code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
import gc import unittest import numpy as np import torch import torch.nn.functional as F from transformers import ( ClapTextConfig, ClapTextModelWithProjection, RobertaTokenizer, SpeechTaHifiGan, SpeechTaHifiGanConfig, ) from diffusers import ( AudioLDMPipeline, AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_AUDIO_BATCH_PARAMS, TEXT_TO_AUDIO_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class UpperCAmelCase_ ( a , unittest.TestCase): lowerCamelCase__ = AudioLDMPipeline lowerCamelCase__ = TEXT_TO_AUDIO_PARAMS lowerCamelCase__ = TEXT_TO_AUDIO_BATCH_PARAMS lowerCamelCase__ = frozenset( [ 'num_inference_steps', 'num_waveforms_per_prompt', 'generator', 'latents', 'output_type', 'return_dict', 'callback', 'callback_steps', ]) def snake_case__ ( self): '''simple docstring''' torch.manual_seed(0) _lowerCAmelCase : Optional[Any] = UNetaDConditionModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=4, out_channels=4, down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), cross_attention_dim=(32, 64), class_embed_type="simple_projection", projection_class_embeddings_input_dim=32, class_embeddings_concat=__a, ) _lowerCAmelCase : Dict = DDIMScheduler( beta_start=0.00_085, beta_end=0.012, beta_schedule="scaled_linear", clip_sample=__a, set_alpha_to_one=__a, ) torch.manual_seed(0) _lowerCAmelCase : Optional[int] = AutoencoderKL( block_out_channels=[32, 64], in_channels=1, out_channels=1, down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], latent_channels=4, ) torch.manual_seed(0) _lowerCAmelCase : int = ClapTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1E-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, projection_dim=32, ) _lowerCAmelCase : Optional[int] = ClapTextModelWithProjection(__a) _lowerCAmelCase : str = RobertaTokenizer.from_pretrained("hf-internal-testing/tiny-random-roberta", model_max_length=77) _lowerCAmelCase : int = SpeechTaHifiGanConfig( model_in_dim=8, sampling_rate=1_6000, upsample_initial_channel=16, upsample_rates=[2, 2], upsample_kernel_sizes=[4, 4], resblock_kernel_sizes=[3, 7], resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5]], normalize_before=__a, ) _lowerCAmelCase : str = SpeechTaHifiGan(__a) _lowerCAmelCase : List[Any] = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "vocoder": vocoder, } return components def snake_case__ ( self, __a, __a=0): '''simple docstring''' if str(__a).startswith("mps"): _lowerCAmelCase : List[Any] = torch.manual_seed(__a) else: _lowerCAmelCase : Any = torch.Generator(device=__a).manual_seed(__a) _lowerCAmelCase : List[Any] = { "prompt": "A hammer hitting a wooden surface", "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, } return inputs def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = "cpu" # ensure determinism for the device-dependent torch.Generator _lowerCAmelCase : Optional[int] = self.get_dummy_components() _lowerCAmelCase : Optional[Any] = AudioLDMPipeline(**__a) _lowerCAmelCase : Union[str, Any] = audioldm_pipe.to(__a) audioldm_pipe.set_progress_bar_config(disable=__a) _lowerCAmelCase : Union[str, Any] = self.get_dummy_inputs(__a) _lowerCAmelCase : str = audioldm_pipe(**__a) _lowerCAmelCase : Optional[Any] = output.audios[0] assert audio.ndim == 1 assert len(__a) == 256 _lowerCAmelCase : List[str] = audio[:10] _lowerCAmelCase : int = np.array( [-0.0_050, 0.0_050, -0.0_060, 0.0_033, -0.0_026, 0.0_033, -0.0_027, 0.0_033, -0.0_028, 0.0_033]) assert np.abs(audio_slice - expected_slice).max() < 1E-2 def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.get_dummy_components() _lowerCAmelCase : List[Any] = AudioLDMPipeline(**__a) _lowerCAmelCase : Optional[int] = audioldm_pipe.to(__a) _lowerCAmelCase : Union[str, Any] = audioldm_pipe.to(__a) audioldm_pipe.set_progress_bar_config(disable=__a) _lowerCAmelCase : Union[str, Any] = self.get_dummy_inputs(__a) _lowerCAmelCase : List[str] = 3 * [inputs["prompt"]] # forward _lowerCAmelCase : Dict = audioldm_pipe(**__a) _lowerCAmelCase : List[Any] = output.audios[0] _lowerCAmelCase : Any = self.get_dummy_inputs(__a) _lowerCAmelCase : Dict = 3 * [inputs.pop("prompt")] _lowerCAmelCase : List[str] = audioldm_pipe.tokenizer( __a, padding="max_length", max_length=audioldm_pipe.tokenizer.model_max_length, truncation=__a, return_tensors="pt", ) _lowerCAmelCase : str = text_inputs["input_ids"].to(__a) _lowerCAmelCase : Dict = audioldm_pipe.text_encoder( __a, ) _lowerCAmelCase : Tuple = prompt_embeds.text_embeds # additional L_2 normalization over each hidden-state _lowerCAmelCase : str = F.normalize(__a, dim=-1) _lowerCAmelCase : Dict = prompt_embeds # forward _lowerCAmelCase : List[Any] = audioldm_pipe(**__a) _lowerCAmelCase : Dict = output.audios[0] assert np.abs(audio_a - audio_a).max() < 1E-2 def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.get_dummy_components() _lowerCAmelCase : Optional[int] = AudioLDMPipeline(**__a) _lowerCAmelCase : List[Any] = audioldm_pipe.to(__a) _lowerCAmelCase : int = audioldm_pipe.to(__a) audioldm_pipe.set_progress_bar_config(disable=__a) _lowerCAmelCase : Any = self.get_dummy_inputs(__a) _lowerCAmelCase : List[Any] = 3 * ["this is a negative prompt"] _lowerCAmelCase : Tuple = negative_prompt _lowerCAmelCase : Dict = 3 * [inputs["prompt"]] # forward _lowerCAmelCase : Tuple = audioldm_pipe(**__a) _lowerCAmelCase : Dict = output.audios[0] _lowerCAmelCase : List[str] = self.get_dummy_inputs(__a) _lowerCAmelCase : Tuple = 3 * [inputs.pop("prompt")] _lowerCAmelCase : List[str] = [] for p in [prompt, negative_prompt]: _lowerCAmelCase : Tuple = audioldm_pipe.tokenizer( __a, padding="max_length", max_length=audioldm_pipe.tokenizer.model_max_length, truncation=__a, return_tensors="pt", ) _lowerCAmelCase : List[Any] = text_inputs["input_ids"].to(__a) _lowerCAmelCase : str = audioldm_pipe.text_encoder( __a, ) _lowerCAmelCase : Optional[int] = text_embeds.text_embeds # additional L_2 normalization over each hidden-state _lowerCAmelCase : Optional[Any] = F.normalize(__a, dim=-1) embeds.append(__a) _lowerCAmelCase , _lowerCAmelCase : int = embeds # forward _lowerCAmelCase : str = audioldm_pipe(**__a) _lowerCAmelCase : Union[str, Any] = output.audios[0] assert np.abs(audio_a - audio_a).max() < 1E-2 def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = "cpu" # ensure determinism for the device-dependent torch.Generator _lowerCAmelCase : Optional[int] = self.get_dummy_components() _lowerCAmelCase : List[str] = PNDMScheduler(skip_prk_steps=__a) _lowerCAmelCase : Optional[Any] = AudioLDMPipeline(**__a) _lowerCAmelCase : Union[str, Any] = audioldm_pipe.to(__a) audioldm_pipe.set_progress_bar_config(disable=__a) _lowerCAmelCase : int = self.get_dummy_inputs(__a) _lowerCAmelCase : Optional[Any] = "egg cracking" _lowerCAmelCase : Dict = audioldm_pipe(**__a, negative_prompt=__a) _lowerCAmelCase : Tuple = output.audios[0] assert audio.ndim == 1 assert len(__a) == 256 _lowerCAmelCase : Optional[Any] = audio[:10] _lowerCAmelCase : List[str] = np.array( [-0.0_051, 0.0_050, -0.0_060, 0.0_034, -0.0_026, 0.0_033, -0.0_027, 0.0_033, -0.0_028, 0.0_032]) assert np.abs(audio_slice - expected_slice).max() < 1E-2 def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = "cpu" # ensure determinism for the device-dependent torch.Generator _lowerCAmelCase : Dict = self.get_dummy_components() _lowerCAmelCase : List[Any] = PNDMScheduler(skip_prk_steps=__a) _lowerCAmelCase : Tuple = AudioLDMPipeline(**__a) _lowerCAmelCase : Optional[Any] = audioldm_pipe.to(__a) audioldm_pipe.set_progress_bar_config(disable=__a) _lowerCAmelCase : Any = "A hammer hitting a wooden surface" # test num_waveforms_per_prompt=1 (default) _lowerCAmelCase : Optional[Any] = audioldm_pipe(__a, num_inference_steps=2).audios assert audios.shape == (1, 256) # test num_waveforms_per_prompt=1 (default) for batch of prompts _lowerCAmelCase : Union[str, Any] = 2 _lowerCAmelCase : int = audioldm_pipe([prompt] * batch_size, num_inference_steps=2).audios assert audios.shape == (batch_size, 256) # test num_waveforms_per_prompt for single prompt _lowerCAmelCase : int = 2 _lowerCAmelCase : Tuple = audioldm_pipe(__a, num_inference_steps=2, num_waveforms_per_prompt=__a).audios assert audios.shape == (num_waveforms_per_prompt, 256) # test num_waveforms_per_prompt for batch of prompts _lowerCAmelCase : Optional[int] = 2 _lowerCAmelCase : Union[str, Any] = audioldm_pipe( [prompt] * batch_size, num_inference_steps=2, num_waveforms_per_prompt=__a).audios assert audios.shape == (batch_size * num_waveforms_per_prompt, 256) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = "cpu" # ensure determinism for the device-dependent torch.Generator _lowerCAmelCase : str = self.get_dummy_components() _lowerCAmelCase : int = AudioLDMPipeline(**__a) _lowerCAmelCase : Any = audioldm_pipe.to(__a) audioldm_pipe.set_progress_bar_config(disable=__a) _lowerCAmelCase : Optional[Any] = audioldm_pipe.vocoder.config.sampling_rate _lowerCAmelCase : List[str] = self.get_dummy_inputs(__a) _lowerCAmelCase : Optional[Any] = audioldm_pipe(audio_length_in_s=0.016, **__a) _lowerCAmelCase : Union[str, Any] = output.audios[0] assert audio.ndim == 1 assert len(__a) / vocoder_sampling_rate == 0.016 _lowerCAmelCase : List[str] = audioldm_pipe(audio_length_in_s=0.032, **__a) _lowerCAmelCase : str = output.audios[0] assert audio.ndim == 1 assert len(__a) / vocoder_sampling_rate == 0.032 def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[str] = self.get_dummy_components() _lowerCAmelCase : Dict = AudioLDMPipeline(**__a) _lowerCAmelCase : List[Any] = audioldm_pipe.to(__a) audioldm_pipe.set_progress_bar_config(disable=__a) _lowerCAmelCase : Optional[int] = ["hey"] _lowerCAmelCase : Optional[int] = audioldm_pipe(__a, num_inference_steps=1) _lowerCAmelCase : Optional[int] = output.audios.shape assert audio_shape == (1, 256) _lowerCAmelCase : int = audioldm_pipe.vocoder.config config.model_in_dim *= 2 _lowerCAmelCase : int = SpeechTaHifiGan(__a).to(__a) _lowerCAmelCase : Tuple = audioldm_pipe(__a, num_inference_steps=1) _lowerCAmelCase : List[str] = output.audios.shape # waveform shape is unchanged, we just have 2x the number of mel channels in the spectrogram assert audio_shape == (1, 256) def snake_case__ ( self): '''simple docstring''' self._test_attention_slicing_forward_pass(test_mean_pixel_difference=__a) def snake_case__ ( self): '''simple docstring''' self._test_inference_batch_single_identical(test_mean_pixel_difference=__a) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available(), reason="XFormers attention is only available with CUDA and `xformers` installed", ) def snake_case__ ( self): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=__a) @slow class UpperCAmelCase_ ( unittest.TestCase): def snake_case__ ( self): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case__ ( self, __a, __a="cpu", __a=torch.floataa, __a=0): '''simple docstring''' _lowerCAmelCase : List[str] = torch.Generator(device=__a).manual_seed(__a) _lowerCAmelCase : Union[str, Any] = np.random.RandomState(__a).standard_normal((1, 8, 128, 16)) _lowerCAmelCase : Union[str, Any] = torch.from_numpy(__a).to(device=__a, dtype=__a) _lowerCAmelCase : str = { "prompt": "A hammer hitting a wooden surface", "latents": latents, "generator": generator, "num_inference_steps": 3, "guidance_scale": 2.5, } return inputs def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = AudioLDMPipeline.from_pretrained("cvssp/audioldm") _lowerCAmelCase : List[Any] = audioldm_pipe.to(__a) audioldm_pipe.set_progress_bar_config(disable=__a) _lowerCAmelCase : Any = self.get_inputs(__a) _lowerCAmelCase : Any = 25 _lowerCAmelCase : List[Any] = audioldm_pipe(**__a).audios[0] assert audio.ndim == 1 assert len(__a) == 8_1920 _lowerCAmelCase : Any = audio[7_7230:7_7240] _lowerCAmelCase : Tuple = np.array( [-0.4_884, -0.4_607, 0.0_023, 0.5_007, 0.5_896, 0.5_151, 0.3_813, -0.0_208, -0.3_687, -0.4_315]) _lowerCAmelCase : str = np.abs(expected_slice - audio_slice).max() assert max_diff < 1E-2 def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = AudioLDMPipeline.from_pretrained("cvssp/audioldm") _lowerCAmelCase : List[str] = LMSDiscreteScheduler.from_config(audioldm_pipe.scheduler.config) _lowerCAmelCase : Optional[Any] = audioldm_pipe.to(__a) audioldm_pipe.set_progress_bar_config(disable=__a) _lowerCAmelCase : str = self.get_inputs(__a) _lowerCAmelCase : Optional[Any] = audioldm_pipe(**__a).audios[0] assert audio.ndim == 1 assert len(__a) == 8_1920 _lowerCAmelCase : Any = audio[2_7780:2_7790] _lowerCAmelCase : Optional[Any] = np.array([-0.2_131, -0.0_873, -0.0_124, -0.0_189, 0.0_569, 0.1_373, 0.1_883, 0.2_886, 0.3_297, 0.2_212]) _lowerCAmelCase : Optional[int] = np.abs(expected_slice - audio_slice).max() assert max_diff < 3E-2
36
"""simple docstring""" def a_ ( lowerCamelCase , lowerCamelCase ): if a < 0 or b < 0: raise ValueError('the value of both inputs must be positive' ) UpperCAmelCase__ = str(bin(lowerCamelCase ) )[2:] # remove the leading "0b" UpperCAmelCase__ = str(bin(lowerCamelCase ) )[2:] # remove the leading "0b" UpperCAmelCase__ = max(len(lowerCamelCase ) , len(lowerCamelCase ) ) return "0b" + "".join( str(int(char_a == '1' and char_b == '1' ) ) for char_a, char_b in zip(a_binary.zfill(lowerCamelCase ) , b_binary.zfill(lowerCamelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
98
0
from collections.abc import Sequence def __lowercase ( _a , _a ): return sum(c * (x**i) for i, c in enumerate(_SCREAMING_SNAKE_CASE ) ) def __lowercase ( _a , _a ): snake_case_ : Union[str, Any] = 0.0 for coeff in reversed(_SCREAMING_SNAKE_CASE ): snake_case_ : Union[str, Any] = result * x + coeff return result if __name__ == "__main__": lowercase__ : Union[str, Any] = (0.0, 0.0, 5.0, 9.3, 7.0) lowercase__ : str = 10.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
351
"""simple docstring""" from ..utils import ( OptionalDependencyNotAvailable, is_flax_available, is_scipy_available, is_torch_available, is_torchsde_available, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_pt_objects import * # noqa F403 else: from .scheduling_consistency_models import CMStochasticIterativeScheduler from .scheduling_ddim import DDIMScheduler from .scheduling_ddim_inverse import DDIMInverseScheduler from .scheduling_ddim_parallel import DDIMParallelScheduler from .scheduling_ddpm import DDPMScheduler from .scheduling_ddpm_parallel import DDPMParallelScheduler from .scheduling_deis_multistep import DEISMultistepScheduler from .scheduling_dpmsolver_multistep import DPMSolverMultistepScheduler from .scheduling_dpmsolver_multistep_inverse import DPMSolverMultistepInverseScheduler from .scheduling_dpmsolver_singlestep import DPMSolverSinglestepScheduler from .scheduling_euler_ancestral_discrete import EulerAncestralDiscreteScheduler from .scheduling_euler_discrete import EulerDiscreteScheduler from .scheduling_heun_discrete import HeunDiscreteScheduler from .scheduling_ipndm import IPNDMScheduler from .scheduling_k_dpm_2_ancestral_discrete import KDPMaAncestralDiscreteScheduler from .scheduling_k_dpm_2_discrete import KDPMaDiscreteScheduler from .scheduling_karras_ve import KarrasVeScheduler from .scheduling_pndm import PNDMScheduler from .scheduling_repaint import RePaintScheduler from .scheduling_sde_ve import ScoreSdeVeScheduler from .scheduling_sde_vp import ScoreSdeVpScheduler from .scheduling_unclip import UnCLIPScheduler from .scheduling_unipc_multistep import UniPCMultistepScheduler from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin from .scheduling_vq_diffusion import VQDiffusionScheduler try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_flax_objects import * # noqa F403 else: from .scheduling_ddim_flax import FlaxDDIMScheduler from .scheduling_ddpm_flax import FlaxDDPMScheduler from .scheduling_dpmsolver_multistep_flax import FlaxDPMSolverMultistepScheduler from .scheduling_karras_ve_flax import FlaxKarrasVeScheduler from .scheduling_lms_discrete_flax import FlaxLMSDiscreteScheduler from .scheduling_pndm_flax import FlaxPNDMScheduler from .scheduling_sde_ve_flax import FlaxScoreSdeVeScheduler from .scheduling_utils_flax import ( FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, broadcast_to_shape_from_left, ) try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .scheduling_lms_discrete import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .scheduling_dpmsolver_sde import DPMSolverSDEScheduler
155
0
'''simple docstring''' import warnings from ...utils import logging from .image_processing_perceiver import PerceiverImageProcessor lowerCAmelCase_ : Any = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE_ ): """simple docstring""" def __init__( self : List[str] , *__a : List[Any] , **__a : List[Any] ): warnings.warn( "The class PerceiverFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use PerceiverImageProcessor instead." , __UpperCAmelCase , ) super().__init__(*__UpperCAmelCase , **__UpperCAmelCase )
63
"""simple docstring""" def UpperCamelCase ( UpperCAmelCase ) ->str: """simple docstring""" return " ".join( "".join(word[::-1] ) if len(UpperCAmelCase ) > 4 else word for word in sentence.split() ) if __name__ == "__main__": import doctest doctest.testmod() print(reverse_long_words('Hey wollef sroirraw'))
243
0
def UpperCamelCase_( _snake_case : float , _snake_case : list[float] ): """simple docstring""" if discount_rate < 0: raise ValueError('Discount rate cannot be negative' ) if not cash_flows: raise ValueError('Cash flows list cannot be empty' ) __a =sum( cash_flow / ((1 + discount_rate) ** i) for i, cash_flow in enumerate(_snake_case ) ) return round(_snake_case , ndigits=2 ) if __name__ == "__main__": import doctest doctest.testmod()
308
import os def UpperCamelCase_( _snake_case : str = "input.txt" ): """simple docstring""" with open(os.path.join(os.path.dirname(_snake_case ) , _snake_case ) ) as input_file: __a =[ [int(_snake_case ) for element in line.split(',' )] for line in input_file.readlines() ] __a =len(_snake_case ) __a =len(matrix[0] ) __a =[[-1 for _ in range(_snake_case )] for _ in range(_snake_case )] for i in range(_snake_case ): __a =matrix[i][0] for j in range(1 , _snake_case ): for i in range(_snake_case ): __a =minimal_path_sums[i][j - 1] + matrix[i][j] for i in range(1 , _snake_case ): __a =min( minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j] ) for i in range(rows - 2 , -1 , -1 ): __a =min( minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j] ) return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums ) if __name__ == "__main__": print(f'''{solution() = }''')
308
1
'''simple docstring''' from statistics import mean, stdev def lowerCAmelCase_ ( _lowerCamelCase: list , _lowerCamelCase: int = 3 ): __SCREAMING_SNAKE_CASE : str = min(_lowerCamelCase ) __SCREAMING_SNAKE_CASE : Optional[int] = max(_lowerCamelCase ) # normalize data return [round((x - x_min) / (x_max - x_min) , _lowerCamelCase ) for x in data] def lowerCAmelCase_ ( _lowerCamelCase: list , _lowerCamelCase: int = 3 ): __SCREAMING_SNAKE_CASE : Tuple = mean(_lowerCamelCase ) __SCREAMING_SNAKE_CASE : Union[str, Any] = stdev(_lowerCamelCase ) # standardize data return [round((x - mu) / (sigma) , _lowerCamelCase ) for x in data]
112
'''simple docstring''' import argparse import glob import logging import os import sys import time from collections import defaultdict from pathlib import Path from typing import Dict, List, Tuple import numpy as np import pytorch_lightning as pl import torch from callbacks import SeqaSeqLoggingCallback, get_checkpoint_callback, get_early_stopping_callback from torch import nn from torch.utils.data import DataLoader from transformers import MBartTokenizer, TaForConditionalGeneration from transformers.models.bart.modeling_bart import shift_tokens_right from utils import ( ROUGE_KEYS, LegacySeqaSeqDataset, SeqaSeqDataset, assert_all_frozen, calculate_bleu, calculate_rouge, check_output_dir, flatten_list, freeze_embeds, freeze_params, get_git_info, label_smoothed_nll_loss, lmap, pickle_save, save_git_info, save_json, use_task_specific_params, ) # need the parent dir module sys.path.insert(2, str(Path(__file__).resolve().parents[1])) from lightning_base import BaseTransformer, add_generic_args, generic_train # noqa UpperCamelCase__ : str = logging.getLogger(__name__) class _UpperCamelCase ( lowerCamelCase__ ): '''simple docstring''' _A : Union[str, Any] = '''summarization''' _A : Optional[Any] = ['''loss'''] _A : Tuple = ROUGE_KEYS _A : int = '''rouge2''' def __init__( self : int , lowerCAmelCase__ : Union[str, Any] , **lowerCAmelCase__ : List[str] ): """simple docstring""" if hparams.sortish_sampler and hparams.gpus > 1: __SCREAMING_SNAKE_CASE : Any = False elif hparams.max_tokens_per_batch is not None: if hparams.gpus > 1: raise NotImplementedError("""Dynamic Batch size does not work for multi-gpu training""" ) if hparams.sortish_sampler: raise ValueError("""--sortish_sampler and --max_tokens_per_batch may not be used simultaneously""" ) super().__init__(lowerCAmelCase__ , num_labels=lowerCAmelCase__ , mode=self.mode , **lowerCAmelCase__ ) use_task_specific_params(self.model , """summarization""" ) save_git_info(self.hparams.output_dir ) __SCREAMING_SNAKE_CASE : int = Path(self.output_dir ) / """metrics.json""" __SCREAMING_SNAKE_CASE : Optional[Any] = Path(self.output_dir ) / """hparams.pkl""" pickle_save(self.hparams , self.hparams_save_path ) __SCREAMING_SNAKE_CASE : Optional[int] = 0 __SCREAMING_SNAKE_CASE : List[Any] = defaultdict(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = self.config.model_type __SCREAMING_SNAKE_CASE : List[Any] = self.config.tgt_vocab_size if self.model_type == """fsmt""" else self.config.vocab_size __SCREAMING_SNAKE_CASE : dict = { "data_dir": self.hparams.data_dir, "max_source_length": self.hparams.max_source_length, "prefix": self.model.config.prefix or "", } __SCREAMING_SNAKE_CASE : List[Any] = { """train""": self.hparams.n_train, """val""": self.hparams.n_val, """test""": self.hparams.n_test, } __SCREAMING_SNAKE_CASE : Any = {k: v if v >= 0 else None for k, v in n_observations_per_split.items()} __SCREAMING_SNAKE_CASE : Any = { """train""": self.hparams.max_target_length, """val""": self.hparams.val_max_target_length, """test""": self.hparams.test_max_target_length, } assert self.target_lens["train"] <= self.target_lens["val"], F"target_lens: {self.target_lens}" assert self.target_lens["train"] <= self.target_lens["test"], F"target_lens: {self.target_lens}" if self.hparams.freeze_embeds: freeze_embeds(self.model ) if self.hparams.freeze_encoder: freeze_params(self.model.get_encoder() ) assert_all_frozen(self.model.get_encoder() ) __SCREAMING_SNAKE_CASE : Any = get_git_info()["""repo_sha"""] __SCREAMING_SNAKE_CASE : Any = hparams.num_workers __SCREAMING_SNAKE_CASE : Tuple = None # default to config if self.model.config.decoder_start_token_id is None and isinstance(self.tokenizer , lowerCAmelCase__ ): __SCREAMING_SNAKE_CASE : Tuple = self.tokenizer.lang_code_to_id[hparams.tgt_lang] __SCREAMING_SNAKE_CASE : Any = self.decoder_start_token_id __SCREAMING_SNAKE_CASE : Optional[int] = ( SeqaSeqDataset if hasattr(self.tokenizer , """prepare_seq2seq_batch""" ) else LegacySeqaSeqDataset ) __SCREAMING_SNAKE_CASE : Dict = False __SCREAMING_SNAKE_CASE : Any = self.model.config.num_beams if self.hparams.eval_beams is None else self.hparams.eval_beams if self.hparams.eval_max_gen_length is not None: __SCREAMING_SNAKE_CASE : Optional[int] = self.hparams.eval_max_gen_length else: __SCREAMING_SNAKE_CASE : Optional[int] = self.model.config.max_length __SCREAMING_SNAKE_CASE : Optional[Any] = self.default_val_metric if self.hparams.val_metric is None else self.hparams.val_metric def UpperCamelCase__ ( self : str , lowerCAmelCase__ : Dict[str, torch.Tensor] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = { k: self.tokenizer.batch_decode(v.tolist() ) if """mask""" not in k else v.shape for k, v in batch.items() } save_json(lowerCAmelCase__ , Path(self.output_dir ) / """text_batch.json""" ) save_json({k: v.tolist() for k, v in batch.items()} , Path(self.output_dir ) / """tok_batch.json""" ) __SCREAMING_SNAKE_CASE : Optional[int] = True return readable_batch def UpperCamelCase__ ( self : List[str] , lowerCAmelCase__ : Any , **lowerCAmelCase__ : Optional[Any] ): """simple docstring""" return self.model(lowerCAmelCase__ , **lowerCAmelCase__ ) def UpperCamelCase__ ( self : Optional[int] , lowerCAmelCase__ : List[int] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = self.tokenizer.batch_decode( lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ , clean_up_tokenization_spaces=lowerCAmelCase__ ) return lmap(str.strip , lowerCAmelCase__ ) def UpperCamelCase__ ( self : Any , lowerCAmelCase__ : dict ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = self.tokenizer.pad_token_id __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : str = batch["""input_ids"""], batch["""attention_mask"""] __SCREAMING_SNAKE_CASE : Tuple = batch["""labels"""] if isinstance(self.model , lowerCAmelCase__ ): __SCREAMING_SNAKE_CASE : str = self.model._shift_right(lowerCAmelCase__ ) else: __SCREAMING_SNAKE_CASE : Optional[int] = shift_tokens_right(lowerCAmelCase__ , lowerCAmelCase__ ) if not self.already_saved_batch: # This would be slightly better if it only happened on rank zero __SCREAMING_SNAKE_CASE : Tuple = decoder_input_ids self.save_readable_batch(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : int = self(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , decoder_input_ids=lowerCAmelCase__ , use_cache=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : str = outputs["""logits"""] if self.hparams.label_smoothing == 0: # Same behavior as modeling_bart.py, besides ignoring pad_token_id __SCREAMING_SNAKE_CASE : Tuple = nn.CrossEntropyLoss(ignore_index=lowerCAmelCase__ ) assert lm_logits.shape[-1] == self.vocab_size __SCREAMING_SNAKE_CASE : List[Any] = ce_loss_fct(lm_logits.view(-1 , lm_logits.shape[-1] ) , tgt_ids.view(-1 ) ) else: __SCREAMING_SNAKE_CASE : List[Any] = nn.functional.log_softmax(lowerCAmelCase__ , dim=-1 ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Tuple = label_smoothed_nll_loss( lowerCAmelCase__ , lowerCAmelCase__ , self.hparams.label_smoothing , ignore_index=lowerCAmelCase__ ) return (loss,) @property def UpperCamelCase__ ( self : List[Any] ): """simple docstring""" return self.tokenizer.pad_token_id def UpperCamelCase__ ( self : Dict , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Union[str, Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = self._step(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Tuple = dict(zip(self.loss_names , lowerCAmelCase__ ) ) # tokens per batch __SCREAMING_SNAKE_CASE : Optional[int] = batch["""input_ids"""].ne(self.pad ).sum() + batch["""labels"""].ne(self.pad ).sum() __SCREAMING_SNAKE_CASE : str = batch["""input_ids"""].shape[0] __SCREAMING_SNAKE_CASE : str = batch["""input_ids"""].eq(self.pad ).sum() __SCREAMING_SNAKE_CASE : Optional[int] = batch["""input_ids"""].eq(self.pad ).float().mean() # TODO(SS): make a wandb summary metric for this return {"loss": loss_tensors[0], "log": logs} def UpperCamelCase__ ( self : Dict , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : str ): """simple docstring""" return self._generative_step(lowerCAmelCase__ ) def UpperCamelCase__ ( self : Optional[int] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Union[str, Any]="val" ): """simple docstring""" self.step_count += 1 __SCREAMING_SNAKE_CASE : int = {k: torch.stack([x[k] for x in outputs] ).mean() for k in self.loss_names} __SCREAMING_SNAKE_CASE : List[Any] = losses["""loss"""] __SCREAMING_SNAKE_CASE : int = { k: np.array([x[k] for x in outputs] ).mean() for k in self.metric_names + ["""gen_time""", """gen_len"""] } __SCREAMING_SNAKE_CASE : List[Any] = ( generative_metrics[self.val_metric] if self.val_metric in generative_metrics else losses[self.val_metric] ) __SCREAMING_SNAKE_CASE : torch.FloatTensor = torch.tensor(lowerCAmelCase__ ).type_as(lowerCAmelCase__ ) generative_metrics.update({k: v.item() for k, v in losses.items()} ) losses.update(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = {F"{prefix}_avg_{k}": x for k, x in losses.items()} __SCREAMING_SNAKE_CASE : Optional[int] = self.step_count self.metrics[prefix].append(lowerCAmelCase__ ) # callback writes this to self.metrics_save_path __SCREAMING_SNAKE_CASE : int = flatten_list([x["""preds"""] for x in outputs] ) return { "log": all_metrics, "preds": preds, F"{prefix}_loss": loss, F"{prefix}_{self.val_metric}": metric_tensor, } def UpperCamelCase__ ( self : Optional[Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : int ): """simple docstring""" return calculate_rouge(lowerCAmelCase__ , lowerCAmelCase__ ) def UpperCamelCase__ ( self : Tuple , lowerCAmelCase__ : dict ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = time.time() # parser.add_argument('--eval_max_gen_length', type=int, default=None, help='never generate more than n tokens') __SCREAMING_SNAKE_CASE : List[str] = self.model.generate( batch["""input_ids"""] , attention_mask=batch["""attention_mask"""] , use_cache=lowerCAmelCase__ , decoder_start_token_id=self.decoder_start_token_id , num_beams=self.eval_beams , max_length=self.eval_max_length , ) __SCREAMING_SNAKE_CASE : Union[str, Any] = (time.time() - ta) / batch["""input_ids"""].shape[0] __SCREAMING_SNAKE_CASE : List[str] = self.ids_to_clean_text(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = self.ids_to_clean_text(batch["""labels"""] ) __SCREAMING_SNAKE_CASE : Optional[Any] = self._step(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[Any] = dict(zip(self.loss_names , lowerCAmelCase__ ) ) __SCREAMING_SNAKE_CASE : Dict = self.calc_generative_metrics(lowerCAmelCase__ , lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : str = np.mean(lmap(lowerCAmelCase__ , lowerCAmelCase__ ) ) base_metrics.update(gen_time=lowerCAmelCase__ , gen_len=lowerCAmelCase__ , preds=lowerCAmelCase__ , target=lowerCAmelCase__ , **lowerCAmelCase__ ) return base_metrics def UpperCamelCase__ ( self : Union[str, Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[Any] ): """simple docstring""" return self._generative_step(lowerCAmelCase__ ) def UpperCamelCase__ ( self : List[Any] , lowerCAmelCase__ : int ): """simple docstring""" return self.validation_epoch_end(lowerCAmelCase__ , prefix="""test""" ) def UpperCamelCase__ ( self : Dict , lowerCAmelCase__ : List[str] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = self.n_obs[type_path] __SCREAMING_SNAKE_CASE : str = self.target_lens[type_path] __SCREAMING_SNAKE_CASE : str = self.dataset_class( self.tokenizer , type_path=lowerCAmelCase__ , n_obs=lowerCAmelCase__ , max_target_length=lowerCAmelCase__ , **self.dataset_kwargs , ) return dataset def UpperCamelCase__ ( self : str , lowerCAmelCase__ : str , lowerCAmelCase__ : int , lowerCAmelCase__ : bool = False ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = self.get_dataset(lowerCAmelCase__ ) if self.hparams.sortish_sampler and type_path != "test" and type_path != "val": __SCREAMING_SNAKE_CASE : Optional[int] = dataset.make_sortish_sampler(lowerCAmelCase__ , distributed=self.hparams.gpus > 1 ) return DataLoader( lowerCAmelCase__ , batch_size=lowerCAmelCase__ , collate_fn=dataset.collate_fn , shuffle=lowerCAmelCase__ , num_workers=self.num_workers , sampler=lowerCAmelCase__ , ) elif self.hparams.max_tokens_per_batch is not None and type_path != "test" and type_path != "val": __SCREAMING_SNAKE_CASE : Any = dataset.make_dynamic_sampler( self.hparams.max_tokens_per_batch , distributed=self.hparams.gpus > 1 ) return DataLoader( lowerCAmelCase__ , batch_sampler=lowerCAmelCase__ , collate_fn=dataset.collate_fn , num_workers=self.num_workers , ) else: return DataLoader( lowerCAmelCase__ , batch_size=lowerCAmelCase__ , collate_fn=dataset.collate_fn , shuffle=lowerCAmelCase__ , num_workers=self.num_workers , sampler=lowerCAmelCase__ , ) def UpperCamelCase__ ( self : int ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = self.get_dataloader("""train""" , batch_size=self.hparams.train_batch_size , shuffle=lowerCAmelCase__ ) return dataloader def UpperCamelCase__ ( self : Union[str, Any] ): """simple docstring""" return self.get_dataloader("""val""" , batch_size=self.hparams.eval_batch_size ) def UpperCamelCase__ ( self : Tuple ): """simple docstring""" return self.get_dataloader("""test""" , batch_size=self.hparams.eval_batch_size ) @staticmethod def UpperCamelCase__ ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[Any] ): """simple docstring""" BaseTransformer.add_model_specific_args(lowerCAmelCase__ , lowerCAmelCase__ ) add_generic_args(lowerCAmelCase__ , lowerCAmelCase__ ) parser.add_argument( """--max_source_length""" , default=1_0_2_4 , type=lowerCAmelCase__ , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument( """--max_target_length""" , default=5_6 , type=lowerCAmelCase__ , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument( """--val_max_target_length""" , default=1_4_2 , type=lowerCAmelCase__ , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument( """--test_max_target_length""" , default=1_4_2 , type=lowerCAmelCase__ , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument("""--freeze_encoder""" , action="""store_true""" ) parser.add_argument("""--freeze_embeds""" , action="""store_true""" ) parser.add_argument("""--sortish_sampler""" , action="""store_true""" , default=lowerCAmelCase__ ) parser.add_argument("""--overwrite_output_dir""" , action="""store_true""" , default=lowerCAmelCase__ ) parser.add_argument("""--max_tokens_per_batch""" , type=lowerCAmelCase__ , default=lowerCAmelCase__ ) parser.add_argument("""--logger_name""" , type=lowerCAmelCase__ , choices=["""default""", """wandb""", """wandb_shared"""] , default="""default""" ) parser.add_argument("""--n_train""" , type=lowerCAmelCase__ , default=-1 , required=lowerCAmelCase__ , help="""# examples. -1 means use all.""" ) parser.add_argument("""--n_val""" , type=lowerCAmelCase__ , default=5_0_0 , required=lowerCAmelCase__ , help="""# examples. -1 means use all.""" ) parser.add_argument("""--n_test""" , type=lowerCAmelCase__ , default=-1 , required=lowerCAmelCase__ , help="""# examples. -1 means use all.""" ) parser.add_argument( """--task""" , type=lowerCAmelCase__ , default="""summarization""" , required=lowerCAmelCase__ , help="""# examples. -1 means use all.""" ) parser.add_argument("""--label_smoothing""" , type=lowerCAmelCase__ , default=0.0 , required=lowerCAmelCase__ ) parser.add_argument("""--src_lang""" , type=lowerCAmelCase__ , default="""""" , required=lowerCAmelCase__ ) parser.add_argument("""--tgt_lang""" , type=lowerCAmelCase__ , default="""""" , required=lowerCAmelCase__ ) parser.add_argument("""--eval_beams""" , type=lowerCAmelCase__ , default=lowerCAmelCase__ , required=lowerCAmelCase__ ) parser.add_argument( """--val_metric""" , type=lowerCAmelCase__ , default=lowerCAmelCase__ , required=lowerCAmelCase__ , choices=["""bleu""", """rouge2""", """loss""", None] ) parser.add_argument("""--eval_max_gen_length""" , type=lowerCAmelCase__ , default=lowerCAmelCase__ , help="""never generate more than n tokens""" ) parser.add_argument("""--save_top_k""" , type=lowerCAmelCase__ , default=1 , required=lowerCAmelCase__ , help="""How many checkpoints to save""" ) parser.add_argument( """--early_stopping_patience""" , type=lowerCAmelCase__ , default=-1 , required=lowerCAmelCase__ , help=( """-1 means never early stop. early_stopping_patience is measured in validation checks, not epochs. So""" """ val_check_interval will effect it.""" ) , ) return parser class _UpperCamelCase ( lowerCamelCase__ ): '''simple docstring''' _A : List[Any] = '''translation''' _A : int = ['''loss'''] _A : Union[str, Any] = ['''bleu'''] _A : Dict = '''bleu''' def __init__( self : Any , lowerCAmelCase__ : int , **lowerCAmelCase__ : Any ): """simple docstring""" super().__init__(lowerCAmelCase__ , **lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = hparams.src_lang __SCREAMING_SNAKE_CASE : Dict = hparams.tgt_lang def UpperCamelCase__ ( self : Tuple , lowerCAmelCase__ : str , lowerCAmelCase__ : List[Any] ): """simple docstring""" return calculate_bleu(lowerCAmelCase__ , lowerCAmelCase__ ) def lowerCAmelCase_ ( _lowerCamelCase: Optional[int] , _lowerCamelCase: str=None ): Path(args.output_dir ).mkdir(exist_ok=_lowerCamelCase ) check_output_dir(_lowerCamelCase , expected_items=3 ) if model is None: if "summarization" in args.task: __SCREAMING_SNAKE_CASE : SummarizationModule = SummarizationModule(_lowerCamelCase ) else: __SCREAMING_SNAKE_CASE : SummarizationModule = TranslationModule(_lowerCamelCase ) __SCREAMING_SNAKE_CASE : Union[str, Any] = Path(args.data_dir ).name if ( args.logger_name == "default" or args.fast_dev_run or str(args.output_dir ).startswith("""/tmp""" ) or str(args.output_dir ).startswith("""/var""" ) ): __SCREAMING_SNAKE_CASE : str = True # don't pollute wandb logs unnecessarily elif args.logger_name == "wandb": from pytorch_lightning.loggers import WandbLogger __SCREAMING_SNAKE_CASE : Any = os.environ.get("""WANDB_PROJECT""" , _lowerCamelCase ) __SCREAMING_SNAKE_CASE : str = WandbLogger(name=model.output_dir.name , project=_lowerCamelCase ) elif args.logger_name == "wandb_shared": from pytorch_lightning.loggers import WandbLogger __SCREAMING_SNAKE_CASE : Optional[int] = WandbLogger(name=model.output_dir.name , project=F"hf_{dataset}" ) if args.early_stopping_patience >= 0: __SCREAMING_SNAKE_CASE : str = get_early_stopping_callback(model.val_metric , args.early_stopping_patience ) else: __SCREAMING_SNAKE_CASE : Tuple = False __SCREAMING_SNAKE_CASE : Dict = args.val_metric == """loss""" __SCREAMING_SNAKE_CASE : pl.Trainer = generic_train( _lowerCamelCase , _lowerCamelCase , logging_callback=SeqaSeqLoggingCallback() , checkpoint_callback=get_checkpoint_callback( args.output_dir , model.val_metric , args.save_top_k , _lowerCamelCase ) , early_stopping_callback=_lowerCamelCase , logger=_lowerCamelCase , ) pickle_save(model.hparams , model.output_dir / """hparams.pkl""" ) if not args.do_predict: return model __SCREAMING_SNAKE_CASE : Optional[int] = """""" __SCREAMING_SNAKE_CASE : Any = sorted(glob.glob(os.path.join(args.output_dir , """*.ckpt""" ) , recursive=_lowerCamelCase ) ) if checkpoints: __SCREAMING_SNAKE_CASE : List[Any] = checkpoints[-1] __SCREAMING_SNAKE_CASE : str = checkpoints[-1] trainer.logger.log_hyperparams(model.hparams ) # test() without a model tests using the best checkpoint automatically trainer.test() return model if __name__ == "__main__": UpperCamelCase__ : Optional[int] = argparse.ArgumentParser() UpperCamelCase__ : Dict = pl.Trainer.add_argparse_args(parser) UpperCamelCase__ : List[Any] = SummarizationModule.add_model_specific_args(parser, os.getcwd()) UpperCamelCase__ : List[str] = parser.parse_args() main(args)
112
1
def A(): return [list(range(1000 - i , -1000 - i , -1 ) ) for i in range(1000 )] lowerCamelCase__ = generate_large_matrix() lowerCamelCase__ = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def A(__a: list[list[int]] ): assert all(row == sorted(__a , reverse=__a ) for row in grid ) assert all(list(__a ) == sorted(__a , reverse=__a ) for col in zip(*__a ) ) def A(__a: list[int] ): lowerCAmelCase_ = 0 lowerCAmelCase_ = len(__a ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: lowerCAmelCase_ = (left + right) // 2 lowerCAmelCase_ = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: lowerCAmelCase_ = mid + 1 else: lowerCAmelCase_ = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(__a ) def A(__a: list[list[int]] ): lowerCAmelCase_ = 0 lowerCAmelCase_ = len(grid[0] ) for i in range(len(__a ) ): lowerCAmelCase_ = find_negative_index(grid[i][:bound] ) total += bound return (len(__a ) * len(grid[0] )) - total def A(__a: list[list[int]] ): return len([number for row in grid for number in row if number < 0] ) def A(__a: list[list[int]] ): lowerCAmelCase_ = 0 for row in grid: for i, number in enumerate(__a ): if number < 0: total += len(__a ) - i break return total def A(): from timeit import timeit print("Running benchmarks" ) lowerCAmelCase_ = ( "from __main__ import count_negatives_binary_search, " "count_negatives_brute_force, count_negatives_brute_force_with_break, grid" ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): lowerCAmelCase_ = timeit(F"{func}(grid=grid)" , setup=__a , number=500 ) print(F"{func}() took {time:0.4f} seconds" ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
22
import warnings from ...utils import is_sklearn_available, requires_backends if is_sklearn_available(): from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef lowerCamelCase__ = ( '''This metric will be removed from the library soon, metrics should be handled with the 🤗 Evaluate ''' '''library. You can have a look at this example script for pointers: ''' '''https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py''' ) def A(__a: str , __a: List[Any] ): warnings.warn(__a , __a ) requires_backends(__a , "sklearn" ) return (preds == labels).mean() def A(__a: Any , __a: Any ): warnings.warn(__a , __a ) requires_backends(__a , "sklearn" ) lowerCAmelCase_ = simple_accuracy(__a , __a ) lowerCAmelCase_ = fa_score(y_true=__a , y_pred=__a ) return { "acc": acc, "f1": fa, "acc_and_f1": (acc + fa) / 2, } def A(__a: List[str] , __a: Optional[int] ): warnings.warn(__a , __a ) requires_backends(__a , "sklearn" ) lowerCAmelCase_ = pearsonr(__a , __a )[0] lowerCAmelCase_ = spearmanr(__a , __a )[0] return { "pearson": pearson_corr, "spearmanr": spearman_corr, "corr": (pearson_corr + spearman_corr) / 2, } def A(__a: Union[str, Any] , __a: Any , __a: str ): warnings.warn(__a , __a ) requires_backends(__a , "sklearn" ) assert len(__a ) == len(__a ), F"Predictions and labels have mismatched lengths {len(__a )} and {len(__a )}" if task_name == "cola": return {"mcc": matthews_corrcoef(__a , __a )} elif task_name == "sst-2": return {"acc": simple_accuracy(__a , __a )} elif task_name == "mrpc": return acc_and_fa(__a , __a ) elif task_name == "sts-b": return pearson_and_spearman(__a , __a ) elif task_name == "qqp": return acc_and_fa(__a , __a ) elif task_name == "mnli": return {"mnli/acc": simple_accuracy(__a , __a )} elif task_name == "mnli-mm": return {"mnli-mm/acc": simple_accuracy(__a , __a )} elif task_name == "qnli": return {"acc": simple_accuracy(__a , __a )} elif task_name == "rte": return {"acc": simple_accuracy(__a , __a )} elif task_name == "wnli": return {"acc": simple_accuracy(__a , __a )} elif task_name == "hans": return {"acc": simple_accuracy(__a , __a )} else: raise KeyError(__a ) def A(__a: int , __a: Optional[Any] , __a: Optional[Any] ): warnings.warn(__a , __a ) requires_backends(__a , "sklearn" ) if len(__a ) != len(__a ): raise ValueError(F"Predictions and labels have mismatched lengths {len(__a )} and {len(__a )}" ) if task_name == "xnli": return {"acc": simple_accuracy(__a , __a )} else: raise KeyError(__a )
22
1
'''simple docstring''' import os def lowerCAmelCase_ ( snake_case__ = "matrix.txt" ): '''simple docstring''' with open(os.path.join(os.path.dirname(snake_case__ ) , snake_case__ ) ) as in_file: A : Dict = in_file.read() A : Union[str, Any] = [[int(snake_case__ ) for cell in row.split(''',''' )] for row in data.strip().splitlines()] A : Union[str, Any] = [[0 for cell in row] for row in grid] A : Any = len(grid[0] ) A : int = [[0 for i in range(snake_case__ )] for j in range(snake_case__ )] A : List[str] = grid[0][0] for i in range(1 , snake_case__ ): A : Any = grid[0][i] + dp[0][i - 1] for i in range(1 , snake_case__ ): A : Dict = grid[i][0] + dp[i - 1][0] for i in range(1 , snake_case__ ): for j in range(1 , snake_case__ ): A : Union[str, Any] = grid[i][j] + min(dp[i - 1][j] , dp[i][j - 1] ) return dp[-1][-1] if __name__ == "__main__": print(f'''{solution() = }''')
3
'''simple docstring''' import os def lowerCAmelCase_ ( ): '''simple docstring''' A : List[Any] = os.path.join(os.path.dirname(snake_case__ ) , '''num.txt''' ) with open(snake_case__ ) as file_hand: return str(sum(int(snake_case__ ) for line in file_hand ) )[:10] if __name__ == "__main__": print(solution())
3
1
from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import ( BackboneOutput, BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from ...utils.backbone_utils import BackboneMixin from .configuration_resnet import ResNetConfig _UpperCAmelCase = logging.get_logger(__name__) # General docstring _UpperCAmelCase = 'ResNetConfig' # Base docstring _UpperCAmelCase = 'microsoft/resnet-50' _UpperCAmelCase = [1, 2_0_4_8, 7, 7] # Image classification docstring _UpperCAmelCase = 'microsoft/resnet-50' _UpperCAmelCase = 'tiger cat' _UpperCAmelCase = [ 'microsoft/resnet-50', # See all resnet models at https://huggingface.co/models?filter=resnet ] class _UpperCamelCase ( nn.Module ): def __init__( self: Union[str, Any] , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: int = 3 , _SCREAMING_SNAKE_CASE: int = 1 , _SCREAMING_SNAKE_CASE: str = "relu" ) -> Any: """simple docstring""" super().__init__() UpperCamelCase_ = nn.Convad( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , kernel_size=_SCREAMING_SNAKE_CASE , stride=_SCREAMING_SNAKE_CASE , padding=kernel_size // 2 , bias=_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = nn.BatchNormad(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = ACTaFN[activation] if activation is not None else nn.Identity() def lowercase ( self: Dict , _SCREAMING_SNAKE_CASE: Tensor ) -> Tensor: """simple docstring""" UpperCamelCase_ = self.convolution(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = self.normalization(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = self.activation(_SCREAMING_SNAKE_CASE ) return hidden_state class _UpperCamelCase ( nn.Module ): def __init__( self: List[Any] , _SCREAMING_SNAKE_CASE: ResNetConfig ) -> Dict: """simple docstring""" super().__init__() UpperCamelCase_ = ResNetConvLayer( config.num_channels , config.embedding_size , kernel_size=7 , stride=2 , activation=config.hidden_act ) UpperCamelCase_ = nn.MaxPoolad(kernel_size=3 , stride=2 , padding=1 ) UpperCamelCase_ = config.num_channels def lowercase ( self: Optional[int] , _SCREAMING_SNAKE_CASE: Tensor ) -> Tensor: """simple docstring""" UpperCamelCase_ = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( "Make sure that the channel dimension of the pixel values match with the one set in the configuration." ) UpperCamelCase_ = self.embedder(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = self.pooler(_SCREAMING_SNAKE_CASE ) return embedding class _UpperCamelCase ( nn.Module ): def __init__( self: str , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: int = 2 ) -> List[Any]: """simple docstring""" super().__init__() UpperCamelCase_ = nn.Convad(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , kernel_size=1 , stride=_SCREAMING_SNAKE_CASE , bias=_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = nn.BatchNormad(_SCREAMING_SNAKE_CASE ) def lowercase ( self: List[Any] , _SCREAMING_SNAKE_CASE: Tensor ) -> Tensor: """simple docstring""" UpperCamelCase_ = self.convolution(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = self.normalization(_SCREAMING_SNAKE_CASE ) return hidden_state class _UpperCamelCase ( nn.Module ): def __init__( self: Optional[int] , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: int = 1 , _SCREAMING_SNAKE_CASE: str = "relu" ) -> Union[str, Any]: """simple docstring""" super().__init__() UpperCamelCase_ = in_channels != out_channels or stride != 1 UpperCamelCase_ = ( ResNetShortCut(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , stride=_SCREAMING_SNAKE_CASE ) if should_apply_shortcut else nn.Identity() ) UpperCamelCase_ = nn.Sequential( ResNetConvLayer(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , stride=_SCREAMING_SNAKE_CASE ) , ResNetConvLayer(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , activation=_SCREAMING_SNAKE_CASE ) , ) UpperCamelCase_ = ACTaFN[activation] def lowercase ( self: Tuple , _SCREAMING_SNAKE_CASE: Tuple ) -> Tuple: """simple docstring""" UpperCamelCase_ = hidden_state UpperCamelCase_ = self.layer(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = self.shortcut(_SCREAMING_SNAKE_CASE ) hidden_state += residual UpperCamelCase_ = self.activation(_SCREAMING_SNAKE_CASE ) return hidden_state class _UpperCamelCase ( nn.Module ): def __init__( self: Tuple , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: int = 1 , _SCREAMING_SNAKE_CASE: str = "relu" , _SCREAMING_SNAKE_CASE: int = 4 ) -> Union[str, Any]: """simple docstring""" super().__init__() UpperCamelCase_ = in_channels != out_channels or stride != 1 UpperCamelCase_ = out_channels // reduction UpperCamelCase_ = ( ResNetShortCut(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , stride=_SCREAMING_SNAKE_CASE ) if should_apply_shortcut else nn.Identity() ) UpperCamelCase_ = nn.Sequential( ResNetConvLayer(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , kernel_size=1 ) , ResNetConvLayer(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , stride=_SCREAMING_SNAKE_CASE ) , ResNetConvLayer(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , kernel_size=1 , activation=_SCREAMING_SNAKE_CASE ) , ) UpperCamelCase_ = ACTaFN[activation] def lowercase ( self: str , _SCREAMING_SNAKE_CASE: Optional[int] ) -> Any: """simple docstring""" UpperCamelCase_ = hidden_state UpperCamelCase_ = self.layer(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = self.shortcut(_SCREAMING_SNAKE_CASE ) hidden_state += residual UpperCamelCase_ = self.activation(_SCREAMING_SNAKE_CASE ) return hidden_state class _UpperCamelCase ( nn.Module ): def __init__( self: Union[str, Any] , _SCREAMING_SNAKE_CASE: ResNetConfig , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: int = 2 , _SCREAMING_SNAKE_CASE: int = 2 , ) -> Tuple: """simple docstring""" super().__init__() UpperCamelCase_ = ResNetBottleNeckLayer if config.layer_type == "bottleneck" else ResNetBasicLayer UpperCamelCase_ = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , stride=_SCREAMING_SNAKE_CASE , activation=config.hidden_act ) , *[layer(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , activation=config.hidden_act ) for _ in range(depth - 1 )] , ) def lowercase ( self: Optional[int] , _SCREAMING_SNAKE_CASE: Tensor ) -> Tensor: """simple docstring""" UpperCamelCase_ = input for layer in self.layers: UpperCamelCase_ = layer(_SCREAMING_SNAKE_CASE ) return hidden_state class _UpperCamelCase ( nn.Module ): def __init__( self: List[Any] , _SCREAMING_SNAKE_CASE: ResNetConfig ) -> List[Any]: """simple docstring""" super().__init__() UpperCamelCase_ = nn.ModuleList([] ) # based on `downsample_in_first_stage` the first layer of the first stage may or may not downsample the input self.stages.append( ResNetStage( _SCREAMING_SNAKE_CASE , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) ) UpperCamelCase_ = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(_SCREAMING_SNAKE_CASE , config.depths[1:] ): self.stages.append(ResNetStage(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , depth=_SCREAMING_SNAKE_CASE ) ) def lowercase ( self: Optional[int] , _SCREAMING_SNAKE_CASE: Tensor , _SCREAMING_SNAKE_CASE: bool = False , _SCREAMING_SNAKE_CASE: bool = True ) -> BaseModelOutputWithNoAttention: """simple docstring""" UpperCamelCase_ = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: UpperCamelCase_ = hidden_states + (hidden_state,) UpperCamelCase_ = stage_module(_SCREAMING_SNAKE_CASE ) if output_hidden_states: UpperCamelCase_ = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention( last_hidden_state=_SCREAMING_SNAKE_CASE , hidden_states=_SCREAMING_SNAKE_CASE , ) class _UpperCamelCase ( lowerCAmelCase_ ): _UpperCamelCase : Tuple = ResNetConfig _UpperCamelCase : str = '''resnet''' _UpperCamelCase : Optional[Any] = '''pixel_values''' _UpperCamelCase : List[str] = True def lowercase ( self: Optional[Any] , _SCREAMING_SNAKE_CASE: Optional[Any] ) -> int: """simple docstring""" if isinstance(_SCREAMING_SNAKE_CASE , nn.Convad ): nn.init.kaiming_normal_(module.weight , mode="fan_out" , nonlinearity="relu" ) elif isinstance(_SCREAMING_SNAKE_CASE , (nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight , 1 ) nn.init.constant_(module.bias , 0 ) def lowercase ( self: Tuple , _SCREAMING_SNAKE_CASE: List[Any] , _SCREAMING_SNAKE_CASE: Tuple=False ) -> Union[str, Any]: """simple docstring""" if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): UpperCamelCase_ = value _UpperCAmelCase = r'\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`ResNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n' _UpperCAmelCase = r'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConvNextImageProcessor.__call__`] for details.\n\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( '''The bare ResNet model outputting raw features without any specific head on top.''' , lowerCAmelCase_ , ) class _UpperCamelCase ( lowerCAmelCase_ ): def __init__( self: Dict , _SCREAMING_SNAKE_CASE: Union[str, Any] ) -> Optional[Any]: """simple docstring""" super().__init__(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = config UpperCamelCase_ = ResNetEmbeddings(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = ResNetEncoder(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_SCREAMING_SNAKE_CASE ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=_SCREAMING_SNAKE_CASE , config_class=_CONFIG_FOR_DOC , modality="vision" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def lowercase ( self: Any , _SCREAMING_SNAKE_CASE: Tensor , _SCREAMING_SNAKE_CASE: Optional[bool] = None , _SCREAMING_SNAKE_CASE: Optional[bool] = None ) -> BaseModelOutputWithPoolingAndNoAttention: """simple docstring""" UpperCamelCase_ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) UpperCamelCase_ = return_dict if return_dict is not None else self.config.use_return_dict UpperCamelCase_ = self.embedder(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = self.encoder( _SCREAMING_SNAKE_CASE , output_hidden_states=_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = encoder_outputs[0] UpperCamelCase_ = self.pooler(_SCREAMING_SNAKE_CASE ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=_SCREAMING_SNAKE_CASE , pooler_output=_SCREAMING_SNAKE_CASE , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( ''' ResNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. ''' , lowerCAmelCase_ , ) class _UpperCamelCase ( lowerCAmelCase_ ): def __init__( self: Any , _SCREAMING_SNAKE_CASE: Optional[int] ) -> Dict: """simple docstring""" super().__init__(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = config.num_labels UpperCamelCase_ = ResNetModel(_SCREAMING_SNAKE_CASE ) # classification head UpperCamelCase_ = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_SCREAMING_SNAKE_CASE ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=_SCREAMING_SNAKE_CASE , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def lowercase ( self: str , _SCREAMING_SNAKE_CASE: Optional[torch.FloatTensor] = None , _SCREAMING_SNAKE_CASE: Optional[torch.LongTensor] = None , _SCREAMING_SNAKE_CASE: Optional[bool] = None , _SCREAMING_SNAKE_CASE: Optional[bool] = None , ) -> ImageClassifierOutputWithNoAttention: """simple docstring""" UpperCamelCase_ = return_dict if return_dict is not None else self.config.use_return_dict UpperCamelCase_ = self.resnet(_SCREAMING_SNAKE_CASE , output_hidden_states=_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = outputs.pooler_output if return_dict else outputs[1] UpperCamelCase_ = self.classifier(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: UpperCamelCase_ = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): UpperCamelCase_ = "single_label_classification" else: UpperCamelCase_ = "multi_label_classification" if self.config.problem_type == "regression": UpperCamelCase_ = MSELoss() if self.num_labels == 1: UpperCamelCase_ = loss_fct(logits.squeeze() , labels.squeeze() ) else: UpperCamelCase_ = loss_fct(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif self.config.problem_type == "single_label_classification": UpperCamelCase_ = CrossEntropyLoss() UpperCamelCase_ = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": UpperCamelCase_ = BCEWithLogitsLoss() UpperCamelCase_ = loss_fct(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if not return_dict: UpperCamelCase_ = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=_SCREAMING_SNAKE_CASE , logits=_SCREAMING_SNAKE_CASE , hidden_states=outputs.hidden_states ) @add_start_docstrings( ''' ResNet backbone, to be used with frameworks like DETR and MaskFormer. ''' , lowerCAmelCase_ , ) class _UpperCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ): def __init__( self: Optional[Any] , _SCREAMING_SNAKE_CASE: List[Any] ) -> int: """simple docstring""" super().__init__(_SCREAMING_SNAKE_CASE ) super()._init_backbone(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = [config.embedding_size] + config.hidden_sizes UpperCamelCase_ = ResNetEmbeddings(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = ResNetEncoder(_SCREAMING_SNAKE_CASE ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_SCREAMING_SNAKE_CASE ) @replace_return_docstrings(output_type=_SCREAMING_SNAKE_CASE , config_class=_CONFIG_FOR_DOC ) def lowercase ( self: List[str] , _SCREAMING_SNAKE_CASE: Tensor , _SCREAMING_SNAKE_CASE: Optional[bool] = None , _SCREAMING_SNAKE_CASE: Optional[bool] = None ) -> BackboneOutput: """simple docstring""" UpperCamelCase_ = return_dict if return_dict is not None else self.config.use_return_dict UpperCamelCase_ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) UpperCamelCase_ = self.embedder(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = self.encoder(_SCREAMING_SNAKE_CASE , output_hidden_states=_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = outputs.hidden_states UpperCamelCase_ = () for idx, stage in enumerate(self.stage_names ): if stage in self.out_features: feature_maps += (hidden_states[idx],) if not return_dict: UpperCamelCase_ = (feature_maps,) if output_hidden_states: output += (outputs.hidden_states,) return output return BackboneOutput( feature_maps=_SCREAMING_SNAKE_CASE , hidden_states=outputs.hidden_states if output_hidden_states else None , attentions=_SCREAMING_SNAKE_CASE , )
328
def lowerCAmelCase_ ( UpperCamelCase_ ) -> int: UpperCamelCase_ = len(UpperCamelCase_ ) UpperCamelCase_ = len(matrix[0] ) UpperCamelCase_ = min(UpperCamelCase_ , UpperCamelCase_ ) for row in range(UpperCamelCase_ ): # Check if diagonal element is not zero if matrix[row][row] != 0: # Eliminate all the elements below the diagonal for col in range(row + 1 , UpperCamelCase_ ): UpperCamelCase_ = matrix[col][row] / matrix[row][row] for i in range(UpperCamelCase_ , UpperCamelCase_ ): matrix[col][i] -= multiplier * matrix[row][i] else: # Find a non-zero diagonal element to swap rows UpperCamelCase_ = True for i in range(row + 1 , UpperCamelCase_ ): if matrix[i][row] != 0: UpperCamelCase_ , UpperCamelCase_ = matrix[i], matrix[row] UpperCamelCase_ = False break if reduce: rank -= 1 for i in range(UpperCamelCase_ ): UpperCamelCase_ = matrix[i][rank] # Reduce the row pointer by one to stay on the same row row -= 1 return rank if __name__ == "__main__": import doctest doctest.testmod()
328
1
"""simple docstring""" import json from typing import Iterator, List, Union from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers from tokenizers.implementations.base_tokenizer import BaseTokenizer from tokenizers.models import Unigram from tokenizers.processors import TemplateProcessing class lowercase( __a ): '''simple docstring''' def __init__( self: str, a_: str = "▁", a_: bool = True, a_: Union[str, AddedToken] = "<unk>", a_: Union[str, AddedToken] = "</s>", a_: Union[str, AddedToken] = "<pad>", ): '''simple docstring''' _snake_case : Optional[Any] = { """pad""": {"""id""": 0, """token""": pad_token}, """eos""": {"""id""": 1, """token""": eos_token}, """unk""": {"""id""": 2, """token""": unk_token}, } _snake_case : List[str] = [None] * len(self.special_tokens ) for token_dict in self.special_tokens.values(): _snake_case : Optional[Any] = token_dict["""token"""] _snake_case : Tuple = Tokenizer(Unigram() ) _snake_case : int = normalizers.Sequence( [ normalizers.Nmt(), normalizers.NFKC(), normalizers.Replace(Regex(""" {2,}""" ), """ """ ), normalizers.Lowercase(), ] ) _snake_case : Any = pre_tokenizers.Sequence( [ pre_tokenizers.Metaspace(replacement=a_, add_prefix_space=a_ ), pre_tokenizers.Digits(individual_digits=a_ ), pre_tokenizers.Punctuation(), ] ) _snake_case : Any = decoders.Metaspace(replacement=a_, add_prefix_space=a_ ) _snake_case : List[Any] = TemplateProcessing( single=f"$A {self.special_tokens['eos']['token']}", special_tokens=[(self.special_tokens["""eos"""]["""token"""], self.special_tokens["""eos"""]["""id"""])], ) _snake_case : int = { """model""": """SentencePieceUnigram""", """replacement""": replacement, """add_prefix_space""": add_prefix_space, } super().__init__(a_, a_ ) def UpperCamelCase_ ( self: Optional[Any], a_: Union[str, List[str]], a_: int = 8_000, a_: bool = True, ): '''simple docstring''' _snake_case : Dict = trainers.UnigramTrainer( vocab_size=a_, special_tokens=self.special_tokens_list, show_progress=a_, ) if isinstance(a_, a_ ): _snake_case : str = [files] self._tokenizer.train(a_, trainer=a_ ) self.add_unk_id() def UpperCamelCase_ ( self: str, a_: Union[Iterator[str], Iterator[Iterator[str]]], a_: int = 8_000, a_: bool = True, ): '''simple docstring''' _snake_case : Optional[int] = trainers.UnigramTrainer( vocab_size=a_, special_tokens=self.special_tokens_list, show_progress=a_, ) self._tokenizer.train_from_iterator(a_, trainer=a_ ) self.add_unk_id() def UpperCamelCase_ ( self: Dict ): '''simple docstring''' _snake_case : int = json.loads(self._tokenizer.to_str() ) _snake_case : Tuple = self.special_tokens["""unk"""]["""id"""] _snake_case : Dict = Tokenizer.from_str(json.dumps(a_ ) )
64
"""simple docstring""" import importlib import inspect import json import os import re import shutil import sys from pathlib import Path from typing import Dict, Optional, Union from urllib import request from huggingface_hub import HfFolder, cached_download, hf_hub_download, model_info from packaging import version from .. import __version__ from . import DIFFUSERS_DYNAMIC_MODULE_NAME, HF_MODULES_CACHE, logging a = ( 'https://raw.githubusercontent.com/huggingface/diffusers/{revision}/examples/community/{pipeline}.py' ) a = logging.get_logger(__name__) # pylint: disable=invalid-name def lowercase () -> int: '''simple docstring''' lowerCAmelCase = """https://pypi.org/pypi/diffusers/json""" lowerCAmelCase = json.loads(request.urlopen(snake_case__ ).read() )["""releases"""].keys() return sorted(snake_case__ , key=lambda snake_case__ : version.Version(snake_case__ ) ) def lowercase () -> List[str]: '''simple docstring''' if HF_MODULES_CACHE in sys.path: return sys.path.append(snake_case__ ) os.makedirs(snake_case__ , exist_ok=snake_case__ ) lowerCAmelCase = Path(snake_case__ ) / """__init__.py""" if not init_path.exists(): init_path.touch() def lowercase (snake_case__ : Union[str, os.PathLike] ) -> List[Any]: '''simple docstring''' init_hf_modules() lowerCAmelCase = Path(snake_case__ ) / name # If the parent module does not exist yet, recursively create it. if not dynamic_module_path.parent.exists(): create_dynamic_module(dynamic_module_path.parent ) os.makedirs(snake_case__ , exist_ok=snake_case__ ) lowerCAmelCase = dynamic_module_path / """__init__.py""" if not init_path.exists(): init_path.touch() def lowercase (snake_case__ : Optional[int] ) -> Tuple: '''simple docstring''' with open(snake_case__ , """r""" , encoding="""utf-8""" ) as f: lowerCAmelCase = f.read() # Imports of the form `import .xxx` lowerCAmelCase = re.findall("""^\s*import\s+\.(\S+)\s*$""" , snake_case__ , flags=re.MULTILINE ) # Imports of the form `from .xxx import yyy` relative_imports += re.findall("""^\s*from\s+\.(\S+)\s+import""" , snake_case__ , flags=re.MULTILINE ) # Unique-ify return list(set(snake_case__ ) ) def lowercase (snake_case__ : Dict ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase = False lowerCAmelCase = [module_file] lowerCAmelCase = [] # Let's recurse through all relative imports while not no_change: lowerCAmelCase = [] for f in files_to_check: new_imports.extend(get_relative_imports(snake_case__ ) ) lowerCAmelCase = Path(snake_case__ ).parent lowerCAmelCase = [str(module_path / m ) for m in new_imports] lowerCAmelCase = [f for f in new_import_files if f not in all_relative_imports] lowerCAmelCase = [f'''{f}.py''' for f in new_import_files] lowerCAmelCase = len(snake_case__ ) == 0 all_relative_imports.extend(snake_case__ ) return all_relative_imports def lowercase (snake_case__ : Optional[int] ) -> int: '''simple docstring''' with open(snake_case__ , """r""" , encoding="""utf-8""" ) as f: lowerCAmelCase = f.read() # Imports of the form `import xxx` lowerCAmelCase = re.findall("""^\s*import\s+(\S+)\s*$""" , snake_case__ , flags=re.MULTILINE ) # Imports of the form `from xxx import yyy` imports += re.findall("""^\s*from\s+(\S+)\s+import""" , snake_case__ , flags=re.MULTILINE ) # Only keep the top-level module lowerCAmelCase = [imp.split(""".""" )[0] for imp in imports if not imp.startswith(""".""" )] # Unique-ify and test we got them all lowerCAmelCase = list(set(snake_case__ ) ) lowerCAmelCase = [] for imp in imports: try: importlib.import_module(snake_case__ ) except ImportError: missing_packages.append(snake_case__ ) if len(snake_case__ ) > 0: raise ImportError( """This modeling file requires the following packages that were not found in your environment: """ f'''{', '.join(snake_case__ )}. Run `pip install {' '.join(snake_case__ )}`''' ) return get_relative_imports(snake_case__ ) def lowercase (snake_case__ : Any , snake_case__ : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase = module_path.replace(os.path.sep , """.""" ) lowerCAmelCase = importlib.import_module(snake_case__ ) if class_name is None: return find_pipeline_class(snake_case__ ) return getattr(snake_case__ , snake_case__ ) def lowercase (snake_case__ : List[Any] ) -> Union[str, Any]: '''simple docstring''' from ..pipelines import DiffusionPipeline lowerCAmelCase = dict(inspect.getmembers(snake_case__ , inspect.isclass ) ) lowerCAmelCase = None for cls_name, cls in cls_members.items(): if ( cls_name != DiffusionPipeline.__name__ and issubclass(cls , snake_case__ ) and cls.__module__.split(""".""" )[0] != "diffusers" ): if pipeline_class is not None: raise ValueError( f'''Multiple classes that inherit from {DiffusionPipeline.__name__} have been found:''' f''' {pipeline_class.__name__}, and {cls_name}. Please make sure to define only one in''' f''' {loaded_module}.''' ) lowerCAmelCase = cls return pipeline_class def lowercase (snake_case__ : Union[str, os.PathLike] , snake_case__ : str , snake_case__ : Optional[Union[str, os.PathLike]] = None , snake_case__ : bool = False , snake_case__ : bool = False , snake_case__ : Optional[Dict[str, str]] = None , snake_case__ : Optional[Union[bool, str]] = None , snake_case__ : Optional[str] = None , snake_case__ : bool = False , ) -> int: '''simple docstring''' lowerCAmelCase = str(snake_case__ ) lowerCAmelCase = os.path.join(snake_case__ , snake_case__ ) if os.path.isfile(snake_case__ ): lowerCAmelCase = module_file_or_url lowerCAmelCase = """local""" elif pretrained_model_name_or_path.count("""/""" ) == 0: lowerCAmelCase = get_diffusers_versions() # cut ".dev0" lowerCAmelCase = """v""" + """.""".join(__version__.split(""".""" )[:3] ) # retrieve github version that matches if revision is None: lowerCAmelCase = latest_version if latest_version[1:] in available_versions else """main""" logger.info(f'''Defaulting to latest_version: {revision}.''' ) elif revision in available_versions: lowerCAmelCase = f'''v{revision}''' elif revision == "main": lowerCAmelCase = revision else: raise ValueError( f'''`custom_revision`: {revision} does not exist. Please make sure to choose one of''' f''' {', '.join(available_versions + ['main'] )}.''' ) # community pipeline on GitHub lowerCAmelCase = COMMUNITY_PIPELINES_URL.format(revision=snake_case__ , pipeline=snake_case__ ) try: lowerCAmelCase = cached_download( snake_case__ , cache_dir=snake_case__ , force_download=snake_case__ , proxies=snake_case__ , resume_download=snake_case__ , local_files_only=snake_case__ , use_auth_token=snake_case__ , ) lowerCAmelCase = """git""" lowerCAmelCase = pretrained_model_name_or_path + """.py""" except EnvironmentError: logger.error(f'''Could not locate the {module_file} inside {pretrained_model_name_or_path}.''' ) raise else: try: # Load from URL or cache if already cached lowerCAmelCase = hf_hub_download( snake_case__ , snake_case__ , cache_dir=snake_case__ , force_download=snake_case__ , proxies=snake_case__ , resume_download=snake_case__ , local_files_only=snake_case__ , use_auth_token=snake_case__ , ) lowerCAmelCase = os.path.join("""local""" , """--""".join(pretrained_model_name_or_path.split("""/""" ) ) ) except EnvironmentError: logger.error(f'''Could not locate the {module_file} inside {pretrained_model_name_or_path}.''' ) raise # Check we have all the requirements in our environment lowerCAmelCase = check_imports(snake_case__ ) # Now we move the module inside our cached dynamic modules. lowerCAmelCase = DIFFUSERS_DYNAMIC_MODULE_NAME + os.path.sep + submodule create_dynamic_module(snake_case__ ) lowerCAmelCase = Path(snake_case__ ) / full_submodule if submodule == "local" or submodule == "git": # We always copy local files (we could hash the file to see if there was a change, and give them the name of # that hash, to only copy when there is a modification but it seems overkill for now). # The only reason we do the copy is to avoid putting too many folders in sys.path. shutil.copy(snake_case__ , submodule_path / module_file ) for module_needed in modules_needed: lowerCAmelCase = f'''{module_needed}.py''' shutil.copy(os.path.join(snake_case__ , snake_case__ ) , submodule_path / module_needed ) else: # Get the commit hash # TODO: we will get this info in the etag soon, so retrieve it from there and not here. if isinstance(snake_case__ , snake_case__ ): lowerCAmelCase = use_auth_token elif use_auth_token is True: lowerCAmelCase = HfFolder.get_token() else: lowerCAmelCase = None lowerCAmelCase = model_info(snake_case__ , revision=snake_case__ , token=snake_case__ ).sha # The module file will end up being placed in a subfolder with the git hash of the repo. This way we get the # benefit of versioning. lowerCAmelCase = submodule_path / commit_hash lowerCAmelCase = full_submodule + os.path.sep + commit_hash create_dynamic_module(snake_case__ ) if not (submodule_path / module_file).exists(): shutil.copy(snake_case__ , submodule_path / module_file ) # Make sure we also have every file with relative for module_needed in modules_needed: if not (submodule_path / module_needed).exists(): get_cached_module_file( snake_case__ , f'''{module_needed}.py''' , cache_dir=snake_case__ , force_download=snake_case__ , resume_download=snake_case__ , proxies=snake_case__ , use_auth_token=snake_case__ , revision=snake_case__ , local_files_only=snake_case__ , ) return os.path.join(snake_case__ , snake_case__ ) def lowercase (snake_case__ : Union[str, os.PathLike] , snake_case__ : str , snake_case__ : Optional[str] = None , snake_case__ : Optional[Union[str, os.PathLike]] = None , snake_case__ : bool = False , snake_case__ : bool = False , snake_case__ : Optional[Dict[str, str]] = None , snake_case__ : Optional[Union[bool, str]] = None , snake_case__ : Optional[str] = None , snake_case__ : bool = False , **snake_case__ : Any , ) -> int: '''simple docstring''' lowerCAmelCase = get_cached_module_file( snake_case__ , snake_case__ , cache_dir=snake_case__ , force_download=snake_case__ , resume_download=snake_case__ , proxies=snake_case__ , use_auth_token=snake_case__ , revision=snake_case__ , local_files_only=snake_case__ , ) return get_class_in_module(snake_case__ , final_module.replace(""".py""" , """""" ) )
155
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __UpperCamelCase : Union[str, Any] = { '''configuration_data2vec_audio''': ['''DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Data2VecAudioConfig'''], '''configuration_data2vec_text''': [ '''DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Data2VecTextConfig''', '''Data2VecTextOnnxConfig''', ], '''configuration_data2vec_vision''': [ '''DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Data2VecVisionConfig''', '''Data2VecVisionOnnxConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Optional[Any] = [ '''DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Data2VecAudioForAudioFrameClassification''', '''Data2VecAudioForCTC''', '''Data2VecAudioForSequenceClassification''', '''Data2VecAudioForXVector''', '''Data2VecAudioModel''', '''Data2VecAudioPreTrainedModel''', ] __UpperCamelCase : Tuple = [ '''DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Data2VecTextForCausalLM''', '''Data2VecTextForMaskedLM''', '''Data2VecTextForMultipleChoice''', '''Data2VecTextForQuestionAnswering''', '''Data2VecTextForSequenceClassification''', '''Data2VecTextForTokenClassification''', '''Data2VecTextModel''', '''Data2VecTextPreTrainedModel''', ] __UpperCamelCase : Any = [ '''DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Data2VecVisionForImageClassification''', '''Data2VecVisionForMaskedImageModeling''', '''Data2VecVisionForSemanticSegmentation''', '''Data2VecVisionModel''', '''Data2VecVisionPreTrainedModel''', ] if is_tf_available(): __UpperCamelCase : Union[str, Any] = [ '''TFData2VecVisionForImageClassification''', '''TFData2VecVisionForSemanticSegmentation''', '''TFData2VecVisionModel''', '''TFData2VecVisionPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_dataavec_audio import DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecAudioConfig from .configuration_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecTextConfig, DataaVecTextOnnxConfig, ) from .configuration_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecVisionConfig, DataaVecVisionOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dataavec_audio import ( DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecAudioForAudioFrameClassification, DataaVecAudioForCTC, DataaVecAudioForSequenceClassification, DataaVecAudioForXVector, DataaVecAudioModel, DataaVecAudioPreTrainedModel, ) from .modeling_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecTextForCausalLM, DataaVecTextForMaskedLM, DataaVecTextForMultipleChoice, DataaVecTextForQuestionAnswering, DataaVecTextForSequenceClassification, DataaVecTextForTokenClassification, DataaVecTextModel, DataaVecTextPreTrainedModel, ) from .modeling_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecVisionForImageClassification, DataaVecVisionForMaskedImageModeling, DataaVecVisionForSemanticSegmentation, DataaVecVisionModel, DataaVecVisionPreTrainedModel, ) if is_tf_available(): from .modeling_tf_dataavec_vision import ( TFDataaVecVisionForImageClassification, TFDataaVecVisionForSemanticSegmentation, TFDataaVecVisionModel, TFDataaVecVisionPreTrainedModel, ) else: import sys __UpperCamelCase : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
355
"""simple docstring""" import io import os import unicodedata from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __UpperCamelCase : Union[str, Any] = logging.get_logger(__name__) __UpperCamelCase : Dict = '''▁''' __UpperCamelCase : Optional[int] = {'''vocab_file''': '''vocab.txt''', '''sentencepiece_model_ckpt''': '''sentencepiece.bpe.model'''} __UpperCamelCase : str = { '''sentencepiece_model_file''': '''sentencepiece.bpe.model''', '''vocab_file''': '''vocab.txt''', } __UpperCamelCase : Tuple = { '''vocab_file''': { '''ernie-m-base''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt''', '''ernie-m-large''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt''', }, '''sentencepiece_model_file''': { '''ernie-m-base''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model''', '''ernie-m-large''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model''', }, } __UpperCamelCase : Optional[Any] = { '''ernie-m-base''': 514, '''ernie-m-large''': 514, } __UpperCamelCase : str = { '''ernie-m-base''': {'''do_lower_case''': False}, '''ernie-m-large''': {'''do_lower_case''': False}, } class a ( a__ ): snake_case__ = ["input_ids"] snake_case__ = VOCAB_FILES_NAMES snake_case__ = PRETRAINED_INIT_CONFIGURATION snake_case__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case__ = PRETRAINED_VOCAB_FILES_MAP snake_case__ = RESOURCE_FILES_NAMES def __init__( self , _snake_case , _snake_case=None , _snake_case=False , _snake_case="utf8" , _snake_case="[UNK]" , _snake_case="[SEP]" , _snake_case="[PAD]" , _snake_case="[CLS]" , _snake_case="[MASK]" , _snake_case = None , **_snake_case , ): """simple docstring""" lowerCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=_snake_case , unk_token=_snake_case , sep_token=_snake_case , pad_token=_snake_case , cls_token=_snake_case , mask_token=_snake_case , vocab_file=_snake_case , encoding=_snake_case , sp_model_kwargs=self.sp_model_kwargs , **_snake_case , ) lowerCAmelCase = do_lower_case lowerCAmelCase = sentencepiece_model_ckpt lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_snake_case ) # to mimic paddlenlp.transformers.ernie_m.tokenizer.ErnieMTokenizer functioning if vocab_file is not None: lowerCAmelCase = self.load_vocab(filepath=_snake_case ) else: lowerCAmelCase = {self.sp_model.id_to_piece(_snake_case ): id for id in range(self.sp_model.get_piece_size() )} lowerCAmelCase = {v: k for k, v in self.vocab.items()} def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" if text is None: return None lowerCAmelCase = self.tokenize(_snake_case ) lowerCAmelCase ,lowerCAmelCase = '', [] for i, ch in enumerate(_snake_case ): if ch in self.SP_CHAR_MAPPING: lowerCAmelCase = self.SP_CHAR_MAPPING.get(_snake_case ) else: lowerCAmelCase = unicodedata.normalize('NFKC' , _snake_case ) if self.is_whitespace(_snake_case ): continue normalized_text += ch char_mapping.extend([i] * len(_snake_case ) ) lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = normalized_text, [], 0 if self.do_lower_case: lowerCAmelCase = text.lower() for token in split_tokens: if token[:1] == "▁": lowerCAmelCase = token[1:] lowerCAmelCase = text[offset:].index(_snake_case ) + offset lowerCAmelCase = start + len(_snake_case ) token_mapping.append((char_mapping[start], char_mapping[end - 1] + 1) ) lowerCAmelCase = end return token_mapping @property def UpperCamelCase__ ( self ): """simple docstring""" return len(self.vocab ) def UpperCamelCase__ ( self ): """simple docstring""" return dict(self.vocab , **self.added_tokens_encoder ) def __getstate__( self ): """simple docstring""" lowerCAmelCase = self.__dict__.copy() lowerCAmelCase = None return state def __setstate__( self , _snake_case ): """simple docstring""" lowerCAmelCase = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): lowerCAmelCase = {} lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.sentencepiece_model_ckpt ) def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" return "".join((self.SP_CHAR_MAPPING.get(_snake_case , _snake_case ) for c in text) ) def UpperCamelCase__ ( self , _snake_case , _snake_case=False , _snake_case=64 , _snake_case=0.1 ): """simple docstring""" if self.sp_model_kwargs.get('enable_sampling' ) is True: lowerCAmelCase = True if self.sp_model_kwargs.get('alpha' ) is not None: lowerCAmelCase = self.sp_model_kwargs.get('alpha' ) if self.sp_model_kwargs.get('nbest_size' ) is not None: lowerCAmelCase = self.sp_model_kwargs.get('nbest_size' ) if not enable_sampling: lowerCAmelCase = self.sp_model.EncodeAsPieces(_snake_case ) else: lowerCAmelCase = self.sp_model.SampleEncodeAsPieces(_snake_case , _snake_case , _snake_case ) lowerCAmelCase = [] for pi, piece in enumerate(_snake_case ): if piece == SPIECE_UNDERLINE: if not pieces[pi + 1].startswith(_snake_case ) and pi != 0: new_pieces.append(_snake_case ) continue else: continue lowerCAmelCase = 0 for i, chunk in enumerate(_snake_case ): if chunk == SPIECE_UNDERLINE: continue if self.is_ch_char(_snake_case ) or self.is_punct(_snake_case ): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) new_pieces.append(_snake_case ) lowerCAmelCase = i + 1 elif chunk.isdigit() and i > 0 and not piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) lowerCAmelCase = i elif not chunk.isdigit() and i > 0 and piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) lowerCAmelCase = i if len(_snake_case ) > lst_i: new_pieces.append(piece[lst_i:] ) return new_pieces def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" lowerCAmelCase = ''.join(_snake_case ).replace(_snake_case , ' ' ).strip() return out_string def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" lowerCAmelCase = self.convert_ids_to_tokens(_snake_case ) lowerCAmelCase = ''.join(_snake_case ).replace(_snake_case , ' ' ).strip() return out_string def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" return self.vocab.get(_snake_case , self.vocab.get(self.unk_token ) ) def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" return self.reverse_vocab.get(_snake_case , self.unk_token ) def UpperCamelCase__ ( self , _snake_case , _snake_case=None ): """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowerCAmelCase = [self.cls_token_id] lowerCAmelCase = [self.sep_token_id] return _cls + token_ids_a + _sep + _sep + token_ids_a + _sep def UpperCamelCase__ ( self , _snake_case , _snake_case=None ): """simple docstring""" if offset_mapping_a is None: return [(0, 0)] + offset_mapping_a + [(0, 0)] return [(0, 0)] + offset_mapping_a + [(0, 0), (0, 0)] + offset_mapping_a + [(0, 0)] def UpperCamelCase__ ( self , _snake_case , _snake_case=None , _snake_case=False ): """simple docstring""" if already_has_special_tokens: if token_ids_a is not None: raise ValueError( 'You should not supply a second sequence if the provided sequence of ' 'ids is already formatted with special tokens for the model.' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(_snake_case )) + [1, 1] + ([0] * len(_snake_case )) + [1] return [1] + ([0] * len(_snake_case )) + [1] def UpperCamelCase__ ( self , _snake_case , _snake_case = None ): """simple docstring""" if token_ids_a is None: # [CLS] X [SEP] return (len(_snake_case ) + 2) * [0] # [CLS] A [SEP] [SEP] B [SEP] return [0] * (len(_snake_case ) + 1) + [1] * (len(_snake_case ) + 3) def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" if "\u4e00" <= char <= "\u9fff": return True return False def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" if ("a" <= char <= "z") or ("A" <= char <= "Z"): return True return False def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" if char in ",;:.?!~,;:。?!《》【】": return True return False def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" if char == " " or char == "\t" or char == "\n" or char == "\r": return True if len(_snake_case ) == 1: lowerCAmelCase = unicodedata.category(_snake_case ) if cat == "Zs": return True return False def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" lowerCAmelCase = {} with io.open(_snake_case , 'r' , encoding='utf-8' ) as f: for index, line in enumerate(_snake_case ): lowerCAmelCase = line.rstrip('\n' ) lowerCAmelCase = int(_snake_case ) return token_to_idx def UpperCamelCase__ ( self , _snake_case , _snake_case = None ): """simple docstring""" lowerCAmelCase = 0 if os.path.isdir(_snake_case ): lowerCAmelCase = os.path.join( _snake_case , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) else: lowerCAmelCase = (filename_prefix + '-' if filename_prefix else '') + save_directory with open(_snake_case , 'w' , encoding='utf-8' ) as writer: for token, token_index in sorted(self.vocab.items() , key=lambda _snake_case : kv[1] ): if index != token_index: logger.warning( F'Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.' ' Please check that the vocabulary is not corrupted!' ) lowerCAmelCase = token_index writer.write(token + '\n' ) index += 1 lowerCAmelCase = os.path.join(_snake_case , 'sentencepiece.bpe.model' ) with open(_snake_case , 'wb' ) as fi: lowerCAmelCase = self.sp_model.serialized_model_proto() fi.write(_snake_case ) return (vocab_file,)
309
0
def snake_case( __magic_name__ ) -> Optional[int]: '''simple docstring''' if collection == []: return [] # get some information about the collection lowercase : str = len(__magic_name__ ) lowercase : Any = max(__magic_name__ ) lowercase : Optional[Any] = min(__magic_name__ ) # create the counting array lowercase : List[str] = coll_max + 1 - coll_min lowercase : Optional[int] = [0] * counting_arr_length # count how much a number appears in the collection for number in collection: counting_arr[number - coll_min] += 1 # sum each position with it's predecessors. now, counting_arr[i] tells # us how many elements <= i has in the collection for i in range(1 , __magic_name__ ): lowercase : Union[str, Any] = counting_arr[i] + counting_arr[i - 1] # create the output collection lowercase : List[Any] = [0] * coll_len # place the elements in the output, respecting the original order (stable # sort) from end to begin, updating counting_arr for i in reversed(range(0 , __magic_name__ ) ): lowercase : List[str] = collection[i] counting_arr[collection[i] - coll_min] -= 1 return ordered def snake_case( __magic_name__ ) -> Tuple: '''simple docstring''' return "".join([chr(__magic_name__ ) for i in counting_sort([ord(__magic_name__ ) for c in string] )] ) if __name__ == "__main__": # Test string sort assert counting_sort_string('thisisthestring') == "eghhiiinrsssttt" lowerCAmelCase_ = input('Enter numbers separated by a comma:\n').strip() lowerCAmelCase_ = [int(item) for item in user_input.split(',')] print(counting_sort(unsorted))
308
def snake_case( __magic_name__ ) -> int: '''simple docstring''' lowercase : List[Any] = abs(__magic_name__ ) lowercase : Optional[Any] = 0 while n > 0: res += n % 10 n //= 10 return res def snake_case( __magic_name__ ) -> int: '''simple docstring''' lowercase : Optional[int] = abs(__magic_name__ ) return n if n < 10 else n % 10 + sum_of_digits(n // 10 ) def snake_case( __magic_name__ ) -> int: '''simple docstring''' return sum(int(__magic_name__ ) for c in str(abs(__magic_name__ ) ) ) def snake_case( ) -> None: '''simple docstring''' from collections.abc import Callable from timeit import timeit def benchmark_a_function(__magic_name__ , __magic_name__ ) -> None: lowercase : str = F"""{func.__name__}({value})""" lowercase : Any = timeit(F"""__main__.{call}""" , setup='''import __main__''' ) print(F"""{call:56} = {func(__magic_name__ )} -- {timing:.4f} seconds""" ) for value in (26_21_44, 11_25_89_99_06_84_26_24, 1_26_76_50_60_02_28_22_94_01_49_67_03_20_53_76): for func in (sum_of_digits, sum_of_digits_recursion, sum_of_digits_compact): benchmark_a_function(__magic_name__ , __magic_name__ ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
308
1
def UpperCamelCase ( __lowercase : int = 3 ,__lowercase : int = 7 ,__lowercase : int = 1_00_00_00 ): '''simple docstring''' A_ : str = 0 A_ : int = 1 for current_denominator in range(1 ,limit + 1 ): A_ : List[str] = current_denominator * numerator // denominator if current_denominator % denominator == 0: current_numerator -= 1 if current_numerator * max_denominator > current_denominator * max_numerator: A_ : Optional[int] = current_numerator A_ : Optional[Any] = current_denominator return max_numerator if __name__ == "__main__": print(solution(numerator=3, denominator=7, limit=1000000))
360
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _UpperCAmelCase = { """configuration_autoformer""": [ """AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """AutoformerConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = [ """AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """AutoformerForPrediction""", """AutoformerModel""", """AutoformerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_autoformer import ( AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_autoformer import ( AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, AutoformerForPrediction, AutoformerModel, AutoformerPreTrainedModel, ) else: import sys _UpperCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
192
0
'''simple docstring''' from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_herbert import HerbertTokenizer __SCREAMING_SNAKE_CASE :Any = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE :str = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} __SCREAMING_SNAKE_CASE :List[str] = { '''vocab_file''': { '''allegro/herbert-base-cased''': '''https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json''' }, '''merges_file''': { '''allegro/herbert-base-cased''': '''https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt''' }, } __SCREAMING_SNAKE_CASE :Optional[Any] = {'''allegro/herbert-base-cased''': 514} __SCREAMING_SNAKE_CASE :Optional[int] = {} class A_ ( lowerCAmelCase_ ): _lowerCamelCase : Tuple = VOCAB_FILES_NAMES _lowerCamelCase : List[str] = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase : int = PRETRAINED_INIT_CONFIGURATION _lowerCamelCase : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase : Tuple = HerbertTokenizer def __init__( self : Dict , snake_case_ : Union[str, Any]=None , snake_case_ : Any=None , snake_case_ : Dict=None , snake_case_ : List[Any]="<s>" , snake_case_ : Tuple="<unk>" , snake_case_ : Dict="<pad>" , snake_case_ : List[str]="<mask>" , snake_case_ : int="</s>" , **snake_case_ : str , ): super().__init__( snake_case_ , snake_case_ , tokenizer_file=snake_case_ , cls_token=snake_case_ , unk_token=snake_case_ , pad_token=snake_case_ , mask_token=snake_case_ , sep_token=snake_case_ , **snake_case_ , ) def lowercase ( self : str , snake_case_ : List[int] , snake_case_ : Optional[List[int]] = None ): _UpperCAmelCase = [self.cls_token_id] _UpperCAmelCase = [self.sep_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowercase ( self : Union[str, Any] , snake_case_ : List[int] , snake_case_ : Optional[List[int]] = None , snake_case_ : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case_ , token_ids_a=snake_case_ , already_has_special_tokens=snake_case_ ) if token_ids_a is None: return [1] + ([0] * len(snake_case_ )) + [1] return [1] + ([0] * len(snake_case_ )) + [1] + ([0] * len(snake_case_ )) + [1] def lowercase ( self : Any , snake_case_ : List[int] , snake_case_ : Optional[List[int]] = None ): _UpperCAmelCase = [self.sep_token_id] _UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowercase ( self : List[Any] , snake_case_ : str , snake_case_ : Optional[str] = None ): _UpperCAmelCase = self._tokenizer.model.save(snake_case_ , name=snake_case_ ) return tuple(snake_case_ )
22
'''simple docstring''' import argparse from transformers import ( TapasConfig, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasTokenizer, load_tf_weights_in_tapas, ) from transformers.utils import logging logging.set_verbosity_info() def UpperCAmelCase_ ( __lowercase : int , __lowercase : Dict , __lowercase : str , __lowercase : Optional[Any] , __lowercase : str ) -> List[str]: '''simple docstring''' _UpperCAmelCase = TapasConfig.from_json_file(__lowercase ) # set absolute/relative position embeddings parameter _UpperCAmelCase = reset_position_index_per_cell # set remaining parameters of TapasConfig as well as the model based on the task if task == "SQA": _UpperCAmelCase = TapasForQuestionAnswering(config=__lowercase ) elif task == "WTQ": # run_task_main.py hparams _UpperCAmelCase = 4 _UpperCAmelCase = True # hparam_utils.py hparams _UpperCAmelCase = 0.66_4694 _UpperCAmelCase = 0.20_7951 _UpperCAmelCase = 0.12_1194 _UpperCAmelCase = True _UpperCAmelCase = True _UpperCAmelCase = False _UpperCAmelCase = 0.035_2513 _UpperCAmelCase = TapasForQuestionAnswering(config=__lowercase ) elif task == "WIKISQL_SUPERVISED": # run_task_main.py hparams _UpperCAmelCase = 4 _UpperCAmelCase = False # hparam_utils.py hparams _UpperCAmelCase = 36.4519 _UpperCAmelCase = 0.90_3421 _UpperCAmelCase = 222.088 _UpperCAmelCase = True _UpperCAmelCase = True _UpperCAmelCase = True _UpperCAmelCase = 0.76_3141 _UpperCAmelCase = TapasForQuestionAnswering(config=__lowercase ) elif task == "TABFACT": _UpperCAmelCase = TapasForSequenceClassification(config=__lowercase ) elif task == "MLM": _UpperCAmelCase = TapasForMaskedLM(config=__lowercase ) elif task == "INTERMEDIATE_PRETRAINING": _UpperCAmelCase = TapasModel(config=__lowercase ) else: raise ValueError(f'Task {task} not supported.' ) print(f'Building PyTorch model from configuration: {config}' ) # Load weights from tf checkpoint load_tf_weights_in_tapas(__lowercase , __lowercase , __lowercase ) # Save pytorch-model (weights and configuration) print(f'Save PyTorch model to {pytorch_dump_path}' ) model.save_pretrained(__lowercase ) # Save tokenizer files print(f'Save tokenizer files to {pytorch_dump_path}' ) _UpperCAmelCase = TapasTokenizer(vocab_file=tf_checkpoint_path[:-10] + "vocab.txt" , model_max_length=512 ) tokenizer.save_pretrained(__lowercase ) print("Used relative position embeddings:" , model.config.reset_position_index_per_cell ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE :List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--task''', default='''SQA''', type=str, help='''Model task for which to convert a checkpoint. Defaults to SQA.''' ) parser.add_argument( '''--reset_position_index_per_cell''', default=False, action='''store_true''', help='''Whether to use relative position embeddings or not. Defaults to True.''', ) parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--tapas_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained TAPAS model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) __SCREAMING_SNAKE_CASE :List[str] = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.task, args.reset_position_index_per_cell, args.tf_checkpoint_path, args.tapas_config_file, args.pytorch_dump_path, )
22
1
'''simple docstring''' from unittest import TestCase from datasets import Dataset from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters def SCREAMING_SNAKE_CASE__ ( ) -> Union[str, Any]: """simple docstring""" a : Union[str, Any] = { 'repo_name': ['test_repo1', 'test_repo2', 'test_repo3'], 'path': ['test_1.py', 'test_2.py', 'unit_test.py'], 'content': ['a ' * 20, 'a ' * 30, 'b ' * 7], } a : Optional[int] = Dataset.from_dict(snake_case ) return dataset class UpperCamelCase ( a_ ): """simple docstring""" def SCREAMING_SNAKE_CASE_ ( self : str): """simple docstring""" a : Optional[int] = get_dataset() a : Dict = make_duplicate_clusters(UpperCAmelCase_ , 0.85) self.assertEqual(len(duplicate_clusters[0]) , 2) def SCREAMING_SNAKE_CASE_ ( self : Optional[int]): """simple docstring""" a : Tuple = get_dataset() a , a : List[str] = deduplicate_dataset(UpperCAmelCase_) self.assertEqual(len(UpperCAmelCase_) , 2) print(UpperCAmelCase_) self.assertEqual(duplicate_clusters[0][0]['copies'] , 2) self.assertEqual(duplicate_clusters[0][0]['is_extreme'] , UpperCAmelCase_)
345
'''simple docstring''' import copy import random from transformers import CLIPTokenizer class UpperCamelCase ( a_ ): """simple docstring""" def __init__( self : Union[str, Any] , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : Any): """simple docstring""" super().__init__(*UpperCAmelCase_ , **UpperCAmelCase_) a : str = {} def SCREAMING_SNAKE_CASE_ ( self : int , UpperCAmelCase_ : Tuple , *UpperCAmelCase_ : Optional[int] , **UpperCAmelCase_ : int): """simple docstring""" a : Dict = super().add_tokens(UpperCAmelCase_ , *UpperCAmelCase_ , **UpperCAmelCase_) if num_added_tokens == 0: raise ValueError( f"""The tokenizer already contains the token {placeholder_token}. Please pass a different""" ' `placeholder_token` that is not already in the tokenizer.') def SCREAMING_SNAKE_CASE_ ( self : Dict , UpperCAmelCase_ : Optional[int] , *UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[str]=1 , **UpperCAmelCase_ : Optional[int]): """simple docstring""" a : Any = [] if num_vec_per_token == 1: self.try_adding_tokens(UpperCAmelCase_ , *UpperCAmelCase_ , **UpperCAmelCase_) output.append(UpperCAmelCase_) else: a : int = [] for i in range(UpperCAmelCase_): a : Union[str, Any] = placeholder_token + f"""_{i}""" self.try_adding_tokens(UpperCAmelCase_ , *UpperCAmelCase_ , **UpperCAmelCase_) output.append(UpperCAmelCase_) # handle cases where there is a new placeholder token that contains the current placeholder token but is larger for token in self.token_map: if token in placeholder_token: raise ValueError( f"""The tokenizer already has placeholder token {token} that can get confused with""" f""" {placeholder_token}keep placeholder tokens independent""") a : Any = output def SCREAMING_SNAKE_CASE_ ( self : str , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[int]=False , UpperCAmelCase_ : str=1.0): """simple docstring""" if isinstance(UpperCAmelCase_ , UpperCAmelCase_): a : Any = [] for i in range(len(UpperCAmelCase_)): output.append(self.replace_placeholder_tokens_in_text(text[i] , vector_shuffle=UpperCAmelCase_)) return output for placeholder_token in self.token_map: if placeholder_token in text: a : List[Any] = self.token_map[placeholder_token] a : int = tokens[: 1 + int(len(UpperCAmelCase_) * prop_tokens_to_load)] if vector_shuffle: a : List[Any] = copy.copy(UpperCAmelCase_) random.shuffle(UpperCAmelCase_) a : List[str] = text.replace(UpperCAmelCase_ , ' '.join(UpperCAmelCase_)) return text def __call__( self : Optional[int] , UpperCAmelCase_ : Any , *UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Union[str, Any]=False , UpperCAmelCase_ : Optional[int]=1.0 , **UpperCAmelCase_ : str): """simple docstring""" return super().__call__( self.replace_placeholder_tokens_in_text( UpperCAmelCase_ , vector_shuffle=UpperCAmelCase_ , prop_tokens_to_load=UpperCAmelCase_) , *UpperCAmelCase_ , **UpperCAmelCase_ , ) def SCREAMING_SNAKE_CASE_ ( self : Dict , UpperCAmelCase_ : Optional[int] , *UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Any=False , UpperCAmelCase_ : Optional[Any]=1.0 , **UpperCAmelCase_ : Dict): """simple docstring""" return super().encode( self.replace_placeholder_tokens_in_text( UpperCAmelCase_ , vector_shuffle=UpperCAmelCase_ , prop_tokens_to_load=UpperCAmelCase_) , *UpperCAmelCase_ , **UpperCAmelCase_ , )
345
1
from operator import delitem, getitem, setitem import pytest from data_structures.hashing.hash_map import HashMap def A_ ( snake_case : Optional[Any] ) -> List[str]: '''simple docstring''' return getitem, k def A_ ( snake_case : str , snake_case : int ) -> Tuple: '''simple docstring''' return setitem, k, v def A_ ( snake_case : int ) -> List[str]: '''simple docstring''' return delitem, k def A_ ( snake_case : Any , snake_case : Optional[int] , *snake_case : Dict ) -> Any: '''simple docstring''' try: return fun(snake_case , *snake_case ), None except Exception as e: return None, e lowercase__ : List[str] = ( _set("key_a", "val_a"), _set("key_b", "val_b"), ) lowercase__ : int = [ _set("key_a", "val_a"), _set("key_a", "val_b"), ] lowercase__ : Tuple = [ _set("key_a", "val_a"), _set("key_b", "val_b"), _del("key_a"), _del("key_b"), _set("key_a", "val_a"), _del("key_a"), ] lowercase__ : Tuple = [ _get("key_a"), _del("key_a"), _set("key_a", "val_a"), _del("key_a"), _del("key_a"), _get("key_a"), ] lowercase__ : Any = [ *[_set(x, x) for x in range(5)], # guaranteed upsize ] lowercase__ : Tuple = [ *[_set(x, x) for x in range(5)], # guaranteed upsize *[_del(x) for x in range(5)], _set("key_a", "val_b"), ] @pytest.mark.parametrize( '''operations''' , ( pytest.param(_add_items , id='''add items''' ), pytest.param(_overwrite_items , id='''overwrite items''' ), pytest.param(_delete_items , id='''delete items''' ), pytest.param(_access_absent_items , id='''access absent items''' ), pytest.param(_add_with_resize_up , id='''add with resize up''' ), pytest.param(_add_with_resize_down , id='''add with resize down''' ), ) , ) def A_ ( snake_case : List[str] ) -> Any: '''simple docstring''' __UpperCamelCase = HashMap(initial_block_size=4 ) __UpperCamelCase = {} for _, (fun, *args) in enumerate(snake_case ): __UpperCamelCase , __UpperCamelCase = _run_operation(snake_case , snake_case , *snake_case ) __UpperCamelCase , __UpperCamelCase = _run_operation(snake_case , snake_case , *snake_case ) assert my_res == py_res assert str(snake_case ) == str(snake_case ) assert set(snake_case ) == set(snake_case ) assert len(snake_case ) == len(snake_case ) assert set(my.items() ) == set(py.items() ) def A_ ( ) -> List[Any]: '''simple docstring''' def is_public(snake_case : str ) -> bool: return not name.startswith('''_''' ) __UpperCamelCase = {name for name in dir({} ) if is_public(snake_case )} __UpperCamelCase = {name for name in dir(HashMap() ) if is_public(snake_case )} assert dict_public_names > hash_public_names
328
import math def A_ ( snake_case : int ) -> bool: '''simple docstring''' return math.sqrt(snake_case ) * math.sqrt(snake_case ) == num def A_ ( snake_case : int ) -> bool: '''simple docstring''' __UpperCamelCase = 0 __UpperCamelCase = n while left <= right: __UpperCamelCase = (left + right) // 2 if mid**2 == n: return True elif mid**2 > n: __UpperCamelCase = mid - 1 else: __UpperCamelCase = mid + 1 return False if __name__ == "__main__": import doctest doctest.testmod()
328
1
