name}' if ckpt_link == ckpt_link_from_name: lowercase__ = ckpt_name break return checkpoint def _a ( ): """simple docstring""" lowercase__ = [] for config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in config_class.__module__: continue lowercase__ = get_checkpoint_from_config_class(SCREAMING_SNAKE_CASE ) lowercase__ = config_class.__name__ if checkpoint is None and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(SCREAMING_SNAKE_CASE ) if len(SCREAMING_SNAKE_CASE ) > 0: lowercase__ = '''\n'''.join(sorted(SCREAMING_SNAKE_CASE ) ) raise ValueError(f'The following configurations don\'t contain any valid checkpoint:\n{message}' ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
110
0
def __lowerCamelCase ( lowerCamelCase__ ): """simple docstring""" lowercase__ : List[str] = [0] * len(a__ ) for i in range(1 , len(a__ ) ): # use last results for better performance - dynamic programming lowercase__ : Union[str, Any] = prefix_result[i - 1] while j > 0 and input_string[i] != input_string[j]: lowercase__ : Optional[int] = prefix_result[j - 1] if input_string[i] == input_string[j]: j += 1 lowercase__ : int = j return prefix_result def __lowerCamelCase ( lowerCamelCase__ ): """simple docstring""" return max(prefix_function(a__ ) ) if __name__ == "__main__": import doctest doctest.testmod()
369
import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel from diffusers import DDIMScheduler, LDMPipeline, UNetaDModel, VQModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class snake_case__(unittest.TestCase ): """simple docstring""" @property def snake_case ( self : Any ): torch.manual_seed(0 ) lowercase__ : Tuple = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("DownBlock2D", "AttnDownBlock2D") , up_block_types=("AttnUpBlock2D", "UpBlock2D") , ) return model @property def snake_case ( self : List[str] ): torch.manual_seed(0 ) lowercase__ : Optional[int] = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=3 , ) return model @property def snake_case ( self : Dict ): torch.manual_seed(0 ) lowercase__ : str = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModel(SCREAMING_SNAKE_CASE ) def snake_case ( self : str ): lowercase__ : Any = self.dummy_uncond_unet lowercase__ : Dict = DDIMScheduler() lowercase__ : Optional[Any] = self.dummy_vq_model lowercase__ : Union[str, Any] = LDMPipeline(unet=SCREAMING_SNAKE_CASE , vqvae=SCREAMING_SNAKE_CASE , scheduler=SCREAMING_SNAKE_CASE ) ldm.to(SCREAMING_SNAKE_CASE ) ldm.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE ) lowercase__ : int = torch.manual_seed(0 ) lowercase__ : Optional[int] = ldm(generator=SCREAMING_SNAKE_CASE , num_inference_steps=2 , output_type="numpy" ).images lowercase__ : str = torch.manual_seed(0 ) lowercase__ : List[Any] = ldm(generator=SCREAMING_SNAKE_CASE , num_inference_steps=2 , output_type="numpy" , return_dict=SCREAMING_SNAKE_CASE )[0] lowercase__ : Any = image[0, -3:, -3:, -1] lowercase__ : Optional[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase__ : List[Any] = np.array([0.8_512, 0.818, 0.6_411, 0.6_808, 0.4_465, 0.5_618, 0.46, 0.6_231, 0.5_172] ) lowercase__ : Optional[Any] = 1E-2 if torch_device != "mps" else 3E-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < tolerance @slow @require_torch class snake_case__(unittest.TestCase ): """simple docstring""" def snake_case ( self : Optional[Any] ): lowercase__ : int = LDMPipeline.from_pretrained("CompVis/ldm-celebahq-256" ) ldm.to(SCREAMING_SNAKE_CASE ) ldm.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE ) lowercase__ : Dict = torch.manual_seed(0 ) lowercase__ : Tuple = ldm(generator=SCREAMING_SNAKE_CASE , num_inference_steps=5 , output_type="numpy" ).images lowercase__ : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) lowercase__ : Optional[Any] = np.array([0.4_399, 0.44_975, 0.46_825, 0.474, 0.4_359, 0.4_581, 0.45_095, 0.4_341, 0.4_447] ) lowercase__ : int = 1E-2 if torch_device != "mps" else 3E-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance
121
0