'''simple docstring''' import os import jsonlines import numpy as np from tqdm import tqdm a__ : Optional[int] = 2_0_4_8 a__ : List[Any] = 4_0_9_6 a__ : Optional[int] = 4_2 a__ : Dict = os.environ.pop('PROCESS_TRAIN', 'false') a__ : List[str] = {'null': 0, 'short': 1, 'long': 2, 'yes': 3, 'no': 4} def _lowercase ( __A ): '''simple docstring''' def choose_first(__A ,__A=False ): assert isinstance(__A ,__A ) if len(__A ) == 1: __UpperCamelCase = answer[0] return {k: [answer[k]] for k in answer} if is_long_answer else answer for a in answer: if is_long_answer: __UpperCamelCase = {k: [a[k]] for k in a} if len(a["""start_token"""] ) > 0: break return a __UpperCamelCase = {"""id""": example["""id"""]} __UpperCamelCase = example["""annotations"""] __UpperCamelCase = annotation["""yes_no_answer"""] if 0 in yes_no_answer or 1 in yes_no_answer: __UpperCamelCase = ["""yes"""] if 1 in yes_no_answer else ["""no"""] __UpperCamelCase = __UpperCamelCase = [] __UpperCamelCase = __UpperCamelCase = [] __UpperCamelCase = ["""<cls>"""] else: __UpperCamelCase = ["""short"""] __UpperCamelCase = choose_first(annotation["""short_answers"""] ) if len(out["""start_token"""] ) == 0: # answer will be long if short is not available __UpperCamelCase = ["""long"""] __UpperCamelCase = choose_first(annotation["""long_answer"""] ,is_long_answer=__A ) __UpperCamelCase = [] answer.update(__A ) # disregard some samples if len(answer["""start_token"""] ) > 1 or answer["start_token"] == answer["end_token"]: __UpperCamelCase = True else: __UpperCamelCase = False __UpperCamelCase = ["""start_token""", """end_token""", """start_byte""", """end_byte""", """text"""] if not all(isinstance(answer[k] ,__A ) for k in cols ): raise ValueError("""Issue in ID""" ,example["""id"""] ) return answer def _lowercase ( __A ,__A=False ): '''simple docstring''' __UpperCamelCase = _get_single_answer(__A ) # bytes are of no use del answer["start_byte"] del answer["end_byte"] # handle yes_no answers explicitly if answer["category"][0] in ["yes", "no"]: # category is list with one element __UpperCamelCase = example["""document"""]["""tokens"""] __UpperCamelCase = [] for i in range(len(doc["""token"""] ) ): if not doc["is_html"][i]: context.append(doc["""token"""][i] ) return { "context": " ".join(__A ), "answer": { "start_token": -100, # ignore index in cross-entropy "end_token": -100, # ignore index in cross-entropy "category": answer["category"], "span": answer["category"], # extra }, } # later, help in removing all no answers if answer["start_token"] == [-1]: return { "context": "None", "answer": { "start_token": -1, "end_token": -1, "category": "null", "span": "None", # extra }, } # handling normal samples __UpperCamelCase = ["""start_token""", """end_token"""] answer.update({k: answer[k][0] if len(answer[k] ) > 0 else answer[k] for k in cols} ) # e.g. [10] == 10 __UpperCamelCase = example["""document"""]["""tokens"""] __UpperCamelCase = answer["""start_token"""] __UpperCamelCase = answer["""end_token"""] __UpperCamelCase = [] for i in range(len(doc["""token"""] ) ): if not doc["is_html"][i]: context.append(doc["""token"""][i] ) else: if answer["start_token"] > i: start_token -= 1 if answer["end_token"] > i: end_token -= 1 __UpperCamelCase = """ """.join(context[start_token:end_token] ) # checking above code if assertion: __UpperCamelCase = doc["""is_html"""][answer["""start_token"""] : answer["""end_token"""]] __UpperCamelCase = doc["""token"""][answer["""start_token"""] : answer["""end_token"""]] __UpperCamelCase = """ """.join([old[i] for i in range(len(__A ) ) if not is_html[i]] ) if new != old: print("""ID:""" ,example["""id"""] ) print("""New:""" ,__A ,end="""\n""" ) print("""Old:""" ,__A ,end="""\n\n""" ) return { "context": " ".join(__A ), "answer": { "start_token": start_token, "end_token": end_token - 1, # this makes it inclusive "category": answer["category"], # either long or short "span": new, # extra }, } def _lowercase ( __A ,__A ,__A=2_048 ,__A=4_096 ,__A=True ): '''simple docstring''' __UpperCamelCase = get_context_and_ans(__A ,assertion=__A ) __UpperCamelCase = out["""answer"""] # later, removing these samples if answer["start_token"] == -1: return { "example_id": example["id"], "input_ids": [[-1]], "labels": { "start_token": [-1], "end_token": [-1], "category": ["null"], }, } __UpperCamelCase = tokenizer(example["""question"""]["""text"""] ,out["""context"""] ).input_ids __UpperCamelCase = input_ids.index(tokenizer.sep_token_id ) + 1 # return yes/no if answer["category"][0] in ["yes", "no"]: # category is list with one element __UpperCamelCase = [] __UpperCamelCase = [] __UpperCamelCase = input_ids[:q_len] __UpperCamelCase = range(__A ,len(__A ) ,max_length - doc_stride ) for i in doc_start_indices: __UpperCamelCase = i + max_length - q_len __UpperCamelCase = input_ids[i:end_index] inputs.append(q_indices + slice ) category.append(answer["""category"""][0] ) if slice[-1] == tokenizer.sep_token_id: break return { "example_id": example["id"], "input_ids": inputs, "labels": { "start_token": [-100] * len(__A ), "end_token": [-100] * len(__A ), "category": category, }, } __UpperCamelCase = out["""context"""].split() __UpperCamelCase = splitted_context[answer["""end_token"""]] __UpperCamelCase = len( tokenizer( """ """.join(splitted_context[: answer["""start_token"""]] ) ,add_special_tokens=__A ,).input_ids ) __UpperCamelCase = len( tokenizer(""" """.join(splitted_context[: answer["""end_token"""]] ) ,add_special_tokens=__A ).input_ids ) answer["start_token"] += q_len answer["end_token"] += q_len # fixing end token __UpperCamelCase = len(tokenizer(__A ,add_special_tokens=__A ).input_ids ) if num_sub_tokens > 1: answer["end_token"] += num_sub_tokens - 1 __UpperCamelCase = input_ids[answer["""start_token"""] : answer["""end_token"""] + 1] # right & left are inclusive __UpperCamelCase = answer["""start_token"""] __UpperCamelCase = answer["""end_token"""] if assertion: __UpperCamelCase = tokenizer.decode(__A ) if answer["span"] != new: print("""ISSUE IN TOKENIZATION""" ) print("""OLD:""" ,answer["""span"""] ) print("""NEW:""" ,__A ,end="""\n\n""" ) if len(__A ) <= max_length: return { "example_id": example["id"], "input_ids": [input_ids], "labels": { "start_token": [answer["start_token"]], "end_token": [answer["end_token"]], "category": answer["category"], }, } __UpperCamelCase = input_ids[:q_len] __UpperCamelCase = range(__A ,len(__A ) ,max_length - doc_stride ) __UpperCamelCase = [] __UpperCamelCase = [] __UpperCamelCase = [] __UpperCamelCase = [] # null, yes, no, long, short for i in doc_start_indices: __UpperCamelCase = i + max_length - q_len __UpperCamelCase = input_ids[i:end_index] inputs.append(q_indices + slice ) assert len(inputs[-1] ) <= max_length, "Issue in truncating length" if start_token >= i and end_token <= end_index - 1: __UpperCamelCase = start_token - i + q_len __UpperCamelCase = end_token - i + q_len answers_category.append(answer["""category"""][0] ) # ["short"] -> "short" else: __UpperCamelCase = -100 __UpperCamelCase = -100 answers_category.append("""null""" ) __UpperCamelCase = inputs[-1][start_token : end_token + 1] answers_start_token.append(__A ) answers_end_token.append(__A ) if assertion: if new != old and new != [tokenizer.cls_token_id]: print("""ISSUE in strided for ID:""" ,example["""id"""] ) print("""New:""" ,tokenizer.decode(__A ) ) print("""Old:""" ,tokenizer.decode(__A ) ,end="""\n\n""" ) if slice[-1] == tokenizer.sep_token_id: break return { "example_id": example["id"], "input_ids": inputs, "labels": { "start_token": answers_start_token, "end_token": answers_end_token, "category": answers_category, }, } def _lowercase ( __A ,__A ,__A=2_048 ,__A=4_096 ,__A=False ): '''simple docstring''' __UpperCamelCase = get_strided_contexts_and_ans( __A ,__A ,doc_stride=__A ,max_length=__A ,assertion=__A ,) return example def _lowercase ( __A ,__A ): '''simple docstring''' with jsonlines.open(__A ,"""a""" ) as writer: for example in tqdm(__A ,total=len(__A ) ,desc="""Saving samples ... """ ): __UpperCamelCase = example["""labels"""] for ids, start, end, cat in zip( example["""input_ids"""] ,labels["""start_token"""] ,labels["""end_token"""] ,labels["""category"""] ,): if start == -1 and end == -1: continue # leave waste samples with no answer if cat == "null" and np.random.rand() < 0.6: continue # removing 50 % samples writer.write( { """input_ids""": ids, """start_token""": start, """end_token""": end, """category""": CATEGORY_MAPPING[cat], } ) if __name__ == "__main__": from datasets import load_dataset from transformers import BigBirdTokenizer a__ : Union[str, Any] = load_dataset('natural_questions') a__ : int = BigBirdTokenizer.from_pretrained('google/bigbird-roberta-base') a__ : int = data['train' if PROCESS_TRAIN == 'true' else 'validation'] a__ : str = { 'tokenizer': tokenizer, 'doc_stride': DOC_STRIDE, 'max_length': MAX_LENGTH, 'assertion': False, } a__ : Any = data.map(prepare_inputs, fn_kwargs=fn_kwargs) a__ : Tuple = data.remove_columns(['annotations', 'document', 'id', 'question']) print(data) np.random.seed(SEED) a__ : Any = 'nq-training.jsonl' if PROCESS_TRAIN == 'true' else 'nq-validation.jsonl' save_to_disk(data, file_name=cache_file_name)
243
'''simple docstring''' from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class UpperCAmelCase__ : __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = None # Automatically constructed __SCREAMING_SNAKE_CASE = "dict" __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = field(default='''Translation''' , init=UpperCAmelCase_ , repr=UpperCAmelCase_) def __call__( self ) -> Optional[Any]: return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def __lowerCamelCase ( self ) -> Union["FeatureType", Dict[str, "FeatureType"]]: from .features import Value return {k: Value("""string""" ) for k in sorted(self.languages )} @dataclass class UpperCAmelCase__ : __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None # Automatically constructed __SCREAMING_SNAKE_CASE = "dict" __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = field(default='''TranslationVariableLanguages''' , init=UpperCAmelCase_ , repr=UpperCAmelCase_) def __lowerCamelCase ( self ) -> Dict: __UpperCamelCase = sorted(set(self.languages ) ) if self.languages else None __UpperCamelCase = len(self.languages ) if self.languages else None def __call__( self ) -> Any: return pa.struct({"""language""": pa.list_(pa.string() ), """translation""": pa.list_(pa.string() )} ) def __lowerCamelCase ( self , lowercase ) -> Any: __UpperCamelCase = set(self.languages ) if self.languages and set(lowercase ) - lang_set: raise ValueError( f"Some languages in example ({', '.join(sorted(set(lowercase ) - lang_set ) )}) are not in valid set ({', '.join(lowercase )})." ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. __UpperCamelCase = [] for lang, text in translation_dict.items(): if isinstance(lowercase , lowercase ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. __UpperCamelCase , __UpperCamelCase = zip(*sorted(lowercase ) ) return {"language": languages, "translation": translations} def __lowerCamelCase ( self ) -> Union["FeatureType", Dict[str, "FeatureType"]]: from .features import Sequence, Value return { "language": Sequence(Value("""string""" ) ), "translation": Sequence(Value("""string""" ) ), }
243
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A ={'''configuration_wavlm''': ['''WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''WavLMConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A =[ '''WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''WavLMForAudioFrameClassification''', '''WavLMForCTC''', '''WavLMForSequenceClassification''', '''WavLMForXVector''', '''WavLMModel''', '''WavLMPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_wavlm import WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP, WavLMConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavlm import ( WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST, WavLMForAudioFrameClassification, WavLMForCTC, WavLMForSequenceClassification, WavLMForXVector, WavLMModel, WavLMPreTrainedModel, ) else: import sys __A =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
19
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_convbert import ConvBertTokenizer UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = {"""vocab_file""": """vocab.txt"""} UpperCamelCase_ = { """vocab_file""": { """YituTech/conv-bert-base""": """https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt""", """YituTech/conv-bert-medium-small""": ( """https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt""" ), """YituTech/conv-bert-small""": """https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt""", } } UpperCamelCase_ = { """YituTech/conv-bert-base""": 5_12, """YituTech/conv-bert-medium-small""": 5_12, """YituTech/conv-bert-small""": 5_12, } UpperCamelCase_ = { """YituTech/conv-bert-base""": {"""do_lower_case""": True}, """YituTech/conv-bert-medium-small""": {"""do_lower_case""": True}, """YituTech/conv-bert-small""": {"""do_lower_case""": True}, } class a_ (_a ): __lowerCAmelCase : Any = VOCAB_FILES_NAMES __lowerCAmelCase : int = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase : Dict = PRETRAINED_INIT_CONFIGURATION __lowerCAmelCase : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase : Optional[int] = ConvBertTokenizer def __init__( self , snake_case_=None , snake_case_=None , snake_case_=True , snake_case_="[UNK]" , snake_case_="[SEP]" , snake_case_="[PAD]" , snake_case_="[CLS]" , snake_case_="[MASK]" , snake_case_=True , snake_case_=None , **snake_case_ , ): super().__init__( snake_case_ , tokenizer_file=snake_case_ , do_lower_case=snake_case_ , unk_token=snake_case_ , sep_token=snake_case_ , pad_token=snake_case_ , cls_token=snake_case_ , mask_token=snake_case_ , tokenize_chinese_chars=snake_case_ , strip_accents=snake_case_ , **snake_case_ , ) _lowerCAmelCase : List[str] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , snake_case_ ) != do_lower_case or normalizer_state.get("""strip_accents""" , snake_case_ ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , snake_case_ ) != tokenize_chinese_chars ): _lowerCAmelCase : Dict = getattr(snake_case_ , normalizer_state.pop("""type""" ) ) _lowerCAmelCase : List[str] = do_lower_case _lowerCAmelCase : str = strip_accents _lowerCAmelCase : List[Any] = tokenize_chinese_chars _lowerCAmelCase : List[Any] = normalizer_class(**snake_case_ ) _lowerCAmelCase : str = do_lower_case def __UpperCamelCase ( self , snake_case_ , snake_case_=None ): _lowerCAmelCase : List[str] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __UpperCamelCase ( self , snake_case_ , snake_case_ = None ): _lowerCAmelCase : Optional[Any] = [self.sep_token_id] _lowerCAmelCase : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __UpperCamelCase ( self , snake_case_ , snake_case_ = None ): _lowerCAmelCase : Any = self._tokenizer.model.save(snake_case_ , name=snake_case_ ) return tuple(snake_case_ )
309
0
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_electra import ElectraTokenizer lowerCAmelCase : Optional[int] = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} lowerCAmelCase : Optional[Any] = { """vocab_file""": { """google/electra-small-generator""": ( """https://huggingface.co/google/electra-small-generator/resolve/main/vocab.txt""" ), """google/electra-base-generator""": """https://huggingface.co/google/electra-base-generator/resolve/main/vocab.txt""", """google/electra-large-generator""": ( """https://huggingface.co/google/electra-large-generator/resolve/main/vocab.txt""" ), """google/electra-small-discriminator""": ( """https://huggingface.co/google/electra-small-discriminator/resolve/main/vocab.txt""" ), """google/electra-base-discriminator""": ( """https://huggingface.co/google/electra-base-discriminator/resolve/main/vocab.txt""" ), """google/electra-large-discriminator""": ( """https://huggingface.co/google/electra-large-discriminator/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """google/electra-small-generator""": ( """https://huggingface.co/google/electra-small-generator/resolve/main/tokenizer.json""" ), """google/electra-base-generator""": ( """https://huggingface.co/google/electra-base-generator/resolve/main/tokenizer.json""" ), """google/electra-large-generator""": ( """https://huggingface.co/google/electra-large-generator/resolve/main/tokenizer.json""" ), """google/electra-small-discriminator""": ( """https://huggingface.co/google/electra-small-discriminator/resolve/main/tokenizer.json""" ), """google/electra-base-discriminator""": ( """https://huggingface.co/google/electra-base-discriminator/resolve/main/tokenizer.json""" ), """google/electra-large-discriminator""": ( """https://huggingface.co/google/electra-large-discriminator/resolve/main/tokenizer.json""" ), }, } lowerCAmelCase : List[Any] = { """google/electra-small-generator""": 5_12, """google/electra-base-generator""": 5_12, """google/electra-large-generator""": 5_12, """google/electra-small-discriminator""": 5_12, """google/electra-base-discriminator""": 5_12, """google/electra-large-discriminator""": 5_12, } lowerCAmelCase : Dict = { """google/electra-small-generator""": {"""do_lower_case""": True}, """google/electra-base-generator""": {"""do_lower_case""": True}, """google/electra-large-generator""": {"""do_lower_case""": True}, """google/electra-small-discriminator""": {"""do_lower_case""": True}, """google/electra-base-discriminator""": {"""do_lower_case""": True}, """google/electra-large-discriminator""": {"""do_lower_case""": True}, } class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __magic_name__ = VOCAB_FILES_NAMES __magic_name__ = PRETRAINED_VOCAB_FILES_MAP __magic_name__ = PRETRAINED_INIT_CONFIGURATION __magic_name__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__ = ElectraTokenizer def __init__( self , snake_case__=None , snake_case__=None , snake_case__=True , snake_case__="[UNK]" , snake_case__="[SEP]" , snake_case__="[PAD]" , snake_case__="[CLS]" , snake_case__="[MASK]" , snake_case__=True , snake_case__=None , **snake_case__ , ): '''simple docstring''' super().__init__( snake_case__ , tokenizer_file=snake_case__ , do_lower_case=snake_case__ , unk_token=snake_case__ , sep_token=snake_case__ , pad_token=snake_case__ , cls_token=snake_case__ , mask_token=snake_case__ , tokenize_chinese_chars=snake_case__ , strip_accents=snake_case__ , **snake_case__ , ) _lowerCAmelCase : Union[str, Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , snake_case__ ) != do_lower_case or normalizer_state.get('strip_accents' , snake_case__ ) != strip_accents or normalizer_state.get('handle_chinese_chars' , snake_case__ ) != tokenize_chinese_chars ): _lowerCAmelCase : Tuple = getattr(snake_case__ , normalizer_state.pop('type' ) ) _lowerCAmelCase : List[Any] = do_lower_case _lowerCAmelCase : List[Any] = strip_accents _lowerCAmelCase : Union[str, Any] = tokenize_chinese_chars _lowerCAmelCase : Optional[int] = normalizer_class(**snake_case__ ) _lowerCAmelCase : List[Any] = do_lower_case def a ( self , snake_case__ , snake_case__=None ): '''simple docstring''' _lowerCAmelCase : int = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def a ( self , snake_case__ , snake_case__ = None ): '''simple docstring''' _lowerCAmelCase : List[Any] = [self.sep_token_id] _lowerCAmelCase : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def a ( self , snake_case__ , snake_case__ = None ): '''simple docstring''' _lowerCAmelCase : Any = self._tokenizer.model.save(snake_case__ , name=snake_case__ ) return tuple(snake_case__ )
25
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase : int = logging.get_logger(__name__) lowerCAmelCase : Union[str, Any] = { """google/mobilenet_v2_1.4_224""": """https://huggingface.co/google/mobilenet_v2_1.4_224/resolve/main/config.json""", """google/mobilenet_v2_1.0_224""": """https://huggingface.co/google/mobilenet_v2_1.0_224/resolve/main/config.json""", """google/mobilenet_v2_0.75_160""": """https://huggingface.co/google/mobilenet_v2_0.75_160/resolve/main/config.json""", """google/mobilenet_v2_0.35_96""": """https://huggingface.co/google/mobilenet_v2_0.35_96/resolve/main/config.json""", # See all MobileNetV2 models at https://huggingface.co/models?filter=mobilenet_v2 } class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __magic_name__ = "mobilenet_v2" def __init__( self , snake_case__=3 , snake_case__=224 , snake_case__=1.0 , snake_case__=8 , snake_case__=8 , snake_case__=6 , snake_case__=32 , snake_case__=True , snake_case__=True , snake_case__="relu6" , snake_case__=True , snake_case__=0.8 , snake_case__=0.02 , snake_case__=0.001 , snake_case__=255 , **snake_case__ , ): '''simple docstring''' super().__init__(**snake_case__ ) if depth_multiplier <= 0: raise ValueError('depth_multiplier must be greater than zero.' ) _lowerCAmelCase : List[str] = num_channels _lowerCAmelCase : Union[str, Any] = image_size _lowerCAmelCase : List[Any] = depth_multiplier _lowerCAmelCase : List[Any] = depth_divisible_by _lowerCAmelCase : Optional[Any] = min_depth _lowerCAmelCase : str = expand_ratio _lowerCAmelCase : str = output_stride _lowerCAmelCase : Any = first_layer_is_expansion _lowerCAmelCase : int = finegrained_output _lowerCAmelCase : str = hidden_act _lowerCAmelCase : List[str] = tf_padding _lowerCAmelCase : Optional[int] = classifier_dropout_prob _lowerCAmelCase : int = initializer_range _lowerCAmelCase : Optional[int] = layer_norm_eps _lowerCAmelCase : str = semantic_loss_ignore_index class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __magic_name__ = version.parse("1.11" ) @property def a ( self ): '''simple docstring''' return OrderedDict([('pixel_values', {0: 'batch'})] ) @property def a ( self ): '''simple docstring''' if self.task == "image-classification": return OrderedDict([('logits', {0: 'batch'})] ) else: return OrderedDict([('last_hidden_state', {0: 'batch'}), ('pooler_output', {0: 'batch'})] ) @property def a ( self ): '''simple docstring''' return 1E-4
25
1
'''simple docstring''' from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class SCREAMING_SNAKE_CASE ( _a ): """simple docstring""" _SCREAMING_SNAKE_CASE = ["""image_processor""", """tokenizer"""] _SCREAMING_SNAKE_CASE = """BlipImageProcessor""" _SCREAMING_SNAKE_CASE = ("""BertTokenizer""", """BertTokenizerFast""") def __init__( self : Optional[int] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Union[str, Any] ): """simple docstring""" UpperCamelCase = False super().__init__(UpperCamelCase__ , UpperCamelCase__ ) UpperCamelCase = self.image_processor def __call__( self : Union[str, Any] , UpperCamelCase__ : ImageInput = None , UpperCamelCase__ : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , UpperCamelCase__ : bool = True , UpperCamelCase__ : Union[bool, str, PaddingStrategy] = False , UpperCamelCase__ : Union[bool, str, TruncationStrategy] = None , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : int = 0 , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : Optional[bool] = None , UpperCamelCase__ : bool = False , UpperCamelCase__ : bool = False , UpperCamelCase__ : bool = False , UpperCamelCase__ : bool = False , UpperCamelCase__ : bool = False , UpperCamelCase__ : bool = True , UpperCamelCase__ : Optional[Union[str, TensorType]] = None , **UpperCamelCase__ : int , ): """simple docstring""" if images is None and text is None: raise ValueError('You have to specify either images or text.' ) # Get only text if images is None: UpperCamelCase = self.tokenizer UpperCamelCase = self.tokenizer( text=UpperCamelCase__ , add_special_tokens=UpperCamelCase__ , padding=UpperCamelCase__ , truncation=UpperCamelCase__ , max_length=UpperCamelCase__ , stride=UpperCamelCase__ , pad_to_multiple_of=UpperCamelCase__ , return_attention_mask=UpperCamelCase__ , return_overflowing_tokens=UpperCamelCase__ , return_special_tokens_mask=UpperCamelCase__ , return_offsets_mapping=UpperCamelCase__ , return_token_type_ids=UpperCamelCase__ , return_length=UpperCamelCase__ , verbose=UpperCamelCase__ , return_tensors=UpperCamelCase__ , **UpperCamelCase__ , ) return text_encoding # add pixel_values UpperCamelCase = self.image_processor(UpperCamelCase__ , return_tensors=UpperCamelCase__ ) if text is not None: UpperCamelCase = self.tokenizer( text=UpperCamelCase__ , add_special_tokens=UpperCamelCase__ , padding=UpperCamelCase__ , truncation=UpperCamelCase__ , max_length=UpperCamelCase__ , stride=UpperCamelCase__ , pad_to_multiple_of=UpperCamelCase__ , return_attention_mask=UpperCamelCase__ , return_overflowing_tokens=UpperCamelCase__ , return_special_tokens_mask=UpperCamelCase__ , return_offsets_mapping=UpperCamelCase__ , return_token_type_ids=UpperCamelCase__ , return_length=UpperCamelCase__ , verbose=UpperCamelCase__ , return_tensors=UpperCamelCase__ , **UpperCamelCase__ , ) else: UpperCamelCase = None if text_encoding is not None: encoding_image_processor.update(UpperCamelCase__ ) return encoding_image_processor def A ( self : Tuple , *UpperCamelCase__ : Tuple , **UpperCamelCase__ : Any ): """simple docstring""" return self.tokenizer.batch_decode(*UpperCamelCase__ , **UpperCamelCase__ ) def A ( self : Union[str, Any] , *UpperCamelCase__ : Tuple , **UpperCamelCase__ : Dict ): """simple docstring""" return self.tokenizer.decode(*UpperCamelCase__ , **UpperCamelCase__ ) @property def A ( self : str ): """simple docstring""" UpperCamelCase = self.tokenizer.model_input_names UpperCamelCase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
28
from math import factorial def UpperCamelCase (lowercase_: int = 20 ) -> int: A__ : Union[str, Any] = 2 * n # middle entry of odd rows starting at row 3 is the solution for n = 1, # 2, 3,... A__ : Tuple = n // 2 return int(factorial(lowercase_ ) / (factorial(lowercase_ ) * factorial(n - k )) ) if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution(20)) else: try: A_ : List[str] = int(sys.argv[1]) print(solution(n)) except ValueError: print('Invalid entry - please enter a number.')
192
0
import builtins import sys from ...utils.imports import _is_package_available from . import cursor, input from .helpers import Direction, clear_line, forceWrite, linebreak, move_cursor, reset_cursor, writeColor from .keymap import KEYMAP snake_case__ : Union[str, Any] = False try: snake_case__ : Tuple = _is_package_available('google.colab') except ModuleNotFoundError: pass @input.register class A_ : def __init__(self :Dict , _UpperCamelCase :str = None , _UpperCamelCase :list = [] )-> Dict: __A = 0 __A = choices __A = prompt if sys.platform == "win32": __A = '''*''' else: __A = '''➔ ''' def _lowerCAmelCase (self :Tuple , _UpperCamelCase :Tuple , _UpperCamelCase :str = "" )-> int: if sys.platform != "win32": writeColor(self.choices[index] , 32 , _UpperCamelCase ) else: forceWrite(self.choices[index] , _UpperCamelCase ) def _lowerCAmelCase (self :Optional[int] , _UpperCamelCase :int )-> Optional[Any]: if index == self.position: forceWrite(f""" {self.arrow_char} """ ) self.write_choice(_UpperCamelCase ) else: forceWrite(f""" {self.choices[index]}""" ) reset_cursor() def _lowerCAmelCase (self :Optional[Any] , _UpperCamelCase :Direction , _UpperCamelCase :int = 1 )-> str: __A = self.position if direction == Direction.DOWN: if self.position + 1 >= len(self.choices ): return self.position += num_spaces else: if self.position - 1 < 0: return self.position -= num_spaces clear_line() self.print_choice(_UpperCamelCase ) move_cursor(_UpperCamelCase , direction.name ) self.print_choice(self.position ) @input.mark(KEYMAP['''up'''] ) def _lowerCAmelCase (self :List[str] )-> int: self.move_direction(Direction.UP ) @input.mark(KEYMAP['''down'''] ) def _lowerCAmelCase (self :int )-> Any: self.move_direction(Direction.DOWN ) @input.mark(KEYMAP['''newline'''] ) def _lowerCAmelCase (self :List[Any] )-> List[Any]: move_cursor(len(self.choices ) - self.position , '''DOWN''' ) return self.position @input.mark(KEYMAP['''interrupt'''] ) def _lowerCAmelCase (self :Any )-> Optional[Any]: move_cursor(len(self.choices ) - self.position , '''DOWN''' ) raise KeyboardInterrupt @input.mark_multiple(*[KEYMAP[str(_UpperCamelCase )] for number in range(10 )] ) def _lowerCAmelCase (self :int )-> List[Any]: __A = int(chr(self.current_selection ) ) __A = index - self.position if index == self.position: return if index < len(self.choices ): if self.position > index: self.move_direction(Direction.UP , -movement ) elif self.position < index: self.move_direction(Direction.DOWN , _UpperCamelCase ) else: return else: return def _lowerCAmelCase (self :Dict , _UpperCamelCase :int = 0 )-> Tuple: if self.prompt: linebreak() forceWrite(self.prompt , '''\n''' ) if in_colab: forceWrite('''Please input a choice index (starting from 0), and press enter''' , '''\n''' ) else: forceWrite('''Please select a choice using the arrow or number keys, and selecting with enter''' , '''\n''' ) __A = default_choice for i in range(len(self.choices ) ): self.print_choice(_UpperCamelCase ) forceWrite('''\n''' ) move_cursor(len(self.choices ) - self.position , '''UP''' ) with cursor.hide(): while True: if in_colab: try: __A = int(builtins.input() ) except ValueError: __A = default_choice else: __A = self.handle_input() if choice is not None: reset_cursor() for _ in range(len(self.choices ) + 1 ): move_cursor(1 , '''UP''' ) clear_line() self.write_choice(_UpperCamelCase , '''\n''' ) return choice
364
from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES snake_case__ : int = logging.get_logger(__name__) snake_case__ : List[Any] = OrderedDict( [ # Base model mapping ('albert', 'FlaxAlbertModel'), ('bart', 'FlaxBartModel'), ('beit', 'FlaxBeitModel'), ('bert', 'FlaxBertModel'), ('big_bird', 'FlaxBigBirdModel'), ('blenderbot', 'FlaxBlenderbotModel'), ('blenderbot-small', 'FlaxBlenderbotSmallModel'), ('clip', 'FlaxCLIPModel'), ('distilbert', 'FlaxDistilBertModel'), ('electra', 'FlaxElectraModel'), ('gpt-sw3', 'FlaxGPT2Model'), ('gpt2', 'FlaxGPT2Model'), ('gpt_neo', 'FlaxGPTNeoModel'), ('gptj', 'FlaxGPTJModel'), ('longt5', 'FlaxLongT5Model'), ('marian', 'FlaxMarianModel'), ('mbart', 'FlaxMBartModel'), ('mt5', 'FlaxMT5Model'), ('opt', 'FlaxOPTModel'), ('pegasus', 'FlaxPegasusModel'), ('regnet', 'FlaxRegNetModel'), ('resnet', 'FlaxResNetModel'), ('roberta', 'FlaxRobertaModel'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormModel'), ('roformer', 'FlaxRoFormerModel'), ('t5', 'FlaxT5Model'), ('vision-text-dual-encoder', 'FlaxVisionTextDualEncoderModel'), ('vit', 'FlaxViTModel'), ('wav2vec2', 'FlaxWav2Vec2Model'), ('whisper', 'FlaxWhisperModel'), ('xglm', 'FlaxXGLMModel'), ('xlm-roberta', 'FlaxXLMRobertaModel'), ] ) snake_case__ : List[Any] = OrderedDict( [ # Model for pre-training mapping ('albert', 'FlaxAlbertForPreTraining'), ('bart', 'FlaxBartForConditionalGeneration'), ('bert', 'FlaxBertForPreTraining'), ('big_bird', 'FlaxBigBirdForPreTraining'), ('electra', 'FlaxElectraForPreTraining'), ('longt5', 'FlaxLongT5ForConditionalGeneration'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('mt5', 'FlaxMT5ForConditionalGeneration'), ('roberta', 'FlaxRobertaForMaskedLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMaskedLM'), ('roformer', 'FlaxRoFormerForMaskedLM'), ('t5', 'FlaxT5ForConditionalGeneration'), ('wav2vec2', 'FlaxWav2Vec2ForPreTraining'), ('whisper', 'FlaxWhisperForConditionalGeneration'), ('xlm-roberta', 'FlaxXLMRobertaForMaskedLM'), ] ) snake_case__ : Optional[Any] = OrderedDict( [ # Model for Masked LM mapping ('albert', 'FlaxAlbertForMaskedLM'), ('bart', 'FlaxBartForConditionalGeneration'), ('bert', 'FlaxBertForMaskedLM'), ('big_bird', 'FlaxBigBirdForMaskedLM'), ('distilbert', 'FlaxDistilBertForMaskedLM'), ('electra', 'FlaxElectraForMaskedLM'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('roberta', 'FlaxRobertaForMaskedLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMaskedLM'), ('roformer', 'FlaxRoFormerForMaskedLM'), ('xlm-roberta', 'FlaxXLMRobertaForMaskedLM'), ] ) snake_case__ : Optional[Any] = OrderedDict( [ # Model for Seq2Seq Causal LM mapping ('bart', 'FlaxBartForConditionalGeneration'), ('blenderbot', 'FlaxBlenderbotForConditionalGeneration'), ('blenderbot-small', 'FlaxBlenderbotSmallForConditionalGeneration'), ('encoder-decoder', 'FlaxEncoderDecoderModel'), ('longt5', 'FlaxLongT5ForConditionalGeneration'), ('marian', 'FlaxMarianMTModel'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('mt5', 'FlaxMT5ForConditionalGeneration'), ('pegasus', 'FlaxPegasusForConditionalGeneration'), ('t5', 'FlaxT5ForConditionalGeneration'), ] ) snake_case__ : Tuple = OrderedDict( [ # Model for Image-classsification ('beit', 'FlaxBeitForImageClassification'), ('regnet', 'FlaxRegNetForImageClassification'), ('resnet', 'FlaxResNetForImageClassification'), ('vit', 'FlaxViTForImageClassification'), ] ) snake_case__ : Optional[int] = OrderedDict( [ ('vision-encoder-decoder', 'FlaxVisionEncoderDecoderModel'), ] ) snake_case__ : Tuple = OrderedDict( [ # Model for Causal LM mapping ('bart', 'FlaxBartForCausalLM'), ('bert', 'FlaxBertForCausalLM'), ('big_bird', 'FlaxBigBirdForCausalLM'), ('electra', 'FlaxElectraForCausalLM'), ('gpt-sw3', 'FlaxGPT2LMHeadModel'), ('gpt2', 'FlaxGPT2LMHeadModel'), ('gpt_neo', 'FlaxGPTNeoForCausalLM'), ('gptj', 'FlaxGPTJForCausalLM'), ('opt', 'FlaxOPTForCausalLM'), ('roberta', 'FlaxRobertaForCausalLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForCausalLM'), ('xglm', 'FlaxXGLMForCausalLM'), ('xlm-roberta', 'FlaxXLMRobertaForCausalLM'), ] ) snake_case__ : Tuple = OrderedDict( [ # Model for Sequence Classification mapping ('albert', 'FlaxAlbertForSequenceClassification'), ('bart', 'FlaxBartForSequenceClassification'), ('bert', 'FlaxBertForSequenceClassification'), ('big_bird', 'FlaxBigBirdForSequenceClassification'), ('distilbert', 'FlaxDistilBertForSequenceClassification'), ('electra', 'FlaxElectraForSequenceClassification'), ('mbart', 'FlaxMBartForSequenceClassification'), ('roberta', 'FlaxRobertaForSequenceClassification'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForSequenceClassification'), ('roformer', 'FlaxRoFormerForSequenceClassification'), ('xlm-roberta', 'FlaxXLMRobertaForSequenceClassification'), ] ) snake_case__ : List[Any] = OrderedDict( [ # Model for Question Answering mapping ('albert', 'FlaxAlbertForQuestionAnswering'), ('bart', 'FlaxBartForQuestionAnswering'), ('bert', 'FlaxBertForQuestionAnswering'), ('big_bird', 'FlaxBigBirdForQuestionAnswering'), ('distilbert', 'FlaxDistilBertForQuestionAnswering'), ('electra', 'FlaxElectraForQuestionAnswering'), ('mbart', 'FlaxMBartForQuestionAnswering'), ('roberta', 'FlaxRobertaForQuestionAnswering'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForQuestionAnswering'), ('roformer', 'FlaxRoFormerForQuestionAnswering'), ('xlm-roberta', 'FlaxXLMRobertaForQuestionAnswering'), ] ) snake_case__ : List[str] = OrderedDict( [ # Model for Token Classification mapping ('albert', 'FlaxAlbertForTokenClassification'), ('bert', 'FlaxBertForTokenClassification'), ('big_bird', 'FlaxBigBirdForTokenClassification'), ('distilbert', 'FlaxDistilBertForTokenClassification'), ('electra', 'FlaxElectraForTokenClassification'), ('roberta', 'FlaxRobertaForTokenClassification'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForTokenClassification'), ('roformer', 'FlaxRoFormerForTokenClassification'), ('xlm-roberta', 'FlaxXLMRobertaForTokenClassification'), ] ) snake_case__ : Tuple = OrderedDict( [ # Model for Multiple Choice mapping ('albert', 'FlaxAlbertForMultipleChoice'), ('bert', 'FlaxBertForMultipleChoice'), ('big_bird', 'FlaxBigBirdForMultipleChoice'), ('distilbert', 'FlaxDistilBertForMultipleChoice'), ('electra', 'FlaxElectraForMultipleChoice'), ('roberta', 'FlaxRobertaForMultipleChoice'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMultipleChoice'), ('roformer', 'FlaxRoFormerForMultipleChoice'), ('xlm-roberta', 'FlaxXLMRobertaForMultipleChoice'), ] ) snake_case__ : Dict = OrderedDict( [ ('bert', 'FlaxBertForNextSentencePrediction'), ] ) snake_case__ : Union[str, Any] = OrderedDict( [ ('speech-encoder-decoder', 'FlaxSpeechEncoderDecoderModel'), ('whisper', 'FlaxWhisperForConditionalGeneration'), ] ) snake_case__ : Optional[int] = OrderedDict( [ ('whisper', 'FlaxWhisperForAudioClassification'), ] ) snake_case__ : List[Any] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) snake_case__ : Any = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) snake_case__ : Tuple = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) snake_case__ : Tuple = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) snake_case__ : str = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) snake_case__ : Optional[int] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) snake_case__ : Tuple = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) snake_case__ : Tuple = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) snake_case__ : str = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) snake_case__ : Optional[Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) snake_case__ : List[str] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) snake_case__ : List[str] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) snake_case__ : str = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) snake_case__ : Optional[Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class A_ ( _BaseAutoModelClass ): lowerCAmelCase__ = FLAX_MODEL_MAPPING snake_case__ : List[Any] = auto_class_update(FlaxAutoModel) class A_ ( _BaseAutoModelClass ): lowerCAmelCase__ = FLAX_MODEL_FOR_PRETRAINING_MAPPING snake_case__ : Any = auto_class_update(FlaxAutoModelForPreTraining, head_doc='pretraining') class A_ ( _BaseAutoModelClass ): lowerCAmelCase__ = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING snake_case__ : Any = auto_class_update(FlaxAutoModelForCausalLM, head_doc='causal language modeling') class A_ ( _BaseAutoModelClass ): lowerCAmelCase__ = FLAX_MODEL_FOR_MASKED_LM_MAPPING snake_case__ : Any = auto_class_update(FlaxAutoModelForMaskedLM, head_doc='masked language modeling') class A_ ( _BaseAutoModelClass ): lowerCAmelCase__ = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING snake_case__ : List[Any] = auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc='sequence-to-sequence language modeling', checkpoint_for_example='t5-base' ) class A_ ( _BaseAutoModelClass ): lowerCAmelCase__ = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING snake_case__ : int = auto_class_update( FlaxAutoModelForSequenceClassification, head_doc='sequence classification' ) class A_ ( _BaseAutoModelClass ): lowerCAmelCase__ = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING snake_case__ : int = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc='question answering') class A_ ( _BaseAutoModelClass ): lowerCAmelCase__ = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING snake_case__ : Dict = auto_class_update( FlaxAutoModelForTokenClassification, head_doc='token classification' ) class A_ ( _BaseAutoModelClass ): lowerCAmelCase__ = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING snake_case__ : Any = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc='multiple choice') class A_ ( _BaseAutoModelClass ): lowerCAmelCase__ = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING snake_case__ : Union[str, Any] = auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc='next sentence prediction' ) class A_ ( _BaseAutoModelClass ): lowerCAmelCase__ = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING snake_case__ : List[str] = auto_class_update( FlaxAutoModelForImageClassification, head_doc='image classification' ) class A_ ( _BaseAutoModelClass ): lowerCAmelCase__ = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING snake_case__ : Optional[int] = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc='vision-to-text modeling') class A_ ( _BaseAutoModelClass ): lowerCAmelCase__ = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING snake_case__ : Optional[Any] = auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc='sequence-to-sequence speech-to-text modeling' )
250
0
import math from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { '''facebook/data2vec-base-960h''': '''https://huggingface.co/facebook/data2vec-audio-base-960h/resolve/main/config.json''', # See all Data2VecAudio models at https://huggingface.co/models?filter=data2vec-audio } class _snake_case ( __snake_case ): '''simple docstring''' A__ : Optional[int] = "data2vec-audio" def __init__( self: str ,lowerCamelCase_: Optional[Any]=32 ,lowerCamelCase_: List[Any]=768 ,lowerCamelCase_: Optional[int]=12 ,lowerCamelCase_: List[Any]=12 ,lowerCamelCase_: Any=3072 ,lowerCamelCase_: Tuple="gelu" ,lowerCamelCase_: Tuple=0.1 ,lowerCamelCase_: List[str]=0.1 ,lowerCamelCase_: Dict=0.1 ,lowerCamelCase_: Any=0.0 ,lowerCamelCase_: int=0.1 ,lowerCamelCase_: Any=0.1 ,lowerCamelCase_: Optional[Any]=0.0_2 ,lowerCamelCase_: List[str]=1e-5 ,lowerCamelCase_: Tuple="gelu" ,lowerCamelCase_: Tuple=(512, 512, 512, 512, 512, 512, 512) ,lowerCamelCase_: Tuple=(5, 2, 2, 2, 2, 2, 2) ,lowerCamelCase_: str=(10, 3, 3, 3, 3, 2, 2) ,lowerCamelCase_: List[str]=False ,lowerCamelCase_: List[Any]=16 ,lowerCamelCase_: Dict=19 ,lowerCamelCase_: List[str]=5 ,lowerCamelCase_: List[Any]=0.0_5 ,lowerCamelCase_: List[Any]=10 ,lowerCamelCase_: Union[str, Any]=2 ,lowerCamelCase_: int=0.0 ,lowerCamelCase_: Optional[int]=10 ,lowerCamelCase_: Tuple=0 ,lowerCamelCase_: Optional[Any]="sum" ,lowerCamelCase_: List[str]=False ,lowerCamelCase_: Tuple=False ,lowerCamelCase_: str=256 ,lowerCamelCase_: List[str]=(512, 512, 512, 512, 1500) ,lowerCamelCase_: List[Any]=(5, 3, 3, 1, 1) ,lowerCamelCase_: int=(1, 2, 3, 1, 1) ,lowerCamelCase_: Union[str, Any]=512 ,lowerCamelCase_: int=0 ,lowerCamelCase_: List[Any]=1 ,lowerCamelCase_: List[str]=2 ,lowerCamelCase_: Tuple=False ,lowerCamelCase_: Optional[int]=3 ,lowerCamelCase_: List[str]=2 ,lowerCamelCase_: Optional[int]=3 ,lowerCamelCase_: int=None ,**lowerCamelCase_: Optional[Any] ,) -> Any: super().__init__(**lowerCamelCase_ ,pad_token_id=lowerCamelCase_ ,bos_token_id=lowerCamelCase_ ,eos_token_id=lowerCamelCase_ ) UpperCAmelCase_ : Any = hidden_size UpperCAmelCase_ : List[Any] = feat_extract_activation UpperCAmelCase_ : List[str] = list(lowerCamelCase_ ) UpperCAmelCase_ : List[str] = list(lowerCamelCase_ ) UpperCAmelCase_ : Any = list(lowerCamelCase_ ) UpperCAmelCase_ : Optional[Any] = conv_bias UpperCAmelCase_ : str = num_conv_pos_embeddings UpperCAmelCase_ : List[str] = num_conv_pos_embedding_groups UpperCAmelCase_ : int = conv_pos_kernel_size UpperCAmelCase_ : List[Any] = len(self.conv_dim ) UpperCAmelCase_ : Optional[Any] = num_hidden_layers UpperCAmelCase_ : str = intermediate_size UpperCAmelCase_ : Any = hidden_act UpperCAmelCase_ : Dict = num_attention_heads UpperCAmelCase_ : Optional[int] = hidden_dropout UpperCAmelCase_ : Tuple = attention_dropout UpperCAmelCase_ : Dict = activation_dropout UpperCAmelCase_ : Dict = feat_proj_dropout UpperCAmelCase_ : int = final_dropout UpperCAmelCase_ : Any = layerdrop UpperCAmelCase_ : Tuple = layer_norm_eps UpperCAmelCase_ : Dict = initializer_range UpperCAmelCase_ : Optional[Any] = vocab_size UpperCAmelCase_ : Dict = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( """Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==""" """ `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =""" F''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' F''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCAmelCase_ : Optional[int] = mask_time_prob UpperCAmelCase_ : Optional[Any] = mask_time_length UpperCAmelCase_ : str = mask_time_min_masks UpperCAmelCase_ : List[str] = mask_feature_prob UpperCAmelCase_ : Optional[int] = mask_feature_length UpperCAmelCase_ : Dict = mask_feature_min_masks # ctc loss UpperCAmelCase_ : Dict = ctc_loss_reduction UpperCAmelCase_ : Dict = ctc_zero_infinity # adapter UpperCAmelCase_ : str = add_adapter UpperCAmelCase_ : Tuple = adapter_kernel_size UpperCAmelCase_ : int = adapter_stride UpperCAmelCase_ : Tuple = num_adapter_layers UpperCAmelCase_ : Optional[int] = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. UpperCAmelCase_ : int = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. UpperCAmelCase_ : Union[str, Any] = list(lowerCamelCase_ ) UpperCAmelCase_ : Tuple = list(lowerCamelCase_ ) UpperCAmelCase_ : Union[str, Any] = list(lowerCamelCase_ ) UpperCAmelCase_ : int = xvector_output_dim @property def A__ ( self: Any ) -> Tuple: return math.prod(self.conv_stride )
345
def lowerCamelCase_ ( _a : List[str] ): '''simple docstring''' UpperCAmelCase_ : Tuple = [0] * len(_a ) UpperCAmelCase_ : Dict = [] UpperCAmelCase_ : Optional[int] = [] UpperCAmelCase_ : Dict = 0 for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(_a ) ): if indegree[i] == 0: queue.append(_a ) while queue: UpperCAmelCase_ : List[str] = queue.pop(0 ) cnt += 1 topo.append(_a ) for x in graph[vertex]: indegree[x] -= 1 if indegree[x] == 0: queue.append(_a ) if cnt != len(_a ): print("""Cycle exists""" ) else: print(_a ) # Adjacency List of Graph UpperCamelCase_ = {0: [1, 2], 1: [3], 2: [3], 3: [4, 5], 4: [], 5: []} topological_sort(graph)
345
1
"""simple docstring""" from math import asin, atan, cos, radians, sin, sqrt, tan lowerCAmelCase__ = 6_378_137.0 lowerCAmelCase__ = 6_356_752.314_245 lowerCAmelCase__ = 6_378_137 def a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase = (AXIS_A - AXIS_B) / AXIS_A UpperCamelCase = atan((1 - flattening) * tan(radians(_SCREAMING_SNAKE_CASE ) ) ) UpperCamelCase = atan((1 - flattening) * tan(radians(_SCREAMING_SNAKE_CASE ) ) ) UpperCamelCase = radians(_SCREAMING_SNAKE_CASE ) UpperCamelCase = radians(_SCREAMING_SNAKE_CASE ) # Equation UpperCamelCase = sin((phi_a - phi_a) / 2 ) UpperCamelCase = sin((lambda_a - lambda_a) / 2 ) # Square both values sin_sq_phi *= sin_sq_phi sin_sq_lambda *= sin_sq_lambda UpperCamelCase = sqrt(sin_sq_phi + (cos(_SCREAMING_SNAKE_CASE ) * cos(_SCREAMING_SNAKE_CASE ) * sin_sq_lambda) ) return 2 * RADIUS * asin(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod()
357
"""simple docstring""" from collections import defaultdict from typing import Optional from ..image_utils import load_image from ..utils import ( add_end_docstrings, is_torch_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_MASK_GENERATION_MAPPING lowerCAmelCase__ = logging.get_logger(__name__) @add_end_docstrings(_lowercase ) class _lowerCamelCase ( _lowercase ): def __init__(self , **__a ) -> Optional[int]: super().__init__(**__a ) requires_backends(self , "vision" ) requires_backends(self , "torch" ) if self.framework != "pt": raise ValueError(F"The {self.__class__} is only available in PyTorch." ) self.check_model_type(__a ) def snake_case_ (self , **__a ) -> List[Any]: UpperCamelCase = {} UpperCamelCase = {} UpperCamelCase = {} # preprocess args if "points_per_batch" in kwargs: UpperCamelCase = kwargs["points_per_batch"] if "points_per_crop" in kwargs: UpperCamelCase = kwargs["points_per_crop"] if "crops_n_layers" in kwargs: UpperCamelCase = kwargs["crops_n_layers"] if "crop_overlap_ratio" in kwargs: UpperCamelCase = kwargs["crop_overlap_ratio"] if "crop_n_points_downscale_factor" in kwargs: UpperCamelCase = kwargs["crop_n_points_downscale_factor"] # postprocess args if "pred_iou_thresh" in kwargs: UpperCamelCase = kwargs["pred_iou_thresh"] if "stability_score_offset" in kwargs: UpperCamelCase = kwargs["stability_score_offset"] if "mask_threshold" in kwargs: UpperCamelCase = kwargs["mask_threshold"] if "stability_score_thresh" in kwargs: UpperCamelCase = kwargs["stability_score_thresh"] if "crops_nms_thresh" in kwargs: UpperCamelCase = kwargs["crops_nms_thresh"] if "output_rle_mask" in kwargs: UpperCamelCase = kwargs["output_rle_mask"] if "output_bboxes_mask" in kwargs: UpperCamelCase = kwargs["output_bboxes_mask"] return preprocess_kwargs, forward_params, postprocess_kwargs def __call__(self , __a , *__a , __a=None , __a=None , **__a ) -> str: return super().__call__(__a , *__a , num_workers=__a , batch_size=__a , **__a ) def snake_case_ (self , __a , __a=64 , __a = 0 , __a = 5_12 / 15_00 , __a = 32 , __a = 1 , ) -> List[str]: UpperCamelCase = load_image(__a ) UpperCamelCase = self.image_processor.size["longest_edge"] UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = self.image_processor.generate_crop_boxes( __a , __a , __a , __a , __a , __a ) UpperCamelCase = self.image_processor(images=__a , return_tensors="pt" ) with self.device_placement(): if self.framework == "pt": UpperCamelCase = self.get_inference_context() with inference_context(): UpperCamelCase = self._ensure_tensor_on_device(__a , device=self.device ) UpperCamelCase = self.model.get_image_embeddings(model_inputs.pop("pixel_values" ) ) UpperCamelCase = image_embeddings UpperCamelCase = grid_points.shape[1] UpperCamelCase = points_per_batch if points_per_batch is not None else n_points if points_per_batch <= 0: raise ValueError( "Cannot have points_per_batch<=0. Must be >=1 to returned batched outputs. " "To return all points at once, set points_per_batch to None" ) for i in range(0 , __a , __a ): UpperCamelCase = grid_points[:, i : i + points_per_batch, :, :] UpperCamelCase = input_labels[:, i : i + points_per_batch] UpperCamelCase = i == n_points - points_per_batch yield { "input_points": batched_points, "input_labels": labels, "input_boxes": crop_boxes, "is_last": is_last, **model_inputs, } def snake_case_ (self , __a , __a=0.88 , __a=0.95 , __a=0 , __a=1 , ) -> int: UpperCamelCase = model_inputs.pop("input_boxes" ) UpperCamelCase = model_inputs.pop("is_last" ) UpperCamelCase = model_inputs.pop("original_sizes" ).tolist() UpperCamelCase = model_inputs.pop("reshaped_input_sizes" ).tolist() UpperCamelCase = self.model(**__a ) # post processing happens here in order to avoid CPU GPU copies of ALL the masks UpperCamelCase = model_outputs["pred_masks"] UpperCamelCase = self.image_processor.post_process_masks( __a , __a , __a , __a , binarize=__a ) UpperCamelCase = model_outputs["iou_scores"] UpperCamelCase , UpperCamelCase , UpperCamelCase = self.image_processor.filter_masks( masks[0] , iou_scores[0] , original_sizes[0] , input_boxes[0] , __a , __a , __a , __a , ) return { "masks": masks, "is_last": is_last, "boxes": boxes, "iou_scores": iou_scores, } def snake_case_ (self , __a , __a=False , __a=False , __a=0.7 , ) -> Optional[int]: UpperCamelCase = [] UpperCamelCase = [] UpperCamelCase = [] for model_output in model_outputs: all_scores.append(model_output.pop("iou_scores" ) ) all_masks.extend(model_output.pop("masks" ) ) all_boxes.append(model_output.pop("boxes" ) ) UpperCamelCase = torch.cat(__a ) UpperCamelCase = torch.cat(__a ) UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = self.image_processor.post_process_for_mask_generation( __a , __a , __a , __a ) UpperCamelCase = defaultdict(__a ) for output in model_outputs: for k, v in output.items(): extra[k].append(__a ) UpperCamelCase = {} if output_rle_mask: UpperCamelCase = rle_mask if output_bboxes_mask: UpperCamelCase = bounding_boxes return {"masks": output_masks, "scores": iou_scores, **optional, **extra}
244
0
"""simple docstring""" import copy import os from typing import TYPE_CHECKING, List, Union if TYPE_CHECKING: pass from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { 'kakaobrain/align-base': 'https://huggingface.co/kakaobrain/align-base/resolve/main/config.json', } class snake_case ( SCREAMING_SNAKE_CASE_ ): a_ : Tuple = """align_text_model""" def __init__( self , __UpperCAmelCase=3_05_22 , __UpperCAmelCase=7_68 , __UpperCAmelCase=12 , __UpperCAmelCase=12 , __UpperCAmelCase=30_72 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=5_12 , __UpperCAmelCase=2 , __UpperCAmelCase=0.02 , __UpperCAmelCase=1E-12 , __UpperCAmelCase=0 , __UpperCAmelCase="absolute" , __UpperCAmelCase=True , **__UpperCAmelCase , ) ->List[str]: super().__init__(**__UpperCAmelCase) a_ = vocab_size a_ = hidden_size a_ = num_hidden_layers a_ = num_attention_heads a_ = hidden_act a_ = intermediate_size a_ = hidden_dropout_prob a_ = attention_probs_dropout_prob a_ = max_position_embeddings a_ = type_vocab_size a_ = initializer_range a_ = layer_norm_eps a_ = position_embedding_type a_ = use_cache a_ = pad_token_id @classmethod def UpperCAmelCase__ ( cls , __UpperCAmelCase , **__UpperCAmelCase) ->"PretrainedConfig": cls._set_token_in_kwargs(__UpperCAmelCase) a_ , a_ = cls.get_config_dict(__UpperCAmelCase , **__UpperCAmelCase) # get the text config dict if we are loading from AlignConfig if config_dict.get("model_type") == "align": a_ = config_dict["text_config"] if "model_type" in config_dict and hasattr(cls , "model_type") and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''') return cls.from_dict(__UpperCAmelCase , **__UpperCAmelCase) class snake_case ( SCREAMING_SNAKE_CASE_ ): a_ : Optional[Any] = """align_vision_model""" def __init__( self , __UpperCAmelCase = 3 , __UpperCAmelCase = 6_00 , __UpperCAmelCase = 2.0 , __UpperCAmelCase = 3.1 , __UpperCAmelCase = 8 , __UpperCAmelCase = [3, 3, 5, 3, 5, 5, 3] , __UpperCAmelCase = [32, 16, 24, 40, 80, 1_12, 1_92] , __UpperCAmelCase = [16, 24, 40, 80, 1_12, 1_92, 3_20] , __UpperCAmelCase = [] , __UpperCAmelCase = [1, 2, 2, 2, 1, 2, 1] , __UpperCAmelCase = [1, 2, 2, 3, 3, 4, 1] , __UpperCAmelCase = [1, 6, 6, 6, 6, 6, 6] , __UpperCAmelCase = 0.25 , __UpperCAmelCase = "swish" , __UpperCAmelCase = 25_60 , __UpperCAmelCase = "mean" , __UpperCAmelCase = 0.02 , __UpperCAmelCase = 0.001 , __UpperCAmelCase = 0.99 , __UpperCAmelCase = 0.2 , **__UpperCAmelCase , ) ->str: super().__init__(**__UpperCAmelCase) a_ = num_channels a_ = image_size a_ = width_coefficient a_ = depth_coefficient a_ = depth_divisor a_ = kernel_sizes a_ = in_channels a_ = out_channels a_ = depthwise_padding a_ = strides a_ = num_block_repeats a_ = expand_ratios a_ = squeeze_expansion_ratio a_ = hidden_act a_ = hidden_dim a_ = pooling_type a_ = initializer_range a_ = batch_norm_eps a_ = batch_norm_momentum a_ = drop_connect_rate a_ = sum(__UpperCAmelCase) * 4 @classmethod def UpperCAmelCase__ ( cls , __UpperCAmelCase , **__UpperCAmelCase) ->"PretrainedConfig": cls._set_token_in_kwargs(__UpperCAmelCase) a_ , a_ = cls.get_config_dict(__UpperCAmelCase , **__UpperCAmelCase) # get the vision config dict if we are loading from AlignConfig if config_dict.get("model_type") == "align": a_ = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type") and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''') return cls.from_dict(__UpperCAmelCase , **__UpperCAmelCase) class snake_case ( SCREAMING_SNAKE_CASE_ ): a_ : Dict = """align""" a_ : Tuple = True def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=6_40 , __UpperCAmelCase=1.0 , __UpperCAmelCase=0.02 , **__UpperCAmelCase , ) ->List[Any]: super().__init__(**__UpperCAmelCase) if text_config is None: a_ = {} logger.info("text_config is None. Initializing the AlignTextConfig with default values.") if vision_config is None: a_ = {} logger.info("vision_config is None. Initializing the AlignVisionConfig with default values.") a_ = AlignTextConfig(**__UpperCAmelCase) a_ = AlignVisionConfig(**__UpperCAmelCase) a_ = projection_dim a_ = temperature_init_value a_ = initializer_range @classmethod def UpperCAmelCase__ ( cls , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase) ->List[Any]: return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **__UpperCAmelCase) def UpperCAmelCase__ ( self) ->int: a_ = copy.deepcopy(self.__dict__) a_ = self.text_config.to_dict() a_ = self.vision_config.to_dict() a_ = self.__class__.model_type return output
243
"""simple docstring""" import baseaa def UpperCamelCase ( UpperCAmelCase ) ->bytes: """simple docstring""" return baseaa.baaencode(string.encode("utf-8" ) ) def UpperCamelCase ( UpperCAmelCase ) ->str: """simple docstring""" return baseaa.baadecode(UpperCAmelCase ).decode("utf-8" ) if __name__ == "__main__": UpperCamelCase_ = 'Hello World!' UpperCamelCase_ = baseaa_encode(test) print(encoded) UpperCamelCase_ = baseaa_decode(encoded) print(decoded)
243
1
'''simple docstring''' class UpperCamelCase__: # Public class to implement a graph def __init__( self : int , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : list[list[bool]] )-> None: """simple docstring""" UpperCAmelCase = row UpperCAmelCase = col UpperCAmelCase = graph def a__( self : Optional[Any] , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : list[list[bool]] )-> bool: """simple docstring""" return ( 0 <= i < self.ROW and 0 <= j < self.COL and not visited[i][j] and self.graph[i][j] ) def a__( self : Optional[int] , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : list[list[bool]] )-> None: """simple docstring""" UpperCAmelCase = [-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order UpperCAmelCase = [-1, 0, 1, -1, 1, -1, 0, 1] UpperCAmelCase = True # Make those cells visited for k in range(8 ): if self.is_safe(i + row_nbr[k] , j + col_nbr[k] , lowerCAmelCase ): self.diffs(i + row_nbr[k] , j + col_nbr[k] , lowerCAmelCase ) def a__( self : List[str] )-> int: # And finally, count all islands. """simple docstring""" UpperCAmelCase = [[False for j in range(self.COL )] for i in range(self.ROW )] UpperCAmelCase = 0 for i in range(self.ROW ): for j in range(self.COL ): if visited[i][j] is False and self.graph[i][j] == 1: self.diffs(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) count += 1 return count
91
'''simple docstring''' from .data_collator import ( DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForSeqaSeq, DataCollatorForSOP, DataCollatorForTokenClassification, DataCollatorForWholeWordMask, DataCollatorWithPadding, DefaultDataCollator, default_data_collator, ) from .metrics import glue_compute_metrics, xnli_compute_metrics from .processors import ( DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor, SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels, squad_convert_examples_to_features, xnli_output_modes, xnli_processors, xnli_tasks_num_labels, )
91
1
"""simple docstring""" from tempfile import TemporaryDirectory from unittest import TestCase from unittest.mock import MagicMock, patch from transformers import AutoModel, TFAutoModel from transformers.onnx import FeaturesManager from transformers.testing_utils import SMALL_MODEL_IDENTIFIER, require_tf, require_torch @require_torch @require_tf class lowerCAmelCase_ (a__ ): """simple docstring""" def __magic_name__ (self ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = SMALL_MODEL_IDENTIFIER SCREAMING_SNAKE_CASE__ : str = """pt""" SCREAMING_SNAKE_CASE__ : Dict = """tf""" def __magic_name__ (self , SCREAMING_SNAKE_CASE__ ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = AutoModel.from_pretrained(self.test_model ) model_pt.save_pretrained(SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self , SCREAMING_SNAKE_CASE__ ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = TFAutoModel.from_pretrained(self.test_model , from_pt=SCREAMING_SNAKE_CASE__ ) model_tf.save_pretrained(SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = """mock_framework""" # Framework provided - return whatever the user provides SCREAMING_SNAKE_CASE__ : Tuple = FeaturesManager.determine_framework(self.test_model , SCREAMING_SNAKE_CASE__ ) self.assertEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Local checkpoint and framework provided - return provided framework # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Tuple = FeaturesManager.determine_framework(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) self.assertEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : List[str] = FeaturesManager.determine_framework(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) self.assertEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self ) -> Optional[int]: """simple docstring""" with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Optional[int] = FeaturesManager.determine_framework(SCREAMING_SNAKE_CASE__ ) self.assertEqual(SCREAMING_SNAKE_CASE__ , self.framework_pt ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : List[str] = FeaturesManager.determine_framework(SCREAMING_SNAKE_CASE__ ) self.assertEqual(SCREAMING_SNAKE_CASE__ , self.framework_tf ) # Invalid local checkpoint with TemporaryDirectory() as local_invalid_ckpt: with self.assertRaises(SCREAMING_SNAKE_CASE__ ): SCREAMING_SNAKE_CASE__ : Dict = FeaturesManager.determine_framework(SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = MagicMock(return_value=SCREAMING_SNAKE_CASE__ ) with patch("""transformers.onnx.features.is_tf_available""" , SCREAMING_SNAKE_CASE__ ): SCREAMING_SNAKE_CASE__ : Dict = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(SCREAMING_SNAKE_CASE__ , self.framework_pt ) # PyTorch not in environment -> use TensorFlow SCREAMING_SNAKE_CASE__ : Optional[int] = MagicMock(return_value=SCREAMING_SNAKE_CASE__ ) with patch("""transformers.onnx.features.is_torch_available""" , SCREAMING_SNAKE_CASE__ ): SCREAMING_SNAKE_CASE__ : Dict = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(SCREAMING_SNAKE_CASE__ , self.framework_tf ) # Both in environment -> use PyTorch SCREAMING_SNAKE_CASE__ : List[str] = MagicMock(return_value=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : List[Any] = MagicMock(return_value=SCREAMING_SNAKE_CASE__ ) with patch("""transformers.onnx.features.is_tf_available""" , SCREAMING_SNAKE_CASE__ ), patch( """transformers.onnx.features.is_torch_available""" , SCREAMING_SNAKE_CASE__ ): SCREAMING_SNAKE_CASE__ : Optional[int] = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(SCREAMING_SNAKE_CASE__ , self.framework_pt ) # Both not in environment -> raise error SCREAMING_SNAKE_CASE__ : Any = MagicMock(return_value=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : List[str] = MagicMock(return_value=SCREAMING_SNAKE_CASE__ ) with patch("""transformers.onnx.features.is_tf_available""" , SCREAMING_SNAKE_CASE__ ), patch( """transformers.onnx.features.is_torch_available""" , SCREAMING_SNAKE_CASE__ ): with self.assertRaises(SCREAMING_SNAKE_CASE__ ): SCREAMING_SNAKE_CASE__ : Any = FeaturesManager.determine_framework(self.test_model )
25
"""simple docstring""" import math import unittest def lowercase_ ( _snake_case ): assert isinstance(_snake_case ,_snake_case ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 ,int(math.sqrt(_snake_case ) + 1 ) ,6 ): if number % i == 0 or number % (i + 2) == 0: return False return True class lowerCAmelCase_ (unittest.TestCase ): """simple docstring""" def __magic_name__ (self ) -> Dict: """simple docstring""" self.assertTrue(is_prime(2 ) ) self.assertTrue(is_prime(3 ) ) self.assertTrue(is_prime(5 ) ) self.assertTrue(is_prime(7 ) ) self.assertTrue(is_prime(11 ) ) self.assertTrue(is_prime(13 ) ) self.assertTrue(is_prime(17 ) ) self.assertTrue(is_prime(19 ) ) self.assertTrue(is_prime(23 ) ) self.assertTrue(is_prime(29 ) ) def __magic_name__ (self ) -> List[Any]: """simple docstring""" with self.assertRaises(SCREAMING_SNAKE_CASE__ ): is_prime(-19 ) self.assertFalse( is_prime(0 ) , """Zero doesn't have any positive factors, primes must have exactly two.""" , ) self.assertFalse( is_prime(1 ) , """One only has 1 positive factor, primes must have exactly two.""" , ) self.assertFalse(is_prime(2 * 2 ) ) self.assertFalse(is_prime(2 * 3 ) ) self.assertFalse(is_prime(3 * 3 ) ) self.assertFalse(is_prime(3 * 5 ) ) self.assertFalse(is_prime(3 * 5 * 7 ) ) if __name__ == "__main__": unittest.main()
25
1
from typing import Any, Dict, Optional import torch import torch.nn.functional as F from torch import nn from ..utils import maybe_allow_in_graph from .activations import get_activation from .attention_processor import Attention from .embeddings import CombinedTimestepLabelEmbeddings @maybe_allow_in_graph class a_ ( nn.Module ): def __init__( self :str , _lowercase :int , _lowercase :int , _lowercase :int , _lowercase :Optional[int]=0.0 , _lowercase :Optional[int] = None , _lowercase :str = "geglu" , _lowercase :Optional[int] = None , _lowercase :bool = False , _lowercase :bool = False , _lowercase :bool = False , _lowercase :bool = False , _lowercase :bool = True , _lowercase :str = "layer_norm" , _lowercase :bool = False , ) -> str: super().__init__() UpperCAmelCase_ = only_cross_attention UpperCAmelCase_ = (num_embeds_ada_norm is not None) and norm_type == '''ada_norm_zero''' UpperCAmelCase_ = (num_embeds_ada_norm is not None) and norm_type == '''ada_norm''' if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: raise ValueError( f"`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to" f" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}.") # Define 3 blocks. Each block has its own normalization layer. # 1. Self-Attn if self.use_ada_layer_norm: UpperCAmelCase_ = AdaLayerNorm(_lowercase , _lowercase) elif self.use_ada_layer_norm_zero: UpperCAmelCase_ = AdaLayerNormZero(_lowercase , _lowercase) else: UpperCAmelCase_ = nn.LayerNorm(_lowercase , elementwise_affine=_lowercase) UpperCAmelCase_ = Attention( query_dim=_lowercase , heads=_lowercase , dim_head=_lowercase , dropout=_lowercase , bias=_lowercase , cross_attention_dim=cross_attention_dim if only_cross_attention else None , upcast_attention=_lowercase , ) # 2. Cross-Attn if cross_attention_dim is not None or double_self_attention: # We currently only use AdaLayerNormZero for self attention where there will only be one attention block. # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during # the second cross attention block. UpperCAmelCase_ = ( AdaLayerNorm(_lowercase , _lowercase) if self.use_ada_layer_norm else nn.LayerNorm(_lowercase , elementwise_affine=_lowercase) ) UpperCAmelCase_ = Attention( query_dim=_lowercase , cross_attention_dim=cross_attention_dim if not double_self_attention else None , heads=_lowercase , dim_head=_lowercase , dropout=_lowercase , bias=_lowercase , upcast_attention=_lowercase , ) # is self-attn if encoder_hidden_states is none else: UpperCAmelCase_ = None UpperCAmelCase_ = None # 3. Feed-forward UpperCAmelCase_ = nn.LayerNorm(_lowercase , elementwise_affine=_lowercase) UpperCAmelCase_ = FeedForward(_lowercase , dropout=_lowercase , activation_fn=_lowercase , final_dropout=_lowercase) # let chunk size default to None UpperCAmelCase_ = None UpperCAmelCase_ = 0 def __a ( self :Tuple , _lowercase :Optional[int] , _lowercase :int) -> Dict: # Sets chunk feed-forward UpperCAmelCase_ = chunk_size UpperCAmelCase_ = dim def __a ( self :Dict , _lowercase :torch.FloatTensor , _lowercase :Optional[torch.FloatTensor] = None , _lowercase :Optional[torch.FloatTensor] = None , _lowercase :Optional[torch.FloatTensor] = None , _lowercase :Optional[torch.LongTensor] = None , _lowercase :Dict[str, Any] = None , _lowercase :Optional[torch.LongTensor] = None , ) -> List[Any]: # Notice that normalization is always applied before the real computation in the following blocks. # 1. Self-Attention if self.use_ada_layer_norm: UpperCAmelCase_ = self.norma(_lowercase , _lowercase) elif self.use_ada_layer_norm_zero: UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = self.norma( _lowercase , _lowercase , _lowercase , hidden_dtype=hidden_states.dtype) else: UpperCAmelCase_ = self.norma(_lowercase) UpperCAmelCase_ = cross_attention_kwargs if cross_attention_kwargs is not None else {} UpperCAmelCase_ = self.attna( _lowercase , encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None , attention_mask=_lowercase , **_lowercase , ) if self.use_ada_layer_norm_zero: UpperCAmelCase_ = gate_msa.unsqueeze(1) * attn_output UpperCAmelCase_ = attn_output + hidden_states # 2. Cross-Attention if self.attna is not None: UpperCAmelCase_ = ( self.norma(_lowercase , _lowercase) if self.use_ada_layer_norm else self.norma(_lowercase) ) UpperCAmelCase_ = self.attna( _lowercase , encoder_hidden_states=_lowercase , attention_mask=_lowercase , **_lowercase , ) UpperCAmelCase_ = attn_output + hidden_states # 3. Feed-forward UpperCAmelCase_ = self.norma(_lowercase) if self.use_ada_layer_norm_zero: UpperCAmelCase_ = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] if self._chunk_size is not None: # "feed_forward_chunk_size" can be used to save memory if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0: raise ValueError( f"`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`.") UpperCAmelCase_ = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size UpperCAmelCase_ = torch.cat( [self.ff(_lowercase) for hid_slice in norm_hidden_states.chunk(_lowercase , dim=self._chunk_dim)] , dim=self._chunk_dim , ) else: UpperCAmelCase_ = self.ff(_lowercase) if self.use_ada_layer_norm_zero: UpperCAmelCase_ = gate_mlp.unsqueeze(1) * ff_output UpperCAmelCase_ = ff_output + hidden_states return hidden_states class a_ ( nn.Module ): def __init__( self :List[str] , _lowercase :int , _lowercase :Optional[int] = None , _lowercase :int = 4 , _lowercase :float = 0.0 , _lowercase :str = "geglu" , _lowercase :bool = False , ) -> int: super().__init__() UpperCAmelCase_ = int(dim * mult) UpperCAmelCase_ = dim_out if dim_out is not None else dim if activation_fn == "gelu": UpperCAmelCase_ = GELU(_lowercase , _lowercase) if activation_fn == "gelu-approximate": UpperCAmelCase_ = GELU(_lowercase , _lowercase , approximate='''tanh''') elif activation_fn == "geglu": UpperCAmelCase_ = GEGLU(_lowercase , _lowercase) elif activation_fn == "geglu-approximate": UpperCAmelCase_ = ApproximateGELU(_lowercase , _lowercase) UpperCAmelCase_ = nn.ModuleList([]) # project in self.net.append(_lowercase) # project dropout self.net.append(nn.Dropout(_lowercase)) # project out self.net.append(nn.Linear(_lowercase , _lowercase)) # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout if final_dropout: self.net.append(nn.Dropout(_lowercase)) def __a ( self :Union[str, Any] , _lowercase :Dict) -> Optional[Any]: for module in self.net: UpperCAmelCase_ = module(_lowercase) return hidden_states class a_ ( nn.Module ): def __init__( self :Any , _lowercase :int , _lowercase :int , _lowercase :str = "none") -> int: super().__init__() UpperCAmelCase_ = nn.Linear(_lowercase , _lowercase) UpperCAmelCase_ = approximate def __a ( self :Any , _lowercase :int) -> List[Any]: if gate.device.type != "mps": return F.gelu(_lowercase , approximate=self.approximate) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa) , approximate=self.approximate).to(dtype=gate.dtype) def __a ( self :List[str] , _lowercase :List[Any]) -> Dict: UpperCAmelCase_ = self.proj(_lowercase) UpperCAmelCase_ = self.gelu(_lowercase) return hidden_states class a_ ( nn.Module ): def __init__( self :Optional[int] , _lowercase :int , _lowercase :int) -> List[Any]: super().__init__() UpperCAmelCase_ = nn.Linear(_lowercase , dim_out * 2) def __a ( self :Tuple , _lowercase :Tuple) -> Tuple: if gate.device.type != "mps": return F.gelu(_lowercase) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa)).to(dtype=gate.dtype) def __a ( self :str , _lowercase :str) -> Union[str, Any]: UpperCAmelCase_ , UpperCAmelCase_ = self.proj(_lowercase).chunk(2 , dim=-1) return hidden_states * self.gelu(_lowercase) class a_ ( nn.Module ): def __init__( self :int , _lowercase :int , _lowercase :int) -> Any: super().__init__() UpperCAmelCase_ = nn.Linear(_lowercase , _lowercase) def __a ( self :int , _lowercase :List[str]) -> int: UpperCAmelCase_ = self.proj(_lowercase) return x * torch.sigmoid(1.702 * x) class a_ ( nn.Module ): def __init__( self :Dict , _lowercase :str , _lowercase :List[str]) -> Union[str, Any]: super().__init__() UpperCAmelCase_ = nn.Embedding(_lowercase , _lowercase) UpperCAmelCase_ = nn.SiLU() UpperCAmelCase_ = nn.Linear(_lowercase , embedding_dim * 2) UpperCAmelCase_ = nn.LayerNorm(_lowercase , elementwise_affine=_lowercase) def __a ( self :Dict , _lowercase :Dict , _lowercase :List[Any]) -> str: UpperCAmelCase_ = self.linear(self.silu(self.emb(_lowercase))) UpperCAmelCase_ , UpperCAmelCase_ = torch.chunk(_lowercase , 2) UpperCAmelCase_ = self.norm(_lowercase) * (1 + scale) + shift return x class a_ ( nn.Module ): def __init__( self :Optional[int] , _lowercase :str , _lowercase :Optional[int]) -> Optional[Any]: super().__init__() UpperCAmelCase_ = CombinedTimestepLabelEmbeddings(_lowercase , _lowercase) UpperCAmelCase_ = nn.SiLU() UpperCAmelCase_ = nn.Linear(_lowercase , 6 * embedding_dim , bias=_lowercase) UpperCAmelCase_ = nn.LayerNorm(_lowercase , elementwise_affine=_lowercase , eps=1E-6) def __a ( self :str , _lowercase :Any , _lowercase :List[str] , _lowercase :List[str] , _lowercase :int=None) -> Union[str, Any]: UpperCAmelCase_ = self.linear(self.silu(self.emb(_lowercase , _lowercase , hidden_dtype=_lowercase))) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = emb.chunk(6 , dim=1) UpperCAmelCase_ = self.norm(_lowercase) * (1 + scale_msa[:, None]) + shift_msa[:, None] return x, gate_msa, shift_mlp, scale_mlp, gate_mlp class a_ ( nn.Module ): def __init__( self :Any , _lowercase :int , _lowercase :int , _lowercase :int , _lowercase :Optional[str] = None , _lowercase :float = 1E-5) -> str: super().__init__() UpperCAmelCase_ = num_groups UpperCAmelCase_ = eps if act_fn is None: UpperCAmelCase_ = None else: UpperCAmelCase_ = get_activation(_lowercase) UpperCAmelCase_ = nn.Linear(_lowercase , out_dim * 2) def __a ( self :Optional[int] , _lowercase :str , _lowercase :Dict) -> Tuple: if self.act: UpperCAmelCase_ = self.act(_lowercase) UpperCAmelCase_ = self.linear(_lowercase) UpperCAmelCase_ = emb[:, :, None, None] UpperCAmelCase_ , UpperCAmelCase_ = emb.chunk(2 , dim=1) UpperCAmelCase_ = F.group_norm(_lowercase , self.num_groups , eps=self.eps) UpperCAmelCase_ = x * (1 + scale) + shift return x
344
from __future__ import annotations import string from itertools import cycle, product from pathlib import Path UpperCamelCase_ = ( string.ascii_letters + string.digits + string.punctuation + string.whitespace ) UpperCamelCase_ = [ord(letter) for letter in string.ascii_lowercase] UpperCamelCase_ = {ord(char) for char in VALID_CHARS} UpperCamelCase_ = ["the", "be", "to", "of", "and", "in", "that", "have"] def A ( __UpperCAmelCase , __UpperCAmelCase ) -> str | None: '''simple docstring''' UpperCAmelCase_ = "" UpperCAmelCase_ = 42 UpperCAmelCase_ = 42 UpperCAmelCase_ = 42 for keychar, cipherchar in zip(cycle(__UpperCAmelCase ) , __UpperCAmelCase ): UpperCAmelCase_ = cipherchar ^ keychar if decodedchar not in VALID_INTS: return None decoded += chr(__UpperCAmelCase ) return decoded def A ( __UpperCAmelCase ) -> list[str]: '''simple docstring''' UpperCAmelCase_ = [] for key in product(__UpperCAmelCase , repeat=3 ): UpperCAmelCase_ = try_key(__UpperCAmelCase , __UpperCAmelCase ) if encoded is not None: possibles.append(__UpperCAmelCase ) return possibles def A ( __UpperCAmelCase , __UpperCAmelCase ) -> list[str]: '''simple docstring''' return [possible for possible in possibles if common_word in possible.lower()] def A ( __UpperCAmelCase = "p059_cipher.txt" ) -> int: '''simple docstring''' UpperCAmelCase_ = 42 UpperCAmelCase_ = 42 UpperCAmelCase_ = 42 UpperCAmelCase_ = 42 UpperCAmelCase_ = Path(__UpperCAmelCase ).parent.joinpath(__UpperCAmelCase ).read_text(encoding='''utf-8''' ) UpperCAmelCase_ = [int(__UpperCAmelCase ) for number in data.strip().split(''',''' )] UpperCAmelCase_ = filter_valid_chars(__UpperCAmelCase ) for common_word in COMMON_WORDS: UpperCAmelCase_ = filter_common_word(__UpperCAmelCase , __UpperCAmelCase ) if len(__UpperCAmelCase ) == 1: break UpperCAmelCase_ = possibles[0] return sum(ord(__UpperCAmelCase ) for char in decoded_text ) if __name__ == "__main__": print(f"{solution() = }")
344
1
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = {"""openai-gpt""": """https://huggingface.co/openai-gpt/resolve/main/config.json"""} class a__ ( lowerCamelCase_ ): """simple docstring""" __lowerCamelCase = 'openai-gpt' __lowerCamelCase = { 'max_position_embeddings': 'n_positions', 'hidden_size': 'n_embd', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self , lowercase=40478 , lowercase=512 , lowercase=768 , lowercase=12 , lowercase=12 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=0.1 , lowercase=1e-5 , lowercase=0.02 , lowercase="cls_index" , lowercase=True , lowercase=None , lowercase=True , lowercase=0.1 , **lowercase , ) -> List[str]: '''simple docstring''' A__ = vocab_size A__ = n_positions A__ = n_embd A__ = n_layer A__ = n_head A__ = afn A__ = resid_pdrop A__ = embd_pdrop A__ = attn_pdrop A__ = layer_norm_epsilon A__ = initializer_range A__ = summary_type A__ = summary_use_proj A__ = summary_activation A__ = summary_first_dropout A__ = summary_proj_to_labels super().__init__(**_UpperCamelCase )
68
'''simple docstring''' import argparse import os import re _snake_case = 'src/transformers' # Pattern that looks at the indentation in a line. _snake_case = re.compile(r'^(\s*)\S') # Pattern that matches `"key":" and puts `key` in group 0. _snake_case = re.compile(r'^\s*"([^"]+)":') # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. _snake_case = re.compile(r'^\s*_import_structure\["([^"]+)"\]') # Pattern that matches `"key",` and puts `key` in group 0. _snake_case = re.compile(r'^\s*"([^"]+)",\s*$') # Pattern that matches any `[stuff]` and puts `stuff` in group 0. _snake_case = re.compile(r'\[([^\]]+)\]') def _A ( snake_case ) -> str: _lowercase : Union[str, Any] = _re_indent.search(snake_case ) return "" if search is None else search.groups()[0] def _A ( snake_case , snake_case="" , snake_case=None , snake_case=None ) -> Optional[int]: _lowercase : List[str] = 0 _lowercase : str = code.split("\n" ) if start_prompt is not None: while not lines[index].startswith(snake_case ): index += 1 _lowercase : Optional[int] = ["\n".join(lines[:index] )] else: _lowercase : Dict = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). _lowercase : Any = [lines[index]] index += 1 while index < len(snake_case ) and (end_prompt is None or not lines[index].startswith(snake_case )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(snake_case ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + " " ): current_block.append(lines[index] ) blocks.append("\n".join(snake_case ) ) if index < len(snake_case ) - 1: _lowercase : int = [lines[index + 1]] index += 1 else: _lowercase : Optional[int] = [] else: blocks.append("\n".join(snake_case ) ) _lowercase : Optional[Any] = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(snake_case ) > 0: blocks.append("\n".join(snake_case ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(snake_case ): blocks.append("\n".join(lines[index:] ) ) return blocks def _A ( snake_case ) -> Optional[int]: def _inner(snake_case ): return key(snake_case ).lower().replace("_" , "" ) return _inner def _A ( snake_case , snake_case=None ) -> List[str]: # If no key is provided, we use a noop. def noop(snake_case ): return x if key is None: _lowercase : Optional[int] = noop # Constants are all uppercase, they go first. _lowercase : Dict = [obj for obj in objects if key(snake_case ).isupper()] # Classes are not all uppercase but start with a capital, they go second. _lowercase : int = [obj for obj in objects if key(snake_case )[0].isupper() and not key(snake_case ).isupper()] # Functions begin with a lowercase, they go last. _lowercase : Dict = [obj for obj in objects if not key(snake_case )[0].isupper()] _lowercase : Union[str, Any] = ignore_underscore(snake_case ) return sorted(snake_case , key=snake_case ) + sorted(snake_case , key=snake_case ) + sorted(snake_case , key=snake_case ) def _A ( snake_case ) -> List[Any]: # This inner function sort imports between [ ]. def _replace(snake_case ): _lowercase : Optional[Any] = match.groups()[0] if "," not in imports: return F'''[{imports}]''' _lowercase : str = [part.strip().replace("\"" , "" ) for part in imports.split("," )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: _lowercase : Optional[int] = keys[:-1] return "[" + ", ".join([F'''"{k}"''' for k in sort_objects(snake_case )] ) + "]" _lowercase : Tuple = import_statement.split("\n" ) if len(snake_case ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. _lowercase : Union[str, Any] = 2 if lines[1].strip() == "[" else 1 _lowercase : Optional[int] = [(i, _re_strip_line.search(snake_case ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] _lowercase : Any = sort_objects(snake_case , key=lambda snake_case : x[1] ) _lowercase : Tuple = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(snake_case ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: _lowercase : Dict = _re_bracket_content.sub(_replace , lines[1] ) else: _lowercase : Optional[Any] = [part.strip().replace("\"" , "" ) for part in lines[1].split("," )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: _lowercase : Optional[int] = keys[:-1] _lowercase : Optional[Any] = get_indent(lines[1] ) + ", ".join([F'''"{k}"''' for k in sort_objects(snake_case )] ) return "\n".join(snake_case ) else: # Finally we have to deal with imports fitting on one line _lowercase : Optional[Any] = _re_bracket_content.sub(_replace , snake_case ) return import_statement def _A ( snake_case , snake_case=True ) -> Dict: with open(snake_case , encoding="utf-8" ) as f: _lowercase : Dict = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 _lowercase : Optional[Any] = split_code_in_indented_blocks( snake_case , start_prompt="_import_structure = {" , end_prompt="if TYPE_CHECKING:" ) # We ignore block 0 (everything untils start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(snake_case ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. _lowercase : Dict = main_blocks[block_idx] _lowercase : Union[str, Any] = block.split("\n" ) # Get to the start of the imports. _lowercase : int = 0 while line_idx < len(snake_case ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: _lowercase : Optional[Any] = len(snake_case ) else: line_idx += 1 if line_idx >= len(snake_case ): continue # Ignore beginning and last line: they don't contain anything. _lowercase : Any = "\n".join(block_lines[line_idx:-1] ) _lowercase : int = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. _lowercase : Optional[int] = split_code_in_indented_blocks(snake_case , indent_level=snake_case ) # We have two categories of import key: list or _import_structure[key].append/extend _lowercase : Union[str, Any] = _re_direct_key if "_import_structure = {" in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. _lowercase : str = [(pattern.search(snake_case ).groups()[0] if pattern.search(snake_case ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. _lowercase : List[str] = [(i, key) for i, key in enumerate(snake_case ) if key is not None] _lowercase : Tuple = [x[0] for x in sorted(snake_case , key=lambda snake_case : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. _lowercase : Any = 0 _lowercase : str = [] for i in range(len(snake_case ) ): if keys[i] is None: reorderded_blocks.append(internal_blocks[i] ) else: _lowercase : Tuple = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reorderded_blocks.append(snake_case ) count += 1 # And we put our main block back together with its first and last line. _lowercase : int = "\n".join(block_lines[:line_idx] + reorderded_blocks + [block_lines[-1]] ) if code != "\n".join(snake_case ): if check_only: return True else: print(F'''Overwriting {file}.''' ) with open(snake_case , "w" , encoding="utf-8" ) as f: f.write("\n".join(snake_case ) ) def _A ( snake_case=True ) -> str: _lowercase : List[Any] = [] for root, _, files in os.walk(snake_case ): if "__init__.py" in files: _lowercase : Tuple = sort_imports(os.path.join(snake_case , "__init__.py" ) , check_only=snake_case ) if result: _lowercase : Any = [os.path.join(snake_case , "__init__.py" )] if len(snake_case ) > 0: raise ValueError(F'''Would overwrite {len(snake_case )} files, run `make style`.''' ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() parser.add_argument('--check_only', action='store_true', help='Whether to only check or fix style.') _snake_case = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
250
0
"""simple docstring""" import argparse import torch from transformers import GPTaConfig, GPTaModel, load_tf_weights_in_gpta from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def snake_case_(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Optional[int]: """simple docstring""" if gpta_config_file == "": _snake_case = GPTaConfig() else: _snake_case = GPTaConfig.from_json_file(_UpperCamelCase ) _snake_case = GPTaModel(_UpperCamelCase ) # Load weights from numpy load_tf_weights_in_gpta(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # Save pytorch-model _snake_case = pytorch_dump_folder_path + '''/''' + WEIGHTS_NAME _snake_case = pytorch_dump_folder_path + '''/''' + CONFIG_NAME print(F"""Save PyTorch model to {pytorch_weights_dump_path}""" ) torch.save(model.state_dict() , _UpperCamelCase ) print(F"""Save configuration file to {pytorch_config_dump_path}""" ) with open(_UpperCamelCase , '''w''' , encoding='''utf-8''' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": __A = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--gpt2_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--gpt2_config_file''', default='''''', type=str, help=( '''An optional config json file corresponding to the pre-trained OpenAI model. \n''' '''This specifies the model architecture.''' ), ) __A = parser.parse_args() convert_gpta_checkpoint_to_pytorch(args.gpta_checkpoint_path, args.gpta_config_file, args.pytorch_dump_folder_path)
368
def snake_case_(_UpperCamelCase , _UpperCamelCase ) -> str: """simple docstring""" if a < 0 or b < 0: raise ValueError('''the value of both inputs must be positive''' ) _snake_case = str(bin(_UpperCamelCase ) )[2:] # remove the leading "0b" _snake_case = str(bin(_UpperCamelCase ) )[2:] _snake_case = max(len(_UpperCamelCase ) , len(_UpperCamelCase ) ) return "0b" + "".join( str(int('''1''' in (char_a, char_b) ) ) for char_a, char_b in zip(a_binary.zfill(_UpperCamelCase ) , b_binary.zfill(_UpperCamelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
278
0
import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class lowercase__( unittest.TestCase ): """simple docstring""" def _lowercase ( self : str ) -> List[str]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _lowercase ( self : str ) -> Optional[int]: lowercase_ = 1 lowercase_ = 3 lowercase_ = (3_2, 3_2) lowercase_ = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(SCREAMING_SNAKE_CASE_ ) return image @property def _lowercase ( self : Dict ) -> Tuple: torch.manual_seed(0 ) lowercase_ = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=3_2 , ) return model @property def _lowercase ( self : int ) -> List[Any]: torch.manual_seed(0 ) lowercase_ = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) return model @property def _lowercase ( self : Any ) -> int: torch.manual_seed(0 ) lowercase_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) return CLIPTextModel(SCREAMING_SNAKE_CASE_ ) @property def _lowercase ( self : Tuple ) -> int: def extract(*SCREAMING_SNAKE_CASE_ : List[str] , **SCREAMING_SNAKE_CASE_ : Optional[int] ): class lowercase__: """simple docstring""" def __init__( self : Dict ) -> List[Any]: lowercase_ = torch.ones([0] ) def _lowercase ( self : Tuple , SCREAMING_SNAKE_CASE_ : Union[str, Any] ) -> List[str]: self.pixel_values.to(SCREAMING_SNAKE_CASE_ ) return self return Out() return extract def _lowercase ( self : int ) -> Any: lowercase_ = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowercase_ = self.dummy_cond_unet lowercase_ = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='''scaled_linear''' , clip_sample=SCREAMING_SNAKE_CASE_ , set_alpha_to_one=SCREAMING_SNAKE_CASE_ , ) lowercase_ = self.dummy_vae lowercase_ = self.dummy_text_encoder lowercase_ = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) # make sure here that pndm scheduler skips prk lowercase_ = StableDiffusionPipeline( unet=SCREAMING_SNAKE_CASE_ , scheduler=SCREAMING_SNAKE_CASE_ , vae=SCREAMING_SNAKE_CASE_ , text_encoder=SCREAMING_SNAKE_CASE_ , tokenizer=SCREAMING_SNAKE_CASE_ , safety_checker=SCREAMING_SNAKE_CASE_ , feature_extractor=self.dummy_extractor , ) lowercase_ = sd_pipe.to(SCREAMING_SNAKE_CASE_ ) sd_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) lowercase_ = '''A painting of a squirrel eating a burger''' lowercase_ = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(0 ) lowercase_ = sd_pipe([prompt] , generator=SCREAMING_SNAKE_CASE_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' ) lowercase_ = output.images lowercase_ = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(0 ) lowercase_ = sd_pipe( [prompt] , generator=SCREAMING_SNAKE_CASE_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' , return_dict=SCREAMING_SNAKE_CASE_ , )[0] lowercase_ = image[0, -3:, -3:, -1] lowercase_ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) lowercase_ = np.array([0.57_56, 0.61_18, 0.50_05, 0.50_41, 0.54_71, 0.47_26, 0.49_76, 0.48_65, 0.48_64] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def _lowercase ( self : Tuple ) -> List[Any]: lowercase_ = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowercase_ = self.dummy_cond_unet lowercase_ = PNDMScheduler(skip_prk_steps=SCREAMING_SNAKE_CASE_ ) lowercase_ = self.dummy_vae lowercase_ = self.dummy_text_encoder lowercase_ = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) # make sure here that pndm scheduler skips prk lowercase_ = StableDiffusionPipeline( unet=SCREAMING_SNAKE_CASE_ , scheduler=SCREAMING_SNAKE_CASE_ , vae=SCREAMING_SNAKE_CASE_ , text_encoder=SCREAMING_SNAKE_CASE_ , tokenizer=SCREAMING_SNAKE_CASE_ , safety_checker=SCREAMING_SNAKE_CASE_ , feature_extractor=self.dummy_extractor , ) lowercase_ = sd_pipe.to(SCREAMING_SNAKE_CASE_ ) sd_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) lowercase_ = '''A painting of a squirrel eating a burger''' lowercase_ = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(0 ) lowercase_ = sd_pipe([prompt] , generator=SCREAMING_SNAKE_CASE_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' ) lowercase_ = output.images lowercase_ = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(0 ) lowercase_ = sd_pipe( [prompt] , generator=SCREAMING_SNAKE_CASE_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' , return_dict=SCREAMING_SNAKE_CASE_ , )[0] lowercase_ = image[0, -3:, -3:, -1] lowercase_ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) lowercase_ = np.array([0.51_25, 0.57_16, 0.48_28, 0.50_60, 0.56_50, 0.47_68, 0.51_85, 0.48_95, 0.49_93] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def _lowercase ( self : Optional[int] ) -> Optional[Any]: lowercase_ = StableDiffusionPipeline.from_pretrained( '''hf-internal-testing/tiny-stable-diffusion-lms-pipe''' , safety_checker=SCREAMING_SNAKE_CASE_ ) assert isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) assert isinstance(pipe.scheduler , SCREAMING_SNAKE_CASE_ ) assert pipe.safety_checker is None lowercase_ = pipe('''example prompt''' , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(SCREAMING_SNAKE_CASE_ ) lowercase_ = StableDiffusionPipeline.from_pretrained(SCREAMING_SNAKE_CASE_ ) # sanity check that the pipeline still works assert pipe.safety_checker is None lowercase_ = pipe('''example prompt''' , num_inference_steps=2 ).images[0] assert image is not None @unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' ) def _lowercase ( self : Optional[int] ) -> Dict: lowercase_ = self.dummy_cond_unet lowercase_ = PNDMScheduler(skip_prk_steps=SCREAMING_SNAKE_CASE_ ) lowercase_ = self.dummy_vae lowercase_ = self.dummy_text_encoder lowercase_ = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) # put models in fp16 lowercase_ = unet.half() lowercase_ = vae.half() lowercase_ = bert.half() # make sure here that pndm scheduler skips prk lowercase_ = StableDiffusionPipeline( unet=SCREAMING_SNAKE_CASE_ , scheduler=SCREAMING_SNAKE_CASE_ , vae=SCREAMING_SNAKE_CASE_ , text_encoder=SCREAMING_SNAKE_CASE_ , tokenizer=SCREAMING_SNAKE_CASE_ , safety_checker=SCREAMING_SNAKE_CASE_ , feature_extractor=self.dummy_extractor , ) lowercase_ = sd_pipe.to(SCREAMING_SNAKE_CASE_ ) sd_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) lowercase_ = '''A painting of a squirrel eating a burger''' lowercase_ = sd_pipe([prompt] , num_inference_steps=2 , output_type='''np''' ).images assert image.shape == (1, 6_4, 6_4, 3) @nightly @require_torch_gpu class lowercase__( unittest.TestCase ): """simple docstring""" def _lowercase ( self : List[str] ) -> List[str]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowercase ( self : Optional[Any] ) -> Any: lowercase_ = StableDiffusionPipeline.from_pretrained('''runwayml/stable-diffusion-v1-5''' , safety_checker=SCREAMING_SNAKE_CASE_ ) lowercase_ = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) lowercase_ = sd_pipe.to(SCREAMING_SNAKE_CASE_ ) sd_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) lowercase_ = ( '''portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle''' ''' coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with''' ''' anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and''' ''' children from bahnhof zoo, detailed ''' ) lowercase_ = 4_0_0_3_6_6_0_3_4_6 lowercase_ = 7 # without safety guidance (sld_guidance_scale = 0) lowercase_ = torch.manual_seed(SCREAMING_SNAKE_CASE_ ) lowercase_ = sd_pipe( [prompt] , generator=SCREAMING_SNAKE_CASE_ , guidance_scale=SCREAMING_SNAKE_CASE_ , num_inference_steps=5_0 , output_type='''np''' , width=5_1_2 , height=5_1_2 , sld_guidance_scale=0 , ) lowercase_ = output.images lowercase_ = image[0, -3:, -3:, -1] lowercase_ = [0.22_78, 0.22_31, 0.22_49, 0.23_33, 0.23_03, 0.18_85, 0.22_73, 0.21_44, 0.21_76] assert image.shape == (1, 5_1_2, 5_1_2, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 # without safety guidance (strong configuration) lowercase_ = torch.manual_seed(SCREAMING_SNAKE_CASE_ ) lowercase_ = sd_pipe( [prompt] , generator=SCREAMING_SNAKE_CASE_ , guidance_scale=SCREAMING_SNAKE_CASE_ , num_inference_steps=5_0 , output_type='''np''' , width=5_1_2 , height=5_1_2 , sld_guidance_scale=2_0_0_0 , sld_warmup_steps=7 , sld_threshold=0.0_25 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) lowercase_ = output.images lowercase_ = image[0, -3:, -3:, -1] lowercase_ = [0.23_83, 0.22_76, 0.2_36, 0.21_92, 0.21_86, 0.20_53, 0.19_71, 0.19_01, 0.17_19] assert image.shape == (1, 5_1_2, 5_1_2, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _lowercase ( self : Optional[Any] ) -> Dict: lowercase_ = StableDiffusionPipeline.from_pretrained('''runwayml/stable-diffusion-v1-5''' , safety_checker=SCREAMING_SNAKE_CASE_ ) lowercase_ = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) lowercase_ = sd_pipe.to(SCREAMING_SNAKE_CASE_ ) sd_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) lowercase_ = '''padme amidala taking a bath artwork, safe for work, no nudity''' lowercase_ = 2_7_3_4_9_7_1_7_5_5 lowercase_ = 7 lowercase_ = torch.manual_seed(SCREAMING_SNAKE_CASE_ ) lowercase_ = sd_pipe( [prompt] , generator=SCREAMING_SNAKE_CASE_ , guidance_scale=SCREAMING_SNAKE_CASE_ , num_inference_steps=5_0 , output_type='''np''' , width=5_1_2 , height=5_1_2 , sld_guidance_scale=0 , ) lowercase_ = output.images lowercase_ = image[0, -3:, -3:, -1] lowercase_ = [0.35_02, 0.36_22, 0.33_96, 0.36_42, 0.34_78, 0.33_18, 0.35, 0.33_48, 0.32_97] assert image.shape == (1, 5_1_2, 5_1_2, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 lowercase_ = torch.manual_seed(SCREAMING_SNAKE_CASE_ ) lowercase_ = sd_pipe( [prompt] , generator=SCREAMING_SNAKE_CASE_ , guidance_scale=SCREAMING_SNAKE_CASE_ , num_inference_steps=5_0 , output_type='''np''' , width=5_1_2 , height=5_1_2 , sld_guidance_scale=2_0_0_0 , sld_warmup_steps=7 , sld_threshold=0.0_25 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) lowercase_ = output.images lowercase_ = image[0, -3:, -3:, -1] lowercase_ = [0.55_31, 0.52_06, 0.48_95, 0.51_56, 0.51_82, 0.47_51, 0.48_02, 0.48_03, 0.44_43] assert image.shape == (1, 5_1_2, 5_1_2, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _lowercase ( self : str ) -> Tuple: lowercase_ = StableDiffusionPipeline.from_pretrained('''runwayml/stable-diffusion-v1-5''' ) lowercase_ = sd_pipe.to(SCREAMING_SNAKE_CASE_ ) sd_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) lowercase_ = ( '''the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c.''' ''' leyendecker''' ) lowercase_ = 1_0_4_4_3_5_5_2_3_4 lowercase_ = 1_2 lowercase_ = torch.manual_seed(SCREAMING_SNAKE_CASE_ ) lowercase_ = sd_pipe( [prompt] , generator=SCREAMING_SNAKE_CASE_ , guidance_scale=SCREAMING_SNAKE_CASE_ , num_inference_steps=5_0 , output_type='''np''' , width=5_1_2 , height=5_1_2 , sld_guidance_scale=0 , ) lowercase_ = output.images lowercase_ = image[0, -3:, -3:, -1] lowercase_ = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] ) assert image.shape == (1, 5_1_2, 5_1_2, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-7 lowercase_ = torch.manual_seed(SCREAMING_SNAKE_CASE_ ) lowercase_ = sd_pipe( [prompt] , generator=SCREAMING_SNAKE_CASE_ , guidance_scale=SCREAMING_SNAKE_CASE_ , num_inference_steps=5_0 , output_type='''np''' , width=5_1_2 , height=5_1_2 , sld_guidance_scale=2_0_0_0 , sld_warmup_steps=7 , sld_threshold=0.0_25 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) lowercase_ = output.images lowercase_ = image[0, -3:, -3:, -1] lowercase_ = np.array([0.58_18, 0.62_85, 0.68_35, 0.60_19, 0.6_25, 0.67_54, 0.60_96, 0.63_34, 0.65_61] ) assert image.shape == (1, 5_1_2, 5_1_2, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
30
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase_ = {'''configuration_vit_msn''': ['''VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ViTMSNConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = [ '''VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ViTMSNModel''', '''ViTMSNForImageClassification''', '''ViTMSNPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_msn import ( VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMSNForImageClassification, ViTMSNModel, ViTMSNPreTrainedModel, ) else: import sys lowerCamelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
244
0
def __UpperCamelCase ( lowerCAmelCase__ : Union[str, Any] ): __a : Tuple = [] __a : Optional[int] = [] __a : Dict = { '''^''': 3, '''*''': 2, '''/''': 2, '''%''': 2, '''+''': 1, '''-''': 1, } # Priority of each operator __a : Tuple = len(lowerCAmelCase__ ) if (len(lowerCAmelCase__ ) > 7) else 7 # Print table header for output print( '''Symbol'''.center(8 ) , '''Stack'''.center(lowerCAmelCase__ ) , '''Postfix'''.center(lowerCAmelCase__ ) , sep=''' | ''' , ) print('''-''' * (print_width * 3 + 7) ) for x in infix: if x.isalpha() or x.isdigit(): post_fix.append(lowerCAmelCase__ ) # if x is Alphabet / Digit, add it to Postfix elif x == "(": stack.append(lowerCAmelCase__ ) # if x is "(" push to Stack elif x == ")": # if x is ")" pop stack until "(" is encountered while stack[-1] != "(": post_fix.append(stack.pop() ) # Pop stack & add the content to Postfix stack.pop() else: if len(lowerCAmelCase__ ) == 0: stack.append(lowerCAmelCase__ ) # If stack is empty, push x to stack else: # while priority of x is not > priority of element in the stack while len(lowerCAmelCase__ ) > 0 and priority[x] <= priority[stack[-1]]: post_fix.append(stack.pop() ) # pop stack & add to Postfix stack.append(lowerCAmelCase__ ) # push x to stack print( x.center(8 ) , (''''''.join(lowerCAmelCase__ )).ljust(lowerCAmelCase__ ) , (''''''.join(lowerCAmelCase__ )).ljust(lowerCAmelCase__ ) , sep=''' | ''' , ) # Output in tabular format while len(lowerCAmelCase__ ) > 0: # while stack is not empty post_fix.append(stack.pop() ) # pop stack & add to Postfix print( ''' '''.center(8 ) , (''''''.join(lowerCAmelCase__ )).ljust(lowerCAmelCase__ ) , (''''''.join(lowerCAmelCase__ )).ljust(lowerCAmelCase__ ) , sep=''' | ''' , ) # Output in tabular format return "".join(lowerCAmelCase__ ) # return Postfix as str def __UpperCamelCase ( lowerCAmelCase__ : int ): __a : Dict = list(infix[::-1] ) # reverse the infix equation for i in range(len(lowerCAmelCase__ ) ): if infix[i] == "(": __a : Union[str, Any] = ''')''' # change "(" to ")" elif infix[i] == ")": __a : List[Any] = '''(''' # change ")" to "(" return (infix_2_postfix(''''''.join(lowerCAmelCase__ ) ))[ ::-1 ] # call infix_2_postfix on Infix, return reverse of Postfix if __name__ == "__main__": lowercase__ =input('\nEnter an Infix Equation = ') # Input an Infix equation lowercase__ =''.join(Infix.split()) # Remove spaces from the input print('\n\t', Infix, '(Infix) -> ', infix_2_prefix(Infix), '(Prefix)')
90
from __future__ import annotations # This is the precision for this function which can be altered. # It is recommended for users to keep this number greater than or equal to 10. lowercase__ =10 def __UpperCamelCase ( lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : list[int] , lowerCAmelCase__ : int ): for i in range(lowerCAmelCase__ , lowerCAmelCase__ ): if array[i] == target: return i return -1 def __UpperCamelCase ( lowerCAmelCase__ : list[int] , lowerCAmelCase__ : int ): __a : List[Any] = 0 __a : Union[str, Any] = len(lowerCAmelCase__ ) while left <= right: if right - left < precision: return lin_search(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) __a : str = (left + right) // 3 + 1 __a : List[Any] = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: __a : List[str] = one_third - 1 elif array[two_third] < target: __a : List[str] = two_third + 1 else: __a : Dict = one_third + 1 __a : Any = two_third - 1 else: return -1 def __UpperCamelCase ( lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : list[int] , lowerCAmelCase__ : int ): if left < right: if right - left < precision: return lin_search(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) __a : Union[str, Any] = (left + right) // 3 + 1 __a : Optional[Any] = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: return rec_ternary_search(lowerCAmelCase__ , one_third - 1 , lowerCAmelCase__ , lowerCAmelCase__ ) elif array[two_third] < target: return rec_ternary_search(two_third + 1 , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) else: return rec_ternary_search(one_third + 1 , two_third - 1 , lowerCAmelCase__ , lowerCAmelCase__ ) else: return -1 if __name__ == "__main__": import doctest doctest.testmod() lowercase__ =input('Enter numbers separated by comma:\n').strip() lowercase__ =[int(item.strip()) for item in user_input.split(',')] assert collection == sorted(collection), F"List must be ordered.\n{collection}." lowercase__ =int(input('Enter the number to be found in the list:\n').strip()) lowercase__ =ite_ternary_search(collection, target) lowercase__ =rec_ternary_search(0, len(collection) - 1, collection, target) if resulta != -1: print(F"""Iterative search: {target} found at positions: {resulta}""") print(F"""Recursive search: {target} found at positions: {resulta}""") else: print('Not found')
90
1
"""simple docstring""" import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin class lowerCAmelCase__ ( unittest.TestCase , UpperCAmelCase__ ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : Dict): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[Any] = load_tool('''text-classification''') self.tool.setup() SCREAMING_SNAKE_CASE_ : Tuple = load_tool('''text-classification''' , remote=lowercase_) def _SCREAMING_SNAKE_CASE ( self : int): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Dict = self.tool('''That\'s quite cool''' , ['''positive''', '''negative''']) self.assertEqual(lowercase_ , '''positive''') def _SCREAMING_SNAKE_CASE ( self : Any): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[Any] = self.remote_tool('''That\'s quite cool''' , ['''positive''', '''negative''']) self.assertEqual(lowercase_ , '''positive''') def _SCREAMING_SNAKE_CASE ( self : List[Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : str = self.tool(text='''That\'s quite cool''' , labels=['''positive''', '''negative''']) self.assertEqual(lowercase_ , '''positive''') def _SCREAMING_SNAKE_CASE ( self : List[Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Dict = self.remote_tool(text='''That\'s quite cool''' , labels=['''positive''', '''negative''']) self.assertEqual(lowercase_ , '''positive''')
91
"""simple docstring""" from math import factorial def _A (__a = 20 ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = 2 * n # middle entry of odd rows starting at row 3 is the solution for n = 1, # 2, 3,... SCREAMING_SNAKE_CASE_ : List[str] = n // 2 return int(factorial(__a ) / (factorial(__a ) * factorial(n - k )) ) if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution(20)) else: try: UpperCAmelCase_ : List[str] = int(sys.argv[1]) print(solution(n)) except ValueError: print("""Invalid entry - please enter a number.""")
91
1
'''simple docstring''' from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass class __SCREAMING_SNAKE_CASE ( lowerCamelCase ): snake_case_ = 42 snake_case_ = 42 snake_case_ = None class __SCREAMING_SNAKE_CASE ( lowerCamelCase , lowerCamelCase ): snake_case_ = 2 @register_to_config def __init__( self : List[str] , __lowercase : float = 0.02 , __lowercase : float = 1_00 , __lowercase : float = 1.007 , __lowercase : float = 80 , __lowercase : float = 0.05 , __lowercase : float = 50 , ) -> Optional[int]: # standard deviation of the initial noise distribution SCREAMING_SNAKE_CASE__ : List[Any] =sigma_max # setable values SCREAMING_SNAKE_CASE__ : Dict =None SCREAMING_SNAKE_CASE__ : Dict =None SCREAMING_SNAKE_CASE__ : int =None # sigma(t_i) def __magic_name__ ( self : Any , __lowercase : torch.FloatTensor , __lowercase : Optional[int] = None ) -> torch.FloatTensor: return sample def __magic_name__ ( self : Union[str, Any] , __lowercase : int , __lowercase : Union[str, torch.device] = None ) -> List[Any]: SCREAMING_SNAKE_CASE__ : Optional[int] =num_inference_steps SCREAMING_SNAKE_CASE__ : int =np.arange(0 , self.num_inference_steps )[::-1].copy() SCREAMING_SNAKE_CASE__ : int =torch.from_numpy(__A ).to(__A ) SCREAMING_SNAKE_CASE__ : Tuple =[ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in self.timesteps ] SCREAMING_SNAKE_CASE__ : Any =torch.tensor(__A , dtype=torch.floataa , device=__A ) def __magic_name__ ( self : List[Any] , __lowercase : torch.FloatTensor , __lowercase : float , __lowercase : Optional[torch.Generator] = None ) -> Tuple[torch.FloatTensor, float]: if self.config.s_min <= sigma <= self.config.s_max: SCREAMING_SNAKE_CASE__ : List[Any] =min(self.config.s_churn / self.num_inference_steps , 2**0.5 - 1 ) else: SCREAMING_SNAKE_CASE__ : Any =0 # sample eps ~ N(0, S_noise^2 * I) SCREAMING_SNAKE_CASE__ : Any =self.config.s_noise * randn_tensor(sample.shape , generator=__A ).to(sample.device ) SCREAMING_SNAKE_CASE__ : Tuple =sigma + gamma * sigma SCREAMING_SNAKE_CASE__ : int =sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def __magic_name__ ( self : Optional[Any] , __lowercase : torch.FloatTensor , __lowercase : float , __lowercase : float , __lowercase : torch.FloatTensor , __lowercase : bool = True , ) -> Union[KarrasVeOutput, Tuple]: SCREAMING_SNAKE_CASE__ : Optional[Any] =sample_hat + sigma_hat * model_output SCREAMING_SNAKE_CASE__ : Dict =(sample_hat - pred_original_sample) / sigma_hat SCREAMING_SNAKE_CASE__ : Any =sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=__A , derivative=__A , pred_original_sample=__A ) def __magic_name__ ( self : Dict , __lowercase : torch.FloatTensor , __lowercase : float , __lowercase : float , __lowercase : torch.FloatTensor , __lowercase : torch.FloatTensor , __lowercase : torch.FloatTensor , __lowercase : bool = True , ) -> Union[KarrasVeOutput, Tuple]: SCREAMING_SNAKE_CASE__ : List[Any] =sample_prev + sigma_prev * model_output SCREAMING_SNAKE_CASE__ : List[str] =(sample_prev - pred_original_sample) / sigma_prev SCREAMING_SNAKE_CASE__ : Any =sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=__A , derivative=__A , pred_original_sample=__A ) def __magic_name__ ( self : Any , __lowercase : List[Any] , __lowercase : int , __lowercase : int ) -> int: raise NotImplementedError()
359
'''simple docstring''' from datetime import datetime as dt import os from github import Github a_ = [ 'good first issue', 'good second issue', 'good difficult issue', 'feature request', 'new model', 'wip', ] def _a( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] =Github(os.environ['''GITHUB_TOKEN'''] ) SCREAMING_SNAKE_CASE__ : List[Any] =g.get_repo('''huggingface/transformers''' ) SCREAMING_SNAKE_CASE__ : List[Any] =repo.get_issues(state='''open''' ) for issue in open_issues: SCREAMING_SNAKE_CASE__ : List[Any] =sorted([comment for comment in issue.get_comments()], key=lambda UpperCamelCase__ : i.created_at, reverse=UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : Dict =comments[0] if len(UpperCamelCase__ ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 3_0 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.") issue.edit(state='''closed''' ) elif ( (dt.utcnow() - issue.updated_at).days > 2_3 and (dt.utcnow() - issue.created_at).days >= 3_0 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would add stale comment to {issue.number}") issue.create_comment( '''This issue has been automatically marked as stale because it has not had ''' '''recent activity. If you think this still needs to be addressed ''' '''please comment on this thread.\n\nPlease note that issues that do not follow the ''' '''[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) ''' '''are likely to be ignored.''' ) if __name__ == "__main__": main()
222
0
'''simple docstring''' import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import BatchEncoding, PreTrainedTokenizer from ...utils import logging UpperCamelCase__ : Tuple = logging.get_logger(__name__) UpperCamelCase__ : int = '▁' UpperCamelCase__ : str = { 'vocab_file': 'vocab.json', 'spm_file': 'sentencepiece.bpe.model', 'tokenizer_config_file': 'tokenizer_config.json', } UpperCamelCase__ : List[str] = { 'vocab_file': { 'facebook/m2m100_418M': 'https://huggingface.co/facebook/m2m100_418M/resolve/main/vocab.json', 'facebook/m2m100_1.2B': 'https://huggingface.co/facebook/m2m100_1.2B/resolve/main/vocab.json', }, 'spm_file': { 'facebook/m2m100_418M': 'https://huggingface.co/facebook/m2m100_418M/resolve/main/sentencepiece.bpe.model', 'facebook/m2m100_1.2B': 'https://huggingface.co/facebook/m2m100_1.2B/resolve/main/sentencepiece.bpe.model', }, 'tokenizer_config_file': { 'facebook/m2m100_418M': 'https://huggingface.co/facebook/m2m100_418M/resolve/main/tokenizer_config.json', 'facebook/m2m100_1.2B': 'https://huggingface.co/facebook/m2m100_1.2B/resolve/main/tokenizer_config.json', }, } UpperCamelCase__ : Union[str, Any] = { 'facebook/m2m100_418M': 1_024, } # fmt: off UpperCamelCase__ : Optional[Any] = { 'm2m100': ['af', 'am', 'ar', 'ast', 'az', 'ba', 'be', 'bg', 'bn', 'br', 'bs', 'ca', 'ceb', 'cs', 'cy', 'da', 'de', 'el', 'en', 'es', 'et', 'fa', 'ff', 'fi', 'fr', 'fy', 'ga', 'gd', 'gl', 'gu', 'ha', 'he', 'hi', 'hr', 'ht', 'hu', 'hy', 'id', 'ig', 'ilo', 'is', 'it', 'ja', 'jv', 'ka', 'kk', 'km', 'kn', 'ko', 'lb', 'lg', 'ln', 'lo', 'lt', 'lv', 'mg', 'mk', 'ml', 'mn', 'mr', 'ms', 'my', 'ne', 'nl', 'no', 'ns', 'oc', 'or', 'pa', 'pl', 'ps', 'pt', 'ro', 'ru', 'sd', 'si', 'sk', 'sl', 'so', 'sq', 'sr', 'ss', 'su', 'sv', 'sw', 'ta', 'th', 'tl', 'tn', 'tr', 'uk', 'ur', 'uz', 'vi', 'wo', 'xh', 'yi', 'yo', 'zh', 'zu'], 'wmt21': ['en', 'ha', 'is', 'ja', 'cs', 'ru', 'zh', 'de'] } class _lowerCAmelCase ( __A ): """simple docstring""" lowerCamelCase = VOCAB_FILES_NAMES lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase = ['''input_ids''', '''attention_mask'''] lowerCamelCase = [] lowerCamelCase = [] def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase="<s>" , _lowerCamelCase="</s>" , _lowerCamelCase="</s>" , _lowerCamelCase="<pad>" , _lowerCamelCase="<unk>" , _lowerCamelCase="m2m100" , _lowerCamelCase = None , _lowerCamelCase=8 , **_lowerCamelCase , ) -> None: A_ : str = {} if sp_model_kwargs is None else sp_model_kwargs A_ : int = language_codes A_ : Union[str, Any] = FAIRSEQ_LANGUAGE_CODES[language_codes] A_ : Optional[int] = {lang_code: F"__{lang_code}__" for lang_code in fairseq_language_code} A_ : Optional[Any] = kwargs.get("""additional_special_tokens""" , [] ) kwargs["additional_special_tokens"] += [ self.get_lang_token(_lowerCamelCase ) for lang_code in fairseq_language_code if self.get_lang_token(_lowerCamelCase ) not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=_lowerCamelCase , tgt_lang=_lowerCamelCase , bos_token=_lowerCamelCase , eos_token=_lowerCamelCase , sep_token=_lowerCamelCase , unk_token=_lowerCamelCase , pad_token=_lowerCamelCase , language_codes=_lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , num_madeup_words=_lowerCamelCase , **_lowerCamelCase , ) A_ : str = vocab_file A_ : Dict = load_json(_lowerCamelCase ) A_ : List[Any] = {v: k for k, v in self.encoder.items()} A_ : str = spm_file A_ : str = load_spm(_lowerCamelCase , self.sp_model_kwargs ) A_ : Tuple = len(self.encoder ) A_ : Optional[int] = { self.get_lang_token(_lowerCamelCase ): self.encoder_size + i for i, lang_code in enumerate(_lowerCamelCase ) } A_ : Union[str, Any] = {lang_code: self.encoder_size + i for i, lang_code in enumerate(_lowerCamelCase )} A_ : List[Any] = {v: k for k, v in self.lang_token_to_id.items()} A_ : Union[str, Any] = src_lang if src_lang is not None else """en""" A_ : List[str] = tgt_lang A_ : Optional[Any] = self.get_lang_id(self._src_lang ) self.set_src_lang_special_tokens(self._src_lang ) A_ : Dict = num_madeup_words @property def UpperCAmelCase_ ( self ) -> int: return len(self.encoder ) + len(self.lang_token_to_id ) @property def UpperCAmelCase_ ( self ) -> str: return self._src_lang @src_lang.setter def UpperCAmelCase_ ( self , _lowerCamelCase ) -> None: A_ : List[str] = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def UpperCAmelCase_ ( self , _lowerCamelCase ) -> List[str]: return self.sp_model.encode(_lowerCamelCase , out_type=_lowerCamelCase ) def UpperCAmelCase_ ( self , _lowerCamelCase ) -> Tuple: if token in self.lang_token_to_id: return self.lang_token_to_id[token] return self.encoder.get(_lowerCamelCase , self.encoder[self.unk_token] ) def UpperCAmelCase_ ( self , _lowerCamelCase ) -> str: if index in self.id_to_lang_token: return self.id_to_lang_token[index] return self.decoder.get(_lowerCamelCase , self.unk_token ) def UpperCAmelCase_ ( self , _lowerCamelCase ) -> Optional[int]: A_ : Union[str, Any] = [] A_ : Union[str, Any] = """""" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(_lowerCamelCase ) + token A_ : Optional[Any] = [] else: current_sub_tokens.append(_lowerCamelCase ) out_string += self.sp_model.decode(_lowerCamelCase ) return out_string.strip() def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowerCamelCase , token_ids_a=_lowerCamelCase , already_has_special_tokens=_lowerCamelCase ) A_ : Tuple = [1] * len(self.prefix_tokens ) A_ : Optional[Any] = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(_lowerCamelCase )) + suffix_ones return prefix_ones + ([0] * len(_lowerCamelCase )) + ([0] * len(_lowerCamelCase )) + suffix_ones def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase = None ) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def UpperCAmelCase_ ( self ) -> Dict: A_ : Optional[Any] = {self.convert_ids_to_tokens(_lowerCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> Dict: A_ : Any = self.__dict__.copy() A_ : Union[str, Any] = None return state def __setstate__( self , _lowerCamelCase ) -> None: A_ : List[Any] = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): A_ : Tuple = {} A_ : Optional[Any] = load_spm(self.spm_file , self.sp_model_kwargs ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase = None ) -> Tuple[str]: A_ : Dict = Path(_lowerCamelCase ) if not save_dir.is_dir(): raise OSError(F"{save_directory} should be a directory" ) A_ : List[Any] = save_dir / ( (filename_prefix + """-""" if filename_prefix else """""") + self.vocab_files_names["""vocab_file"""] ) A_ : List[str] = save_dir / ( (filename_prefix + """-""" if filename_prefix else """""") + self.vocab_files_names["""spm_file"""] ) save_json(self.encoder , _lowerCamelCase ) if os.path.abspath(self.spm_file ) != os.path.abspath(_lowerCamelCase ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , _lowerCamelCase ) elif not os.path.isfile(self.spm_file ): with open(_lowerCamelCase , """wb""" ) as fi: A_ : int = self.sp_model.serialized_model_proto() fi.write(_lowerCamelCase ) return (str(_lowerCamelCase ), str(_lowerCamelCase )) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase = "en" , _lowerCamelCase = None , _lowerCamelCase = "ro" , **_lowerCamelCase , ) -> BatchEncoding: A_ : Tuple = src_lang A_ : Optional[Any] = tgt_lang self.set_src_lang_special_tokens(self.src_lang ) return super().prepare_seqaseq_batch(_lowerCamelCase , _lowerCamelCase , **_lowerCamelCase ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , **_lowerCamelCase ) -> Union[str, Any]: if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) A_ : List[Any] = src_lang A_ : List[Any] = self(_lowerCamelCase , add_special_tokens=_lowerCamelCase , **_lowerCamelCase ) A_ : Tuple = self.get_lang_id(_lowerCamelCase ) A_ : Any = tgt_lang_id return inputs def UpperCAmelCase_ ( self ) -> Optional[Any]: self.set_src_lang_special_tokens(self.src_lang ) def UpperCAmelCase_ ( self ) -> int: self.set_tgt_lang_special_tokens(self.tgt_lang ) def UpperCAmelCase_ ( self , _lowerCamelCase ) -> None: A_ : Union[str, Any] = self.get_lang_token(_lowerCamelCase ) A_ : Union[str, Any] = self.lang_token_to_id[lang_token] A_ : Any = [self.cur_lang_id] A_ : List[Any] = [self.eos_token_id] def UpperCAmelCase_ ( self , _lowerCamelCase ) -> None: A_ : List[str] = self.get_lang_token(_lowerCamelCase ) A_ : Dict = self.lang_token_to_id[lang_token] A_ : List[str] = [self.cur_lang_id] A_ : Union[str, Any] = [self.eos_token_id] def UpperCAmelCase_ ( self , _lowerCamelCase ) -> str: return self.lang_code_to_token[lang] def UpperCAmelCase_ ( self , _lowerCamelCase ) -> int: A_ : Tuple = self.get_lang_token(_lowerCamelCase ) return self.lang_token_to_id[lang_token] def UpperCAmelCase ( a_ , a_ ) -> sentencepiece.SentencePieceProcessor: """simple docstring""" A_ : Any = sentencepiece.SentencePieceProcessor(**a_ ) spm.Load(str(a_ ) ) return spm def UpperCAmelCase ( a_ ) -> Union[Dict, List]: """simple docstring""" with open(a_ , """r""" ) as f: return json.load(a_ ) def UpperCAmelCase ( a_ , a_ ) -> None: """simple docstring""" with open(a_ , """w""" ) as f: json.dump(a_ , a_ , indent=2 )
344
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, is_vision_available, ) UpperCamelCase__ : int = {'processing_layoutxlm': ['LayoutXLMProcessor']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : Tuple = ['LayoutXLMTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : List[Any] = ['LayoutXLMTokenizerFast'] if TYPE_CHECKING: from .processing_layoutxlm import LayoutXLMProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm import LayoutXLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm_fast import LayoutXLMTokenizerFast else: import sys UpperCamelCase__ : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
344
1
"""simple docstring""" from __future__ import annotations import unittest from transformers import BlenderbotSmallConfig, BlenderbotSmallTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel @require_tf class _UpperCAmelCase : '''simple docstring''' a__ =BlenderbotSmallConfig a__ ={} a__ ='''gelu''' def __init__( self , A , A=1_3 , A=7 , A=True , A=False , A=9_9 , A=3_2 , A=2 , A=4 , A=3_7 , A=0.1 , A=0.1 , A=2_0 , A=2 , A=1 , A=0 , ) -> Union[str, Any]: _UpperCAmelCase : Union[str, Any] = parent _UpperCAmelCase : Union[str, Any] = batch_size _UpperCAmelCase : Dict = seq_length _UpperCAmelCase : List[Any] = is_training _UpperCAmelCase : int = use_labels _UpperCAmelCase : Optional[int] = vocab_size _UpperCAmelCase : Dict = hidden_size _UpperCAmelCase : Union[str, Any] = num_hidden_layers _UpperCAmelCase : int = num_attention_heads _UpperCAmelCase : int = intermediate_size _UpperCAmelCase : List[Any] = hidden_dropout_prob _UpperCAmelCase : str = attention_probs_dropout_prob _UpperCAmelCase : List[str] = max_position_embeddings _UpperCAmelCase : str = eos_token_id _UpperCAmelCase : int = pad_token_id _UpperCAmelCase : Union[str, Any] = bos_token_id def __lowerCAmelCase ( self ) -> Union[str, Any]: _UpperCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) _UpperCAmelCase : str = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) _UpperCAmelCase : Union[str, Any] = tf.concat([input_ids, eos_tensor] , axis=1 ) _UpperCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase : Optional[int] = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) _UpperCAmelCase : int = prepare_blenderbot_small_inputs_dict(A , A , A ) return config, inputs_dict def __lowerCAmelCase ( self , A , A ) -> List[Any]: _UpperCAmelCase : Optional[Any] = TFBlenderbotSmallModel(config=A ).get_decoder() _UpperCAmelCase : Tuple = inputs_dict['''input_ids'''] _UpperCAmelCase : Tuple = input_ids[:1, :] _UpperCAmelCase : List[str] = inputs_dict['''attention_mask'''][:1, :] _UpperCAmelCase : List[Any] = inputs_dict['''head_mask'''] _UpperCAmelCase : Union[str, Any] = 1 # first forward pass _UpperCAmelCase : Dict = model(A , attention_mask=A , head_mask=A , use_cache=A ) _UpperCAmelCase : str = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _UpperCAmelCase : Optional[int] = ids_tensor((self.batch_size, 3) , config.vocab_size ) _UpperCAmelCase : int = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and _UpperCAmelCase : str = tf.concat([input_ids, next_tokens] , axis=-1 ) _UpperCAmelCase : Dict = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) _UpperCAmelCase : Tuple = model(A , attention_mask=A )[0] _UpperCAmelCase : List[str] = model(A , attention_mask=A , past_key_values=A )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice _UpperCAmelCase : Tuple = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) _UpperCAmelCase : Any = output_from_no_past[:, -3:, random_slice_idx] _UpperCAmelCase : List[str] = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(A , A , rtol=1E-3 ) def lowerCamelCase_ (UpperCamelCase__ : Dict , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : List[str]=None , UpperCamelCase__ : int=None , UpperCamelCase__ : List[Any]=None , UpperCamelCase__ : Tuple=None , UpperCamelCase__ : Any=None , ): if attention_mask is None: _UpperCAmelCase : Union[str, Any] = tf.cast(tf.math.not_equal(UpperCamelCase__ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: _UpperCAmelCase : int = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: _UpperCAmelCase : int = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _UpperCAmelCase : Optional[Any] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: _UpperCAmelCase : int = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class _UpperCAmelCase ( a ,a ,unittest.TestCase ): '''simple docstring''' a__ =( (TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel) if is_tf_available() else () ) a__ =(TFBlenderbotSmallForConditionalGeneration,) if is_tf_available() else () a__ =( { '''conversational''': TFBlenderbotSmallForConditionalGeneration, '''feature-extraction''': TFBlenderbotSmallModel, '''summarization''': TFBlenderbotSmallForConditionalGeneration, '''text2text-generation''': TFBlenderbotSmallForConditionalGeneration, '''translation''': TFBlenderbotSmallForConditionalGeneration, } if is_tf_available() else {} ) a__ =True a__ =False a__ =False def __lowerCAmelCase ( self ) -> str: _UpperCAmelCase : Any = TFBlenderbotSmallModelTester(self ) _UpperCAmelCase : Optional[Any] = ConfigTester(self , config_class=A ) def __lowerCAmelCase ( self ) -> int: self.config_tester.run_common_tests() def __lowerCAmelCase ( self ) -> int: _UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*A ) @require_tokenizers @require_tf class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' a__ =[ '''Social anxiety\nWow, I am never shy. Do you have anxiety?\nYes. I end up sweating and blushing and feel like ''' ''' i\'m going to throw up.\nand why is that?''' ] a__ ='''facebook/blenderbot_small-90M''' @cached_property def __lowerCAmelCase ( self ) -> Union[str, Any]: # use "old" tokenizer here because of bug when downloading new tokenizer return BlenderbotSmallTokenizer.from_pretrained('''facebook/blenderbot-90M''' ) @cached_property def __lowerCAmelCase ( self ) -> Any: _UpperCAmelCase : str = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model @slow def __lowerCAmelCase ( self ) -> Any: _UpperCAmelCase : Optional[Any] = self.tokenizer(self.src_text , return_tensors='''tf''' ) _UpperCAmelCase : str = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=A , ) _UpperCAmelCase : Tuple = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=A )[0] assert generated_words in ( "i don't know. i just feel like i'm going to throw up. it's not fun.", "i'm not sure. i just feel like i've been feeling like i have to be in a certain place", "i'm not sure. i just feel like i've been in a bad situation.", )
360
"""simple docstring""" from __future__ import annotations from itertools import permutations from random import randint from timeit import repeat def lowerCamelCase_ (): _UpperCAmelCase : Optional[int] = [randint(-1000 , 1000 ) for i in range(10 )] _UpperCAmelCase : int = randint(-5000 , 5000 ) return (arr, r) _lowerCAmelCase :Optional[Any] = make_dataset() def lowerCamelCase_ (UpperCamelCase__ : list[int] , UpperCamelCase__ : int ): for triplet in permutations(UpperCamelCase__ , 3 ): if sum(UpperCamelCase__ ) == target: return tuple(sorted(UpperCamelCase__ ) ) return (0, 0, 0) def lowerCamelCase_ (UpperCamelCase__ : list[int] , UpperCamelCase__ : int ): arr.sort() _UpperCAmelCase : Optional[int] = len(UpperCamelCase__ ) for i in range(n - 1 ): _UpperCAmelCase , _UpperCAmelCase : Any = i + 1, n - 1 while left < right: if arr[i] + arr[left] + arr[right] == target: return (arr[i], arr[left], arr[right]) elif arr[i] + arr[left] + arr[right] < target: left += 1 elif arr[i] + arr[left] + arr[right] > target: right -= 1 return (0, 0, 0) def lowerCamelCase_ (): _UpperCAmelCase : Union[str, Any] = ''' from __main__ import dataset, triplet_sum1, triplet_sum2 ''' _UpperCAmelCase : Any = ''' triplet_sum1(*dataset) ''' _UpperCAmelCase : List[Any] = ''' triplet_sum2(*dataset) ''' _UpperCAmelCase : List[Any] = repeat(setup=UpperCamelCase__ , stmt=UpperCamelCase__ , repeat=5 , number=1_0000 ) _UpperCAmelCase : List[Any] = repeat(setup=UpperCamelCase__ , stmt=UpperCamelCase__ , repeat=5 , number=1_0000 ) return (min(UpperCamelCase__ ), min(UpperCamelCase__ )) if __name__ == "__main__": from doctest import testmod testmod() _lowerCAmelCase :List[str] = solution_times() print(f"The time for naive implementation is {times[0]}.") print(f"The time for optimized implementation is {times[1]}.")
68
0
"""simple docstring""" import pytest from datasets.splits import SplitDict, SplitInfo from datasets.utils.py_utils import asdict @pytest.mark.parametrize( '''split_dict''' , [ SplitDict(), SplitDict({'''train''': SplitInfo(name='''train''' , num_bytes=1_3_3_7 , num_examples=4_2 , dataset_name='''my_dataset''' )} ), SplitDict({'''train''': SplitInfo(name='''train''' , num_bytes=1_3_3_7 , num_examples=4_2 )} ), SplitDict({'''train''': SplitInfo()} ), ] , ) def lowercase ( __snake_case : str ): lowercase_ : int = split_dict._to_yaml_list() assert len(_A ) == len(_A ) lowercase_ : Union[str, Any] = SplitDict._from_yaml_list(_A ) for split_name, split_info in split_dict.items(): # dataset_name field is deprecated, and is therefore not part of the YAML dump lowercase_ : List[Any] = None # the split name of split_dict takes over the name of the split info object lowercase_ : List[Any] = split_name assert split_dict == reloaded @pytest.mark.parametrize( '''split_info''' , [SplitInfo(), SplitInfo(dataset_name=_A ), SplitInfo(dataset_name='''my_dataset''' )] ) def lowercase ( __snake_case : Any ): # For backward compatibility, we need asdict(split_dict) to return split info dictrionaries with the "dataset_name" # field even if it's deprecated. This way old versionso of `datasets` can still reload dataset_infos.json files lowercase_ : Union[str, Any] = asdict(SplitDict({'''train''': split_info} ) ) assert "dataset_name" in split_dict_asdict["train"] assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name
33
import unittest from transformers import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device if is_torch_available(): import torch from transformers import AutoModelForImageClassification if is_vision_available(): from transformers import AutoImageProcessor @require_torch @require_vision class A ( unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = AutoImageProcessor.from_pretrained('''microsoft/dit-base-finetuned-rvlcdip''' ) lowerCAmelCase_ = AutoModelForImageClassification.from_pretrained('''microsoft/dit-base-finetuned-rvlcdip''' ) model.to(UpperCamelCase__ ) from datasets import load_dataset lowerCAmelCase_ = load_dataset('''nielsr/rvlcdip-demo''' ) lowerCAmelCase_ = dataset['''train'''][0]['''image'''].convert('''RGB''' ) lowerCAmelCase_ = image_processor(UpperCamelCase__, return_tensors='''pt''' ).to(UpperCamelCase__ ) # forward pass with torch.no_grad(): lowerCAmelCase_ = model(**UpperCamelCase__ ) lowerCAmelCase_ = outputs.logits lowerCAmelCase_ = torch.Size((1, 16) ) self.assertEqual(logits.shape, UpperCamelCase__ ) lowerCAmelCase_ = torch.tensor( [-0.4_158, -0.4_092, -0.4_347], device=UpperCamelCase__, dtype=torch.float, ) self.assertTrue(torch.allclose(logits[0, :3], UpperCamelCase__, atol=1E-4 ) )
278
0
'''simple docstring''' import json import os import unittest from transformers import BatchEncoding, MvpTokenizer, MvpTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin, filter_roberta_detectors @require_tokenizers class UpperCAmelCase_ ( _a , unittest.TestCase ): """simple docstring""" lowercase = MvpTokenizer lowercase = MvpTokenizerFast lowercase = True lowercase = filter_roberta_detectors def lowerCamelCase ( self : Union[str, Any] ): super().setUp() snake_case__ : List[Any] = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] snake_case__ : Union[str, Any] = dict(zip(snake_case_ , range(len(snake_case_ ) ) ) ) snake_case__ : Any = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] snake_case__ : Tuple = {"""unk_token""": """<unk>"""} snake_case__ : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) snake_case__ : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(snake_case_ ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(snake_case_ ) ) def lowerCamelCase ( self : Optional[Any] , **snake_case_ : Union[str, Any] ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **snake_case_ ) def lowerCamelCase ( self : List[str] , **snake_case_ : List[str] ): kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **snake_case_ ) def lowerCamelCase ( self : List[Any] , snake_case_ : List[str] ): return "lower newer", "lower newer" @cached_property def lowerCamelCase ( self : int ): return MvpTokenizer.from_pretrained("""RUCAIBox/mvp""" ) @cached_property def lowerCamelCase ( self : Tuple ): return MvpTokenizerFast.from_pretrained("""RUCAIBox/mvp""" ) @require_torch def lowerCamelCase ( self : Any ): snake_case__ : List[str] = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] snake_case__ : Dict = [0, 250, 251, 17_818, 13, 39_186, 1_938, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: snake_case__ : List[Any] = tokenizer(snake_case_ , max_length=len(snake_case_ ) , padding=snake_case_ , return_tensors="""pt""" ) self.assertIsInstance(snake_case_ , snake_case_ ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) snake_case__ : Union[str, Any] = batch.input_ids.tolist()[0] self.assertListEqual(snake_case_ , snake_case_ ) # Test that special tokens are reset @require_torch def lowerCamelCase ( self : Dict ): snake_case__ : List[str] = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: snake_case__ : List[Any] = tokenizer(snake_case_ , padding=snake_case_ , return_tensors="""pt""" ) # check if input_ids are returned and no labels self.assertIn("""input_ids""" , snake_case_ ) self.assertIn("""attention_mask""" , snake_case_ ) self.assertNotIn("""labels""" , snake_case_ ) self.assertNotIn("""decoder_attention_mask""" , snake_case_ ) @require_torch def lowerCamelCase ( self : Tuple ): snake_case__ : Any = [ """Summary of the text.""", """Another summary.""", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: snake_case__ : str = tokenizer(text_target=snake_case_ , max_length=32 , padding="""max_length""" , return_tensors="""pt""" ) self.assertEqual(32 , targets["""input_ids"""].shape[1] ) @require_torch def lowerCamelCase ( self : List[str] ): for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: snake_case__ : Optional[Any] = tokenizer( ["""I am a small frog""" * 1_024, """I am a small frog"""] , padding=snake_case_ , truncation=snake_case_ , return_tensors="""pt""" ) self.assertIsInstance(snake_case_ , snake_case_ ) self.assertEqual(batch.input_ids.shape , (2, 1_024) ) @require_torch def lowerCamelCase ( self : str ): snake_case__ : Optional[Any] = ["""A long paragraph for summarization."""] snake_case__ : Optional[Any] = [ """Summary of the text.""", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: snake_case__ : int = tokenizer(snake_case_ , text_target=snake_case_ , return_tensors="""pt""" ) snake_case__ : int = inputs["""input_ids"""] snake_case__ : str = inputs["""labels"""] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) def lowerCamelCase ( self : int ): pass def lowerCamelCase ( self : str ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): snake_case__ : int = self.rust_tokenizer_class.from_pretrained(snake_case_ , **snake_case_ ) snake_case__ : Optional[int] = self.tokenizer_class.from_pretrained(snake_case_ , **snake_case_ ) snake_case__ : Optional[Any] = """A, <mask> AllenNLP sentence.""" snake_case__ : List[str] = tokenizer_r.encode_plus(snake_case_ , add_special_tokens=snake_case_ , return_token_type_ids=snake_case_ ) snake_case__ : int = tokenizer_p.encode_plus(snake_case_ , add_special_tokens=snake_case_ , return_token_type_ids=snake_case_ ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r["""token_type_ids"""] ) , sum(tokens_p["""token_type_ids"""] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r["""attention_mask"""] ) / len(tokens_r["""attention_mask"""] ) , sum(tokens_p["""attention_mask"""] ) / len(tokens_p["""attention_mask"""] ) , ) snake_case__ : Any = tokenizer_r.convert_ids_to_tokens(tokens_r["""input_ids"""] ) snake_case__ : List[str] = tokenizer_p.convert_ids_to_tokens(tokens_p["""input_ids"""] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p["""input_ids"""] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual(tokens_r["""input_ids"""] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual( snake_case_ , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) self.assertSequenceEqual( snake_case_ , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] )
43
'''simple docstring''' import unittest from transformers import DonutProcessor __a = "naver-clova-ix/donut-base" class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def lowerCamelCase ( self : List[str] ): snake_case__ : Optional[Any] = DonutProcessor.from_pretrained(snake_case_ ) def lowerCamelCase ( self : List[Any] ): snake_case__ : Any = { """name""": """John Doe""", """age""": """99""", """city""": """Atlanta""", """state""": """GA""", """zip""": """30301""", """phone""": """123-4567""", """nicknames""": [{"""nickname""": """Johnny"""}, {"""nickname""": """JD"""}], } snake_case__ : str = ( """<s_name>John Doe</s_name><s_age>99</s_age><s_city>Atlanta</s_city>""" """<s_state>GA</s_state><s_zip>30301</s_zip><s_phone>123-4567</s_phone>""" """<s_nicknames><s_nickname>Johnny</s_nickname>""" """<sep/><s_nickname>JD</s_nickname></s_nicknames>""" ) snake_case__ : Optional[Any] = self.processor.tokenajson(snake_case_ ) self.assertDictEqual(snake_case_ , snake_case_ )
43
1
import pytest __A = "__dummy_dataset1__" __A = "\nimport json\nimport os\n\nimport datasets\n\n\nREPO_URL = \"https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/\"\nURLS = {\"train\": REPO_URL + \"wikiann-bn-train.jsonl\", \"validation\": REPO_URL + \"wikiann-bn-validation.jsonl\"}\n\n\nclass __DummyDataset1__(datasets.GeneratorBasedBuilder):\n\n def _info(self):\n features = datasets.Features(\n {\n \"tokens\": datasets.Sequence(datasets.Value(\"string\")),\n \"ner_tags\": datasets.Sequence(\n datasets.features.ClassLabel(\n names=[\n \"O\",\n \"B-PER\",\n \"I-PER\",\n \"B-ORG\",\n \"I-ORG\",\n \"B-LOC\",\n \"I-LOC\",\n ]\n )\n ),\n \"langs\": datasets.Sequence(datasets.Value(\"string\")),\n \"spans\": datasets.Sequence(datasets.Value(\"string\")),\n }\n )\n return datasets.DatasetInfo(features=features)\n\n def _split_generators(self, dl_manager):\n dl_path = dl_manager.download(URLS)\n return [\n datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={\"filepath\": dl_path[\"train\"]}),\n datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={\"filepath\": dl_path[\"validation\"]}),\n ]\n\n def _generate_examples(self, filepath):\n with open(filepath, \"r\", encoding=\"utf-8\") as f:\n for i, line in enumerate(f):\n yield i, json.loads(line)\n" @pytest.fixture def lowerCamelCase_ ( ) -> Dict: """simple docstring""" return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def lowerCamelCase_ ( ) -> Any: """simple docstring""" return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def lowerCamelCase_ ( UpperCamelCase__ : Any , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Any ) -> Union[str, Any]: """simple docstring""" __lowerCamelCase = dataset_loading_script_name __lowerCamelCase = tmp_path / 'datasets' / script_name script_dir.mkdir(parents=UpperCamelCase__ ) __lowerCamelCase = script_dir / F"""{script_name}.py""" with open(UpperCamelCase__ , 'w' ) as f: f.write(UpperCamelCase__ ) return str(UpperCamelCase__ )
90
import baseaa def lowerCamelCase_ ( UpperCamelCase__ : str ) -> bytes: """simple docstring""" return baseaa.aaaencode(string.encode('utf-8' ) ) def lowerCamelCase_ ( UpperCamelCase__ : bytes ) -> str: """simple docstring""" return baseaa.aaadecode(UpperCamelCase__ ).decode('utf-8' ) if __name__ == "__main__": import doctest doctest.testmod()
90
1
'''simple docstring''' import tensorflow as tf from ...tf_utils import shape_list class _snake_case (tf.keras.layers.Layer): def __init__( self ,_snake_case ,_snake_case ,_snake_case ,_snake_case ,_snake_case=1 ,_snake_case=False ,**_snake_case ): super().__init__(**_snake_case ) UpperCAmelCase_ : Optional[int] = vocab_size UpperCAmelCase_ : Union[str, Any] = d_embed UpperCAmelCase_ : Union[str, Any] = d_proj UpperCAmelCase_ : Dict = cutoffs + [vocab_size] UpperCAmelCase_ : Union[str, Any] = [0] + self.cutoffs UpperCAmelCase_ : str = div_val UpperCAmelCase_ : Optional[int] = self.cutoffs[0] UpperCAmelCase_ : str = len(self.cutoffs ) - 1 UpperCAmelCase_ : List[str] = self.shortlist_size + self.n_clusters UpperCAmelCase_ : Optional[int] = keep_order UpperCAmelCase_ : int = [] UpperCAmelCase_ : Tuple = [] def UpperCamelCase__ ( self ,_snake_case ): if self.n_clusters > 0: UpperCAmelCase_ : int = self.add_weight( shape=(self.n_clusters, self.d_embed) ,initializer="zeros" ,trainable=_snake_case ,name="cluster_weight" ) UpperCAmelCase_ : Dict = self.add_weight( shape=(self.n_clusters,) ,initializer="zeros" ,trainable=_snake_case ,name="cluster_bias" ) if self.div_val == 1: for i in range(len(self.cutoffs ) ): if self.d_proj != self.d_embed: UpperCAmelCase_ : List[Any] = self.add_weight( shape=(self.d_embed, self.d_proj) ,initializer="zeros" ,trainable=_snake_case ,name=f'''out_projs_._{i}''' ,) self.out_projs.append(_snake_case ) else: self.out_projs.append(_snake_case ) UpperCAmelCase_ : List[Any] = self.add_weight( shape=(self.vocab_size, self.d_embed) ,initializer="zeros" ,trainable=_snake_case ,name=f'''out_layers_._{i}_._weight''' ,) UpperCAmelCase_ : str = self.add_weight( shape=(self.vocab_size,) ,initializer="zeros" ,trainable=_snake_case ,name=f'''out_layers_._{i}_._bias''' ,) self.out_layers.append((weight, bias) ) else: for i in range(len(self.cutoffs ) ): UpperCAmelCase_ , UpperCAmelCase_ : Dict = self.cutoff_ends[i], self.cutoff_ends[i + 1] UpperCAmelCase_ : Any = self.d_embed // (self.div_val**i) UpperCAmelCase_ : Any = self.add_weight( shape=(d_emb_i, self.d_proj) ,initializer="zeros" ,trainable=_snake_case ,name=f'''out_projs_._{i}''' ) self.out_projs.append(_snake_case ) UpperCAmelCase_ : str = self.add_weight( shape=(r_idx - l_idx, d_emb_i) ,initializer="zeros" ,trainable=_snake_case ,name=f'''out_layers_._{i}_._weight''' ,) UpperCAmelCase_ : List[Any] = self.add_weight( shape=(r_idx - l_idx,) ,initializer="zeros" ,trainable=_snake_case ,name=f'''out_layers_._{i}_._bias''' ,) self.out_layers.append((weight, bias) ) super().build(_snake_case ) @staticmethod def UpperCamelCase__ ( _snake_case ,_snake_case ,_snake_case ,_snake_case=None ): UpperCAmelCase_ : Optional[Any] = x if proj is not None: UpperCAmelCase_ : Tuple = tf.einsum("ibd,ed->ibe" ,_snake_case ,_snake_case ) return tf.einsum("ibd,nd->ibn" ,_snake_case ,_snake_case ) + b @staticmethod def UpperCamelCase__ ( _snake_case ,_snake_case ): UpperCAmelCase_ : str = shape_list(_snake_case ) UpperCAmelCase_ : Union[str, Any] = tf.range(lp_size[0] ,dtype=target.dtype ) UpperCAmelCase_ : Any = tf.stack([r, target] ,1 ) return tf.gather_nd(_snake_case ,_snake_case ) def UpperCamelCase__ ( self ,_snake_case ,_snake_case ,_snake_case=True ,_snake_case=False ): UpperCAmelCase_ : List[str] = 0 if self.n_clusters == 0: UpperCAmelCase_ : List[Any] = self._logit(_snake_case ,self.out_layers[0][0] ,self.out_layers[0][1] ,self.out_projs[0] ) if target is not None: UpperCAmelCase_ : Dict = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=_snake_case ,logits=_snake_case ) UpperCAmelCase_ : Dict = tf.nn.log_softmax(_snake_case ,axis=-1 ) else: UpperCAmelCase_ : Any = shape_list(_snake_case ) UpperCAmelCase_ : Union[str, Any] = [] UpperCAmelCase_ : Dict = tf.zeros(hidden_sizes[:2] ) for i in range(len(self.cutoffs ) ): UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = self.cutoff_ends[i], self.cutoff_ends[i + 1] if target is not None: UpperCAmelCase_ : Dict = (target >= l_idx) & (target < r_idx) UpperCAmelCase_ : Any = tf.where(_snake_case ) UpperCAmelCase_ : Tuple = tf.boolean_mask(_snake_case ,_snake_case ) - l_idx if self.div_val == 1: UpperCAmelCase_ : Optional[int] = self.out_layers[0][0][l_idx:r_idx] UpperCAmelCase_ : Optional[Any] = self.out_layers[0][1][l_idx:r_idx] else: UpperCAmelCase_ : List[Any] = self.out_layers[i][0] UpperCAmelCase_ : int = self.out_layers[i][1] if i == 0: UpperCAmelCase_ : Tuple = tf.concat([cur_W, self.cluster_weight] ,0 ) UpperCAmelCase_ : List[str] = tf.concat([cur_b, self.cluster_bias] ,0 ) UpperCAmelCase_ : Any = self._logit(_snake_case ,_snake_case ,_snake_case ,self.out_projs[0] ) UpperCAmelCase_ : Dict = tf.nn.log_softmax(_snake_case ) out.append(head_logprob[..., : self.cutoffs[0]] ) if target is not None: UpperCAmelCase_ : Dict = tf.boolean_mask(_snake_case ,_snake_case ) UpperCAmelCase_ : int = self._gather_logprob(_snake_case ,_snake_case ) else: UpperCAmelCase_ : Optional[int] = self._logit(_snake_case ,_snake_case ,_snake_case ,self.out_projs[i] ) UpperCAmelCase_ : List[str] = tf.nn.log_softmax(_snake_case ) UpperCAmelCase_ : Tuple = self.cutoffs[0] + i - 1 # No probability for the head cluster UpperCAmelCase_ : str = head_logprob[..., cluster_prob_idx, None] + tail_logprob out.append(_snake_case ) if target is not None: UpperCAmelCase_ : Tuple = tf.boolean_mask(_snake_case ,_snake_case ) UpperCAmelCase_ : Dict = tf.boolean_mask(_snake_case ,_snake_case ) UpperCAmelCase_ : Union[str, Any] = self._gather_logprob(_snake_case ,_snake_case ) cur_logprob += cur_head_logprob[:, self.cutoff_ends[1] + i - 1] if target is not None: loss += tf.scatter_nd(_snake_case ,-cur_logprob ,shape_list(_snake_case ) ) UpperCAmelCase_ : str = tf.concat(_snake_case ,axis=-1 ) if target is not None: if return_mean: UpperCAmelCase_ : Tuple = tf.reduce_mean(_snake_case ) # Add the training-time loss value to the layer using `self.add_loss()`. self.add_loss(_snake_case ) # Log the loss as a metric (we could log arbitrary metrics, # including different metrics for training and inference. self.add_metric(_snake_case ,name=self.name ,aggregation="mean" if return_mean else "" ) return out
67
'''simple docstring''' import os from pathlib import Path def a__ ( ) -> Union[str, Any]: """simple docstring""" from torch.utils.cpp_extension import load UpperCAmelCase_ : Union[str, Any] = Path(_SCREAMING_SNAKE_CASE ).resolve().parent.parent.parent / "kernels" / "deformable_detr" UpperCAmelCase_ : Any = [ root / filename for filename in [ "vision.cpp", os.path.join("cpu" , "ms_deform_attn_cpu.cpp" ), os.path.join("cuda" , "ms_deform_attn_cuda.cu" ), ] ] load( "MultiScaleDeformableAttention" , _SCREAMING_SNAKE_CASE , with_cuda=_SCREAMING_SNAKE_CASE , extra_include_paths=[str(_SCREAMING_SNAKE_CASE )] , extra_cflags=["-DWITH_CUDA=1"] , extra_cuda_cflags=[ "-DCUDA_HAS_FP16=1", "-D__CUDA_NO_HALF_OPERATORS__", "-D__CUDA_NO_HALF_CONVERSIONS__", "-D__CUDA_NO_HALF2_OPERATORS__", ] , ) import MultiScaleDeformableAttention as MSDA return MSDA
67
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) A__ : Optional[Any] ={ '''configuration_whisper''': ['''WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''WhisperConfig''', '''WhisperOnnxConfig'''], '''feature_extraction_whisper''': ['''WhisperFeatureExtractor'''], '''processing_whisper''': ['''WhisperProcessor'''], '''tokenization_whisper''': ['''WhisperTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : str =['''WhisperTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Optional[Any] =[ '''WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''WhisperForConditionalGeneration''', '''WhisperModel''', '''WhisperPreTrainedModel''', '''WhisperForAudioClassification''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : str =[ '''TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFWhisperForConditionalGeneration''', '''TFWhisperModel''', '''TFWhisperPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Dict =[ '''FlaxWhisperForConditionalGeneration''', '''FlaxWhisperModel''', '''FlaxWhisperPreTrainedModel''', '''FlaxWhisperForAudioClassification''', ] if TYPE_CHECKING: from .configuration_whisper import WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP, WhisperConfig, WhisperOnnxConfig from .feature_extraction_whisper import WhisperFeatureExtractor from .processing_whisper import WhisperProcessor from .tokenization_whisper import WhisperTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_whisper_fast import WhisperTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_whisper import ( WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, WhisperForAudioClassification, WhisperForConditionalGeneration, WhisperModel, WhisperPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_whisper import ( TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, TFWhisperForConditionalGeneration, TFWhisperModel, TFWhisperPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_whisper import ( FlaxWhisperForAudioClassification, FlaxWhisperForConditionalGeneration, FlaxWhisperModel, FlaxWhisperPreTrainedModel, ) else: import sys A__ : Optional[int] =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
70
from random import randint from tempfile import TemporaryFile import numpy as np def A ( lowercase , lowercase , lowercase ) -> str: '''simple docstring''' UpperCamelCase = 0 if start < end: UpperCamelCase = randint(lowercase , lowercase ) UpperCamelCase = a[end] UpperCamelCase = a[pivot] UpperCamelCase = temp UpperCamelCase , UpperCamelCase = _in_place_partition(lowercase , lowercase , lowercase ) count += _in_place_quick_sort(lowercase , lowercase , p - 1 ) count += _in_place_quick_sort(lowercase , p + 1 , lowercase ) return count def A ( lowercase , lowercase , lowercase ) -> int: '''simple docstring''' UpperCamelCase = 0 UpperCamelCase = randint(lowercase , lowercase ) UpperCamelCase = a[end] UpperCamelCase = a[pivot] UpperCamelCase = temp UpperCamelCase = start - 1 for index in range(lowercase , lowercase ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value UpperCamelCase = new_pivot_index + 1 UpperCamelCase = a[new_pivot_index] UpperCamelCase = a[index] UpperCamelCase = temp UpperCamelCase = a[new_pivot_index + 1] UpperCamelCase = a[end] UpperCamelCase = temp return new_pivot_index + 1, count _UpperCAmelCase : Union[str, Any] = TemporaryFile() _UpperCAmelCase : List[Any] = 100 # 1000 elements are to be sorted _UpperCAmelCase ,_UpperCAmelCase : Any = 0, 1 # mean and standard deviation _UpperCAmelCase : Any = np.random.normal(mu, sigma, p) np.save(outfile, X) print("The array is") print(X) outfile.seek(0) # using the same array _UpperCAmelCase : Any = np.load(outfile) _UpperCAmelCase : str = len(M) - 1 _UpperCAmelCase : List[str] = _in_place_quick_sort(M, 0, r) print( "No of Comparisons for 100 elements selected from a standard normal distribution" "is :" ) print(z)
222
0
import qiskit def _a ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ) -> qiskit.result.counts.Counts: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Union[str, Any] = qiskit.Aer.get_backend("aer_simulator" ) # Create a Quantum Circuit acting on the q register SCREAMING_SNAKE_CASE__ : List[Any] = qiskit.QuantumCircuit(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Apply X (NOT) Gate to Qubits 0 & 1 circuit.x(0 ) circuit.x(1 ) # Map the quantum measurement to the classical bits circuit.measure([0, 1] , [0, 1] ) # Execute the circuit on the qasm simulator SCREAMING_SNAKE_CASE__ : int = qiskit.execute(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , shots=10_00 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": _lowerCamelCase : List[str] = single_qubit_measure(2, 2) print(f"Total count for various states are: {counts}")
191
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _lowerCamelCase : int = logging.get_logger(__name__) _lowerCamelCase : Optional[Any] = '''▁''' _lowerCamelCase : Dict = {'''vocab_file''': '''sentencepiece.bpe.model'''} _lowerCamelCase : int = { '''vocab_file''': { '''xlm-roberta-base''': '''https://huggingface.co/xlm-roberta-base/resolve/main/sentencepiece.bpe.model''', '''xlm-roberta-large''': '''https://huggingface.co/xlm-roberta-large/resolve/main/sentencepiece.bpe.model''', '''xlm-roberta-large-finetuned-conll02-dutch''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/sentencepiece.bpe.model''' ), '''xlm-roberta-large-finetuned-conll02-spanish''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/sentencepiece.bpe.model''' ), '''xlm-roberta-large-finetuned-conll03-english''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/sentencepiece.bpe.model''' ), '''xlm-roberta-large-finetuned-conll03-german''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/sentencepiece.bpe.model''' ), } } _lowerCamelCase : Optional[Any] = { '''xlm-roberta-base''': 5_1_2, '''xlm-roberta-large''': 5_1_2, '''xlm-roberta-large-finetuned-conll02-dutch''': 5_1_2, '''xlm-roberta-large-finetuned-conll02-spanish''': 5_1_2, '''xlm-roberta-large-finetuned-conll03-english''': 5_1_2, '''xlm-roberta-large-finetuned-conll03-german''': 5_1_2, } class lowerCamelCase (__lowerCamelCase ): """simple docstring""" UpperCAmelCase_ = VOCAB_FILES_NAMES UpperCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase_ = ["input_ids", "attention_mask"] def __init__( self : Dict, _UpperCAmelCase : str, _UpperCAmelCase : Optional[int]="<s>", _UpperCAmelCase : Optional[int]="</s>", _UpperCAmelCase : Dict="</s>", _UpperCAmelCase : List[Any]="<s>", _UpperCAmelCase : Union[str, Any]="<unk>", _UpperCAmelCase : List[Any]="<pad>", _UpperCAmelCase : str="<mask>", _UpperCAmelCase : Optional[Dict[str, Any]] = None, **_UpperCAmelCase : List[Any], ) -> None: """simple docstring""" # Mask token behave like a normal word, i.e. include the space before it SCREAMING_SNAKE_CASE__ : int = AddedToken(_UpperCAmelCase, lstrip=_UpperCAmelCase, rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase, _UpperCAmelCase ) else mask_token SCREAMING_SNAKE_CASE__ : List[str] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_UpperCAmelCase, eos_token=_UpperCAmelCase, unk_token=_UpperCAmelCase, sep_token=_UpperCAmelCase, cls_token=_UpperCAmelCase, pad_token=_UpperCAmelCase, mask_token=_UpperCAmelCase, sp_model_kwargs=self.sp_model_kwargs, **_UpperCAmelCase, ) SCREAMING_SNAKE_CASE__ : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_UpperCAmelCase ) ) SCREAMING_SNAKE_CASE__ : Tuple = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token SCREAMING_SNAKE_CASE__ : List[str] = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab SCREAMING_SNAKE_CASE__ : Dict = 1 SCREAMING_SNAKE_CASE__ : int = len(self.sp_model ) + self.fairseq_offset SCREAMING_SNAKE_CASE__ : Optional[int] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self : str ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = self.__dict__.copy() SCREAMING_SNAKE_CASE__ : List[Any] = None SCREAMING_SNAKE_CASE__ : Dict = self.sp_model.serialized_model_proto() return state def __setstate__( self : int, _UpperCAmelCase : List[Any] ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = d # for backward compatibility if not hasattr(self, "sp_model_kwargs" ): SCREAMING_SNAKE_CASE__ : Dict = {} SCREAMING_SNAKE_CASE__ : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def A_ ( self : Any, _UpperCAmelCase : List[int], _UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] SCREAMING_SNAKE_CASE__ : List[str] = [self.cls_token_id] SCREAMING_SNAKE_CASE__ : Union[str, Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def A_ ( self : List[Any], _UpperCAmelCase : List[int], _UpperCAmelCase : Optional[List[int]] = None, _UpperCAmelCase : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCAmelCase, token_ids_a=_UpperCAmelCase, already_has_special_tokens=_UpperCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(_UpperCAmelCase )) + [1] return [1] + ([0] * len(_UpperCAmelCase )) + [1, 1] + ([0] * len(_UpperCAmelCase )) + [1] def A_ ( self : Union[str, Any], _UpperCAmelCase : List[int], _UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = [self.sep_token_id] SCREAMING_SNAKE_CASE__ : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def A_ ( self : List[str] ) -> List[str]: """simple docstring""" return len(self.sp_model ) + self.fairseq_offset + 1 # Add the <mask> token def A_ ( self : List[Any] ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = {self.convert_ids_to_tokens(_UpperCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def A_ ( self : List[str], _UpperCAmelCase : str ) -> List[str]: """simple docstring""" return self.sp_model.encode(_UpperCAmelCase, out_type=_UpperCAmelCase ) def A_ ( self : Optional[Any], _UpperCAmelCase : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.sp_model.PieceToId(_UpperCAmelCase ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def A_ ( self : Tuple, _UpperCAmelCase : List[str] ) -> List[str]: """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def A_ ( self : Any, _UpperCAmelCase : int ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = "".join(_UpperCAmelCase ).replace(_UpperCAmelCase, " " ).strip() return out_string def A_ ( self : Union[str, Any], _UpperCAmelCase : str, _UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(_UpperCAmelCase ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return SCREAMING_SNAKE_CASE__ : Optional[Any] = os.path.join( _UpperCAmelCase, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file, _UpperCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(_UpperCAmelCase, "wb" ) as fi: SCREAMING_SNAKE_CASE__ : Any = self.sp_model.serialized_model_proto() fi.write(_UpperCAmelCase ) return (out_vocab_file,)
191
1
"""simple docstring""" import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, PerceiverTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): a = '''pt''' elif is_tf_available(): a = '''tf''' else: a = '''jax''' class lowercase_ ( __lowerCAmelCase , unittest.TestCase ): '''simple docstring''' UpperCAmelCase : Any = PerceiverTokenizer UpperCAmelCase : str = False def lowerCAmelCase_ ( self : Tuple ): super().setUp() _A = PerceiverTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowerCAmelCase_ ( self : Dict ): return PerceiverTokenizer.from_pretrained('deepmind/language-perceiver' ) def lowerCAmelCase_ ( self : List[Any] , **_UpperCAmelCase : Tuple ): return self.tokenizer_class.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def lowerCAmelCase_ ( self : Any , _UpperCAmelCase : List[Any] , _UpperCAmelCase : str=False , _UpperCAmelCase : Any=20 , _UpperCAmelCase : Dict=5 ): _A = [] for i in range(len(_UpperCAmelCase ) ): try: _A = tokenizer.decode([i] , clean_up_tokenization_spaces=_UpperCAmelCase ) except UnicodeDecodeError: pass toks.append((i, tok) ) _A = list(filter(lambda _UpperCAmelCase : re.match(r'^[ a-zA-Z]+$' , t[1] ) , _UpperCAmelCase ) ) _A = list(filter(lambda _UpperCAmelCase : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=_UpperCAmelCase ) , _UpperCAmelCase ) ) if max_length is not None and len(_UpperCAmelCase ) > max_length: _A = toks[:max_length] if min_length is not None and len(_UpperCAmelCase ) < min_length and len(_UpperCAmelCase ) > 0: while len(_UpperCAmelCase ) < min_length: _A = toks + toks # toks_str = [t[1] for t in toks] _A = [t[0] for t in toks] # Ensure consistency _A = tokenizer.decode(_UpperCAmelCase , clean_up_tokenization_spaces=_UpperCAmelCase ) if " " not in output_txt and len(_UpperCAmelCase ) > 1: _A = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=_UpperCAmelCase ) + ' ' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=_UpperCAmelCase ) ) if with_prefix_space: _A = ' ' + output_txt _A = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) return output_txt, output_ids def lowerCAmelCase_ ( self : List[str] ): _A = self.perceiver_tokenizer _A = 'Unicode €.' _A = tokenizer(_UpperCAmelCase ) _A = [4, 91, 116, 111, 105, 117, 106, 107, 38, 232, 136, 178, 52, 5] self.assertEqual(encoded['input_ids'] , _UpperCAmelCase ) # decoding _A = tokenizer.decode(_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , '[CLS]Unicode €.[SEP]' ) _A = tokenizer('e è é ê ë' ) _A = [4, 107, 38, 201, 174, 38, 201, 175, 38, 201, 176, 38, 201, 177, 5] self.assertEqual(encoded['input_ids'] , _UpperCAmelCase ) # decoding _A = tokenizer.decode(_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , '[CLS]e è é ê ë[SEP]' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('e è é ê ë' ) ) , '[CLS]e è é ê ë[SEP]' ) def lowerCAmelCase_ ( self : List[str] ): _A = self.perceiver_tokenizer _A = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] # fmt: off _A = [4, 71, 38, 114, 117, 116, 109, 38, 118, 103, 120, 103, 109, 120, 103, 118, 110, 38, 108, 117, 120, 38, 121, 123, 115, 115, 103, 120, 111, 128, 103, 122, 111, 117, 116, 52, 5, 0] # fmt: on _A = tokenizer(_UpperCAmelCase , padding=_UpperCAmelCase , return_tensors=_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) if FRAMEWORK != "jax": _A = list(batch.input_ids.numpy()[0] ) else: _A = list(batch.input_ids.tolist()[0] ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual((2, 38) , batch.input_ids.shape ) self.assertEqual((2, 38) , batch.attention_mask.shape ) def lowerCAmelCase_ ( self : Union[str, Any] ): _A = self.perceiver_tokenizer _A = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] _A = tokenizer(_UpperCAmelCase , padding=_UpperCAmelCase , return_tensors=_UpperCAmelCase ) # check if input_ids are returned and no decoder_input_ids self.assertIn('input_ids' , _UpperCAmelCase ) self.assertIn('attention_mask' , _UpperCAmelCase ) self.assertNotIn('decoder_input_ids' , _UpperCAmelCase ) self.assertNotIn('decoder_attention_mask' , _UpperCAmelCase ) def lowerCAmelCase_ ( self : str ): _A = self.perceiver_tokenizer _A = [ 'Summary of the text.', 'Another summary.', ] _A = tokenizer( text_target=_UpperCAmelCase , max_length=32 , padding='max_length' , truncation=_UpperCAmelCase , return_tensors=_UpperCAmelCase ) self.assertEqual(32 , targets['input_ids'].shape[1] ) def lowerCAmelCase_ ( self : Tuple ): _A = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test _A = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc _A = tempfile.mkdtemp() _A = ' He is very happy, UNwant\u00E9d,running' _A = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) tokenizer.save_pretrained(_UpperCAmelCase ) _A = tokenizer.__class__.from_pretrained(_UpperCAmelCase ) _A = after_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) shutil.rmtree(_UpperCAmelCase ) _A = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc _A = tempfile.mkdtemp() _A = ' He is very happy, UNwant\u00E9d,running' tokenizer.add_tokens(['bim', 'bambam'] ) _A = tokenizer.additional_special_tokens additional_special_tokens.append('new_additional_special_token' ) tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens} ) _A = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) tokenizer.save_pretrained(_UpperCAmelCase ) _A = tokenizer.__class__.from_pretrained(_UpperCAmelCase ) _A = after_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertIn('new_additional_special_token' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) _A = tokenizer.__class__.from_pretrained(_UpperCAmelCase , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(_UpperCAmelCase ) def lowerCAmelCase_ ( self : Dict ): _A = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_UpperCAmelCase ) with open(os.path.join(_UpperCAmelCase , 'special_tokens_map.json' ) , encoding='utf-8' ) as json_file: _A = json.load(_UpperCAmelCase ) with open(os.path.join(_UpperCAmelCase , 'tokenizer_config.json' ) , encoding='utf-8' ) as json_file: _A = json.load(_UpperCAmelCase ) _A = [F'''<extra_id_{i}>''' for i in range(125 )] _A = added_tokens_extra_ids + [ 'an_additional_special_token' ] _A = added_tokens_extra_ids + [ 'an_additional_special_token' ] with open(os.path.join(_UpperCAmelCase , 'special_tokens_map.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(_UpperCAmelCase , _UpperCAmelCase ) with open(os.path.join(_UpperCAmelCase , 'tokenizer_config.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(_UpperCAmelCase , _UpperCAmelCase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files _A = tokenizer_class.from_pretrained( _UpperCAmelCase , ) self.assertIn( 'an_additional_special_token' , tokenizer_without_change_in_init.additional_special_tokens ) self.assertEqual( ['an_additional_special_token'] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['an_additional_special_token'] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained _A = added_tokens_extra_ids + [AddedToken('a_new_additional_special_token' , lstrip=_UpperCAmelCase )] _A = tokenizer_class.from_pretrained( _UpperCAmelCase , additional_special_tokens=_UpperCAmelCase , ) self.assertIn('a_new_additional_special_token' , tokenizer.additional_special_tokens ) self.assertEqual( ['a_new_additional_special_token'] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['a_new_additional_special_token'] ) ) , ) def lowerCAmelCase_ ( self : Union[str, Any] ): _A = self.perceiver_tokenizer self.assertEqual(tokenizer.decode([178] ) , '�' ) def lowerCAmelCase_ ( self : List[str] ): pass def lowerCAmelCase_ ( self : Optional[Any] ): pass def lowerCAmelCase_ ( self : Optional[Any] ): pass def lowerCAmelCase_ ( self : List[Any] ): pass def lowerCAmelCase_ ( self : List[Any] ): _A = self.get_tokenizers(fast=_UpperCAmelCase , do_lower_case=_UpperCAmelCase ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): _A = ['[CLS]', 't', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', ' ', 't', 'e', 's', 't', '[SEP]'] _A = tokenizer.convert_tokens_to_string(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase )
315
import string def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: str ) -> None: '''simple docstring''' for key in range(len(string.ascii_uppercase ) ): A__ = "" for symbol in message: if symbol in string.ascii_uppercase: A__ = string.ascii_uppercase.find(SCREAMING_SNAKE_CASE_ ) A__ = num - key if num < 0: A__ = num + len(string.ascii_uppercase ) A__ = translated + string.ascii_uppercase[num] else: A__ = translated + symbol print(F'Decryption using Key #{key}: {translated}' ) def lowerCAmelCase__ ( ) -> None: '''simple docstring''' A__ = input("Encrypted message: " ) A__ = message.upper() decrypt(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": import doctest doctest.testmod() main()
68
0
lowerCamelCase : dict[tuple[int, int, int], int] ={} def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> int: # if we are absent twice, or late 3 consecutive days, # no further prize strings are possible if late == 3 or absent == 2: return 0 # if we have no days left, and have not failed any other rules, # we have a prize string if days == 0: return 1 # No easy solution, so now we need to do the recursive calculation # First, check if the combination is already in the cache, and # if yes, return the stored value from there since we already # know the number of possible prize strings from this point on UpperCamelCase__ : str = (days, absent, late) if key in cache: return cache[key] # now we calculate the three possible ways that can unfold from # this point on, depending on our attendance today # 1) if we are late (but not absent), the "absent" counter stays as # it is, but the "late" counter increases by one UpperCamelCase__ : Union[str, Any] = _calculate(days - 1 , __lowerCAmelCase , late + 1 ) # 2) if we are absent, the "absent" counter increases by 1, and the # "late" counter resets to 0 UpperCamelCase__ : List[Any] = _calculate(days - 1 , absent + 1 , 0 ) # 3) if we are on time, this resets the "late" counter and keeps the # absent counter UpperCamelCase__ : List[str] = _calculate(days - 1 , __lowerCAmelCase , 0 ) UpperCamelCase__ : Tuple = state_late + state_absent + state_ontime UpperCamelCase__ : Dict = prizestrings return prizestrings def SCREAMING_SNAKE_CASE ( __lowerCAmelCase = 30 ) -> int: return _calculate(__lowerCAmelCase , absent=0 , late=0 ) if __name__ == "__main__": print(solution())
354
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> int: assert isinstance(__lowerCAmelCase , __lowerCAmelCase ), f'The input value of [n={number}] is not an integer' if number == 1: return 2 elif number < 1: UpperCamelCase__ : List[Any] = f'The input value of [n={number}] has to be > 0' raise ValueError(__lowerCAmelCase ) else: UpperCamelCase__ : Optional[Any] = sylvester(number - 1 ) UpperCamelCase__ : str = num - 1 UpperCamelCase__ : int = num return lower * upper + 1 if __name__ == "__main__": print(F"""The 8th number in Sylvester's sequence: {sylvester(8)}""")
196
0
import os import tempfile import unittest from transformers.models.marian.convert_marian_tatoeba_to_pytorch import DEFAULT_REPO, TatoebaConverter from transformers.testing_utils import slow from transformers.utils import cached_property @unittest.skipUnless(os.path.exists(UpperCAmelCase_ ) , """Tatoeba directory does not exist.""" ) class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase__ ( self) -> Union[str, Any]: __UpperCamelCase :Any = tempfile.mkdtemp() return TatoebaConverter(save_dir=__lowercase) @slow def UpperCamelCase__ ( self) -> Any: self.resolver.convert_models(['''heb-eng''']) @slow def UpperCamelCase__ ( self) -> Dict: __UpperCamelCase , __UpperCamelCase :List[str] = self.resolver.write_model_card('''opus-mt-he-en''' , dry_run=__lowercase) assert mmeta["long_pair"] == "heb-eng"
43
from __future__ import annotations from PIL import Image # Define glider example __lowercase = [ [0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], ] # Define blinker example __lowercase = [[0, 1, 0], [0, 1, 0], [0, 1, 0]] def lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase :int = [] for i in range(len(SCREAMING_SNAKE_CASE ) ): __UpperCamelCase :Dict = [] for j in range(len(cells[i] ) ): # Get the number of live neighbours __UpperCamelCase :List[str] = 0 if i > 0 and j > 0: neighbour_count += cells[i - 1][j - 1] if i > 0: neighbour_count += cells[i - 1][j] if i > 0 and j < len(cells[i] ) - 1: neighbour_count += cells[i - 1][j + 1] if j > 0: neighbour_count += cells[i][j - 1] if j < len(cells[i] ) - 1: neighbour_count += cells[i][j + 1] if i < len(SCREAMING_SNAKE_CASE ) - 1 and j > 0: neighbour_count += cells[i + 1][j - 1] if i < len(SCREAMING_SNAKE_CASE ) - 1: neighbour_count += cells[i + 1][j] if i < len(SCREAMING_SNAKE_CASE ) - 1 and j < len(cells[i] ) - 1: neighbour_count += cells[i + 1][j + 1] # Rules of the game of life (excerpt from Wikipedia): # 1. Any live cell with two or three live neighbours survives. # 2. Any dead cell with three live neighbours becomes a live cell. # 3. All other live cells die in the next generation. # Similarly, all other dead cells stay dead. __UpperCamelCase :List[str] = cells[i][j] == 1 if ( (alive and 2 <= neighbour_count <= 3) or not alive and neighbour_count == 3 ): next_generation_row.append(1 ) else: next_generation_row.append(0 ) next_generation.append(SCREAMING_SNAKE_CASE ) return next_generation def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase :Optional[Any] = [] for _ in range(SCREAMING_SNAKE_CASE ): # Create output image __UpperCamelCase :Dict = Image.new('''RGB''' , (len(cells[0] ), len(SCREAMING_SNAKE_CASE )) ) __UpperCamelCase :Any = img.load() # Save cells to image for x in range(len(SCREAMING_SNAKE_CASE ) ): for y in range(len(cells[0] ) ): __UpperCamelCase :Optional[Any] = 255 - cells[y][x] * 255 __UpperCamelCase :int = (colour, colour, colour) # Save image images.append(SCREAMING_SNAKE_CASE ) __UpperCamelCase :Optional[int] = new_generation(SCREAMING_SNAKE_CASE ) return images if __name__ == "__main__": __lowercase = generate_images(GLIDER, 16) images[0].save('''out.gif''', save_all=True, append_images=images[1:])
43
1
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import TensorType, logging if TYPE_CHECKING: from ...onnx.config import PatchingSpec from ...tokenization_utils_base import PreTrainedTokenizerBase lowercase__ : Optional[Any] = logging.get_logger(__name__) lowercase__ : int = { 'allenai/longformer-base-4096': 'https://huggingface.co/allenai/longformer-base-4096/resolve/main/config.json', 'allenai/longformer-large-4096': 'https://huggingface.co/allenai/longformer-large-4096/resolve/main/config.json', 'allenai/longformer-large-4096-finetuned-triviaqa': ( 'https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/config.json' ), 'allenai/longformer-base-4096-extra.pos.embd.only': ( 'https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/config.json' ), 'allenai/longformer-large-4096-extra.pos.embd.only': ( 'https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/config.json' ), } class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" _snake_case : List[str] = 'longformer' def __init__( self : List[Any] , lowerCAmelCase__ : Union[List[int], int] = 512 , lowerCAmelCase__ : int = 2 , lowerCAmelCase__ : int = 1 , lowerCAmelCase__ : int = 0 , lowerCAmelCase__ : int = 2 , lowerCAmelCase__ : int = 30522 , lowerCAmelCase__ : int = 768 , lowerCAmelCase__ : int = 12 , lowerCAmelCase__ : int = 12 , lowerCAmelCase__ : int = 3072 , lowerCAmelCase__ : str = "gelu" , lowerCAmelCase__ : float = 0.1 , lowerCAmelCase__ : float = 0.1 , lowerCAmelCase__ : int = 512 , lowerCAmelCase__ : int = 2 , lowerCAmelCase__ : float = 0.02 , lowerCAmelCase__ : float = 1e-1_2 , lowerCAmelCase__ : bool = False , **lowerCAmelCase__ : Dict , ) -> Tuple: '''simple docstring''' super().__init__(pad_token_id=lowerCAmelCase__ , **lowerCAmelCase__ ) _UpperCamelCase = attention_window _UpperCamelCase = sep_token_id _UpperCamelCase = bos_token_id _UpperCamelCase = eos_token_id _UpperCamelCase = vocab_size _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = hidden_act _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = max_position_embeddings _UpperCamelCase = type_vocab_size _UpperCamelCase = initializer_range _UpperCamelCase = layer_norm_eps _UpperCamelCase = onnx_export class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" def __init__( self : Tuple , lowerCAmelCase__ : "PretrainedConfig" , lowerCAmelCase__ : str = "default" , lowerCAmelCase__ : "List[PatchingSpec]" = None ) -> List[str]: '''simple docstring''' super().__init__(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCamelCase = True @property def snake_case__ ( self : Optional[Any] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": _UpperCamelCase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: _UpperCamelCase = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''global_attention_mask''', dynamic_axis), ] ) @property def snake_case__ ( self : List[str] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' _UpperCamelCase = super().outputs if self.task == "default": _UpperCamelCase = {0: '''batch'''} return outputs @property def snake_case__ ( self : Tuple ) -> float: '''simple docstring''' return 1e-4 @property def snake_case__ ( self : Union[str, Any] ) -> int: '''simple docstring''' return max(super().default_onnx_opset , 14 ) def snake_case__ ( self : Tuple , lowerCAmelCase__ : "PreTrainedTokenizerBase" , lowerCAmelCase__ : int = -1 , lowerCAmelCase__ : int = -1 , lowerCAmelCase__ : bool = False , lowerCAmelCase__ : Optional[TensorType] = None , ) -> Mapping[str, Any]: '''simple docstring''' _UpperCamelCase = super().generate_dummy_inputs( preprocessor=lowerCAmelCase__ , batch_size=lowerCAmelCase__ , seq_length=lowerCAmelCase__ , is_pair=lowerCAmelCase__ , framework=lowerCAmelCase__ ) import torch # for some reason, replacing this code by inputs["global_attention_mask"] = torch.randint(2, inputs["input_ids"].shape, dtype=torch.int64) # makes the export fail randomly _UpperCamelCase = torch.zeros_like(inputs['''input_ids'''] ) # make every second token global _UpperCamelCase = 1 return inputs
287
'''simple docstring''' def a__ ( lowercase : int, lowercase : int ) -> int: """simple docstring""" return x if y == 0 else greatest_common_divisor(lowercase, x % y ) def a__ ( lowercase : int, lowercase : int ) -> int: """simple docstring""" return (x * y) // greatest_common_divisor(lowercase, lowercase ) def a__ ( lowercase : int = 20 ) -> int: """simple docstring""" _UpperCamelCase = 1 for i in range(1, n + 1 ): _UpperCamelCase = lcm(lowercase, lowercase ) return g if __name__ == "__main__": print(F"""{solution() = }""")
287
1
'''simple docstring''' import builtins import sys from ...utils.imports import _is_package_available from . import cursor, input from .helpers import Direction, clear_line, forceWrite, linebreak, move_cursor, reset_cursor, writeColor from .keymap import KEYMAP __UpperCAmelCase =False try: __UpperCAmelCase =_is_package_available("google.colab") except ModuleNotFoundError: pass @input.register class a__ : def __init__( self : Dict , a : str = None , a : list = [] ): """simple docstring""" __lowerCamelCase = 0 __lowerCamelCase = choices __lowerCamelCase = prompt if sys.platform == "win32": __lowerCamelCase = '''*''' else: __lowerCamelCase = '''➔ ''' def SCREAMING_SNAKE_CASE__ ( self : str , a : int , a : str = "" ): """simple docstring""" if sys.platform != "win32": writeColor(self.choices[index] , 32 , a ) else: forceWrite(self.choices[index] , a ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] , a : int ): """simple docstring""" if index == self.position: forceWrite(f""" {self.arrow_char} """ ) self.write_choice(a ) else: forceWrite(f""" {self.choices[index]}""" ) reset_cursor() def SCREAMING_SNAKE_CASE__ ( self : Any , a : Direction , a : int = 1 ): """simple docstring""" __lowerCamelCase = self.position if direction == Direction.DOWN: if self.position + 1 >= len(self.choices ): return self.position += num_spaces else: if self.position - 1 < 0: return self.position -= num_spaces clear_line() self.print_choice(a ) move_cursor(a , direction.name ) self.print_choice(self.position ) @input.mark(KEYMAP['''up'''] ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): """simple docstring""" self.move_direction(Direction.UP ) @input.mark(KEYMAP['''down'''] ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): """simple docstring""" self.move_direction(Direction.DOWN ) @input.mark(KEYMAP['''newline'''] ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" move_cursor(len(self.choices ) - self.position , '''DOWN''' ) return self.position @input.mark(KEYMAP['''interrupt'''] ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ): """simple docstring""" move_cursor(len(self.choices ) - self.position , '''DOWN''' ) raise KeyboardInterrupt @input.mark_multiple(*[KEYMAP[str(a )] for number in range(10 )] ) def SCREAMING_SNAKE_CASE__ ( self : Dict ): """simple docstring""" __lowerCamelCase = int(chr(self.current_selection ) ) __lowerCamelCase = index - self.position if index == self.position: return if index < len(self.choices ): if self.position > index: self.move_direction(Direction.UP , -movement ) elif self.position < index: self.move_direction(Direction.DOWN , a ) else: return else: return def SCREAMING_SNAKE_CASE__ ( self : List[str] , a : int = 0 ): """simple docstring""" if self.prompt: linebreak() forceWrite(self.prompt , '''\n''' ) if in_colab: forceWrite('''Please input a choice index (starting from 0), and press enter''' , '''\n''' ) else: forceWrite('''Please select a choice using the arrow or number keys, and selecting with enter''' , '''\n''' ) __lowerCamelCase = default_choice for i in range(len(self.choices ) ): self.print_choice(a ) forceWrite('''\n''' ) move_cursor(len(self.choices ) - self.position , '''UP''' ) with cursor.hide(): while True: if in_colab: try: __lowerCamelCase = int(builtins.input() ) except ValueError: __lowerCamelCase = default_choice else: __lowerCamelCase = self.handle_input() if choice is not None: reset_cursor() for _ in range(len(self.choices ) + 1 ): move_cursor(1 , '''UP''' ) clear_line() self.write_choice(a , '''\n''' ) return choice
67
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class a__ : def __init__( self : Union[str, Any] , a : Union[str, Any] , a : Tuple=13 , a : Optional[Any]=7 , a : List[Any]=True , a : Optional[Any]=True , a : Any=True , a : Union[str, Any]=99 , a : Any=32 , a : int=5 , a : Optional[int]=4 , a : Union[str, Any]=37 , a : Optional[Any]="gelu" , a : Union[str, Any]=0.1 , a : Any=0.1 , a : Optional[int]=5_12 , a : int=16 , a : Optional[Any]=2 , a : Union[str, Any]=0.02 , a : Any=3 , a : Dict=4 , a : Any=None , ): """simple docstring""" __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = seq_length __lowerCamelCase = is_training __lowerCamelCase = use_token_type_ids __lowerCamelCase = use_labels __lowerCamelCase = vocab_size __lowerCamelCase = hidden_size __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = intermediate_size __lowerCamelCase = hidden_act __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = max_position_embeddings __lowerCamelCase = type_vocab_size __lowerCamelCase = type_sequence_label_size __lowerCamelCase = initializer_range __lowerCamelCase = num_labels __lowerCamelCase = num_choices __lowerCamelCase = scope __lowerCamelCase = self.vocab_size - 1 def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCamelCase = None if self.use_token_type_ids: __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowerCamelCase = None __lowerCamelCase = None __lowerCamelCase = None if self.use_labels: __lowerCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowerCamelCase = ids_tensor([self.batch_size] , self.num_choices ) __lowerCamelCase = OpenAIGPTConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) __lowerCamelCase = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , a : Dict , a : List[str] , a : Tuple , a : List[Any] , *a : Union[str, Any] ): """simple docstring""" __lowerCamelCase = OpenAIGPTModel(config=a ) model.to(a ) model.eval() __lowerCamelCase = model(a , token_type_ids=a , head_mask=a ) __lowerCamelCase = model(a , token_type_ids=a ) __lowerCamelCase = model(a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , a : Union[str, Any] , a : Dict , a : Union[str, Any] , a : Tuple , *a : Union[str, Any] ): """simple docstring""" __lowerCamelCase = OpenAIGPTLMHeadModel(a ) model.to(a ) model.eval() __lowerCamelCase = model(a , token_type_ids=a , labels=a ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , a : Tuple , a : Optional[int] , a : Union[str, Any] , a : Optional[Any] , *a : Optional[Any] ): """simple docstring""" __lowerCamelCase = OpenAIGPTDoubleHeadsModel(a ) model.to(a ) model.eval() __lowerCamelCase = model(a , token_type_ids=a , labels=a ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE__ ( self : List[str] , a : int , a : Dict , a : Optional[Any] , a : str , *a : int ): """simple docstring""" __lowerCamelCase = self.num_labels __lowerCamelCase = OpenAIGPTForSequenceClassification(a ) model.to(a ) model.eval() __lowerCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCamelCase = model(a , token_type_ids=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): """simple docstring""" __lowerCamelCase = self.prepare_config_and_inputs() ( ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ) = config_and_inputs __lowerCamelCase = { '''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''head_mask''': head_mask, } return config, inputs_dict @require_torch class a__ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): lowerCamelCase : List[str] =( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) lowerCamelCase : str =( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly lowerCamelCase : Optional[int] =( { "feature-extraction": OpenAIGPTModel, "text-classification": OpenAIGPTForSequenceClassification, "text-generation": OpenAIGPTLMHeadModel, "zero-shot": OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] , a : Tuple , a : Optional[int] , a : int , a : str , a : Any ): """simple docstring""" if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , a : int , a : Optional[int] , a : str=False ): """simple docstring""" __lowerCamelCase = super()._prepare_for_class(a , a , return_labels=a ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": __lowerCamelCase = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=a , ) __lowerCamelCase = inputs_dict['''labels'''] __lowerCamelCase = inputs_dict['''labels'''] __lowerCamelCase = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=a , ) __lowerCamelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=a ) return inputs_dict def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): """simple docstring""" __lowerCamelCase = OpenAIGPTModelTester(self ) __lowerCamelCase = ConfigTester(self , config_class=a , n_embd=37 ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): """simple docstring""" __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*a ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): """simple docstring""" __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*a ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*a ) def SCREAMING_SNAKE_CASE__ ( self : Any ): """simple docstring""" __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*a ) @slow def SCREAMING_SNAKE_CASE__ ( self : Any ): """simple docstring""" for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCamelCase = OpenAIGPTModel.from_pretrained(a ) self.assertIsNotNone(a ) @require_torch class a__ ( unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE__ ( self : str ): """simple docstring""" __lowerCamelCase = OpenAIGPTLMHeadModel.from_pretrained('''openai-gpt''' ) model.to(a ) __lowerCamelCase = torch.tensor([[4_81, 47_35, 5_44]] , dtype=torch.long , device=a ) # the president is __lowerCamelCase = [ 4_81, 47_35, 5_44, 2_46, 9_63, 8_70, 7_62, 2_39, 2_44, 4_04_77, 2_44, 2_49, 7_19, 8_81, 4_87, 5_44, 2_40, 2_44, 6_03, 4_81, ] # the president is a very good man. " \n " i\'m sure he is, " said the __lowerCamelCase = model.generate(a , do_sample=a ) self.assertListEqual(output_ids[0].tolist() , a )
67
1
from __future__ import annotations a__: Tuple = [] def UpperCamelCase__( UpperCamelCase__ : list[list[int]] , UpperCamelCase__ : int , UpperCamelCase__ : int )->bool: for i in range(len(UpperCamelCase__ ) ): if board[row][i] == 1: return False for i in range(len(UpperCamelCase__ ) ): if board[i][column] == 1: return False for i, j in zip(range(UpperCamelCase__ , -1 , -1 ) , range(UpperCamelCase__ , -1 , -1 ) ): if board[i][j] == 1: return False for i, j in zip(range(UpperCamelCase__ , -1 , -1 ) , range(UpperCamelCase__ , len(UpperCamelCase__ ) ) ): if board[i][j] == 1: return False return True def UpperCamelCase__( UpperCamelCase__ : list[list[int]] , UpperCamelCase__ : int )->bool: if row >= len(UpperCamelCase__ ): solution.append(UpperCamelCase__ ) printboard(UpperCamelCase__ ) print() return True for i in range(len(UpperCamelCase__ ) ): if is_safe(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): A__ = 1 solve(UpperCamelCase__ , row + 1 ) A__ = 0 return False def UpperCamelCase__( UpperCamelCase__ : list[list[int]] )->None: for i in range(len(UpperCamelCase__ ) ): for j in range(len(UpperCamelCase__ ) ): if board[i][j] == 1: print('''Q''' , end=''' ''' ) else: print('''.''' , end=''' ''' ) print() # n=int(input("The no. of queens")) a__: List[Any] = 8 a__: Union[str, Any] = [[0 for i in range(n)] for j in range(n)] solve(board, 0) print('The total no. of solutions are :', len(solution))
39
def UpperCamelCase__( UpperCamelCase__ : str )->str: A__ = '''''' for ch in key: if ch == " " or ch not in key_no_dups and ch.isalpha(): key_no_dups += ch return key_no_dups def UpperCamelCase__( UpperCamelCase__ : str )->dict[str, str]: A__ = [chr(i + 65 ) for i in range(26 )] # Remove duplicate characters from key A__ = remove_duplicates(key.upper() ) A__ = len(UpperCamelCase__ ) # First fill cipher with key characters A__ = {alphabet[i]: char for i, char in enumerate(UpperCamelCase__ )} # Then map remaining characters in alphabet to # the alphabet from the beginning for i in range(len(UpperCamelCase__ ) , 26 ): A__ = alphabet[i - offset] # Ensure we are not mapping letters to letters previously mapped while char in key: offset -= 1 A__ = alphabet[i - offset] A__ = char return cipher_alphabet def UpperCamelCase__( UpperCamelCase__ : str , UpperCamelCase__ : dict[str, str] )->str: return "".join(cipher_map.get(UpperCamelCase__ , UpperCamelCase__ ) for ch in message.upper() ) def UpperCamelCase__( UpperCamelCase__ : str , UpperCamelCase__ : dict[str, str] )->str: A__ = {v: k for k, v in cipher_map.items()} return "".join(rev_cipher_map.get(UpperCamelCase__ , UpperCamelCase__ ) for ch in message.upper() ) def UpperCamelCase__( )->None: A__ = input('''Enter message to encode or decode: ''' ).strip() A__ = input('''Enter keyword: ''' ).strip() A__ = input('''Encipher or decipher? E/D:''' ).strip()[0].lower() try: A__ = {'''e''': encipher, '''d''': decipher}[option] except KeyError: raise KeyError('''invalid input option''' ) A__ = create_cipher_map(UpperCamelCase__ ) print(func(UpperCamelCase__ , UpperCamelCase__ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
39
1
"""simple docstring""" import importlib import inspect import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py lowerCamelCase_ = "src/transformers" # This is to make sure the transformers module imported is the one in the repo. lowerCamelCase_ = importlib.util.spec_from_file_location( "transformers", os.path.join(PATH_TO_TRANSFORMERS, "__init__.py"), submodule_search_locations=[PATH_TO_TRANSFORMERS], ) lowerCamelCase_ = spec.loader.load_module() lowerCamelCase_ = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` lowerCamelCase_ = re.compile("\[(.+?)\]\((https://huggingface\.co/.+?)\)") lowerCamelCase_ = { "CLIPConfigMixin", "DecisionTransformerConfigMixin", "EncoderDecoderConfigMixin", "RagConfigMixin", "SpeechEncoderDecoderConfigMixin", "VisionEncoderDecoderConfigMixin", "VisionTextDualEncoderConfigMixin", } def __lowerCamelCase ( ) -> Any: __SCREAMING_SNAKE_CASE :Any = [] for config_class in list(CONFIG_MAPPING.values() ): __SCREAMING_SNAKE_CASE :List[Any] = False # source code of `config_class` __SCREAMING_SNAKE_CASE :Tuple = inspect.getsource(a_ ) __SCREAMING_SNAKE_CASE :Dict = _re_checkpoint.findall(a_ ) for checkpoint in checkpoints: # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE :List[Any] = checkpoint # verify the checkpoint name corresponds to the checkpoint link __SCREAMING_SNAKE_CASE :Tuple = f'''https://huggingface.co/{ckpt_name}''' if ckpt_link == ckpt_link_from_name: __SCREAMING_SNAKE_CASE :List[str] = True break __SCREAMING_SNAKE_CASE :Optional[int] = config_class.__name__ if not checkpoint_found and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(a_ ) if len(a_ ) > 0: __SCREAMING_SNAKE_CASE :int = '''\n'''.join(sorted(a_ ) ) raise ValueError(f'''The following configurations don\'t contain any valid checkpoint:\n{message}''' ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
191
"""simple docstring""" import gc import unittest import numpy as np import torch from torch.backends.cuda import sdp_kernel from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) from diffusers.utils import randn_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_a, require_torch_gpu from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class _SCREAMING_SNAKE_CASE( A , unittest.TestCase ): SCREAMING_SNAKE_CASE_ : Optional[Any] = ConsistencyModelPipeline SCREAMING_SNAKE_CASE_ : Any = UNCONDITIONAL_IMAGE_GENERATION_PARAMS SCREAMING_SNAKE_CASE_ : Dict = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS # Override required_optional_params to remove num_images_per_prompt SCREAMING_SNAKE_CASE_ : Optional[Any] = frozenset( [ '''num_inference_steps''', '''generator''', '''latents''', '''output_type''', '''return_dict''', '''callback''', '''callback_steps''', ] ) @property def _UpperCamelCase ( self ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE :Tuple = UNetaDModel.from_pretrained( '''diffusers/consistency-models-test''' ,subfolder='''test_unet''' ,) return unet @property def _UpperCamelCase ( self ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE :Optional[int] = UNetaDModel.from_pretrained( '''diffusers/consistency-models-test''' ,subfolder='''test_unet_class_cond''' ,) return unet def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__=False ) -> Union[str, Any]: """simple docstring""" if class_cond: __SCREAMING_SNAKE_CASE :str = self.dummy_cond_unet else: __SCREAMING_SNAKE_CASE :Optional[Any] = self.dummy_uncond_unet # Default to CM multistep sampler __SCREAMING_SNAKE_CASE :List[str] = CMStochasticIterativeScheduler( num_train_timesteps=40 ,sigma_min=0.0_0_2 ,sigma_max=8_0.0 ,) __SCREAMING_SNAKE_CASE :List[str] = { '''unet''': unet, '''scheduler''': scheduler, } return components def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=0 ) -> Dict: """simple docstring""" if str(SCREAMING_SNAKE_CASE__ ).startswith('''mps''' ): __SCREAMING_SNAKE_CASE :Tuple = torch.manual_seed(SCREAMING_SNAKE_CASE__ ) else: __SCREAMING_SNAKE_CASE :Optional[Any] = torch.Generator(device=SCREAMING_SNAKE_CASE__ ).manual_seed(SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :Dict = { '''batch_size''': 1, '''num_inference_steps''': None, '''timesteps''': [22, 0], '''generator''': generator, '''output_type''': '''np''', } return inputs def _UpperCamelCase ( self ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE :Union[str, Any] = '''cpu''' # ensure determinism for the device-dependent torch.Generator __SCREAMING_SNAKE_CASE :List[str] = self.get_dummy_components() __SCREAMING_SNAKE_CASE :Optional[Any] = ConsistencyModelPipeline(**SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :str = pipe.to(SCREAMING_SNAKE_CASE__ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :Tuple = self.get_dummy_inputs(SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :int = pipe(**SCREAMING_SNAKE_CASE__ ).images assert image.shape == (1, 32, 32, 3) __SCREAMING_SNAKE_CASE :List[str] = image[0, -3:, -3:, -1] __SCREAMING_SNAKE_CASE :Any = np.array([0.3_5_7_2, 0.6_2_7_3, 0.4_0_3_1, 0.3_9_6_1, 0.4_3_2_1, 0.5_7_3_0, 0.5_2_6_6, 0.4_7_8_0, 0.5_0_0_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def _UpperCamelCase ( self ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE :Union[str, Any] = '''cpu''' # ensure determinism for the device-dependent torch.Generator __SCREAMING_SNAKE_CASE :List[Any] = self.get_dummy_components(class_cond=SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :str = ConsistencyModelPipeline(**SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :Optional[int] = pipe.to(SCREAMING_SNAKE_CASE__ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :Union[str, Any] = self.get_dummy_inputs(SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :Optional[int] = 0 __SCREAMING_SNAKE_CASE :Optional[int] = pipe(**SCREAMING_SNAKE_CASE__ ).images assert image.shape == (1, 32, 32, 3) __SCREAMING_SNAKE_CASE :Dict = image[0, -3:, -3:, -1] __SCREAMING_SNAKE_CASE :List[Any] = np.array([0.3_5_7_2, 0.6_2_7_3, 0.4_0_3_1, 0.3_9_6_1, 0.4_3_2_1, 0.5_7_3_0, 0.5_2_6_6, 0.4_7_8_0, 0.5_0_0_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def _UpperCamelCase ( self ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE :List[str] = '''cpu''' # ensure determinism for the device-dependent torch.Generator __SCREAMING_SNAKE_CASE :Tuple = self.get_dummy_components() __SCREAMING_SNAKE_CASE :Any = ConsistencyModelPipeline(**SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :List[str] = pipe.to(SCREAMING_SNAKE_CASE__ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :str = self.get_dummy_inputs(SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :Dict = 1 __SCREAMING_SNAKE_CASE :List[str] = None __SCREAMING_SNAKE_CASE :List[str] = pipe(**SCREAMING_SNAKE_CASE__ ).images assert image.shape == (1, 32, 32, 3) __SCREAMING_SNAKE_CASE :List[str] = image[0, -3:, -3:, -1] __SCREAMING_SNAKE_CASE :int = np.array([0.5_0_0_4, 0.5_0_0_4, 0.4_9_9_4, 0.5_0_0_8, 0.4_9_7_6, 0.5_0_1_8, 0.4_9_9_0, 0.4_9_8_2, 0.4_9_8_7] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def _UpperCamelCase ( self ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE :str = '''cpu''' # ensure determinism for the device-dependent torch.Generator __SCREAMING_SNAKE_CASE :Any = self.get_dummy_components(class_cond=SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :str = ConsistencyModelPipeline(**SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :Dict = pipe.to(SCREAMING_SNAKE_CASE__ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :str = self.get_dummy_inputs(SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :int = 1 __SCREAMING_SNAKE_CASE :Optional[Any] = None __SCREAMING_SNAKE_CASE :List[Any] = 0 __SCREAMING_SNAKE_CASE :Any = pipe(**SCREAMING_SNAKE_CASE__ ).images assert image.shape == (1, 32, 32, 3) __SCREAMING_SNAKE_CASE :int = image[0, -3:, -3:, -1] __SCREAMING_SNAKE_CASE :Optional[Any] = np.array([0.5_0_0_4, 0.5_0_0_4, 0.4_9_9_4, 0.5_0_0_8, 0.4_9_7_6, 0.5_0_1_8, 0.4_9_9_0, 0.4_9_8_2, 0.4_9_8_7] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 @slow @require_torch_gpu class _SCREAMING_SNAKE_CASE( unittest.TestCase ): def _UpperCamelCase ( self ) -> List[str]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__=0 ,SCREAMING_SNAKE_CASE__=False ,SCREAMING_SNAKE_CASE__="cpu" ,SCREAMING_SNAKE_CASE__=torch.floataa ,SCREAMING_SNAKE_CASE__=(1, 3, 64, 64) ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE :Tuple = torch.manual_seed(SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :Tuple = { '''num_inference_steps''': None, '''timesteps''': [22, 0], '''class_labels''': 0, '''generator''': generator, '''output_type''': '''np''', } if get_fixed_latents: __SCREAMING_SNAKE_CASE :int = self.get_fixed_latents(seed=SCREAMING_SNAKE_CASE__ ,device=SCREAMING_SNAKE_CASE__ ,dtype=SCREAMING_SNAKE_CASE__ ,shape=SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :int = latents return inputs def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__=0 ,SCREAMING_SNAKE_CASE__="cpu" ,SCREAMING_SNAKE_CASE__=torch.floataa ,SCREAMING_SNAKE_CASE__=(1, 3, 64, 64) ) -> int: """simple docstring""" if type(SCREAMING_SNAKE_CASE__ ) == str: __SCREAMING_SNAKE_CASE :int = torch.device(SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :Optional[int] = torch.Generator(device=SCREAMING_SNAKE_CASE__ ).manual_seed(SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :int = randn_tensor(SCREAMING_SNAKE_CASE__ ,generator=SCREAMING_SNAKE_CASE__ ,device=SCREAMING_SNAKE_CASE__ ,dtype=SCREAMING_SNAKE_CASE__ ) return latents def _UpperCamelCase ( self ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE :List[Any] = UNetaDModel.from_pretrained('''diffusers/consistency_models''' ,subfolder='''diffusers_cd_imagenet64_l2''' ) __SCREAMING_SNAKE_CASE :List[str] = CMStochasticIterativeScheduler( num_train_timesteps=40 ,sigma_min=0.0_0_2 ,sigma_max=8_0.0 ,) __SCREAMING_SNAKE_CASE :Dict = ConsistencyModelPipeline(unet=SCREAMING_SNAKE_CASE__ ,scheduler=SCREAMING_SNAKE_CASE__ ) pipe.to(torch_device=SCREAMING_SNAKE_CASE__ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :int = self.get_inputs() __SCREAMING_SNAKE_CASE :List[str] = pipe(**SCREAMING_SNAKE_CASE__ ).images assert image.shape == (1, 64, 64, 3) __SCREAMING_SNAKE_CASE :Union[str, Any] = image[0, -3:, -3:, -1] __SCREAMING_SNAKE_CASE :Dict = np.array([0.0_8_8_8, 0.0_8_8_1, 0.0_6_6_6, 0.0_4_7_9, 0.0_2_9_2, 0.0_1_9_5, 0.0_2_0_1, 0.0_1_6_3, 0.0_2_5_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2 def _UpperCamelCase ( self ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE :List[Any] = UNetaDModel.from_pretrained('''diffusers/consistency_models''' ,subfolder='''diffusers_cd_imagenet64_l2''' ) __SCREAMING_SNAKE_CASE :List[Any] = CMStochasticIterativeScheduler( num_train_timesteps=40 ,sigma_min=0.0_0_2 ,sigma_max=8_0.0 ,) __SCREAMING_SNAKE_CASE :Any = ConsistencyModelPipeline(unet=SCREAMING_SNAKE_CASE__ ,scheduler=SCREAMING_SNAKE_CASE__ ) pipe.to(torch_device=SCREAMING_SNAKE_CASE__ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :Optional[int] = self.get_inputs() __SCREAMING_SNAKE_CASE :int = 1 __SCREAMING_SNAKE_CASE :int = None __SCREAMING_SNAKE_CASE :Union[str, Any] = pipe(**SCREAMING_SNAKE_CASE__ ).images assert image.shape == (1, 64, 64, 3) __SCREAMING_SNAKE_CASE :str = image[0, -3:, -3:, -1] __SCREAMING_SNAKE_CASE :List[str] = np.array([0.0_3_4_0, 0.0_1_5_2, 0.0_0_6_3, 0.0_2_6_7, 0.0_2_2_1, 0.0_1_0_7, 0.0_4_1_6, 0.0_1_8_6, 0.0_2_1_7] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2 @require_torch_a def _UpperCamelCase ( self ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE :List[Any] = UNetaDModel.from_pretrained('''diffusers/consistency_models''' ,subfolder='''diffusers_cd_imagenet64_l2''' ) __SCREAMING_SNAKE_CASE :Any = CMStochasticIterativeScheduler( num_train_timesteps=40 ,sigma_min=0.0_0_2 ,sigma_max=8_0.0 ,) __SCREAMING_SNAKE_CASE :Any = ConsistencyModelPipeline(unet=SCREAMING_SNAKE_CASE__ ,scheduler=SCREAMING_SNAKE_CASE__ ) pipe.to(torch_device=SCREAMING_SNAKE_CASE__ ,torch_dtype=torch.floataa ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :str = self.get_inputs(get_fixed_latents=SCREAMING_SNAKE_CASE__ ,device=SCREAMING_SNAKE_CASE__ ) # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=SCREAMING_SNAKE_CASE__ ,enable_math=SCREAMING_SNAKE_CASE__ ,enable_mem_efficient=SCREAMING_SNAKE_CASE__ ): __SCREAMING_SNAKE_CASE :Optional[Any] = pipe(**SCREAMING_SNAKE_CASE__ ).images assert image.shape == (1, 64, 64, 3) __SCREAMING_SNAKE_CASE :List[str] = image[0, -3:, -3:, -1] __SCREAMING_SNAKE_CASE :List[Any] = np.array([0.1_8_7_5, 0.1_4_2_8, 0.1_2_8_9, 0.2_1_5_1, 0.2_0_9_2, 0.1_4_7_7, 0.1_8_7_7, 0.1_6_4_1, 0.1_3_5_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 @require_torch_a def _UpperCamelCase ( self ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE :str = UNetaDModel.from_pretrained('''diffusers/consistency_models''' ,subfolder='''diffusers_cd_imagenet64_l2''' ) __SCREAMING_SNAKE_CASE :Dict = CMStochasticIterativeScheduler( num_train_timesteps=40 ,sigma_min=0.0_0_2 ,sigma_max=8_0.0 ,) __SCREAMING_SNAKE_CASE :int = ConsistencyModelPipeline(unet=SCREAMING_SNAKE_CASE__ ,scheduler=SCREAMING_SNAKE_CASE__ ) pipe.to(torch_device=SCREAMING_SNAKE_CASE__ ,torch_dtype=torch.floataa ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :Dict = self.get_inputs(get_fixed_latents=SCREAMING_SNAKE_CASE__ ,device=SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :int = 1 __SCREAMING_SNAKE_CASE :int = None # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=SCREAMING_SNAKE_CASE__ ,enable_math=SCREAMING_SNAKE_CASE__ ,enable_mem_efficient=SCREAMING_SNAKE_CASE__ ): __SCREAMING_SNAKE_CASE :str = pipe(**SCREAMING_SNAKE_CASE__ ).images assert image.shape == (1, 64, 64, 3) __SCREAMING_SNAKE_CASE :str = image[0, -3:, -3:, -1] __SCREAMING_SNAKE_CASE :Optional[int] = np.array([0.1_6_6_3, 0.1_9_4_8, 0.2_2_7_5, 0.1_6_8_0, 0.1_2_0_4, 0.1_2_4_5, 0.1_8_5_8, 0.1_3_3_8, 0.2_0_9_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
191
1
"""simple docstring""" def UpperCAmelCase__ ( lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :Any , lowerCAmelCase__ :Dict ) -> Tuple: '''simple docstring''' if n == 0: return 1 elif n % 2 == 1: return (binary_exponentiation(_A , n - 1 , _A ) * a) % mod else: lowercase = binary_exponentiation(_A , n / 2 , _A ) return (b * b) % mod # a prime number __lowerCAmelCase : Optional[int] =7_0_1 __lowerCAmelCase : Dict =1_0_0_0_0_0_0_0_0_0 __lowerCAmelCase : Optional[int] =1_0 # using binary exponentiation function, O(log(p)): print((a / b) % p == (a * binary_exponentiation(b, p - 2, p)) % p) print((a / b) % p == (a * b ** (p - 2)) % p)
354
"""simple docstring""" from unittest.mock import Mock, patch from file_transfer.send_file import send_file @patch("""socket.socket""" ) @patch("""builtins.open""" ) def UpperCAmelCase__ ( lowerCAmelCase__ :Tuple , lowerCAmelCase__ :List[str] ) -> Union[str, Any]: '''simple docstring''' lowercase = Mock() lowercase = conn, Mock() lowercase = iter([1, None] ) lowercase = lambda lowerCAmelCase__ : next(lowerCAmelCase__ ) # ===== invoke ===== send_file(filename="""mytext.txt""" , testing=lowerCAmelCase__ ) # ===== ensurance ===== sock.assert_called_once() sock.return_value.bind.assert_called_once() sock.return_value.listen.assert_called_once() sock.return_value.accept.assert_called_once() conn.recv.assert_called_once() file.return_value.__enter__.assert_called_once() file.return_value.__enter__.return_value.read.assert_called() conn.send.assert_called_once() conn.close.assert_called_once() sock.return_value.shutdown.assert_called_once() sock.return_value.close.assert_called_once()
32
0
from ..utils import DummyObject, requires_backends class lowercase ( metaclass=__UpperCamelCase ): lowercase_ : str =['torch'] def __init__( self ,*A__ ,**A__): requires_backends(self ,['''torch''']) @classmethod def A__ ( cls ,*A__ ,**A__): requires_backends(cls ,['''torch''']) @classmethod def A__ ( cls ,*A__ ,**A__): requires_backends(cls ,['''torch''']) class lowercase ( metaclass=__UpperCamelCase ): lowercase_ : str =['torch'] def __init__( self ,*A__ ,**A__): requires_backends(self ,['''torch''']) @classmethod def A__ ( cls ,*A__ ,**A__): requires_backends(cls ,['''torch''']) @classmethod def A__ ( cls ,*A__ ,**A__): requires_backends(cls ,['''torch''']) class lowercase ( metaclass=__UpperCamelCase ): lowercase_ : str =['torch'] def __init__( self ,*A__ ,**A__): requires_backends(self ,['''torch''']) @classmethod def A__ ( cls ,*A__ ,**A__): requires_backends(cls ,['''torch''']) @classmethod def A__ ( cls ,*A__ ,**A__): requires_backends(cls ,['''torch''']) class lowercase ( metaclass=__UpperCamelCase ): lowercase_ : List[str] =['torch'] def __init__( self ,*A__ ,**A__): requires_backends(self ,['''torch''']) @classmethod def A__ ( cls ,*A__ ,**A__): requires_backends(cls ,['''torch''']) @classmethod def A__ ( cls ,*A__ ,**A__): requires_backends(cls ,['''torch''']) class lowercase ( metaclass=__UpperCamelCase ): lowercase_ : Optional[Any] =['torch'] def __init__( self ,*A__ ,**A__): requires_backends(self ,['''torch''']) @classmethod def A__ ( cls ,*A__ ,**A__): requires_backends(cls ,['''torch''']) @classmethod def A__ ( cls ,*A__ ,**A__): requires_backends(cls ,['''torch''']) class lowercase ( metaclass=__UpperCamelCase ): lowercase_ : Tuple =['torch'] def __init__( self ,*A__ ,**A__): requires_backends(self ,['''torch''']) @classmethod def A__ ( cls ,*A__ ,**A__): requires_backends(cls ,['''torch''']) @classmethod def A__ ( cls ,*A__ ,**A__): requires_backends(cls ,['''torch''']) class lowercase ( metaclass=__UpperCamelCase ): lowercase_ : Union[str, Any] =['torch'] def __init__( self ,*A__ ,**A__): requires_backends(self ,['''torch''']) @classmethod def A__ ( cls ,*A__ ,**A__): requires_backends(cls ,['''torch''']) @classmethod def A__ ( cls ,*A__ ,**A__): requires_backends(cls ,['''torch''']) class lowercase ( metaclass=__UpperCamelCase ): lowercase_ : Union[str, Any] =['torch'] def __init__( self ,*A__ ,**A__): requires_backends(self ,['''torch''']) @classmethod def A__ ( cls ,*A__ ,**A__): requires_backends(cls ,['''torch''']) @classmethod def A__ ( cls ,*A__ ,**A__): requires_backends(cls ,['''torch''']) class lowercase ( metaclass=__UpperCamelCase ): lowercase_ : Any =['torch'] def __init__( self ,*A__ ,**A__): requires_backends(self ,['''torch''']) @classmethod def A__ ( cls ,*A__ ,**A__): requires_backends(cls ,['''torch''']) @classmethod def A__ ( cls ,*A__ ,**A__): requires_backends(cls ,['''torch''']) class lowercase ( metaclass=__UpperCamelCase ): lowercase_ : List[str] =['torch'] def __init__( self ,*A__ ,**A__): requires_backends(self ,['''torch''']) @classmethod def A__ ( cls ,*A__ ,**A__): requires_backends(cls ,['''torch''']) @classmethod def A__ ( cls ,*A__ ,**A__): requires_backends(cls ,['''torch''']) class lowercase ( metaclass=__UpperCamelCase ): lowercase_ : int =['torch'] def __init__( self ,*A__ ,**A__): requires_backends(self ,['''torch''']) @classmethod def A__ ( cls ,*A__ ,**A__): requires_backends(cls ,['''torch''']) @classmethod def A__ ( cls ,*A__ ,**A__): requires_backends(cls ,['''torch''']) def UpperCamelCase ( *lowerCAmelCase__ , **lowerCAmelCase__ ): '''simple docstring''' requires_backends(lowerCAmelCase__ , ['''torch'''] ) def UpperCamelCase ( *lowerCAmelCase__ , **lowerCAmelCase__ ): '''simple docstring''' requires_backends(lowerCAmelCase__ , ['''torch'''] ) def UpperCamelCase ( *lowerCAmelCase__ , **lowerCAmelCase__ ): '''simple docstring''' requires_backends(lowerCAmelCase__ , ['''torch'''] ) def UpperCamelCase ( *lowerCAmelCase__ , **lowerCAmelCase__ ): '''simple docstring''' requires_backends(lowerCAmelCase__ , ['''torch'''] ) def UpperCamelCase ( *lowerCAmelCase__ , **lowerCAmelCase__ ): '''simple docstring''' requires_backends(lowerCAmelCase__ , ['''torch'''] ) def UpperCamelCase ( *lowerCAmelCase__ , **lowerCAmelCase__ ): '''simple docstring''' requires_backends(lowerCAmelCase__ , ['''torch'''] ) def UpperCamelCase ( *lowerCAmelCase__ , **lowerCAmelCase__ ): '''simple docstring''' requires_backends(lowerCAmelCase__ , ['''torch'''] ) class lowercase ( metaclass=__UpperCamelCase ): lowercase_ : List[str] =['torch'] def __init__( self ,*A__ ,**A__): requires_backends(self ,['''torch''']) @classmethod def A__ ( cls ,*A__ ,**A__): requires_backends(cls ,['''torch''']) @classmethod def A__ ( cls ,*A__ ,**A__): requires_backends(cls ,['''torch''']) class lowercase ( metaclass=__UpperCamelCase ): lowercase_ : Tuple =['torch'] def __init__( self ,*A__ ,**A__): requires_backends(self ,['''torch''']) @classmethod def A__ ( cls ,*A__ ,**A__): requires_backends(cls ,['''torch''']) @classmethod def A__ ( cls ,*A__ ,**A__): requires_backends(cls ,['''torch''']) class lowercase ( metaclass=__UpperCamelCase ): lowercase_ : Optional[Any] =['torch'] def __init__( self ,*A__ ,**A__): requires_backends(self ,['''torch''']) @classmethod def A__ ( cls ,*A__ ,**A__): requires_backends(cls ,['''torch''']) @classmethod def A__ ( cls ,*A__ ,**A__): requires_backends(cls ,['''torch''']) class lowercase ( metaclass=__UpperCamelCase ): lowercase_ : int =['torch'] def __init__( self ,*A__ ,**A__): requires_backends(self ,['''torch''']) @classmethod def A__ ( cls ,*A__ ,**A__): requires_backends(cls ,['''torch''']) @classmethod def A__ ( cls ,*A__ ,**A__): requires_backends(cls ,['''torch''']) class lowercase ( metaclass=__UpperCamelCase ): lowercase_ : Optional[int] =['torch'] def __init__( self ,*A__ ,**A__): requires_backends(self ,['''torch''']) @classmethod def A__ ( cls ,*A__ ,**A__): requires_backends(cls ,['''torch''']) @classmethod def A__ ( cls ,*A__ ,**A__): requires_backends(cls ,['''torch''']) class lowercase ( metaclass=__UpperCamelCase ): lowercase_ : Optional[int] =['torch'] def __init__( self ,*A__ ,**A__): requires_backends(self ,['''torch''']) @classmethod def A__ ( cls ,*A__ ,**A__): requires_backends(cls ,['''torch''']) @classmethod def A__ ( cls ,*A__ ,**A__): requires_backends(cls ,['''torch''']) class lowercase ( metaclass=__UpperCamelCase ): lowercase_ : Optional[Any] =['torch'] def __init__( self ,*A__ ,**A__): requires_backends(self ,['''torch''']) @classmethod def A__ ( cls ,*A__ ,**A__): requires_backends(cls ,['''torch''']) @classmethod def A__ ( cls ,*A__ ,**A__): requires_backends(cls ,['''torch''']) class lowercase ( metaclass=__UpperCamelCase ): lowercase_ : int =['torch'] def __init__( self ,*A__ ,**A__): requires_backends(self ,['''torch''']) @classmethod def A__ ( cls ,*A__ ,**A__): requires_backends(cls ,['''torch''']) @classmethod def A__ ( cls ,*A__ ,**A__): requires_backends(cls ,['''torch''']) class lowercase ( metaclass=__UpperCamelCase ): lowercase_ : List[str] =['torch'] def __init__( self ,*A__ ,**A__): requires_backends(self ,['''torch''']) @classmethod def A__ ( cls ,*A__ ,**A__): requires_backends(cls ,['''torch''']) @classmethod def A__ ( cls ,*A__ ,**A__): requires_backends(cls ,['''torch''']) class lowercase ( metaclass=__UpperCamelCase ): lowercase_ : Any =['torch'] def __init__( self ,*A__ ,**A__): requires_backends(self ,['''torch''']) @classmethod def A__ ( cls ,*A__ ,**A__): requires_backends(cls ,['''torch''']) @classmethod def A__ ( cls ,*A__ ,**A__): requires_backends(cls ,['''torch''']) class lowercase ( metaclass=__UpperCamelCase ): lowercase_ : str =['torch'] def __init__( self ,*A__ ,**A__): requires_backends(self ,['''torch''']) @classmethod def A__ ( cls ,*A__ ,**A__): requires_backends(cls ,['''torch''']) @classmethod def A__ ( cls ,*A__ ,**A__): requires_backends(cls ,['''torch''']) class lowercase ( metaclass=__UpperCamelCase ): lowercase_ : Dict =['torch'] def __init__( self ,*A__ ,**A__): requires_backends(self ,['''torch''']) @classmethod def A__ ( cls ,*A__ ,**A__): requires_backends(cls ,['''torch''']) @classmethod def A__ ( cls ,*A__ ,**A__): requires_backends(cls ,['''torch''']) class lowercase ( metaclass=__UpperCamelCase ): lowercase_ : Optional[Any] =['torch'] def __init__( self ,*A__ ,**A__): requires_backends(self ,['''torch''']) @classmethod def A__ ( cls ,*A__ ,**A__): requires_backends(cls ,['''torch''']) @classmethod def A__ ( cls ,*A__ ,**A__): requires_backends(cls ,['''torch''']) class lowercase ( metaclass=__UpperCamelCase ): lowercase_ : Union[str, Any] =['torch'] def __init__( self ,*A__ ,**A__): requires_backends(self ,['''torch''']) @classmethod def A__ ( cls ,*A__ ,**A__): requires_backends(cls ,['''torch''']) @classmethod def A__ ( cls ,*A__ ,**A__): requires_backends(cls ,['''torch''']) class lowercase ( metaclass=__UpperCamelCase ): lowercase_ : str =['torch'] def __init__( self ,*A__ ,**A__): requires_backends(self ,['''torch''']) @classmethod def A__ ( cls ,*A__ ,**A__): requires_backends(cls ,['''torch''']) @classmethod def A__ ( cls ,*A__ ,**A__): requires_backends(cls ,['''torch''']) class lowercase ( metaclass=__UpperCamelCase ): lowercase_ : Any =['torch'] def __init__( self ,*A__ ,**A__): requires_backends(self ,['''torch''']) @classmethod def A__ ( cls ,*A__ ,**A__): requires_backends(cls ,['''torch''']) @classmethod def A__ ( cls ,*A__ ,**A__): requires_backends(cls ,['''torch''']) class lowercase ( metaclass=__UpperCamelCase ): lowercase_ : Tuple =['torch'] def __init__( self ,*A__ ,**A__): requires_backends(self ,['''torch''']) @classmethod def A__ ( cls ,*A__ ,**A__): requires_backends(cls ,['''torch''']) @classmethod def A__ ( cls ,*A__ ,**A__): requires_backends(cls ,['''torch''']) class lowercase ( metaclass=__UpperCamelCase ): lowercase_ : Union[str, Any] =['torch'] def __init__( self ,*A__ ,**A__): requires_backends(self ,['''torch''']) @classmethod def A__ ( cls ,*A__ ,**A__): requires_backends(cls ,['''torch''']) @classmethod def A__ ( cls ,*A__ ,**A__): requires_backends(cls ,['''torch''']) class lowercase ( metaclass=__UpperCamelCase ): lowercase_ : List[Any] =['torch'] def __init__( self ,*A__ ,**A__): requires_backends(self ,['''torch''']) @classmethod def A__ ( cls ,*A__ ,**A__): requires_backends(cls ,['''torch''']) @classmethod def A__ ( cls ,*A__ ,**A__): requires_backends(cls ,['''torch''']) class lowercase ( metaclass=__UpperCamelCase ): lowercase_ : int =['torch'] def __init__( self ,*A__ ,**A__): requires_backends(self ,['''torch''']) @classmethod def A__ ( cls ,*A__ ,**A__): requires_backends(cls ,['''torch''']) @classmethod def A__ ( cls ,*A__ ,**A__): requires_backends(cls ,['''torch''']) class lowercase ( metaclass=__UpperCamelCase ): lowercase_ : Optional[int] =['torch'] def __init__( self ,*A__ ,**A__): requires_backends(self ,['''torch''']) @classmethod def A__ ( cls ,*A__ ,**A__): requires_backends(cls ,['''torch''']) @classmethod def A__ ( cls ,*A__ ,**A__): requires_backends(cls ,['''torch''']) class lowercase ( metaclass=__UpperCamelCase ): lowercase_ : int =['torch'] def __init__( self ,*A__ ,**A__): requires_backends(self ,['''torch''']) @classmethod def A__ ( cls ,*A__ ,**A__): requires_backends(cls ,['''torch''']) @classmethod def A__ ( cls ,*A__ ,**A__): requires_backends(cls ,['''torch''']) class lowercase ( metaclass=__UpperCamelCase ): lowercase_ : Dict =['torch'] def __init__( self ,*A__ ,**A__): requires_backends(self ,['''torch''']) @classmethod def A__ ( cls ,*A__ ,**A__): requires_backends(cls ,['''torch''']) @classmethod def A__ ( cls ,*A__ ,**A__): requires_backends(cls ,['''torch''']) class lowercase ( metaclass=__UpperCamelCase ): lowercase_ : Optional[int] =['torch'] def __init__( self ,*A__ ,**A__): requires_backends(self ,['''torch''']) @classmethod def A__ ( cls ,*A__ ,**A__): requires_backends(cls ,['''torch''']) @classmethod def A__ ( cls ,*A__ ,**A__): requires_backends(cls ,['''torch''']) class lowercase ( metaclass=__UpperCamelCase ): lowercase_ : Optional[int] =['torch'] def __init__( self ,*A__ ,**A__): requires_backends(self ,['''torch''']) @classmethod def A__ ( cls ,*A__ ,**A__): requires_backends(cls ,['''torch''']) @classmethod def A__ ( cls ,*A__ ,**A__): requires_backends(cls ,['''torch''']) class lowercase ( metaclass=__UpperCamelCase ): lowercase_ : Tuple =['torch'] def __init__( self ,*A__ ,**A__): requires_backends(self ,['''torch''']) @classmethod def A__ ( cls ,*A__ ,**A__): requires_backends(cls ,['''torch''']) @classmethod def A__ ( cls ,*A__ ,**A__): requires_backends(cls ,['''torch''']) class lowercase ( metaclass=__UpperCamelCase ): lowercase_ : Optional[Any] =['torch'] def __init__( self ,*A__ ,**A__): requires_backends(self ,['''torch''']) @classmethod def A__ ( cls ,*A__ ,**A__): requires_backends(cls ,['''torch''']) @classmethod def A__ ( cls ,*A__ ,**A__): requires_backends(cls ,['''torch''']) class lowercase ( metaclass=__UpperCamelCase ): lowercase_ : str =['torch'] def __init__( self ,*A__ ,**A__): requires_backends(self ,['''torch''']) @classmethod def A__ ( cls ,*A__ ,**A__): requires_backends(cls ,['''torch''']) @classmethod def A__ ( cls ,*A__ ,**A__): requires_backends(cls ,['''torch''']) class lowercase ( metaclass=__UpperCamelCase ): lowercase_ : List[Any] =['torch'] def __init__( self ,*A__ ,**A__): requires_backends(self ,['''torch''']) @classmethod def A__ ( cls ,*A__ ,**A__): requires_backends(cls ,['''torch''']) @classmethod def A__ ( cls ,*A__ ,**A__): requires_backends(cls ,['''torch''']) class lowercase ( metaclass=__UpperCamelCase ): lowercase_ : List[Any] =['torch'] def __init__( self ,*A__ ,**A__): requires_backends(self ,['''torch''']) @classmethod def A__ ( cls ,*A__ ,**A__): requires_backends(cls ,['''torch''']) @classmethod def A__ ( cls ,*A__ ,**A__): requires_backends(cls ,['''torch''']) class lowercase ( metaclass=__UpperCamelCase ): lowercase_ : Any =['torch'] def __init__( self ,*A__ ,**A__): requires_backends(self ,['''torch''']) @classmethod def A__ ( cls ,*A__ ,**A__): requires_backends(cls ,['''torch''']) @classmethod def A__ ( cls ,*A__ ,**A__): requires_backends(cls ,['''torch''']) class lowercase ( metaclass=__UpperCamelCase ): lowercase_ : List[str] =['torch'] def __init__( self ,*A__ ,**A__): requires_backends(self ,['''torch''']) @classmethod def A__ ( cls ,*A__ ,**A__): requires_backends(cls ,['''torch''']) @classmethod def A__ ( cls ,*A__ ,**A__): requires_backends(cls ,['''torch''']) class lowercase ( metaclass=__UpperCamelCase ): lowercase_ : int =['torch'] def __init__( self ,*A__ ,**A__): requires_backends(self ,['''torch''']) @classmethod def A__ ( cls ,*A__ ,**A__): requires_backends(cls ,['''torch''']) @classmethod def A__ ( cls ,*A__ ,**A__): requires_backends(cls ,['''torch''']) class lowercase ( metaclass=__UpperCamelCase ): lowercase_ : str =['torch'] def __init__( self ,*A__ ,**A__): requires_backends(self ,['''torch''']) @classmethod def A__ ( cls ,*A__ ,**A__): requires_backends(cls ,['''torch''']) @classmethod def A__ ( cls ,*A__ ,**A__): requires_backends(cls ,['''torch''']) class lowercase ( metaclass=__UpperCamelCase ): lowercase_ : Any =['torch'] def __init__( self ,*A__ ,**A__): requires_backends(self ,['''torch''']) @classmethod def A__ ( cls ,*A__ ,**A__): requires_backends(cls ,['''torch''']) @classmethod def A__ ( cls ,*A__ ,**A__): requires_backends(cls ,['''torch''']) class lowercase ( metaclass=__UpperCamelCase ): lowercase_ : List[str] =['torch'] def __init__( self ,*A__ ,**A__): requires_backends(self ,['''torch''']) @classmethod def A__ ( cls ,*A__ ,**A__): requires_backends(cls ,['''torch''']) @classmethod def A__ ( cls ,*A__ ,**A__): requires_backends(cls ,['''torch''']) class lowercase ( metaclass=__UpperCamelCase ): lowercase_ : Tuple =['torch'] def __init__( self ,*A__ ,**A__): requires_backends(self ,['''torch''']) @classmethod def A__ ( cls ,*A__ ,**A__): requires_backends(cls ,['''torch''']) @classmethod def A__ ( cls ,*A__ ,**A__): requires_backends(cls ,['''torch''']) class lowercase ( metaclass=__UpperCamelCase ): lowercase_ : List[Any] =['torch'] def __init__( self ,*A__ ,**A__): requires_backends(self ,['''torch''']) @classmethod def A__ ( cls ,*A__ ,**A__): requires_backends(cls ,['''torch''']) @classmethod def A__ ( cls ,*A__ ,**A__): requires_backends(cls ,['''torch''']) class lowercase ( metaclass=__UpperCamelCase ): lowercase_ : Dict =['torch'] def __init__( self ,*A__ ,**A__): requires_backends(self ,['''torch''']) @classmethod def A__ ( cls ,*A__ ,**A__): requires_backends(cls ,['''torch''']) @classmethod def A__ ( cls ,*A__ ,**A__): requires_backends(cls ,['''torch'''])
101
import unittest from knapsack import knapsack as k class __a ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: '''simple docstring''' lowercase__: List[Any] = 0 lowercase__: List[Any] = [0] lowercase__: str = [0] lowercase__: Tuple = len(lowerCAmelCase__ ) self.assertEqual(k.knapsack(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) , 0 ) lowercase__: Optional[Any] = [60] lowercase__: Dict = [10] lowercase__: str = len(lowerCAmelCase__ ) self.assertEqual(k.knapsack(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) , 0 ) def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: '''simple docstring''' lowercase__: Union[str, Any] = 3 lowercase__: List[str] = [1, 2, 3] lowercase__: Union[str, Any] = [3, 2, 1] lowercase__: Union[str, Any] = len(lowerCAmelCase__ ) self.assertEqual(k.knapsack(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) , 5 ) def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: '''simple docstring''' lowercase__: Optional[Any] = 50 lowercase__: str = [60, 100, 120] lowercase__: Any = [10, 20, 30] lowercase__: List[Any] = len(lowerCAmelCase__ ) self.assertEqual(k.knapsack(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) , 220 ) if __name__ == "__main__": unittest.main()
196
0
from ..utils import DummyObject, requires_backends class _SCREAMING_SNAKE_CASE ( metaclass=snake_case_ ): lowerCAmelCase__ = ['torch', 'scipy'] def __init__( self , *lowercase , **lowercase ) -> Optional[Any]: requires_backends(self , ["torch", "scipy"] ) @classmethod def SCREAMING_SNAKE_CASE_( cls , *lowercase , **lowercase ) -> Dict: requires_backends(cls , ["torch", "scipy"] ) @classmethod def SCREAMING_SNAKE_CASE_( cls , *lowercase , **lowercase ) -> Any: requires_backends(cls , ["torch", "scipy"] )
47
__A =''' # Installazione di Transformers ! pip install transformers datasets # Per installare dalla fonte invece dell\'ultima versione rilasciata, commenta il comando sopra e # rimuovi la modalità commento al comando seguente. # ! pip install git+https://github.com/huggingface/transformers.git ''' __A =[{'''type''': '''code''', '''content''': INSTALL_CONTENT}] __A ={ '''{processor_class}''': '''FakeProcessorClass''', '''{model_class}''': '''FakeModelClass''', '''{object_class}''': '''FakeObjectClass''', }
47
1
from math import factorial def _a ( lowerCamelCase, lowerCamelCase, lowerCamelCase ): if successes > trials: raise ValueError("""successes must be lower or equal to trials""" ) if trials < 0 or successes < 0: raise ValueError("""the function is defined for non-negative integers""" ) if not isinstance(lowerCamelCase, lowerCamelCase ) or not isinstance(lowerCamelCase, lowerCamelCase ): raise ValueError("""the function is defined for non-negative integers""" ) if not 0 < prob < 1: raise ValueError("""prob has to be in range of 1 - 0""" ) lowerCamelCase : List[str] = (prob**successes) * ((1 - prob) ** (trials - successes)) # Calculate the binomial coefficient: n! / k!(n-k)! lowerCamelCase : Optional[Any] = float(factorial(lowerCamelCase ) ) coefficient /= factorial(lowerCamelCase ) * factorial(trials - successes ) return probability * coefficient if __name__ == "__main__": from doctest import testmod testmod() print("""Probability of 2 successes out of 4 trails""") print("""with probability of 0.75 is:""", end=""" """) print(binomial_distribution(2, 4, 0.75))
287
# Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from packaging import version from .. import __version__ from .constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD from .doc import ( add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, copy_func, replace_return_docstrings, ) from .generic import ( ContextManagers, ExplicitEnum, ModelOutput, PaddingStrategy, TensorType, add_model_info_to_auto_map, cached_property, can_return_loss, expand_dims, find_labels, flatten_dict, infer_framework, is_jax_tensor, is_numpy_array, is_tensor, is_tf_symbolic_tensor, is_tf_tensor, is_torch_device, is_torch_dtype, is_torch_tensor, reshape, squeeze, strtobool, tensor_size, to_numpy, to_py_obj, transpose, working_or_temp_dir, ) from .hub import ( CLOUDFRONT_DISTRIB_PREFIX, DISABLE_TELEMETRY, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, EntryNotFoundError, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, cached_file, default_cache_path, define_sagemaker_information, download_url, extract_commit_hash, get_cached_models, get_file_from_repo, get_full_repo_name, has_file, http_user_agent, is_offline_mode, is_remote_url, move_cache, send_example_telemetry, try_to_load_from_cache, ) from .import_utils import ( ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, TORCH_FX_REQUIRED_VERSION, USE_JAX, USE_TF, USE_TORCH, DummyObject, OptionalDependencyNotAvailable, _LazyModule, ccl_version, direct_transformers_import, get_torch_version, is_accelerate_available, is_apex_available, is_bitsandbytes_available, is_bsa_available, is_coloredlogs_available, is_cython_available, is_datasets_available, is_decord_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_jieba_available, is_jumanpp_available, is_kenlm_available, is_keras_nlp_available, is_librosa_available, is_natten_available, is_ninja_available, is_onnx_available, is_openai_available, is_optimum_available, is_pandas_available, is_peft_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytest_available, is_pytorch_quantization_available, is_rjieba_available, is_sacremoses_available, is_safetensors_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_sudachi_available, is_tensorflow_probability_available, is_tensorflow_text_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_bfaa_cpu_available, is_torch_bfaa_gpu_available, is_torch_compile_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_neuroncore_available, is_torch_tensorrt_fx_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_torchdistx_available, is_torchdynamo_available, is_torchvision_available, is_training_run_on_sagemaker, is_vision_available, requires_backends, torch_only_method, ) _lowerCamelCase ="""pytorch_model.bin""" _lowerCamelCase ="""pytorch_model.bin.index.json""" _lowerCamelCase ="""adapter_config.json""" _lowerCamelCase ="""adapter_model.bin""" _lowerCamelCase ="""adapter_model.safetensors""" _lowerCamelCase ="""tf_model.h5""" _lowerCamelCase ="""tf_model.h5.index.json""" _lowerCamelCase ="""model.ckpt""" _lowerCamelCase ="""flax_model.msgpack""" _lowerCamelCase ="""flax_model.msgpack.index.json""" _lowerCamelCase ="""model.safetensors""" _lowerCamelCase ="""model.safetensors.index.json""" _lowerCamelCase ="""config.json""" _lowerCamelCase ="""preprocessor_config.json""" _lowerCamelCase =FEATURE_EXTRACTOR_NAME _lowerCamelCase ="""generation_config.json""" _lowerCamelCase ="""modelcard.json""" _lowerCamelCase ="""▁""" _lowerCamelCase =SENTENCEPIECE_UNDERLINE # Kept for backward compatibility _lowerCamelCase =[ [[0, 1, 0, 1], [1, 0, 0, 1]] ] * 2 # Needs to have 0s and 1s only since XLM uses it for langs too. _lowerCamelCase =[[7, 6, 0, 0, 1], [1, 2, 3, 0, 0], [0, 0, 0, 4, 5]] _lowerCamelCase =[[1, 1, 1, 1, 1], [1, 1, 1, 0, 0], [0, 0, 0, 1, 1]] def _a ( lowerCamelCase ): if version.parse(lowerCamelCase ) < version.parse(lowerCamelCase ): if "dev" in min_version: lowerCamelCase : Optional[int] = ( """This example requires a source install from HuggingFace Transformers (see """ """`https://huggingface.co/docs/transformers/installation#install-from-source`),""" ) else: lowerCamelCase : int = F'''This example requires a minimum version of {min_version},''' error_message += F''' but the version found is {__version__}.\n''' raise ImportError( error_message + """Check out https://github.com/huggingface/transformers/tree/main/examples#important-note for the examples corresponding to other """ """versions of HuggingFace Transformers.""" )
287
1
import argparse import os import re import packaging.version _lowerCamelCase : Union[str, Any] = '''examples/''' _lowerCamelCase : str = { '''examples''': (re.compile(r'''^check_min_version\("[^"]+"\)\s*$''', re.MULTILINE), '''check_min_version("VERSION")\n'''), '''init''': (re.compile(r'''^__version__\s+=\s+"([^"]+)"\s*$''', re.MULTILINE), '''__version__ = "VERSION"\n'''), '''setup''': (re.compile(r'''^(\s*)version\s*=\s*"[^"]+",''', re.MULTILINE), r'''\1version="VERSION",'''), '''doc''': (re.compile(r'''^(\s*)release\s*=\s*"[^"]+"$''', re.MULTILINE), '''release = "VERSION"\n'''), } _lowerCamelCase : Any = { '''init''': '''src/transformers/__init__.py''', '''setup''': '''setup.py''', } _lowerCamelCase : List[str] = '''README.md''' def __lowerCamelCase (UpperCAmelCase__ : int , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : List[str] ): with open(UpperCAmelCase__ , "r" , encoding="utf-8" , newline="\n" ) as f: SCREAMING_SNAKE_CASE = f.read() SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = REPLACE_PATTERNS[pattern] SCREAMING_SNAKE_CASE = replace.replace("VERSION" , UpperCAmelCase__ ) SCREAMING_SNAKE_CASE = re_pattern.sub(UpperCAmelCase__ , UpperCAmelCase__ ) with open(UpperCAmelCase__ , "w" , encoding="utf-8" , newline="\n" ) as f: f.write(UpperCAmelCase__ ) def __lowerCamelCase (UpperCAmelCase__ : Dict ): for folder, directories, fnames in os.walk(UpperCAmelCase__ ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove("research_projects" ) if "legacy" in directories: directories.remove("legacy" ) for fname in fnames: if fname.endswith(".py" ): update_version_in_file(os.path.join(UpperCAmelCase__ , UpperCAmelCase__ ) , UpperCAmelCase__ , pattern="examples" ) def __lowerCamelCase (UpperCAmelCase__ : Any , UpperCAmelCase__ : int=False ): for pattern, fname in REPLACE_FILES.items(): update_version_in_file(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) if not patch: update_version_in_examples(UpperCAmelCase__ ) def __lowerCamelCase (): SCREAMING_SNAKE_CASE = "🤗 Transformers currently provides the following architectures" SCREAMING_SNAKE_CASE = "1. Want to contribute a new model?" with open(UpperCAmelCase__ , "r" , encoding="utf-8" , newline="\n" ) as f: SCREAMING_SNAKE_CASE = f.readlines() # Find the start of the list. SCREAMING_SNAKE_CASE = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 SCREAMING_SNAKE_CASE = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith("1." ): SCREAMING_SNAKE_CASE = lines[index].replace( "https://huggingface.co/docs/transformers/main/model_doc" , "https://huggingface.co/docs/transformers/model_doc" , ) index += 1 with open(UpperCAmelCase__ , "w" , encoding="utf-8" , newline="\n" ) as f: f.writelines(UpperCAmelCase__ ) def __lowerCamelCase (): with open(REPLACE_FILES["init"] , "r" ) as f: SCREAMING_SNAKE_CASE = f.read() SCREAMING_SNAKE_CASE = REPLACE_PATTERNS["init"][0].search(UpperCAmelCase__ ).groups()[0] return packaging.version.parse(UpperCAmelCase__ ) def __lowerCamelCase (UpperCAmelCase__ : Dict=False ): SCREAMING_SNAKE_CASE = get_version() if patch and default_version.is_devrelease: raise ValueError("Can't create a patch version from the dev branch, checkout a released version!" ) if default_version.is_devrelease: SCREAMING_SNAKE_CASE = default_version.base_version elif patch: SCREAMING_SNAKE_CASE = F"{default_version.major}.{default_version.minor}.{default_version.micro + 1}" else: SCREAMING_SNAKE_CASE = F"{default_version.major}.{default_version.minor + 1}.0" # Now let's ask nicely if that's the right one. SCREAMING_SNAKE_CASE = input(F"Which version are you releasing? [{default_version}]" ) if len(UpperCAmelCase__ ) == 0: SCREAMING_SNAKE_CASE = default_version print(F"Updating version to {version}." ) global_version_update(UpperCAmelCase__ , patch=UpperCAmelCase__ ) if not patch: print("Cleaning main README, don't forget to run `make fix-copies`." ) clean_main_ref_in_model_list() def __lowerCamelCase (): SCREAMING_SNAKE_CASE = get_version() SCREAMING_SNAKE_CASE = F"{current_version.major}.{current_version.minor + 1}.0.dev0" SCREAMING_SNAKE_CASE = current_version.base_version # Check with the user we got that right. SCREAMING_SNAKE_CASE = input(F"Which version are we developing now? [{dev_version}]" ) if len(UpperCAmelCase__ ) == 0: SCREAMING_SNAKE_CASE = dev_version print(F"Updating version to {version}." ) global_version_update(UpperCAmelCase__ ) print("Cleaning main README, don't forget to run `make fix-copies`." ) clean_main_ref_in_model_list() if __name__ == "__main__": _lowerCamelCase : Tuple = argparse.ArgumentParser() parser.add_argument('''--post_release''', action='''store_true''', help='''Whether this is pre or post release.''') parser.add_argument('''--patch''', action='''store_true''', help='''Whether or not this is a patch release.''') _lowerCamelCase : int = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print('''Nothing to do after a patch :-)''') else: post_release_work()
206
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase : int = logging.get_logger(__name__) _lowerCamelCase : Union[str, Any] = { '''microsoft/unispeech-sat-base-100h-libri-ft''': ( '''https://huggingface.co/microsoft/unispeech-sat-base-100h-libri-ft/resolve/main/config.json''' ), # See all UniSpeechSat models at https://huggingface.co/models?filter=unispeech_sat } class lowercase ( a ): lowercase__ : Tuple = """unispeech-sat""" def __init__( self : str , _UpperCamelCase : Tuple=32 , _UpperCamelCase : Union[str, Any]=768 , _UpperCamelCase : Tuple=12 , _UpperCamelCase : List[str]=12 , _UpperCamelCase : Tuple=3_072 , _UpperCamelCase : List[str]="gelu" , _UpperCamelCase : Tuple=0.1 , _UpperCamelCase : Any=0.1 , _UpperCamelCase : Union[str, Any]=0.1 , _UpperCamelCase : Dict=0.0 , _UpperCamelCase : Tuple=0.0 , _UpperCamelCase : Tuple=0.1 , _UpperCamelCase : Optional[Any]=0.1 , _UpperCamelCase : Tuple=0.0_2 , _UpperCamelCase : Optional[int]=1e-5 , _UpperCamelCase : Union[str, Any]="group" , _UpperCamelCase : Optional[int]="gelu" , _UpperCamelCase : Tuple=(512, 512, 512, 512, 512, 512, 512) , _UpperCamelCase : List[str]=(5, 2, 2, 2, 2, 2, 2) , _UpperCamelCase : Optional[int]=(10, 3, 3, 3, 3, 2, 2) , _UpperCamelCase : Optional[int]=False , _UpperCamelCase : Dict=128 , _UpperCamelCase : Optional[int]=16 , _UpperCamelCase : Tuple=False , _UpperCamelCase : Union[str, Any]=True , _UpperCamelCase : Optional[Any]=0.0_5 , _UpperCamelCase : Union[str, Any]=10 , _UpperCamelCase : Union[str, Any]=2 , _UpperCamelCase : str=0.0 , _UpperCamelCase : List[Any]=10 , _UpperCamelCase : Optional[int]=0 , _UpperCamelCase : Any=320 , _UpperCamelCase : List[Any]=2 , _UpperCamelCase : str=0.1 , _UpperCamelCase : str=100 , _UpperCamelCase : int=256 , _UpperCamelCase : Optional[Any]=256 , _UpperCamelCase : List[Any]=0.1 , _UpperCamelCase : str="mean" , _UpperCamelCase : int=False , _UpperCamelCase : Optional[Any]=False , _UpperCamelCase : Any=256 , _UpperCamelCase : str=(512, 512, 512, 512, 1_500) , _UpperCamelCase : List[Any]=(5, 3, 3, 1, 1) , _UpperCamelCase : Union[str, Any]=(1, 2, 3, 1, 1) , _UpperCamelCase : Any=512 , _UpperCamelCase : str=0 , _UpperCamelCase : int=1 , _UpperCamelCase : Any=2 , _UpperCamelCase : Optional[Any]=504 , **_UpperCamelCase : str , ) -> int: '''simple docstring''' super().__init__(**_UpperCamelCase , pad_token_id=_UpperCamelCase , bos_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase ) SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = feat_extract_norm SCREAMING_SNAKE_CASE = feat_extract_activation SCREAMING_SNAKE_CASE = list(_UpperCamelCase ) SCREAMING_SNAKE_CASE = list(_UpperCamelCase ) SCREAMING_SNAKE_CASE = list(_UpperCamelCase ) SCREAMING_SNAKE_CASE = conv_bias SCREAMING_SNAKE_CASE = num_conv_pos_embeddings SCREAMING_SNAKE_CASE = num_conv_pos_embedding_groups SCREAMING_SNAKE_CASE = len(self.conv_dim ) SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = hidden_dropout SCREAMING_SNAKE_CASE = attention_dropout SCREAMING_SNAKE_CASE = activation_dropout SCREAMING_SNAKE_CASE = feat_proj_dropout SCREAMING_SNAKE_CASE = final_dropout SCREAMING_SNAKE_CASE = layerdrop SCREAMING_SNAKE_CASE = layer_norm_eps SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = num_clusters SCREAMING_SNAKE_CASE = do_stable_layer_norm SCREAMING_SNAKE_CASE = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" F" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`," F" `len(config.conv_kernel) = {len(self.conv_kernel )}`." ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 SCREAMING_SNAKE_CASE = apply_spec_augment SCREAMING_SNAKE_CASE = mask_time_prob SCREAMING_SNAKE_CASE = mask_time_length SCREAMING_SNAKE_CASE = mask_time_min_masks SCREAMING_SNAKE_CASE = mask_feature_prob SCREAMING_SNAKE_CASE = mask_feature_length SCREAMING_SNAKE_CASE = mask_feature_min_masks # parameters for pretraining with codevector quantized representations SCREAMING_SNAKE_CASE = num_codevectors_per_group SCREAMING_SNAKE_CASE = num_codevector_groups SCREAMING_SNAKE_CASE = contrastive_logits_temperature SCREAMING_SNAKE_CASE = feat_quantizer_dropout SCREAMING_SNAKE_CASE = num_negatives SCREAMING_SNAKE_CASE = codevector_dim SCREAMING_SNAKE_CASE = proj_codevector_dim SCREAMING_SNAKE_CASE = diversity_loss_weight # ctc loss SCREAMING_SNAKE_CASE = ctc_loss_reduction SCREAMING_SNAKE_CASE = ctc_zero_infinity # SequenceClassification-specific parameter. Feel free to ignore for other classes. SCREAMING_SNAKE_CASE = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. SCREAMING_SNAKE_CASE = list(_UpperCamelCase ) SCREAMING_SNAKE_CASE = list(_UpperCamelCase ) SCREAMING_SNAKE_CASE = list(_UpperCamelCase ) SCREAMING_SNAKE_CASE = xvector_output_dim @property def __snake_case( self : Tuple ) -> str: '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1 )
206
1
import os # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_doctest_list.py _a = '''.''' if __name__ == "__main__": _a = os.path.join(REPO_PATH, '''utils/documentation_tests.txt''') _a = [] _a = [] with open(doctest_file_path) as fp: for line in fp: _a = line.strip() _a = os.path.join(REPO_PATH, line) if not (os.path.isfile(path) or os.path.isdir(path)): non_existent_paths.append(line) all_paths.append(path) if len(non_existent_paths) > 0: _a = '''\n'''.join(non_existent_paths) raise ValueError(F'''`utils/documentation_tests.txt` contains non-existent paths:\n{non_existent_paths}''') if all_paths != sorted(all_paths): raise ValueError('''Files in `utils/documentation_tests.txt` are not in alphabetical order.''')
39
import unittest import torch from torch import nn from accelerate.test_utils import require_cuda from accelerate.utils.memory import find_executable_batch_size, release_memory def __A ( )-> Tuple: """simple docstring""" raise RuntimeError('CUDA out of memory.' ) class __lowerCamelCase ( nn.Module): """simple docstring""" def __init__( self ): """simple docstring""" super().__init__() _UpperCAmelCase = nn.Linear(3 , 4 ) _UpperCAmelCase = nn.BatchNormad(4 ) _UpperCAmelCase = nn.Linear(4 , 5 ) def UpperCamelCase ( self , UpperCAmelCase ): """simple docstring""" return self.lineara(self.batchnorm(self.lineara(UpperCAmelCase ) ) ) class __lowerCamelCase ( unittest.TestCase): """simple docstring""" def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = [] @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(UpperCAmelCase ): nonlocal batch_sizes batch_sizes.append(UpperCAmelCase ) if batch_size != 8: raise_fake_out_of_memory() mock_training_loop_function() self.assertListEqual(UpperCAmelCase , [128, 64, 32, 16, 8] ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = [] @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(UpperCAmelCase , UpperCAmelCase ): nonlocal batch_sizes batch_sizes.append(UpperCAmelCase ) if batch_size != 8: raise_fake_out_of_memory() return batch_size, arga _UpperCAmelCase , _UpperCAmelCase = mock_training_loop_function('hello' ) self.assertListEqual(UpperCAmelCase , [128, 64, 32, 16, 8] ) self.assertListEqual([bs, arga] , [8, 'hello'] ) def UpperCamelCase ( self ): """simple docstring""" @find_executable_batch_size(starting_batch_size=0 ) def mock_training_loop_function(UpperCAmelCase ): pass with self.assertRaises(UpperCAmelCase ) as cm: mock_training_loop_function() self.assertIn('No executable batch size found, reached zero.' , cm.exception.args[0] ) def UpperCamelCase ( self ): """simple docstring""" @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(UpperCAmelCase ): if batch_size > 0: raise_fake_out_of_memory() pass with self.assertRaises(UpperCAmelCase ) as cm: mock_training_loop_function() self.assertIn('No executable batch size found, reached zero.' , cm.exception.args[0] ) def UpperCamelCase ( self ): """simple docstring""" @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): if batch_size != 8: raise raise_fake_out_of_memory() with self.assertRaises(UpperCAmelCase ) as cm: mock_training_loop_function(128 , 'hello' , 'world' ) self.assertIn('Batch size was passed into `f`' , cm.exception.args[0] ) self.assertIn('`f(arg1=\'hello\', arg2=\'world\')' , cm.exception.args[0] ) def UpperCamelCase ( self ): """simple docstring""" @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(UpperCAmelCase ): raise ValueError('Oops, we had an error!' ) with self.assertRaises(UpperCAmelCase ) as cm: mock_training_loop_function() self.assertIn('Oops, we had an error!' , cm.exception.args[0] ) @require_cuda def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = torch.cuda.memory_allocated() _UpperCAmelCase = ModelForTest() model.cuda() self.assertGreater(torch.cuda.memory_allocated() , UpperCAmelCase ) _UpperCAmelCase = release_memory(UpperCAmelCase ) self.assertEqual(torch.cuda.memory_allocated() , UpperCAmelCase )
39
1
def _a ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : bool = False ): """simple docstring""" if n == 2: return True if not n % 2 or n < 2: return False if n > 5 and n % 10 not in (1, 3, 7, 9): # can quickly check last digit return False if n > 3317044064679887385961981 and not allow_probable: raise ValueError( '''Warning: upper bound of deterministic test is exceeded. ''' '''Pass allow_probable=True to allow probabilistic test. ''' '''A return value of True indicates a probable prime.''' ) # array bounds provided by analysis UpperCamelCase__ : Optional[int] = [ 2047, 1373653, 25326001, 3215031751, 2152302898747, 3474749660383, 341550071728321, 1, 3825123056546413051, 1, 1, 318665857834031151167461, 3317044064679887385961981, ] UpperCamelCase__ : List[str] = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41] for idx, _p in enumerate(SCREAMING_SNAKE_CASE , 1 ): if n < _p: # then we have our last prime to check UpperCamelCase__ : Optional[int] = primes[:idx] break UpperCamelCase__ , UpperCamelCase__ : Optional[Any] = n - 1, 0 # break up n -1 into a power of 2 (s) and # remaining odd component # essentially, solve for d * 2 ** s == n - 1 while d % 2 == 0: d //= 2 s += 1 for prime in plist: UpperCamelCase__ : Dict = False for r in range(SCREAMING_SNAKE_CASE ): UpperCamelCase__ : Optional[Any] = pow(SCREAMING_SNAKE_CASE , d * 2**r , SCREAMING_SNAKE_CASE ) # see article for analysis explanation for m if (r == 0 and m == 1) or ((m + 1) % n == 0): UpperCamelCase__ : str = True # this loop will not determine compositeness break if pr: continue # if pr is False, then the above loop never evaluated to true, # and the n MUST be composite return False return True def _a ( ): """simple docstring""" assert not miller_rabin(561 ) assert miller_rabin(563 ) # 2047 assert not miller_rabin(838201 ) assert miller_rabin(838207 ) # 1_373_653 assert not miller_rabin(17316001 ) assert miller_rabin(17316017 ) # 25_326_001 assert not miller_rabin(3078386641 ) assert miller_rabin(3078386653 ) # 3_215_031_751 assert not miller_rabin(1713045574801 ) assert miller_rabin(1713045574819 ) # 2_152_302_898_747 assert not miller_rabin(2779799728307 ) assert miller_rabin(2779799728327 ) # 3_474_749_660_383 assert not miller_rabin(113850023909441 ) assert miller_rabin(113850023909527 ) # 341_550_071_728_321 assert not miller_rabin(1275041018848804351 ) assert miller_rabin(1275041018848804391 ) # 3_825_123_056_546_413_051 assert not miller_rabin(79666464458507787791867 ) assert miller_rabin(79666464458507787791951 ) # 318_665_857_834_031_151_167_461 assert not miller_rabin(552840677446647897660333 ) assert miller_rabin(552840677446647897660359 ) # 3_317_044_064_679_887_385_961_981 # upper limit for probabilistic test if __name__ == "__main__": test_miller_rabin()
51
def _a ( SCREAMING_SNAKE_CASE : int ): """simple docstring""" UpperCamelCase__ : List[str] = generate_pascal_triangle(SCREAMING_SNAKE_CASE ) for row_idx in range(SCREAMING_SNAKE_CASE ): # Print left spaces for _ in range(num_rows - row_idx - 1 ): print(end=''' ''' ) # Print row values for col_idx in range(row_idx + 1 ): if col_idx != row_idx: print(triangle[row_idx][col_idx] , end=''' ''' ) else: print(triangle[row_idx][col_idx] , end='''''' ) print() def _a ( SCREAMING_SNAKE_CASE : int ): """simple docstring""" if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): raise TypeError('''The input value of \'num_rows\' should be \'int\'''' ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( '''The input value of \'num_rows\' should be greater than or equal to 0''' ) UpperCamelCase__ : list[list[int]] = [] for current_row_idx in range(SCREAMING_SNAKE_CASE ): UpperCamelCase__ : str = populate_current_row(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) triangle.append(SCREAMING_SNAKE_CASE ) return triangle def _a ( SCREAMING_SNAKE_CASE : list[list[int]] , SCREAMING_SNAKE_CASE : int ): """simple docstring""" UpperCamelCase__ : List[Any] = [-1] * (current_row_idx + 1) # first and last elements of current row are equal to 1 UpperCamelCase__ , UpperCamelCase__ : Optional[int] = 1, 1 for current_col_idx in range(1 , SCREAMING_SNAKE_CASE ): calculate_current_element( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return current_row def _a ( SCREAMING_SNAKE_CASE : list[list[int]] , SCREAMING_SNAKE_CASE : list[int] , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , ): """simple docstring""" UpperCamelCase__ : Optional[Any] = triangle[current_row_idx - 1][current_col_idx - 1] UpperCamelCase__ : List[Any] = triangle[current_row_idx - 1][current_col_idx] UpperCamelCase__ : Tuple = above_to_left_elt + above_to_right_elt def _a ( SCREAMING_SNAKE_CASE : int ): """simple docstring""" if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): raise TypeError('''The input value of \'num_rows\' should be \'int\'''' ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( '''The input value of \'num_rows\' should be greater than or equal to 0''' ) UpperCamelCase__ : list[list[int]] = [[1]] for row_index in range(1 , SCREAMING_SNAKE_CASE ): UpperCamelCase__ : Tuple = [0] + result[-1] + [0] UpperCamelCase__ : Any = row_index + 1 # Calculate the number of distinct elements in a row UpperCamelCase__ : str = sum(divmod(SCREAMING_SNAKE_CASE , 2 ) ) UpperCamelCase__ : Optional[int] = [ temp_row[i - 1] + temp_row[i] for i in range(1 , distinct_elements + 1 ) ] UpperCamelCase__ : int = row_first_half[: (row_index + 1) // 2] row_second_half.reverse() UpperCamelCase__ : List[Any] = row_first_half + row_second_half result.append(SCREAMING_SNAKE_CASE ) return result def _a ( ): """simple docstring""" from collections.abc import Callable from timeit import timeit def benchmark_a_function(SCREAMING_SNAKE_CASE : Callable , SCREAMING_SNAKE_CASE : int ) -> None: UpperCamelCase__ : Tuple = F"{func.__name__}({value})" UpperCamelCase__ : Dict = timeit(F"__main__.{call}" , setup='''import __main__''' ) # print(f"{call:38} = {func(value)} -- {timing:.4f} seconds") print(F"{call:38} -- {timing:.4f} seconds" ) for value in range(15 ): # (1, 7, 14): for func in (generate_pascal_triangle, generate_pascal_triangle_optimized): benchmark_a_function(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
51
1
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE__ : Optional[Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : List[str] = '▁' SCREAMING_SNAKE_CASE__ : Any = {'vocab_file': 'spiece.model'} SCREAMING_SNAKE_CASE__ : Dict = { 'vocab_file': { 'google/reformer-crime-and-punishment': ( 'https://huggingface.co/google/reformer-crime-and-punishment/resolve/main/spiece.model' ) } } SCREAMING_SNAKE_CASE__ : List[Any] = { 'google/reformer-crime-and-punishment': 524288, } class UpperCamelCase__ (lowerCAmelCase__ ): '''simple docstring''' lowerCamelCase_ : Any = VOCAB_FILES_NAMES lowerCamelCase_ : List[Any] = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase_ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase_ : Optional[Any] = ["""input_ids""", """attention_mask"""] def __init__( self , UpperCamelCase__ , UpperCamelCase__="</s>" , UpperCamelCase__="<unk>" , UpperCamelCase__=[] , UpperCamelCase__ = None , **UpperCamelCase__ , ) -> None: lowerCamelCase : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=UpperCamelCase__ , unk_token=UpperCamelCase__ , additional_special_tokens=UpperCamelCase__ , sp_model_kwargs=self.sp_model_kwargs , **UpperCamelCase__ , ) lowerCamelCase : str = vocab_file lowerCamelCase : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(UpperCamelCase__ ) @property def _lowercase ( self ) -> Dict: return self.sp_model.get_piece_size() def _lowercase ( self ) -> Dict[str, int]: lowerCamelCase : Optional[Any] = {self.convert_ids_to_tokens(UpperCamelCase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> str: lowerCamelCase : Optional[int] = self.__dict__.copy() lowerCamelCase : Dict = None return state def __setstate__( self , UpperCamelCase__ ) -> Union[str, Any]: lowerCamelCase : Any = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): lowerCamelCase : Any = {} lowerCamelCase : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _lowercase ( self , UpperCamelCase__ ) -> List[str]: return self.sp_model.encode(UpperCamelCase__ , out_type=UpperCamelCase__ ) def _lowercase ( self , UpperCamelCase__ ) -> Union[str, Any]: return self.sp_model.piece_to_id(UpperCamelCase__ ) def _lowercase ( self , UpperCamelCase__ ) -> int: if index < self.sp_model.get_piece_size(): lowerCamelCase : Dict = self.sp_model.IdToPiece(UpperCamelCase__ ) return token def _lowercase ( self , UpperCamelCase__ ) -> Dict: lowerCamelCase : Any = [] lowerCamelCase : str = "" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(UpperCamelCase__ ) + token lowerCamelCase : Union[str, Any] = [] else: current_sub_tokens.append(UpperCamelCase__ ) out_string += self.sp_model.decode(UpperCamelCase__ ) return out_string.strip() def _lowercase ( self , UpperCamelCase__ , UpperCamelCase__ = None ) -> Tuple[str]: if not os.path.isdir(UpperCamelCase__ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return lowerCamelCase : Optional[int] = os.path.join( UpperCamelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCamelCase__ ) elif not os.path.isfile(self.vocab_file ): with open(UpperCamelCase__ , "wb" ) as fi: lowerCamelCase : Tuple = self.sp_model.serialized_model_proto() fi.write(UpperCamelCase__ ) return (out_vocab_file,)
48
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class SCREAMING_SNAKE_CASE__ : def __init__( self : List[str] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Tuple=1_3 , SCREAMING_SNAKE_CASE__ : str=7 , SCREAMING_SNAKE_CASE__ : List[str]=True , SCREAMING_SNAKE_CASE__ : Optional[Any]=True , SCREAMING_SNAKE_CASE__ : Union[str, Any]=True , SCREAMING_SNAKE_CASE__ : Optional[Any]=9_9 , SCREAMING_SNAKE_CASE__ : Optional[Any]=3_2 , SCREAMING_SNAKE_CASE__ : List[str]=5 , SCREAMING_SNAKE_CASE__ : List[Any]=4 , SCREAMING_SNAKE_CASE__ : Tuple=3_7 , SCREAMING_SNAKE_CASE__ : Any="gelu" , SCREAMING_SNAKE_CASE__ : Dict=0.1 , SCREAMING_SNAKE_CASE__ : Dict=0.1 , SCREAMING_SNAKE_CASE__ : int=5_1_2 , SCREAMING_SNAKE_CASE__ : int=1_6 , SCREAMING_SNAKE_CASE__ : Optional[int]=2 , SCREAMING_SNAKE_CASE__ : Any=0.02 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=3 , SCREAMING_SNAKE_CASE__ : Optional[Any]=4 , SCREAMING_SNAKE_CASE__ : Optional[int]=None , ) -> Any: a_ : Tuple = parent a_ : int = batch_size a_ : Tuple = seq_length a_ : List[Any] = is_training a_ : List[str] = use_token_type_ids a_ : Dict = use_labels a_ : Any = vocab_size a_ : List[str] = hidden_size a_ : Tuple = num_hidden_layers a_ : List[Any] = num_attention_heads a_ : Dict = intermediate_size a_ : Any = hidden_act a_ : List[str] = hidden_dropout_prob a_ : Tuple = attention_probs_dropout_prob a_ : Optional[Any] = max_position_embeddings a_ : List[Any] = type_vocab_size a_ : int = type_sequence_label_size a_ : List[Any] = initializer_range a_ : List[str] = num_labels a_ : Union[str, Any] = num_choices a_ : str = scope a_ : Tuple = self.vocab_size - 1 def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Any: a_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) a_ : Any = None if self.use_token_type_ids: a_ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) a_ : List[Any] = None a_ : Union[str, Any] = None a_ : List[Any] = None if self.use_labels: a_ : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) a_ : Any = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) a_ : List[Any] = ids_tensor([self.batch_size] , self.num_choices ) a_ : Union[str, Any] = OpenAIGPTConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) a_ : List[str] = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def SCREAMING_SNAKE_CASE ( self : List[str] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[str] , *SCREAMING_SNAKE_CASE__ : Tuple ) -> Union[str, Any]: a_ : Dict = OpenAIGPTModel(config=SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() a_ : str = model(SCREAMING_SNAKE_CASE__ , token_type_ids=SCREAMING_SNAKE_CASE__ , head_mask=SCREAMING_SNAKE_CASE__ ) a_ : Dict = model(SCREAMING_SNAKE_CASE__ , token_type_ids=SCREAMING_SNAKE_CASE__ ) a_ : Dict = model(SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Union[str, Any] , *SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Any: a_ : str = OpenAIGPTLMHeadModel(SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() a_ : Optional[int] = model(SCREAMING_SNAKE_CASE__ , token_type_ids=SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[Any] , *SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Dict: a_ : int = OpenAIGPTDoubleHeadsModel(SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() a_ : str = model(SCREAMING_SNAKE_CASE__ , token_type_ids=SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE ( self : Tuple , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , *SCREAMING_SNAKE_CASE__ : str ) -> List[str]: a_ : Any = self.num_labels a_ : Dict = OpenAIGPTForSequenceClassification(SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() a_ : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) a_ : Any = model(SCREAMING_SNAKE_CASE__ , token_type_ids=SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Tuple: a_ : Optional[Any] = self.prepare_config_and_inputs() ( ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ) : Optional[Any] = config_and_inputs a_ : Optional[int] = { 'input_ids': input_ids, 'token_type_ids': token_type_ids, 'head_mask': head_mask, } return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( lowercase__ , lowercase__ , lowercase__ , unittest.TestCase ): snake_case__ : Tuple = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) snake_case__ : List[str] = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly snake_case__ : Dict = ( { '''feature-extraction''': OpenAIGPTModel, '''text-classification''': OpenAIGPTForSequenceClassification, '''text-generation''': OpenAIGPTLMHeadModel, '''zero-shot''': OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def SCREAMING_SNAKE_CASE ( self : List[str] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : List[str] ) -> Dict: if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def SCREAMING_SNAKE_CASE ( self : int , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Any=False ) -> List[str]: a_ : str = super()._prepare_for_class(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , return_labels=SCREAMING_SNAKE_CASE__ ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": a_ : Optional[Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=SCREAMING_SNAKE_CASE__ , ) a_ : str = inputs_dict['labels'] a_ : Optional[int] = inputs_dict['labels'] a_ : Optional[int] = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=SCREAMING_SNAKE_CASE__ , ) a_ : Union[str, Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=SCREAMING_SNAKE_CASE__ ) return inputs_dict def SCREAMING_SNAKE_CASE ( self : str ) -> List[Any]: a_ : str = OpenAIGPTModelTester(self ) a_ : int = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE__ , n_embd=3_7 ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Tuple: self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Tuple: a_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Tuple: a_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : Any ) -> Optional[Any]: a_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[Any]: a_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*SCREAMING_SNAKE_CASE__ ) @slow def SCREAMING_SNAKE_CASE ( self : List[str] ) -> str: for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a_ : str = OpenAIGPTModel.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE__ ) @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE ( self : Dict ) -> int: a_ : Dict = OpenAIGPTLMHeadModel.from_pretrained('openai-gpt' ) model.to(SCREAMING_SNAKE_CASE__ ) a_ : List[Any] = torch.tensor([[4_8_1, 4_7_3_5, 5_4_4]] , dtype=torch.long , device=SCREAMING_SNAKE_CASE__ ) # the president is a_ : Tuple = [ 4_8_1, 4_7_3_5, 5_4_4, 2_4_6, 9_6_3, 8_7_0, 7_6_2, 2_3_9, 2_4_4, 4_0_4_7_7, 2_4_4, 2_4_9, 7_1_9, 8_8_1, 4_8_7, 5_4_4, 2_4_0, 2_4_4, 6_0_3, 4_8_1, ] # the president is a very good man. " \n " i\'m sure he is, " said the a_ : Dict = model.generate(SCREAMING_SNAKE_CASE__ , do_sample=SCREAMING_SNAKE_CASE__ ) self.assertListEqual(output_ids[0].tolist() , SCREAMING_SNAKE_CASE__ )
32
0
from __future__ import annotations from decimal import Decimal from numpy import array def UpperCAmelCase_ ( __UpperCAmelCase : list[list[float]] ) -> str: SCREAMING_SNAKE_CASE_ = Decimal # Check if the provided matrix has 2 rows and 2 columns # since this implementation only works for 2x2 matrices if len(A__ ) == 2 and len(matrix[0] ) == 2 and len(matrix[1] ) == 2: # Calculate the determinant of the matrix SCREAMING_SNAKE_CASE_ = float( d(matrix[0][0] ) * d(matrix[1][1] ) - d(matrix[1][0] ) * d(matrix[0][1] ) ) if determinant == 0: raise ValueError('This matrix has no inverse.' ) # Creates a copy of the matrix with swapped positions of the elements SCREAMING_SNAKE_CASE_ = [[0.0, 0.0], [0.0, 0.0]] SCREAMING_SNAKE_CASE_ = matrix[1][1], matrix[0][0] SCREAMING_SNAKE_CASE_ = -matrix[1][0], -matrix[0][1] # Calculate the inverse of the matrix return [ [(float(d(A__ ) ) / determinant) or 0.0 for n in row] for row in swapped_matrix ] elif ( len(A__ ) == 3 and len(matrix[0] ) == 3 and len(matrix[1] ) == 3 and len(matrix[2] ) == 3 ): # Calculate the determinant of the matrix using Sarrus rule SCREAMING_SNAKE_CASE_ = float( ( (d(matrix[0][0] ) * d(matrix[1][1] ) * d(matrix[2][2] )) + (d(matrix[0][1] ) * d(matrix[1][2] ) * d(matrix[2][0] )) + (d(matrix[0][2] ) * d(matrix[1][0] ) * d(matrix[2][1] )) ) - ( (d(matrix[0][2] ) * d(matrix[1][1] ) * d(matrix[2][0] )) + (d(matrix[0][1] ) * d(matrix[1][0] ) * d(matrix[2][2] )) + (d(matrix[0][0] ) * d(matrix[1][2] ) * d(matrix[2][1] )) ) ) if determinant == 0: raise ValueError('This matrix has no inverse.' ) # Creating cofactor matrix SCREAMING_SNAKE_CASE_ = [ [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], ] SCREAMING_SNAKE_CASE_ = (d(matrix[1][1] ) * d(matrix[2][2] )) - ( d(matrix[1][2] ) * d(matrix[2][1] ) ) SCREAMING_SNAKE_CASE_ = -( (d(matrix[1][0] ) * d(matrix[2][2] )) - (d(matrix[1][2] ) * d(matrix[2][0] )) ) SCREAMING_SNAKE_CASE_ = (d(matrix[1][0] ) * d(matrix[2][1] )) - ( d(matrix[1][1] ) * d(matrix[2][0] ) ) SCREAMING_SNAKE_CASE_ = -( (d(matrix[0][1] ) * d(matrix[2][2] )) - (d(matrix[0][2] ) * d(matrix[2][1] )) ) SCREAMING_SNAKE_CASE_ = (d(matrix[0][0] ) * d(matrix[2][2] )) - ( d(matrix[0][2] ) * d(matrix[2][0] ) ) SCREAMING_SNAKE_CASE_ = -( (d(matrix[0][0] ) * d(matrix[2][1] )) - (d(matrix[0][1] ) * d(matrix[2][0] )) ) SCREAMING_SNAKE_CASE_ = (d(matrix[0][1] ) * d(matrix[1][2] )) - ( d(matrix[0][2] ) * d(matrix[1][1] ) ) SCREAMING_SNAKE_CASE_ = -( (d(matrix[0][0] ) * d(matrix[1][2] )) - (d(matrix[0][2] ) * d(matrix[1][0] )) ) SCREAMING_SNAKE_CASE_ = (d(matrix[0][0] ) * d(matrix[1][1] )) - ( d(matrix[0][1] ) * d(matrix[1][0] ) ) # Transpose the cofactor matrix (Adjoint matrix) SCREAMING_SNAKE_CASE_ = array(A__ ) for i in range(3 ): for j in range(3 ): SCREAMING_SNAKE_CASE_ = cofactor_matrix[j][i] # Inverse of the matrix using the formula (1/determinant) * adjoint matrix SCREAMING_SNAKE_CASE_ = array(A__ ) for i in range(3 ): for j in range(3 ): inverse_matrix[i][j] /= d(A__ ) # Calculate the inverse of the matrix return [[float(d(A__ ) ) or 0.0 for n in row] for row in inverse_matrix] raise ValueError('Please provide a matrix of size 2x2 or 3x3.' )
351
from json import JSONDecodeError # Workaround for requests.exceptions.JSONDecodeError import requests def UpperCAmelCase_ ( __UpperCAmelCase : str = "isbn/0140328726" ) -> dict: SCREAMING_SNAKE_CASE_ = olid.strip().strip('/' ) # Remove leading/trailing whitespace & slashes if new_olid.count('/' ) != 1: SCREAMING_SNAKE_CASE_ = f"{olid} is not a valid Open Library olid" raise ValueError(__UpperCAmelCase ) return requests.get(f"https://openlibrary.org/{new_olid}.json" ).json() def UpperCAmelCase_ ( __UpperCAmelCase : dict ) -> dict: SCREAMING_SNAKE_CASE_ = { 'title': 'Title', 'publish_date': 'Publish date', 'authors': 'Authors', 'number_of_pages': 'Number of pages:', 'first_sentence': 'First sentence', 'isbn_10': 'ISBN (10)', 'isbn_13': 'ISBN (13)', } SCREAMING_SNAKE_CASE_ = {better_key: ol_book_data[key] for key, better_key in desired_keys.items()} SCREAMING_SNAKE_CASE_ = [ get_openlibrary_data(author['key'] )['name'] for author in data['Authors'] ] SCREAMING_SNAKE_CASE_ = data['First sentence']['value'] for key, value in data.items(): if isinstance(__UpperCAmelCase , __UpperCAmelCase ): SCREAMING_SNAKE_CASE_ = ', '.join(__UpperCAmelCase ) return data if __name__ == "__main__": import doctest doctest.testmod() while True: lowerCamelCase__ : Optional[Any] = input('\nEnter the ISBN code to search (or \'quit\' to stop): ').strip() if isbn.lower() in ("", "q", "quit", "exit", "stop"): break if len(isbn) not in (10, 13) or not isbn.isdigit(): print(f'''Sorry, {isbn} is not a valid ISBN. Please, input a valid ISBN.''') continue print(f'''\nSearching Open Library for ISBN: {isbn}...\n''') try: lowerCamelCase__ : Union[str, Any] = summarize_book(get_openlibrary_data(f'''isbn/{isbn}''')) print('\n'.join(f'''{key}: {value}''' for key, value in book_summary.items())) except JSONDecodeError: # Workaround for requests.exceptions.RequestException: print(f'''Sorry, there are no results for ISBN: {isbn}.''')
210
0
'''simple docstring''' from copy import deepcopy from typing import Optional, Union import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_tf_available, is_torch_available if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf class A__ ( A__ ): A__ = ['image_processor'] A__ = 'SamImageProcessor' def __init__( self : Optional[Any] , _a : Any ) -> Dict: '''simple docstring''' super().__init__(_a ) _SCREAMING_SNAKE_CASE =self.image_processor _SCREAMING_SNAKE_CASE =-10 _SCREAMING_SNAKE_CASE =self.image_processor.size['longest_edge'] def __call__( self : Any , _a : Optional[int]=None , _a : str=None , _a : str=None , _a : Any=None , _a : Optional[Union[str, TensorType]] = None , **_a : Optional[int] , ) -> BatchEncoding: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.image_processor( _a , return_tensors=_a , **_a , ) # pop arguments that are not used in the foward but used nevertheless _SCREAMING_SNAKE_CASE =encoding_image_processor['original_sizes'] if hasattr(_a , 'numpy' ): # Checks if Torch or TF tensor _SCREAMING_SNAKE_CASE =original_sizes.numpy() _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =self._check_and_preprocess_points( input_points=_a , input_labels=_a , input_boxes=_a , ) _SCREAMING_SNAKE_CASE =self._normalize_and_convert( _a , _a , input_points=_a , input_labels=_a , input_boxes=_a , return_tensors=_a , ) return encoding_image_processor def A ( self : List[str] , _a : str , _a : Optional[Any] , _a : Optional[int]=None , _a : Union[str, Any]=None , _a : Optional[int]=None , _a : Union[str, Any]="pt" , ) -> Optional[int]: '''simple docstring''' if input_points is not None: if len(_a ) != len(_a ): _SCREAMING_SNAKE_CASE =[ self._normalize_coordinates(self.target_size , _a , original_sizes[0] ) for point in input_points ] else: _SCREAMING_SNAKE_CASE =[ self._normalize_coordinates(self.target_size , _a , _a ) for point, original_size in zip(_a , _a ) ] # check that all arrays have the same shape if not all(point.shape == input_points[0].shape for point in input_points ): if input_labels is not None: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =self._pad_points_and_labels(_a , _a ) _SCREAMING_SNAKE_CASE =np.array(_a ) if input_labels is not None: _SCREAMING_SNAKE_CASE =np.array(_a ) if input_boxes is not None: if len(_a ) != len(_a ): _SCREAMING_SNAKE_CASE =[ self._normalize_coordinates(self.target_size , _a , original_sizes[0] , is_bounding_box=_a ) for box in input_boxes ] else: _SCREAMING_SNAKE_CASE =[ self._normalize_coordinates(self.target_size , _a , _a , is_bounding_box=_a ) for box, original_size in zip(_a , _a ) ] _SCREAMING_SNAKE_CASE =np.array(_a ) if input_boxes is not None: if return_tensors == "pt": _SCREAMING_SNAKE_CASE =torch.from_numpy(_a ) # boxes batch size of 1 by default _SCREAMING_SNAKE_CASE =input_boxes.unsqueeze(1 ) if len(input_boxes.shape ) != 3 else input_boxes elif return_tensors == "tf": _SCREAMING_SNAKE_CASE =tf.convert_to_tensor(_a ) # boxes batch size of 1 by default _SCREAMING_SNAKE_CASE =tf.expand_dims(_a , 1 ) if len(input_boxes.shape ) != 3 else input_boxes encoding_image_processor.update({'input_boxes': input_boxes} ) if input_points is not None: if return_tensors == "pt": _SCREAMING_SNAKE_CASE =torch.from_numpy(_a ) # point batch size of 1 by default _SCREAMING_SNAKE_CASE =input_points.unsqueeze(1 ) if len(input_points.shape ) != 4 else input_points elif return_tensors == "tf": _SCREAMING_SNAKE_CASE =tf.convert_to_tensor(_a ) # point batch size of 1 by default _SCREAMING_SNAKE_CASE =tf.expand_dims(_a , 1 ) if len(input_points.shape ) != 4 else input_points encoding_image_processor.update({'input_points': input_points} ) if input_labels is not None: if return_tensors == "pt": _SCREAMING_SNAKE_CASE =torch.from_numpy(_a ) # point batch size of 1 by default _SCREAMING_SNAKE_CASE =input_labels.unsqueeze(1 ) if len(input_labels.shape ) != 3 else input_labels elif return_tensors == "tf": _SCREAMING_SNAKE_CASE =tf.convert_to_tensor(_a ) # point batch size of 1 by default _SCREAMING_SNAKE_CASE =tf.expand_dims(_a , 1 ) if len(input_labels.shape ) != 3 else input_labels encoding_image_processor.update({'input_labels': input_labels} ) return encoding_image_processor def A ( self : Optional[int] , _a : Union[str, Any] , _a : int ) -> Optional[int]: '''simple docstring''' _SCREAMING_SNAKE_CASE =max([point.shape[0] for point in input_points] ) _SCREAMING_SNAKE_CASE =[] for i, point in enumerate(_a ): if point.shape[0] != expected_nb_points: _SCREAMING_SNAKE_CASE =np.concatenate( [point, np.zeros((expected_nb_points - point.shape[0], 2) ) + self.point_pad_value] , axis=0 ) _SCREAMING_SNAKE_CASE =np.append(input_labels[i] , [self.point_pad_value] ) processed_input_points.append(_a ) _SCREAMING_SNAKE_CASE =processed_input_points return input_points, input_labels def A ( self : str , _a : int , _a : np.ndarray , _a : str , _a : List[str]=False ) -> np.ndarray: '''simple docstring''' _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =original_size _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =self.image_processor._get_preprocess_shape(_a , longest_edge=_a ) _SCREAMING_SNAKE_CASE =deepcopy(_a ).astype(_a ) if is_bounding_box: _SCREAMING_SNAKE_CASE =coords.reshape(-1 , 2 , 2 ) _SCREAMING_SNAKE_CASE =coords[..., 0] * (new_w / old_w) _SCREAMING_SNAKE_CASE =coords[..., 1] * (new_h / old_h) if is_bounding_box: _SCREAMING_SNAKE_CASE =coords.reshape(-1 , 4 ) return coords def A ( self : List[str] , _a : Optional[int]=None , _a : Optional[int]=None , _a : Union[str, Any]=None , ) -> Dict: '''simple docstring''' if input_points is not None: if hasattr(_a , 'numpy' ): # Checks for TF or Torch tensor _SCREAMING_SNAKE_CASE =input_points.numpy().tolist() if not isinstance(_a , _a ) or not isinstance(input_points[0] , _a ): raise ValueError('Input points must be a list of list of floating points.' ) _SCREAMING_SNAKE_CASE =[np.array(_a ) for input_point in input_points] else: _SCREAMING_SNAKE_CASE =None if input_labels is not None: if hasattr(_a , 'numpy' ): _SCREAMING_SNAKE_CASE =input_labels.numpy().tolist() if not isinstance(_a , _a ) or not isinstance(input_labels[0] , _a ): raise ValueError('Input labels must be a list of list integers.' ) _SCREAMING_SNAKE_CASE =[np.array(_a ) for label in input_labels] else: _SCREAMING_SNAKE_CASE =None if input_boxes is not None: if hasattr(_a , 'numpy' ): _SCREAMING_SNAKE_CASE =input_boxes.numpy().tolist() if ( not isinstance(_a , _a ) or not isinstance(input_boxes[0] , _a ) or not isinstance(input_boxes[0][0] , _a ) ): raise ValueError('Input boxes must be a list of list of list of floating points.' ) _SCREAMING_SNAKE_CASE =[np.array(_a ).astype(np.floataa ) for box in input_boxes] else: _SCREAMING_SNAKE_CASE =None return input_points, input_labels, input_boxes @property def A ( self : List[Any] ) -> str: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.image_processor.model_input_names return list(dict.fromkeys(_a ) ) def A ( self : Optional[int] , *_a : str , **_a : List[Any] ) -> str: '''simple docstring''' return self.image_processor.post_process_masks(*_a , **_a )
47
'''simple docstring''' import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def _lowerCAmelCase ( ) -> Any: """simple docstring""" _SCREAMING_SNAKE_CASE =ArgumentParser( description=( 'PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes' ) ) # Optional arguments for the launch helper parser.add_argument('--num_cores' , type=_UpperCamelCase , default=1 , help='Number of TPU cores to use (1 or 8).' ) # positional parser.add_argument( 'training_script' , type=_UpperCamelCase , help=( 'The full path to the single TPU training ' 'program/script to be launched in parallel, ' 'followed by all the arguments for the ' 'training script' ) , ) # rest from the training program parser.add_argument('training_script_args' , nargs=_UpperCamelCase ) return parser.parse_args() def _lowerCAmelCase ( ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE =parse_args() # Import training_script as a module. _SCREAMING_SNAKE_CASE =Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) _SCREAMING_SNAKE_CASE =script_fpath.stem _SCREAMING_SNAKE_CASE =importlib.import_module(_UpperCamelCase ) # Patch sys.argv _SCREAMING_SNAKE_CASE =[args.training_script] + args.training_script_args + ['--tpu_num_cores', str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
47
1
import numpy as np from scipy.spatial.distance import cdist from sklearn.metrics import fa_score import datasets UpperCamelCase__ = "\\n @inproceedings{kakwani2020indicnlpsuite,\n title={{IndicNLPSuite: Monolingual Corpora, Evaluation Benchmarks and Pre-trained Multilingual Language Models for Indian Languages}},\n author={Divyanshu Kakwani and Anoop Kunchukuttan and Satish Golla and Gokul N.C. and Avik Bhattacharyya and Mitesh M. Khapra and Pratyush Kumar},\n year={2020},\n booktitle={Findings of EMNLP},\n}\n" UpperCamelCase__ = "\\n IndicGLUE is a natural language understanding benchmark for Indian languages. It contains a wide\n variety of tasks and covers 11 major Indian languages - as, bn, gu, hi, kn, ml, mr, or, pa, ta, te.\n" UpperCamelCase__ = "\nCompute IndicGLUE evaluation metric associated to each IndicGLUE dataset.\nArgs:\n predictions: list of predictions to score (as int64),\n except for \'cvit-mkb-clsr\' where each prediction is a vector (of float32).\n references: list of ground truth labels corresponding to the predictions (as int64),\n except for \'cvit-mkb-clsr\' where each reference is a vector (of float32).\nReturns: depending on the IndicGLUE subset, one or several of:\n \"accuracy\": Accuracy\n \"f1\": F1 score\n \"precision\": Precision@10\nExamples:\n\n >>> indic_glue_metric = datasets.load_metric(\'indic_glue\', \'wnli\') # \'wnli\' or any of [\"copa\", \"sna\", \"csqa\", \"wstp\", \"inltkh\", \"bbca\", \"iitp-mr\", \"iitp-pr\", \"actsa-sc\", \"md\"]\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = indic_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0}\n\n >>> indic_glue_metric = datasets.load_metric(\'indic_glue\', \'wiki-ner\')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = indic_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0, \'f1\': 1.0}\n\n >>> indic_glue_metric = datasets.load_metric(\'indic_glue\', \'cvit-mkb-clsr\')\n >>> references = [[0.5, 0.5, 0.5], [0.1, 0.2, 0.3]]\n >>> predictions = [[0.5, 0.5, 0.5], [0.1, 0.2, 0.3]]\n >>> results = indic_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'precision@10\': 1.0}\n\n" def _UpperCamelCase (a__ :Any , a__ :str ): """simple docstring""" return float((preds == labels).mean() ) def _UpperCamelCase (a__ :str , a__ :Any ): """simple docstring""" UpperCamelCase__ = simple_accuracy(lowerCamelCase__ , lowerCamelCase__ ) UpperCamelCase__ = float(fa_score(y_true=lowerCamelCase__ , y_pred=lowerCamelCase__ ) ) return { "accuracy": acc, "f1": fa, } def _UpperCamelCase (a__ :List[Any] , a__ :Union[str, Any] ): """simple docstring""" UpperCamelCase__ = np.array(lowerCamelCase__ ) UpperCamelCase__ = np.array(lowerCamelCase__ ) UpperCamelCase__ = en_sentvecs.shape[0] # mean centering UpperCamelCase__ = en_sentvecs - np.mean(lowerCamelCase__ , axis=0 ) UpperCamelCase__ = in_sentvecs - np.mean(lowerCamelCase__ , axis=0 ) UpperCamelCase__ = cdist(lowerCamelCase__ , lowerCamelCase__ , """cosine""" ) UpperCamelCase__ = np.array(range(lowerCamelCase__ ) ) UpperCamelCase__ = sim.argsort(axis=1 )[:, :10] UpperCamelCase__ = np.any(preds == actual[:, None] , axis=1 ) return float(matches.mean() ) @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __SCREAMING_SNAKE_CASE ( datasets.Metric ): def _lowerCamelCase ( self ): if self.config_name not in [ "wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", "cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", "wiki-ner", ]: raise KeyError( """You should supply a configuration name selected in """ """[\"wnli\", \"copa\", \"sna\", \"csqa\", \"wstp\", \"inltkh\", \"bbca\", """ """\"cvit-mkb-clsr\", \"iitp-mr\", \"iitp-pr\", \"actsa-sc\", \"md\", """ """\"wiki-ner\"]""" ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""int64""" ) if self.config_name != """cvit-mkb-clsr""" else datasets.Sequence(datasets.Value("""float32""" ) ), """references""": datasets.Value("""int64""" ) if self.config_name != """cvit-mkb-clsr""" else datasets.Sequence(datasets.Value("""float32""" ) ), } ) , codebase_urls=[] , reference_urls=[] , format="""numpy""" if self.config_name != """cvit-mkb-clsr""" else None , ) def _lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase ): if self.config_name == "cvit-mkb-clsr": return {"precision@10": precision_at_aa(__lowerCAmelCase , __lowerCAmelCase )} elif self.config_name in ["wiki-ner"]: return acc_and_fa(__lowerCAmelCase , __lowerCAmelCase ) elif self.config_name in [ "wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", "iitp-mr", "iitp-pr", "actsa-sc", "md", ]: return {"accuracy": simple_accuracy(__lowerCAmelCase , __lowerCAmelCase )} else: raise KeyError( """You should supply a configuration name selected in """ """[\"wnli\", \"copa\", \"sna\", \"csqa\", \"wstp\", \"inltkh\", \"bbca\", """ """\"cvit-mkb-clsr\", \"iitp-mr\", \"iitp-pr\", \"actsa-sc\", \"md\", """ """\"wiki-ner\"]""" )
353
UpperCamelCase__ = { "meter": "m", "kilometer": "km", "megametre": "Mm", "gigametre": "Gm", "terametre": "Tm", "petametre": "Pm", "exametre": "Em", "zettametre": "Zm", "yottametre": "Ym", } # Exponent of the factor(meter) UpperCamelCase__ = { "m": 0, "km": 3, "Mm": 6, "Gm": 9, "Tm": 12, "Pm": 15, "Em": 18, "Zm": 21, "Ym": 24, } def _UpperCamelCase (a__ :float , a__ :str , a__ :str ): """simple docstring""" UpperCamelCase__ = from_type.lower().strip("""s""" ) UpperCamelCase__ = to_type.lower().strip("""s""" ) UpperCamelCase__ = UNIT_SYMBOL.get(a__ , a__ ) UpperCamelCase__ = UNIT_SYMBOL.get(a__ , a__ ) if from_sanitized not in METRIC_CONVERSION: UpperCamelCase__ = ( f"""Invalid 'from_type' value: {from_type!r}.\n""" f"""Conversion abbreviations are: {", ".join(a__ )}""" ) raise ValueError(a__ ) if to_sanitized not in METRIC_CONVERSION: UpperCamelCase__ = ( f"""Invalid 'to_type' value: {to_type!r}.\n""" f"""Conversion abbreviations are: {", ".join(a__ )}""" ) raise ValueError(a__ ) UpperCamelCase__ = METRIC_CONVERSION[from_sanitized] UpperCamelCase__ = METRIC_CONVERSION[to_sanitized] UpperCamelCase__ = 1 if from_exponent > to_exponent: UpperCamelCase__ = from_exponent - to_exponent else: UpperCamelCase__ = -(to_exponent - from_exponent) return value * pow(10 , a__ ) if __name__ == "__main__": from doctest import testmod testmod()
87
0
'''simple docstring''' import warnings from ..trainer import Trainer from ..utils import logging lowerCamelCase :str = logging.get_logger(__name__) class _lowerCAmelCase ( __UpperCAmelCase ): def __init__(self , lowercase=None , **lowercase ): warnings.warn( """`SageMakerTrainer` is deprecated and will be removed in v5 of Transformers. You can use `Trainer` """ """instead.""" , lowercase , ) super().__init__(args=lowercase , **lowercase )
206
'''simple docstring''' # Author: OMKAR PATHAK, Nwachukwu Chidiebere # Use a Python dictionary to construct the graph. from __future__ import annotations from pprint import pformat from typing import Generic, TypeVar lowerCamelCase :str = TypeVar('''T''') class _lowerCAmelCase ( Generic[T] ): def __init__(self , lowercase = True ): A_ : dict[T, list[T]] = {} # dictionary of lists A_ : Any = directed def _a (self , lowercase , lowercase ): if not self.directed: # For undirected graphs # if both source vertex and destination vertex are both present in the # adjacency list, add destination vertex to source vertex list of adjacent # vertices and add source vertex to destination vertex list of adjacent # vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(lowercase ) self.adj_list[destination_vertex].append(lowercase ) # if only source vertex is present in adjacency list, add destination vertex # to source vertex list of adjacent vertices, then create a new vertex with # destination vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(lowercase ) A_ : Dict = [source_vertex] # if only destination vertex is present in adjacency list, add source vertex # to destination vertex list of adjacent vertices, then create a new vertex # with source vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif destination_vertex in self.adj_list: self.adj_list[destination_vertex].append(lowercase ) A_ : int = [destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and assign a list # containing the destination vertex as it's first adjacent vertex also # create a new vertex with destination vertex as key and assign a list # containing the source vertex as it's first adjacent vertex. else: A_ : Optional[Any] = [destination_vertex] A_ : Tuple = [source_vertex] else: # For directed graphs # if both source vertex and destination vertex are present in adjacency # list, add destination vertex to source vertex list of adjacent vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(lowercase ) # if only source vertex is present in adjacency list, add destination # vertex to source vertex list of adjacent vertices and create a new vertex # with destination vertex as key, which has no adjacent vertex elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(lowercase ) A_ : Tuple = [] # if only destination vertex is present in adjacency list, create a new # vertex with source vertex as key and assign a list containing destination # vertex as first adjacent vertex elif destination_vertex in self.adj_list: A_ : Tuple = [destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and a list containing # destination vertex as it's first adjacent vertex. Then create a new vertex # with destination vertex as key, which has no adjacent vertex else: A_ : int = [destination_vertex] A_ : List[str] = [] return self def __repr__(self ): return pformat(self.adj_list )
206
1
'''simple docstring''' print((lambda quine: quine % quine)('''print((lambda quine: quine %% quine)(%r))'''))
360
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import FEATURE_EXTRACTOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor, ChineseCLIPProcessor @require_vision class _lowercase ( unittest.TestCase ): def lowerCamelCase_ ( self: Union[str, Any] ): lowerCamelCase__ : Any = tempfile.mkdtemp() lowerCamelCase__ : Any = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """的""", """价""", """格""", """是""", """15""", """便""", """alex""", """##andra""", """,""", """。""", """-""", """t""", """shirt""", ] lowerCamelCase__ : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) lowerCamelCase__ : Union[str, Any] = { """do_resize""": True, """size""": {"""height""": 224, """width""": 224}, """do_center_crop""": True, """crop_size""": {"""height""": 18, """width""": 18}, """do_normalize""": True, """image_mean""": [0.48_145_466, 0.4_578_275, 0.40_821_073], """image_std""": [0.26_862_954, 0.26_130_258, 0.27_577_711], """do_convert_rgb""": True, } lowerCamelCase__ : Optional[int] = os.path.join(self.tmpdirname , UpperCamelCase__ ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(UpperCamelCase__ , UpperCamelCase__ ) def lowerCamelCase_ ( self: List[Any] , **UpperCamelCase__: Optional[int] ): return BertTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase__ ) def lowerCamelCase_ ( self: Any , **UpperCamelCase__: List[str] ): return BertTokenizerFast.from_pretrained(self.tmpdirname , **UpperCamelCase__ ) def lowerCamelCase_ ( self: str , **UpperCamelCase__: int ): return ChineseCLIPImageProcessor.from_pretrained(self.tmpdirname , **UpperCamelCase__ ) def lowerCamelCase_ ( self: Optional[int] ): shutil.rmtree(self.tmpdirname ) def lowerCamelCase_ ( self: List[str] ): lowerCamelCase__ : int = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowerCamelCase__ : List[str] = [Image.fromarray(np.moveaxis(UpperCamelCase__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowerCamelCase_ ( self: List[str] ): lowerCamelCase__ : Tuple = self.get_tokenizer() lowerCamelCase__ : Any = self.get_rust_tokenizer() lowerCamelCase__ : str = self.get_image_processor() lowerCamelCase__ : str = ChineseCLIPProcessor(tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ ) processor_slow.save_pretrained(self.tmpdirname ) lowerCamelCase__ : List[Any] = ChineseCLIPProcessor.from_pretrained(self.tmpdirname , use_fast=UpperCamelCase__ ) lowerCamelCase__ : Any = ChineseCLIPProcessor(tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ ) processor_fast.save_pretrained(self.tmpdirname ) lowerCamelCase__ : List[Any] = ChineseCLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , UpperCamelCase__ ) self.assertIsInstance(processor_fast.tokenizer , UpperCamelCase__ ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , UpperCamelCase__ ) self.assertIsInstance(processor_fast.image_processor , UpperCamelCase__ ) def lowerCamelCase_ ( self: Optional[int] ): lowerCamelCase__ : Optional[int] = ChineseCLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCamelCase__ : str = self.get_tokenizer(cls_token="""(CLS)""" , sep_token="""(SEP)""" ) lowerCamelCase__ : Optional[int] = self.get_image_processor(do_normalize=UpperCamelCase__ ) lowerCamelCase__ : Optional[int] = ChineseCLIPProcessor.from_pretrained( self.tmpdirname , cls_token="""(CLS)""" , sep_token="""(SEP)""" , do_normalize=UpperCamelCase__ ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , UpperCamelCase__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCamelCase__ ) def lowerCamelCase_ ( self: Tuple ): lowerCamelCase__ : Optional[Any] = self.get_image_processor() lowerCamelCase__ : Optional[int] = self.get_tokenizer() lowerCamelCase__ : int = ChineseCLIPProcessor(tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ ) lowerCamelCase__ : Tuple = self.prepare_image_inputs() lowerCamelCase__ : str = image_processor(UpperCamelCase__ , return_tensors="""np""" ) lowerCamelCase__ : Optional[int] = processor(images=UpperCamelCase__ , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def lowerCamelCase_ ( self: Tuple ): lowerCamelCase__ : int = self.get_image_processor() lowerCamelCase__ : Optional[int] = self.get_tokenizer() lowerCamelCase__ : Union[str, Any] = ChineseCLIPProcessor(tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ ) lowerCamelCase__ : Union[str, Any] = """Alexandra,T-shirt的价格是15便士。""" lowerCamelCase__ : Optional[Any] = processor(text=UpperCamelCase__ ) lowerCamelCase__ : Optional[Any] = tokenizer(UpperCamelCase__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowerCamelCase_ ( self: Optional[Any] ): lowerCamelCase__ : Optional[int] = self.get_image_processor() lowerCamelCase__ : List[Any] = self.get_tokenizer() lowerCamelCase__ : Optional[Any] = ChineseCLIPProcessor(tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ ) lowerCamelCase__ : Dict = """Alexandra,T-shirt的价格是15便士。""" lowerCamelCase__ : Any = self.prepare_image_inputs() lowerCamelCase__ : Optional[int] = processor(text=UpperCamelCase__ , images=UpperCamelCase__ ) self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """token_type_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(UpperCamelCase__ ): processor() def lowerCamelCase_ ( self: Dict ): lowerCamelCase__ : Dict = self.get_image_processor() lowerCamelCase__ : Any = self.get_tokenizer() lowerCamelCase__ : Union[str, Any] = ChineseCLIPProcessor(tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ ) lowerCamelCase__ : str = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCamelCase__ : Any = processor.batch_decode(UpperCamelCase__ ) lowerCamelCase__ : int = tokenizer.batch_decode(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) def lowerCamelCase_ ( self: Optional[Any] ): lowerCamelCase__ : Dict = self.get_image_processor() lowerCamelCase__ : int = self.get_tokenizer() lowerCamelCase__ : Optional[Any] = ChineseCLIPProcessor(tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ ) lowerCamelCase__ : Optional[Any] = """Alexandra,T-shirt的价格是15便士。""" lowerCamelCase__ : Tuple = self.prepare_image_inputs() lowerCamelCase__ : str = processor(text=UpperCamelCase__ , images=UpperCamelCase__ ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
129
0
from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) snake_case_ : str = logging.get_logger(__name__) # pylint: disable=invalid-name snake_case_ : Tuple = "\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Pipeline, KandinskyV22PriorPipeline\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\"kandinsky-community/kandinsky-2-2-prior\")\n >>> pipe_prior.to(\"cuda\")\n >>> prompt = \"red cat, 4k photo\"\n >>> out = pipe_prior(prompt)\n >>> image_emb = out.image_embeds\n >>> zero_image_emb = out.negative_image_embeds\n >>> pipe = KandinskyV22Pipeline.from_pretrained(\"kandinsky-community/kandinsky-2-2-decoder\")\n >>> pipe.to(\"cuda\")\n >>> image = pipe(\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=50,\n ... ).images\n >>> image[0].save(\"cat.png\")\n ```\n" def A (__A : Any , __A : List[str] , __A : Optional[int]=8 ) -> str: """simple docstring""" UpperCAmelCase_ = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 UpperCAmelCase_ = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class __snake_case ( a ): def __init__( self : List[str] , _snake_case : UNetaDConditionModel , _snake_case : DDPMScheduler , _snake_case : VQModel , ): """simple docstring""" super().__init__() self.register_modules( unet=_snake_case , scheduler=_snake_case , movq=_snake_case , ) UpperCAmelCase_ = 2 ** (len(self.movq.config.block_out_channels) - 1) def lowerCamelCase ( self : int , _snake_case : List[str] , _snake_case : Any , _snake_case : int , _snake_case : Optional[Any] , _snake_case : str , _snake_case : Optional[Any]): """simple docstring""" if latents is None: UpperCAmelCase_ = randn_tensor(_snake_case , generator=_snake_case , device=_snake_case , dtype=_snake_case) else: if latents.shape != shape: raise ValueError(F"""Unexpected latents shape, got {latents.shape}, expected {shape}""") UpperCAmelCase_ = latents.to(_snake_case) UpperCAmelCase_ = latents * scheduler.init_noise_sigma return latents def lowerCamelCase ( self : Any , _snake_case : Union[str, Any]=0): """simple docstring""" if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''') UpperCAmelCase_ = torch.device(F"""cuda:{gpu_id}""") UpperCAmelCase_ = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(_snake_case , _snake_case) def lowerCamelCase ( self : List[str] , _snake_case : Optional[int]=0): """simple docstring""" if is_accelerate_available() and is_accelerate_version('''>=''' , '''0.17.0.dev0'''): from accelerate import cpu_offload_with_hook else: raise ImportError('''`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.''') UpperCAmelCase_ = torch.device(F"""cuda:{gpu_id}""") if self.device.type != "cpu": self.to('''cpu''' , silence_dtype_warnings=_snake_case) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) UpperCAmelCase_ = None for cpu_offloaded_model in [self.unet, self.movq]: UpperCAmelCase_ , UpperCAmelCase_ = cpu_offload_with_hook(_snake_case , _snake_case , prev_module_hook=_snake_case) # We'll offload the last model manually. UpperCAmelCase_ = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def lowerCamelCase ( self : List[Any]): """simple docstring""" if not hasattr(self.unet , '''_hf_hook'''): return self.device for module in self.unet.modules(): if ( hasattr(_snake_case , '''_hf_hook''') and hasattr(module._hf_hook , '''execution_device''') and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device) return self.device @torch.no_grad() @replace_example_docstring(_snake_case) def __call__( self : List[Any] , _snake_case : Union[torch.FloatTensor, List[torch.FloatTensor]] , _snake_case : Union[torch.FloatTensor, List[torch.FloatTensor]] , _snake_case : int = 512 , _snake_case : int = 512 , _snake_case : int = 100 , _snake_case : float = 4.0 , _snake_case : int = 1 , _snake_case : Optional[Union[torch.Generator, List[torch.Generator]]] = None , _snake_case : Optional[torch.FloatTensor] = None , _snake_case : Optional[str] = "pil" , _snake_case : bool = True , ): """simple docstring""" UpperCAmelCase_ = self._execution_device UpperCAmelCase_ = guidance_scale > 1.0 if isinstance(_snake_case , _snake_case): UpperCAmelCase_ = torch.cat(_snake_case , dim=0) UpperCAmelCase_ = image_embeds.shape[0] * num_images_per_prompt if isinstance(_snake_case , _snake_case): UpperCAmelCase_ = torch.cat(_snake_case , dim=0) if do_classifier_free_guidance: UpperCAmelCase_ = image_embeds.repeat_interleave(_snake_case , dim=0) UpperCAmelCase_ = negative_image_embeds.repeat_interleave(_snake_case , dim=0) UpperCAmelCase_ = torch.cat([negative_image_embeds, image_embeds] , dim=0).to(dtype=self.unet.dtype , device=_snake_case) self.scheduler.set_timesteps(_snake_case , device=_snake_case) UpperCAmelCase_ = self.scheduler.timesteps UpperCAmelCase_ = self.unet.config.in_channels UpperCAmelCase_ , UpperCAmelCase_ = downscale_height_and_width(_snake_case , _snake_case , self.movq_scale_factor) # create initial latent UpperCAmelCase_ = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , _snake_case , _snake_case , _snake_case , self.scheduler , ) for i, t in enumerate(self.progress_bar(_snake_case)): # expand the latents if we are doing classifier free guidance UpperCAmelCase_ = torch.cat([latents] * 2) if do_classifier_free_guidance else latents UpperCAmelCase_ = {'''image_embeds''': image_embeds} UpperCAmelCase_ = self.unet( sample=_snake_case , timestep=_snake_case , encoder_hidden_states=_snake_case , added_cond_kwargs=_snake_case , return_dict=_snake_case , )[0] if do_classifier_free_guidance: UpperCAmelCase_ , UpperCAmelCase_ = noise_pred.split(latents.shape[1] , dim=1) UpperCAmelCase_ , UpperCAmelCase_ = noise_pred.chunk(2) UpperCAmelCase_ , UpperCAmelCase_ = variance_pred.chunk(2) UpperCAmelCase_ = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) UpperCAmelCase_ = torch.cat([noise_pred, variance_pred_text] , dim=1) if not ( hasattr(self.scheduler.config , '''variance_type''') and self.scheduler.config.variance_type in ["learned", "learned_range"] ): UpperCAmelCase_ , UpperCAmelCase_ = noise_pred.split(latents.shape[1] , dim=1) # compute the previous noisy sample x_t -> x_t-1 UpperCAmelCase_ = self.scheduler.step( _snake_case , _snake_case , _snake_case , generator=_snake_case , )[0] # post-processing UpperCAmelCase_ = self.movq.decode(_snake_case , force_not_quantize=_snake_case)['''sample'''] if output_type not in ["pt", "np", "pil"]: raise ValueError(F"""Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}""") if output_type in ["np", "pil"]: UpperCAmelCase_ = image * 0.5 + 0.5 UpperCAmelCase_ = image.clamp(0 , 1) UpperCAmelCase_ = image.cpu().permute(0 , 2 , 3 , 1).float().numpy() if output_type == "pil": UpperCAmelCase_ = self.numpy_to_pil(_snake_case) if not return_dict: return (image,) return ImagePipelineOutput(images=_snake_case)
51
import argparse import os import pickle import sys import torch from transformers import TransfoXLConfig, TransfoXLLMHeadModel, load_tf_weights_in_transfo_xl from transformers.models.transfo_xl import tokenization_transfo_xl as data_utils from transformers.models.transfo_xl.tokenization_transfo_xl import CORPUS_NAME, VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() # We do this to be able to load python 2 datasets pickles # See e.g. https://stackoverflow.com/questions/2121874/python-pickling-after-changing-a-modules-directory/2121918#2121918 snake_case_ : List[Any] = data_utils.TransfoXLTokenizer snake_case_ : int = data_utils.TransfoXLCorpus snake_case_ : List[Any] = data_utils snake_case_ : int = data_utils def A (__A : Dict , __A : List[Any] , __A : Union[str, Any] , __A : Tuple ) -> Union[str, Any]: """simple docstring""" if transfo_xl_dataset_file: # Convert a pre-processed corpus (see original TensorFlow repo) with open(__A , '''rb''' ) as fp: UpperCAmelCase_ = pickle.load(__A , encoding='''latin1''' ) # Save vocabulary and dataset cache as Dictionaries (should be better than pickles for the long-term) UpperCAmelCase_ = pytorch_dump_folder_path + '''/''' + VOCAB_FILES_NAMES['''pretrained_vocab_file'''] print(F"""Save vocabulary to {pytorch_vocab_dump_path}""" ) UpperCAmelCase_ = corpus.vocab.__dict__ torch.save(__A , __A ) UpperCAmelCase_ = corpus.__dict__ corpus_dict_no_vocab.pop('''vocab''' , __A ) UpperCAmelCase_ = pytorch_dump_folder_path + '''/''' + CORPUS_NAME print(F"""Save dataset to {pytorch_dataset_dump_path}""" ) torch.save(__A , __A ) if tf_checkpoint_path: # Convert a pre-trained TensorFlow model UpperCAmelCase_ = os.path.abspath(__A ) UpperCAmelCase_ = os.path.abspath(__A ) print(F"""Converting Transformer XL checkpoint from {tf_path} with config at {config_path}.""" ) # Initialise PyTorch model if transfo_xl_config_file == "": UpperCAmelCase_ = TransfoXLConfig() else: UpperCAmelCase_ = TransfoXLConfig.from_json_file(__A ) print(F"""Building PyTorch model from configuration: {config}""" ) UpperCAmelCase_ = TransfoXLLMHeadModel(__A ) UpperCAmelCase_ = load_tf_weights_in_transfo_xl(__A , __A , __A ) # Save pytorch-model UpperCAmelCase_ = os.path.join(__A , __A ) UpperCAmelCase_ = os.path.join(__A , __A ) print(F"""Save PyTorch model to {os.path.abspath(__A )}""" ) torch.save(model.state_dict() , __A ) print(F"""Save configuration file to {os.path.abspath(__A )}""" ) with open(__A , '''w''' , encoding='''utf-8''' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": snake_case_ : List[str] = argparse.ArgumentParser() parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the folder to store the PyTorch model or dataset/vocab.", ) parser.add_argument( "--tf_checkpoint_path", default="", type=str, help="An optional path to a TensorFlow checkpoint path to be converted.", ) parser.add_argument( "--transfo_xl_config_file", default="", type=str, help=( "An optional config json file corresponding to the pre-trained BERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--transfo_xl_dataset_file", default="", type=str, help="An optional dataset file to be converted in a vocabulary.", ) snake_case_ : int = parser.parse_args() convert_transfo_xl_checkpoint_to_pytorch( args.tf_checkpoint_path, args.transfo_xl_config_file, args.pytorch_dump_folder_path, args.transfo_xl_dataset_file, )
51
1
import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMInverseScheduler, DDIMScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, StableDiffusionDiffEditPipeline, UNetaDConditionModel, ) from diffusers.utils import load_image, slow from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, require_torch_gpu, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class __a ( __UpperCamelCase ,__UpperCamelCase ,unittest.TestCase ): __snake_case : List[str] = StableDiffusionDiffEditPipeline __snake_case : Dict = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"""height""", """width""", """image"""} | {"""image_latents"""} __snake_case : Union[str, Any] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS - {"""image"""} | {"""image_latents"""} __snake_case : Optional[Any] = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess __snake_case : Tuple = frozenset([] ) def A ( self : str ): torch.manual_seed(0 ) lowerCAmelCase_ : List[Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=UpperCAmelCase , ) lowerCAmelCase_ : Tuple = DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=UpperCAmelCase , set_alpha_to_one=UpperCAmelCase , ) lowerCAmelCase_ : List[Any] = DDIMInverseScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=UpperCAmelCase , set_alpha_to_zero=UpperCAmelCase , ) torch.manual_seed(0 ) lowerCAmelCase_ : List[str] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=1_28 , ) torch.manual_seed(0 ) lowerCAmelCase_ : Tuple = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act="""gelu""" , projection_dim=5_12 , ) lowerCAmelCase_ : int = CLIPTextModel(UpperCAmelCase ) lowerCAmelCase_ : Optional[Any] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) lowerCAmelCase_ : Dict = { """unet""": unet, """scheduler""": scheduler, """inverse_scheduler""": inverse_scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def A ( self : Any , UpperCAmelCase : int , UpperCAmelCase : List[str]=0 ): lowerCAmelCase_ : Optional[Any] = floats_tensor((1, 16, 16) , rng=random.Random(UpperCAmelCase ) ).to(UpperCAmelCase ) lowerCAmelCase_ : Union[str, Any] = floats_tensor((1, 2, 4, 16, 16) , rng=random.Random(UpperCAmelCase ) ).to(UpperCAmelCase ) if str(UpperCAmelCase ).startswith("""mps""" ): lowerCAmelCase_ : List[Any] = torch.manual_seed(UpperCAmelCase ) else: lowerCAmelCase_ : int = torch.Generator(device=UpperCAmelCase ).manual_seed(UpperCAmelCase ) lowerCAmelCase_ : Optional[Any] = { """prompt""": """a dog and a newt""", """mask_image""": mask, """image_latents""": latents, """generator""": generator, """num_inference_steps""": 2, """inpaint_strength""": 1.0, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def A ( self : Union[str, Any] , UpperCAmelCase : Any , UpperCAmelCase : Optional[int]=0 ): lowerCAmelCase_ : Any = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCAmelCase ) ).to(UpperCAmelCase ) lowerCAmelCase_ : List[str] = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCAmelCase_ : str = Image.fromarray(np.uinta(UpperCAmelCase ) ).convert("""RGB""" ) if str(UpperCAmelCase ).startswith("""mps""" ): lowerCAmelCase_ : int = torch.manual_seed(UpperCAmelCase ) else: lowerCAmelCase_ : Any = torch.Generator(device=UpperCAmelCase ).manual_seed(UpperCAmelCase ) lowerCAmelCase_ : List[Any] = { """image""": image, """source_prompt""": """a cat and a frog""", """target_prompt""": """a dog and a newt""", """generator""": generator, """num_inference_steps""": 2, """num_maps_per_mask""": 2, """mask_encode_strength""": 1.0, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def A ( self : Union[str, Any] , UpperCAmelCase : str , UpperCAmelCase : Optional[Any]=0 ): lowerCAmelCase_ : List[str] = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCAmelCase ) ).to(UpperCAmelCase ) lowerCAmelCase_ : List[Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCAmelCase_ : Tuple = Image.fromarray(np.uinta(UpperCAmelCase ) ).convert("""RGB""" ) if str(UpperCAmelCase ).startswith("""mps""" ): lowerCAmelCase_ : Optional[Any] = torch.manual_seed(UpperCAmelCase ) else: lowerCAmelCase_ : str = torch.Generator(device=UpperCAmelCase ).manual_seed(UpperCAmelCase ) lowerCAmelCase_ : Tuple = { """image""": image, """prompt""": """a cat and a frog""", """generator""": generator, """num_inference_steps""": 2, """inpaint_strength""": 1.0, """guidance_scale""": 6.0, """decode_latents""": True, """output_type""": """numpy""", } return inputs def A ( self : Any ): if not hasattr(self.pipeline_class , """_optional_components""" ): return lowerCAmelCase_ : List[str] = self.get_dummy_components() lowerCAmelCase_ : Optional[Any] = self.pipeline_class(**UpperCAmelCase ) pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) # set all optional components to None and update pipeline config accordingly for optional_component in pipe._optional_components: setattr(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) pipe.register_modules(**{optional_component: None for optional_component in pipe._optional_components} ) lowerCAmelCase_ : str = self.get_dummy_inputs(UpperCAmelCase ) lowerCAmelCase_ : Any = pipe(**UpperCAmelCase )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(UpperCAmelCase ) lowerCAmelCase_ : List[str] = self.pipeline_class.from_pretrained(UpperCAmelCase ) pipe_loaded.to(UpperCAmelCase ) pipe_loaded.set_progress_bar_config(disable=UpperCAmelCase ) for optional_component in pipe._optional_components: self.assertTrue( getattr(UpperCAmelCase , UpperCAmelCase ) is None , F'`{optional_component}` did not stay set to None after loading.' , ) lowerCAmelCase_ : Any = self.get_dummy_inputs(UpperCAmelCase ) lowerCAmelCase_ : Tuple = pipe_loaded(**UpperCAmelCase )[0] lowerCAmelCase_ : Any = np.abs(output - output_loaded ).max() self.assertLess(UpperCAmelCase , 1e-4 ) def A ( self : Any ): lowerCAmelCase_ : Optional[Any] = """cpu""" lowerCAmelCase_ : Optional[Any] = self.get_dummy_components() lowerCAmelCase_ : Tuple = self.pipeline_class(**UpperCAmelCase ) pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) lowerCAmelCase_ : Tuple = self.get_dummy_mask_inputs(UpperCAmelCase ) lowerCAmelCase_ : List[str] = pipe.generate_mask(**UpperCAmelCase ) lowerCAmelCase_ : Dict = mask[0, -3:, -3:] self.assertEqual(mask.shape , (1, 16, 16) ) lowerCAmelCase_ : Any = np.array([0] * 9 ) lowerCAmelCase_ : Dict = np.abs(mask_slice.flatten() - expected_slice ).max() self.assertLessEqual(UpperCAmelCase , 1e-3 ) self.assertEqual(mask[0, -3, -4] , 0 ) def A ( self : int ): lowerCAmelCase_ : Optional[Any] = """cpu""" lowerCAmelCase_ : Optional[int] = self.get_dummy_components() lowerCAmelCase_ : int = self.pipeline_class(**UpperCAmelCase ) pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) lowerCAmelCase_ : Dict = self.get_dummy_inversion_inputs(UpperCAmelCase ) lowerCAmelCase_ : Tuple = pipe.invert(**UpperCAmelCase ).images lowerCAmelCase_ : Any = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) lowerCAmelCase_ : List[Any] = np.array( [0.5150, 0.5134, 0.5043, 0.5376, 0.4694, 0.5_1050, 0.5015, 0.4407, 0.4799] , ) lowerCAmelCase_ : List[str] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(UpperCAmelCase , 1e-3 ) def A ( self : str ): super().test_inference_batch_single_identical(expected_max_diff=5e-3 ) def A ( self : Tuple ): lowerCAmelCase_ : str = """cpu""" lowerCAmelCase_ : int = self.get_dummy_components() lowerCAmelCase_ : Optional[Any] = {"""beta_start""": 0.0_0085, """beta_end""": 0.012, """beta_schedule""": """scaled_linear"""} lowerCAmelCase_ : Dict = DPMSolverMultistepScheduler(**UpperCAmelCase ) lowerCAmelCase_ : Any = DPMSolverMultistepInverseScheduler(**UpperCAmelCase ) lowerCAmelCase_ : List[Any] = self.pipeline_class(**UpperCAmelCase ) pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) lowerCAmelCase_ : Tuple = self.get_dummy_inversion_inputs(UpperCAmelCase ) lowerCAmelCase_ : int = pipe.invert(**UpperCAmelCase ).images lowerCAmelCase_ : str = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) lowerCAmelCase_ : List[str] = np.array( [0.5150, 0.5134, 0.5043, 0.5376, 0.4694, 0.5_1050, 0.5015, 0.4407, 0.4799] , ) lowerCAmelCase_ : List[Any] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(UpperCAmelCase , 1e-3 ) @require_torch_gpu @slow class __a ( unittest.TestCase ): def A ( self : int ): super().tearDown() gc.collect() torch.cuda.empty_cache() @classmethod def A ( cls : Optional[Any] ): lowerCAmelCase_ : List[str] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/diffedit/fruit.png""" ) lowerCAmelCase_ : Any = raw_image.convert("""RGB""" ).resize((7_68, 7_68) ) lowerCAmelCase_ : Union[str, Any] = raw_image def A ( self : int ): lowerCAmelCase_ : Any = torch.manual_seed(0 ) lowerCAmelCase_ : List[Any] = StableDiffusionDiffEditPipeline.from_pretrained( """stabilityai/stable-diffusion-2-1""" , safety_checker=UpperCAmelCase , torch_dtype=torch.floataa ) lowerCAmelCase_ : Union[str, Any] = DDIMScheduler.from_config(pipe.scheduler.config ) lowerCAmelCase_ : Tuple = DDIMInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=UpperCAmelCase ) lowerCAmelCase_ : Tuple = """a bowl of fruit""" lowerCAmelCase_ : Any = """a bowl of pears""" lowerCAmelCase_ : Dict = pipe.generate_mask( image=self.raw_image , source_prompt=UpperCAmelCase , target_prompt=UpperCAmelCase , generator=UpperCAmelCase , ) lowerCAmelCase_ : int = pipe.invert( prompt=UpperCAmelCase , image=self.raw_image , inpaint_strength=0.7 , generator=UpperCAmelCase ).latents lowerCAmelCase_ : str = pipe( prompt=UpperCAmelCase , mask_image=UpperCAmelCase , image_latents=UpperCAmelCase , generator=UpperCAmelCase , negative_prompt=UpperCAmelCase , inpaint_strength=0.7 , output_type="""numpy""" , ).images[0] lowerCAmelCase_ : Optional[Any] = ( np.array( load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/diffedit/pears.png""" ).resize((7_68, 7_68) ) ) / 2_55 ) assert np.abs((expected_image - image).max() ) < 5e-1 def A ( self : Union[str, Any] ): lowerCAmelCase_ : Dict = torch.manual_seed(0 ) lowerCAmelCase_ : List[Any] = StableDiffusionDiffEditPipeline.from_pretrained( """stabilityai/stable-diffusion-2-1""" , safety_checker=UpperCAmelCase , torch_dtype=torch.floataa ) lowerCAmelCase_ : Dict = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) lowerCAmelCase_ : int = DPMSolverMultistepInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=UpperCAmelCase ) lowerCAmelCase_ : int = """a bowl of fruit""" lowerCAmelCase_ : Dict = """a bowl of pears""" lowerCAmelCase_ : Dict = pipe.generate_mask( image=self.raw_image , source_prompt=UpperCAmelCase , target_prompt=UpperCAmelCase , generator=UpperCAmelCase , ) lowerCAmelCase_ : List[Any] = pipe.invert( prompt=UpperCAmelCase , image=self.raw_image , inpaint_strength=0.7 , generator=UpperCAmelCase , num_inference_steps=25 , ).latents lowerCAmelCase_ : Optional[Any] = pipe( prompt=UpperCAmelCase , mask_image=UpperCAmelCase , image_latents=UpperCAmelCase , generator=UpperCAmelCase , negative_prompt=UpperCAmelCase , inpaint_strength=0.7 , num_inference_steps=25 , output_type="""numpy""" , ).images[0] lowerCAmelCase_ : Optional[int] = ( np.array( load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/diffedit/pears.png""" ).resize((7_68, 7_68) ) ) / 2_55 ) assert np.abs((expected_image - image).max() ) < 5e-1
28
from math import factorial, pi def __UpperCamelCase ( lowercase__ : float , lowercase__ : int = 30 ) -> float: '''simple docstring''' if not isinstance(lowercase__ , (int, float) ): raise ValueError("""maclaurin_sin() requires either an int or float for theta""" ) if not isinstance(lowercase__ , lowercase__ ) or accuracy <= 0: raise ValueError("""maclaurin_sin() requires a positive int for accuracy""" ) lowerCAmelCase_ : Optional[int] = float(lowercase__ ) lowerCAmelCase_ : Union[str, Any] = theta // (2 * pi) theta -= 2 * div * pi return sum( (-1) ** r * theta ** (2 * r + 1) / factorial(2 * r + 1 ) for r in range(lowercase__ ) ) def __UpperCamelCase ( lowercase__ : float , lowercase__ : int = 30 ) -> float: '''simple docstring''' if not isinstance(lowercase__ , (int, float) ): raise ValueError("""maclaurin_cos() requires either an int or float for theta""" ) if not isinstance(lowercase__ , lowercase__ ) or accuracy <= 0: raise ValueError("""maclaurin_cos() requires a positive int for accuracy""" ) lowerCAmelCase_ : int = float(lowercase__ ) lowerCAmelCase_ : Optional[int] = theta // (2 * pi) theta -= 2 * div * pi return sum((-1) ** r * theta ** (2 * r) / factorial(2 * r ) for r in range(lowercase__ ) ) if __name__ == "__main__": import doctest doctest.testmod() print(maclaurin_sin(10)) print(maclaurin_sin(-10)) print(maclaurin_sin(10, 15)) print(maclaurin_sin(-10, 15)) print(maclaurin_cos(5)) print(maclaurin_cos(-5)) print(maclaurin_cos(10, 15)) print(maclaurin_cos(-10, 15))
28
1
"""simple docstring""" import argparse from collections import OrderedDict from pathlib import Path import requests import torch from PIL import Image from transformers import GLPNConfig, GLPNForDepthEstimation, GLPNImageProcessor from transformers.utils import logging logging.set_verbosity_info() __UpperCAmelCase = logging.get_logger(__name__) def _snake_case ( lowercase__ : Optional[Any] ) -> str: '''simple docstring''' lowerCAmelCase_ :str = OrderedDict() for key, value in state_dict.items(): if key.startswith("""module.encoder""" ): lowerCAmelCase_ :Union[str, Any] = key.replace("""module.encoder""" , """glpn.encoder""" ) if key.startswith("""module.decoder""" ): lowerCAmelCase_ :Any = key.replace("""module.decoder""" , """decoder.stages""" ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 lowerCAmelCase_ :List[str] = key[key.find("""patch_embed""" ) + len("""patch_embed""" )] lowerCAmelCase_ :Tuple = key.replace(f"""patch_embed{idx}""" , f"""patch_embeddings.{int(lowercase__ )-1}""" ) if "norm" in key: lowerCAmelCase_ :Dict = key.replace("""norm""" , """layer_norm""" ) if "glpn.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 lowerCAmelCase_ :str = key[key.find("""glpn.encoder.layer_norm""" ) + len("""glpn.encoder.layer_norm""" )] lowerCAmelCase_ :str = key.replace(f"""layer_norm{idx}""" , f"""layer_norm.{int(lowercase__ )-1}""" ) if "layer_norm1" in key: lowerCAmelCase_ :Optional[Any] = key.replace("""layer_norm1""" , """layer_norm_1""" ) if "layer_norm2" in key: lowerCAmelCase_ :str = key.replace("""layer_norm2""" , """layer_norm_2""" ) if "block" in key: # replace for example block1 by block.0 lowerCAmelCase_ :List[str] = key[key.find("""block""" ) + len("""block""" )] lowerCAmelCase_ :int = key.replace(f"""block{idx}""" , f"""block.{int(lowercase__ )-1}""" ) if "attn.q" in key: lowerCAmelCase_ :Tuple = key.replace("""attn.q""" , """attention.self.query""" ) if "attn.proj" in key: lowerCAmelCase_ :Optional[int] = key.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in key: lowerCAmelCase_ :str = key.replace("""attn""" , """attention.self""" ) if "fc1" in key: lowerCAmelCase_ :List[Any] = key.replace("""fc1""" , """dense1""" ) if "fc2" in key: lowerCAmelCase_ :Optional[Any] = key.replace("""fc2""" , """dense2""" ) if "linear_pred" in key: lowerCAmelCase_ :List[str] = key.replace("""linear_pred""" , """classifier""" ) if "linear_fuse" in key: lowerCAmelCase_ :str = key.replace("""linear_fuse.conv""" , """linear_fuse""" ) lowerCAmelCase_ :Any = key.replace("""linear_fuse.bn""" , """batch_norm""" ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 lowerCAmelCase_ :str = key[key.find("""linear_c""" ) + len("""linear_c""" )] lowerCAmelCase_ :Optional[int] = key.replace(f"""linear_c{idx}""" , f"""linear_c.{int(lowercase__ )-1}""" ) if "bot_conv" in key: lowerCAmelCase_ :Union[str, Any] = key.replace("""bot_conv""" , """0.convolution""" ) if "skip_conv1" in key: lowerCAmelCase_ :int = key.replace("""skip_conv1""" , """1.convolution""" ) if "skip_conv2" in key: lowerCAmelCase_ :str = key.replace("""skip_conv2""" , """2.convolution""" ) if "fusion1" in key: lowerCAmelCase_ :Any = key.replace("""fusion1""" , """1.fusion""" ) if "fusion2" in key: lowerCAmelCase_ :List[str] = key.replace("""fusion2""" , """2.fusion""" ) if "fusion3" in key: lowerCAmelCase_ :Dict = key.replace("""fusion3""" , """3.fusion""" ) if "fusion" in key and "conv" in key: lowerCAmelCase_ :Any = key.replace("""conv""" , """convolutional_layer""" ) if key.startswith("""module.last_layer_depth""" ): lowerCAmelCase_ :Tuple = key.replace("""module.last_layer_depth""" , """head.head""" ) lowerCAmelCase_ :List[Any] = value return new_state_dict def _snake_case ( lowercase__ : str , lowercase__ : int ) -> str: '''simple docstring''' for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) lowerCAmelCase_ :Tuple = state_dict.pop(f"""glpn.encoder.block.{i}.{j}.attention.self.kv.weight""" ) lowerCAmelCase_ :Tuple = state_dict.pop(f"""glpn.encoder.block.{i}.{j}.attention.self.kv.bias""" ) # next, add keys and values (in that order) to the state dict lowerCAmelCase_ :Optional[Any] = kv_weight[ : config.hidden_sizes[i], : ] lowerCAmelCase_ :Union[str, Any] = kv_bias[: config.hidden_sizes[i]] lowerCAmelCase_ :List[Any] = kv_weight[ config.hidden_sizes[i] :, : ] lowerCAmelCase_ :int = kv_bias[config.hidden_sizes[i] :] def _snake_case ( ) -> Any: '''simple docstring''' lowerCAmelCase_ :int = """http://images.cocodataset.org/val2017/000000039769.jpg""" lowerCAmelCase_ :Optional[Any] = Image.open(requests.get(lowercase__ , stream=lowercase__ ).raw ) return image @torch.no_grad() def _snake_case ( lowercase__ : List[Any] , lowercase__ : str , lowercase__ : Dict=False , lowercase__ : List[Any]=None ) -> int: '''simple docstring''' lowerCAmelCase_ :int = GLPNConfig(hidden_sizes=[6_4, 1_2_8, 3_2_0, 5_1_2] , decoder_hidden_size=6_4 , depths=[3, 8, 2_7, 3] ) # load image processor (only resize + rescale) lowerCAmelCase_ :Union[str, Any] = GLPNImageProcessor() # prepare image lowerCAmelCase_ :List[Any] = prepare_img() lowerCAmelCase_ :int = image_processor(images=lowercase__ , return_tensors="""pt""" ).pixel_values logger.info("""Converting model...""" ) # load original state dict lowerCAmelCase_ :Tuple = torch.load(lowercase__ , map_location=torch.device("""cpu""" ) ) # rename keys lowerCAmelCase_ :Union[str, Any] = rename_keys(lowercase__ ) # key and value matrices need special treatment read_in_k_v(lowercase__ , lowercase__ ) # create HuggingFace model and load state dict lowerCAmelCase_ :List[Any] = GLPNForDepthEstimation(lowercase__ ) model.load_state_dict(lowercase__ ) model.eval() # forward pass lowerCAmelCase_ :Dict = model(lowercase__ ) lowerCAmelCase_ :Tuple = outputs.predicted_depth # verify output if model_name is not None: if "nyu" in model_name: lowerCAmelCase_ :Optional[Any] = torch.tensor( [[4.4147, 4.0873, 4.0673], [3.7890, 3.2881, 3.1525], [3.7674, 3.5423, 3.4913]] ) elif "kitti" in model_name: lowerCAmelCase_ :Any = torch.tensor( [[3.4291, 2.7865, 2.5151], [3.2841, 2.7021, 2.3502], [3.1147, 2.4625, 2.2481]] ) else: raise ValueError(f"""Unknown model name: {model_name}""" ) lowerCAmelCase_ :Union[str, Any] = torch.Size([1, 4_8_0, 6_4_0] ) assert predicted_depth.shape == expected_shape assert torch.allclose(predicted_depth[0, :3, :3] , lowercase__ , atol=1E-4 ) print("""Looks ok!""" ) # finally, push to hub if required if push_to_hub: logger.info("""Pushing model and image processor to the hub...""" ) model.push_to_hub( repo_path_or_name=Path(lowercase__ , lowercase__ ) , organization="""nielsr""" , commit_message="""Add model""" , use_temp_dir=lowercase__ , ) image_processor.push_to_hub( repo_path_or_name=Path(lowercase__ , lowercase__ ) , organization="""nielsr""" , commit_message="""Add image processor""" , use_temp_dir=lowercase__ , ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() parser.add_argument( '--checkpoint_path', default=None, type=str, help='Path to the original PyTorch checkpoint (.pth file).', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether to upload the model to the HuggingFace hub.' ) parser.add_argument( '--model_name', default='glpn-kitti', type=str, help='Name of the model in case you\'re pushing to the hub.', ) __UpperCAmelCase = parser.parse_args() convert_glpn_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
84
import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, ByTaTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): __a : Tuple = """pt""" elif is_tf_available(): __a : int = """tf""" else: __a : Tuple = """jax""" class _UpperCamelCase ( _UpperCAmelCase ,unittest.TestCase ): """simple docstring""" __a : List[Any] = ByTaTokenizer __a : str = False def _SCREAMING_SNAKE_CASE ( self ) -> List[Any]: '''simple docstring''' super().setUp() __lowercase = ByTaTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _SCREAMING_SNAKE_CASE ( self ) -> Any: '''simple docstring''' return ByTaTokenizer.from_pretrained('''google/byt5-small''' ) def _SCREAMING_SNAKE_CASE ( self , **lowerCAmelCase__ ) -> ByTaTokenizer: '''simple docstring''' return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ) def _SCREAMING_SNAKE_CASE ( self , lowerCAmelCase__ , lowerCAmelCase__=False , lowerCAmelCase__=20 , lowerCAmelCase__=5 ) -> Tuple[str, list]: '''simple docstring''' __lowercase = [] for i in range(len(lowerCAmelCase__ ) ): try: __lowercase = tokenizer.decode([i] , clean_up_tokenization_spaces=lowerCAmelCase__ ) except UnicodeDecodeError: pass toks.append((i, tok) ) __lowercase = list(filter(lambda lowerCAmelCase__ : re.match(R'''^[ a-zA-Z]+$''' , t[1] ) , lowerCAmelCase__ ) ) __lowercase = list(filter(lambda lowerCAmelCase__ : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=lowerCAmelCase__ ) , lowerCAmelCase__ ) ) if max_length is not None and len(lowerCAmelCase__ ) > max_length: __lowercase = toks[:max_length] if min_length is not None and len(lowerCAmelCase__ ) < min_length and len(lowerCAmelCase__ ) > 0: while len(lowerCAmelCase__ ) < min_length: __lowercase = toks + toks # toks_str = [t[1] for t in toks] __lowercase = [t[0] for t in toks] # Ensure consistency __lowercase = tokenizer.decode(lowerCAmelCase__ , clean_up_tokenization_spaces=lowerCAmelCase__ ) if " " not in output_txt and len(lowerCAmelCase__ ) > 1: __lowercase = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=lowerCAmelCase__ ) + ''' ''' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=lowerCAmelCase__ ) ) if with_prefix_space: __lowercase = ''' ''' + output_txt __lowercase = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) return output_txt, output_ids def _SCREAMING_SNAKE_CASE ( self ) -> Tuple: '''simple docstring''' __lowercase = self.ta_base_tokenizer __lowercase = tokenizer(['''hi</s>''', '''I went to the gym</s>''', '''</s>'''] ) __lowercase = tokenizer(['''hi''', '''I went to the gym''', ''''''] ) self.assertListEqual(batch_with_eos_added['''input_ids'''] , batch_without_eos_added['''input_ids'''] ) def _SCREAMING_SNAKE_CASE ( self ) -> Dict: '''simple docstring''' __lowercase = self.ta_base_tokenizer __lowercase = '''Unicode €.''' __lowercase = tokenizer(lowerCAmelCase__ ) __lowercase = [88, 1_13, 1_08, 1_02, 1_14, 1_03, 1_04, 35, 2_29, 1_33, 1_75, 49, 1] self.assertEqual(encoded['''input_ids'''] , lowerCAmelCase__ ) # decoding __lowercase = tokenizer.decode(lowerCAmelCase__ ) self.assertEqual(lowerCAmelCase__ , '''Unicode €.</s>''' ) __lowercase = tokenizer('''e è é ê ë''' ) __lowercase = [1_04, 35, 1_98, 1_71, 35, 1_98, 1_72, 35, 1_98, 1_73, 35, 1_98, 1_74, 1] self.assertEqual(encoded['''input_ids'''] , lowerCAmelCase__ ) # decoding __lowercase = tokenizer.decode(lowerCAmelCase__ ) self.assertEqual(lowerCAmelCase__ , '''e è é ê ë</s>''' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('''e è é ê ë''' ) ) , '''e è é ê ë</s>''' ) def _SCREAMING_SNAKE_CASE ( self ) -> List[Any]: '''simple docstring''' __lowercase = self.ta_base_tokenizer __lowercase = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] # fmt: off __lowercase = [68, 35, 1_11, 1_14, 1_13, 1_06, 35, 1_15, 1_00, 1_17, 1_00, 1_06, 1_17, 1_00, 1_15, 1_07, 35, 1_05, 1_14, 1_17, 35, 1_18, 1_20, 1_12, 1_12, 1_00, 1_17, 1_08, 1_25, 1_00, 1_19, 1_08, 1_14, 1_13, 49, 1, 0] # fmt: on __lowercase = tokenizer(lowerCAmelCase__ , padding=lowerCAmelCase__ , return_tensors=lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) if FRAMEWORK != "jax": __lowercase = list(batch.input_ids.numpy()[0] ) else: __lowercase = list(batch.input_ids.tolist()[0] ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertEqual((2, 37) , batch.input_ids.shape ) self.assertEqual((2, 37) , batch.attention_mask.shape ) def _SCREAMING_SNAKE_CASE ( self ) -> int: '''simple docstring''' __lowercase = self.ta_base_tokenizer __lowercase = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] __lowercase = tokenizer(lowerCAmelCase__ , padding=lowerCAmelCase__ , return_tensors=lowerCAmelCase__ ) # check if input_ids are returned and no decoder_input_ids self.assertIn('''input_ids''' , lowerCAmelCase__ ) self.assertIn('''attention_mask''' , lowerCAmelCase__ ) self.assertNotIn('''decoder_input_ids''' , lowerCAmelCase__ ) self.assertNotIn('''decoder_attention_mask''' , lowerCAmelCase__ ) def _SCREAMING_SNAKE_CASE ( self ) -> Tuple: '''simple docstring''' __lowercase = self.ta_base_tokenizer __lowercase = [ '''Summary of the text.''', '''Another summary.''', ] __lowercase = tokenizer( text_target=lowerCAmelCase__ , max_length=32 , padding='''max_length''' , truncation=lowerCAmelCase__ , return_tensors=lowerCAmelCase__ ) self.assertEqual(32 , targets['''input_ids'''].shape[1] ) def _SCREAMING_SNAKE_CASE ( self ) -> int: '''simple docstring''' __lowercase = self.ta_base_tokenizer __lowercase = ['''A long paragraph for summarization. </s>'''] __lowercase = ['''Summary of the text. </s>'''] # fmt: off __lowercase = [68, 35, 1_11, 1_14, 1_13, 1_06, 35, 1_15, 1_00, 1_17, 1_00, 1_06, 1_17, 1_00, 1_15, 1_07, 35, 1_05, 1_14, 1_17, 35, 1_18, 1_20, 1_12, 1_12, 1_00, 1_17, 1_08, 1_25, 1_00, 1_19, 1_08, 1_14, 1_13, 49, 35, 1] __lowercase = [86, 1_20, 1_12, 1_12, 1_00, 1_17, 1_24, 35, 1_14, 1_05, 35, 1_19, 1_07, 1_04, 35, 1_19, 1_04, 1_23, 1_19, 49, 35, 1] # fmt: on __lowercase = tokenizer(lowerCAmelCase__ , text_target=lowerCAmelCase__ ) self.assertEqual(lowerCAmelCase__ , batch['''input_ids'''][0] ) self.assertEqual(lowerCAmelCase__ , batch['''labels'''][0] ) def _SCREAMING_SNAKE_CASE ( self ) -> List[str]: '''simple docstring''' __lowercase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}" ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test __lowercase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}" ): # Isolate this from the other tests because we save additional tokens/etc __lowercase = tempfile.mkdtemp() __lowercase = ''' He is very happy, UNwant\u00E9d,running''' __lowercase = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) tokenizer.save_pretrained(lowerCAmelCase__ ) __lowercase = tokenizer.__class__.from_pretrained(lowerCAmelCase__ ) __lowercase = after_tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) shutil.rmtree(lowerCAmelCase__ ) __lowercase = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}" ): # Isolate this from the other tests because we save additional tokens/etc __lowercase = tempfile.mkdtemp() __lowercase = ''' He is very happy, UNwant\u00E9d,running''' tokenizer.add_tokens(['''bim''', '''bambam'''] ) __lowercase = tokenizer.additional_special_tokens additional_special_tokens.append('''new_additional_special_token''' ) tokenizer.add_special_tokens({'''additional_special_tokens''': additional_special_tokens} ) __lowercase = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) tokenizer.save_pretrained(lowerCAmelCase__ ) __lowercase = tokenizer.__class__.from_pretrained(lowerCAmelCase__ ) __lowercase = after_tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertIn('''new_additional_special_token''' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) __lowercase = tokenizer.__class__.from_pretrained(lowerCAmelCase__ , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(lowerCAmelCase__ ) def _SCREAMING_SNAKE_CASE ( self ) -> Dict: '''simple docstring''' __lowercase = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(lowerCAmelCase__ ) with open(os.path.join(lowerCAmelCase__ , '''special_tokens_map.json''' ) , encoding='''utf-8''' ) as json_file: __lowercase = json.load(lowerCAmelCase__ ) with open(os.path.join(lowerCAmelCase__ , '''tokenizer_config.json''' ) , encoding='''utf-8''' ) as json_file: __lowercase = json.load(lowerCAmelCase__ ) __lowercase = [F"<extra_id_{i}>" for i in range(1_25 )] __lowercase = added_tokens_extra_ids + [ '''an_additional_special_token''' ] __lowercase = added_tokens_extra_ids + [ '''an_additional_special_token''' ] with open(os.path.join(lowerCAmelCase__ , '''special_tokens_map.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile: json.dump(lowerCAmelCase__ , lowerCAmelCase__ ) with open(os.path.join(lowerCAmelCase__ , '''tokenizer_config.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile: json.dump(lowerCAmelCase__ , lowerCAmelCase__ ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files __lowercase = tokenizer_class.from_pretrained( lowerCAmelCase__ , ) self.assertIn( '''an_additional_special_token''' , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( ['''an_additional_special_token'''] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['''an_additional_special_token'''] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained __lowercase = added_tokens_extra_ids + [AddedToken('''a_new_additional_special_token''' , lstrip=lowerCAmelCase__ )] __lowercase = tokenizer_class.from_pretrained( lowerCAmelCase__ , additional_special_tokens=lowerCAmelCase__ , ) self.assertIn('''a_new_additional_special_token''' , tokenizer.additional_special_tokens ) self.assertEqual( ['''a_new_additional_special_token'''] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['''a_new_additional_special_token'''] ) ) , ) def _SCREAMING_SNAKE_CASE ( self ) -> List[str]: '''simple docstring''' __lowercase = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(lowerCAmelCase__ ) __lowercase = tokenizer_class.from_pretrained(lowerCAmelCase__ ) self.assertTrue(tokenizer.decode([2_55] ) == '''''' ) def _SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: '''simple docstring''' pass def _SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: '''simple docstring''' pass def _SCREAMING_SNAKE_CASE ( self ) -> int: '''simple docstring''' pass def _SCREAMING_SNAKE_CASE ( self ) -> str: '''simple docstring''' pass def _SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: '''simple docstring''' __lowercase = self.get_tokenizers(fast=lowerCAmelCase__ , do_lower_case=lowerCAmelCase__ ) for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}" ): __lowercase = ['''t''', '''h''', '''i''', '''s''', ''' ''', '''i''', '''s''', ''' ''', '''a''', ''' ''', '''t''', '''e''', '''x''', '''t''', '''</s>'''] __lowercase = tokenizer.convert_tokens_to_string(lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) def _SCREAMING_SNAKE_CASE ( self ) -> int: '''simple docstring''' __lowercase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}" ): __lowercase = [ '''bos_token''', '''eos_token''', '''unk_token''', '''sep_token''', '''pad_token''', '''cls_token''', '''mask_token''', ] __lowercase = 0 __lowercase = tokenizer.convert_ids_to_tokens( lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ ) for attr in attributes_list: setattr(lowerCAmelCase__ , attr + '''_id''' , lowerCAmelCase__ ) self.assertEqual(getattr(lowerCAmelCase__ , lowerCAmelCase__ ) , lowerCAmelCase__ ) self.assertEqual(getattr(lowerCAmelCase__ , attr + '''_id''' ) , lowerCAmelCase__ ) setattr(lowerCAmelCase__ , attr + '''_id''' , lowerCAmelCase__ ) self.assertEqual(getattr(lowerCAmelCase__ , lowerCAmelCase__ ) , lowerCAmelCase__ ) self.assertEqual(getattr(lowerCAmelCase__ , attr + '''_id''' ) , lowerCAmelCase__ ) setattr(lowerCAmelCase__ , '''additional_special_tokens_ids''' , [] ) self.assertListEqual(getattr(lowerCAmelCase__ , '''additional_special_tokens''' ) , [] ) self.assertListEqual(getattr(lowerCAmelCase__ , '''additional_special_tokens_ids''' ) , [] ) setattr(lowerCAmelCase__ , '''additional_special_tokens_ids''' , [token_id_to_test_setters] ) self.assertListEqual(getattr(lowerCAmelCase__ , '''additional_special_tokens''' ) , [token_to_test_setters] ) self.assertListEqual(getattr(lowerCAmelCase__ , '''additional_special_tokens_ids''' ) , [token_id_to_test_setters] )
210
0
"""simple docstring""" # Note: if you intend to run this script make sure you look under scripts/fsmt/ # to locate the appropriate script to do the work correctly. There is a set of scripts to: # - download and prepare data and run the conversion script # - perform eval to get the best hparam into the config # - generate model_cards - useful if you have multiple models from the same paper import argparse import json import os import re from collections import OrderedDict from os.path import basename, dirname import fairseq import torch from fairseq import hub_utils from fairseq.data.dictionary import Dictionary from transformers import FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() lowerCAmelCase__ = 2 # based on the results of a search on a range of `num_beams`, `length_penalty` and `early_stopping` # values against wmt19 test data to obtain the best BLEU scores, we will use the following defaults: # # * `num_beams`: 5 (higher scores better, but requires more memory/is slower, can be adjusted by users) # * `early_stopping`: `False` consistently scored better # * `length_penalty` varied, so will assign the best one depending on the model lowerCAmelCase__ = { # fairseq: '''wmt19-ru-en''': {'''length_penalty''': 1.1}, '''wmt19-en-ru''': {'''length_penalty''': 1.1_5}, '''wmt19-en-de''': {'''length_penalty''': 1.0}, '''wmt19-de-en''': {'''length_penalty''': 1.1}, # allenai: '''wmt16-en-de-dist-12-1''': {'''length_penalty''': 0.6}, '''wmt16-en-de-dist-6-1''': {'''length_penalty''': 0.6}, '''wmt16-en-de-12-1''': {'''length_penalty''': 0.8}, '''wmt19-de-en-6-6-base''': {'''length_penalty''': 0.6}, '''wmt19-de-en-6-6-big''': {'''length_penalty''': 0.6}, } # this remaps the different models to their organization names lowerCAmelCase__ = {} for m in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: lowerCAmelCase__ = '''facebook''' for m in [ "wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1", "wmt19-de-en-6-6-base", "wmt19-de-en-6-6-big", ]: lowerCAmelCase__ = '''allenai''' def snake_case_ ( A_ : List[Any] ): '''simple docstring''' _lowerCamelCase : List[Any] = dict((re.sub(R'''@@$''', '''''', A_ ), v) if k.endswith('''@@''' ) else (re.sub(R'''$''', '''</w>''', A_ ), v) for k, v in d.items() ) _lowerCamelCase : str = '''<s> <pad> </s> <unk>'''.split() # restore the special tokens for k in keep_keys: del da[F'''{k}</w>'''] _lowerCamelCase : int = d[k] # restore return da def snake_case_ ( A_ : List[Any], A_ : Union[str, Any] ): '''simple docstring''' assert os.path.exists(A_ ) os.makedirs(A_, exist_ok=A_ ) print(F'''Writing results to {pytorch_dump_folder_path}''' ) # handle various types of models _lowerCamelCase : Optional[int] = basename(A_ ) _lowerCamelCase : int = dirname(A_ ) _lowerCamelCase : Any = fairseq.model_parallel.models.transformer.ModelParallelTransformerModel _lowerCamelCase : Any = cls.hub_models() _lowerCamelCase : Optional[Any] = {'''bpe''': '''fastbpe''', '''tokenizer''': '''moses'''} _lowerCamelCase : int = '''.''' # note: since the model dump is old, fairseq has upgraded its model some # time later, and it does a whole lot of rewrites and splits on the saved # weights, therefore we can't use torch.load() directly on the model file. # see: upgrade_state_dict(state_dict) in fairseq_model.py print(F'''using checkpoint {checkpoint_file}''' ) _lowerCamelCase : Dict = hub_utils.from_pretrained( A_, A_, A_, archive_map=A_, **A_ ) _lowerCamelCase : Optional[Any] = vars(chkpt['''args''']['''model'''] ) _lowerCamelCase : List[Any] = args['''source_lang'''] _lowerCamelCase : Dict = args['''target_lang'''] _lowerCamelCase : int = dirname(A_ ) _lowerCamelCase : str = basename(A_ ) # dicts _lowerCamelCase : Union[str, Any] = os.path.join(A_, F'''dict.{src_lang}.txt''' ) _lowerCamelCase : Dict = os.path.join(A_, F'''dict.{tgt_lang}.txt''' ) _lowerCamelCase : Union[str, Any] = Dictionary.load(A_ ) _lowerCamelCase : Any = rewrite_dict_keys(src_dict.indices ) _lowerCamelCase : int = len(A_ ) _lowerCamelCase : Optional[int] = os.path.join(A_, '''vocab-src.json''' ) print(F'''Generating {src_vocab_file} of {src_vocab_size} of {src_lang} records''' ) with open(A_, '''w''', encoding='''utf-8''' ) as f: f.write(json.dumps(A_, ensure_ascii=A_, indent=A_ ) ) # detect whether this is a do_lower_case situation, which can be derived by checking whether we # have at least one uppercase letter in the source vocab _lowerCamelCase : List[str] = True for k in src_vocab.keys(): if not k.islower(): _lowerCamelCase : Tuple = False break _lowerCamelCase : Optional[int] = Dictionary.load(A_ ) _lowerCamelCase : Optional[Any] = rewrite_dict_keys(tgt_dict.indices ) _lowerCamelCase : Optional[Any] = len(A_ ) _lowerCamelCase : int = os.path.join(A_, '''vocab-tgt.json''' ) print(F'''Generating {tgt_vocab_file} of {tgt_vocab_size} of {tgt_lang} records''' ) with open(A_, '''w''', encoding='''utf-8''' ) as f: f.write(json.dumps(A_, ensure_ascii=A_, indent=A_ ) ) # merges_file (bpecodes) _lowerCamelCase : Optional[Any] = os.path.join(A_, VOCAB_FILES_NAMES['''merges_file'''] ) for fn in ["bpecodes", "code"]: # older fairseq called the merges file "code" _lowerCamelCase : List[str] = os.path.join(A_, A_ ) if os.path.exists(A_ ): break with open(A_, encoding='''utf-8''' ) as fin: _lowerCamelCase : Union[str, Any] = fin.read() _lowerCamelCase : Optional[Any] = re.sub(R''' \d+$''', '''''', A_, 0, re.M ) # remove frequency number print(F'''Generating {merges_file}''' ) with open(A_, '''w''', encoding='''utf-8''' ) as fout: fout.write(A_ ) # model config _lowerCamelCase : str = os.path.join(A_, '''config.json''' ) # validate bpe/tokenizer config, as currently it's hardcoded to moses+fastbpe - # may have to modify the tokenizer if a different type is used by a future model assert args["bpe"] == "fastbpe", F'''need to extend tokenizer to support bpe={args["bpe"]}''' assert args["tokenizer"] == "moses", F'''need to extend tokenizer to support bpe={args["tokenizer"]}''' _lowerCamelCase : Optional[int] = { '''architectures''': ['''FSMTForConditionalGeneration'''], '''model_type''': '''fsmt''', '''activation_dropout''': args['''activation_dropout'''], '''activation_function''': '''relu''', '''attention_dropout''': args['''attention_dropout'''], '''d_model''': args['''decoder_embed_dim'''], '''dropout''': args['''dropout'''], '''init_std''': 0.02, '''max_position_embeddings''': args['''max_source_positions'''], '''num_hidden_layers''': args['''encoder_layers'''], '''src_vocab_size''': src_vocab_size, '''tgt_vocab_size''': tgt_vocab_size, '''langs''': [src_lang, tgt_lang], '''encoder_attention_heads''': args['''encoder_attention_heads'''], '''encoder_ffn_dim''': args['''encoder_ffn_embed_dim'''], '''encoder_layerdrop''': args['''encoder_layerdrop'''], '''encoder_layers''': args['''encoder_layers'''], '''decoder_attention_heads''': args['''decoder_attention_heads'''], '''decoder_ffn_dim''': args['''decoder_ffn_embed_dim'''], '''decoder_layerdrop''': args['''decoder_layerdrop'''], '''decoder_layers''': args['''decoder_layers'''], '''bos_token_id''': 0, '''pad_token_id''': 1, '''eos_token_id''': 2, '''is_encoder_decoder''': True, '''scale_embedding''': not args['''no_scale_embedding'''], '''tie_word_embeddings''': args['''share_all_embeddings'''], } # good hparam defaults to start with _lowerCamelCase : Tuple = 5 _lowerCamelCase : Dict = False if model_dir in best_score_hparams and "length_penalty" in best_score_hparams[model_dir]: _lowerCamelCase : Any = best_score_hparams[model_dir]['''length_penalty'''] else: _lowerCamelCase : Optional[int] = 1.0 print(F'''Generating {fsmt_model_config_file}''' ) with open(A_, '''w''', encoding='''utf-8''' ) as f: f.write(json.dumps(A_, ensure_ascii=A_, indent=A_ ) ) # tokenizer config _lowerCamelCase : Dict = os.path.join(A_, A_ ) _lowerCamelCase : List[str] = { '''langs''': [src_lang, tgt_lang], '''model_max_length''': 10_24, '''do_lower_case''': do_lower_case, } print(F'''Generating {fsmt_tokenizer_config_file}''' ) with open(A_, '''w''', encoding='''utf-8''' ) as f: f.write(json.dumps(A_, ensure_ascii=A_, indent=A_ ) ) # model _lowerCamelCase : str = chkpt['''models'''][0] _lowerCamelCase : List[Any] = model.state_dict() # rename keys to start with 'model.' _lowerCamelCase : str = OrderedDict(('''model.''' + k, v) for k, v in model_state_dict.items() ) # remove unneeded keys _lowerCamelCase : str = [ '''model.model''', '''model.encoder.version''', '''model.decoder.version''', '''model.encoder_embed_tokens.weight''', '''model.decoder_embed_tokens.weight''', '''model.encoder.embed_positions._float_tensor''', '''model.decoder.embed_positions._float_tensor''', ] for k in ignore_keys: model_state_dict.pop(A_, A_ ) _lowerCamelCase : int = FSMTConfig.from_pretrained(A_ ) _lowerCamelCase : List[str] = FSMTForConditionalGeneration(A_ ) # check that it loads ok model_new.load_state_dict(A_, strict=A_ ) # save _lowerCamelCase : Any = os.path.join(A_, A_ ) print(F'''Generating {pytorch_weights_dump_path}''' ) torch.save(A_, A_ ) print('''Conversion is done!''' ) print('''\nLast step is to upload the files to s3''' ) print(F'''cd {data_root}''' ) print(F'''transformers-cli upload {model_dir}''' ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--fsmt_checkpoint_path''', default=None, type=str, required=True, help=( '''Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,''' ''' bpecodes, etc.''' ), ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) lowerCAmelCase__ = parser.parse_args() convert_fsmt_checkpoint_to_pytorch(args.fsmt_checkpoint_path, args.pytorch_dump_folder_path)
175
"""simple docstring""" import math def snake_case_ ( A_ : int ): '''simple docstring''' return math.sqrt(A_ ) * math.sqrt(A_ ) == num def snake_case_ ( A_ : int ): '''simple docstring''' _lowerCamelCase : Dict = 0 _lowerCamelCase : Tuple = n while left <= right: _lowerCamelCase : List[str] = (left + right) // 2 if mid**2 == n: return True elif mid**2 > n: _lowerCamelCase : int = mid - 1 else: _lowerCamelCase : Optional[Any] = mid + 1 return False if __name__ == "__main__": import doctest doctest.testmod()
175
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig lowercase_ = { "albert-base-v1": "https://huggingface.co/albert-base-v1/resolve/main/config.json", "albert-large-v1": "https://huggingface.co/albert-large-v1/resolve/main/config.json", "albert-xlarge-v1": "https://huggingface.co/albert-xlarge-v1/resolve/main/config.json", "albert-xxlarge-v1": "https://huggingface.co/albert-xxlarge-v1/resolve/main/config.json", "albert-base-v2": "https://huggingface.co/albert-base-v2/resolve/main/config.json", "albert-large-v2": "https://huggingface.co/albert-large-v2/resolve/main/config.json", "albert-xlarge-v2": "https://huggingface.co/albert-xlarge-v2/resolve/main/config.json", "albert-xxlarge-v2": "https://huggingface.co/albert-xxlarge-v2/resolve/main/config.json", } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Optional[int] = 'albert' def __init__( self , _a=30_000 , _a=128 , _a=4_096 , _a=12 , _a=1 , _a=64 , _a=16_384 , _a=1 , _a="gelu_new" , _a=0 , _a=0 , _a=512 , _a=2 , _a=0.02 , _a=1E-12 , _a=0.1 , _a="absolute" , _a=0 , _a=2 , _a=3 , **_a , ): super().__init__(pad_token_id=_a , bos_token_id=_a , eos_token_id=_a , **_a ) __a = vocab_size __a = embedding_size __a = hidden_size __a = num_hidden_layers __a = num_hidden_groups __a = num_attention_heads __a = inner_group_num __a = hidden_act __a = intermediate_size __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = max_position_embeddings __a = type_vocab_size __a = initializer_range __a = layer_norm_eps __a = classifier_dropout_prob __a = position_embedding_type class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' @property def __UpperCAmelCase ( self ): if self.task == "multiple-choice": __a = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __a = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ] )
45
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCamelCase = { '''configuration_groupvit''': [ '''GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GroupViTConfig''', '''GroupViTOnnxConfig''', '''GroupViTTextConfig''', '''GroupViTVisionConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GroupViTModel''', '''GroupViTPreTrainedModel''', '''GroupViTTextModel''', '''GroupViTVisionModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFGroupViTModel''', '''TFGroupViTPreTrainedModel''', '''TFGroupViTTextModel''', '''TFGroupViTVisionModel''', ] if TYPE_CHECKING: from .configuration_groupvit import ( GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GroupViTConfig, GroupViTOnnxConfig, GroupViTTextConfig, GroupViTVisionConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_groupvit import ( GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, GroupViTModel, GroupViTPreTrainedModel, GroupViTTextModel, GroupViTVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_groupvit import ( TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFGroupViTModel, TFGroupViTPreTrainedModel, TFGroupViTTextModel, TFGroupViTVisionModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
87
0
'''simple docstring''' from typing import Optional from torch import nn from .transformer_ad import TransformeraDModel, TransformeraDModelOutput class UpperCamelCase_ ( nn.Module ): def __init__( self , A = 16 , A = 88 , A = None , A = 1 , A = 0.0 , A = 32 , A = None , A = False , A = None , A = None , A = "geglu" , A = None , ) -> str: super().__init__() UpperCAmelCase : int = nn.ModuleList( [ TransformeraDModel( num_attention_heads=A , attention_head_dim=A , in_channels=A , num_layers=A , dropout=A , norm_num_groups=A , cross_attention_dim=A , attention_bias=A , sample_size=A , num_vector_embeds=A , activation_fn=A , num_embeds_ada_norm=A , ) for _ in range(2 ) ] ) # Variables that can be set by a pipeline: # The ratio of transformer1 to transformer2's output states to be combined during inference UpperCAmelCase : Union[str, Any] = 0.5 # The shape of `encoder_hidden_states` is expected to be # `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)` UpperCAmelCase : Any = [77, 257] # Which transformer to use to encode which condition. # E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])` UpperCAmelCase : int = [1, 0] def _lowercase( self , A , A , A=None , A=None , A=None , A = True , ) -> Optional[Any]: UpperCAmelCase : Optional[Any] = hidden_states UpperCAmelCase : Optional[int] = [] UpperCAmelCase : List[str] = 0 # attention_mask is not used yet for i in range(2 ): # for each of the two transformers, pass the corresponding condition tokens UpperCAmelCase : Tuple = encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]] UpperCAmelCase : str = self.transformer_index_for_condition[i] UpperCAmelCase : Optional[Any] = self.transformers[transformer_index]( A , encoder_hidden_states=A , timestep=A , cross_attention_kwargs=A , return_dict=A , )[0] encoded_states.append(encoded_state - input_states ) tokens_start += self.condition_lengths[i] UpperCAmelCase : Union[str, Any] = encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio) UpperCAmelCase : Dict = output_states + input_states if not return_dict: return (output_states,) return TransformeraDModelOutput(sample=A )
338
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a : Union[str, Any] = logging.get_logger(__name__) a : str = { """facebook/levit-128S""": """https://huggingface.co/facebook/levit-128S/resolve/main/config.json""", # See all LeViT models at https://huggingface.co/models?filter=levit } class UpperCamelCase_ ( __magic_name__ ): lowercase = 'levit' def __init__( self , A=224 , A=3 , A=3 , A=2 , A=1 , A=16 , A=[128, 256, 384] , A=[4, 8, 12] , A=[4, 4, 4] , A=[16, 16, 16] , A=0 , A=[2, 2, 2] , A=[2, 2, 2] , A=0.0_2 , **A , ) -> int: super().__init__(**A ) UpperCAmelCase : Any = image_size UpperCAmelCase : Optional[int] = num_channels UpperCAmelCase : Tuple = kernel_size UpperCAmelCase : Optional[int] = stride UpperCAmelCase : Dict = padding UpperCAmelCase : List[Any] = hidden_sizes UpperCAmelCase : List[Any] = num_attention_heads UpperCAmelCase : Optional[int] = depths UpperCAmelCase : Any = key_dim UpperCAmelCase : str = drop_path_rate UpperCAmelCase : List[Any] = patch_size UpperCAmelCase : str = attention_ratio UpperCAmelCase : Optional[Any] = mlp_ratio UpperCAmelCase : Dict = initializer_range UpperCAmelCase : int = [ ["""Subsample""", key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ["""Subsample""", key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] class UpperCamelCase_ ( __magic_name__ ): lowercase = version.parse('1.11' ) @property def _lowercase( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def _lowercase( self ) -> float: return 1e-4
338
1
import random def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase : str = a[left_index] lowerCAmelCase : int = left_index + 1 for j in range(left_index + 1, lowerCamelCase_ ): if a[j] < pivot: lowerCAmelCase : Tuple = a[i], a[j] i += 1 lowerCAmelCase : List[str] = a[i - 1], a[left_index] return i - 1 def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> List[str]: '''simple docstring''' if left < right: lowerCAmelCase : Tuple = random.randint(lowerCamelCase_, right - 1 ) lowerCAmelCase : List[Any] = ( a[left], a[pivot], ) # switches the pivot with the left most bound lowerCAmelCase : List[str] = partition(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ) quick_sort_random( lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ) # recursive quicksort to the left of the pivot point quick_sort_random( lowerCamelCase_, pivot_index + 1, lowerCamelCase_ ) # recursive quicksort to the right of the pivot point def SCREAMING_SNAKE_CASE__ ( ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase : int = input('Enter numbers separated by a comma:\n' ).strip() lowerCAmelCase : int = [int(lowerCamelCase_ ) for item in user_input.split(',' )] quick_sort_random(lowerCamelCase_, 0, len(lowerCamelCase_ ) ) print(lowerCamelCase_ ) if __name__ == "__main__": main()
138
import argparse import requests import torch from PIL import Image from transformers import CLIPProcessor, GroupViTConfig, GroupViTModel def lowerCAmelCase__ ( lowerCamelCase_ : Any): '''simple docstring''' if "img_encoder.pos_embed" in name: lowerCAmelCase__ : Dict = name.replace('''img_encoder.pos_embed''' ,'''vision_model.embeddings.position_embeddings''') if "img_encoder.patch_embed.proj" in name: lowerCAmelCase__ : int = name.replace('''img_encoder.patch_embed.proj''' ,'''vision_model.embeddings.patch_embeddings.projection''') if "img_encoder.patch_embed.norm" in name: lowerCAmelCase__ : Optional[int] = name.replace('''img_encoder.patch_embed.norm''' ,'''vision_model.embeddings.layernorm''') if "img_encoder.layers" in name: lowerCAmelCase__ : Tuple = name.replace('''img_encoder.layers''' ,'''vision_model.encoder.stages''') if "blocks" in name and "res" not in name: lowerCAmelCase__ : Dict = name.replace('''blocks''' ,'''layers''') if "attn" in name and "pre_assign" not in name: lowerCAmelCase__ : Optional[int] = name.replace('''attn''' ,'''self_attn''') if "proj" in name and "self_attn" in name and "text" not in name: lowerCAmelCase__ : Union[str, Any] = name.replace('''proj''' ,'''out_proj''') if "pre_assign_attn.attn.proj" in name: lowerCAmelCase__ : List[Any] = name.replace('''pre_assign_attn.attn.proj''' ,'''pre_assign_attn.attn.out_proj''') if "norm1" in name: lowerCAmelCase__ : Union[str, Any] = name.replace('''norm1''' ,'''layer_norm1''') if "norm2" in name and "pre_assign" not in name: lowerCAmelCase__ : int = name.replace('''norm2''' ,'''layer_norm2''') if "img_encoder.norm" in name: lowerCAmelCase__ : List[Any] = name.replace('''img_encoder.norm''' ,'''vision_model.layernorm''') # text encoder if "text_encoder.token_embedding" in name: lowerCAmelCase__ : List[Any] = name.replace('''text_encoder.token_embedding''' ,'''text_model.embeddings.token_embedding''') if "text_encoder.positional_embedding" in name: lowerCAmelCase__ : Tuple = name.replace('''text_encoder.positional_embedding''' ,'''text_model.embeddings.position_embedding.weight''') if "text_encoder.transformer.resblocks." in name: lowerCAmelCase__ : Union[str, Any] = name.replace('''text_encoder.transformer.resblocks.''' ,'''text_model.encoder.layers.''') if "ln_1" in name: lowerCAmelCase__ : Union[str, Any] = name.replace('''ln_1''' ,'''layer_norm1''') if "ln_2" in name: lowerCAmelCase__ : Union[str, Any] = name.replace('''ln_2''' ,'''layer_norm2''') if "c_fc" in name: lowerCAmelCase__ : Optional[Any] = name.replace('''c_fc''' ,'''fc1''') if "c_proj" in name: lowerCAmelCase__ : List[str] = name.replace('''c_proj''' ,'''fc2''') if "text_encoder" in name: lowerCAmelCase__ : str = name.replace('''text_encoder''' ,'''text_model''') if "ln_final" in name: lowerCAmelCase__ : Union[str, Any] = name.replace('''ln_final''' ,'''final_layer_norm''') # projection layers if "img_projector.linear_hidden." in name: lowerCAmelCase__ : Tuple = name.replace('''img_projector.linear_hidden.''' ,'''visual_projection.''') if "img_projector.linear_out." in name: lowerCAmelCase__ : Optional[Any] = name.replace('''img_projector.linear_out.''' ,'''visual_projection.3.''') if "text_projector.linear_hidden" in name: lowerCAmelCase__ : Tuple = name.replace('''text_projector.linear_hidden''' ,'''text_projection''') if "text_projector.linear_out" in name: lowerCAmelCase__ : Dict = name.replace('''text_projector.linear_out''' ,'''text_projection.3''') return name def lowerCAmelCase__ ( lowerCamelCase_ : Optional[Any] ,lowerCamelCase_ : List[str]): '''simple docstring''' for key in orig_state_dict.copy().keys(): lowerCAmelCase__ : List[str] = orig_state_dict.pop(lowerCamelCase_) if "qkv" in key: # weights and biases of the key, value and query projections of vision encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors lowerCAmelCase__ : Tuple = key.split('''.''') lowerCAmelCase__ , lowerCAmelCase__ : List[str] = int(key_split[2]), int(key_split[4]) lowerCAmelCase__ : Any = config.vision_config.hidden_size if "weight" in key: lowerCAmelCase__ : Tuple = val[:dim, :] lowerCAmelCase__ : Dict = val[dim : dim * 2, :] lowerCAmelCase__ : List[str] = val[-dim:, :] else: lowerCAmelCase__ : List[Any] = val[:dim] lowerCAmelCase__ : List[str] = val[dim : dim * 2] lowerCAmelCase__ : Tuple = val[-dim:] elif "in_proj" in key: # weights and biases of the key, value and query projections of text encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors lowerCAmelCase__ : Dict = key.split('''.''') lowerCAmelCase__ : List[str] = int(key_split[3]) lowerCAmelCase__ : Any = config.text_config.hidden_size if "weight" in key: lowerCAmelCase__ : Tuple = val[:dim, :] lowerCAmelCase__ : Union[str, Any] = val[ dim : dim * 2, : ] lowerCAmelCase__ : List[Any] = val[-dim:, :] else: lowerCAmelCase__ : Union[str, Any] = val[:dim] lowerCAmelCase__ : List[str] = val[dim : dim * 2] lowerCAmelCase__ : str = val[-dim:] else: lowerCAmelCase__ : int = rename_key(lowerCamelCase_) # squeeze if necessary if ( "text_projection.0" in new_name or "text_projection.3" in new_name or "visual_projection.0" in new_name or "visual_projection.3" in new_name ): lowerCAmelCase__ : Dict = val.squeeze_() else: lowerCAmelCase__ : Tuple = val return orig_state_dict def lowerCAmelCase__ ( ): '''simple docstring''' lowerCAmelCase__ : Dict = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowerCAmelCase__ : str = Image.open(requests.get(lowerCamelCase_ ,stream=lowerCamelCase_).raw) return im @torch.no_grad() def lowerCAmelCase__ ( lowerCamelCase_ : str ,lowerCamelCase_ : int ,lowerCamelCase_ : Tuple="groupvit-gcc-yfcc" ,lowerCamelCase_ : int=False): '''simple docstring''' lowerCAmelCase__ : Dict = GroupViTConfig() lowerCAmelCase__ : Dict = GroupViTModel(lowerCamelCase_).eval() lowerCAmelCase__ : Optional[int] = torch.load(lowerCamelCase_ ,map_location='''cpu''')['''model'''] lowerCAmelCase__ : List[Any] = convert_state_dict(lowerCamelCase_ ,lowerCamelCase_) lowerCAmelCase__ , lowerCAmelCase__ : Any = model.load_state_dict(lowerCamelCase_ ,strict=lowerCamelCase_) assert missing_keys == ["text_model.embeddings.position_ids"] assert (unexpected_keys == ["multi_label_logit_scale"]) or (len(lowerCamelCase_) == 0) # verify result lowerCAmelCase__ : Optional[Any] = CLIPProcessor.from_pretrained('''openai/clip-vit-base-patch32''') lowerCAmelCase__ : Tuple = prepare_img() lowerCAmelCase__ : Dict = processor(text=['''a photo of a cat''', '''a photo of a dog'''] ,images=lowerCamelCase_ ,padding=lowerCamelCase_ ,return_tensors='''pt''') with torch.no_grad(): lowerCAmelCase__ : str = model(**lowerCamelCase_) if model_name == "groupvit-gcc-yfcc": lowerCAmelCase__ : Union[str, Any] = torch.tensor([[13.3523, 6.3629]]) elif model_name == "groupvit-gcc-redcaps": lowerCAmelCase__ : Tuple = torch.tensor([[16.1873, 8.6230]]) else: raise ValueError(f"""Model name {model_name} not supported.""") assert torch.allclose(outputs.logits_per_image ,lowerCamelCase_ ,atol=1E-3) processor.save_pretrained(lowerCamelCase_) model.save_pretrained(lowerCamelCase_) print('''Successfully saved processor and model to''' ,lowerCamelCase_) if push_to_hub: print('''Pushing to the hub...''') processor.push_to_hub(lowerCamelCase_ ,organization='''nielsr''') model.push_to_hub(lowerCamelCase_ ,organization='''nielsr''') if __name__ == "__main__": __snake_case : int =argparse.ArgumentParser() parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to dump the processor and PyTorch model.' ) parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to GroupViT checkpoint') parser.add_argument( '--model_name', default='groupvit-gccy-fcc', type=str, help='Name of the model. Expecting either \'groupvit-gcc-yfcc\' or \'groupvit-gcc-redcaps\'', ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model and processor to the 🤗 hub using the provided `model_name`.', ) __snake_case : Tuple =parser.parse_args() convert_groupvit_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
129
0
"""simple docstring""" from ..utils import DummyObject, requires_backends class lowerCamelCase_( metaclass=A__ ): '''simple docstring''' lowercase__ : int = ['torch', 'torchsde'] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ): requires_backends(self , ['''torch''', '''torchsde'''] ) @classmethod def snake_case__ ( cls , *lowerCamelCase__ , **lowerCamelCase__ ): requires_backends(cls , ['''torch''', '''torchsde'''] ) @classmethod def snake_case__ ( cls , *lowerCamelCase__ , **lowerCamelCase__ ): requires_backends(cls , ['''torch''', '''torchsde'''] )
73
"""simple docstring""" import argparse import glob import importlib.util import os import re import black from doc_builder.style_doc import style_docstrings_in_code # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py __SCREAMING_SNAKE_CASE : List[Any] = '''src/diffusers''' __SCREAMING_SNAKE_CASE : Union[str, Any] = '''.''' # This is to make sure the diffusers module imported is the one in the repo. __SCREAMING_SNAKE_CASE : Tuple = importlib.util.spec_from_file_location( '''diffusers''', os.path.join(DIFFUSERS_PATH, '''__init__.py'''), submodule_search_locations=[DIFFUSERS_PATH], ) __SCREAMING_SNAKE_CASE : Union[str, Any] = spec.loader.load_module() def lowerCAmelCase_( lowercase_ : str , lowercase_ : Tuple ) -> int: return line.startswith(lowercase_ ) or len(lowercase_ ) <= 1 or re.search(r'''^\s*\)(\s*->.*:|:)\s*$''' , lowercase_ ) is not None def lowerCAmelCase_( lowercase_ : Any ) -> Tuple: _lowerCamelCase = object_name.split('''.''' ) _lowerCamelCase = 0 # First let's find the module where our object lives. _lowerCamelCase = parts[i] while i < len(lowercase_ ) and not os.path.isfile(os.path.join(lowercase_ , F"""{module}.py""" ) ): i += 1 if i < len(lowercase_ ): _lowerCamelCase = os.path.join(lowercase_ , parts[i] ) if i >= len(lowercase_ ): raise ValueError(F"""`object_name` should begin with the name of a module of diffusers but got {object_name}.""" ) with open(os.path.join(lowercase_ , F"""{module}.py""" ) , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: _lowerCamelCase = f.readlines() # Now let's find the class / func in the code! _lowerCamelCase = '''''' _lowerCamelCase = 0 for name in parts[i + 1 :]: while ( line_index < len(lowercase_ ) and re.search(rF"""^{indent}(class|def)\s+{name}(\(|\:)""" , lines[line_index] ) is None ): line_index += 1 indent += " " line_index += 1 if line_index >= len(lowercase_ ): raise ValueError(F""" {object_name} does not match any function or class in {module}.""" ) # We found the beginning of the class / func, now let's find the end (when the indent diminishes). _lowerCamelCase = line_index while line_index < len(lowercase_ ) and _should_continue(lines[line_index] , lowercase_ ): line_index += 1 # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 _lowerCamelCase = lines[start_index:line_index] return "".join(lowercase_ ) __SCREAMING_SNAKE_CASE : str = re.compile(R'''^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)''') __SCREAMING_SNAKE_CASE : List[Any] = re.compile(R'''^\s*(\S+)->(\S+)(\s+.*|$)''') __SCREAMING_SNAKE_CASE : List[str] = re.compile(R'''<FILL\s+[^>]*>''') def lowerCAmelCase_( lowercase_ : List[Any] ) -> str: _lowerCamelCase = code.split('''\n''' ) _lowerCamelCase = 0 while idx < len(lowercase_ ) and len(lines[idx] ) == 0: idx += 1 if idx < len(lowercase_ ): return re.search(r'''^(\s*)\S''' , lines[idx] ).groups()[0] return "" def lowerCAmelCase_( lowercase_ : List[Any] ) -> Union[str, Any]: _lowerCamelCase = len(get_indent(lowercase_ ) ) > 0 if has_indent: _lowerCamelCase = F"""class Bla:\n{code}""" _lowerCamelCase = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_19 , preview=lowercase_ ) _lowerCamelCase = black.format_str(lowercase_ , mode=lowercase_ ) _lowerCamelCase , _lowerCamelCase = style_docstrings_in_code(lowercase_ ) return result[len('''class Bla:\n''' ) :] if has_indent else result def lowerCAmelCase_( lowercase_ : Dict , lowercase_ : Union[str, Any]=False ) -> str: with open(lowercase_ , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: _lowerCamelCase = f.readlines() _lowerCamelCase = [] _lowerCamelCase = 0 # Not a for loop cause `lines` is going to change (if `overwrite=True`). while line_index < len(lowercase_ ): _lowerCamelCase = _re_copy_warning.search(lines[line_index] ) if search is None: line_index += 1 continue # There is some copied code here, let's retrieve the original. _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = search.groups() _lowerCamelCase = find_code_in_diffusers(lowercase_ ) _lowerCamelCase = get_indent(lowercase_ ) _lowerCamelCase = line_index + 1 if indent == theoretical_indent else line_index + 2 _lowerCamelCase = theoretical_indent _lowerCamelCase = start_index # Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment. _lowerCamelCase = True while line_index < len(lowercase_ ) and should_continue: line_index += 1 if line_index >= len(lowercase_ ): break _lowerCamelCase = lines[line_index] _lowerCamelCase = _should_continue(lowercase_ , lowercase_ ) and re.search(F"""^{indent}# End copy""" , lowercase_ ) is None # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 _lowerCamelCase = lines[start_index:line_index] _lowerCamelCase = ''''''.join(lowercase_ ) # Remove any nested `Copied from` comments to avoid circular copies _lowerCamelCase = [line for line in theoretical_code.split('''\n''' ) if _re_copy_warning.search(lowercase_ ) is None] _lowerCamelCase = '''\n'''.join(lowercase_ ) # Before comparing, use the `replace_pattern` on the original code. if len(lowercase_ ) > 0: _lowerCamelCase = replace_pattern.replace('''with''' , '''''' ).split(''',''' ) _lowerCamelCase = [_re_replace_pattern.search(lowercase_ ) for p in patterns] for pattern in patterns: if pattern is None: continue _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = pattern.groups() _lowerCamelCase = re.sub(lowercase_ , lowercase_ , lowercase_ ) if option.strip() == "all-casing": _lowerCamelCase = re.sub(obja.lower() , obja.lower() , lowercase_ ) _lowerCamelCase = re.sub(obja.upper() , obja.upper() , lowercase_ ) # Blackify after replacement. To be able to do that, we need the header (class or function definition) # from the previous line _lowerCamelCase = blackify(lines[start_index - 1] + theoretical_code ) _lowerCamelCase = theoretical_code[len(lines[start_index - 1] ) :] # Test for a diff and act accordingly. if observed_code != theoretical_code: diffs.append([object_name, start_index] ) if overwrite: _lowerCamelCase = lines[:start_index] + [theoretical_code] + lines[line_index:] _lowerCamelCase = start_index + 1 if overwrite and len(lowercase_ ) > 0: # Warn the user a file has been modified. print(F"""Detected changes, rewriting {filename}.""" ) with open(lowercase_ , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.writelines(lowercase_ ) return diffs def lowerCAmelCase_( lowercase_ : bool = False ) -> Union[str, Any]: _lowerCamelCase = glob.glob(os.path.join(lowercase_ , '''**/*.py''' ) , recursive=lowercase_ ) _lowerCamelCase = [] for filename in all_files: _lowerCamelCase = is_copy_consistent(lowercase_ , lowercase_ ) diffs += [F"""- {filename}: copy does not match {d[0]} at line {d[1]}""" for d in new_diffs] if not overwrite and len(lowercase_ ) > 0: _lowerCamelCase = '''\n'''.join(lowercase_ ) raise Exception( '''Found the following copy inconsistencies:\n''' + diff + '''\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them.''' ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE : str = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') __SCREAMING_SNAKE_CASE : str = parser.parse_args() check_copies(args.fix_and_overwrite)
73
1
'''simple docstring''' from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Sequence, Value from .base import TaskTemplate @dataclass(frozen=_a ) class SCREAMING_SNAKE_CASE ( _a ): """simple docstring""" _SCREAMING_SNAKE_CASE = field(default="""question-answering-extractive""" , metadata={"""include_in_asdict_even_if_is_default""": True} ) _SCREAMING_SNAKE_CASE = Features({"""question""": Value("""string""" ), """context""": Value("""string""" )} ) _SCREAMING_SNAKE_CASE = Features( { """answers""": Sequence( { """text""": Value("""string""" ), """answer_start""": Value("""int32""" ), } ) } ) _SCREAMING_SNAKE_CASE = "question" _SCREAMING_SNAKE_CASE = "context" _SCREAMING_SNAKE_CASE = "answers" @property def A ( self : Dict ): """simple docstring""" return {self.question_column: "question", self.context_column: "context", self.answers_column: "answers"}
28
'''simple docstring''' import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand _lowerCamelCase : Optional[int] = ( "4S 3H 2C 7S 5H", "9D 8H 2C 6S 7H", "2D 6D 9D TH 7D", "TC 8C 2S JH 6C", "JH 8S TH AH QH", "TS KS 5S 9S AC", "KD 6S 9D TH AD", "KS 8D 4D 9S 4S", # pair "8C 4S KH JS 4D", # pair "QH 8H KD JH 8S", # pair "KC 4H KS 2H 8D", # pair "KD 4S KC 3H 8S", # pair "AH 8S AS KC JH", # pair "3H 4C 4H 3S 2H", # 2 pairs "5S 5D 2C KH KH", # 2 pairs "3C KH 5D 5S KH", # 2 pairs "AS 3C KH AD KH", # 2 pairs "7C 7S 3S 7H 5S", # 3 of a kind "7C 7S KH 2H 7H", # 3 of a kind "AC KH QH AH AS", # 3 of a kind "2H 4D 3C AS 5S", # straight (low ace) "3C 5C 4C 2C 6H", # straight "6S 8S 7S 5H 9H", # straight "JS QS 9H TS KH", # straight "QC KH TS JS AH", # straight (high ace) "8C 9C 5C 3C TC", # flush "3S 8S 9S 5S KS", # flush "4C 5C 9C 8C KC", # flush "JH 8H AH KH QH", # flush "3D 2H 3H 2C 2D", # full house "2H 2C 3S 3H 3D", # full house "KH KC 3S 3H 3D", # full house "JC 6H JS JD JH", # 4 of a kind "JC 7H JS JD JH", # 4 of a kind "JC KH JS JD JH", # 4 of a kind "2S AS 4S 5S 3S", # straight flush (low ace) "2D 6D 3D 4D 5D", # straight flush "5C 6C 3C 7C 4C", # straight flush "JH 9H TH KH QH", # straight flush "JH AH TH KH QH", # royal flush (high ace straight flush) ) _lowerCamelCase : Union[str, Any] = ( ("2H 3H 4H 5H 6H", "KS AS TS QS JS", "Loss"), ("2H 3H 4H 5H 6H", "AS AD AC AH JD", "Win"), ("AS AH 2H AD AC", "JS JD JC JH 3D", "Win"), ("2S AH 2H AS AC", "JS JD JC JH AD", "Loss"), ("2S AH 2H AS AC", "2H 3H 5H 6H 7H", "Win"), ("AS 3S 4S 8S 2S", "2H 3H 5H 6H 7H", "Win"), ("2H 3H 5H 6H 7H", "2S 3H 4H 5S 6C", "Win"), ("2S 3H 4H 5S 6C", "3D 4C 5H 6H 2S", "Tie"), ("2S 3H 4H 5S 6C", "AH AC 5H 6H AS", "Win"), ("2S 2H 4H 5S 4C", "AH AC 5H 6H AS", "Loss"), ("2S 2H 4H 5S 4C", "AH AC 5H 6H 7S", "Win"), ("6S AD 7H 4S AS", "AH AC 5H 6H 7S", "Loss"), ("2S AH 4H 5S KC", "AH AC 5H 6H 7S", "Loss"), ("2S 3H 6H 7S 9C", "7H 3C TH 6H 9S", "Loss"), ("4S 5H 6H TS AC", "3S 5H 6H TS AC", "Win"), ("2S AH 4H 5S 6C", "AD 4C 5H 6H 2C", "Tie"), ("AS AH 3H AD AC", "AS AH 2H AD AC", "Win"), ("AH AC 5H 5C QS", "AH AC 5H 5C KS", "Loss"), ("AH AC 5H 5C QS", "KH KC 5H 5C QS", "Win"), ("7C 7S KH 2H 7H", "3C 3S AH 2H 3H", "Win"), ("3C 3S AH 2H 3H", "7C 7S KH 2H 7H", "Loss"), ("6H 5H 4H 3H 2H", "5H 4H 3H 2H AH", "Win"), ("5H 4H 3H 2H AH", "5H 4H 3H 2H AH", "Tie"), ("5H 4H 3H 2H AH", "6H 5H 4H 3H 2H", "Loss"), ("AH AD KS KC AC", "AH KD KH AC KC", "Win"), ("2H 4D 3C AS 5S", "2H 4D 3C 6S 5S", "Loss"), ("2H 3S 3C 3H 2S", "3S 3C 2S 2H 2D", "Win"), ("4D 6D 5D 2D JH", "3S 8S 3H TC KH", "Loss"), ("4S 6C 8S 3S 7S", "AD KS 2D 7D 7C", "Loss"), ("6S 4C 7H 8C 3H", "5H JC AH 9D 9C", "Loss"), ("9D 9H JH TC QH", "3C 2S JS 5C 7H", "Win"), ("2H TC 8S AD 9S", "4H TS 7H 2C 5C", "Win"), ("9D 3S 2C 7S 7C", "JC TD 3C TC 9H", "Loss"), ) _lowerCamelCase : Dict = ( ("2H 3H 4H 5H 6H", True), ("AS AH 2H AD AC", False), ("2H 3H 5H 6H 7H", True), ("KS AS TS QS JS", True), ("8H 9H QS JS TH", False), ("AS 3S 4S 8S 2S", True), ) _lowerCamelCase : Dict = ( ("2H 3H 4H 5H 6H", True), ("AS AH 2H AD AC", False), ("2H 3H 5H 6H 7H", False), ("KS AS TS QS JS", True), ("8H 9H QS JS TH", True), ) _lowerCamelCase : Optional[Any] = ( ("2H 4D 3C AS 5S", True, [5, 4, 3, 2, 14]), ("2H 5D 3C AS 5S", False, [14, 5, 5, 3, 2]), ("JH QD KC AS TS", False, [14, 13, 12, 11, 10]), ("9D 3S 2C 7S 7C", False, [9, 7, 7, 3, 2]), ) _lowerCamelCase : List[Any] = ( ("JH AH TH KH QH", 0), ("JH 9H TH KH QH", 0), ("JC KH JS JD JH", 7), ("KH KC 3S 3H 3D", 6), ("8C 9C 5C 3C TC", 0), ("JS QS 9H TS KH", 0), ("7C 7S KH 2H 7H", 3), ("3C KH 5D 5S KH", 2), ("QH 8H KD JH 8S", 1), ("2D 6D 9D TH 7D", 0), ) _lowerCamelCase : List[str] = ( ("JH AH TH KH QH", 23), ("JH 9H TH KH QH", 22), ("JC KH JS JD JH", 21), ("KH KC 3S 3H 3D", 20), ("8C 9C 5C 3C TC", 19), ("JS QS 9H TS KH", 18), ("7C 7S KH 2H 7H", 17), ("3C KH 5D 5S KH", 16), ("QH 8H KD JH 8S", 15), ("2D 6D 9D TH 7D", 14), ) def __lowerCamelCase ( ) -> Optional[Any]: """simple docstring""" UpperCamelCase , UpperCamelCase = randrange(len(A__ ) ), randrange(len(A__ ) ) UpperCamelCase = ['Loss', 'Tie', 'Win'][(play >= oppo) + (play > oppo)] UpperCamelCase , UpperCamelCase = SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def __lowerCamelCase ( A__ = 100 ) -> Optional[Any]: """simple docstring""" return (generate_random_hand() for _ in range(A__ )) @pytest.mark.parametrize('hand, expected' , A__ ) def __lowerCamelCase ( A__ , A__ ) -> Any: """simple docstring""" assert PokerHand(A__ )._is_flush() == expected @pytest.mark.parametrize('hand, expected' , A__ ) def __lowerCamelCase ( A__ , A__ ) -> Any: """simple docstring""" assert PokerHand(A__ )._is_straight() == expected @pytest.mark.parametrize('hand, expected, card_values' , A__ ) def __lowerCamelCase ( A__ , A__ , A__ ) -> str: """simple docstring""" UpperCamelCase = PokerHand(A__ ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize('hand, expected' , A__ ) def __lowerCamelCase ( A__ , A__ ) -> Dict: """simple docstring""" assert PokerHand(A__ )._is_same_kind() == expected @pytest.mark.parametrize('hand, expected' , A__ ) def __lowerCamelCase ( A__ , A__ ) -> str: """simple docstring""" assert PokerHand(A__ )._hand_type == expected @pytest.mark.parametrize('hand, other, expected' , A__ ) def __lowerCamelCase ( A__ , A__ , A__ ) -> Tuple: """simple docstring""" assert PokerHand(A__ ).compare_with(PokerHand(A__ ) ) == expected @pytest.mark.parametrize('hand, other, expected' , generate_random_hands() ) def __lowerCamelCase ( A__ , A__ , A__ ) -> List[str]: """simple docstring""" assert PokerHand(A__ ).compare_with(PokerHand(A__ ) ) == expected def __lowerCamelCase ( ) -> str: """simple docstring""" UpperCamelCase = [PokerHand(A__ ) for hand in SORTED_HANDS] UpperCamelCase = poker_hands.copy() shuffle(A__ ) UpperCamelCase = chain(sorted(A__ ) ) for index, hand in enumerate(A__ ): assert hand == poker_hands[index] def __lowerCamelCase ( ) -> Optional[int]: """simple docstring""" # Test that five high straights are compared correctly. UpperCamelCase = [PokerHand('2D AC 3H 4H 5S' ), PokerHand('2S 3H 4H 5S 6C' )] pokerhands.sort(reverse=A__ ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def __lowerCamelCase ( ) -> str: """simple docstring""" # Multiple calls to five_high_straight function should still return True # and shouldn't mutate the list in every call other than the first. UpperCamelCase = PokerHand('2C 4S AS 3D 5C' ) UpperCamelCase = True UpperCamelCase = [5, 4, 3, 2, 14] for _ in range(10 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def __lowerCamelCase ( ) -> List[str]: """simple docstring""" # Problem number 54 from Project Euler # Testing from poker_hands.txt file UpperCamelCase = 0 UpperCamelCase = os.path.abspath(os.path.dirname(A__ ) ) UpperCamelCase = os.path.join(A__ , 'poker_hands.txt' ) with open(A__ ) as file_hand: for line in file_hand: UpperCamelCase = line[:14].strip() UpperCamelCase = line[15:].strip() UpperCamelCase , UpperCamelCase = PokerHand(A__ ), PokerHand(A__ ) UpperCamelCase = player.compare_with(A__ ) if output == "Win": answer += 1 assert answer == 376
28
1
"""simple docstring""" from unittest.mock import Mock, patch from file_transfer.send_file import send_file @patch('''socket.socket''' ) @patch('''builtins.open''' ) def lowerCAmelCase (__UpperCamelCase : str , __UpperCamelCase : Tuple ): """simple docstring""" __UpperCamelCase =Mock() __UpperCamelCase =conn, Mock() __UpperCamelCase =iter([1, None] ) __UpperCamelCase =lambda __UpperCamelCase : next(__UpperCamelCase ) # ===== invoke ===== send_file(filename='''mytext.txt''' , testing=__UpperCamelCase ) # ===== ensurance ===== sock.assert_called_once() sock.return_value.bind.assert_called_once() sock.return_value.listen.assert_called_once() sock.return_value.accept.assert_called_once() conn.recv.assert_called_once() file.return_value.__enter__.assert_called_once() file.return_value.__enter__.return_value.read.assert_called() conn.send.assert_called_once() conn.close.assert_called_once() sock.return_value.shutdown.assert_called_once() sock.return_value.close.assert_called_once()
85
"""simple docstring""" import os from pathlib import Path def lowerCAmelCase (): """simple docstring""" from torch.utils.cpp_extension import load __UpperCamelCase =Path(__UpperCamelCase ).resolve().parent.parent.parent / '''kernels''' / '''deformable_detr''' __UpperCamelCase =[ root / filename for filename in [ '''vision.cpp''', os.path.join('''cpu''' , '''ms_deform_attn_cpu.cpp''' ), os.path.join('''cuda''' , '''ms_deform_attn_cuda.cu''' ), ] ] load( '''MultiScaleDeformableAttention''' , __UpperCamelCase , with_cuda=__UpperCamelCase , extra_include_paths=[str(__UpperCamelCase )] , extra_cflags=['''-DWITH_CUDA=1'''] , extra_cuda_cflags=[ '''-DCUDA_HAS_FP16=1''', '''-D__CUDA_NO_HALF_OPERATORS__''', '''-D__CUDA_NO_HALF_CONVERSIONS__''', '''-D__CUDA_NO_HALF2_OPERATORS__''', ] , ) import MultiScaleDeformableAttention as MSDA return MSDA
85
1
import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMInverseScheduler, DDIMScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, StableDiffusionDiffEditPipeline, UNetaDConditionModel, ) from diffusers.utils import load_image, slow from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, require_torch_gpu, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _lowercase ( snake_case_ , snake_case_ , unittest.TestCase ): lowercase = StableDiffusionDiffEditPipeline lowercase = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'height', 'width', 'image'} | {'image_latents'} lowercase = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS - {'image'} | {'image_latents'} lowercase = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess lowercase = frozenset([] ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] ) -> Dict: """simple docstring""" torch.manual_seed(0 ) UpperCamelCase_ : Dict = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=3_2 , attention_head_dim=(2, 4) , use_linear_projection=snake_case , ) UpperCamelCase_ : Optional[int] = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=snake_case , set_alpha_to_one=snake_case , ) UpperCamelCase_ : Tuple = DDIMInverseScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=snake_case , set_alpha_to_zero=snake_case , ) torch.manual_seed(0 ) UpperCamelCase_ : List[Any] = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , sample_size=1_2_8 , ) torch.manual_seed(0 ) UpperCamelCase_ : List[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , hidden_act='gelu' , projection_dim=5_1_2 , ) UpperCamelCase_ : List[str] = CLIPTextModel(snake_case ) UpperCamelCase_ : List[str] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) UpperCamelCase_ : Any = { 'unet': unet, 'scheduler': scheduler, 'inverse_scheduler': inverse_scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , snake_case : Dict , snake_case : Tuple=0 ) -> int: """simple docstring""" UpperCamelCase_ : Optional[Any] = floats_tensor((1, 1_6, 1_6) , rng=random.Random(snake_case ) ).to(snake_case ) UpperCamelCase_ : Optional[int] = floats_tensor((1, 2, 4, 1_6, 1_6) , rng=random.Random(snake_case ) ).to(snake_case ) if str(snake_case ).startswith('mps' ): UpperCamelCase_ : int = torch.manual_seed(snake_case ) else: UpperCamelCase_ : Any = torch.Generator(device=snake_case ).manual_seed(snake_case ) UpperCamelCase_ : Union[str, Any] = { 'prompt': 'a dog and a newt', 'mask_image': mask, 'image_latents': latents, 'generator': generator, 'num_inference_steps': 2, 'inpaint_strength': 1.0, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , snake_case : Union[str, Any] , snake_case : Dict=0 ) -> str: """simple docstring""" UpperCamelCase_ : List[Any] = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(snake_case ) ).to(snake_case ) UpperCamelCase_ : int = image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCamelCase_ : Optional[int] = Image.fromarray(np.uinta(snake_case ) ).convert('RGB' ) if str(snake_case ).startswith('mps' ): UpperCamelCase_ : int = torch.manual_seed(snake_case ) else: UpperCamelCase_ : Optional[int] = torch.Generator(device=snake_case ).manual_seed(snake_case ) UpperCamelCase_ : List[str] = { 'image': image, 'source_prompt': 'a cat and a frog', 'target_prompt': 'a dog and a newt', 'generator': generator, 'num_inference_steps': 2, 'num_maps_per_mask': 2, 'mask_encode_strength': 1.0, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def SCREAMING_SNAKE_CASE__ ( self : List[str] , snake_case : str , snake_case : Dict=0 ) -> int: """simple docstring""" UpperCamelCase_ : List[Any] = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(snake_case ) ).to(snake_case ) UpperCamelCase_ : Any = image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCamelCase_ : List[str] = Image.fromarray(np.uinta(snake_case ) ).convert('RGB' ) if str(snake_case ).startswith('mps' ): UpperCamelCase_ : Any = torch.manual_seed(snake_case ) else: UpperCamelCase_ : int = torch.Generator(device=snake_case ).manual_seed(snake_case ) UpperCamelCase_ : int = { 'image': image, 'prompt': 'a cat and a frog', 'generator': generator, 'num_inference_steps': 2, 'inpaint_strength': 1.0, 'guidance_scale': 6.0, 'decode_latents': True, 'output_type': 'numpy', } return inputs def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" if not hasattr(self.pipeline_class , '_optional_components' ): return UpperCamelCase_ : int = self.get_dummy_components() UpperCamelCase_ : str = self.pipeline_class(**snake_case ) pipe.to(snake_case ) pipe.set_progress_bar_config(disable=snake_case ) # set all optional components to None and update pipeline config accordingly for optional_component in pipe._optional_components: setattr(snake_case , snake_case , snake_case ) pipe.register_modules(**{optional_component: None for optional_component in pipe._optional_components} ) UpperCamelCase_ : Any = self.get_dummy_inputs(snake_case ) UpperCamelCase_ : Any = pipe(**snake_case )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(snake_case ) UpperCamelCase_ : int = self.pipeline_class.from_pretrained(snake_case ) pipe_loaded.to(snake_case ) pipe_loaded.set_progress_bar_config(disable=snake_case ) for optional_component in pipe._optional_components: self.assertTrue( getattr(snake_case , snake_case ) is None , f"`{optional_component}` did not stay set to None after loading." , ) UpperCamelCase_ : Dict = self.get_dummy_inputs(snake_case ) UpperCamelCase_ : int = pipe_loaded(**snake_case )[0] UpperCamelCase_ : int = np.abs(output - output_loaded ).max() self.assertLess(snake_case , 1e-4 ) def SCREAMING_SNAKE_CASE__ ( self : str ) -> Any: """simple docstring""" UpperCamelCase_ : Optional[int] = 'cpu' UpperCamelCase_ : Any = self.get_dummy_components() UpperCamelCase_ : int = self.pipeline_class(**snake_case ) pipe.to(snake_case ) pipe.set_progress_bar_config(disable=snake_case ) UpperCamelCase_ : Union[str, Any] = self.get_dummy_mask_inputs(snake_case ) UpperCamelCase_ : Optional[int] = pipe.generate_mask(**snake_case ) UpperCamelCase_ : List[str] = mask[0, -3:, -3:] self.assertEqual(mask.shape , (1, 1_6, 1_6) ) UpperCamelCase_ : Tuple = np.array([0] * 9 ) UpperCamelCase_ : int = np.abs(mask_slice.flatten() - expected_slice ).max() self.assertLessEqual(snake_case , 1e-3 ) self.assertEqual(mask[0, -3, -4] , 0 ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> List[Any]: """simple docstring""" UpperCamelCase_ : Dict = 'cpu' UpperCamelCase_ : List[str] = self.get_dummy_components() UpperCamelCase_ : List[Any] = self.pipeline_class(**snake_case ) pipe.to(snake_case ) pipe.set_progress_bar_config(disable=snake_case ) UpperCamelCase_ : Optional[int] = self.get_dummy_inversion_inputs(snake_case ) UpperCamelCase_ : Optional[Any] = pipe.invert(**snake_case ).images UpperCamelCase_ : Tuple = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 3_2, 3_2, 3) ) UpperCamelCase_ : str = np.array( [0.5150, 0.5134, 0.5043, 0.5376, 0.4694, 0.51050, 0.5015, 0.4407, 0.4799] , ) UpperCamelCase_ : Any = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(snake_case , 1e-3 ) def SCREAMING_SNAKE_CASE__ ( self : Any ) -> Any: """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=5e-3 ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> str: """simple docstring""" UpperCamelCase_ : Optional[Any] = 'cpu' UpperCamelCase_ : Tuple = self.get_dummy_components() UpperCamelCase_ : int = {'beta_start': 0.00085, 'beta_end': 0.012, 'beta_schedule': 'scaled_linear'} UpperCamelCase_ : str = DPMSolverMultistepScheduler(**snake_case ) UpperCamelCase_ : Union[str, Any] = DPMSolverMultistepInverseScheduler(**snake_case ) UpperCamelCase_ : Optional[int] = self.pipeline_class(**snake_case ) pipe.to(snake_case ) pipe.set_progress_bar_config(disable=snake_case ) UpperCamelCase_ : Any = self.get_dummy_inversion_inputs(snake_case ) UpperCamelCase_ : Union[str, Any] = pipe.invert(**snake_case ).images UpperCamelCase_ : Any = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 3_2, 3_2, 3) ) UpperCamelCase_ : int = np.array( [0.5150, 0.5134, 0.5043, 0.5376, 0.4694, 0.51050, 0.5015, 0.4407, 0.4799] , ) UpperCamelCase_ : Union[str, Any] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(snake_case , 1e-3 ) @require_torch_gpu @slow class _lowercase ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self : int ) -> Any: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Any ) -> Any: """simple docstring""" UpperCamelCase_ : Optional[int] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/diffedit/fruit.png' ) UpperCamelCase_ : Any = raw_image.convert('RGB' ).resize((7_6_8, 7_6_8) ) UpperCamelCase_ : Optional[Any] = raw_image def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" UpperCamelCase_ : Dict = torch.manual_seed(0 ) UpperCamelCase_ : List[str] = StableDiffusionDiffEditPipeline.from_pretrained( 'stabilityai/stable-diffusion-2-1' , safety_checker=snake_case , torch_dtype=torch.floataa ) UpperCamelCase_ : int = DDIMScheduler.from_config(pipe.scheduler.config ) UpperCamelCase_ : Tuple = DDIMInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=snake_case ) UpperCamelCase_ : Optional[int] = 'a bowl of fruit' UpperCamelCase_ : int = 'a bowl of pears' UpperCamelCase_ : Any = pipe.generate_mask( image=self.raw_image , source_prompt=snake_case , target_prompt=snake_case , generator=snake_case , ) UpperCamelCase_ : int = pipe.invert( prompt=snake_case , image=self.raw_image , inpaint_strength=0.7 , generator=snake_case ).latents UpperCamelCase_ : Optional[int] = pipe( prompt=snake_case , mask_image=snake_case , image_latents=snake_case , generator=snake_case , negative_prompt=snake_case , inpaint_strength=0.7 , output_type='numpy' , ).images[0] UpperCamelCase_ : Any = ( np.array( load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/diffedit/pears.png' ).resize((7_6_8, 7_6_8) ) ) / 2_5_5 ) assert np.abs((expected_image - image).max() ) < 5e-1 def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> int: """simple docstring""" UpperCamelCase_ : Union[str, Any] = torch.manual_seed(0 ) UpperCamelCase_ : List[Any] = StableDiffusionDiffEditPipeline.from_pretrained( 'stabilityai/stable-diffusion-2-1' , safety_checker=snake_case , torch_dtype=torch.floataa ) UpperCamelCase_ : Optional[int] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) UpperCamelCase_ : Union[str, Any] = DPMSolverMultistepInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=snake_case ) UpperCamelCase_ : str = 'a bowl of fruit' UpperCamelCase_ : int = 'a bowl of pears' UpperCamelCase_ : Union[str, Any] = pipe.generate_mask( image=self.raw_image , source_prompt=snake_case , target_prompt=snake_case , generator=snake_case , ) UpperCamelCase_ : Any = pipe.invert( prompt=snake_case , image=self.raw_image , inpaint_strength=0.7 , generator=snake_case , num_inference_steps=2_5 , ).latents UpperCamelCase_ : int = pipe( prompt=snake_case , mask_image=snake_case , image_latents=snake_case , generator=snake_case , negative_prompt=snake_case , inpaint_strength=0.7 , num_inference_steps=2_5 , output_type='numpy' , ).images[0] UpperCamelCase_ : str = ( np.array( load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/diffedit/pears.png' ).resize((7_6_8, 7_6_8) ) ) / 2_5_5 ) assert np.abs((expected_image - image).max() ) < 5e-1
175
import builtins import sys from ...utils.imports import _is_package_available from . import cursor, input from .helpers import Direction, clear_line, forceWrite, linebreak, move_cursor, reset_cursor, writeColor from .keymap import KEYMAP a_ = False try: a_ = _is_package_available('google.colab') except ModuleNotFoundError: pass @input.register class _lowercase : def __init__( self : Dict , snake_case : str = None , snake_case : list = [] ) -> Union[str, Any]: """simple docstring""" UpperCamelCase_ : Any = 0 UpperCamelCase_ : Optional[Any] = choices UpperCamelCase_ : Any = prompt if sys.platform == "win32": UpperCamelCase_ : Optional[Any] = '*' else: UpperCamelCase_ : str = '➔ ' def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , snake_case : List[str] , snake_case : str = "" ) -> List[Any]: """simple docstring""" if sys.platform != "win32": writeColor(self.choices[index] , 3_2 , snake_case ) else: forceWrite(self.choices[index] , snake_case ) def SCREAMING_SNAKE_CASE__ ( self : List[str] , snake_case : int ) -> List[Any]: """simple docstring""" if index == self.position: forceWrite(f" {self.arrow_char} " ) self.write_choice(snake_case ) else: forceWrite(f" {self.choices[index]}" ) reset_cursor() def SCREAMING_SNAKE_CASE__ ( self : Any , snake_case : Direction , snake_case : int = 1 ) -> List[str]: """simple docstring""" UpperCamelCase_ : Any = self.position if direction == Direction.DOWN: if self.position + 1 >= len(self.choices ): return self.position += num_spaces else: if self.position - 1 < 0: return self.position -= num_spaces clear_line() self.print_choice(snake_case ) move_cursor(snake_case , direction.name ) self.print_choice(self.position ) @input.mark(KEYMAP['up'] ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> List[Any]: """simple docstring""" self.move_direction(Direction.UP ) @input.mark(KEYMAP['down'] ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" self.move_direction(Direction.DOWN ) @input.mark(KEYMAP['newline'] ) def SCREAMING_SNAKE_CASE__ ( self : str ) -> Optional[int]: """simple docstring""" move_cursor(len(self.choices ) - self.position , 'DOWN' ) return self.position @input.mark(KEYMAP['interrupt'] ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" move_cursor(len(self.choices ) - self.position , 'DOWN' ) raise KeyboardInterrupt @input.mark_multiple(*[KEYMAP[str(snake_case )] for number in range(1_0 )] ) def SCREAMING_SNAKE_CASE__ ( self : int ) -> Dict: """simple docstring""" UpperCamelCase_ : List[Any] = int(chr(self.current_selection ) ) UpperCamelCase_ : Optional[int] = index - self.position if index == self.position: return if index < len(self.choices ): if self.position > index: self.move_direction(Direction.UP , -movement ) elif self.position < index: self.move_direction(Direction.DOWN , snake_case ) else: return else: return def SCREAMING_SNAKE_CASE__ ( self : List[Any] , snake_case : int = 0 ) -> Union[str, Any]: """simple docstring""" if self.prompt: linebreak() forceWrite(self.prompt , '\n' ) if in_colab: forceWrite('Please input a choice index (starting from 0), and press enter' , '\n' ) else: forceWrite('Please select a choice using the arrow or number keys, and selecting with enter' , '\n' ) UpperCamelCase_ : Optional[int] = default_choice for i in range(len(self.choices ) ): self.print_choice(snake_case ) forceWrite('\n' ) move_cursor(len(self.choices ) - self.position , 'UP' ) with cursor.hide(): while True: if in_colab: try: UpperCamelCase_ : Tuple = int(builtins.input() ) except ValueError: UpperCamelCase_ : Tuple = default_choice else: UpperCamelCase_ : Optional[Any] = self.handle_input() if choice is not None: reset_cursor() for _ in range(len(self.choices ) + 1 ): move_cursor(1 , 'UP' ) clear_line() self.write_choice(snake_case , '\n' ) return choice
175
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available UpperCamelCase = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ['''GPTSw3Tokenizer'''] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_swa import GPTSwaTokenizer else: import sys UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
334
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_tf_available, is_torch_available, ) UpperCamelCase = { '''configuration_speech_to_text''': ['''SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Speech2TextConfig'''], '''processing_speech_to_text''': ['''Speech2TextProcessor'''], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ['''Speech2TextTokenizer'''] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ['''Speech2TextFeatureExtractor'''] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFSpeech2TextForConditionalGeneration''', '''TFSpeech2TextModel''', '''TFSpeech2TextPreTrainedModel''', ] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Speech2TextForConditionalGeneration''', '''Speech2TextModel''', '''Speech2TextPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_speech_to_text import SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, SpeechaTextConfig from .processing_speech_to_text import SpeechaTextProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speech_to_text import SpeechaTextTokenizer try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_speech_to_text import SpeechaTextFeatureExtractor try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_speech_to_text import ( TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, TFSpeechaTextForConditionalGeneration, TFSpeechaTextModel, TFSpeechaTextPreTrainedModel, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_to_text import ( SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechaTextForConditionalGeneration, SpeechaTextModel, SpeechaTextPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
334
1
import unittest from transformers import JukeboxTokenizer from transformers.testing_utils import require_torch class lowercase_ ( unittest.TestCase ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = JukeboxTokenizer UpperCAmelCase_ : Any = { """artist""": """Zac Brown Band""", """genres""": """Country""", """lyrics""": """I met a traveller from an antique land, Who said \"Two vast and trunkless legs of stone Stand in the desert. . . . Near them, on the sand, Half sunk a shattered visage lies, whose frown, And wrinkled lip, and sneer of cold command, Tell that its sculptor well those passions read Which yet survive, stamped on these lifeless things, The hand that mocked them, and the heart that fed; And on the pedestal, these words appear: My name is Ozymandias, King of Kings; Look on my Works, ye Mighty, and despair! Nothing beside remains. Round the decay Of that colossal Wreck, boundless and bare The lone and level sands stretch far away """, } @require_torch def SCREAMING_SNAKE_CASE_ ( self ) ->Any: import torch lowerCAmelCase = JukeboxTokenizer.from_pretrained('''openai/jukebox-1b-lyrics''' ) lowerCAmelCase = tokenizer(**self.metas )['''input_ids'''] # fmt: off lowerCAmelCase = [ torch.tensor([[ 0, 0, 0, 7169, 507, 9, 76, 39, 31, 46, 76, 27, 76, 46, 44, 27, 48, 31, 38, 38, 31, 44, 76, 32, 44, 41, 39, 76, 27, 40, 76, 27, 40, 46, 35, 43, 47, 31, 76, 38, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 41, 76, 45, 27, 35, 30, 76, 71, 20, 49, 41, 76, 48, 27, 45, 46, 76, 27, 40, 30, 76, 46, 44, 47, 40, 37, 38, 31, 45, 45, 76, 38, 31, 33, 45, 76, 41, 32, 76, 45, 46, 41, 40, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 19, 46, 27, 40, 30, 76, 35, 40, 76, 46, 34, 31, 76, 30, 31, 45, 31, 44, 46, 63, 76, 63, 76, 63, 76, 63, 76, 14, 31, 27, 44, 76, 46, 34, 31, 39, 64, 76, 41, 40, 76, 46, 34, 31, 76, 45, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 8, 27, 38, 32, 76, 45, 47, 40, 37, 76, 27, 76, 45, 34, 27, 46, 46, 31, 44, 31, 30, 76, 48, 35, 45, 27, 33, 31, 76, 38, 35, 31, 45, 64, 76, 49, 34, 41, 45, 31, 76, 32, 44, 41, 49, 40, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 49, 44, 35, 40, 37, 38, 31, 30, 76, 38, 35, 42, 64, 76, 27, 40, 30, 76, 45, 40, 31, 31, 44, 76, 41, 32, 76, 29, 41, 38, 30, 76, 29, 41, 39, 39, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 31, 38, 38, 76, 46, 34, 27, 46, 76, 35, 46, 45, 76, 45, 29, 47, 38, 42, 46, 41, 44, 76, 49, 31, 38, 38, 76, 46, 34, 41, 45, 31, 76, 42, 27, 45, 45, 35, 41, 40, 45, 76, 44, 31, 27, 30, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 35, 29, 34, 76, 51, 31, 46, 76, 45, 47, 44, 48, 35, 48, 31, 64, 76, 45, 46, 27, 39, 42, 31, 30, 76, 41, 40, 76, 46, 34, 31, 45, 31, 76, 38, 35, 32, 31, 38, 31, 45, 45, 76, 46, 34, 35, 40, 33, 45, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 34, 27, 40, 30, 76, 46, 34, 27, 46, 76, 39, 41, 29, 37, 31, 30, 76, 46, 34, 31, 39, 64, 76, 27, 40, 30, 76, 46, 34, 31, 76, 34, 31, 27, 44, 46, 76, 46, 34, 27, 46, 76, 32, 31, 30, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 41, 40, 76, 46, 34, 31, 76, 42, 31, 30, 31, 45, 46, 27, 38, 64, 76, 46, 34, 31, 45, 31, 76, 49, 41, 44, 30, 45, 76, 27, 42, 42, 31, 27, 44, 65, 78, 76, 76, 76, 76, 76, 76, 76, 76, 13, 51, 76, 40, 27, 39, 31, 76, 35, 45, 76, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 76, 11, 35, 40, 33, 76, 41, 32, 76, 11, 35, 40, 33, 45, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 12, 41, 41, 37, 76, 41, 40, 76, 39, 51, 76, 23, 41, 44, 37, 45, 64, 76, 51, 31, 76, 13, 35, 33, 34, 46, 51, 64, 76, 27, 40, 30, 76, 30, 31, 45, 42, 27, 35, 44, 67, 78, 76, 76, 76, 76, 76, 76, 76, 76, 14, 41, 46, 34, 35, 40, 33, 76, 28, 31, 45, 35, 30, 31, 76, 44, 31, 39, 27, 35, 40, 45, 63, 76, 18, 41, 47, 40, 30, 76, 46, 34, 31, 76, 30, 31, 29, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76, 15, 32, 76, 46, 34, 27, 46, 76, 29, 41, 38, 41, 45, 45, 27, 38, 76, 23, 44, 31, 29, 37, 64, 76, 28, 41, 47, 40, 30, 38, 31, 45, 45, 76, 27, 40, 30, 76, 28, 27, 44, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 38, 41, 40, 31, 76, 27, 40, 30, 76, 38, 31, 48, 31, 38, 76, 45, 27, 40, 30, 45, 76, 45, 46, 44, 31, 46, 29, 34, 76, 32, 27, 44, 76, 27, 49, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76]] ), torch.tensor([[0, 0, 0, 1069, 11]] ), torch.tensor([[0, 0, 0, 1069, 11]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) ) @require_torch def SCREAMING_SNAKE_CASE_ ( self ) ->Optional[Any]: import torch lowerCAmelCase = JukeboxTokenizer.from_pretrained('''openai/jukebox-5b-lyrics''' ) lowerCAmelCase = tokenizer(**self.metas )['''input_ids'''] # fmt: off lowerCAmelCase = [ torch.tensor([[ 0, 0, 0, 1069, 11, -1, -1, -1, -1, 9, 77, 39, 31, 46, 77, 27, 77, 46, 44, 27, 48, 31, 38, 38, 31, 44, 77, 32, 44, 41, 39, 77, 27, 40, 77, 27, 40, 46, 35, 43, 47, 31, 77, 38, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 41, 77, 45, 27, 35, 30, 77, 72, 20, 49, 41, 77, 48, 27, 45, 46, 77, 27, 40, 30, 77, 46, 44, 47, 40, 37, 38, 31, 45, 45, 77, 38, 31, 33, 45, 77, 41, 32, 77, 45, 46, 41, 40, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 19, 46, 27, 40, 30, 77, 35, 40, 77, 46, 34, 31, 77, 30, 31, 45, 31, 44, 46, 63, 77, 63, 77, 63, 77, 63, 77, 14, 31, 27, 44, 77, 46, 34, 31, 39, 64, 77, 41, 40, 77, 46, 34, 31, 77, 45, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 8, 27, 38, 32, 77, 45, 47, 40, 37, 77, 27, 77, 45, 34, 27, 46, 46, 31, 44, 31, 30, 77, 48, 35, 45, 27, 33, 31, 77, 38, 35, 31, 45, 64, 77, 49, 34, 41, 45, 31, 77, 32, 44, 41, 49, 40, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 49, 44, 35, 40, 37, 38, 31, 30, 77, 38, 35, 42, 64, 77, 27, 40, 30, 77, 45, 40, 31, 31, 44, 77, 41, 32, 77, 29, 41, 38, 30, 77, 29, 41, 39, 39, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 31, 38, 38, 77, 46, 34, 27, 46, 77, 35, 46, 45, 77, 45, 29, 47, 38, 42, 46, 41, 44, 77, 49, 31, 38, 38, 77, 46, 34, 41, 45, 31, 77, 42, 27, 45, 45, 35, 41, 40, 45, 77, 44, 31, 27, 30, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 35, 29, 34, 77, 51, 31, 46, 77, 45, 47, 44, 48, 35, 48, 31, 64, 77, 45, 46, 27, 39, 42, 31, 30, 77, 41, 40, 77, 46, 34, 31, 45, 31, 77, 38, 35, 32, 31, 38, 31, 45, 45, 77, 46, 34, 35, 40, 33, 45, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 34, 27, 40, 30, 77, 46, 34, 27, 46, 77, 39, 41, 29, 37, 31, 30, 77, 46, 34, 31, 39, 64, 77, 27, 40, 30, 77, 46, 34, 31, 77, 34, 31, 27, 44, 46, 77, 46, 34, 27, 46, 77, 32, 31, 30, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 41, 40, 77, 46, 34, 31, 77, 42, 31, 30, 31, 45, 46, 27, 38, 64, 77, 46, 34, 31, 45, 31, 77, 49, 41, 44, 30, 45, 77, 27, 42, 42, 31, 27, 44, 65, 79, 77, 77, 77, 77, 77, 77, 77, 77, 13, 51, 77, 40, 27, 39, 31, 77, 35, 45, 77, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 77, 11, 35, 40, 33, 77, 41, 32, 77, 11, 35, 40, 33, 45, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 12, 41, 41, 37, 77, 41, 40, 77, 39, 51, 77, 23, 41, 44, 37, 45, 64, 77, 51, 31, 77, 13, 35, 33, 34, 46, 51, 64, 77, 27, 40, 30, 77, 30, 31, 45, 42, 27, 35, 44, 67, 79, 77, 77, 77, 77, 77, 77, 77, 77, 14, 41, 46, 34, 35, 40, 33, 77, 28, 31, 45, 35, 30, 31, 77, 44, 31, 39, 27, 35, 40, 45, 63, 77, 18, 41, 47, 40, 30, 77, 46, 34, 31, 77, 30, 31, 29, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77, 15, 32, 77, 46, 34, 27, 46, 77, 29, 41, 38, 41, 45, 45, 27, 38, 77, 23, 44, 31, 29, 37, 64, 77, 28, 41, 47, 40, 30, 38, 31, 45, 45, 77, 27, 40, 30, 77, 28, 27, 44, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 38, 41, 40, 31, 77, 27, 40, 30, 77, 38, 31, 48, 31, 38, 77, 45, 27, 40, 30, 45, 77, 45, 46, 44, 31, 46, 29, 34, 77, 32, 27, 44, 77, 27, 49, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77]] ), torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]] ), torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
338
import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class lowercase_ ( UpperCamelCase_ ): """simple docstring""" UpperCAmelCase_ : List[Any] = (DEISMultistepScheduler,) UpperCAmelCase_ : int = (("""num_inference_steps""", 25),) def SCREAMING_SNAKE_CASE_ ( self , **__SCREAMING_SNAKE_CASE ) ->str: lowerCAmelCase = { '''num_train_timesteps''': 1000, '''beta_start''': 0.0_0_0_1, '''beta_end''': 0.0_2, '''beta_schedule''': '''linear''', '''solver_order''': 2, } config.update(**__SCREAMING_SNAKE_CASE ) return config def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE=0 , **__SCREAMING_SNAKE_CASE ) ->Tuple: lowerCAmelCase = dict(self.forward_default_kwargs ) lowerCAmelCase = kwargs.pop('''num_inference_steps''' , __SCREAMING_SNAKE_CASE ) lowerCAmelCase = self.dummy_sample lowerCAmelCase = 0.1 * sample lowerCAmelCase = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: lowerCAmelCase = self.get_scheduler_config(**__SCREAMING_SNAKE_CASE ) lowerCAmelCase = scheduler_class(**__SCREAMING_SNAKE_CASE ) scheduler.set_timesteps(__SCREAMING_SNAKE_CASE ) # copy over dummy past residuals lowerCAmelCase = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__SCREAMING_SNAKE_CASE ) lowerCAmelCase = scheduler_class.from_pretrained(__SCREAMING_SNAKE_CASE ) new_scheduler.set_timesteps(__SCREAMING_SNAKE_CASE ) # copy over dummy past residuals lowerCAmelCase = dummy_past_residuals[: new_scheduler.config.solver_order] lowerCAmelCase , lowerCAmelCase = sample, sample for t in range(__SCREAMING_SNAKE_CASE , time_step + scheduler.config.solver_order + 1 ): lowerCAmelCase = scheduler.step(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ).prev_sample lowerCAmelCase = new_scheduler.step(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def SCREAMING_SNAKE_CASE_ ( self ) ->Optional[int]: pass def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE=0 , **__SCREAMING_SNAKE_CASE ) ->List[Any]: lowerCAmelCase = dict(self.forward_default_kwargs ) lowerCAmelCase = kwargs.pop('''num_inference_steps''' , __SCREAMING_SNAKE_CASE ) lowerCAmelCase = self.dummy_sample lowerCAmelCase = 0.1 * sample lowerCAmelCase = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: lowerCAmelCase = self.get_scheduler_config() lowerCAmelCase = scheduler_class(**__SCREAMING_SNAKE_CASE ) scheduler.set_timesteps(__SCREAMING_SNAKE_CASE ) # copy over dummy past residuals (must be after setting timesteps) lowerCAmelCase = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__SCREAMING_SNAKE_CASE ) lowerCAmelCase = scheduler_class.from_pretrained(__SCREAMING_SNAKE_CASE ) # copy over dummy past residuals new_scheduler.set_timesteps(__SCREAMING_SNAKE_CASE ) # copy over dummy past residual (must be after setting timesteps) lowerCAmelCase = dummy_past_residuals[: new_scheduler.config.solver_order] lowerCAmelCase = scheduler.step(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ).prev_sample lowerCAmelCase = new_scheduler.step(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE=None , **__SCREAMING_SNAKE_CASE ) ->List[Any]: if scheduler is None: lowerCAmelCase = self.scheduler_classes[0] lowerCAmelCase = self.get_scheduler_config(**__SCREAMING_SNAKE_CASE ) lowerCAmelCase = scheduler_class(**__SCREAMING_SNAKE_CASE ) lowerCAmelCase = self.scheduler_classes[0] lowerCAmelCase = self.get_scheduler_config(**__SCREAMING_SNAKE_CASE ) lowerCAmelCase = scheduler_class(**__SCREAMING_SNAKE_CASE ) lowerCAmelCase = 10 lowerCAmelCase = self.dummy_model() lowerCAmelCase = self.dummy_sample_deter scheduler.set_timesteps(__SCREAMING_SNAKE_CASE ) for i, t in enumerate(scheduler.timesteps ): lowerCAmelCase = model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) lowerCAmelCase = scheduler.step(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ).prev_sample return sample def SCREAMING_SNAKE_CASE_ ( self ) ->Optional[int]: lowerCAmelCase = dict(self.forward_default_kwargs ) lowerCAmelCase = kwargs.pop('''num_inference_steps''' , __SCREAMING_SNAKE_CASE ) for scheduler_class in self.scheduler_classes: lowerCAmelCase = self.get_scheduler_config() lowerCAmelCase = scheduler_class(**__SCREAMING_SNAKE_CASE ) lowerCAmelCase = self.dummy_sample lowerCAmelCase = 0.1 * sample if num_inference_steps is not None and hasattr(__SCREAMING_SNAKE_CASE , '''set_timesteps''' ): scheduler.set_timesteps(__SCREAMING_SNAKE_CASE ) elif num_inference_steps is not None and not hasattr(__SCREAMING_SNAKE_CASE , '''set_timesteps''' ): lowerCAmelCase = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) lowerCAmelCase = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] lowerCAmelCase = dummy_past_residuals[: scheduler.config.solver_order] lowerCAmelCase = scheduler.timesteps[5] lowerCAmelCase = scheduler.timesteps[6] lowerCAmelCase = scheduler.step(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ).prev_sample lowerCAmelCase = scheduler.step(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def SCREAMING_SNAKE_CASE_ ( self ) ->int: # make sure that iterating over schedulers with same config names gives same results # for defaults lowerCAmelCase = DEISMultistepScheduler(**self.get_scheduler_config() ) lowerCAmelCase = self.full_loop(scheduler=__SCREAMING_SNAKE_CASE ) lowerCAmelCase = torch.mean(torch.abs(__SCREAMING_SNAKE_CASE ) ) assert abs(result_mean.item() - 0.2_3_9_1_6 ) < 1e-3 lowerCAmelCase = DPMSolverSinglestepScheduler.from_config(scheduler.config ) lowerCAmelCase = DPMSolverMultistepScheduler.from_config(scheduler.config ) lowerCAmelCase = UniPCMultistepScheduler.from_config(scheduler.config ) lowerCAmelCase = DEISMultistepScheduler.from_config(scheduler.config ) lowerCAmelCase = self.full_loop(scheduler=__SCREAMING_SNAKE_CASE ) lowerCAmelCase = torch.mean(torch.abs(__SCREAMING_SNAKE_CASE ) ) assert abs(result_mean.item() - 0.2_3_9_1_6 ) < 1e-3 def SCREAMING_SNAKE_CASE_ ( self ) ->Optional[int]: for timesteps in [25, 50, 100, 999, 1000]: self.check_over_configs(num_train_timesteps=__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( self ) ->int: self.check_over_configs(thresholding=__SCREAMING_SNAKE_CASE ) for order in [1, 2, 3]: for solver_type in ["logrho"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=__SCREAMING_SNAKE_CASE , prediction_type=__SCREAMING_SNAKE_CASE , sample_max_value=__SCREAMING_SNAKE_CASE , algorithm_type='''deis''' , solver_order=__SCREAMING_SNAKE_CASE , solver_type=__SCREAMING_SNAKE_CASE , ) def SCREAMING_SNAKE_CASE_ ( self ) ->Optional[Any]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( self ) ->Union[str, Any]: for algorithm_type in ["deis"]: for solver_type in ["logrho"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=__SCREAMING_SNAKE_CASE , solver_type=__SCREAMING_SNAKE_CASE , prediction_type=__SCREAMING_SNAKE_CASE , algorithm_type=__SCREAMING_SNAKE_CASE , ) lowerCAmelCase = self.full_loop( solver_order=__SCREAMING_SNAKE_CASE , solver_type=__SCREAMING_SNAKE_CASE , prediction_type=__SCREAMING_SNAKE_CASE , algorithm_type=__SCREAMING_SNAKE_CASE , ) assert not torch.isnan(__SCREAMING_SNAKE_CASE ).any(), "Samples have nan numbers" def SCREAMING_SNAKE_CASE_ ( self ) ->List[Any]: self.check_over_configs(lower_order_final=__SCREAMING_SNAKE_CASE ) self.check_over_configs(lower_order_final=__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( self ) ->List[Any]: for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]: self.check_over_forward(num_inference_steps=__SCREAMING_SNAKE_CASE , time_step=0 ) def SCREAMING_SNAKE_CASE_ ( self ) ->Dict: lowerCAmelCase = self.full_loop() lowerCAmelCase = torch.mean(torch.abs(__SCREAMING_SNAKE_CASE ) ) assert abs(result_mean.item() - 0.2_3_9_1_6 ) < 1e-3 def SCREAMING_SNAKE_CASE_ ( self ) ->List[str]: lowerCAmelCase = self.full_loop(prediction_type='''v_prediction''' ) lowerCAmelCase = torch.mean(torch.abs(__SCREAMING_SNAKE_CASE ) ) assert abs(result_mean.item() - 0.0_9_1 ) < 1e-3 def SCREAMING_SNAKE_CASE_ ( self ) ->Dict: lowerCAmelCase = self.scheduler_classes[0] lowerCAmelCase = self.get_scheduler_config(thresholding=__SCREAMING_SNAKE_CASE , dynamic_thresholding_ratio=0 ) lowerCAmelCase = scheduler_class(**__SCREAMING_SNAKE_CASE ) lowerCAmelCase = 10 lowerCAmelCase = self.dummy_model() lowerCAmelCase = self.dummy_sample_deter.half() scheduler.set_timesteps(__SCREAMING_SNAKE_CASE ) for i, t in enumerate(scheduler.timesteps ): lowerCAmelCase = model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) lowerCAmelCase = scheduler.step(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ).prev_sample assert sample.dtype == torch.floataa
338
1
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class snake_case__(unittest.TestCase ): """simple docstring""" def __init__( self : str , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Optional[Any]=7 , SCREAMING_SNAKE_CASE : Optional[int]=3 , SCREAMING_SNAKE_CASE : Optional[Any]=18 , SCREAMING_SNAKE_CASE : List[Any]=30 , SCREAMING_SNAKE_CASE : Optional[Any]=400 , SCREAMING_SNAKE_CASE : Dict=True , SCREAMING_SNAKE_CASE : Optional[int]=None , SCREAMING_SNAKE_CASE : Tuple=True , SCREAMING_SNAKE_CASE : List[Any]=None , SCREAMING_SNAKE_CASE : Dict=True , SCREAMING_SNAKE_CASE : Tuple=[0.5, 0.5, 0.5] , SCREAMING_SNAKE_CASE : Optional[Any]=[0.5, 0.5, 0.5] , ): lowercase__ : List[str] = size if size is not None else {'''shortest_edge''': 18} lowercase__ : List[str] = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} lowercase__ : Union[str, Any] = parent lowercase__ : Optional[Any] = batch_size lowercase__ : Optional[int] = num_channels lowercase__ : int = image_size lowercase__ : Dict = min_resolution lowercase__ : List[str] = max_resolution lowercase__ : List[Any] = do_resize lowercase__ : List[Any] = size lowercase__ : Dict = do_center_crop lowercase__ : Optional[int] = crop_size lowercase__ : int = do_normalize lowercase__ : Optional[Any] = image_mean lowercase__ : int = image_std def snake_case ( self : int ): return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "do_center_crop": self.do_center_crop, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class snake_case__(__SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" lowercase_ = LevitImageProcessor if is_vision_available() else None def snake_case ( self : Tuple ): lowercase__ : List[Any] = LevitImageProcessingTester(self ) @property def snake_case ( self : List[Any] ): return self.image_processor_tester.prepare_image_processor_dict() def snake_case ( self : List[Any] ): lowercase__ : Any = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCamelCase__ , "image_mean" ) ) self.assertTrue(hasattr(UpperCamelCase__ , "image_std" ) ) self.assertTrue(hasattr(UpperCamelCase__ , "do_normalize" ) ) self.assertTrue(hasattr(UpperCamelCase__ , "do_resize" ) ) self.assertTrue(hasattr(UpperCamelCase__ , "do_center_crop" ) ) self.assertTrue(hasattr(UpperCamelCase__ , "size" ) ) def snake_case ( self : Any ): lowercase__ : Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 18} ) self.assertEqual(image_processor.crop_size , {"height": 18, "width": 18} ) lowercase__ : str = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"shortest_edge": 42} ) self.assertEqual(image_processor.crop_size , {"height": 84, "width": 84} ) def snake_case ( self : List[str] ): pass def snake_case ( self : List[Any] ): lowercase__ : str = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase__ : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase__ , Image.Image ) # Test not batched input lowercase__ : Optional[Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched lowercase__ : int = image_processing(UpperCamelCase__ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def snake_case ( self : Optional[Any] ): lowercase__ : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowercase__ : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase__ , numpify=UpperCamelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase__ , np.ndarray ) # Test not batched input lowercase__ : Tuple = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched lowercase__ : Tuple = image_processing(UpperCamelCase__ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def snake_case ( self : List[Any] ): lowercase__ : Any = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowercase__ : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase__ , torchify=UpperCamelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase__ , torch.Tensor ) # Test not batched input lowercase__ : int = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched lowercase__ : List[Any] = image_processing(UpperCamelCase__ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , )
367
from typing import Union import fire import torch from tqdm import tqdm def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__ = "cpu" , lowerCamelCase__ = None ): """simple docstring""" lowercase__ : Any = torch.load(lowerCamelCase__ , map_location=lowerCamelCase__ ) for k, v in tqdm(state_dict.items() ): if not isinstance(lowerCamelCase__ , torch.Tensor ): raise TypeError("FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin" ) lowercase__ : int = v.half() if save_path is None: # overwrite src_path lowercase__ : Optional[Any] = src_path torch.save(lowerCamelCase__ , lowerCamelCase__ ) if __name__ == "__main__": fire.Fire(convert)
121
0
import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) a =pytest.mark.integration @pytest.mark.parametrize('path' , ['paws', 'csv'] ) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ ) -> Union[str, Any]: inspect_dataset(lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase : List[Any] = path + '.py' assert script_name in os.listdir(lowerCamelCase__ ) assert "__pycache__" not in os.listdir(lowerCamelCase__ ) @pytest.mark.filterwarnings('ignore:inspect_metric is deprecated:FutureWarning' ) @pytest.mark.filterwarnings('ignore:metric_module_factory is deprecated:FutureWarning' ) @pytest.mark.parametrize('path' , ['accuracy'] ) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ ) -> int: inspect_metric(lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase : Tuple = path + '.py' assert script_name in os.listdir(lowerCamelCase__ ) assert "__pycache__" not in os.listdir(lowerCamelCase__ ) @pytest.mark.parametrize( 'path, config_name, expected_splits' , [ ('squad', 'plain_text', ['train', 'validation']), ('dalle-mini/wit', 'dalle-mini--wit', ['train']), ('paws', 'labeled_final', ['train', 'test', 'validation']), ] , ) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Tuple: __lowerCamelCase : int = get_dataset_config_info(lowerCamelCase__ , config_name=lowerCamelCase__ ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( 'path, config_name, expected_exception' , [ ('paws', None, ValueError), ] , ) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Union[str, Any]: with pytest.raises(lowerCamelCase__ ): get_dataset_config_info(lowerCamelCase__ , config_name=lowerCamelCase__ ) @pytest.mark.parametrize( 'path, expected' , [ ('squad', 'plain_text'), ('acronym_identification', 'default'), ('lhoestq/squad', 'plain_text'), ('lhoestq/test', 'default'), ('lhoestq/demo1', 'lhoestq--demo1'), ('dalle-mini/wit', 'dalle-mini--wit'), ] , ) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ ) -> Dict: __lowerCamelCase : Tuple = get_dataset_config_names(lowerCamelCase__ ) assert expected in config_names @pytest.mark.parametrize( 'path, expected_configs, expected_splits_in_first_config' , [ ('squad', ['plain_text'], ['train', 'validation']), ('dalle-mini/wit', ['dalle-mini--wit'], ['train']), ('paws', ['labeled_final', 'labeled_swap', 'unlabeled_final'], ['train', 'test', 'validation']), ] , ) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> List[Any]: __lowerCamelCase : Tuple = get_dataset_infos(lowerCamelCase__ ) assert list(infos.keys() ) == expected_configs __lowerCamelCase : List[Any] = expected_configs[0] assert expected_config in infos __lowerCamelCase : int = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( 'path, expected_config, expected_splits' , [ ('squad', 'plain_text', ['train', 'validation']), ('dalle-mini/wit', 'dalle-mini--wit', ['train']), ('paws', 'labeled_final', ['train', 'test', 'validation']), ] , ) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> List[Any]: __lowerCamelCase : str = get_dataset_infos(lowerCamelCase__ ) assert expected_config in infos __lowerCamelCase : List[str] = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( 'path, config_name, expected_exception' , [ ('paws', None, ValueError), ] , ) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Optional[Any]: with pytest.raises(lowerCamelCase__ ): get_dataset_split_names(lowerCamelCase__ , config_name=lowerCamelCase__ )
73
# This is the module that test_patching.py uses to test patch_submodule() import os # noqa: this is just for tests import os as renamed_os # noqa: this is just for tests from os import path # noqa: this is just for tests from os import path as renamed_path # noqa: this is just for tests from os.path import join # noqa: this is just for tests from os.path import join as renamed_join # noqa: this is just for tests a =open # noqa: we just need to have a builtin inside this module to test it properly
73
1
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class _A ( _a ,unittest.TestCase ): """simple docstring""" UpperCAmelCase : Optional[Any] = ShapEPipeline UpperCAmelCase : str = ["""prompt"""] UpperCAmelCase : int = ["""prompt"""] UpperCAmelCase : List[str] = [ """num_images_per_prompt""", """num_inference_steps""", """generator""", """latents""", """guidance_scale""", """frame_size""", """output_type""", """return_dict""", ] UpperCAmelCase : str = False @property def __snake_case ( self : List[Any]): return 32 @property def __snake_case ( self : Optional[Any]): return 32 @property def __snake_case ( self : Optional[int]): return self.time_input_dim * 4 @property def __snake_case ( self : List[str]): return 8 @property def __snake_case ( self : List[Any]): a : Any = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") return tokenizer @property def __snake_case ( self : Union[str, Any]): torch.manual_seed(0) a : Dict = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(__UpperCAmelCase) @property def __snake_case ( self : Optional[int]): torch.manual_seed(0) a : Tuple = { "num_attention_heads": 2, "attention_head_dim": 16, "embedding_dim": self.time_input_dim, "num_embeddings": 32, "embedding_proj_dim": self.text_embedder_hidden_size, "time_embed_dim": self.time_embed_dim, "num_layers": 1, "clip_embed_dim": self.time_input_dim * 2, "additional_embeddings": 0, "time_embed_act_fn": "gelu", "norm_in_type": "layer", "encoder_hid_proj_type": None, "added_emb_type": None, } a : Tuple = PriorTransformer(**__UpperCAmelCase) return model @property def __snake_case ( self : Any): torch.manual_seed(0) a : int = { "param_shapes": ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), "d_latent": self.time_input_dim, "d_hidden": self.renderer_dim, "n_output": 12, "background": ( 0.1, 0.1, 0.1, ), } a : Optional[Any] = ShapERenderer(**__UpperCAmelCase) return model def __snake_case ( self : int): a : Any = self.dummy_prior a : List[Any] = self.dummy_text_encoder a : Optional[Any] = self.dummy_tokenizer a : Optional[int] = self.dummy_renderer a : Any = HeunDiscreteScheduler( beta_schedule="exp" , num_train_timesteps=1024 , prediction_type="sample" , use_karras_sigmas=__UpperCAmelCase , clip_sample=__UpperCAmelCase , clip_sample_range=1.0 , ) a : Optional[Any] = { "prior": prior, "text_encoder": text_encoder, "tokenizer": tokenizer, "renderer": renderer, "scheduler": scheduler, } return components def __snake_case ( self : str , __UpperCAmelCase : Dict , __UpperCAmelCase : List[str]=0): if str(__UpperCAmelCase).startswith("mps"): a : Optional[Any] = torch.manual_seed(__UpperCAmelCase) else: a : List[str] = torch.Generator(device=__UpperCAmelCase).manual_seed(__UpperCAmelCase) a : Optional[int] = { "prompt": "horse", "generator": generator, "num_inference_steps": 1, "frame_size": 32, "output_type": "np", } return inputs def __snake_case ( self : List[Any]): a : str = "cpu" a : List[Any] = self.get_dummy_components() a : int = self.pipeline_class(**__UpperCAmelCase) a : str = pipe.to(__UpperCAmelCase) pipe.set_progress_bar_config(disable=__UpperCAmelCase) a : Any = pipe(**self.get_dummy_inputs(__UpperCAmelCase)) a : str = output.images[0] a : Dict = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) a : Union[str, Any] = np.array( [ 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, ]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def __snake_case ( self : Union[str, Any]): # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2]) def __snake_case ( self : Dict): a : str = torch_device == "cpu" a : Union[str, Any] = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=__UpperCAmelCase , relax_max_difference=__UpperCAmelCase , ) def __snake_case ( self : Union[str, Any]): a : Dict = self.get_dummy_components() a : Tuple = self.pipeline_class(**__UpperCAmelCase) a : Dict = pipe.to(__UpperCAmelCase) pipe.set_progress_bar_config(disable=__UpperCAmelCase) a : Optional[Any] = 1 a : Optional[int] = 2 a : Tuple = self.get_dummy_inputs(__UpperCAmelCase) for key in inputs.keys(): if key in self.batch_params: a : int = batch_size * [inputs[key]] a : Any = pipe(**__UpperCAmelCase , num_images_per_prompt=__UpperCAmelCase)[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class _A ( unittest.TestCase ): """simple docstring""" def __snake_case ( self : int): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __snake_case ( self : Union[str, Any]): a : List[str] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/shap_e/test_shap_e_np_out.npy") a : Union[str, Any] = ShapEPipeline.from_pretrained("openai/shap-e") a : List[Any] = pipe.to(__UpperCAmelCase) pipe.set_progress_bar_config(disable=__UpperCAmelCase) a : List[Any] = torch.Generator(device=__UpperCAmelCase).manual_seed(0) a : Dict = pipe( "a shark" , generator=__UpperCAmelCase , guidance_scale=15.0 , num_inference_steps=64 , frame_size=64 , output_type="np" , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(__UpperCAmelCase , __UpperCAmelCase)
354
"""simple docstring""" __lowercase = frozenset( [ """prompt""", """height""", """width""", """guidance_scale""", """negative_prompt""", """prompt_embeds""", """negative_prompt_embeds""", """cross_attention_kwargs""", ] ) __lowercase = frozenset(["""prompt""", """negative_prompt"""]) __lowercase = frozenset([]) __lowercase = frozenset(["""image"""]) __lowercase = frozenset( [ """image""", """height""", """width""", """guidance_scale""", ] ) __lowercase = frozenset(["""image"""]) __lowercase = frozenset( [ """prompt""", """image""", """height""", """width""", """guidance_scale""", """negative_prompt""", """prompt_embeds""", """negative_prompt_embeds""", ] ) __lowercase = frozenset(["""prompt""", """image""", """negative_prompt"""]) __lowercase = frozenset( [ # Text guided image variation with an image mask """prompt""", """image""", """mask_image""", """height""", """width""", """guidance_scale""", """negative_prompt""", """prompt_embeds""", """negative_prompt_embeds""", ] ) __lowercase = frozenset(["""prompt""", """image""", """mask_image""", """negative_prompt"""]) __lowercase = frozenset( [ # image variation with an image mask """image""", """mask_image""", """height""", """width""", """guidance_scale""", ] ) __lowercase = frozenset(["""image""", """mask_image"""]) __lowercase = frozenset( [ """example_image""", """image""", """mask_image""", """height""", """width""", """guidance_scale""", ] ) __lowercase = frozenset(["""example_image""", """image""", """mask_image"""]) __lowercase = frozenset(["""class_labels"""]) __lowercase = frozenset(["""class_labels"""]) __lowercase = frozenset(["""batch_size"""]) __lowercase = frozenset([]) __lowercase = frozenset(["""batch_size"""]) __lowercase = frozenset([]) __lowercase = frozenset( [ """prompt""", """audio_length_in_s""", """guidance_scale""", """negative_prompt""", """prompt_embeds""", """negative_prompt_embeds""", """cross_attention_kwargs""", ] ) __lowercase = frozenset(["""prompt""", """negative_prompt"""]) __lowercase = frozenset(["""input_tokens"""]) __lowercase = frozenset(["""input_tokens"""])
226
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _SCREAMING_SNAKE_CASE : Optional[Any] = {"configuration_swin": ["SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP", "SwinConfig", "SwinOnnxConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Tuple = [ "SWIN_PRETRAINED_MODEL_ARCHIVE_LIST", "SwinForImageClassification", "SwinForMaskedImageModeling", "SwinModel", "SwinPreTrainedModel", "SwinBackbone", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Union[str, Any] = [ "TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST", "TFSwinForImageClassification", "TFSwinForMaskedImageModeling", "TFSwinModel", "TFSwinPreTrainedModel", ] if TYPE_CHECKING: from .configuration_swin import SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinConfig, SwinOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swin import ( SWIN_PRETRAINED_MODEL_ARCHIVE_LIST, SwinBackbone, SwinForImageClassification, SwinForMaskedImageModeling, SwinModel, SwinPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_swin import ( TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST, TFSwinForImageClassification, TFSwinForMaskedImageModeling, TFSwinModel, TFSwinPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
85
'''simple docstring''' import warnings from functools import wraps from typing import Callable def UpperCamelCase_( snake_case : Callable ): '''simple docstring''' @wraps(snake_case ) def _inner_fn(*snake_case : Optional[int] , **snake_case : List[Any] ): warnings.warn( (f'\'{fn.__name__}\' is experimental and might be subject to breaking changes in the future.') , snake_case , ) return fn(*snake_case , **snake_case ) return _inner_fn
85
1
"""simple docstring""" import inspect import tempfile from collections import OrderedDict, UserDict from collections.abc import MutableMapping from contextlib import ExitStack, contextmanager from dataclasses import fields from enum import Enum from typing import Any, ContextManager, List, Tuple import numpy as np from .import_utils import is_flax_available, is_tf_available, is_torch_available, is_torch_fx_proxy if is_flax_available(): import jax.numpy as jnp class _UpperCAmelCase ( a ): '''simple docstring''' def __get__( self , A , A=None ) -> Dict: # See docs.python.org/3/howto/descriptor.html#properties if obj is None: return self if self.fget is None: raise AttributeError('''unreadable attribute''' ) _UpperCAmelCase : List[Any] = '''__cached_''' + self.fget.__name__ _UpperCAmelCase : Tuple = getattr(A , A , A ) if cached is None: _UpperCAmelCase : Optional[Any] = self.fget(A ) setattr(A , A , A ) return cached def lowerCamelCase_ (UpperCamelCase__ : Dict ): _UpperCAmelCase : Any = val.lower() if val in {"y", "yes", "t", "true", "on", "1"}: return 1 if val in {"n", "no", "f", "false", "off", "0"}: return 0 raise ValueError(F'invalid truth value {val!r}' ) def lowerCamelCase_ (UpperCamelCase__ : str ): if is_torch_fx_proxy(UpperCamelCase__ ): return True if is_torch_available(): import torch if isinstance(UpperCamelCase__ , torch.Tensor ): return True if is_tf_available(): import tensorflow as tf if isinstance(UpperCamelCase__ , tf.Tensor ): return True if is_flax_available(): import jax.numpy as jnp from jax.core import Tracer if isinstance(UpperCamelCase__ , (jnp.ndarray, Tracer) ): return True return isinstance(UpperCamelCase__ , np.ndarray ) def lowerCamelCase_ (UpperCamelCase__ : str ): return isinstance(UpperCamelCase__ , np.ndarray ) def lowerCamelCase_ (UpperCamelCase__ : List[Any] ): return _is_numpy(UpperCamelCase__ ) def lowerCamelCase_ (UpperCamelCase__ : Union[str, Any] ): import torch return isinstance(UpperCamelCase__ , torch.Tensor ) def lowerCamelCase_ (UpperCamelCase__ : Dict ): return False if not is_torch_available() else _is_torch(UpperCamelCase__ ) def lowerCamelCase_ (UpperCamelCase__ : Any ): import torch return isinstance(UpperCamelCase__ , torch.device ) def lowerCamelCase_ (UpperCamelCase__ : List[str] ): return False if not is_torch_available() else _is_torch_device(UpperCamelCase__ ) def lowerCamelCase_ (UpperCamelCase__ : Tuple ): import torch if isinstance(UpperCamelCase__ , UpperCamelCase__ ): if hasattr(UpperCamelCase__ , UpperCamelCase__ ): _UpperCAmelCase : Optional[Any] = getattr(UpperCamelCase__ , UpperCamelCase__ ) else: return False return isinstance(UpperCamelCase__ , torch.dtype ) def lowerCamelCase_ (UpperCamelCase__ : Tuple ): return False if not is_torch_available() else _is_torch_dtype(UpperCamelCase__ ) def lowerCamelCase_ (UpperCamelCase__ : List[Any] ): import tensorflow as tf return isinstance(UpperCamelCase__ , tf.Tensor ) def lowerCamelCase_ (UpperCamelCase__ : List[str] ): return False if not is_tf_available() else _is_tensorflow(UpperCamelCase__ ) def lowerCamelCase_ (UpperCamelCase__ : List[Any] ): import tensorflow as tf # the `is_symbolic_tensor` predicate is only available starting with TF 2.14 if hasattr(UpperCamelCase__ , '''is_symbolic_tensor''' ): return tf.is_symbolic_tensor(UpperCamelCase__ ) return type(UpperCamelCase__ ) == tf.Tensor def lowerCamelCase_ (UpperCamelCase__ : List[str] ): return False if not is_tf_available() else _is_tf_symbolic_tensor(UpperCamelCase__ ) def lowerCamelCase_ (UpperCamelCase__ : Union[str, Any] ): import jax.numpy as jnp # noqa: F811 return isinstance(UpperCamelCase__ , jnp.ndarray ) def lowerCamelCase_ (UpperCamelCase__ : Tuple ): return False if not is_flax_available() else _is_jax(UpperCamelCase__ ) def lowerCamelCase_ (UpperCamelCase__ : Union[str, Any] ): if isinstance(UpperCamelCase__ , (dict, UserDict) ): return {k: to_py_obj(UpperCamelCase__ ) for k, v in obj.items()} elif isinstance(UpperCamelCase__ , (list, tuple) ): return [to_py_obj(UpperCamelCase__ ) for o in obj] elif is_tf_tensor(UpperCamelCase__ ): return obj.numpy().tolist() elif is_torch_tensor(UpperCamelCase__ ): return obj.detach().cpu().tolist() elif is_jax_tensor(UpperCamelCase__ ): return np.asarray(UpperCamelCase__ ).tolist() elif isinstance(UpperCamelCase__ , (np.ndarray, np.number) ): # tolist also works on 0d np arrays return obj.tolist() else: return obj def lowerCamelCase_ (UpperCamelCase__ : int ): if isinstance(UpperCamelCase__ , (dict, UserDict) ): return {k: to_numpy(UpperCamelCase__ ) for k, v in obj.items()} elif isinstance(UpperCamelCase__ , (list, tuple) ): return np.array(UpperCamelCase__ ) elif is_tf_tensor(UpperCamelCase__ ): return obj.numpy() elif is_torch_tensor(UpperCamelCase__ ): return obj.detach().cpu().numpy() elif is_jax_tensor(UpperCamelCase__ ): return np.asarray(UpperCamelCase__ ) else: return obj class _UpperCAmelCase ( a ): '''simple docstring''' def __lowerCAmelCase ( self ) -> Optional[Any]: _UpperCAmelCase : Optional[Any] = fields(self ) # Safety and consistency checks if not len(A ): raise ValueError(f'{self.__class__.__name__} has no fields.' ) if not all(field.default is None for field in class_fields[1:] ): raise ValueError(f'{self.__class__.__name__} should not have more than one required field.' ) _UpperCAmelCase : Union[str, Any] = getattr(self , class_fields[0].name ) _UpperCAmelCase : List[Any] = all(getattr(self , field.name ) is None for field in class_fields[1:] ) if other_fields_are_none and not is_tensor(A ): if isinstance(A , A ): _UpperCAmelCase : List[str] = first_field.items() _UpperCAmelCase : Any = True else: try: _UpperCAmelCase : int = iter(A ) _UpperCAmelCase : Tuple = True except TypeError: _UpperCAmelCase : Optional[Any] = False # if we provided an iterator as first field and the iterator is a (key, value) iterator # set the associated fields if first_field_iterator: for idx, element in enumerate(A ): if ( not isinstance(A , (list, tuple) ) or not len(A ) == 2 or not isinstance(element[0] , A ) ): if idx == 0: # If we do not have an iterator of key/values, set it as attribute _UpperCAmelCase : str = first_field else: # If we have a mixed iterator, raise an error raise ValueError( f'Cannot set key/value for {element}. It needs to be a tuple (key, value).' ) break setattr(self , element[0] , element[1] ) if element[1] is not None: _UpperCAmelCase : Any = element[1] elif first_field is not None: _UpperCAmelCase : Any = first_field else: for field in class_fields: _UpperCAmelCase : Dict = getattr(self , field.name ) if v is not None: _UpperCAmelCase : Optional[Any] = v def __delitem__( self , *A , **A ) -> Dict: raise Exception(f'You cannot use ``__delitem__`` on a {self.__class__.__name__} instance.' ) def __lowerCAmelCase ( self , *A , **A ) -> Optional[Any]: raise Exception(f'You cannot use ``setdefault`` on a {self.__class__.__name__} instance.' ) def __lowerCAmelCase ( self , *A , **A ) -> Union[str, Any]: raise Exception(f'You cannot use ``pop`` on a {self.__class__.__name__} instance.' ) def __lowerCAmelCase ( self , *A , **A ) -> Union[str, Any]: raise Exception(f'You cannot use ``update`` on a {self.__class__.__name__} instance.' ) def __getitem__( self , A ) -> Union[str, Any]: if isinstance(A , A ): _UpperCAmelCase : str = dict(self.items() ) return inner_dict[k] else: return self.to_tuple()[k] def __setattr__( self , A , A ) -> List[Any]: if name in self.keys() and value is not None: # Don't call self.__setitem__ to avoid recursion errors super().__setitem__(A , A ) super().__setattr__(A , A ) def __setitem__( self , A , A ) -> List[Any]: # Will raise a KeyException if needed super().__setitem__(A , A ) # Don't call self.__setattr__ to avoid recursion errors super().__setattr__(A , A ) def __lowerCAmelCase ( self ) -> Tuple[Any]: return tuple(self[k] for k in self.keys() ) class _UpperCAmelCase ( a ,a ): '''simple docstring''' @classmethod def __lowerCAmelCase ( cls , A ) -> Tuple: raise ValueError( f'{value} is not a valid {cls.__name__}, please select one of {list(cls._valueamember_map_.keys() )}' ) class _UpperCAmelCase ( a ): '''simple docstring''' a__ ='''longest''' a__ ='''max_length''' a__ ='''do_not_pad''' class _UpperCAmelCase ( a ): '''simple docstring''' a__ ='''pt''' a__ ='''tf''' a__ ='''np''' a__ ='''jax''' class _UpperCAmelCase : '''simple docstring''' def __init__( self , A ) -> List[Any]: _UpperCAmelCase : str = context_managers _UpperCAmelCase : Optional[int] = ExitStack() def __enter__( self ) -> int: for context_manager in self.context_managers: self.stack.enter_context(A ) def __exit__( self , *A , **A ) -> List[str]: self.stack.__exit__(*A , **A ) def lowerCamelCase_ (UpperCamelCase__ : Optional[int] ): _UpperCAmelCase : List[str] = infer_framework(UpperCamelCase__ ) if framework == "tf": _UpperCAmelCase : List[str] = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": _UpperCAmelCase : Any = inspect.signature(model_class.forward ) # PyTorch models else: _UpperCAmelCase : int = inspect.signature(model_class.__call__ ) # Flax models for p in signature.parameters: if p == "return_loss" and signature.parameters[p].default is True: return True return False def lowerCamelCase_ (UpperCamelCase__ : Optional[Any] ): _UpperCAmelCase : Union[str, Any] = model_class.__name__ _UpperCAmelCase : Union[str, Any] = infer_framework(UpperCamelCase__ ) if framework == "tf": _UpperCAmelCase : Tuple = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": _UpperCAmelCase : Optional[Any] = inspect.signature(model_class.forward ) # PyTorch models else: _UpperCAmelCase : List[str] = inspect.signature(model_class.__call__ ) # Flax models if "QuestionAnswering" in model_name: return [p for p in signature.parameters if "label" in p or p in ("start_positions", "end_positions")] else: return [p for p in signature.parameters if "label" in p] def lowerCamelCase_ (UpperCamelCase__ : MutableMapping , UpperCamelCase__ : str = "" , UpperCamelCase__ : str = "." ): def _flatten_dict(UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : int="" , UpperCamelCase__ : Optional[Any]="." ): for k, v in d.items(): _UpperCAmelCase : Tuple = str(UpperCamelCase__ ) + delimiter + str(UpperCamelCase__ ) if parent_key else k if v and isinstance(UpperCamelCase__ , UpperCamelCase__ ): yield from flatten_dict(UpperCamelCase__ , UpperCamelCase__ , delimiter=UpperCamelCase__ ).items() else: yield key, v return dict(_flatten_dict(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) ) @contextmanager def lowerCamelCase_ (UpperCamelCase__ : List[str] , UpperCamelCase__ : bool = False ): if use_temp_dir: with tempfile.TemporaryDirectory() as tmp_dir: yield tmp_dir else: yield working_dir def lowerCamelCase_ (UpperCamelCase__ : Optional[int] , UpperCamelCase__ : List[str]=None ): if is_numpy_array(UpperCamelCase__ ): return np.transpose(UpperCamelCase__ , axes=UpperCamelCase__ ) elif is_torch_tensor(UpperCamelCase__ ): return array.T if axes is None else array.permute(*UpperCamelCase__ ) elif is_tf_tensor(UpperCamelCase__ ): import tensorflow as tf return tf.transpose(UpperCamelCase__ , perm=UpperCamelCase__ ) elif is_jax_tensor(UpperCamelCase__ ): return jnp.transpose(UpperCamelCase__ , axes=UpperCamelCase__ ) else: raise ValueError(F'Type not supported for transpose: {type(UpperCamelCase__ )}.' ) def lowerCamelCase_ (UpperCamelCase__ : Any , UpperCamelCase__ : List[Any] ): if is_numpy_array(UpperCamelCase__ ): return np.reshape(UpperCamelCase__ , UpperCamelCase__ ) elif is_torch_tensor(UpperCamelCase__ ): return array.reshape(*UpperCamelCase__ ) elif is_tf_tensor(UpperCamelCase__ ): import tensorflow as tf return tf.reshape(UpperCamelCase__ , UpperCamelCase__ ) elif is_jax_tensor(UpperCamelCase__ ): return jnp.reshape(UpperCamelCase__ , UpperCamelCase__ ) else: raise ValueError(F'Type not supported for reshape: {type(UpperCamelCase__ )}.' ) def lowerCamelCase_ (UpperCamelCase__ : List[str] , UpperCamelCase__ : Any=None ): if is_numpy_array(UpperCamelCase__ ): return np.squeeze(UpperCamelCase__ , axis=UpperCamelCase__ ) elif is_torch_tensor(UpperCamelCase__ ): return array.squeeze() if axis is None else array.squeeze(dim=UpperCamelCase__ ) elif is_tf_tensor(UpperCamelCase__ ): import tensorflow as tf return tf.squeeze(UpperCamelCase__ , axis=UpperCamelCase__ ) elif is_jax_tensor(UpperCamelCase__ ): return jnp.squeeze(UpperCamelCase__ , axis=UpperCamelCase__ ) else: raise ValueError(F'Type not supported for squeeze: {type(UpperCamelCase__ )}.' ) def lowerCamelCase_ (UpperCamelCase__ : Optional[int] , UpperCamelCase__ : List[Any] ): if is_numpy_array(UpperCamelCase__ ): return np.expand_dims(UpperCamelCase__ , UpperCamelCase__ ) elif is_torch_tensor(UpperCamelCase__ ): return array.unsqueeze(dim=UpperCamelCase__ ) elif is_tf_tensor(UpperCamelCase__ ): import tensorflow as tf return tf.expand_dims(UpperCamelCase__ , axis=UpperCamelCase__ ) elif is_jax_tensor(UpperCamelCase__ ): return jnp.expand_dims(UpperCamelCase__ , axis=UpperCamelCase__ ) else: raise ValueError(F'Type not supported for expand_dims: {type(UpperCamelCase__ )}.' ) def lowerCamelCase_ (UpperCamelCase__ : Optional[Any] ): if is_numpy_array(UpperCamelCase__ ): return np.size(UpperCamelCase__ ) elif is_torch_tensor(UpperCamelCase__ ): return array.numel() elif is_tf_tensor(UpperCamelCase__ ): import tensorflow as tf return tf.size(UpperCamelCase__ ) elif is_jax_tensor(UpperCamelCase__ ): return array.size else: raise ValueError(F'Type not supported for expand_dims: {type(UpperCamelCase__ )}.' ) def lowerCamelCase_ (UpperCamelCase__ : Any , UpperCamelCase__ : int ): for key, value in auto_map.items(): if isinstance(UpperCamelCase__ , (tuple, list) ): _UpperCAmelCase : List[Any] = [F'{repo_id}--{v}' if (v is not None and '''--''' not in v) else v for v in value] elif value is not None and "--" not in value: _UpperCAmelCase : str = F'{repo_id}--{value}' return auto_map def lowerCamelCase_ (UpperCamelCase__ : str ): for base_class in inspect.getmro(UpperCamelCase__ ): _UpperCAmelCase : List[Any] = base_class.__module__ _UpperCAmelCase : Union[str, Any] = base_class.__name__ if module.startswith('''tensorflow''' ) or module.startswith('''keras''' ) or name == "TFPreTrainedModel": return "tf" elif module.startswith('''torch''' ) or name == "PreTrainedModel": return "pt" elif module.startswith('''flax''' ) or module.startswith('''jax''' ) or name == "FlaxPreTrainedModel": return "flax" else: raise TypeError(F'Could not infer framework from class {model_class}.' )
68
"""simple docstring""" import enum import os from hashlib import shaaaa from typing import Optional from .. import config from .logging import get_logger _lowerCAmelCase :int = get_logger(__name__) class _UpperCAmelCase ( enum.Enum ): '''simple docstring''' a__ ='''all_checks''' a__ ='''basic_checks''' a__ ='''no_checks''' class _UpperCAmelCase ( a ): '''simple docstring''' class _UpperCAmelCase ( a ): '''simple docstring''' class _UpperCAmelCase ( a ): '''simple docstring''' class _UpperCAmelCase ( a ): '''simple docstring''' def lowerCamelCase_ (UpperCamelCase__ : Optional[dict] , UpperCamelCase__ : dict , UpperCamelCase__ : Tuple=None ): if expected_checksums is None: logger.info('''Unable to verify checksums.''' ) return if len(set(UpperCamelCase__ ) - set(UpperCamelCase__ ) ) > 0: raise ExpectedMoreDownloadedFiles(str(set(UpperCamelCase__ ) - set(UpperCamelCase__ ) ) ) if len(set(UpperCamelCase__ ) - set(UpperCamelCase__ ) ) > 0: raise UnexpectedDownloadedFile(str(set(UpperCamelCase__ ) - set(UpperCamelCase__ ) ) ) _UpperCAmelCase : Optional[Any] = [url for url in expected_checksums if expected_checksums[url] != recorded_checksums[url]] _UpperCAmelCase : str = ''' for ''' + verification_name if verification_name is not None else '''''' if len(UpperCamelCase__ ) > 0: raise NonMatchingChecksumError( F'Checksums didn\'t match{for_verification_name}:\n' F'{bad_urls}\n' '''Set `verification_mode=\'no_checks\'` to skip checksums verification and ignore this error''' ) logger.info('''All the checksums matched successfully''' + for_verification_name ) class _UpperCAmelCase ( a ): '''simple docstring''' class _UpperCAmelCase ( a ): '''simple docstring''' class _UpperCAmelCase ( a ): '''simple docstring''' class _UpperCAmelCase ( a ): '''simple docstring''' def lowerCamelCase_ (UpperCamelCase__ : Optional[dict] , UpperCamelCase__ : dict ): if expected_splits is None: logger.info('''Unable to verify splits sizes.''' ) return if len(set(UpperCamelCase__ ) - set(UpperCamelCase__ ) ) > 0: raise ExpectedMoreSplits(str(set(UpperCamelCase__ ) - set(UpperCamelCase__ ) ) ) if len(set(UpperCamelCase__ ) - set(UpperCamelCase__ ) ) > 0: raise UnexpectedSplits(str(set(UpperCamelCase__ ) - set(UpperCamelCase__ ) ) ) _UpperCAmelCase : Dict = [ {'''expected''': expected_splits[name], '''recorded''': recorded_splits[name]} for name in expected_splits if expected_splits[name].num_examples != recorded_splits[name].num_examples ] if len(UpperCamelCase__ ) > 0: raise NonMatchingSplitsSizesError(str(UpperCamelCase__ ) ) logger.info('''All the splits matched successfully.''' ) def lowerCamelCase_ (UpperCamelCase__ : str , UpperCamelCase__ : bool = True ): if record_checksum: _UpperCAmelCase : Any = shaaaa() with open(UpperCamelCase__ , '''rb''' ) as f: for chunk in iter(lambda: f.read(1 << 20 ) , B'''''' ): m.update(UpperCamelCase__ ) _UpperCAmelCase : int = m.hexdigest() else: _UpperCAmelCase : Union[str, Any] = None return {"num_bytes": os.path.getsize(UpperCamelCase__ ), "checksum": checksum} def lowerCamelCase_ (UpperCamelCase__ : List[str] ): if dataset_size and config.IN_MEMORY_MAX_SIZE: return dataset_size < config.IN_MEMORY_MAX_SIZE else: return False
68
1
def snake_case__ ( lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =[0] * len(lowerCAmelCase_ ) for i in range(1, len(lowerCAmelCase_ ) ): # use last results for better performance - dynamic programming SCREAMING_SNAKE_CASE =prefix_result[i - 1] while j > 0 and input_string[i] != input_string[j]: SCREAMING_SNAKE_CASE =prefix_result[j - 1] if input_string[i] == input_string[j]: j += 1 SCREAMING_SNAKE_CASE =j return prefix_result def snake_case__ ( lowerCAmelCase_ ): """simple docstring""" return max(prefix_function(lowerCAmelCase_ ) ) if __name__ == "__main__": import doctest doctest.testmod()
334
def snake_case__ ( lowerCAmelCase_ ): """simple docstring""" return " ".join( ''.join(word[::-1] ) if len(lowerCAmelCase_ ) > 4 else word for word in sentence.split() ) if __name__ == "__main__": import doctest doctest.testmod() print(reverse_long_words("Hey wollef sroirraw"))
334
1
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast from ...utils import logging if TYPE_CHECKING: from ...feature_extraction_utils import FeatureExtractionMixin from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType SCREAMING_SNAKE_CASE : Union[str, Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Union[str, Any] = { """openai/whisper-base""": """https://huggingface.co/openai/whisper-base/resolve/main/config.json""", } # fmt: off SCREAMING_SNAKE_CASE : int = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 357, 366, 438, 532, 685, 705, 796, 930, 1058, 1220, 1267, 1279, 1303, 1343, 1377, 1391, 1635, 1782, 1875, 2162, 2361, 2488, 3467, 4008, 4211, 4600, 4808, 5299, 5855, 6329, 7203, 9609, 9959, 1_0563, 1_0786, 1_1420, 1_1709, 1_1907, 1_3163, 1_3697, 1_3700, 1_4808, 1_5306, 1_6410, 1_6791, 1_7992, 1_9203, 1_9510, 2_0724, 2_2305, 2_2935, 2_7007, 3_0109, 3_0420, 3_3409, 3_4949, 4_0283, 4_0493, 4_0549, 4_7282, 4_9146, 5_0257, 5_0359, 5_0360, 5_0361 ] SCREAMING_SNAKE_CASE : Tuple = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 359, 503, 522, 542, 873, 893, 902, 918, 922, 931, 1350, 1853, 1982, 2460, 2627, 3246, 3253, 3268, 3536, 3846, 3961, 4183, 4667, 6585, 6647, 7273, 9061, 9383, 1_0428, 1_0929, 1_1938, 1_2033, 1_2331, 1_2562, 1_3793, 1_4157, 1_4635, 1_5265, 1_5618, 1_6553, 1_6604, 1_8362, 1_8956, 2_0075, 2_1675, 2_2520, 2_6130, 2_6161, 2_6435, 2_8279, 2_9464, 3_1650, 3_2302, 3_2470, 3_6865, 4_2863, 4_7425, 4_9870, 5_0254, 5_0258, 5_0360, 5_0361, 5_0362 ] class _UpperCAmelCase ( __snake_case ): '''simple docstring''' lowerCamelCase__ ='whisper' lowerCamelCase__ =['past_key_values'] lowerCamelCase__ ={'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__(self , a_=5_18_65 , a_=80 , a_=6 , a_=4 , a_=6 , a_=4 , a_=15_36 , a_=15_36 , a_=0.0 , a_=0.0 , a_=5_02_57 , a_=True , a_=True , a_="gelu" , a_=2_56 , a_=0.0 , a_=0.0 , a_=0.0 , a_=0.02 , a_=False , a_=15_00 , a_=4_48 , a_=5_02_56 , a_=5_02_56 , a_=5_02_56 , a_=None , a_=[2_20, 5_02_56] , a_=False , a_=2_56 , a_=False , a_=0.05 , a_=10 , a_=2 , a_=0.0 , a_=10 , a_=0 , a_=7 , **a_ , ): '''simple docstring''' __snake_case : Any = vocab_size __snake_case : Optional[int] = num_mel_bins __snake_case : int = d_model __snake_case : Any = encoder_layers __snake_case : int = encoder_attention_heads __snake_case : List[Any] = decoder_layers __snake_case : Any = decoder_attention_heads __snake_case : Optional[int] = decoder_ffn_dim __snake_case : Optional[Any] = encoder_ffn_dim __snake_case : Tuple = dropout __snake_case : Optional[int] = attention_dropout __snake_case : Optional[int] = activation_dropout __snake_case : List[str] = activation_function __snake_case : Any = init_std __snake_case : Tuple = encoder_layerdrop __snake_case : Dict = decoder_layerdrop __snake_case : Optional[Any] = use_cache __snake_case : Optional[Any] = encoder_layers __snake_case : Optional[Any] = scale_embedding # scale factor will be sqrt(d_model) if True __snake_case : Optional[Any] = max_source_positions __snake_case : int = max_target_positions # Audio Classification-specific parameters. Feel free to ignore for other classes. __snake_case : List[Any] = classifier_proj_size __snake_case : str = use_weighted_layer_sum # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __snake_case : List[Any] = apply_spec_augment __snake_case : List[Any] = mask_time_prob __snake_case : int = mask_time_length __snake_case : Any = mask_time_min_masks __snake_case : Union[str, Any] = mask_feature_prob __snake_case : Optional[Any] = mask_feature_length __snake_case : List[str] = mask_feature_min_masks __snake_case : Dict = median_filter_width super().__init__( pad_token_id=a_ , bos_token_id=a_ , eos_token_id=a_ , is_encoder_decoder=a_ , decoder_start_token_id=a_ , suppress_tokens=a_ , begin_suppress_tokens=a_ , **a_ , ) class _UpperCAmelCase ( __snake_case ): '''simple docstring''' @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[Any] = OrderedDict( [ ('''input_features''', {0: '''batch''', 1: '''feature_size''', 2: '''encoder_sequence'''}), ] ) if self.use_past: __snake_case : int = {0: '''batch'''} else: __snake_case : Optional[Any] = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(a_ , direction='''inputs''' ) return common_inputs def SCREAMING_SNAKE_CASE (self , a_ , a_ = -1 , a_ = -1 , a_ = False , a_ = None , a_ = 2_20_50 , a_ = 5.0 , a_ = 2_20 , ): '''simple docstring''' __snake_case : Tuple = OrderedDict() __snake_case : List[Any] = OnnxConfig.generate_dummy_inputs( self , preprocessor=preprocessor.feature_extractor , batch_size=a_ , framework=a_ , sampling_rate=a_ , time_duration=a_ , frequency=a_ , ) __snake_case : int = encoder_inputs['''input_features'''].shape[2] __snake_case : Dict = encoder_sequence_length // 2 if self.use_past else seq_length __snake_case : Dict = super().generate_dummy_inputs( preprocessor.tokenizer , a_ , a_ , a_ , a_ ) __snake_case : List[Any] = encoder_inputs.pop('''input_features''' ) __snake_case : str = decoder_inputs.pop('''decoder_input_ids''' ) if "past_key_values" in decoder_inputs: __snake_case : Union[str, Any] = decoder_inputs.pop('''past_key_values''' ) return dummy_inputs @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return 1E-3
24
"""simple docstring""" def lowercase ( ) ->int: """simple docstring""" return [ a * b * (1_000 - a - b) for a in range(1 , 999 ) for b in range(_snake_case , 999 ) if (a * a + b * b == (1_000 - a - b) ** 2) ][0] if __name__ == "__main__": print(F'{solution() = }')
24
1
'''simple docstring''' import math import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from .attention_processor import Attention from .embeddings import get_timestep_embedding from .modeling_utils import ModelMixin class lowercase_ ( a__ , a__ ): @register_to_config def __init__( self , a = 1_28 , a = 2_56 , a = 2000.0 , a = 7_68 , a = 12 , a = 12 , a = 64 , a = 20_48 , a = 0.1 , ): super().__init__() UpperCamelCase__ = nn.Sequential( nn.Linear(a , d_model * 4 , bias=a ) , nn.SiLU() , nn.Linear(d_model * 4 , d_model * 4 , bias=a ) , nn.SiLU() , ) UpperCamelCase__ = nn.Embedding(a , a ) UpperCamelCase__ = False UpperCamelCase__ = nn.Linear(a , a , bias=a ) UpperCamelCase__ = nn.Dropout(p=a ) UpperCamelCase__ = nn.ModuleList() for lyr_num in range(a ): # FiLM conditional T5 decoder UpperCamelCase__ = DecoderLayer(d_model=a , d_kv=a , num_heads=a , d_ff=a , dropout_rate=a ) self.decoders.append(a ) UpperCamelCase__ = TaLayerNorm(a ) UpperCamelCase__ = nn.Dropout(p=a ) UpperCamelCase__ = nn.Linear(a , a , bias=a ) def __a ( self , a , a ): UpperCamelCase__ = torch.mul(query_input.unsqueeze(-1 ) , key_input.unsqueeze(-2 ) ) return mask.unsqueeze(-3 ) def __a ( self , a , a , a ): UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = decoder_input_tokens.shape assert decoder_noise_time.shape == (batch,) # decoder_noise_time is in [0, 1), so rescale to expected timing range. UpperCamelCase__ = get_timestep_embedding( decoder_noise_time * self.config.max_decoder_noise_time , embedding_dim=self.config.d_model , max_period=self.config.max_decoder_noise_time , ).to(dtype=self.dtype ) UpperCamelCase__ = self.conditioning_emb(a ).unsqueeze(1 ) assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4) UpperCamelCase__ = decoder_input_tokens.shape[1] # If we want to use relative positions for audio context, we can just offset # this sequence by the length of encodings_and_masks. UpperCamelCase__ = torch.broadcast_to( torch.arange(a , device=decoder_input_tokens.device ) , (batch, seq_length) , ) UpperCamelCase__ = self.position_encoding(a ) UpperCamelCase__ = self.continuous_inputs_projection(a ) inputs += position_encodings UpperCamelCase__ = self.dropout(a ) # decoder: No padding present. UpperCamelCase__ = torch.ones( decoder_input_tokens.shape[:2] , device=decoder_input_tokens.device , dtype=inputs.dtype ) # Translate encoding masks to encoder-decoder masks. UpperCamelCase__ = [(x, self.encoder_decoder_mask(a , a )) for x, y in encodings_and_masks] # cross attend style: concat encodings UpperCamelCase__ = torch.cat([x[0] for x in encodings_and_encdec_masks] , dim=1 ) UpperCamelCase__ = torch.cat([x[1] for x in encodings_and_encdec_masks] , dim=-1 ) for lyr in self.decoders: UpperCamelCase__ = lyr( a , conditioning_emb=a , encoder_hidden_states=a , encoder_attention_mask=a , )[0] UpperCamelCase__ = self.decoder_norm(a ) UpperCamelCase__ = self.post_dropout(a ) UpperCamelCase__ = self.spec_out(a ) return spec_out class lowercase_ ( nn.Module ): def __init__( self , a , a , a , a , a , a=1e-6 ): super().__init__() UpperCamelCase__ = nn.ModuleList() # cond self attention: layer 0 self.layer.append( TaLayerSelfAttentionCond(d_model=a , d_kv=a , num_heads=a , dropout_rate=a ) ) # cross attention: layer 1 self.layer.append( TaLayerCrossAttention( d_model=a , d_kv=a , num_heads=a , dropout_rate=a , layer_norm_epsilon=a , ) ) # Film Cond MLP + dropout: last layer self.layer.append( TaLayerFFCond(d_model=a , d_ff=a , dropout_rate=a , layer_norm_epsilon=a ) ) def __a ( self , a , a=None , a=None , a=None , a=None , a=None , ): UpperCamelCase__ = self.layer[0]( a , conditioning_emb=a , attention_mask=a , ) if encoder_hidden_states is not None: UpperCamelCase__ = torch.where(encoder_attention_mask > 0 , 0 , -1e10 ).to( encoder_hidden_states.dtype ) UpperCamelCase__ = self.layer[1]( a , key_value_states=a , attention_mask=a , ) # Apply Film Conditional Feed Forward layer UpperCamelCase__ = self.layer[-1](a , a ) return (hidden_states,) class lowercase_ ( nn.Module ): def __init__( self , a , a , a , a ): super().__init__() UpperCamelCase__ = TaLayerNorm(a ) UpperCamelCase__ = TaFiLMLayer(in_features=d_model * 4 , out_features=a ) UpperCamelCase__ = Attention(query_dim=a , heads=a , dim_head=a , out_bias=a , scale_qk=a ) UpperCamelCase__ = nn.Dropout(a ) def __a ( self , a , a=None , a=None , ): # pre_self_attention_layer_norm UpperCamelCase__ = self.layer_norm(a ) if conditioning_emb is not None: UpperCamelCase__ = self.FiLMLayer(a , a ) # Self-attention block UpperCamelCase__ = self.attention(a ) UpperCamelCase__ = hidden_states + self.dropout(a ) return hidden_states class lowercase_ ( nn.Module ): def __init__( self , a , a , a , a , a ): super().__init__() UpperCamelCase__ = Attention(query_dim=a , heads=a , dim_head=a , out_bias=a , scale_qk=a ) UpperCamelCase__ = TaLayerNorm(a , eps=a ) UpperCamelCase__ = nn.Dropout(a ) def __a ( self , a , a=None , a=None , ): UpperCamelCase__ = self.layer_norm(a ) UpperCamelCase__ = self.attention( a , encoder_hidden_states=a , attention_mask=attention_mask.squeeze(1 ) , ) UpperCamelCase__ = hidden_states + self.dropout(a ) return layer_output class lowercase_ ( nn.Module ): def __init__( self , a , a , a , a ): super().__init__() UpperCamelCase__ = TaDenseGatedActDense(d_model=a , d_ff=a , dropout_rate=a ) UpperCamelCase__ = TaFiLMLayer(in_features=d_model * 4 , out_features=a ) UpperCamelCase__ = TaLayerNorm(a , eps=a ) UpperCamelCase__ = nn.Dropout(a ) def __a ( self , a , a=None ): UpperCamelCase__ = self.layer_norm(a ) if conditioning_emb is not None: UpperCamelCase__ = self.film(a , a ) UpperCamelCase__ = self.DenseReluDense(a ) UpperCamelCase__ = hidden_states + self.dropout(a ) return hidden_states class lowercase_ ( nn.Module ): def __init__( self , a , a , a ): super().__init__() UpperCamelCase__ = nn.Linear(a , a , bias=a ) UpperCamelCase__ = nn.Linear(a , a , bias=a ) UpperCamelCase__ = nn.Linear(a , a , bias=a ) UpperCamelCase__ = nn.Dropout(a ) UpperCamelCase__ = NewGELUActivation() def __a ( self , a ): UpperCamelCase__ = self.act(self.wi_a(a ) ) UpperCamelCase__ = self.wi_a(a ) UpperCamelCase__ = hidden_gelu * hidden_linear UpperCamelCase__ = self.dropout(a ) UpperCamelCase__ = self.wo(a ) return hidden_states class lowercase_ ( nn.Module ): def __init__( self , a , a=1e-6 ): super().__init__() UpperCamelCase__ = nn.Parameter(torch.ones(a ) ) UpperCamelCase__ = eps def __a ( self , a ): # T5 uses a layer_norm which only scales and doesn't shift, which is also known as Root Mean # Square Layer Normalization https://arxiv.org/abs/1910.07467 thus variance is calculated # w/o mean and there is no bias. Additionally we want to make sure that the accumulation for # half-precision inputs is done in fp32 UpperCamelCase__ = hidden_states.to(torch.floataa ).pow(2 ).mean(-1 , keepdim=a ) UpperCamelCase__ = hidden_states * torch.rsqrt(variance + self.variance_epsilon ) # convert into half-precision if necessary if self.weight.dtype in [torch.floataa, torch.bfloataa]: UpperCamelCase__ = hidden_states.to(self.weight.dtype ) return self.weight * hidden_states class lowercase_ ( nn.Module ): def __a ( self , a ): return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi ) * (input + 0.04_4715 * torch.pow(a , 3.0 )) )) class lowercase_ ( nn.Module ): def __init__( self , a , a ): super().__init__() UpperCamelCase__ = nn.Linear(a , out_features * 2 , bias=a ) def __a ( self , a , a ): UpperCamelCase__ = self.scale_bias(a ) UpperCamelCase__ , UpperCamelCase__ = torch.chunk(a , 2 , -1 ) UpperCamelCase__ = x * (1 + scale) + shift return x
80
import os import pytest import yaml from datasets.features.features import Features, Value from datasets.info import DatasetInfo, DatasetInfosDict @pytest.mark.parametrize( '''files''' , [ ['''full:README.md''', '''dataset_infos.json'''], ['''empty:README.md''', '''dataset_infos.json'''], ['''dataset_infos.json'''], ['''full:README.md'''], ] , ) def lowerCamelCase__ ( a , a ) -> Any: _A: Any = tmp_path_factory.mktemp('''dset_infos_dir''' ) if "full:README.md" in files: with open(dataset_infos_dir / '''README.md''' , '''w''' ) as f: f.write('''---\ndataset_info:\n dataset_size: 42\n---''' ) if "empty:README.md" in files: with open(dataset_infos_dir / '''README.md''' , '''w''' ) as f: f.write('''''' ) # we want to support dataset_infos.json for backward compatibility if "dataset_infos.json" in files: with open(dataset_infos_dir / '''dataset_infos.json''' , '''w''' ) as f: f.write('''{"default": {"dataset_size": 42}}''' ) _A: Optional[int] = DatasetInfosDict.from_directory(a ) assert dataset_infos assert dataset_infos["default"].dataset_size == 42 @pytest.mark.parametrize( '''dataset_info''' , [ DatasetInfo(), DatasetInfo( description='''foo''' , features=Features({'''a''': Value('''int32''' )} ) , builder_name='''builder''' , config_name='''config''' , version='''1.0.0''' , splits=[{'''name''': '''train'''}] , download_size=42 , ), ] , ) def lowerCamelCase__ ( a , a ) -> Any: _A: int = str(a ) dataset_info.write_to_directory(a ) _A: str = DatasetInfo.from_directory(a ) assert dataset_info == reloaded assert os.path.exists(os.path.join(a , '''dataset_info.json''' ) ) def lowerCamelCase__ ( ) -> Any: _A: int = DatasetInfo( description='''foo''' , citation='''bar''' , homepage='''https://foo.bar''' , license='''CC0''' , features=Features({'''a''': Value('''int32''' )} ) , post_processed={} , supervised_keys=() , task_templates=[] , builder_name='''builder''' , config_name='''config''' , version='''1.0.0''' , splits=[{'''name''': '''train''', '''num_examples''': 42}] , download_checksums={} , download_size=13_37 , post_processing_size=4_42 , dataset_size=12_34 , size_in_bytes=13_37 + 4_42 + 12_34 , ) _A: Optional[Any] = dataset_info._to_yaml_dict() assert sorted(a ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML ) for key in DatasetInfo._INCLUDED_INFO_IN_YAML: assert key in dataset_info_yaml_dict assert isinstance(dataset_info_yaml_dict[key] , (list, dict, int, str) ) _A: str = yaml.safe_dump(a ) _A: Optional[int] = yaml.safe_load(a ) assert dataset_info_yaml_dict == reloaded def lowerCamelCase__ ( ) -> int: _A: Union[str, Any] = DatasetInfo() _A: Union[str, Any] = dataset_info._to_yaml_dict() assert dataset_info_yaml_dict == {} @pytest.mark.parametrize( '''dataset_infos_dict''' , [ DatasetInfosDict(), DatasetInfosDict({'''default''': DatasetInfo()} ), DatasetInfosDict({'''my_config_name''': DatasetInfo()} ), DatasetInfosDict( { '''default''': DatasetInfo( description='''foo''' , features=Features({'''a''': Value('''int32''' )} ) , builder_name='''builder''' , config_name='''config''' , version='''1.0.0''' , splits=[{'''name''': '''train'''}] , download_size=42 , ) } ), DatasetInfosDict( { '''v1''': DatasetInfo(dataset_size=42 ), '''v2''': DatasetInfo(dataset_size=13_37 ), } ), ] , ) def lowerCamelCase__ ( a , a ) -> Optional[int]: _A: Optional[int] = str(a ) dataset_infos_dict.write_to_directory(a ) _A: Union[str, Any] = DatasetInfosDict.from_directory(a ) # the config_name of the dataset_infos_dict take over the attribute for config_name, dataset_info in dataset_infos_dict.items(): _A: Optional[Any] = config_name # the yaml representation doesn't include fields like description or citation # so we just test that we can recover what we can from the yaml _A: Any = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() ) assert dataset_infos_dict == reloaded if dataset_infos_dict: assert os.path.exists(os.path.join(a , '''README.md''' ) )
121
0
"""simple docstring""" import string import numpy def _lowerCAmelCase ( lowerCAmelCase , lowerCAmelCase ): '''simple docstring''' return b if a == 0 else greatest_common_divisor(b % a , __lowerCamelCase ) class UpperCamelCase_ : _A : int = string.ascii_uppercase + string.digits # This cipher takes alphanumerics into account # i.e. a total of 36 characters # take x and return x % len(key_string) _A : Dict = numpy.vectorize(lambda a_ : x % 36 ) _A : Optional[Any] = numpy.vectorize(A_ ) def __init__( self , snake_case__ ) -> List[str]: """simple docstring""" UpperCAmelCase = self.modulus(_lowerCamelCase ) # mod36 calc's on the encrypt key self.check_determinant() # validate the determinant of the encryption key UpperCAmelCase = encrypt_key.shape[0] def UpperCamelCase_ ( self , snake_case__ ) -> Optional[int]: """simple docstring""" return self.key_string.index(_lowerCamelCase ) def UpperCamelCase_ ( self , snake_case__ ) -> int: """simple docstring""" return self.key_string[round(_lowerCamelCase )] def UpperCamelCase_ ( self ) -> str: """simple docstring""" UpperCAmelCase = round(numpy.linalg.det(self.encrypt_key ) ) if det < 0: UpperCAmelCase = det % len(self.key_string ) UpperCAmelCase = len(self.key_string ) if greatest_common_divisor(_lowerCamelCase , len(self.key_string ) ) != 1: UpperCAmelCase = ( f'''determinant modular {req_l} of encryption key({det}) ''' f'''is not co prime w.r.t {req_l}.\nTry another key.''' ) raise ValueError(_lowerCamelCase ) def UpperCamelCase_ ( self , snake_case__ ) -> Tuple: """simple docstring""" UpperCAmelCase = [char for char in text.upper() if char in self.key_string] UpperCAmelCase = chars[-1] while len(_lowerCamelCase ) % self.break_key != 0: chars.append(_lowerCamelCase ) return "".join(_lowerCamelCase ) def UpperCamelCase_ ( self , snake_case__ ) -> Any: """simple docstring""" UpperCAmelCase = self.process_text(text.upper() ) UpperCAmelCase = """""" for i in range(0 , len(_lowerCamelCase ) - self.break_key + 1 , self.break_key ): UpperCAmelCase = text[i : i + self.break_key] UpperCAmelCase = [self.replace_letters(_lowerCamelCase ) for char in batch] UpperCAmelCase = numpy.array([vec] ).T UpperCAmelCase = self.modulus(self.encrypt_key.dot(_lowerCamelCase ) ).T.tolist()[ 0 ] UpperCAmelCase = """""".join( self.replace_digits(_lowerCamelCase ) for num in batch_encrypted ) encrypted += encrypted_batch return encrypted def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" UpperCAmelCase = round(numpy.linalg.det(self.encrypt_key ) ) if det < 0: UpperCAmelCase = det % len(self.key_string ) UpperCAmelCase = None for i in range(len(self.key_string ) ): if (det * i) % len(self.key_string ) == 1: UpperCAmelCase = i break UpperCAmelCase = ( det_inv * numpy.linalg.det(self.encrypt_key ) * numpy.linalg.inv(self.encrypt_key ) ) return self.to_int(self.modulus(_lowerCamelCase ) ) def UpperCamelCase_ ( self , snake_case__ ) -> List[str]: """simple docstring""" UpperCAmelCase = self.make_decrypt_key() UpperCAmelCase = self.process_text(text.upper() ) UpperCAmelCase = """""" for i in range(0 , len(_lowerCamelCase ) - self.break_key + 1 , self.break_key ): UpperCAmelCase = text[i : i + self.break_key] UpperCAmelCase = [self.replace_letters(_lowerCamelCase ) for char in batch] UpperCAmelCase = numpy.array([vec] ).T UpperCAmelCase = self.modulus(decrypt_key.dot(_lowerCamelCase ) ).T.tolist()[0] UpperCAmelCase = """""".join( self.replace_digits(_lowerCamelCase ) for num in batch_decrypted ) decrypted += decrypted_batch return decrypted def _lowerCAmelCase ( ): '''simple docstring''' UpperCAmelCase = int(input("""Enter the order of the encryption key: """ ) ) UpperCAmelCase = [] print("""Enter each row of the encryption key with space separated integers""" ) for _ in range(__lowerCamelCase ): UpperCAmelCase = [int(__lowerCamelCase ) for x in input().split()] hill_matrix.append(__lowerCamelCase ) UpperCAmelCase = HillCipher(numpy.array(__lowerCamelCase ) ) print("""Would you like to encrypt or decrypt some text? (1 or 2)""" ) UpperCAmelCase = input("""\n1. Encrypt\n2. Decrypt\n""" ) if option == "1": UpperCAmelCase = input("""What text would you like to encrypt?: """ ) print("""Your encrypted text is:""" ) print(hc.encrypt(__lowerCamelCase ) ) elif option == "2": UpperCAmelCase = input("""What text would you like to decrypt?: """ ) print("""Your decrypted text is:""" ) print(hc.decrypt(__lowerCamelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
368
"""simple docstring""" lowerCAmelCase_ : Dict = {str(digit): digit**5 for digit in range(1_0)} def _lowerCAmelCase ( lowerCAmelCase ): '''simple docstring''' return sum(DIGITS_FIFTH_POWER[digit] for digit in str(lowerCAmelCase ) ) def _lowerCAmelCase ( ): '''simple docstring''' return sum( number for number in range(1000 , 1000000 ) if number == digits_fifth_powers_sum(lowerCAmelCase ) ) if __name__ == "__main__": print(solution())
248
0
'''simple docstring''' import glob import os import random from string import ascii_lowercase, digits import cva lowerCAmelCase :int = '''''' lowerCAmelCase :str = '''''' lowerCAmelCase :Tuple = '''''' lowerCAmelCase :List[str] = 1 # (0 is vertical, 1 is horizontal) def lowerCamelCase ( ): """simple docstring""" __magic_name__ : Union[str, Any] = get_dataset(_UpperCAmelCase , _UpperCAmelCase ) print('Processing...' ) __magic_name__ : List[Any] = update_image_and_anno(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) for index, image in enumerate(_UpperCAmelCase ): # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' __magic_name__ : Any = random_chars(32 ) __magic_name__ : List[str] = paths[index].split(os.sep )[-1].rsplit('.' , 1 )[0] __magic_name__ : Optional[Any] = f'{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}' cva.imwrite(f'/{file_root}.jpg' , _UpperCAmelCase , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(f'Success {index+1}/{len(_UpperCAmelCase )} with {file_name}' ) __magic_name__ : Optional[Any] = [] for anno in new_annos[index]: __magic_name__ : Union[str, Any] = f'{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}' annos_list.append(_UpperCAmelCase ) with open(f'/{file_root}.txt' , 'w' ) as outfile: outfile.write('\n'.join(line for line in annos_list ) ) def lowerCamelCase ( lowerCAmelCase : str , lowerCAmelCase : str ): """simple docstring""" __magic_name__ : Any = [] __magic_name__ : Any = [] for label_file in glob.glob(os.path.join(_UpperCAmelCase , '*.txt' ) ): __magic_name__ : Optional[Any] = label_file.split(os.sep )[-1].rsplit('.' , 1 )[0] with open(_UpperCAmelCase ) as in_file: __magic_name__ : List[str] = in_file.readlines() __magic_name__ : Optional[Any] = os.path.join(_UpperCAmelCase , f'{label_name}.jpg' ) __magic_name__ : str = [] for obj_list in obj_lists: __magic_name__ : str = obj_list.rstrip('\n' ).split(' ' ) boxes.append( [ int(obj[0] ), float(obj[1] ), float(obj[2] ), float(obj[3] ), float(obj[4] ), ] ) if not boxes: continue img_paths.append(_UpperCAmelCase ) labels.append(_UpperCAmelCase ) return img_paths, labels def lowerCamelCase ( lowerCAmelCase : list , lowerCAmelCase : list , lowerCAmelCase : int = 1 ): """simple docstring""" __magic_name__ : Dict = [] __magic_name__ : Optional[Any] = [] __magic_name__ : Any = [] for idx in range(len(_UpperCAmelCase ) ): __magic_name__ : Tuple = [] __magic_name__ : List[Any] = img_list[idx] path_list.append(_UpperCAmelCase ) __magic_name__ : str = anno_list[idx] __magic_name__ : str = cva.imread(_UpperCAmelCase ) if flip_type == 1: __magic_name__ : Any = cva.flip(_UpperCAmelCase , _UpperCAmelCase ) for bbox in img_annos: __magic_name__ : List[str] = 1 - bbox[1] new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] ) elif flip_type == 0: __magic_name__ : Any = cva.flip(_UpperCAmelCase , _UpperCAmelCase ) for bbox in img_annos: __magic_name__ : Union[str, Any] = 1 - bbox[2] new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] ) new_annos_lists.append(_UpperCAmelCase ) new_imgs_list.append(_UpperCAmelCase ) return new_imgs_list, new_annos_lists, path_list def lowerCamelCase ( lowerCAmelCase : int = 32 ): """simple docstring""" assert number_char > 1, "The number of character should greater than 1" __magic_name__ : Union[str, Any] = ascii_lowercase + digits return "".join(random.choice(_UpperCAmelCase ) for _ in range(_UpperCAmelCase ) ) if __name__ == "__main__": main() print('''DONE ✅''')
331
from itertools import product from cva import COLOR_BGR2GRAY, cvtColor, imread, imshow, waitKey from numpy import dot, exp, mgrid, pi, ravel, square, uinta, zeros def a ( _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[int] ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = k_size // 2 __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = mgrid[0 - center : k_size - center, 0 - center : k_size - center] __UpperCAmelCase : Any = 1 / (2 * pi * sigma) * exp(-(square(_UpperCAmelCase ) + square(_UpperCAmelCase )) / (2 * square(_UpperCAmelCase )) ) return g def a ( _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Any , _UpperCAmelCase : List[Any] ): '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = image.shape[0], image.shape[1] # dst image height and width __UpperCAmelCase : str = height - k_size + 1 __UpperCAmelCase : Optional[int] = width - k_size + 1 # im2col, turn the k_size*k_size pixels into a row and np.vstack all rows __UpperCAmelCase : str = zeros((dst_height * dst_width, k_size * k_size) ) __UpperCAmelCase : Optional[Any] = 0 for i, j in product(range(_UpperCAmelCase ) , range(_UpperCAmelCase ) ): __UpperCAmelCase : int = ravel(image[i : i + k_size, j : j + k_size] ) __UpperCAmelCase : Union[str, Any] = window row += 1 # turn the kernel into shape(k*k, 1) __UpperCAmelCase : Tuple = gen_gaussian_kernel(_UpperCAmelCase , _UpperCAmelCase ) __UpperCAmelCase : List[Any] = ravel(_UpperCAmelCase ) # reshape and get the dst image __UpperCAmelCase : Optional[Any] = dot(_UpperCAmelCase , _UpperCAmelCase ).reshape(_UpperCAmelCase , _UpperCAmelCase ).astype(_UpperCAmelCase ) return dst if __name__ == "__main__": # read original image __A =imread(R"../image_data/lena.jpg") # turn image in gray scale value __A =cvtColor(img, COLOR_BGR2GRAY) # get values with two different mask size __A =gaussian_filter(gray, 3, sigma=1) __A =gaussian_filter(gray, 5, sigma=0.8) # show result images imshow("gaussian filter with 3x3 mask", gaussianaxa) imshow("gaussian filter with 5x5 mask", gaussianaxa) waitKey()
226
0
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from ...utils.dataclasses import ( ComputeEnvironment, DistributedType, DynamoBackend, PrecisionType, SageMakerDistributedType, ) from ..menu import BulletMenu a : Optional[Any] = [ """EAGER""", """AOT_EAGER""", """INDUCTOR""", """NVFUSER""", """AOT_NVFUSER""", """AOT_CUDAGRAPHS""", """OFI""", """FX2TRT""", """ONNXRT""", """IPEX""", ] def __lowerCamelCase ( _lowercase , _lowercase=None , _lowercase=None , _lowercase=None ) -> str: UpperCAmelCase : Dict = True while ask_again: UpperCAmelCase : Any = input(_lowercase ) try: if default is not None and len(_lowercase ) == 0: return default return convert_value(_lowercase ) if convert_value is not None else result except Exception: if error_message is not None: print(_lowercase ) def __lowerCamelCase ( _lowercase , _lowercase=[] , _lowercase=None , _lowercase=0 ) -> List[str]: UpperCAmelCase : int = BulletMenu(_lowercase , _lowercase ) UpperCAmelCase : List[str] = menu.run(default_choice=_lowercase ) return convert_value(_lowercase ) if convert_value is not None else result def __lowerCamelCase ( _lowercase ) -> Optional[Any]: UpperCAmelCase : Any = int(_lowercase ) return ComputeEnvironment(["""LOCAL_MACHINE""", """AMAZON_SAGEMAKER"""][value] ) def __lowerCamelCase ( _lowercase ) -> List[str]: UpperCAmelCase : Optional[int] = int(_lowercase ) return DistributedType(["""NO""", """MULTI_CPU""", """MULTI_XPU""", """MULTI_GPU""", """MULTI_NPU""", """TPU"""][value] ) def __lowerCamelCase ( _lowercase ) -> int: UpperCAmelCase : Optional[Any] = int(_lowercase ) return DynamoBackend(DYNAMO_BACKENDS[value] ).value def __lowerCamelCase ( _lowercase ) -> Union[str, Any]: UpperCAmelCase : int = int(_lowercase ) return PrecisionType(["""no""", """fp16""", """bf16""", """fp8"""][value] ) def __lowerCamelCase ( _lowercase ) -> int: UpperCAmelCase : Optional[int] = int(_lowercase ) return SageMakerDistributedType(["""NO""", """DATA_PARALLEL""", """MODEL_PARALLEL"""][value] ) def __lowerCamelCase ( _lowercase ) -> str: return {"yes": True, "no": False}[value.lower()] class UpperCamelCase_ ( argparse.RawDescriptionHelpFormatter ): def _lowercase( self , A , A , A , A ) -> Dict: UpperCAmelCase : Optional[Any] = super()._format_usage(A , A , A , A ) UpperCAmelCase : Tuple = usage.replace("""<command> [<args>] """ , """""" ) return usage
338
'''simple docstring''' from __future__ import annotations import unittest from transformers import AutoTokenizer, MBartConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFMBartForConditionalGeneration, TFMBartModel @require_tf class UpperCamelCase_ : lowercase = MBartConfig lowercase = {} lowercase = 'gelu' def __init__( self , A , A=13 , A=7 , A=True , A=False , A=99 , A=32 , A=2 , A=4 , A=37 , A=0.1 , A=0.1 , A=20 , A=2 , A=1 , A=0 , ) -> Optional[int]: UpperCAmelCase : Optional[int] = parent UpperCAmelCase : Dict = batch_size UpperCAmelCase : Tuple = seq_length UpperCAmelCase : str = is_training UpperCAmelCase : Optional[int] = use_labels UpperCAmelCase : Optional[Any] = vocab_size UpperCAmelCase : Union[str, Any] = hidden_size UpperCAmelCase : Union[str, Any] = num_hidden_layers UpperCAmelCase : List[Any] = num_attention_heads UpperCAmelCase : Optional[int] = intermediate_size UpperCAmelCase : Dict = hidden_dropout_prob UpperCAmelCase : int = attention_probs_dropout_prob UpperCAmelCase : Optional[int] = max_position_embeddings UpperCAmelCase : Optional[Any] = eos_token_id UpperCAmelCase : List[str] = pad_token_id UpperCAmelCase : List[Any] = bos_token_id def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) UpperCAmelCase : List[str] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) UpperCAmelCase : Union[str, Any] = tf.concat([input_ids, eos_tensor] , axis=1 ) UpperCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase : str = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) UpperCAmelCase : List[Any] = prepare_mbart_inputs_dict(A , A , A ) return config, inputs_dict def _lowercase( self , A , A ) -> List[str]: UpperCAmelCase : List[str] = TFMBartModel(config=A ).get_decoder() UpperCAmelCase : int = inputs_dict["""input_ids"""] UpperCAmelCase : str = input_ids[:1, :] UpperCAmelCase : Optional[Any] = inputs_dict["""attention_mask"""][:1, :] UpperCAmelCase : List[str] = inputs_dict["""head_mask"""] UpperCAmelCase : List[Any] = 1 # first forward pass UpperCAmelCase : List[str] = model(A , attention_mask=A , head_mask=A , use_cache=A ) UpperCAmelCase , UpperCAmelCase : Optional[Any] = outputs.to_tuple() UpperCAmelCase : int = past_key_values[1] def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase=None , ) -> List[str]: if attention_mask is None: UpperCAmelCase : Tuple = tf.cast(tf.math.not_equal(_lowercase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: UpperCAmelCase : int = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: UpperCAmelCase : List[Any] = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: UpperCAmelCase : List[str] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: UpperCAmelCase : Tuple = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class UpperCamelCase_ ( __magic_name__ , __magic_name__ , unittest.TestCase ): lowercase = (TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else () lowercase = (TFMBartForConditionalGeneration,) if is_tf_available() else () lowercase = ( { 'conversational': TFMBartForConditionalGeneration, 'feature-extraction': TFMBartModel, 'summarization': TFMBartForConditionalGeneration, 'text2text-generation': TFMBartForConditionalGeneration, 'translation': TFMBartForConditionalGeneration, } if is_tf_available() else {} ) lowercase = True lowercase = False lowercase = False def _lowercase( self , A , A , A , A , A ) -> int: if pipeline_test_casse_name != "FeatureExtractionPipelineTests": # Exception encountered when calling layer '...' return True return False def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : int = TFMBartModelTester(self ) UpperCAmelCase : Optional[int] = ConfigTester(self , config_class=A ) def _lowercase( self ) -> Optional[int]: self.config_tester.run_common_tests() def _lowercase( self ) -> Dict: UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*A ) @require_sentencepiece @require_tokenizers @require_tf class UpperCamelCase_ ( unittest.TestCase ): lowercase = [ ' UN Chief Says There Is No Military Solution in Syria', ] lowercase = [ 'Şeful ONU declară că nu există o soluţie militară în Siria', ] lowercase = 'facebook/mbart-large-en-ro' @cached_property def _lowercase( self ) -> Any: return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def _lowercase( self ) -> List[Any]: UpperCAmelCase : Optional[Any] = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def _lowercase( self , **A ) -> Any: UpperCAmelCase : Optional[int] = self.translate_src_text(**A ) self.assertListEqual(self.expected_text , A ) def _lowercase( self , **A ) -> Optional[Any]: UpperCAmelCase : List[str] = self.tokenizer(self.src_text , **A , return_tensors="""tf""" ) UpperCAmelCase : int = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 ) UpperCAmelCase : Any = self.tokenizer.batch_decode(A , skip_special_tokens=A ) return generated_words @slow def _lowercase( self ) -> List[Any]: self._assert_generated_batch_equal_expected()
338
1
import unittest from transformers import MPNetConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MPNetForMaskedLM, MPNetForMultipleChoice, MPNetForQuestionAnswering, MPNetForSequenceClassification, MPNetForTokenClassification, MPNetModel, ) class a__ : """simple docstring""" def __init__( self , lowercase , lowercase=13 , lowercase=7 , lowercase=True , lowercase=True , lowercase=False , lowercase=True , lowercase=99 , lowercase=64 , lowercase=5 , lowercase=4 , lowercase=64 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=512 , lowercase=16 , lowercase=2 , lowercase=0.02 , lowercase=3 , lowercase=4 , lowercase=None , ) -> List[str]: '''simple docstring''' A__ = parent A__ = batch_size A__ = seq_length A__ = is_training A__ = use_input_mask A__ = use_token_type_ids A__ = use_labels A__ = vocab_size A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_size A__ = hidden_act A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = max_position_embeddings A__ = type_vocab_size A__ = type_sequence_label_size A__ = initializer_range A__ = num_labels A__ = num_choices A__ = scope def UpperCamelCase ( self ) -> Optional[Any]: '''simple docstring''' return MPNetConfig.from_pretrained("microsoft/mpnet-base" ) def UpperCamelCase ( self ) -> Optional[Any]: '''simple docstring''' A__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A__ = None if self.use_input_mask: A__ = random_attention_mask([self.batch_size, self.seq_length] ) A__ = None A__ = None A__ = None if self.use_labels: A__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A__ = ids_tensor([self.batch_size] , self.num_choices ) A__ = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase ( self ) -> str: '''simple docstring''' return MPNetConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def UpperCamelCase ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> str: '''simple docstring''' A__ = MPNetModel(config=lowercase ) model.to(lowercase ) model.eval() A__ = model(lowercase , lowercase ) A__ = model(lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCamelCase ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> List[str]: '''simple docstring''' A__ = MPNetForQuestionAnswering(config=lowercase ) model.to(lowercase ) model.eval() A__ = model( lowercase , attention_mask=lowercase , start_positions=lowercase , end_positions=lowercase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> Optional[Any]: '''simple docstring''' A__ = self.num_labels A__ = MPNetForSequenceClassification(lowercase ) model.to(lowercase ) model.eval() A__ = model(lowercase , attention_mask=lowercase , labels=lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> Union[str, Any]: '''simple docstring''' A__ = self.num_choices A__ = MPNetForMultipleChoice(config=lowercase ) model.to(lowercase ) model.eval() A__ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A__ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A__ = model( lowercase , attention_mask=lowercase , labels=lowercase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCamelCase ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> int: '''simple docstring''' A__ = self.num_labels A__ = MPNetForTokenClassification(config=lowercase ) model.to(lowercase ) model.eval() A__ = model(lowercase , attention_mask=lowercase , labels=lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase ( self ) -> Dict: '''simple docstring''' A__ = self.prepare_config_and_inputs() ((A__) , (A__) , (A__) , (A__) , (A__) , (A__)) = config_and_inputs A__ = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class a__ ( snake_case , snake_case , unittest.TestCase ): """simple docstring""" __lowerCamelCase = ( ( MPNetForMaskedLM, MPNetForMultipleChoice, MPNetForQuestionAnswering, MPNetForSequenceClassification, MPNetForTokenClassification, MPNetModel, ) if is_torch_available() else () ) __lowerCamelCase = ( { 'feature-extraction': MPNetModel, 'fill-mask': MPNetForMaskedLM, 'question-answering': MPNetForQuestionAnswering, 'text-classification': MPNetForSequenceClassification, 'token-classification': MPNetForTokenClassification, 'zero-shot': MPNetForSequenceClassification, } if is_torch_available() else {} ) __lowerCamelCase = False __lowerCamelCase = True def UpperCamelCase ( self ) -> Union[str, Any]: '''simple docstring''' A__ = MPNetModelTester(self ) A__ = ConfigTester(self , config_class=lowercase , hidden_size=37 ) def UpperCamelCase ( self ) -> List[str]: '''simple docstring''' self.config_tester.run_common_tests() def UpperCamelCase ( self ) -> int: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_model(*lowercase ) def UpperCamelCase ( self ) -> Dict: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_sequence_classification(*lowercase ) def UpperCamelCase ( self ) -> int: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_multiple_choice(*lowercase ) def UpperCamelCase ( self ) -> str: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_token_classification(*lowercase ) def UpperCamelCase ( self ) -> List[Any]: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_question_answering(*lowercase ) @require_torch class a__ ( unittest.TestCase ): """simple docstring""" @slow def UpperCamelCase ( self ) -> List[str]: '''simple docstring''' A__ = MPNetModel.from_pretrained("microsoft/mpnet-base" ) A__ = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) A__ = model(lowercase )[0] A__ = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , lowercase ) A__ = torch.tensor( [[[-0.0550, 0.1943, -0.0740], [-0.0562, 0.2211, -0.0579], [-0.0437, 0.3337, -0.0641]]] ) # compare the actual values for a slice. self.assertTrue(torch.allclose(output[:, :3, :3] , lowercase , atol=1e-4 ) )
68
def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: int ) -> list: '''simple docstring''' A__ = int(SCREAMING_SNAKE_CASE_ ) if n_element < 1: A__ = ValueError("a should be a positive number" ) raise my_error A__ = [1] A__ , A__ , A__ = (0, 0, 0) A__ = 1 while index < n_element: while hamming_list[i] * 2 <= hamming_list[-1]: i += 1 while hamming_list[j] * 3 <= hamming_list[-1]: j += 1 while hamming_list[k] * 5 <= hamming_list[-1]: k += 1 hamming_list.append( min(hamming_list[i] * 2 , hamming_list[j] * 3 , hamming_list[k] * 5 ) ) index += 1 return hamming_list if __name__ == "__main__": lowerCAmelCase__ = input("""Enter the last number (nth term) of the Hamming Number Series: """) print("""Formula of Hamming Number Series => 2^i * 3^j * 5^k""") lowerCAmelCase__ = hamming(int(n)) print("""-----------------------------------------------------""") print(f"""The list with nth numbers is: {hamming_numbers}""") print("""-----------------------------------------------------""")
68
1
"""simple docstring""" import inspect import os import unittest from dataclasses import dataclass import torch from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs from accelerate.state import AcceleratorState from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu from accelerate.utils import KwargsHandler @dataclass class lowercase( __a ): '''simple docstring''' lowercase__ = 0 lowercase__ = False lowercase__ = 3.0 class lowercase( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self: Tuple ): '''simple docstring''' self.assertDictEqual(MockClass().to_kwargs(), {} ) self.assertDictEqual(MockClass(a=2 ).to_kwargs(), {"""a""": 2} ) self.assertDictEqual(MockClass(a=2, b=a_ ).to_kwargs(), {"""a""": 2, """b""": True} ) self.assertDictEqual(MockClass(a=2, c=2.25 ).to_kwargs(), {"""a""": 2, """c""": 2.25} ) @require_cuda def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' _snake_case : int = GradScalerKwargs(init_scale=1_024, growth_factor=2 ) AcceleratorState._reset_state() _snake_case : List[Any] = Accelerator(mixed_precision="""fp16""", kwargs_handlers=[scaler_handler] ) print(accelerator.use_fpaa ) _snake_case : List[str] = accelerator.scaler # Check the kwargs have been applied self.assertEqual(scaler._init_scale, 1_024.0 ) self.assertEqual(scaler._growth_factor, 2.0 ) # Check the other values are at the default self.assertEqual(scaler._backoff_factor, 0.5 ) self.assertEqual(scaler._growth_interval, 2_000 ) self.assertEqual(scaler._enabled, a_ ) @require_multi_gpu def UpperCamelCase_ ( self: str ): '''simple docstring''' _snake_case : int = ["""torchrun""", f"--nproc_per_node={torch.cuda.device_count()}", inspect.getfile(self.__class__ )] execute_subprocess_async(a_, env=os.environ.copy() ) if __name__ == "__main__": A_ = DistributedDataParallelKwargs(bucket_cap_mb=15, find_unused_parameters=True) A_ = Accelerator(kwargs_handlers=[ddp_scaler]) A_ = torch.nn.Linear(1_00, 2_00) A_ = accelerator.prepare(model) # Check the values changed in kwargs A_ = '''''' A_ = model.bucket_bytes_cap // (10_24 * 10_24) if observed_bucket_cap_map != 15: error_msg += F"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n" if model.find_unused_parameters is not True: error_msg += F"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n" # Check the values of the defaults if model.dim != 0: error_msg += F"Default value not respected, should have `0` but found {model.dim}.\n" if model.broadcast_buffers is not True: error_msg += F"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n" if model.gradient_as_bucket_view is not False: error_msg += F"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n" # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
132
"""simple docstring""" import unicodedata from dataclasses import dataclass from typing import Optional, Union import numpy as np from transformers.data.data_collator import DataCollatorMixin from transformers.file_utils import PaddingStrategy from transformers.tokenization_utils_base import PreTrainedTokenizerBase def UpperCAmelCase__ (snake_case__ : Optional[int] , snake_case__ : Any , snake_case__ : List[str] , snake_case__ : int ): """simple docstring""" if isinstance(snake_case__ , snake_case__ ): _snake_case : List[Any] = np.full((len(snake_case__ ), sequence_length, 2) , snake_case__ ) else: _snake_case : Any = np.full((len(snake_case__ ), sequence_length) , snake_case__ ) for i, tensor in enumerate(snake_case__ ): if padding_side == "right": if isinstance(snake_case__ , snake_case__ ): _snake_case : Dict = tensor[:sequence_length] else: _snake_case : List[Any] = tensor[:sequence_length] else: if isinstance(snake_case__ , snake_case__ ): _snake_case : str = tensor[:sequence_length] else: _snake_case : Tuple = tensor[:sequence_length] return out_tensor.tolist() def UpperCAmelCase__ (snake_case__ : Optional[int] ): """simple docstring""" _snake_case : str = ord(snake_case__ ) if (cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (cp >= 91 and cp <= 96) or (cp >= 1_23 and cp <= 1_26): return True _snake_case : Union[str, Any] = unicodedata.category(snake_case__ ) if cat.startswith("""P""" ): return True return False @dataclass class lowercase( __a ): '''simple docstring''' lowercase__ = 42 lowercase__ = True lowercase__ = None lowercase__ = None lowercase__ = -1_00 lowercase__ = "pt" def UpperCamelCase_ ( self: Any, a_: Union[str, Any] ): '''simple docstring''' import torch _snake_case : Optional[Any] = """label""" if """label""" in features[0].keys() else """labels""" _snake_case : str = [feature[label_name] for feature in features] if label_name in features[0].keys() else None _snake_case : Any = self.tokenizer.pad( a_, padding=self.padding, max_length=self.max_length, pad_to_multiple_of=self.pad_to_multiple_of, return_tensors="""pt""" if labels is None else None, ) if labels is None: return batch _snake_case : Optional[int] = torch.tensor(batch["""entity_ids"""] ).shape[1] _snake_case : Any = self.tokenizer.padding_side if padding_side == "right": _snake_case : Optional[int] = [ list(a_ ) + [self.label_pad_token_id] * (sequence_length - len(a_ )) for label in labels ] else: _snake_case : Union[str, Any] = [ [self.label_pad_token_id] * (sequence_length - len(a_ )) + list(a_ ) for label in labels ] _snake_case : List[Any] = [feature["""ner_tags"""] for feature in features] _snake_case : str = padding_tensor(a_, -1, a_, a_ ) _snake_case : Any = [feature["""original_entity_spans"""] for feature in features] _snake_case : int = padding_tensor(a_, (-1, -1), a_, a_ ) _snake_case : str = {k: torch.tensor(a_, dtype=torch.intaa ) for k, v in batch.items()} return batch
132
1
from __future__ import annotations from typing import Any class SCREAMING_SNAKE_CASE__ : def __init__(self : int , a__ : int , a__ : int , a__ : float = 0 ): """simple docstring""" __snake_case , __snake_case = row, column __snake_case = [[default_value for c in range(a__ )] for r in range(a__ )] def __str__(self : Any ): """simple docstring""" __snake_case = f"""Matrix consist of {self.row} rows and {self.column} columns\n""" # Make string identifier __snake_case = 0 for row_vector in self.array: for obj in row_vector: __snake_case = max(a__ , len(str(a__ ) ) ) __snake_case = f"""%{max_element_length}s""" # Make string and return def single_line(a__ : list[float] ) -> str: nonlocal string_format_identifier __snake_case = '''[''' line += ", ".join(string_format_identifier % (obj,) for obj in row_vector ) line += "]" return line s += "\n".join(single_line(a__ ) for row_vector in self.array ) return s def __repr__(self : List[Any] ): """simple docstring""" return str(self ) def a (self : Union[str, Any] , a__ : tuple[int, int] ): """simple docstring""" if not (isinstance(a__ , (list, tuple) ) and len(a__ ) == 2): return False elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column): return False else: return True def __getitem__(self : Tuple , a__ : tuple[int, int] ): """simple docstring""" assert self.validate_indicies(a__ ) return self.array[loc[0]][loc[1]] def __setitem__(self : Optional[int] , a__ : tuple[int, int] , a__ : float ): """simple docstring""" assert self.validate_indicies(a__ ) __snake_case = value def __add__(self : Optional[Any] , a__ : Matrix ): """simple docstring""" assert isinstance(a__ , a__ ) assert self.row == another.row and self.column == another.column # Add __snake_case = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): __snake_case = self[r, c] + another[r, c] return result def __neg__(self : str ): """simple docstring""" __snake_case = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): __snake_case = -self[r, c] return result def __sub__(self : Union[str, Any] , a__ : Matrix ): """simple docstring""" return self + (-another) def __mul__(self : List[str] , a__ : int | float | Matrix ): """simple docstring""" if isinstance(a__ , (int, float) ): # Scalar multiplication __snake_case = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): __snake_case = self[r, c] * another return result elif isinstance(a__ , a__ ): # Matrix multiplication assert self.column == another.row __snake_case = Matrix(self.row , another.column ) for r in range(self.row ): for c in range(another.column ): for i in range(self.column ): result[r, c] += self[r, i] * another[i, c] return result else: __snake_case = f"""Unsupported type given for another ({type(a__ )})""" raise TypeError(a__ ) def a (self : List[Any] ): """simple docstring""" __snake_case = Matrix(self.column , self.row ) for r in range(self.row ): for c in range(self.column ): __snake_case = self[r, c] return result def a (self : List[str] , a__ : Matrix , a__ : Matrix ): """simple docstring""" assert isinstance(a__ , a__ ) and isinstance(a__ , a__ ) assert self.row == self.column == u.row == v.row # u, v should be column vector assert u.column == v.column == 1 # u, v should be column vector # Calculate __snake_case = v.transpose() __snake_case = (v_t * self * u)[0, 0] + 1 if numerator_factor == 0: return None # It's not invertable return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor)) # Testing if __name__ == "__main__": def lowerCamelCase__ ( ) -> None: # a^(-1) __snake_case = Matrix(3 , 3 , 0 ) for i in range(3 ): __snake_case = 1 print(f"""a^(-1) is {ainv}""" ) # u, v __snake_case = Matrix(3 , 1 , 0 ) __snake_case , __snake_case , __snake_case = 1, 2, -3 __snake_case = Matrix(3 , 1 , 0 ) __snake_case , __snake_case , __snake_case = 4, -2, 5 print(f"""u is {u}""" ) print(f"""v is {v}""" ) print(f"""uv^T is {u * v.transpose()}""" ) # Sherman Morrison print(f"""(a + uv^T)^(-1) is {ainv.sherman_morrison(snake_case_ , snake_case_ )}""" ) def lowerCamelCase__ ( ) -> None: import doctest doctest.testmod() testa()
24
import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class SCREAMING_SNAKE_CASE__ : def __init__(self : Any , a__ : Union[str, Any] , a__ : int=13 , a__ : int=7 , a__ : Optional[Any]=True , a__ : Optional[int]=True , a__ : Any=True , a__ : str=True , a__ : List[Any]=99 , a__ : Any=24 , a__ : List[str]=2 , a__ : Optional[int]=6 , a__ : int=37 , a__ : List[str]="gelu" , a__ : List[Any]=0.1 , a__ : Optional[int]=0.1 , a__ : Union[str, Any]=512 , a__ : List[str]=16 , a__ : Optional[int]=2 , a__ : Union[str, Any]=0.0_2 , a__ : str=3 , a__ : Optional[Any]=None , a__ : Any=1000 , ): """simple docstring""" __snake_case = parent __snake_case = batch_size __snake_case = seq_length __snake_case = is_training __snake_case = use_input_mask __snake_case = use_token_type_ids __snake_case = use_labels __snake_case = vocab_size __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = intermediate_size __snake_case = hidden_act __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = max_position_embeddings __snake_case = type_vocab_size __snake_case = type_sequence_label_size __snake_case = initializer_range __snake_case = num_labels __snake_case = scope __snake_case = range_bbox def a (self : Optional[int] ): """simple docstring""" __snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __snake_case = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: __snake_case = bbox[i, j, 3] __snake_case = bbox[i, j, 1] __snake_case = t if bbox[i, j, 2] < bbox[i, j, 0]: __snake_case = bbox[i, j, 2] __snake_case = bbox[i, j, 0] __snake_case = t __snake_case = None if self.use_input_mask: __snake_case = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) __snake_case = None if self.use_token_type_ids: __snake_case = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __snake_case = None __snake_case = None if self.use_labels: __snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __snake_case = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __snake_case = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def a (self : List[str] ): """simple docstring""" return LiltConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def a (self : List[Any] , a__ : List[Any] , a__ : Optional[Any] , a__ : List[str] , a__ : int , a__ : Optional[int] , a__ : str , a__ : Optional[int] , ): """simple docstring""" __snake_case = LiltModel(config=a__ ) model.to(a__ ) model.eval() __snake_case = model(a__ , bbox=a__ , attention_mask=a__ , token_type_ids=a__ ) __snake_case = model(a__ , bbox=a__ , token_type_ids=a__ ) __snake_case = model(a__ , bbox=a__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def a (self : Any , a__ : Tuple , a__ : Dict , a__ : Optional[int] , a__ : Dict , a__ : Union[str, Any] , a__ : str , a__ : Tuple , ): """simple docstring""" __snake_case = self.num_labels __snake_case = LiltForTokenClassification(config=a__ ) model.to(a__ ) model.eval() __snake_case = model( a__ , bbox=a__ , attention_mask=a__ , token_type_ids=a__ , labels=a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def a (self : int , a__ : Optional[Any] , a__ : int , a__ : int , a__ : Optional[Any] , a__ : Tuple , a__ : Union[str, Any] , a__ : str , ): """simple docstring""" __snake_case = LiltForQuestionAnswering(config=a__ ) model.to(a__ ) model.eval() __snake_case = model( a__ , bbox=a__ , attention_mask=a__ , token_type_ids=a__ , start_positions=a__ , end_positions=a__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def a (self : Tuple ): """simple docstring""" __snake_case = self.prepare_config_and_inputs() ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) = config_and_inputs __snake_case = { '''input_ids''': input_ids, '''bbox''': bbox, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask, } return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): A_ : List[Any] = ( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) A_ : Any = ( { 'feature-extraction': LiltModel, 'question-answering': LiltForQuestionAnswering, 'text-classification': LiltForSequenceClassification, 'token-classification': LiltForTokenClassification, 'zero-shot': LiltForSequenceClassification, } if is_torch_available() else {} ) A_ : Optional[int] = False A_ : List[Any] = False def a (self : Dict , a__ : Tuple , a__ : Tuple , a__ : Tuple , a__ : Union[str, Any] , a__ : Any ): """simple docstring""" return True def a (self : Union[str, Any] ): """simple docstring""" __snake_case = LiltModelTester(self ) __snake_case = ConfigTester(self , config_class=a__ , hidden_size=37 ) def a (self : Optional[int] ): """simple docstring""" self.config_tester.run_common_tests() def a (self : int ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a__ ) def a (self : List[Any] ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __snake_case = type self.model_tester.create_and_check_model(*a__ ) def a (self : Optional[Any] ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*a__ ) def a (self : Union[str, Any] ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*a__ ) @slow def a (self : Optional[int] ): """simple docstring""" for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case = LiltModel.from_pretrained(a__ ) self.assertIsNotNone(a__ ) @require_torch @slow class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def a (self : Tuple ): """simple docstring""" __snake_case = LiltModel.from_pretrained('''SCUT-DLVCLab/lilt-roberta-en-base''' ).to(a__ ) __snake_case = torch.tensor([[1, 2]] , device=a__ ) __snake_case = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=a__ ) # forward pass with torch.no_grad(): __snake_case = model(input_ids=a__ , bbox=a__ ) __snake_case = torch.Size([1, 2, 768] ) __snake_case = torch.tensor( [[-0.0_6_5_3, 0.0_9_5_0, -0.0_0_6_1], [-0.0_5_4_5, 0.0_9_2_6, -0.0_3_2_4]] , device=a__ , ) self.assertTrue(outputs.last_hidden_state.shape , a__ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , a__ , atol=1E-3 ) )
24
1
import torch from transformers import PreTrainedModel, XLMRobertaConfig, XLMRobertaModel class A__ ( lowerCAmelCase__ ): """simple docstring""" __A : str = "M-CLIP" def __init__( self , lowercase=1024 , lowercase=768 , **lowercase) -> Optional[int]: '''simple docstring''' a__ : Dict = transformerDimSize a__ : Optional[Any] = imageDimSize super().__init__(**_SCREAMING_SNAKE_CASE) class A__ ( lowerCAmelCase__ ): """simple docstring""" __A : List[Any] = MCLIPConfig def __init__( self , lowercase , *lowercase , **lowercase) -> Optional[int]: '''simple docstring''' super().__init__(_SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE) a__ : List[str] = XLMRobertaModel(_SCREAMING_SNAKE_CASE) a__ : List[str] = torch.nn.Linear( in_features=config.transformerDimensions , out_features=config.numDims) def __lowercase ( self , lowercase , lowercase) -> Optional[Any]: '''simple docstring''' a__ : List[str] = self.transformer(input_ids=_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE)[0] a__ : Any = (embs * attention_mask.unsqueeze(2)).sum(dim=1) / attention_mask.sum(dim=1)[:, None] return self.LinearTransformation(_SCREAMING_SNAKE_CASE), embs
355
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowercase : str = { """configuration_vision_encoder_decoder""": ["""VisionEncoderDecoderConfig""", """VisionEncoderDecoderOnnxConfig"""] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Optional[Any] = ["""VisionEncoderDecoderModel"""] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Optional[int] = ["""TFVisionEncoderDecoderModel"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : List[str] = ["""FlaxVisionEncoderDecoderModel"""] if TYPE_CHECKING: from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel else: import sys lowercase : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
225
0
'''simple docstring''' from argparse import ArgumentParser from datasets.commands.convert import ConvertCommand from datasets.commands.dummy_data import DummyDataCommand from datasets.commands.env import EnvironmentCommand from datasets.commands.run_beam import RunBeamCommand from datasets.commands.test import TestCommand from datasets.utils.logging import set_verbosity_info def snake_case_ (_a : Tuple ): return {key.lstrip('''-''' ): value for key, value in zip(unknown_args[::2] , unknown_args[1::2] )} def snake_case_ (): UpperCAmelCase = ArgumentParser( '''HuggingFace Datasets CLI tool''' , usage='''datasets-cli <command> [<args>]''' , allow_abbrev=_a ) UpperCAmelCase = parser.add_subparsers(help='''datasets-cli command helpers''' ) set_verbosity_info() # Register commands ConvertCommand.register_subcommand(_a ) EnvironmentCommand.register_subcommand(_a ) TestCommand.register_subcommand(_a ) RunBeamCommand.register_subcommand(_a ) DummyDataCommand.register_subcommand(_a ) # Parse args UpperCAmelCase , UpperCAmelCase = parser.parse_known_args() if not hasattr(_a , '''func''' ): parser.print_help() exit(1 ) UpperCAmelCase = parse_unknown_args(_a ) # Run UpperCAmelCase = args.func(_a , **_a ) service.run() if __name__ == "__main__": main()
34
import json import os import unittest from transformers import BatchEncoding, MvpTokenizer, MvpTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin, filter_roberta_detectors @require_tokenizers class A__(a_, unittest.TestCase ): """simple docstring""" _A : Optional[Any] = MvpTokenizer _A : List[Any] = MvpTokenizerFast _A : Dict = True _A : Optional[Any] = filter_roberta_detectors def UpperCamelCase__ ( self ) -> Union[str, Any]: super().setUp() a_ : Dict = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] a_ : int = dict(zip(_lowercase , range(len(_lowercase ) ) ) ) a_ : List[Any] = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] a_ : Optional[int] = {"""unk_token""": """<unk>"""} a_ : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) a_ : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(_lowercase ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(_lowercase ) ) def UpperCamelCase__ ( self , **_lowercase ) -> Optional[Any]: kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **_lowercase ) def UpperCamelCase__ ( self , **_lowercase ) -> Union[str, Any]: kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **_lowercase ) def UpperCamelCase__ ( self , _lowercase ) -> int: return "lower newer", "lower newer" @cached_property def UpperCamelCase__ ( self ) -> List[Any]: return MvpTokenizer.from_pretrained("""RUCAIBox/mvp""" ) @cached_property def UpperCamelCase__ ( self ) -> Union[str, Any]: return MvpTokenizerFast.from_pretrained("""RUCAIBox/mvp""" ) @require_torch def UpperCamelCase__ ( self ) -> List[str]: a_ : List[Any] = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] a_ : List[str] = [0, 250, 251, 17_818, 13, 39_186, 1_938, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: a_ : Optional[Any] = tokenizer(_lowercase , max_length=len(_lowercase ) , padding=_lowercase , return_tensors="""pt""" ) self.assertIsInstance(_lowercase , _lowercase ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) a_ : Dict = batch.input_ids.tolist()[0] self.assertListEqual(_lowercase , _lowercase ) # Test that special tokens are reset @require_torch def UpperCamelCase__ ( self ) -> Union[str, Any]: a_ : List[str] = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: a_ : List[str] = tokenizer(_lowercase , padding=_lowercase , return_tensors="""pt""" ) # check if input_ids are returned and no labels self.assertIn("""input_ids""" , _lowercase ) self.assertIn("""attention_mask""" , _lowercase ) self.assertNotIn("""labels""" , _lowercase ) self.assertNotIn("""decoder_attention_mask""" , _lowercase ) @require_torch def UpperCamelCase__ ( self ) -> Union[str, Any]: a_ : List[Any] = [ """Summary of the text.""", """Another summary.""", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: a_ : int = tokenizer(text_target=_lowercase , max_length=32 , padding="""max_length""" , return_tensors="""pt""" ) self.assertEqual(32 , targets["""input_ids"""].shape[1] ) @require_torch def UpperCamelCase__ ( self ) -> Any: for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: a_ : int = tokenizer( ["""I am a small frog""" * 1_024, """I am a small frog"""] , padding=_lowercase , truncation=_lowercase , return_tensors="""pt""" ) self.assertIsInstance(_lowercase , _lowercase ) self.assertEqual(batch.input_ids.shape , (2, 1_024) ) @require_torch def UpperCamelCase__ ( self ) -> List[str]: a_ : Tuple = ["""A long paragraph for summarization."""] a_ : Optional[Any] = [ """Summary of the text.""", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: a_ : List[Any] = tokenizer(_lowercase , text_target=_lowercase , return_tensors="""pt""" ) a_ : Union[str, Any] = inputs["""input_ids"""] a_ : Dict = inputs["""labels"""] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) def UpperCamelCase__ ( self ) -> int: pass def UpperCamelCase__ ( self ) -> Union[str, Any]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): a_ : List[str] = self.rust_tokenizer_class.from_pretrained(_lowercase , **_lowercase ) a_ : List[str] = self.tokenizer_class.from_pretrained(_lowercase , **_lowercase ) a_ : Optional[int] = """A, <mask> AllenNLP sentence.""" a_ : Union[str, Any] = tokenizer_r.encode_plus(_lowercase , add_special_tokens=_lowercase , return_token_type_ids=_lowercase ) a_ : Tuple = tokenizer_p.encode_plus(_lowercase , add_special_tokens=_lowercase , return_token_type_ids=_lowercase ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r["""token_type_ids"""] ) , sum(tokens_p["""token_type_ids"""] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r["""attention_mask"""] ) / len(tokens_r["""attention_mask"""] ) , sum(tokens_p["""attention_mask"""] ) / len(tokens_p["""attention_mask"""] ) , ) a_ : List[Any] = tokenizer_r.convert_ids_to_tokens(tokens_r["""input_ids"""] ) a_ : str = tokenizer_p.convert_ids_to_tokens(tokens_p["""input_ids"""] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p["""input_ids"""] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual(tokens_r["""input_ids"""] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual( _lowercase , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) self.assertSequenceEqual( _lowercase , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] )
248
0
"""simple docstring""" from __future__ import annotations import copy import inspect import unittest import numpy as np from transformers import is_tf_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, ) if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class _a : """simple docstring""" def __init__( self : Optional[int] , UpperCAmelCase : int , UpperCAmelCase : Dict=2 , UpperCAmelCase : Tuple=3 , UpperCAmelCase : Any=4 , UpperCAmelCase : Optional[int]=2 , UpperCAmelCase : Any=7 , UpperCAmelCase : Optional[int]=True , UpperCAmelCase : List[str]=True , UpperCAmelCase : Tuple=True , UpperCAmelCase : Dict=True , UpperCAmelCase : Optional[int]=99 , UpperCAmelCase : Dict=36 , UpperCAmelCase : Optional[int]=2 , UpperCAmelCase : Optional[Any]=4 , UpperCAmelCase : List[Any]=37 , UpperCAmelCase : Dict="gelu" , UpperCAmelCase : Optional[int]=0.1 , UpperCAmelCase : int=0.1 , UpperCAmelCase : str=512 , UpperCAmelCase : List[Any]=16 , UpperCAmelCase : Optional[Any]=2 , UpperCAmelCase : Any=0.02 , UpperCAmelCase : int=6 , UpperCAmelCase : Optional[int]=6 , UpperCAmelCase : Optional[int]=3 , UpperCAmelCase : Dict=4 , UpperCAmelCase : Any=None , UpperCAmelCase : Any=1000 , ): A_ = parent A_ = batch_size A_ = num_channels A_ = image_size A_ = patch_size A_ = is_training A_ = use_input_mask A_ = use_token_type_ids A_ = use_labels A_ = vocab_size A_ = hidden_size A_ = num_hidden_layers A_ = num_attention_heads A_ = intermediate_size A_ = hidden_act A_ = hidden_dropout_prob A_ = attention_probs_dropout_prob A_ = max_position_embeddings A_ = type_vocab_size A_ = type_sequence_label_size A_ = initializer_range A_ = coordinate_size A_ = shape_size A_ = num_labels A_ = num_choices A_ = scope A_ = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) A_ = text_seq_length A_ = (image_size // patch_size) ** 2 + 1 A_ = self.text_seq_length + self.image_seq_length def __A ( self : Optional[int] ): A_ = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) A_ = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) A_ = bbox.numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: A_ = bbox[i, j, 3] A_ = bbox[i, j, 1] A_ = tmp_coordinate if bbox[i, j, 2] < bbox[i, j, 0]: A_ = bbox[i, j, 2] A_ = bbox[i, j, 0] A_ = tmp_coordinate A_ = tf.constant(UpperCAmelCase ) A_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A_ = None if self.use_input_mask: A_ = random_attention_mask([self.batch_size, self.text_seq_length] ) A_ = None if self.use_token_type_ids: A_ = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) A_ = None A_ = None if self.use_labels: A_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A_ = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) A_ = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def __A ( self : Dict , UpperCAmelCase : Tuple , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : str ): A_ = TFLayoutLMvaModel(config=UpperCAmelCase ) # text + image A_ = model(UpperCAmelCase , pixel_values=UpperCAmelCase , training=UpperCAmelCase ) A_ = model( UpperCAmelCase , bbox=UpperCAmelCase , pixel_values=UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , training=UpperCAmelCase , ) A_ = model(UpperCAmelCase , bbox=UpperCAmelCase , pixel_values=UpperCAmelCase , training=UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only A_ = model(UpperCAmelCase , training=UpperCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only A_ = model({"pixel_values": pixel_values} , training=UpperCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def __A ( self : str , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[int] , UpperCAmelCase : str , UpperCAmelCase : List[Any] , UpperCAmelCase : int , UpperCAmelCase : Optional[Any] ): A_ = self.num_labels A_ = TFLayoutLMvaForSequenceClassification(config=UpperCAmelCase ) A_ = model( UpperCAmelCase , bbox=UpperCAmelCase , pixel_values=UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , labels=UpperCAmelCase , training=UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __A ( self : List[Any] , UpperCAmelCase : str , UpperCAmelCase : Optional[int] , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : Optional[int] , UpperCAmelCase : List[str] , UpperCAmelCase : Union[str, Any] ): A_ = self.num_labels A_ = TFLayoutLMvaForTokenClassification(config=UpperCAmelCase ) A_ = model( UpperCAmelCase , bbox=UpperCAmelCase , pixel_values=UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , labels=UpperCAmelCase , training=UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def __A ( self : Tuple , UpperCAmelCase : int , UpperCAmelCase : List[str] , UpperCAmelCase : List[str] , UpperCAmelCase : List[str] , UpperCAmelCase : Any , UpperCAmelCase : List[Any] , UpperCAmelCase : List[Any] ): A_ = 2 A_ = TFLayoutLMvaForQuestionAnswering(config=UpperCAmelCase ) A_ = model( UpperCAmelCase , bbox=UpperCAmelCase , pixel_values=UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , start_positions=UpperCAmelCase , end_positions=UpperCAmelCase , training=UpperCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __A ( self : List[Any] ): A_ = self.prepare_config_and_inputs() ((A_) , (A_) , (A_) , (A_) , (A_) , (A_) , (A_) , (A_)) = config_and_inputs A_ = { "input_ids": input_ids, "bbox": bbox, "pixel_values": pixel_values, "token_type_ids": token_type_ids, "attention_mask": input_mask, } return config, inputs_dict @require_tf class _a ( snake_case_ , snake_case_ , unittest.TestCase ): """simple docstring""" _lowerCamelCase : str = ( ( TFLayoutLMvaModel, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, ) if is_tf_available() else () ) _lowerCamelCase : Optional[int] = ( {'document-question-answering': TFLayoutLMvaForQuestionAnswering, 'feature-extraction': TFLayoutLMvaModel} if is_tf_available() else {} ) _lowerCamelCase : Any = False _lowerCamelCase : str = False _lowerCamelCase : str = False def __A ( self : Union[str, Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Tuple , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : int ): return True def __A ( self : Dict , UpperCAmelCase : str , UpperCAmelCase : Any , UpperCAmelCase : Tuple=False ): A_ = copy.deepcopy(UpperCAmelCase ) if model_class in get_values(UpperCAmelCase ): A_ = { k: tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.model_tester.num_choices) + (1,) * (v.ndim - 1) ) if isinstance(UpperCAmelCase , tf.Tensor ) and v.ndim > 0 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(UpperCAmelCase ): A_ = tf.ones(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(UpperCAmelCase ): A_ = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) A_ = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(UpperCAmelCase ): A_ = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(UpperCAmelCase ): A_ = tf.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=tf.intaa ) return inputs_dict def __A ( self : Union[str, Any] ): A_ = TFLayoutLMvaModelTester(self ) A_ = ConfigTester(self , config_class=UpperCAmelCase , hidden_size=37 ) def __A ( self : int ): self.config_tester.run_common_tests() def __A ( self : Optional[int] ): A_ , A_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ = model_class(UpperCAmelCase ) if getattr(UpperCAmelCase , "hf_compute_loss" , UpperCAmelCase ): # The number of elements in the loss should be the same as the number of elements in the label A_ = self._prepare_for_class(inputs_dict.copy() , UpperCAmelCase , return_labels=UpperCAmelCase ) A_ = prepared_for_class[ sorted(prepared_for_class.keys() - inputs_dict.keys() , reverse=UpperCAmelCase )[0] ] A_ = added_label.shape.as_list()[:1] # Test that model correctly compute the loss with kwargs A_ = self._prepare_for_class(inputs_dict.copy() , UpperCAmelCase , return_labels=UpperCAmelCase ) A_ = prepared_for_class.pop("input_ids" ) A_ = model(UpperCAmelCase , **UpperCAmelCase )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss when we mask some positions A_ = self._prepare_for_class(inputs_dict.copy() , UpperCAmelCase , return_labels=UpperCAmelCase ) A_ = prepared_for_class.pop("input_ids" ) if "labels" in prepared_for_class: A_ = prepared_for_class["labels"].numpy() if len(labels.shape ) > 1 and labels.shape[1] != 1: A_ = -100 A_ = tf.convert_to_tensor(UpperCAmelCase ) A_ = model(UpperCAmelCase , **UpperCAmelCase )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) self.assertTrue(not np.any(np.isnan(loss.numpy() ) ) ) # Test that model correctly compute the loss with a dict A_ = self._prepare_for_class(inputs_dict.copy() , UpperCAmelCase , return_labels=UpperCAmelCase ) A_ = model(UpperCAmelCase )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss with a tuple A_ = self._prepare_for_class(inputs_dict.copy() , UpperCAmelCase , return_labels=UpperCAmelCase ) # Get keys that were added with the _prepare_for_class function A_ = prepared_for_class.keys() - inputs_dict.keys() A_ = inspect.signature(model.call ).parameters A_ = list(signature.keys() ) # Create a dictionary holding the location of the tensors in the tuple A_ = {0: "input_ids"} for label_key in label_keys: A_ = signature_names.index(UpperCAmelCase ) A_ = label_key A_ = sorted(tuple_index_mapping.items() ) # Initialize a list with their default values, update the values and convert to a tuple A_ = [] for name in signature_names: if name != "kwargs": list_input.append(signature[name].default ) for index, value in sorted_tuple_index_mapping: A_ = prepared_for_class[value] A_ = tuple(UpperCAmelCase ) # Send to model A_ = model(tuple_input[:-1] )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) def __A ( self : Any ): ( ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ) = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def __A ( self : Optional[int] ): ( ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ) = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: A_ = type self.model_tester.create_and_check_model(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def __A ( self : Any ): ( ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ) = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def __A ( self : int ): ( ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ) = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def __A ( self : Union[str, Any] ): ( ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ) = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) @slow def __A ( self : Dict ): for model_name in TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ = TFLayoutLMvaModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) def __snake_case ( ): """simple docstring""" A_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf class _a ( unittest.TestCase ): """simple docstring""" @cached_property def __A ( self : Optional[Any] ): return LayoutLMvaImageProcessor(apply_ocr=UpperCAmelCase ) if is_vision_available() else None @slow def __A ( self : int ): A_ = TFLayoutLMvaModel.from_pretrained("microsoft/layoutlmv3-base" ) A_ = self.default_image_processor A_ = prepare_img() A_ = image_processor(images=UpperCAmelCase , return_tensors="tf" ).pixel_values A_ = tf.constant([[1, 2]] ) A_ = tf.expand_dims(tf.constant([[1, 2, 3, 4], [5, 6, 7, 8]] ) , axis=0 ) # forward pass A_ = model(input_ids=UpperCAmelCase , bbox=UpperCAmelCase , pixel_values=UpperCAmelCase , training=UpperCAmelCase ) # verify the logits A_ = (1, 199, 768) self.assertEqual(outputs.last_hidden_state.shape , UpperCAmelCase ) A_ = tf.constant( [[-0.0_529, 0.3_618, 0.1_632], [-0.1_587, -0.1_667, -0.0_400], [-0.1_557, -0.1_671, -0.0_505]] ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , UpperCAmelCase , atol=1E-4 ) )
351
import os try: from .build_directory_md import good_file_paths except ImportError: from build_directory_md import good_file_paths # type: ignore __a :int = list(good_file_paths()) assert filepaths, "good_file_paths() failed!" __a :Any = [file for file in filepaths if file != file.lower()] if upper_files: print(F"{len(upper_files)} files contain uppercase characters:") print('\n'.join(upper_files) + '\n') __a :Tuple = [file for file in filepaths if ' ' in file] if space_files: print(F"{len(space_files)} files contain space characters:") print('\n'.join(space_files) + '\n') __a :str = [file for file in filepaths if '-' in file] if hyphen_files: print(F"{len(hyphen_files)} files contain hyphen characters:") print('\n'.join(hyphen_files) + '\n') __a :List[str] = [file for file in filepaths if os.sep not in file] if nodir_files: print(F"{len(nodir_files)} files are not in a directory:") print('\n'.join(nodir_files) + '\n') __a :Any = len(upper_files + space_files + hyphen_files + nodir_files) if bad_files: import sys sys.exit(bad_files)
329
0
import unittest import torch from torch import nn from accelerate.test_utils import require_cuda from accelerate.utils.memory import find_executable_batch_size, release_memory def SCREAMING_SNAKE_CASE_ ( ) -> int: raise RuntimeError('''CUDA out of memory.''' ) class lowercase_ ( nn.Module ): """simple docstring""" def __init__( self ) ->Any: super().__init__() lowerCAmelCase = nn.Linear(3 , 4 ) lowerCAmelCase = nn.BatchNormad(4 ) lowerCAmelCase = nn.Linear(4 , 5 ) def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE ) ->str: return self.lineara(self.batchnorm(self.lineara(__SCREAMING_SNAKE_CASE ) ) ) class lowercase_ ( unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE_ ( self ) ->int: lowerCAmelCase = [] @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(__SCREAMING_SNAKE_CASE ): nonlocal batch_sizes batch_sizes.append(__SCREAMING_SNAKE_CASE ) if batch_size != 8: raise_fake_out_of_memory() mock_training_loop_function() self.assertListEqual(__SCREAMING_SNAKE_CASE , [128, 64, 32, 16, 8] ) def SCREAMING_SNAKE_CASE_ ( self ) ->Union[str, Any]: lowerCAmelCase = [] @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): nonlocal batch_sizes batch_sizes.append(__SCREAMING_SNAKE_CASE ) if batch_size != 8: raise_fake_out_of_memory() return batch_size, arga lowerCAmelCase , lowerCAmelCase = mock_training_loop_function('''hello''' ) self.assertListEqual(__SCREAMING_SNAKE_CASE , [128, 64, 32, 16, 8] ) self.assertListEqual([bs, arga] , [8, '''hello'''] ) def SCREAMING_SNAKE_CASE_ ( self ) ->int: @find_executable_batch_size(starting_batch_size=0 ) def mock_training_loop_function(__SCREAMING_SNAKE_CASE ): pass with self.assertRaises(__SCREAMING_SNAKE_CASE ) as cm: mock_training_loop_function() self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0] ) def SCREAMING_SNAKE_CASE_ ( self ) ->Union[str, Any]: @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(__SCREAMING_SNAKE_CASE ): if batch_size > 0: raise_fake_out_of_memory() pass with self.assertRaises(__SCREAMING_SNAKE_CASE ) as cm: mock_training_loop_function() self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0] ) def SCREAMING_SNAKE_CASE_ ( self ) ->Any: @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): if batch_size != 8: raise raise_fake_out_of_memory() with self.assertRaises(__SCREAMING_SNAKE_CASE ) as cm: mock_training_loop_function(128 , '''hello''' , '''world''' ) self.assertIn('''Batch size was passed into `f`''' , cm.exception.args[0] ) self.assertIn('''`f(arg1=\'hello\', arg2=\'world\')''' , cm.exception.args[0] ) def SCREAMING_SNAKE_CASE_ ( self ) ->Any: @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(__SCREAMING_SNAKE_CASE ): raise ValueError('''Oops, we had an error!''' ) with self.assertRaises(__SCREAMING_SNAKE_CASE ) as cm: mock_training_loop_function() self.assertIn('''Oops, we had an error!''' , cm.exception.args[0] ) @require_cuda def SCREAMING_SNAKE_CASE_ ( self ) ->Optional[int]: lowerCAmelCase = torch.cuda.memory_allocated() lowerCAmelCase = ModelForTest() model.cuda() self.assertGreater(torch.cuda.memory_allocated() , __SCREAMING_SNAKE_CASE ) lowerCAmelCase = release_memory(__SCREAMING_SNAKE_CASE ) self.assertEqual(torch.cuda.memory_allocated() , __SCREAMING_SNAKE_CASE )
338
import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.text import TextDatasetReader from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ ) -> Union[str, Any]: assert isinstance(snake_case__ , snake_case__ ) assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ , snake_case__ ) -> Union[str, Any]: lowerCAmelCase = tmp_path / '''cache''' lowerCAmelCase = {'''text''': '''string'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowerCAmelCase = TextDatasetReader(snake_case__ , cache_dir=snake_case__ , keep_in_memory=snake_case__ ).read() _check_text_dataset(snake_case__ , snake_case__ ) @pytest.mark.parametrize( '''features''' , [ None, {'''text''': '''string'''}, {'''text''': '''int32'''}, {'''text''': '''float32'''}, ] , ) def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ , snake_case__ ) -> Optional[Any]: lowerCAmelCase = tmp_path / '''cache''' lowerCAmelCase = {'''text''': '''string'''} lowerCAmelCase = features.copy() if features else default_expected_features lowerCAmelCase = ( Features({feature: Value(snake_case__ ) for feature, dtype in features.items()} ) if features is not None else None ) lowerCAmelCase = TextDatasetReader(snake_case__ , features=snake_case__ , cache_dir=snake_case__ ).read() _check_text_dataset(snake_case__ , snake_case__ ) @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ , snake_case__ ) -> List[str]: lowerCAmelCase = tmp_path / '''cache''' lowerCAmelCase = {'''text''': '''string'''} lowerCAmelCase = TextDatasetReader(snake_case__ , cache_dir=snake_case__ , split=snake_case__ ).read() _check_text_dataset(snake_case__ , snake_case__ ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('''path_type''' , [str, list] ) def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ , snake_case__ ) -> Optional[int]: if issubclass(snake_case__ , snake_case__ ): lowerCAmelCase = text_path elif issubclass(snake_case__ , snake_case__ ): lowerCAmelCase = [text_path] lowerCAmelCase = tmp_path / '''cache''' lowerCAmelCase = {'''text''': '''string'''} lowerCAmelCase = TextDatasetReader(snake_case__ , cache_dir=snake_case__ ).read() _check_text_dataset(snake_case__ , snake_case__ ) def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ , snake_case__=("train",) ) -> Optional[Any]: assert isinstance(snake_case__ , snake_case__ ) for split in splits: lowerCAmelCase = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ , snake_case__ ) -> Optional[Any]: lowerCAmelCase = tmp_path / '''cache''' lowerCAmelCase = {'''text''': '''string'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowerCAmelCase = TextDatasetReader({'''train''': text_path} , cache_dir=snake_case__ , keep_in_memory=snake_case__ ).read() _check_text_datasetdict(snake_case__ , snake_case__ ) @pytest.mark.parametrize( '''features''' , [ None, {'''text''': '''string'''}, {'''text''': '''int32'''}, {'''text''': '''float32'''}, ] , ) def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ , snake_case__ ) -> List[Any]: lowerCAmelCase = tmp_path / '''cache''' # CSV file loses col_1 string dtype information: default now is "int64" instead of "string" lowerCAmelCase = {'''text''': '''string'''} lowerCAmelCase = features.copy() if features else default_expected_features lowerCAmelCase = ( Features({feature: Value(snake_case__ ) for feature, dtype in features.items()} ) if features is not None else None ) lowerCAmelCase = TextDatasetReader({'''train''': text_path} , features=snake_case__ , cache_dir=snake_case__ ).read() _check_text_datasetdict(snake_case__ , snake_case__ ) @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ , snake_case__ ) -> Any: if split: lowerCAmelCase = {split: text_path} else: lowerCAmelCase = '''train''' lowerCAmelCase = {'''train''': text_path, '''test''': text_path} lowerCAmelCase = tmp_path / '''cache''' lowerCAmelCase = {'''text''': '''string'''} lowerCAmelCase = TextDatasetReader(snake_case__ , cache_dir=snake_case__ ).read() _check_text_datasetdict(snake_case__ , snake_case__ , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() )
338
1
import argparse import dataclasses import json import logging import os import shutil from typing import List, Optional import datasets from accelerate import Accelerator from datasets import load_dataset from finetuning import finetune from tqdm.auto import tqdm import transformers from transformers import AutoConfig, set_seed from transformers.trainer_utils import IntervalStrategy _SCREAMING_SNAKE_CASE = logging.getLogger(__name__) _SCREAMING_SNAKE_CASE = 'pytorch_model.bin' @dataclasses.dataclass class a : """simple docstring""" lowerCamelCase :str = dataclasses.field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models.'''} ) lowerCamelCase :Optional[str] = dataclasses.field( default=__lowerCAmelCase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co.'''} , ) @dataclasses.dataclass class a : """simple docstring""" lowerCamelCase :str = dataclasses.field(metadata={'''help''': '''A csv or a json file containing the training data.'''} ) lowerCamelCase :str = dataclasses.field(metadata={'''help''': '''A csv or a json file containing the data to predict on.'''} ) lowerCamelCase :Optional[str] = dataclasses.field( default=__lowerCAmelCase , metadata={'''help''': '''A csv or a json file containing the validation data.'''} ) lowerCamelCase :Optional[str] = dataclasses.field( default=__lowerCAmelCase , metadata={'''help''': '''The name of the task to train on.'''} , ) lowerCamelCase :Optional[List[str]] = dataclasses.field( default=__lowerCAmelCase , metadata={'''help''': '''The list of labels for the task.'''} ) @dataclasses.dataclass class a : """simple docstring""" lowerCamelCase :str = dataclasses.field( metadata={'''help''': '''The output directory where the model predictions and checkpoints will be written.'''} ) lowerCamelCase :Optional[str] = dataclasses.field( default='''accuracy''' , metadata={'''help''': '''The evaluation metric used for the task.'''} ) lowerCamelCase :Optional[str] = dataclasses.field( default='''no''' , metadata={ '''help''': '''The evaluation strategy to adopt during training. Possible values are: ["no", "step", "epoch]''' } , ) lowerCamelCase :Optional[int] = dataclasses.field( default=10 , metadata={'''help''': '''Number of evaluation calls with no improvement after which training will be stopped.'''} , ) lowerCamelCase :Optional[float] = dataclasses.field( default=0.0 , metadata={ '''help''': '''How much the specified evaluation metric must improve to satisfy early stopping conditions.''' } , ) lowerCamelCase :Optional[bool] = dataclasses.field( default=__lowerCAmelCase , metadata={'''help''': '''Whether to filter the pseudo-labeled data based on the confidence score.'''} , ) lowerCamelCase :Optional[bool] = dataclasses.field( default=__lowerCAmelCase , metadata={'''help''': '''Whether to filter the pseudo-labeled data based on the validation performance.'''} , ) lowerCamelCase :Optional[bool] = dataclasses.field( default=__lowerCAmelCase , metadata={'''help''': '''Whether to fine-tune on labeled data after pseudo training.'''} , ) lowerCamelCase :Optional[float] = dataclasses.field( default=0.0 , metadata={'''help''': '''Confidence threshold for pseudo-labeled data filtering.'''} , ) lowerCamelCase :Optional[int] = dataclasses.field( default=100 , metadata={'''help''': '''Number of evaluation calls with no improvement after which training will be stopped.'''} , ) lowerCamelCase :Optional[int] = dataclasses.field( default=__lowerCAmelCase , metadata={'''help''': '''Random seed for initialization.'''} , ) def snake_case ( snake_case__ :Optional[int] , snake_case__ :Optional[int] , snake_case__ :Tuple , snake_case__ :List[Any] , snake_case__ :Optional[Any] , snake_case__ :Optional[int]) -> Tuple: _A = datasets.concatenate_datasets([infer_input, infer_output] , axis=1) if args.do_filter_by_confidence: _A = dataset.filter(lambda snake_case__: example["probability"] > args.confidence_threshold) if args.do_filter_by_val_performance: assert eval_result >= 0.0 and eval_result <= 1.0 _A = int(eval_result * len(snake_case__)) print(snake_case__) _A = dataset.sort("""probability""" , reverse=snake_case__) _A = dataset.select(range(snake_case__)) _A = dataset.remove_columns(["""label""", """probability"""]) _A = dataset.rename_column("""prediction""" , """label""") _A = dataset.map(lambda snake_case__: {"label": idalabel[example["label"]]}) _A = dataset.shuffle(seed=args.seed) _A = os.path.join(snake_case__ , F'''train_pseudo.{args.data_file_extension}''') if args.data_file_extension == "csv": dataset.to_csv(snake_case__ , index=snake_case__) else: dataset.to_json(snake_case__) def snake_case ( snake_case__ :List[Any] , snake_case__ :Union[str, Any] , snake_case__ :List[Any] , snake_case__ :str , **snake_case__ :int) -> Optional[Any]: _A = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO , ) logger.info(accelerator.state) # Setup logging, we only want one process per machine to log things on the # screen. accelerator.is_local_main_process is only True for one process per # machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() _A = STModelArguments(model_name_or_path=snake_case__) _A = STDataArguments(train_file=snake_case__ , infer_file=snake_case__) _A = STTrainingArguments(output_dir=snake_case__) _A = argparse.Namespace() for arg_class in (model_args, data_args, training_args): for key, value in vars(snake_case__).items(): setattr(snake_case__ , snake_case__ , snake_case__) for key, value in kwargs.items(): if hasattr(snake_case__ , snake_case__): setattr(snake_case__ , snake_case__ , snake_case__) # Sanity checks _A = {} _A = None # You need to provide the training data and the data to predict on assert args.train_file is not None assert args.infer_file is not None _A = args.train_file _A = args.infer_file if args.evaluation_strategy != IntervalStrategy.NO.value: assert args.eval_file is not None _A = args.eval_file for key in data_files: _A = data_files[key].split(""".""")[-1] assert extension in ["csv", "json"], F'''`{key}_file` should be a csv or a json file.''' if args.data_file_extension is None: _A = extension else: assert extension == args.data_file_extension, F'''`{key}_file` should be a {args.data_file_extension} file`.''' assert ( args.eval_metric in datasets.list_metrics() ), F'''{args.eval_metric} not in the list of supported metrics {datasets.list_metrics()}.''' # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) logger.info("""Creating the initial data directory for self-training...""") _A = F'''{args.output_dir}/self-train_iter-{{}}'''.format _A = data_dir_format(0) if accelerator.is_main_process: if args.output_dir is not None: os.makedirs(args.output_dir , exist_ok=snake_case__) os.makedirs(snake_case__ , exist_ok=snake_case__) accelerator.wait_for_everyone() _A = None _A = None _A = 0 _A = False # Show the progress bar _A = tqdm(range(args.max_selftrain_iterations) , disable=not accelerator.is_local_main_process) # Self-train for iteration in range(0 , int(args.max_selftrain_iterations)): _A = data_dir_format(snake_case__) assert os.path.exists(snake_case__) # Stage 1: initial fine-tuning for iteration = 0 or pseudo-training for # iteration > 0 _A = os.path.join(snake_case__ , """stage-1""") _A = { """accelerator""": accelerator, """model_name_or_path""": args.model_name_or_path, """cache_dir""": args.cache_dir, """do_train""": True, """train_file""": data_files["""train"""] if iteration == 0 else data_files["""train_pseudo"""], """do_eval""": True if args.eval_file is not None else False, """eval_file""": data_files["""eval"""], """do_predict""": True, """infer_file""": data_files["""infer"""], """task_name""": args.task_name, """label_list""": args.label_list, """output_dir""": current_output_dir, """eval_metric""": args.eval_metric, """evaluation_strategy""": args.evaluation_strategy, """early_stopping_patience""": args.early_stopping_patience, """early_stopping_threshold""": args.early_stopping_threshold, """seed""": args.seed, } # Add additional training arguments for key, value in kwargs.items(): if key not in arguments_dict and not hasattr(snake_case__ , snake_case__): arguments_dict.update({key: value}) _A = os.path.join(snake_case__ , """best-checkpoint""" , snake_case__) if os.path.exists(snake_case__): logger.info( """Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 1.""" , snake_case__ , snake_case__ , ) else: logger.info("""***** Running self-training: iteration: %d, stage: 1 *****""" , snake_case__) finetune(**snake_case__) accelerator.wait_for_everyone() assert os.path.exists(snake_case__) logger.info("""Self-training job completed: iteration: %d, stage: 1.""" , snake_case__) if iteration > 0 and args.finetune_on_labeled_data: # Stage 2 (optional): fine-tuning on the original labeled data _A = os.path.join(snake_case__ , """best-checkpoint""") _A = os.path.join(snake_case__ , """stage-2""") # Update arguments_dict _A = model_path _A = data_files["""train"""] _A = current_output_dir _A = os.path.join(snake_case__ , """best-checkpoint""" , snake_case__) if os.path.exists(snake_case__): logger.info( """Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 2.""" , snake_case__ , snake_case__ , ) else: logger.info("""***** Running self-training: iteration: %d, stage: 2 *****""" , snake_case__) finetune(**snake_case__) accelerator.wait_for_everyone() assert os.path.exists(snake_case__) logger.info("""Self-training job completed: iteration: %d, stage: 2.""" , snake_case__) _A = iteration _A = data_dir_format(iteration + 1) _A = AutoConfig.from_pretrained(os.path.join(snake_case__ , """best-checkpoint""")) _A = config.idalabel _A = os.path.join(snake_case__ , """eval_results_best-checkpoint.json""") _A = os.path.join(snake_case__ , """test_results_best-checkpoint.json""") assert os.path.exists(snake_case__) with open(snake_case__ , """r""") as f: _A = float(json.load(snake_case__)[args.eval_metric]) _A = os.path.join(snake_case__ , """infer_output_best-checkpoint.csv""") assert os.path.exists(snake_case__) # Loading the dataset from local csv or json files. _A = load_dataset(args.data_file_extension , data_files={"""data""": data_files["""infer"""]})["""data"""] _A = load_dataset("""csv""" , data_files={"""data""": infer_output_file})["""data"""] if accelerator.is_main_process: os.makedirs(snake_case__ , exist_ok=snake_case__) shutil.copy(snake_case__ , os.path.join(snake_case__ , F'''eval_results_iter-{iteration}.json''')) if os.path.exists(snake_case__): shutil.copy(snake_case__ , os.path.join(snake_case__ , F'''test_results_iter-{iteration}.json''')) create_pseudo_labeled_data(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__) accelerator.wait_for_everyone() _A = os.path.join(snake_case__ , F'''train_pseudo.{args.data_file_extension}''') if args.evaluation_strategy != IntervalStrategy.NO.value: _A = eval_result if best_iteration is None: _A = new_iteration _A = new_eval_result else: if new_eval_result - best_eval_result > args.early_stopping_threshold: _A = new_iteration _A = new_eval_result _A = 0 else: if new_eval_result == best_eval_result: _A = new_iteration _A = new_eval_result early_stopping_patience_counter += 1 if early_stopping_patience_counter >= args.early_stopping_patience: _A = True progress_bar.update(1) if should_training_stop: break if best_iteration is not None: # Save the best iteration logger.info("""Best iteration: %d""" , snake_case__) logger.info("""Best evaluation result: %s = %f""" , args.eval_metric , snake_case__) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(snake_case__ , F'''eval_results_iter-{iteration}.json''') , os.path.join(snake_case__ , """eval_results_best-iteration.json""") , ) else: # Assume that the last iteration is the best logger.info("""Best iteration: %d""" , args.max_selftrain_iterations - 1) logger.info("""Best evaluation result: %s = %f""" , args.eval_metric , snake_case__) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(snake_case__ , F'''eval_results_iter-{args.max_selftrain_iterations - 1}.json''') , os.path.join(snake_case__ , """eval_results_best-iteration.json""") , )
81
from math import isqrt def snake_case ( snake_case__ :int) -> list[int]: _A = [True] * max_number for i in range(2 , isqrt(max_number - 1) + 1): if is_prime[i]: for j in range(i**2 , snake_case__ , snake_case__): _A = False return [i for i in range(2 , snake_case__) if is_prime[i]] def snake_case ( snake_case__ :int = 10**8) -> int: _A = calculate_prime_numbers(max_number // 2) _A = 0 _A = 0 _A = len(snake_case__) - 1 while left <= right: while prime_numbers[left] * prime_numbers[right] >= max_number: right -= 1 semiprimes_count += right - left + 1 left += 1 return semiprimes_count if __name__ == "__main__": print(F'''{solution() = }''')
81
1
"""simple docstring""" import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() a :Optional[int] = logging.get_logger(__name__) a :Optional[int] = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "adapter_layer": "encoder.layers.*.adapter_layer", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", "pooling_layer.linear": "projector", "pooling_layer.projection": "classifier", } a :int = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", "projector", "classifier", ] def _lowercase ( __lowerCAmelCase ) -> List[str]: SCREAMING_SNAKE_CASE__ : int = {} with open(__lowerCAmelCase , """r""" ) as file: for line_number, line in enumerate(__lowerCAmelCase ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = line.strip() if line: SCREAMING_SNAKE_CASE__ : List[Any] = line.split() SCREAMING_SNAKE_CASE__ : List[str] = line_number SCREAMING_SNAKE_CASE__ : int = words[0] SCREAMING_SNAKE_CASE__ : Optional[int] = value return result def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> List[str]: for attribute in key.split(""".""" ): SCREAMING_SNAKE_CASE__ : Optional[int] = getattr(__lowerCAmelCase , __lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : Optional[Any] = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(__lowerCAmelCase ): SCREAMING_SNAKE_CASE__ : Optional[int] = PARAM_MAPPING[full_name.split(""".""" )[-1]] SCREAMING_SNAKE_CASE__ : List[str] = """param""" if weight_type is not None and weight_type != "param": SCREAMING_SNAKE_CASE__ : List[Any] = getattr(__lowerCAmelCase , __lowerCAmelCase ).shape elif weight_type is not None and weight_type == "param": SCREAMING_SNAKE_CASE__ : str = hf_pointer for attribute in hf_param_name.split(""".""" ): SCREAMING_SNAKE_CASE__ : Dict = getattr(__lowerCAmelCase , __lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : int = shape_pointer.shape # let's reduce dimension SCREAMING_SNAKE_CASE__ : Union[str, Any] = value[0] else: SCREAMING_SNAKE_CASE__ : int = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": SCREAMING_SNAKE_CASE__ : Any = value elif weight_type == "weight_g": SCREAMING_SNAKE_CASE__ : Union[str, Any] = value elif weight_type == "weight_v": SCREAMING_SNAKE_CASE__ : Any = value elif weight_type == "bias": SCREAMING_SNAKE_CASE__ : List[str] = value elif weight_type == "param": for attribute in hf_param_name.split(""".""" ): SCREAMING_SNAKE_CASE__ : List[str] = getattr(__lowerCAmelCase , __lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : str = value else: SCREAMING_SNAKE_CASE__ : Optional[Any] = value logger.info(F'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' ) def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ : List[str] = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(__lowerCAmelCase ): SCREAMING_SNAKE_CASE__ : Tuple = PARAM_MAPPING[full_name.split(""".""" )[-1]] SCREAMING_SNAKE_CASE__ : int = """param""" if weight_type is not None and weight_type != "param": SCREAMING_SNAKE_CASE__ : int = """.""".join([key, weight_type] ) elif weight_type is not None and weight_type == "param": SCREAMING_SNAKE_CASE__ : List[Any] = """.""".join([key, hf_param_name] ) else: SCREAMING_SNAKE_CASE__ : List[Any] = key SCREAMING_SNAKE_CASE__ : int = value if """lm_head""" in full_key else value[0] a :Optional[Any] = { "W_a": "linear_1.weight", "W_b": "linear_2.weight", "b_a": "linear_1.bias", "b_b": "linear_2.bias", "ln_W": "norm.weight", "ln_b": "norm.bias", } def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=None ) -> Optional[int]: SCREAMING_SNAKE_CASE__ : str = False for key, mapped_key in MAPPING.items(): SCREAMING_SNAKE_CASE__ : Optional[Any] = """wav2vec2.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: SCREAMING_SNAKE_CASE__ : List[Any] = True if "*" in mapped_key: SCREAMING_SNAKE_CASE__ : Optional[Any] = name.split(__lowerCAmelCase )[0].split(""".""" )[-2] SCREAMING_SNAKE_CASE__ : Union[str, Any] = mapped_key.replace("""*""" , __lowerCAmelCase ) if "weight_g" in name: SCREAMING_SNAKE_CASE__ : Optional[int] = """weight_g""" elif "weight_v" in name: SCREAMING_SNAKE_CASE__ : Optional[Any] = """weight_v""" elif "bias" in name: SCREAMING_SNAKE_CASE__ : int = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj SCREAMING_SNAKE_CASE__ : Optional[int] = """weight""" else: SCREAMING_SNAKE_CASE__ : Union[str, Any] = None if hf_dict is not None: rename_dict(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) else: set_recursively(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) return is_used return is_used def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> List[str]: SCREAMING_SNAKE_CASE__ : Union[str, Any] = [] SCREAMING_SNAKE_CASE__ : Optional[Any] = fairseq_model.state_dict() SCREAMING_SNAKE_CASE__ : Union[str, Any] = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): SCREAMING_SNAKE_CASE__ : Optional[Any] = False if "conv_layers" in name: load_conv_layer( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , hf_model.config.feat_extract_norm == """group""" , ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = True else: SCREAMING_SNAKE_CASE__ : Dict = load_wavaveca_layer(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) if not is_used: unused_weights.append(__lowerCAmelCase ) logger.warning(F'''Unused weights: {unused_weights}''' ) def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> str: SCREAMING_SNAKE_CASE__ : Optional[int] = full_name.split("""conv_layers.""" )[-1] SCREAMING_SNAKE_CASE__ : Union[str, Any] = name.split(""".""" ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = int(items[0] ) SCREAMING_SNAKE_CASE__ : Tuple = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) SCREAMING_SNAKE_CASE__ : int = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) SCREAMING_SNAKE_CASE__ : str = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.''' ) SCREAMING_SNAKE_CASE__ : List[Any] = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.''' ) SCREAMING_SNAKE_CASE__ : Dict = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(__lowerCAmelCase ) @torch.no_grad() def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=True , __lowerCAmelCase=False ) -> int: if config_path is not None: SCREAMING_SNAKE_CASE__ : Union[str, Any] = WavaVecaConfig.from_pretrained(__lowerCAmelCase ) else: SCREAMING_SNAKE_CASE__ : List[Any] = WavaVecaConfig() if is_seq_class: SCREAMING_SNAKE_CASE__ : Optional[Any] = read_txt_into_dict(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : List[Any] = idalabel SCREAMING_SNAKE_CASE__ : List[str] = WavaVecaForSequenceClassification(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : Optional[int] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=__lowerCAmelCase , return_attention_mask=__lowerCAmelCase , ) feature_extractor.save_pretrained(__lowerCAmelCase ) elif is_finetuned: if dict_path: SCREAMING_SNAKE_CASE__ : Tuple = Dictionary.load(__lowerCAmelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq SCREAMING_SNAKE_CASE__ : Dict = target_dict.pad_index SCREAMING_SNAKE_CASE__ : List[Any] = target_dict.bos_index SCREAMING_SNAKE_CASE__ : Optional[int] = target_dict.eos_index SCREAMING_SNAKE_CASE__ : Optional[int] = len(target_dict.symbols ) SCREAMING_SNAKE_CASE__ : Dict = os.path.join(__lowerCAmelCase , """vocab.json""" ) if not os.path.isdir(__lowerCAmelCase ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(__lowerCAmelCase ) ) return os.makedirs(__lowerCAmelCase , exist_ok=__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : Optional[int] = target_dict.indices # fairseq has the <pad> and <s> switched SCREAMING_SNAKE_CASE__ : Any = 0 SCREAMING_SNAKE_CASE__ : Union[str, Any] = 1 with open(__lowerCAmelCase , """w""" , encoding="""utf-8""" ) as vocab_handle: json.dump(__lowerCAmelCase , __lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : List[str] = WavaVecaCTCTokenizer( __lowerCAmelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=__lowerCAmelCase , ) SCREAMING_SNAKE_CASE__ : Dict = True if config.feat_extract_norm == """layer""" else False SCREAMING_SNAKE_CASE__ : Tuple = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=__lowerCAmelCase , return_attention_mask=__lowerCAmelCase , ) SCREAMING_SNAKE_CASE__ : str = WavaVecaProcessor(feature_extractor=__lowerCAmelCase , tokenizer=__lowerCAmelCase ) processor.save_pretrained(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : str = WavaVecaForCTC(__lowerCAmelCase ) else: SCREAMING_SNAKE_CASE__ : Dict = WavaVecaForPreTraining(__lowerCAmelCase ) if is_finetuned or is_seq_class: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : str = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: SCREAMING_SNAKE_CASE__ : Union[str, Any] = argparse.Namespace(task="""audio_pretraining""" ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = fairseq.tasks.setup_task(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Union[str, Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = model[0].eval() recursively_load_weights(__lowerCAmelCase , __lowerCAmelCase , not is_finetuned ) hf_wavavec.save_pretrained(__lowerCAmelCase ) if __name__ == "__main__": a :Optional[Any] = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) parser.add_argument( "--is_seq_class", action="store_true", help="Whether the model to convert is a fine-tuned sequence classification model or not", ) a :Optional[Any] = parser.parse_args() a :Any = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
132
"""simple docstring""" import itertools import string from collections.abc import Generator, Iterable def _lowercase ( __lowerCAmelCase , __lowerCAmelCase ) -> Generator[tuple[str, ...], None, None]: SCREAMING_SNAKE_CASE__ : List[Any] = iter(__lowerCAmelCase ) while True: SCREAMING_SNAKE_CASE__ : Optional[int] = tuple(itertools.islice(__lowerCAmelCase , __lowerCAmelCase ) ) if not chunk: return yield chunk def _lowercase ( __lowerCAmelCase ) -> str: SCREAMING_SNAKE_CASE__ : List[Any] = """""".join([c.upper() for c in dirty if c in string.ascii_letters] ) SCREAMING_SNAKE_CASE__ : Tuple = """""" if len(__lowerCAmelCase ) < 2: return dirty for i in range(len(__lowerCAmelCase ) - 1 ): clean += dirty[i] if dirty[i] == dirty[i + 1]: clean += "X" clean += dirty[-1] if len(__lowerCAmelCase ) & 1: clean += "X" return clean def _lowercase ( __lowerCAmelCase ) -> list[str]: # I and J are used interchangeably to allow # us to use a 5x5 table (25 letters) SCREAMING_SNAKE_CASE__ : str = """ABCDEFGHIKLMNOPQRSTUVWXYZ""" # we're using a list instead of a '2d' array because it makes the math # for setting up the table and doing the actual encoding/decoding simpler SCREAMING_SNAKE_CASE__ : Optional[int] = [] # copy key chars into the table if they are in `alphabet` ignoring duplicates for char in key.upper(): if char not in table and char in alphabet: table.append(__lowerCAmelCase ) # fill the rest of the table in with the remaining alphabet chars for char in alphabet: if char not in table: table.append(__lowerCAmelCase ) return table def _lowercase ( __lowerCAmelCase , __lowerCAmelCase ) -> str: SCREAMING_SNAKE_CASE__ : Tuple = generate_table(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : List[Any] = prepare_input(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : Tuple = """""" # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(__lowerCAmelCase , 2 ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[Any] = divmod(table.index(__lowerCAmelCase ) , 5 ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[str] = divmod(table.index(__lowerCAmelCase ) , 5 ) if rowa == rowa: ciphertext += table[rowa * 5 + (cola + 1) % 5] ciphertext += table[rowa * 5 + (cola + 1) % 5] elif cola == cola: ciphertext += table[((rowa + 1) % 5) * 5 + cola] ciphertext += table[((rowa + 1) % 5) * 5 + cola] else: # rectangle ciphertext += table[rowa * 5 + cola] ciphertext += table[rowa * 5 + cola] return ciphertext def _lowercase ( __lowerCAmelCase , __lowerCAmelCase ) -> str: SCREAMING_SNAKE_CASE__ : str = generate_table(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : Dict = """""" # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(__lowerCAmelCase , 2 ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Dict = divmod(table.index(__lowerCAmelCase ) , 5 ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Union[str, Any] = divmod(table.index(__lowerCAmelCase ) , 5 ) if rowa == rowa: plaintext += table[rowa * 5 + (cola - 1) % 5] plaintext += table[rowa * 5 + (cola - 1) % 5] elif cola == cola: plaintext += table[((rowa - 1) % 5) * 5 + cola] plaintext += table[((rowa - 1) % 5) * 5 + cola] else: # rectangle plaintext += table[rowa * 5 + cola] plaintext += table[rowa * 5 + cola] return plaintext
132
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __UpperCAmelCase =logging.get_logger(__name__) __UpperCAmelCase ={ "facebook/convnextv2-tiny-1k-224": "https://huggingface.co/facebook/convnextv2-tiny-1k-224/resolve/main/config.json", } class a__ ( UpperCAmelCase__ , UpperCAmelCase__ ): lowerCamelCase : Any ="convnextv2" def __init__( self : List[str] , a : str=3 , a : int=4 , a : Optional[int]=4 , a : Optional[int]=None , a : Tuple=None , a : int="gelu" , a : Dict=0.02 , a : Any=1e-1_2 , a : str=0.0 , a : List[str]=2_24 , a : Optional[Any]=None , a : Any=None , **a : List[Any] , ): """simple docstring""" super().__init__(**a ) __lowerCamelCase = num_channels __lowerCamelCase = patch_size __lowerCamelCase = num_stages __lowerCamelCase = [96, 1_92, 3_84, 7_68] if hidden_sizes is None else hidden_sizes __lowerCamelCase = [3, 3, 9, 3] if depths is None else depths __lowerCamelCase = hidden_act __lowerCamelCase = initializer_range __lowerCamelCase = layer_norm_eps __lowerCamelCase = drop_path_rate __lowerCamelCase = image_size __lowerCamelCase = ['''stem'''] + [f"""stage{idx}""" for idx in range(1 , len(self.depths ) + 1 )] __lowerCamelCase , __lowerCamelCase = get_aligned_output_features_output_indices( out_features=a , out_indices=a , stage_names=self.stage_names )
237
'''simple docstring''' __UpperCAmelCase ="ABCDEFGHIJKLMNOPQRSTUVWXYZ" def __lowerCAmelCase ( ) -> None: __lowerCamelCase = input('''Enter message: ''' ) __lowerCamelCase = input('''Enter key [alphanumeric]: ''' ) __lowerCamelCase = input('''Encrypt/Decrypt [e/d]: ''' ) if mode.lower().startswith('''e''' ): __lowerCamelCase = '''encrypt''' __lowerCamelCase = encrypt_message(UpperCamelCase__ , UpperCamelCase__ ) elif mode.lower().startswith('''d''' ): __lowerCamelCase = '''decrypt''' __lowerCamelCase = decrypt_message(UpperCamelCase__ , UpperCamelCase__ ) print(f"""\n{mode.title()}ed message:""" ) print(UpperCamelCase__ ) def __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__ ) -> str: return translate_message(UpperCamelCase__ , UpperCamelCase__ , '''encrypt''' ) def __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__ ) -> str: return translate_message(UpperCamelCase__ , UpperCamelCase__ , '''decrypt''' ) def __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> str: __lowerCamelCase = [] __lowerCamelCase = 0 __lowerCamelCase = key.upper() for symbol in message: __lowerCamelCase = LETTERS.find(symbol.upper() ) if num != -1: if mode == "encrypt": num += LETTERS.find(key[key_index] ) elif mode == "decrypt": num -= LETTERS.find(key[key_index] ) num %= len(UpperCamelCase__ ) if symbol.isupper(): translated.append(LETTERS[num] ) elif symbol.islower(): translated.append(LETTERS[num].lower() ) key_index += 1 if key_index == len(UpperCamelCase__ ): __lowerCamelCase = 0 else: translated.append(UpperCamelCase__ ) return "".join(UpperCamelCase__ ) if __name__ == "__main__": main()
237
1
"""simple docstring""" from __future__ import annotations class __A : def __init__( self , a__=None ): _lowerCAmelCase : Optional[Any] = data _lowerCAmelCase : Dict = None def __repr__( self ): _lowerCAmelCase : Union[str, Any] = [] _lowerCAmelCase : int = self while temp: string_rep.append(F"{temp.data}" ) _lowerCAmelCase : str = temp.next return "->".join(a__ ) def SCREAMING_SNAKE_CASE ( _lowerCamelCase : list ) -> List[Any]: if not elements_list: raise Exception("""The Elements List is empty""" ) _lowerCAmelCase : Dict = Node(elements_list[0] ) for i in range(1 ,len(_lowerCamelCase ) ): _lowerCAmelCase : Tuple = Node(elements_list[i] ) _lowerCAmelCase : List[Any] = current.next return head def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Node ) -> None: if head_node is not None and isinstance(_lowerCamelCase ,_lowerCamelCase ): print_reverse(head_node.next ) print(head_node.data ) def SCREAMING_SNAKE_CASE ( ) -> Optional[Any]: from doctest import testmod testmod() _lowerCAmelCase : Dict = make_linked_list([14, 52, 14, 12, 43] ) print("""Linked List:""" ) print(_lowerCamelCase ) print("""Elements in Reverse:""" ) print_reverse(_lowerCamelCase ) if __name__ == "__main__": main()
44
from __future__ import annotations from math import gcd def UpperCAmelCase_ ( __UpperCAmelCase : int , __UpperCAmelCase : int = 2 , __UpperCAmelCase : int = 1 , __UpperCAmelCase : int = 3 , ) -> int | None: # A value less than 2 can cause an infinite loop in the algorithm. if num < 2: raise ValueError('The input value cannot be less than 2' ) # Because of the relationship between ``f(f(x))`` and ``f(x)``, this # algorithm struggles to find factors that are divisible by two. # As a workaround, we specifically check for two and even inputs. # See: https://math.stackexchange.com/a/2856214/165820 if num > 2 and num % 2 == 0: return 2 # Pollard's Rho algorithm requires a function that returns pseudorandom # values between 0 <= X < ``num``. It doesn't need to be random in the # sense that the output value is cryptographically secure or difficult # to calculate, it only needs to be random in the sense that all output # values should be equally likely to appear. # For this reason, Pollard suggested using ``f(x) = (x**2 - 1) % num`` # However, the success of Pollard's algorithm isn't guaranteed and is # determined in part by the initial seed and the chosen random function. # To make retries easier, we will instead use ``f(x) = (x**2 + C) % num`` # where ``C`` is a value that we can modify between each attempt. def rand_fn(__UpperCAmelCase : int , __UpperCAmelCase : int , __UpperCAmelCase : int ) -> int: return (pow(__UpperCAmelCase , 2 ) + step) % modulus for _ in range(__UpperCAmelCase ): # These track the position within the cycle detection logic. SCREAMING_SNAKE_CASE_ = seed SCREAMING_SNAKE_CASE_ = seed while True: # At each iteration, the tortoise moves one step and the hare moves two. SCREAMING_SNAKE_CASE_ = rand_fn(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = rand_fn(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = rand_fn(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # At some point both the tortoise and the hare will enter a cycle whose # length ``p`` is a divisor of ``num``. Once in that cycle, at some point # the tortoise and hare will end up on the same value modulo ``p``. # We can detect when this happens because the position difference between # the tortoise and the hare will share a common divisor with ``num``. SCREAMING_SNAKE_CASE_ = gcd(hare - tortoise , __UpperCAmelCase ) if divisor == 1: # No common divisor yet, just keep searching. continue else: # We found a common divisor! if divisor == num: # Unfortunately, the divisor is ``num`` itself and is useless. break else: # The divisor is a nontrivial factor of ``num``! return divisor # If we made it here, then this attempt failed. # We need to pick a new starting seed for the tortoise and hare # in addition to a new step value for the random function. # To keep this example implementation deterministic, the # new values will be generated based on currently available # values instead of using something like ``random.randint``. # We can use the hare's position as the new seed. # This is actually what Richard Brent's the "optimized" variant does. SCREAMING_SNAKE_CASE_ = hare # The new step value for the random function can just be incremented. # At first the results will be similar to what the old function would # have produced, but the value will quickly diverge after a bit. step += 1 # We haven't found a divisor within the requested number of attempts. # We were unlucky or ``num`` itself is actually prime. return None if __name__ == "__main__": import argparse lowerCamelCase__ : List[str] = argparse.ArgumentParser() parser.add_argument( 'num', type=int, help='The value to find a divisor of', ) parser.add_argument( '--attempts', type=int, default=3, help='The number of attempts before giving up', ) lowerCamelCase__ : Tuple = parser.parse_args() lowerCamelCase__ : Any = pollard_rho(args.num, attempts=args.attempts) if divisor is None: print(f'''{args.num} is probably prime''') else: lowerCamelCase__ : Tuple = args.num // divisor print(f'''{args.num} = {divisor} * {quotient}''')
225
0
import json import os from typing import Optional import numpy as np from ...feature_extraction_utils import BatchFeature from ...processing_utils import ProcessorMixin from ...utils import logging from ...utils.hub import get_file_from_repo from ..auto import AutoTokenizer lowerCAmelCase__ = logging.get_logger(__name__) class snake_case__(_UpperCamelCase ): """simple docstring""" lowercase_ = """AutoTokenizer""" lowercase_ = ["""tokenizer"""] lowercase_ = { """semantic_prompt""": 1, """coarse_prompt""": 2, """fine_prompt""": 2, } def __init__( self : Any , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : int=None ): super().__init__(SCREAMING_SNAKE_CASE ) lowercase__ : Optional[Any] = speaker_embeddings @classmethod def snake_case ( cls : Optional[Any] , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Any="speaker_embeddings_path.json" , **SCREAMING_SNAKE_CASE : List[str] ): if speaker_embeddings_dict_path is not None: lowercase__ : int = get_file_from_repo( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , subfolder=kwargs.pop("subfolder" , SCREAMING_SNAKE_CASE ) , cache_dir=kwargs.pop("cache_dir" , SCREAMING_SNAKE_CASE ) , force_download=kwargs.pop("force_download" , SCREAMING_SNAKE_CASE ) , proxies=kwargs.pop("proxies" , SCREAMING_SNAKE_CASE ) , resume_download=kwargs.pop("resume_download" , SCREAMING_SNAKE_CASE ) , local_files_only=kwargs.pop("local_files_only" , SCREAMING_SNAKE_CASE ) , use_auth_token=kwargs.pop("use_auth_token" , SCREAMING_SNAKE_CASE ) , revision=kwargs.pop("revision" , SCREAMING_SNAKE_CASE ) , ) if speaker_embeddings_path is None: logger.warning( f"""`{os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )}` does not exists , no preloaded speaker embeddings will be used - Make sure to provide a correct path to the json dictionnary if wanted, otherwise set `speaker_embeddings_dict_path=None`.""" ) lowercase__ : int = None else: with open(SCREAMING_SNAKE_CASE ) as speaker_embeddings_json: lowercase__ : Optional[int] = json.load(SCREAMING_SNAKE_CASE ) else: lowercase__ : int = None lowercase__ : str = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) return cls(tokenizer=SCREAMING_SNAKE_CASE , speaker_embeddings=SCREAMING_SNAKE_CASE ) def snake_case ( self : List[str] , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Tuple="speaker_embeddings_path.json" , SCREAMING_SNAKE_CASE : Optional[int]="speaker_embeddings" , SCREAMING_SNAKE_CASE : bool = False , **SCREAMING_SNAKE_CASE : Any , ): if self.speaker_embeddings is not None: os.makedirs(os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , "v2" ) , exist_ok=SCREAMING_SNAKE_CASE ) lowercase__ : Union[str, Any] = {} lowercase__ : Optional[int] = save_directory for prompt_key in self.speaker_embeddings: if prompt_key != "repo_or_path": lowercase__ : str = self._load_voice_preset(SCREAMING_SNAKE_CASE ) lowercase__ : List[str] = {} for key in self.speaker_embeddings[prompt_key]: np.save( os.path.join( embeddings_dict["repo_or_path"] , SCREAMING_SNAKE_CASE , f"""{prompt_key}_{key}""" ) , voice_preset[key] , allow_pickle=SCREAMING_SNAKE_CASE , ) lowercase__ : List[str] = os.path.join(SCREAMING_SNAKE_CASE , f"""{prompt_key}_{key}.npy""" ) lowercase__ : Optional[int] = tmp_dict with open(os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , "w" ) as fp: json.dump(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) super().save_pretrained(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) def snake_case ( self : List[str] , SCREAMING_SNAKE_CASE : str = None , **SCREAMING_SNAKE_CASE : Union[str, Any] ): lowercase__ : str = self.speaker_embeddings[voice_preset] lowercase__ : str = {} for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset_paths: raise ValueError( f"""Voice preset unrecognized, missing {key} as a key in self.speaker_embeddings[{voice_preset}].""" ) lowercase__ : List[Any] = get_file_from_repo( self.speaker_embeddings.get("repo_or_path" , "/" ) , voice_preset_paths[key] , subfolder=kwargs.pop("subfolder" , SCREAMING_SNAKE_CASE ) , cache_dir=kwargs.pop("cache_dir" , SCREAMING_SNAKE_CASE ) , force_download=kwargs.pop("force_download" , SCREAMING_SNAKE_CASE ) , proxies=kwargs.pop("proxies" , SCREAMING_SNAKE_CASE ) , resume_download=kwargs.pop("resume_download" , SCREAMING_SNAKE_CASE ) , local_files_only=kwargs.pop("local_files_only" , SCREAMING_SNAKE_CASE ) , use_auth_token=kwargs.pop("use_auth_token" , SCREAMING_SNAKE_CASE ) , revision=kwargs.pop("revision" , SCREAMING_SNAKE_CASE ) , ) if path is None: raise ValueError( f"""`{os.path.join(self.speaker_embeddings.get("repo_or_path" , "/" ) , voice_preset_paths[key] )}` does not exists , no preloaded voice preset will be used - Make sure to provide correct paths to the {voice_preset} embeddings.""" ) lowercase__ : str = np.load(SCREAMING_SNAKE_CASE ) return voice_preset_dict def snake_case ( self : Tuple , SCREAMING_SNAKE_CASE : Optional[dict] = None ): for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset: raise ValueError(f"""Voice preset unrecognized, missing {key} as a key.""" ) if not isinstance(voice_preset[key] , np.ndarray ): raise ValueError(f"""{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.""" ) if len(voice_preset[key].shape ) != self.preset_shape[key]: raise ValueError(f"""{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.""" ) def __call__( self : Any , SCREAMING_SNAKE_CASE : List[str]=None , SCREAMING_SNAKE_CASE : Optional[int]=None , SCREAMING_SNAKE_CASE : Any="pt" , SCREAMING_SNAKE_CASE : List[str]=256 , SCREAMING_SNAKE_CASE : Tuple=False , SCREAMING_SNAKE_CASE : int=True , SCREAMING_SNAKE_CASE : Any=False , **SCREAMING_SNAKE_CASE : Optional[Any] , ): if voice_preset is not None and not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): if ( isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and self.speaker_embeddings is not None and voice_preset in self.speaker_embeddings ): lowercase__ : Union[str, Any] = self._load_voice_preset(SCREAMING_SNAKE_CASE ) else: if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and not voice_preset.endswith(".npz" ): lowercase__ : int = voice_preset + ".npz" lowercase__ : Any = np.load(SCREAMING_SNAKE_CASE ) if voice_preset is not None: self._validate_voice_preset_dict(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) lowercase__ : Union[str, Any] = BatchFeature(data=SCREAMING_SNAKE_CASE , tensor_type=SCREAMING_SNAKE_CASE ) lowercase__ : Optional[Any] = self.tokenizer( SCREAMING_SNAKE_CASE , return_tensors=SCREAMING_SNAKE_CASE , padding="max_length" , max_length=SCREAMING_SNAKE_CASE , return_attention_mask=SCREAMING_SNAKE_CASE , return_token_type_ids=SCREAMING_SNAKE_CASE , add_special_tokens=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , ) if voice_preset is not None: lowercase__ : Tuple = voice_preset return encoded_text
121
from collections.abc import Iterator, MutableMapping from dataclasses import dataclass from typing import Generic, TypeVar lowerCAmelCase__ = TypeVar('''KEY''') lowerCAmelCase__ = TypeVar('''VAL''') @dataclass(frozen=_UpperCamelCase , slots=_UpperCamelCase ) class snake_case__(Generic[KEY, VAL] ): """simple docstring""" lowercase_ = 42 lowercase_ = 42 class snake_case__(_Item ): """simple docstring""" def __init__( self : List[str] ): super().__init__(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __bool__( self : Tuple ): return False lowerCAmelCase__ = _DeletedItem() class snake_case__(MutableMapping[KEY, VAL] ): """simple docstring""" def __init__( self : Any , SCREAMING_SNAKE_CASE : int = 8 , SCREAMING_SNAKE_CASE : float = 0.75 ): lowercase__ : Any = initial_block_size lowercase__ : list[_Item | None] = [None] * initial_block_size assert 0.0 < capacity_factor < 1.0 lowercase__ : Dict = capacity_factor lowercase__ : Optional[int] = 0 def snake_case ( self : Optional[Any] , SCREAMING_SNAKE_CASE : KEY ): return hash(SCREAMING_SNAKE_CASE ) % len(self._buckets ) def snake_case ( self : Optional[int] , SCREAMING_SNAKE_CASE : int ): return (ind + 1) % len(self._buckets ) def snake_case ( self : Tuple , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : KEY , SCREAMING_SNAKE_CASE : VAL ): lowercase__ : Tuple = self._buckets[ind] if not stored: lowercase__ : int = _Item(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) self._len += 1 return True elif stored.key == key: lowercase__ : str = _Item(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return True else: return False def snake_case ( self : str ): lowercase__ : str = len(self._buckets ) * self._capacity_factor return len(self ) >= int(SCREAMING_SNAKE_CASE ) def snake_case ( self : List[str] ): if len(self._buckets ) <= self._initial_block_size: return False lowercase__ : Optional[Any] = len(self._buckets ) * self._capacity_factor / 2 return len(self ) < limit def snake_case ( self : List[Any] , SCREAMING_SNAKE_CASE : int ): lowercase__ : Tuple = self._buckets lowercase__ : Optional[int] = [None] * new_size lowercase__ : int = 0 for item in old_buckets: if item: self._add_item(item.key , item.val ) def snake_case ( self : int ): self._resize(len(self._buckets ) * 2 ) def snake_case ( self : Optional[Any] ): self._resize(len(self._buckets ) // 2 ) def snake_case ( self : List[Any] , SCREAMING_SNAKE_CASE : KEY ): lowercase__ : Tuple = self._get_bucket_index(SCREAMING_SNAKE_CASE ) for _ in range(len(self._buckets ) ): yield ind lowercase__ : Union[str, Any] = self._get_next_ind(SCREAMING_SNAKE_CASE ) def snake_case ( self : str , SCREAMING_SNAKE_CASE : KEY , SCREAMING_SNAKE_CASE : VAL ): for ind in self._iterate_buckets(SCREAMING_SNAKE_CASE ): if self._try_set(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): break def __setitem__( self : List[str] , SCREAMING_SNAKE_CASE : KEY , SCREAMING_SNAKE_CASE : VAL ): if self._is_full(): self._size_up() self._add_item(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __delitem__( self : int , SCREAMING_SNAKE_CASE : KEY ): for ind in self._iterate_buckets(SCREAMING_SNAKE_CASE ): lowercase__ : Union[str, Any] = self._buckets[ind] if item is None: raise KeyError(SCREAMING_SNAKE_CASE ) if item is _deleted: continue if item.key == key: lowercase__ : Optional[int] = _deleted self._len -= 1 break if self._is_sparse(): self._size_down() def __getitem__( self : Tuple , SCREAMING_SNAKE_CASE : KEY ): for ind in self._iterate_buckets(SCREAMING_SNAKE_CASE ): lowercase__ : Any = self._buckets[ind] if item is None: break if item is _deleted: continue if item.key == key: return item.val raise KeyError(SCREAMING_SNAKE_CASE ) def __len__( self : Optional[Any] ): return self._len def __iter__( self : List[str] ): yield from (item.key for item in self._buckets if item) def __repr__( self : str ): lowercase__ : int = " ,".join( f"""{item.key}: {item.val}""" for item in self._buckets if item ) return f"""HashMap({val_string})"""
121
1
import unittest import numpy as np from transformers.testing_utils import is_flaky, require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DonutImageProcessor class __A( unittest.TestCase ): def __init__( self , _snake_case , _snake_case=7 , _snake_case=3 , _snake_case=18 , _snake_case=30 , _snake_case=400 , _snake_case=True , _snake_case=None , _snake_case=True , _snake_case=False , _snake_case=True , _snake_case=True , _snake_case=[0.5, 0.5, 0.5] , _snake_case=[0.5, 0.5, 0.5] , ) -> Optional[Any]: '''simple docstring''' __a = parent __a = batch_size __a = num_channels __a = image_size __a = min_resolution __a = max_resolution __a = do_resize __a = size if size is not None else {'''height''': 18, '''width''': 20} __a = do_thumbnail __a = do_align_axis __a = do_pad __a = do_normalize __a = image_mean __a = image_std def SCREAMING_SNAKE_CASE_ ( self ) -> Any: '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_thumbnail": self.do_thumbnail, "do_align_long_axis": self.do_align_axis, "do_pad": self.do_pad, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class __A( a , unittest.TestCase ): snake_case_ = DonutImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE_ ( self ) -> str: '''simple docstring''' __a = DonutImageProcessingTester(self ) @property def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[Any]: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE_ ( self ) -> Tuple: '''simple docstring''' __a = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , '''do_resize''' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , '''size''' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , '''do_thumbnail''' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , '''do_align_long_axis''' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , '''do_pad''' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , '''do_normalize''' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , '''image_mean''' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , '''image_std''' ) ) def SCREAMING_SNAKE_CASE_ ( self ) -> Any: '''simple docstring''' __a = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 18, '''width''': 20} ) __a = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42} ) # Previous config had dimensions in (width, height) order __a = self.image_processing_class.from_dict(self.image_processor_dict , size=(42, 84) ) self.assertEqual(image_processor.size , {'''height''': 84, '''width''': 42} ) def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[Any]: '''simple docstring''' pass @is_flaky() def SCREAMING_SNAKE_CASE_ ( self ) -> Any: '''simple docstring''' __a = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __a = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE , Image.Image ) # Test not batched input __a = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched __a = image_processing(_SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) @is_flaky() def SCREAMING_SNAKE_CASE_ ( self ) -> str: '''simple docstring''' __a = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __a = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE , numpify=_SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE , np.ndarray ) # Test not batched input __a = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched __a = image_processing(_SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) @is_flaky() def SCREAMING_SNAKE_CASE_ ( self ) -> int: '''simple docstring''' __a = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __a = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE , torchify=_SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE , torch.Tensor ) # Test not batched input __a = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched __a = image_processing(_SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , )
6
import numpy as np import torch from torch.utils.data import Dataset, IterableDataset from ..utils.generic import ModelOutput class __a ( UpperCAmelCase ): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Any: """simple docstring""" _UpperCAmelCase = dataset _UpperCAmelCase = process _UpperCAmelCase = params def __len__( self ) -> Union[str, Any]: """simple docstring""" return len(self.dataset ) def __getitem__( self , _SCREAMING_SNAKE_CASE ) -> Any: """simple docstring""" _UpperCAmelCase = self.dataset[i] _UpperCAmelCase = self.process(_SCREAMING_SNAKE_CASE , **self.params ) return processed class __a ( UpperCAmelCase ): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = loader _UpperCAmelCase = infer _UpperCAmelCase = params if loader_batch_size == 1: # Let's spare some time by deactivating altogether _UpperCAmelCase = None _UpperCAmelCase = loader_batch_size # Internal bookkeeping _UpperCAmelCase = None _UpperCAmelCase = None def __len__( self ) -> Any: """simple docstring""" return len(self.loader ) def __iter__( self ) -> Optional[int]: """simple docstring""" _UpperCAmelCase = iter(self.loader ) return self def UpperCAmelCase__ ( self ) -> int: """simple docstring""" if isinstance(self._loader_batch_data , torch.Tensor ): # Batch data is simple tensor, just fetch the slice _UpperCAmelCase = self._loader_batch_data[self._loader_batch_index] else: # Batch data is assumed to be BaseModelOutput (or dict) _UpperCAmelCase = {} for k, element in self._loader_batch_data.items(): if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): # Convert ModelOutput to tuple first _UpperCAmelCase = element.to_tuple() if isinstance(element[0] , torch.Tensor ): _UpperCAmelCase = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] , np.ndarray ): _UpperCAmelCase = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element ) continue if k in {"hidden_states", "past_key_values", "attentions"} and isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): # Those are stored as lists of tensors so need specific unbatching. if isinstance(element[0] , torch.Tensor ): _UpperCAmelCase = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] , np.ndarray ): _UpperCAmelCase = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element ) continue if element is None: # This can happen for optional data that get passed around _UpperCAmelCase = None elif isinstance(element[self._loader_batch_index] , torch.Tensor ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers _UpperCAmelCase = element[self._loader_batch_index].unsqueeze(0 ) elif isinstance(element[self._loader_batch_index] , np.ndarray ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers _UpperCAmelCase = np.expand_dims(element[self._loader_batch_index] , 0 ) else: # This is typically a list, so no need to `unsqueeze`. _UpperCAmelCase = element[self._loader_batch_index] # Recreate the element by reusing the original class to make it look # batch_size=1 _UpperCAmelCase = self._loader_batch_data.__class__(_SCREAMING_SNAKE_CASE ) self._loader_batch_index += 1 return result def UpperCAmelCase__ ( self ) -> List[str]: """simple docstring""" if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: # We are currently unrolling a batch so we just need to return # the current item within a batch return self.loader_batch_item() # We're out of items within a batch _UpperCAmelCase = next(self.iterator ) _UpperCAmelCase = self.infer(_SCREAMING_SNAKE_CASE , **self.params ) # We now have a batch of "inferred things". if self.loader_batch_size is not None: # Try to infer the size of the batch if isinstance(_SCREAMING_SNAKE_CASE , torch.Tensor ): _UpperCAmelCase = processed else: _UpperCAmelCase = list(processed.keys() )[0] _UpperCAmelCase = processed[key] if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _UpperCAmelCase = len(_SCREAMING_SNAKE_CASE ) else: _UpperCAmelCase = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. _UpperCAmelCase = observed_batch_size # Setting internal index to unwrap the batch _UpperCAmelCase = processed _UpperCAmelCase = 0 return self.loader_batch_item() else: # We're not unrolling batches return processed class __a ( UpperCAmelCase ): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) -> Tuple: """simple docstring""" super().__init__(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def __iter__( self ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = iter(self.loader ) _UpperCAmelCase = None return self def UpperCAmelCase__ ( self ) -> int: """simple docstring""" if self.subiterator is None: _UpperCAmelCase = self.infer(next(self.iterator ) , **self.params ) try: # Try to return next item _UpperCAmelCase = next(self.subiterator ) except StopIteration: # When a preprocess iterator ends, we can start lookig at the next item # ChunkIterator will keep feeding until ALL elements of iterator # all have created their subiterator and have been iterating against. # # Another way to look at it, is we're basically flattening lists of lists # into a single list, but with generators _UpperCAmelCase = self.infer(next(self.iterator ) , **self.params ) _UpperCAmelCase = next(self.subiterator ) return processed class __a ( UpperCAmelCase ): def __iter__( self ) -> Optional[int]: """simple docstring""" _UpperCAmelCase = iter(self.loader ) return self def UpperCAmelCase__ ( self ) -> Optional[int]: """simple docstring""" _UpperCAmelCase = False _UpperCAmelCase = [] if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: while self._loader_batch_index < self.loader_batch_size: _UpperCAmelCase = self.loader_batch_item() _UpperCAmelCase = item.pop('is_last' ) accumulator.append(_SCREAMING_SNAKE_CASE ) if is_last: return accumulator while not is_last: _UpperCAmelCase = self.infer(next(self.iterator ) , **self.params ) if self.loader_batch_size is not None: if isinstance(_SCREAMING_SNAKE_CASE , torch.Tensor ): _UpperCAmelCase = processed else: _UpperCAmelCase = list(processed.keys() )[0] _UpperCAmelCase = processed[key] if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _UpperCAmelCase = len(_SCREAMING_SNAKE_CASE ) else: _UpperCAmelCase = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. _UpperCAmelCase = observed_batch_size _UpperCAmelCase = processed _UpperCAmelCase = 0 while self._loader_batch_index < self.loader_batch_size: _UpperCAmelCase = self.loader_batch_item() _UpperCAmelCase = item.pop('is_last' ) accumulator.append(_SCREAMING_SNAKE_CASE ) if is_last: return accumulator else: _UpperCAmelCase = processed _UpperCAmelCase = item.pop('is_last' ) accumulator.append(_SCREAMING_SNAKE_CASE ) return accumulator class __a ( UpperCAmelCase ): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" _UpperCAmelCase = dataset _UpperCAmelCase = key def __len__( self ) -> Optional[int]: """simple docstring""" return len(self.dataset ) def __getitem__( self , _SCREAMING_SNAKE_CASE ) -> List[str]: """simple docstring""" return self.dataset[i][self.key] class __a ( UpperCAmelCase ): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[str]: """simple docstring""" _UpperCAmelCase = dataset _UpperCAmelCase = keya _UpperCAmelCase = keya def __len__( self ) -> Optional[int]: """simple docstring""" return len(self.dataset ) def __getitem__( self , _SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" return {"text": self.dataset[i][self.keya], "text_pair": self.dataset[i][self.keya]}
329
0
import math from collections.abc import Iterator from itertools import takewhile def UpperCAmelCase__ ( lowerCamelCase ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5, int(math.sqrt(UpperCAmelCase__ ) + 1 ), 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def UpperCAmelCase__ ( ) -> Iterator[int]: lowercase :List[str] = 2 while True: if is_prime(UpperCAmelCase__ ): yield num num += 1 def UpperCAmelCase__ ( lowerCamelCase = 2000000 ) -> int: return sum(takewhile(lambda lowerCamelCase : x < n, prime_generator() ) ) if __name__ == "__main__": print(f'''{solution() = }''')
371
import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import VideoMAEConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEModel, ) from transformers.models.videomae.modeling_videomae import VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class __lowerCAmelCase : def __init__( self: Dict , _lowerCAmelCase: Dict , _lowerCAmelCase: Any=13 , _lowerCAmelCase: List[str]=10 , _lowerCAmelCase: Dict=3 , _lowerCAmelCase: Dict=2 , _lowerCAmelCase: Any=2 , _lowerCAmelCase: Any=2 , _lowerCAmelCase: Union[str, Any]=True , _lowerCAmelCase: Dict=True , _lowerCAmelCase: Optional[Any]=32 , _lowerCAmelCase: Union[str, Any]=5 , _lowerCAmelCase: str=4 , _lowerCAmelCase: str=37 , _lowerCAmelCase: Any="gelu" , _lowerCAmelCase: List[Any]=0.1 , _lowerCAmelCase: Union[str, Any]=0.1 , _lowerCAmelCase: Union[str, Any]=10 , _lowerCAmelCase: List[str]=0.02 , _lowerCAmelCase: Union[str, Any]=0.9 , _lowerCAmelCase: int=None , ): lowercase :Dict = parent lowercase :Optional[int] = batch_size lowercase :List[Any] = image_size lowercase :int = num_channels lowercase :Any = patch_size lowercase :str = tubelet_size lowercase :Optional[Any] = num_frames lowercase :Optional[Any] = is_training lowercase :Tuple = use_labels lowercase :Union[str, Any] = hidden_size lowercase :Any = num_hidden_layers lowercase :Optional[Any] = num_attention_heads lowercase :Optional[int] = intermediate_size lowercase :Union[str, Any] = hidden_act lowercase :int = hidden_dropout_prob lowercase :List[str] = attention_probs_dropout_prob lowercase :List[str] = type_sequence_label_size lowercase :Union[str, Any] = initializer_range lowercase :Optional[Any] = mask_ratio lowercase :List[Any] = scope # in VideoMAE, the number of tokens equals num_frames/tubelet_size * num_patches per frame lowercase :List[str] = (image_size // patch_size) ** 2 lowercase :Dict = (num_frames // tubelet_size) * self.num_patches_per_frame # use this variable to define bool_masked_pos lowercase :Optional[Any] = int(mask_ratio * self.seq_length ) def SCREAMING_SNAKE_CASE ( self: List[Any] ): lowercase :Tuple = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) lowercase :Dict = None if self.use_labels: lowercase :Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase :Any = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE ( self: List[str] ): return VideoMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , tubelet_size=self.tubelet_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_lowerCAmelCase , initializer_range=self.initializer_range , ) def SCREAMING_SNAKE_CASE ( self: Optional[int] , _lowerCAmelCase: Dict , _lowerCAmelCase: List[Any] , _lowerCAmelCase: Dict ): lowercase :List[Any] = VideoMAEModel(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() lowercase :int = model(_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE ( self: Any , _lowerCAmelCase: int , _lowerCAmelCase: str , _lowerCAmelCase: Optional[int] ): lowercase :str = VideoMAEForPreTraining(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch lowercase :Tuple = torch.ones((self.num_masks,) ) lowercase :str = torch.cat([mask, torch.zeros(self.seq_length - mask.size(0 ) )] ) lowercase :Optional[int] = mask.expand(self.batch_size , -1 ).bool() lowercase :List[Any] = model(_lowerCAmelCase , _lowerCAmelCase ) # model only returns predictions for masked patches lowercase :Any = mask.sum().item() lowercase :Optional[Any] = 3 * self.tubelet_size * self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_masked_patches, decoder_num_labels) ) def SCREAMING_SNAKE_CASE ( self: Optional[int] ): lowercase :Union[str, Any] = self.prepare_config_and_inputs() lowercase , lowercase , lowercase :str = config_and_inputs lowercase :Tuple = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class __lowerCAmelCase ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase): _a = ( (VideoMAEModel, VideoMAEForPreTraining, VideoMAEForVideoClassification) if is_torch_available() else () ) _a = ( {'''feature-extraction''': VideoMAEModel, '''video-classification''': VideoMAEForVideoClassification} if is_torch_available() else {} ) _a = False _a = False _a = False _a = False def SCREAMING_SNAKE_CASE ( self: Dict ): lowercase :str = VideoMAEModelTester(self ) lowercase :str = ConfigTester(self , config_class=_lowerCAmelCase , has_text_modality=_lowerCAmelCase , hidden_size=37 ) def SCREAMING_SNAKE_CASE ( self: int , _lowerCAmelCase: str , _lowerCAmelCase: List[Any] , _lowerCAmelCase: Optional[Any]=False ): lowercase :Union[str, Any] = copy.deepcopy(_lowerCAmelCase ) if model_class == VideoMAEForPreTraining: # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch lowercase :Tuple = torch.ones((self.model_tester.num_masks,) ) lowercase :Optional[Any] = torch.cat([mask, torch.zeros(self.model_tester.seq_length - mask.size(0 ) )] ) lowercase :List[Any] = mask.expand(self.model_tester.batch_size , -1 ).bool() lowercase :Optional[int] = bool_masked_pos.to(_lowerCAmelCase ) if return_labels: if model_class in [ *get_values(_lowerCAmelCase ), ]: lowercase :List[str] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_lowerCAmelCase ) return inputs_dict def SCREAMING_SNAKE_CASE ( self: Tuple ): self.config_tester.run_common_tests() @unittest.skip(reason="VideoMAE does not use inputs_embeds" ) def SCREAMING_SNAKE_CASE ( self: str ): pass def SCREAMING_SNAKE_CASE ( self: Optional[Any] ): lowercase , lowercase :Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase :Union[str, Any] = model_class(_lowerCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowercase :List[str] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_lowerCAmelCase , nn.Linear ) ) def SCREAMING_SNAKE_CASE ( self: List[Any] ): lowercase , lowercase :Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase :Tuple = model_class(_lowerCAmelCase ) lowercase :Optional[int] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase :Optional[int] = [*signature.parameters.keys()] lowercase :List[Any] = ["pixel_values"] self.assertListEqual(arg_names[:1] , _lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self: List[str] ): lowercase :Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self: int ): lowercase :int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*_lowerCAmelCase ) @slow def SCREAMING_SNAKE_CASE ( self: Any ): for model_name in VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase :int = VideoMAEModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self: str ): if not self.has_attentions: pass else: lowercase , lowercase :Dict = self.model_tester.prepare_config_and_inputs_for_common() lowercase :Optional[Any] = True for model_class in self.all_model_classes: lowercase :Tuple = self.model_tester.seq_length - self.model_tester.num_masks lowercase :Dict = ( num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length ) lowercase :Any = True lowercase :Tuple = False lowercase :str = True lowercase :List[Any] = model_class(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() with torch.no_grad(): lowercase :List[Any] = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) ) lowercase :Any = outputs.attentions self.assertEqual(len(_lowerCAmelCase ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowercase :Optional[Any] = True lowercase :str = model_class(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() with torch.no_grad(): lowercase :Any = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) ) lowercase :List[Any] = outputs.attentions self.assertEqual(len(_lowerCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) lowercase :int = len(_lowerCAmelCase ) # Check attention is always last and order is fine lowercase :int = True lowercase :Union[str, Any] = True lowercase :int = model_class(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() with torch.no_grad(): lowercase :Optional[int] = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) ) self.assertEqual(out_len + 1 , len(_lowerCAmelCase ) ) lowercase :Tuple = outputs.attentions self.assertEqual(len(_lowerCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def SCREAMING_SNAKE_CASE ( self: str ): def check_hidden_states_output(_lowerCAmelCase: Optional[int] , _lowerCAmelCase: List[str] , _lowerCAmelCase: Tuple ): lowercase :Dict = model_class(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() with torch.no_grad(): lowercase :Tuple = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) ) lowercase :Tuple = outputs.hidden_states lowercase :Any = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(_lowerCAmelCase ) , _lowerCAmelCase ) lowercase :str = self.model_tester.seq_length - self.model_tester.num_masks lowercase :List[str] = num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) lowercase , lowercase :Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase :Any = True check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase :Optional[Any] = True check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def SCREAMING_SNAKE_CASE ( self: List[Any] ): pass def UpperCAmelCase__ ( ): lowercase :str = hf_hub_download( repo_id="hf-internal-testing/spaghetti-video", filename="eating_spaghetti.npy", repo_type="dataset" ) lowercase :List[str] = np.load(lowerCamelCase ) return list(lowerCamelCase ) @require_torch @require_vision class __lowerCAmelCase ( unittest.TestCase): @cached_property def SCREAMING_SNAKE_CASE ( self: Dict ): # logits were tested with a different mean and std, so we use the same here return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def SCREAMING_SNAKE_CASE ( self: Any ): lowercase :Tuple = VideoMAEForVideoClassification.from_pretrained("MCG-NJU/videomae-base-finetuned-kinetics" ).to( _lowerCAmelCase ) lowercase :Tuple = self.default_image_processor lowercase :Optional[Any] = prepare_video() lowercase :str = image_processor(_lowerCAmelCase , return_tensors="pt" ).to(_lowerCAmelCase ) # forward pass with torch.no_grad(): lowercase :List[str] = model(**_lowerCAmelCase ) # verify the logits lowercase :Optional[int] = torch.Size((1, 4_00) ) self.assertEqual(outputs.logits.shape , _lowerCAmelCase ) lowercase :Optional[int] = torch.tensor([0.36_69, -0.06_88, -0.24_21] ).to(_lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _lowerCAmelCase , atol=1e-4 ) ) @slow def SCREAMING_SNAKE_CASE ( self: Tuple ): lowercase :List[str] = VideoMAEForPreTraining.from_pretrained("MCG-NJU/videomae-base-short" ).to(_lowerCAmelCase ) lowercase :List[Any] = self.default_image_processor lowercase :str = prepare_video() lowercase :Optional[int] = image_processor(_lowerCAmelCase , return_tensors="pt" ).to(_lowerCAmelCase ) # add boolean mask, indicating which patches to mask lowercase :Optional[Any] = hf_hub_download(repo_id="hf-internal-testing/bool-masked-pos" , filename="bool_masked_pos.pt" ) lowercase :str = torch.load(_lowerCAmelCase ) # forward pass with torch.no_grad(): lowercase :Optional[Any] = model(**_lowerCAmelCase ) # verify the logits lowercase :str = torch.Size([1, 14_08, 15_36] ) lowercase :Union[str, Any] = torch.tensor( [[0.79_94, 0.96_12, 0.85_08], [0.74_01, 0.89_58, 0.83_02], [0.58_62, 0.74_68, 0.73_25]] , device=_lowerCAmelCase ) self.assertEqual(outputs.logits.shape , _lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , _lowerCAmelCase , atol=1e-4 ) ) # verify the loss (`config.norm_pix_loss` = `True`) lowercase :Union[str, Any] = torch.tensor([0.51_42] , device=_lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.loss , _lowerCAmelCase , atol=1e-4 ) ) # verify the loss (`config.norm_pix_loss` = `False`) lowercase :Any = VideoMAEForPreTraining.from_pretrained("MCG-NJU/videomae-base-short" , norm_pix_loss=_lowerCAmelCase ).to( _lowerCAmelCase ) with torch.no_grad(): lowercase :List[str] = model(**_lowerCAmelCase ) lowercase :Tuple = torch.tensor(torch.tensor([0.64_69] ) , device=_lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.loss , _lowerCAmelCase , atol=1e-4 ) )
158
0
"""simple docstring""" from dataclasses import dataclass, field from typing import Optional @dataclass class __A : """simple docstring""" __lowerCAmelCase = field( default="codeparrot/codeparrot", metadata={"help": "Model name or path of model to be trained."} ) __lowerCAmelCase = field( default="./", metadata={"help": "Save dir where model repo is cloned and models updates are saved to."} ) __lowerCAmelCase = field( default="codeparrot/codeparrot-clean-train", metadata={"help": "Name or path of training dataset."} ) __lowerCAmelCase = field( default="codeparrot/codeparrot-clean-valid", metadata={"help": "Name or path of validation dataset."} ) __lowerCAmelCase = field(default=2, metadata={"help": "Batch size for training."} ) __lowerCAmelCase = field(default=2, metadata={"help": "Batch size for evaluation."} ) __lowerCAmelCase = field(default=0.1, metadata={"help": "Value of weight decay."} ) __lowerCAmelCase = field( default=10000, metadata={"help": "Size of buffer used to shuffle streaming dataset."} ) __lowerCAmelCase = field(default=2e-4, metadata={"help": "Learning rate fo training."} ) __lowerCAmelCase = field(default="cosine", metadata={"help": "Learning rate."} ) __lowerCAmelCase = field( default=750, metadata={"help": "Number of warmup steps in the learning rate schedule."} ) __lowerCAmelCase = field( default=16, metadata={"help": "Number of gradient accumulation steps."} ) __lowerCAmelCase = field( default=_SCREAMING_SNAKE_CASE, metadata={"help": "Use gradient checkpointing to reduce memory footprint."} ) __lowerCAmelCase = field(default=50000, metadata={"help": "Maximum number of training steps."} ) __lowerCAmelCase = field( default=-1, metadata={"help": "Maximum number of evaluation steps. If -1 the full dataset is evaluated."} ) __lowerCAmelCase = field(default=1024, metadata={"help": "Sequence lengths used for training."} ) __lowerCAmelCase = field(default=1, metadata={"help": "Training seed."} ) __lowerCAmelCase = field( default=1024, metadata={"help": "Interval to save checkpoints. Measured as number of forward passes not training steps."}, ) __lowerCAmelCase = field( default=_SCREAMING_SNAKE_CASE, metadata={"help": "States path if the training should continue from a checkpoint folder."} ) __lowerCAmelCase = field(default=_SCREAMING_SNAKE_CASE, metadata={"help": "If True the data is pretokenized."} ) @dataclass class __A : """simple docstring""" __lowerCAmelCase = field( default="codeparrot/codeparrot", metadata={"help": "Model name or path of model to be evaluated."} ) __lowerCAmelCase = field( default="codeparrot/codeparrot-clean-valid", metadata={"help": "Name or path of validation dataset."} ) __lowerCAmelCase = field(default=2, metadata={"help": "Batch size used for evaluation."} ) __lowerCAmelCase = field( default=-1, metadata={"help": "Maximum number of evaluation steps. If -1 the full dataset is evaluated."} ) __lowerCAmelCase = field(default=1024, metadata={"help": "Length of sequences to be evaluated."} ) __lowerCAmelCase = field(default=1, metadata={"help": "Random seed used for evaluation."} ) @dataclass class __A : """simple docstring""" __lowerCAmelCase = field( default="codeparrot/codeparrot", metadata={"help": "Model name or path of model to be evaluated."} ) __lowerCAmelCase = field(default=_SCREAMING_SNAKE_CASE, metadata={"help": "Number of workers used for code evaluation."} ) __lowerCAmelCase = field( default=_SCREAMING_SNAKE_CASE, metadata={"help": "The number of human-eval tasks to run. If not included all tasks are evaluated."}, ) __lowerCAmelCase = field( default=_SCREAMING_SNAKE_CASE, metadata={"help": "Sample from the language model's output distribution."} ) __lowerCAmelCase = field(default=0.2, metadata={"help": "Sampling temperature used for generation."} ) __lowerCAmelCase = field(default=256, metadata={"help": "Maximum number of newly generated tokens."} ) __lowerCAmelCase = field(default=0, metadata={"help": "Top-k parameter used for generation."} ) __lowerCAmelCase = field(default=0.9_5, metadata={"help": "Top-p parameter used for nucleus sampling."} ) __lowerCAmelCase = field(default=10, metadata={"help": "Number of generations to run in parallel."} ) __lowerCAmelCase = field( default=200, metadata={"help": "Number of completions to generate for each sample."} ) __lowerCAmelCase = field(default=1, metadata={"help": "Random seed used for evaluation."} ) __lowerCAmelCase = field( default="eval_results.json", metadata={"help": "Random seed used for evaluation."} ) __lowerCAmelCase = field( default="0", metadata={"help": "Allow `code_eval` to execute Python code on machine"} ) __lowerCAmelCase = field( default=-1, metadata={ "help": ( "Determine which device to run the `text-generation` Pipeline on. -1 is CPU and any zero or positive" " number corresponds to which GPU device id to run on." ) }, ) @dataclass class __A : """simple docstring""" __lowerCAmelCase = field( default=_SCREAMING_SNAKE_CASE, metadata={ "help": "The number of CPU cores to use for parallel preprocessing. Default uses the maximum available." }, ) __lowerCAmelCase = field( default="transformersbook/codeparrot", metadata={"help": "Folder or name of dataset to process."} ) __lowerCAmelCase = field( default="codeparrot-clean", metadata={"help": "Folder to save processed processed dataset."} ) __lowerCAmelCase = field( default=100000, metadata={"help": "Number of files to save per JSON output file."} ) __lowerCAmelCase = field(default="content", metadata={"help": "Column containing text data to process."} ) __lowerCAmelCase = field( default=1000, metadata={"help": "Maximum line length in file, otherwise file is filtered."} ) __lowerCAmelCase = field( default=100, metadata={"help": "Maximum mean line length in file, otherwise file is filtered."} ) __lowerCAmelCase = field( default=0.2_5, metadata={"help": "Maximum fraction of non-alphanumeric characters, otherwise file is filtered."} ) __lowerCAmelCase = field( default=1.5, metadata={"help": "Minimum character token ratio for the file, otherwise file is filtered."} ) __lowerCAmelCase = field( default=0.7, metadata={"help": "Probability for filtering config, test and uncommon files."} ) __lowerCAmelCase = field( default="codeparrot/codeparrot", metadata={"help": "Name or path to the tokenizer."}, ) __lowerCAmelCase = field( default=_SCREAMING_SNAKE_CASE, metadata={"help": "If True, near-duplicate samples are removed."} ) __lowerCAmelCase = field( default=0.8_5, metadata={"help": "Jaccard threshold for near-duplicate samples."} ) @dataclass class __A : """simple docstring""" __lowerCAmelCase = field( default="gpt2", metadata={"help": "Base tokenizer to build new tokenizer from."} ) __lowerCAmelCase = field( default="transformersbook/codeparrot-train", metadata={"help": "Dataset to train tokenizer on."} ) __lowerCAmelCase = field(default="content", metadata={"help": "Column containing text data to process."} ) __lowerCAmelCase = field(default=200000, metadata={"help": "Number of examples to train tokenizer on."} ) __lowerCAmelCase = field( default=32768, metadata={"help": "Number of examples to train the tokenizer on."} ) __lowerCAmelCase = field(default="codeparrot", metadata={"help": "Name of new tokenizer."} ) __lowerCAmelCase = field(default=_SCREAMING_SNAKE_CASE, metadata={"help": "Push saved tokenizer to the hub."} ) @dataclass class __A : """simple docstring""" __lowerCAmelCase = field( default="codeparrot/codeparrot", metadata={"help": "Name or path to the tokenizer."} ) __lowerCAmelCase = field( default="codeparrot/codeparrot-clean-train", metadata={"help": "Name or path to the dataset to pretokenize."} ) __lowerCAmelCase = field( default="tokenized-codeparrot-train", metadata={"help": "Repo name of the pretokenized data."} ) __lowerCAmelCase = field(default=_SCREAMING_SNAKE_CASE, metadata={"help": "Number of workers used for code evaluation."} ) @dataclass class __A : """simple docstring""" __lowerCAmelCase = field( default="gpt2-large", metadata={"help": "Configuration to use for model initialization."} ) __lowerCAmelCase = field( default="codeparrot/codeparrot", metadata={"help": "Tokenizer attached to model."} ) __lowerCAmelCase = field(default="codeparrot", metadata={"help": "Name of the created model."} ) __lowerCAmelCase = field(default=_SCREAMING_SNAKE_CASE, metadata={"help": "Push saved tokenizer to the hub."} )
81
"""simple docstring""" import os import unittest from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, BertTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class __A ( _SCREAMING_SNAKE_CASE, unittest.TestCase ): """simple docstring""" __lowerCAmelCase = BertTokenizer __lowerCAmelCase = BertTokenizerFast __lowerCAmelCase = True __lowerCAmelCase = True __lowerCAmelCase = filter_non_english def SCREAMING_SNAKE_CASE ( self ) -> List[str]: super().setUp() a =[ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] a =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def SCREAMING_SNAKE_CASE ( self , __A ) -> Union[str, Any]: a ='''UNwant\u00E9d,running''' a ='''unwanted, running''' return input_text, output_text def SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: a =self.tokenizer_class(self.vocab_file ) a =tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(__A , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__A ) , [9, 6, 7, 12, 10, 11] ) def SCREAMING_SNAKE_CASE ( self ) -> List[str]: if not self.test_rust_tokenizer: return a =self.get_tokenizer() a =self.get_rust_tokenizer() a ='''UNwant\u00E9d,running''' a =tokenizer.tokenize(__A ) a =rust_tokenizer.tokenize(__A ) self.assertListEqual(__A , __A ) a =tokenizer.encode(__A , add_special_tokens=__A ) a =rust_tokenizer.encode(__A , add_special_tokens=__A ) self.assertListEqual(__A , __A ) a =self.get_rust_tokenizer() a =tokenizer.encode(__A ) a =rust_tokenizer.encode(__A ) self.assertListEqual(__A , __A ) # With lower casing a =self.get_tokenizer(do_lower_case=__A ) a =self.get_rust_tokenizer(do_lower_case=__A ) a ='''UNwant\u00E9d,running''' a =tokenizer.tokenize(__A ) a =rust_tokenizer.tokenize(__A ) self.assertListEqual(__A , __A ) a =tokenizer.encode(__A , add_special_tokens=__A ) a =rust_tokenizer.encode(__A , add_special_tokens=__A ) self.assertListEqual(__A , __A ) a =self.get_rust_tokenizer() a =tokenizer.encode(__A ) a =rust_tokenizer.encode(__A ) self.assertListEqual(__A , __A ) def SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: a =BasicTokenizer() self.assertListEqual(tokenizer.tokenize('''ah\u535A\u63A8zz''' ) , ['''ah''', '''\u535A''', '''\u63A8''', '''zz'''] ) def SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: a =BasicTokenizer(do_lower_case=__A ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def SCREAMING_SNAKE_CASE ( self ) -> List[Any]: a =BasicTokenizer(do_lower_case=__A , strip_accents=__A ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hällo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''h\u00E9llo'''] ) def SCREAMING_SNAKE_CASE ( self ) -> Any: a =BasicTokenizer(do_lower_case=__A , strip_accents=__A ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: a =BasicTokenizer(do_lower_case=__A ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: a =BasicTokenizer(do_lower_case=__A ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def SCREAMING_SNAKE_CASE ( self ) -> int: a =BasicTokenizer(do_lower_case=__A , strip_accents=__A ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HäLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def SCREAMING_SNAKE_CASE ( self ) -> List[str]: a =BasicTokenizer(do_lower_case=__A , strip_accents=__A ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HaLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def SCREAMING_SNAKE_CASE ( self ) -> str: a =BasicTokenizer(do_lower_case=__A , never_split=['''[UNK]'''] ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? [UNK]''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?''', '''[UNK]'''] ) def SCREAMING_SNAKE_CASE ( self ) -> Tuple: a =BasicTokenizer() a ='''a\n\'ll !!to?\'d of, can\'t.''' a =['''a''', '''\'''', '''ll''', '''!''', '''!''', '''to''', '''?''', '''\'''', '''d''', '''of''', ''',''', '''can''', '''\'''', '''t''', '''.'''] self.assertListEqual(tokenizer.tokenize(__A ) , __A ) def SCREAMING_SNAKE_CASE ( self ) -> Dict: a =['''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing'''] a ={} for i, token in enumerate(__A ): a =i a =WordpieceTokenizer(vocab=__A , unk_token='''[UNK]''' ) self.assertListEqual(tokenizer.tokenize('''''' ) , [] ) self.assertListEqual(tokenizer.tokenize('''unwanted running''' ) , ['''un''', '''##want''', '''##ed''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.tokenize('''unwantedX running''' ) , ['''[UNK]''', '''runn''', '''##ing'''] ) def SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: self.assertTrue(_is_whitespace(''' ''' ) ) self.assertTrue(_is_whitespace('''\t''' ) ) self.assertTrue(_is_whitespace('''\r''' ) ) self.assertTrue(_is_whitespace('''\n''' ) ) self.assertTrue(_is_whitespace('''\u00A0''' ) ) self.assertFalse(_is_whitespace('''A''' ) ) self.assertFalse(_is_whitespace('''-''' ) ) def SCREAMING_SNAKE_CASE ( self ) -> Any: self.assertTrue(_is_control('''\u0005''' ) ) self.assertFalse(_is_control('''A''' ) ) self.assertFalse(_is_control(''' ''' ) ) self.assertFalse(_is_control('''\t''' ) ) self.assertFalse(_is_control('''\r''' ) ) def SCREAMING_SNAKE_CASE ( self ) -> str: self.assertTrue(_is_punctuation('''-''' ) ) self.assertTrue(_is_punctuation('''$''' ) ) self.assertTrue(_is_punctuation('''`''' ) ) self.assertTrue(_is_punctuation('''.''' ) ) self.assertFalse(_is_punctuation('''A''' ) ) self.assertFalse(_is_punctuation(''' ''' ) ) def SCREAMING_SNAKE_CASE ( self ) -> Tuple: a =self.get_tokenizer() a =self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(__A ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] ) self.assertListEqual( [rust_tokenizer.tokenize(__A ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] ) @slow def SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: a =self.tokenizer_class.from_pretrained('''bert-base-uncased''' ) a =tokenizer.encode('''sequence builders''' , add_special_tokens=__A ) a =tokenizer.encode('''multi-sequence build''' , add_special_tokens=__A ) a =tokenizer.build_inputs_with_special_tokens(__A ) a =tokenizer.build_inputs_with_special_tokens(__A , __A ) assert encoded_sentence == [101] + text + [102] assert encoded_pair == [101] + text + [102] + text_a + [102] def SCREAMING_SNAKE_CASE ( self ) -> Any: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): a =self.rust_tokenizer_class.from_pretrained(__A , **__A ) a =f'''A, naïve {tokenizer_r.mask_token} AllenNLP sentence.''' a =tokenizer_r.encode_plus( __A , return_attention_mask=__A , return_token_type_ids=__A , return_offsets_mapping=__A , add_special_tokens=__A , ) a =tokenizer_r.do_lower_case if hasattr(__A , '''do_lower_case''' ) else False a =( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''A'''), ((1, 2), ''','''), ((3, 5), '''na'''), ((5, 6), '''##ï'''), ((6, 8), '''##ve'''), ((9, 15), tokenizer_r.mask_token), ((16, 21), '''Allen'''), ((21, 23), '''##NL'''), ((23, 24), '''##P'''), ((25, 33), '''sentence'''), ((33, 34), '''.'''), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''a'''), ((1, 2), ''','''), ((3, 8), '''naive'''), ((9, 15), tokenizer_r.mask_token), ((16, 21), '''allen'''), ((21, 23), '''##nl'''), ((23, 24), '''##p'''), ((25, 33), '''sentence'''), ((33, 34), '''.'''), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['''input_ids'''] ) ) self.assertEqual([e[0] for e in expected_results] , tokens['''offset_mapping'''] ) def SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: a =['''的''', '''人''', '''有'''] a =''''''.join(__A ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): a =True a =self.tokenizer_class.from_pretrained(__A , **__A ) a =self.rust_tokenizer_class.from_pretrained(__A , **__A ) a =tokenizer_p.encode(__A , add_special_tokens=__A ) a =tokenizer_r.encode(__A , add_special_tokens=__A ) a =tokenizer_r.convert_ids_to_tokens(__A ) a =tokenizer_p.convert_ids_to_tokens(__A ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(__A , __A ) self.assertListEqual(__A , __A ) a =False a =self.rust_tokenizer_class.from_pretrained(__A , **__A ) a =self.tokenizer_class.from_pretrained(__A , **__A ) a =tokenizer_r.encode(__A , add_special_tokens=__A ) a =tokenizer_p.encode(__A , add_special_tokens=__A ) a =tokenizer_r.convert_ids_to_tokens(__A ) a =tokenizer_p.convert_ids_to_tokens(__A ) # it is expected that only the first Chinese character is not preceded by "##". a =[ f'''##{token}''' if idx != 0 else token for idx, token in enumerate(__A ) ] self.assertListEqual(__A , __A ) self.assertListEqual(__A , __A )
81
1
"""simple docstring""" import os import unittest from tempfile import TemporaryDirectory import torch import torch.nn as nn from accelerate.utils import ( OffloadedWeightsLoader, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, ) class _snake_case ( nn.Module ): def __init__( self : int ): super().__init__() __lowerCamelCase : Union[str, Any] = nn.Linear(3 , 4 ) __lowerCamelCase : Optional[int] = nn.BatchNormad(4 ) __lowerCamelCase : Any = nn.Linear(4 , 5 ) def lowerCamelCase__ ( self : str , UpperCAmelCase : Union[str, Any] ): return self.lineara(self.batchnorm(self.lineara(UpperCAmelCase ) ) ) class _snake_case ( unittest.TestCase ): def lowerCamelCase__ ( self : List[Any] ): __lowerCamelCase : int = ModelForTest() with TemporaryDirectory() as tmp_dir: offload_state_dict(UpperCAmelCase , model.state_dict() ) __lowerCamelCase : Optional[Any] = os.path.join(UpperCAmelCase , "index.json" ) self.assertTrue(os.path.isfile(UpperCAmelCase ) ) # TODO: add tests on what is inside the index for key in ["linear1.weight", "linear1.bias", "linear2.weight", "linear2.bias"]: __lowerCamelCase : Dict = os.path.join(UpperCAmelCase , F"""{key}.dat""" ) self.assertTrue(os.path.isfile(UpperCAmelCase ) ) # TODO: add tests on the fact weights are properly loaded def lowerCamelCase__ ( self : Tuple ): __lowerCamelCase : Union[str, Any] = [torch.floataa, torch.floataa, torch.bfloataa] for dtype in dtypes: __lowerCamelCase : List[str] = torch.randn(2 , 3 , dtype=UpperCAmelCase ) with TemporaryDirectory() as tmp_dir: __lowerCamelCase : Optional[Any] = offload_weight(UpperCAmelCase , "weight" , UpperCAmelCase , {} ) __lowerCamelCase : Union[str, Any] = os.path.join(UpperCAmelCase , "weight.dat" ) self.assertTrue(os.path.isfile(UpperCAmelCase ) ) self.assertDictEqual(UpperCAmelCase , {"weight": {"shape": [2, 3], "dtype": str(UpperCAmelCase ).split("." )[1]}} ) __lowerCamelCase : Dict = load_offloaded_weight(UpperCAmelCase , index["weight"] ) self.assertTrue(torch.equal(UpperCAmelCase , UpperCAmelCase ) ) def lowerCamelCase__ ( self : int ): __lowerCamelCase : str = ModelForTest() __lowerCamelCase : int = model.state_dict() __lowerCamelCase : Any = {k: v for k, v in state_dict.items() if "linear2" not in k} __lowerCamelCase : Dict = {k: v for k, v in state_dict.items() if "linear2" in k} with TemporaryDirectory() as tmp_dir: offload_state_dict(UpperCAmelCase , UpperCAmelCase ) __lowerCamelCase : Optional[Any] = OffloadedWeightsLoader(state_dict=UpperCAmelCase , save_folder=UpperCAmelCase ) # Every key is there with the right value self.assertEqual(sorted(UpperCAmelCase ) , sorted(state_dict.keys() ) ) for key, param in state_dict.items(): self.assertTrue(torch.allclose(UpperCAmelCase , weight_map[key] ) ) __lowerCamelCase : Union[str, Any] = {k: v for k, v in state_dict.items() if "weight" in k} __lowerCamelCase : Dict = {k: v for k, v in state_dict.items() if "weight" not in k} with TemporaryDirectory() as tmp_dir: offload_state_dict(UpperCAmelCase , UpperCAmelCase ) __lowerCamelCase : Optional[int] = OffloadedWeightsLoader(state_dict=UpperCAmelCase , save_folder=UpperCAmelCase ) # Every key is there with the right value self.assertEqual(sorted(UpperCAmelCase ) , sorted(state_dict.keys() ) ) for key, param in state_dict.items(): self.assertTrue(torch.allclose(UpperCAmelCase , weight_map[key] ) ) with TemporaryDirectory() as tmp_dir: offload_state_dict(UpperCAmelCase , UpperCAmelCase ) # Duplicates are removed __lowerCamelCase : List[str] = OffloadedWeightsLoader(state_dict=UpperCAmelCase , save_folder=UpperCAmelCase ) # Every key is there with the right value self.assertEqual(sorted(UpperCAmelCase ) , sorted(state_dict.keys() ) ) for key, param in state_dict.items(): self.assertTrue(torch.allclose(UpperCAmelCase , weight_map[key] ) ) def lowerCamelCase__ ( self : Union[str, Any] ): __lowerCamelCase : List[Any] = {"a.1": 0, "a.10": 1, "a.2": 2} __lowerCamelCase : Dict = extract_submodules_state_dict(UpperCAmelCase , ["a.1", "a.2"] ) self.assertDictEqual(UpperCAmelCase , {"a.1": 0, "a.2": 2} ) __lowerCamelCase : str = {"a.1.a": 0, "a.10.a": 1, "a.2.a": 2} __lowerCamelCase : Optional[int] = extract_submodules_state_dict(UpperCAmelCase , ["a.1", "a.2"] ) self.assertDictEqual(UpperCAmelCase , {"a.1.a": 0, "a.2.a": 2} )
64
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING __A = logging.get_logger(__name__) __A = { '''ut/deta''': '''https://huggingface.co/ut/deta/resolve/main/config.json''', } class _snake_case ( a__ ): snake_case__ = "deta" snake_case__ = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self : Any , UpperCAmelCase : Optional[int]=None , UpperCAmelCase : Dict=900 , UpperCAmelCase : str=2048 , UpperCAmelCase : Optional[Any]=6 , UpperCAmelCase : Optional[Any]=2048 , UpperCAmelCase : Optional[Any]=8 , UpperCAmelCase : Union[str, Any]=6 , UpperCAmelCase : int=1024 , UpperCAmelCase : str=8 , UpperCAmelCase : Dict=0.0 , UpperCAmelCase : Optional[Any]=True , UpperCAmelCase : Optional[Any]="relu" , UpperCAmelCase : List[str]=256 , UpperCAmelCase : int=0.1 , UpperCAmelCase : int=0.0 , UpperCAmelCase : Any=0.0 , UpperCAmelCase : List[Any]=0.0_2 , UpperCAmelCase : Optional[Any]=1.0 , UpperCAmelCase : Union[str, Any]=True , UpperCAmelCase : Dict=False , UpperCAmelCase : Optional[int]="sine" , UpperCAmelCase : Tuple=5 , UpperCAmelCase : Any=4 , UpperCAmelCase : Dict=4 , UpperCAmelCase : Optional[Any]=True , UpperCAmelCase : Dict=300 , UpperCAmelCase : Optional[Any]=True , UpperCAmelCase : Tuple=True , UpperCAmelCase : Union[str, Any]=1 , UpperCAmelCase : str=5 , UpperCAmelCase : Tuple=2 , UpperCAmelCase : str=1 , UpperCAmelCase : Tuple=1 , UpperCAmelCase : Tuple=5 , UpperCAmelCase : List[Any]=2 , UpperCAmelCase : List[Any]=0.1 , UpperCAmelCase : Tuple=0.2_5 , **UpperCAmelCase : List[str] , ): if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) __lowerCamelCase : Tuple = CONFIG_MAPPING["resnet"](out_features=["stage2", "stage3", "stage4"] ) else: if isinstance(UpperCAmelCase , UpperCAmelCase ): __lowerCamelCase : List[Any] = backbone_config.pop("model_type" ) __lowerCamelCase : Any = CONFIG_MAPPING[backbone_model_type] __lowerCamelCase : List[Any] = config_class.from_dict(UpperCAmelCase ) __lowerCamelCase : List[str] = backbone_config __lowerCamelCase : Any = num_queries __lowerCamelCase : Tuple = max_position_embeddings __lowerCamelCase : Dict = d_model __lowerCamelCase : List[str] = encoder_ffn_dim __lowerCamelCase : int = encoder_layers __lowerCamelCase : str = encoder_attention_heads __lowerCamelCase : Dict = decoder_ffn_dim __lowerCamelCase : Tuple = decoder_layers __lowerCamelCase : str = decoder_attention_heads __lowerCamelCase : Dict = dropout __lowerCamelCase : List[Any] = attention_dropout __lowerCamelCase : int = activation_dropout __lowerCamelCase : int = activation_function __lowerCamelCase : Any = init_std __lowerCamelCase : Optional[Any] = init_xavier_std __lowerCamelCase : int = encoder_layerdrop __lowerCamelCase : Dict = auxiliary_loss __lowerCamelCase : Optional[int] = position_embedding_type # deformable attributes __lowerCamelCase : Tuple = num_feature_levels __lowerCamelCase : str = encoder_n_points __lowerCamelCase : List[str] = decoder_n_points __lowerCamelCase : List[str] = two_stage __lowerCamelCase : Dict = two_stage_num_proposals __lowerCamelCase : int = with_box_refine __lowerCamelCase : Union[str, Any] = assign_first_stage if two_stage is True and with_box_refine is False: raise ValueError("If two_stage is True, with_box_refine must be True." ) # Hungarian matcher __lowerCamelCase : str = class_cost __lowerCamelCase : Optional[Any] = bbox_cost __lowerCamelCase : Tuple = giou_cost # Loss coefficients __lowerCamelCase : List[Any] = mask_loss_coefficient __lowerCamelCase : Dict = dice_loss_coefficient __lowerCamelCase : Any = bbox_loss_coefficient __lowerCamelCase : Dict = giou_loss_coefficient __lowerCamelCase : Optional[Any] = eos_coefficient __lowerCamelCase : Optional[int] = focal_alpha super().__init__(is_encoder_decoder=UpperCAmelCase , **UpperCAmelCase ) @property def lowerCamelCase__ ( self : Dict ): return self.encoder_attention_heads @property def lowerCamelCase__ ( self : Union[str, Any] ): return self.d_model def lowerCamelCase__ ( self : List[str] ): __lowerCamelCase : Dict = copy.deepcopy(self.__dict__ ) __lowerCamelCase : Dict = self.backbone_config.to_dict() __lowerCamelCase : str = self.__class__.model_type return output
64
1